
Efficient Algorithms for Detecting Genetic Interactions in

Genome-Wide Association Study

Xiang Zhang

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Depart-
ment of Computer Science.

Chapel Hill
2011

Approved by:

Wei Wang, Advisor

Fei Zou, Reader

Leonard McMillan, Reader

Jan F. Prins, Reader

David W. Threadgill, Reader

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210600505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c⃝ 2011
Xiang Zhang

ALL RIGHTS RESERVED

ii

Abstract
Xiang Zhang: Efficient Algorithms for Detecting Genetic Interactions in Genome-Wide

Association Study.
(Under the direction of Wei Wang.)

Genome-wide association study (GWAS) aims to find genetic factors underlying complex pheno-

typic traits, for which epistasis or gene-gene interaction detection is often preferred over a single-locus

approach. However, the computational burden has been a major hurdle to apply epistasis test at the

genome-wide scale due to the large number of single nucleotide polymorphism (SNP) pairs to be tested.

We have developed and implemented a series of efficient algorithms, i.e., FastANOVA, FastChi, COE,

and TEAM, that support epistasis tests in a wide range of problem settings. These algorithms utilize

a permutation test for proper error control. Unlike heuristic approaches, they guarantee to find the op-

timal solutions. It has been shown theoretically and experimentally that these algorithms significantly

speed up the process of epistasis detection.

iii

Table of Contents

List of Tables . vii

List of Figures . ix

List of Abbreviations . 1

List of Symbols . 1

1 Introduction . 1

1.1 Genome-Wide Association Study . 1

1.2 Epistasis Detection and Challenges . 4

1.3 Thesis Statement . 6

1.4 Overview of the Developed Algorithms . 6

1.5 Thesis Outline . 8

2 The FastANOVA Algorithm . 9

2.1 Introduction . 9

2.2 Related Work . 10

2.3 The Problem . 12

2.4 The Upper Bound . 16

2.4.1 Updating F-Statistic . 16

2.4.2 Bounds on ∆A and ∆B . 17

2.5 The FastANOVA Algorithm . 19

2.5.1 A Single Phenotype . 19

2.5.2 Permutation Procedure . 23

iv

2.5.3 Complexity Analysis . 25

2.6 Experimental Results . 25

2.6.1 Real Phenotypes . 26

2.6.2 Synthetic Phenotypes . 33

2.7 Conclusion . 34

3 The FastChi Algorithm . 35

3.1 Introduction . 35

3.2 The Problem . 36

3.3 The Upper Bound . 37

3.3.1 Updating Chi-square Statistic . 37

3.3.2 Bound on ∆A +∆C . 39

3.3.3 Bound on ∆B +∆D . 43

3.3.4 The Overall Bound . 43

3.4 The FastChi Algorithm . 44

3.4.1 One Phenotype . 44

3.4.2 Permuting the Phenotype . 49

3.4.3 Complexity Analysis . 50

3.5 Experimental Results . 51

3.5.1 FastChi v.s. the brute force approach 52

3.5.2 Pruning effect of the upper bound 54

3.5.3 Computational cost of each component of FastChi 55

3.6 Conclusion . 56

4 The COE Algorithm . 57

4.1 Introduction . 57

4.2 The Problem . 58

v

4.3 Convexity of Common Test Statistics . 60

4.4 Constraints on Observed Values . 64

4.5 Applying the Upper Bound . 66

4.6 Experimental Results . 69

4.6.1 Performance Comparison . 69

4.6.2 Pruning Power of the Upper Bound 71

4.7 Conclusion . 72

5 The TEAM Algorithm . 74

5.1 Introduction . 74

5.2 The Problem . 75

5.3 Free Variables in the Contingency Table of Two-Locus Test 78

5.4 Building the Minimum Spanning Tree on the SNPs 82

5.5 Incrementally Updating Observed Frequency 83

5.6 The TEAM Algorithm . 86

5.7 Experimental Results . 89

5.7.1 Efficiency Evaluation . 89

5.7.2 Epistasis Detection in Simulated Human GWAS 92

5.8 Conclusion . 93

6 Discussion . 95

Bibliography . 97

vi

List of Tables

1.1 An example dataset in genome-wide association study 2

2.1 Possible groupings of phenotype values by the genotypes of Xi and (XiXj) . 12

2.2 Notations used in the bounds on ∆A and ∆B 18

2.3 Statistics of the SNP datasets . 26

2.4 Pruning effects on cardiovascular, metabolism and neurosensory datasets when
finding critical value Fα . 30

2.5 Pruning effect on cardiovascular, metabolism and neurosensory datasets when
finding FYk

for all permutations . 32

2.6 Pruning effect when finding critical value Fα using three synthetic phenotypes 33

3.1 Contingency tables for chi-square testing . 36

3.2 Notations used in the derivation of the upper bound 43

4.1 Contingency tables . 59

4.2 Pruning effects of FastChi and COE using four different statistics 70

5.1 An example dataset . 76

5.2 Contingency tables for single-locus tests T (Xi, Yk), T (Xj, Yk), genotype
relation between (Xi, Xj), and two-locus test T (XiXj, Yk) 77

5.3 Genotype difference between the connected SNPs in the minimum spanning
tree shown in Figure 5.1 . 82

5.4 Updating Od2(X3X5) from Od2(X3X2) for all permutations in a batch mode . 83

5.5 The tree weight and the proportion of the individuals pruned by TEAM on the
human datasets . 90

5.6 Identified significant SNP-pairs in the simulated human GWAS datasets . . . 92

vii

6.1 Algorithms and their corresponding problem settings for epistasis detection in
genome-wide association study . 96

viii

List of Figures

1.1 Examples of associations between a phenotype and two different SNPs 3

2.1 An example of determining the critical value using permutation test 15

2.2 The index array Array(X1) for efficient retrieval of the candidate SNP-pairs . 21

2.3 Performance comparison between FastANOVA and the brute-force approach
when varying Type I error thresholds . 28

2.4 Performance comparison between FastANOVA and the brute-force approach
when varying the number of SNPs . 28

2.5 Performance comparison between FastANOVA and the brute-force approach
when varying the number of permutations 29

2.6 Finding significant SNP-pairs (cardiovascular dataset) 30

2.7 Finding significant SNP-pairs (metabolism dataset) 31

2.8 Finding significant SNP-pairs (neurosensory dataset) 31

2.9 Histogram of the sizes of the indexing structures 32

3.1 Pruning SNP-pairs in AP (Xi) using the upper bound 45

3.2 Accessing Array(Xi) to retrieve the candidate SNP-pairs 47

3.3 Distribution of the maximum chi-square test values of 1000 permutations . . 51

3.4 Performance comparisons between FastChi and the brute force approach un-
der different settings. 53

3.5 Pruning effect of the upper bound . 54

3.6 Computational cost of each component of FastChi 56

4.1 Convexity Example . 63

4.2 Linear equation system derived from contingency tables 64

4.3 Relations between observed values in the contingency table of two-locus test . 64

ix

4.4 Indexing SNP-pairs . 66

4.5 Performance comparison of the brute force approach, FastChi, and COE Chi . 69

4.6 Performance comparison of the brute force approach, COE G, COE MI, and
COE T . 70

4.7 FastChi v.s. COE Chi . 71

5.1 The minimum spanning tree built on the SNPs in the example dataset shown
in Table 5.1 . 82

5.2 Comparison between TEAM and the brute-force approach on human datasets
under various experimental settings . 89

5.3 Comparison between TEAM, COE, and the brute force approach on mouse
datasets under various experimental settings 90

x

Chapter 1

Introduction

Genome-wide association study (GWAS) examines the genetic variants across the entire genome

to identify genetic factors associated with observed phenotypes. It has been shown to be a

promising design to locate the genetic factors causing phenotypic differences (Saxena et al.

(2007); The Wellcome Trust Case Control Consortium (2007)). Since most traits of interest

are complex, finding gene-gene interaction has received increasing attention in recent years

(Cordell (2009); Musani et al. (2007)).

1.1 Genome-Wide Association Study

The most abundant source of genetic variations are single nucleotide polymorphisms (SNPs).

A SNP is a DNA sequence variation occurring when a single nucleotide (A, T, G, or C)

in the genome differs between individuals of a species. For inbred species, such as inbred

mice, a SNP usually shows variation between only two of the four possible nucleotide types

(Ideraabdullah et al. (2004)), which allows us to represent it by a binary variable. The bi-

nary representation of a SNP is also referred to as the genotype of the SNP. Recent advances

in high-throughput techniques enable genotyping SNPs in genome-wide scale, resulting in

large datasets containing thousands to millions of SNPs, e.g. the genotype datasets avail-

able in the Broad Institute (http : //www.broad.mit.edu/) and the Jackson Laboratory

(http : //www.jax.org/).

SNPs Phenotype
X1 X2 X3 X4 X5 · · · X1000 Y
0 0 0 1 0 1 8
0 0 0 0 0 0 7
0 1 1 0 0 · · · 1 12
0 1 0 0 1 0 11
0 1 0 1 0 1 9
0 1 0 0 0 · · · 0 13
1 0 1 1 1 1 6
1 0 0 0 1 0 4
1 1 1 1 1 · · · 1 2
1 0 0 1 0 0 5
1 0 0 1 0 1 0
1 0 1 1 0 · · · 0 3

Table 1.1: An example dataset in genome-wide association study

A phenotype is an observable trait or characteristic of an individual. Phenotypes can be

either quantitative or binary. Examples of quantitative phenotypes are height and weight.

These phenotypes can be represented by continuous variables. Binary phenotypes are usually

studied in case-control studies. In such studies, the samples either have or do not have a certain

disease. We can use {0,1} to indicate the disease status of an individual. Table 1.1 shows an

example dataset consisting of 1000 SNPs {X1, X2, · · · , X1000} and a quantitative phenotype

Y for 12 individuals.

Genome-wide association studies (GWAS) find associations between SNPs and pheno-

types across a set of individuals under study. More formally, let X = {X1, X2, · · · , XN} be

the set of N SNPs for M individuals in the study, and Y be the phenotype of interest. The

goal of GWAS is to find SNPs in X , that are highly associated with Y .

Various statistics, such as ANOVA (analysis of variance) test and chi-square test, can be

applied to measure the association between SNPs and the phenotypes of interest. Here, we

take ANOVA test as an example. ANOVA test is one of the standard statistical methods rou-

tinely used in quantitative phenotype association study (Pagano and Gauvreau (2000)). The

goal of ANOVA test is to determine whether the group means are significantly different after

2

0 1

p
h

en
o

ty
p

e
va

lu
es

X1

4

8

12

(a) Strong association

0 1

p
h

en
o

ty
p

e
va

lu
es

X1000

4

8

12

(b) No association

Figure 1.1: Examples of associations between a phenotype and two different SNPs

accounting for the variances within groups. It accomplishes the comparison by decomposing

the total variance in the data into within-group variance and between-group variance. If the

between-group variance is sufficiently larger than the within-group variance, then the test con-

cludes that there is significant (phenotypic) difference between the groups. In the application

of genetic association study, the individuals’ phenotype values are grouped by the genotype

of a SNP or a subset of SNPs. Using the dataset showing in Table 1.1, Figure 1.1(a) shows

an example of strong association between the phenotype and SNP X1. 0 and 1 on the x-axis

represent the binary SNP genotype and the y-axis represents the phenotype. Each point in the

figure represents an individual. It is clear from the figure that the phenotype values are parti-

tioned into two groups with distinct means, hence indicating a strong association between the

phenotype and the SNP. On the other hand, if the genotype of a SNP partitions the phenotype

values into groups as shown in Figure 1.1(b), the phenotype and the SNP are not associated

with each other.

3

1.2 Epistasis Detection and Challenges

Many phenotypes of interest are complex in the sense that they are likely caused by the joint

effects of multiple genes (Carlson et al. (2004); Segr et al. (2005)). In order to understand

the underlying biological mechanisms of complex phenotype, one needs to consider the joint

effect of multiple SNPs simultaneously. The interaction between genes is also referred to as

epistasis (Cordell (2009)). Although the idea of studying the association between phenotype

and multiple SNPs is straightforward, the implementation is nontrivial. For a study with total

N SNPs, in order to find the association between n SNPs and the phenotype, a brute-force

approach is to exhaustively enumerate all
(
N
n

)
possible SNP combinations and evaluate their

associations with the phenotype. The computational burden imposed by this enormous search

space often makes the complete genome-wide association study intractable.

The computational challenge of genome-wide association study is further compounded

by another well-known statistical problem – the multiple testing problem (Miller (1981)).

The multiple testing problem can be described as the potential increase in Type I error when

statistical tests are performed multiple times. Let α be the Type I error for each independent

test. If n independent comparisons are performed, the experimental-wise error α′ is given by

α′ = 1− (1− α)n.

For example, when α = 0.05 and n = 20, α′ = 1− 0.9520 = 0.64. We have 64% probability

to get at least one spurious result. Determining the statistical significance of the association

between the phenotype and SNPs is crucial. Bonferroni correction based on the assumption

that all n tests are independent is too conservative for the genome-wise association studies

since SNPs are often correlated. Alternatively, a permutation procedure can be used and it is

much preferred in association studies which automatically takes the correlation structure of

SNPs into consideration.

The null hypothesis is that there is no association between the genotype and the phenotype.

4

Permutation test is used to estimate the null distribution (Churchill and Doerge (1994)). The

idea is to randomly permute the phenotype K times, where K can be hundreds to thousands.

The association analysis will be repeated in order to find the maximum test value for each

permutated phenotype. Then the distribution of the K maximum test values is used as the

approximated null distribution to assess the statistical significance of the findings from the

original phenotype. Permutation test is usually very time-consuming since the test procedure

needs to be performed in all permutations in order to find the maximum values.

Algorithm development to support these large scale analysis is still in its early stage. Most

existing work focuses on studying associations between the phenotype and SNP-pairs and can

only handle a small number of SNPs. Given a pair of SNPs, the phenotype values can be

partitioned into at most four groups by the genotype of the SNP-pair, i.e., 00, 01, 10, and 11.

Since each SNP has a distinct location on the genome, the association study of a phenotype

and SNP-pairs is also called two-locus association mapping. Important findings are appearing

in the literature from studying the association between phenotypes and SNP-pairs (Saxena

et al. (2007); Scuteri et al. (2007); Weedon et al. (2007)).

Although various statistical tests have been routinely applied to find association between

SNP-pairs and phenotype, they are usually not performed in genome-wide scale. This is

due to the fact that the search space of two-locus association mapping in genome-wide scale

prohibits an exhaustive search. Suppose that the dataset consists of N SNPs and the number

of permutations is K. The total number of tests is KN(N − 1)/2. Given a moderate number

of SNPs N = 10, 000 and number of permutations K = 1, 000, the number of tests is around

5 × 1010. Efficient algorithms are needed to enable epistasis detection in the whole-genome

scale.

5

1.3 Thesis Statement

Efficient exhaustive algorithms can be designed for two-locus epistasis detection in genome-

wide association study. The proposed algorithms incorporate large permutation test for er-

ror controlling. They guarantee to find the optimal solution. By applying effective pruning

strategies, the computational cost of these algorithms can be dramatically reduced. Extensive

experimental results demonstrate that the proposed algorithms are orders of magnitude faster

than brute force alternatives.

1.4 Overview of the Developed Algorithms

This thesis presents a set of algorithms for two-locus epistasis detection. These programs use

the permutation procedure for proper error control. They are exhaustive and accurate in the

sense that no significant epistatic interactions between SNP-pairs are skipped. It has been

theoretically proved and experimentally validated that these algorithms greatly speed up the

epistasis test process. We give a brief overview of the designing principles of these programs

here. All the algorithms utilize search space pruning to reduce the computational cost of

epistatic test.

The FastANOVA (Zhang et al. (2008)) algorithm is designed for ANOVA test. It utilizes

an upper bound of the two-locus ANOVA test to prune the search space. The upper bound

is expressed as the sum of two terms. The first term is based on the single-SNP ANOVA

test. The second term is based on the genotype of the SNP-pair and is independent of per-

mutations. This property allows to index SNP-pairs in a 2D array based on the genotype

relationship between SNPs. Since the number of entries in the 2D array is bounded by the

number of individuals in the study, many SNP-pairs share a common entry. Moreover, it can

be shown that all SNP-pairs indexed by the same entry have exactly the same upper bound.

Therefore, we can compute the upper bound for a group of SNP-pairs together. Another im-

portant property is that the indexing structure only needs to be built once and can be reused

6

for all permutated data. Utilizing the upper bound and the indexing structure, FastANOVA

only needs to perform the ANOVA test on a small number of candidate SNP-pairs without the

risk of missing any significant pair.

The principal used in FastANOVA can also be applied to chi-square test. We can develop

an upper bound for chi-square test, which is also expressed as the sum of two terms. The first

term is based on the single-SNP chi-square test. The second term is based on the genotype of

the SNP-pair and is independent of permutations. Based on this observation, we developed

the FastChi algorithm (Zhang et al. (2009)).

The COE algorithm (Zhang et al. (2010)) takes the advantage of convex optimization. It

can be shown that a wide range of statistical tests, such as chi-square test, likelihood ratio

test (also known as G-test), and entropy-based tests are all convex functions of observed fre-

quencies in contingency tables. Since the maximum value of a convex function is attained at

the vertices of its convex domain, by constraining on the observed frequencies in the contin-

gency tables, we can determine the domain of the convex function and get its maximum value.

This maximum value is used as the upper bound on the test statistics to filter out insignificant

SNP-pairs. COE is applicable to all tests that are convex.

FastANOVA, FastChi, and COE are designed for studies with homozygous genotypes and

relatively small sample sizes. In human GWAS, heterozygous genotypes are common, and the

number of individuals can be large. We therefore developed the third program, TEAM, that

is suitable for human GWAS. The basic idea of TEAM is that it incrementally updates the

contingency tables of two-locus test by utilizing a minimum spanning tree. The nodes of the

tree are SNPs and the edges represent the difference between two connected SNPs. It can be

shown that we can get the exact test values by searching the minimum spanning tree without

scanning all individuals. TEAM records the test statistics of all SNP-pairs instead of just the

ones with high values. Thus it allows family-wise error rate (FWER) and false discovery rate

(FDR) calculation.

7

1.5 Thesis Outline

The thesis is organized as follows:

• The FastANOVA algorithm is presented in Chapter 2.

• The FastChi algorithm is presented in Chapter 3.

• The COE algorithm is presented in Chapter 4.

• The TEAM algorithm is presented in Chapter 5.

• Chapter 6 concludes the thesis work.

8

Chapter 2

The FastANOVA Algorithm

2.1 Introduction

Quantitative phenotype association study analyzes genetic variation across a population in or-

der to find the genetic factors underlying continuous phenotypes (such as height or weight).

ANOVA (analysis of variance) test is one of the standard statistic methods and has been

routinely used in quantitative phenotype association study (Pagano and Gauvreau (2000)).

ANOVA test is used to determine whether the group means are significantly different. The

total variance in the data is divided into within-group variance and between-group variance.

If the between-group variance is sufficiently larger than the within-group variance, then the

test concludes that there is significant phenotypic difference between the groups. Although

ANOVA test has been a valuable tool to find association between SNP-pairs and quantitative

phenotype, it is usually not performed at a genome-wide scale due to the enormous search

space.

In this chapter, we examine the computational aspect of ANOVA test. We present an

efficient algorithm, FastANOVA, and show that the standard ANOVA test can be applied in

genome-wide scale for two-locus association mapping even when the permutation procedure

is needed. Unlike algorithms applying heuristics, FastANOVA is a complete algorithm, i.e.,

it guarantees to find the optimal solution, though it does not explicitly examine all possible

SNP-pairs. In fact, a large portion of the SNP-pairs are pruned without the need of performing

the tests. FastANOVA establishes an upper bound on the two-locus ANOVA test. The upper

bound is the sum of two terms: one based on the ANOVA test between phenotype and a

single SNP, and the other based on the pair-wise SNP genotype and the ordered phenotype

values. This formulation of the upper bound allows the algorithm to calculate the bound

for a large number of SNPs together, which enables fast candidate retrieval. Moreover, the

intermediate results for calculating the second term of the upper bound is independent of

phenotype permutations. Hence they only need to be computed once and can be reused in all

permutations. Applying this bound, FastANOVA is able to identify SNP-pairs with significant

ANOVA test values using only a small fraction of the time required by performing ANOVA

test on all SNP-pairs. The principles developed in FastANOVA are also applicable to the other

statistical tests such as Chi-square test which is commonly used in case-control study where

phenotypes are binary variables.

2.2 Related Work

The problem of genetic association study has attracted extensive research interests. In this sec-

tion, we review the related work from a computational point of view. Please refer to (Doerge

(2002); Hoh and Ott (2003); Balding (2006)) for excellent surveys of existing work.

Different machine learning models have been adopted in multilocus association study. In

(Curtis et al. (2001); Sherriff and Ott (2001)), the authors investigate using neural networks

to study the relationship between complex traits and multilocus genotypes. These models

are theoretically well suited for analyzing high-order interactions. However, the results of

these methods are usually expressed as weights associated with SNPs. They are difficult to

interpret and do not clearly identify the interacting SNPs. Recursive partitioning methods

(Zhang and Bonney (2000); Province et al. (2001)) utilize classification and regression tree

(CART) (Breiman et al. (1984)) to pick the SNP that minimizes some pre-specified measure

10

of impurity in each iteration. These methods are not effective in detecting SNP combinations

if there is little or no marginal effect.

Under the assumption that the number of SNPs is limited, e.g., from tens to hundreds, ex-

haustive algorithms that explicitly enumerate all possible SNP combinations have been devel-

oped. Combinatorial partitioning method (CPM) (Nelson et al. (2001)) is designed to identify

multilocus genotypic partitions that predict quantitative trait variation. Given a small set of

SNPs, CPM searches for the partitions of multilocus genotypes that are the most predictive

in terms of phenotypic variability. Motivated by CPM, multifactorial dimension reduction

(MDR) (Ritchie et al. (2001); Moore et al. (2006)) is designed for case/control studies. By

pooling genotypes of multilocus into two groups at high disease risk and low disease risk,

MDR reduces the genotype of multiple SNPs into one dimension. Among all possible com-

binations, MDR selects the one that maximizes the case/control ratio of the high risk group.

Since these methods explicitly enumerate all possible SNP combinations, they are not well

adapted to genome-wide association studies.

To avoid exhaustively enumerating the search space, a common approach is to break the

problem into two steps (Hoh et al. (2000); Evans et al. (2006)). First, a subset of important

SNPs are selected. Second, within the selected subset, the association between SNPs and

the phenotypes are searched. These methods are not complete since the SNPs with weak

marginal effects may not be selected in the first step. Genetic algorithm (Carlborg et al. (2000);

Nakamichi et al. (2001)) has been applied in finding SNP-pairs for quantitative phenotypes.

These methods cannot guarantee to find the optimal solution.

Feature selection methods (Liu and Motoda (1998)) have been proposed to address the

problem of finding important SNPs. In feature selection, the selected feature subset usually

contains features that have low correlation with each other but have strong correlation with

the target feature. In the application of selecting SNPs, the goal is to select a subset of SNPs

that can be used as proxies for all SNPs in the genome (Sebastiani et al. (2003); Chi et al.

(2006); Halperin et al. (2005)). The selected SNPs can then be used as the input SNPs in the

11

(a) Grouping of Y by Xi

Xi = 1 Xi = 0
group A group B

(b) Grouping of Y by XiXj

Xi = 1 Xi = 0
Xj = 1 group a1 group b1
Xj = 0 group a2 group b2

Table 2.1: Possible groupings of phenotype values by the genotypes of Xi and (XiXj)

association study. These methods are also not complete since some important SNPs may not

be tagged.

2.3 The Problem

In this section, we formalize the problem of two-locus ANOVA test with permutation proce-

dure. Let {X1, X2, · · · , XN} be the set of SNPs of M individuals (Xi ∈ {0, 1}, 1 ≤ i ≤ N)

and Y = {y1, y2, · · · , yM} be the quantitative phenotype of interest, where ym (1 ≤ m ≤M)

is the phenotype value of individual m.

For any SNP Xi (1 ≤ i ≤ N), we represent the F-statistic from the ANOVA test of Xi and

Y as F (Xi, Y). For any SNP-pair (XiXj), we represent the F-statistic from the ANOVA test

of (XiXj) and Y as F (XiXj, Y).

The basic idea of ANOVA test is to partition the total sum of squared deviations SST into

between-group sum of squared deviations SSB and within-group sum of squared deviations

SSW :

SST = SSB + SSW .

In the application of two-locus association study, Table 3.0(a) and Table 3.0(b) show the

possible groupings of phenotype values by the genotypes of Xi and (XiXj) respectively. Let

A, B, a1, a2, b1, b2 represent the groups as indicated in Table 3.0(a) and Table 3.0(b). We

use SSB(Xi, Y) and SSB(XiXj, Y) to distinct the one locus (i.e., single-SNP) and two locus

12

(i.e., SNP-pair) analyses. Specifically, we have

SST (Xi, Y) = SSB(Xi, Y) + SSW (Xi, Y),

SST (XiXj, Y) = SSB(XiXj, Y) + SSW (XiXj, Y).

The F-statistics for ANOVA tests on Xi and (XiXj) are:

F (Xi, Y) =
M − 2

2− 1
× SSB(Xi, Y)

SST (Xi, Y)− SSB(Xi, Y)
, (2.1)

F (XiXj, Y) =
M − g

g − 1
× SSB(XiXj, Y)

SST (XiXj, Y)− SSB(XiXj, Y)
, (2.2)

where g in Equation (2.2) is the number of groups that the genotype of (XiXj) partitions the

individuals into. Possible values of g are 3 or 4, assuming all SNPs are distinct: If none of

groups A, B, a1, a2, b1, b2 is empty, then g = 4. If one of them is empty, then g = 3.

Let T =
∑
ym∈Y

ym be the sum of all phenotype values. The total sum of squared deviations

does not depend on the groupings of individuals:

SST (Xi, Y) = SST (XiXj, Y) =
∑
ym∈Y

y2m −
T 2

M
.

Let Tgroup =
∑

ym∈group

ym be the sum of phenotype values in a specific group, and ngroup

be the number of individuals in that group. SSB(Xi, Y) and SSB(XiXj, Y) can be calculated

as follows:

SSB(Xi, Y) =
T 2
A

nA

+
T 2
B

nB

− T 2

M
,

SSB(XiXj, Y) =
T 2
a1

na1

+
T 2
a2

na2

+
T 2
b1

nb1

+
T 2
b2

nb2

− T 2

M
.

Note that for any group of A, B, a1, a2, b1, b2, if ngroup = 0, then
T 2
group

ngroup

is defined to be

13

0.

The two-locus association mapping with permutation test is typically conducted in the

following way (Pagano and Gauvreau (2000); Pesarin (2001); Mielke and Berry (2001)).

First, for every SNP-pair (XiXj) (1 ≤ i < j ≤ N), the ANOVA test is performed and

F (XiXj, Y) is recorded.

Second, a permutation test is performed to get a reference distribution in order to assess

the statistical significance of previous findings. More specifically, a permutation Yk of Y

is generated by sampling the phenotype Y without replacement. In other words, phenotype

values are randomly assigned to individuals in the dataset with no single phenotype value

being assigned to more than one individual. Let Y ′ = {Y1, Y2, · · · , YK} be the set of K

permutations of Y . For each permutation Yk ∈ Y ′, let FYk
represent the maximum F-statistic

value of all SNP-pairs, i.e.,

FYk
= max{F (XiXj, Yk)|1 ≤ i < j ≤ N}.

The distribution of {FYk
|Yk ∈ Y ′} is then used as the reference distribution for assessing the

statistical significance of F (XiXj, Y) values found using the original phenotype Y : Given a

Type I error threshold α, the critical value Fα is the αK-th largest value in {FYk
|Yk ∈ Y ′}.

The SNP-pair (XiXj) whose F-statistic value F (XiXj, Y) ≥ Fα is considered as significant

at α.

For example, Figure 2.1 shows the cumulative distribution of the maximum values for

K = 100 permutations. Suppose that α = 0.3, then Fα is the 30th largest value among the

100 maximum test values, which is 32 as shown in this example.

Two computational problems need to be solved in this procedure. The first one is to find

the critical value Fα for a given Type I error threshold α. The second one is to find all SNP-

pairs (XiXj) whose F-statistics are greater than Fα. We formalize these two problems as

follows.

14

Maximum Test Values
F

re
q
u
e

n
cy

10 403020

20

80

60

40

100

Critical Value

100 permutations
Type I error = 0.3

 F

30

32

Figure 2.1: An example of determining the critical value using permutation test

Problem (1): Given the Type I error threshold α, find the critical value Fα, which is the

αK-th largest value in {FYk
|Yk ∈ Y ′}.

Problem (2): Given the threshold Fα, find all significant SNP-pairs (XiXj) such that

F (XiXj, Y) ≥ Fα.

A brute force approach to these two problems is to enumerate all SNP-pairs and find

their F-statistics. In Problem (1), for each permutation Yk ∈ Y , all SNP-pairs need to be

enumerated in order to find the maximum value FYk
. In Problem (2), all SNP-pairs need to be

enumerated to see if their test values are above the threshold Fα. Computationally, Problem (1)

is more challenging, since the permutation number K can range form hundreds to thousands,

which means the running time of finding the critical value Fα can be hundreds to thousands

times longer than the running time of finding the significant SNP-pairs in Problem (2) using a

brute-force search.

In the reminder of this chapter, we first derive an upper bound on two-locus ANOVA

test value and discuss how this upper bound enables an efficient ANOVA testing for a single

phenotype. Then we show how this approach can be easily extended to handle the permutation

procedure.

15

2.4 The Upper Bound

2.4.1 Updating F-Statistic

Since the total sum of squared deviations does not change, from the calculation of F (Xi, Y)

and F (XiXj, Y) (Equations (2.1) and (2.2)), we know that the relationship between these two

tests only depends on the relationship between SSB(Xi, Y) and SSB(XiXj, Y). Next we

show that SSB(XiXj, Y) can be updated from SSB(Xi, Y).

For groups A, a1 and a2, let

∆A =
T 2
a1

na1

+
T 2
a2

na2

− T 2
A

nA

=
na2T

2
a1
+ na1T

2
a2

na1na2

− (Ta1 + Ta2)
2

na1 + na2

=
(na2Ta1 − na1Ta2)

2

na1na2nA

=
(nATa1 − na1TA)

2

na1(nA − na1)nA

.

Similarly, we have

∆B =
T 2
b1

nb1

+
T 2
b2

nb2

− T 2
B

nB

=
(nBTb1 − nb1TB)

2

nb1(nB − nb1)nB

.

Thus, SSB(XiXj, Y) can be updated using SSB(Xi, Y):

SSB(XiXj, Y) = SSB(Xi, Y) + ∆A+∆B. (2.3)

Note that if any one of {na1 , na2 , nA} is 0, then ∆A = 0. Similarly, if any one of

{nb1 , nb2 , nB} is 0, then ∆B = 0.

Next, we develop an upper bound of SSB(XiXj, Y). We first show the derivation of an

upper bound of ∆A. A similar idea can be applied to find an upper bound of ∆B.

16

2.4.2 Bounds on ∆A and ∆B

Let {ym|ym ∈ A} = {yA1 , yA2 , · · · , yAnA
} be the phenotype values in group A. Without loss

of generality, assume that these phenotype values are arranged in ascending order, i.e.,

yA1 ≤ yA2 ≤ · · · ≤ yAnA
.

The derivative of ∆A with respect to Ta1 is:

d∆A

dTa1

=
2nA(nATa1 − na1TA)

na1(nA − na1)nA

.

Thus we have

∆A monotonically

increases if Ta1 ≥

na1TA

nA

;

decreases if Ta1 ≤
na1TA

nA

.

We have the range of Ta1 :

Ta1 ∈ [la1 , ua1] = [

na1∑
i=1

yAi
,

nA∑
i=nA−na1+1

yAi
].

The maximum value of ∆A is attained when Ta1 = la1 or Ta1 = ua1 , i.e.,

∆A ≤ max{(nAla1 − na1TA)
2, (nAua1 − na1TA)

2}
na1(nA − na1)nA

. (2.4)

We use R1(XiXjY) to denote this upper bound.

Let {ym|ym ∈ B} = {yB1 , yB2 , · · · , yBnB
} be the phenotype values in group B. Without

loss of generality, assume that these phenotype values are arranged in ascending order, i.e.,

yB1 ≤ yB2 ≤ · · · ≤ yBnB
.

17

Symbols Formulas
la1

∑na1
i=1 yAi

ua1

∑nA

i=nA−na1+1 yAi

R1(XiXjY)
max{(nAla1 − na1TA)

2, (nAua1 − na1TA)
2}

na1(nA − na1)nA

lb1
∑nb1

i=1 yBi

ub1

∑nB

i=nB−nb1
+1 yBi

R2(XiXjY)
max{(nBlb1 − nb1TB)

2, (nBub1 − nb1TB)
2}

nb1(nB − nb1)nB

Table 2.2: Notations used in the bounds on ∆A and ∆B

Similarly, we can derive the bound on ∆B:

∆B ≤ max{(nBlb1 − nb1TB)
2, (nBub1 − nb1TB)

2}
nb1(nB − nb1)nB

. (2.5)

We use R2(XiXjY) to denote this upper bound. The symbols used in Inequalities (2.4)

and (2.5) are summarized in Table 2.2.

From Equation (2.3), Inequalities (2.4) and (2.5), we have the overall upper bound on

SSB(XiXj, Y):

Theorem 2.4.1. (Upper bound of SSB(XiXj, Y))

SSB(XiXj, Y) ≤ SSB(Xi, Y) +R1(XiXjY) +R2(XiXjY).

Property 2.4.2. The upper bound in Theorem 2.4.1 is tight.

The tightness of the bound is obvious from the derivation of the upper bound, since there

exists some genotype of SNP-pair (XiXj) that makes the equality hold. For the same reason,

we have the following property.

Property 2.4.3. The upper bound in Theorem 2.4.1 does not exceeds the total sum of squared

18

deviations, i.e.,

SSB(Xi, Y) +R1(XiXjY) +R2(XiXjY) ≤ SST (XiXj, Y).

2.5 The FastANOVA Algorithm

In this section, we show how our algorithm FastANOVA utilizes the upper bound in Theorem

2.4.1 to achieve efficient two-locus ANOVA testing. In Section 2.5.1, we describe the method

for Problem (2) discussed in Section 2.3; that is, given a threshold Fα, we want to find all

SNP-pairs whose F-statistics are greater than Fα. Then in Section 2.5.2, we discuss how

FastANOVA performs in permutation procedure, i.e., the scenario of Problem (1) in Section

2.3.

2.5.1 A Single Phenotype

Given the threshold Fα, to find all SNP-pairs whose F-statistics are greater than Fα, a brute-

force approach is to enumerate all SNP-pairs. To expedite this process, we employ the in-

equality in Theorem 2.4.1 to prune SNP pairs that will have no chance to pass the significance

threshold Fα. From Equation (2.2), we know that finding SNP-pairs (XiXj) whose F-statistics

F (XiXj, Y) ≥ Fα is equivalent to finding SNP-pairs satisfying

SSB(XiXj, Y) ≥ SST (Xi, Y)
M−g

(g−1)Fα
+ 1

= θ.

Theorem 2.4.1 suggests that we only need to compute the F-statistics for the SNP-pairs that

satisfy:

SSB(Xi, Y) +R1(XiXjY) +R2(XiXjY) ≥ θ.

We refer to these SNP-pairs as candidate SNP-pairs.

We now discuss how to apply the upper bound in Theorem 2.4.1 in detail. The set of

19

all SNP-pairs is partitioned into non-overlapping groups such that each group has a common

upper bound. For every Xi (1 ≤ i ≤ N), let AP (Xi) be the set of SNP-pairs

AP (Xi) = {(XiXj)|i+ 1 ≤ j ≤ N}.

For all SNP-pairs in AP (Xi), nA, TA, nB, TB and SSB(Xi, Y) are constants. Moreover, la1 ,

ua1 are determined by na1 , and lb1 , ub1 are determined by nb1 . Therefore, in the upper bound,

na1 and nb1 are the only variables that depend on Xj and may vary for different SNP-pairs

(XiXj) in AP (Xi).

Note that na1 is the number of 1’s in Xj when Xi takes value 1, and nb1 is the number of

1’s in Xj when Xi takes value 0. It is easy to prove that switching na1 and na2 does not change

the F-statistic value and the correctness of the upper bound. This is also true if we switch nb1

and nb2 . Therefore, without loss of generality, we can always assume that na1 is the smaller

one between the number of 1’s and number of 0’s in Xj when Xi takes value 1, and nb1 is the

smaller one between the number of 1’s and number of 0’s in Xj when Xi takes value 0.

For example, using the dataset showing in Table 1.1, for SNP-pair (XiX2), na = 1 since

the minimum of number of 1’s and 0’s in X2 when X1 = 1 is 1 (the number of 1’s), and

nb = 2 since the minimum of number of 1’s and 0’s in X2 when X1 = 0 is 2 (the number of

0’s).

The following property specifies the values that na1 and nb1 can take. The proof is straight-

forward and omitted here.

Property 2.5.1. If there are m 1’s and (M −m) 0’s in Xi, then for any (XiXj) ∈ AP (Xi),

the possible values that na1 can take are {0, 1, 2, · · · , ⌊m/2⌋}. The possible values that nb1

can take are {0, 1, 2, · · · , ⌊(M −m)/2⌋}.

To efficiently retrieve the candidates, the SNP-pairs (XiXj) in AP (Xi) are grouped by

their (na1 , nb1) values and indexed in a 2D array, referred to as Array(Xi).

20

na1

nb1

0 2

0

2

1 3

1

3
(X1X2)
(X1X4)
(X1 .)

.

.

.
(X1 .)

(X1X3)
(X1X5)
(X1 .)

.

.

.
(X1 .)

(3,1)

(1,2)

(X1 .)
.
.
.

(X1X1000)

(3,3)

Figure 2.2: The index array Array(X1) for efficient retrieval of the candidate SNP-pairs

Example 2.5.2. Using the example dataset shown in Table 1.1, we consider the SNP-pairs in

AP (X1), i.e., {(X1X2), (X1X3), (X1X4), (X1X5), · · · , (X1X1000)}. There are 12 individu-

als in the dataset. X1 contains 6 0’s and 6 1’s. Therefore, the possible values of na1 and nb1

are {0, 1, 2, 3}. Figure 3.2 shows the 4 × 4 array, Array(X1), whose entries represent the

possible values of (na1 , nb1) for the SNP-pairs in AP (Xi). The entries in the same column

have the same na1 value. The entries in the same row have the same nb1 value. The na1 value

of each column is noted beneath each column. The nb1 value of each row is noted left to each

row. Each entry of the array is a pointer to the SNP-pairs having the corresponding (na1 , nb1)

values. For example, for SNP-pair (X1X3), its (na1 , nb1) = (3, 1). Thus it is indexed by entry

(3,1).

Note that for a SNP-pair (XiXj) ∈ AP (Xi), na1 and na2 can be calculated faster than

performing the two-locus ANOVA test. To obtain na1 and na2 , we only need to count the

numbers of 0’s and 1’s of Xj when Xi is equal to 0 and 1 respectively, which can be done by a

linear scan of the M × 2 binary matrix consisting of the genotypes of Xi and Xj . In contrast,

to calculate the F-statistic, we first need to scan the M × 3 binary matrix consisting of Xi, Xj

and Y in order to find out how the phenotype values are grouped by the genotype of (XiXj).

Then a constant time O(t) is required to compute the F-statistic.

21

Property 2.5.3. For any SNP Xi, the maximum number of the entries in Array(Xi) is

(⌈M
4
⌉+ 1)2.

The proof of Property 2.5.3 is straightforward and omitted here. In order to find candidate

SNP-pairs, we scan all entries in Array(Xi) to calculate their upper bounds. Since the SNP-

pairs indexed by the same entry share the same (na1 , nb1) value, they have the same upper

bound.

Property 2.5.4. Given phenotype Y , for any SNP Xi, the SNP-pairs indexed by the same

entry in AP (Xi) have the same upper bound value.

For typical genome-wide association studies, the number of individuals M is much smaller

than the number of SNPs N . From Property 2.5.3, there must be a group of SNP-pairs indexed

by the same entry of AP (Xi). In Example 2.5.2, there are in total 16 entries in Array(X1),

and 999 SNP-pairs in AP (X1). Thus many SNP-pairs share the same (na1 , nb1) value and

hence indexed by the same entry in Array(X1). Moreover, from Property 2.5.4, we can

calculate the upper bound for the group of SNP-pairs indexed by the same entry together. It

is these two key properties of the index structure that help to reduce the complexity of the

algorithm. The additional cost for accessing Array(Xi) is minimal compared to performing

ANOVA tests for all pairs (XiXj) ∈ AP (Xi) since M ≪ N .

Algorithm 1 describes the FastANOVA algorithm for finding the SNP-pairs whose F-

statistics are greater than the threshold Fα. The inputs of FastANOVA include the N SNPs,

the phenotype Y and the critical value Fα. For each Xi, FastANOVA first indexes (XiXj) ∈

AP (Xi) using Array(Xi). Then it retrieves the candidate SNP-pairs by accessing Array(Xi)

and records them in Cand(Xi, Y). The candidates in Cand(Xi, Y) are then evaluated for their

F-statistics. The candidates whose F-statistics are greater than or equal to Fα are reported by

the algorithm.

22

Algorithm 1: FastANOVA (no phenotype permutation)
Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype Y , and threshold Fα

Output: find the set of SNP-pairs
Result(Y) = {(XiXj)|F (XiXj, Y) ≥ Fα, 1 ≤ i < j ≤ N}

for every Xi ∈ X ′, do1

index (XiXj) ∈ AP (Xi) by Array(Xi);2

access Array(Xi) to find the candidate SNP-pairs and store them in Cand(Xi, Y);3

for every (XiXj) ∈ Cand(Xi, Y) do4

if F (XiXj, Y) ≥ Fα then5

Result(Y)← (XiXj);6

end7

end8

end9

return Result(Y).10

2.5.2 Permutation Procedure

For multiple tests, permutation procedure is often used in genetic analysis for controlling

family-wise error rate. For genome-wide association study, permutation is less commonly

used because it often entails prohibitively long computation time. Our FastANOVA algorithm

makes permutation procedure feasible in genome-wide association study.

Let Y ′ = {Y1, Y2, · · · , YK} be K permutations of the phenotype Y . Following the idea

discussed in Section 2.5.1, the upper bound in Theorem 2.4.1 can be easily incorporated in

the algorithm to handle the permutations.

Property 2.5.5. For every SNP Xi, the indexing structure Array(Xi) is independent of the

permuted phenotypes in Y ′.

The correctness of this property relies on the fact that, for any (XiXj) ∈ AP (Xi), na1

and nb1 only depend on the genotype of the SNP-pair and thus remain constant for different

phenotype permutations. Therefore, for each Xi, once we build Array(Xi), it can be reused

in all permutations.

The FastANOVA algorithm for permutation test is described in Algorithm 2. The inputs

include the N SNPs, K phenotype permutations, and the Type I error threshold α. The goal

23

Algorithm 2: FastANOVA (for permutation test)
Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype permutations

Y ′ = {Y1, Y2, · · · , YK}, and the Type I error α
Output: find the critical value Fα

T list← αK dummy phenotype permutations with F-statistics 0 ;1

Fα = 0;2

for every Xi ∈ X ′, do3

index (XiXj) ∈ AP (Xi) by Array(Xi);4

for every Yk ∈ Y ′, do5

access Array(Xi) to find the candidate SNP-pairs and store them in6

Cand(Xi, Yk);
for every (XiXj) ∈ Cand(Xi, Yk) do7

if F (XiXj, Yk) ≥ Fα then8

update T list;9

Fα = the smallest test value in T list;10

end11

end12

end13

end14

return Fα.15

is to find the critical value Fα, which is the αK-th largest value in {FYk
|Yk ∈ Y ′}. Recall

that FYk
is the maximum F-statistic value for phenotype Yk. We use T list to keep the αK

phenotype permutations having the largest F-statistics found by the algorithm so far. Initially,

T list contains αK dummy phenotype permutations with test values 0. The smallest F-statistic

value in T list, initially 0, is used as the threshold to prune the SNP-pairs. For each Xi,

FastANOVA first indexes (XiXj) ∈ AP (Xi) using Array(Xi). Then it finds the set of

candidate SNP-pairs Cand(Xi, Yk) by accessing Array(Xi) for every phenotype permutation

Yk. The candidates in Cand(Xi, Yk) are then evaluated for their F-statistics. If a candidate’s

F-statistic value is greater than the current threshold, then T list is updated accordingly: If the

candidate’s phenotype Yk is not in the T list, then the phenotype in T list having the smallest

F-statistic value is replaced by Yk. If the candidate’s phenotype Yk is already in T list, we

only need to update its corresponding F-statistic value to be the maximum value found for the

phenotype so far. The threshold is also updated to be the smallest F-statistic value in T list.

24

2.5.3 Complexity Analysis

In this section, we study the time and space complexities of the FastANOVA algorithm for

permutation test. The complexity for a single phenotype can be analyzed in a similar way.

Time complexity: For each Xi, FastANOVA needs to index (XiXj) in AP (Xi). The com-

plexity to build the indexing structure for all SNPs is O(N(N−1)M/2). The worst case for ac-

cessing all Array(Xi) for all permutations is O(N×K×(⌈M
4
⌉+1)2) = O(NKM2). Let C =∑

i,k |Cand(Xi, Yk)| represent the total number of candidates. The overall time complexity of

FastANOVA is thus O(N(N−1)M/2)+O(NK×(⌈M
4
⌉+1)2)+O(

∑
i,k |Cand(Xi, Yk)|M) =

O(N2M +NKM2 +CM). The experimental results show that the overhead of building the

indexing structures and accessing them for candidate retrieval are negligible when large per-

mutation tests are needed. The time complexity of the brute-force approach is O(KN(N −

1)M/2) = O(KN2M). Note that in a typical genotype-phenotype association study, the

number of SNPs N is much lager than the number of individuals M . Therefore, when the

number of permutations K is large, e.g. thousands, the complexity of FastANOVA is much

less than the complexity of the brute force approach.

Space complexity: The total number of variables in the dataset, including the SNPs

and the phenotype permutations, is N + K. The maximum space of the indexing structure

Array(Xi) is O((⌈M
4
⌉+1)2+N). Note that for each SNP Xi, FastANOVA only needs to ac-

cess one indexing structure, Array(Xi), for all permutations. Once the evaluation process for

Xi is done for all permutations, Array(Xi) can be cleared from the memory. Therefore, the

space complexity of FastANOVA is O((N +K)M)+O((⌈M
4
⌉+1)2+N) = O((N +K)M)

since M ≪ N . The space complexity is linear to the dataset size.

2.6 Experimental Results

In this section, we present extensive experimental results on evaluating the performance of

the FastANOVA algorithm. We show (1) the runtime comparison between FastANOVA and

25

cardiovascular metabolism neurosensory
individuals 19 26 34

SNPs 14,513 43,856 66,006

Table 2.3: Statistics of the SNP datasets

the brute-force approach under various experimental settings, (2) the punning effect of the

upper bound, and (3) the relative computational cost of each component of FastANOVA. Fas-

tANOVA is implemented in C++. The experiments are performed on a 2.4 GHz PC with 1G

memory running WindowsXP system.

Dataset: The SNP dataset used for the experiments is extracted from a set of combined

SNPs from the 140k Broad/MIT mouse dataset (http : //www.broad.mit.edu/) and 10k

GNF mouse dataset (http : //www.gnf.org/). This merged dataset has 156,525 SNPs for

71 individuals. The missing values in the dataset are imputed using NPUTE (Roberts et al.

(2007)). We use both real phenotypes and synthetic phenotypes in our experiments. The real

phenotype data is available from the Jackson Laboratory (http : //www.jax.org/).

2.6.1 Real Phenotypes

We use three real phenotypes in our experiments: cardiovascular (blood pressure), metabolism

(water intake), and neurosensory (acoustic startle response). Table 2.3 shows the statistics of

the genotype datasets corresponding to the three phenotypes. The number of SNPs in the table

indicates the number of unique SNPs in each genotype dataset.

We first show the results on finding the critical value Fα, which is more time-consuming

than finding the significance SNP-pairs given the critical value Fα for a single phenotype.

Finding critical value Fα

FastANOVA v.s. the brute-force approach We compare FastANOVA with the brute-force

approach under various experimental settings. Since the brute-force approach is very time-

consuming, we use a moderate number of SNPs and permutations in the default setting in

26

order to show the performance comparisons. The default setting is as follows: The Type I

error threshold α = 0.01. The number of permutations is 100. The number of SNP is 10,000

for the two larger datasets of metabolism and neurosensory, and 2,900 for the cardiovascular

SNP dataset. These experimental settings are chosen to demonstrate the performance gain

and enhanced scalability offered by FastANOVA over the brute-force implementation. Fas-

tANOVA can handle much larger SNP panels and larger number of permutation tests. The

performance of FastANOVA is expected to follow the same trends presented in the remainder

of this section.

Figures 2.3, 2.4, and 2.5 show the running time comparison of FastANOVA and the brute-

force approach on the three genotype phenotype datasets using different settings. The y-axis

is in logarithm scale. The numbers above the runtime line of FastANOVA indicate the ratio of

the runtimes of the brute-force approach over FastANOVA. We terminate the programs that

have run over 72 hours without completion.

Figure 2.3 shows the runtime comparison when varying the Type I error thresholds. For

each dataset, the runtime of the brute-force approach does not change over different Type

I error thresholds. The runtime of FastANOVA decreases as the threshold decreases. Fas-

tANOVA offers 218 fold speedup when α = 0.05 and 293 fold speedup when α = 0.01 on

cardiovascular dataset. We can also observe a similar two-orders-of-magnitude speedup in the

metabolism and neurosensory datasets. This is consistent with the pruning effect of the upper

bound, which will be presented later in this section. In general, the lower the Type I error

threshold, the more powerful the pruning effect, hence the faster the algorithm.

Figure 2.4 depicts the comparison of these two approaches when the number of SNPs

changes. From these figures, it is clear that FastANOVA is about two orders of magnitude

faster than the brute-force approach. The brute-force approach cannot finish in 72 hours when

the number of unique SNPs is greater than 26k in the metabolism dataset and greater than 24k

in the neurosensory dataset. We observe that the runtime ratio tends to increase (approaching

three-orders-of-magnitude speedup) as the number of SNPs increases. This indicates that the

27

1

10

100

1000

10000

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

218 228 243 258 293

(a) cardiovascular

10

100

1000

10000

100000

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

399
284234209193

(b) metabolism

10

100

1000

10000

100000

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

323261225206181

(c) neurosensory

Figure 2.3: Performance comparison between FastANOVA and the brute-force approach when
varying Type I error thresholds

1

10

100

1000

10000

100000

2.9k 5.8k 8.7k 11.6k 14.5k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

FastANOVA

293

849
675

609
471

(a) cardiovascular

10

100

1000

10000

100000

1000000

10k 18k 26k 34k 42k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

FastANOVA

718
630

399

(b) metabolism

10

100

1000

10000

100000

1000000

10k 24k 38k 52k 66k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

FastANOVA

526

323

(c) neurosensory

Figure 2.4: Performance comparison between FastANOVA and the brute-force approach when
varying the number of SNPs

performance gain of FastANOVA is even higher for larger SNP datasets.

Figure 2.5 shows the runtime comparison when the number of phenotype permutations

changes. The runtime of the brute-force approach is linear with respect to the number of

permutations. FastANOVA is consistently two orders of magnitude faster than the brute-force

approach. The performance gap increases as the number of permutations increases.

Pruning effect of the upper bound Table 2.4 shows the percentage of SNP-pairs pruned

under different experimental settings. Since the three datasets have different numbers of SNPs,

the 1st to 5th rows in the category of ”# SNPs” correspond to the settings from left to right

on x-axis in each plot in Figure 2.4. Most SNP-pairs are pruned under all settings. Moreover,

as the Type I error threshold α decreases, the pruning ratio increases, which is consistent with

runtime comparison shown in Figure 2.3. As the number of SNPs increases, the pruning ratio

28

1

10

100

1000

10000

100000

100 200 300 400 500
number of permutations

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

344339326
313

293

(a) cardiovascular

10

100

1000

10000

100000

1000000

100 200 300 400 500
number of permutations

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

505
540522435

399

(b) metabolism

10

100

1000

10000

100000

1000000

100 200 300 400 500
number of permutations

ru
nt

im
e

(s
ec

.)

brute force approach
FastANOVA

328314
325

321
323

(c) neurosensory

Figure 2.5: Performance comparison between FastANOVA and the brute-force approach when
varying the number of permutations

also increases. This is because, with more SNPs, the dynamic threshold used to prune the

search space becomes higher. Hence a larger portion of SNPs are pruned. This is consistent

with results shown in Figure 2.4. Note that from Table 2.4 we observe that the pruning ratio

tends to remain steady when the number of permutations changes. However, we observe that

the runtime ratio increases as the number of permutations increases. The reason for these two

different trends will become clear after we show the results on the computational cost of each

component of FastANOVA in the next subsection.

Finding significant SNP-pairs

In this subsection, we study the comparison between FastANOVA and the brute-force ap-

proach in finding significant SNP-pairs given a critical value Fα. Only the original phenotype

(without permutations) is used in this procedure. We examine the detailed computation cost

of each component of the FastANOVA algorithm. FastANOVA has three major components:

building the indexing structure Array(Xi) for every SNP Xi, accessing Array(Xi) to find

the candidate SNP-pairs, and performing ANOVA tests on these candidates.

Figures 2.6 to 2.8 show the performance comparison on the three datasets. The default ex-

perimental setting is the same as before. We examine the performance on metabolism dataset

in detail. Similar behaviors can be observed on the other two datasets. Figure 2.7(a) and Fig-

ure 2.7(b) show the runtime of these three components when varying the Type I error threshold

29

cardiovascular metabolism neurosensory
0.05 99.881% 99.724% 99.701%
0.04 99.907% 99.758% 99.751%

α 0.03 99.928% 99.797% 99.792%
0.02 99.949% 99.877% 99.853%
0.01 99.974% 99.929% 99.911%
1st 99.974% 99.929% 99.911%
2nd 99.991% 99.985% 99.979%

SNPs 3rd 99.996% 99.996% 99.997%
4th 99.998% 99.996% 99.997%
5th 99.998% 99.993% 99.998%
100 99.974% 99.929% 99.911%
200 99.966% 99.935% 99.917%

Perm. 300 99.977% 99.962% 99.919%
400 99.977% 99.961% 99.914%
500 99.974% 99.953% 99.907%

Table 2.4: Pruning effects on cardiovascular, metabolism and neurosensory datasets when
finding critical value Fα

0.0001

0.001

0.01

0.1

1

10

100

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs

finding candidate SNP-pairs
evaluating candidate SNP-pairs

(a) Varying threshold values

0.0001

0.001

0.01

0.1

1

10

100

1000

2.9k 5.8k 8.7k 11.6k 14.5k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs

finding candidate SNP-pairs

evaluating candidate SNP-pairs

(b) Varying number of SNPs

Figure 2.6: Finding significant SNP-pairs (cardiovascular dataset)

and number of SNPs in the metabolism dataset respectively. Since Fα is a function of α, in

Figure 2.7(a), we plot the runtime with respect to α. In both figures, the three lines from the

bottom show the runtime of these three components. The runtime of the brute-force approach

is the top line. As we can see from these two figures, performing two-locus ANOVA tests on

candidate SNP pairs is two to three orders of magnitude faster than performing such tests on

all SNP-pairs. This is the benefit of the upper bound pruning since most SNP-pairs have been

30

0.001

0.01

0.1

1

10

100

1000

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)
brute force approach

indexing SNP-pairs

finding candidate SNP-pairs
evaluating candidate SNP-pairs

(a) Varying threshold values

0.001

0.01

0.1

1

10

100

1000

10000

10k 18k 26k 34k 42k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs

finding candidate SNP-pairs
evaluating candidate SNP-pairs

(b) Varying number of SNPs

Figure 2.7: Finding significant SNP-pairs (metabolism dataset)

0.001

0.01

0.1

1

10

100

1000

0.05 0.04 0.03 0.02 0.01
type I error threshold

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs

finding candidate SNP-pairs
evaluating candidate SNP-pairs

(a) Varying threshold values

0.001

0.01

0.1

1

10

100

1000

10000

100000

10k 24k 38k 52k 66k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs

finding candidate SNP-pairs

evaluating candidate SNP-pairs

(b) Varying number of SNPs

Figure 2.8: Finding significant SNP-pairs (neurosensory dataset)

pruned and only a very small portion of candidates need to be evaluated for their F-statistics.

The cost for accessing the indexing structures is also small, which demonstrates the efficiency

of the method introduced in Section 3.4.1 for candidate retrieval. Among the three compo-

nents of FastANOVA, the most time-consuming one is building the index structures. Yet, its

runtime is only a small fraction of the runtime of performing the two-locus ANOVA tests on

all SNP pairs. Note that, in permutation test, building the index structures is a one time cost.

Once the index structures are built, they can be reused in all permutations. Therefore, the

amortized overhead per permutation decreases when the number of permutations increases.

This is why the pruning ratio remains steady in Table 2.4 while the runtime ratio increases in

Figure 2.5 when the number of permutations increases.

31

10 20 30
Size of the indexing array

(a) cardiovascular

0 20 40 60
0

200

400

600

800

1000

1200

1400

Size of the indexing array

F
re

qu
en

cy

(b) metabolism

0 50 100
0

100

200

300

400

500

600

700

800

900

Size of the indexing array

F
re

qu
en

cy

(c) neurosensory

Figure 2.9: Histogram of the sizes of the indexing structures

cardiovascular metabolism neurosensory
97.865% 97.844% 98.061%

Table 2.5: Pruning effect on cardiovascular, metabolism and neurosensory datasets when find-
ing FYk

for all permutations

Figure 2.9 shows the histogram of the sizes of the indexing structures for the three datasets.

From Property 2.5.3, the maximum sizes of the indexing structures are 36 for the cardiovas-

cular dataset, 64 for the metabolism dataset, and 100 for the neurosensory dataset. It is clear

from the figure that the actual sizes of the indexing structures are much smaller than the max-

imum sizes.

Finding FYk
for all permutations

Sometimes users may be interested in finding FYk
values of all phenotype permutations. In

this way, the users can get the critical value Fα for any Type I error threshold α ranging from

0 to 1, without re-running the permutation tests for different thresholds. Recall that, given a

set of phenotype permutations Y ′ = {Y1, Y2, · · · , YK}, FYk
= max{F (XiXj, Yk)|1 ≤ i <

j ≤ N} is the maximum F-statistic value for permutation Yk. Fα is the αK-th largest value

in {FYk
|Yk ∈ Y ′}. In this subsection, we show the pruning effect of the upper bound when

it is applied to determine FYk
for every Yk (1 ≤ k ≤ K). Note that in this case, for each

32

uniform normal exponential
0.05 96.469% 97.793% 99.335%
0.04 96.888% 98.222% 99.401%

α 0.03 97.695% 98.631% 99.502%
0.02 98.712% 99.072% 99.617%
0.01 99.605% 99.506% 99.737%
10k 99.605% 99.506% 99.737%
22k 99.864% 99.814% 99.924%

SNPs 34k 99.907% 99.905% 99.967%
46k 99.928% 99.889% 99.965%
58k 99.941% 99.942% 99.963%
100 99.605% 99.506% 99.737%
200 98.891% 99.398% 99.726%

Perm. 300 98.897% 99.072% 99.780%
400 98.623% 99.315% 99.762%
500 98.709% 99.199% 99.759%
28 99.756% 99.695% 99.893%
30 99.422% 99.577% 99.880%

indiv. 32 99.605% 99.506% 99.737%
34 99.073% 99.289% 99.773%
36 98.736% 98.832% 99.745%

Table 2.6: Pruning effect when finding critical value Fα using three synthetic phenotypes

permutation Yk, the dynamic threshold used to prune the search space is the largest F-statistic

value of Yk identified by the algorithm so far.

Table 2.5 shows the pruning ratio of applying the upper bound to the three real phenotype

datasets. The experimental setting is the same as the default setting before. As expected, the

pruning ratios are slightly lower than those in Table 2.4, where smaller Type I error thresholds

are used to prune the search space. However, the pruning ratios on all three datasets are still

above 97%. Moreover, finding all FYk
provides the advantage that we can get the Fα values

for all possible α values instead of just for a specific one.

2.6.2 Synthetic Phenotypes

To further study the performance of FastANOVA, we generate three synthetic phenotypes

whose values follow three different distributions: uniform, standard normal, and standard

33

exponential distribution. Our purpose is to study the pruning effect of the upper bound under

different phenotype distributions. The default setting of the experiments in this subsection

is as follows: #individuals = 32, #SNPs=10,000, #permutations=100, α = 0.01. There are

60,970 unique SNPs for these 32 individuals.

Table 2.6 shows the pruning ratio of FastANOVA under different settings using permuta-

tion test. In this table, we also include the pruning ratio when the number of individuals varies.

We observe that the pruning effects are similar to that of real phenotypes, which indicates that

the upper bound pruning is effective and insensitive to different phenotype distributions.

2.7 Conclusion

The large number of available SNPs poses great computational challenge to the genome-

wide association study. To assess the significance of the findings, permutation test is usually

required. These factors make the association study a very time-consuming process. Thus tools

that can improve the efficiency of the association study are in demand.

In this chapter we present an efficient algorithm, FastANOVA, for genome-wide two-

locus ANOVA test. FastANOVA is an exhaustive algorithm which guarantees to find the

optimal solution. Experimental results demonstrate that FastANOVA is two to three orders

of magnitude faster than the brute-force alternative. The efficiency of FastANOVA is gained

from two sources. First, it utilizes an upper bound of the two-locus ANOVA test value to

prune a majority of the SNP-pairs. Second, it identifies and reuses computation units that

are independent of the phenotype and hence are invariant in permutation test. By eliminating

redundant computation of these invariant units, FastANOVA is much more efficient than the

brute-force method.

34

Chapter 3

The FastChi Algorithm

3.1 Introduction

As our initial attempt to develop scalable algorithms for genome-wide association study, Fas-

tANOVA is specifically designed for the ANOVA test on quantitative phenotypes. Another

category of phenotypes is generated in case-control study, where the phenotypes are binary

variables representing disease/non-disease individuals. Chi-square test is one of the most

commonly used statistics in binary phenotype association study. We can extend the principles

in FastANOVA for efficient two-locus chi-square test (Zhang et al. (2009)). The general idea

of FastChi is similar to that of FastANOVA, i.e., re-formulating the chi-square test statistic to

establish an upper bound of two-locus chi-square test, and indexing the SNP-pairs according

to their genotypes in order to effectively prune the search space and reuse redundant compu-

tations. In this chapter, we introduce the FastChi algorithm.

FastChi is an exhaustive algorithm, i.e., it guarantees to find the optimal solution, though

it does not explicitly examine all possible SNP-pairs. A large portion of the SNP-pairs are

pruned without the need of performing the tests. FastChi establishes an upper bound of the

two-locus chi-square test. The upper bound is the sum of two terms: one based on the single-

locus chi-square test, and the other based on the pair-wise SNP genotypes. The computational

cost of deriving this bound is much less than the cost of performing a two-locus chi-square

(a) Contingency table for χ2(Xi, Y)

Xi = 0 Xi = 1 Total
Y = 0 event A event B
Y = 1 event C event D
Total M

(b) Contingency table for χ2(XiXj , Y)

Xi = 0 Xi = 1 Total
Xj = 0 Xj = 1 Xj = 0 Xj = 1

Y = 0 event a1 event a2 event b1 event b2
Y = 1 event c1 event c2 event d1 event d2
Total M

Table 3.1: Contingency tables for chi-square testing

test. Consequently, FastChi is able to identify SNP pairs with significant chi-square values for

a given phenotype using only a small fraction of the time required by performing two-locus

chi-square test on all SNP pairs.

3.2 The Problem

Let {X1, X2, · · · , XN} be the set of all biallelic SNPs , and Y be the binary phenotype of

interest (e.g., disease or non-disease). We adopt the convention of using 0 to represent majority

allele and 1 to represent minority allele, and use 0 for non-disease and 1 for disease. For any

SNP Xi (1 ≤ i ≤ N), we represent the chi-square test value of Xi and Y as χ2(Xi, Y).

For any SNP-pair Xi and Xj , we use χ2(XiXj, Y) to represent the chi-square test value for

the combined effect of (XiXj) with phenotype Y . Table 3.0(a) and 3.0(b) show example

contingency tables for calculating χ2(Xi, Y) and χ2(XiXj, Y) when Xi, Xj and Y are binary

variables.

We formalize the problem as follows. Given a set of N biallelic SNPs {X1, X2, · · · , XN}

and a binary phenotype Y for a set of M individuals. Let Y ′ = {Y1, Y2, · · · , YK} be the set of

K permutations of Y . There are two possible cases:

(1) For a single pass association study, i.e., no permutation correction needed: find all

36

SNP-pairs (XiXj) such that

χ2(XiXj, Y) ≥ θ.

(2) In the case where there are multiple phenotype permutations: for each Yk ∈ Y ′, find

all SNP-pairs (XiXj) such that

χ2(XiXj, Yk) ≥ θ, (1 ≤ k ≤ K).

Note that if Y ′ = {Y } then cases (1) and (2) are the same. Case (1) is actually a special

case of (2). Our problem formalization can also be applied in other problem settings. For

example, it is easy to modify this problem definition as finding the top-k SNP-pairs that have

the largest chi-square test values among all SNP-pairs. In this scenario, θ would be a dynamic

value, i.e., the k-th largest chi-square test value identified by the algorithm so far.

3.3 The Upper Bound

3.3.1 Updating Chi-square Statistic

In this section, we show that for any two SNPs, Xi and Xj , χ2(XiXj, Y) can be derived from

χ2(Xi, Y). The results in this section provide the foundation for developing the upper bound

of χ2(XiXj, Y) which will be presented in Section 3.3.2.

Let A,B,C,D, a1, a2, b1, b2, c1, c2, d1, d2 represent the events as shown in Table 3.0(a) and

Table 3.0(b). Let Eevent and Oevent denote the expected value and observed value of certain

event. χ2(Xi, Y) and χ2(XiXj, Y) can be calculated as follows:

χ2(Xi, Y) =
∑

event∈{A,B,C,D}

(Oevent − Eevent)
2

Eevent

,

χ2(XiXj, Y) =
∑

event∈{a1,a2,b1,b2,c1,c2,d1,d2}

(Oevent − Eevent)
2

Eevent

.

37

For event A, its corresponding component in χ2(Xi, Y) calculation is

(OA − EA)
2

EA

.

For events a1 and a2, their corresponding component in χ2(XiXj, Y) calculation is

(Oa1 − Ea1)
2

Ea1

+
(Oa2 − Ea2)

2

Ea2

.

Note that OA = Oa1 + Oa2 , and EA = Ea1 + Ea2 . The difference between these two

components is

∆A =
(Oa1 − Ea1)

2

Ea1

+
(Oa2 − Ea2)

2

Ea2

− (OA − EA)
2

EA

=
M(Oa1Oc2 −Oa2Oc1)

2

(OA +OB)(OA +OC)(Oa1 +Oc1)(Oa2 +Oc2)
.

Similarly, for events C, c1 and c2, we have

∆C =
(Oc1 − Ec1)

2

Ec1

+
(Oc2 − Ec2)

2

Ec2

− (OC − EC)
2

EC

=
M(Oc1Oa2 −Oc2Oa1)

2

(OC +OD)(OA +OC)(Oc1 +Oa1)(Oc2 +Oa2)
.

Adding ∆A and ∆C together, we have ∆A +∆C

=
M2(Oa1Oc2 −Oa2Oc1)

2

(OA +OB)(OA +OC)(OC +OD)(Oa1 +Oc1)(Oa2 +Oc2)
.

Let

T1 =
M2

(OA +OB)(OA +OC)(OC +OD)
.

38

∆A +∆C can be rewritten as

∆A +∆C =
T1(Oa1Oc2 −Oa2Oc1)

2

(Oa1 +Oc1)(Oa2 +Oc2)
. (3.1)

Similarly, let ∆B be the difference between the components for events B, b1 and b2 in

χ2(Xi, Y) and χ2(XiXj, Y) calculations, and ∆D be the difference between the components

for events D, d1, and d2 in χ2(Xi, Y) and χ2(XiXj, Y) calculations. Let

T2 =
M2

(OA +OB)(OB +OD)(OC +OD)
.

We have

∆B +∆D =
T2(Ob1Od2 −Ob2Od1)

2

(Ob1 +Od1)(Ob2 +Od2)
. (3.2)

It is easy to see that

χ2(XiXj, Y) = χ2(Xi, Y) + ∆A +∆C +∆B +∆D.

Equations (3.1) and (3.2) show that we can update χ2(XiXj, Y) using χ2(Xi, Y) without

computing it from scratch.

3.3.2 Bound on ∆A +∆C

In this section, we develop an upper bound for χ2(XiXj, Y). In Section 3.4, we will discuss

how this upper bound is utilized by the FastChi algorithm for efficient two-locus chi-square

tests.

Following the results from Section 3.3.1, we first show the derivation of the upper bound

for ∆A +∆C . A similar idea can be applied to find the upper bound for ∆B +∆D.

The bound on ∆A+∆C is the result of combining two different bounds, whose derivations

39

are presented in the following subsections.

Bound 1

Let’s look at Equation (3.1) in Section 3.3.1. There are two possible scenarios.

Scenario (1): if Oa1Oc2 ≥ Oa2Oc1 , then we have

∆A +∆C

=
T1[(OA +OC −Oa2 −Oc1 −Oc2)Oc2 −Oa2Oc1]

2

(Oa1 +Oc1)(Oa2 +Oc2)

=
T1[(OA +OC)Oc2 − (Oc1 +Oc2)(Oa2 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

≤ T1[(OA +OC)(Oc2 +Oa2)− (Oc1 +Oc2)(Oa2 +Oc2)]
2

(Oa1 +Oc1)(Oa2 +Oc2)

=
T1[(Oa1 +Oa2)(Oa2 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

= T1(Oa1 +Oa2)
2 × (Oa2 +Oc2)

(Oa1 +Oc1)
= T1O

2
A ×

(Oa2 +Oc2)

(Oa1 +Oc1)
.

Scenario (2): if Oa1Oc2 < Oa2Oc1 , then we have

40

∆A +∆C

=
T1[(OA +OC −Oa1 −Oc1 −Oc2)Oc1 −Oa1Oc2]

2

(Oa2 +Oc1)(Oa2 +Oc2)

=
T1[(OA +OC)Oc1 − (Oa1 +Oc1)(Oc1 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

≤ T1[(OA +OC)(Oc1 +Oc2)− (Oa1 +Oc1)(Oc1 +Oc2)]
2

(Oa1 +Oc1)(Oa2 +Oc2)

=
T1[(Oc1 +Oc2)(Oa2 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

= T1(Oc1 +Oc2)
2 × (Oa2 +Oc2)

(Oa1 +Oc1)
= T1O

2
C ×

(Oa2 +Oc2)

(Oa1 +Oc1)
.

Note that OA and OC are fixed given Xi and Y . Let S1 = max{O2
A, O

2
C}. Since

(Oa2 +Oc2)

(Oa1 +Oc1)
=

[
OXj=1

OXj=0

|Xi = 0

]
, we have

∆A +∆C ≤ T1S1

[
OXj=1

OXj=0

|Xi = 0

]
. (3.3)

Note that
[
OXj=1

OXj=0

|Xi = 0

]
is simply the ratio between the number of 1’s and the number

of 0’s in Xj when Xi takes value 0. For example, if the genotypes of Xi are 0000011111 and

the genotypes of Xj are 1110010000 across 10 individuals, then
[
OXj=1

OXj=0

|Xi = 0

]
=

3

2
.

Bound 2

Similarly, we can derive another bound for ∆A +∆C .

Scenario (1): if Oa1Oc2 ≥ Oa2Oc1 , then we have

41

∆A +∆C

=
T1[(OA +OC)Oc2 − (Oc1 +Oc2)(Oa2 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

≤ T1[(OA +OC)(Oc2 +Oc1)− (Oc1 +Oc2)(Oa2 +Oc2)]
2

(Oa1 +Oc1)(Oa2 +Oc2)

= T1O
2
C ×

(Oa1 +Oc1)

(Oa2 +Oc2)
.

Scenario (2): if Oa1Oc2 < Oa2Oc1 , then we have

∆A +∆C

=
T1[(OA +OC)Oc1 − (Oa1 +Oc1)(Oc1 +Oc2)]

2

(Oa1 +Oc1)(Oa2 +Oc2)

≤ T1[(OA +OC)(Oc1 +Oa1)− (Oa1 +Oc1)(Oc1 +Oc2)]
2

(Oa1 +Oc1)(Oa2 +Oc2)

= T1O
2
A ×

(Oa1 +Oc1)

(Oa2 +Oc2)
.

Similar to Bound 1, combining these two scenarios, we have

∆A +∆C ≤ T1S1

[
OXj=0

OXj=1

|Xi = 0

]
(3.4)

Now let R1 = min{
[
OXj=1

OXj=0

|Xi = 0

]
,

[
OXj=0

OXj=1

|Xi = 0

]
}. Combining Bounds (3.3) and

(3.4), we have

∆A +∆C ≤ T1S1R1. (3.5)

Inequality (3.5) is the final bound for ∆A +∆C .

42

Symbols Formulas

T1
M2

(OA +OB)(OA +OC)(OC +OD)
S1 max{O2

A, O
2
C}

R1 min{
[
OXj=1

OXj=0

|Xi = 0

]
,

[
OXj=0

OXj=1

|Xi = 0

]
}

T2
M2

(OA +OB)(OB +OD)(OC +OD)
S2 max{O2

B, O
2
D}

R2 min{
[
OXj=1

OXj=0

|Xi = 1

]
,

[
OXj=0

OXj=1

|Xi = 1

]
}

Table 3.2: Notations used in the derivation of the upper bound

3.3.3 Bound on ∆B +∆D

By analogy, we can get the upper bound for ∆B + ∆D. We present the result here and omit

the detailed derivation.

Let S2 = max{O2
B, O

2
D}, and

R2 = min{
[
OXj=1

OXj=0

|Xi = 1

]
,

[
OXj=0

OXj=1

|Xi = 1

]
}. We have

∆B +∆D ≤ T2S2R2 (3.6)

3.3.4 The Overall Bound

From Bounds (3.5) and (3.6), we get the overall bound for χ2(XiXj, Y) as follows:

χ2(XiXj, Y) ≤ χ2(Xi, Y) + T1S1R1 + T2S2R2. (3.7)

The notations used in the upper bound derivation are summarized in Table 3.2.

43

3.4 The FastChi Algorithm

In this section, we show how our algorithm FastChi utilizes the upper bound derived in Sec-

tion 3.3.2 to achieve efficient two-locus chi-square testing. In Section 3.4.1, we describe the

method for the original phenotype Y . Then in Section 3.4.2, we discuss how FastChi performs

under permutation procedure.

3.4.1 One Phenotype

A brute force approach for two-locus tests is to enumerate all SNP-pairs. To expedite this

process, we employ Inequality (3.7) to prune SNP pairs that do not have a chance to generate

significant chi-square values. The set of all SNP-pairs is partitioned into non-overlapping

groups such that Inequality (3.7) can be readily applied to each group. For every Xi (1 ≤ i ≤

N), let AP (Xi) be the set of SNP-pairs

AP (Xi) = {(XiXj)|i+ 1 ≤ j ≤ N}.

Inequality (3.7) gives an upper bound of χ2(XiXj, Y). If this upper bound is smaller than θ

(i.e., χ2(Xi, Y) + T1S1R1 + T2S2R2 < θ), there is no need to calculate the exact value of

χ2(XiXj, Y), which will be smaller than θ.

We now discuss this idea in detail. For all SNP-pairs in AP (Xi), the phenotype Y and

SNP Xi do not vary, thus OA, OB, OC and OD are constants for the SNP pairs in AP (Xi).

The number of individuals, M , is also a constant. Thus, in Inequality (3.7), T1S1 and T2S2 are

constants. Moreover, χ2(Xi, Y) is a constant for a given Xi, and θ is given too. Therefore, R1

and R2 are the only variables that depend on Xj in Inequality (3.7) and may vary for different

SNP-pairs (XiXj) ∈ AP (Xi). Thus for a given Xi, we can treat equation

χ2(Xi, Y) + T1S1R1 + T2S2R2 = θ

44

Figure 3.1: Pruning SNP-pairs in AP (Xi) using the upper bound

as a straight line in the 2-D space of R1 and R2.

From now on, we use R1(XiXj) and R2(XiXj) to represent the specific values of R1 and

R2 for the SNP-pair (XiXj). It is easy to see that R1(XiXj) and R2(XiXj) cannot be greater

than 1, as summarized in the following property.

Property 3.4.1.

R1(XiXj) = min{
[
OXj=1

OXj=0

|Xi = 0

]
,

[
OXj=0

OXj=1

|Xi = 0

]
} ≤ 1;

R2(XiXj) = min{
[
OXj=1

OXj=0

|Xi = 1

]
,

[
OXj=0

OXj=1

|Xi = 1

]
} ≤ 1.

More specifically, the following property specifies the values that R1(XiXj) and R2(XiXj)

can take. The proof is straightforward and omitted here.

Property 3.4.2. If there are m 0’s and (M −m) 1’s in Xi, then for any (XiXj) ∈ AP (Xi),

the possible values that R1(XiXj) can take are:

{ 0
m
,

1

m− 1
,

2

m− 2
, · · · , ⌊m/2⌋

⌈m/2⌉
}.

45

The possible values that R2(XiXj) can take are:

{ 0

M −m
,

1

M −m− 1
,

2

M −m− 2
, · · · , ⌊(M −m)/2⌋

⌈(M −m)/2⌉
}.

Therefore, for all (XiXj) ∈ AP (Xi), in the 2-D space of R1 and R2, (R1(XiXj),R2(XiXj))

fall into the region [0, 1] × [0, 1]. The line χ2(Xi, Y) + T1S1R1 + T2S2R2 = θ divides

this region into two parts: one above the line and one below it. Among the SNP-pairs

in AP (Xi), we only need to perform the two-locus chi-square test for those ones whose

(R1(XiXj),R2(XiXj)) values are above the line, i.e., whose upper bounds are greater than

the threshold θ. We refer to such SNP-pairs as candidate SNP-pairs.

Example 3.4.3. Suppose that there are 32 individuals, half alleles of Xi are 0’s, and half are

1’s. Thus for the SNP-pairs in AP (Xi), the possible values of R1(XiXj) (and R2(XiXj))

are { 0
16
, 1
15
, 2
14
, 3
13
, 4
12
, 5
11
, 6
10
, 7
9
, 8
8
}. Figure 3.1 shows the 2-D space of R1 and R2. The

blue stars represent the values that (R1(XiXj),R2(XiXj)) can take. The line χ2(Xi, Y) +

T1S1R1+T2S2R2 = θ is also plotted in the figure. The candidate SNP-pairs are those whose

(R1(XiXj),R2(XiXj)) values are in the shaded region. The ones whose (R1(XiXj),R2(XiXj))

values fall below the line can be pruned without any further test.

Note that for a SNP-pair (XiXj) ∈ AP (Xi), R1(XiXj) and R2(XiXj) can be calculated

faster than the two-locus chi-square test. To obtain R1(XiXj) and R2(XiXj), we only need

to count the numbers of 0’s and 1’s of Xj when Xi is equal to 0 and 1 respectively, which can

be done by a linear scan of the M ×2 binary matrix consisting of the genotypes of Xi and Xj .

In contrast, to calculate the two-locus chi-square test value, we first need to scan the M × 3

binary matrix consisting of Xi, Xj and Y in order to fill out the 2 × 4 contingency table as

shown in Table 3.0(b). Then a constant time O(t) is required to compute the chi-square test

value based on the contingency table.

46

Figure 3.2: Accessing Array(Xi) to retrieve the candidate SNP-pairs

Efficient retrieval of candidate SNP-pairs

To efficiently retrieve the candidates, SNP-pairs (XiXj) in AP (Xi) are grouped by their

(R1(XiXj),R2(XiXj)) values and indexed in a 2D array, referred to as Array(Xi).

Example 3.4.4. Following Example 5.5.2, Figure 3.2 shows the 9 × 9 array, Array(Xi),

whose entries represent the possible values of (R1(XiXj),R2(XiXj)) for SNP-pairs (XiXj) ∈

AP (Xi). The entries in the same column have the same R1(XiXj) value, and their R2(XiXj)

values increase from bottom to top. The entries in the same row have the same R2(XiXj)

value, and their R1(XiXj) values increase from left to right. The R1(XiXj) value of each

column is noted beneath each column. The R2(XiXj) value of each row is noted left to each

row. Each entry of the array is a pointer to the SNP-pairs (XiXj) ∈ AP (Xi) having the

corresponding (R1(XiXj),R2(XiXj)) values.

In order to find the candidates SNP-pairs whose upper bounds are greater than θ, we start

from the right most column of the array, i.e., the entries having the largest R1(XiXj) value.

We scan this column from the top (entries have larger R2(XiXj) values) towards the bot-

tom (entries have smaller R2(XiXj) values). If an entry satisfies the inequality χ2(Xi, Y) +

T1S1R1+T2S2R2 ≥ θ, then the SNP-pairs indexed by it are the candidates subject to the two-

47

locus chi-square tests. Once we reach an entry violating the inequality, we stop searching the

current column, since the remaining entries in the column have the same R1(XiXj) values but

smaller R2(XiXj) values. They will not satisfy the inequality either. Thus all the SNP-pairs

indexed by the remaining entries are pruned without further examination. We then move to the

column with the next smaller R1(XiXj) value and repeat the same scanning process again.

This whole process terminates when (1) we finish examining all columns or (2) we reach a

column whose top entry does not satisfy the inequality. In the latter case, we can safely prune

SNP pairs in the remaining columns since none of them can satisfy the inequality.

Example 3.4.5. Continuing with Examples 5.5.2 and 3.4.4, the entries numbered from 1 to

14 in Figure 3.2 are the ones visited by the scanning process. The numbers show the order in

which the entries are visited. Only the SNP-pairs indexed by shaded entries need to be eval-

uated by chi-square tests. The SNP-pairs indexed by the blank entries, including the entries

on the boundary (numbered as {4, 7, 9, 11, 13, 14}) can be safely pruned without examination

because their chi-square upper bounds are less than θ.

Property 3.4.6. For any SNP Xi, the maximum number of the entries in Array(Xi) is

⌊M
2
⌋ × ⌈M

2
⌉.

The proof of Property 3.4.6 is straightforward and omitted here. Note that for typical

genome wide association studies, the number of individuals M is much smaller than the num-

ber of SNPs N . Therefore, the additional computational cost for accessing Array(Xi) is

minimal compared to chi-square tests for all pairs (XiXj) ∈ AP (Xi), even if we examine

every entry in this 2D array. In practice, a large portion of the SNP-pairs are pruned. FastChi

only needs to access a small number of entries located in the top right corner of Array(Xi)

as shown in Figure 3.2. To index the SNPs by the entries of Array(Xi), FastChi scans all

(XiXj) ∈ AP (Xi) for their (R1(XiXj),R2(XiXj)) values. However, as discussed before,

this is a much more efficient process than performing two-locus chi-square tests on them.

48

Algorithm 3: FastChi
Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype permutations

Y ′ = {Y1, Y2, · · · , YK}, and input parameter θ
Output: for every Yk ∈ Y ′, find the set of SNP-pairs

Result(Yk) = {(XiXj)|χ2(XiXj, Yk) ≥ θ, 1 ≤ i < j ≤ N}
for every Xi ∈ X ′, do1

index (XiXj) ∈ AP (Xi) by Array(Xi);2

for every Yk ∈ Y ′, do3

access Array(Xi) to find the candidate SNP-pairs and store them in4

Cand(Xi, Yk);
for every (XiXj) ∈ Cand(Xi, Yk) do5

if χ2(XiXj, Yk) ≥ θ then6

Result(Yk)← (XiXj);7

end8

end9

end10

end11

Return Result(Yk) for all Yk ∈ Y ′.12

3.4.2 Permuting the Phenotype

For multiple correlated tests, permutation procedure is often used in genetic analysis for

proper family wise errors. For genome association mapping, permutation is less commonly

used because it is often entails prohibitively long computation time. Our FastChi algorithm

makes permutation procedure more feasible in genome-wide association mapping.

Let Y ′ = {Y1, Y2, · · · , YK} be the K permutations of the phenotype Y . Following the idea

discussed in Section 3.4.1, the bound established by Inequality (3.7) can be easily incorporated

in the algorithm to handle the permutations.

Property 3.4.7. For every SNP Xi, the indexing structure Array(Xi) is independent of per-

mutations in Y ′.

The correctness of this property relies on the fact that for any (XiXj) ∈ AP (Xi), its

(R1(XiXj),R2(XiXj)) value does not change over different permutations. Thus for each

Xi, once we get Array(Xi), it can be reused in all permutations.

The FastChi algorithm is described in Algorithm 4. The inputs of FastChi include the N

49

SNPs, K phenotype permutations, and threshold θ. For every phenotype, FastChi finds the

SNP-pairs whose chi-square test value χ2(XiXj, Yk) ≥ θ. If no permutation correction is

needed, then K = 1, and the input phenotype is just the original phenotype Y . For each Xi,

FastChi first indexes (XiXj) ∈ AP (Xi) using Array(Xi). Then it finds the set of candidate

SNP-pairs Cand(Xi, Yk) by accessing Array(Xi) for every phenotype permutation Yk. The

candidates in Cand(Xi, Yk) are then evaluated for their chi-square test values. The candidates

whose chi-square test values are greater than or equal to θ are reported by the algorithm.

3.4.3 Complexity Analysis

Time complexity: For each Xi, FastChi needs to index (XiXj) ∈ AP (Xi). The complexity to

build the indexing structure for all SNPs is thus O(N(N−1)M/2). The worst case for access-

ing all Array(Xi) for all permutations is O(N ×K×⌊M
2
⌋× ⌈M

2
⌉). Let

∑
i,k |Cand(Xi, Yk)|

represent the total number of candidates. The overall time complexity of FastChi is thus

O(N(N − 1)M/2) + O(NK × ⌊M
2
⌋ × ⌈M

2
⌉) + O(

∑
i,k |Cand(Xi, Yk)|). The experimen-

tal results show that the overhead of building the indexing structures and accessing them for

candidates are negligible comparing to the time spent on performing chi-square tests for the

candidate SNP-pairs when the permutation correction is needed. Note that the time complex-

ity of the brute force approach is O(KN(N − 1)M/2).

Space complexity: The total number of variables in the dataset, including the SNPs and the

phenotype permutations, is N+K. The maximum space of the indexing structure Array(Xi)

is O(⌊M
2
⌋ × ⌈M

2
⌉ + N). Note that for each Xi, FastChi only needs to access one indexing

structure, Array(Xi), for all permutations. Once the evaluation process for Xi is over for all

permutations, Array(Xi) can be cleared from the memory. Therefore, the space complexity

of FastChi is O((N +K)M) +O(⌊M
2
⌋ × ⌈M

2
⌉+N). Since usually M is much smaller than

N , this space complexity is roughly linear to the dataset size.

50

20 22 24 26 28 30 32
0

50

100

150

200

chi-square test value

fr
eq

ue
nc

y

Figure 3.3: Distribution of the maximum chi-square test values of 1000 permutations

3.5 Experimental Results

In this section, we present extensive experimental results on evaluating the performance of

the FastChi algorithm. We show (1) the runtime comparison between FastChi and the brute

force approach under various experimental settings, (2) the punning effect of the upper bound,

and (3) the relative computational cost of each component of FastChi, including building

the indexing structures for the SNP-pairs, accessing them to find the candidate SNP-pairs,

and performing chi-square tests on the candidates. FastChi is implemented in C++. The

experiments are performed on a 2.4 GHz PC with 1G memory running WindowsXP system.

Dataset: The SNP dataset used for the experiments is extracted from a set of combined

SNPs from the 140k Broad/MIT mouse dataset and 10k GNF mouse dataset. This merged

dataset has 156,525 SNPs for 71 mouse strains. The missing values in the dataset are imputed

using NPUTE (Roberts et al. (2007)).

Experimental settings: The phenotypes used in the experiments are random permutations

of binary variable which contains half cases and half controls. This is common in practice,

where the numbers of cases and controls tend to be balanced. If not otherwise specified, the

default setting of the experiments are as follows: #individuals = 32, #SNPs=8k, #permuta-

tions=20. There are 60,970 unique SNPs for these 32 mice strains. To find the appropriate

threshold value, we permute the phenotypes 1000 times. Figure 3.3 shows the distribution of

the maximum chi-square test values of the 1000 permutations. Using a critical significance

level of 1%, we set the default threshold value of θ to be 32 for the experiments.

51

Note that these experimental settings are chosen to demonstrate the performance gain and

enhanced scalability offered by FastChi over the brute force implementation of two-locus chi-

square test. In real utility, one may use larger SNP panels and/or larger number of permutation

tests. The performance of FastChi is expected to follow the same trends presented in the

remainder of this section.

3.5.1 FastChi v.s. the brute force approach

In this subsection, we compare the runtime of FastChi and the brute force approach under

various experimental settings. The implementation of the brute force approach includes the

computation of two-locus chi-square test for every SNP pairs. Figures 3.4(a) 3.4(b) 3.4(c)

3.4(d) show the running time comparison of FastChi and the brute force approach under vary-

ing parameter settings. The y-axis is in logarithm scale. The numbers below the runtime line

of FastChi indicate the ratio of the runtime of the brute force approach and the runtime of

FastChi.

Figure 3.4(a) shows the runtime comparison between FastChi and the brute force approach

under a wide range of threshold values. The runtime of the brute force approach does not

change over different θ values. However, the runtime of FastChi dramatically decreases as θ

increases. FastChi offers 3.9 fold speedup when θ = 26 and 16.3 fold speedup when θ = 34.

This is consistent with the result on the pruning effect of the upper bound, which will be

further discussed in Section 3.5.2. In general, the higher the value of θ, the more powerful the

pruning effect, hence the faster the algorithm.

Figure 3.4(b) and Figure 3.4(c) show the runtime of FastChi and the brute force approach

when the size of the dataset varies. Figure 3.4(b) depicts the comparison of these two ap-

proaches when the number of unique SNPs changes. From this figure, it is clear that FastChi

is about an order of magnitude faster than the brute force approach. The brute force approach

cannot finish after 15 hours running when the number of unique SNPs is greater than 40k.

Thus for the brute force approach, the results for 47k and 60k SNPs are not shown in the

52

(a) Varying θ

(b) Varying #SNPs

(c) Varying #individuals

(d) Varying #permutations

Figure 3.4: Performance comparisons between FastChi and the brute force approach under
different settings.

figure. Figure 3.4(c) shows the comparison of these two approaches when the number of indi-

viduals in the dataset changes. The runtime of Fastchi increases as the number of individuals

53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24 26 28 30 32 34
theta

p
ru

n
in

g
 r

a
ti

o

(a) Varying threshold values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12/20 14/18 16/16 18/14 20/12
cases/control ratio in the phenotypes

p
ru

n
in

g
 r

a
ti

o

(b) Varing case/control ratios

Figure 3.5: Pruning effect of the upper bound

increases. This is because more SNPs-pairs will have larger chi-square values when the num-

ber of individuals increases. Their upper bounds will also increase accordingly. In practice, it

is reasonable to set higher threshold values for the datasets containing more individuals.

Figure 3.4(d) shows the runtime comparison of FastChi and the brute force approach when

the number of phenotype permutations changes. Both runtimes are linear with respect to the

number of permutations. FastChi is consistently an order of magnitude faster than the brute

force approach when the number of permutations varies.

3.5.2 Pruning effect of the upper bound

In this subsection, we examine the pruning power of the upper bound. Figure 3.5(a) shows the

ratio of the SNP-pairs pruned and the total number of SNP-pairs under different thresholds.

The pruning ratio is averaged on 20 random phenotype permutations. The phenotype permu-

tations contain half cases and half controls. As we can see from the figure, using the upper

bound in Inequality (3.7), a large portion of the SNP-pairs are pruned even when the threshold

is low.

We further study the pruning effect when the case/control ratio in the phenotype changes.

54

Figure 3.5(b) show the pruning ratio of the SNP-pairs when the phenotype contains different

number of cases, while the total number of cases and controls is fixed to 32. It is clear from

the figure that the pruning effect reaches the maximum power if the phenotype contains 16

cases and 16 controls, which demonstrates that our approach is more suitable for the balanced

case-control study.

3.5.3 Computational cost of each component of FastChi

We further examine the detailed computational cost of each component of the FastChi algo-

rithm. FastChi has three major components: building the indexing structure Array(Xi) for

every SNP Xi, accessing Array(Xi) to find the candidate SNP-pairs whose upper bounds are

greater or equal to the threshold, and performing chi-square tests on these candidates.

Figure 3.6 shows the runtime of these three components when the number of SNPs in the

dataset varies. The three lines from the bottom show the runtimes of these three components.

We also plot the runtime of the brute force approach for reference, which is the top line. Note

that the runtimes in this figure are for one permutation. As we can see from this figure, the cost

for accessing the indexing structures is the minimum one. This demonstrates the efficiency

of the method introduced in Section 3.4.1 for candidate retrieval. Performing two-locus chi-

square tests on candidate SNP pairs takes less than 1/10 of the time required to perform such

tests on all SNP-pairs. This is the result of the upper bound pruning since most SNP-pairs have

been pruned and only a small number of candidates need to be evaluated for their chi-square

values. Among the three components of FastChi, the most time consuming one is on building

the index structures. Yet, its runtime is about 1/5 of the time required to perform the two-

locus chi-square tests on all SNP pairs in one permutation. When the number of permutation

is large, the cost on building the index structures is negligible since they only need to be built

once and can be reused in all permutations. Thus the performance gain of FastChi is expected

to be more prominent for large permutation tests.

55

0.01

0.1

1

10

100

1000

4k 8k 12k 16k 20k
number of SNPs

ru
nt

im
e

(s
ec

.)

brute force approach

indexing SNP-pairs
evaluating candidate SNP-pairs

finding candidate SNP-pairs

Figure 3.6: Computational cost of each component of FastChi

3.6 Conclusion

In this chapter, we present the FastChi algorithm for genome-wide two-locus chi-square test.

FastChi is an exhaustive method which guarantees to find the optimal solution. The efficiency

of FastChi is gained from two sources. First, it utilizes an upper bound of the two-locus

chi-square test value to prune a majority of the SNP-pairs. The upper bound developed in

this paper can be easily incorporated in the algorithm for SNP-pair pruning and candidates

retrieval. Second, it identifies computation units that are independent of the phenotype and

hence are invariant in permutation tests. By eliminating redundant computation of these in-

variant units, FastChi is even more effective than the brute force method in permutation test.

Extensive experimental results show that FastChi is much more efficient than the brute force

alternative.

56

Chapter 4

The COE Algorithm

4.1 Introduction

In previous chapters, we introduced two algorithms for genome-wide two-locus epistasis de-

tection: FastANOVA for two-locus ANOVA (analysis of variance) test on quantitative traits

and FastChi for two-locus chi-square test on case-control phenotypes. Both methods rework

the formula of ANOVA test and Chi-square test to estimate an upper bound of the test value

for SNP pairs. These upper bounds are used to identify candidate SNP pairs that may have

strong epistatic effect. Repetitive computation in a permutation test is also identified and per-

formed once whose results are stored for use by all permutations. These two strategies lead to

substantial speedup, especially for large permutation test, without compromising the accuracy

of the test. These approaches guarantee to find the optimal solutions. However, a common

drawback of these methods is that they are designed for specific tests, i.e., chi-square test and

ANOVA test. The upper bounds used in these methods do not work for other statistical tests,

such as chi-square test, G-test, information-theoretic association measurements, and trend test

(Balding (2006); Pagano and Gauvreau (2000); Thomas (2004)), which are also routinely used

by researchers. In addition, new statistics for epistasis detection are continually emerging in

the literature (Bohringer et al. (2003); Dong and et al. (2008); Zhao et al. (2005)). Therefore,

it is desirable to develop a general model that supports a variety of statistical tests.

In this chapter, we propose a general approach, COE1, to scale-up the process of genome-

wide two-locus epistasis detection. Our method is guaranteed to find the optimal solution.

A significant improvement over previous methods is that our approach can be applied to a

wide range of commonly used statistical tests. We show that a key property of these statistics

is that they are all convex functions of the observed values of certain events in two-locus

tests. This allows us to apply the convex optimization techniques (Boyd and Vandenberghe

(2004)). Specifically, by examining the contingency tables, we can derive constraints on these

observed values. Utilizing these constraints, an upper bound can be derived for the two-

locus test value. Similar to the approaches in FastANOVA and FastChi, this upper bound

only depends on single-locus test and the genotype of the SNP-pairs. It avoids redundant

computation in permutation test by grouping and indexing the SNP-pairs by their genotypes.

An important difference, however, is that the upper bound presented in this chapter is general

and much tighter than those in previous methods such as FastChi. It supports all tests using

convex statistics and can prune the search space more efficiently. As a result, our method is

orders of magnitude faster than the brute force approach, in which all SNP-pairs need to be

evaluated for their test values, and is an order of magnitude faster than the pruning strategies

used in previous methods such as FastChi.

4.2 The Problem

Let {X1, X2, · · · , XN} be the set of all biallelic SNPs for M individuals, and Y be the binary

phenotype of interest (e.g., disease or non-disease). We adopt the convention of using 0 to

represent majority allele and 1 to represent minority allele, and use 0 for non-disease and 1

for disease. We use T to denote the statistical test. Specifically, we represent the test value of

SNP Xi and phenotype Y as T (Xi, Y), and represent the test value of SNP-pair (XiXj) and

Y as T (XiXj, Y). A contingency table, which records the observed values of all events, is

1COE stands for Convex Optimization-based Epistasis detection algorithm.

58

the basis for many statistical tests. Table 4.1 shows contingency tables for the single-locus test

T (Xi, Y), genotype relationship between SNPs Xi and Xj , and two-locus test T (XiXj, Y).

(a) Xi and Y

Xi = 0 Xi = 1 Total
Y = 0 event A event B
Y = 1 event C event D
Total M

(b) Xi and Xj

Xi = 0 Xi = 1 Total
Xj = 0 event S event T
Xj = 1 event P event Q

Total M

(c) XiXj and Y

Xi = 0 Xi = 1 Total
Xj = 0 Xj = 1 Xj = 0 Xj = 1

Y = 0 event a1 event a2 event b1 event b2
Y = 1 event c1 event c2 event d1 event d2
Total M

Table 4.1: Contingency tables

The goal of permutation test is to find a critical threshold value. A two-locus epistasis de-

tection with permutation test is typically conducted as follows Pagano and Gauvreau (2000);

Zhang et al. (2008, 2009). A permutation Yk of Y represents a random reshuffling of the phe-

notype Y . In each permutation, the phenotype values are randomly reassigned to individuals

with no replacement. Let Y ′ = {Y1, Y2, · · · , YK} be the set of K permutations of Y . For

each permutation Yk ∈ Y ′, let TYk
represent the maximum test value among all SNP-pairs,

i.e., TYk
= max{T (XiXj, Yk)|1 ≤ i < j ≤ N}. The distribution of {TYk

|Yk ∈ Y ′} is used

as the null distribution. Given a Type I error threshold α, the critical value Tα is the αK-th

largest value in {TYk
|Yk ∈ Y ′}. After determining the critical value Tα, a SNP-pair (XiXj)

is considered significant if its test value with the original phenotype Y exceeds the critical

value, i.e., T(XiXj, Y) ≥ Tα.

Determining the critical value is computationally more demanding than finding significant

SNP-pairs, since the test procedure needs to be repeated for every permutation in order to find

the maximum values. These two problems can be formalized as follows.

Determining Critical Value: For a given Type I error threshold α, find the critical value

Tα, which is the αK-th largest value in {TYk
|Yk ∈ Y ′}.

Finding Significant SNP-pairs: For a given critical value Tα, find the significant SNP-

59

pairs (XiXj) such that T (XiXj, Y) ≥ Fα.

In the reminder of the chapter, we first show the convexity of common statistics. Then

we discuss how to establish an upper bound of two-locus test and use it in the algorithm to

efficiently solve the two problems.

4.3 Convexity of Common Test Statistics

In this section, we show that many commonly used statistics are convex functions. Since

there are many statistics in the literature, it is impossible to exhaustively enumerate all of

them. We focus on four widely used statistics: chi-square test, G-test, entropy-based statistic,

and Cochran-Armitage trend test.

Let A,B,C,D, S, T, P,Q, a1, a2, b1, b2, c1, c2, d1, d2 represent the events as shown in Ta-

ble 4.1. Let Eevent and Oevent denote the expected value and observed value of an event. Sup-

pose that E0 = {a1, a2, b1, b2, c1, c2, d1, d2}, E1 = {a1, a2, c1, c2}, and E2 = {b1, b2, d1, d2}.

The two-locus chi-square tests can be calculated as follows:

χ2(XiXj, Y) =
∑

event∈E1

(Oevent − Eevent)
2

Eevent︸ ︷︷ ︸
χ2
1(XiXjY)

+
∑

event∈E2

(Oevent − Eevent)
2

Eevent︸ ︷︷ ︸
χ2
2(XiXjY)

. (4.1)

Note that we intentionally break the calculation into two components: one for the events in

E1, denoted as χ2
1(XiXjY), and one for the events in E2, denoted as χ2

2(XiXjY). The reason

for separating these two components is that each of these two components is a convex function

(See Lemma 4.3.1).

The G-test, also known as a likelihood ratio test for goodness of fit, is an alternative to the

chi-square test. The formula for two-locus G-test is

G(XiXj, Y) = 2
∑

event∈E1

Oevent · ln(
Oevent

Eevent

) + 2
∑

event∈E2

Oevent · ln(
Oevent

Eevent

). (4.2)

60

Information-theoretic measurements have been proposed for association study (Dong and

et al. (2008); Zhao et al. (2005)). We examine the mutual information measure, which is the

basic form of many other measurements. The mutual information between SNP-pair (XiXj)

and phenotype Y is I(Y ;XiXj) = H(Y)+H(XiXj)−H(XiXjY), in which the joint entropy

−H(XiXjY) is calculated as

−H(XiXjY) =
∑

event∈E1

Oevent

M
· log Oevent

M
+

∑
event∈E2

Oevent

M
· log Oevent

M
. (4.3)

Let T (XiXj, Y) represent any one of χ2(XiXj, Y), G(XiXj, Y), and −H(XiXjY). Let

T1(XiXjY) denote the component for events in E1, and T2(XiXjY) denote the component

for events in E2. The following lemma shows the convexity of T1(XiXjY) and T2(XiXjY).

Lemma 4.3.1. Given the values of OA, OB, OC , OD, OP , OQ, T1(XiXjY) is a convex func-

tion of Oc2 , and T2(XiXjY) is a convex function of Od2 .

Proof. We first show that χ2
1(XiXj, Y) is a convex function of Oc2 . Recall that

χ2
1(XiXj, Y) =

∑
event∈{a1,a2,c1,c2}

(Oevent − Eevent)
2

Eevent

.

For fixed OA, OB, OC , OD, OP , OQ, we know that the expected values of the four events are

constants:

Ea1 =
OS(OA +OB)

M
=

(OA +OC −OP)(OA +OB)

M

Ea2 =
OP (OA +OB)

M

Ec1 =
OS(OC +OD)

M
=

(OA +OC −OP)(OC +OD)

M

Ec2 =
OP (OC +OD)

M

From the relations between the observed values of the events in two-locus test, we have that

Oa1 , Oa2 , Oc1 are linear functions of Oc2 . So χ2
1(XiXj, Y) is a positive quadratic function of

Oc2 . Thus χ2
1(XiXj, Y) is a convex function of Oc2 .

61

Next, we show that

G1(XiXj, Y) =
∑

event∈{a1,a2,c1,c2}

Oevent · ln
Oevent

Eevent

is a convex function of Oc2 . From previous result, for fixed OA, OB, OC , OD, OP , OQ, the ex-

pected values of the four events {a1, a2, c1, c2} are constants, and Oa1 , Oa2 , Oc1 are linear func-

tions of Oc2 . Thus G1(XiXj, Y) is a function of Oc2 . To prove the convexity of G1(XiXj, Y),

it suffices to show that the second derivative∇2G1(XiXj, Y) =
∂2G1(XiXj, Y)

∂O2
c2

is nonnega-

tive. We show this is the case for the component of event a2:

∇2(Oa2 · ln
Oa2

Ea2

) = ∇2((OP −Oc2) · ln
OP −Oc2

Ea2

) =
1

OP −Oc2

≥ 0.

Similarly, we can prove that the second derivative of other components are nonnegative.

Therefore, G1(XiXj, Y) is a convex function of Oc2 .

Following the similar idea, i.e., by showing the second derivative of −H(XiXjY) is non-

negative, we can prove that −H1(XiXjY) is a convex function of Oc2 .

Thus we have shown the T1(XiXjY) is a convex function of Oc2 . The convexity T2(XiXjY)

can be proven in a similar way.

The Cochran-Armitage test for trend is another widely used statistic in genetic association

study. Let Z = (Oc1 − pOS)(s1− s̄)+ (Oc2 − pOP)(s2− s̄)+ (Od1 − pOT)(s3− s̄)+ (Od2 −

pOQ)(s4 − s̄). The Cochran-Armitage two-locus test can be calculated as

z2 = Z2/[p(1− p)(OS(s1 − s̄)2 +OP (s2 − s̄)2 +OT (s3 − s̄)2 +OQ(s4 − s̄)2)],

where p is the percentage of cases in the case-control population, si (i ∈ {1, 2, 3, 4}) are user

specified scores for the four possible genotype combinations of (XiXj): {00, 01, 10, 11}, and

s̄ = (OSs1+OP s2+OT s3 +OQs4)/M is the weighted average score. The following theorem

shows the convexity of the trend test.

62

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

O
C2

χ2 1(X
iX

j, Y
)

Figure 4.1: Convexity Example

Lemma 4.3.2. Given the values of OA, OB, OC , OD, OP , OQ, the Cochran-Armitage test for

trend z2 is a convex function of (Oc2 , Od2).

Proof. Observe that the Oc1 is a linear function of Oc2 , and Od1 is a linear function of Od2 .

The values of p, si (i ∈ {1, 2, 3, 4}), and s̄ are fixed. Thus the trend statistic z2 is a quadratic

function of the two variables (Oc2 , Od2). This completes the proof.

Suppose that the range of Oc2 is [lc2 , uc2], and the range of Od2 is [ld2 , ud2]. For any convex

function, its maximum value is attained at one of the vertices of it convex domain (Boyd and

Vandenberghe (2004)). Thus, from Lemmas 4.3.1 and 4.3.2, we have the following theorem.

Theorem 4.3.3. Given the values of OA, OB, OC , OD, OP , OQ, for chi-square test, G-test,

and entropy-based test, the maximum value of T1(XiXjY) is attained when Oc2 = lc2 or

Oc2 = uc2 . The maximum value of T2(XiXjY) is attained when Od2 = ld2 or Od2 = ud2 . The

maximum value of Cochran-Armitage test z2 is attained when (Oc2 , Od2) takes one of the four

values in {(lc2 , ld2), (lc2 , ud2), (uc2 , ld2), (uc2 , ud2)}.

Therefore, we can develop an upper bound of the two-locus test if we identify the range

of Oc2 and Od2 . For example, suppose that the value of vector (OA, OB, OC , OD, OP , OQ) is

(6, 10, 10, 6, 7, 6). In Figure 4.1, we plot function χ2
1(XiXj, Y). The blue stars represent the

63

values of χ2
1(XiXj, Y) when Oc2 takes different values. Clearly, χ2

1(XiXj, Y) is a convex

function of Oc2 , and its upper bound is determined by the two end points of the range of Oc2 .

Since Oc2 is always less than OC , in this example, the default range of Oc2 is [0, OC] = [0, 10].

Typically, the actual range of Oc2 is tighter, as indicated by the red dotted lines, which leads

to a tighter upper bound of the test value. In the next section, by examining the contingency

tables, we derive a set of constraints that determine the range of Oc2 and Od2 .

4.4 Constraints on Observed Values

Oa1 +Oa2 = OA

Ob1 +Ob2 = OB

Oc1 +Oc2 = OC

Od1 +Od2 = OD

Oa1 +Oc1 = OS

Oa2 +Oc2 = OP

Ob1 +Od1 = OT

Ob2 +Od2 = OQ

=⇒

1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1

Oa1

Oa2

Ob1

Ob2

Oc1

Oc2

Od1

Od2

=

OA

OC

OB

OD

OP

OQ

Figure 4.2: Linear equation system derived from contingency tables

Oa1

Oa2

Oc1

Oc2

 =

OA −OP

OP

OC

0

−

−1
1
1
−1

Oc2 , and

Ob1

Ob2

Od1

Od2

 =

OB −OQ

OQ

OD

0

−

−1
1
1
−1

Od2 .

Figure 4.3: Relations between observed values in the contingency table of two-locus test

From the contingency tables shown in Table 4.1, we can develop a set of equations, as

shown in Figure 4.2 at the left side of the arrow sign. Although there are 8 equations, the rank

of the linear equation system is 6. We choose 6 linear equations to form a full rank system.

The matrix multiplication form of these 6 equations is shown in Figure 4.2 at the right side of

the arrow sign. The reason for choosing the 6 equations is two-fold. First, these 6 equations

64

can be used to derive the range of Oc2 and Od2 . Second, the values of OA, OB, OC , OD are

determined by the single-locus contingency table in Table 4.1(a). The remaining two values,

OP and OQ, only depend on the SNP-pair’s genotype. It enables us to index the SNP-pairs by

their (OP , OQ) values to effectively apply the upper bound.

From these 6 equations, we obtain the relationships between the observed values shown in

Figure 4.3. Since all observed values in the contingency table must be greater or equal to 0,

the ranges of Oc2 and Od2 are stated in Theorem 5.5.1.

Theorem 4.4.1. Given the values of OA, OB, OC , OD, OP , OQ, the ranges of Oc2 and Od2 are

 max{0, OP −OA} ≤ Oc2 ≤ min{OP , OC};

max{0, OQ −OB} ≤ Od2 ≤ min{OQ, OD}.

Given OA, OB, OC , OD, OP , OQ, the values of Oa1 , Oa2 , Oc1 are determined by Oc2 , the

values of Ob1 , Ob2 , Od1 are determined by Od2 . So all values in the contingency table for two-

locus test in Table 4.1(c) depend only on Oc2 and Od2 . The maximum value, ub(T (XiXj, Y)),

is attained when Oc2 and Od2 take the boundary values shown in Theorems 5.3.1 and 5.5.12.

Continuing with the example in Figure 4.1, the value of (OA, OB, OC , OD, OP , OQ) is

(6, 10, 10, 6, 7, 6). From Theorem 5.5.1, the range of Oc2 is [1, 7], as indicated by the red lines.

The upper bound of χ2
1(XiXj, Y) is reached when Oc2 = 1.

Note that the upper bound value only depends on OA, OB, OC , OD, OP , OQ. This prop-

erty allows us to group and index SNP-pairs by their genotypes so that the upper bound can

effectively estimated and applied to prune the search space.

2For entropy-based statistic, so far we have focused on the joint entropy −H(XiXjY). Note that, given the
values of OA, OB , OC , OD, OP , OQ, the upper bound for the mutual information I(XiXj , Y) can also be easily
derived.

65

Figure 4.4: Indexing SNP-pairs

4.5 Applying the Upper Bound

Theorems 5.3.1 and 5.5.1 show that the upper bound value of the two-locus test T (XiXj, Y)

(for any one of the four tests discussed in Section 4.3) is determined by the values of

OA, OB, OC , OD, OP , OQ. As shown in Table 4.1, these values only depend on the contin-

gency table for the single-locus test T (Xi, Y) and the contingency table for the SNP-pair

(XiXj)’s genotype. This allows us to group the SNP-pairs and index them by their geno-

types. The idea of building such indexing structure has also been explored in FastANOVA

and FastChi. For completeness, in this section, we first discuss how to apply the upper bound

to find the significant SNP-pairs. Then we show that a similar idea can be used to find the

critical values Tα using permutation test.

For every Xi (1 ≤ i ≤ N), let AP (Xi) = {(XiXj)|i + 1 ≤ j ≤ N} be the SNP-pairs

with Xi being the SNP of lower index value. We can index the SNP-pairs in AP (Xi) by their

(OP , OQ) values in a 2D array, referred to as Array(Xi). Note that OP is the number of 1’s

in Xj when Xi takes value 0. OQ is the number of 1’s in Xj when Xi takes value 1.

For example, suppose that there are 13 individuals in the dataset. SNP Xi consists of 8 0’s

and 5 1’s. Thus for the SNP-pairs in AP (Xi), the possible values of OP are {0, 1, 2, · · · , 8}.

The possible values of OQ are {0, 1, 2, · · · , 5}. Figure 4.4 shows the 6× 9 array, Array(Xi),

66

whose entries represent the possible values of (OP , OQ) for the SNP-pairs (XiXj) in AP (Xi).

Each entry of the array is a pointer to the SNP-pairs (XiXj) having the corresponding (OP , OQ)

values. For example, all SNP-pairs in AP (Xi) whose (OP , OQ) value is (5,4) are indexed by

the entry (5,4) in Figure 4.4.

It is obvious that for any SNP-pair (XiXj) ∈ AP (Xi), if the upper bound value of the

two-locus test is less than the critical value, i.e., ub(T (XiXj, Y)) < Tα, then this SNP-pair

cannot be significant since its actual test value will also be less than the threshold. Only the

SNP-pairs whose upper bound values are greater than the threshold need to be evaluated for

their test values. We refer to such SNP-pairs as candidates.

Recall that from Theorems 5.3.1 and 5.5.1, the upper bound of two-locus test value is a

constant for given OA, OB, OC , OD, OP , OQ. Given SNP Xi and phenotype Y , the values of

OA, OB, OC , OD are fixed. For SNP-pairs (XiXj) ∈ AP (Xi), once we index them by their

(OP , OQ) values as shown in Figure 4.4, we can identify the candidate SNP-pairs by accessing

the indexing structure: For each entry of the indexing structure, we calculate the upper bound

value. If the upper bound value is greater than or equal to the critical value Tα, then all SNP-

pairs indexed by this entry are candidates and subject to two-locus tests. The SNP-pairs whose

upper bound values are less than the critical value are pruned without any additional test.

Suppose that there are m 1’s and (M − m) 0’s in SNP Xi. The maximum size of the

indexing structure Array(Xi) is m(M −m). Usually, the number of individuals M is much

smaller than the number of SNPs N . Therefore, the number of entries in the indexing structure

is also much smaller than N . Thus there must be a group of SNP-pairs indexed by the same

entry. Since all SNP-pairs indexed by the same entry have the same upper bound value, the

indexing structure enables us to calculate the upper bound value for this group of SNP-pairs

together.

So far, we have discussed how to use the indexing structure and the upper bound to prune

the search space to find significant SNP-pairs for a given critical value Tα. The problem

of finding this critical value Tα is much more time consuming than finding the significant

67

SNP-pairs since it involves large scale permutation test. The indexing structure Array(Xi)

can be easily incorporated in the algorithm for permutation test. The key property is that the

indexing structure Array(Xi) is independent of the phenotype. Once Array(Xi) is built, it

can be reused in all permutations. Therefore, building the indexing structure Array(Xi) is

only a one time cost. The permutation procedure is similar to that of finding significant SNP-

pairs. The only difference is that the threshold used to prune the search space is a dynamically

updated critical value found by the algorithm so far. The overall procedure of our algorithm

COE is similar to that in FastANOVA and FastChi. An important difference is that COE

utilizes the convexity of statistical tests and is applicable to all four statistics. We omit the

pseudo code of the algorithm here.

Property 4.5.1. The indexing structure Array(Xi) can be applied in computing the upper

bound value for all four statistical tests, i.e., chi-square test, G-test, mutual information, and

trend test.

The correctness of Property 4.5.1 relies on the fact that the upper bound is always a func-

tion of OA, OB, OC , OD, OP , OQ, regardless of the choice of test. All SNP-pairs having the

same (OP , OQ) value will always share a common upper bound. This property shows that

there is no need to rebuild the indexing structure if the users want to switch between different

tests. It only needs to be built once and retrieved for later use.

The time complexity of COE for permutation test is O(N2M + KNM2 + CM), where

N is the number of SNPs, M is the number of individuals, K is the number of permutations,

and C is the number of candidates reported by the algorithm. Experimental results show that

C is only a very small portion of all SNP-pairs. A brute force approach has time complexity

O(KN2M). Note that N is the dominant factor, since M ≪ N . The space complexity of

COE is linear to the size of the dataset. The derivation of the complexity is similar to that

shown for FastANOVA and FastChi.

68

0.010.02
Type I error threshold

brute force approach

2 4 6

x 10
4

10
1

10
2

10
3

10
4

10
5

Number of SNPs

Ru
nt

im
e

(s
ec

.)

(b)

brute force approach
FastChi
COE_Chi

100 200 300 400 500
10

1

10
2

10
3

10
4

10
5

Number of permutations

Ru
nt

im
e

(s
ec

.)

(c)

brute force approach
FastChi
COE_Chi

28 30 32 34 36
10

1

10
2

10
3

10
4

Number of individuals

Ru
nt

im
e

(s
ec

.)

(d)

brute force approach
FastChi
COE_Chi

Figure 4.5: Performance comparison of the brute force approach, FastChi, and COE Chi

4.6 Experimental Results

In this section, we present extensive experimental results on evaluating the performance of the

COE algorithm. COE is implemented in C++. We use COE Chi, COE G, COE MI, COE T

to represent the COE implementation for the chi-square test, G-test, mutual information, and

trend test respectively. The experiments are performed on a 2.4 GHz PC with 1G memory

running WindowsXP system.

Dataset and Experimental Settings: The SNP dataset is extracted from a set of combined

SNPs from the 140k Broad/MIT mouse dataset and 10k GNF mouse dataset. This merged

dataset has 156,525 SNPs for 71 mouse strains. The missing values in the dataset are imputed

using NPUTE (Roberts et al. (2007)). The phenotypes used in the experiments are simulated

binary variables which contain half cases and half controls. This is common in practice,

where the numbers of cases and controls tend to be balanced. If not otherwise specified,

the default settings of the experiments are as follows: #individuals = 32, #SNPs=10,000,

#permutations=100. There are 62,876 unique SNPs for these 32 strains.

4.6.1 Performance Comparison

Figure 4.5 shows the runtime comparison of the brute force two-locus chi-square test, the

FastChi algorithm Zhang et al. (2009), and the COE implementation of chi-square test, COE Chi,

69

0.010.020.030.040.05
Type I error threshold

(a)

brute force approach
COE_G

0.010.020.030.040.05
10

2

10
3

10
4

Type I error threshold

R
un

tim
e

(s
ec

.)

(b)

brute force approach
COE_MI

0.010.020.030.040.05
10

1

10
2

10
3

10
4

Type I error threshold

R
un

tim
e

(s
ec

.)

(c)

brute force approach
COE_T

Figure 4.6: Performance comparison of the brute force approach, COE G, COE MI, and
COE T

FastChi COE Chi COE G COE MI COE T
0.05 87.59% 95.70% 95.84% 95.80% 99.90%
0.04 87.98% 96.11% 96.23% 96.23% 99.92%

α 0.03 88.12% 96.32% 96.40% 96.43% 99.93%
0.02 89.43% 98.18% 98.31% 98.28% 99.96%
0.01 90.03% 98.59% 98.65% 98.62% 99.98%
10k 90.03% 98.59% 98.65% 98.62% 99.98%
23k 91.52% 99.08% 99.50% 99.13% 99.99%

SNPs 36k 91.39% 99.03% 99.43% 99.09% 99.99%
49k 91.39% 99.04% 99.43% 99.09% 99.99%
62k 91.22% 99.04% 99.43% 99.09% 99.99%
100 90.03% 98.59% 98.65% 98.62% 99.98%
200 91.79% 99.03% 99.42% 99.08% 99.99%

Perm. 300 91.90% 99.04% 99.43% 99.09% 99.99%
400 91.91% 99.04% 99.43% 99.09% 99.99%
500 91.99% 99.04% 99.43% 99.09% 99.99%
28 91.05% 98.77% 99.83% 99.06% 99.99%
30 91.23% 98.83% 98.94% 99.06% 99.98%

Indiv. 32 90.03% 98.59% 99.65% 98.62% 99.98%
34 91.54% 98.80% 99.74% 98.84% 99.97%
36 89.08% 97.94% 95.74% 93.55% 99.94%

Table 4.2: Pruning effects of FastChi and COE using four different statistics

in permutation test under various settings. Note that the runtime reported in this section are

based on the complete executions of all methods including the one time cost for building

the indexing structures. Figure 4.5(a) shows the comparison when the Type I error threshold

varies. The y-axis is in logarithm scale. COE Chi improves the efficiency of two-locus epis-

70

12/20 14/18 16/16 18/14 20/12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

case/control ratio
pr

un
in

g
ra

tio

FastChi
COE_Chi

Figure 4.7: FastChi v.s. COE Chi

tasis detection by one order of magnitude over FastChi (which was specifically designed for

two-locus chi-square test), and two orders of magnitude over the brute force approach. Fig-

ure 4.5 (b), (c), and (d) demonstrate similar performance improvements of COE Chi over the

other two approaches when varying number of SNPs, number of permutations, and number of

individuals respectively. This is consistent with the pruning effect of the upper bounds which

will be presented later.

Figure 4.6(a) shows the runtime comparison between the brute force two-locus G-test and

COE G when varying the type I error threshold. The runtime of COE G dramatically reduces

as the type I error threshold decreases. COE G is one to two orders magnitudes faster than the

brute force approach. Similar performance improvement can also be observed for COE MI

and COE T in Figures 4.6(b) and 4.6(c). Note that for these three tests, we also have similar

results when varying other settings.

4.6.2 Pruning Power of the Upper Bound

Table 4.2 shows the percentage of SNP-pairs pruned under different experimental settings for

the four statistical tests. We also include the pruning ratio of FastChi in the table for com-

parison. From the table, most of the SNP-pairs are pruned by COE. Note that COE Chi has

more pruning power than FastChi. The upper bound used in FastChi is derived by loosening

the observed values for the events in two-locus test without using the convexity property. The

71

tighter upper bound of COE Chi demonstrates the strength of convex optimization in finding

the maximum values. In addition, the upper bound derived by applying convex optimization

is not only more effective, but also more robust for unbalanced datasets.

Figure 4.7 shows the pruning effectiveness of FastChi and COE Chi when the ratio of

case/control varies. It is clear that the pruning power of FastChi is weakened when the

case/control ratio becomes unbalanced. Therefore, FastChi is not very effective for unbal-

anced case-control datasets. In contrast, COE Chi maintains a steady pruning percentage un-

der different case/control ratios. Thus it remains effective for the unbalanced datasets. Similar

behaviors of COE are also observed in the other three statistical tests.

4.7 Conclusion

In this chapter, we present a general approach COE that support genome-wide disease asso-

ciation study with a wide range of statistics composing of convex terms. We use four com-

monly used statistics as prototypes: chi-square test, G-test, entropy-based test, and Cochran-

Armitage trend test. COE guarantees optimal solution and performs two orders of magnitude

faster than brute force approaches.

The performance gain is attributed to two main contributions of COE. The first is a tight

upper bound estimated using convex optimization. It has much higher pruning power than

any upper bounds used in previous methods such as FastChi. As a result, COE Chi is an

order of magnitude faster than FastChi. Moreover, COE serves as a general platform for two-

locus epistasis detection, which eliminates the need of designing specific pruning methods

for different statistical tests. Recall that any observed value in a two-locus test is a function

of Oc2 and Od2 for given OA, OB, OC , OD, OP , OQ. Let x = Oc2 and y = Od2 . A wide

spectrum of functions of x and y are convex (Boyd and Vandenberghe (2004)), which include

all linear and affine functions on x and/or y, exponential terms eax (a ∈ R), powers xa (a ≥ 1

or a ≤ 0), negative logarithm − log x, maximum max{x, y}. In addition, many operations

72

preserve convexity. For example, if f(x, y) is a convex function, and g(x, y) is an affine

mapping, then f(g(x, y)) is also a convex function. Please refer to (Boyd and Vandenberghe

(2004)) for further details.

The second source of performance improvement is from indexing SNP-pairs by their geno-

types. Applying this indexing structure, we can compute a common upper bound value for

each group. The indexing structure is independent of the phenotype permutations and the

choice of statistical test . We can eliminate redundant computation in permutation test and

provide the flexibility of supporting multiple statistical tests on the fly.

73

Chapter 5

The TEAM Algorithm

5.1 Introduction

FastANOVA and FastChi are specifically designed for ANOVA test and chi-square test re-

spectively. The COE algorithm is a more general approach that is applicable to all convex

tests. Although these methods provide promising alternatives for GWAS, there are two major

drawbacks that limit their applicability. First, they are designed for relatively small sample

size and only consider homozygous markers (i.e., each SNP can be represented as a {0, 1}

binary variable). In human studies, however, the sample size is usually large and most SNPs

contain heterozygous genotypes and are coded using {0, 1, 2}. These make existing meth-

ods intractable. Second, although the family-wise error rate (FWER) and false discovery rate

(FDR) are both widely used for error controlling (Dudoit and van der Laan (2008); Westfall

and Young (1993)), previous methods are designed only to control the FWER. From a compu-

tational point of view, the difference in the FWER and the FDR controlling is that, to estimate

FWER, for each permutation, only the maximum two-locus test value is needed. To estimate

the FDR, on the other hand, for each permutation, all two-locus test values must be computed.

Please refer to Section 5.2 for further details of the FWER and the FDR controlling.

In this chapter, we propose an exhaustive algorithm, TEAM1, for efficient epistasis detec-

1TEAM stands for Tree-based Epistasis Association Mapping.

tion in human GWAS. TEAM has several advantages over previous methods.

• It supports to both homozygous and heterozygous data.

• By exhaustively computing all two-locus test values in permutation test, it enables both

FWER and FDR controlling.

• It is applicable to all statistics based on contingency tables. Previous methods either are

designed for specific tests or require the test statistics satisfy certain property.

• Experimental results demonstrate that TEAM is more efficient than existing methods

for large sample study.

TEAM incorporates permutation test for proper error controlling. The key idea is to in-

crementally update the contingency tables of two-locus tests. We show that only four of the

eighteen observed frequencies in the contingency table need to be updated to compute the test

value. In the algorithm, we build a minimum spanning tree (Cormen et al. (2001)) on the

SNPs. The nodes of the tree are SNPs. Each edge represents the genotype difference between

the two connected SNPs. This tree structure can be utilized to speed up updating process for

the contingency tables. A majority of the individuals are pruned and only a small portion are

scanned to update the contingency tables. This is advantageous in human study, which usually

involves thousands of individuals. Extensive experimental results demonstrate the efficiency

of the TEAM algorithm.

5.2 The Problem

Suppose that the genotype dataset consists of N SNPs {X1, · · · , XN} for M individuals

{S1, · · · , SM}. We adopt the convention of using 0 and 2 to represent the homozygous ma-

jority and homozygous minority genotype respectively, and 1 to represent the heterozygous

case. Let Y0 ∈ {0, 1} be the phenotype of interest (0 for controls and 1 for cases). Let

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

X1 0 0 0 1 2 0 2 0 2 0 0 2 0 0 0 2 0 2 1 0 0 2 2 0
X2 2 2 0 2 0 2 0 2 2 2 2 0 1 0 0 2 0 2 1 0 2 2 2 2
X3 2 0 0 2 0 2 0 1 2 1 2 2 1 0 2 2 0 2 1 2 2 2 2 2
X4 0 2 2 0 0 0 2 1 0 2 2 0 0 0 0 0 0 0 1 0 1 2 0 0
X5 0 2 2 0 0 0 1 1 2 1 2 0 0 0 0 0 0 2 1 0 2 2 0 2
X6 0 2 2 0 0 0 2 1 0 1 2 0 0 0 0 2 0 2 1 0 2 2 0 0

Y1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0
Y2 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0
Y3 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0
Y4 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
Y5 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1

Table 5.1: An example dataset

Y ′ = {Y1, · · · , YK} be the set of K permutations of Y0. In each permutation Yk, the pheno-

type labels are randomly reassigned to individuals with no replacement.

Table 5.1 shows an example dataset of SNPs and phenotype permutations. The geno-

type dataset consists of 6 SNPs {X1, · · · , X6} for 24 individuals {S1, · · · , S24}. Individuals

{S1, · · · , S12} are cases and {S13, · · · , S24} are controls. The phenotype is permuted 5 times,

i.e., Y ′ = {Y1, · · · , Y5}.

Let T denote the statistical test to be used. Specifically, we represent the test value of SNP

Xi and phenotype Yk (0 ≤ k ≤ K) as T (Xi, Yk), and represent the test value of SNP-pair

(XiXj) and Yk as T (XiXj, Yk). A contingency table, which records the observed values of

certain events, is the basis of many statistical tests. Table 5.2 shows contingency tables for the

single-locus test T (Xi, Yk) and T (Xj, Yk), genotype relationship between SNPs Xi and Xj ,

and two-locus test T (XiXj, Yk).

Because of the large number of hypotheses being tested, multiple testing problem has

received considerable attention in GWAS. Controlling the FWER and FDR are two widely

used approaches to control the error rate. The FWER is the probability of having at least

one false positive. The FDR is the expected proportion of false positives among rejected

hypotheses. Permutation test is the standard way to estimate the null distribution in both

approaches. Next, we briefly describe the typical procedures of the FWER and FDR control.

For statistical background of these approaches, please refer to Dudoit and van der Laan (2008);

Westfall and Young (1993) for details.

The FWER controlling procedure: For each permutation Yk ∈ Y ′, let TYk
represent the

76

(a) Contingency table for T (Xi, Yk)

Xi = 0 Xi = 1 Xi = 2 Total
Yk = 0 event A event B event E
Yk = 1 event C event D event F

Total M

(b) Contingency table for T (Xj , Yk)

Xj = 0 Xj = 1 Xj = 2 Total
Yk = 0 event G event H event I
Yk = 1 event J event L event O

Total M

(c) Contingency table for two SNPs Xi and Xj

Xi = 0 Xi = 1 Xi = 2 Total
Xj = 0 event S event T event R
Xj = 1 event P event Q event U
Xj = 2 event V event W event Z

Total M

(d) Contingency table for (XiXj) and Yk

Xi = 0 Xi = 1 Xi = 2 Total
Xj = 0 Xj = 1 Xj = 2 Xj = 0 Xj = 1 Xj = 2 Xj = 0 Xj = 1 Xj = 2

Yk = 0 event a1 event a2 event a3 event b1 event b2 event b3 event e1 event e2 event e3
Yk = 1 event c1 event c2 event c3 event d1 event d2 event d3 event f1 event f2 event f3

Total M

Table 5.2: Contingency tables for single-locus tests T (Xi, Yk), T (Xj, Yk), genotype relation
between (Xi, Xj), and two-locus test T (XiXj, Yk)

maximum test value among all SNP-pairs, i.e., TYk
= max{T (XiXj, Yk)|1 ≤ i < j ≤

N}. The distribution of {TYk
|Yk ∈ Y ′} is used as the null distribution. Given an error rate

threshold α, the critical value Tα is the αK-th largest value in {TYk
|Yk ∈ Y ′}. A SNP-pair

(XiXj) is considered significant if its test value with the original phenotype Y0 exceeds the

critical value, i.e., T(XiXj, Y0) ≥ Tα.

The FDR controlling procedure: Let PV represent the set of the pooled test values of

all permutation tests, i.e., PV = {T (XiXj, Yk)|1 ≤ i < j ≤ N, 1 ≤ k ≤ K}. The p-

value of test T (XiXj, Y0) can be calculated as p(T (XiXj, Y0)) = |{t ≥ T (XiXj, Y0)|t ∈

PV }|/|PV |, i.e., the proportion of the values in PV that are no less than T (XiXj, Y0). Let

p(1) ≤ p(2) · · · ≤ p(N(N−1)/2) be the ordered p-values of the original tests. Let v = max{u :

p(u) ≤ uα
N(N−1)/2

}. The classic Benjamini-Hochberg method rejects all hypotheses for which

the corresponding p-values are in the set {p(1), p(2), · · · , p(v)}.

In the FWER controlling, we only need the maximum test value of each permutation. To

control the FDR, all test values need to be computed to estimate the p-value of the original

tests. Previous algorithms, such as FastChi and COE, prune the SNP-pairs having weak asso-

77

ciations. Thus they cannot be used to control the FDR. Our algorithm, TEAM, exhaustively

computes the test values of all SNP-pairs for every permutation. It can be used for both the

FWER and the FDR controlling. In this paper, we mainly focus on the problem of permuta-

tion test, since it is the most computationally intensive procedure. Testing SNP-pairs using

original phenotype can be treated as a special case of permutation test.

5.3 Free Variables in the Contingency Table of Two-Locus

Test

Let Eevent and Oevent denote the expected frequency and observed frequency of an event in

Table 5.2. Note that each event represents a subset of individuals. For example, event D is a

subset of individuals satisfying (Xi = 1∧Yk = 1), and OD represents its observed frequency,

i.e., OD = |D|. Using the dataset in Table 5.1, consider X3 and Y4 (i.e., i = 3 and k = 4), we

have D = {S10, S13, S19}, and OD = 3.

Many statistics, such as chi-square test and likelihood ratio test are defined as functions

of the observed frequencies in contingency tables. For any test T based on the contingency

table, to calculate the two-locus test value T (XiXj, Yk), one needs all eighteen observed

frequencies for the events in the two-locus contingency table shown in Table 5.2(d). The

following theorem shows that we only need four of the eighteen values to calculate the two-

locus test value given the three contingency tables in Tables 5.2(a), (b), and (c).

Theorem 5.3.1. For SNPs Xi, Xj , and permutation Yk, given the observed frequencies in Ta-

bles 5.2(a), (b), and (c), specifically, the values of {OD, OF , OJ , OL, OO, OS, OP , OV , OT , OQ, OW , OR,

OU , OZ}, all of the observed frequencies in Table 5.2(d) can be determined if the values of

{Od2 , Od3 , Of2 , Of3} are known.

Proof. From the four contingency tables shown in Table 5.2, it is easy to get the following

linear equation system:

78

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

Oa1

Oa2

Oa3

Ob1

Ob2

Ob3

Oc1

Oc2

Oc3

Od1

Od2

Od3

Oe1

Oe2

Oe3

Of1

Of2

Of3

=

OA

OB

OC

OD

OE

OF

OG

OH

OI

OJ

OL

OO

OS

OP

OV

OT

OQ

OW

OR

OU

OZ

The rank of the above linear system is 14. We thus take 14 rows

{4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}, which form a full rank matrix. The row re-

duced echelon form of this non-redundant linear system is

79

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 OS −OW +OD +OF

0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 OP −OV

0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 OG −OU

0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 OT −OD

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 OQ

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 OH

0 0 0 0 0 0 1 0 0 0 −1 −1 0 0 0 0 −1 −1 OW −OD −OF

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 OV

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 OU

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 OD

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 OR −OF

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 OO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 OL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 OF

Thus we have the following solution:

80

Oa1

Oa2

Oa3

Ob1

Ob2

Ob3

Oc1

Oc2

Oc3

Od1

Oe1

Oe2

Oe3

Of1

=

OS −OW +OD +OF

OP −OV

OG −OU

OT −OD

OQ

OH

OW −OD −OF

OV

OU

OD

OR −OF

OO

OL

OF

−

1

−1

0

−1

1

0

−1

1

0

1

0

0

0

0

Od2−

1

0

−1

−1

0

1

−1

0

1

1

0

0

0

0

Od3−

1

−1

0

0

0

0

−1

1

0

0

−1

1

0

1

Of2−

1

0

−1

0

0

0

−1

0

1

0

−1

0

1

1

Of3

Clearly, only four variables {Od2 , Od3 , Of2 , Of3} are free. Once the values of these free

variables are known, the observed frequencies of remaining events in the two-locus contin-

gency table are also known.

Suppose that we have all the single-locus contingency tables, i.e., Tables 5.2(a) and (b).

Given a SNP-pair (Xi, Xj), Table 5.2(c) is fixed. Thus, from Theorem 5.3.1, for permutation

Yk, once we have the values of {Od2 , Od3 , Of2 , Of3}, T (XiXj, Yk) can be calculated accord-

ingly. In the following, we show that these values can be computed incrementally utilizing

a minimum spanning tree built on SNPs. We focus on the incremental process for Od2 . The

same process can be applied to update Od3 , Of2 , and Of3 . We first discuss how to update Od2

for a specific permutation. Then we show that the procedure can also handle all the permuta-

tions in a batch mode.

81

X1

X4

X5
X2

X6
X3

11

4

4

10

6

Figure 5.1: The minimum spanning tree built on the SNPs in the example dataset shown in
Table 5.1

0 → 1 1 → 0 0 → 2 2 → 0 1 → 2 2 → 1

(X3X2) ∅ ∅ {S2} {S12, S15, S20} {S8, S10} ∅
(X2X5) {S7} {S13} {S3} {S1, S4, S6, S16, S23} ∅ {S8, S10}
(X5X6) ∅ ∅ {S16} {S9, S24} {S7} ∅
(X6X1) {S4} {S8, S10} {S5, S9, S12, S23} {S2, S3, S11, S21} ∅ ∅
(X6X4) ∅ ∅ ∅ {S16, S18} {S10} {S21}

Table 5.3: Genotype difference between the connected SNPs in the minimum spanning tree
shown in Figure 5.1

5.4 Building the Minimum Spanning Tree on the SNPs

To build a minimum spanning tree Cormen et al. (2001) on the SNPs, let the SNPs

{X1, X2, · · · , XN} be the nodes and SNP-pairs (XiXj) (i ̸= j) be the (undirected) edges. For

each edge (XiXj), we denote its weight (the number of individuals having different genotypes

in the two SNPs) as w(XiXj). A spanning tree T is a tree that spans (connects) all SNPs.

Let V (T) be its node set and E(T) be its edge set. A minimum spanning tree is a spanning

tree whose weight WT =
∑

w(XiXj), where (XiXj) ∈ E(T), is no greater than any other

spanning tree. Figure 5.1 shows the minimum spanning tree built using the example dataset in

Table 5.1. The number on each edge represents its weight. For example, in X3 and X2, there

are 6 individuals, {S2, S8, S10, S12, S15, S20}, having different genotypes.

For any individual, the genotype difference from Xi to Xj can be any one of the six

combinations, i.e., 0 → 1 (indicating that the genotype in Xi is 0, and the genotype in Xj is

1), 1→ 0, 0→ 2, 2→ 0, 1→ 2, and 2→ 1. Using the example dataset in Table 5.1, Table 5.3

shows the genotype differences between the connected two SNPs in the minimum spanning

82

(a) DK(X3) without empty entries

individual id. phenotype permutations
S8 {Y2, Y3}
S10 {Y2, Y3, Y4, Y5}
S13 {Y1, Y2, Y4, Y5}
S19 {Y3, Y4}

(b) Updating Od2(X3X5) from Od2(X3X2)

Y1 Y2 Y3 Y4 Y5

Od2 (X3X5) after initializing 1 1 1 2 1
Od2 (X3X5) after updating for S1 1 1 1 2 1
Od2 (X3X5) after updating for S8 1 2 2 2 1
Od2 (X3X5) after updating for S10 1 3 3 3 2
Od2 (X3X5) after updating for S13 0 2 3 2 1

Table 5.4: Updating Od2(X3X5) from Od2(X3X2) for all permutations in a batch mode

tree in Figure 5.1. We use (XiXj){u→v} (u, v ∈ {0, 1, 2}) to represent the set of individuals

whose genotype in Xi is u and genotype in Xj is v. For example, (X3X2){1→2} = {S8, S10},

and (X3X2){1→2}∪{0→2} = {S2, S8, S10}.

5.5 Incrementally Updating Observed Frequency

In this section, we discuss how to update Od2 by utilizing the minimum spanning tree. For

clarity, from now on, we use d2(XiXj, Yk) to denote the specific event d2 for the SNP-pair

(XiXj) and permutation Yk, i.e., the subsets of individuals satisfying (Xi = 1 ∧ Xj = 1 ∧

Yk = 1). We use Od2(XiXj, Yk) to represent its observed frequency, i.e., Od2(XiXj, Yk) =

|d2(XiXj, Yk)|. This notation also applies to other events in the contingency tables shown

in Table 5.2. For example, D(Xi, Yk) represents the subset of individuals satisfying (Xi =

1 ∧ Yk = 1), and OD(Xi, Yk) = |D(Xi, Yk)|.

Next we show that for any SNP-pair (XiXj) and an edge (XjX
′
j) ∈ E(T), given Od2(XiXj, Yk),

how to update the value for Od2(XiX
′
j, Yk). From the contingency tables in Table 5.2, it is

easy to see that

Od2(XiXj, Yk) = |D(Xi, Yk) ∩Q(Xi, Xj)|,

and

Od2(XiX
′
j, Yk) = |D(Xi, Yk) ∩Q(Xi, X

′
j)|.

The following theorem shows that, given Od2(XiXj, Yk) and D(Xi, Yk), using the genotype

83

difference associated with edge (XjX
′
j), we can get the value of Od2(XiX

′
j, Yk).

Theorem 5.5.1. For any SNP-pair (XiXj) and an edge (XjX
′
j) ∈ E(T), we have Od2(XiX

′
j, Yk) =

Od2(XiXj, Yk) + |D(Xi, Yk) ∩ (XjX
′
j){0→1}∪{2→1}|- |D(Xi, Yk) ∩ (XjX

′
j){1→0}∪{1→2}|.

Proof. It suffices to show that

D(Xi, Yk) ∩Q(Xi, X
′
j)

= [D(Xi, Yk)∩Q(Xi, Xj)]∪[D(Xi, Yk)∩((XjX
′
j){0→1}∪{2→1})]−[D(Xi, Yk)∩((XjX

′
j){1→0}{1→2})].

This is the same as to show that

Q(Xi, X
′
j) = Q(Xi, Xj) ∪ ((XjX

′
j){0→1}∪{2→1})− ((XjX

′
j){1→0}{1→2}).

This is clearly true, hence completes the proof.

Example 5.5.2. Using the example dataset in Table 5.1, let i = 3, j = 2, j′ = 5, and k = 4,

i.e., we consider SNP-pair (X3X2), permutation Y4, and the edge (X2X5) in Figure 5.1. Sup-

pose that we already know that Od2(X3X2, Y4) = 2, and event D(X3, Y4) = {S10, S13, S19}.

From Table 5.3, we have (X2X5){0→1}∪{2→1} = {S1, S8, S10}, and (X2X5){1→0}∪{1→2} =

{S13}. Thus according to Theorem 5.5.1, we have Od2(X3X5, Y4) = Od2(X3X2, Y4) +

|{S10}| − |{S13}| = 2. Note that by this way, we get the value of Od2(X3X5, Y4) from

Od2(X3X2, Y4)without scanning all individuals.

So far, we have discussed the procedure to update the value of Od2(XiX
′
j, Yk) from

Od2(XiXj, Yk) for a specific phenotype permutation Yk. This procedure can be easily ex-

tended to handle all the permutations. From Theorem 5.5.1, for any permutation Yk, to update

the value of Od2(XiX
′
j, Yk) from Od2(XiXj, Yk), we need the value of D(Xi, Yk) and the

genotype difference associated with edge (XjX
′
j). Note that the genotype difference is fixed

once the minimum spanning tree is built. Next, we discuss how to compute D(Xi, Yk) for all

permutations {Y1, Y2, · · · , YK} in a batch mode in detail.

84

Let DK(Xi) be a list of M entries, with each entry corresponding to an individual. For

each individual Sm, we record in DK(Xi)[m] the set of phenotypes satisfying (Xi = 1∧Yk =

1). For example, consider the dataset in Table 5.1, we have that DK(X3)[8] = {Y2, Y3}. Table

5.4(a) shows the entries of DK(X3). Only non-empty entries, i.e., DK(Xi)[m] ̸= ∅, are shown

in the table. It is easy to see that, for any Xi and Yk, we can get D(Xi, Yk) from DK(Xi) as

follows: D(Xi, Yk) is the set of individuals whose corresponding entries in DK(Xi) contain

Yk as an element, i.e.,

D(Xi, Yk) = {Sm|Yk ∈ DK(Xi)[m]}. (5.1)

For example, using the example dataset in Table 5.1, from Table 5.4(a), we know that D(X3, Y4) =

{S10, S13, S19}.

For SNP-pair (XiXj), let Od2(XiXj) = [Od2(XiXj, Y1), Od2(XiXj, Y2), · · · , Od2(XiXj, YK)].

From Theorem 5.5.1 and Equation (5.1), for any SNP-pair (XiXj) and an edge (XjX
′
j) ∈

E(T), we can get Od2(XiX
′
j) from Od2(XiXj) using DK(Xi) and the genotype difference

information associated with edge (XjX
′
j). First, initialize Od2(XiX

′
j) = Od2(XiXj). Next,

for every m (1 ≤ m ≤M), if Yk ∈ DK(Xi)[m], we update Od2(XiX
′
j) as follows:

 increase Od2(XjX
′
j, Yk) if Sm ∈ (XjX

′
j){0→1}∪{2→1};

decrease Od2(XjX
′
j, Yk) if Sm ∈ (XjX

′
j){1→0}∪{1→2}.

Example 5.5.3. Following Example 5.5.2, we consider the two SNP-pairs (X3X2) and (X3X5),

with (X2X5) being an edge of the tree in Figure 5.1. Assume that DK(X3) is as shown in Ta-

ble 5.4(a), and Od2(X3X2) = [1, 1, 1, 2, 1]. From Table 5.3, the genotype difference on edge

(X2X5) is (X2X5){0→1}∪{2→1} = {S1, S8, S10}, and (X2X5){1→0}∪{1→2} = {S13}. For indi-

vidual Sm ∈ {S1, S8, S10} (Sm ∈ {S13}), we need to increase (decrease) the corresponding

values in Od2(X3X2) according to DK(X3). Table 5.4(b) shows the updating process for

Od2(X3X5). Initially, Od2(X3X5) = Od2(X3X2). For individual S1, since its correspond-

ing entry in DK(X3), DK(X3)[1] = ∅, Od2(X3X5) remains unchanged. For individual S8,

85

DK(X3)[8] = {Y2, Y3}, we increase the values of Od2(X3X5, Y2) and Od2(X3X5, Y2) by 1.

Similarly, we increase and decrease the values in Od2(X3X5) according to DK(X3) for the

remaining individuals. The final result is Od2(X3X5) = [0, 2, 3, 2, 1].

Note that to get the value of Od2(XiXj), using a brute force approach, we need to scan a

(2+K)×M matrix consisting of the genotype of (XiXj) and permutations {Y1, Y2, · · · , YK}

for the M individuals. In the previous example, to compute the value of Od2(X3X5), the cost

of the brute force approach is (3 + 5) × 24 = 192. Using our approach, the total number of

updates is |DK(X3)[8]| + |DK(X3)[10]| + |DK(X3)[13]| = 10, which is significantly less

than the cost of the brute force approach. More formally, given DK(Xi), the time complexity

of updating Od2(XiX
′
j) from Od2(XiXj) is O(w(XjX

′
j)K).

The procedure of updating Od2(XiX
′
j) from Od2(XiXj) can also be applied to update the

remaining free variables Od3(XiXj), Of2(XiXj), Of3(XiXj). Note that, to update Of2(XiXj),

Of3(XiXj), we will need FK(Xi), which can be defined in a similar way to that of DK(Xi):

for each individual Sm, we record in FK(Xi)[m] the set of phenotypes satisfying (Xi =

2 ∧ Yk = 1).

5.6 The TEAM Algorithm

TEAM examines SNP pairs through a double loop, where the outer loop visits a leaf node at

a time, and the inner loop traverse the rest of the tree, starting from the parent node of the

leaf. Let Od2d3f2f3(XiXj) = [Od2(XiXj), Od3(XiXj), Of2(XiXj), Of3(XiXj)]. Let L(T) ∈

V (T) be the set of leaf nodes of the minimum spanning tree T . For any leaf node Xi ∈ L(T),

let AP (Xi) = {(XiXj)|i ̸= j,Xj ∈ V (T)}. Let Xa be the parent node of Xi. Since all SNPs

are connected in T , once we have Od2d3f2f3(XiXa), we can update all Od2(XiXj) ∈ AP (Xi)

by enumerating the edges in E(T) in a breath-first traversal starting from Xa.

Example 5.6.1. Consider the tree in Figure 5.1. Let Xi = X3 and Xa = X2. We have

AP (X3) = {(X3X2), (X3X5), (X3X6), (X3X1), (X3X4)}. Starting from X3, a breadth first

86

Algorithm 4: The TEAM Algorithm
Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype permutations

Y ′ = {Y1, Y2, · · · , YK}
Output: T (XiXj, Yk) for all possible two-locus tests

compute and store all single-locus contingency tables;1

build minimum spanning tree T ;2

for every Xi ∈ L(T), do3

compute DK(Xi) and FK(Xi);4

compute Od2d3f2f3(XiXa);5

compute T (XiXa, Yk) (1 ≤ k ≤ K) and output;6

EnumStack.push(Od2d3f2f3(XiXa));7

while EnumStack ̸= ∅ do8

Od2d3f2f3(XiXj) = EnumStack.pop();9

for every X ′
j = adj(Xj) do10

update Od2d3f2f3(XiX
′
j) from Od2d3f2f3(XiXj);11

compute T (XiX
′
j, Yk) (1 ≤ k ≤ K) and output;12

EnumStack.push(Od2d3f2f3(XiX
′
j));13

end14

end15

delete Xi from T ;16

end17

search will enumerate edges {(X2X5), (X5X6), (X6X1), (X6X4)}, which can be utilized to

update Od2d3f2f3(XiXj) for the SNP-pairs in AP (X3).

Once the SNP-pairs in AP (Xi) have been processed, we delete Xi from L(T), and repeat

the same process for another leaf node. The overall algorithm is summarized in Algorithm 4.

Given the SNPs X ′ = {X1, X2, · · · , XN}, phenotype permutations Y ′ = {Y1, Y2, · · · , YK},

we first enumerate and store all single-locus contingency tables. We then build the minimum

spanning tree T , with genotype difference associated with each edge. For leaf node Xi, we

compute DK(Xi), FK(Xi), and Od2d3f2f3(XiXa). This information is then used to incremen-

tally update Od2d3f2f3(XiX
′
j) for all SNP-pairs in AP (Xi). After processing AP (Xi), we

delete Xi from T and repeat the procedure for the remaining leaf nodes.

Time Complexity: The time complexity on generating all single-locus contingency ta-

bles and building the minimum spanning tree is O(MNK) and O(MN2) respectively. The

87

time complexity to compute DK(Xi) and FK(Xi) for all SNPs is O(MNK). The total up-

dating cost for all AP (Xi) is O(WT NK). Thus the overall time complexity of TEAM is

O(MNK + MN2 + WT NK). Note that the complexity of the brute force approach is

O(MN2K). The number of SNPs N is the dominant factor.

Space Complexity: The dataset size is O(M(N + K)). The space needed to store all

single-locus contingency tables is O(NK). The size of tree T is O(WT). The size of DK(Xi)

and FK(Xi) is O(MK). Thus the total space complexity of TEAM is O(M(N+K)+K(N+

M) +WT).

Note that we can do incremental computation using any exploration order. TEAM utilizes

minimum spanning tree to update the contingency tables. The reason is that the cost of such

update depends on the difference between the SNPs. The more similar they are, the lower the

cost. Since minimum spanning tree has the minimum weight WT over all spanning trees, using

it to guide the computation leads to optimal efficiency. It is not absolutely necessary to use a

minimum spanning tree. As long as the tree is close to a minimum spanning tree, we should

expect good performance. An implementation issue in building the minimum spanning tree

is that we need O(N2) space to store all pair-wise differences between the SNPs. In practice,

we divide the SNPs into sub-groups of equal size. A minimum spanning tree is built for each

group. Then the sub-trees are merged to a larger tree by randomly connecting leave nodes.

The tree built in this way is an approximate minimum spanning tree. Our focus in this paper

is not to build an optimal minimum spanning tree, but to use the tree structure for efficient

updating. Please refer to (Eisner (1997); Graham and Hell (1985)) for surveys on minimum

spanning tree construction. In the experiments, we show the performance evaluation using

different spanning trees.

88

1

10

100

1000

10000

100000

1000000

10k 15k 20k 25k 30k

ru
nt

im
e

(s
ec

.)

number of SNPs

Brute force
TEAM Overall

Updating contingency tables
Calculating test values

Building MST

(a) varying the number of SNPs

1

10

100

1000

10000

100000

1000000

 200 250 300 350 400

ru
nt

im
e

(s
ec

.)

number of individuals

Brute force
TEAM Overall

Updating contingency tables
Calculating test values

Building MST

(b) varying the number of individuals

1

10

100

1000

10000

100000

1000000

 100 150 200 250 300 350 400 450 500

ru
nt

im
e

(s
ec

.)

number of permutations

Brute force
TEAM Overall

Updating contingency tables
Calculating test values

Building MST

(c) varying the number of permutations

1

10

100

1000

10000

100000

1000000

100/300 150/250 200/200 250/150 300/100

ru
nt

im
e

(s
ec

.)

case/control ratio

Brute force
TEAM Overall

Updating contingency tables
Calculating test values

Building MST

(d) varying the case/contral ratio

Figure 5.2: Comparison between TEAM and the brute-force approach on human datasets
under various experimental settings

5.7 Experimental Results

In this section, we present extensive experimental results on the performance of the TEAM

algorithm. TEAM is implemented in C++. We first evaluate the efficiency of TEAM. Then

we present the findings of epistasis detection in simulated human genome-wide study.

5.7.1 Efficiency Evaluation

We use both simulated human datasets and real mouse datasets for the efficiency evaluation

experiments. The experiments are performed on a 2.6 GHz PC with 8G memory running

Linux system.

Human data: The human datasets are generated by the simulator Hapsample (Wright et al.

(2007)), which is publicly accessible from the website http://www.hapsample.org.

We evaluate the performance of TEAM by comparing it with the brute force approach since

there is no previous algorithm readily applicable to human datasets. Note that the brute-force

89

TEAM Updating by Random Tree Updating by Linear Tree
Settings Tree weight Pruning ratio Tree weight Pruning ratio Tree weight Pruning ratio

10k 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
SNPs 20k 18.692% 93.981% 52.881% 88.895% 52.851% 89.390%

30k 19.314% 93.802% 53.011% 88.823% 52.946% 89.380%
200 16.641% 94.376% 53.358% 88.749% 53.179% 89.205%

Individuals 300 17.342% 94.209% 53.343% 88.730% 53.142% 89.213%
400 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
100 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%

Permutations 300 17.721% 94.105% 53.326% 88.724% 53.158% 89.212%
500 17.721% 94.104% 53.326% 88.724% 53.158% 89.212%

100/300 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%
Case/control ratio 200/200 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%

300/100 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%

Table 5.5: The tree weight and the proportion of the individuals pruned by TEAM on the
human datasets

 100

 1000

 10000

 100000

10k 15k 20k 25k 30k

ru
n
ti

m
e

(s
ec

.)

number of SNPs

Brute Force
COE

TEAM

(a) varying the number of SNPs

 10

 100

 1000

 10000

 30 35 40 45 50 55 60 65 70

ru
n
ti

m
e

(s
ec

.)

number of individuals

Brute Force
COE

TEAM

(b) varying the number of individuals

Figure 5.3: Comparison between TEAM, COE, and the brute force approach on mouse
datasets under various experimental settings

approach is very time consuming, we use a moderate number of SNPs and permutations in

the experiments so that the brute-force approach can finish in a reasonable amount of time.

Unless otherwise specified, the default experimental setting is the following: #individuals =

400, #SNPs=10,000, #permutations=100, and the case/control ratio is 1. These experimental

settings are chosen to demonstrate the efficiency gain offered by TEAM over the brute-force

implementation. TEAM can handle much larger datasets. The performance of TEAM is

expected to follow the same trends presented in this section.

TEAM contains three major components: building the minimum spanning tree, updat-

ing the contingency tables, and calculating the actual test values. Note that TEAM can be

applied to any statistics defined on the contingency table. With different statistics, the only

difference in runtime would be caused by the last component calculating the statistics. In the

90

experiments, we choose chi-square test as our statistic. Figure 5.2 shows the running time

comparison of TEAM and the brute-force approach using different experimental settings. The

y-axis is in logarithm scale. In these figures, we also show the detailed runtime of these three

components.

Table 5.5 shows the percentage of individuals pruned by TEAM under different exper-

imental settings. Since in theory we can update the contingency tables in any exploration

order, in the table, we also show the pruning effect of using a random spanning tree and a

linear spanning tree to guide the updating process. The random spanning tree is generated

by starting from a randomly picked SNP and growing edges that connect the remaining SNPs

in a random order. The linear tree is a single path connecting all SNPs sequentially. From

the table, we can see that TEAM prunes more effectively than the other two updating meth-

ods. In the table, we also show the ratio of the tree weights and the size of the SNP dataset,

i.e., WT /(M × N), which is a determining factor of the pruning ratio. Note that varying the

number of permutations and the case/control ratio does not effect the tree being built.

Figures 5.2(a) depicts the runtime comparison when varying the number of SNPs. TEAM

is more than an order of magnitude faster than the brute-force approach. Among the three

components of TEAM, the procedures on building the minimum spanning tree and calculat-

ing test values only take a small portion of the total runtime of TEAM. The runtime of TEAM

is dominated by the cost of updating the contingency tables. As will be shown later, TEAM

prunes most of the individuals when updating the contingency tables. In Figures 5.2(b), 5.2(c),

and 5.2(d), we can also observe a similar one to two orders of magnitude speedup of TEAM

over the brute force approach when varying the number of individuals, the number of permu-

tations, and the case/control ratio.

Mouse data: The mouse datasets is extracted from a set of combined SNPs from the

10k GNF mouse dataset and the 140k Broad/MIT mouse dataset. This merged dataset has

156,525 SNPs for 71 mouse strains. The missing values in the dataset are imputed using

NPUTE (Roberts et al. (2007)). We compare TEAM and COE algorithm, which is specifi-

91

Dataset Significant SNP-Pair Chromosome and Location FDR FWER
(rs768529, rs3804940)∗ (chr1: 51946762, chr3: 7520545) 0.00067 0
(rs768529, rs756084) (chr1: 51946762, chr3: 7536149) 0.00067 0

1 (rs768529, rs779742) (chr1: 51946762, chr3: 7558058) 0.00067 0
(rs768529, rs1872393) (chr1: 51946762, chr3: 7546236) 0.00067 0.004
(rs768529, rs779744) (chr1: 51946762, chr3: 7555121) 0.00067 0.004
(rs768529, rs6764561) (chr1: 51946762, chr3: 7514592) 0.00067 0.004

2 (rs10495728, rs521882)∗ (chr2: 22811773, chr8: 16688797) 0.004 0.004
3 (rs1016836, rs2783130)∗ (chr10: 31935845, chr13: 79068161) 0 0
4 (rs648519, rs1012273)∗ (chr11: 98972936, chr16: 58525067) 0.002 0.002

Table 5.6: Identified significant SNP-pairs in the simulated human GWAS datasets

cally designed for association study in mouse datasets. The default experimental setting is as

follows: #individuals = 70, #SNPs=10,000, #permutations=100, and the case/control ratio is

1.

Figure 5.3 shows the comparison results. In the figure, we also plot the runtime of the

brute force approach. Figure 5.3(a) shows the runtime of the three approaches when varying

the number of SNPs. It is clear that both TEAM and COE are orders of magnitude faster

than the brute force approach. TEAM is about twice faster than COE. Figure 5.3(b) shows

the runtime comparison when varying the number of individuals. From the figure, COE is

more suitable for datasets having small number of individual. As the number of individuals

increases, the TEAM algorithm becomes more efficient than COE. Note that in human study,

the number of individuals usually ranges up to thousands, much larger than that in typical

mouse datasets.

5.7.2 Epistasis Detection in Simulated Human GWAS

In this section, we report the results of epistasis detection using simulated human GWAS

data generated by Hapsample. In total, we generate 4 datasets, each of which has 112,036

SNPs for 250 cases and 250 controls. In each dataset, a disease causal interacting SNP-pair is

embedded. The embedded SNP-pairs are: (rs768529, rs3804940) in dataset 1, (rs10495728,

rs521882) in dataset 2, (rs1016836, rs2783130) in dataset 3, and (rs648519, rs1012273) in

92

dataset 4. We use standard chi-square test with 500 permutations. Similar results can be

found by using likelihood-ratio test.

With an overall FDR threshold of 0.005, Table 5.6 shows the identified significant SNP-

pairs using TEAM. TEAM successfully identified the embedded SNP-pairs in all simulated

datasets. The embedded SNP-pairs are labelled with stars ”*”. The table shows the SNP loci

on the genome. For example, in dataset 1, we embed SNP-pair rs768529 and rs3804940,

which are located on chromosome 1 at position 51946762 base-pair and chromosome 3 at

7520545 base-pair respectively. The FWER for each reported SNP-pair is also shown. Note

that, for a SNP-pair, a FDR (or FWER) value of 0 indicates that permutation tests do not

generate any test value larger than value of the reported SNP-pair. In dataset 1, except for

the embedded SNP-pair (rs768529, rs3804940), 5 other SNP-pairs are also reported. One of

the embedded SNP, rs768529, is involved in all the 5 pairs. A closer look at the other SNPs

in the reported SNP-pairs shows that they are all adjacent to the embedded SNP rs3804940.

The normalized linkage disequilibrium (Lewontin and Kojima (1960)) between rs3804940

and the other 5 SNPs are D′(rs3804940, rs756084)= 1, D′(rs3804940, rs779742)= 0.477,

D′(rs3804940, rs1872393)= 0.442, D′(rs3804940, rs779744)= 0.442, and D′(rs3804940, rs6764561)=

0.454, indicating there is strong linkage disequilibrium between them.

5.8 Conclusion

The large number of SNPs genotyped in the genome-wide scale poses great computational

challenges in two-locus epistasis detection. The permutation test used for proper error rate

controlling makes the problem computationally even more intensive. In this chapter, we pro-

pose an efficient algorithm, TEAM, for epistasis detection human GWAS. TEAM has the

same strength as the recently developed epistasis detection methods, i.e., it guarantees to find

the optimal solution. Compared to existing methods, TEAM is more efficient in large sam-

ple study, and offers broader applicability. Existing methods designed for homozygous SNPs

93

cannot be used for human data where SNPs are commonly heterozygous. TEAM, on the other

hand, can handle both homozygous and heterozygous SNPs. Since it exhaustively enumer-

ate all SNP-pairs, TEAM can be used to control the FWER and the FDR, both of which are

widely used in controlling error in GWAS; while previous methods only control the FWER.

Existing methods need to exam the formulation of the statistic. TEAM is focused on effi-

ciently updating contingency tables rather than any specific statistic. It can therefore be use

for any statistical test based on contingency table regardless of its formulation.

94

Chapter 6

Discussion

Driven by the advancement of cost-effective and high-throughput genotyping technologies,

genome-wide association studies (GWAS) have revolutionized the field of genetics by pro-

viding new ways to identify genetic factors that influence phenotypic traits. Most of these

studies have used a single-locus analysis strategy, in which each genetic variants is tested in-

dividually for association with a phenotype. However, many common diseases are complex

traits and caused by interactions between loci. The identification of epistasis, or gene-gene

interaction, is thus much preferable over a single-locus approach. Complete genome-wide

epistasis detection has previously been considered intractable due to several thorny problems

in both statistical and computational aspects. The statistical challenges are to develop effec-

tive tests to capture gene-gene interactions, and to properly control error rates due to the large

number of correlated tests. The computational challenge is the intensive computation burden

of searching for interactions between millions of variants spread across the entire genome.

These challenges interact with each other and must be handled together.

This thesis presents several algorithms that enable efficient and exhaustive epistasis de-

tection in the whole-genome. A summary of these methods can be found in Table 6.1. The

first is the FastANOVA algorithm. It incorporates a large permutation test for family-wise

error rate (FWER) controlling. By indexing the genetic variants and utilizing an upper bound

on the test statistic, FastANOVA dramatically prunes the search space and reduces redun-

Algorithm Trait Genotype Error Type Sample Size Supported Test
FastANOVA quantitative binary FWER less than a hundred ANOVA test

FastChi binary binary FWER less than a hundred chi-square test
COE binary binary FWER less than a hundred convex test

TEAM binary any FWER & FDR hundreds to thousands test based on contingency tables

Table 6.1: Algorithms and their corresponding problem settings for epistasis detection in
genome-wide association study

dant computation. Consequently, FastANOVA only needs to examine a very small portion

of the variants without the risk of missing any significant interaction. The principle used in

FastANOVA can also be applied to the chi-square test, which is widely used in case-control

studies. Based on the observation that many commonly used statistics are convex functions,

a unified algorithm COE is developed, which can be applied to all convex statistics. A more

general algorithm TEAM is also presented. TEAM is applicable to any statistical test that is

based on a contingency table. It is suitable for large sample human studies and supports the

control of FWER and false discovery rate (FDR) , both of which are effective methods for

controlling error rates in GWAS. Extensive experimental results demonstrate the efficiency of

the proposed algorithms.

96

Bibliography

Balding, D. J. (2006). A tutorial on statistical methods for population association studies.
Nature Reviews Genetics, 7(10):781–791. 10, 57

Bohringer, S., Hardt, C., Miterski, B., Steland, A., and Epplen, J. T. (2003). Multilocus
statistics to uncover epistasis and heterogeneity in complex diseases: revisiting a set of
multiple sclerosis data. European Journal of Human Genetics, 11:573–584. 57

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
58, 63, 72, 73

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Monterey, Calif., U.S.A.: Wadsworth, Inc. 10

Carlborg, O., Andersson, L., and Kinghorn, B. (2000). The use of a genetic algorithm for
simultaneous mapping of multiple interacting quantitative trait loci. Genetics, 155(4):2003–
2010. 11

Carlson, C. S., Eberle, M. A., Kruglyak, L., and Nickerson, D. A. (2004). Mapping complex
disease loci in whole-genome association studies. Nature, 429:446–452. 4

Chi, P., Duggal, P., Kao, W., and et al. (2006). Comparison of snp tagging methods using
empirical data: association study of 713 snps on chromosome 12q14.3-12q24.21 for asthma
and total serum ige in an african caribbean population. Genetic Epidemiology, 30(7):609–
619. 11

Churchill, G. A. and Doerge, R. W. (1994). Empirical threshold values for quantitative trait
mapping. Genetics, 138(3):963–971. 5

Cordell, H. J. (2009). Detecting genegene interactions that underlie human diseases. Nature
Reviews Genetics, 10:392–404. 1, 4

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algo-
rithms. MIT Press and McGraw-Hill. 75, 82

Curtis, D., North, B. V., and Sham, P. C. (2001). Use of an artificial neural network to detect
association between a disease and multiple marker genotypes. Annals of Human Genetics,
65:95–107. 10

Doerge, R. W. (2002). Multifactorial genetics: Mapping and analysis of quantitative trait loci
in experimental populations. Nature Reviews Genetics, 3:43–52. 10

Dong, C. and et al. (2008). Exploration of genegene interaction effects using entropy-based
methods. European Journal of Human Genetics, 16:229–235. 57, 61

97

Dudoit, S. and van der Laan, M. J. (2008). Multiple testing procedures with applications to
genomics. Springer. 74, 76

Eisner, J. (1997). State-of-the-art algorithms for minimum spanning trees: A tutorial discus-
sion. Manuscript,University of Pennsylvania. 88

Evans, D. M., Marchini, J., Morris, A. P., and Cardon, L. R. (2006). Two-stage two-locus
models in genome-wide association. PLoS Genetics, 2: e157. 11

Graham, R. L. and Hell, P. (1985). On the history of the minimum spanning tree problem.
Ann. History Comput., 7:43–57. 88

Halperin, E., Kimmel, G., and Shamir, R. (2005). Tag snp selection in genotype data for
maximizing snp prediction accuracy. In Proc. ISMB. 11

Hoh, J. and Ott, J. (2003). Mathematical multi-locus approaches to localizing complex human
trait genes. Nature Reviews Genetics, 4:701–709. 10

Hoh, J., Wille, A., Zee, R., Cheng, S., Reynolds, R., Lindpaintner, K., and Ott, J. (2000).
Selecting snps in two-stage analysis of disease association data: a model-free approach.
Annals of Human Genetics, 64:413–417. 11

Ideraabdullah, F., Casa-Espern, E., and et al. (2004). Genetic and haplotype diversity among
wild-derived mouse inbred strains. Genome Research, 14(10a):1880–1887. 1

Lewontin, R. C. and Kojima, K. (1960). The evolutionary dynamics of complex polymor-
phisms. Evolution, 14(4):458–472. 93

Liu, H. and Motoda, H. (1998). Feature selection for knowledge discovery and data mining.
Boston: Kluwer Academic Publishers. 11

Mielke, P. W. and Berry, K. J. (2001). Permutation Methods: A Distance Function Approach.
Springer. 14

Miller, R. G. (1981). Simultaneous Statistical Inference. Springer Verlag New York. 4

Moore, J. H., Gilbert, J. C., Tsai, C.-T., F-T. Chiang, T. H., Barney, N., and White, B. C.
(2006). A flexible computational framework for detecting, characterizing, and interpreting
statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of
Theoretical Biology, 241(2):252–261. 11

Musani, S., Shriner, D., Liu, N., Feng, R., Coffey, C., Yi, N., Tiwari, H., and Allison, D.
(2007). Detection of gene x gene interactions in genome-wide association studies of human
population data. Human Heredity, 63(2):67–84. 1

Nakamichi, R., Ukai, Y., and Kishino, H. (2001). Detection of closely linked multiple quan-
titative trait loci using a genetic algorithm. Genetics, 158(1):463–475. 11

98

Nelson, M. R., Kardia, S. L., Ferrell, R. E., and Sing, C. F. (2001). A combinatorial par-
titioning method to identify multilocus genotypic partitions that predict quantitative trait
variation. Genome Research, 11:458–470. 11

Pagano, M. and Gauvreau, K. (2000). Principles of Biostatistics. Pacific Grove, CA: Duxbury
Press. 2, 9, 14, 57, 59

Pesarin, F. (2001). Multivariate Permutation Tests. Wiley. 14

Province, M. A., Shannon, W. D., and Rao, D. C. (2001). Classification methods for con-
fronting heterogeneity. Advances in Genetics, 42:273–286. 10

Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., and Moore,
J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among
estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genet-
ics, 69:138–147. 11

Roberts, A., McMillan, L., Wang, W., Parker, J., Rusyn, I., and Threadgill, D. (2007). Infer-
ring missing genotypes in large snp panels using fast nearest-neighbor searches over sliding
windows. In Proc. ISMB. 26, 51, 69, 91

Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I. W., Chen, H., Roix,
J. J., Kathiresan, S., Hirschhorn, J. N., Daly, M. J., Hughes, T. E., Groop, L., Altshuler, D.,
Almgren, P., Florez, J. C., Meyer, J., Ardlie, K., Bengtsson Bostrm, K., Isomaa, B., Lettre,
G., Lindblad, U., Lyon, H. N., Melander, O., Newton-Cheh, C., Nilsson, P., Orho-Melander,
M., Rstam, L., Speliotes, E. K., Taskinen, M.-R., Tuomi, T., Guiducci, C., Berglund, A.,
Carlson, J., Gianniny, L., Hackett, R., Hall, L., Holmkvist, J., Laurila, E., Sjgren, M.,
Sterner, M., Surti, A., Svensson, M., Svensson, M., Tewhey, R., Blumenstiel, B., Parkin,
M., DeFelice, M., Barry, R., Brodeur, W., Camarata, J., Chia, N., Fava, M., Gibbons, J.,
Handsaker, B., Healy, C., Nguyen, K., Gates, C., Sougnez, C., Gage, D., Nizzari, M.,
Gabriel, S. B., Chirn, G.-W., Ma, Q., Parikh, H., Richardson, D., Ricke, D., and Purcell,
S. (2007). Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and
Triglyceride Levels. Science, 316(5829):1331–1336. 1, 5

Scuteri, A., Sanna, S., Chen, W.-M., and et al. (2007). Genome-wide association scan shows
genetic variants in the fto gene are associated with obesity-related traits. PLoS Genetics,
3(7):1200–1210. 5

Sebastiani, P., Lazarus, R., Weiss, S. T., Kunkel, L. M., Kohane, I. S., and Ramoni, M. F.
(2003). Minimal haplotype tagging. PNAS, 100(17):9900–9905. 11

Segr, D., DeLuna, A., Church, G. M., and Kishony, R. (2005). Modular epistasis in yeast
metabolism. Nature Genetics, 37:77–83. 4

Sherriff, A. and Ott, J. (2001). Applications of neural networks for gene finding. Advances in
Genetics, 42:287–297. 10

99

The Wellcome Trust Case Control Consortium (2007). Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447:661–678.
1

Thomas, D. C. (2004). Statistical methods in genetic epidemiology. Oxford Univeristy Press,
Oxford. 57

Weedon, M., Lettre, G., Freathy, R., and et al. (2007). A common variant of hmga2 is associ-
ated with adult and childhood height in the general population. Nature Genetics, 39:1245–
1250. 5

Westfall, P. H. and Young, S. S. (1993). Resampling-based Multiple Testing. Wiley, New
York. 74, 76

Wright, F. A., Huang, H., Guan, X., Gamiel, K., and et al. (2007). Simulating association
studies: a data-based resampling method for candidate regions or whole genome scans.
Bioinformatics, 23(19):2581–2588. 89

Zhang, H. and Bonney, G. (2000). Use of classification trees for association studies. Genetic
Epidemiology, 19:323–332. 10

Zhang, X., Pan, F., Xie, Y., Zou, F., and Wang, W. (2010). COE: a general approach for effi-
cient genome-wide two-locus epistatic test in disease association study. Journal of Compu-
tational Biology, 17(3):401–415. 7

Zhang, X., Zou, F., and Wang, W. (2008). FastANOVA: an efficient algorithm for genome-
wide association study. In Proc. KDD. 6, 59

Zhang, X., Zou, F., and Wang, W. (2009). FastChi: an efficient algorithm for analyzing gene-
gene interactions. In Proc. PSB. 7, 35, 59, 69

Zhao, J., Boerwinkle, E., and Xiong, M. (2005). An entropy-based statistic for genomewide
association studies. Am J Hum Genet, 77:27–40. 57, 61

100

