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ABSTRACT 

DAKOTA J SUCHYTA: Synthesis and Anticancer Action of Nitric Oxide-Releasing Liposomes 
(Under the direction of Mark H. Schoenfisch) 

The implementation of nitric oxide (NO)-based therapeutics has been met with 

formidable challenges relating to NO’s gaseous, reactive nature and difficulties associated with 

controlled delivery. Although macromolecular vehicles have been developed for applications in 

NO release, a common limitation associated with these systems is exposure of the NO donor to 

the surrounding medium, resulting in unintended NO release. To overcome this issue, liposomes 

were investigated as new vehicles for NO delivery whereby the NO donor is encapsulated within 

the aqueous core, protected from the external solution by a lipid membrane. 

Liposomes with encapsulated N-diazeniumdiolate NO donors were first synthesized 

using a reverse-phase evaporation protocol. Encapsulation efficiencies for several molecular NO 

donors were in the range of 33–41%. Relative to the unencapsulated (free) NO donor, NO-

release half-lives at pH 7.4 were up to 7-times greater upon encapsulation, yet the NO-releasing 

liposomes still exhibited their unique pH-sensitive release properties. The liposomes retained 

~80% of the encapsulated NO concentrations after 3 months of storage at 4°C, indicating 

excellent stability. In order to determine if the liposomes held merit as therapeutic agents, 

cytotoxicity against human pancreatic cancer cells were performed that demonstrated the 

liposomal NO donors required less NO to kill versus the free NO donor (183 µM and 2.4 mM, 

respectively). 
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The ability to tune NO-release kinetics of these liposomes was further studied. It was 

possible to vary the NO-release kinetics by altering the encapsulated NO donor molecule or the 

phospholipid composing the bilayer (independently or in combination). Phospholipid headgroup 

surface area was determined to be a main factor in controlling NO-release half-lives. As the 

surface area of the lipid headgroup was decreased from 0.660 nm2 to 0.420 nm2, a concomitant 

increase in NO-release half-life was also observed. The composition of the lipid bilayer is known 

to affect in vivo properties, so NO-release kinetics were also measured in serum and whole 

blood. Half-lives in serum were equivalent to those measured in buffer, while those measured in 

blood were ~60% faster. 

An investigation into the cytotoxicity of slow (t1/2 > 72 h) versus fast (t1/2 ~ 2.5 h) NO-

releasing liposomes demonstrated how the biological consequences were dependent on the NO-

release rate. Fast NO-releasing liposomes yielded consistently higher LD50 values (>230 µM 

NO), relative their slow-releasing counterparts (<230 µM NO), across 9 different cancer cell 

lines encompassing 3 different types of cancer (breast, colorectal, and pancreatic). The fast-

release system was able to eradicate 50% of the cells much quicker (~36 h vs. 72 h for slow-

release system). Flow cytometry studies suggest that this faster killing is due to a more rapid 

intracellular build-up of NO, which was observed for both the free and encapsulated NO donors. 

Western blotting revealed that both the slow and fast NO-release systems could induce apoptosis, 

albeit to different degrees. 
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CHAPTER 1: THERAPEUTIC ACTIVITY OF NITRIC OXIDE AND METHODS OF 
DELIVERY FOR CANCER TREATMENT 

 

1.1 Nitric oxide therapy 

          Nitric oxide (NO) is an endogenously produced gasotransmitter formed by the reaction of 

the enzyme nitric oxide synthase (NOS) and the amino acid arginine.1 NO is considered a potent 

vasodilator and cardioprotectant.2 Sodium nitroprusside, a common NO donor, has been utilized 

in medical settings for almost 100 years due to its effective blood pressure regulation action and 

inexpensive production costs. In addition to cardiovascular health, NO is recognized as a vital 

regulator of the immune response.3 Research has heavily focused on the development of 

therapeutics for the treatment of NO-impaired disorders with the hope that exogenous NO will 

reverse the severity of certain diseases. 

1.1.1. Antibacterial activity of nitric oxide 

Upon bacterial invasion, the immune response is initiated and macrophages are recruited 

to eradicate the invaders.4-5 Upon stimulation by proinflammatory cytokines such as interleukins 

and lipopolysaccharides, macrophages release NO to inhibit bacterial reproduction and induce 

cell death (Figure 1.1).6 Nitric oxide directly impedes bacterial respiration as well as 

ribonucleotide reductase, thus impacting DNA synthesis and repair.7 Replication is further 

prevented by altering zinc translocation among crucial metalloproteins.7 While NO can directly 

influence the reproduction of bacteria, its indirect effects are far more common. Known NO-

reactive species include hydrogen peroxide (H2O2), oxygen (O2), superoxide (O2
-), and certain  
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Figure 1.1. Antibacterial mechanisms of action of nitric oxide and other nitrosative and 
oxidative agents. Reprinted with permission from ACS Nano, 2008, 2, Hetrick, E.M.; Shin, J.H.; 
Stasko, N.A.; Johnson, C.B.; Wespe, D.A.; Holmuhamedov, E.; Schoenfisch, M.H. “Bactericidal 
efficacy of nitric oxide-releasing silica nanoparticles” pages 235–246, Copyright 2008 American 
Chemical Society. 
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biomolecules (e.g., amino acids and peptides).7-8 Common byproducts from the reactions of NO 

with these molecules, notably dinitrogen trioxide (N2O3), dinitrogen tetroxide (N2O4), nitrogen 

dioxide (NO2), and peroxynitrite (ONOO-), are capable of inducing severe cellular damage. 

Peroxynitrite is a key factor for the formation of potent nitrosative agents such as N2O3 and NO2 

radicals. Both N2O3 and N2O4 nitrosate membrane proteins, leading to membrane fractures and 

holes, while NO2 radicals are causative agents for lipid peroxidation.8-10 Additionally, NO with 

H2O2 exacerbates oxidative injury by promoting flavin reduction and Fenton chemistry (i.e., 

production of hydroxyl radicals from iron).7 This multi-mechanistic antibacterial approach 

hinders the ability of bacteria to foster resistance to NO. 

1.1.2. Anticancer activity of nitric oxide 

 Cancer is known for its increased rate of replication, genomic instability, inhibited DNA 

repair mechanisms, and ultimately metastasis.11 When used as a therapeutic, NO is able to target 

many of the chief promoters that accelerate metastasis (Figure 1.2). Directly damaging cancer 

cell DNA is a common strategy to prevent growth and metastasis. Reactive nitrogen and oxygen 

species, byproducts of NO scavenging, deaminate DNA bases (e.g., cytosine to uracil), nitrosate 

nucleophilic sites, and cause single-strand breaks.12-13 These alkylations and deaminations are 

not easily fixed in cancer cells due to the impaired DNA repair process, thus attenuating overall 

replication.  

 Aside from damaging DNA, NO is capable of interacting with major proteins involved in 

the cell cycle. Phosphorylation of two common proteins, p53 and c-Jun, leads to tumor cell 

apoptosis due to altering their native binding states. When exposed to concentrations of NO in 

the range of 400–800 nM, both p53 and c-Jun become phosphorylated (i.e., activated).12-13 p53 is  
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Figure 1.2. The downstream effects on cancer cells after treatment with nitric oxide. Reprinted 
with permission from Medicinal Research Reviews, 2007, 27, Mocellin, S.; Bronte, V.; Nitti, D. 
“Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities” 
pages 317–352, Copyright 2006 John Wiley and Sons. 
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mutated in 50% of human malignancies, which impairs its ability to initiate programmed cell 

death. When wild-type p53 is phosphorylated, however, these typically closed apoptotic channels 

are reinitiated. For example, exposure of neuroblastoma cells to NO leads to apoptosis.13-14 In a 

pancreatic cancer model, NO was able to arrest all cell lines at the G1 phase, and ultimately 

induce apoptosis, likely from p53 activation.15 Nitrosation of DNA repair proteins (e.g., 8-

oxoguanine glycosylase-1 and DNA alkyl-transferase) by RNS would inevitably reduce the 

ability of cancer cells to replicate, thus leading to epigenetic damage.13,16  

 Chemosensitization, the enhancement of a chemotherapeutic with an alternative 

medicine, is another technique benefited by NO. Due to the vasodilatory effects of NO, patients 

pretreated with NO-releasing drugs (e.g., sodium nitroprusside) generally exhibit less constricted 

blood vessels at tumor sites.17 The increased tumor blood flow allows for greater accumulation 

of the chemotherapeutic at the malignant site or an increased anticancer action due to the higher 

oxygen levels. When NO was co-administered with doxorubicin, hypoxia-induced doxorubicin 

resistance was reversed in multiple human and murine prostate cancer cell models.17-19 Similar to 

chemotherapy, radiotherapy also has been shown to benefit from NO pre-treatments. The higher 

ensuing tumor oxygen levels were reported to enhance radical formation and oxidative damage.17  

1.2 N-diazeniumdiolate NO donors 

          In normal physiological conditions, the half-life of NO ranges from 0.1 to 1 s.20-22 The 

final decomposition product of NO is the innocuous nitrate (NO3
-) anion that is formed after a 

series of physiological reactions (e.g., NO auto-oxidation followed by nitrite oxidation). NO’s 

lifetime is dependent on both the concentration of NO, and the concentration (and type) of the 

NO scavengers present. Some of the most common scavengers in the bloodstream are oxygen, 

hemoglobin, thiol-rich proteins, and superoxide. To better utilize NO as a therapeutic, the 
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development of NO donors, which are molecules capable of storing and releasing NO, have been 

an active area of research.9-10 Arguably the most investigated class of NO donors is N-

diazeniumdiolates, discussed below. 

1.2.1. Synthesis of N-diazeniumdiolates 

 The general synthesis of N-diazeniumdiolates involves the reaction of secondary amines 

with high pressures of NO gas under dilute basic conditions.23-24 Secondary amines, as opposed 

to primary or tertiary amines, afford the greatest N-diazeniumdiolate stability post-synthesis, thus 

making them the most heavily studied NO storage/release system. Larry K. Keefer pioneered the 

synthesis, identification, characterization, and NO-release properties of N-diazeniumdiolates.25-31 

It is speculated that the N-diazeniumdiolate formation process occurs via the addition of one NO 

molecule onto the secondary amine, followed by the attachment of an additional molecule of NO 

to form the N-diazeniumdiolate (Figure 1.3a).32-33 However, others have speculated that 2 

molecules of NO combine together (i.e., dimerize), with the dimer attaching to the parent 

secondary amine.34-35 In reality, a combination of these two processes is most likely. 

 Release of NO from N-diazeniumdiolates is highly dependent on the pH and temperature 

of the aqueous solution. At high pH values (>12), few protons exist to cleave the N-

diazeniumdiolate bond, thereby making basic solutions of N-diazeniumdiolates very stable (i.e., 

weeks). However, at low pH values, the NO donor coordinating amine protonates, resulting in 

degradation of the N-diazeniumdiolate and concomitant NO release (Figure 1.3b). In addition to 

pH, N-diazeniumdiolate stability is also dependent on the molecular structure of the parent 

amine.25 Nitric oxide-release half-lives of common N-diazeniumdiolates at pH 7.4 range from 2 s 

to 20 h (Figure 1.4).25,31 At elevated temperatures the NO release is accelerated even more due to 
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Figure 1.3. Mechanism of N-diazeniumdiolate (a) formation via sequential NO addition (b) and 
proton-initiated NO release. 
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Figure 1.4. Structures of common N-diazeniumdiolates with their reported half-lives in 10 mM 
PBS (pH 7.4, 37 °C). 
 

 

 

 

 

 

 

 



 9 

thermal energy promoting breakdown of N-diazeniumdiolate bond. This disparity in stability is 

linked to the anionic character of the diazeniumdiolate moiety. Substituents that can reduce the 

anionic character (i.e., ionically stabilize) often lead to greater stability of the N-

diazeniumdiolate, with longer NO-release half-lives. For example, the stable N-diazeniumdiolate 

diethylenetriamine/NO (DETA/NO) has a reported half-life at pH 7.4 of ~20 h, the result of N-

diazeniumdiolate stabilization by its two protonated primary amines.25 Cationic charges capable 

of stabilizing the NO donating group are exploited to increase the NO-release half-life under 

physiological conditions. 

1.2.2. Therapeutic utility of N-diazeniumdiolates 

 N-diazeniumdiolates are commonly used to study NO’s roles in various biological 

applications.36-38 Studies using DETA/NO have demonstrated that MDA-MB-231 breast cancer 

cells are less apt to develop resistance to doxorubicin when first exposed to NO.39 It was 

hypothesized that the chemosensitization of DETA/NO was linked to the NO donor reducing the 

local hypoxic environment. Spermine/NO (SPER/NO) has also been shown to aid in the 

eradication of MCF-7 breast cancer cells via the induction of apoptosis. At ~100 µM SPER/NO, 

phosphorylation of p53 at the Ser15 site led to a signaling cascade to reopen previously closed 

cell cycle pathways and allow for apoptosis to occur.40 Apoptosis may also be initiated in bone 

cancer F10 cells upon incubation with >20 µM DEA/NO (LD50=30 µM).41 Further, the number 

of metastatic (i.e., invasive) cells was reduced by 50%, supporting the role of NO in reducing 

metastasis.  

Promising in vivo studies with N-diazeniumdiolates have shown that in vitro data is 

replicated in animal models. Administration of a piperazine-derived N-diazeniumdiolate (JS-K) 

into rats infected with renal cell carcinoma resulted in an increase in expression of 
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phosphorylated p53 (Ser15), as well as a reduction in tumor volume due to apoptosis.42 

Moreover, rats treated with the NO donor had 75% fewer lung metastases relative to the control 

rats, perhaps not surprising as NO was shown to increase expression of E-cadherin, a critical 

transmembrane protein that is involved in cell-cell adhesion.43 

1.3 Macromolecular NO-releasing systems 

          Although low molecular weight NO donors have shown great promise as potential 

therapeutics, off-target cytotoxicity of small molecules is a major obstacle as a result of their 

size, high reactivity, and poor localization to the site of interest.44-46 As a remedy, 

macromolecular NO-delivery systems (e.g., gold or silica nanoparticles) have been developed to 

possibly promote passive localization and attenuate off-target cytotoxicity.47-54 Silica 

nanoparticles and dendrimers have received significant attention due to their ability to store large 

quantities of NO. 

1.3.1. Nitric oxide-releasing silica nanoparticles 

 With silica being relatively non-toxic, inexpensive, and chemically modifiable, 

investigations into its therapeutic utility were promising. Indeed, the density of surface silanol 

groups affords straightforward functionalization with silanes bearing secondary amines.55-58 

Upon reacting these particles with high pressures of NO gas, N-diazeniumdiolates are readily 

formed on the particle exterior. Total NO storage was shown to span 0.05 to 3.77 µmol NO per 

mg of particles depending on the secondary amine attached to the particle surface.55 When the 

antibacterial action of the NO-releasing particles was compared to a low molecular weight NO 

donor (i.e., PROLI/NO), the true benefit of macromolecular chemistry is demonstrated, with 8-

times less NO required to eradicate planktonic Pseudomonas aeruginosa (P. aeruginosa).57 The 

localized NO release from the silica particles afforded lower NO concentrations for bacteria 
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eradication. At these concentrations, L929 mouse fibroblasts retained high  (>80%) cellular 

viability. Particle size also played a pivotal role in biocidal action, with smaller 50 nm particles 

requiring half the amount of NO-releasing material to kill (0.8 mg/mL) relative to the larger 200 

nm particles (1.5 mg/mL), which was attributed to the greater association and uptake of the 

smaller particles with the bacterial cell membrane.59  

Nitric oxide-releasing silica particles have also had success in killing large biofilm 

colonies. Biofilms are formed when planktonic bacteria form a community and collectively 

excrete a polysaccharide matrix. Due to the high viscosity and poor permeability of this matrix, 

many antibacterial agents require much larger concentrations to kill. When both Pseudomonas 

aeruginosa and Escherichia coli were treated with fast NO-releasing silica nanoparticles, a 5-log 

reduction in biofilm viability was observed.60 As expected, a 10-times higher concentration of 

material was required for killing (8 mg/mL) relative to the planktonic-killing concentration (0.8 

mg/mL). Unfortunately, at these larger anti-biofilm concentrations, the NO-releasing systems 

were also toxic to healthy mouse fibroblasts (~70% killing), demonstrating the concentration 

dependence on cytotoxicity for NO-releasing silica nanoparticles. Smaller system size (50 nm) 

continued to enhance Pseudomonas aeruginosa biofilm killing, requiring only 6 mg/mL versus 

10 mg/mL for the 150 nm particles.61 

In addition to killing bacteria, NO-releasing silica nanoparticles have shown to be potent 

anticancer agents. For 90 nm fast NO-releasing silica particles, the inhibitory concentrations 

(IC50) against 11 different cell lines were in the range of 60 to 100 µg/mL.62 Protein expression 

studies revealed that apoptosis was one of the major pathways leading to cell death, as evidenced 

by cleaved poly adenosine diphosphate ribose polymerase (PARP) and cleaved Caspase 3 

signals.62 Interestingly, larger (350 nm) particles showed preferential killing to Ras-transformed 



 12 

ovarian cancer cells over their nontransformed counterparts (61 and 220 µg/mL, respectively). It 

was hypothesized that this difference in killing could be employed in vivo as a means to exploit 

the enhanced permeation and retention effect, and thus reduce off-target cytotoxicity. 

1.3.2. Nitric oxide-releasing dendrimers 

Dendrimers are hyperbranched nanostructures that possess a symmetrical and well-

defined polymeric structure. As the generation or size of the dendrimer increases, so does the 

number of exterior functional groups. Dendrimers formed from poly(propyleneimine) (PPI) and 

poly(amidoamine) (PAMAM) were shown to possess a high density of secondary amine groups 

for functionalization with N-diazeniumdiolate NO donors.63 In fact, dendrimers were shown to 

yield the largest NO totals per mass out of all macromolecular systems (0.91–3.80 µmol/mg).64 

Significant antibacterial action was induced upon exposing Gram-negative (Pseudomonas 

aeruginosa) and Gram-positive (Staphylococcus aureus) planktonic bacteria to NO-releasing PPI 

dendrimers.65  

Further studies on the anti-biofilm action of dendrimers revealed that killing was not only 

dependent on concentration, but also on generation and functional group modification.66-67 An 

increase in dendrimer size led to an increase in the number of secondary amines, thus increasing 

the amount of NO per molecule. Greater biofilm killing was therefore observed for the larger 

generations versus the lower generations (i.e., generation 3 vs. 1) against Staphylococcus aureus 

and Pseudomonas aeruginosa biofilms (concentration to kill reduced by half).66 Additionally, as 

the terminal units (exterior functional groups) were altered from propyl to dodecyl groups, a 

significant reduction in the NO dose to kill was observed.67 For example, NO-releasing PAMAM 

dendrimers bearing propyl groups required 52.5 mM NO to kill Streptococcus mutans, while 

dendrimers bearing dodecyl groups required only 1.8 mM. This disparity in concentration was 
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most likely the result of the long alkyl chains (i.e., dodecyl) intercalating into the bacterial cell 

membrane leading to cell death, which reduced the amount of NO needed for eradication. 

However, more NO was required to kill for the shorter alkyl chains (i.e., propyl) as they cannot 

effectively damage the bacterial membrane. 

1.4 Liposomes as drug delivery vehicles 

          The ideal NO-releasing macromolecular delivery system would protect the NO donor until 

the site of interest is reached. Current NO-release systems fall short in this regard as the NO 

donor is exposed to the aqueous environment (e.g., bloodstream) leading to N-diazeniumdiolate 

degradation and NO release. Premature NO release decreases the amount of NO available for 

therapeutic action, and may increase off-target cytotoxicity. Bloodstream delivery systems that 

confer protection to the NO donor would overcome the issue of premature NO donor 

degradation. 

 Similar to the structure of a cell, liposomes are vesicles that contain an inner aqueous 

core surrounded by a phospholipid bilayer (Figure 1.5). The composition of both the aqueous 

compartment (e.g., ionic strength) and the bilayer may be modified to achieve different vesicle 

properties (e.g., size and charge). Additionally, cationic lipids may be incorporated into the 

bilayer to produce a charged liposome surface that will ultimately affect encapsulation 

efficiency, liposome size, and cellular uptake. As the liposome structure is composed of only 

phospholipids, the delivery vehicle is non-toxic and degradable in vivo, unlike other particle 

systems (e.g., silica and gold).68 Further, the similarity in surface between cells and liposomes 

suggests potential for cellular uptake through bilayer fusion, a process that cannot occur for other 

drug delivery vehicles. 68-69 
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Figure 1.5. Representation of a liposome and its ability to encapsulate both lipophilic and 
hydrophilic drugs. 
 

 

 

 

 

 

 

 

 

 

 

 



 15 

1.4.1. Synthesis and characterization of liposomes 

 Choosing a suitable liposome preparation method depends on the required liposome size, 

equipment available, and identity of the encapsulated molecule. The two most widely used 

protocols are thin-film hydration and the reverse phase evaporation techniques.68 Thin-film 

hydration method requires the evaporation of a phospholipid solution (usually dissolved in 

chloroform) under a nitrogen stream or other low pressure environment.70-72 Afterwards, a “thin 

film” is formed on the bottom of the flask, which is then subjected to rehydration in an aqueous 

phase. The molecule of interest to be encapsulated may either be added to the phospholipid 

solution or the aqueous phase, depending on its solubility. Sonication of the liquid causes 

phospholipid bilayers to form and desorb from the flask to produce liposomes. This method 

tends to form large, multilamellar liposomes (i.e., concentric bilayers encapsulating one another). 

The reproducibility of the number of lamellar phases is poor, and thus extrusion through 

polycarbonate membranes is ultimately required to obtain narrow distributions of liposome sizes 

and lamellarities.73 Unfortunately, the extrusion process leads to low encapsulation efficiencies 

(<15%). Additionally, the thin-film hydration method is not easily scaled up like other 

techniques (e.g., reverse phase evaporation), further limiting its use in industrial liposome 

production.74 

 Another popular method for synthesizing liposomes is through a reverse phase 

evaporation technique developed by Szoka and Papahadjopoulos.75-77 An organic phase 

containing the lipids and an aqueous phase are sonicated at a temperature slightly higher (~5 °C) 

than that of the transition temperature (where the phospholipid tails convert from an ordered, 

solid phase into a more fluid phase) to form an opalescent emulsion of phospholipids. 

Afterwards, the organic phase is evaporated at elevated temperatures, causing the hydrophobic 
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lipid tails to collapse onto one another in the aqueous phase and form bilayers.76 A benefit of this 

technique is that liposomes are typically small (<300 nm) and have encapsulation efficiencies up 

to 60%. Purification by extrusion is not generally required for the reverse phase evaporation 

process as the resulting liposomes are unilamellar in nature and have a narrow size distribution. 

However, heat-sensitive molecules, such as proteins, may be degraded due to the required 

heating during sonication and rotoevaporation steps. To avoid this, phospholipids with low 

transition temperatures are preferred. 

 Common ex vivo liposome characterization techniques examine size, shape, 

polydispersity, drug encapsulation efficiency, drug retention, and aggregation over time. 

Dynamic light scattering (DLS) may be used to measure both the hydrodynamic radius of the 

liposomes and size distribution.78-79 Size and shape may also be examined using transmission 

electron microscopy (TEM).80 TEM potentially allows for observation of the liposome interior, 

as well as its deformability. Freeze-fracture TEM is a specialized form of TEM where the 

liposome sample is fixed using liquid nitrogen, fractured, and sputtered coated with a metal.81-82 

Through fracturing the liposome vesicle, the interior becomes visible and properties such as 

number of lamellae are observed. The efficiency of drug encapsulation is measured to determine 

how well the molecule of interest is encapsulated. Of note, such characterization measurements 

are highly dependent on the molecule encapsulated. Other tools for characterization include 

absorbance, fluorescence, or flow cytometry to compare the concentration of the stock solution 

to that of the ruptured liposomes (equal concentrations would indicate a 100% encapsulation 

efficiency).83 Drug retention and vesicle aggregation are measured concurrently over time using 

a combination of DLS, TEM, and fluorescence (or whichever technique was used to identify the 
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encapsulant). Aggregation is minimized by lyophilizing the liposomes or by storing them at 4 

°C.84 

1.4.2. Pre-clinical liposome systems 

 Many liposomal systems are being researched in the hopes of entering clinical trials for 

medical applications (e.g., anticancer, diagnostic) with encapsulants ranging from small 

molecules to large macromolecular structures. Delivery of macromolecules is a prevalent method 

for eradicating diseases and building immunity to foreign invaders.85-87 For example, siRNA and 

DNA have been encapsulated within positively charged liposomes.88-91 Positive lipids such as N-

[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethyl ammonium chloride (DOTMA) electrostatically bind 

to the negatively charged DNA molecules, causing the formation of a vesicular complex.92 These 

ionic amalgams have greater encapsulation efficiencies over liposomes bearing neutral charge. 

Intracellular delivery of these macromolecules is also more effective (relative to their free form) 

since the liposome bilayer may fuse with cell membranes.69 

 Quantum dots have also been encapsulated within liposomes in order to enhance their 

solubility in aqueous solutions.93-96 The hydrophobic ligands that are usually appended to the 

surface of quantum dots destabilizes the particles in aqueous solutions, thereby precluding their 

use from efficient in vivo imaging. However, through the use of liposomes, the quantum dots are 

able to dissolve in the lipid bilayer for bloodstream delivery. After intravenous delivery of the 

liposomes in rats, near infrared (NIR) images show accumulation of quantum dots throughout the 

body, the liver and spleen in particular.96 In addition to therapeutics, quantum dot-loaded 

liposomes have been used as fluorescent labels in immunoassays.95 Sensitivities and limits of 

detection of assays using these liposomes were five times greater than that of assays using 

unencapsulated quantum dots. 
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 Small molecule liposomal systems are by far the most utilized for research and medical 

applications. Chen et al. synthesized arsenic trioxide (As2O3)-loaded liposomes for use as an 

anticancer agent since free As2O3 has led to acute poisoning in patients.97 Encapsulated As2O3 

within a liposome prevents rapid damage to the cell membrane and promotes an extended release 

profile. The longer release durations mitigate undesirable off-target cytotoxicity to healthy cells. 

Cell viability studies verified that higher concentrations of liposomal As2O3 were required to kill 

human cells relative to unencapsulated As2O3 (>200 and 10 µM, respectively).  

While in some cases liposomes may be used to mitigate toxicity, they are more generally 

employed to enhance cytotoxic action. Gemcitabine is the gold standard chemotherapeutic for 

treating advanced stage pancreatic cancer.98 Gemcitabine’s short plasma half-life (8–17 min) 

requires high doses to be administered, which can lead to adverse side effects in patients.99 

Liposomal gemcitabine was synthesized by Fresta and coworkers to increase drug 

pharmacokinetics.99 Cytotoxicity studies comparing free gemcitabine to liposomal gemcitabine 

confirmed enhanced killing (2–3 fold decrease in IC50 value). Similarly, ibuprofen-loaded 

liposomes have been used as a treatment of lung cancer. Daily administration of ibuprofen has 

been shown to reduce the risk of lung cancer, but continuous exposure to ibuprofen causes 

gastrointestinal bleeding and renal toxicity.100 Cheng et al. have demonstrated greater cell death 

against multiple lung cancer cells lines when using liposomal ibuprofen instead of free ibuprofen 

(<400 vs. >1,500 µM, respectively). Further in vivo xenograft studies verified that liposomal 

ibuprofen may induce oxidative stress against the cancer cells, as indicated by elevated stress 

marker levels in urine.  

Another common drug that has benefited from liposomal encapsulation is docetaxel, a 

highly-utilized chemotherapeutic used to treat prostate, neck, and breast cancer.101 The poor 
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water-solubility of docetaxel requires the use of surfactants (e.g., Tween 80) and organic solvents 

to aid in dissolution and delivery. Unfortunately, Tween 80 elicits hypersensitivity effects in 

vivo. Formulating docetaxel-loaded liposomes has increased both its solubility and blood 

circulation time. Biodistribution measurements revealed that liposomal docetaxel had a 5-times 

longer circulation half-life than the free form (260 vs. 52 min, respectively). 

The treatment of glaucoma requires continuous drug exposure to reduce intraocular 

pressure. As such, glaucoma patients must enroll in a daily eye drop regimen rather than a 

monthly dose. Latanoprost, the leading treatment of glaucoma, has been encapsulated into 

liposomes in an attempt to increase the release duration and eliminate the need for a daily eye 

drop schedule. Natarajan et al. were able to synthesize a liposomal system capable of continuous 

latanoprost release for >30 days (60% is released within 30 days).102 Evaluation of the system on 

a nonhuman primate model revealed that intraocular pressure was consistently lower compared 

to untreated and eye drop treated controls. Moreover, a single injection of the liposomes led to 

intraocular pressure reduction for 120 d. The authors attributed the sustained release profile to 

the protection of the encapsulated latanoprost conferred by the phospholipid bilayer. 

1.4.3. Commercial liposome systems 

 A number of liposome formulations have commercially emerged for the treatment of 

multiple diseases.85 One of the most well-known formulations is that of liposomal doxorubicin 

(Doxil), the first FDA-approved nanocarrier to be used in hospitals as a treatment for ovarian 

cancer and Kaposi sarcoma.103 A unique transmembrane ammonium sulfate gradient is used to 

load doxorubicin at high concentrations within the liposomes.104 A greater anticancer action was 

observed for Doxil relative to free doxorubicin. 105 The in vivo utility of the liposomes is in part 

due to the introduction of phospholipids bearing polyethylene glycol (PEG) headgroups into the 
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bilayer.106 The PEGylated lipids increased the hydration of the exterior surface, helping prevent 

aggregation during storage (i.e., long shelf-life) and mitigating any immune response upon 

administration.107-108 When compared to free doxorubicin in vivo, Doxil had a 300-times longer 

clearance lifetime as a result of the liposomal encapsulation and PEGylation of the liposome 

surface.103  

 In addition to Doxil, other liposomal drugs now include Ambisome, Marqibo, and 

DaunoXome. Ambisome (liposomal amphotericin B) is a therapy that utilizes the lipid bilayer to 

dissolve amphotericin B in order to treat fungal infections.109-111 Marqibo is a liposomal 

formulation of vincristine sulfate to treat acute lymphoblastic leukemia.112 DaunoXome utilizes 

liposomally encapsulated daunorubicin to treat acute myeloid leukemia and non-Hodgkin 

lymphoma.113-114 Along these lines, liposomes loaded with morphine sulfate (DepoDur) have 

been used as an enhanced version of an epidural to last longer and provide extended pain relief to 

mothers.115-116  Depocyt (liposomal cytarabine) has been administered to patients who suffer 

from lymphomatous meningitis and has proven to be more effective than the free cytarabine.117-

118 Drugs for photodynamic therapy have been encapsulated within liposomes to better treat 

individuals suffering from neovascularization ailments.119-120 Liposomal formulations have been 

used to enhance the immunogenicity of vaccines.121 For example, the liposomal influenza virus 

vaccine (Inflexal V), first introduced onto the Swiss market in 1997, has been used over 41 

million times.121-123 Additionally, the liposomal hepatitis A vaccine (Epaxal) has been shown to 

be well tolerated and immunogenic in patients.124-125  

 While there isn’t an approved liposomal cisplatin system yet, it is worth mentioning the 

current success of Lipoplatin, which is the liposomal form of cisplatin that is currently in clinical 

trials for treatment of multiple cancers (e.g., breast, ovarian, lung).126-129 Systemic administration 
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of cisplatin often leads to severe adverse effects such as renal tubular damage. To mitigate such 

issues, Lipoplatin was introduced as the liposomal formulation.127 Preclinical trials have shown 

that Lipoplatin exhibits lower off-target toxicity than cisplatin, but is still able to induce 

apoptosis in malignant cells.129 Further Phase I trials determined that the maximum tolerated 

dose was as high as 350 mg/m2, over double that of the free cisplatin dose (100 mg/m2). 

However, hematological and gastrointestinal toxicity has been noted, albeit it to a much lower 

degree than free cisplatin. Many Phase II trials have been carried out and demonstrated that the 

combination of Lipoplatin and another chemotherapeutic (e.g., gemcitabine) is more effective 

than dual-administration of cisplatin and gemcitabine. Phase III clinical trials are currently 

underway to evaluate the potential effectiveness of Lipoplatin and gemcitabine.129 

1.4.4. Intracellular uptake of liposomes 

 The therapeutic efficacy of liposomes is highly dependent on its ability to be uptaken 

rapidly into the cell. The translocation of liposomes to the interior of a cell is a complicated 

process that depends on a number of factors such as liposome size and charge, type of cell, and 

rate of metabolic processes.130 Clathrin-mediated endocytosis is a common pathway whereby 

liposomes exceeding 100 nm are able to enter cells. A less common, but still relevant pathway is 

that of macropinocytosis, which is reserved for vesicles larger than 1 µm.131 In this process, 

when external macromolecular structures are in close proximity to the cell, invagination of the 

cell membrane occurs along with coating the cytoplasmic face of this vesicle with the triskelion 

protein clathrin.132 After complete invagination, heat shock protein hsc70 aids in removing the 

external clathrin coat. The formed endosome then travels according to the pathway its on (e.g., 

endolysosomal pathway) and the internal contents (i.e., drug) of the liposome may either be 

released during this entire process or once the lysosome is reached. 
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 Other clathrin-independent pathways exist to internalize liposomes.132-133 For example, 

caveolins are scaffolding proteins that can replace clathrin to aid in liposome uptake. The exact 

initiation of this pathway has yet be fully understood, as even the same molecule (e.g., albumin) 

interacting with the same cell may not utilize caveolin pathways consistently.133 Another method 

of entry is mediated by dynamin, a guanosine triphosphate (GTP) hydrolase enzyme that assists 

in the fusion of liposomes with the cell membrane. This process is actually regulated by a 

GTPase called Ras homolog gene family member A (RhoA).133 Examples of molecules that 

regularly enter mammalian cells via this mechanism include receptors for interleukin-2, common 

γ chain cytokines, and immunoglobulin E.  

1.4.5. Ligand-bearing liposomes 

 In order to increase in vivo blood circulation times or the binding affinity of liposomes to 

a particular cell, ligands are commonly attached to the vehicle’s exterior surface.134 Doxil 

employs PEG groups to make the liposome surface appear more endogenous and prevent an 

immune response that clears liposomes from the bloodstream. By increasing the water density 

near the liposome surface, it becomes difficult for opsonins to adhere and “mark” the 

liposome.108 Without the opsonins on the liposomes surface, white blood cells aren’t able to 

locate the vehicles and remove them from the bloodstream. These PEG chains may be replaced 

by other structures that are capable of increasing surface hydrophilicity (e.g., sugars). 

 Cell targeting to prevent off-target cytotoxicity is achieved by exploiting the unique 

receptors present (or overexpressed) on the cell of interest and attaching the receptor compliment 

to the liposome. Folate groups at the outer surface of the liposome via covalent attachment or 

intercalation into the lipid bilayer represent one example. Many human tumors overexpress 

folate receptors on their surface because folic acid is a key vitamin required for the rapid 
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deoxyribonucleic acid (DNA) synthesis exhibited by malignant cells.135 HeLa and KB cells 

exposed to folate-appended arsenic trioxide liposomes were shown to be 9- and 28-times, 

respectively, more toxic than the same liposomes without the folate groups.136 Other non-

antibody ligands (and their respective diseases) include transferrin (multiple cancers), 

galactosamine (hepatoma), and granulocyte macrophage colony-stimulating factor (leukemic 

blasts).134 Antibodies conjugated to liposomes are continuously being discovered and produced, 

including anti-tenascin (breast cancer), anti-CD33 (acute myeloid leukemia), and anti-CD20 

(non-Hodgkin lymphoma).134 Difficulties associated with synthesizing liposomes bearing various 

markers are high cost, degradation or denaturing of the marker during liposome synthesis (e.g., 

organic solvents, high ionic strengths, high temperatures), and low purity (inability to remove 

liposomes without marker from those that have it). 

1.5 Nitric oxide-releasing liposomes 

          Unlike current macromolecular systems (e.g., dendrimers and silica nanoparticles) where 

the NO donor is appended to the exterior, liposomes are able to encapsulate the NO donor behind 

a lipid bilayer that confers protection until subsequent localization or delivery (Figure 1.5). To 

date, little research has been performed on developing NO-releasing liposomes that exploit this 

unique characteristic of the vehicle. 

1.5.1. NO gas-encapsulated liposomes 

 Liposomes incorporating NO gas within the aqueous core have been prepared by 

exposing liposomes directly to gaseous NO.137-139 These systems yield NO payloads of ~10 µL 

NO per mg of lipid. The kinetics of NO release are rapid upon exposure to aqueous solutions 

(t1/2=10 min). The rates of NO release may be slightly varied by encapsulating a mixture of 
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NO and argon. A 1:9 volumetric ratio of NO to argon was shown to yield the best system with 

NO totals of 0.045 µmol NO/mg lipid. Exposure of smooth muscle cells to the NO-releasing 

liposomes resulted in 20 and 80% cell viability at 5 µM NO and 2 µM NO, respectively, 

revealing a concentration dependence on cytotoxicity. The 1:9 ratio liposomes were then injected 

into rabbits that had injured carotid arteries to assess the effects of NO on the vasculature healing 

process. After 14 days post-injection, histological studies revealed that NO induced inhibition of 

arterial closure by 40% relative to the untreated controls, supporting that NO release can promote 

healing and widening of injured arteries. 

1.5.2. Metal nitrosyl complex-encapsulated liposomes 

 Metal complexes bearing nitrosyl groups, light-sensitive NO donors, have also been 

encapsulated within liposomes.140 Ostrowksi et al. loaded egg phosphatidylcholine-based 

liposomes with the NO donor trans-Cr(cyclam)(ONO)2
+. The liposomes were ~125 nm in 

diameter and retained their structure and NO for at least 2 weeks. After irradiation with 350 nm 

light, the liposomes produced up to 8 nM NO, with no detectable NO concentrations in the 

absence of light. The amount of NO released from the free metal complex proved dependent on 

the oxygen levels of the solution. The total amount of NO released in solutions purged with 

helium was 1.56 nmol, compared to 0.02 nmol for an air-saturated solution. The disparity in 

measured NO concentrations was attributed to scavenging of the liberated NO gas. However, the 

liposomal metal complex did not show scavenging, most likely due to differential partitioning of 

the NO into the bilayer or the bilayer reacting with any photoproducts.140 The liposome system 

exhibited on/off control of NO release, as well as NO payloads ranging from 1 to 10 nM 

depending on the duration of irradiation (10–30 s). While this system demonstrates the utility of 
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liposomes for controlling NO-release kinetics, the reliance on an external light source for NO 

release and the low NO payloads limits their use for therapeutic applications. 

1.5.3. Organic nitrate-encapsulated liposomes 

 Organic nitrates, the most common NO donor utilized in medical settings (e.g., glyceryl 

trinitrate and isosorbide dinitrate) have also been encapsulated within liposomes. Pedrini et al. 

reported on a doxorubicin derivative with a pendant organic nitrate group capable of releasing 

NO (NitDox) and dual-action therapy.141 To further enhance cytotoxicity towards cancer cells, 

NitDox was loaded into ~200 nm PEGylated liposomes. Comparing the degradation half-life of 

free NitDox (16 h) and liposomal NitDox (19–25 h) in human serum, it was revealed that the 

liposomes protected the organic nitrate from hydrolytic and enzymatic degradation. The 

cytotoxicity of the liposomes towards breast and ovarian cancer were then compared to free 

doxorubicin, free NitDox, and a liposomal form of doxorubicin. All liposome formulations 

resulted in greater cytotoxicity towards the cell lines relative to free drugs, which was attributed 

to more efficient cellular uptake. However, the NitDox-loaded liposomes proved to be more 

cytotoxic than the doxorubicin-loaded liposomes, indicating that dual-action release (both NO 

and doxorubicin) enhanced overall toxicity. 

1.5.4. N-diazeniumdiolate-encapsulated liposomes 

 As mentioned above, N-diazeniumdiolates undergo a proton-initiated decomposition 

mechanism to release NO. With NO release highly dependent on pH, N-diazeniumdiolates 

represent a unique class of NO donors that can undergo spontaneous decomposition in vivo to 

liberate their stored NO, unlike the previously mentioned NO donors that rely on enzymes 

(organic nitrates) or light (nitrosyl metal complexes) to initiate NO release. With respect to 

cancer, the low pH of malignant sites could act as a trigger to increase the rate of NO liberation,  
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Figure 1.6. Nitric oxide-releasing liposome and mechanism of NO release. 
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thus leading to high, local concentrations of NO at the tumor site. A single, prior study 

demonstrated the feasibility of encapsulating N-diazeniumdiolates within liposomes, although 

the liposomes were not extensively characterized (e.g., encapsulation efficiency and NO totals) 

or studied further (e.g., stability or cytotoxicity).142 Nevertheless, an important conclusion of this 

one report was that the NO release at pH 7.4 could be prolonged (up to a half-life of 449 min) 

through the use of thermally stable lipids. The researchers hypothesized that the enhanced 

rigidity of the bilayer provided better protection of the NO donor from the external solution 

(Figure 1.6). Collectively, the data suggested further N-diazeniumdiolate protection in vivo, 

while still maintaining their unique pH-sensitive NO release capabilities. 

1.6 Summary of dissertation research 

           The focus of my dissertation research was to synthesize a macromolecular liposome 

system capable of delivering NO to eradicate cancer cells. Initially, I studied the encapsulation of 

N-diazeniumdiolate NO donors within liposomes and their ensuing stability. Preliminary 

cytotoxicity assays were carried out to examine if the NO-releasing liposomes exerted any 

anticancer action against pancreatic cancer cells. Upon proving that a stable liposomal 

formulation could be synthesized, the liposomal formulation was optimized in order to better 

understand the release mechanism. Lastly, the kinetic-dependent killing of the NO-releasing 

liposomes against 9 human cancer lines, encompassing three different cancers was investigated. 

To summarize, my research aims were to:  

(1) synthesize N-diazeniumdiolate-encapsulated liposomes and determine their 

stability and cytotoxicity towards human cancer cells; 
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(2) tune both NO-release properties (e.g., NO totals and half-life) and liposomal 

properties (e.g., surface charge) while understanding how these affect NO release 

in biological media; and, 

(3) evaluate the role of liposomal NO-release kinetics with respect to cytotoxicity 

against human breast, pancreatic, and colorectal cancer cells. 

The goal of this introductory chapter was to set the stage for using NO as a  

chemotherapeutic, review current NO-release materials, and demonstrate that liposomes provide 

advantages over other NO delivery systems. In Chapter 2, the formulation of NO-releasing 

liposomes is discussed with evaluation of size, NO totals, stability, and cytotoxicity. Chapter 3 

describes the effects of the encapsulated NO donor and composition of the lipid bilayer on NO-

release properties, and role of media on stability and NO release. The cytotoxicity of two 

liposome systems with distinct NO-release profiles (e.g., slow and fast) is described in Chapter 4 

to better understand the effect of killing and intracellular NO delivery with respect to liposomal 

NO-release kinetics. Finally, Chapter 5 provides a summary of my work with suggested future 

studies involving NO-releasing liposomes. 
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CHAPTER 2: ENCAPSULATION OF N-DIAZENIUMDIOLATES WITHIN 
LIPOSOMES FOR ENHANCED NITRIC OXIDE DONOR STABILITY AND 

DELIVERY1 
 

2.1 Introduction 

 Nitric oxide (NO) is often proposed as a potential therapeutic due to the many roles it plays in 

human physiology.1-4 For example, NO functions as an antiplatelet agent because it helps 

regulate the production of cyclic guanosine monophosphate (cGMP) and concentration of 

calcium ions (Ca2+) within platelets required for platelet activation.5 In addition to its 

antithrombotic properties, NO exhibits broad-spectrum antibacterial activity and is central to the 

innate immune response.6 Nitric oxide exerts antibacterial action through the reaction with other 

oxidants and production of cytotoxic byproducts (e.g., dinitrogentrioxide, peroxynitrite) that 

subsequently induce DNA deamination and cell membrane damage.7-8 Nitric oxide has been 

shown to kill cancer cells through similar nitrosative and oxidative stresses.9 Another potential 

mechanism of NO’s anticancer action is through the regulation of intracellular protein 

expression. For example, Hofseth et. al. reported the effects of NO on the reactivation of the p53 

tumor suppressor protein.10  In this manner, cell death may be reinitiated to control cellular 

proliferation since p53 controls cell cycle entry/exit and apoptosis.11 A major advantage of 

                                                
1 This chapter was adapted from an article that previously appeared in Molecular Pharmaceutics. 
The original citation is as follows: Suchyta, D.J.; Schoenfisch, M.H. “Encapsulation of N-
diazeniumdiolates within liposomes for enhanced nitric oxide donor stability and delivery” 
Molecular Pharmaceutics 2015, 12, 3569-3574. 
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exogenous NO over current chemotherapeutics would be the limited off-target cytotoxicity as 

NO has a relatively short lifetime in physiological milieu.1  

 The reactivity and short half-life of NO in biological media necessitates the use of NO 

donors as sources of NO. N-diazeniumdiolate NO donors have received considerable attention 

due to their ability to spontaneously (i.e., non-enzymatically) produce NO under physiological 

conditions, as a result of donor breakdown by water (protons).12 This NO release mechanism 

gives rise to controllable NO-release kinetics that are dependent on both NO donor and pH.13-14 

Unfortunately, the use of free NO donors often results in insufficient control over targeting the 

delivery and insufficient NO payloads for therapeutic applications.15 Macromolecular NO-

release scaffolds (e.g., dendrimers, nanoparticles) consisting of multiple NO donors have been 

developed to achieve greater NO payloads and delivery.16 Nanoparticle-based delivery vehicles 

have shown a broad range of NO-release kinetics that are highly dependent on the NO donor 

utilized (e.g., S-nitrosothiol, N-diazeniumdiolate).17  The therapeutic action of these NO-release 

systems has been demonstrated against both bacteria and cancer cells with directed cell 

membrane and DNA damage.18 While the NO payloads of these scaffolds are substantial (>1 

µmol NO/mg), the majority of the NO can be released too rapidly depending on their 

structure.8,18-19 Ideally, next generation NO-release scaffolds would be stable or only minimally 

breakdown at pH 7.4 and 37 °C until certain physiology (e.g., a change in pH) would trigger a 

burst of NO release. Such pH-triggered NO delivery might prove useful in the development of 

new anticancer agents, exploiting the acidic (pH 5.4−7.6) microenvironments inside tumors.20-21 

In this respect, the majority of NO would be released at the tumor site avoiding potential off-

target cytotoxicity. 
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 Liposomes are nanostructures composed of an inner aqueous core surrounded by a 

bilayer of phospholipids that have been used to enhance drug delivery against many diseases 

(e.g., cancer).22 Encapsulation of a NO-releasing chromium complex within liposomes proved 

that the lipid bilayer can confer protection to the NO donor.23 Tai et al. previously reported the 

encapsulation of spermine/NO within a phosphatidylcholine-based liposome utilizing a thin-film 

hydration method to achieve NO release.24 Unfortunately, their resulting liposomes yielded low 

NO totals and their stability was unknown. Herein, we describe an alternative approach for 

preparing NO-releasing liposomes containing N-diazeniumdiolate NO donors with attention to 

vehicle formation, stability, and pH-triggered delivery. In contrast to other macromolecular NO-

release systems (e.g., nanoparticles), the N-diazeniumdiolate NO donor is encapsulated within an 

aqueous core whereby a high interior pH limits undesirable NO donor decomposition. 

2.2 Experimental section 

2.2.1. Materials 

Dipalmitoylphosphatidylcholine (DPPC) was purchased from Avanti Polar Lipids 

(Alabaster, AL). Cholesterol (Chol), iron (III) chloride hexahydrate, ammonium thiocyanate, 

bis(3-aminopropyl)amine, fetal bovine serum (FBS), penicillin streptomycin, Dulbecco’s 

modified Eagle’s medium (DMEM), phosphate-buffered saline (PBS) for cell culture, and 

dipropylenetriamine were obtained from Sigma (St. Louis, MO). Phenazine methosulfate (PMS), 

chloroform, anhydrous acetonitrile, sulfuric acid, and isopropyl ether were purchased from 

Fisher Scientific (Fair Lawn, NJ). 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophen-yl)-2H-tetrazolium inner salt (MTS) was from Promega (Madison, WI). Sephadex 

G-25 was from GE Healthcare (Pittsburgh, PA). Spermine was purchased from Alfa Aesar 

(Ward Hill, MA). Pure nitric oxide (NO) gas (99.5%) was obtained from Praxair (Sanford, NC). 
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Argon, nitrogen (N2), nitric oxide (NO) calibration gas (26.80 ppm, balance N2), and carbon 

dioxide (CO2) gas cylinders were from Airgas National Welders (Durham, NC). A Millipore 

Milli-Q UV Gradient A10 System (Bedford, MA) was used to purify distilled water to a 

resistivity of 10.2 MΩ·cm and a total organic content ≤6 ppb. PANC-1 cells (ATCC number 

CRL 1469) were a gift from Dr. Channing Der of the Department of Pharmacology at the 

University of North Carolina (Chapel Hill, NC). 

2.2.2. Synthesis of N-diazeniumdiolates 

Previously reported methods were employed to synthesize the NO donors (Figure 2.1).12-

13 Briefly, the precursor molecule was dissolved in anhydrous acetonitrile (typically 33.3 

mg/mL). The solution was subsequently purged with argon at 100 psi inside a stainless steel Parr 

bomb. Six sequential purges removed any residual oxygen in the solution. The solution was then 

charged with 10 bar NO for 3 d. After 3 d, the solution was purged six times with argon to 100 

psi to remove any residual NO. The final solutions, containing the precipitated product, were 

poured over a Hirsch funnel, washed twice with diethyl ether, and dried under vacuum overnight. 

The final product was stored at -20 °C until use. 

2.2.3. Preparation of liposomes 

 Liposomes were made using a 1:1 molar ratio of DPPC to Chol (typically 33 µmol DPPC 

to 33 µmol Chol) using the method of Szoka and Papahadjopoulos.25 Lipids were dissolved in a 

1:1 volumetric ratio of chloroform to isopropyl ether and added to a round-bottom flask with a 

septum under a nitrogen atmosphere. Subsequently, the N-diazeniumdiolate was dissolved in 50 

mM NaOH to make a 14 mM stock NO donor solution and injected into the flask, which was 

sonicated for 4 min at 45 °C. The organic phase was removed using rotoevaporation, and the 

resulting liposomes were allowed to sit at 45 °C for 30 min. The unencapsulated material was 
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removed using four Sephadex G-25 spin columns packed in 10-mL syringes to minimize dilution 

of the liposomes. The final liposome solution was stored at 4 °C protected from light. 

2.2.4. Characterization of liposome size 

For dynamic light scattering measurements, the liposomes were diluted with water and 

analyzed with a Zetasizer Nano (Malvern Instruments, UK). Transmission electron microscopy 

(TEM) images were taken using liposomes diluted 1:1 with Milli-Q water. The liposomes were 

cast Formvar coated, square mesh copper TEM grids (Electron Microscopy Sciences, Hatfield, 

PA). After 45 minutes to allow evaporation of the solvent, a negative-stain was performed using 

2% uranyl acetate. A drop of the stain was left on the grid for 1 min and subsequently removed 

using filter paper, followed by a 15 min dry time. The liposomes were imaged using a JEOL 

100CX II transmission electron microscope at an accelerating voltage of 100 kV. 

2.2.5. Phospholipid content assay 

Total phospholipid content of the final liposome solution was determined using the 

Stewart assay.26 Briefly, a 0.1 M ammonium ferrothiocyanate solution was made by dissolving 

27.03 g iron (III) chloride hexahydrate and 30.4 g of ammonium thiocyanate in 1 liter of Milli-Q 

water. One microliter of the liposomes was mixed with 1.999 mL of the ammonium 

ferrothiocyanate solution. Subsequently, 2 mL of chloroform was added and the solution was 

vortexed for 15 s. Centrifugation ensued at 116 × g for 5 min and the lower layer was analyzed at 

485 nm using a UV-Vis Lambda 40 Spectrophotometer (Perkin Elmer, Waltham, MA). 

2.2.6. Nitric oxide release from liposomes 

Analysis of liposomal NO totals and release kinetics were evaluated using a Sievers 

(Boulder, CO) chemiluminescence nitric oxide analyzer (NOA).27-28 The instrument was 

calibrated using a NO zero filter (0 ppm NO) and a 26.80 ppm NO standard (balance N2). Before 
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Figure 2.1. Structures of the NO donors synthesized (a) SPER/NO, (b) and DPTA/NO 
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NO analysis, the liposomes were passed through a Sephadex G-25 spin column to remove any 

material that may have permeated the liposomal bilayer during storage. After passage through 

the column, an aliquot of the liposomes was injected into a 2:1 volumetric ratio of ethanol to 

0.183 M sulfuric acid (30 mL total volume) at 37 °C for encapsulation efficiency determination. 

Kinetic studies were performed in 10 mM acetate buffer (pH 5.4) and 10 mM PBS (pH 7.4) at 37 

°C. 

2.2.7. Cytotoxicity assay 

PANC-1 cells were cultured in DMEM supplemented with 10 vol% FBS and 1 wt% 

penicillin/streptomycin. Cells were maintained at 37 °C in a humidified incubator with 5% CO2. 

For cell viability evaluations, the MTS assay was used as previously described.29 Briefly, cells 

(2×104 cells/mL) were treated with various volumes of drug and plated in triplicate (200 µL total 

volume per well). Following a 24 h incubation period at 37 °C, the supernatant of each well was 

removed, rinsed with PBS (100 µL) to remove any liposomes, and DMEM was added (100 µL). 

The cells were further incubated with 20 µL of MTS reagent (20:1 v/v MTS to PMS) at 37 °C for 

90 minutes. Subsequently, the supernatant was removed and added to a new 96-well plate. The 

absorbance of the resulting solutions was measured at 490 nm using a Thermoscientific 

Multiskan EX plate reader (Waltham, MA). The ratio of absorbance values between the samples 

and the controls multiplied by 100 was determined to be the percent cell viability.  

2.3 Results and discussion 

2.3.1. Synthesis of NO-releasing liposomes 

Nitric oxide-releasing liposomes were synthesized by dissolving the N-diazeniumdiolate 

NO donor (spermine/NO [SPER/NO] and/or dipropylenetriamine/NO [DPTA/NO]) in 50 mM 

NaOH. This solution was added to a dipalmitoylphosphatidylcholine (DPPC)/cholesterol organic 
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mixture and briefly sonicated to form an emulsion. Subsequent removal of the organic phase by 

rotoevaporation resulted in the formation of 275 ± 21 nm liposomes (diameter; dynamic light 

scattering). Transmission electron microscopy further confirmed the formation of liposomes 

(Appendix A). Unencapsulated solute was removed by passing the liposomal solution through a 

Sephadex G-25 centrifuge column.30 Liposomes were stored at 4 °C to ensure vesicle stability 

and minimize NO donor decomposition. 

2.3.2. Liposomal NO-release measurements 

Real-time NO release was measured from the NO donor-containing liposomes using a 

Sievers chemiluminescence nitric oxide analyzer (Boulder, CO).27-28 Prior to NO analysis, the 

liposomal solution was passed through a Sephadex G-25 mini centrifuge column to remove 

solute that may have permeated the bilayer during storage. Total NO release was determined by 

adding the liposomes to a 1:2 sulfuric acid/ethanol solution, which in turn compromised the 

stability of the liposomes and decomposed the N-diazeniumdiolates to NO. The same procedure 

was used to breakdown the free NO donor. The encapsulation efficiency (EE) for the NO-

releasing liposomes was calculated based on total NO release for both the free and encapsulated 

NO donor (Table 2.1). Of note, the EE increased with increasing DPTA/NO to SPER/NO molar 

ratios. This phenomenon is attributed to the lower molecular weight of DPTA/NO. 

Nitric oxide release from the liposomes was monitored under physiological conditions 

(pH 7.4, 37 °C) to understand how NO donor encapsulation influenced breakdown of the N-

diazeniumdiolates. As shown in Figure 2.2, the initial burst associated with NO donor 

decomposition for free SPER/NO was more rapid than for liposome encapsulated SPER/NO 

(t1/2=35 vs. 162 min, respectively). Additionally, the initial rate of release was slowed further  
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Table 2.1. Encapsulation efficiencies (EE) of various NO donor compositions.a 

NO donor EE (%)b 

SPER/NO 33.7 ± 1.5 

DPTA/NO:SPER/NO (50:50) 36.8 ± 2.1 

DPTA/NO 41.3 ± 3.5 
aFrom n≥3 separate preparations. bRatio of µmol of NO inside liposomes to µmol used for 
synthesis multiplied by 100. 
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Figure 2.2. Nitric oxide release profiles of various encapsulated NO donors and free NO donor. 
Release profile from liposomal (a) DPTA/NO, (b) DPTA/NO:SPER/NO (50:50 molar ratio), (c) 
SPER/NO,  (d) and free SPER/NO for the first 3 hours in 10 mM PBS (pH 7.4, 37 °C). Same 
amount of lipid was injected (0.70 mg) for profiles a-c. NO release was measured in real-time. 
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(Table 2.2) by employing a more stable NO-releasing molecule (i.e., DPTA/NO; t1/2=3 h). For 

the encapsulated DPTA/NO, the duration of NO release is dramatically extended versus the free 

NO donor (Appendix A). In this manner, tunable NO release was achieved under physiological 

conditions by altering the low molecular weight NO donor selected for encapsulation. We 

hypothesize the NO release can also be attributed to slower decomposition of the donor within 

the liposomes rather than slow diffusion of the NO donor out of the liposome. Since the 

liposomes are below their 42 °C transition temperature (Tc), the liposome bilayer remains rigid 

and impermeable to molecules, especially charged molecules (i.e., our NO donors). Relative to 

free NO donors, SPER/NO and DPTA/NO-containing liposomes exhibited increased NO-release 

half-lives (~4 and 7 times greater, respectively). Moreover, increasing the molar ratio of 

DPTA/NO to SPER/NO inside the vesicles (i.e., 0, 50, 100 mol% DPTA/NO) enhanced both the 

half-life and duration of NO release. In fact, DPTA/NO-based liposomes released NO 

continuously for ~3 d. The ability to tune the NO-release kinetics by simply varying the ratio 

and/or type of encapsulated NO donor represents a unique property of liposomes over previously 

reported macromolecular scaffolds. 

Liposomal NO release was also monitored under acidic conditions (pH 5.4) to ascertain 

NO production relevant to the microenvironment of tumors.21-22 While the lipid bilayer provides 

both NO donor protection and tunable release kinetics at pH 7.4, the NO release in acidic 

solution was rapid, regardless of the N-diazeniumdiolate NO donor utilized (Table 2.3). The NO-

release kinetics of the liposomal systems were essentially equivalent to the free NO donors under 

the same conditions (i.e., DPTA/NO: t1/2=5.3±0.2 min; SPER/NO t1/2=3.4±0.8 min) as a result of 

the rapid NO donor decomposition by protons. Indeed, the duration of NO release for 

DPTA/NO-containing liposomes was only slightly longer than those with SPER/NO. 
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Table 2.2. Nitric oxide-release properties of liposomes in PBS (pH = 7.4) at 37 °C.a 

NO donor t1/2
b                  

(h) 
[NO]max

c 
(ppb/mg) 

td
d                              

(h) 
[NO]total

e 
(µmol/mg) 

SPER/NO 2.7 ± 0.7 217 ± 98 18.4 ± 0.5 0.19 ± 0.02 

DPTA/NO:SPER/NOf 16.6 ± 2.1 114 ± 17 51.2 ± 2.1 0.29 ± 0.03 

DPTA/NO 20.4 ± 2.7 29 ± 8 65.9 ± 1.8 0.26 ± 0.05 

aError bars indicate standard deviation from n≥3 separate preparations. bHalf-life of NO release. 
cThe highest instantaneous amount of NO generated. dDuration of NO release until the measured 
NO reached 10 ppb per 300 µL of liposomes (three-times the detection limit of the instrument). 
eLipid concentration was 23.3 ± 5.4 mg phospholipid per mL of aqueous phase. fMolar ratio of 
50:50. 
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Further studies were performed to determine the cause of the faster NO-release kinetics 

under pH 5.4 conditions. We rationalized that the rapid NO release stemmed from either 

compromised lipid structure, which would result in leaching of the NO donor into the acidic 

media, or increased proton influx through the liposome bilayer. The first explanation was 

dismissed as dynamic light scattering analysis of the liposomes in pH 5.4 acetate buffer indicated 

that liposome size/shape was preserved, suggesting the faster NO-release kinetics must be the 

result of a greater influx of protons. To verify this hypothesis, the interior pH of the liposomes 

was monitored using the bilayer-impermeable pH-sensitive dye pyranine.31 Under basic 

conditions pyranine fluoresces strongly, whereas protonation of the 8-hydroxyl group (pKa=7.2) 

yields a decrease in fluorescence, thus allowing for suitable analysis of the intraliposomal pH. 

After formation of pyranine-loaded liposomes, the fluorescence emission was analyzed after 

being diluted 100-fold (same as the NOA experiments) in NaOH, PBS, and acetate buffer 

(Figure 2.3). A small change in fluorescence intensity between the NaOH-diluted (2.3a) and 

PBS-diluted (2.3c) liposomes indicates that the intraliposomal pH remains relatively basic, 

supporting the observed extended NO-release kinetics in PBS. Upon bursting of the liposomes 

with a surfactant, the 512 nm emission peak almost completely disappears (2.3d). The large drop 

in fluorescence after liposome destruction confirms that the lipid bilayer confers protection to the 

NO donor by maintaining a basic interior (i.e., hindering proton permeation). However, upon 

exposure of the liposomes to acetate buffer (2.3e), the fluorescence decreases dramatically, and 

was similar to free pyranine in acetate buffer, indicating a drop in intraliposomal pH (2.3f). In 

fact, this behavior was expected as the number of ion channels in lipid bilayers have been 
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Figure 2.3. Fluorescence emission of pyranine-loaded liposomes (0.47 mg) made in 50 mM 
NaOH diluted 100-fold in (a) 50 mM NaOH, (c) 10 mM PBS (pH 7.4), (e) and 10 mM acetate 
buffer (pH 5.4). Free pyranine fluorescence after bursting of liposomes suspended in (b) 50 mM 
NaOH, (d) 10 mM PBS, (f) and 10 mM acetate buffer using 5 µL of Triton X-100. Spectra were 
measured at 37 °C using a 450 nm excitation wavelength. 
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reported to increase under acidic conditions.32 Such channels are obviously well suited to 

accommodate bilayer translocation of motile hydrogen ions. Thus, the faster NO release can be 

attributed to increased donor degradation and not a compromised bilayer. 

2.3.3. Stability of NO-releasing liposomes over time 

The stability of the NO-releasing liposomes was evaluated in a series of solutions as a 

function of pH. For these studies, the NO remaining within liposomes prepared in PBS (pH 7.4), 

borate buffer (pH 9.0) or NaOH (pH >12) was monitored over time. As expected, liposomes 

synthesized and stored in NaOH were characterized as having larger NO payloads (0.23 µmol 

NO/mg) relative to those made (and stored) in PBS or borate buffer (Figure 2.4). Substantial NO 

loss occurred for systems synthesized in PBS/borate solutions due to poor N-diazeniumdiolate 

stability in the non-alkaline media. After 3 months of storage at 4 °C, the liposomes in PBS and 

borate buffer lost 99 and 65% of their total stored NO. Clearly, the stability of the NO donor is 

maximized under basic conditions. 

2.3.4. Cytotoxicity of DPTA/NO-encapsulated liposomes 

Cytotoxicity was assessed against human PANC-1 pancreatic cancer cells over 24 h to 

investigate the anticancer action of both free DPTA/NO and liposomal DPTA/NO (Figure 2.5). 

We hypothesized that cancer cell killing would be greater for liposomes containing larger 

payloads of NO. DPTA/NO-based liposomes were thus chosen for the cytotoxicity study over 

the SPER/NO system. The encapsulated NO donor reduced cell viability by 50% (the LD50) at 

only 183 µM NO, whereas free DPTA/NO elicited cytotoxic effects (Appendix A) at much 

higher NO concentrations (2.4 mM). The increased cytotoxic effect elicited by liposomal 

DPTA/NO is greater because of the larger payload of NO that can be delivered, since less of the 
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Figure 2.4. Comparison of NO remaining from SPER/NO-loaded liposomes. Liposomes made in 
(■) 50 mM PBS, (●) 50 mM borate buffer, (▼) and 50 mM NaOH. The amount of NO remaining 
within the liposomes was determined by injecting the liposomes into an acidic solution at 
discrete timepoints. 
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Table 2.3. Nitric oxide-release properties of liposomes in acetate buffer (pH = 5.4) at 37 °C.a 
NO donor t1/2

b                  
(min) 

[NO]max
c 

(ppb/mg) 
td

d                              

(h) 
[NO]total

e 
(µmol/mg) 

SPER/NO 3.9 ± 0.5 8154 ± 859 1.0 ± 0.1 0.29 ± 0.03 

DPTA/NO:SPER/NOf 4.9 ± 0.7 5857 ± 990 1.3 ± 0.1 0.34 ± 0.08 

DPTA/NO 5.4 ± 0.3 6389 ± 1360 1.3 ± 0.1 0.39 ± 0.09 

aError bars indicate standard deviation from n≥3 separate preparations. bHalf-life of NO release. 
cThe highest instantaneous amount of NO generated. dDuration of NO release. eLipid 
concentration was 23.3 ± 5.4 mg phospholipid per mL of aqueous phase. fMolar ratio of 50:50. 
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Figure 2.5. In vitro efficacy of liposomal and free DPTA/NO on human PANC-1 cells after 24 h 
incubation. Liposomal DPTA/NO (■), liposomal DPTA (▼), and free DPTA/NO donor (●). Error 
bars indicate standard deviation from n≥3 separate experiments. Asterisk denotes p <0.05 
between DPTA/NO liposomes and both the free donor and DPTA-containing liposomes. 
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total NO is released prior to reaching the cell. Furthermore, an increase in intracellular uptake of 

the NO donor afforded by the liposomes, relative to the unencapsulated donor, would potentially 

allow for a more efficacious delivery of NO into the cell. Such trends have been reported 

previously for other liposomally encapsulated chemotherapeutic drugs (e.g., gemcitabine).33 

Liposomes loaded with only DPTA (i.e., no NO release capabilities) were mildly cytotoxic at 

larger concentrations (>300 µM) due to the anticancer properties of DPTA alone.34 However, 

these systems still exhibited significantly lower anticancer action compared to their NO-releasing 

counterpart. The reduced dose of liposomally-derived NO required (0.23 mg liposomes) to 

induce cytotoxic effects to pancreatic cancer cells demonstrates their promising therapetuic 

potential over free NO donor systems that require mM concentrations.35 

2.4 Conclusions 

The preparation of NO-releasing liposomes utilizing an alkaline interior aqueous phase 

enables the encapsulation of varying concetrations of NO with long shelf-lives (>3 mo). A 

preliminary investigation into the utility of these liposomal NO donors as anticancer agents 

demonstrates their therapeutic potential over small molecule NO donors. As the understanding of 

NO and its biological effects continues to expand, so does the need for diverse NO-releasing 

platforms that are robust, facilitate targeting, and possess tunable biological action. Nitric oxide-

releasing liposomes represent a unique strategy for cancer treatment in particular due to their pH-

triggered release. Varying the lipid bilayer content (e.g., phospholipid composition, charge) 

should further enhance the stability of this NO-delivery system and influence NO-release 

payloads. Future studies utilizing a more thermally stable lipid (e.g., 1,2-distearoyl-sn-glycero-3-

phosphocholine), could potentially prolong the NO-release duration even further due to greater 

bilayer rigidity. Such experiments are currently underway in our laboratory. 
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CHAPTER 3: CONTROLLED RELEASE OF NITRIC OXIDE FROM LIPOSOMES2 
 

3.1 Introduction          

 The drug delivery field has demonstrated that the encapsulation of therapeutics (e.g., 

antifungals, biocides, chemotherapeutics, and virucides) within liposomes is an effective strategy 

for controlled delivery to select targets of interest.1-4 Using liposomes as drug delivery vehicles 

affords many benefits, including reduced immune response, increased cellular uptake, and 

protection of drug payload from premature action or breakdown.5 Although liposomes passively 

localize themselves at the site of interest,5 post-delivery accumulation of the encapsulated 

therapeutic (e.g., cisplatin and doxorubicin) has been shown to negatively impact surrounding 

healthy tissue. 6-7 The need to develop therapeutics with limited off-target cytotoxicity remains 

highly desirable.                      

 Nitric oxide (NO) is an endogenously produced free radical involved in multiple 

physiological processes, including blood pressure regulation, the immune response to pathogens, 

neurotransmission, and cellular proliferation.8-11 Unlike current chemotherapeutics, NO is rapidly 

converted to a harmless metabolite (i.e., nitrite) and cleared in biological media, mitigating the 

toxic accumulation common to most drugs. Based on NO’s promise as a potential therapeutic, a 

significant body of research has focused on strategies to exogenously deliver NO using synthetic 

                                                
2 This chapter was adapted from an article that previously appeared in ACS Biomaterials Science 
& Engineering. The original citation is as follows: Suchyta, D.J.; Schoenfisch, M.H. “Controlled 
release of nitric oxide from liposomes” ACS Biomaterials Science & Engineering 2017, 3, 2136-
2143. 
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NO donors, such as metal-NO complexes, S-nitrosothiols (RSNOs), and N-diazeniumdiolates.12-

16 N-Diazeniumdiolates are a particularly attractive vehicle for NO storage and delivery because 

they undergo pH-dependent decomposition (faster release as the pH is lowered) to liberate NO 

(Appendix B). Furthermore, the breakdown and release of NO is a direct function of the 

molecular structure of the donor, enabling exquisite control over the rate of release.16 Structures 

bearing cationic primary amines can electrostatically stabilize their anionic diazeniumdiolate 

group, thus yielding longer NO-release half-lives. For example, spermine/NO (SPER/NO) 

exhibits a much longer half-life than proline/NO (PROLI/NO) at pH 7.4 (t1/2 = 37 min and 2 s, 

respectively).17 This breakdown of N-diazeniumdiolates to NO can be used therapeutically by 

exploiting the microenvironment of certain disease sites (e.g., cancer, dental caries, and 

ulcerative colitis) that exhibit a lowered pH due to altered cellular metabolisms. In contrast to 

healthy tissue, where pH homeostasis is maintained near pH 7.4, these diseased tissues should 

promote more rapid NO release at the site of interest, thereby mitigating off-target 

cytotoxicity.18-20           

 Others have previously demonstrated that liposomes can encapsulate NO donors in order 

to enhance delivery and prolong NO release.21-24 In contrast to these studies that used gaseous 

NO and NO photodonors, our lab has utilized encapsulated N-diazeniumdiolates to deliver NO. 

The liposomes exhibited enhanced NO donor stability (>3 mo shelf-life) along with greater in 

vitro cytotoxicity toward pancreatic cancer cells compared to the free, unencapsulated NO 

donor.25 However, the kinetic tunability of this system was rather limited (i.e., controlled only by 

pH) with the relationship between liposomal characteristics (e.g., composition and size) and NO-

release properties remaining unclear. As such, the focus of this research is developing strategies 

for altering the properties of NO release (e.g., half-life and total storage) by modifying the N-
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diazeniumdiolate and phospholipid structures. The utility of these changes on protein surface 

adsorption in serum (important for determining scaffold clearance in the bloodstream) is also 

investigated, with attention to NO-release properties as a function of solution media.26-27 

3.2 Experimental section 

3.2.1. Materials 

Dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), 

distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylglycerol (DPPG), 

dipalmitoyltrimethylammoniumpropane chloride salt (DPTAP), 

dipalmitoylphosphatidylethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DPPE-

PEG2000), dipalmitoylphosphatidylethanolamine (DPPE), and 

distearoylphosphatidylethanolamine (DSPE) were purchased from Avanti Polar Lipids 

(Alabaster, AL). Cholesterol (Chol), N-propyl-1,3-propanediamine (PAPA), L-proline (PROLI), 

diethylamine (DEA), spermine (SPER), pyranine, coumarin, 5(6)-carboxyfluorscein, Dowex 

1X2 chloride (200-400 mesh) anion exchange resin, hemoglobin from bovine, and fetal bovine 

serum (FBS) were obtained from Sigma (St. Louis, MO). Chloroform, anhydrous acetonitrile, 

sulfuric acid, diethyl ether, sodium hydroxide, and the Bradford assay kit were purchased from 

Fisher Scientific (Fair Lawn, NJ). The source of Sephadex G-25 was GE Healthcare (Pittsburgh, 

PA). Pure nitric oxide (NO) gas (99.5%) was obtained from Praxair (Sanford, NC). Nitrogen 

(N2), argon (Ar), and nitric oxide (NO) calibration gas cylinders (26.80 ppm, balance N2) were 

obtained from Airgas National Welders (Durham, NC). A Millipore Milli-Q UV Gradient A10 

System (Bedford, MA) was used to purify distilled water to a resistivity of 18.2 MΩ·cm and a 

total organic content of ≤6 ppb. Canine blood was freshly collected into EDTA-coated 
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vacutainers by the Francis Owen Blood Lab (Carrboro, NC). Serum was isolated from the blood 

samples within 15 min of initial collection. 

3.2.2. Synthesis of N-diazeniumdiolates 

A previously reported method was used to synthesize the NO donors.17 Briefly, the 

precursor amine (i.e., PROLI, DEA, PAPA, or SPER) was dissolved in anhydrous acetonitrile at 

a concentration of 33.3 mg/mL. The solution was then purged with argon to 100 psi inside a 

stainless steel Parr bomb. Six sequential purges (three quick purges of 10 s each, followed by 

three slow purges of 10 min each) was used to remove residual oxygen. The solution was 

subsequently charged with 145 psi NO for 3 d. After 3 d, the solution was purged six times with 

argon to 100 psi to remove residual NO. The precipitated product was poured over a Hirsch 

funnel, washed twice with diethyl ether, and dried under vacuum overnight. The final NO-

releasing product (i.e., PROLI/NO, DEA/NO, PAPA/NO, or SPER/NO) was stored at -20 °C 

until further use. Spectroscopic characterization was performed on the NO donors, including 

their decomposition products at pH 5.4 and 7.4 (Appendix B). 

3.2.3. Preparation of liposomes 

 Liposomes were synthesized using a 1:1 molar ratio of lipid to Chol (49.5 µmol 

lipid:49.5 µmol Chol) following the report by Szoka and Papahadjopoulos.28 Chloroform and 

diethyl ether (5 mL each) were used to dissolve the lipids in a round-bottomed flask under a N2 

atmosphere. The N-diazeniumdiolate donor (i.e., PROLI/NO, DEA/NO, PAPA/NO, or 

SPER/NO) was dissolved in 50 mM NaOH to make a 14 mM stock NO donor solution and 

subsequently injected (1.5 mL) into the flask, which was sonicated for 4 min at a temperature 5 

°C higher than the transition temperature of the phospholipid. The organic phase was removed 

by rotoevaporation and the resulting liposomes incubated above their respective transition 



 67 

temperature for 30 min. The unencapsulated donor was removed using four Sephadex G-25 spin 

columns packed in 10-mL syringes. The final volume of purified liposomes collected from the 

column was stored at 4 °C. Fluorophore-encapsulated liposomes were prepared in the same 

manner as NO-releasing liposomes. 

3.2.4. Characterization of liposome size 

Dynamic light scattering (DLS) measurements were performed to determine liposome 

size and polydispersity. The liposomes were diluted with water and their size characterized using 

a Zetasizer Nano (Malvern Instruments, UK). Transmission electron micrographs (TEM) were 

also collected to confirm liposome formation. Liposome samples for TEM analysis were 

prepared by diluting the stock solution with Milli-Q water (1:1 volumetric ratio) and casting the 

suspension onto Formvar-coated, square mesh copper TEM grids (Electron Microscopy 

Sciences, Hatfield, PA). The solvent was allowed to evaporate for 45 min prior to applying a 

negative-stain using 2% (w/v) uranyl acetate. A drop of the stain was left on the grid for 30 s 

after which the droplet was removed using filter paper. The sample was then allowed to dry for 5 

min. The liposomes were imaged using a JEOL 100CX II transmission electron microscope at an 

accelerating voltage of 100 kV. 

3.2.5. Nitric oxide release from liposomes 

Nitric oxide totals and the overall release kinetics were evaluated using a Sievers 

chemiluminescence Nitric Oxide Analyzer (NOA; Boulder, CO).29-30 The instrument was 

calibrated using a NO zero filter (0 ppm NO) and a 26.80 ppm NO standard (balance N2). An 

aliquot of the liposomes was injected into a 2:1 volumetric ratio of ethanol to 0.183 M sulfuric 

acid (30 mL total volume) at 37 °C to determine the NO donor encapsulation efficiency. The 

encapsulation efficiency, or the extent to which the NO donor is entrapped within the liposomal 
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aqueous core, was calculated by comparing the liposome NO payload to the amount of NO in the 

free donor solution used during preparation of the liposomes. Studies to evaluate NO-release 

kinetics were performed in 10 mM MES buffer (pH 5.4) and 10 mM PBS (pH 7.4) at 37 °C. The 

presented data and error are from at least 3 separate liposome preparations. Nitric oxide release 

was terminated when the NO concentration dropped below 10 ppb per 300 µL liposomes. 

3.2.6. Turbidity assay 

Liposomes (30 µL) were mixed with 600 µL FBS and incubated at 37 °C with slight 

agitation. After 1 h, 100 µL was removed, placed into a 96-well plate, and then the absorbance at 

450 nm measured using a Thermoscientific Multiskan EX plate reader (Waltham, MA). The 

relative turbidity increase was compared against that of a control solution (30 µL of 50 mM 

NaOH mixed with 600 µL FBS). Of note, no further changes in turbidity were observed after 1 h 

incubation with FBS. 

3.2.7. Serum protein adsorption onto liposomes 

Quantification of proteins adsorbed onto the liposome surface was measured using the 

Bradford assay.31 Briefly, liposomes (20 µL) were mixed with 400 µL of a 10% (v/v in 10 mM 

PBS) FBS solution and incubated for 1 h at 37 °C with slight agitation. Afterwards, the 

liposomes were centrifuged (13,000 × g for 3 min) and washed twice with 10 mM PBS. The 

resulting lipid pellet was then dissolved in 100 µL of a 1:2 volumetric ratio of 10 mM PBS to 

ethanol. This dissolved pellet (30 µL) was added to a 96-well plate and mixed with 300 µL dye 

solution. After 10 min, the absorbance from the solution was measured at 595 nm. Bovine serum 

albumin standards (330 µL total volume) were used to generate linear calibration curves. 

3.2.8. Nitric oxide release from liposomes in blood and serum  
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Nitric oxide release from liposomes was measured in both animal blood and serum. 

Briefly, liposomes (30 µL) were mixed with 600 µL freshly-obtained citrated whole blood or 

serum (pre-incubated at 37 °C). The solution was stored in a 37 °C incubator for a pre-

determined period of time, after which an 80 µL aliquot was injected into a 2:1 volumetric ratio 

of ethanol to 0.183 M sulfuric acid (30 mL total volume) at 37 °C. The % NO remaining was 

determined by dividing the total NO released at each timepoint by the total NO released at the 

initial timepoint (~10 s after mixing liposomes with blood/serum) and multiplying by 100. 

3.3 Results and discussion 

3.3.1. Nitric oxide donor structure 

An important aspect in choosing an appropriate delivery system is the ability to easily 

modify drug-release kinetics. Altering the release rates of most liposome systems requires 

varying the lipid bilayer composition (e.g., cholesterol content, phospholipid property). Such an 

approach is not ideal since other aspects of the scaffold (i.e., hydrophobicity, aggregation, and 

the potential immune response) will be inevitably altered as well. One unique advantage of N-

diazeniumdiolate NO donors is the ability to independently manipulate liposomal NO-release 

kinetics at the molecular level using discrete NO donors. In this study, four different NO donors 

(Appendix B) were encapsulated within liposomes composed of DPPC. 

The size, polydispersity, and encapsulation efficiency (EE) of each NO donor-containing 

liposome was measured to determine how varying the NO donor affected the resulting liposome 

(Table 3.1). As expected, sizes of the liposomes remained consistent (~200 nm) regardless of the 

encapsulated NO donor, likely the result of the donors’ similar molecular weights. Low 

polydispersity index (PDI) values (~0.2) indicated that the liposomes were monodisperse and did 

not form aggregates. Both the size and monodispersity of the PAPA/NO liposomes were  
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Table 3.1. Physicochemical properties of DPPC liposomes encapsulating various NO donors. 

NO donor Size a (nm) 
Polydispersity 

index 

Encapsulation     

efficiency b (%) 

PROLI/NO 174 ± 18 0.166 ± 0.018 30.6 ± 1.9 

DEA/NO 234 ± 20 0.185 ± 0.024 33.7 ± 4.2 

PAPA/NO 203 ± 33 0.167 ± 0.070 33.4 ± 3.1 

SPER/NO 248 ± 54 0.251 ± 0.020 38.3 ± 3.9 

aZ-average size measured using DLS. bRatio of μmol of NO inside liposomes to μmol used for 
synthesis multiplied by 100.  
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Table 3.2. Nitric oxide-release properties of DPPC liposomes as a function of NO donor in PBS 
(pH 7.4) at 37 °C. 

NO donor t1/2
a (h) td

b (h) [NO]total
c (μmol/mL) 

PROLI/NO 0.16 ± 0.05 2.8 ± 0.1  5.10 ± 0.51 

DEA/NO 0.31 ± 0.02 4.6 ± 2.3  9.16 ± 0.33 

PAPA/NO 2.60 ± 0.40  43.4 ± 3.9  8.83 ± 0.64 

SPER/NO 45.30 ± 4.60  168.2 ± 17.0 7.73 ± 0.71 

aHalf-life of NO release. bDuration of NO release until the measured NO reached 10 ppb per 300 
µL of liposomes (three-times the detection limit of the instrument). cTotal amount of NO released 
normalized to the injected volume from the liposome stock solution. Respective pH 7.4 half-lives 
of free (i.e., unencapsulated) PROLI/NO, DEA/NO, PAPA/NO, SPER/NO at 37 °C : 2 s, 2 min, 
15 min, and 37 min. 
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preserved even after a 3-month storage period at 4 °C  (193 nm and 0.211, respectively). The 

average EE was approximately 35%, regardless of the NO donor, a value similar to reported 

values for other solutes encapsulated by reverse-phase evaporation methods.24,28 The slightly 

lower EE observed for PROLI/NO liposomes (30%) is attributed to the unavoidable loss of NO 

during preparation. Indeed, this NO donor has a short NO-release half-life in its free form (t1/2= 2 

s). 

3.3.2. Nitric oxide-release measurements 

Nitric oxide release was measured in 10 mM PBS (pH 7.4, 37 °C) to evaluate the effect 

of NO donor identity on the liposomal NO-release rates under physiological conditions. Each of 

the encapsulated NO donors exhibited extended NO-release kinetics relative to the free NO 

donor (Table 3.2). For example, the half-life of SPER/NO increased from 37 min in its free form 

to ~2 d when encapsulated within the liposome. The prolonged NO release for all systems is 

attributed to the lipid bilayer providing a physical barrier against proton diffusion/exchange into 

or with the aqueous core.24 As the molar amount of the lipid was held constant for all liposomal 

preparations, the total NO payload was normalized to the volume of each liposome system 

injected during analysis. Relative to the average NO payloads reported previously for NO-

releasing liposomes (~6 μmol NO/mL liposomes or ~0.25 μmol NO/mg lipid),24 we measured 

payloads that were significantly larger (~8-9 μmol NO/mL) for DEA/NO, PAPA/NO, and 

SPER/NO containing liposomes. In contrast, the NO totals for the PROLI/NO liposomes were 

lower than other systems, which we again attributed to the rapid breakdown of the NO donor. 

Nitric oxide release from the liposomes was also evaluated in 10 mM MES buffer (pH 

5.4, 37 °C) to mimic NO release at more acidic disease sites (e.g., tumor microenvironments). A 

pH gradient is thus created across the lipid bilayer, causing a large influx of protons into the 
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liposomal core that reduced the internal pH.24 As expected, the lower intraliposomal pH resulted 

in rapid N-diazeniumdiolate decomposition, large levels of NO, and reduced NO-release half-

lives for the four liposome systems (Appendix B) relative to pH 7.4. The system with the most 

prolonged NO release (SPER/NO liposomes) exhibited a decrease in overall NO-release duration 

from >1 week (pH 7.4) to <48 h (pH 5.4). Dynamic light scattering measurements confirmed 

preservation of the liposome size (i.e., rupturing did not occur). Despite the significantly more 

rapid release, the NO-release kinetics were still tunable, even at low pH, with half-lives ranging 

from 4 min to 10 h depending on the N-diazeniumdiolate identity.  

3.3.3. Effects of lipid bilayer hydrophobicity and charge 

 The liposome structure and NO-release rates of PAPA/NO liposomes were studied as a 

function of the lipid bilayer composition and associated properties (lipid structures are provided 

in Appendix B). PAPA/NO was selected as the model NO donor for this work due to its 

moderate NO-release characteristics under the tested conditions. By preparing different 

liposomes using electrically neutral lipids of varying alkyl chain length (DMPC, C14, DPPC, C16, 

and DSPC, C18), liposome size and the NO-release characteristics could be studied as a function 

of bilayer hydrophobicity. In addition, parallel studies were performed using C16 cationic 

(DPTAP) and anionic (DPPG) lipids to investigate the effects of charge on these same 

properties. Charged lipids are typically used to encapsulate larger macromolecules (e.g., DNA) 

more effectively or to localize the vesicle at an area of interest due to coulombic attraction.32-33 

As the N-diazeniumdiolate NO donors are anionic, studying coulombic interactions using 

charged lipids, such as DPPG (negative) and DPTAP (positive), may elucidate unique effects on 

both EE and NO-release properties (i.e., NO payloads and release kinetics).  
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Table 3.3. Physicochemical properties of PAPA/NO liposomes as a function of bilayer 
composition. 

Lipid a Size b (nm) 
Polydispersity 

index 

Encapsulation 

efficiency c (%) 

DMPC (C14) 236 ± 44 0.215 ± 0.050 30.3 ± 1.5 

DPPC (C16) 203 ± 33 0.167 ± 0.070 33.4 ± 3.1 

DSPC (C18) 340 ± 77 0.328 ± 0.080 32.2 ± 2.7 

DPPG (- C16) 161 ± 11 0.203 ± 0.030 22.0 ± 3.2 

DPTAP (+ C16) 446 ± 63 0.497 ± 0.120 29.4 ± 0.6 

aCharge and alkyl chain length of the lipid is denoted in parentheses. bZ-average size measured 
using DLS. cRatio of the μmol of NO inside the liposomes to the μmol used for the synthesis, 
multiplied by 100.  
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Varying the phospholipid’s carbon chain length caused only slight deviations in the 

liposome size for the longest chain length (C18), as indicated by DLS (Table 3.3) and TEM 

analysis (Appendix B).  Liposomes made from DMPC (C14) and DPPC (C16) remained similar in 

size (~200 nm) with comparable PDI and EE values (~30%). In contrast, liposomes prepared 

using DSPC (C18) were significantly larger (340 nm) and more polydisperse, likely due to the 

longer alkyl chains disrupting bilayer formation.34 Anionic DPPG liposomes exhibited size and 

monodispersity similar to that of neutral DPPC liposomes (Table 3.3 and Appendix B), but 

demonstrated an 11% decrease in EE. We hypothesize that the repulsive interactions between the 

negatively charged phospholipid and anionic N-diazeniumdiolate prevented efficient 

encapsulation within the liposomal core. The effects of coulombic charge were probed further by 

comparing the EE values of DPPC and DPPG liposomes encapsulating either neutral (coumarin) 

or negatively charged (carboxyfluorescein) fluorophores. While similar coumarin EE values 

were observed for both liposome systems, neutral DPPC liposomes exhibited greater 

encapsulation of carboxyfluorescein relative to anionic DPPG (Appendix B). Therefore, charge 

interactions between the encapsulated molecule and the phospholipid may significantly affect the 

efficiency of drug encapsulation. 

Liposomes prepared using cationic DPTAP lipids had comparable EE values to the 

neutral liposomes. However, DLS measurements revealed substantially larger and more 

polydisperse sizes relative to liposomes prepared using the other lipids (Table 3.3). Large PDI 

values have been previously reported for liposomes synthesized utilizing TAP-based lipids in 

high ionic strength solutions as a result of aggregation.35-37 Indeed, we found that we were able to 

obtain better size (308 nm) and PDI values (0.316) after preparing DPTAP liposome solutions of 

a lower ionic strength (1 mM), corroborating the correlation between ionic strength and vesicle 
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aggregation. As an alternative to changing the ionic strength, DPPC was employed as a co-lipid 

for DPTAP liposome preparation. Positively charged liposomes with a 50:50 DPPC:DPTAP 

molar ratio were characterized as having similar size, PDI, and EE (227 nm, 0.168, and 31%, 

respectively) compared to pure DPPC liposomes. By utilizing this method, cationic liposomes 

with sizes and PDI values mirroring those of neutral and anionic liposomal systems were readily 

achieved. 

3.3.4. Bilayer properties and NO release 

Nitric oxide-release properties of the liposome systems were determined at pH 7.4 and 37 

°C (Table 3.4). With the exception of the liposomes composed of negatively charged DPPG 

lipids, each liposome system studied exhibited similar NO payloads (~8.5 µmol/mL). Although 

the repulsive ionic forces lowered the NO totals of the DPPG liposomes, the release kinetics 

remained similar to that from neutral liposomes, indicating that bilayer water permeability was 

not appreciably influenced by the bilayer’s negative charge. Conversely, aggregation of the 

positively charged DPTAP liposomes may likely have caused a greater proton influx to the 

liposome center with concomitantly more rapid NO release (i.e., shorter half-life) compared to 

the neutral liposome systems. To rule out the influence of electrostatically surface-bound NO 

donor on rapid NO release, DPTAP liposomes were incubated with an anion exchange resin. 

After filtering the liposomes from the resin, the measured NO-release kinetics were nearly 

identical to the liposomes prior to resin incubation, suggesting that DPTAP bilayer defects 

represent the only factor impacting the rapid NO release.  

We initially hypothesized that the liposome NO-release kinetics would be prolonged as 

the hydrophobicity (i.e., carbon chain length) of the phospholipid was increased. While the C18-

containing DSPC liposomes exhibited significantly longer NO-release kinetics, the DMPC and 
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Table 3.4. Nitric oxide-release properties of PAPA/NO liposomes as a function of bilayer 
hydrophobicity and charge in PBS (pH 7.4) at 37 °C. 

Lipid t1/2
a (h) td

b (h) [NO]total
c (μmol/mL) 

DMPC (C14) 2.6 ± 0.5 42.9 ± 5.1 8.26 ± 0.29 

DPPC (C16) 2.6 ± 0.4  43.4 ± 3.9  8.83 ± 0.64 

DSPC (C18) 16.7 ± 1.2 85.6 ± 7.6 9.00 ± 0.74 

DPPG (- C16) 2.6 ± 1.0 38.1 ± 1.8 6.33 ± 1.17 

DPTAP (+ C16) 0.9 ± 0.4 18.4 ± 1.9 8.63 ± 0.43 

aHalf-life of NO release. bDuration of NO release until the measured NO reached 10 ppb per 300 
µL of liposomes (three-times the detection limit of the instrument). cTotal amount of NO released 
normalized to the injected volume from the liposome stock solution. 
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DPPC systems demonstrated similar NO-release half-lives. As such, it seemed unlikely that the 

extended NO-release kinetics observed for the DSPC liposomes was a result of greater alkyl 

character or hydrophobicity. Further, differential release kinetics due to varying transition phase 

temperatures between the phospholipids should not occur as cholesterol was included in all 

liposome formulations, which homogenizes the bilayer and attenuates the effects of temperature 

on ordering of the lipid phase.38  

 In lieu of hydrophobicity alone, the NO-release kinetics proved dependent on the 

compactness of the lipid chains upon liposome formation. Indeed, tighter packing of the lipid 

chains has been shown to occur as the headgroup surface area of the lipid decreases, resulting in 

reduced water permeability of the lipid bilayer.39 Given the area per lipid headgroup being nearly 

identical for DMPC and DPPC (~0.655 nm2) and distinct from DSPC (~0.430 nm2),40-41 the 

tighter lipid packing for the DSPC liposomes would slow the decrease in intraliposomal pH and 

N-diazeniumdiolate NO donor decomposition to NO. 

 Proton permeation into the liposome core was characterized by examining intraliposomal 

pH changes using a fluorescent dye. Pyranine (10 µM), a bilayer-impermeable pH-sensitive dye, 

was encapsulated within the liposomes to probe internal pH changes over time. Under basic 

conditions, pyranine produces a strong fluorescent signal (λ = 520 nm) that reduces in intensity 

upon becoming protonated (i.e., as pH decreases).42 After immersion into pH 7.4 buffer, the 

fluorescence from DMPC and DPPC liposomes would be expected to decrease at similar rates 

over time, whereas that from the DSPC liposomes would be more gradual due to the restricted 

water permeability. As shown in Figure 3.1, this behavior was followed exactly. Over 24 h, the 

fluorescence measured from DSPC liposomes approached that from the DMPC and DPPC 

vesicles. The smaller initial change in intraliposomal pH combined with the gradual fluorescence  
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Figure 3.1. Fluorescence emission at 520 nm from pyranine-encapsulated (■) DMPC, (●) 

DPPC, and (▲) DSPC liposomes diluted 100-fold in 10 mM PBS (pH 7.4, 37 °C) as a function 

of time. The spectra were collected using a 450 nm excitation wavelength. Inset depicts 

fluorescence from the first 5 min of data collection. 
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drop over time for DSPC liposomes clearly confirms the influence of headgroup-mediated 

water/proton permeation on NO release. Of note, DLS measurements confirmed typical size 

values, indicating that bursting of the liposomes did not occur during the experiment. 

As shown in Figure 3.2, lipids with similar packing (i.e., headgroup surface area) 

exhibited nearly identical water/proton permeation with similar NO-release kinetics regardless of 

charge or headgroup moiety.39 These results explain why the anionic (and lower EE) DPPG 

liposomes maintain identical NO-release properties as neutral DPPC liposomes. A range of NO-

release kinetics is therefore possible by varying the lipid bilayer composition (both partially or 

completely). For example, we used a 10:90 DPPE:DPPC molar mixture to produce PAPA/NO 

liposomes with intermediate NO-release half-lives (t1/2 = 3.7 h) relative to analogous single-lipid 

systems (DPPC t1/2 = 2.5 h; DPPE t1/2 = 6.6 h). Identical trends in NO release were observed at 

pH 5.4 (Appendix B), indicating that the bilayer composition-mediated control over NO release 

was maintained at lower pH as well. 

3.3.5. Nitric oxide-release kinetics in biological media 

 Bilayer composition has been shown to influence the in vivo fate of liposomes.46 For 

example, cationic liposomes are efficiently uptaken or internalized by cells, which is attributed to 

the electrostatic interactions with negatively charged cell membranes.47 Charged liposomes also 

promote protein binding and opsonization, facilitating rapid clearance from the bloodstream.48 

We thus investigated if the liposomal surface properties (e.g., charge and PEGylation) affected 

the NO-release kinetics in biological fluids where protein adsorption may occur. DPPC (neutral), 

DPPG (negative), 50:50 DPTAP:DPPC (positive), and 10:90 DPPE-PEG/DPPC (PEGylated) 

liposomes were selected due to their similar NO release (t1/2 ~2.5 h) and long-term structural 

stability (Appendix B).  
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Figure 3.2. Relationship between the liposomal NO-release half-life and phospholipid 

headgroup surface area using PAPA/NO-encapsulated liposomes. Each point represents a 

different phospholipid (see Materials section for list of lipids).40-41,43-45 
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NO-release kinetics were first measured in serum to determine if permanent or transient 

defects form in the liposome bilayer upon protein fouling, perhaps altering the NO release. 

Surprisingly, the NO release did not change appreciably (Figure 3.3a). Indeed, the liposomes 

exhibited similar half-lives (t1/2 ~2.5 h) to those measured in PBS, which agrees with the minimal 

protein adsorption that had occurred on the liposome surface in serum (Appendix B).49-52 

While measuring NO release in serum elucidated the effects of proteins on liposomal 

NO-release kinetics, serum lacks a number of complex cellular components and molecules (e.g., 

hemoglobin) that are capable of scavenging NO. Nevertheless, nearly analogous NO release was 

measured in whole blood between the different liposome compositions (Figure 3.3b). Even the 

PEG-stabilized liposomes exhibited only slight initial differences in NO-release rates. These 

results indicate that the surface properties of PAPA/NO-containing liposomes (e.g., charge) can 

be controlled independently of NO-release kinetics in blood, to achieve potential targeting and/or 

adjust bloodstream clearance.        

 A notable decrease in the NO-release half-life in blood was observed relative to PBS and 

serum. For example, neutral DPPC PAPA/NO liposomes having similar PBS and serum NO 

release (t1/2 = 2.6 ± 0.4 and 2.9 ± 1.0 h, respectively), exhibited 60% faster NO release (t1/2 = 1.0 

± 0.2 h) in whole blood (Figure 3.4). We hypothesize that these results are caused by the high 

concentration of NO scavengers in blood.53 At concentrations from 129−177 mg/mL (12.9−17.7 

g/dL) in humans, hemoglobin is among the most active NO scavengers in the bloodstream due to 

iron-NO radical complexation.53-58 As such, scavenging would lead to an increase in the 

measured real time NO-release kinetics due to the consumption of detectable NO. To explore 

this, NO release from neutral DPPC PAPA/NO liposomes was measured in 10 mM PBS (pH 7.4, 
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Figure 3.3. Nitric oxide release in (a) serum and (b) blood from (■) neutral DPPC, (▲) anionic 

DPPG, (●) cationic DPTAP, and (▼) PEGylated PAPA/NO liposomes. The amount of NO 

remaining within the liposomes was determined by injecting the liposomes into an acidic 

solution at discrete timepoints. 
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Figure 3.4. Neutral DPPC PAPA/NO liposome NO-release kinetics in (■) PBS, (●) serum, and 

(▲) blood. Statistical analysis yielded p < 0.02 between all PBS and blood values. The amount of 

NO remaining within the liposomes was determined by injecting the liposomes into an acidic 

solution at discrete timepoints. 
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37 °C) containing 157 mg/mL hemoglobin (Appendix B). The measured NO-release half-life 

indeed decreased (t1/2 = 0.5 h) relative to in pure PBS (t1/2 = 2.6 h), supporting blood hemoglobin 

being at least partially responsible for the observed differences in the NO-release kinetics for 

blood versus PBS/serum. The disparity between blood and PBS containing hemoglobin is likely 

due to compartmentalization of hemoglobin within erythrocytes (not free, as in the PBS 

solution), leading to less overall NO scavenging and longer measured NO-release durations.54 Of 

note, negligible hemolytic activity of the NO-releasing liposome systems (Appendix B) indicates 

that the liposomes do not enhance liberation of intracellular hemoglobin. 

3.4 Conclusions 

 Herein, the ability to precisley control NO-release half-lives was demonstrated by 

selection of an appropiate NO donor and varying the composition of the lipid bilayer. We found 

that the lipid headgroup surface area was the defining factor that controlled NO-release kinetics 

due to the dependence of bilayer proton permeability on lipid packing density. Liposomes 

prepared using different ionic charges and PEG-modified lipids exhibited low protein adsorption 

(≤5 g protein/mol lipid) and similar NO release in PBS and serum, regardless of the lipid 

identity. However, the overall NO-release flux in whole blood compared to PBS and serum was 

less, and thus the NO-release kinetics appeared shorter. These results were attributed to the large 

concentrations of hemoglobin in blood, a known NO scavenger. Our study may provide guidance 

for the development of other macromolecular scaffolds with respect to how charge may affect 

protein adsorption and the influence of complex cellular components of blood on in vivo NO-

release kinetics. 
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CHAPTER 4: ANTICANCER POTENCY OF NITRIC OXIDE-RELEASING 
LIPOSOMES3 

 

4.1 Introduction          

 Small molecule chemotherapeutics (e.g., doxorubicin and cisplatin) often exhibit off-

target cytotoxicity due to poor localization.1-5 The use of a large macromolecular (e.g., polymer, 

nanoparticle) carrier to deliver the therapeutic to the targeted site represents one method for 

mitigating the adverse side effects of small molecules. The leaky vasculature of tumors allows 

macromolecules to extravasate at the malignant site, with the delivery of the therapeutic payload 

via cellular uptake or triggered release (e.g., pH and temperature).6 Liposomes are among the 

most widely-investigated delivery systems available for drug delivery. Traditionally, liposomes 

are composed of an aqueous inner core separated from the external solution by a phospholipid 

bilayer. This unique architecture allows for the confinement of compounds with a wide range of 

molecular weights, hydrophobicities, and charges until delivery at a location of interest. The 

ability of liposomes to absorb and fuse with cell membranes enhances the intracellular uptake of 

the therapeutic payload, a process that is not typically observed for other macromolecular 

vehicles (e.g., nanoparticles). Liposomes have thus been developed for a number of therapeutic 

agents, such as gemcitabine and DNA.6-7 The exterior surface properties of the liposome (e.g., 

charge) may be tuned independently of the encapsulant, a critical feature for impacting targeting 

                                                
3 This chapter was adapted from an article that previously appeared in RSC Advances. The 
original citation is as follows: Suchyta, D.J.; Schoenfisch, M.H. “Anticancer potency of nitric 
oxide-releasing liposomes” RSC Advances 2017. 
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capabilities and/or reducing aggregation in the bloodstream. In this manner, liposomes have 

improved the anticancer delivery of many chemotherapeutics, including doxorubicin, arsenic 

trioxide, and daunorubicin.8-10 

Nitric oxide (NO), an endogenous diatomic free radical, is an important mediator of 

inflammation,11-13 vasodilation,14-15 biocidal action,16-18 cardio- and neuroprotection,19-20 and 

cancer cell proliferation/killing.21-23 Off-target toxicity of NO is mitigated by scavenging and/or 

reaction to nitrite/nitrate.14 Nitric oxide donors have been developed as a strategy for delivering 

NO to biological systems as dissolved NO rather than a gas. Examples of currently approved NO 

donors are sodium nitroprusside, isosorbide mononitrate, glyceryl trinitrate, and pentaerythrityl 

tetranitrate.24 N-diazeniumdiolates are a class of NO donors that spontaneously release NO under 

physiological conditions. The rate of NO release depends on the molecular structure of the amine 

precursor, facilitating diverse and tunable NO-release kinetics.25-26 With respect to 

chemotherapy, the pH-dependent release of N-diazeniumdiolates is advantageous because tumor 

microenvironments are generally more acidic (pH ~6) than healthy tissue (pH 7.4).27-28 The 

lower pH promotes accelerated NO release at the tumor. A vast literature has proven that small 

molecule N-diazeniumdiolates are capable of eliciting potent anticancer action.29-35 Clinical 

utility has not been achieved because of the excessive loss of NO, prematurely, prior to reaching 

the tumor site.  

In this study, two N-diazeniumdiolate-encapsulated liposome systems were prepared with 

distinct NO-release kinetics (fast and slow). The anticancer activity of these liposomes was 

evaluated against pancreatic, colorectal, and breast cancer cell lines. Confocal fluorescence and 

flow cytometry were used to measure both cellular uptake of the liposomes and intracellular NO 

delivery. The effect of the NO release on protein expression, specifically cleaved PARP, cyclin 
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B1, and cyclin D1, was also examined via Western blot analysis to assess apoptosis and cell 

cycle arrest/ejection. 

4.2 Experimental section 

4.2.1. Materials 

Dipalmitoylphosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhoadmine B sulfonyl) ammonium salt (Rh-PE) were 

purchased from Avanti Polar Lipids (Alabaster, AL). Cholesterol (Chol), paraformaldehyde, fetal 

bovine serum (FBS), penicillin streptomycin, 1x Dulbecco’s modified Eagle’s medium 

(DMEM), McCoy’s 5A medium, RPMI 1640 medium, Dulbecco’s phosphate-buffered saline 

(DPBS) for cell culture, N-propyl-1,3-propanediamine (PAPA), and diethylenetriamine (DETA) 

were obtained from Sigma (St. Louis, MO). Prolong diamond antifade mountant, 4-amino-5-

methylamino-2’,7’-difluorofluorescein diacetate (DAF-FM), trypsin, Accutase, 1% (v/v) NP40 

lysis buffer, chloroform, phenazine methosulfate (PMS), anhydrous acetonitrile, anhydrous 

diethyl ether, dimethyl sulfoxide (DMSO), anhydrous ethanol (EtOH), sulfuric acid (H2SO4), 

protein stripping buffer, sodium hydroxide (NaOH), calcium chloride (CaCl2), PageRuler Plus 

prestained protein ladder, and secondary antibodies (both mouse and rabbit) for Western blotting 

were purchased from Fisher Scientific (Fair Lawn, NJ). Sephadex G-25 was obtained from GE 

Healthcare (Pittsburgh, PA). 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophen-yl)-2H-tetrazolium inner salt (MTS) was purchased from Promega (Madison, WI). 

Primary antibodies for total and cleaved PARP (rabbit), cyclin B1 (rabbit), cyclin D1 (rabbit), 

and vinculin (mouse) used in Western blotting were obtained from Cell Signaling (Danvers, 

MA). Western lightning ECL pro substrate for Western blot detection was from PerkinElmer 

(Waltham, MA). Phosphatase and protease inhibitors were purchased from Roche (Basel, 
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Switzerland). Criterion TGX Gel, tris/glycine transfer buffer with sodium dodecyl sulfate (SDS), 

tris-buffered saline with Tween 20 (TBST), and polyvinylidene fluoride (PVDF) transfer 

membrane were obtained from Bio-Rad (Hercules, CA). Nitric oxide (NO; 99.5%), nitrogen (N2; 

99.998%), argon (Ar; 99.995%), and NO calibration (26.80 ppm, balance N2) gases were 

obtained from Airgas National Welders (Durham, NC). A Millipore Milli-Q UV Gradient A10 

System (Bedford, MA) was used to purify distilled water to a resistivity of 18.2 MΩ·cm and a 

total organic content ≤6 ppb. MIA PaCa-2, AsPc1, and Pa14c pancreatic cancer cells were a gift 

from Dr. Channing Der of the Department of Pharmacology at the University of North Carolina 

(Chapel Hill, NC). MDA-MB-231, MCF-7, MDA-MB-468, HCT116, HT-29, and SW480 breast 

and colorectal cancer cells were a gift from Dr. Matthew Lockett of the Department of Chemistry 

at the University of North Carolina (Chapel Hill, NC). 

4.2.2. Synthesis of N-diazeniumdiolate NO donors 

A previously reported method was used to synthesize small molecule N-diazeniumdiolate 

NO donors.27 Briefly, DETA and PAPA were dissolved in anhydrous acetonitrile at a 

concentration of 33.3 mg/mL. The solution was then purged with Ar to 100 psi inside a stainless 

steel Parr bomb. Six consecutive purges with Ar (three quick purges of 10 s each, followed by 

three slow purges of 10 min each) were carried out to remove dissolved oxygen. The solution 

was subsequently pressurized to 145 psi with NO for 3 d, after which the solution was purged 

again with Ar (100 psi) at least six times to remove residual NO. The precipitated product was 

filtered over a Hirsch funnel, washed three times with diethyl ether, and dried under vacuum 

overnight. The final NO donor product was stored at -20 °C until use. 

4.2.3. Liposome synthesis 
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 The liposomes were prepared using a reverse phase evaporation method.37 A 1:1 molar 

ratio of lipid to Chol (49.5 µmol lipid:49.5 µmol Chol) was dissolved in a mixture of diethyl 

ether (5.0 mL) and chloroform (5.0 mL) in a round-bottom flask under N2 atmosphere. 

Fluorescent liposomes were prepared using the above protocol, but with 1 mol% lipid of Rh-PE. 

The N-diazeniumdiolate was dissolved in 10 mM NaOH to make a 14 mM stock NO donor 

solution. This solution was injected into the flask, and then sonicated for 4 min at 45 °C. The 

organic phase was removed by rotoevaporation to yield the aqueous liposome suspension. 

Liposomes were incubated at 45 °C for an additional 30 min, after which the unencapsulated 

material was removed using four Sephadex G-25 spin columns packed in 10-mL syringes. The 

liposomes collected from the column were stored at 4 °C. 

4.2.4. Characterization of liposomes 

Dynamic light scattering (DLS; Malvern Zetasizer Nano; UK) was used to determine 

liposome size distribution in water. Transmission electron microscopy (TEM) was used to 

confirm liposome formation. Liposome samples for TEM analysis were prepared by diluting the 

stock solution with Milli-Q water (1:1 volumetric ratio) and casting the suspension onto 

Formvar-coated, square mesh copper TEM grids (Electron Microscopy Sciences, Hatfield, PA). 

The solvent was allowed to evaporate for 45 min prior to applying a negative-stain using a 2% 

(w/v) uranyl acetate solution. A drop of the stain was left on the grid for 30 s and then removed 

using filter paper. The grid was dried for 5 min prior to imaging using a JEOL 100CX II 

transmission electron microscope (100 kV accelerating voltage). 

4.2.5. Nitric oxide release 

Nitric oxide storage and NO-release kinetics from the liposomes were measured using a 

Sievers Chemiluminescence Nitric Oxide Analyzer (NOA; Boulder, CO).38-39 Studies to evaluate 
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NO-release kinetics were performed in 10 mM PBS (pH 7.4) at 37 °C. The instrument was 

calibrated using air passed through a NO zero filter (0 ppm NO) and a 26.80 ppm NO standard 

(balance N2). Nitric oxide storage for encapsulation efficiency (i.e., the extent to which the NO 

donor is entrapped within the liposomal aqueous core) was performed in a 2:1 volumetric ratio of 

ethanol to 0.183 M sulfuric acid (30 mL total volume) at 37 °C. The encapsulation efficiency 

was calculated by comparing the liposome NO storage to the amount of NO in the free donor 

solution used during liposome preparation. All presented data is from n ≥ 3 separate liposome 

preparations. Nitric oxide release measurements were terminated when the NO concentration 

dropped below 10 ppb per 300 µL liposomes. 

4.2.6. Cytotoxicity assays 

Pa14c and MIA PaCa-2 cells were cultured in DMEM. HCT116 and HT-29 cells were 

cultured in McCoy’s 5A medium. MDA-MB-231, MCF-7, MDA-MB-468, SW480, and AsPc1 

cells were cultured in RPMI medium. All media were supplemented with 10 vol% FBS and 1 

wt% penicillin/streptomycin. Cells were maintained at 37 °C in a humidified incubator with 5 

vol% CO2. For cell viability evaluations, the MTS assay was used as previously described with 

cells plated in triplicate.40 Briefly, cells (2×103 cells/well) in DMEM were treated with various 

volumes of liposomes in a 96-well plate (100 µL total volume per well). Following a 72 h 

incubation period at 37 °C, the supernatant of each well was removed, rinsed with PBS (100 µL), 

and replaced with fresh DMEM (100 µL). The cells were further incubated with 20 µL of 

MTS/PMS reagent (20:1 v/v MTS to PMS) at 37 °C for ~90 min. The absorbances of the 

resulting solutions at 490 nm were measured using a Thermoscientific Multiskan EX plate reader 

(Waltham, MA). The ratio of absorbance values between the samples and the controls was 

represented as the percent cell viability. Dose response curves and LD50 values were plotted and 
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tabulated using GraphPad Prism 6 software (La Jolla, CA) and non-linear regression (three- 

parametric Hill function), respectively. All presented data are from n ≥ 3 separate experiments. 

4.2.7. Confocal fluorescence microscopy 

Cells were plated in 10×10 mm cloning cylinders (VWR, Atlanta, GA) secured to No 1.5 

glass cover slips (VWR, Atlanta, GA) using silicone grease. The slip was placed in a Petri dish 

prior to the addition of cell media. After 24 h, the medium within the cylinders was replaced with 

a 10 µM DAF-FM solution. An additional 30 min incubation period at 37 °C was then carried 

out before removing the DAF-FM solution. Fresh cell media was subsequently added and 

allowed to incubate for another 15 min at 37 °C to allow for saponification of the probe. 

Liposomes were added to the cells and incubated for 2 h, followed by rinsing twice with 100 µL 

DPBS. A 100-µL aliquot of 4 vol% paraformaldehyde solution (diluted with DPBS) was injected 

into the wells and incubated for 15 min at room temperature. The cover slips were then mounted 

on glass slides using a droplet of mounting media, sealed with nail polish (Electron Microscopy 

Sciences; Hatfield, PA), and imaged after 1 h using a Zeiss LSM 700 laser scanning confocal 

microscope. The excitation/emission wavelengths for DAF-FM and Rh-PE were 495/515 and 

560/583 nm, respectively. Fiji software was used for image processing and densitometry 

calculations. Autoquant X3 software (Media Cybernetics; Warrendale, PA) generated orthogonal 

views of the z-stacked images. All images were collected under constant exposure times. The 

images were also processed equivalently and normalized to a single brightness level. 

4.2.8. Flow cytometry  

Cells were plated (1×104 cells/well) in 96-well plates and allowed to adhere for 24 h in 

RPMI media (100 µL). The media was then removed and cells were incubated with fresh media 

containing 5 µM DAF-FM for 1 h. The media containing the DAF-FM was subsequently 
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removed and free or liposomal N-diazeniumdiolate NO donors were added to the wells 

(dissolved in fresh media) and allowed to incubate for specified times. Cells were then washed 

with DPBS and detached by exposure to Accutase (30 µL) for 5 min at room temperature. Media 

containing 5 mM CaCl2 was added (30 µL) to the wells while maintaining the plate at 0 °C for 

20 min. The plate was placed on a shaker for 30 s (2000 rpm) to resuspend cells prior to analysis 

with an iQue Screener Plus flow cytometer (IntelliCyt, Albuquerque, NM). A 33 s sampling (sip) 

time was used with a 0.5 s up time between wells. The plate was shaken (and the probe cleaned) 

for 20 s at 2000 rpm every 4 wells. Data acquisition and processing were carried out with 

ForeCyt software (IntelliCyt; Albuquerque, NM). Single color compensation controls were 

performed to minimize spectral overlap. Gates were placed around singlet cells to exclude data 

from aggregated cells. Fluorescence intensities were calculated and plotted versus number of 

events. 

4.2.9. Western blot analysis  

Cells were added to a 6-well plate (3×105 cells/well) and incubated for 24 h. Media was 

then removed and replaced with fresh media containing liposomes. At specified timepoints, the 

plates were placed on ice, washed once with cold DPBS, and incubated for 15 min with 1 vol% 

NP40 lysis buffer (50 µL) containing protease and phosphatase inhibitors. The wells were then 

scraped and the solution added to cold microcentrifuge tubes. Cellular debris was removed by 

centrifugation (4 °C, 5 min). Protein concentrations in samples were determined using the 

Bradford assay. Equal total protein amounts (~30 µg) were added to each lane of the gel (4–20% 

gradient). After electrophoresis, the proteins were transferred onto PVDF membranes, blocked 

with 5% (w/v) milk, and stained with primary antibody overnight. After incubation with the 

secondary antibody for 1 h, the membrane was incubated with the Western lightning ECL pro 
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substrate (10 min) and then imaged using a ChemiDoc chemiluminescence imaging system (Bio-

Rad; Hercules, CA). Western blot images were processed using Image Lab software (Bio-Rad; 

Hercules, CA). Fiji software was used for densitometry calculations. Loading controls were used 

as a normalization factor for densitometric calculations. 

4.3 Results and discussion 

The N-diazeniumdiolates used in this study (PAPA/NO and DETA/NO; Appendix C) 

were selected because of their dissimilar NO-release half-lives in PBS at pH 7.4 (0.25 h and 20 

h, respectively). On the basis of our previous work and others,28,41 we anticipated that the 

resulting NO-releasing liposomes would have different NO-release kinetics. Liposome formation 

was confirmed by dynamic light scattering (DLS) measurements. As shown in Figure 1, 

DETA/NO and PAPA/NO liposomes exhibited hydrodynamic sizes typical of liposomes 

synthesized via reverse-phase evaporation (Table 1).37 The slight difference in size between the 

systems should not appreciably affect their anticancer activity as liposomes with sizes of 

approximately 150 to 400 nm exhibit similar cellular uptake.42 Transmission electron microscopy 

(TEM) corroborated the DLS measurements and indicated negligible liposome-liposome fusion 

(Appendix C). Real-time NO release measurements demonstrated that the NO donor 

encapsulation efficiency was similar to efficiencies of other reverse-phase evaporated liposomes 

and consistent between the two liposome formulations (Table 1), likely the result of similar size 

of the NO donors.37 As expected, the liposomes released NO more slowly at physiological pH 

(7.4) than the corresponding small molecule NO donor alone (Figure 1). The PAPA/NO 

liposomes released ~50% of their total NO in 2.5 h, a ten-fold longer NO-release half-life than 

the free NO donor. As the rate of NO release impacts NO’s toxicity,29-35 the use of two distinct 
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N-diazeniumdiolates as encapsulants allows for the study of the anticancer therapeutic potential 

of the liposomes as a function of NO-release kinetics. 

4.3.1. Cytotoxicity of the liposomes  

The potential anticancer activity of the NO-releasing liposomes was initially tested 

against Pa14c pancreatic cancer cells, an aggressive pancreatic cancer cell line. The PAPA/NO 

and DETA/NO liposome systems showed a pronounced toxicity difference, attributable to the 

NO release (Figure 2A). At low NO payloads (~0.9 µg/mL), the viability was slightly enhanced 

for each liposomal system. Previous research has reported that low levels of NO induces EGF-

dependent cell proliferation.14,43 At NO payloads >1.5 µg/mL, the slower NO-release system 

(DETA/NO liposomes) was markedly more toxic towards the Pa14c cells. The less effective 

PAPA/NO liposomes required larger NO payloads to induce toxicity likely because of the faster 

release rate, resulting in the release of the majority of the NO payload before reaching the cell 

and/or cellular uptake. Significantly less toxicity (killing) was observed (Appendix C) when 

using a noncancerous epithelial cell line (HPNE), indicating that NO may elicit preferential 

cytotoxicity towards cancer cells due to its ability to further increase the oxidative/nitrosative 

stress that cancer cells are already under.44 

The cytotoxicity of the liposomes was next evaluated against a number of malignant lines 

from pancreatic, breast, and colorectal cancers to ascertain if the observed dependence on NO-

release kinetics applied to other cell lines. The slow NO-releasing liposomes (DETA/NO) 

consistently required lower NO payloads to elicit cytotoxic effects, regardless of cancer type or 

cell line (Figure 2B). In fact, the LD50 was <3 µg/mL NO for the DETA/NO liposomes against 

all cancer cell lines investigated, while the faster-releasing PAPA/NO liposomes required >6 

µg/mL NO to elicit cytotoxic action. These results agree with prior work that demonstrated that  
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Table 4.1. Properties of NO-releasing liposomes. 

NO donor 
Hydrodynamic size a 

(nm) 

Encapsulation 

efficiency b (%) 
Total NO c (µg/mL) 

PAPA/NO 377 ± 52 19.0 ± 3.5 125.7 ± 41.1 

DETA/NO 246 ± 32 20.6 ± 3.2 133.2 ± 26.7 

aZ-average size measured using DLS. bRatio of µmol of NO inside liposomes to µmol used for 
synthesis, multiplied by 100. cTotal amount of NO release in acid normalized to the injected 
liposome volume.  
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Figure 4.1. Nitric oxide-release profiles from liposomal (●) DETA/NO and (▲) PAPA/NO in 10 

mM PBS (pH 7.4, 37 °C) over the first 72 h. 
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Figure 4.2. (A) Cytotoxicity of liposomal (●) DETA/NO and (▲) PAPA/NO as a function of NO 

payload against human Pa14c pancreatic cancer cells after 72 h of exposure. (B) Calculated LD50 

values for (grey bars) DETA/NO and (black bars) PAPA/NO liposomes against pancreatic, 

breast, and colorectal cancer cell lines. Of note, the LD50 of PAPA/NO liposomes against Pa14c 

cells was >16.2 µg/mL. NO payloads were calculated based on the total amount of NO released 

from the liposomes over 72 h in PBS. 
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free NO donors exhibiting slow NO-release kinetics required lower anticancer payloads relative 

to their fast-releasing counterparts.29,33,45 

A human breast cancer cell line (MCF-7) was chosen as a representative model for 

further evaluation of the NO-release kinetics and associated cytotoxicity because of the stark 

differences in the LD50 values for the PAPA/NO and DETA/NO liposomes. Our immediate goal 

was to determine if the PAPA/NO liposomes induced cytotoxicity earlier in the assay (i.e., 

before 72 h). Cells were exposed to the 72 h LD50 concentrations of the DETA/NO and 

PAPA/NO liposomes (0.75 µg/mL and 16.2 µg/mL after 72 h exposure, respectively) for 8, 24, 

48, and 72 h. As shown in Figure 3, neither the fast nor slow NO-releasing liposome system 

exhibited cytotoxic effects at early timepoints (8 h). Rather, mild cell proliferation was noted for 

both. After 24 h, cell viability diminished greatly (up to 60%) for cells exposed to the PAPA/NO 

system (16.2 µg/mL NO), with no further change through 72 h. PAPA/NO liposomes deliver 

~90% of the NO payload by 24 h (Figure 1), correlating with this observed cytotoxicity. The NO 

liberated from the DETA/NO liposomes (0.75 µg/mL) displayed a more consistent cell viability 

profile with a steady drop over the 72 h period. Cytotoxicity for PAPA/NO liposomes at 0.75 

µg/mL payloads was not induced at any time point (negligible toxicity relative to controls). 

Collectively, this data suggests that faster NO release (i.e., using shorter half-life NO donors) 

elicits cytotoxicity more rapidly than corresponding slower release, but necessitates larger NO 

payloads. The large levels of produced NO from the fast NO-releasing liposomes may be better 

at increasing the entropy of the cellular system through the denaturation of proteins than the slow 

NO-releasing liposomes. 
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Figure 4.3. Time-course cytotoxicity study of liposomal (●) DETA/NO and (▲) PAPA/NO at 

their respective LD50 values against human MCF-7 breast cancer cells. 
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4.3.2. Intracellular liposome uptake and NO delivery 

 The observed relationship between liposome NO-release kinetics and anticancer action 

was hypothesized to be the result of intracellular NO accumulation. Confocal fluorescence 

microscopy was employed to measure intracellular NO build-up over time for the two systems 

using DAF-FM, a molecular probe that selectively reacts with NO to form a fluorescent 

benotriazole compound.46 Additionally, cellular uptake of the liposomes was visualized by 

incorporating a fluorescent phospholipid (Rh-PE) into the lipid bilayer.47 A 2 h exposure period 

was initially selected for this study as cell have been shown to initiate liposomal uptake within 

this timeframe,48-49 allowing for visualization of delivered NO. The bright field and fluorescence 

images of MCF-7 cells after exposure to DETA/NO and PAPA/NO liposomes (at their LD50 

values) are provided in Figure 4A. Of note, the amount of NO released during the confocal 

experiment is significantly lower than the corresponding LD50 values due to the shorter exposure 

time (2 vs. 72 h). Liposome uptake was clearly observed after 2 h, with z-stack images revealing 

intracellular localization of the NO-releasing liposomes (Figure 5). The rapid uptake of the 

liposomes results from their ability to adsorb to and then fuse with the cell membrane, a 

phenomena that does not readily occur with other delivery vehicles (e.g., nanoparticles).6 

Relative to DETA/NO liposomes, cells exposed to PAPA/NO liposomes had substantially 

elevated levels of intracellular NO. Densitometry calculations were carried out to quantify 

intracellular NO levels for the two liposomes (Figure 4B). Treatment with PAPA/NO liposomes 

resulted in a 4-times larger fluorescence signal relative to DETA/NO after 2 h, supporting the 

results observed in the time-course study where the fast release system elicited more rapid 

cytotoxicity (at 24 h). The lack of cytotoxicity observed for the PAPA/NO liposomes at the same 

NO payloads as the DETA/NO liposomes (0.75 µg/mL) was supported by negligible intracellular  
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Figure 4.4. (A) Confocal fluorescence images of MCF-7 cells incubated with DAF-FM (green) 

and treated with NO-releasing liposomes (red) for 2 h. Scale bar represents 15 µm. Column 1 is 

controls. Column 2 and 3 are cells exposed to the LD50 values of DETA/NO and PAPA/NO 

liposomes, respectively. By 2 h, DETA/NO and PAPA/NO liposomes released ~1 and 30% of 

their NO payloads, respectively. (B) Densitometric analysis of intracellular DAF-FM levels 

relative to untreated controls. 
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Figure 4.5. Orthogonal view of MCF-7 cells after treatment with PAPA/NO liposomes. Scale 

bar represents 5 µm. 
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NO accumulation at 2 h (data not shown). Collectively, the greater NO accumulation and NO 

exposure observed for the PAPA/NO liposomes leads to more rapid anticancer action. 

4.3.3. Kinetics of intracellular NO accumulation 

The rapid NO delivery from the PAPA/NO liposomes was hypothesized to be key in 

eliciting cytotoxicity at short time periods (i.e., 24 h). The more gradual cell killing observed 

using the DETA/NO liposomes would be expected to parallel the build-up of intracellular NO 

over time. Flow cytometry was utilized to quantify NO accumulation within the MCF-7 cells 

over a 72 h period using the same DAF-FM probe (Figure 6). A large increase in intracellular 

fluorescence was observed by 24 h for cells treated with PAPA/NO liposomes (16.2 µg/mL NO). 

At 48 and 72 h, the fluorescence essentially remained at the same level, signaling that no more 

NO was delivered to the cell. In contrast, the fluorescence within cells treated with the slower 

NO-releasing DETA/NO liposomes (0.75 µg/mL NO) continued to increase steadily over the 

entire 72 h period. The therapeutic action of both slow and fast NO-releasing liposomes followed 

the same trend observed in the cytotoxicity time-course study, where cytotoxicity was elicited 

more rapidly with PAPA/NO liposomes and the DETA/NO liposomes required the full 72 h 

before eliciting toxicity. At equal NO payloads (0.75 µg/mL), minimal intracellular NO 

accumulation was observed for the PAPA/NO liposomes due to premature NO loss prior to 

cellular uptake (Appendix C), which is in agreement with cytotoxicity findings.  

A median fluorescence intensity comparison between free and liposomal NO donors was 

performed to highlight the benefits of using NO-releasing liposomes over the low molecular 

weight NO donors. Cells treated with NO-releasing liposomes exhibited greater intracellular NO 

accumulation (Figure 6), as a result of enhanced NO donor stability (within the liposomes) and 
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Figure 4.6. Change in median fluorescence intensity over time indicating intracellular NO 

accumulation, as determined by flow cytometry, after treating MCF-7 cells with 0.75 µg/mL NO 

from (●) liposomal and (▲) free DETA/NO, and 16.2 µg/mL NO from (■) liposomal and (�) free 

PAPA/NO. 
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targeted cellular uptake. Similar behavior has been observed for other small molecule drugs (e.g., 

gemcitabine and doxorubicin) encapsulated within liposomes.8,50 

4.3.4. Effect of liposomes on intracellular signaling 

Western blot analysis was employed to evaluate if any differences existed in protein 

expression levels. Poly(ADP-ribose) polymerase (PARP) is a critical mediator of DNA repair 

and upon cleavage by caspase-3 initiates cellular breakdown and apoptosis.51 A measurement of 

increased PARP levels after treatment would indicate that cells underwent PARP-mediated 

apoptosis. Cyclin analysis would facilitate understanding the cell cycle and whether cells were 

arrested or ejected.52-53 The expressions of these regulator proteins in MCF-7 cells were 

measured after NO exposure at 24, 48, and 72 h (Figure 8A). Cleaved PARP levels were the 

greatest for cells treated with 16.2 µg/mL NO from PAPA/NO liposomes, indicating apoptosis, 

especially at early timepoints (i.e., 24 and 48 h). This data correlates well with the rapid 

cytotoxicity observed from the fast NO-release system (Figure 3).  Densitometric calculations 

were performed on the blots to more accurately compare protein levels between exposure 

conditions. Even though cells treated with DETA/NO liposomes exhibited reduced cyclin B1 

levels relative to controls by 24 h (Figure 8B), the levels were still greater than cells treated with 

PAPA/NO liposomes. At 72 h, the two systems, at their respective LD50 values, had similar 

expressions of cyclin D1 (Figure 8C), suggesting an equivalent capacity to either inactivate 

transcription factors that drive cell proliferation (i.e., prevent cell growth) or initiate cyclin D1 

destruction. Of note, minimal changes in protein expression were observed for cells exposed to 

PAPA/NO liposomes at NO payloads (0.75 µg/mL) equivalent to the DETA/NO liposomes, 

corroborating insufficient NO delivery and low toxicity. These results suggest that both types of  
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Figure 4.7. (A) Western blot of MCF-7 cells after no treatment (lane a), 0.75 µg/mL NO from 

DETA/NO liposomes (lane b), 0.75 µg/mL NO from PAPA/NO liposomes (lane c), and 16.2 

µg/mL NO from PAPA/NO liposomes (lane d). (B) Densitometric analysis of cyclin B1 levels 

after 24 h exposure. (C) Densitometric analysis of cyclin D1 levels after 72 h exposure. 
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NO-releasing liposomes trigger the same anticancer pathways, but to different degrees depending 

on the exposure time and NO concentration. Slower NO release elicits a more gradual increase in 

cleaved PARP levels (i.e., apoptosis) and arrested cells in the cell cycle, while faster NO release 

promotes rapid PARP cleavage and prevention of mitosis. 

4.4 Conclusions 

 The transition from low molecular weight NO donors to macromolecular NO-release 

systems for anticancer treatments may represent an important step in creating more effective 

chemotherapies. Two NO-releasing liposome systems with distinct NO-release kinetics were 

used to study cytotoxicity against pancreatic, colorectal, and breast cancer cell lines. Through the 

encapsulation of the low molecular weight NO donor within liposomes, greater intracellular NO 

accumulation was observed due to enhanced uptake. The preliminary cell studies herein suggest 

that NO-release kinetics play an important role in eliciting cell death, with a direct relationship to 

intracellular NO accumulation. Fast NO-releasing liposomes represent a less effective anticancer 

therapeutic as the NO is liberated too rapidly in advance of intracellular uptake. Further 

cytotoxicity studies using liposomes bearing cancer targeting ligands (e.g., folate) are the next 

steps in enhancing the selecitivty of the NO-releasing liposomes. This work points towards the 

promise of using NO-releasing liposomes as anticancer agents, and the importance of controlling 

NO-release rates for other macromolecular delivery scaffolds. The ability of NO to further 

increase the number of oxidative/nitrosative species that cancer cells are already exposed to is a 

unique mechanism to specifically target cancer cells over healthy cells. 

 

 

 



 114 

REFERENCES 

(1) Bender, A.; Schieber, J.; Glick, M.; Davies, J.W.; Azzaoui, K.; Hamon, J.; Urban, L.; 
Whitebread, S.; Jenkins, J.L. “Analysis of pharmacology data and the prediction of adverse drug 
reactions and off-target effects from chemical structure.” ChemMedChem 2007, 2, 861-873. 
 
(2) Park, B.K.; Boobis, A.; Clarke, S.; Goldring, C.; Jones, D.; Kenna, J.G.; Lambert, C.; 
Laverty, H.G.; Naisbitt, D.J.; Nelson, S.; Nicoll-Griffith, D.A.; Obach, R.S.; Routledge, P.; 
Smith, D.A.; Tweedie, D.J.; Vermeulen, N.; Williams, D.P.; Wilson, I.D.; Baillie, T.A. 
“Managing the challenge of chemically reactive metabolites in drug development.” Nature 
Reviews Drug Discovery 2011, 10, 292-306. 
 
(3) Widakowich, C.; De Castro, G.; De Azambuja, E.; Dinh, P.; Awada, A. “Review: Side 
effects of approved molecular targeted therapies in solid cancers.” The Oncologist 2007, 12, 
1443-1455. 
 
(4) Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harei-Bellan, A.; Castedo, 
M.; Kroemer, G. “Systems biology of cisplatin resistance: Past, present and future.” Cell Death 
and Disease 2014, 5, 1-18. 
 
(5) De Angelis, A.; Urbanek, K.; Cappetta, D.; Piegari, E.; Ciuffreda, L.; Rivellino, A.; Russo, 
R.; Esposito, G.; Rossi, F.; Berrino, L. “Doxorubicin cardiotoxicity and target cells: A broader 
perspective.” Cardio-Oncology 2016, 2, 1-8. 
 
(6) Torchilin, V.P. “Recent advances with liposomes as pharmaceutical carriers.” Nature 
Reviews Drug Discovery 2005, 4, 145-160. 
 
(7) Allen, T.M.; Cullis, P.R. “Liposomal drug delivery systems: From concept to clinical 
applications.” Advanced Drug Delivery Reviews 2013, 65, 36-48. 
 
(8) Barenholz, Y.C. “Doxil – The first FDA-approved nano-drug: Lessons learned.” Journal of 
Controlled Release 2012, 160, 117-134. 
 
(9) Chen, H.; MacDonald, R.C.; Li, S.; Krett, N.L.; Rosen, S.T.; O’Halloran, T.V. “Lipid 
encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer 
drug release.” Journal of the American Chemical Society 2006, 128, 13348-13349. 
 
(10) Piccaluga, P.P.; Visani, G.; Martinelli, G.; Isidori, A.; Malagola, M.; Rondoni, M.; 
Baccarani, M.; Tura, S. “Liposomal daunorubicin (daunoXome) for treatment of relapsed 
meningeal acute myeloid leukemia.” Leukemia 2002, 16, 1880-1881. 
 
(11) Taylor, E.L.; Megson, I.L.; Haslett, C.; Rossi, A.G. “Nitric oxide: A key regulator of 
myeloid inflammatory cell apoptosis.” Cell Death and Differentiation 2003, 10, 418-430. 
 



 115 

(12) Wink, D.A.; Hines, H.B.; Cheng, R.S.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; 
Ridnour, L.A.; Colton, C.A. “Nitric oxide and redox mechanisms in the immune response.” 
Journal of Leukocyte Biology 2011, 89, 873-891. 
 
(13) Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. “Role of nitric oxide in inflammatory diseases.” 
Inflammopharmacology 2007, 15, 252-259. 
 
(14) Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, 
S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C.A.; Harris, C.C.; Roberts, D.D.; 
Wink, D.A. “The chemical biology of nitric oxide: Implications in cellular signaling.” Free 
Radical Biology & Medicine 2008, 45, 18-31. 
 
(15) Moncada, S.; Palmer, R.; Higgs, E. “Nitric oxide: Physiology, pathophysiology, and 
pharmacology.” Pharmacological Reviews 1991, 43, 109-142. 
 
(16) Carpenter, A.W.; Schoenfisch, M.H. “Nitric oxide release: Part II. Therapeutic 
applications.” Chemical Society Reviews 2011, 41, 3742-3752. 
 
(17) Fang, F.C. “Perspective series: Host/pathogen interactions. Mechanisms of nitric oxide-
related antimicrobial activity.” Journal of Clinical Investigation 1997, 99, 2818-2825. 
 
(18) Fang, F.C. “Antimicrobial reactive oxygen and nitrogen species: Concepts and 
controversies.” Nature Reviews Microbiology 2004, 2, 820-832. 
 
(19) Jones, S.P.; Bolli, R. “The ubiquitous role of nitric oxide in cardioprotection.” Journal of 
Molecular and Cellular Cardiology 2006, 40, 16-23. 
 
(20) Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. 
“Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.” Nature 
Reviews Neuroscience 2007, 8, 766-775. 
 
(21) Wink, D.A.; Vodovotz, Y.; Laval, J.; Laval, F.; Dewhirst, M.W.; Mitchell, J.B. “The 
multifaceted roles of nitric oxide in cancer.” Carcinogenesis 1998, 19, 711-721. 
 
(22) Wang, L.; Xie, K. “Nitric oxide and pancreatic cancer pathogenesis, prevention, and 
treatment.” Current Pharmaceutical Design 2010, 16, 421-427. 
 
(23) Sullivan, R.; Graham, C.H. “Chemosensitization of cancer by nitric oxide.” Current 
Pharmaceutical Design 2008, 14, 1113-1123. 
 
(24) Miller, M.R.; Megson, I.L. “Recent developments in nitric oxide donor drugs.” British 
Journal of Pharmacology 2007, 151, 305-321. 
 
(25) Hrabie, J.A.; Klose, J.R.; Wink, D.A.; Keefer, L.K. “New nitric oxide-releasing zwitterions 
derived from polyamines.” Journal of Organic Chemistry 1993, 58, 1472-1476. 
 



 116 

(26) Keefer, L.K. “Fifty years of diazeniumdiolate research. From laboratory curiosity to broad-
spectrum biomedical advances.” ACS Chemical Biology 2011, 6, 1147-1155. 
 
(27) Shamim, U.; Hanif, S.; Albanyan, A.; Beck, F.; Bao, B.; Wang, Z.; Banerjee, S.; Sarkar, F. 
H.; Mohammad, R. M.; Hadi, S. M.; Azmi, A. S. “Resveratrol-induced apoptosis is enhanced in 
low pH environments associated with cancer.” Journal of Cellular Physiology 2012, 227, 
1493−1500. 

(28) Tannock, I. F.; Rotin, D. “Acid pH in tumors and its potential for therapeutic exploitation.” 
Cancer Research 1989, 49, 4373−4384. 

(29) Maragos, C.M.; Wang, J.M.; Hrabie, J.A.; Oppenheim, J.J.; Keefer, L.K. “Nitric 
oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric 
oxide release.” Cancer Research 1993, 53, 564-568. 
 
(30) Stuehr, D.J.; Nathan, C.F. “A macrophage product responsible for cytostasis and respiratory 
inhibition of tumor target cells.” Journal of Experimental Medicine 1989, 169, 1543-1555. 
 
(31) Tamir, S.; Lewis, R.S.; Walker, T.; Deen, W.M.; Wishnok, J.S.; Tannenbaum, S.R. “The 
influence of delivery rate on the chemistry and biological effects of nitric oxide.” Chemical 
Research in Toxicology 1993, 6, 895-899. 
 
(32) Mooradian, D.L.; Hutsell, T.C.; Keefer, L.K. “Nitric oxide (NO) donor molecules: Effect of 
NO release rate on vascular smooth muscle cell proliferation in vitro.” Journal of 
Cardiovascular Pharmacology 1995, 25, 674-678. 
 
(33) Kielbik, M.; Klink, M.; Brzezinska, M.; Szulc, I.; Sulowska, Z. “Nitric oxide donors: 
Spermine/NO and diethylenetriamine induce ovarian cancer cell death and affect STAT3 and 
AKT signaling proteins.” Nitric Oxide 2013, 35, 93-109. 
 
(34) Taylor, E.L.; Megson, I.L.; Haslett, C.; Rossi, A.G. “Dissociation of DNA fragmentation 
from other hallmarks of apoptosis in nitric oxide-treated neutrophils: Differences between 
individual nitric oxide donor drugs.” Biochemical and Biophysical Research Communications 
2001, 289, 1229-1236. 

(35) Meßmer, U.K; Brüne, B. “Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 
macrophage cell death: The role of NO-donor exposure, NAD+ content, and p53 accumulation.” 
Archives of Biochemistry and Biophysics 1996, 327, 1-10. 

(36) Suchyta, D.J.; Schoenfisch, M.H. “Encapsulation of N-diazeniumdiolates within liposomes 
for enhanced nitric oxide donor stability and delivery.” Molecular Pharmaceutics 2015, 12, 
3569-3574. 
 
(37) Szoka, F. Jr.; Papahadjopoulos, D. “Procedure for preparation of liposomes with large 
internal aqueous space and high capture by reverse-phase evaporation.” Proceedings of the 
National Academy of Sciences 1978, 75, 4194-4198. 
 



 117 

(38) Soto, R.J.; Yang, L.; Schoenfisch, M.H. “Functionalized mesoporous silica via an 
aminosilane surfactant ion exchange reaction: Controlled scaffold design and nitric oxide 
release.” ACS Applied Materials and Interfaces 2016, 8,2220-2231. 
 
(39) Worley, B.V.; Schilly, K.M.; Schoenfisch, M.H. “Anti-biofilm efficacy of dual-action nitric 
oxide-releasing alkyl chain modified poly(amidoamine) dendrimers.” Molecular Pharmaceutics 
2015, 12, 1573-1583. 
 
(40) Ganguly, S.; Bandyopadhyay, S.; Sarkar, A.; Chatterjee, M. “Development of a semi-
automated colorimetric assay for screening of anti-leishmanial agents.” Journal of 
Microbiological Methods 2006, 66, 79-86. 
 
(41) Elnaggar, M.A.; Subbiah, R.; Han, D.K.; Joung, Y.K. “Lipid-based carriers for controlled 
delivery of nitric oxide.” Expert Opinion on Drug Delivery 2017, 1-13. 
 
(42) Ong, S.; Ming, L.C.; Lee, K.S.; Yuen, K.H. “Influence of the encapsulation efficiency and 
size of liposomes on the oral bioavailability of griseofulvin-loaded liposomes.” Pharmaceutics 
2016, 8, 25. 
 
(43) Villalobo, A. “Nitric oxide and cell proliferation.” FEBS Journal 2006, 273, 2329-2344.  
 
(44) Pelicano, H.; Carney, D.; Huang, P. “ROS stress in cancer cells and therapeutic 
implications.” Drug Resistance Updates 2004, 7, 91-110. 
 
(45) Shami, P.J.; Sauls, D.L.; Weinberg, J.B. “Schedule and concentration-dependent induction 
of apoptosis in leukemia cells by nitric oxide.” Leukemia 1998, 12, 1461-1466. 
 
(46) Sheng, J.; Wang, D.; Braun, A.P. “DAF-FM (4-amino-5-methylamino-2’,7’-difluorescein) 
diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in 
human vascular endothelial cells: Reversal by vitamin C and L-sepiapterin.” Journal of 
Pharmacology and Experimental Therapeutics 2005, 315, 931-940. 
 
(47) Skalko, N.; Peschka, R.; Altenschmidt, U.; Lung, A.; Schubert, R. “pH-sensitive liposomes 
for receptor-mediated delivery to chicken hepatoma (LMH) cells.” FEBS Letters 1998, 434, 351-
356. 
 
(48) Mastrobattista, E.; Storm, G.; van Bloois, L.; Reszka, R.; Bloemen, P.; Crommelin, D.; P. 
“Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on 
bronchial epithelial cells.” Biochimica et Biophysica Acta 1999, 1419, 353-363. 
 
(49) Thurston, G.; McLean, J.W.; Rizen, M.; Baluk, P.; Haskell, A.; Murphy, T.J.; Hanahan, D.; 
McDonald, D.M. “Cationic liposomes target angiogenic endothelial cells in tumors and chronic 
inflammation in mice.” Journal of Clinical Investigation 1998, 101, 1401-1413. 
 
(50) Cosco, D.; Bulotta, A.; Ventura, M.; Celia, C.; Calimeri, T.; Perri, G.; Paolino, D.; Costa, 
N.; Veri, P.; Tagliaferri, P.; Tassonem P.; Fresta, M. “In vivo activity of gemcitabine-loaded 



 118 

PEGylated small unilamellar liposomes against pancreatic cancer.” Cancer Chemotherapy and 
Pharmacology 2009, 64, 1009-1020. 
 
(51) Javle, M.; Curtin, N.J. “The role of PARP in DNA repair and its therapeutic exploitation.” 
British Journal of Cancer 2011, 105, 1114-1122. 
 
(52) Hwang, A.; Maity, A.; McKenna, W.G.; Muschel, R.J. “Cell cycle-dependent regulation of 
the cyclin B1 promoter.” The Journal of Biological Chemistry 1995, 270, 28419-28424. 
 
(53) Stacey, D.W. “Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating 
cells.” Current Opinion in Cell Biology 2003, 15, 158-163. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 119 

 
 
 
 

CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 
 

5.1 Summary of dissertation research 

 The therapeutic potential of exogenous NO has been met with many obstacles that can be 

overcome using drug delivery vehicles. While macromolecular NO-release systems such as gold 

nanoparticles,1-2 silica nanoparticles,3-10 and dendrimers11-15 have been developed, they often fall 

short in terms of in vivo delivery due to limitations in NO donor stability. My dissertation 

research focused on the use of liposomes for N-diazeniumdiolate delivery vehicles with the 

intent to encapsulate and protect the NO donor. Chapter 2 detailed the synthesis and 

characterization of NO-releasing liposomes. As prepared using dipalmitoylphosphatidylcholine, 

liposomes were ~275 nm in size (diameter) and capable of releasing NO up to 7-times longer 

than the free NO donor alone. At 4 °C in a basic solution, the vesicles retained ~80% of their 

encapsulated NO at 3 months of storage. To ascertain utility of NO-releasing liposomes as 

anticancer agents, the cytotoxicity of the liposomes against pancreatic cancer cells was compared 

to the free NO donor. The free NO donor required much greater NO concentrations (2.4 mM) to 

elicit anticancer effects relative to the NO-releasing liposomes (0.183 mM). Thus, liposomes 

were shown to both enhance stability of the N-diazeniumdiolate and increase anticancer activity, 

attributed to a more localized NO delivery. 

 Chapter 3 described a systematic evaluation of the parameters influencing liposomal NO 

release. A change in liposomal NO-release kinetics was readily achieved by altering the structure 

of the encapsulated N-diazeniumdiolate and/or the composition of the lipid bilayer (i.e., 

phospholipid identity). As evidenced by the data, the lipid headgroup surface area was the key 
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factor in regulating NO-release kinetics. A notable increase in NO release was observed upon 

decreasing the headgroup surface area, which was attributed to the tighter headgroup packing 

impeding proton diffusion into the core. Nitric oxide release was also measured in blood and 

serum to understand the role of protein binding to the bilayer and potential bilayer disruption. 

The NO-release kinetics in serum were equivalent to those in buffer, while those measured in 

blood were ~60% faster. The faster release was attributed to the presence of cells (e.g., 

erythrocytes) and other potent NO scavengers such as hemoglobin, shifting the equilibrium of 

NO diffusion. However, lipid bilayer decomposition may also have contributed to the faster NO-

release kinetics. 

 The impact of NO-release kinetics on cancer cell killing was detailed in Chapter 4. 

Specifically, the effects of fast (t1/2 ~ 2.5 h) and slow (t1/2 > 72 h) NO release on cancer cell 

killing were evaluated using several cancer cell lines. Slow NO-releasing liposomes yielded 

consistently lower LD50 values (<230 µM NO) relative to the fast NO-releasing system (>230 

µM NO), regardless of the cancer cell (breast, colorectal, and pancreatic cancer). However, time 

course studies revealed that a more rapid decline in cell viability occurred for the fast NO-release 

system. Both confocal fluorescence microscopy and flow cytometry verified that the faster NO 

release led to an increased rate of intracellular NO accumulation. In contrast, slow NO release 

resulted in a more gradual intracellular NO build up. Western blotting analysis revealed that both 

the slow and fast NO-release systems induced apoptosis, albeit to different degrees. Overall, 

these studies suggest that faster NO-release kinetics elicit anticancer action at the expense of 

high NO donor concentrations, whereas lower concentrations of NO via slower NO-release 

kinetics necessitates longer exposures to elicit cell killing. The employment of slow NO-release 
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systems for anticancer action may therefore minimize adverse systemic effects due to the lower 

LD50 values. 

5.2 Future directions 

5.2.1 Conjugation of targeting ligands to liposome surface 

 In order to achieve active targeting in vivo, ligands should be appended to the liposome 

exterior that selectively bind to membrane moieties located on cancer cells. Conjugation may be 

performed using two different methods: bilayer insertion using long alkyl chains or covalent 

attachment to the lipid headgroup. Bilayer insertion of the targeting ligand is a more general 

approach that allows for a greater variety of ligands to be created at the expense of low bilayer 

incorporation efficiencies and risk of removal during transport.16-17 Long alkyl chains (e.g., 

dodecyl) are attached to the ligand that then insert themselves into the hydrophobic domain of 

the lipid bilayer. However, the single alkyl tail may disrupt the order of the bilayer, thus reducing 

the ligand’s stability and increasing the likelihood of its ejection in biological milieu. One 

advantage though is that many chemistries, including acid chloride and maleimide reactions, may 

be utilized to attach a large number of ligands (Table 5.1).17  

In contrast, covalent attachment relies on the reaction of an existing phospholipid 

comprising the bilayer with the targeting ligand. Distearoylphosphatidylethanolamine (DSPE) is 

widely used as a phospholipid for covalent attachment due to its reactive headgroup (i.e., a 

primary amine).18-19 For example, carboxylic acid moieties on folic acid have been reacted with 

DSPE’s primary amine to yield folate-modified phospholipids.20 By using covalent attachment, 

the targeting ligands are less prone to dislodge from the bilayer during blood exposure because 

their hydrophobic tails are identical to those comprising the existing bilayer.  
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Table 5.1. Ligands used for active targeting. a 
Targeting ligands and 

antibodies 
Alternative names  

(trade name) 
Target 

RGD peptide  Cellular adhesion molecules 
such as ανβ3- integrin 

NGR peptide  Aminopeptidase N (CD13) 
GM-CSF glycoprotein  GM-CSF receptor 

Folate  Folate receptor 
Transferrin  Transferrin receptor 

Galactosamine  Galactosamine receptors on 
hepatocytes 

Anti-VEGFR 2C3 Vasculature endothelial 
growth-factor receptor 
(FLK1) 

Anti-ERBB2 Trastuzumab (Herceptin) ERBB2 receptor 
Anti-CD20 Rituximab (Rituxan), 

ibritumomab tiuxetan 
(Zevalin) 

CD20, a B-cell surface 
antigen 

Anti-CD22 Epratuzumab, LL2, RFB4 CD22, a B-cell surface 
antigen 

Anti-CD19 B4, HD37 CD19, a pan-B cell surface 
epitope 

Anti-CD33 Gemtuzumab, ozogamicin 
(Mylotarg) 

CD33, a sialo-adhesion 
molecule, leukocyte 
differentiation antigen 

Anti-CD33 M195 CD33, a T-cell epitope 
Anti-CD25 Anti-Tac, LMB2 CD25, α-subunit of the 

interleukin-2 receptor on 
activated T cells 

Anti-CD25 Denileukin diftitox (Ontak) Interleukin-2 receptor 
Anti-HLA-DR10β Lym1 HLA-DR10β subunit 

Anti-tenascin 81C6 Extracellular-matrix protein 
overexpressed in many tumors 

Anti-CEA MN-14, F6, A5B7 CEA 
Anti-MUC1 HMFG1, BrE3 MUC1, an aberrantly 

glycosylated epithelial mucin 
Anti-TAG72 CC49, B72.3 TAG72, oncofetal antigen 

tumor-associated 
glycoprotein-72 

aAdapted with permission from Nature Reviews Cancer, 2002, 2, Allen, T.M. “Ligand-targeted 
therapeutics in anticancer therapy” pages 750–763, Copyright 2002 Nature Publishing Group. 
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Utilizing the above chemistries, many targeting ligands have been appended to the 

exterior of liposomes.18 Folic acid, a critical biomolecule required for DNA synthesis, has been 

conjugated to the surface of liposomes to enable binding to the overexpressed folate receptors on 

the surface of cancer cells.21-22 In order to compensate for the increased replication rates of 

cancer, folate receptors are more populated on their cell surface. Folate-appended arsenic 

trioxide liposomes were 9- and 28-times more toxic towards HeLa and KB cells, respectively, 

than the same liposomes without the folate groups. Transferrin, a beta globulin protein that 

functions to transport iron in biological fluids, represents another ligand that has been attached to 

liposomes. Like folate, the transferrin receptor is overexpressed on the surface of cancer cells.23-

24 As DNA polymerase requires iron for DNA replication, increased transferrin uptake helps 

maintain iron homeostasis.25 Liposomes bearing transferrin ligands have exhibited improved 

cellular uptake (~10-times greater) relative to controls as measured via confocal fluorescence 

microscopy.26  

The large nutrient requirement for tumors and cancer cells has lead to an emerging area 

of research whereby sugar units (e.g., glucose) are attached to the exterior of drugs, with the 

intent of facilitating more rapid uptake resulting from the high activity of the glucose transport 

receptors (e.g., GLUT-1) on cancer cells.27-28 Upon glucose conjugation to polymeric vesicles, 

for example, greater intracellular accumulation was observed as measured by transmission 

electron microscopy and flow cytometry.29 The attachment of similar ligands to the surface of 

NO-releasing liposomes may lead to greater accumulation at cancer sites. For any modification, 

it will be necessary to examine any influence on the NO release. Future work should include a 

multi-pronged study using cytotoxicity assays, confocal fluorescence microscopy, and flow 
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cytometry to elucidate if NO-releasing liposomes would benefit from the conjugation of 

targeting ligands. 

5.2.2 Dual-encapsulation to enhance anticancer action 

 While evidence of the chemotherapeutic effects of NO-releasing liposomes was provided 

in Chapter 4, reducing the cytotoxic concentrations into the nanomolar range would improve the 

therapeutic potential of our system. Our lab has previously reported on the synthesis of dual-

action scaffolds that are capable of inducing cell death via multiple mechanisms.30-33 Similarly, it 

is possible to encapsulate NO with other therapeutics within the liposomes to potentially improve 

anticancer activity. Molecules of varying charges, molecular weights, and solubilities, have all 

been encapsulated within liposomes. Indeed, the hydrophilic (i.e., aqueous core) and 

hydrophobic (i.e., lipid bilayer) domains located within liposomes facilitate encapsulation of 

molecules exhibiting differing properties (e.g., doxorubicin and DNA). 

The constricted vasculature of tumor sites inhibits extravasation of many drug delivery 

systems.34 Pretreatment with NO has been shown to increase the efficacy of current 

chemotherapeutics due to NO’s vasodilatory properties.35-36 The enlargement of tumor blood 

vasculature allows for improved delivery and accumulation of the drug delivery system at the 

malignant site. Unlike current methods, multi-drug encapsulation within liposomes would 

remove the need for pretreatment because the liposomes could be engineered to have NO 

released simultaneously with the drug of interest. 

 Future studies should focus on the combination of doxorubicin and N-diazeniumdiolates. 

Due to poor water solubility, doxorubicin is a difficult drug to deliver in the body. Barenholz 

described the benefit of encapsulating doxorubicin within liposomes.37 In this manner, large 

amounts of doxorubicin were loaded into liposomes using a unique transmembrane ammonium 
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sulfate gradient.38 Although showing some efficacy in vivo, rather large doses were required due 

in part to the constricted vasculature system. A number of adverse side effects were reported, 

including mouth sores and acral erythema (i.e., hand-foot syndrome). While Pedrini et al. 

combined liposomal doxorubicin with NO using nitrate-modified doxorubicin, this derivative, as 

with most organic nitrates, required enzymatic cleavage for the NO to be released.39 In contrast, 

encapsulated N-diazeniumdiolates would offer spontaneous release of NO under biological 

conditions. Incorporation of both N-diazeniumdiolates and doxorubicin into the liposome system 

may enable a practical chemosensitization scaffold with dual-action efficacy. 

 Gemcitabine represents an equally attractive co-encapsulant with NO donors. Known as 

the gold standard for treating pancreatic cancer, gemcitabine is utilized for its ability to replace 

essential building blocks in the synthesis of DNA.40 In contrast to NO, which would initiate cell 

membrane disruption, gemcitabine necessitates cellular uptake and replication in order to exert 

its therapeutic activity. Liposomes have long been investigated as delivery agents for 

gemcitabine due to the potential for enhanced cellular uptake relative to free molecules. In vivo 

studies demonstrated that liposomal gemcitabine showed greater reduction in tumor size at 3-

times lower concentrations (relative to free gemcitabine).40 Introducing NO into the liposomal 

system may increase accumulation of the vesicles at the cancer site and increase anticancer 

action to an even greater extent due to chemosensitization, as well as exerting 

nitrosative/oxidative stress from both inside and outside the cell. 

5.2.3 Antibacterial properties of NO-releasing liposomes 

 Liposomes have been utilized as antibacterial agents for the same reason they are 

attractive as chemotherapeutics. Efficient delivery and cellular uptake of small molecule 

antibiotics have been major obstacles for treating both chronic and acute infections. Through the 
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encapsulation of tobramycin and gentamicin, liposomes have shown to improve biocidal action 

against Pseudomonas aeruginosa relative to the free antibiotics.41 Depending on the bacterial 

strain, minimum inhibitory concentrations (MIC) were nearly 128-times lower when the 

antibiotic was encapsulated versus in free form, highlighting the potential of liposomes as 

vehicles for antibacterials.41Association with bacteria is often a decisive factor in determining the 

biocidal role of a therapeutic.7,9 As liposomes can be designed to have distinct exterior charge 

(i.e., electrostatic attraction to bacteria) and facilitate fusion into the bacteria, key targeting 

advantages over other drug delivery scaffolds (e.g., silica nanoparticles) become apparent.   

 Our lab has previously synthesized macromolecular NO-release scaffolds having strong 

biocidal action. To date, the two most potent include NO-releasing dendritic polymers and 

polysaccharides.11-15,42-45 The large NO payloads and bacteria-scaffold association of these 

delivery systems affords excellent bacteria eradication properties. While both scaffolds have 

demonstrated success, premature release of NO before localization at the bacterial membrane 

remains a potential concern. As demonstrated in Chapter 4, liposomes mitigate premature NO 

release via encapsulation of the NO donor. Encapsulation of macromolecular NO-release 

scaffolds thus might prove useful in further improving biocidal activity. 

 Khopade et al. have reported successful encapsulation of dendrimers within liposomes, 

resulting in final vesicle sizes ranging from 100 nm to 1 µm.46 Both dendrimer loading efficiency 

and release kinetics were tuned by varying the dendrimer structure or the lipid bilayer 

composition. Unfortunately, the use of dendrimers has been linked to liposome leakage and 

stability shortcomings due to the dendritic chains intercalating into the bilayer.47 It is therefore 

important to study the interaction of the dendrimer with the liposome membrane after 

encapsulation to ensure the formation of a structurally stable system. Dynamic light scattering, 
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fluorophore co-encapsulation, and nuclear magnetic resonance spectroscopy could each be 

utilized to examine liposome rupture and encapsulant retention. 

Likewise, polysaccharides could be encapsulated within liposomes. For example, Liu et 

al. coencapsulated a polysaccharide derived from the Ganoderma lucidum fungus (molecular 

weight=37 kDa) with ovalbumin (molecular weight=43 kDa) to create a potent vaccine.48 

Although polysaccharides are less likely to damage the liposome membrane due to their 

hydrophilic nature, lower encapsulation efficiencies may be observed as a result of their high 

molecular weight. Encapsulation studies should be performed as a function of the 

polysaccharides molecular weight to understand loading and the resulting antibacterial action. 

5.3 Conclusions 

 Current macromolecular NO-release scaffolds may have limited efficacy in delivering 

NO intravenously (i.e., bloodstream administration) to a target of interest due to premature NO 

release. Liposomes represent a unique alternative for in vivo NO delivery. The biodegradability 

and biocompatibility of liposomes mitigates potential immune response and cytotoxicity, while 

the lipid bilayer impedes proton diffusion into the aqueous core, thus protecting the NO donor 

from degradation and preserving its therapeutic payload. The studies provided in this dissertation 

support that liposomes can both encapsulate N-diazeniumdiolates and enhance their stability, and 

exhibit potent tumoricidal activity against representative aggressive cancer cells. In order to 

further increase the potential in vivo chemotherapeutic effects of the NO-releasing system, 

studies should be performed that evaluate the specificity of the liposomes for cancer cells. 

Additionally, a direct comparison to current chemotherapeutics (e.g., doxorubicin) in regards to 

anticancer action, specificity, and in vivo stability would highlight the benefits of NO-releasing 

liposomes as an alternative treatment strategy. Understanding the obstacles that limit the use of 
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NO as a systemic therapeutic is critical in order to design more effective in vivo delivery 

vehicles. 
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Appendix A: Supplemental Information of Chapter 2 
 

 

 
Figure A1. Nitric oxide release profile measured in real-time of free DPTA/NO versus liposomal 
DPTA/NO in 10 mM PBS (pH 7.4, 37 °C). 
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Figure A2. Transmission electron micrograph of DPTA/NO loaded liposomes after a 1:1 
dilution and negative-staining with 2% uranyl acetate. Any shape deformation is most likely 
attributed to the liposomes flattening on the grid’s surface. 
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Figure A3. Cytotoxicity on human PANC-1 cells after a 24 h incubation using varying 
concentrations of free DPTA/NO. Error bars indicated standard deviation from ≥3 separate 
experiments.  
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Appendix B: Supplemental Information of Chapter 3 
 

 

 
Figure B1. Proton-initiated decomposition mechanism of N-diazeniumdiolates to liberate NO. 
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Figure B2. UV-vis spectra of 0.020 mg/mL (a) PROLI/NO, (b) DEA/NO, (c) PAPA/NO, and (d) 
SPER/NO in 50 mM NaOH. Typical 252 nm absorbance peak associated with the 
diazeniumdiolate group is observed.1 
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Figure B3. FTIR spectra of (a) PROLI/NO, (b) DEA/NO, (c) PAPA/NO, and (d) SPER/NO. 
Precursor amine spectra are in black and NO donors are in red. N-O stretches (1236-1210 cm-1), 
in-plane N2 symmetric stretches (1200-1150 cm1 and 965-975 cm-1), and N-N stretches (1128-
1120 cm-1) can be observed due to the prescence of the diazeniumdiolate group.1-2 
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Figure B4. UV-vis spectra of 0.020 mg/mL (a) PROLI/NO, (b) DEA/NO, (c) PAPA/NO, and (d) 
SPER/NO in 10 mM PBS (pH 7.4) after incubation at 37 °C for 2 h. Absorbance peak at 210 nm 
is associated with nitrite/nitrate formation. 
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Figure B5. UV-vis spectra of 0.010 mg/mL (a) sodium nitrate and (b) sodium nitrite in 10 mM 
PBS (pH 7.4, 37 °C). Peak at ~350 nm is from sodium nitrite. 
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Figure B6. UV-vis spectra of 0.020 mg/mL (a) PROLI/NO, (b) DEA/NO, (c) PAPA/NO, and (d) 
SPER/NO in 10 mM MES buffer (pH 5.4) after incubation at 37 °C for 2 h. 
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Figure B7. N-diazeniumdiolate NO donors with their reported NO-release half-lives in 10 mM 
PBS (pH 7.4, 37 °C).3 
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Table B1. Nitric oxide-release properties of DPPC liposomes as a function of encapsulated N-
diazeniumdiolate NO donor in MES (pH = 5.4) at 37 °C. a 

NO donor t1/2
b (h) td

c (h) [NO]total
d (µmol/mL) 

PROLI/NO 0.06 ± 0.02 1.7 ± 0.9 4.71 ± 0.80 

DEA/NO 0.12 ± 0.04 5.5 ± 1.6 8.37 ± 0.62 

PAPA/NO 0.84 ± 0.24 20.7 ± 4.6 7.75 ± 1.09 

SPER/NO 10.4 ± 1.9 44 ± 9.0 6.81 ± 0.78 

aError indicates standard deviation from at least 3 separate liposome preparations. bHalf-life of 
NO release. cDuration of NO release until the measured NO reached 10 ppb per 300 µL of 
liposomes (three-times the detection limit of the instrument). dTotal amount of NO released 
normalized to the injected volume from the liposome stock solution. 
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Figure B8. Structures of lipids used to make the liposomes from Table 3. 
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Figure B9. Transmission electron micrographs of DMPC (C14), DPPC (C16), and DSPC (C18)-
based PAPA/NO liposomes. Scale bar represents 0.2 µm. 
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Table B2. Fluorophore encapsulation efficiency for DPPC and DPPG liposomes.a 
Molecule DPPC (C16) EE (%) DPPG (- C16) EE (%) 

Coumarinb  25.6 26.1 

5(6)-carboxyfluoresceinc 21.7 11.3 

aEncapsulation efficiency was calculated as the ratio of mol of fluorophore inside liposomes to mol 
used for synthesis multiplied by 100. A calibration curve was created using each fluorophore for 
quantification. bExcitation at 355 nm and emission measured at 510 nm. cExcitation at 495 nm 
and emission measured at 517 nm. 
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Figure B10. Transmission electron micrographs of DPPG (- C16) and DPTAP (+ C16) PAPA/NO 
liposomes. Scale bar represents 0.2 µm. 
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Table B3. Nitric oxide-release properties of PAPA/NO liposomes as a function of bilayer 
hydrophobicity and charge in MES (pH = 5.4) at 37 °C. 

Lipid t1/2
a (h) td

b (h) [NO]total
c (µmol/mL) 

DMPC (C14) 1.6 ± 1.2 22.3 ± 2.6 7.90 ± 0.29 

DPPC (C16) 0.84 ± 0.24 20.7 ± 4.6 7.75 ± 1.09 

DSPC (C18) 12.3 ± 1.3 59.4 ± 7.7 8.91 ± 0.62 

DPPG (- C16) 1.2 ± 0.3 19.9 ± 6.5 6.13 ± 0.97 

DPTAP (+ C16) 0.09 ± 0.01 6.5 ± 2.1 7.94 ± 0.96 

aHalf-life of NO release. bDuration of NO release until the measured NO reached 10 ppb per 
300 µL of liposomes (three-times the detection limit of the instrument). cTotal amount of NO 
released normalized to the injected volume from the liposome stock solution. 
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Figure B11. (a) Z-average size and (b) polydispersity index values of PAPA/NO-encapsulated 
(▼) DPPC, (▲) DPPG, (■) 50:50 DPPC:DPTAP, and (●) 10:90 DPPE-PEG/DPPC liposomes 
over time as measured by dynamic light scattering. Liposomes were stored at 4 °C between 
measurements. 
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Figure B12. (a) Normalized absorbance measured at 450 nm for 5% (v/v) liposome solutions in 
serum. (b) Amount of protein adsorbed to the liposomes, normalized to moles of lipid, as 
measured by the Bradford assay. The DPTAP and PEG liposomes were composed of a 50:50 
DPTAP:DPPC and 10:90 DPPE-PEG:DPPC molar ratios, respectively. 
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Figure B13. Nitric oxide release from neutral DPPC PAPA/NO  
liposomes suspended in 10 mM PBS (pH 7.4, 37 °C) containing 157 
mg/mL hemoglobin. The amount of NO remaining within the 
liposomes was determined by injecting the liposomes into an acidic 
solution at discrete timepoints. 
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Figure B14. Hemolytic activity of various PAPA/NO-encapsulated liposome 
systems. The DPTAP liposomes are composed of a 50:50 DPTAP:DPPC molar 
ratio and PEG liposomes are composed of a 10:90 DPPE-PEG:DPPC molar ratio. 
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B.1 Experimental section 

B.1.1. Protocol for hemolysis assay 

 A standard hemolysis assay was employed for determining the hemolytic activity of the 

NO-releasing liposomes.4-6 Red blood cells (RBCs) are harvested from freshly-obtained citrated 

canine blood and resuspended in 0.9% isotonic saline to a 10% (v/v) concentration. The RBCs 

(300 µL) are mixed with the stock liposome solution (15 µL) and incubated at 37 °C for 30 min 

with slight agitation. Afterwards, the RBCs are separated from free hemoglobin by centrifugation 

at 1,000 × g for 10 min. The supernatant (80 µL) was added to a 96-well plate and the 

absorbance was measured at 405 nm using a Thermoscientific Multiskan EX plate reader 

(Waltham, MA). Absorbance values from negative controls (300 µL blood mixed with 15 µL 

0.9% saline) were subtracted from all absorbance values. The % hemolysis was determined by 

dividing the sample absorbance with that of RBCs incubated with 1% triton in saline. 
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Appendix C: Supplemental Information of Chapter 4 
 

 

 

 
Figure C1. Molecular structures of the N-diazeniumdiolate NO donors. 
 

 

 

 

 

 

 

 

 

 

 



 157 

       
Figure C2. Transmission electron micrographs of (A) PAPA/NO and (B) DETA/NO liposomes. 
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Figure C3. Cytotoxicity plot of liposomal (▲) PAPA/NO and (●) DETA/NO as a function of 
NO concentration against human HPNE epithelial pancreatic cells. 
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Figure C4. Change in median fluorescence intensity over time, as determined by flow 
cytometry, after treating MCF-7 cells with free PAPA/NO at 16.2 µg NO/mL (green squares) 
and 0.75 µg NO/mL (black circles), and liposomal PAPA/NO at 16.2 µg NO /mL (red diamonds) 
and 0.75 µg NO/mL (blue triangles). 
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APPENDIX D: SELECTIVE MONOPHOSPHORYLATION OF CHITOSAN VIA 
PHOSPHORUS OXYCHLORIDE4 

 

D.1 Introduction 

 The medical field is increasingly turning to renewable biopolymers, such as cellulose,1-2 

collagen,3-4 alginate,5-7 and chitosan,8-10 for tissue engineering and drug delivery applications due 

to their favorable in vivo properties.11 For tissue reconstruction, such polymers tend to elicit a 

reduced immune response, lower implant rejection rates, and decreased toxicity as a result of 

biomimicry (i.e., the ability to mimic the natural tissue environment).12-14 The glycosidic 

linkages of biopolymers also promote facile biodegradation via enzymatic hydrolysis.13-15 

 Chitosan, a polysaccharide derived from crustacean shells, consists of repeating units of 

N-acetylglucosamine and D-glucosamine. The primary alcohols and amines of these units are 

readily accessible and enable a diverse range of chemical modifications.8 As such, researchers 

have engineered chitosan-based materials for wound dressing,16 metal and dye chelation,16 drug 

delivery,17 sensing,18 fuel cell,19 and antibacterial20-21 applications. For example, Ishiara22 

reported the modification of chitosan with azides to enhance the mechanical properties of the 

biopolymer for wound-healing applications. Sashiwa et al. added α-galactosyl pendants to 

chitosan to inhibit binding of human antibodies and evade the host immune response.23 The 

authors demonstrated the benefits of the α-galactosyl pendants in a pig liver xenotransplant 

model.  

 Chitosan’s poor solubility in physiological media represents a critical shortcoming that 

limits therapeutic utility. In general, chitosan of >20 kDa molecular weight is soluble only in 

                                                
4 This appendix was adapted from an article that previously appeared in Polymer Chemistry. The 
original citation is as follows: Suchyta, D.J.; Soto, R.J.; Schoenfisch, M.H. “Selective 
monophosphorylation of chitosan via phosphorus oxychloride” Polymer Chemistry 2017, 12, 
3569-3574. 
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acidic aqueous solutions.9 Though certain chemical modifications may alter functional aspects of 

chitosan for a given application, often the modification does not influence the solubility since 

many of these entities are electrically neutral (e.g., sugars) at pH 7.4. A satisfactory alternative to 

chemical modifications is to work with lower molecular weight oligosaccharides (~10 kDa) that 

are water-soluble.21 However, a large molecular weight scaffold is preferred for many 

biomedical applications (e.g., wound dressings and polymeric membranes). 

 Phosphorylation is a popular chemical modification strategy for improving the water 

solubility of chitosan and maintaining its molecular weight.22,24 At pH >6.5, phosphorylated 

chitosan (P-chitosan) consists of deprotonated phosphate groups that enables high water 

solubility for biological and industrial applications. For example, P-chitosan solutions have been 

used to enhance Ca2+ remineralization of dentine resulting from the high surface 

adsorption/interaction that P-chitosan promotes with enamel.25-27 Of note, the efficacy of P-

chitosan for dentine remineralization would be limited by poor water solubility and, likely, 

molecular weight. 

 Many researchers have phosphorylated chitosan predominantly by reaction with solutions 

of phosphoric acid, triethyl phosphate, and phosphorus pentoxide (P2O5).28-30 Unfortunately, 

chitosan is insoluble in many solvents, thus the ensuing heterogeneous reaction conditions result 

in poor phosphorylation and irreproducibility.29-30 To address this, Nishi et al. 28 reported an 

alternative phosphorylation reaction that employs methanesulfonic acid to solubilize the 

chitosan. Insoluble P2O5 was employed as the phosphorylating reagent, a chemical compound 

that results in the undesirable formation of polyphosphoric acids/ions.31 These polyphosphate 

byproducts are either free or bound to the chitosan through inter- and intramolecular bridging, 

making their removal difficult, and complicating adequate characterization of the resulting P-
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chitosan’s structure. In general, previous reports on chitosan phosphorylation have not 

adequately characterized the resulting product. Indeed, 31P NMR data is rarely provided resulting 

in questionable or even outright neglected phosphorylation conversion efficiencies. 

 The shortcomings of P2O5-based phosphorylation warrant further exploration into 

alternative phosphorylating reagents. Reactants that facilitate monophosphorylation (i.e., 

polyphosphate formation does not occur) are essential to both prevent intra- and intermolecular 

polyphosphate bridging and enable more accurate characterization. To this end, we explored the 

use of phosphorus oxychloride (POCl3) to generate P-chitosan. Phosphorus oxychloride is a 

liquid phosphorylating reagent utilized in the synthesis of phosphate esters and cross-linked 

starch and cellulose because of its high solubility in organic solvents.32-36 Furthermore, negligible 

self-reaction should prevent the formation of polyphosphates, making it a promising alternative 

to P2O5. Herein, we report the selective monophosphorylation of chitosan using POCl3 in 

methanesulfonic acid to produce a water-soluble product of high molecular weight. 

D.2 Experimental section 

D.2.1. Materials 

Low molecular weight chitosan (degree of acetylation: 27%), phosphorus pentoxide 

(P2O5), phosphorus oxychloride (POCl3), low viscosity alginic acid sodium salt, methanesulfonic 

acid (MSA), cellulose, deuterium oxide (D2O), D-glucosamine, D-glucosamine 1-phosphate, D-

glucosamine 6-phosphate, and N-acetylglucosamine were purchased from Sigma (St. Louis, 

MO). Tetrahydrofuran (THF), sodium hydroxide (NaOH), nitric acid (HNO3), orthophosphoric 

acid (H3PO4), diethyl ether, and calcium chloride (CaCl2) dihydrate were purchased from Fisher 

Scientific (Fair Lawn, NJ). Water was purified to a resistivity of 18.2 MΩ·cm and a total organic 

content ≤6 ppb using a Millipore Milli-Q UV Gradient A10 System (Bedford, MA). 
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D.2.2. Synthesis of phosphorylated chitosan 

Chitosan (200 mg) was added to a round-bottomed flask and dissolved in 10 mL 

methanesulfonic acid. After complete dissolution, 2.060 mL POCl3 were injected into this 

stirring solution. The reaction was allowed to proceed at room temperature for up to 72 h. To end 

the reaction, 1.40 mL of water were added to the flask and stirred for another 15 min. The 

solution was then transferred to centrifuge tubes, precipitated with diethyl ether, and centrifuged 

(4000 × g for 3 min) to pellet the P-chitosan. The P-chitosan was washed twice with THF, once 

with ethanol, dried under vacuum overnight, and stored at -20 °C until use. 

D.2.3. 1H and 31P nuclear magnetic resonance (NMR) spectroscopy 

All NMR spectra were collected at 23 °C in 5 mm NMR tubes using a Bruker AVIII 600 

MHz spectrometer equipped with a Quattro Nucleus Probe (QNP) C-P-N cryoprobe. Samples 

were prepared at ~2 mg/mL in D2O (1H NMR) or a 1:3 volumetric ratio of D2O to 50 mM NaOH 

(31P NMR). Proton spectra were acquired using a conventional 1-D pulse sequence with 16 

scans. Phosphorus spectra were collected using a standard proton decoupled pulse sequence with 

800 scans. Data was processed using Bruker’s TopSpin software. Relevant 1H NMR data of P-

chitosan (600 MHz, D2O, δ): 1.9 (C7: CHNHCOCH3), 2.67 (SO3CH3), 3.1 (C2: CHCHNH3
+), 

3.4-3.9 (C3, C4, C5, C6: OHCH, OCHCH(OH)CH(NH2), OHCH2CH, OHCH2CH. 

D.2.4. X-ray photoelectron spectroscopy (XPS) 

 Samples for XPS analysis were prepared by casting 20 µL of 1 mg/mL P-chitosan in 

water onto gold-sputtered glass slides and evaporating the water under vacuum overnight. The 

sample-coated gold substrates were analyzed using a Kratos Axis Ultra DLD X-ray 

photoelectron spectrometer equipped with a monochromatic Al Kα X-ray excitation source (base 

pressure = 6 × 10-9 torr). Emitted photoelectrons were measured at a 90° take-off angle. A pass 
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energy of 20 eV was utilized for all high-resolution scans. A standard Shirley baseline correction 

algorithm was employed after data collection with relative sensitivity factors from the Kratos 

Vision software to calculate atomic concentrations.  

D.2.5. Molecular weight determination 

 The average molecular weight and polydispersity of the polymers were determined using 

gel permeation chromatography (GPC). Low molecular weight chitosan (1 mg/mL in 2 vol % 

acetic acid) and P-chitosan (1 mg/mL in water) solutions were passed through a 0.22 µm 

diameter syringe filter and injected (100 µL) onto a Waters 2695 GPC column (flow rate = 0.925 

mL/min) equipped with a Waters 2414 refractometric detector. Three Ultrahydrogel 1000, 

7.8x300 mm columns were connected in series with an Ultrahydrogel guard column. Molecular 

weight calibration curves were created using polyethylene oxide standards in a range from 

25−881 kDa. 

D.2.6. Calcium chelation 

 P-chitosan (10.0 mg) was dissolved in a 10 mM CaCl2 solution (2.5 mL) at 37 °C. The 

mixture was stirred in a 37 °C incubator for 2 min. The solution was then transferred to a 

centrifuge tube, diluted with 10.0 mL THF, and centrifuged at 4000 × g for 2 min. After 

decanting the liquid into a glass vial, the solvent was evaporated under vacuum. The remaining 

calcium chloride was digested in a known volume of 2 vol % HNO3 prior to calcium content 

analysis by inductively coupled plasma-optical emission spectrometry (ICP-OES). The ICP-OES 

was first calibrated using calcium standards (0.1−25 ppm) prepared in 2 vol % HNO3. The 

calcium emission intensity at 317.93 nm was used for quantification. 
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D.3 Results and discussion 

 The use of anhydrous liquid organic acids during the synthesis of P-chitosan is critical to 

prevent undesirable hydrolysis of the phosphorylating reagent. While other organic acids are 

available, methanesulfonic acid (MSA) is one of the few liquid organic acids that is sufficiently 

acidic enough to fully solubilize chitosan. Phosphorylating reagents such as P2O5 are insoluble in 

organic acids like MSA, but this issue can be resolved by employing POCl3. 

 Chitosan’s reactivity with POCl3 was initially examined using 1H NMR spectroscopy 

(Figure D.1). The protonation of chitosan’s primary amine was followed throughout the reaction 

and washing steps by monitoring the associated alpha-carbon (C2) proton peak. When 

protonated, the peak appears at 3.1 ppm. Washing P-chitosan with 50 mM NaOH, which 

deprotonates the amine, shifts the peak at 3.1 ppm upfield to 2.6 ppm. In addition to the 

protonation state of the amine, 1H NMR may be used to confirm the presence of ionically-bound 

MSA. Following extensive washing of P-chitosan to remove free acid, the peak near 2.7 ppm 

from the methyl hydrogens of MSA revealed that the methanesulfonate anion serves as a 

counterion to chitosan’s protonated amine. Subsequential washings with 2 M HCl replaces the  

methanesulfonate with a chloride counterion (Figure D.2). Unfortunately, actual phosphorylation 

is not directly observed using 1H NMR. 

 31P NMR spectroscopy may be employed to directly examine P-chitosan 

phosphorylation. Sample preparation under basic conditions was essential to differentiate 31P 

NMR phosphate peaks from one another. When samples are prepared solely in neutral D2O 

(Figure D.3a), a broad peak appears near 0.5 ppm, similar in location to that of phosphoric acid. 

Under basic conditions (13 mM NaOH in D2O) the appended phosphate groups are deprotonated, 

resulting in adequate  
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Figure D.1. 1H NMR spectrum of phosphorylated chitosan (molecular structure shown above). 
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Figure D.2. 1H NMR spectrum in D2O of P-chitosan after washing with 2 M HCl. 
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Figure D.3. 31P NMR spectra of phosphorylated chitosan (molecular structure shown above) 

prepared in (a) D2O and (b) 1:3 volumetric ratio of D2O to 50 mM NaOH. Numeric labels (1, 2, 

3) indicate the associated phosphate group.  
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peak separation due to a downfield shift (Figure D.3b). The separated peaks at 4.30 and 3.65 

ppm are assignable to the phosphates attached to the primary and secondary alcohols of chitosan, 

respectively. Spectra acquired from solutions of D-glucosamine 1-phosphate and D-glucosamine 

6-phosphate corroborate these peak transitions and assignments (Figures D.4 and D.5). 

The 31P NMR peak near -2.5 ppm (Figure D.3) is assigned to the monophosphorylation of 

chitosan’s primary amine. While Wang et al. implied phosphorylation of the amine, clear 

evidence (31P NMR characterization) was not provided as to support primary amine 

phosphorylation.30 We sought to confirm amine phosphorylation by reacting other biopolymers 

(i.e., alginate, cellulose) lacking primary amines with POCl3 as well. 31P NMR analysis of both 

phosphorylated alginate and cellulose revealed no peaks near -2.5 ppm (Figures D.6 and D.7), 

confirming the identity of the -2.5 ppm peak as an amine-bound phosphate (both spectra 

contained peaks at ~4 ppm indicating phosphorylation of their alcohol groups). In contrast to 

prior work,30 we believe that only the primary amines and not the acetylated amines (i.e., 

amides) are participating in the reaction. The electron-withdrawing properties of the carbonyl 

group, in conjunction with resonance, likely reduce the nucleophilicity of the nitrogen atom, 

preventing the amide from attacking POCl3. To verify this hypothesis, we synthesized both 

phosphorylated D-glucosamine containing no amide groups and N-acetylglucosamine with amide 

groups under identical conditions that were used to prepare P-chitosan. As predicted, the 31P 

NMR spectrum of phosphorylated D-glucosamine revealed a peak at -2.5 ppm, while that of N-

acetylglucosamine lacked the -2.5 ppm peak (Figures D.8 and D.9). These results confirm that 

POCl3 phosphorylation only occurs at the alcohols and primary amines of chitosan. 

 The POCl3 reaction was also compared to the P2O5 reaction following a published 

protocol.28 While both phosphorylated amine and alcohol peaks were clearly apparent in the 31P 
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NMR spectra (Figure D.10) after chitosan phosphorylation with P2O5, several additional peaks 

appeared at more negative chemical shifts that were indicative of polyphosphate formation. In 

fact, the NMR data reveals the presence of both pyrophosphates37 (-6 to -11 ppm) and 

tripolyphosphates37 (-21 to -25 ppm). In contrast to the P2O5 reaction, the POCl3 reaction 

generates no polyphosphates, allowing for more reliable characterization and inherent P-chitosan 

homogeneity. 

D.3.1. Controlling phosphorylation efficiency 

 The extent of phosphorylation as a function of POCl3 and the chitosan concentration was 

characterized using X-ray photoelectron spectroscopy (XPS). The nitrogen atomic percent (N 1s 

peak) was used as a normalization factor across syntheses as changes in nitrogen content are 

unlikely to occur during phosphorylation. The molar ratio of POCl3 relative to chitosan alcohol 

groups was varied from 1 to 10, while the overall reaction time (48 h) and chitosan concentration 

(20 mg/mL) were kept constant. At molar ratios of POCl3 <10, phosphorylation was not 

observed at any appreciable level (i.e., below the XPS limit of detection). An increase in the P/N 

ratio to 0.232 was measured after reaction with a 10-molar excess of POCl3. The large excess of 

POCl3 required is attributed to the slower and less favorable reaction kinetics under strongly 

acidic conditions. 

Tuning the phosphorylation efficiency through simple changes in the reaction conditions 

(e.g., chitosan concentration) is highly desirable for chemical versatility. As shown in Table D.1, 

the P/N ratio correlated well with the concentration of chitosan from 5 to 80 mg/mL. We also 

monitored the Cl/N atomic ratio (zero for all concentrations) to ensure post-synthetic removal of 

unreacted POCl3 and appended chlorine groups. Likewise, the P/N ratio was measured as a 
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Figure D.4. 31P NMR spectrum of (top) D-glucosamine 6-phosphate and (bottom) D-glucosamine 
1-phosphate. Samples were prepared in 1:3 volumetric ratio of D2O to 50 mM NaOH. 
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Figure D.5. 31P NMR spectrum of D-glucosamine 6-phosphate prepared in (top) 1:3 volumetric 
ratio of D2O to 50 mM NaOH and (bottom) 1:3 volumetric ratio of D2O to 50 mM HCl. 
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Figure D.6. 31P NMR spectrum of phosphorylated alginate. Sample was prepared in 1:3 
volumetric ratio of D2O to 50 mM NaOH. 
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Figure D.7. 31P NMR spectrum of phosphorylated cellulose. Sample was prepared in 1:3 
volumetric ratio of D2O to 50 mM NaOH. 
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Figure D.8. 31P NMR spectrum of phosphorylated D-glucosamine. Sample was prepared in 1:3 
volumetric ratio of D2O to 50 mM NaOH. 
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Figure D.9. 31P NMR spectrum of phosphorylated N-acetylglucosamine. Sample was prepared in 
1:3 volumetric ratio of D2O to 50 mM NaOH. 
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Figure D.10. 31P NMR spectra of phosphorylated chitosan synthesized by the (a) POCl3 method 

and (b) P2O5 method. Peaks located between -6 and -11 are assigned as pyrophosphates, while 

those located between -20 and -25 are tripolyphosphates. 
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Table D.1. Chitosan concentration effect on phosphorylation P/N atomic ratio.a 

Chitosan concentration (mg/mL) P/N atomic ratio 
5 n/a 
20 0.232 ± 0.029 
40 0.279 ± 0.038 
80 0.436 ± 0.066 

aError bars represent the standard deviation from n≥3 separate preparations using a 48 h 
reaction time. The chlorine-to-nitrogen atomic ratio was zero for all concentrations. 
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Figure D.11. Atomic P/N ratio as a function of reaction time for reactions with 20 mg/mL 

chitosan (10 molar ratio of POCl3). 
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function of reaction time for a 20 mg/mL chitosan solution and 10-molar excess of POCl3 

(Figure D.11). The phosphorus content increased steadily over the course of 3 d, allowing for 

precise tunability (up to 72 h) of the phosphate content. An ability to decrease the reaction time 

while maintaining high P/N ratios was also observed by heating the reaction. For example, 

increasing the temperature of the 3 h reaction to 37 °C resulted in atomic ratios (P/N = 0.162) 

near those obtained at 25 °C for 24 h (P/N = 0.142). 

D.3.2. Molecular weight 

Degradation of P-chitosan is a concern given that the phosphorylation reaction occurs in 

a strong organic acid. The O-glycosidic bonds that link monomers of chitosan together are prone 

to cleavage in acidic environments.38-39 The change in P-chitosan molecular weight versus 

reaction time was investigated using gel permeation chromatography (GPC).  Of note, the 

molecular weight of unmodified chitosan was ~85,000 g/mol (experimentally determined), a 

value within the range of typical chitosan materials (20,000−130,000 g/mol).40  As shown in 

Table D.2, only a slight reduction in molecular weight was observed over a 72 h reaction period. 

In the absence of phosphorylation (i.e., without the addition of POCl3), the molecular weight was 

~85,000 g/mol, indicating negligible acid degradation. The anhydrous nature of the reaction 

likely mitigates degradation due to minimal hydrolysis (the primary mechanism of breaking 

glycosidic bonds). The consistent molecular weight also suggests that the water solubility of P-

chitosan largely results from the addition of anionic phosphate groups. 

D.3.3. Calcium chelation efficiency 

A practical application for phosphorylated biopolymers is metal ion chelation. For 

example, phosphorylated chitosan effectively complexes Ca2+ to enhance tooth enamel 

remineralization and prevent future acid-catalyzed demineralization.26,41 We examined the Ca2+ 
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Table D.2. Molecular weight and dispersity (Đ) of P-chitosan as a function of POCl3 reaction 
time.a 

Reaction time (h) Molecular weight (Mn) Đ 
0 85,100 ± 200 1.72 ± 0.05 
24 78,700 ± 400 1.98 ± 0.05 
48 84,300 ± 350 1.60 ± 0.05 
72 83,800 ± 250 1.41 ± 0.09 

aError bars represent the standard deviation from n≥3 separate preparations. 
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chelation properties of P-chitosan by measuring total calcium chelation as a function of 

phosphorylation degree (Table D.3). P-chitosan chelation was compared to that observed from 

control chitosan (i.e., no phosphorylation). After brief exposure to a CaCl2 solution, and removal 

of the polymer, the supernatant was analyzed for Ca2+ as an indication of P-chitosan chelation 

efficiency. Chitosan lacking phosphorylation chelated approximately 24.9 µg Ca2+ per mg 

chitosan, an unsurprising result given previous research demonstrating chitosan’s native ability 

to bind divalent metal cations.42 The total amount of chelated calcium increased predictably with 

the P/N atomic ratio, with 46.2 µg Ca2+ per mg chitosan achieved at the greatest P/N atomic ratio 

(0.30). The data collected here supports the employment of P-chitosan into applications where 

calcium chelation is desired (e.g., oral care). 

D.4 Conclusions 

The reaction of chitosan with POCl3 is a simple and reliable strategy for achieving 

monophosphorylation of chitosan’s amine and alcohols. Precise tuning of the extent of 

phosphorylation is possible by adjusting specific reaction conditions (e.g., chitosan 

concentration, reaction time). Although alginate and cellulose were not extensively studied 

herein, similar monophosphorylation using POCl3 should be expected. Lastly, a range of P-

chitosan architectures (e.g., particles, hydrogels) could be expected given the preservation of 

high molecular weight throughout the reaction. 
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Table D.3. Calcium chelation amount of P-chitosan as a function of phosphorylation degree. 
P/N atomic ratio Chelated calcium (µg Ca2+/mg chitosan) 

0 24.9 ± 0.6a 

0.066 25.1 ± 1.8 
0.142 41.9 ± 0.8 
0.232 43.5 ± 1.0 
0.302 46.2 ± 0.7 

aDetermined using a water-soluble 5 kDa chitosan without any phosphorylation. 
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