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ABSTRACT
Lindsay Laura Dubbs: Persistence and potential causes of reduced;reetnStimption
under elevated CQOn a temperate forest
(Under the direction of Stephen C. Whalen)

Impacts of the projected increase in atmospherig @Obpther biogeochemical cycles
are uncertain. In a two-year study, Phillips et al. (2001) reported a 16 to 30%sdenreat
consumption of atmospheric GHy soils in C@-enriched plots in a temperate loblolly pine
(Pinus taeda) forest. Consumption by upland soils accounts for ~30 TgyCHnd is the
only terrestrial sink for atmospheric GHvhich is a greenhouse gas with radiative forcing
second only to C® However, it is uncertain whether decreased atmosphetic CH
consumption represents a transient or sustained response of forest-soil systievated
CO..

This research focused on field observations aimed at investigatingethgtistand
persistence of reduced atmospheric;€bhsumption by temperate forest soils under
elevated CQat the same study site. It further investigates the causes of floasesdy
CH, oxidizing and producing communities through field and laboratory experiments.

Rates of soil-atmosphere ¢Exchange were repeatedly measured over 3 y from
permanently established sampling sites at the Free Air Carbon Dioxid&=jFS#€ in the
Duke Forest, where C&enriched plots of a loblolly pine forest are maintained at
approximately 200 mL T above ambient concentrations (380 mit) Lwhile control plots

are exposed to ambient atmospheres. Reduced net atmosphgcenStimption persisted

in CO,-enriched plots, showing annual declines of 19, 10 and 8% relative to control plots.



This study and previous work give a nearly continuous 8 y record of reduced net
atmospheric Ckiconsumption in C@-enriched plots that suggests this is likely a sustained
negative feedback to increasing atmospherig. CO

Causitive factors for the observed decrease in ngtcGhsumption under elevated
CO, were difficult to identify because of high spatial and temporal variahilitgicrobial
activity and limited ability to collect soil samples. However, higher soiktare and
increased incidence and rates of Qibduction in C@-enriched plots, along with transient
inhibition by plant exudates and low overall soil diffusivity, begin to explain redutes &
CH,4 consumption and increased rates of,@kbduction that result in long-term reduction in

net CH, consumption in these soils.
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CHAPTER 1: INTRODUCTION

Elevated CO, and temperate forests

The present-day atmospheric £&@ncentration of approximately 380 mL* L
(NOAA 2008), exceeds the highest concentration measured in ice core saomlégfiore
the Industrial Revolution by almost 100 mL* (Barnola et al. 2003). The atmospheric
concentration of C@is expected to continue to increase, mainly as a result of fossil fuel
emissions and destruction of vegetation (Forster et al. 2007). Models project that
atmospheric C@concentrations, by the end of the present century, will exceed the pre-
industrial concentration by up to 270% (Friedlingstein et al. 2006). A rising atmaspheri
CO, concentration is of concern because it is a long-lived greenhouse gas with aeradiati
forcing of 1.66 W rif, exceeding the radiative forcing of all other trace atmospheric gases
that control climate (Forster et al. 2007). Increasing atmospherés@DBo of significance
because it is continuously exchanged between the atmosphere, the ocean, andttia terre
biosphere through biogenic processes such as photosynthesis and respiralgsim¢fge
1997). Rates of photosynthesis and respiration are further controlled by tempardture
water availability, and changes in the concentrations of &0 other greenhouse gases are
expected to elicit changes in air temperature and the hydrologic cychredhaary
regionally (Denman, K. L. et al. 2007). While the atmospheric concentration aniveadia
forcing of CQ are well understood (Forster et al. 2007), the impacts of thar@dOced

changes in atmospheric composition and climate on whole ecosystems and their atenpone



are less clear. An understanding of ecosystem responses at all levelstedeCQis
important to predicting future climates as they can, in turn, feed back to the biogexathemi
cycling of CQ and other greenhouse gases.

Attempts at understanding terrestrial biological and biogeochemgginses to
elevated C@have ranged in size and complexity from individual potted plants, to open-top
chambers containing a community of plants, to large scale manipulations of intac
ecosystems designed to embrace the entire suite of interactions and feadhaogplants,
microbial communities and elemental cycles. Each of these approachesobadeds
strengths and weaknesses. Physiological studies conducted in small and simf#d mode
ecosystems have been ineffective at capturing the complexity ofstemsgomponent
interactions and feedbacks. On the other end of the spectrum, free;@&xr&@nge (FACE)
technology has been employed to conduct ecosystem-level studies whergetaltior and
their surrounding ecosystems are exposed to elevateavilOminimal alterations of
surrounding microenvironments (Hendrey et al. 1999b). The primary criticism@EFA
experiments is that they are initiated by exposing an ecosystem to an abregse in
atmospheric C¢) which may not fully represent how ecosystem components will react to the
contemporary monotonic increase in the concentration gfi€the Earth’'s atmosphere
(Klironomos et al. 2005).

Nonetheless, FACE studies have proven to be useful in predicting ecosystem level
changes in a range of terrestrial environments, among them, tempegats. f@verall,
temperate forests exposed to elevated @hg FACE technology show increases in tree
growth and net primary production (DeLucia et al. 1999, Finzi et al. 2002, Hamiltan et al

2002, Delucia, E.H. et al. 2005, Norby et al. 2005, Finzi et al. 2006a), increased delivery of



C to roots, the forest floor and soils with a small increase in soil C storage gilal. 2000,
Matamala and Schlesinger 2000, Schlesinger and Lichter 2001, Jastrow et al. 2@@betic

al. 2005, Lichter et al. 2008, Pritchard et al. 2008, Hoosbeek and Scarascia-Mugnozza 2009),
increased soil respiration (King et al. 2004, Bernhardt et al. 2006, Taneva et al. 2806), a
variable changes in N cycling (Billings and Ziegler 2005, DeLucia 2005, €irati 2006a)

and soil community composition (Larson et al. 2002, Billings and Ziegler 200%d3iléind

Ziegler 2008). The initial increase in net primary production in response taeelévg is

predicted to slow with time as ecosystems become more N-limited (F&izi2&06b),

although N-limitation has yet to appear in temperate forests after €@eénrichment

using FACE technology (Finzi et al. 2006a).

However, observations (McMurtrie and Comins 1996) and ecosystem models
(Newton et al. 2001) indicate that biological responses to elevatedri€cibiogeochemical
feedbacks vary widely on different timescales. For instance, down-reguddti
photosynthesis has been commonly reported for-f€@ilized model and intact forest
ecosystems after as little as two years (reviewed by Amthor 199%ey etal. 2009). Over
longer time trajectories, initial response functions of all ecosystem canisoinom trees to
microbes can be expected to adjust physiologically and demographicallyeyerditime
scales through modification of biogeochemical feedbacks (Korner 2000). Thus short-and

long-term responses to elevated atmospherig @@t be distinguished.

Methane in the pedosphere

Methane is another greenhouse gas that is cycled through temperate fordsais and t

may be affected by C£nduced changes to the ecosystem. Methane is the simplest, most



reduced hydrocarbon, and a long-lived (9 to 15 y) greenhouse gas directly and yndirectl
contributing more than half of the radiative forcing of G@9 and 1.6 W i, respectively;
Schindell et al. 2005), through warming of the troposphere and its participation in the
stratospheric chemistry of ozone and water vapor formation (Wuebbles and 2a@zpe
The global atmospheric GHoncentration has more than doubled since the Industrial
Revolution to reach a present-day average concentration of ~1786 (NOAA 2008).
Methane is spatially and temporally variable in the troposphere, with a loigheentration
in the Northern Hemisphere where emissions are higher, and a minimgoodieg to
increased photochemical destruction during summer months.
While destruction by the hydroxyl radical in the atmosphere is the largkdos
CHa, the only known biological sink for GiHand the largest natural source of Gire sited
in the pedosphere. The balance between rates gp®@Huction (methanogenesis) and H
consumption (methanotrophy) determines whether a soil is a net source or sink for
atmospheric Clj and the strength of that source/sink. Methane production usually exceeds
consumption in wetland environments, accounting for about 69% of emissions to the
atmosphere from natural sources (Wuebbles and Hayhoe 2002). Conversely, upland soils
account for approximately 38 Tg of GHmoval from the atmosphere annually (Ridgwell et
al. 1999). This net biological sink in upland soils includes atmospherc@idumption by
methanotrophic bacteria in the largely oxic soil profile, and consumption of endogenously
produced ChH by methanogenic bacteria in anoxic microsites (reviewed by Conrad 1996).
Methanotrophic bacteria oxidize Gbr energy and as their sole source of carbon
(C) for biosynthesis (Hanson and Hanson 1996). Methanotrophs are responsible for both

‘high affinity oxidation’ of CH,, which occurs at CiHconcentrations close to atmospheric



concentrations (< 12 mL1), such as in upland soils, and ‘low affinity oxidation’, which
occurs at Chiconcentrations > 40 mL1, such as in the oxic zone of wetlands (Le Mer and
Roger 2001). Known controls on GEonsumption by low affinity methanotrophs are water
table position, which dictates the size of the oxic zone necessary for methapgtdpand
temperature (reviewed by Whalen 2005). Demonstrated controls on atmosgeric C
consumption by high affinity methanotrophs in upland soils include temperatuiel @2,
Castro et al. 1995, Phillips et al. 2001a, Steinkamp et al. 2001), soils nitrogen (Schnell and
King 1994, 1995), and rate of supply of £tid the subsurface aerobic zone of oxidation

(King and Adamsen 1992, Ddrr et al. 1993, King 1997).

Methane is produced by methanogenic Archaea through two different anaerobic
metabolic processes, acetate splitting and @@uction. Of all metabolic pathways,
methanogenesis yields the least free energy and methanogenic Amehggecally out-
competed by microbes with alternative metabolic pathways (Schledi8§é), except when
the redox potential is very low, such as in persistently anoxic wetlands. Tine@b$e
oxygen, which is related to soil moisture, the availability of labile orgaeicupsors,
temperature, and pH are known controls o, @kéduction. Accordingly, wetlands and
freshwater sediments, with low redox potentials and high levels of organer npattvide
natural environments favorable to methanogenesis. Low redox environmentsgiith hi
availability of labile organic matter have also been observed in aggrefjatag-ach forest
soils (Sexstone, A.J. et al. 1985, Ramakrishnan et al. 2000). Independent reports of anoxic
microzones (Sexstone, Alan J. et al. 1985, Zausig et al. 1993) and methanogenicmctivity i
macroscopically oxygenated soils (Yavitt et al. 1995, Saari et al. 1997, von Fischer and

Hedin 2002, Teh et al. 2005) indicate that simultaneouspZdtiuction and consumption are



occurring in some well-drained upland soils. Waterlogged aggregates supporétbcaliz

zones of methanogenesis and oxic sites support methanotrophy.

Observed effects of elevated CO, on CH,4 dynamicsin soils

Experiments examining the effect of elevated, ©® net CH emissions from
wetland soils unequivocally indicate that £&issions increase when wetland plants, plant
communities, or ecosystems are grown under elevatedi@&eases in CHemissions from
wetland soils ranged from 10.9% in a pot study of a rice cultivars grown undext Q0
mL L™ above ambient concentrations (Lou et al. 2008) to 60% when rice fields were exposed
to elevated C®(300 mL L* above ambient) in open-top chambers (Ziska et al. 1998). The
increase in net CHemissions was markedly similar to the range (38 to 58%) seen in a
Japanese rice paddy exposed to elevategvZIFACE technology (Inubushi et al. 2003).
Investigations of soil-atmosphere £ékchange in C@enriched ecosystems that
normally function as atmospheric ¢binks are few and show mixed results. Ambus and
Robertson (1999) reported a 22% reduction in, @hsumption by soils in modBbpulus
tremuloides (deciduous forest) ecosystem exposed to elevatedwiite Phillips et al.
(2001a) showed annual reductions in&dnsumption of 16% and 30% in g@migated
plots (200 mL ) relative to plots exposed ambient atmospheres in a 2 y study in a
temperate forest. In grasslands, Ineson et al. (1998) observed that edibessptheric Chi
uptake were three times greater in ambient €8s relative to C@enriched plots in an N-
fertilized sward ot olium perenne, but a subsequent investigation (Baggs and Blum 2004)

found a significant interaction between N fertilizer application rate ando@@tmospheric



CH,4 consumption. Further, Mosier et al. (2002) saw no impact gfl€@l on rates of CH
exchange between soils and the atmosphere in a semi-arid, mixed grassland cpmmunit
If the observed C@induced increases in net gEMissions are extrapolated to the
global scale, the wetland (natural and agricultural environments) sowgogtktm the
atmospheric Ckbudget will increase by 29 and 160 Tg annually with a 200 to 300"mL L
increase in atmospheric G@oncentration (Chen and Prinn 2005). At the same time, models
suggest that the annual forest sink of 24 Fdor CHs (Ridgwell et al. 1999) can be
expected to decline from between 3.8 to 7.2 Tg as atmosphesicd@€entrations increase
by 200 mL L*. However, more empirical data are needed before we can rely on these
predictions of changes in GHource and sink terms with increasing atmospherigc Qe
few extant observational records of < 2 y in forest ecosystems and < 3 ffandseare
insufficient to distinguish between transient and equilibrium responses ofdoarkstetland

ecosystems to elevated génd the impact of those responses on Grling.

Ecosystem-level changes that may influence CH,4 dynamicsin temperate forests

Several C@induced changes in temperate forest ecosystems may help to explain the
observed decline in net Gldonsumption under elevated €@hanges in plant productivity,
chemistry, and allocation of C under elevated, @pacts the quantity and quality of C in
the ecosystem, and the supply and availability of C to soil organisms. Some C compounds,
such as phenolics, tannins and terpenes inhibit metabolism and growth by some soil
microorganisms. Examples of enhanced delivery of C to the soil under elevatad CO
FACE studies include increased labile dissolved organic C in throughfahtéLiet al.

2000b), a small increase in the storage of C in forest soils (Matamala ansirgmr@000,



Lichter et al. 2008) and increased root productivity and mortality (Prdcttaal. 2008).

Enhanced root exudation of organic acids has been observed in a pot $udis ethinata

seedlings (Norby et al. 1987), while greater litter fall in both FACE ardocosm studies

(Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008, Liu et al. 2009) has beendeporte

under elevated CO Further, several researchers have seen changes in the abundance of

secondary C compounds in tissues and root exudates between plants grown under elevated

and ambient C&Pefuelas and Estiarte 1998, Verburg et al. 1999, Tuchman et al. 2002,

Billings and Ziegler 2005, Wetzel and Tuchman 2005a). Secondary C compounds, such as

phenolics and terpenes, inhibit metabolism and growth by broad groups of soil bacteria

(Souto et al. 2000), and specifically, methanotrophs (Amaral and Knowles 1997, 1998).
Reduced net CiHconsumption under elevated €@ temperate forests may also be

the result of higher soil moisture and the associated reduction in diffusion opaemaos

gases. Reduced gas diffusivity has been demonstrated (Dorr et al. 1993)dbrated of

CH, supply to the usual subsurface locus of,@kidation (e.g. Whalen and Reeburgh

1992), which is itself substrate-limited in well-drained forest soils, based aickine

considerations (Bradford et al. 2001). Thicker leaf litter in forests exposesl/atesl CQ

(Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008, Liu et al. 2009) can resulher hig

soil moisture because of reduced evaporation from the soil surface. &icssdsnoisture

in turn slows the transport of gases within the soil matrix (Suwa et al. 2004) t,la thect

link between increased soil moisture and diffusion-limitation of substrate t@xitHzers is

well established (Striegl 1993, Castro et al. 1995, Whalen and Reeburgh 1996). The excess

of litterfall under elevated C{additionally directly adds to diffusional resistance in soils,

and experimental litter removal has been shown to increase rates of net atirn@ghe



consumption in forest soils by as much as 43% (Dong et al. 1998, Brumme and Borken
1999).

Finally, reduced diffusion of atmospherig,®ecause of thicker leaf litter and higher
soil moisture, along with higher soil respiration (Bernhardt et al. 2006, Tanev2@0@),
and increased soil aggregation (Hoosbeek and Scarascia-Mugnozza 2009) untie eleva
CO, may increase the incidence of anoxic microsites where anaerobic micnelbéddolism,
such as methanogenesis, is possible. Since net@tsumption in upland soils is the net
effect of CH, consumption in the oxic soil profiles and gptoduction in anoxic microsites,
increased incidence of anoxic loci can alter this balance, reducing ratesQif,
consumption or shifting localized areas to net;Gburces. Horn and Smucker (2005) found
when soil aggregates were saturated with water, the redox potentialsgecrapidly,

making these soil aggregates transiently anoxic within an otherwise oxie profi

Research objectives

This is a follow-up study to previous research reported by Phillips et al. (2001@a
saw 16 and 30% annual reductions in rates of nqtd@Rsumption by soils in a temperate
forest enriched with elevated GOThe cause(s) of the decline in rates of nejf CH
consumption were not identified and the persistence of such a reduction beyond 2 y was not
determined. Therefore, the purpose of this dissertation is to a) determuhecédenet Chl
consumption by the same temperate forest soils is a sustained responseadd €léyand
b) identify factor(s) contributing to the observed (Phillips et al. 2001a) declimet CH
consumption under elevated ¢4 the Duke Forest FACE site. Possible controls on CH

consumption resulting from elevated £€ncentrations include negative impacts of altered



organic compounds from the surrounding forest ecosystem gxXitHzing communities,
higher soil moisture and an associated reduction in the supply aoGke zone of Cli
oxidation, or a shift in the rates of consumption and production hyoRigizing and
producing communities, respectively.

Model projections of future climates are strongly dependent on atmospheric
concentrations of radiatively and chemically important trace gases, s@i.aTherefore,
my intention is for this research to be used to improve model projections of futuageslim
with special attention to the feedbacks of elevated @Qecosystem components that

control CH, dynamics within forest soils.

Dissertation structure

This dissertation has been written as 5 chapters. Chapters 2 through 4 wene writt
with the intention of submitting each chapter as individual manuscripts. Chapters 1 and 5
introduce and conclude, respectively, the body of work. Chapter 2 shows an extension of the
previous 2 y record of soil-atmosphere exchange of i@IEO-enriched and free-air
(control) plots to establish the long-term response of atmosphegsic@&idumption under
elevated CQ@ In Chapter 2, | also investigate if treatment-wise differences or itirsin
environmental measures (soil moisture and temperature) account for reducsphenc
CH,4 consumption in C@enriched plots. Chapter 3 investigates the possibility of plant
exudate control on CHonsumption in soils from the same study site. Chapter 4 evaluates
the depth distribution of CHn the soil profile, the effective diffusivity of CHhrough the
soil, as well as the extent and activity of tdnsuming and producing communities at the

study site. This structure may result in some repetition in introductoryiahated

10



discussion of results.
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CHAPTER 2: REDUCED NET CH4 CONSUMPTION ISA SUSTAINED

RESPONSE TO ELEVATED CO, IN A TEMPERATE FOREST

Abstract

We compared, from 2004 through 2006, rates of soil-atmospherexChhange at
permanently established sampling sites in a temperate forest exposedeot gouitrol
plots; ~380 mL [*) or elevated (ambient + 200 mL*)L.CO; since August 1996. A total
of 880 observations showed net atmospherig €isumption (flux from the atmosphere
to the soil) from all static chambers most of the time at rates varging@02 mg rif d*
to 4.5 mg nif d*. However, we infrequently found net ¢production (flux from the soil
to the atmosphere) at lower rates, 0.01 nfgdthto 0.08 mg rif d*. For the entire study,
the mean rate of net Gldonsumption in control plots was higher than the mean for CO
enriched plots, 0.55 (+ 0.03 SEM) versus 0.51 (+ 0.03 SEM) ihd'mAnnual rates of
184, 196 and 197 mg fifor net CH consumption at control plots during the three
calendar years of this study were 19, 10 and 8% higher than comparable values for CO
enriched plots. Differences between treatments were significant (p <0.2604 and
2005 and nearly significant (p=0.10) in 2006. Volumetric soil water content was
consistently higher at G&enriched sites and a mixed effects model identified a
significant soil moisture x C£nteraction on net atmospheric ¢ebnsumption.

Increased soil moisture at G@nriched sites likely increases diffusional resistance of

surface soils and the frequency of anaerobic microsites supporting methesisgen



resulting in reduced rates of net atmospherig €hsumption. Our study extends
previous observations of reduced net atmosphericd@Rsumption at C&enriched
plots at this site to nearly 8 continuous years, suggesting that this is likedtamed

negative feedback to increasing atmospherig. CO

I ntroduction

The atmospheric concentration of £iihs more than doubled since the Industrial
Revolution to a present-day value of ~1782 [iL(Eorster et al. 2007). This
generalized increase is of concern becausgi€skcond only to C£among trace
atmospheric constituents with respect to radiative forcing and is also eltigraative in
the atmosphere, playing an important role in stratospheric and tropospheric ozone
chemistry (Denman et al. 2007).

The atmospheric concentration of £l@as increased parallel to that of £ENd is
projected to reach 730 mL'iby 2100, a level that exceeds the preindustrial
concentration by 260% (Forster et al. 2007). Although the unprecedented rate ef chang
in the atmospheric concentrations of £d CH over the last 250 y and the influences
on climate are well documented, the reasons for changing abundances areeipt entir
clear. Model projections of future climate are strongly dependent on atmaspheri
concentrations of radiatively and chemically important trace gasesingg€long-lived
greenhouse gases such as,@@d CH are dominated or supported by a biospheric
component responsible for the production and consumption of these gases, and for
modulating or mediating gas exchange between the pedosphere or hydrosphere and

atmosphere. However, improvements to current models require a comprehensive
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understanding of the linkage between biogeochemical processes and the tropoiphere w
respect to trace atmospheric constituents that influence climate, ared fdghtification

of the interactions between biogeochemical cycles that impact exchange gfaisase
between soil or water and the atmosphere.

The balance between rates of {oduction (methanogenesis) and consumption
(methanotrophy) determines whether a soil is a net source or sink for atmo§ptheric
Methane production usually exceeds consumption in wetland environments, accounting
for about 69% of emissions to the atmosphere from natural sources (Wuebbles and
Hayhoe 2002). In contrast, well-drained soils generally display net consumption,of CH
and constitute the only biological loss term in the atmospherich@Qtget. Little is
understood about the effect of elevated,©® biogeochemical processes affecting,CH
cycling dynamics. However, Phillips et al. (2001a) previously showed, in a shoi2term
y) study, annual reductions in Gleonsumption of 16% and 30% in gfmigated plots
relative to plots exposed to ambient atmospheres in an upland temperate fordat. Simi
investigations on shorter time scales (weeks to 2 mo) report reduced atno&bheri
consumption under elevated €@ a deciduous forest (Ambus and Robertson 1999), and
give mixed results for a grassland (Ineson et al. 1998, Baggs and Blum 2004), although
results in these studies include nitrogen % @@®ilization interactions. In contrast,

Mosier et al. (2002) reported no g{dduced response in atmospheric dnsumption
in a shortgrass steppe over 4 y.

A negative feedback on forest soil £eébnsumption by rising C{has important

implications for the atmospheric GHudget. Sink strength estimates for upland soils

center around 30 Tg'y or about 75% of the stratospheric sink of 40 Fgyenman et
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al. 2007). The few extant observational records of < 2 y, however, are insufficient to
distinguish between transient and equilibrium responses of forest ecosystéenatide
CO, or to determine whether the observed response will be sustained. Ecosystem models
indicate that plant/community responses to elevategd®@® biogeochemical feedbacks
can change over time (Newton et al. 2001). It is therefore critical tofyléreilong-
term trajectory of the sign and magnitude of change.

Our study was conducted in an aggrading temperate forest where exypairime
plots had been continuously fumigated with C@ur objectives were to: (a) extend a
previous 2 y record of soil-atmosphere exchange of i€IE0O,-enriched and free-air
(control) plots (Phillips et al. 2001a) to establish the long term responseaxdtenic
CH,4 consumption under elevated ¢;@nd (b) relate environmental measures (soil
moisture and temperature) to rates of gas exchange to determine ietreatise
differences or interactions in these well known controls on soil methanotrophy may
account for reduced atmospheric Sidnsumption in C@enriched plots. A firmer
understanding of the feedback between increasing atmospher@n@@he rates and
controls on CH oxidation in forest soils will aid in the refinement of process-based

models that contribute to larger efforts directed at predicting futuratds.

Methods

Field site
Field measurements were conducted at the Duke Forest (North Carolina; USA)

Free-Air CQ Enrichment (FACE) experiment sited in an even-aged stand of loblolly

pine Pinustaeda L.) planted in 1983. Soils are clay loam, Ultic Hapludalf's of the Enon
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Series (Oh and Richter 2005). Average normal air temperature ranges fromif.6 ° C
January to 25.3 ° C in July and annual precipitation averages 1209 mm (State Climate
Office of North State Climate Office of North Carolina 2003-2009). Soil phlsic
characteristics are similar between Qf@atment plots, with the exception of soil organic
matter, which averaged 4.6% in génriched plots, and only 3.4% in control plots.
Averages for all control and elevated £8bots (0 to 20 cm depth zone) for soil particle
density, bulk density, and pH were 2.5 g&rh.2 g cnT, and 5.7 units, respectively.

Soil texture was 9% clay, 42% silt, and 49% sand.

Site characteristics are fully documented in Hendrey et al. (1999a)iafig br
described here. The experiment consists of eight circular 30-m diameser lpbatr
treatment plots (referred to as “@@nriched”) are fumigated with G@o maintain
atmospheric C@concentrations 200 mL Labove ambient levels, while three additional
treatment plots are fumigated with ambient air to replicate micromedgical effects
associated with C£addition. A fourth is subjected to ambient air without fumigation.
The latter four plots are referred to as “controls”. Continuous (29 Fuchigation was

initiated in August 1996, but was reduced to daylight hours only from 2003 to present.

Gas Flux Measurements

Each plot is partitioned into four quadrants for a total of 24 (2004 and 2005) and
32 (2006) individual sectors. Methane flux determinations within each sector were made
~biweekly in the 2004, 2005, and 2006 calendar years using the static chamber technique
(Whalen et al. 1992), yielding 12 (2004 and 2005) and 16 (2006) measurements in both

control and enriched plots on each sampling date. The polyvinyl chloride collars (20 cm
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diameter x 11 cm height) permanently deployed in three plots of each treatiient at
conception (1999) of our initial investigation remained intact and were revisit¢ug

study. Collars of similar design were deployed in each quadrant of twaadtllots

(one plot, each treatment) in 2006. Polyvinyl chloride covers fitted with a sampling port
and capillary bleed were emplaced on solil collars fog fikt determinations.

Headspace samples were withdrawn into 10 mL gastight glass syriragee &itne and

at 0.5 h intervals thereafter to 2 h. Collars were open to litterfall and rainfatdme
sampling sessions.

Gas samples were analyzed for Q4 flame ionization detection gas
chromatography (Shimadzu model GC 8 A; precision expressed as the coefficient
variation for 10 replicate injections of a 0.94 mL AH" standard was < 3%) within 10 h
of collection, well within our predetermined holding time of 24 h. Sample separation was
accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an
ultrahigh purity N carrier gas (33 mL mif). Injector and detector temperatures were set

at 90°C and 140cC.

Soil Physicochemical Measurements

Volumetric soil moisture (mL kO cmi® soil) was continuously measured by time
domain reflectometry using Campbell Scientific Model CS616 probes. Probes were
located randomly in each quadrant of each plot in calendar years 2004 and 2005 (Hyun
unpublished) and within 30 cm of each soil collar in 2006. The soil moisture probes
integrate volumetric soil moisture from the soil surface to 30 cm depth ahghals,

and average values over 24 h are recorded on Campbell Scientific Model CR200
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dataloggers. In conjunction with GIHux determinations, soil temperature was
measured at 3 cm intervals from 1 cm to 19 cm depth with a multithermistorégorpe

probe.

Calculations and statistics

Area-based rates of net ¢ebnsumption were calculated from chamber
geometry and the time-linear change of,@&dncentration in chamber headspaces.
Annual rates of net CHconsumption were determined by integrating for the calendar
year daily, area-based data from each sampling occasion. Average soibtenepsas
calculated as the mean of equally spaced observations taken to 19 cm.

We analyzed for differences in GHux between CQtreatments with the same
statistical model used in a previous study (Phillips et al. 2001a). The mixets dfiear
model considered CQreatment as the main effect, with soil moisture, temperature and
time (continuous) as covariates. The model was a nested, hierarchical désipgiotvi
nested inside C£and quadrant nested within plot. Unequal sampling intervals required
the use of a time-series covariance structure, where correlations dsdirfieretion of
time. Only significant interactions remained in the model. The same mdted wi
different nesting structure was used to analyze overall ngfland environmental
variables, in which quadrant was nested within plot angd W&3 simply an effect.

Student t-tests were used to analyze for statistical differeetesdn CQ
treatment averages for environmental variables. Treatment-wiseeddés between
annual rates of net GHtonsumption were determined by confidence interval overlap.

All statistical analyses were performecat).05.
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Results

Environmental variables

Air temperatures averaged 46 or 16°C annually for each calendar year. Soil
temperatures ranged fron?@ to 25°C (Fig. 2.1), closely tracking air temperatures (not
shown) and showed an average ofC8&or the entire study. Overall, soil moisture
varied from 0.16 to 0.49 mL4@ cni® soil, and averaged 0.27 mL,® cmi soil.

Calendar year means for g@nriched plots were consistently higher than means for
control plots (Table 2.1). Differences between treatment means for soilrecigere
significant in 2004 and 2005, but not 2006. Over the entire study (n = 68), the average
soil moisture for the C®enriched treatment (0.28 mL8 cmi® soil) was significantly

higher than for the control treatment (0.26 miOHni® soil).

Patternsin net CH, flux
Net CH, consumption (flux from the atmosphere to the soil) was generally found

at all individual soil chambers and was always calculated for each plotesfiuem all

four quadrants were averaged. However, net @Bduction (flux from the soil to the
atmosphere) was also observed, from 17 individual quadrants on 16 separate dates, giving
22 observations of net Ghbroduction in 880 total records. Net £ptoduction was

found almost twice as often in G@nriched chambers as in control chambers (14 versus

8 observations). Rates of net gptoduction from individual chambers varied from 0.01

mg m? d* to 0.08 mg rif d* while rates of net CiHconsumption from individual

chambers were much higher, varying from 0.02 rifgofhto 4.5 mg rif d*. Chamber-

wise analysis showed no pattern with respect to magnitude of flux, as no chamber
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showed consistently high or low values. Although there was no clear seasaeral patt
rates of net Cilconsumption were frequently higher in the summer than the winter
months (Fig. 2.1).

There was a strong inverse relationship between soil moisture and plot-dverage
rates of net Cilconsumption (Fig. 2.2). At the chamber level, the mixed-effects model
used to test the factors contributing to overall nej fikkes showed that soil moisture
was significantly related to net GHux in 2006, when soil moisture probes were
installed proximal to chamber collars, but not in 2004 and 2005 when probes were
randomly located within quadrants. Overall, net;€bhsumption decreased with
increasing soil moisture. The model showed no relationship between soil tengaratur

net CH, flux.

Differencesin net CH, consumption between CO, treatments

When the entire data were considered (880 observations; each treatment), the
mean net rate of CHtonsumption in control chambers was 7.5% higher than in CO
enriched chambers, 0.55 (+ 0.03 SEM) versus 0.51 (+ 0.03) fitf:mThe difference
was significant. The disparity in net GEbnsumption rates between treatments showed
interannual variability. Mean rates for controls in 2004, 2005 and 2006 were 0.53 (+
0.06), 0.54 (+ 0.06) and 0.56 (+ 0.05) mgQH?d™. These values were higher by 10, 4
and 9% than corresponding annual averages foréd@ichecchambers. There was no
seasonal pattern in the relative difference in net €@isumption rates between

treatments.
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The mixed-effects model used to test the factors contributing to the \igyiatoil
net CH, consumption between treatments indicated that Significantly interacted with
soil moisture. Soils from C&enriched plots consumed less £Han soils from control
plots, and the difference between Q@atments increased with increasing soil moisture.
Soil temperature had no effect.

The time-integrated rates of net £tbnsumption in control plots were 184, 196
and 197 mg My in 2004, 2005, and 2006 (Fig. 2.3). Comparable values far CO
enriched plots were lower by 19, 10, and 8% at 150, 175 and 181°md.nDifferences
between treatments were significant in 2004 and 2005 and nearly significant in 2006

(p=0.10).

Discussion

Overall patterns of net CH, consumption and environmental correlates

Consumption of atmospheric GHy well-drained forest soils is a common
observation in all climatic zones of the worl@he mean net CiHonsumption rate of
0.54 mg nif d* in the present study is consistent with the value of 0.6 g tmeported
by both our group (Phillips et al. 2001a) and others (McLain et al. 2002) for studies
conducted roughly 6 y previously. Mean rates of net @isumption for this site falls
toward the low end of worldwide reports for aerated temperate forest soilf, sttuw
averages ranging from 0.2 to 5.0 mgQHi*d™* and center around 1 mg Gh?d*
(summarized by Smith et al. 2000a, Butterbach-Bahl et al. 2002). The average annual
rate of net Ckiconsumption in control plots (192 mg3nwas markedly similar to the

average (187 mg 1) for a previous study (Phillips et al. 2001a). As with our average
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day rate estimates of net geEbnsumption, these annual values are at the low end of
estimates for North American temperate forests, which largelpéaieen 320 and 2560
mg mi?y™, but have a strong New England bias (Smith et al. 2000b). Gas diffusivity has
been demonstrated (Dorr et al. 1993) to control rates @fsGpply to the usual

subsurface locus of CHbxidation (e.g. Whalen et al. 1992), which is itself substrate-
limited in well-drained forest soils, based on kinetic considerations (Bradfaid e

2001). Soil texture influences diffusivity (Ball et al. 1997), with clay soils shonatg

CH,4 consumption rates an order of magnitude lower than sandy soils (Dorr et al. 1993).
It is likely that the fine texture of soil at our study site limits transpbatmospheric

CH, down-profile, resulting in comparatively low area-based rated of ngt CH
consumption.

Net CH, consumption showed no relationship with soil temperature when the
entire data over the temperature range 4 t{C2&ere considered, in agreement with the
general lack of seasonality in flux (Fig. 2.1). However, this is at odds with theypsevi
report of a significant, but weak temperature effect on ngt@d@Hsumption at this site
(Phillips et al. 2001a). Other studies have frequently shown no or low influence of
temperature on atmospheric £ébnsumption in forest soils (e.g. Borken and Brumme
1997, Butterbach-Bahl and Papen 2002), an observation consistent with the dominance of
diffusion limitation (substrate supply) over enzymatic limitation of methrapby that
can be expected at typical atmospheric,€Céhcentrations (King and Adamsen 1992).
However, some north temperate forest soils show an increased influence obtamepe
on atmospheric CiHconsumption at values < 2G (Crill 1991, Castro et al. 1995,

Steinkamp et al. 2001). Examination of our data with respect to this threshold extends
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the observations of the influence of low temperatures onaBGhRsumption southward.
The average net GHonsumption rate of 0.39 mg GHi?d™ for the 12 of 68 sampling
dates at soil temperatures <°@was lower by 32% than the mean of 0.58 mg 6
d* at higher temperatures. Differences in the strength of the temperaiyfesc
relationship at low temperatures between the past (Phillips et al. 2001a) aard pres
investigations may have accounted for the disparity in the observed relatiortsleprbe
these variables when the entire data from each study were considered.

In contrast to temperature, we observed a strong (inverse) linear rdlgtions
between net ClHconsumption and soil moisture (Fig. 2.2), which explained 34% of the
variability in the entire data, and proved significant in the mixed-effects Ifardbde
2006 data when moisture probes were sited in proximity to soil collars. This confirms
previous observations of reduced net;€Hnsumption with increasing soil moisture at
this site (Phillips et al. 2001a, McLain et al. 2002) and is consistent withinthar
seasonal studies in forest soils. However, our site is apparently lessvseéhait many
others to changes in soil moisture, as this factor explained 59 to 88% of the vaiiabilit
net CH, consumption across a range of forest ecosystem types (Castro et al. 1994,
Lessard et al. 1994, Steinkamp et al. 2001, Butterbach-Bahl and Papen 2002, Price et al.

2004).

Differencesin net CH, consumption between CO, treatments

We found that C@enrichment resulted in a per annum decline in net atmospheric
CH,4 consumption of 8 to 19% relative to unamended controls, in accord with previous

reports for this site (Phillips et al. 2001a, McLain et al. 2002). Moreover, theoe is
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compelling evidence for a temporal decline in the magnitude of the reductionGhine
consumption in C@enriched plots compared with controls when our entire data are
considered (Table 1). Investigations of soil-atmosphergeEhange in C®enriched
ecosystems that normally function as an atmosphericsCid are few. In the most
directly comparable study to our own, Ambus and Robertson (1999) reported a 22%
reduction in CH consumption by soils in modBbpulus tremul oides ecosystems

exposed to elevated GOlIneson et al. (1998) observed that rates of net atmosphefic CH
uptake were three times greater in ambient §dlls relative to C@enriched plots in an
N-fertilized sward oL olium perenne. However, a subsequent investigation (Baggs and
Blum 2004) found a significant interaction between N fertilizer applicatienaad CQ

on net atmospheric CHonsumption. Mosier et al. (2002) saw no impact of e@el

on rates of Cihlexchange between soils and the atmosphere in a semi-arid, mixed
grassland community.

This study adds to previous efforts (Phillips et al. 2001a, Whalen unpublished) to
uniquely provide a nearly continuous 8 y record of reduced atmospheyic CH
consumption under elevated €& the same permanently installed soil collars in a
representative southern forest. Short-and long-term responses to elevat@hatimos
CO, must be distinguished. For instance, down-regulation of photosynthesis has been
commonly reported for C&fertilized model and intact forest ecosystems after as little as
two years (reviewed byAmthor 1995). Over longer time trajectories,| iresponse
functions of all ecosystem components from trees to microbes can be expectedtto adj
physiologically and demographically on different time scales through roatitfin of

biogeochemical feedbacks (Korner 2000). The lag of nearly 2 y between idteimibf
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CO, fumigation and initial sampling (Phillips et al. 2001a), consistently lower éinada
rates of net Cilconsumption in soils from G&enriched plots relative to controls, and
lack of strong evidence that the magnitude of the @®ichment effect has declined
with time all suggest that reduced net atmospherig €Hsumption is a sustained,

equilibrium response of this forest soil to elevate.CO

Potential reasons for reduced net CH4 consumption under elevated CO,

Although reduced net atmospheric £tdnsumption is likely a sustained negative
feedback by soil to C&enrichment at our study site, causative factors are difficult to
identify, as the destructive sampling necessary for process-leveiigatess is limited
to maintain ecosystem integrity. However, the significant moisture xrieséat
interaction in our mixed effects model indicates that site-wise diffeseimcnet Chl
consumption are at least in part moisture-related. Several demonstratées affeQ-
enrichment on above- and below-ground processes within forest ecosystems feed back on
soil moisture and by extension soil £écling dynamics (Fig. 2.4).

The net soil-atmosphere GHux represents the balance between methanogenesis
and methanotrophy, and changes in soil moisture elicit offsetting responseseitwtbe
microbial processes. Increased net primary production under elevate(Hg02.4,
pathway B) at our site (DelLucia et al. 1999, Hamilton et al. 2002, DelLucia, E.H. et al
2005, Norby et al. 2005, Finzi et al. 2006a) is responsible for a continuous ~17% greater
annual increment of litterfall since fumigation (Allen et al. 2000, Lichteal. 2005,

Lichter et al. 2008; with exception of the 2 y following a 2002 ice storm wherefétter

increased regardless of g@eatment). The associated insulating effect enhances
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moisture conservation (Schéafer et al. 2003). The direct link between incredsed s
moisture and diffusion-limitation to CHbxidizers is well established (Striegl 1993,
Castro et al. 1995, Whalen and Reeburgh 1996). Persistently higher moisture content and
reduced net atmospheric ¢ebnsumption in C@enriched plots relative to controls
(Table 2) is consistent with a reduction in substrate supply to methanotrophs (Fig. 2.4;
pathway B). The excess of litterfall under elevated &@l6o directly adds to diffusional
resistance in soils within these plots. Experimental litter removal hasheem to
increase rates on net atmospheric consumption in forest soils by as much a48% (D
et al. 1998, Brumme and Borken 1999).

Independent reports of anoxic microzones (Sexstone et al. 1985, Zausig et al.
1993) and methanogenic activity in macroscopically oxygenated soils {(¥aait 1995,
Saari et al. 1997, von Fischer and Hedin 2002, Teh et al. 2005) indicate that simultaneous
CH, production and consumption are occurring in some well-drained upland soils with
anoxic aggregates supporting localized zones of methanogenesis and oxic sites
supporting methanotrophy. Increased soil moisture under elevatelik€l§favored
development of additional microsites supporting methanogenesis (Fig. 2.4; pathway B
Previously we found no evidence of methanogenic activity in sieved soils fronmtehis si
(Phillips et al. 2001b), but a subsequent investigation (McLain and Ahmann 2008)
reported CH production in intact soil cores, with stronger activity in soils from-CO
enriched plots. It was suggested (McLain and Ahmann 2008) that sieving in our earlie
study destroyed anaerobic microsites. In the present study, our more frequent
observations of net GHemission in C@enriched versus control chambers provide

confirmatory evidence for at least episodic{iHoduction under both treatments and
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higher rates in C@enriched plots. Increased respiration in,&@riched plots
(Bernhardt et al. 2006) may have also directly provided additional substrate for
methanogens, as the pathway in anoxic aggregates of forest soils appears 10 be CO
reduction rather than acetate cleavage (Teh et al. 2005).

Other feedbacks to Genrichment beyond plant-mediated changes in soil
moisture may also have impacted £#ycling dynamics in these soils. Hoosbeek et al.
(2009) reported an increase in soil macro-aggregation (250-2000 um) under elevated
CO; in a temperat@opulus x euramericana plantation. The soil aggregates contained
higher concentrations of C and N, providing loci of microbial activity. Enhanced
respiratory @ consumption by microbes may increase the incidence of anoxic microsites
favorable for methanogenesis (Fig. 2.4, pathway C). Elevatedl€®induces increased
concentrations of secondary compounds such as phenolic and tannins in plant tissues
(Gebauer et al. 1997, Pefiuelas and Estiarte 1998, Wetzel and Tuchman 2005b; Fig. 2.4;
pathway A) and enhances root exudation of organic acids (Norby et al. 1987).
Methanotrophs characteristically localized in upper mineral layers dtfeods (Whalen
et al. 1992) show a high sensitivity to phenolics, monoterpenes and bulk organics from
the overlying O horizon at environmentally relevant levels (Amaral and Kaso¥897,
1998). Enhanced production of inhibitory chemicals delivered in a larger mass of
litterfall and subsequently leached to upper mineral layers could have reduced
methanotrophic activity in enriched Glots.

It is unclear if this sustained reduction in net atmosphericd@Hsumption can
be broadly extrapolated to other forested ecosystems. Atmospheren@Géhment

experiments have demonstrated significant increases in net primary poachfdibrest
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vegetation (DelLucia et al. 1999, Hamilton et al. 2002, DeLucia et al. 2005, Norby et al.
2005, Finzi et al. 2006a; Fig. 2.4; pathway B). Any attendant increase in soil moistur
could effect a decrease in net atmospherig @Hhsumption as observed here. A
process-based model of atmospheric, €ehsumption by soils indicates an aggregated
forest sink of 24 Tg CiHy™ (Ridgwell et al. 1999). A decline in soil Gidonsumption of
the magnitude observed here (~15%; Table 2.1) across all forest biomes givesaaale
of 3.6 Tg CH y*, a value that is not inconsequential as it represents 10% of the model
estimate (Ridgwell et al. 1999) of 38 Tg £y for the total soil sink.

Our field study of the relationship between Glx, CO, enrichment and soill
moisture suggests that moisture sensitivity of net atmospheyeeShits from diffusion
limitation to methanotrophs and the availability of anaerobic microsites gugpor
methanogenic activity, although it yields no insights into the relative impertzfrtbese
microbial processes or other potential controls on &¢hange at the air-soil interface.
Improvement of mechanistic models of global consumption of I§+$oils will require
field and process-oriented laboratory studies across representative fomess aind soil
types to fully identify and quantify coupling mechanisms of nej @tidation to CQ

enrichment and plant metabolism.
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Table 2.1. Annual time-integrated rates of net, €ehsumption and volumetric soil moisture for six nearly consecutive years ih fores
plots exposed to ambient or elevated levels of.@@nual time-integrated rates of net £tbnsumption were determined by
integrating for the calendar year daily, area-based data from eaplirgpotcasion.

Annual net CH consumption % Difference Volumetric soil moisture
(mg m?y™) between (mL H,0 g soil)

Year Control CO2-enriched treatments Source Control CO2-enriched Source
1998 183 156 16 * (Phillips et al. 2001a)  0.24 0.26 + | (Schdferetal. 2003
1999 191 136 30 * (Phillips et al. 2001@) 0.27 034 ¢ (Schéfer et al. 2003)
2002 204 181 13 * (Whalen unpubl.) 0.22 0.23 1 (Hyun unpubl})
2004 184 150 19 * Present study 0.29 031 ¢ (Hyun unpub].)
2005 196 175 10 * Present study 0.26 030 ¢ (Hyun unpub].)
2006 197 181 8 Present study 0.23 0.24 Present study

*Differences between treatments significantiad.05.
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Figure 2.1. (a) Time series for rates of net atmosphericcGirsumption by forest soils

under CQ-enriched and ambient atmospheres (control). Each datum point represents the
mean of 12 or 16 individual static chamber flux determinations for each treatmemtméb)
series for changes in mean soil temperature (1 to 19 cm depth interval) andatoeaetric

soil moisture to 30 cm (mL #D cm® soil). In all cases error bars are eliminated for clarity.
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Figure 2.2. Relationship between net atmospherig @Asumption and volumetric soil
moisture to 30 cm depth for the entire study=(0.340). Each datum point represents the
mean of 24 (2004 and 2005) or 32 (2006) observations for a sampling date.
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Figure 2.3. Annual time-integrated net S¢bnsumption by temperate forest soils at the
Duke FACE site under ambient (control) and elevated-{@®iched) concentrations of GO
for 2004 through 2006. Annual time-integrated rates of net@@Hsumption were

determined by integrating for the calendar year daily, area-basedatatadch sampling
occasion (n = 23). The differences between €€atments were 19%, 10% and 8% for 2004,
2005, and 2006, respectively. Differences were significant for 2004 and 2005. Error bars
represent one standard error of the mean.
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Figure 2.4. Conceptual model of the impact of forest ecosystem responses tal é€yate
that influence soil Chicycling dynamics. Up and down arrows within each response function

indicate a positive or negative impact, respectively, of that factor on nesgatteric CH
consumption. Response functions are either documented or hypothesized by theedssociat

references.
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CHAPTER 3: INHIBITION OF CH, CONSUMPTION BY SECONDARY
CARBON COMPOUNDSIN THE TISSUESAND EXUDATES OF TEMPERATE

FOREST PLANTSEXPOSED TO ELEVATED CO

Abstract

We previously showed a sustained reduction in net atmosphejicddsumption
by temperate forest soils in response to elevategd(DGbbs and Whalen submitted) and
here report the influence of plant exudates on atmospherc@tdumption in soils from
the same study site. We examine the effect of root exudate acids and mnimary
secondary metabolites from plant exudates (throughfall, duff and leaf leacrates)
consumption. Plant exudates from forest plots exposed to elevatesic® 1996 (~580
mL L™ CO,) or from control plots subjected to ambient conditions and acid root exudates
from loblolly pines Pinustaeda) grown under elevated G@vere applied to soils. Duff
leachates occasionally inhibited ebnsumption regardless of @@eatment, and
levulinic acid inhibited Chconsumption at a concentration of 100 pnid) hut not at
50 pmol L%, All other tested exudates had no effect on rates afdBhisumption. While
plant exudates may only assert transient and secondary control;@odtimption
under elevated CQidentification of temporal and spatial patterns of influence warrant
further study because they otherwise confound the correlation between they prima

drivers of CH consumption and measured rates of nej @hsumption.



| ntroduction

The global atmospheric G@oncentration has more than doubled since the
Industrial Revolution (Forster et al. 2007). Little is understood about how increasing
atmospheric Cowill affect the biogeochemical cycling of other greenhouse gases,
including CH,, but we recently reported a sustained decrease in net atmosphgric CH
consumption under elevated i@ a temperate loblolly pind°{(nus taeda) forest (Dubbs
and Whalen submitted). Our previous work showed that a sustainemhd@©ed
negative feedback on forest soil £eébnsumption could lead to a 15% reduction (3.6 Tg
CH, yrY) in the current forest soil sink of 24 Tg'yRidgwell et al. 1999). This negative
feedback to increasing G@ of concern because consumption by upland soils is the only
terrestrial sink for atmospheric GHvhich is a greenhouse gas with radiative forcing
second only to C@®among trace atmospheric gases (Forster et al. 2007).

The reasons for the observed decline in net atmosphegkicd@sumption by
these soils under elevated ©@ere not entirely clear. However, we postulated several
pathways by which changes in a temperate forest ecosystem exposed &ul él€yat
could lead to decreased ¢Ebnsumption by methanotrophic bacteria and increasad CH
production by methanogenesis (Fig. 3.1). Rates ofé@ehange between upland soils
and the atmosphere are dependent upon the balance between methanotrophy in largely
oxic soils and methanogenesis in anoxic microzones. The resultant nebi@&dmption
accounts for the observed sink strength of upland soils in the glohdclget (Forster
et al. 2007).

Pathway A (Fig. 3.1) depicts a mechanism by which changes in the chemistry of

forest plant tissues may contribute to the observed reduction in neto@slimption.
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Ecosystem-scale elevated £éhrichment experiments, or free air carbon exchange
(FACE) experiments, indicate that temperate forest responses tedl&@tinclude
increased net primary production (DelLucia et al. 1999, Hamilton et al. 2002, DelLucia et
al. 2005, Norby et al. 2005, Finzi et al. 2006a), litter fall (Allen et al. 2000, Lichédr et
2005, Liu et al. 2005, Lichter et al. 2008), and fine-root production (Norby et al. 2004).
Changes in plant productivity, tissue chemistry, C allocation and plant-microbe
interactions under elevated €@ turn impact the quantity and quality of C in the
ecosystem. For example, Lichter et al. (2000a) observed an increaséeidikdmlved
organic C in throughfall, and Matamala and Schlesinger (2000) observed a 5.6%eincrea
in the storage of C in forest soils under elevated. Obrby et al. (1987) found that
elevated C@enhances root exudation of organic acids in a pot stuBina$ echinata
seedlings. Elevated G&énduced changes in plants also increase the abundance of
secondary C compounds in tissues and root exudates relative to plants exposed to
ambient CQ(Pefiuelas and Estiarte 1998, Verburg et al. 1999, Tuchman et al. 2002,
Billings and Ziegler 2005, Wetzel and Tuchman 2005a). Secondary C compounds, such
as phenolics and terpenes, inhibit metabolism and growth by broad groups of soihbact
(Souto et al. 2000), and specifically, methanotrophs (Amaral and Knowles 1997, 1998).
Here we extend previous research, which indicated that reduced net CH
consumption by a temperate forest soil is a sustained response to eleva(&dikli3
and Whalen submitted), by examining the influence of plant exudates on rates of CH
consumption in soils from the same study site (Fig. 3.1, Pathway A). We invetimgate
effect of organic acids, found to be the most abundant organic component of

photosynthates released from roots in the rhizosphere (Smith 1976), and the effects of

50



primary or secondary metabolites from exudates (throughfall, duff and éeallies) on

CH,4 consumption. Plant exudates were collected from forest plots exposed to elevated
CO, since 1996 or from plots subjected to ambient conditions (~380 TLQy;

control), and applied to soils. Additionally, organic acids identified to be major
components of root exudates (Phillips and Bernhardt unpublished) from loblolly pine
laboratory-grown under elevated g®Were applied to soils individually and in mixed
cocktails to evaluate the effects of these root exudate acids poo@sumption. Effects

of plant exudates on rates of ¢ptoduction were also determined and deemed

negligible, and thus, are not discussed further in this manuscript.

Methods

Field site

Field measurements were conducted at the Duke Forest (North Carolina; USA)
Free-Air CQ Enrichment (FACE) experiment sited in an even-aged stand of loblolly
pine Pinustaeda L.) planted in 1983. Soils are clay loam, Ultic Hapludalf's of the Enon
Series (Oh and Richter 2005). Average normal air temperature ranges fromif.6 ° C
January to 25.3 ° C in July and annual precipitation averages 1209 mm (State Climate
Office of North State Climate Office of North Carolina 2003-2009).

Site characteristics are fully documented in Hendrey et al. (1999a) afig bri
described here. The experiment consists of eight circular 30-m diameter fptatr
treatment plots (referred to as “@@nriched”) are fumigated with G@o maintain
atmospheric C@concentrations 200 mLLabove ambient levels, while three additional

treatment plots are fumigated with ambient air to replicate micromebgical effects
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associated with C£addition. A fourth is subjected to ambient air without fumigation.
The latter four plots are referred to as “controls”. Continuous (29 Fuchigation was

initiated in August 1996, but was reduced to daylight hours only from 2003 to present.

Plant exudate collection
Throughfall

Throughfall collectors consisted of 4 L amber acid-washed glasedoithe
necks of the bottles were plugged by rubber stoppers, which were penetrated by acid
washed glass funnels (6@ngle bowl and 100 mm stem). The funnel stems were stuffed
with Pyrex glass wool to exclude large particles. One throughfall colleets randomly
placed within each of the experimental plots (n=4 for each&@@ched and control
treatments) within 48 h of a predicted precipitation event in June and November of 2004,
and June of 2005. Throughfall samples were transferred to amber HDPE wide-mouth
bottles within 6 h of the conclusion of each discrete rainfall, and the contents were froz

at -10°C. Samples were thawed and applied to soils within 10 d of collection.

Fresh leaf litter and duff collection and leaching

Approximately 5 g (wet weight) of freshly fallécer rubrum (red maple),
Liguidambar styraciflua (sweetgum)Pinus taeda (loblolly pine), andJlmus alata
(winged elm) leaves were collected from each@@xiched and control plot (n=3 for
each treatment) in June and October of 2005. These species were chosen beeause ther
was at least one individual tree of each of these species in each expénoenta

Freshly fallen leaves were identified as green leaves lying on the mksdwat divide
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six of the eight experimental plots into quadrants. Upon returning to the laboratory (~1 h
after collection), wet mass was determined and leaves were placed-wastied 30 mL
glass vials. Leaves (by species) were submerged in 20 mL deionized ws@mwbile

a vial filled with DIW served as a control throughout the leaching process and soi
incubation. Vials were covered by parafilm and leaves were allowed to leachderkhe

at ~24°C for 24 h (Mann and Wetzel 1996).

Duff was randomly collected from the forest floor of £&hriched and control
plots (n=4 for each treatment) in October of 2006, and October, November, and
December of 2007. Duff is identified as partially decaying plant mataritte forest
floor surface. Upon returning to the laboratory (~1 h after collection), 10 g of duff (wet
mass) from each plot was placed in a 118 mL acid-washed glass jar. Duff wasgedbm
in DIW (60 mL), and one jar without duff was filled with 60 mL of DIW, to serve as a
control throughout the leaching process and soil incubation. Jars were covered by
parafilm, and duff was allowed to leach in the dark at*24or 24 h (Mann and Wetzel

1996).

Root exudate preparation

Several organic acids were identified as primary root exudates from |gilodly
trees grown under elevated €@ a glass bead rooting substitute by the Bernhardt lab at
Duke University. The primary root acid exudates that were identified incluidied c
malic, oxalic, maleic, fumaric, levulinic, succinic, shikimic, and protocate@idtsa
Solutions of individual acids and a cocktail of all acids were prepared at 100 j{tmol L

concentrations in DIW used for incubation experiments in April and October of 2006.
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Selected organic acid exudates were additionally prepared at 10 jtn&d pmol L,
100 pmol L}, 500 pmol [*, and 1000 pmol tand used in a companion experiment

intended to identify a threshold concentration for inhibition of, Céhsumption.

Soil assays and incubation

Soils from the 0 to 20 cm depth interval were collected at the research site from
outside of the experimental plots with a hand trowel 1 d prior to initiation of
experimentation. Soils were collected from outside of experimental plots becaus
destructive sampling within experimental plots is highly restricted. Ugamreo the
lab, soils were immediately homogenized by sieving (4.75 mm mesh), and 10 g
subsamples of field moist soil were placed into 120 mL glass serum bottles. th&ice
number of soil-filled bottles were prepared as were needed (n=3 for edofetrea leaf
leachate and root exudates experiments, n=4 in throughfall and duff leachate
experiments). Bottles were allowed to equilibrate with laboratory &iB(mL L' CH,)
for 1 h before being capped with butyl rubber stoppers and crimp-sealed. Headspace CH
concentrations were determined immediately upon sealing and 12 h laterdwngi®
mL of headspace gas with 5 mL plastic syringes. The jars in whiglw@siconsumed
at the most similar rates were used for further experimentation.

Throughfall, leaf and duff leachates, and the organic acids identified tonteryri
root exudates were administered to chosen soil aliquots. The amount of liquid added to
soils depended upon extant soil moisture as liquid additions were intended to achieve a
water holding capacity of approximately 50%. An equal volume of DIW as added to soil

samples as a control in all experiments. Following liquid addition, soils wereedllmw
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equilibrate at the lab atmosphere for 12 to 15 h before jars were sealed andl ssmple
described above, except that at least 5 samples were collected at eveedyisfavals
over 48 h incubation periods. Headspace pressure was maintained at 1 atm by replacing
removed headspace gas with an equivalent volume of ultrapure N

Gas samples were analyzed for R flame ionization detection gas
chromatography (Shimadzu model GC 8 A; precision expressed as the coedficie
variation for 10 replicate injections of a 0.94 mL AH" standard was < 3%) within 10 h
of collection, well within our predetermined holding time of 24 h. Sample separation was
accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an
ultrahigh purity N carrier gas (33 mL mif). Injector and detector temperatures were set
at 90°C and 140C. Headspace measurements from replicate bottles without soil ensured
that changes in headspace {&dncentrations did not result from gas exchange with

butyl rubber stoppers.

Satistical Analysis

Soil dry mass-based rates of £tdnsumption were calculated from the log-linear
change of Chiconcentration in jar headspaces. Rates or rate constantsfor CH
consumption were compared by paired t-tests. A significance leugl005 was used

for all statistical comparisons.

Results

Throughfall and leaf |eachates
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Rate constants (k' for CH, consumption by soils following application of throughfall
or leaf leachates from several individual species of trees collectectctnatmol or CGQ-
enriched plots were not significantly different on any of the three dated {Esge 3.2).
Similarly, values of k for ChHlconsumption by soils to which plant exudates were added
also were not significantly different from those of soils to which DIW agdied on

either of the two dates tested (Fig. 3.3).

Duff leachates

Application of duff leachates from either g@nriched or control plots in fall of
2006 significantly reduced rates of gebnsumption, by 34% (C&enriched) and 38%
(control), relative to rates of GHHonsumption by soils to which DIW was added (Fig.
3.4). The rates of CHtonsumption for C@enriched and control plot treatments were
not significantly different from each other. This pattern of reducegld@Hsumption by
soils to which duff leachate from both génriched and control treatment plots was
added was not repeatable, however, in similar experiments conducted three times in the
fall and winter of 2007 (Fig. 3.5). In all cases, rates of €dhsumption were not
significantly different for any treatment in soils amended with DIW or khafthate from

control or CQ-enriched plots.

Organic acids from root exudates

In general, rates of GHtonsumption in soils following the addition of individual

organic acids or a cocktail of organic acids identified as primary components of root
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exudates from loblolly pine trees grown under elevateg W&e not significantly
different from that of soils to which DIW was added (Fig. 3.6). Levulinic acid s t
exception as it significantly inhibited rates of S¢dnsumption. A 100 pmoltsolution
of levulinic acid reduced CHconsumption in soils by 63% and 91% relative to DIW-
treated soils in October and April 2006 trials, respectively. An experiment deddoc
identify the concentration threshold for inhibition of £ébnsumption by levulinic acid
revealed that ClHconsumption was not significantly reduced at concentrations below
100 pmol * (Fig. 3.7). Rates of Citonsumption were, however, significantly
reduced at levels above 100 pmdl LFurther, CH consumption was completely
inhibited when levulinic acid was added to soils at concentrations of 500 j'neol L

1000 pmol [*.

Discussion

Plants grown under elevated £€dntain increased tissue concentrations of
secondary C compounds (Gebauer et al. 1997, Pefiuelas and Estiarte 1998, Wetzel and
Tuchman 2005b; Fig. 3.1, pathway A), which have the potential to impaati@tdmics
because they inhibit metabolism and growth by methanotrophs (Amaral and Knowles
1997, 1998). Indeed, we found evidence of transient inhibition gfc@Rsumption by
duff collected from C@enriched plots, as well as from control plots, and from an
organic acid identified to be a primary root exudate of loblolly pine trees grown under
elevated C@ However, neither throughfall nor leaf leachates from the four dominant
tree species at the study site affected rates @fd@hlsumption by forest soils, regardless

of the CQ treatment origins of the plant exudates.
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The inhibition of CH consumption by duff leachate from both £€éhriched and
control treatments on one occasion suggests that some chemical(s) retradeesh
autumnal duff inhibits methanotrophy, but the inhibitory substances are independent of
CO; level. While we leached the same wet mass of duff from bothti@&tments to
conduct our leaching experiment, there is actually greater litter fall eteleated CQat
our site (Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008), thus, perhaps higher
concentrations of the inhibitory substances are leached from the larger masdotluiff
mineral soil in C@-enriched plots, which would result in a stronger inhibitory affect.

There are several possible reasons why duff collected on one occasion ih the fal
of 2006 was inhibitory to CiHconsumption, while that collected on other occasions in
the fall and winter of 2007 was not. For instance, losses of secondary C compounds from
leaf litter occurs rapidly (Yavitt and Fahey 1986, Amaral and Knowles 1997, i8ichelf
al. 1998, Kainulainen and Holopainen 2002), and the concentrations of secondary C
compounds leached from leaf litter are influenced by environmental conditlanss(
and Safford 1996). Yavitt and Fahey (1986) found that > 80% of the soluble phenolics
and carbohydrates were lost from leaf litter in a lodgepole pine ecosystess than a
year, and Amaral and Knowles (1997) reported that forest soil extractmbifiiged
CH,4 consumption for 3to 5 d. We may have collected duff in 2006 soon enough after
leaf fall that inhibitory compounds in leachates were sufficiently condedtta
significantly reduce Cllconsumption, yet we may have missed the window between leaf
fall and leachate losses in the 2007 experiments. Timing of freeze/thaw mafehave
influenced the availability of inhibitory substances. Harris and Safford (1996)Vebse

that repeated freeze/thaw cycles pre- and post- leaf fall, among attoes fancreased
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the amount of water-soluble carbon leached from fallen leaves from a s&tenfogest.
Indeed, the first freeze/thaw cycle at our study site in 2006 occurred the dag dagfor
collection, whereas the first freeze/thaw cycle in 2007 did not occur until 2rdiafte
collection for the November 2007 experiment and 25 d before duff collection for the
December 2007 experiment. This suggests that duff collection may have coindlded wi
the maximum potential for leaching of inhibitory compounds in 2006, but not in
subsequent experiments. Nonetheless, the degree of inhibition was apparently
independent of the GQevel under which trees were grown.

Levulinic acid, a primary root exudate acid released from loblolly pines ekpose
to elevated Cg) was found here to inhibit GHonsumption. The threshold
concentration for inhibition by levulinic acid lies within the range of 50 to 100 pfhol L
which far exceeds the concentration of 0.5 pmbfadr all phenolic compounds found in
pore water from centrifuged samples of the top 25 cm of soil from a coniferous fores
(Gallet and Pellissier 1997). Little is known about the presence and pessistenc
levulinic acid in forest soils. However, its increased release by treeuades elevated
CO, and significant and even complete inhibition of methanotrophy at concentrations
between 50 and 100 pmotsuggest that this compound could inhibit methanotrophy in
the rhizosphere, and warrants further attention in attempts to understand the feedback
between an increasing atmospheric,€@ncentration and a reduction in the forest soil
sink strength for Chl

Despite some transient inhibition of net Z¢dnsumption by forest soils by plant
exudates reported here, the spatial and temporal pattamstofnet CH, consumption

observed in our previous study indicate that the secondary compounds in plant exudates
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produced under elevated g@re not the primary reason for the observed decrease in net
CH,4 consumption by temperate forest soils under elevated @a@bbs and Whalen
submitted). The quantity and quality of plant exudates vary among plant speciis (Sm
1976, Strom et al. 1994). Likewise, the quantity and chemistry of plant exudates from
roots or leaf litter are typically seasonal (Kuzyakov and Cheng 2001, Muscolo and Sida
2006, Phillips et al. 2008). Saerte and Baath (2000) reported “spatial patterns of the
microbial community to be related to the positions of trees” in a mixed Nompvages
birch stand in Finland. We previously reported high spatial and temporal variability in net
CH,4 consumption at permanently established sampling locations in a temperdte fores
where there was not any specific site that consistently exhibited higloevesrrates of
net CH, consumption relative to other sites (Dubbs and Whalen submitted). Since the
patterns in net ClHconsumption in the temperate forest at our study site do not
correspond to specific locations or periods of time, it is only reasonable to conclude that
then plant exudates do not exert the primary control on methanotrophy or
methanogenesis. Consequently, our previous and present research indicates tbat despit
transient inhibition of net CHconsumption in forest soils by plant exudates, Pathway A
(Fig. 1) is not the primary driver for reduced net &dnsumption in soils under elevated
CO,. However, it does deserve further consideration since the transient influences of
chemical inhibitors may weaken the correlation between standard inffluencet
consumption (soil moisture) and measured rates of ngtcGhksumption.

Future work should focus on identifying inhibitory compounds in bulk leachates
that show enhanced production by plants under elevatet\Cidgh performance liquid

chromatography. Focus should also be placed on identifying the temporal and spatial
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patterns of influence of these compoundsrositu net CH, consumption. Research in
this area will help to refine models aimed predicting the upland soil sink stremgth f

CHa.
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Figure 3.1. Conceptual model of the impact of forest ecosystem responses ta elevate
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function indicate a positive or negative impact, respectively, of that factor on net

atmospheric Chiconsumption. Response functions are either documented or

hypothesized by the associated references.
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Figure 3.2. Mean first order rate constants (®; fdor CH, consumption in temperate
forest soils amended with deionized water or throughfall fromp-€@ched (n=3) or

control (n=3) plots. Error bars represent one standard error of the mean.
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Figure 3.3Mean first order rate constants (k)dor CH, consumption by temperate
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control (n=3) and C@enriched (n=3) plots. Error bars represent one standard error of
the mean.
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CHAPTER 4: REDUCED NET CH CONSUMPTION CAUSED BY CHANGES IN
THE SOURCES AND TRANSPORT OF SOIL GASES IN A TEMPERATE FGRE

EXPOSED TO ELEVATED CQ

Abstract

We previously reported a sustained reduction in net atmosphejicd@sumption by
temperate forest soils exposed to elevated €iite 1996 (~580 mLt.CO,; Dubbs and
Whalen submitted). Changes in the transport and supply of atmospheric gases w#bih the
profile under elevated GQand subsequent changes in locus or activity of thea@ldizing
and producing communities, may help to explain the decrease in pep@stimption. We
examined the depth distribution of ¢ the solil profile, the effective diffusivity of CH
through the soil, and the extent and activity of,€Bnsuming and CHproducing
communities in C@enriched and control (ambient atmospheres) plots at the same study site.
High spatial and temporal variability in net €ebnsumption and CHoroduction rates and
high error in diffusivity measurements, along with limited ability to colded samples,
largely resulted in the inability to detect significant differences eetwCQ treatments in
rates of net Chiconsumption or Cldproduction, depth profile C4Honcentrations, or
effective diffusivity. However, qualitative trends of low overall diffughand increased
incidence and rates of Glgroduction in elevated C(lots, supported by a long-term record

of significantly higher soil moisture in GQ@lots, indicate that increased soil moisture along



with increased activity of methanogens under elevategil€8bils with low diffusivity at

our study site contribute to the observed decline ig @tlation under elevated GO

| ntroduction

The atmospheric CHoncentration has more than doubled from a pre-industrial level
of about 750 pL L to a present day concentration of about 1780 JINOAA 2008).
Although CH, is less abundant than g@dditions of CHto the tropospheric reservoir
cause more direct warming than £®oth on a per molecule and a mass basis (Wuebbles
and Hayhoe 2002). Methane also indirectly contributes to global warming becatsselef i
in the stratospheric chemistry of ozone and water vapor formation (WuebblesydraeHa
2002). Thus, a complete understanding of the 6jidle as well as the feedbacks and
interactions with other biogeochemical cycles are important to the equealiction of
future climates.

Known sinks for tropospheric Ghhclude reaction with the hydroxyl radical, which
removes approximately 445 Tg of ¢Hom the atmosphere annually; and mixing of
tropospheric Chlwith the stratosphere accounts for another 40 Tg afr€ioval annually
(Forster et al. 2007). Upland soils are the only known biological sink for atmospheric CH
accounting for approximately 38 Tg of GHThis biological sink results from the net balance
of CH, consumption by methanotrophic bacteria in the largely oxic soil profile, and
production by methanogenic bacteria in anoxic microsites (reviewed bydCho98a).

We recently reported a sustained reduction of ~15% in net atmospheric CH
consumption by temperate forest soils under elevatedr€l@ive to plots exposed to

ambient levels of C®(Dubbs and Whalen submitted). We also proposed several pathways
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whereby changes in other aspects of forest ecosystem function in respelesated CQ
could impact net Ciconsumption by these soils (Fig. 4.1). Reduced gas diffusivity has
been demonstrated (Dorr et al. 1993) to control rates @fsGpply to the usual subsurface
locus of CH oxidation (e.g. Whalen and Reeburgh 1992), which is itself substrate-limited in
well-drained forest soils, based on kinetic considerations (Bradford et al. 2001). Thus
factors that introduce diffusion resistance or increase the diffusional patedvuitte rates of
atmospheric Ckiconsumption (Fig. 4.1, pathway B). Similarly, reduced gas diffusivity
slows the transport of rom the atmosphere and, paired with respiratory consumption of
O, within the soil matrix, may result in the formation of anoxic microsites, supgorti
methanogenesis (Fig. 4.1; pathway C). In this circumstance, methantrophs areedupgort
only by atmospheric Chklbut also by endogenously produced substrate.

Soil moisture increases diffusional resistance because gases diffusel@Gimes
more slowly through water than air. Schafer et al. (2003) and more recem{lpwobs and
Whalen submitted) reported higher soil moisture in-@@riched plots at a temperate forest
study site, relative to plots exposed to ambient atmospheres. Schafer et alatbsed
the higher soil moisture in elevated £@bots to increased leaf litter depth (Allen et al. 2000,
Schlesinger and Lichter 2001) and topographic convergence. Increasedeledépth is a
manifestation of increased net primary production in temperate forestpamses
to elevated CQ(DeLucia et al. 1999, Hamilton et al. 2002, DelLucia et al. 2005, Norby et al.
2005, Finzi et al. 2006a) that ultimately inhibits evaporation from the soil surfacesuits r
in higher soil moisture (Fig. 4.1, pathway B) while topographic convergence is aminhere

difference in the lateral flow of soil pore water unrelated to €€atment.
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Here we examine the transport of atmospherig i@khe soil profile, the effective
diffusivity of CH,4 through the soil, as well as the extent and activity of @hsuming and
producing communities in a temperate forest exposed to elevated@@nges in the
transport and source of atmospheric gases within the soil profile under él€@ter a
change in the locus of the GHxidizing community, may help to explain the observed
persistent decrease in net £tbnsumption under elevated £€énd provide information

useful to modeling efforts aimed at forecasting future climates.

Methods

Field site

Field measurements were conducted at the Duke Forest (North Carolin&jr-ree
CO, Enrichment (FACE) experiment sited in an even-aged stand of loblolly Riimes (
taeda L.) planted in 1983. Soils are clay loam, Ultic Hapludalf's of the Enon Serlear{®
Richter 2005). Average air temperature ranges from 3.6 °C in January to 25.3 °Candluly
annual precipitation averages 1209 mm (State Climate Office of North S$itaeteCOffice
of North Carolina 2003-2009).

Site characteristics are fully documented in Hendrey et al. (1999a) aftg brie
described here. The experiment consists of eight circular 30-m diameter fptatr
treatment plots (referred to as “@@nriched”) are fumigated with G@o maintain
atmospheric C@concentrations 200 mLLabove ambient levels, while three additional
treatment plots are fumigated with ambient air to replicate micromebgiizal effects
associated with C£addition. A fourth is subjected to ambient air without fumigation. The

latter four plots are referred to as “controls”. Each plot is divided into qudnyrats
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boardwalk that minimizes the impact of foot traffic during sampling. Continuous (2% h d
fumigation was initiated in August 1996, but was reduced to daylight hours only from 2003
to present.

Soil physical characteristics are similar between €€atment plots, with the
exception of soil organic matter, which averaged 4.6% ip-€&@ched plots, and only 3.4%
in control plots. Averages for all control and elevated @Iots (0 to 20 cm depth zone) for
soil particle density, bulk density, and pH were 2.5 §cin2 g cnit, and 5.7 units,

respectively. Soil texture was 9% clay, 42% silt, and 49% sand.

Soil gas sampling

Sets of soil gas wells were installed in 2005 within 30 cm of permanentlyaesapl
static chambers utilized for soil-atmosphere,@Kchange determinations made in another
aspect of this research (Dubbs and Whalen submitted). Wells were located déptiem
intervals from 5 to 25 cm below the soil surface. There were a total of filepeelset
located in two quadrants of each of the eight FACE plots for a total of 16 well sets pe
treatment. Each well consisted of 1 cm ID stainless steel tube, open andtpdrabithe
bottom, and topped with Swagelock reducing union fitted with a septum for syringe
sampling. The sampling wells were installed vertically such that theam perforated
bottom allowed diffusion of gases only from the prescribed depth.

Soil gas wells were sampled 31 times between July 2005 and July 2007. On each
sampling date, wells were initially evacuated with a hand-operated vacuum pump
(Handivac) and then allowed to equilibrate with soil air for approximately 0.5 to brebef

sampling. Headspace samples were collected from each soil gas well igth@srdyringes.
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The atmosphere above the soil surface adjacent to wells was additionallgcantipl

similar syringes on each date.

Soil cores

Two soil cores (5.5 cm diameter by 25 cm length) were collected randiamy
within each of the eight experimental plots in July 2005, September 2006, and April 2007
using a stainless steel soil core sampler (AMS, Inc) fitted with alsdicener (AMS, Inc)
and stainless steel liners (AMS, Inc). For each core, soil was egtfemte the liner and
divided into 2 depth increments from 0 to 15 cm, and from 15 to 25 cm, in the field. Soll
core sections were then transported to the laboratory (<1 h) in Ziploc bags, 4i&&echi
mesh), and mixed.

One 10 g field moist aliquot of homogenized soil from each depth increment of each
core was placed into a 120 mL glass serum bottle and allowed to equilibrate wigttdapor
air for 1 h. Serum bottles were then sealed with butyl rubber stoppers, crimp sealed, and
incubated in the dark at approximately 20 °C. Headspace samples forairSdmption
measurements were withdrawn into 10 mL gastight glass syringes anze@nt every 2 to
4 h interval thereafter for up to 3 d¥m). Atmospheric pressure was maintained in the
serum bottles by replacing removed headspace gas with an equivalent volunepafeiltr
N,. Replicate bottles were also sealed without soil and sampled in conjunction with
experimental vessels to ensure that changes in headspacer@idntrations did not result
from exchange with butyl rubber stopper. Upon completion of ngtocGRsumption
measurements, rates of gptoduction were determined on the same samples. This was

accomplished by addition of 50 Pa of difluoromethane &} an inhibitor of
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methanotrophy (Miller et al. 1998), to serum bottles, following the time cour€aHor

consumption in the serum vial headspace as described above.

Methane sample measurements

All gas samples were analyzed for £y flame ionization detection gas
chromatography (Shimadzu model GC 8 A; precision expressed as the coefficient
variation for 10 replicate injections of a 0.94 mL QH standard was < 3%) within 10 h of
collection, well within our predetermined holding time of 24 h. Sample separation was
accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an
ultrahigh purity N carrier gas (33 mL mif). Injector and detector temperatures were set at

90°C and 140C.

Diffusivity
We employed &°Rn-based method (Born et al. 1990) to estimate effective

diffusivity at soil collars within each of the eight experimental plotsweahave used in
previous research (Phillips et al. 2001a, Dubbs and Whalen unpublished/*Rrbased
method involves the simultaneous measuremefftih flux from soil collars, using the
static chamber method (Whalen et al. 1992), and measurement of §GiRaiand CH
concentrations at the soil surface and at a depth of 25 cm from our gas samp&ngwel|
static chamber and well sets from each of the eight experimental plousestdéor October
2008 and February 2009 diffusivity experiments while one static chamber andtviehse

each plot was used for April 2008 and July 2008 diffusivity experiments.
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To initiate””’Rn and CH flux determinations, polyvinyl chloride covers fitted with a
sampling port and capillary bleed were emplaced on solil collars. Radon-222samide
withdrawn into 50 mL syringes from the soil surface, the 25 cm gas sampling wekleand t
static chamber. These samples were then used to fill evacuated 170 mL (wamunte)g
cells (Lucas) through quick connect fittings equipped with Teflon septa. Imrlgdiat
following ?°Rn sample collection, a 10 mL chamber headspace sample and a 5 mL sample
from each gas sampling well, from 5 cm to 25 cm depths, were also withdrawir®inmL
glass syringes for CHanalysis. Additional static chamber headspace samples werelgimilar
collected ~24 h later f6f"Rn and CH analysis. Radon-222 activity was determined by
scintillation counting of gas samples contained in Lucas cells using a portdnennanitor

(Pylon Model AB-5). Gas samples were analyzed fog @3idescribed above.

Environmental measurements

Soil temperature and soil moisture were measured on each sampling date. Soil
temperature was measured at 3 cm intervals from 1 cm to 19 cm depth with a muitithrer
temperature probe. Volumetric soil moisture (miOHem® soil) was measured by time
domain reflectometry on each sampling occasion using a hand-held portable soil

reflectometry sensor (Campbell Scientific 620 with 20 cm-long probe rods).

Calculations and Satistical Analysis

Rates of net ClHconsumption and CHoroduction of core sections were calculated

from the headspace volume of the bottles and log-linear or time-linear cludrigids
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concentrations, respectively. Rates of net, Ebhsumption and CHoroduction in core
sections from the soil surface to 15 cm, and those from 15 cm to 25 cm below the soll
surface, were averaged for comparison ob @@atments. Area-based rates of net; CH
consumption determined commensurate to diffusivity observations weutatatcfrom
static chamber geometry and the log-linear change in thee@ttentration in static chamber
headspaces.

Soil ?Rn profiles and?“Rn chamber flux measurements were used to calculate the
effective diffusivity of CH in the soil (Ry4) according to Dérr and Munnich (1990):

Pcha=Do,cHd Do,rn * Prn

where @ cha and Oy roare the diffusion coefficients of GH0.194 cmi s* Lerman 1979) and
Rn (0.1 cri s*; Tanner 1964) in air anckRis the permeability of Rn, which is the quotient
of Rn flux divided by the concentration gradient of Rn in the soil profile. The effective

diffusivity of CH, was then used to calculate the flux of GBtHa):

Jena= Pena* ACchdAZcha
where ACcndAzZcha is the linear change in GHoncentration (gu4) with depth (2n4).
Paired t-tests were used to analyze for statistical differdretegeen CQtreatment
means for Ciconcentration. Paired t-tests were likewise used to analyze for sthtistic
differences between G@eatment averages of rates of net;€binsumption or CiH
production. Differences in diffusivity between gtdeatment plots were compared by
student t-tests for each of the four observations. All statistical analgseperformed at

a=0.05.
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Results

Depth profiles of CH4 concentrations

Soil CH, concentrations decreased sharply with depth from 5 to 20 cm below the soil
surface. The rate of decline in gebncentrations with depth decreased from 20 to 25 cm
(Fig. 4.2). The depth profiles of average {&dncentrations in control and @®@nriched
plots were similar. The average £tbncentration in control plots was slightly higher (0.1
mL L™) than in CQ-enriched plots at 5 cm, but the average, Ebhcentration was slightly
higher (0.01 to 0.05 mLt) in CO,-enriched plots relative to control plots at all other depths.
However, there was not any significant difference in, €bhcentrations between GO
treatments at any depth, nor for the whole soil profile, for any sampling datetloe femtire

data.

Depth profiles of net CH4 consumption and CH4 production

Net CH, consumption was observed in all core sections before addition of #te,CH
at which point CH production or zero flux of CHvas observed for the remainder of the
observational period. Rates of net iédnsumption were similar in soils from both £O
treatments at each depth increment, ranging from 150 to 30§,0ghg, (Fig. 4.3a and b).
Methane production was more variable, spanning almost three orders of magnitil$e in s
from both the 0 to 15 cm, (Fig. 4.4a; 0.5 to 450 pg'yh™) and 15 to 25 cm depth intervals
(Fig. 4.4b; 0 to 880 pgogy ™ h™).

The average rates of net Cebnsumption in control plot soils from 0 to 15 cm were

up to 14% higher than, or nearly equivalent to, the average rates of neb@&dmption in
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soils from the C@enriched plots from the same depth (Fig. 4.3a). In contrast, the average
rates of CH production in C@-enriched plots from 0 to 15 cm depths were up to two orders
of magnitude higher than, or nearly equivalent to, the average rates, pr@Hction from

the same depth (Fig. 4.4a). The patterns in rates of ne¢c@t$umption and CH

production in soils from 15 to 25 cm depths are less clear with regard to differerveesrbet
CO, treatments. The experiment with the overall highest average rate,@irGdiction

among the 15 to 25 cm depth increments showed a value for for soils fresen@ched

plots that exceeded that for control plots (July 2005; Fig. 4.4b). This corresponded with a
higher average rate of net ¢ebnsumption in control plot soils (Fig. 4.3b). The rates of
CH, production in soils from 15 to 25 cm core sections on both other sampling dates (Oct.
2006 and April 2007; Fig. 4.4b) were between 40 and 100% lower than the corresponding
rates of net Cilconsumption, and rates in soils from £&hriched plots were higher than
rates in control plots. The differences in rates of net €Hsumption and CHoroduction
between C@treatments were not significant for either depth interval or for the whade cor

on any date.

Effective diffusivity

There was not any consistent or significant differencejin Petween CQ@
treatments. The effective diffusivity of GiMas higher in control plots on two of four dates
(Table 4.1), which also corresponded with higher ovegall Palues. There was not a clear
relationship betweendg, and soil moisture, or betweegRand &4 (Table 4.1). The
calculated flux of Chl (Jns) Was more than 25% lower than measured f for three out

of four observations (Table 4.1). The exception was in April 2008 when predigtgdaidd
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measured Clifluxes were only different by 20 and 24 % in £&€hriched and control plots,
respectively. Relatively good agreement between measured and predetenf reet Chi

flux in April corresponded with the highesg 2 value. Soil moisture was higher in control
plots relative to C@enriched plots on each date when diffusivity measurements were made

(Table 4.1).

Discussion

Methane concentrations at depth within the soil profile are determined byeelat
rates of diffusion from the atmosphere, consumption by methanotrophs, and/or production by
methanogens. Our values for effective diffusivity are on the low end of reportess Vai a
multitude of European (Born et al. 1990; Dorr et al. 1993) and boreal forest soils (Whalen et
al. 1992), which range from 2 to 1504%ht. The low effective diffusivity may in part by
due to the clay loam texture of our soils as soil texture influences diffusiatlyeBal.
1997). For example, clay soils show net,@dnsumption rates an order of magnitude lower
than sandy soils (Dorr et al. 1993). The low diffusivity of our soils was evident during the
collection and measurement®fRn samples, as it was difficult to flush sample wells and
subsequently collect sufficient sample #&iRn analysis. Further, soils produ¢étRn at
such low rates that accurate zero tfiff&n determination { = 3.85 d) was problematic for
stored, synoptically collected samples after the first few samples bachbsayed because
each assay required 6 h of counting. Therefore, the error associated witkitiffus
measurements may overwhelm any treatment effect.

Nonetheless, decreased soil diffusivity, as a result of increasedtkzaddipth and/or

higher soil moisture, would reduce the substrate supply for methanotrophs, and couid expla
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the observed decline in net ¢ebnsumption under elevated £€O0rhe deeper duff in CO
enriched plots at our study site (Allen et al. 2000, Schlesinger and Lichter 2€liigr et al.
2005, Lichter et al. 2008; Fig. 4.1; pathway B) may be responsible for the observamneduc
in net consumption of CHunder elevated CO Duff has been shown to reduce diffusion of
atmospheric gases to the mineral soil occupied by methanotrophs (Borken amaeBrum
1997, Saari et al. 1997, Dong et al. 1998). Dong et al. (1998) observed that the removal of
the leaves and humus layer from the soil surface resulted in 17% higher rates of CH
consumption by temperate forest soils. Similarly, we observed an increé®eimhet CH
consumption when leaf litter was removed (data not shown), suggesting thatra&i@ent
effect on leaf litter depth may contribute to reduced rates of ngt@ksumption under
elevated CQ@ Further, a thicker duff layer can slow evaporation from the soil surface
thereby causing higher soil moisture in £&hriched plots (Schéfer et al. 2003). Schéafer et
al. (2003) observed significantly higher soil moisture in.@€@riched plots at our study site
through 2002, although they proposed that the difference betwegtmea@nent plots did
not necessarily reflect a treatment effect. We (Dubbs and Whalen unpublistoeituald
higher soil moisture in C&enriched plots during biweekly determination of soil-atmosphere
CH,4 exchange in 2004 and 2006, and that soil moisture explained 34% of the variability in
rates of net Chiconsumption. Higher soil moisture and associated reduction in diffusivity
(Suwa et al. 2004) in C&enriched plots likely contributes to the observed decrease in rates
of net CH, consumption under elevated g @egardless of the cause of increased soil
moisture.

Low overall effective diffusivity and high soil moisture in &énriched plots would

also slow the diffusion of atmospherig fDto and within the mineral soil. This reduced
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supply of Q, paired with increased respiratory €nsumption within the soil matrix under
elevated CQ(Bernhardt et al. 2006) may result in the formation of anoxic microsites.
Independent reports of anoxic microzones (Sexstone et al. 1985, Zausig et al. 1993) and
methanogenic activity in macroscopically oxygenated soils (Yavitt et al. 198956 e5al.

1997, von Fischer and Hedin 2002, Teh et al. 2005) indicate that simultanepus CH
production and consumption are occurring in well-drained upland soils, with anoxic soil
aggregates supporting localized zones of methanogenesis and oxic sites supporting
methanotrophy. In fact, Hoosbeek and Scarascia-Munozza (2009) saw increaged macr
aggregation (250-2000 pm) of soils under elevategdi@@ temperat@opulus x

euramericana plantation (Fig. 4.4; pathway C), and further found that the soil aggregates
contained higher concentrations of C and N. Horn and Smucker (2005) found that the redox
potential decreased rapidly, and thus the propensity for anoxia increased, wheasilsuch s
aggregates were saturated by water. While not explicitly determinedsiieh loci of
microbial activity where respiratory consumption afi©enhanced and the development of
anaerobic conditions are stimulated may explain the qualitative trend ofsedrésl
production under elevated G@bserved here. We previously reported episodic ngt CH
efflux from the solil (indicated net GHbroduction) under both CQreatments, with nearly
double the observations in G@nriched plots (Dubbs and Whalen unpublished). We
additionally measured gross ¢production in all soils from a 0 to 15 cm depth increment in
laboratory experiments where an inhibitor of methanotrophy was administeged.@i
Further, in the 15 to 25 cm depth increment, high rates afpg@dtluction were clearly
manifested by reduced rates of net;CHnsumption (July 2005; Figs. 4.3 and 4.4). Finally,

the depth profiles (Fig. 4.2) provide further evidence of methanogenesis at depthesiace
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were only 15 occasions out of 2480 observations, where the®@tdentration was drawn
below the widely acknowledged threshold of about 0.2t high affinity methanotrophs
(Bender and Conrad 1995), indicating a soil source of &ligments the atmospheric supply
to methanotrophs.

While reduced diffusivity of Cilin CO,-enriched plots was not expressed in depth
profiles of CH, concentrations, which showed no significant differences in CH
concentrations at any depth (Fig. 4.2), the depth profiles did suggest slightly hitsher C
production in C@-enriched plots. Methane concentrations at depths between 10 and 20 cm in
CO»-enriched plots were slightly higher than those in control plots. Additionally, Wese
not any difference in CiHconcentrations between G®eatments at any depth (Fig. 4.2), nor
was there a significant difference in net Q#tidizing activity between C{reatments at
any depth (Fig. 4.3). A down-profile shift in the locus of the,GKdizing community in
response to elevated @@ould increase the diffusional path of atmospherig @Hhe locus
of CH, oxidation. Thus, this lack of difference in gébncentrations between €O
treatments indicate that the long-term pattern of reduced net@t$umption in soils
exposed to elevated GQPhillips et al. 2001a, b, McLain et al. 2002, Whalen unpublished,
Dubbs and Whalen unpublished) is not the result of such a downprofile shift in he CH
oxidizing community.

High spatial variability in net CHconsumption and CHoroduction rates and
diffusivity measurements, along with limited ability to collect soil samlampered our
ability to detect significant differences between @®@atments. However, trends indicating
low overall diffusivity and increased incidence and rates of @Hduction in elevated GO

plots relative to control plots. This conclusion is supported by long-term repeatied fiel
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measures of soil moisture and net atmospherig @HAsumption where significant,

guantitative differences between g@atments were observed with £énhriched plots

showing higher soil moisture and lower rates of net atmospherc@isumption (Dubbs

and Whalen, submitted). Thus, global changes that impact soil hydrologyydinettttough
biological feedbacks (Denman et al. 2007) are useful predictors of the directionesnaf rat

CH, flux in upland soils. Factors that increase soil aggregation can also beesejoect

influence CH dynamics, although more research is needed regarding this pathway (Fig. 4.1,

Pathway C).
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Table 4.1. Effective diffusivity (8i) and corresponding calculated netGlix (Jons; g m? hh), measured net CHlux (ug m?h
1, and soil moisture in control and énriched plots (n=3, each treatment for July 2008 and April 2008; n=6, each trefatment
Oct.2008 and Feb. 2009) at the Duke FACE site.

G6

Pcha JcHa Measured net CH Soil moisture
Date CQ treatment
(cn? hh) (kg m? hr) flux (ug m?hrY)  (mL H,0 cm?® soil)
July ‘08 Control 2.8 1.3 1.7 0.32
Enriched 2.4 1.1 15 0.27
April ‘08 Control 1.8 0.7 1.6 0.33
Enriched 1.3 0.5 1.6 0.31
Oct. ‘08 Control 0.9 0.4 1.6 0.24
Enriched 11 0.4 1.8 0.24
Feb. ‘09 Control 0.0 0.0 0.8 0.39

Enriched 0.5 0.1 0.6 0.34
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Figure 4.1. Conceptual model of the impact of forest ecosystem responses tdalyat
that influence soil Chicycling dynamics. Up and down arrows within each response function

indicate a positive or negative impact, respectively, of that factor onmesleric Chl
consumption. Response functions are either documented or hypothesized by theedssociat

references.
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Figure 4.2. Composite depth profiles of £H soils in forest plots exposed to elevated,CO
or the ambient atmosphere (control). Data for each depth represent the mean frogas soill
wells for each treatment over 31 dates. Error bars are eliminated ftyr clar
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Figure 4.3. Mean rates of net ¢ebnsumption in forest soils from plots exposed to elevated
CO, or the ambient atmosphere (control). Data are mean rates for: a) 0 to 15 cm; and b) 15
to 25 cm depth increments from 16 cores. Error bars represent 1 standard error ahthe me

(n=8).
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Figure 4.4. Mean rates of Glgroduction in forest soils from plots exposed to elevateg CO
or the ambient atmosphere (control). Data are mean rates for: a) 0 to 15 cm; and b) 15 to 25
cm depth increments from 16 cores. Error bars represent 1 standard error of thes@pan (
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CHAPTER 5: CONCLUSION

My research suggests that reduced nef €iisumption is a sustained, equilibrium
response of this temperate forest soil to elevategl Gibserved lower annualized rates of
net CH, consumption in soils from G&enriched plots relative to controls for all 3 y of my
study, extending the record from permanently emplaced soil collars audyysste (Phillips
et al. 2001; Whalen and Fischer unpublished) to 8 nearly continuous years. The average
decrease in net GHtonsumption under elevated &for all annual observations was ~15%
and there was not any consistent change in the magnitude of then@G€hment effect on
the CH, sink strength over the extended record.

A decline in soil CH consumption of the magnitude observed here (~15%) across all
forest biomes with an estimated aggregated sink of 24 TgyCKkRidgwell et al. 1999),
gives a decrease of 3.6 Tg £¥4". This reduction represents 10% of the model estimate
(Ridgwell et al. 1999) of 38 Tg CH/* for the total soil sink.

Causative factors for the observed decrease in ngt@t$umption under elevated
CO; are difficult to identify, as the destructive sampling necessary foegsdevel
investigations is limited to maintain ecosystem integrity at the DukeE-#té. However,
the modeled soil moisture x G@eatment interaction for 3 y of field measurements of net
CH, flux and corresponding environmental variables was significant, indicatingitiavise
differences in net ClHconsumption are at least in part moisture-related. The observation that

soil moisture explains 34% of the variability in net ghleasurements further supports soil



moisture control of net CHconsumption where soil moisture is higher in elevated [@Qs.
However, soil moisture does not appear to be the only driver of the observed decline in net
CH,4 consumption under elevated €O

| found that some plant exudates from this forest ecosystem inhibit@Hdumption,
including levulinic acid, an organic acid that is released from plant roots kegoeentities
under elevated CQand duff leachates from the duff of both &f@atment plots, but which
is thicker under elevated GOThese leachates do not exert consistent control over rates of
atmospheric Chiconsumption. However, their temporal and spatial influence on net CH
consumption under elevated ¢@eserve further consideration since their transient
influences may weaken the correlation between well-studied influences pro@stimption
and measured rates of net tdnsumption.

While high spatial variability and high error, along with limited aypild collect soil
samples largely resulted in the inability to detect significant diffe®ncrates of CiH
consumption and CHoroduction and soil diffusivity between G@eatments, qualitative
trends showed low overall effective diffusivity of these soils and increasei@me and
rates of CH production in elevated C(lots. When these trends are viewed together with
the contributions of soil moisture to explaining reduced nef €dsumption under elevated
CQO,, it is apparent that increased activity of methanogens under elevatenb@€bute to
the observed decline in Glgxidation at this study site.

My research has identified several research needs. These include furthe
investigation of the spatial and temporal inhibitory influences of plant compounds pfoduce
under elevated CQhat may influence rates of Gldonsumption, as well as determination of

the factors that contribute to formation of anoxic microsites in upland soils undateele
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CO.. If my results can be broadly extrapolated, my research also suggestg@@banhaL™
increase in present-day atmospheric;€@ncentrations can be expected to reduce the forest
soil sink for CH of ~24 Tg ¥* by approximately 15%. Further, the observed relationship
between increasing soil moisture and the reduction in the forest sink fandieates that
climate forecasting models can constrain the predicted upland sink fdvyd#lating it to

soil hydrology.
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