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ABSTRACT 

 

MARTHA ANN CLARK: Iron Deficiency and Iron Supplementation Conspire to Mediate 

Susceptibility to Erythrocytic Stage Plasmodium falciparum Infection 

(Under the direction of Steven Meshnick) 

 

Malaria and iron deficiency are interconnected public health concerns, which 

disproportionally affect children and pregnant women. Malaria causes an estimated 250 million 

infections and 1 million deaths per year. Plasmodium falciparum is the most virulent species of 

the malaria parasite that infects humans. Anemia, predominantly iron deficiency anemia, is the 

most common nutritional deficiency worldwide, and affects up to 50% of populations in the 

developing world. The World Health Organization recommends universal iron supplementation 

in regions where malnutrition is common. This recommendation has been complicated by 

clinical evidence that iron deficiency protects against malaria infection, and that iron 

supplementation increases susceptibility to malaria infection. The mechanisms underlying the 

interaction between malaria, host iron, and iron supplementation remain unclear. Here, I’ve 

employed the in vitro system for cultivating erythrocytic stage P. falciparum to assess first, the 

impact of extracellular iron on parasite growth as well as the bioavailable iron content of 

parasitized erythrocytes. I have found that extracellular iron is incorporated into parasitized 

erythrocytes but does not have affect parasite growth. Second, I assessed the capacity of 

erythrocytes from iron deficient and iron supplemented donors to support erythrocytic stage P. 

falciparum growth. In these studies I observed that P. falciparum propagation is reduced in iron 

deficient erythrocytes and that reduced parasite propagation is a result of decreased parasite 

invasion into iron deficient erythrocytes as well as decreased production of infectious daughter 
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merozoites within iron deficient erythrocytes. I additionally observe that P. falciparum 

propagation is recovered in erythrocytes donated by iron supplemented iron deficient donors. 

Furthermore, I attribute the recovery of P. falciparum erythrocyte propagation to the replacement 

of iron deficient erythrocytes with young iron-replete erythrocytes that are produced in response 

to iron supplementation. These results are consistent with clinical observations that iron 

deficiency is protective against malaria infection and iron supplementation increases the risk of 

malaria infection. Moreover, my results suggest that iron mediated alterations to erythrocyte 

physiology and intra-host erythrocyte population dynamics as well as potentially altered serum 

iron levels contribute to the underlying mechanisms governing the relationship between the 

malaria parasite, iron deficiency, and iron supplementation.  
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CHAPTER ONE 

 

Introduction 

 
1.1 A relationship revealed – host iron status and malaria 

 
Iron deficiency and malaria are significant co-morbidities in large portions of the 

developing world, and both maladies disproportionately affect pregnant women and children. 

Malaria causes an estimated 250 million infections and 500,000 deaths annually. Iron deficiency 

is estimated to affect one quarter of the world’s populations causing substantial morbidity. 

Fortunately, iron deficiency is easily treated with iron supplementation (Okebe et al., 2011). 

Accordingly the World Health Organization (WHO) recommends routine iron supplementation 

for children and adults in areas with high prevalence of iron deficiency (Haider et al., 2013; Low 

et al., 2013). However, the wisdom of universal iron supplementation campaigns in malaria 

endemic regions has recently been questioned due to clinical evidence that suggests iron 

deficiency protects against malaria, and that iron supplementation of women and children may 

increase the incidence of malaria when given without malaria prophylaxis or access to adequate 

health care (Sazawal et al., 2006; Tielsch et al., 2006; Veenemans et al., 2011; Zlotkin S et al., 

2013; Esan et al., 2013; Nyakeriga et al., 2004; Gwamaka et al., 2012; Jonker et al., 2012; 

Kabyemela et al., 2008; Senga et al., 2011). This situation has created a dilemma for health 

policy makers and health care workers in malaria endemic regions of the world (Prentice et al., 

2013).  
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Despite these clinical and epidemiological studies, the extent to which the human host’s 

iron status affects risk to and severity of malaria infection is unknown. Differences in study 

design and confounding factors (such as acquired immunity to malaria and hemoglobinopathies) 

have made the clinical and epidemiological studies difficult to interpret (Prentice et al., 2007). 

Furthermore, though iron and malaria have been and continue to be studied the exact biological 

relationship between host iron and malaria virulence remains largely unclear.  

1.2 Iron deficiency and iron deficiency anemia 

 
Iron deficiency is a condition in which there is insufficient iron in the body to maintain 

normal physiologic functions. Iron deficiency can be categorized into three stages: iron 

deficiency without anemia, iron deficiency with mild anemia, and iron deficiency with severe 

anemia. Iron deficiency anemia occurs when iron stores are exhausted and the supply of iron to 

tissue is compromised; this condition is defined as anemia with biochemical evidence of iron 

deficiency. Iron deficiency is most prevalent and severe in young children and women of 

reproductive age, but can also occur in older children, adolescents, adult men, and the elderly. 

The WHO estimates that 50% of pregnant women and 40% of preschool children in the 

developing world are iron-deficient (WHO | Assessing the iron status of populations; Kassebaum 

et al., 2013) Often, iron deficiency develops slowly and is not clinically diagnosed until severe 

anemia is apparent (Stoltzfus, 2003).   

Studies suggest that iron deficiency impairs the growth, cognition, and neurological 

development of children from infancy through adolescence, impairs immune function, and is 

associated with increased morbidity rates (Wang et al., 2013; De-Regil et al., 2011, 2013). Iron 

deficiency during pregnancy is associated with multiple adverse outcomes for both mother and 

infant, including increased risk of hemorrhage, sepsis, maternal mortality, perinatal mortality, 



 3 

and low birth weight (Peña-Rosas et al., 2012a, 2012b). Iron deficiency anemia can be a direct 

cause of death or contribute indirectly. For example, during childbirth an anemic mother cannot 

afford to lose more than 150 mL of blood, compared with a healthy mother who can lose up to 1 

liter of blood and still survive. Thus, the WHO recommends iron supplementation for all men, 

women and children in areas where malnutrition is prevalent (WHO | Guidelines on food 

fortification with micronutrients).  

Host iron metabolism is intimately linked to the host response to infection and 

inflammation. With the high incidence of infection in the developing world, the study and 

treatment of iron deficiency anemia becomes challenging. In the face of infection and 

inflammation, the human host protein hepcidin becomes elevated and initiates signaling which 

results in reduced iron absorption into the body along with the redistribution of body iron stores. 

As a consequence of the effect of infection and inflammation on human iron metabolism, many 

of the biomarkers utilized to assess host iron status are sensitive to both iron as well as infection. 

For example, low serum ferritin (serum ferritin reflects total body iron reservoirs) is indicative of 

iron deficiency. However, ferritin is also an acute phase protein, which is elevated in the context 

of infection, and as a result is not a reliable marker of human iron status in the presence of 

infection or inflammation. Like serum ferritin, transferrin saturation and transferrin receptor 

levels are biochemical markers of human iron status that are also sensitive to infection and 

inflammation. As a result evaluating an individual’s iron status in the context of infection has 

proven difficult (Aguilar et al., 2012), and the scientific community has struggled to establish 

formal guidelines for defining human iron status in the presence of infection. 
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1.3 Malaria 

 
In 2012 malaria caused an estimated 207 million infections and over 600,000 deaths; 

90% of these deaths occurred in sub-Saharan Africa, and 77% occurred in children under five 

(WHO | World Malaria Report 2013). At least five species of the eukaryotic Apicomplexan 

parasite from the genus Plasmodium cause malaria in humans with Plasmodium falciparum 

being the most common and deadly. Malaria parasites are transmitted to the human host by 

mosquitoes. Following the bite of a malaria parasite infected mosquito, the sporozoite stage of 

the parasite enters the bloodstream and travels to the liver, where it subsequently infects liver 

hepatocytes. Malaria replication in the liver is asymptomatic. Next, the merozoite form of the 

parasite leaves the liver and enters into circulation to infect host red blood cells (RBCs). During 

the erythrocytic stage of infection, the parasite repeatedly invades, replicates within, and egresses 

from host RBCs. This erythrocytic stage of infection is responsible for all symptoms of disease 

(Miller et al., 2013), and the severity of disease is directly associated with parasite burden 

(Chotivanich et al., 2000; Dondorp et al., 2005).  

A wide range of symptoms can be observed in malaria patients. Clinically however, 

malaria is categorized as either uncomplicated or complicated. Complicated malaria is further 

divided into three overlapping syndromes: cerebral malaria, severe anemia, and metabolic 

acidosis. The clinical syndrome observed in each individual patient is influenced by multiple 

variables: parasite species, host immune status and genetic background, as well as the use and 

timing of antimalarial drugs (Taylor et al., 2010).  

1.4 Clinical studies linking iron and malaria infection 

 
Host iron has received significant attention at the clinical level as a major factor that may 

regulate malaria virulence. The results of clinical studies conducted prior to 2002 which 
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examined the relationship between host iron status and malaria risk are reviewed in three meta-

analyses (Oppenheimer, 2001; Shankar, 2000; Gera and Sachdev, 2002). In the interim, two 

large iron supplementation trials as well as several smaller clinical studies have shed further light 

on the relationship between host iron status and malaria infection (Table 1). Clinical trials that 

have examined the relationship between host iron and malaria fall into two basic categories: 

those that observe the rate of malaria in individuals with iron deficiency anemia, and those that 

look at the rate of malaria infection in individuals given iron supplementation. Differences in 

study design exist within both study types, and include: the definition of study participant iron 

status, the administration of iron alone or with folate, and access to health care. Despite 

differences in study design, assessment of the outcome of the clinical studies has led to the 

general consensus that iron deficiency is protective against malaria, and iron supplementation 

increases malaria risk in the absence of access to adequate health care (Spottiswoode et al., 2012; 

Prentice and Cox, 2012; Stoltzfus, 2012).  

While these clinical studies and meta-analyses have been indispensable for determining 

the relationship between host iron status and malaria risk, it is not clear how iron deficiency 

protects and why iron supplementation increases risk. Immunity to malaria and high prevalence 

of genetic traits such as Glucose-6-phosphate dehydrogenase (G6PD) deficiency and 

hemoglobinopathies in the study populations limit the capacity of clinical studies to parse out 

causation. Furthermore, relatively little is known with regards to the role host iron plays in 

malaria pathogenesis. Iron impacts a broad range of biological processes that have the potential 

to shape malaria pathogenesis. As a result, even with the most ideal of clinical study designs; the 

prerequisite knowledge of which aspects of malaria pathogenesis should be studied is largely 

absent. A better grasp on the underlying biological principals that govern (i) the protection of 



 6 

iron deficiency against malaria and (ii) the increased risk of malaria associated with iron 

supplementation is critical for managing iron supplementation campaigns in malaria endemic 

regions.  

1.5 Biological importance of iron  

 
Iron is an essential nutrient for nearly every living organism including humans and the 

malaria parasite. Iron impacts a broad range of biological processes; including host and parasite 

cellular function, erythropoiesis and immune function. The capacity of iron to fluctuate between 

two oxidation states, ferrous (Fe
2+

) and ferric (Fe
3+

), makes it indispensable for many critical 

biological processes, including DNA replication, cellular respiration, and oxygen transport. 

However, the same useful biphasic properties of iron, which make it indispensable, also 

contribute to its high cytotoxicity. As a result the human host tightly regulates iron availability 

and usage. 

Access to iron is particularly important in the context of host-pathogen interactions. 

When confronted with infection and inflammation the human host reallocates its iron reservoirs 

in an effort to deprive invading pathogens of iron. As described, the human protein hepcidin – a 

rheostat of systemic iron homeostasis – signals the body to decrease absorption of iron in the 

proximal duodenum and orchestrates the movement of iron from serum into storage within the 

liver and macrophages (Roy, 2013). As a result of reduced serum iron, erythropoiesis—a process 

exquisitely sensitive to iron levels—slows in the face of infection as well as inflammation. The 

human host’s active reduction in bioavailable iron protects against a wide range of pathogens 

(Armitage et al., 2011). Not surprisingly, as many pathogens require access to host iron sources 

to survive and grow, pathogens have evolved sophisticated iron acquisition systems, and the iron 
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acquisition systems of many bacterial and fungal species have been well described (Skaar, 2010). 

By comparison how the malaria parasite acquires, regulates, and utilizes iron remains a mystery.  

1.6 Iron metabolism in the malaria parasite 

 
Iron is essential for the survival of the malaria parasite. The parasite multiplies 8-32 times 

in the course of a single intra-erythrocytic lifecycle. Iron is an essential cofactor for the DNA 

replication enzyme ribonucleotide reductase, and as a result iron is required to fuel this rapid 

intra-erythrocytic proliferation (Rubin et al., 1993). Iron is also utilized by the parasite for 

pyrimidine (Krungkrai et al., 1990; van Dooren et al., 2006) and heme biosynthesis (Sato et al., 

2004; Nagaraj et al., 2010, 2013, 2009; Sato and Wilson, 2002; Dhanasekaran et al., 2004; 

Nagaraj et al., 2008). As with the human host, the malaria parasite must also balance its need for 

iron against the cytotoxicity of iron. 

The malaria parasite metabolizes host hemoglobin in its acidic digestive vacuole in order 

to acquire necessary amino acids; however, as discussed below (The relationship between 

intra-erythrocytic iron and erythrocytic stage malaria) the parasite does not utilize the iron in 

host heme. Plasmodium aspartic and cysteine proteases degrade host hemoglobin and release 

large quantities of toxic iron-laden heme (Goldberg et al., 1990; Subramanian et al., 2009). 

Apicoblast parasites neutralize the cytotoxic heme produced during hemoglobin metabolism by 

sequestering the heme in an inert crystal, hemozoin (Rudzinska et al., 1965; Chugh et al., 2013). 

Despite neutralizing a substantial portion of host heme into hemozoin, some residual heme 

remains free and becomes oxidized, generating free oxygen radicals (Francis et al., 1997). The 

parasite possesses powerful thioredoxin and glutathione systems to maintain intracellular redox 

equilibrium (Jortzik and Becker, 2012).  However, even when these redox systems are 

functioning at full capacity, oxidative stress significantly increases as the parasite matures and 
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replicates within host erythrocytes (Fu et al., 2010).  In fact, many antimalarials, including 

artemisinin, appear to target the parasite’s ability to detoxify reactive oxygen species (ROS) 

(Rosenthal and Meshnick, 1996; Klonis et al., 2013; Ariey et al., 2014). For example, it was 

recently found that mutations in PF3D7_1343700 (Kelch) can confer resistance to artemisinin. 

The authors speculate that these mutations cause a disruption of the parasite’s ability to detoxify 

reactive oxygen species because the efficacy of artemisinin depends on its ability to generate 

oxygen radicals and some kelch-containing proteins in other organisms have been shown to be 

involved in the regulation of cytoprotection (Ariey et al., 2014). 

Given the relationship between iron, heme, and ROS, it is possible that perturbations in 

host iron regulation might also affect the malaria parasite’s redox equilibrium. Iron responsive 

proteins and their accompanying iron responsive elements are critical for maintaining cellular 

iron homeostasis in the human host. Iron responsive proteins and iron responsive elements are 

responsible for mobilizing iron when demands are high and moving iron into storage when 

excess iron may promote ROS formation (Hentze et al., 2010). Loyevsky et al. identified and 

characterized a P. falciparum iron responsive protein (IRP), the expression of which was 

affected by iron starvation as well as iron supplementation (Hodges et al., 2005; Loyevsky et al., 

2001, 2003). However, a search of gene databases failed to identify Plasmodium homologues of 

ferritin, ferroportin, metallothione, a ferrioxamine based transport system or ferredoxin or 

siderophore biosynthesis pathways – all proteins and processes utilized by other organisms to 

acquire, regulate, and store iron (Scholl et al., 2005a). Clearly, much remains unknown regarding 

parasite iron biology. 
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1.7 Iron chelators and their contribution to the elucidation of malaria iron biology 

 
Realizing the importance of iron for the malaria parasite, researchers have invested 

extensive time and effort into the investigation of the anti-malarial activity of iron chelating 

agents. These studies have also provided insight into malaria parasite iron biology. In contrast to 

mammalian cells, which are sensitive to millimolar concentrations of iron chelators, erythrocytic 

stage malaria parasites are sensitive to micromolar concentrations of iron chelators in vitro and in 

animal models (Cabantchik et al., 1996). The cytotoxicity of iron chelators is dependent upon the 

stage of intra-erythrocytic maturation of the malaria parasite and the hydrophobicity of the iron 

chelator (Lytton et al., 1994). For example, the hydrophilic chelator hydroxamate-based 

deferoxamine (DFO) has cytostatic activity against the ring stage and cytotoxic activity against 

the late trophozoite and schizont erythrocytic stages of the parasite (Whitehead and Peto, 1990; 

Lytton et al., 1994; Cabantchik et al., 1999).  

The cytotoxicity of iron chelators against the malaria parasite suggests that the 

mechanism of action of iron chelators is more complex than simple iron deprivation. Alternative 

mechanisms have been suggested for some chelators, including the direct inhibition of parasite 

ribonucleotide reductase activity (Lederman et al., 1984; Lytton et al., 1994). Furthermore, as 

iron chelators can modulate host immune function, iron chelator anti-malarial activity may be a 

result of modification of the host immune response (Li et al., 2012; Golenser et al., 2006).  

Caution must be taken when considering the use of iron chelators to inform our 

understanding of the biological relationship between iron deficiency and malaria infection. The 

evidence that iron chelators do more than merely deprive the parasite of iron introduces potential 

confounding factors into studies that utilize iron chelators as a model for iron deficiency. 

Furthermore, most iron chelators cannot chelate iron associated with heme, ferritin, or 
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transferrin. Because the iron saturation of each of these host iron reservoirs are reduced in iron 

deficiency, iron chelators are not suitable for studying the effect of host iron reduction on the 

malaria parasite.  

That said, evidence that chelation of chelatable extracellular and intra-erythrocyte iron 

does not impact erythrocytic stage P. falciparum growth, suggests that chelatable host iron is not 

necessary for the erythrocyte stage of infection (Scott et al. 1990). Furthermore, work by 

Moormann et al. shows that parasite nuclear and mitochondrial transcripts decrease in the 

presence of the iron chelator DFO (Moormann et al., 1999). These results are consistent with a 

normal cellular response to iron deprivation. In conclusion, iron chelators are obviously 

indispensable in the study of iron biology. However, in the case of malaria caution must be 

taken. 

1.8 Host iron reservoirs available to erythrocytic stage malaria  

 
It is inarguable that iron is essential to erythrocytic stage malaria and therefore possible 

that alterations in host iron levels may tip the balance between inhibiting or promoting parasite 

growth and virulence. Consequently, the question of how the parasite acquires host iron becomes 

central. A healthy iron-replete human has 3 – 4 total grams of iron, which is distributed in 

hemoglobin contained within circulating RBCs (2.5 g), in iron containing proteins (400 mg), in 

serum bound to transferrin (3 – 7 mg), and in storage proteins such as ferritin (1 g). Host iron 

reservoirs available to erythrocytic stage malaria parasite include: (1) transferrin and non-

transferrin bound iron (NTBI) in the serum and (2) intra-erythrocytic iron contained within 

hemoglobin, ferritin, as well as trace amounts freely bioavailable iron in the RBC cytosol 

(Figure 1).  
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Iron deficiency affects these host iron reservoirs by significantly reducing the availability 

of both serum iron and intra-erythrocytic iron. Iron supplementation results in brief spikes in 

serum iron levels (Schümann et al., 2012, 2013), but has little immediate effect on intra-

erythrocyte iron. However, approximately two weeks following iron supplementation, average 

intra-erythrocyte iron levels slowly begin improving as new iron-replete RBCs enter into 

circulation. It is well documented that virulence of many bacteria is directly associated with the 

availability of host iron, and as a result iron supplementation can exacerbate infections (Doherty, 

2007). Whether described changes in serum and intra-erythrocyte iron stores affect erythrocytic 

stage malaria infection remains unknown.  

1.9 The relationship between serum iron and erythrocytic stage malaria 

 
The relationship between host serum iron and parasitized RBCs (pRBCs) is especially 

intriguing (Table 2). Because transferrin has an extremely high affinity for iron (10
23

M
-1

 at pH 

7.4), NTBI is scarce in healthy individuals. There is strong evidence that transferrin associates 

with pRBCs but not uninfected RBCs. Work by Pollack et al. shows that pRBCs take up Fe
59

 

bound to human transferrin, and a recent publication by our own group demonstrates that 

incubation of pRBCs with transferrin and ferric citrate increases the bioavailable iron in pRBCs 

(Pollack and Fleming, 1984; Clark et al., 2013). The idea that the parasite is able to acquire 

transferrin bound iron is further supported Surolia et al. who demonstrated that gelonin toxicity 

towards P. falciparum is 25 times greater when the gelonin is bound to transferrin (Surolia and 

Misquith, 1996). Moreover, Fry et al. report transferrin reductase activity associated with pRBCs 

but not uninfected RBCs (Fry, 1989). Additionally, two groups have reported the identification 

of a P. falciparum transferrin receptor in the RBC membrane of pRBCs (Rodriguez and Jungery, 

1986; Haldar et al., 1986). However, a later study by Pollack et al. concluded that transferrin 
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binding of pRBCs is non-specific (Pollack and Schnelle, 1988), and additional studies were 

unable to detect any acquisition of transferrin bound iron by pRBCs (Peto and Thompson, 1986; 

Sanchez-Lopez and Haldar, 1992).  

Despite strong evidence that transferrin associates with pRBCs, neither iron depletion nor 

iron supplementation of malaria culture media has any observable effect on parasite growth (Peto 

and Thompson, 1986; Sanchez-Lopez and Haldar, 1992; Scott et al., 1990, unpublished data 

Clark et al.). These results challenge the idea that serum iron, specifically transferrin bound iron, 

contributes to the protection of iron deficiency from malaria and the increased risk of malaria 

associated with iron supplementation. Yet, it should be noted that malaria culture media contains 

tenfold less iron than human sera and all existing studies have utilized culture adapted P. 

falciparum laboratory lines. It is possible laboratory lines have adapted to an iron-starved 

extracellular environment. Furthermore, because hemoglobin is an essential nutrient for 

erythrocytic stage malaria, it is impossible to “starve” the parasite of iron in vitro and this may in 

turn limit the ability to study the effect of serum iron on P. falciparum.  

1.10 The relationship between intra-erythrocytic iron and erythrocytic stage malaria 

 
Much less is known about the ability of the malaria parasite to access intra-erythrocytic 

iron (Table 3). An individual RBC contains 100 fg (20mM) of iron, the majority of which is 

contained within hemoglobin. It is estimated that if the parasite were able to access only 1% of 

this hemoglobin iron all of its iron demands would be fulfilled (Gabay and Ginsburg, 1993; 

Hershko and Peto, 1988). However, as discussed above, the parasite incorporates the majority of 

heme released as a result of hemoglobin digestion into hemozoin (Chugh et al., 2013). Despite 

identification of a Plasmodium heme oxygenase-like protein, which would facilitate release of 

iron from host heme (Okada, 2009), the parasite does not exhibit enzymatic heme oxygenase 
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activity nor possess a canonical heme oxygenase pathway (Sigala et al., 2012). Even without 

inherent heme oxygenase activity, it remains possible that non-enzymatic mechanisms release 

enough iron from trace heme to meet the iron requirements of the parasite. Possible mechanisms 

include heme breakdown by glutathione or hydrogen peroxide, the conditions for which are 

predicted to exist within erythrocytic stage parasites (Loria et al., 1999; Ginsburg et al., 1998). 

However, as the parasite synthesizes heme de novo, it does not seem likely that the parasite 

draws iron from host heme (Nagaraj et al., 2013).  

In addition to hemoglobin, RBCs contain residual amounts of bioavailable iron (1-10 

µM) as well as iron stored within ferritin (0.7 nM), and it is possible that the parasite is capable 

of utilizing one or both of these erythrocyte iron reservoirs. Currently, however, there is no 

reported evidence to either support or refute these possibilities (Scholl et al., 2005). However, 

despite a lack of evidence that the parasite accesses host intra-erythrocytic iron, recent work by 

our own group has shown that pRBC bioavailable iron content increases as the parasite matures 

from ring stage to schizont. This observation suggests that iron is released from some form of 

storage as the parasite develops within host RBCs (Clark et al., 2013). Whether the iron is 

released from parasite or host storage remains an open question. 

Although the precise host iron source(s) the malaria parasite acquires remains unclear, all 

the potential host iron reservoirs (serum and intra-erythrocyte) available to erythrocytic stage 

malaria are affected by iron deficiency as well as iron supplementation. Therefore, it is 

reasonable to hypothesize that iron deprivation and excess iron contribute to the relationship 

between host iron and malaria risk observed in the clinical studies discussed earlier. That said, 

even during iron deficiency, the erythrocytic stage of the parasite inhabits the most iron rich 
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environment in the human body. As such it is alternatively possible that neither iron deficiency 

nor iron supplementation perturb iron reservoirs enough to significantly impact the parasite.  

1.11 Microcytic iron-deficient RBCs and malaria 

 
In addition to affecting host iron reservoirs, iron deficiency also induces changes in RBC 

physiology. One such difference between iron-replete and iron-deficient RBCs is the substitution 

of zinc for iron in hemoglobin when iron is limiting. This results in zinc protoporphoryin IX 

levels ten times higher in iron-deficient as compared to iron-replete RBCs (Wong et al., 1996). 

As zinc protoporphoryin IX inhibits hemozoin extension in vitro; it is reasonable to hypothesize 

that that elevated zinc protoporphoryin IX in iron-deficient erythrocytes provides protection 

against malaria infection by impeding parasite growth (Iyer et al., 2003).  

Additional changes to RBC physiology caused by iron deficiency include: microcytosis, 

greater susceptibility to oxidative stress, reduced ATP content, and decreased deformability 

(Nagababu et al., 2008; Acharya et al., 1991; Yip et al., 1983; Brandão et al., 2009). 

Furthermore, iron-deficient RBCs experience enhanced eryptotic cell death (Kempe et al., 2006). 

The altered physiology of microcytic iron-deficient RBCs may therefore protect against 

erythrocytic stage malaria infection. Research by Koka et al. indicates that propagation of the 

erythrocytic stage of P. falciparum strain BinH is reduced in iron-deficient RBCs (Koka et al., 

2007). However, earlier work by Luzzie et al. observed abnormal parasite morphology but no 

difference in the growth of P. falciparum strain UPO in iron-deficient as compared to iron-

replete RBCs (Luzzi et al., 1990). The differences between these studies may be explained by the 

use of different P. falciparum isolates, which feasibly could have different sensitivities to iron-

deficient RBCs.  
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Accelerated host clearance of iron-deficient pRBCs is an additional explanation for the 

protection afforded by iron deficiency against malaria. Results from two studies that examined 

malaria infection in iron-deficient mice both observed a higher clearance rate of pRBCs in iron-

deficient as compared to iron-replete mice (Koka et al., 2007; Matsuzaki-Moriya et al., 2011). 

Specifically, Matsuzaki et al. observed elevated phagocytosis of pRBCs in iron-deficient as 

compared to iron-replete mice, and proposed that the increased phagocytosis rate may be 

attributable to greater phosphatidylserine levels on iron-deficient pRBCs as compared to iron-

replete pRBCs.  Koka et al. similarly observed greater phosphatidylserine levels on P. 

falciparum human iron-deficient pRBCs. Ultimately, these limited data suggests that iron 

deficiency may provide protection against malaria infection by both impeding erythrocytic stage 

malaria growth and increasing phagocytosis of iron-deficient pRBCs. However, only further 

investigation will reveal the true relationship between iron-deficient RBCs and P. falciparum. 

1.12 Perturbations in erythropoiesis and malaria 

 
In the absence of sufficient iron for heme synthesis, the human host’s erythropoietic rate 

decreases. Conversely, iron supplementation of individuals with iron deficiency anemia results in 

a strong erythropoietic response; because the body attempts to recover RBC numbers and replace 

less viable iron-deficient RBCs (Figure 2). It is well known that P. vivax exclusively infects the 

very youngest RBCs (reticulocytes). However, P. vivax is not the only Plasmodium species that 

prefers young RBCs. In fact many species of Plasmodium, including P. falciparum, 

preferentially infect young RBCs, and furthermore young RBC support greater parasite 

replication than more mature RBCs (Wilson et al., 1977; Pasvol et al., 1980; Lim et al., 2013). 

Thus, significant elevation in the erythropoietic rate could put an individual at increased risk of 

erythrocytic stage P. falciparum infection. Tian et al. have investigated this hypothesis in the 
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context of pregnant women, who are at greater risk of malaria infection than their non-pregnant 

counterparts and experience increased erythropoietic rates to meet the oxygen demands of the 

growing fetus. The authors report that P. falciparum growth is significantly greater in the on 

average younger RBCs taken from pregnant women as compared to the on average older RBCs 

taken from non-pregnant women (Tian et al., 1998). 

Murine models have additionally been used to shed light on the relationship between 

erythropoiesis and malaria infection. Interestingly, when Chang et al. manipulated the timing of 

erythropoiesis during the course of a malaria infection it was observed that reticulocytosis early 

in infection significantly increased infection and morbidity, while reticulocytosis late in infection 

decreased mortality (Chang et al., 2004). These observations are consistent with recent work by 

Zhao et al. showing that lipocalin 2, which is elevated during malaria infection, provides 

protection from malaria infection in mice by limiting reticulocytosis (Zhao et al., 2012).  

Furthermore, mathematical modeling by Cromer et al. makes several key predictions that 

support a role for erythropoiesis in driving the protection from malaria associated with iron 

deficiency anemia and increased risk associated with iron supplementation. First, their model 

predicts that low reticulocyte production rate – as would be observed in iron deficiency – in 

combination with a parasite that prefers reticulocytes, could result in a less severe infection. 

Second, high reticulocyte production – as would be observed in iron-deficient individuals 

responding to iron supplementation – could increase severity of malaria infection (Cromer et al., 

2009). These results indicate that limiting reticulocytosis early in infection is important for 

limiting erythrocytic stage malaria infection and further support the hypothesis that iron 

supplementation-induced reticulocytosis significantly increases the risk of erythrocytic stage P. 

falciparum infection.  
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Together, these observations provide insight into potential cellular mechanisms 

contributing to the protection of iron deficiency against malaria, and the increased risk of malaria 

associated with iron supplementation. With regard to iron deficiency, altered RBC physiology 

may limit P. falciparum propagation within iron-deficient RBCs and increase clearance of iron-

deficient pRBCs. Furthermore, the reduced erythropoietic rate and subsequent reduction in an 

iron-deficient individual’s hematocrit may additionally contribute to protection. Conversely, the 

increased erythropoietic rate triggered by iron supplementation paired with the preference of P. 

falciparum for young RBCs may be partially responsible for the increased risk of malaria 

infection that is associated with iron supplementation.   

1.13 Objectives of this dissertation 

 
The relationship between host iron status and malaria revealed by clinical and 

epidemiological studies has halted much needed nutritional iron supplementation campaigns in 

malaria endemic regions. As discussed previously, the biological mechanisms governing the 

relationship between host iron status and susceptibility to malaria remain largely unknown. As 

the erythrocytic stage of malaria infections is responsible for all symptoms of disease, I 

hypothesized that iron deficiency and iron supplementation directly impact the erythrocytic stage 

of malaria infection. Specifically that iron deficiency limits propagation of erythrocytic stage P. 

falciparum infection while iron supplementation would exacerbate the erythrocytic stage of P. 

falciparum infection. 

 I have focused on two distinct avenues by which host iron status might impact 

erythrocytic stage malaria infection: (1) the direct effect of host iron on erythrocytic stage 

malaria growth and (2) the indirect effect iron has on erythrocyte physiology and erythropoiesis. 

With regard to determining whether host iron shapes erythrocytic stage malaria growth by either 
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providing or limiting the availability of essential nutritional iron to the parasite, focused 

specifically on serum iron bound to transferrin or loosely chelated to citrate. To study the effect 

iron has on erythrocyte physiology and erythropoiesis, I isolated exclusively RBCs from blood 

donated by (i) iron-deficient (ii) iron supplemented iron-deficient, and (iii) iron supplemented 

iron-replete individuals and compared erythrocytic stage P. falciparum propagation in the RBCs 

of each group to propagation in RBCs from iron-replete non-supplemented donors. 

The first aim of this thesis was designed to determine the capacity of serum iron to serve 

as a growth factor for erythrocytic stage P. falciparum and affect the bioavailable iron content of 

pRBCs. The second two aims were constructed to study specifically the effect of exclusively 

RBCs from iron-deficient and iron supplemented donors on erythrocytic stage P. falciparum. 

Defining the biological parameters of the (i) protection associated with iron deficiency and (ii) 

the increased risk conferred by iron supplementation on malaria susceptibility is essential for 

informing public health policy on iron supplementation in malaria endemic areas.  

Hypothesis: Iron deficiency and iron supplementation affect erythrocytic stage P. falciparum 

infection by either or both (i) altering the availability of host iron, which the parasite requires 

for growth (ii) altering the physiological parameters of the host RBC population and as a result 

changing the susceptibility of host RBCs to parasite infection.      

Aim 1: To determine the effect of serum iron on erythrocytic stage P. falciparum, I assessed the 

effect of physiologic levels of transferrin and non-transferrin bound iron on erythrocytic stage P. 

falciparum growth and bioavailable iron. 

Aim 2: To study the relationship between different RBC populations and P. falciparum 

infection, I developed an approach for directly comparing P. falciparum invasion of different 

RBC populations. 
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Aim 3: To determine the susceptibility of erythrocytes from iron-deficient and iron 

supplemented individuals to erythrocytic stage P. falciparum infection, I assessed the 

propagation of P. falciparum in RBCs from iron-deficient donors as well as iron supplemented 

iron-replete and iron-deficient donors as compared to propagation of the parasite in RBCs 

donated by iron-replete non supplemented individuals. 



 

Table 1.1 – Summary of clinical studies on iron deficiency, iron supplementation, and malaria 

Children – Interventional studies 

Reference Study Design Population Country, 

malaria info 

Results 

(Sazawal et 

al., 2006) 

Randomized 

placebo 

controlled  

7950 children given iron and 

folic acid 

8120 children given iron, 

folic acid and zinc  

8006 control children  

Ages 1-35 months 

Zanzibar, intense 

malaria 

transmission 

Trial stopped early because of safety concerns. 

Those who received iron and folic acid with or 

without zinc were 12% (95% CI 2–23, p=0·02) 

more likely to die or need hospital treatment for an 

adverse event and 11% (95% CI 1–23, p=0·03) 

more likely to be admitted to hospital; there were 

also 15% (95% CI 7–41, p=0·19) more deaths in 

these groups. 

(Tielsch et 

al., 2006) 

Randomized 

placebo 

controlled 

8337 children given iron and 

folic acid 

9230 children given iron, 

folic acid and zinc  

8683 control children 

Ages 1-36 months 

Nepal, no 

malaria 

Daily supplementation of young children in 

southern Nepal with iron and folic acid with or 

without zinc had no effect on their risk of death, 

but might protect against diarrhea, dysentery, and 

acute respiratory illness. 

(Veeneman

s et al., 

2011) 

2x2 Factorial 

trial 

145 children given zinc only 

148 children given both zinc 

and multi-nutrients 

(including iron) 

146 children given multi-

nutrients (including iron) 

without zinc 

148 children given placebo 

Ages 6-60 months 

Tanzania, 

intense malaria 

transmission 

When data was analyzed by iron status at baseline, 

multi-nutrient supplementation increased the 

overall number of malaria episodes in children 

with iron deficiency by 41%, whereas multi-

nutrient supplementation had no effect on the 

number of malaria episodes among children who 

were iron-replete at baseline. 

 

 

2
0
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(Zlotkin et 

al., 2013) 

Cluster 

randomized, 

double blind  

967 children given 

micronutrient powder with 

iron  

991 children given 

micronutrient powder 

without iron  

Ages 6-35 months 

Ghana, intense 

malaria 

transmission  

Insecticide 

treated bed nets 

provided at 

enrollment 

 

Malaria incidence was significantly lower in the 

iron group compared with the no iron group during 

the intervention period (risk ratio [RR], 0.87; 95% 

CI, 0.78-0.96). In secondary analyses, these 

differences were no longer statistically significant 

after adjusting for baseline iron deficiency and 

anemia status overall (RR, 0.87; 95% CI, 0.75-

1.01)  

Subgroup analysis of 704 children who had 

anemia at baseline and for whom additional blood 

samples were obtained at the end of the 

intervention period found only a small mean 

increase in hemoglobin in the iron group (mean 

change of 0.08 g/dL measured), indicating that the 

micronutrient powder had limited efficacy in this 

trial. 

(Esan et al., 

2013) 

2-arm, 

double-blind, 

randomized 

100 children received 

multivitamins plus iron 

96 children received 

multivitamins alone  

HIV infected children aged 

6-59 months with moderate 

anemia (Hgb=7.0-9.9 g/dL); 

3 months of treatment, 6 

months follow up 

Malawi, intense 

malaria 

transmission 

Children who received iron had a better CD4 

percentage response at 3 months, but an increased 

incidence of malaria at 6 months (incidence rate, 

120.2 vs. 71.7; adjusted incidence rate ratio 

[aIRR], 1.81 [95% CI, 1.04-3.16]; p = .04), 

especially during the first 3 months (incidence 

rate, 78.1 vs. 36.0; aIRR, 2.68 [95% CI, 1.08-

6.63]; p = .03). 

2
1
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Children – Observational Studies 

Reference Study Design Population Country, 

malaria info 

Results 

(Nyakeriga 

et al., 

2004) 

2 Cross 

sectional 

studies  

Study 1: 

Iron-replete (n=95) 

Iron-deficient (n=78) 

Study 2: 

Iron-replete (n=104) 

Iron-deficient (n=91) 

Ages 8 months-8 years 

Kenya, intense 

malaria 

transmission  

Incidence of clinical malaria was significantly 

lower among children with iron deficiency anemia 

(incidence-rate ratio [IRR], 0.70; 95% confidence 

interval [CI], 0.51-0.99; P<.05). 

(Gwamaka 

et al., 

2012) 

Longitudinal 785 children monitored for 3 

years  

Tanzania, 

intense malaria 

transmission 

Iron deficiency anemia at routine, well-child visits 

significantly decreased the odds of subsequent 

parasitemia (23% decrease, p < .001) and 

subsequent severe malaria (38% decrease, p = 

.04). Iron deficiency anemia was also associated 

with 60% lower all-cause mortality (p = .04) and 

66% lower malaria-associated mortality (p = .11). 

(Jonker et 

al., 2012) 

Longitudinal 727 children monitored for 1 

year 

Malawi, intense 

malaria 

transmission 

Children with iron deficiency anemia at baseline 

had a lower incidence of malaria parasitemia and 

clinical malaria during a year of follow-up; 

adjusted hazard ratios 0.55 (95% CI: 0.41-0.74) 

and 0.49 (95% CI: 0.33-0.73), respectively. 

2
2
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Pregnant women - observational 

Reference Study Design Population Country, 

malaria info 

Results 

(Kabyemel

a et al., 

2008) 

Cross 

sectional 

445 pregnant women (120 

primigravidae, 112 

secundigravidae, and 213 

multigravidae) 

Tanzania, 

intense malaria 

transmission 

Iron deficiency decreased the risk of placental 

malaria. 

(Senga et 

al., 2011) 

Case-Control Pregnant women 

(112 cases with placental 

malaria, 110 controls with no 

evidence of placental 

infection) 

Malawi, intense 

malaria 

transmission 

Iron deficiency decreased risk of acute, chronic 

and past placental malaria. The association was 

greater in the multigravidae group. 

 

2
3
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Table 1.2 – Relationship between host serum iron and P. falciparum 

Studies supporting transferrin mediated delivery of iron to pRBCs 

Study Major Findings 

(Pollack and Fleming, 1984) - pRBCs take up more iron from transferrin than uninfected RBCs   

(Rodriguez and Jungery, 1986) - FITC labeled holo-transferrin traverses from the pRBC surface to the parasitophorous vacuole 

- Internalization of holo-transferrin is most active in early trophozoite stage pRBCs   

- A 93kD parasite protein inserted into the RBC membrane binds human holo-transferrin 

(Haldar et al., 1986) - A 102kD schizont stage parasite protein inserted into the RBC membrane binds human holo-

transferrin 

(Pollack and Schnelle, 1988) - Twice as much human holo-transferrin associates with pRBCs than uninfected RBCs 

- Human holo-transferrin binding to pRBCs is non-specific 

(Fry, 1989) - RBC membranes of pRBCs possess diferric transferrin reductase activity, uninfected RBC 

membranes do not 

- pRBC diferric transferrin reductase activity increases as the parasite matures from the ring to 

trophozoite stage  

(Surolia and Misquith, 1996) - Human transferrin conjugated to the toxin gelonin selectively binds trophozoite stage pRBCs 

- Toxicity of gelonin to erythrocytic stage P. falciparum is 25 times greater when linked to human 

transferrin    

(Clark et al., 2013) - Addition of holo-transferrin to trophozoite stage pRBCs increases the bioavailable iron content of 

pRBCs but not uninfected RBCs 

Studies refuting transferrin mediated delivery of iron to pRBCs & Studies showing serum iron does not affect P. falciparum growth 

Study Major Finding 

(Peto and Thompson, 1986) - pRBCs do not acquire iron from holo-transferrin  

- Depletion of iron from P. falciparum in vitro culture media does not reduce parasite growth 

- Addition of iron to P. falciparum in vitro culture media reduced parasite growth 

(Scott et al., 1990) - Restriction of iron chelator DFO to P. falciparum in vitro culture media does not affect parasite 

growth 

(Sanchez-Lopez and Haldar, 

1992) 
- pRBCs do not take up iron from human holo-transferrin 

- Depletion of human transferrin from culture media does not affect erythrocytic stage parasite 

growth 
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Studies supporting acquisition of NTBI by pRBCs 

Study Major Finding 

(Peto and Thompson, 1986) - pRBCs take up NTBI 

(Sanchez-Lopez and Haldar, 

1992) 
- pRBCs take up of free, non-transferrin bound iron (NTBI), but not any more than uninfected 

RBCs 

- pRBC NTBI acquisition is time, concentration, and temperature but not energy dependent 

(Clark et al., 2013) - Addition of ferric citrate (NTBI) to trophozoite stage pRBCs increases the bioavailable iron 

content of pRBCs but not uninfected RBCs 
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Table 1.3 – Relationship between RBC iron and P. falciparum 

RBC hemoglobin 

Study Major Findings 

(Rudzinska et al., 1965) - P. falciparum metabolizes host RBC hemoglobin  

- P. falciparum inserts host heme into hemozoin 

(Okada, 2009) - P. falciparum has a heme oxygenase homolog 

(Sigala et al., 2012) - P. falciparum lacks both heme oxygenase activity 

and a canonical heme oxygenase pathway 

(Loria et al., 1999) 

 
- Hydrogen peroxide degrades host heme under 

conditions that are analogous to the 

microenvironment of the parasite food vacuole 

RBC ferritin – unknown  

RBC bioavailable iron – unknown  
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Figure 1.1 – Host iron available to erythrocytic stage P. falciparum. During the erythrocytic stage of infection P. falciparum  the 

parasite travels through the hosts vascular system within RBCs. Host iron immediately available to the parasite include serum and 

RBC iron. Serum iron ranges from 10-27 µM. Iron deficiency anemia is characterized by a significant decline in serum iron. 

Transferrin bound iron is the predominant form of iron in the serum, though trace amounts of non-transferrin bound iron (NTBI) are 

present. In some pathologic conditions such as hemochromatosis, NTBI may be significantly greater. In the RBC iron is found within 

hemoglobin (20mM), ferritin (0.7nM), and as bioavailable iron (1-10µM). Iron deficiency anemia significantly reduces RBC iron, 

specifically hemoglobin iron. Shown in the figure are: P. falciparum (Pf), digestive vacuole (DV), parasite nucleus (N), and 

endothelial cell (EC).   
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Figure 1.2 – Impact of iron deficiency anemia and iron supplementation on erythropoietic rate and erythrocyte physiology and 

hypothesized effect on P. falciparum erythrocytic infection.   
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CHAPTER TWO 

 

Parasite maturation and host serum iron influence the labile iron pool of erythrocyte stage 

P. falciparum
1
 

 

2.1 Overview 

 

 Iron is a critical and tightly regulated nutrient for both the malaria parasite and its human 

host. The importance of the relationship between host iron and the parasite has been underscored 

recently by studies showing that host iron supplementation may increase the risk of falciparum 

malaria. It is unclear what host iron sources the parasite is able to access. I developed a flow 

cytometry based method for measuring the labile iron pool (LIP) of parasitized erythrocytes 

using the nucleic acid dye SYTO 61 and the iron sensitive dye, calcein acetoxymethyl ester (CA-

AM). This new approach allows me to measure the LIP of P. falciparum through the course of 

its erythrocytic life cycle and in response to the addition of host serum iron sources. I found that 

the LIP increases as the malaria parasite develops from early ring to late schizont stage, and that 

the addition of either transferrin or ferric citrate to culture media increases the LIP of 

trophozoites. My method for detecting the LIP within malaria parasitized RBCs provides 

evidence that the parasite is able to access serum iron sources as part of the host vs. parasite arms 

race for iron.  

                                                        
1 First published in The British Journal of Haematology, April 2013, Vol. 161, Issue 2 
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2.2 Introduction 

Each year up to 250 million clinical cases of malaria and nearly 1 million deaths from 

malaria are reported in official statistics (WHO | World Malaria Report 2011). P. falciparum 

malaria is the most deadly of all the species of malaria that infect humans. The malaria parasite 

has a complex life cycle in the human host. Anopheles mosquitoes inject sporozoite stage P. 

falciparum parasites during a blood meal; sporozoites then migrate to the liver where they infect 

hepatocytes and multiply over a clinically silent 7-10 day period (Sinnis et al., 1996). During the 

asexual erythrocyte stage of the parasite, merozoites invade RBCs and progress from the 

metabolically inactive ring stage to the metabolically active trophozoite stage to the schizont 

stage. DNA replication is initiated during the schizont stage and results in the production of new 

merozoites that burst from the host RBC into the blood stream and invade new RBCs. The RBC 

stage of the malaria parasite is responsible for the morbidity and mortality associated with P. 

falciparum infection and is exquisitely sensitive to iron chelators (Ferrer et al., 2012).  

Despite the essential role of iron in parasite development, it is unknown what host iron 

sources P. falciparum utilizes during any stage of the human infection. The two principal sources 

of host iron available to the parasite during the RBC stage are extra-erythrocytic (serum) iron 

and intra-erythrocytic iron. The intra-erythrocytic iron pool amounts to 100 fg (20 mM) iron, 

partitioned into hemoglobin, ferritin, and the cytoplasmic labile iron pool (LIP). The erythrocytic 

LIP consists of residual cytoplasmic bioavailable iron that was not incorporated into hemoglobin 

or stored within ferritin during the maturation of erythrocyte precursors (Prus and Fibach, 

2008b). The majority of host serum iron is bound to host protein transferrin (60-150 µg/dL or 11-

27 µM), with a residual amount of iron, non-transferrin bound iron (NTBI), circulating in the 

serum chelated by low molecular weight molecules such as citrate (Cook and Skikne, 1989). To 

date there is no evidence that P. falciparum is able to release iron from haem or host ferritin. The 
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malaria parasite is hypothesized to use the host RBC LIP as a source of iron (Scholl et al., 2005). 

It is unknown how the host LIP impacts the malaria parasite’s infectivity and maturation. The 

ability of the parasite to access serum iron is unclear, and data are conflicting (Sanchez-Lopez 

and Haldar, 1992; Rodriguez and Jungery, 1986; Haldar et al., 1986; Pollack and Fleming, 

1984). 

Calcein acetoxymethyl ester (CA-AM) has been widely used to examine the cytoplasmic 

LIP of mammalian cells (Breuer et al., 1995a, 1996, 1995b; Epsztejn et al., 1997; Tenopoulou et 

al., 2007). CA-AM is non-fluorescent, non-iron binding, neutrally charged, and easily permeates 

cell membranes. Upon cellular entry, intracellular esterases cleave CA-AM into the green-

fluorescent molecule calcein, which is then trapped within the cell. Calcein fluorescence is 

quenched by 1:1 stoichiometric binding of iron in pH range of 7-7.5 (Breuer et al., 1995a, 1996). 

The addition of non-fluorescent, high affinity, iron chelators removes iron from calcein and 

consequently increases calcein fluorescence, providing an effective method for assessing the 

labile iron content of cells. Alternatively the addition of iron, capable of being incorporated by a 

cell, quenches calcein fluorescence (Breuer et al., 1995b; Tsien, 1989). Previous investigators 

have utilized a microscopy based approach for the measurements of calcein fluorescence, to 

investigate the site of action of anti-malarial iron chelators and gain preliminary insight into the 

LIP of parasitized human erythrocytes (Loyevsky et al., 1999). More recently, CA-AM has been 

utilized to assess the LIP of the heterogeneous cell populations of peripheral blood and bone 

marrow by flow cytometry (Prus and Fibach, 2008a).  

In the present study, I have confirmed the apparent variability in results that exists when 

studying the effect of extracellular iron supplementation on erythrocytic stage P. falciparum. To 

determine whether extracellular iron effects the bioavailable iron content of pRBCs, I adapted 
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the CA-AM flow cytometry method for the assessment of the LIP of P. falciparum infected 

erythrocytes (Prus and Fibach, 2008a, 2008b). I combined the technique of identifying 

parasitized erythrocytes with fluorescent DNA dye SYTO 61 (Fu et al., 2010) with the CA-AM 

method for assessing cellular labile iron to determine the LIP of P. falciparum during asexual 

maturation by flow cytometry. This flow cytometry approach allows for the analysis of the LIP 

of a mixed population of uninfected and P. falciparum infected erythrocytes. Furthermore, I 

utilized this approach to investigate the effect of extracellular iron sources, transferrin and ferric 

citrate, on the LIP of the erythrocytic stage of P. falciparum.  

2.3 Materials and Methods 

P. falciparum culture and growth assays  

P. falciparum parasite lines 3D7 (MR4, MRA-102), FCR3-FMG (MR4, MRA-736) and 

Dd2 (MR4, MRA-156) were routinely cultured in iron-replete O-positive (O+) RBCs obtained 

from healthy individuals at the Clinical and Translational Research Center at the University of 

North Carolina, Chapel Hill, NC (IRB# 09-0559, approved by the University of North Carolina 

Institutional Review Board). Cultures were maintained with 2% Hematocrit in complete media 

containing RPMI 1640 with 10% albumax II, 1 mM hypoxanthine, 20 mM L-glutamine, .45% 

glucose, and 10 µg/L gentamicin (ACM). Cultures were incubated on a shaker at 37 degrees C in 

5% O2 5% CO2 and 90% Nitrogen. Parasite density was maintained between 0 .5% and 10% P. 

falciparum-parasitized RBCs (pRBCs). pRBC cultures were synchronized to within 4-6 hours of 

each other by first treating cultures with 5% D-sorbitol to select for ring stage parasites, followed 

by MACS (Miltenyi Biotec) isolation of hemozoin containing trophozoite and schizont stage 

pRBCs 24 hours later. pRBC cultures were next incubated with 30 IU heparin to prevent 

invasion of merozoites for 18 hours at which point heparin was washed from cultures 

subsequently incubated under normal culture conditions for an additional 24 hours before a final 
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MACS isolation of trophozoites and schizonts was performed (Boyle et al., 2010). To obtain a 

culture with all stages (ring, trophozoite, schizont, and merozoites) synchronized cultures were 

monitored until approximately 50% of schizonts had ruptured. To assess P. falciparum growth, 

growth assays were started at 0.5% pRBC at 2% Hematocrit in appropriate iron supplemented 

media. Experiments were monitored for up to 96 hours and media was changed daily. 

Experiments were analyzed by either microscopy or flow cytometry and the growth rate of P. 

falciparum reflect the fold change in %pRBC from the beginning to the end of experiments.    

P. falciparum LIP assay  

P. falciparum lines FCR3-FMG or Dd2 at a parasite density of 5-10% pRBCs were 

washed twice with PBS .5% Albumax II (PBS+), inoculated into a 96 well plate at 2x10
6
 cells 

per well and subsequently labeled with .125 µM calcein acetoxymethyl ester (CA-AM 

(Invitrogen)) for 15 minutes in the dark. Following CA-AM labeling, cells were washed twice 

with PBS+ and allowed to rest for 15 min under standard culture conditions in the dark. Cells 

were then labeled with .5 µM DNA dye STYO 61 (Invitrogen) in the presence or absence of 100 

µM of iron chelators: deferiprone, dipyridyl, or deferoxamine for 1 hour under standard culture 

conditions in the dark. Following incubation with STYO 6 and iron chelators, unfixed cells were 

immediately analyzed by flow cytometry using a Cytek-modified FACS-Calibur under BSL-2 

containment. For experiments assessing the impact of extracellular transferrin or ferric citrate on 

pRBC LIP, P. falciparum cultures were incubated with transferrin or ferric citrate prior to CA-

AM and SYTO 61 labeling. Individual experiments were performed in triplicate. The statistical 

significance for each individual experiment was calculated using the Student’s t-test. For 

experiments where data is expressed as delta MFI, delta MFI represents the absolute difference 

in MFI. 
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Flow Cytometry Analysis  

Flow cytometry was performed at the UNC Flow Cytometry Core Facility, Chapel Hill, 

NC on a Cytek-modified FACS-Calibur with 2 lasers; a 30 mW 488 Diode Pumped Solid State 

laser and a 25 mW 637 red diode laser (FACS-calibur; Becton Dickinson, Mount View CA, 

modified by Cytek Development, Freemont, CA). Channels and fluorescent probes used on the 

FACS-calibur included: STYO 61 (637nm, 666/27 bandpass), and calcein (488nm, 530/30 

bandpass). Detector gain settings were varied between experiments to optimize signal but were 

kept constant within individual experiments and no compensation was applied to any of the 

channels. P. falciparum-infected RBCs (pRBCs) were gated based on the STYO 61 signal and 

detector gains for calcein fluorescence were adjusted to achieve a calcein MFI of 10-20 for 

uninfected RBCs. A minimum 1000 pRBC (STYO 61 +) events were acquired. FACS-Calibur 

data was collected using FlowJo CE (Treestar, Ashland, OR) and analyzed with Summit v5.1 

(Beckman Coulter, Miami, Florida).  

Microscopy 

 Cultures of P. falciparum strain FCR3-FMG  (5% pRBC, 2% hematocrit) were incubated 

for 3 hours  under standard culture conditions with Alexa fluor 488 conjugated human transferrin 

(1:20) (Invitrogen). Cells were washed and fixed with 1% paraformaldehyde and 0.0075% 

Glutaraldehyde in Alsever’s Solution for 30 minutes at 4C. Fixative was washed from RBCs 

before staining cells with Hoescht DNA dye (1:10,000) in PBS for 10 minutes. Cells were 

washed one last time before being viewed on a Zeiss LSM710 Spectral Confocal Laser Scanning 

Microscope. 
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2.4 Results 

Assessing the effect of extracellular iron on erythrocytic stage P. falciparum growth 

To determine whether extracellular iron effects the growth of erythrocytic stage P. 

falciparum in vitro, I supplemented culture media with physiologic levels of either transferrin or 

ferric citrate and assessed the growth rate of P. falciparum (Dd2 and FCR3-FMG strains). In the 

course of conducting twenty independent experiments, I observed every possible outcome: (i) 

decreased; (ii) no change; and (iii) increased growth with the addition of iron to culture media 

(Figure 2.1A and 2.1B). Unable to definitively determine whether extracellular iron influences 

erythrocytic stage P. falciparum growth I proceeded to characterize the LIP of parasitized RBCs 

(pRBCs) in the effort of ultimately determining whether extracellular iron is incorporated into 

pRBCs.  

Detection of LIP in P. falciparum infected erythrocytes by flow cytometry  

To assess the LIP of P. falciparum infected erythrocytes, P. falciparum (FCR3-FMG 

strain) infected erythrocyte cultures were loaded with CA-AM, stained with DNA dye SYTO 61 

to identify pRBCs and finally incubated with membrane permeable iron chelator deferiprone to 

allow for the determination of LIP. I first confirmed that neither calcein nor SYTO 61 interfered 

with the others’ fluorescence profile (Figure 2.2A and 2.2B), and that SYTO 61 did not interfere 

with calcein’ s sensitivity to either iron chelator or extracellular iron (Figure 2.2C). To 

characterize the basal calcein fluorescence of uninfected and pRBCs, I examined the SYTO 61 

profile of stained cells to identify uninfected (SYTO 61 negative, R2- lower region), pRBCs 

infected with rings (SYTO 61 positive, R3-middle region) and pRBCs infected with trophozoites 

(SYTO 61 positive, R4-upper region) (Figure 2.3A). Each of these three populations was gated 

upon and the basal calcein fluorescence of each population was determined. I observed that the 
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pRBCs have greater steady state calcein basal fluorescence than uninfected erythrocytes, and 

calcein fluorescence increases with increasing parasite maturation. Compared to uninfected 

RBCs, the calcein fluorescence of ring pRBCs and trophozoite pRBCs is 18% (p<0.02) and  

153% (p<0.0002) greater than uninfected RBCs respectively (Figure 2.3B).  

Before calcein fluorescence can be made susceptible to iron quenching, cellular esterases 

must cleave the acetoxymethyl ester group from CA-AM converting the non-fluorescent CA-AM 

molecule to the fluorescent Calcein. Parasitized RBCs have greater enzymatic activity than 

uninfected RBCs (Vander Jagt et al, 1982). To assess the impact of iron on calcein fluorescence, 

I employed the use of iron chelators which when added to calcein loaded cells chelate iron bound 

to calcein. The resulting increase in calcein fluorescence achieved after adding an iron chelator 

to calcein-loaded cells represents the cells LIP. To assess the LIP of uninfected and pRBCs, I 

measured the calcein fluorescence of each of these populations in the absence (red line/vertical 

hatch) and presence (green line/diagonal hatch) of the iron chelator deferiprone (Figure 2.4A 

and 2.4B). I observed that the addition of deferiprone resulted in significant increases in calcein 

fluorescence in uninfected as well as in the ring and trophozoite stage parasites, indicating the 

presence of a LIP within pRBCs. In addition to deferiprone, I employed a second membrane 

permeable iron chelator (2,2 bipyridyl) and membrane impermeable iron chelator (deferoxamine) 

to assess the LIP within uninfected RBCs, ring pRBCs and trophozoite pRBCs (Figure 2.4C). 

Use of the membrane permeable iron chelator deferiprone resulted in ΔMFI in ring pRBCs 

(ΔMFI=4.55 +/- 0.426,p<0.005) and trophozoite pRBCs (ΔMFI=15.02 +/- 1.11,p<0.005) as well 

as uninfected RBCs (ΔMFI=1.93 +/- 0.12, p<0.005). Use of a second membrane permeable iron 

chelator, 2,2 bipyridyl resulted in an increase in ΔMFI in both ring pRBCs (ΔMFI=3.88 +/- 0.44, 

p<0.005) and trophozoite pRBCs (ΔMFI=16.48 +/- 1.10, p<0.005) compared to the increase in 
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ΔMFI observed in uninfected RBCs (ΔMFI=2.22 +/- 0.043, p<0.005). Utilizing membrane 

permeable iron chelators I consistently observed 15-20% greater ΔMFI (p<.005) in ring pRBCs 

and 40-50% greater ΔMFI (p<.005) in trophozoite pRBCs as compared to the ΔMFI observed in 

uninfected RBCs in independent experiments. However with the less permeable chelator 

deferoxamine, an increase in ΔMFI in both ring pRBCs (ΔMFI=3.1 +/- 0.0.21, p<0.005) and 

trophozoite pRBCs (ΔMFI=8.67 +/- 0.089, p<0.005), but no ΔMFI was observed in uninfected 

RBCs (ΔMFI=0.19 +/- 0.32, p>1).  This finding is consistent with evidence that pRBCs are more 

permeable than uninfected RBCs (Pouvelle et al., 1991; Nguitragool et al., 2011).  

Characterization of LIP during maturation of P. falciparum within host RBCs  

Based upon my observation that pRBCs contain a greater LIP than uninfected RBCs, and 

that labile iron appeared to increase with the maturation of the parasite from the ring stage to the 

trophozoite stage, I sought to characterize the dynamics of the LIP during maturation of 

erythrocyte stage P. falciparum. To this end I tightly synchronized parasites to within 4-6 hours 

of each other by a combination of (i) ring stage selection by sorbitol treatment (ii) hemozoin 

containing trophozoite and schizont stage isolation by MACS and (iii) merozoite invasion 

inhibition with heparin. Following synchronization, I allowed the parasite culture to progress to 

late schizony to the point at which at least 50% of schizonts had ruptured. I was able to observe 

uninfected, newly invaded ring stage, late stage trophozoites, schizonts, and free merozoites by 

microscopic analysis of Gyms stained thin blood smears (data not shown) and flow cytometry 

analysis of STYO 61 stained pRBCs (Figure 2.5A). I observed that the addition of iron chelator 

deferiprone to these calcein loaded parasite cultures resulted in a calcein MFI that increased 

with parasite maturation. As shown in Figure 3B, compared to uninfected RBCs (ΔMFI 

=80.61+/-0.99, p<0.0002), the ΔMFI was increased in ring pRBCs (ΔMFI =95.19+/-2.59, 
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p<0.0002), trophozoite pRBCs (ΔMFI =162.13 +/-6.4, p<0.0002),   and schizont pRBCs  (ΔMFI 

=173.91+/-16.5, p<0.0002) (Figure 2.5B). Despite differences in cytometer settings between 

independent experiments, the increase in calcein fluorescence of rings, trophozoites and 

schizonts was consistently 15-20%, 40-50% and 55-60% greater than the increase observed in 

uninfected RBCs. There was little to no detectable change in calcein fluorescence in merozoites 

with the addition of deferiprone (ΔMFI =0.963+/-0.076) (Figure 3B). These results suggest that 

as erythrocyte stage P. falciparum parasites mature, the level of the LIP increases, in response to 

increased iron demands as the parasite becomes more metabolically active and begins to 

replicate DNA.  

Investigation of the impact of host serum iron sources on LIP in P. falciparum infected 

erythrocytes  

To determine whether serum iron sources, transferrin bound iron and ferric citrate, can be 

accessed by erythrocyte stage P. falciparum and incorporated into the LIP of pRBCs, I incubated 

P. falciparum (mixed ring and trophozoite stage) infected erythrocyte cultures with increasing 

physiological concentrations of either holo-transferrin (0.20-1.2g/L) or ferric citrate (7.16 – 

26.85µmol/L Fe) for 6 hours. Cells were then loaded with CA-AM and subsequently stained 

with SYTO 61. The presence of both transferrin and ferric citrate in culture media corresponded 

with significant decreases in calcein fluorescence in trophozoite pRBC (-ΔMFI calcein), which 

indicates that additional iron entered the LIP and quenched the calcein fluorescence (Figure 

2.6A). Compared to untreated trophozoite pRBCs a change of 14% (p<0.005), 15% (p<0.005) 

and 26% (p<0.0009 )was observed in the MFI calcein after the addition of 0.2 g/L, 0.4 g/L and 

1.2 g/L human transferrin respectively relative to untreated trophozoite pRBCs. Compared to 

untreated trophozoite pRBCs a decrease of 10% (p<0.005), 15% (p<0.005) and 16% (p<0.0009) 

was observed in the calcein fluorescence after the addition of 7.16µmol/L, 11.19µmol/L and 
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26.85µmol/L ferric citrate. No significant changes in calcein fluorescence were observed for 

uninfected RBCs or ring stage pRBC. These results demonstrate that the LIP of trophozoite stage 

P. falciparum increases with increasing concentrations of transferrin and ferric citrate. 

Furthermore, microscopic analysis of the association between human transferrin and pRBCs 

revealed that human transferrin co-localizes with late stage pRBCs and not with uninfected 

RBCs (Figure 2.6B). Together these data suggest that late stage parasites are capable of 

accessing serum iron in both the transferrin and non-transferrin bound form (ferric citrate).   

2.5 Discussion 

 

During the course of microbial infections, there is an arms race between the pathogen and 

host for iron. In the course of this arms race pathogens have evolved sophisticated methods of 

scavenging host iron while the host acute activation of the nutritional immune response 

effectively limits the availability of iron to invading pathogens (Skaar, 2010). Iron chelating 

agents suppress the growth of P. falciparum in vitro and in vivo (Hershko and Peto, 1988; 

Gordeuk et al., 1992). In addition, iron chelators also bolster the host innate immune response by 

synergistically acting with cytokines to increase stimulation of NO production which is 

protective against severe infection (Fritsche et al., 2001; Weiss et al., 1997). The importance of 

iron to malaria is additionally demonstrated by clinical studies which have documented an 

increased susceptibility to malaria infection in individuals given high doses of iron 

supplementation (Oppenheimer, 2001; Murray et al., 1975; Sazawal et al., 2006; Smith et al., 

1989). The sources of host iron used by P. falciparum and the strategies used by the parasite to 

evade host nutritional immunity have remained elusive.  

The labile iron pool represents the transition zone for iron between import, cellular 

utilization, and storage and it is thought to change in response to the metabolic needs of the cell. 



 49 

As the metabolic demand for iron increases, cells will increase the amount of iron in the labile 

iron pool. The CA-AM LIP assay measures the LIP present in uninfected RBCs and pRBCs. 

Calcein fluorescence is sensitive to iron at physiologic pH 7.2-7.4 (Tenopoulou et al., 2007). As 

RBC precursors mature, all their organelles are lost, producing an anucleated mature erythrocyte 

with a cytoplasm of pH 7.2-7.4 (Tenopoulou et al., 2007). At this pH, calcein is sensitive to iron 

and is able to detect the entire LIP. Upon infection of the RBC, P. falciparum introduces new 

organelles and structures including: a nucleus, mitochondria, apicoblast, endoplasmic reticulum 

(ER) and Golgi apparatus as well as a parasitophorous vacuole and a food vacuole with pH 3.7-

6.5 (Hayward et al., 2006). The cytoplasm of pRBCs like uninfected RBCs is maintained 

between pH 7.2-7.4 (Saliba et al., 1999). 

I had initially sought to determine whether extracellular affects erythrocytic stage P. 

falciparum growth. I was unable to definitely determine whether extracellular iron effects P. 

falciparum growth (Figure 2.1A and 2.1B). I therefore took a step back and instead worked to 

characterize the LIP of pRBCs and determine whether extracellular iron affects the LIP of 

pRBCs. The LIP, which is detected within pRBCs using the CA-AM method, is the 

bioavailable/labile iron present in the neutral pH regions of the residual RBC cytoplasm, 

parasitophorous vacuole, and parasite cytoplasm. I defined LIP as the ΔMFI of calcein that 

occurred with the addition of an iron chelator or iron source. I observed that the basal calcein 

fluorescence was greater within pRBCs than within uninfected RBCs and that fluorescence 

increased with parasite maturation. The addition of iron chelators to calcein loaded uninfected 

and pRBCs resulted in greater ΔMFI within pRBCs than uninfected RBCs, and the ΔMFI further 

increased with increasing parasite maturation. Interestingly, the extra-erythrocytic merozoite 

stage of P. falciparum had no detectable LIP. My data indicate that the parasite may be able to 
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access both intra-erythrocytic and serum iron. Since total iron does not differ between uninfected 

and pRBCs (Marvin et al., 2012), my observation that LIP increases with parasite maturation 

when it is grown in very low (10-15 µg/dL or 2-3 mM) iron media, suggests that the parasite 

may be able to release iron from either RBC hemoglobin or ferritin, redistributing but not 

altering the total cellular iron. Increasing LIP with parasite maturation is consistent with the 

increasing iron demands of the parasite during the trophozoite and schizont stage as the 

parasite’s metabolic activity dramatically increases and commences DNA replication. 

Alternatively, changes in intracellular iron levels may not only reflect iron consumption by the 

parasite but may be due to regulation of iron import/export in infected cells as has been shown in 

macrophages targeted by intracellular bacteria (Paradkar et al., 2008; Nairz et al., 2007). 

To provide new insight into the potential ability of P. falciparum to access serum iron, 

either transferrin or non-transferrin bound iron (ferric citrate), I measured the impact of holo 

transferrin and ferric citrate on the LIP of uninfected and pRBCs. I observed that the addition of 

increasing physiological concentrations of either ferric citrate or holo transferrin increased the 

LIP of trophozoite pRBCs to a significantly greater degree than of ring pRBCs and uninfected 

RBC. This provides evidence that trophozoite stage pRBC can access serum iron sources. These 

results do not address whether pRBCs specifically bind or internalize transferrin. Rodriguez et al 

and Haldar et al. independently postulated the existence of a P. falciparum transferrin receptor, 

however such a receptor has yet to be isolated and cloned (Haldar et al., 1986; Rodriguez and 

Jungery, 1986). Alternatively, it is well established that pRBCs are able to non-specifically 

incorporate both micro and macromolecules from the serum (Pouvelle et al., 1991; Nguitragool 

et al., 2011). Human transferrin, like other abundant serum proteins such as albumin, may be 

non-specifically internalized into pRBCs (El Tahir et al., 2003).  
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Our results are relevant to the clinical question of whether host iron status and host iron 

supplementation affects risk of malarial infection. The relationship between host iron and the 

malaria parasite is complex and is tightly regulated by both host and parasite. A study published 

in 2006 by Sazawal et al. conducted in Pemba, Zanzibar, involving more than 24,000 children in 

a setting where anti-malarial treatment was not readily available, showed that routine 

supplementation with iron and folic acid increased the rates of severe illness and death from 

malaria in iron-replete children who took iron supplements (Sazawal et al., 2006). Because non-

transferrin bound serum iron transiently increases in iron-replete individuals who are given oral 

iron supplementation (Schümann et al., 2012), I speculated that P. falciparum may scavenge 

serum iron in order to augment intra-erythrocytic growth and thereby potentiate the risk of 

malaria.  

Our application of the flow cytometry based CA-AM LIP assay has revealed that the LIP 

content of infected RBCs steadily increases with increasing maturation of the intra-erythrocytic 

stage of the parasite. Additionally, I demonstrate that the LIP content of late stage trophozoite 

pRBCs is increased in the presence of extracellular transferrin and ferric citrate. Further studies 

are needed to elucidate the mechanisms by which the malaria parasite senses, acquires, utilizes, 

regulates, and stores iron during the erythrocytic stage of its life cycle and on the impact of host 

serum iron on these processes. Elucidation of parasite iron biology will provide therapeutic 

insights into how to augment the host innate immune response and may reveal targets for anti-

malarial drug development.  
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Figure 2.1 – The effect of extracellular iron on erythrocytic stage P. falciparum infection is 

unclear. The effect of extracellular iron (transferrin and ferric citrate) on growth of erythrocytic 

stage P. falciparum growth in vitro was assessed by adding physiologic amounts of either 

transferrin or ferric citrate (60-150 µg/dL or 11-27 µM) to culture media and determining the 

growth rate of the parasite over the course of 96 hours (two erythrocyte lifecycles). Growth of P. 

falciparum strains 3D7, Dd2, and FCR3-FMG in cultures supplemented with either transferrin or 

ferric citrate was expressed as a percent of parasite growth in cultures with no additional iron 

added to culture media. (A and B) are representative data of over 20 independent experiments. 

The bar graph (mean +/- SD, n=3) shows growth of P. falciparum in iron-supplemented culture 

media (transferrin or ferric citrate) as a percent of parasite growth in non-iron supplemented 

culture media. Student’s t-test statistical analysis was performed comparing the growth rate of P. 

falciparum supplemented with increasing concentrations of transferrin and ferric citrate to the 

addition of no iron to culture media, *p<0.05, **p<0.002, and ***p<0.0005. 
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Figure 2.2 – Calcein and SYTO 61 fluorescence does not exhibit spectral overlap, and 

SYTO 61 does not interfere with Calcein iron binding. (A) Impact of SYTO 61 on Calcein 

(530/330nm) fluorescence was determined by assessing Calcein fluorescence of Calcein loaded 

cells in the presence and absence of SYTO 61. Cells from P. falciparum (FCR3-FMG strain) 

infected erythrocyte cultures loaded with CA-AM, and then incubated in the absence or presence 

of DNA dye SYTO 61 and analyzed by flow cytometry. Histogram depicts the Calcein 

fluorescence of unstained (red), Calcein stained (green) and Calcein and SYTO 61 stained (blue) 

cells. No significant difference in Calcein fluorescence was observed. Data is from a single 

representative experiment, and the experiment was performed three independent times with 

parasite lines, FCR-FMG and Dd2. (B) Impact of Calcein on SYTO 61 (628/645nm) 

fluorescence was determined by assessing SYTO 61 fluorescence of SYTO 61 stained cells in 

the presence and absence of Calcein. Cells from P. falciparum (FCR3-FMG strain) infected 

erythrocyte cultures were incubated in the presence or absence of CA-AM, and then stained with 

DNA dye SYTO 61 and analyzed by flow cytometry. Histogram depicts the SYTO 61 

fluorescence of unstained (red), SYTO 61 stained (green) and SYTO 61 and Calcein  stained 

(blue) cells. No significant difference in SYTO 61 fluorescence was observed. Data is from a 

single representative experiment, and the experiment was performed three independent times 

with parasite lines, FCR-FMG and Dd2. (C) Impact of SYTO 61 on Calcein sensitivity to iron 

chelators and extracellular iron was determined by assessing the change in Calcein fluorescence 

in response to either deferiprone or transferrin within trophozoite parasitized RBCs in the 

presence and absence of SYTO 61. Cells from P. falciparum (FCR3-FMG strain) infected 

erythrocyte cultures loaded with CA-AM, and then incubated in the absence or presence of DNA 

dye SYTO 61. For transferrin experiments cells were incubated with transferrin prior to being 

loaded with Calcein, while for deferiprone experiments cells were incubated with deferiprone 

following Calcein loading. The bar graph (mean +/- SD, n=3) shows Calcein MFI of  SYTO 61 
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stained and unstained trophozoite parasitized RBCs. No significant difference in Calcein MFI 

was observed. Data is from a single representative experiment, and the experiment was 

performed three independent times with parasite line, FCR-FMG. 
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Figure 2.3 – Measurement of the basal levels of CA-AM fluorescence. Calcein fluorescence 

of parasitized and uninfected RBCs was determined by assessing the calcein fluorescence of 

SYTO 61- (uninfected) and SYTO 61+ (parasitized) RBCs. Cells from P. falciparum (FCR3-

FMG strain) infected erythrocyte cultures were seeded in triplicate into a 96 well plate, loaded 

with CA-AM, and then stained with DNA dye SYTO 61 and analyzed by flow cytometry. (A) 

Dot-plot of cell distribution of DNA stain SYTO 61 vs.  calcein reveals the distribution of 

uninfected RBCs, rings and trophozoites. (B) Gates were set on uninfected RBCs, rings, 

trophozoites, schizonts and merozoite populations and mean calcein-fluorescence intensity (MFI) 

of stained MFI calcein (530/330nm) was assessed for each population. The bar graph (mean +/-

SD, n=3) shows calcein fluorescence of uninfected and parasitized RBCs. Student’s t-test 

statistical analysis was performed comparing uninfected to parasitized cells, *p<.02 **p<.0002. 

Data is from a single representative experiment, and the experiment was performed five 

independent times with each parasite line, FCR-FMG and Dd2.   
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Figure 2.4 – Measurement of LIP in P. falciparum infected RBCs using Flow Cytometry. 

The LIP of uninfected (SYTO 61-) and parasitized RBCs (SYTO 61+) was determined by 

evaluating the change in MFI of calcein loaded achieved in the presence of different iron 

chelators. Cells from P. falciparum (FCR3-FMG strain) infected erythrocyte cultures were 

loaded with CA-AM and then incubated with DNA dye SYTO 61 in either the presence or 

absence of 100 M of the indicated iron chelator for 1 hour. Cells were immediately analyzed by 

flow cytometry. (A) RBCs infected with ring and trophozoite stage P. falciparum or (B) 

uninfected RBCs following 1h incubation in the presence (green line/diagonal hatch) or absence 

(red line/vertical hatch) of iron chelator deferiprone. Black arrows denote the deferiprone-

induced shift in calcein fluorescence. The change in the mean fluorescence intensity of calcein 

(ΔMFI calcein (530/330nm)) following the addition of deferiprone. (C) Change in calcein MFI 

(530/330nm) with the addition of deferiprone, 2,2 bipyridyl or deferoxamine in uninfected and 

ring and trophozoite parasitized RBCs. The bar graph (mean +/-SD, n=3) shows calcein MFI of 

uninfected and parasitized RBCs. Student’s t-test statistical analysis was performed comparing 

MFI calcein before and after the addition of iron chelator to cells, *p<.005. Data is from a single 

representative experiment using strain FCR3-FMG, and the experiment was performed three 

independent times with each parasite line, FCR3-FMG and Dd2.  
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Figure 2.5 – LIP increases as parasite matures inside host red blood cell. The LIP of 

uninfected and different stage parasitized RBCs was determined by assessing the change in MFI 

of calcein loaded cells with the addition of iron chelator deferiprone. Cells from P. falciparum 

(FCR3-FMG strain) infected erythrocyte cultures were loaded with CA-AM and then incubated 

with DNA dye SYTO 61 either in the presence or absence of 100 M deferiprone for 1 hour and 

analyzed by flow cytometry. (A) Dot-plot of cell distribution of DNA stain (SYTO 61) vs. 

Forward scatter showing the distribution of uninfected RBC, ring, trophozoite, schizont pRBCs 

and merozoites. (B) Change in calcein MFI (530/330nm) with the addition of deferiprone in 

uninfected RBCs and RBCS infected with ring, trophozoite and schizont stage P. falciparum 

parasites and the extracellular merozoite stage.  The change in the MFI of calcein before and 

after addition of deferiprone represents the LIP of each cell population. The bar graph (mean +/- 

SD, n=3) shows calcein MFI of uninfected and parasitized RBCs. Student’s t-test statistical 

analysis was performed comparing MFI calcein before and after the addition of iron chelator to 

cells, *p<.0002. Data is from a single representative experiment, and the experiment was 

performed three independent times with parasite line, FCR-FMG.  
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Figure 2.6 – Addition of human transferrin or ferric citrate increases LIP in parasitized 

RBCs, and transferrin co-localizes with late stage parasitized RBCs. (A) Impact of human 

transferrin and ferric citrate on the LIP of RBCs infected with trophozoite stage parasites was 

determined by assessing the MFI of calcein in cells cultured in the absence and presence of 

increasing concentrations of transferrin or ferric citrate. Cells from P. falciparum (FCR3-FMG 

strain) infected erythrocyte cultures were incubated in the presence or absence of increasing 

physiological concentrations of human transferrin (200ug/ml-1.2mg/ml) or ferric citrate 

(40ug/dL-150ug/dL) for 6 hours. Cells were then loaded with CA-AM, subsequently stained with 

DNA dye SYTO 61 and analyzed by flow cytometry. The LIP is measured by the change in the 

mean fluorescence intensity of calcein following the addition of the exogenous iron source. The 
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decrease in calcein fluorescence (-ΔMFI calcein (530/330nm)) indicates the addition of iron to 

the cellular LIP that results in increased quenching of calcein fluorescence. The bar graph (mean 

+/- SD, n=3) shows calcein MFI of trophozoite pRBCs with increasing concentrations of either 

transferrin or ferric citrate. Student’s t-test statistical analysis was performed comparing cellular 

calcein fluorescence of increasing concentrations of transferrin and ferric citrate to the addition 

of no iron, *p<.005 **p<.0009. Data is from a single representative experiment, and the 

experiment was performed three independent times with parasite line, FCR-FMG. (B) 

Association of human transferrin with uninfected RBCs and late stage pRBCs. Cultures of P. 

falciparum strain FCR3-FMG were incubated with Alexa488 conjugated human transferrin 

(1:20) for 3 hours, fixed, and then stained with DNA dye Hoescht (1:10,000) to identify pRBCs. 

Cells were viewed on a Zeiss LSM710 Spectral Confocal Laser Scanning Microscope. 
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CHAPTER THREE 

 

A three-color invasion assay allows for the study of erythrocyte population dynamics and 

P. falciparum merozoite invasion 

 

3.1 Overview 

 

Plasmodium falciparum invasion of host erythrocytes is essential for the propagation of 

the blood stage of malaria infection. Additionally, the brief extracellular merozoite stage of P. 

falciparum represents one of the rare windows during which the parasite is directly exposed to 

the host adaptive immune response. Therefore, efficient invasion of host erythrocyte is necessary 

not only for productive host erythrocyte infection, but also for evasion of the host immune 

response. Host traits, such as hemoglobinopathies and differential expression of host erythrocyte 

invasion ligands, can protect individuals from malaria by impeding parasite erythrocyte invasion. 

Here I describe a novel three color flow cytometry based P. falciparum invasion assay which 

allows for (i) direct comparison of P. falciparum invasion into different erythrocyte populations; 

(ii) assessment of the impact of changing erythrocyte population dynamics on overall P. 

falciparum invasion; and (iii) determination of how the presence of one erythrocyte population 

impacts P. falciparum invasion of a second erythrocyte population.  

3.2 Introduction 

 

Malaria is responsible for significant morbidity and mortality in the developing world, 

causing an estimated 250 million infections and 1 million deaths annually (WHO | World 

Malaria Report 2011). Malaria can be caused by any of eleven plasmodia species capable of 
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infecting humans; of these, Plasmodium falciparum is the most malignant. Upon transmission to 

the human host by Anopheles mosquitoes, plasmodia sporozoites migrate to and infect liver 

hepatocytes. Following the asymptomatic liver stage, merozoites are released into the 

bloodstream where they infect host red blood cells (RBCs). It is the RBC stage of infection that 

is responsible for all symptoms of disease. Upon entry into the host RBC the malaria parasite 

progresses through three distinct stages of development over the course of 48 hours: (i) the 

metabolically inactive ring stage; (ii) the trophozoite stage distinguished by increased metabolic 

activity and the digestion of host hemoglobin; and finally (iii) the schizont stage marked by the 

initiation of DNA replication and formation of daughter merozoites. At the end of the schizont 

stage the host RBC is ruptured and newly formed merozoites are released into the serum to 

invade new host RBCs(Bei and Duraisingh, 2012). The extracellular merozoite stage of the 

malaria parasite is very brief. Invasion occurs within 10 minutes of RBC rupture and the 48 hour 

intra-erythrocyte cycle begins again (Boyle et al., 2013). Successful invasion of the host RBC is 

essential for propagation of the parasite. Additionally the merozoite is one of the only parasite 

stages directly exposed to the host immune system. As a result, merozoite invasion represents a 

promising point of attack for antimalarial drugs and vaccines.  

Conventionally, P. falciparum invasion of different RBCs has been studied in vitro by 

inoculating parasitized RBCs (pRBCs) into adjacent wells of culture plates, each containing a 

single RBC population of interest (target RBCs). Under standard culture conditions, RBC 

infection generally does not exceed 10-20% pRBCs, and as a result invasion experiments often 

contain a considerable number of uninfected “contaminant” RBCs in the pRBC inoculums. To 

specifically investigate invasion into experimental target RBCs and eliminate the influence of 

“contaminant” RBCs on experimental results, Theron et al. developed a flow cytometry based 
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two color invasion assay(Theron et al., 2010). In this assay, experimental target RBCs are 

labeled with a fluorescent cytoplasmic dye before inoculation with pRBCs. Invasion assays are 

subsequently incubated to allow for the inoculated pRBCs to rupture and release merozoites, 

which invade the fluorescently labeled target RBCs. Assays are finally labeled with a fluorescent 

DNA dye, to identify newly invaded pRBCs, and invasion is assessed by flow cytometry.  

The RBC population of a given individual is heterogeneous; RBC age, anemia, acidosis, 

infection, or Glucose-6-phosphate dehydrogenase (G6PD)  deficiency heterozygosity are only a 

few conditions which may contribute to heterogeneity (Bessman, 1977; Brandão et al., 2009; 

Nagababu et al., 2008; Gifford et al., 2006; Franco et al., 2013; Cordero et al., 2004). Therefore, 

the most relevant approach to study how RBC heterogeneity influences P. falciparum invasion 

would be to combine different RBC populations in a single culture well and study subsequent P. 

falciparum infection of multiple RBC populations. Pattanapanyasat et al. has described a 

biotinylation assay for detecting different RBC populations in a single culture condition, which 

they used to study P. falciparum growth in normal and thalassemic RBCs (Pattanapanyasat et al., 

1996, 1999). However, the biotinylation assay does not account for the uninfected “contaminant” 

RBCs in the pRBC inoculums. 

Here I describe a three color flow cytometry invasion assay that builds upon the 

approaches taken by Theron et al. and Pattanapanyasat et al. to directly compare plasmodium 

invasion of different RBC populations. I have validated this approach using target RBCs that 

have had host receptors removed by enzymatic treatment with trypsin, neuraminidase or 

chymotrypsin. The direct comparison of parasite invasion into different RBC populations 

provides increased sensitivity for detecting differences in merozoite invasion as well as an 

approach for modeling how different RBC populations interact to determine malaria infection.  
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3.3 Materials and Methods  

P. falciparum culture  

P. falciparum parasite lines 3D7 (MR4, MRA-102), Dd2 (MR4, MRA-156), and FCR3-

FMG/Gambia (MR4, MRA-736) were routinely cultured in iron-replete O positive (O+) RBCs 

within two weeks of being obtained from healthy individuals. RBCs were collected at the 

Clinical and Translational Research Center at the University of North Carolina, Chapel Hill, NC 

and their use for this study was approved by Institutional Review Board at the University of 

North Carolina at Chapel Hill (IRB# 09-0559). Written consent was obtained from all donors 

using a consent form specifically approved by the IRB. Cultures were maintained at 2% 

hematocrit in complete media containing RPMI 1640 with 10% Albumax II, 1 mM 

hypoxanthine, 20 mM L-glutamine, 0.45% glucose, and 10 µg/L gentamicin (ACM). Cultures 

were shaken at 37
o
C in 5% O2 5% CO2 and 90% N. Parasite density was maintained between 

0.5% and 10% P. falciparum pRBCs. pRBC cultures were synchronized to within 4-6 hours of 

each other by first treating cultures with 5% D-sorbitol to select for ring stage parasites, followed 

by Magnetic Activated Cell Sorting (MACS) (Miltenyi Biotec) isolation of hemozoin containing 

trophozoite and schizont stage pRBCs 24 hours later (Ribaut et al., 2008). A small (0.16%) 

double positive Violet and DDAO RBC population is typically observed at the end of three-color 

invasion experiments and is excluded from analysis (data not shown).  

Three-color invasion assay  

Briefly, RBCs were labeled at 2% hematocrit in RPMI with 5 µM of either CellTrace 

Violet (RBC
Violet

) or DDAO-SE (RBC
DDAO-SE

) (Invitrogen) for two hours with shaking at 37
o
C, 

washed twice with ACM, incubated 30 minutes in ACM with shaking at 37
o
C, and finally 

washed twice with RPMI and stored in RPMI at 4
o
C. Invasion assays were performed with 

fluorescently labeled RBCs within two days of labeling. For three-color invasion assays, 
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RBC
DDAO-SE

 and RBC
Violet

 were combined in ACM and delivered in triplicate into a 96 well plate 

and subsequently seeded with MACS purified hemozoin containing pRBCs (trophozoites) from 

routine iron-replete O+ cultures to achieve 1.5-2% pRBCs. Parasites were maintained for 18-24 

hours under standard culture conditions to allow for schizont rupture and subsequent invasion of 

RBC
DDAO-SE 

and RBC
Violet 

populations. Following merozoite invasion, cells were stained with 1x 

DNA dye SYBR Green I (Invitrogen), fixed with 1% paraformaldehyde and 0.075% 

glutaraldehyde in Alsever’s Solution (Sigma) as described previously(Clark et al., 2013), and 

analyzed by flow cytometry or microscopy.  

Enzyme treatment of RBCs 

RBCs were treated with trypsin, chymotrypsin, or neuraminidase in accordance with the 

Sanger Institute flow cytometry-based invasion phenotyping protocol 

(http://www.sanger.ac.uk/research/projects/malariaprogramme-rayner/sop-flow-cytometry-

invasion-assay.pdf). Briefly, RBCs labeled with either CellTrace Violet or DDAO-SE were 

treated with 0.02 U/mL neuraminidase (Sigma), 50 μg/mL trypsin (Sigma), or 0.91 mg/mL 

chymotrypsin (Sigma) at 2% hematocrit in RPMI for 1 hour with shaking at 37
o
C, washed twice 

with ACM, incubated 30 minutes in ACM with shaking at 37
o
C, and finally washed twice with 

RPMI. Enzyme treated RBCs were stored in RPMI at 4
o
C for up to 1 day before being used in 

experiments. 

Microscopy  

pRBC
DDAO-SE 

and pRBC
Violet

 were stained with 1x DNA dye SYBR Green I, fixed with 

1% paraformaldehyde and 0.075% glutaraldehyde, and then viewed by oil immersion with a 

63X/ 1.4 numerical aperture Oil Plan Apo objective lens on a Zeiss CLSM 710 Spectral 

Confocal Laser Scanning Microscope. Images were captured with Zeiss ZEN 2011 software.  
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Flow Cytometry Analysis 

Flow cytometry was performed at the UNC Flow Cytometry Core Facility on a 

Beckman-Coulter (Dako) CyAn ADP cytometer. Channels and probes used on the Dako cyan 

included: CellTrace Violet (405nM excitation, 450/50 bandpass), SYBR Green I (488nm 

excitation, 530/40 bandpass), and DDAO-SE (635nm excitation, 665/20 bandpass). Detector 

gain settings varied between experiments to optimize signal but were kept constant within 

individual experiments and spectral overlap compensation was not necessary with this 

configuration. P. falciparum pRBCs were gated on SYBR Green I signal. Dako Cyan data was 

collected and analyzed with Summit v4.3.01. Linear amplification of forward scatter was used to 

set event threshold in order to exclude cell debris, microparticles and doublets. For all 

experiments samples were diluted to 0.001-0.002% hematocrit and 100,000-500,000 total events 

were collected.  

Statistical Methods 

All experiments were performed in triplicate. Results are from either one representative 

experiment of at least three independent experiments or the combined results of at least three 

independent experiments. To compare the relative susceptibility of two different RBC 

populations to P. falciparum invasion, I determined the susceptibility index (SI) with an 

unadjusted Odds Ratio, which allows the determination of the relative risk of the two RBC 

populations to P. falciparum invasion. All statistical analyses for invasion experiments were 

performed with Stata/IC (v10, Stata Corp, College Station, TX).  
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3.4 Results 

Labeling RBCs with CellTrace dyes DDAO-SE and Violet allows for the direct comparison of P. 

falciparum invasion into different RBC populations. 

To develop a P. falciparum RBC invasion assay that would allow the direct comparison 

of the invasion of the parasite into different RBC populations, I utilized a fluorescent RBC 

staining method that permits the definitive detection of two distinct RBC populations by flow 

cytometry. DDAO-SE was used to label the first RBC population (RBC
DDAO-SE

) (Figure 3.1A) 

and CellTrace Violet was used to label the second RBC population (RBC
Violet

) (Figure 3.1B). 

Labeling RBCs with DDAO-SE does not affect P. falciparum invasion(Theron et al., 2010). 

Similarly, labeling RBCs with CellTrace Violet does not affect P. falciparum invasion (Figure 

3.2A and 3.2B). I next examined whether RBC
DDAO-SE

 could be combined with RBC
Violet

 in a 

three-color invasion assay. An equal number of RBC
DDAO-SE

 and RBC
Violet

 were combined, 

inoculated with trophozoite stage pRBCs enriched by Magnetic Activated Cell Sorting (MACS), 

and incubated for 18-24 hours to allow for schizont rupture and subsequent merozoite invasion 

of the RBC
DDAO-SE 

and RBC
Violet

. RBC
DDAO-SE 

is readily distinguished from RBC
Violet 

by 

microscopy (Figure 3.1E) and flow cytometry (Figure 3.1F). SYBR Green I staining allows for 

the identification of parasitized RBC
DDAO-SE

 (pRBC
DDAO-SE

) and pRBC
Violet

 by both microscopy 

(Figure 3.1D & 3.1E) and flow cytometry (Figure 3.1G & 3.1H). Furthermore, no spectral 

interference of the three fluorescent dyes was detected by flow cytometry or microscopy. To 

assess P. falciparum invasion of RBC
DDAO-SE 

and RBC
Violet

, the invasion of RBC
DDAO-SE

 was 

normalized to the invasion of RBC
Violet

. The percent invasion of RBC
DDAO-SE 

was 98.2 (standard 

deviation [SD] ±7.2), 87.4 (SD ±6.2), and 108.4 (SD ±5.4) that of RBC
Violet 

for P. falciparum 

strains 3D7, Dd2, and FCR3-FMG respectively (Figure 3.3A). Additionally, I determined the 

Susceptibility Index (SI), the relative risk of two different target RBC populations to P. 
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falciparum invasion, with an unadjusted Odds Ratio. An SI of 1.0 indicates no difference in the 

risk of invasion of two target RBC populations. The SI of a one to one combination of RBC
DDAO-

SE 
and RBC

Violet
 to 3D7, Dd2, and FCR3-FMG invasion was 0.97 (confidence interval [CI] 0.96-

0.99), 0.90 (CI 0.89-0.91), and 1.08 (CI 1.06-1.09) respectively (Figure 3.3B).  

The three color P. falciparum invasion assay allows for the direct comparison of P. falciparum 

invasion into physiologically different RBC populations.  

Neuraminidase (N), trypsin (T), and chymotrypsin (C) are commonly used to study P. 

falciparum merozoite RBC invasion. Treatment of RBCs with any of these enzymes reduces 

merozoite RBC invasion. Different P. falciparum laboratory strains as well as clinical isolates 

exhibit different enzyme sensitivities (Bei and Duraisingh, 2012). I compared the merozoite 

invasion of P. falciparum strains 3D7 and Dd2 into untreated RBCs (RBC
Ø
) and either 

neuraminidase (RBC
N
), trypsin (RBC

T
), or chymotrypsin (RBC

C
) treated RBCs with the 

two(Theron et al., 2010) and the three-color invasion assays. The two-color invasion assay 

compares P. falciparum invasion of different RBC populations in adjacent but separate culture 

wells, while the three-color invasion assay directly compares P. falciparum invasion of two 

different RBC populations in the same culture well. In both assays, the invasion of each parasite 

strain into RBC
N
, RBC

T 
and RBC

C 
was normalized to invasion into RBC

Ø 
(Figure 3.4). 

Consistent with previous reports, in both the two- and three-color invasion assays P. falciparum 

strains 3D7 and Dd2 exhibited resistance and sensitivity to neuraminidase, respectively, and 

similar sensitivity to trypsin. Dd2 was less sensitive to chymotrypsin than 3D7. Furthermore, 

3D7 and Dd2 sensitivity to all three enzymes was significantly greater in the three-color than the 

two-color invasion assay. Specifically, 3D7 invasion was 67.7% (SD±1.8), 65.7% (SD±1.8) and 

5.1% (SD±0.4) into RBC
N
, RBC

T
 and RBC

C
, respectively, for the two-color invasion assay, and 

56.1% (SD±1.9), 33.1% (SD±0.45), and 3.9% (SD±0.1), respectively, for the three-color 
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invasion assay. Dd2 invasion was 4.5% (SD±0.2), 69.6% (SD±1.0) and 32.9% (SD±0.9) into 

RBC
N
, RBC

T
 and RBC

C
, respectively, for the two-color invasion assay, and 2.6% (SD±0.7), 

32.5% (SD±0.9), and 15.6% (SD±1.1), respectively, for the three-color invasion assay (Figure 

3.4). The SI’s obtained from equal combinations of enzyme treated and RBC
Ø 

populations in the 

three-color invasion assays (Figure 3.5C, 3.6C, and 3.7C) were consistent with the invasion 

trends shown in Figure 3.4. 

The relationship between different RBC populations and P. falciparum invasion is revealed by 

the three-color invasion assay.  

I next sought to determine how changing the frequency of enzyme treated and untreated 

RBC populations affects (i) total infection (%pRBC
total

) and (ii) contribution of either pRBC
N
, 

pRBC
T 

or pRBC
C 

 and pRBC
Ø
 to %pRBC

total
, by combining either RBC

N
, RBC

T 
or RBC

C 
 with 

RBC
Ø
 at ratios of 1:10, 1:1, and 10:1. Total 3D7 as well as Dd2 infection of cultures containing 

either RBC
N
, RBC

T 
or RBC

C
 with RBC

Ø
 decreased with increasing frequency of each respective 

enzyme treated RBC population and decreasing frequency of RBC
Ø
. Even as total infection 

decreased, as RBC
N 

(Figure 3.5A), RBC
T
 (Figure 3.6A) or RBC

C
 (Figure 3.7A) increased in 

frequency, infection of the enzyme treated RBCs accounted for an increasing portion of 

%pRBC
total

. Specifically, as RBC
N
 increased relative to RBC

Ø
 from 10-50-90% of RBC

total
, 

pRBC
N
 accounted for 5.6% (SD±0.3), 28.2% (SD±0.7), and 73.5% (SD±0.1) of %pRBC

total
 for 

strain 3D7 and 0.3% (SD±0.1), 1.9% (SD±0.18), and 16.9% (SD±1.0) for strain Dd2 (Figure 

3.5A). As RBC
T
 increased relative to RBC

Ø
 from 10-50-90% of RBC

total
, pRBC

T
 accounted for 

2.8% (SD±0.2), 21.3% (SD±1.1) and 67.7% (SD±0.2) of %pRBC
total

 for strain 3D7 and 2.6% 

(SD±0.4), 21.1% (SD±0.4), and 70.2% (SD±1.5) for strain Dd2 (Figure 3.6A). Finally, as RBC
C
 

increased relative to RBC
Ø
 from 10-50-90% of RBC

total
, pRBC

C
 accounted for 0.5% (SD±0.1), 
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3.7% (SD±0.2) and 22.1% (SD±1.0) of %pRBC
total

 for strain 3D7 and 1.7% (SD±0.3), 12.8% 

(SD±0.8) and 54.9% (SD±1.4) for strain Dd2 (Figure 3.7A).  

To further characterize the relationship between different RBC populations and P. 

falciparum, I examined (i) percent pRBC
Ø
,  pRBC

N
, pRBC

T 
and pRBC

C
 as the frequency of each 

decreased (%pRBC in each population) and (ii) the SI of RBC
Ø
 with either RBC

N
, RBC

T 
or 

RBC
C 

to parasite infection as the frequency of each population changed. As the frequency of a 

RBC population decreases there are three possible invasion trends that may be observed, rate of 

invasion can (i) increase, (ii) remain constant or (iii) decrease. Each of these outcomes was 

observed in my experiments. %pRBC
Ø
 increased 25-38% as the frequency of RBC

Ø
 decreased in 

relation to RBC
N
 (Figure 3.5B), RBC

T
 (Figure 3.6B) and RBC

C
 (Figure 3.7B) for both 3D7 and 

Dd2. For 3D7, %pRBC
N 

similarly increased 30% as the frequency of RBC
N 

decreased; while for 

Dd2, %pRBC
N
 was unchanged as the frequency of RBC

N 
decreased (Figure 3.5B). %pRBC

T
 

decreased 30-42% as the frequency of RBC
T
 decreased for both 3D7 and Dd2 (Figure 3.6B). 

%pRBC
C
 was unchanged as the frequency of RBC

C 
decreased for 3D7 and Dd2 (Figure 3.7B). 

However, despite changes in invasion rates with changing frequencies of the different enzyme 

treated populations and RBC
Ø
, the SI, which reveals the relative risk of two populations to 

parasite invasion, was unchanged for 3D7 and Dd2 invasion of both RBC
T 

and RBC
Ø
 (Figure 

3.6C) and RBC
C
 and RBC

Ø
 (Figure 3.7C) as well as Dd2 invasion of RBC

N
 and RBC

Ø
 (Figure 

3.5C). This reveals that the relative risk of parasite invasion was unchanged. However, the SI of 

RBC
N
 and RBC

Ø
 to 3D7 invasion decreased from 0.80 (CI 0.75-0.86) to 0.42 (CI 0.40-0.44) as 

the frequency of RBC
Ø 

decreased and the frequency of RBC
N
 increased. This indicates that 

reduced risk of RBC
N 

to 3D7 invasion, relative to RBC
Ø 

invasion, is dependent upon the 
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frequency of the RBC
N 

and RBC
Ø 

and ultimately that reduced risk is obliterated by decreasing 

the frequency of RBC
N 

(Figure 3.5C). 

3.5 Discussion  

 

The host RBCs is essential for the erythrocytic stage of malaria infection; consequentially 

human RBC traits, such as hemoglobinopathies (Taylor et al., 2013) , Glucose-6-phosphate 

dehydrogenase (G6PD) deficiency  (Roth et al., 1983) and differential expression of host RBC 

invasion ligands (Tham et al., 2010), have arisen in the human population providing protection 

from malaria. RBCs are not only heterogeneous at the population level but also at the individual 

level. A given individual’s RBC population is phenotypically heterogeneous as a result of 

differing RBC age, as well as other potential contributing factors such as iron deficiency or 

exposure to oxidative damage. Another example is found with heterozygous G6PD deficient 

women, whose RBC population is heterogeneous for G6PD deficiency, as the mutation is found 

only on one X chromosome (SANSONE et al., 1963). RBC age, oxidative damage, and G6PD 

status are all known to impact erythrocyte stage P. falciparum infection [15–18]. I postulate that 

the dynamics of an individual’s RBC population have the potential to dramatically impact the 

disease causing the erythrocytic stage of malaria infections. 

The study of the influence of different RBC populations on malaria infection necessitates 

the ability to combine and still identify different RBC populations in a single culture condition. 

Here I have described the development of a new method for investigating the influence of RBC 

population dynamics on RBC susceptibility to P. falciparum invasion. My novel three-color 

invasion assay has allowed for (i) the direct comparison of P. falciparum merozoite invasion of 

different RBC populations; (ii) determination of how a changing RBC population structure 

impacts overall P. falciparum infection; and (iii) assessment of how different RBC types impact 
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one another’s invasion susceptibility during a malaria infection. I utilized the enzymes 

neuraminidase, trypsin, and chymotrypsin, which are commonly used to study P. falciparum 

invasion(Cowman et al., 2012), to establish the capacity of my assay to study the relationship 

between different RBC populations and P. falciparum infection. Specifically, neuraminidase, 

trypsin and chymotrypsin have been used to define different host RBC ligands utilized by the 

parasite and to show differential use of host invasion pathways by laboratory strains and clinical 

isolates (Bei and Duraisingh, 2012; Lopez-Perez et al., 2012; Baum et al., 2005).  

I began by showing that the three-color invasion assay reproduces the previously 

described enzyme sensitivities of P. falciparum strains 3D7 and Dd2. I found that the enzyme 

sensitivities of strain 3D7 and Dd2 obtained from my three-color invasion assay were consistent 

with those obtained from the two-color invasion assay (Theron et al., 2010) (Figure 3.4). 

Furthermore, I observed 3D7 and Dd2 sensitivity to all three enzymes to be significantly greater 

in the three-color as compared to the two-color invasion assay. This is consistent with 

Pattanapanyasat et al.’s conclusion that direct comparison of parasite growth allows for greater 

sensitivity in detecting  small differences in growth rates between physiologically different RBCs 

than independent growth rate assessment (Pattanapanyasat et al., 1996). I additionally introduce 

the susceptibly index (SI) as a robust tool for analyzing the relative risk of two different RBC 

populations to P. falciparum invasion.  

I next proceeded to demonstrate that changes in RBC population structure impact P. 

falciparum infection. I show that as the frequency of a particular RBC population that is less 

susceptible to invasion increases, there is a total decrease in the overall parasitemia (Figure 

3.5A, 3.6A, 3.7A,). These results reveal the loss of merozoites that occurs as the overall risk of 

invasion of a RBC population decreases, in this case due to increasing frequency of a RBC 
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population that is refractory to P. falciparum invasion. In addition to following the total infection 

of heterogeneous RBC populations, I also investigated the specific dynamics that exist between 

the different erythrocyte populations in my study (RBC
Ø
, RBC

N
, RBC

T
 and RBC

C
) by assessing 

(i) the changing rate of invasion of each population with changing population frequency and (ii) 

the SI of two RBC populations as their frequency changes. In my study, depending on the RBC 

populations present, I observe each of three trends in the rate of parasite invasion with changing 

RBC population frequency: (1) increasing rate of invasion with decreasing RBC population 

frequency, (2) no change in the rate of invasion with changing RBC population frequency and 

(3) decreasing rate of invasion with decreasing RBC population frequency. RBC
Ø 

invasion by 

both 3D7 and Dd2 and RBC
N 

invasion by 3D7 consistently followed the first trend, independent 

of the second RBC population each was paired with (Figure 3.5B, 3.6B and 3.7B). As the RBC
Ø 

is untreated and 3D7 invasion is only very slightly sensitive to neuraminidase treatment, I 

speculate this is the general trend for parasite invasion of the most viable RBC population 

available for invasion. Conversely, in circumstances where invasion of a RBC population was 

dramatically inhibited, as was observed with Dd2 invasion of RBC
N 

and 3D7 invasion of RBC
C
, 

no change in invasion rate with changing RBC population frequency was observed (Figure 3.5B, 

and 3.7B).  Interestingly, for more intermediate invasion phenotypes, 3D7 and Dd2 invasion of 

RBC
T
 and Dd2 invasion of RBC

C
, I observed that the dynamics of parasite invasion of a given 

RBC population appear to be dependent upon the identity of the RBC population each was 

combined with. For example, 3D7 and Dd2 invasion of RBC
T 

decreased with decreasing 

frequency when RBC
T 

was combined with RBC
Ø 

(Figure 3.6C). Ultimately these observations 

reveal that the dynamics of parasite invasion of a single RBC population may be either 

dependent on or independent of other RBC populations present. 
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Despite fluctuating rates of invasion with changing RBC population frequency for 

experiments that combined RBC
Ø
 with either RBC

N
, RBC

T
, or RBC

C
, there was very little effect 

on the SI (with the exception of 3D7 invasion of cultures containing RBC
N
 and RBC

Ø
 

populations) (Figure 3.5C, 3.6C, and 3.7C). 
 
This indicates that the relative risk of the two 

populations to invasion remained constant regardless of population frequency.  The risk of RBC
N
 

to 3D7 invasion relative to invasion of RBC
Ø 

increased with decreasing frequency of RBC
N 

and 

increasing frequency of RBC
Ø 

(Figure 3.5C). These results reveal that the relative risk (the SI) 

of two populations to invasion may be dependent on the frequency of each RBC population.   

I have demonstrated the ability of the three-color invasion assay to study parasite 

infection of heterogeneous RBC populations. However, the assay may also be used to study the 

heterogeneity of merozoites. The difficulty of working with the merozoite stage of the parasite 

and the tradition of studying different RBC populations in isolation has resulted in essentially the 

exclusive study of invasion competent merozoites, with merozoites unable to invade completely 

lost to analysis. Here, I am able to observe merozoites that invade both unaltered and enzyme 

treated RBCs in a single culture, and I clearly show that even in the presence of an unaltered 

RBC population (RBC
Ø
) some merozoites continue to invade the more resistant enzyme treated 

RBC populations (Figure 3.5-3.7). Conceivably, this assay has the potential to facilitate the 

study of merozoite heterogeneity and how merozoite heterogeneity changes with continued 

culture in different invasion conditions. 

In conclusion, I have developed and demonstrated the utility of a sensitive, high 

throughput experimental system which can be used to directly compare the susceptibility of 

different RBC populations to P. falciparum merozoite invasion and assess the impact of 

changing RBC population dynamics on overall P. falciparum invasion. This approach provides a 
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powerful method for modeling a mixed RBC population in which populations of RBCs with 

differential susceptibility to infection exist. For example, during a malaria infection, the host 

often becomes anemic secondary to the destruction of infected and uninfected RBCs; this can 

result in an increase in the erythropoietic rate and the subsequent release of large numbers of 

reticulocytes into the circulation. The impact of the release of a population of RBCs 

preferentially infected by many species of Plasmodium including P. falciparum (Pasvol et al., 

1980; Lim et al., 2013) on the overall infection is unknown. The effects of increasing the number 

of reticulocytes on the overall P. falciparum infection could be modeled using the three-color 

invasion assay. Future experimentation using this approach will provide invaluable insight into 

the relationship between P. falciparum and its human host. 
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Figure 3.1 – RBCs stained with CellTrace DDAO-SE and Violet can be combined to 

directly compare P. falciparum invasion in a three-color invasion assay. RBCs were labeled 

with 5 µM of either DDAO-SE (A) or CellTrace Violet (B). Cells were then combined and 

infected with unstained P. falciparum parasites. Experiments were incubated 18-24 hours, cells 

were then stained with DNA dye SYBR Green I, fixed, and examined by brightfield (C) and 

fluorescence (D, E) microscopy and by flow cytometry (F-H).  (D) shows green channel only 

and (E) shows merge of green, red and violet channels. (F) Flow cytometry plot of RBCs stained 

with CellTrace DDAO-SE (R1) and CellTrace Violet (R4) along with non-stained pRBC (R3). 

(G) Dot plot shows DDAO-SE negative (unlabeled) pRBCs (R5), DDAO-SE negative uninfected 

RBCs (R7), DDAO-SE labeled pRBCs (R6) and DDAO-SE labeled uninfected RBCs (R8). (H) 

Dot plot shows CellTrace Violet negative (unlabeled) pRBCs (R9), CellTrace Violet negative 

uninfected RBCs (R11), CellTrace Violet labeled pRBCs (R10) and CellTrace Violet labeled 

uninfected RBCs (R12). 



 81 

 

0

20

40

60

80

100

120

%
P

f
in

v
a
s
io

n

(r
e
la

ti
v
e
 t

o
 R

B
C

u
n

la
b

e
le

d
)

RBCunlabeled

RBCViolet

3D7 Dd2 Susceptibility Index
0.1 1

Dd2

3D7

Susceptibility Index

(95% Confidence Interval)

2

0.98 (0.97-1.00)

0.99 (0.98-1.01)

RBCViolet invaded more than RBCUnlabeledRBCViolet invaded less than RBCUnlabeled

A. B.

Figure 3.2 – Labeling RBCs with CellTrace Violet does not impact P. falciparum invasion. 

RBC
Violet

 and RBC
unlabeled

 were combined at a ratio of one to one to achieve 2x10
7
 total 

uninfected RBCs per well, and inoculated with 2x10
5
 MACS enriched hemozoin containing 

trophozoite stage pRBCs of either P. falciparum strain 3D7 or Dd2. Invasion experiments were 

incubated 18-24 hours to allow for rupture of schizonts and subsequent invasion of merozoites 

into labeled RBCs, then stained with DNA dye SYBR Green I (to identify pRBCs), fixed and 

analyzed by flow cytometry. The invasion of P. falciparum strains 3D7 and Dd2 into RBC
Violet

 

and RBC
unlabeled

 was compared by (A) invasion of RBC
Violet

 as a percent of invasion of 

RBC
unlabeled

 (error bars represent SD) and (B) the SI, the unadjusted odds ratio assessing the 

relative risk of RBC
Violet 

and RBC
unlabeled 

to 3D7 and Dd2 invasion. The marker represents the SI 

point estimate and the bar represents the 95% confidence interval (CI). 
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Figure 3.3 – Direct comparison of P. falciparum strains 3D7, Dd2 and FCR3-FMG invasion 

into RBCs labeled with DDAO-SE and CellTrace Violet. RBCs were stained with either 5 M 

DDAO-SE or CellTrace Violet and combined at a ratio of one to one to achieve 2x10
7
 total 

uninfected RBCs per well, and inoculated with 2x10
5
 MACS enriched hemozoin containing 

trophozoite stage pRBCs of either P. falciparum strain 3D7, Dd2, or FCR3-FMG. Invasion 

experiments were incubated 18-24 hours to allow for rupture of schizonts and subsequent 

invasion of merozoites into labeled RBCs, then stained with DNA dye SYBR Green I (to identify 

pRBCs), fixed and analyzed by flow cytometry. (A) 3D7, Dd2, and FCR3-FMG invasion of 

RBC
DDAO

 normalized to invasion of RBC
Violet

. Error bars represent standard deviation (SD). (B) 

The Susceptibility Index (SI), an unadjusted Odds Ratio assessing the relative risk of RBC
DDAO 

and RBC
Violet 

to 3D7, Dd2, and FCR3-FMG invasion. The marker represents the SI point 

estimate and the bar represents the 95% confidence interval (CI). A SI of 1.0 indicates no 

difference in parasite invasion of two RBC populations. Data in (A) and (B) are the combination 

of four, seven, and three independent experiments performed in triplicate with 3D7, Dd2, and 

FCR3-FMG respectively.  
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Figure 3.4 – Comparison of two and three color P. falciparum invasion assay. DDAO-SE 

stained RBCs were treated with either neuraminidase, trypsin, or chymotrypsin or left untreated 

and then inoculated at 2x10
7 

RBCs per well for two-color invasion assays, or combined 1:1 with 

untreated CellTrace Violet labeled RBCs, for a total of 2x10
7
 RBCs per well, for three-color 

invasion assays. Two and three-color invasion assays were inoculated with 2x10
5
 of either 

MACS enriched 3D7 or Dd2 P. falciparum parasites and invasion assays were further carried out 

as previously described. Invasion of RBC
N
,
 
RBC

T
 and RBC

C
 by 3D7 and Dd2 was normalized to 

invasion of RBC
Ø
 for both two and three-color invasion assays. Error bars represent the SD. 

Student’s t-tests were used to calculate differences in invasion between two and three-color 

invasion assays.  
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Figure 3.5 – Comparison of invasion of P. falciparum into untreated and neuraminidase, 

treated RBCs. (A) Total 3D7 and Dd2 infection (%pRBC
total

) of cultures containing 1:10, 1:1, 

and 10:1 combinations of RBC
N
:RBC

Ø
, and the corresponding contribution of each population to 

%pRBC
total

 was determined. Error bars represent the SD. (B) %pRBC
N
 and %pRBC

Ø
 for both 

3D7 and Dd2 in cultures containing 1:10, 1:1, and 10:1 combinations of RBC
N
:RBC

Ø
. Error bars 

represent the SD. (C) The SI for 3D7 and Dd2 infection of 1:10, 1:1, and 10:1 combinations of 

RBC
N
:RBC

Ø
. SI analysis was done with Stata/IC (v10, Stata Corp, College Station, TX). The 

marker represents the SI point estimate and the bar represents the 95% CI. All data shown is 

from one representative experiment of three independent experiments performed in triplicate.  
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Figure 3.6 – Comparison of invasion of P. falciparum into untreated and trypsin treated 

RBCs. (A) Total 3D7 and Dd2 infection (%pRBC
total

) of cultures containing 1:10, 1:1, and 10:1 

combinations of RBC
T
:RBC

Ø
 and the corresponding contribution of each population to 

%pRBC
total

 was determined. Error bars represent the SD. (B) %pRBC
T  

for both 3D7 and Dd2 in 

cultures containing 1:10, 1:1, and 10:1 combinations of  RBC
T
:RBC

Ø 
. Error bars represent the 

SD. (C) The SI for 3D7 and Dd2 infection of 1:10, 1:1, and 10:1 combinations of RBC
T
:RBC

Ø
. 

SI analysis was done with Stata/IC (v10, Stata Corp, College Station, TX). The marker 

represents the SI point estimate and the bar represents the 95% CI. All data shown is from one 

representative experiment of three independent experiments performed in triplicate.  
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Figure 3.7 – Comparison of invasion of P. falciparum into untreated and chymotrypsin 

treated RBCs. (A) Total 3D7 and Dd2 infection (%pRBC
total

) of cultures containing 1:10, 1:1, 

and 10:1 combinations of RBC
N
:RBC

Ø
, and the corresponding contribution of each population to 

%pRBC
total

 was determined. Error bars represent the SD. (B) %pRBC
C
 and %pRBC

Ø
 for both 

3D7 and Dd2 in cultures containing 1:10, 1:1, and 10:1 combinations of  RBC
C
:RBC

Ø
. Error 

bars represent the SD. The SI for 3D7 and Dd2 infection of 1:10, 1:1, and 10:1 combinations of 

RBC
C
:RBC

Ø
. SI analysis was done with Stata/IC (v10, Stata Corp, College Station, TX). The 

marker represents the SI point estimate and the bar represents the 95% CI. All data shown is 

from one representative experiment of three independent experiments performed in triplicate.  
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CHAPTER FOUR 

Host iron status and iron supplementation conspire to mediate host susceptibility to the 

erythrocytic stage of Plasmodium falciparum 

 

4.1 Overview 

 

Iron deficiency and malaria have similar global distributions, and frequently co-exist in 

pregnant women and young children(McLean et al., 2009; Shaw and Friedman, 2011). Where 

both conditions are prevalent iron supplementation is complicated by observations that iron 

deficiency anemia protects against falciparum malaria(Kabyemela et al., 2008; Senga et al., 

2011; Gwamaka et al., 2012; Nyakeriga et al., 2004; Jonker et al., 2012), and iron supplements 

increase susceptibility to clinically significant episodes of malaria(Sazawal et al., 2006; 

Veenemans et al., 2011). This has caused many public health programs aimed at combating iron 

deficiency anemia to be suspended in malarious regions (Prentice, 2008). The mechanisms by 

which iron deficiency decreases and supplemental iron enhances susceptibility to malaria remain 

obscure. Using an in vitro culture system with erythrocytes from iron deficient and iron-replete 

human donors, we demonstrate that P. falciparum merozoites exhibit lower invasion and 

replication rates in microcytic iron-deficient erythrocytes. Additionally, iron supplementation of 

iron deficient donors reverses the protective effects of iron deficiency. Our results provide 

experimental validation of field observations reporting protective effects of iron deficiency and 

harmful effects of iron administration on human malaria susceptibility. Since recovery from 

anemia must involve transient reticulocytosis our findings imply that iron supplementation 

should be accompanied by intermittent preventive therapy for falciparum malaria.   
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4.2 Introduction 

 

The interactions between falciparum malaria and Iron Deficiency Anemia (IDA) are 

complex and bi-directional. Clinical malaria causes acute anemia by destroying both infected and 

uninfected red blood cells (RBC) (Price et al., 2001), while persistent sub-clinical infection 

causes a milder anemia of infection by blocking iron recycling to bone marrow (Nweneka et al., 

2010). However, once established, IDA protects against malaria in both pregnancy (Kabyemela 

et al., 2008; Senga et al., 2011) and childhood (Gwamaka et al., 2012; Nyakeriga et al., 2004; 

Jonker et al., 2012).  Additionally, supplemental iron, given alone or in combination with other 

micronutrients, predisposes children to malaria(Sazawal et al., 2006; Veenemans et al., 2011) 

and other serious adverse outcomes(Soofi et al., 2013). Iron homeostasis has been implicated in 

regulating liver stage P. falciparum infection; in murine studies, erythrocytic stage malaria 

infection initiates hepcidin-mediated hepatic hypoferremia which blocks superinfections by 

sporozoites from competing plasmodia strains (Portugal et al., 2011) . Mathematical modeling 

suggests that this can explain the low levels of superinfections in young children(Portugal et al., 

2011), but this mechanism cannot account for observed reductions in the risk of primary malaria 

infection in IDA children. It has also been speculated that transient peaks in non-transferrin 

bound iron caused by administration of highly absorbable iron supplements(Schümann et al., 

2012) could promote intra-erythrocytic parasite growth(Clark et al., 2013) or bacterial septicemia 

(a common cause of death in malaria patients (Bronzan et al., 2007; Berkley et al., 2009))  but 

definitive evidence is absent.  

I hypothesized that as both IDA, and iron supplementation of IDA individuals profoundly 

alter erythropoiesis; iron supplementation mediated changes in RBC physiology and RBC 

population structure alter falciparum malaria susceptibility.  In our investigations, we minimize 
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the confounding factors that have complicated prior field studies of the relationship between host 

iron status, iron supplementation, and falciparum malaria by utilizing an in vitro system with 

freshly-isolated red blood cells (RBCs) from donors with well-defined, physiologic iron states 

recruited through our US-based hospital clinic. This approach eliminated the influence of 

acquired and innate immunity to malaria, hemoglobinopathies and concurrent inflammation. Our 

study reveals that microcytic iron deficient RBCs (RBC
IDA

) from donors with IDA are protective 

against malaria infection due to impairment of P. falciparum invasion and intra-erythrocyte 

propagation, and the replacement of RBC
IDA

 with young normocytic iron-replete RBCs (RBC
IR

) 

in IDA donors following iron supplementation increases susceptibility to P. falciparum infection 

relative to infection of RBC
IDA

. These findings support well-described clinical patterns of 

differential susceptibility to malaria; taken together, they reveal that the impact of iron on 

erythropoiesis conspires to mediate host RBC susceptibility to malaria infection by altering the 

dynamic structure of the host’s RBC populations.  

4.3 Materials and Methods 

 

Clinical  

Study participants included healthy, HIV-negative, non-pregnant donors over 18 years of 

age with and without iron deficiency anemia (IDA). Exclusion criteria included: on-going 

inflammation or infection, previous history of malaria, travel to malaria endemic area, 

malignancy, sickle cell disease (or trait), and thalassemia (or trait for either thalassemia alpha or 

beta). This study was approved by the UNC Institutional Review Board, Protocol # 09-0559. 

Study participants with hemoglobin [Hgb] >11g/dL and ferritin >12ng/ml were classified as 

iron-replete (IR) and those with Hgb< 11g/dL and ferritin<12ng/ml were classified as IDA. 

Donors with IDA were treated by their personal physicians and made a donation of 40mls of 

blood at a maximum of 3 time points. Healthy donors were required to take 325 mg of ferrous 
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sulfate once daily for the 2 month duration of the study. These donors donated 40mL of blood on 

3 occasions – at enrollment and on 2 additional occasions 1 month apart. An additional group of 

healthy donors served as the IR control group. Non-anemic donors with low iron stores 

(Hgb>11g/dL, ferritin<12ng/ml) were excluded. 

Parasite Culture 

P. falciparum parasite strains 3D7, Dd2, and FCR3-FMG were cultured in O+ RBCs at 2-

3% haematocrit and complete media containing RPMI 1640 (Sigma-Aldrich) with 10% Albumax 

II (Gibco), 1 mM hypoxanthine, 20 mM L-glutamine (cellgro), 0.45% glucose (cellgro), and 

0.01ng/mL gentamicin (Sigma-Aldrich) (ACM). Albumax II was used to supplement the media 

in place of human serum in order to isolate the effects of the RBCs from different experimental 

groups. All RBCs used for parasite culture were obtained from well characterized IR O+ donors 

and used within 14 days of being drawn. Cultured parasite density was maintained between .5% - 

10% at 37 degrees in an atmosphere of 5% O2 5% CO2 and 90% N2 with continuous shaking. 

Early ring stage parasites were synchronized with 5% (w/v) D-sorbitol. Synchronization was 

repeated 20 h later to achieve a tightly synchronized parasite population 
29

. 

Growth Assays 

P. falciparum parasites from routine IR O+ cultures were seeded as rings at 0.5% initial 

parasitemia in1% hematocrit experimental RBCs  in ACM in triplicate in 96 well plates. 

Parasites were maintained for 96h under standard culture conditions and media was changed 

daily. At 96h parasite cultures were split back to 0.5% parasitemia and maintained as described 

for an additional 96h (Figure 4.1). Parasites were stained at all 0h and 96h time points with 

DNA dye SYBR Green I (Invitrogen) as described in 
30

, and fixed in 1% paraformaldehyde and 

0.0075% glutaraldehyde (Electron Microscopy Sciences) in Alsever’s Solution (Sigma-Aldrich) 

for 30 min at 4 degrees. Fixative was removed and cells were stored in PBS at 4 degrees until 
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FACS analysis. Parasite growth rates were determined by dividing final % infected RBCs at 96h 

by initial % infected RBCs at 0h. To identify parasitized reticulocytes, cultures were stained with 

0.5uM DNA dye SYTO 61 (Invitrogen)(Clark et al., 2013)  and PE conjugated mouse anti-

human CD71 antibody (Miltenyi Biotech) and analyzed by FACS.  

Invasion assay 

RBCs were labeled with 5 uM of either CellTrace Violet or DDAO-SE (Invitrogen) as 

described (Theron et al., 2010). Violet and DDAO labeled RBCs were combined in ACM and 

delivered in triplicate into 96 well plates and subsequently seeded with schizonts from routine IR 

O+ cultures to achieve 1.5-2% infected RBCs. Parasites were maintained for 12-18h under 

standard culture conditions to allow for schizont rupture and subsequent invasion of Violet and 

DDAO labeled RBCs. The invasion of P. falciparum into Violet and DDAO labeled RBCs was 

directly compared by measuring the Susceptibility Index (SI), defined as the ratio of the 

prevalence of infected Violet RBCs to infected DDAO RBCs.  

Parasite Erythrocyte Multiplication Rate assay 

Trophozoite infected IR O+ cultures were MACS (Ribaut et al., 2008) purified and 

seeded into experimental RBCs to achieve 1.5-2% infected RBCs and incubated for 12-18 h to 

allow for invasion of merozoites into experimental RBCs. Experimental RBC parasite density 

was determined and the same number of infected experimental RBCs were seeded into separate 

wells containing target IR RBCs to achieve a 1.5-2% infected RBCs. Experiments were then 

incubated for 12-18 hours to allow merozoites produced within experimental RBCs to invade 

target IR RBCs; allowing for the comparison of infectious merozoites produced within different 

experimental RBCs. Following invasion of target RBCs, cells were stained with SYBR Green I 

and analyzed by FACS to determine total number of ring infected RBCs. The number of ring 
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infected RBCs represents the total number of infectious merozoites produced within 

experimental RBCs. 

Density Separation 

RBCs were separated into five fractions with a modified version of previously described 

density gradient centrifugation method. Briefly, blood was collected into acid citrate dextrose 

and plasma was subsequently removed by centrifugation for 15 min at 800 x g. Packed cells 

were resuspended at 50% haematocrit in RPMI, and passed over a 2:1 (w/w) α-

cellulose/microcrystalline cellulose column to remove lymphocytes. Following lymphocyte 

depletion RBCs were washed twice with 10 mM HEPES (cellgro), 12 mM NaCl, 115 mM KCl, 

5% BSA (Sigma-Aldrich) buffer (RBC buffer). 1 mL 50% haematocrit RBCs in RBC buffer 

were layered onto a 65%, 60%, 55%, 50% discontinuous Percoll gradient and was centrifuged 

for 25 min at 1075g. Each of the five fractions was removed, washed twice with RBC buffer, and 

stored at 4 degrees for up to 5 days. Decreasing MCV, reticulocyte content, and Calcein 

fluorescence of the five fractions confirmed the age separation of RBCs (Bratosin et al., 2005) 

(Figure 7.1 C D and E).  

Flow cytometry 

Growth, invasion, and infectious merozoite production assays were analyzed by FACS 

using either a modified FACS-Calibur with 2 lasers 30 mW 488 Diode Pumped Solid State laser 

and a 25 mW 637 red diode laser (FACS-Calibur; Becton Dickinson, Mount View CA, modified 

by Cytek Development) or a Beckman-Coulter (Dako) CyAn ADP. Channels and probes used on 

the FACS-Calibur included: SYTO 61 (637nM, 666/27 bandpass), PE (488nM, 585/42), and 

SYBR Green I (488nM, 530/30 bandpass). FACS-Calibur data was collected using FlowJo CE 

and analyzed with Summit v5.1. Channels and probes used on the Dako cyan included: 

CellTrace Violet (405nM, 450/50 bandpass), SYBR Green I (488nm, 530/40 bandpass), and 
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DDAO-SE (635nm, 665/20 bandpass). Dako cyan data was collected and analyzed with Summit 

v4.3.01. Linear amplification of FSC was used to set event threshold in order to exclude cell 

debris, microparticles and doublets. Electronic volume of uninfected and infected RBCs was 

assessed on a Beckman Coulter Cell lab Quanta. Channels and probes used on the Quanta 

included: SYBR Green I (488nM, 525 bandpass). National Institute of Standards and 

Technologies (NIST) certified beads standard L2 2 μm, L5 5 μm, and L10 10 μm (Beckman 

Coulter) were used to calibrate electronic volume. Calibrated data was expressed as both 

electronic volume (μm
3
) and diameter (μm). Quanta data was collected with Cell Lab Quanta 

Collection Software for Instrument Control and analyzed with Kaluza. For all experiments 

samples were diluted to 0.001-0.002% haematocrit and 100,000-500,000 total events were 

collected.  

Statistical Methods  

All experiments were performed in triplicate. Results are from either one representative 

experiment or the combined results of at least three independent experiments. Growth rates and 

infectious merozoite production were compared with two-tailed Students t-test and one way 

ANOVA using GraphPad Prism 5.  To compare the susceptibility of each RBC type to invasion 

by P. falciparum, an unadjusted Odds Ratio was used to calculate the RBC SI, which compares 

the susceptibility of two RBC populations to P. falciparum invasion. All statistical analyses for 

invasion experiments were performed with Stata/IC (v10, Stata Corp, College Station, TX). Data 

from all in vitro growth studies was pooled and analyzed using random effects regression
1
. The 

dependent variable in these models was the logarithm of the ratio of the percent infected RBCs at 

96h (final) and 0h (initial).  In addition to the usual variation independently affecting each 

observation we fitted two higher levels of variance: variation between individuals and day-to-day 

                                                        
1 Dr. Tony Fulford performed random effects regression analysis of growth data. 
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variation in parasite “preparations” taking account of the fact that in this dataset these two 

variance components were cross (rather than the more usually encountered nested design).  We 

fitted two exposure variables, iron status and iron supplementation, both as binary variables, and 

their interaction, focusing on three contrasts: supplemented IDA versus supplement IR donors; 

supplemented versus non-supplemented IDA donors; supplemented versus non-supplemented IR 

donors.  All experiments were performed in triplicate with three P. falciparum strains (3D7, Dd2, 

and FCR3-FMG) and consisted of three serial 96h growth assays (Figure 4.1); P. falciparum 

strain, growth assay number and their (highly significant) interaction were fitted as binary 

covariates. We noted that when 0h (initial) percent infected RBCs was greater than 1 the second 

growth assay always gave anomalous low results (most likely due to a saturation effect).  Since 

these data were uninformative and yet added noise to the analysis we omitted all such cases 

while noting that although their inclusion increased the standard errors, it did not change the 

same general conclusions of the study. This model was fitted using Stata’s xtmixed procedure 

(v12, Stata Corp, College Station, TX). 

4.4 Results 

Iron deficient RBCs are protective against P. falciparum infection 

To determine the effect of IDA on the growth of erythrocytic stage P. falciparum, we 

enrolled donors from a non-malaria endemic area through our US-based hospital system and 

assessed growth of three P. falciparum strains within microcytic IDA RBCs (RBC
IDA

) (Hgb 

range 7.1-10.5 g/dL and MCV range 66-83 fL) in vitro (Table 4.1). For growth experiments P. 

falciparum strains 3D7, Dd2, and FCR3-FMG were cultured in either iron-replete (IR) RBCs 

(RBC
IR

) or RBC
IDA

 in two consecutive 96 hour growth assays, for a total of three P. falciparum 

erythrocyte lifecycles within either RBC
IR 

or RBC
IDA

 cells (Figure 4.1). Here we report the 

resulting growth rate of parasites following the second growth assay. We observed that compared 
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to RBC
IR

, parasite growth rate was reduced in microcytic RBC
IDA

 48% (standard deviation 

[SD]±23.9), 34% (SD±22.2), and 50.0% (SD±20.4) for strains 3D7, Dd2, and FCR3-FMG, 

respectively (Figure 4.2A).  

I next sought to determine at which point propagation of the erythrocytic stage of P. 

falciparum was impeded when cultured in RBC
IDA

 by investigating: (i) invasion, (ii) maturation, 

and (iii) production of infectious daughter merozoites. To assess invasion of P. falciparum into 

RBC
IDA

, we utilized our three-color invasion assay (Chapter 3) to directly compare invasion of 

P. falciparum strains 3D7, Dd2 and FCR3-FMG into RBC
IDA

 and RBC
IR

. Here we report the 

Susceptibility Index (SI), the ratio of the relative risk of RBC
IDA

 and RBC
IR 

to P. falciparum 

invasion. An SI of 1.0 indicates no difference in parasite invasion of two different RBC 

populations. The mean SI of RBC
IDA

 relative to RBC
IR

 was 0.56 (95% confidence interval [CI] 

0.56-0.57), 0.52 (95% CI 0.52-0.53) and 0.72 (95% CI 0.71-0.73) for strains 3D7, Dd2, and 

FCR3-FMG, respectively (Figure 4.2B). With regard to possible disruption of parasite 

maturation within RBC
IDA

, analysis of Giemsa blood smears of parasites within RBC
IDA

 and 

RBC
IR 

revealed normal maturation of parasites within RBC
IDA

 (Figure 4.2C). Finally, we 

measured the capacity of P. falciparum
 
to produce infectious daughter merozoites within 

RBC
IDA

. Measurement of the parasitized erythrocyte multiplication rate (PEMR) (Lim et al., 

2013; Chotivanich et al., 2000) of P. falciparum strains 3D7, Dd2, and FCR3-FMG revealed a 

respective 48% (SD±12.15), 26% (SD±2.22), and 40% (SD±9.32) decrease in the PEMR within 

RBC
IDA

 as compared to RBC
IR

 (Figure 4.2D). These data indicate that P. falciparum matures 

normally within microcytic RBC
IDA

, but that invasion into microcytic RBC
IDA

 and production of 

infectious merozoites within microcytic RBC
IDA

 are significantly reduced.  

Erythrocytic stage P. falciparum growth is increased in RBCs from iron supplemented donors.  
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Given field evidence that iron supplementation of IR children with 12.5mg of iron (1-

1.5mg/kg) and 50ng of folic acid may potentiate the risk of malaria(Sazawal et al., 2006), we 

next investigated the effects of moderate-dose oral iron supplementation of IR donors (IR-Fe) on 

in vitro growth of erythrocytic stage P. falciparum. Each individual donated RBCs three times: at 

enrollment, and then 1 month and 2 months following initiation of daily iron supplementation 

(325 mg ferrous sulfate orally daily). At each donation the growth rate of three P. falciparum 

strains within RBCs from IR-Fe donors (RBC
IR-Fe

) was compared to the growth rate within 

RBCs from a non-supplemented IR donor (RBC
IR

). We observed a 17.5% SD±16.13, 11.3% 

SD±15.7, and 6.6% SD±8.1 increase in growth for 3D7, Dd2, and FCR3-FMG respectively 

between enrolment and 1 month of donors taking iron supplements, and no significant change in 

parasite growth rate occurred between 1 month and 2 months of donors taking iron supplements 

(Figure 4.3A). Analysis of hemoglobin, hematocrit, MCV, MCHC, transferrin saturation, 

ferritin, and reticulocyte count of IR-Fe donors revealed no significant change in the iron status 

of IR donors following iron supplementation (Table 4.1).   

I next examined whether iron supplementation of IDA individuals affects propagation of 

erythrocytic stage P. falciparum. To do this, we compared the growth rate of P. falciparum 

strains 3D7, Dd2 and FCR3-FMG within RBCs donated by IDA individuals following iron 

supplementation (RBC
IDA-Fe

) to the growth rate of parasites within RBC
IR

. IDA-Fe donors were 

identified by their physicians as suitable for the IDA-Fe group based upon meeting the 

previously described criteria for the study as well as having been prescribed high dose oral 

ferrous sulfate, 60 mg 9-12.6 mg/kg elemental iron orally three times per day. We observed a 

17.3% SD±22.7, 17.6% SD±14.0, and 26.3% SD±16.1 respective increase in 3D7, Dd2, and 

FCR3-FMG growth in RBC
IDA-Fe 

as compared to RBC
IR 

(Figure 4.3B). All members of the IDA-
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Fe group had hemoglobin values between 6.6-9.8 g/dL and MCV values ranged from 75-98 fL. 

Furthermore, average MCHC, total iron, and ferritin values were greater than that of IDA donors 

but still lower than IR donor values (Table 4.1). Together these values are indicative of an 

erythropoietic response to iron supplements, but not full recovery from IDA.  

To comprehensively quantify the relative impact of iron deficiency and iron 

supplementation on the growth rate of P. falciparum strains in vitro, and to account for variation 

between study participants and day-to-day differences in parasite growth, we pooled data from 

all growth experiments and fitted a multilevel random effects model (Figure 4.3C). Growth rates 

of P. falciparum in RBC
IR

 on the Y=X line. Data above the Y=X line indicate growth rates 

greater than that of parasite growth in RBC
IR

 and data below the Y=X line indicate growth rates 

lower than that of parasite growth in RBC
IR

. Based upon this model, we estimate that P. 

falciparum growth is reduced by 59.8% (95% CI 51.9-68.8) in RBC
IDA

 as compared to RBC
IR

, 

and that there is a slight increase in the growth of P. falciparum in RBC
IR-Fe

 18.9% (95% CI 5.0-

33.9) and RBC
IDA-Fe

 22.8% (95% CI 2.7-46.7) as compared to RBC
IR

 (Figure 4.3D). Finally, the 

model shows no difference between P. falciparum growth in RBC
IR-Fe

 and RBC
IDA-Fe

 (Figure 

4.3D). These data clearly indicate that IDA substantially attenuates the growth of P. falciparum 

parasites and that iron supplementation of IDA donors reverses the protection provided by IDA 

against falciparum infection. Furthermore, these data suggest that iron supplementation of IR and 

IDA individuals may slightly increase propagation of erythrocytic stage P. falciparum. 

Changing RBC population dynamics impacts susceptibility to erythrocytic stage P. falciparum 

infection. 

The recovered growth rate of P. falciparum observed in RBC
IDA-Fe

 occurred prior to full 

recovery of the iron status of IDA-Fe donors (Table 4.1). The elevated reticulocyte count and 

wide RDW observed with IDA-Fe donors indicates an erythropoietic response. We have 
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explored the hypothesis that elevated erythropoiesis induced by iron supplementation in IDA 

individuals is responsible for the observed recovery of parasite growth in RBC
IDA-Fe

 that occurs 

prior to full recovery from IDA. Unlike P. vivax infection, which is restricted to reticulocytes, P. 

falciparum is capable of infecting RBCs of all ages. However, young RBCs are more susceptible 

to P. falciparum infection than older RBCs, with reported reticulocyte preferences ranging from 

1.6 – 14 fold(Pasvol et al., 1980; Tian et al., 1998)
, 
(Wilson et al., 1977). Furthermore, work in 

several theoretical modeling papers suggest that an elevated reticulocyte replacement rate leaves 

the human host at increased risk of hyperparasitemia (Cromer et al., 2009; McQueen and 

McKenzie, 2004). A critical implication of these observations is that reconstitution of red cell 

mass in anemic patients would be expected to transiently enhance susceptibility to malaria 

(Figure 4.4). Low incidence of IDA in our study setting, the difficulty of following iron 

supplemented IDA individuals longitudinally through full recovery from iron deficiency, as well 

as the inability to use the common surrogates of RBC age (volume and density) in the 

background of changing host iron status, has prevented us from studying the impact of an 

elevated erythropoietic rate on erythrocytic stage P. falciparum infection ex vivo. Therefore, in 

an attempt to assess the impact of changing RBC population dynamics in the human host in 

response to iron supplementation on susceptibility to erythrocytic stage P. falciparum infection, 

we explored the effect of changing frequency of physiologically distinct RBC
IDA

 and RBC
IR

 as 

well as young and old RBCs (RBC
Y
 and RBC

O
) populations and P. falciparum infection.   

As RBC
IDA 

are at significantly less risk of being invaded by P. falciparum than RBC
IR 

(Figure 4.2B), we began by examining the effect of replacing RBC
IDA 

with RBC
IR

 on P. 

falciparum erythrocytic invasion rate. To do this we utilized the three-color invasion assay, 

which is uniquely suited for studying the relationship between two different RBC populations 



 101 

and P. falciparum invasion. We observed that replacement of RBC
IDA 

with RBC
IR

 steadily 

increases the invasion rate of P. falciparum, and upon replacing 80% of RBC
IDA 

with RBC
IR

 

there was no longer any significance in difference from the invasion rate of RBC populations 

containing exclusively RBC
IR

 (Figure 4.5A). As iron supplementation of IDA individuals will 

result in the release of young IR RBCs (RBC
IR-Y

) into the circulation, we next investigated the 

effect of replacing RBC
IDA

 with RBC
IR-Y

 on the growth rate of P. falciparum in vitro. Similar to 

the previous invasion experiments, we observed that replacement of RBC
IDA

 with RBC
IR-Y

 

increases the growth rate of P. falciparum. However, unlike the invasion experiments we did not 

observe a complete recovery of P. falciparum growth rate to that of the growth of P. falciparum 

in RBC
IR 

(Figure 4.5B). It should be noted that in the growth rate experiments however, that 

only up to 75% of RBC
IDA

 were replaced with RBC
IR-Y

, and in invasion experiments we did not 

observe complete recovery of invasion rate until 80% of RBC
IDA

 had been replaced. Together 

these results support the hypothesis outlined in Figure 4.4 that replacing an individual’s RBC
IDA 

population with RBC
IR-Y 

would increase the susceptibility of the hosts RBC population to P. 

falciparum infection. 

Next we assessed the reticulocyte preference of P. falciparum in RBC
IDA-Fe

. To do this 

we compared the distribution of P. falciparum within reticulocytes (CD71+) and RBCs (CD71-) 

from IDA-Fe donors. We were unable to do similar analysis of RBC
IR 

as we were unable to 

detect a significant number of CD71+ reticulocytes in IR donors. I observed a parasite 

prevalence of (8.6% SD±0.1) in CD71+ reticulocytes and (4.5% SD±0.4) in CD71- RBCs 

(Figure 4.6A). However, in the context of the entire parasite infection parasitized reticulocytes 

accounted for only (3.0% SD±0.1) of the total infection (Figure 4.6B). To more fully investigate 

the relationship between RBC age and P. falciparum erythrocytic stage infection, we utilized two 



 102 

additional proxies for RBC age: RBC volume which decreases with age(Bosch et al., 1992) and 

is unaffected by parasitization (Esposito et al., 2010); and RBC density, which increases with 

increasing RBC age (Bosch et al., 1992). We observed that P. falciparum prevalence increased 

with increasing RBC volume in RBC
IR

 (Figure 4.7A). Density separation of RBC
IR

 yielded five 

fractions of increasing RBC age: very young (RBC
VY

); young (RBC
Y
); young adult (RBC

YA
); 

mature adult (RBC
MA

); and old (RBC
O
) (Figure 4.7B). Decreasing MCV, reticulocyte content

25
, 

and Calcein fluorescence(Bratosin et al., 2005) of each subsequent fraction confirmed the age 

separation of RBCs (Figure 4.7C, D, and E). In accordance with previous reports (Pasvol et al., 

1980; Tiffert et al., 2005; Lim et al., 2013), the RBC
Y
 fraction sustained a significantly greater 

growth rate than RBC
YA

, RBC
MA

, and RBC
O
, with RBC

Y
 supporting a growth rate 50% greater 

than RBC
O
 (Figure 4.7F), and production of infectious daughter merozoites was reduced by 

10% (SD±4.78), 15% (SD±1.16), and 19% (SD±2.23) in RBC
YA

, RBC
MA

, and RBC
O
 as 

compared to RBC
Y
 (Figure 4.7G). Furthermore, direct comparison of the invasion of P. 

falciparum into cultures containing equal numbers of RBC
Y
 and either RBC

Y
 (control), RBC

YA
, 

RBC
MA

, or RBC
O
. The SI of RBC

YA
, RBC

MA
, and RBC

O 
as compared to RBC

Y
 was 0.85 (95% 

CI 0.82-0.89), 0.58 (95% CI 0.56-0.62), and 0.28 (95% CI 0.27-0.30), respectively. (Figure 

4.7H). These data clearly reflect the preferential invasion of P. falciparum into young RBCs and 

shows that the risk of RBCs to P. falciparum invasion relative to young RBCs decreases with 

increasing RBC age. All together we have confirmed (i) prevalence of P. falciparum infection 

positively correlates with RBC age and (ii) the increased capacity of young RBCs to support P. 

falciparum growth.  

As RBC age appears to more significantly affect risk of invasion than the ability of the 

parasite to produce infectious daughter merozoites (Figure 4.6G and 4.6H), we hypothesized 
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that changing the age dynamics of a RBC population would impact susceptibility to P. 

falciparum invasion. To study the effect of changing age dynamics of a RBC population on P. 

falciparum invasion we took the same approach we had taken to study the effect of replacing 

RBC
IDA 

with RBC
IR

 (Figure 4.5A). RBC
Y
 were replaced with RBC

O 
in three-color invasion 

assays and P. falciparum invasion rate as well as the contribution of each RBC population to 

%pRBC
Total 

was assessed. We observed
 
that as RBC

Y 
decreased in frequency from 100% to 50% 

of RBC
Total

 the total rate of invasion remained relatively constant, decreasing by only 4.9% 

SD±0.7, but then as RBC
Y 

frequency fell from 50% to 0% of RBC
Total

 P. falciparum infection 

decreased steadily, ultimately falling by 45.7% SD±1.9 (Figure 4.8A). As RBC
Y
 represents the 

RBC population most susceptible to P. falciparum infection, we speculated that P. falciparum 

infection had plateaued as a result of merozoites being limited. However, three-color invasion 

experiments with double the inoculum of merozoites also resulted in a plateau in the rate of P. 

falciparum invasion when RBC
Y
 accounted for more than 50% of RBC

Total
 (Figure 4.8B). As the 

rate of P. falciparum infection decreased in experiments with a greater merozoite inoculum, this 

data suggests that P. falciparum infection does not increase proportionally to increasing RBC
Y
 

abundance in vitro (Figure 4.8A and B). That said, the rate of P. falciparum invasion of RBC 

populations containing 20-100% of RBC
Y
 to P. falciparum was significantly greater than the rate 

of invasion of unseparated RBC
IR

, with the rate of invasion being up to 29.9% SD±1.9 greater. 

These experiments further support the hypothesis outlined in Figure 4.4 that following 

replacement of RBC
IDA 

cells with RBC
IR-Y

 an individual’s RBC population would be at greater 

risk of P. falciparum infection. 

Together these results confirm that P. falciparum infection is skewed towards young 

RBCs, and that the rate of P. falciparum invasion increases with increasing prevalence of RBC
Y
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and RBC
IR

. Additionally, we show that P. falciparum produces fewer infectious daughter 

merozoites within RBC
IDA

 than RBC
IR

 and confirm that the capacity to produce infectious 

daughter merozoites decreases with increasing RBC age (Lim et al., 2013). These results are 

consistent with the hypothesis that the effect of iron deficiency and iron supplementation on 

RBC physiology and erythropoiesis determines an individual’s risk of malaria infection (Figure 

4.4). 

4.5 Discussion 

 

Iron supplementation has clear nutritional benefits for children and pregnant women, but 

iron is also an essential nutrient for most pathogens and as a result is a critical mediator of  host-

pathogen interactions (Drakesmith and Prentice, 2012).  Activation of the host innate immune 

system by the malaria parasite or other infectious organisms triggers reduction in iron absorption, 

redistribution of existing iron stores, and decreased erythropoiesis, which effectively limits the 

availability of iron to invading pathogens. The iron sources utilized by P. falciparum during any 

stage of its development and the strategies used by the parasite to circumvent the host’s attempt 

to restrict iron remain unclear (Scholl et al., 2005).   It has been previously postulated that iron 

deficiency inhibits P. falciparum infection via iron deprivation as is reported to occur with other 

pathogens (Skaar, 2010). While the malaria parasite may find iron less readily available in the 

context of iron deficiency, our work reveals an alternate mechanism by which iron deficiency is 

protective against malaria. This investigation highlights how the impact of both iron deficiency 

and iron supplementation influence the dynamics of the host RBC population and thus alter 

propagation of the malaria parasite. We have clearly shown that iron deficient RBCs are more 

resistant to malaria infection and that this resistance is lost following host iron supplementation. 

Additionally, we have investigated the hypothesis that there is a transient period during the 
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response to iron supplementation that may put patients at an increased risk of malaria infection 

relative to iron-replete patients.  

Clinical studies in different field sites have demonstrated the protective effect of iron 

deficiency on malaria. In Malawian children, baseline iron deficiency was associated with 

significant reductions in the subsequent risks of both parasitemia (45% reduction) and malaria 

(51% reduction) (Jonker et al., 2012). Similarly, in Tanzanian children, baseline iron deficiency 

significantly decreased the odds of subsequent parasitemia (23% reduction) and severe malaria 

(38% reductions) (Gwamaka et al., 2012).  Additionally, in two studies of pregnant women, iron 

deficiency was associated with a decreased prevalence of placental malaria (Senga et al., 2011; 

Kabyemela et al., 2008), a major cause of neonatal and maternal morbidity.  Our results that IDA 

RBCs impair parasite propagation in vitro are consistent with these clinical findings, and provide 

valuable insight into cellular mechanisms governing the observations made in the clinical setting. 

There are multiple physiological differences between iron-deficient and iron-replete RBCs that 

may contribute to the impaired invasion of IDA RBCs including: greater osmotic fragility and 

membrane rigidity and accelerated ageing in vivo (Yip et al., 1983; Yermiahu et al., 1999; 

Brandão et al., 2009; Bunyaratvej et al., 1992). Additionally, IDA RBCs have a lower 

hemoglobin content and smaller size compared to iron-replete RBCs, and therefore may be 

deficient in essential metabolites required by the parasite for merozoite production. Our results 

exclusively focus on the influence of host iron on the RBC and malaria infection, and do not 

address the potential effect of host serum iron (Clark et al., 2013) or additional protective effects 

of iron deficiency which may function in vivo, including impaired cytoadherence to the 

endothelium, accelerated clearance of parasitized RBCs (Koka et al., 2007; Matsuzaki-Moriya et 
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al., 2011), restricted growth of the hepatic stage of the parasite (Goma et al., 1996), or effects of 

hepcidin (Portugal et al., 2011) and lipocalin 2 (Zhao et al., 2012). 

We have previously reported that the addition of extracellular transferrin or ferric citrate 

increases the bioavailable iron pool of trophozoite infected RBCs but not that of uninfected 

RBCs (Clark et al., 2013).  It is possible that parasite growth may be enhanced by the transient 

increase in serum iron that is observed in iron-replete individuals who are given oral iron 

supplementation (Schümann et al., 2012).
 
Future investigations should further explore the 

possibility that P. falciparum scavenges extracellular iron in order to augment intraerythrocytic 

growth, as has been observed in other human pathogens (Haley and Skaar, 2012). However, in 

this study we have focused exclusively on the impact of iron supplementation on host RBCs and 

their subsequent effect on erythrocytic stage P. falciparum propagation. As previously discussed 

we’ve clearly demonstrated that microcytic iron deficient RBCs are protective against 

erythrocytic stage P. falciparum infection (Figure 4.2), and that iron supplementation of IDA 

donors reverses the protection afforded by IDA (Figure 4.3). We subsequently went on to 

experimentally investigate the capacity of changing the iron status and age distribution of a RBC 

population on erythrocytic stage P. falciparum infection. Our experiments support the hypothesis 

that the replacement of IDA RBCs with IR RBCs is responsible for the recovered growth rate of 

P. falciparum in RBCs from iron supplemented IDA individuals (Figure 4.5), and that upon 

replacement of IDA RBCs an individual may be at increased risk of malaria infection due to an 

on average younger RBC population than IR counterparts (Figure 4.8).  
 

Our findings, in the context of those from field studies, raise the important medical and 

public health question:  How can iron supplementation be safely administered to IDA children in 

malarious areas?  A critical implication of these observations is that reconstitution of red cell 
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mass in anemic patients would be expected to transiently enhance susceptibility to malaria 

(Figure 4.4), which may inform the ongoing debate as to whether fortification with iron would 

be safer than supplemental iron. Our data imply that, where P. falciparum is endemic, effective 

treatments for anemia should be accompanied by preventive treatment against malaria. 

Additional questions raised by this study are: (1) does IDA in African children represent an 

evolutionarily advantageous phenotype that derives from polymorphisms in iron homeostasis?; 

and (2) what molecular mechanisms confer protection from malaria in the setting of 

microcytosis, and can these protective mechanisms be exploited by medical interventions?. 

Future clinical and translational studies will be needed in order to design safe and effective 

interventions to address the twin burdens of iron deficiency and falciparum malaria. 
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   Time (h) 

Growth 

assay 

 #  

replications 

in RBCs of 

interest 

0* 24 48** 72 96 120 144 168 192 216 240 264 288 

1 1 Rings Trophs Rings Trophs Rings                   

2 3            Rings Trophs Rings Trophs Rings         

3 5                    Rings Trophs Rings Trophs Rings 

 

Figure 4.1 – Serial in vitro growth assay design for P. falciparum Synchronized P. falciparum 

parasite lines (3D7, Dd2, FCR3-FMG) cultured in iron-replete O+ RBCs were seeded as rings at 

0.5% initial parasitemia at 1% haematocrit in ACM in triplicate into 96 well plates. Parasites 

were maintained for 96 h at 37 degrees in 5% O2, and media was changed daily. At 96 h, the 

parasite cultures were split back to 0.5% parasitemia and maintained for an additional 96 h in 

Growth Assay 2. At 192 h, the parasite cultures were split back again to 0.5% parasitemia and 

maintained for an additional 96 h in Growth Assay 3. Growth rate was determined for each 

growth assay. *experimental cultures seeded with 0.5% ring infected RBC. **parasites invade 

experimental cells of interest.  
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Figure 4.2 – P. falciparum erythrocytic stage propagation is attenuated in microcytic IDA 

RBCs as compared to normocytic iron-replete RBCs in vitro. Study participants with 

hemoglobin [Hgb] >11g/dL and ferritin >12ng/ml were classified as IR and those with Hgb< 

11g/dL and ferritin<12ng/ml were classified as IDA (Table 1). (A) Growth of P. falciparum 

strains (3D7, Dd2, and FCR3-FMG) in RBCs from IDA donors (RBC
IDA

) (n=7) normalized to 

growth in RBCs from IR donors (RBC
IR

). Growth experiments were performed in triplicate and 

growth rates (the fold increase in the number of P. falciparum infected RBCs between 0 and 96 

h) were determined for each of up to three consecutive growth assays (five total P. falciparum 

life cycles) (Figure 1). Experiments for all seven IDA donors were performed independently and 

included an IR control. Bars represents the mean growth rate of parasites after a minimum of two 

48h life cycles in RBC
IDA

 as a percent of parasite growth rate in RBC
IR 

of seven independent 

experiments. The error bars represent the standard deviation. Significance was determined by 

two-tailed paired Students t test (GraphPad Prism 5, La Jolla, CA). *p<3E-10, compared to 

growth in IR RBCs. (B) Invasion of P. falciparum strains (3D7, Dd2, and FCR3-FMG) into 

either RBC
IDA

 or RBC
IR

. RBC
IDA

 and RBC
IR

 were differentially labeled with CellTrace Dyes 

(DDAO-SE or Violet), combined, inoculated with trophozoite stage infected 3D7, Dd2, or 

FCR3-FMG RBCs, and incubated for 12-18 h to allow for rupture of schizonts and subsequent 

invasion of merozoites into either RBC
IDA

 or RBC
IR

. Following invasion, wells were stained 

with DNA dye SYBR Green I to identify invaded RBCs. The Susceptibility Index (SI) (RBC 
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susceptibility to invasion) was determined with an unadjusted Odds Ratio. Analyses were 

performed with Stata/IC (v10, Stata Corp, College Station, TX). A SI of 1.0 indicates no 

difference of parasite invasion into two RBC populations. For each RBC
IDA

 and RBC
IR

 invasion 

experiment, RBCs from two IR donors were included as a control. Invasion experiments for each 

RBC
IDA

 donor were performed independently and each experiment was performed in triplicate. 

Data show the mean SI of RBC
IDA

 relative to RBC
IR 

of seven independent experiments. The 

marker represents the SI point estimate and the bar represents the 95% CI. (C) P. falciparum 

maturation is un-impeded within RBC
IDA

 as compared to development within RBC
IR

. 

Synchronized P. falciparum strain 3D7 RBC
IR

 cultures were seeded as rings a 0.5% initial 

parasitemia at 1% haematocrit in duplicate into 24 well plates containing either RBC
IDA

 or 

RBC
IR

. Giemsa stained thin blood smears were made every 24 h and 1000 RBCs were counted 

by light microscopy to determine the percent of infected RBCs as well as parasite intra-

erythrocytic stage of maturation. **parasites invade experimental cells of interest. (D) 

Production of infectious daughter merozoites (Parasite Erythrocyte Multiplication Rate [PEMR]) 

of P. falciparum strains 3D7, Dd2 and FCR3-FMG within RBC
IDA 

and RBC
IR 

(n=3). P. 

falciparum merozoites were allowed to invade RBC
IDA

 and RBC
IR

, and upon maturation to the 

trophozoite stage, equal numbers of pRBC
IDA

 and pRBC
IR

 were sub-cultured into separate wells 

containing RBC
IR

 target RBCs and incubated for 12-18 h to allow merozoites within RBC
IR

 and 

RBC
IDA

 to invade target RBC
IR

. Experiments were stained with DNA dye SYBR Green I to 

identify pRBCs. The number of ring infected target RBCs represents the number of infectious 

daughter merozoites produced per pRBC
IDA 

or pRBC
IR

. Data is the mean of three independent 

experiments performed in triplicate. Error bars represent the standard deviation. Significance 

determined by two-tailed paired Student’s t test (GraphPad Prism 5, La Jolla, CA).*p<3E-6, 

compared to infectious daughter merozoites produced within RBC
IR

.  
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Figure 4.3 – Effect of iron supplementation of IR and IDA donors on erythrocytic stage P. 

falciparum growth in vitro. (A) Growth of P. falciparum strains (3D7, Dd2, and FCR3-FMG) in 

RBCs from IR donors (n=4) at enrollment, 1 month and 2 months following prescription of daily 

iron supplementation (ferrous sulfate, 325 mg, 3-4.2 mg Fe/kg) for 60 days (IR-Fe)(RBC
IR-Fe

). 

Analysis of hemoglobin, haematocrit, MCV, MCHC, transferrin saturation, ferritin, and 

reticulocyte count of IR-Fe donors revealed no significant change in haematocrit, hemoglobin, 

MCV, total iron, or ferritin following iron supplementation of IR donors (Table 1). Growth 

experiments were performed as previously described, and data represents the growth rate for 

parasite strains after three 48 h life cycles within RBC from IR donors
 
at enrollment, 1 month 

and, 2 months following iron supplementation (RBC
IR-Fe

) as a percent of the growth rate of 

parasite strains within IR non-supplemented RBCs (RBC
IR

). Experiments were performed 

independently and each experiment was performed in triplicate. Bars represent the mean parasite 

growth rate within RBCs from four IR-Fe donors at enrollment, 1 month on iron, and 2 months 

on iron as a percent of the corresponding growth rates of parasites within RBC
IR

. Error bars 

represent the standard deviation. One way ANOVA analysis (GraphPad, Prism, v. 5.04, La Jolla, 

CA) show no significant change in parasite growth following iron supplementation (p=0.08). (B) 

Growth of P. falciparum strains (3D7, Dd2, and FCR3-FMG) in RBCs from IDA donors 

following iron supplementation (n=5) (RBC
IDA-Fe

) with either oral iron (325 mg ferrous sulfate 

three times per day) or intravenous iron (at a dosage determined by their personal physician 

using the following equation:  Dose = 0.0442 [desired Hgb - observed Hgb) x LBW + (0.26 x 

LBW); Desired hemoglobin (Hgb)=14.8 g/dL; LBW = Lean body weight in kg] (IDA-Fe). The 
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same criteria for classification as IDA were used as previously described. The average MCHC, 

iron total, and ferritin values for IDA-Fe donors were greater than that of IDA donors but still 

lower than IR donor, indicative of an erythropoietic response to iron supplements (Table 1). 

Growth experiments were performed as previously described, and data represents the growth rate 

for parasite strains after three 48 h life cycles within RBC
IDA-Fe

 as a percent of the growth rate of 

parasite strains within non supplemented RBC
IR

. Experiments were performed independently 

and each experiment was performed in triplicate. Bars represent the mean parasite growth rate 

within RBC
IDA-Fe

 relative to growth of parasites within RBC
IR

 of five independent experiments. 

Error bars represent the standard deviation. Significance was determined by two-tailed paired 

Student’s t test (GraphPad, Prism, v. 5.04, La Jolla, CA). *p<0.003 **p<3E-6, compared to 

growth within RBC
IR

. (C
2
)  P. falciparum growth after two erythrocyte life cycles within RBC

IR
, 

RBC
IDA

, RBC
IDA-Fe

, and RBC
IR-Fe

. Data are the mean growth rate of parasites in individual donor 

RBCs calculated from growth assay 2 for P. falciparum strains (3D7, Dd2, and FCR3-FMG) 

within RBC
IR

 (), RBC
IDA

 (), RBC
IR-Fe

 (), and RBC
IDA-Fe

 () plotted against growth in 

corresponding control non-supplemented RBC
IR

. Data was analyzed by mixed effects regression. 

Growth rates of P. falciparum in RBC
IR

 on the Y=X line. Data above the Y=X line indicate 

growth rates greater than that of parasite growth in RBC
IR

 and data below the Y=X line indicate 

growth rates lower than that of parasite growth in RBC
IR

. (D) Graphical summary of the mixed 

effects regression analysis of the logarithm of P. falciparum growth after two erythrocyte life 

cycles within RBC
IR

, RBC
IDA

, RBC
IDA-Fe

 and RBC
IR-Fe

. Donor and parasite preparation were 

fitted as crossed random effects while growth assay number (Figure 1) and parasite strain 

differences were treated as fixed covariates. The model was fitted using Stata’s xtmixed 

procedure (v12, Stata Corp, College Station, TX). The bars show the estimated parasite growth 

in RBC from the different donor groups expressed as a percentage of that in IR donors and error 

bars are the 95% CI for this percentage. 

                                                        
2 Dr. Tony Fulford performed random effects regression analysis of growth data. 
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Figure 4.4 – The potential effect of altered host RBC population dynamics that result from 

iron deficiency and iron supplementation, on susceptibility to erythrocytic stage malaria 

infection. The image shows a hypothesized model for the effect of iron supplementation on the 

erythrocyte population dynamics of an individual with IDA, and susceptibility to erythrocytic 

stage P. falciparum infection. Recovery from iron deficiency is a complex process, which will 

vary between individuals based on initial transferrin saturation levels, levels of circulating 

hepcidin, erythropoietic rate, and genetic factors. Under ideal conditions iron supplementation of 

an IDA individual (0 weeks) results in reticulocytosis and the production of IR young RBCs 

(RBC
IR-Y

) (6 weeks). By 12 weeks after the initiation of supplementation, the majority of 

RBC
IDA

 (90 day lifespan) are cleared from circulation. A normal distribution of the individual’s 

RBC
IR

 (120 day life span) population is achieved by week 16. Increasing thickness of the black 

shape corresponds with increasing susceptibility of the individual to malaria infection. Reduced 

growth of P. falciparum in RBC
IDA

 and P. falciparum preferential infection of young RBCs 

(RBC
Y
) leads to the hypothesis that IDA individuals will be less susceptible erythrocytic stage 

malaria. The induction of erythropoiesis in the IDA individual by iron supplementation and 

subsequent replacement of the individuals RBC
IDA

 with RBC
IR-Y

 will increase the susceptibility 

of the individual to erythrocytic stage malaria infection; with susceptibility to infection being 

predicted to peak at the point when all RBC
IDA

 have been replaced but the age distribution of 

RBC
IR

 is on average younger than a fully recovered IR individual.  
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Figure 4.5 – Replacement of RBC
IDA

 with RBC
IR 

increases the invasion and growth rate of 

erythrocytic stage P. falciparum. (A) Invasion experiments performed as previously described 

with RBC
IR

 and RBC
IDA

. RBC
IR 

and RBC
IR 

were inoculated in isolation as well as in 

combination at ratios of 1:10, 1:5, 1:1, 5:1, and 10:1 with 0.3x10
6
 pRBCs of P. falciparum strain 

FCR3-FMG. Data is from a representative experiment of three independent experiments with 

three different RBC
IDA

 and two different RBC
IR

 donors infected with P. falciparum strains 3D7, 

Dd2, and FCR3-FMG. Bars represent the rate of P. falciparum strain FCR-FMG invasion into 

each respective RBC condition, with the contribution of RBC
IDA

 and RBC
IR

 to the total rate of 

invasion denoted by the white and gray bars respectively. Error bars represent the standard 

deviation. (B) Growth rate of P. falciparum strains 3D7, Dd2, and FCR3-FMG within cultures 

containing of 20x10
6
 RBC

IDA
 or RBC

IR
 in isolation as well as RBC

IDA
 combined 10:1, 4:1, 1:1 

and 1:4 with density separated RBC
IR-Y

 for a total of 20x10
6 
RBCs per well. Growth experiments 

were performed as previously described and data presented is a representative experiment of two 

independent experiments performed in triplicate with P. falciparum strains 3D7, Dd2, and 

FCR3-FMG and two different RBC
IDA

 as well as RBC
IR

 donors. Data represents parasite growth 

rates in each respective RBC condition after one 96 hour growth assay. Error bars represent the 

standard deviation.  
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Figure 4.6 – P. falciparum prevalence is higher in CD71+ reticulocytes from iron 

supplemented iron deficient donors. (A) Frequency of P. falciparum strain 3D7 in early 

reticulocytes (CD71+) as compared to RBCs (CD71-). (B) Total P. falciparum 3D7 infection of 

RBC
IDA-Fe

, and the contribution of parasitized reticulocytes (CD71+) and parasitized RBCs 

(CD71-). Following invasion of P. falciparum 3D7 merozoites into RBCs, cells were stained 

with a PE conjugated anti-human antibody against the early reticulocyte marker CD71 and DNA 

dye SYTO 61 to detect infected RBCs. The percent infected reticulocytes (CD71+ SYTO 61+) 

and infected mature RBCs (CD71- SYTO 61+) was determined by flow cytometry. Data is from 

a representative experiment of three independent experiments performed in triplicate with P. 

falciparum strains 3D7, Dd2, and FCR3-FMG. Error bars represent the standard deviation. 

Significance determined by two-tailed paired Student’s t test (GraphPad, Prism, v. 5.04, La Jolla, 

CA). *p<8E-5, compared to percent infected RBCs (CD71-).  
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Figure 4.7 – Young RBCs sustain greater P. falciparum growth due to increased risk of 

young RBCs to invasion and greater capacity of P. falciparum produce infectious daughter 

merozoites within young RBCs. (A) Frequency of P. falciparum strain (3D7) in RBCs of 

increasing diameter, a proxy for increasing RBC age. Following invasion of P. falciparum (3D7) 

merozoites into RBC
IR

, cells were stained with DNA dye SYBR Green I to identify pRBC
IR

. The 

percent infected RBCs within RBCs of increasing diameter was assessed by quantitating the 

frequency of infected RBCs within RBCs gated upon increasing electronic volume as assessed 

by flow cytometry. Data is from a representative experiment of two independent experiments 

performed in triplicate with P. falciparum strains 3D7, Dd2, and FCR3-FMG. Error bars 

represent the standard deviation. (B) Percoll density separation of RBC
IR

 into five fractions of 

increasing RBC age. (C) MCV as measured by Beckam Coulter AcT diff2 (Brea, CA), (D) 

percent reticulocyte as determined by new methylene blue, and (E) calcein fluorescence of 

density separated RBCs stained with 5 μM calcein-AM for 30 min and assessed by flow 

cytometry. Decreasing MCV, reticulocyte content
25

, and Calcein fluorescence(Bratosin et al., 

2005) of each fraction confirmed the age separation of RBCs. (F) Growth of P. falciparum strain 

(FCR3-FMG) within age separated RBC
IR

. Growth experiments were performed as previously 

described. Growth rates were determined for each age separated RBC fraction and data 

represents parasite growth rate after one 96 hour growth assay. Data is from a representative 

experiment of three independent experiments performed in triplicate with P. falciparum strains 

3D7, Dd2, and FCR3-FMG. Error bars represent the standard deviation. Significance determined 

by two-tailed paired Student’s t test (GraphPad, Prism, v. 5.04, La Jolla, CA). *p<0.001, 

compared to P. falciparum growth rate in RBC
Y
 fraction. (G) P. falciparum strain FCR3-FMG 

production of infectious daughter merozoites (PEMR) within RBCs of increasing age. Infectious 

merozoite production assays were performed as previously described. Briefly merozoites were 

allowed to invade RBC
Y
, RBC

YA
, RBC

MA
, and RBC

O
. Following invasion the same number of 

pRBC
Y
, pRBC

YA
, pRBC

MA
, and pRBC

O
 inoculated into separate wells containing non-age 

separated RBC
IR

 and cultured for 12-18 hours to allow merozoites within RBC
Y
, RBC

YA
, 

RBC
MA

, and RBC
O
 to be released and invade target RBC

IR
. The number of ring infected target 

RBC
IR

 represent PEMR within RBC
Y
, RBC

YA
, RBC

MA
, and RBC

O
. Data is from a representative 

experiment of three independent experiments performed in triplicate with P. falciparum strains 

3D7, Dd2, and FCR3-FMG. Error bars represent the standard deviation. Significance determined 

by two-tailed paired Student’s t test (GraphPad Prism 5, La Jolla, CA).*p<0.001, compared to 

infectious merozoites produced within young RBCs. (H) Direct comparison of P. falciparum 

strain FCR3-FMG invasion into RBC
Y
 and either RBC

YA
, RBC

MA
, or RBC

O
. Invasion 

experiments were performed as previously described. The SI, an Odds Ratio (OR) was calculated 

to estimate the relative risk of P. falciparum invasion into RBCs of increasing age as compared 

to RBC
Y
. For age invasion experiments RBC

Y
 combined with RBC

Y
 served as the control. Data 

represents the SI of P. falciparum invasion into RBC
Y
 combined with increasingly older RBC 

fractions. Data is from a representative experiment of three independent experiments performed 

in triplicate with P. falciparum strains 3D7, Dd2, and FCR3-FMG.  The markers represent the SI 

point estimate and the bar represents the 95% CI.  
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Figure 4.8 – Elevated frequency of RBC
Y
 in a RBC population sustains an elevated P. 

falciparum invasion rate, and replacement of RBC
Y 

with RBC
O 

decreases invasion rate. 

RBC
Y
 and RBC

O
 were isolated and invasion experiments performed as previously described 

with RBC
Y
 and RBC

O
. RBC

IR
, RBC

Y
, and RBC

O
 were inoculated in isolation and RBC

Y
 and 

RBC
O
 were additionally combined at ratios of 1:10, 1:5, 1:3, 1:1, 3:1, 5:1, and 10:1. Data is from 

a representative experiment of three independent experiments with P. falciparum strains 3D7 and 

FCR3-FMG. Bars represent the rate of P. falciparum strain FCR-FMG invasion with parasite 

inoculums of (A) 0.3x10
6 
and (B) 0.6x10

6
 pRBCs into each respective RBC condition, with the 

contribution of RBC
O
 and RBC

Y
 to the total rate of invasion denoted by the white and gray bars 

respectively. Error bars represent the standard deviation.  
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Variable Iron 

Deficiency 

Anemia 

(IDA) 

(N = 7) 

Iron Deficiency 

Anemia after Iron 

supplementation 

(IDA-Fe) 

(N = 6) 

Iron 

Replete 

(IR) 

(N = 10) 

Iron Replete 

after 1 month 

Iron 

Supplementation 

(IR-Fe) 

(N = 4) 

 

Iron Replete after 

2 months Iron 

Supplementation 

(IR-Fe) 

(N = 4) 

White Blood 

Cell (x10
9
/L) 

4.84 

(1.78) 

4.45 

(1.15) 

6.40 

(1.61) 

6.3 

(1.41) 

6.2 

(1.12) 

Red Blood 

Cell (x10
12

/L) 

3.96 

(0.60) 

3.42 

(0.35) 

4.78 

(0.52) 

4.94 

(0.52) 

4.91 

(0.39) 

Hemoglobin 

(g/dL) 

8.2 

(1.56) 

8.73 

(1.23) 

14.60 

(1.40) 

14.9 

(0.57) 

14.63 

(0.53) 

Haematocrit 

(%) 

28.13 

(4.32) 

29.11 

(4.25) 

42.80 

(4.31) 

43.85 

(2.62) 

42.88 

(2.81) 

Mean 

Corpuscular 

Volume (fL) 

71.20 

(6.63) 

84.78 

(8.28) 

89.80 

(2.74) 

89.67 

(4.24) 

87.75 

(2.50) 

Mean 

Corpuscular 

Hemoglobin 

(Pg) 

20.79 

(2.54) 

25.50 

(2.35) 

30.70 

(0.95) 

30.5 

(2.12) 

30.0 

(1.83) 

Mean 

Corpuscular 

Hemoglobin 

Content 

(g/dL) 

29.20 

(1.50) 

30.27 

(0.86) 

34.20 

(0.63) 

34.50 

(0.71) 

34.25 

(0.96) 

Red Cell 

Distribution 

Width (%) 

17.41 

(1.44) 

18.13 

(2.71) 

13.22 

(0.85) 

13.90 

(0.28) 

13.2 

(0.45) 

Mean 

Platelet 

Volume (fL) 

8.56 

(1.05) 

8.78 

(0.65) 

7.63 

(0.54) 

8.45 

(0.92) 

8.15 

( 0.52) 

Platelet 

Count 

(x10
9
/L) 

294.57 

(59.70) 

344.0 

(168.63) 

251.80  

(36.70) 

212.5 

(89.80) 

256 

(79.31) 

Iron Total 

(mg/dL) 

21.60 

(10.55) 

32.0 

(16.79) 

103.60 

(43.34) 

105.75 

(32.71) 

87.5 

(17.99) 

Transferrin 

(mg/dL) 

343.60  

(74.72) 

305.20 

(63.55) 

264.30  

(41.33) 

275 

(29.50) 

276.75 

(31.83) 

TIBC 

(mg/dL) 

438.67 

(92.08) 

384.60 

(80.29) 

333.0 

(52.20) 

346.0 

(37.43) 

348.75 

(40.07) 

Transferrin 

Saturation 

(%) 

4.71 

(3.15) 

8.0 

(7.45) 

31.60 

(13.04) 

31.0 

(9.49) 

25.75 

(7.63) 
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Ferritin 

(ng/mL) 

5.71 

(2.75) 

17.17 

(25.44) 

42.01 

(24.28) 

46.75 

(38.75) 

33.33 

(18.45) 

Reticulocyte 

(%) 

1.42 

(0.55) 

3.52 

(1.62) 

1.48 

(0.48) 

2.4 

(0.71) 

1.4 

(0.38) 

Reticulocyte 

Hemoglobin 

(Pg) 

  32.03  

(1.34) 

31.05 

(0.35) 

32.25 

(1.23) 

Table 4.1 – Iron status of donors enrolled in IDA, IDA-Fe, IR, and IR-Fe study groups. 

Data are presented as means with standard deviation. Tests were performed by McClendon 

Clinical Laboratory on samples taken from each donor at the same time points that the blood 

samples were drawn for the assays described in Figures 1 (IDA individuals) 2A (IR individuals 

on iron supplementation) and 2B (IDA individuals on iron supplementation).  
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CHAPTER FIVE 

 

Discussion 

 

5.1 Where we stand in the grand scheme of things  

 

Iron supplementation campaigns effectively address iron deficiency, a significant cause 

of morbidity and mortality. However, the confounding relationship between malaria, iron 

deficiency, and iron supplementation has disrupted iron supplementation campaigns in regions 

where malaria is endemic. I have attempted to gain insight into the biological processes that 

result in the reduced incidence of malaria in iron deficient individuals and the subsequent 

increased risk associated with iron supplementation. My studies have focused on the relationship 

between host iron status and the pathogenic erythrocytic stage of malaria infection.  

5.2 Determining the impact of host iron status on virulence of erythrocytic stage P. 

falciparum 

 

Transferrin and ferric citrate, which are found in human serum, contribute to the bioavailable 

iron of erythrocytic stage P. falciparum.  

Nearly every living organism, including humans and most human pathogens, requires 

iron to survive Furthermore, iron availability is a determinant of virulence for many human 

pathogens (Drakesmith and Prentice, 2012). As a result, iron sequestration is a primary innate 

immune response to microbial insult (Ganz, 2012). Although iron is also essential for the malaria 

parasite, whether the availability of host iron influences erythrocytic stage P. falciparum growth 

and virulence is unclear. Following in the footsteps of previous studies, I began by assessing the 

effect of extracellular iron (in the form of either transferrin or ferric citrate) on P. falciparum 
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growth in vitro. The approach taken by previous groups had primarily been to deplete in vitro 

culture conditions of iron (Peto and Thompson, 1986c; Scott, 1990; Schaze-Lopez, 1992b). 

However, upon realizing that malaria culture media contains only ten percent of the iron of 

human sera, I decided to study the effect of supplementing culture media with physiologic levels 

of either transferrin or ferric citrate on P. falciparum growth in vitro. In the course of nearly 

twenty independent experiments, our investigation resulted in each possible outcome: increased 

P. falciparum growth, no effect on P. falciparum growth, and decreased P. falciparum growth 

(Figure 2.1). Summarily leaving as much in the dark as when I had begun. 

Not being able to confidently make heads over tails of the effect of transferrin or ferric 

citrate on P. falciparum growth, I decided to take a step back. From the literature and our own 

observations (Figure 2.6B), I knew without a doubt that transferrin specifically associates with 

pRBCs but not uninfected RBCs (Pollack and Fleming, 1984b; Rodriguez, 1986b; Haldar, 1986; 

Pollack and Schnelle, 1988b; Fry, 1989; Surolia, 1996b). It was not however as clear whether 

extracellular iron (in the form of transferrin or ferric citrate) was actively incorporated into 

pRBCs. Therefore, to investigate whether host serum iron is accessed by erythrocytic stage P. 

falciparum, I developed a flow cytometry method for assessing the bioavailable iron content of 

pRBCs in vitro (Figure 2.4). Under standard culture conditions, I observed that pRBCs contain 

more bioavailable iron than uninfected RBCs and that bioavailable iron levels increase with 

parasite maturation (Figure 2.5). Additionally, when  physiologic levels of either transferrin or 

ferric citrate were added to culture media, the bioavailable iron content of trophozoite stage 

pRBCs further increased. The bioavailable content of early ring stage pRBCs or uninfected 

RBCs did not change (Figure 2.6A). This work clearly demonstrates that the bioavailable iron 

content of pRBCs is dynamic and changes with parasite maturation. As to the relationship 
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between extracellular iron and P. falciparum I for the first time show that both transferrin and 

ferric citrate extracellular iron are incorporated into the bioavailable iron pool of pRBCs. 

Unraveling erythrocytic stage P. falciparum iron biology and the parasites dependence on host 

iron.  

With regards to the clinical observations linking host iron with susceptibility to malaria 

infection; it remains unclear whether the availability of host iron dictates P. falciparum growth 

and virulence. Some researchers in the field hypothesize that transient increases in serum NTBI 

that occur with iron supplementation exacerbate P. falciparum infection. The inability to observe 

an effect of either iron depletion or iron supplementation of culture media on P. falciparum 

growth; would appear to refute this hypothesis. That said, it is important to note that every study 

to date has been performed in vitro with culture adapted strains of P. falciparum, and as 

discussed previously this may be inhibiting our ability to detect an effect of host iron on P. 

falciparum growth and virulence. It is my humble opinion that only more careful investigation in 

the spirit of my own bioavailable iron work will reveal the true relationship between host iron 

and erythrocytic stage P. falciparum.  

Despite being unable to definitively determine whether specifically extracellular iron 

promotes erythrocytic stage P. falciparum growth, my work provides important insight into P. 

falciparum iron biology. Our discovery the bioavailable iron content of pRBCs increases with 

parasite maturation leads to several intriguing questions (Table 5.1). Of these, two lines of 

inquiry stand out as most pertinent for determining the impact of host iron on P. falciparum 

pathogenesis: (1) what host iron is accessed by erythrocytic stage P. falciparum and how does 

the parasite utilize this iron; and (2) do the increased bioavailable iron levels of pRBCs reflect an 

increased demand for iron by the parasite, or are they a result of the massive breakdown of host 
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hemoglobin by the parasite? Although I have not yet experimentally pursued these questions, I 

have several ideas for doing so. 

To determine which host iron sources are accessed and utilized by erythrocytic stage P. 

falciparum, I would employ an approach based on the one taken by Skaar et al. in which isotope-

labeled iron nutrient compounds added to in vitro parasite cultures are followed by inductively 

coupled plasma mass spectrometry (ICP-MS)(Skaar et al., 2004). I would begin by focusing on 

transferrin and hemoglobin, each containing different iron isotopes. Adding transferrin to culture 

media would be sufficient, while generating RBC ghosts and resealing in the presence of 

isotype-labeled hemoglobin would be necessary to replace endogenous hemoglobin. The ratio of 

transferrin to hemoglobin iron in the parasite would then be followed from ring to schizony as 

well as the merozoite stage of the parasite to shed light on the importance of these host iron 

sources in parasite growth. Furthermore, to determine the subcellular localization of any 

incorporated host iron, I would isolate parasite organelles (food vacuole, mitochondria, 

apicoblast, and nucleus) and use ICP-MS to determine the isotopic ratio in each compartment. I 

would couple these experiments with RNAseq analysis of parasite gene expression in order to 

begin mapping the erythrocytic stage P. falciparum transcriptional response to iron. 

To determine whether the elevated bioavailable iron content of trophozoite and schizont 

stage pRBCs reflects (i) increased parasitic iron demands, or (ii) excess free iron that is 

contributing to the elevated ROS observed in late stage parasites, I would begin by expanding on 

the work of Loyevsky et al. that identified P. falciparum iron responsive protein (IRPs) and iron 

responsive elements (IREs) (Hodges et al., 2005; Loyevsky et al., 2001, 2003). IRPs and IREs 

are the primary mediators of cellular iron homeostasis in mammalian cells (Hentze et al., 2010) 

Specifically, I would monitor (i) PfIRP and PfIRE binding activity, and (ii) PfIRP iron sulfur 
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complexes and PfIRP proteosomal degradation of synchronized parasites as they mature from 

ring stage to schizony. Increased binding of PfIREs by PfIRP would support a hypothesis that 

parasite iron demands are elevated, and that the parasite is working to orchestrate iron uptake and 

most likely release of iron from storage. However, an observation of either increased PfIRP iron 

sulfur complexes or PfIRP proteosomal degradation would support a hypothesis that plenty of 

iron is available and in fact the parasite is actively attempting to limit the cytotoxic effects of 

excess iron that accumulates presumably from the parasite breakdown of host hemoglobin. 

Similar study of PfIRPs and PfIREs in the context of iron deficiency (RBC
IDA

 vs. RBC
IR

) and 

iron supplementation (addition of excess extracellular iron) would inform our understanding of 

whether iron in and of itself a critical factor in the protection conferred by iron deficiency and 

the increased risk associated with iron supplementation with regards to erythrocytic stage P. 

falciparum infection.  

Ultimately, these two approaches would be invaluable in their ability to shed light on 

how the parasite regulates iron, whether the parasite is able to store iron, and most critically, 

whether host iron directly influences parasite virulence. Towards the goal of unraveling the 

details of parasite iron biology, it may be pertinent to study recent clinical isolates in parallel 

with well-characterized traditional lab strains of P. falciparum. As mentioned previously, malaria 

culture media contains tenfold less iron than human sera. Therefore, it will be important to 

determine whether lab isolates have adapted to an iron deficient extracellular environment so that 

ultimately only the most relevant model systems are used in further studies of the relationship 

between host iron status, parasite iron biology, and malaria pathogenesis.   
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5.3 Defining the influence of changing host RBC population dynamics on erythrocytic stage 

P. falciparum infection, specifically in the context of host iron deficiency and iron 

supplementation. 

 

Microcytic iron deficient RBCs are inhospitable to erythrocytic stage P. falciparum. 

The erythrocyte is absolutely essential for propagation of P. falciparum infection. As a 

result of the pressure malaria has placed on the human population, a wide range of heritable 

genetic mutations have arisen (Duffy negative, hemoglobinopathies, G6PD deficiency) which 

protect the human hosts RBCs from malaria infection. Giving testament to the importance of the 

human RBC in malaria infection (Taylor et al., 2013). Iron deficiency and iron supplementation 

both alter RBC physiology as well as the dynamics of the total RBC population. It has been 

speculated that it is the effect iron deficiency and iron supplementation have on erythropoiesis 

and RBC physiology which is responsible for the observed relationship between iron deficiency, 

iron supplementation, and severity of malaria infection (Oppenheimer et al., 1986; Cromer et al., 

2009). To experimentally assess this possibility, I began by assessing the growth of P. 

falciparum in RBCs donated by individuals with iron deficiency anemia.
 
I observed that P. 

falciparum growth is attenuated in iron deficient RBCs due to reduced RBC invasion of iron 

deficient RBCs as well as reduced production of invasive daughter merozoites within iron 

deficient RBCs (Figure 4.2A). These findings are in direct support of the clinical observations 

that iron deficiency is protective against malaria infection, and support the hypothesis that iron 

deficiency is protective in part because of the effect of iron deficiency on RBC physiology. 

Changing age and iron status distribution of a RBC population directly effects erythrocytic stage 

P. falciparum infection in vitro.  

I have additionally sought to determine the impact of iron supplementation on 

erythrocytic stage P. falciparum. To this end I compared the growth of P. falciparum within 

RBC donated by either iron supplemented iron-replete or iron supplemented iron deficient 
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donors to growth within RBCs from non-supplemented iron-replete donors. I observed that P. 

falciparum growth was slightly elevated within RBCs from both iron supplemented iron-replete 

as well as iron supplemented iron deficient donors (Figure 4.3D). Examination of the iron status 

of the iron deficient iron supplemented donors revealed that individuals in this group were not 

yet fully recovered from their iron deficiency anemia and were undergoing reticulocytosis 

(Table 4.1). This information prompted us to speculate that the replacement of iron deficient 

RBCs with young iron-replete RBCs may be responsible for the increased growth of the parasite.  

Like many species of Plasmodium, P. falciparum preferentially infects young RBCs and 

mathematical modeling has predicted that elevated reticulocytosis increases the risk of 

hyperparasitemia and severe infection (Cromer et al., 2009) In order to investigate the effect of 

changing iron status and age distribution of a RBC population on susceptibility to erythrocytic 

stage P. falciparum infection, I developed a three-color invasion assay, which allows for study of 

the relationship between different RBC populations and P. falciparum infection (Figure 3.1 and 

3.3). With the three-color invasion assay, I examined the relationship between (i) iron deficient 

and iron-replete RBCs
 
and (ii) young and old iron-replete RBCs. These studies clearly 

demonstrated that changing the iron status and age distribution of a RBC population significantly 

impacts erythrocytic stage P. falciparum infection (Figure 4.5 and 4.8). Together these data are 

consistent with clinical observations and furthermore support the hypothesis that the protection 

provided by iron deficiency against malaria and the increased risk of malaria associated with iron 

supplementation is cell mediated (Figure 4.4). 

Pursuing mechanisms by which microcytic iron deficient RBCs are protective against P. 

falciparum infection. 

Any new observation is a treasure trove for new avenues of investigation. Some of the 

questions I find most intriguing with regards to my finding that iron deficient RBCs are 
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protective against malaria infection are outlined in Table 5.2. Probably the most obvious line of 

investigation to pursue is the identification of the characteristics of iron deficient RBCs which (i) 

protect the cells from P. falciparum invasion and (ii) limit the parasites capacity to produce 

infectious daughter merozoites. In order to pursue the mechanisms governing reduced rate of 

invasion of P. falciparum into iron deficient RBCs, I would begin with careful microscopic 

analysis of P. falciparum invasion into iron deficient RBCs . This approach would allow me to 

determine which step of parasite invasion (RBC attachment, parasite reorientation, or tight 

junction formation and RBC entry) is being impeded. The results of such a study would inform 

the direction of further experimentation, specifically whether iron deficient RBC surface ligands 

or the mechanical properties of iron deficient RBCs should be further pursued.  

With regard to growth of the parasite within iron deficient RBCs, I would begin with 

RNAseq analysis of the gene expression of parasites within iron deficient as compared to 

parasites within iron-replete RBCs. This approach would allow for the potential identification of 

metabolic factors such as iron that are limited within iron deficient RBCs
 
or parasite systems 

such as the redox system that are unable to operate optimally within iron deficient RBCs, and 

ultimately limit intra-erythrocytic growth of the parasite. It is alternatively possible that the 

smaller volume of iron deficient RBCs limits the ability of P. falciparum to produce daughter 

merozoites. To assess this possibility, I would utilize methods involving resealed RBC ghosts to 

systematically increase the MCV of iron deficient RBCs. If daughter merozoite production is 

recovered in larger iron deficient RBCs, I would conclude the smaller size of iron deficient 

RBCs limits the number of P. falciparum daughter merozoites.  

Finally, it is important to consider that P. falciparum has considerable genetic diversity 

and that P. falciparum isolates may exist that exhibit normal invasion of and growth within iron 
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deficient RBCs. The identification of such a parasite isolate would be highly useful, as it would 

allow for a genetic cross of an iron deficient RBC sensitive parasite with an iron deficient RBC 

resistant parasite and subsequent identification of genes that confer either sensitivity or resistance 

to iron deficient RBCs. Alternatively, a resistant parasite strain could be generated by adapting a 

parasite to growth in iron deficient RBCs, and would similarly allow for identification of genes 

that determine the sensitivity of the malaria parasite to iron deficient RBCs.  

Pursuing the effect of changing RBC population dynamics in the human host on susceptibility to 

malaria infection in vivo. 

Clinical studies suggest iron supplementation in malaria endemic areas may increase the 

risk of malaria infection in previously iron deficient individuals beyond that of a normal iron-

replete subjects (Veenemans et al., 2011; Esan et al., 2013). Here I provide experimental 

evidence to support the hypothesis that replacing iron deficient with iron-replete RBCs
 
supports 

the recovery of P. falciparum infection, and that individuals with on average younger iron-

replete RBC
 
population are at increased risk of P. falciparum infection (Figure 4.5 and 4.8). A 

caveat to our studies is that they all rely upon in vitro experimentation to study the relationship 

between these different RBC populations
 
and P. falciparum. To address this limitation, I would 

begin by focusing on the identification of biomarkers that would allow for the classification of 

intact P. falciparum infected RBCs by age and iron status by flow cytometry. This would allow 

for ex vivo assessment of parasite distribution in RBCs from P. falciparum infected individuals 

and the definitive determination of the impact of iron deficient and young iron-replete RBCs
 
on 

susceptibility to erythrocytic stage P. falciparum infection.  

Evidence has begun to build that additional unique RBC populations may be in play in 

the context of iron deficiency and iron supplementation. The data suggests that RBCs produced 

during steady state erythropoiesis are physiologically different than RBCs produced during stress 
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erythropoiesis, as occurs following iron supplementation of individuals with iron deficiency 

anemia (Ramos et al., 2013). Therefore, I would be extremely interested in studying the 

susceptibility of RBCs produced during stress erythropoiesis to P. falciparum infection. 

Determining whether stress erythropoiesis differentially affects malaria susceptibility may be 

critical in definitively explaining the risk of iron supplemented individuals to malaria infection. 

Finally, our approach of directly comparing P. falciparum infection of two different RBC 

populations with a three-color invasion assay has revealed for the first time that P. falciparum 

infection of a RBC population can be dependent upon the other RBC populations present. First 

and foremost I would want to determine whether this occurs in vivo. I would begin this line of 

investigation by applying our three-color invasion assay to the murine model of malaria 

infection. If in fact our in vitro observations holds up in vivo, I would next focus every effort on 

determining how and why different RBC populations affect one another’s susceptibility to 

malaria infection, and finally how this fact shapes host susceptibility to P. falciparum infection 

(Table 5.3).  

5.4 Beyond iron as a growth factor and mediator of RBC population dynamics – 

exploration of alternate mechanisms governing the relationship between iron deficiency, 

iron supplementation and malaria. 

 

Through the course of my dissertation I have focused exclusively on two hypotheses: (i) 

iron deficiency and iron supplementation affect P. falciparum infection by respectively limiting 

and providing nutritional iron, which is essential for parasite propagation; and (ii) the effect of 

iron deficiency and iron supplementation on erythropoiesis and erythrocyte physiology are what 

shape the host’s respective resistance and increased susceptibility to P. falciparum erythrocytic 

stage infection. Though our investigation of both hypotheses has shed considerable light on 

possible mechanisms governing the dynamics of host iron status and malaria susceptibility, there 
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are very likely other factors at play in the relationship between iron deficiency, iron 

supplementation, and malaria infection. For instance, work by several groups has clearly shown 

that host iron status also shapes the liver stage of P. falciparum infection (Portugal et al., 2011; 

Goma et al., 1995, 1996). In the context of the erythrocytic stage of infection alone there are 

several factors beyond parasite growth that determine virulence. Moreover, in malaria endemic 

areas, host iron status is additionally affected by chronic infections as well as heritable RBC 

disorders (hemoglobinopathies and G6PD deficiency). The respective contribution of anemia of 

chronic disease, hemoglobinopathies, and nutritional iron deficiency to the protection from 

malaria associated with iron deficiency and increased risk associated with iron supplementation 

is completely unknown. 

Probing the effect of iron deficiency and iron supplementation on important mediators of 

malaria pathogenesis – phagocytosis of pRBCs and pRBC endothelial cytoadhesion   

With respect to the erythrocytic stage of infection, there are several additional processes 

beyond erythrocytic parasite propagation that are affected by host iron status and have the 

potential to shape malaria pathogenesis (Table 5.4). Two processes I would be extremely 

interested in investigating are (i) phagocytosis of iron deficient pRBCs and (ii) endothelial 

cytoadherence and rosetting of iron deficient pRBCs. Macrophages, the human host’s primary 

phagocytic cell, are critical in both malaria infection and the reticuloendothelial system – where 

macrophages recover and recycle iron from senescent RBCs (Drakesmith and Prentice, 2012; 

Chua et al., 2013; Ganz, 2012). Furthermore, iron levels can directly impact macrophage activity 

(Recalcati et al., 2012; den Haan and Kraal, 2012). Work in a murine model of iron deficiency 

and malaria infection reported elevated phagocytosis of iron deficient pRBCs
 
(Koka et al., 2007). 

To build upon this line of investigation, I would begin by determining whether human iron 

deficient pRBCs are phagocytosed to a greater extent than iron-replete pRBCs. I would 
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additionally want to characterize macrophage polarization and function in the context of iron 

deficiency and subsequent malarial infection.  

The second mediator of malaria pathogenesis I would be extremely interested in 

examining is parasite sequestration -- infected RBCs sequester in the microvasculature of the 

human host by adhering to the host endothelium. P. falciparum export of proteins that mediate 

cytoadherence is attenuated in RBCs from individuals with hemoglobinopathies (Taylor et al., 

2013). As iron deficiency anemia has similar physiologic effects on RBCs as 

hemoglobinopathies, I would speculate that iron deficient pRBCs may similarly exhibit defects 

in the export and display of parasite cytoadherence proteins. To assess this possibility, I would 

compare the abundance and distribution of parasite cytoadherence proteins on the surface of iron 

deficient and iron-replete pRBCs by microscopy and flow cytometry. I would additionally probe 

functional endothelial cytoadherence of iron deficient pRBCs by quantitatively comparing 

cytoadherence of iron deficient and iron-replete pRBCs to a human endothelial cell line. It is 

additionally possible that host iron status may influence endothelial function. To assess this 

possibility  I would also perform endothelial cytoadherence assays with iron starved as well as 

iron supplemented endothelial monolayers. 

5.5 Looking forward 

 

The body of work pertaining to human iron biology produced in the past ten years has 

revealed iron regulation to be a major component of the human host’s response to infectious and 

non-infectious disease (Roy and Andrews, 2005; Drakesmith and Prentice, 2012). In the course 

of its infection of the human host, P. falciparum takes up residence within the two most iron rich 

environments of the body, the liver (where iron is stored) and the RBC. Furthermore, P. 

falciparum propagation and subsequent transmission are directly dependent on erythropoiesis, 
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which is itself directly dependent upon iron. I know that host iron status is linked to malaria 

susceptibility and that during infection the parasite interacts intimately with the exact organs and 

cell types most closely involved in iron regulation in the human host. I also know malaria has 

placed significant pressure on human evolution, as evidenced by the emergence of 

hemoglobinopathies and other RBC mutations. Considering all the evidence together, the 

question arises whether malaria may in fact have shaped the evolution of the human iron 

regulatory and erythropoietic systems.  In addition to being an exceptionally interesting area of 

study, further research on the relationship between host iron status and malaria will help the 

global health community reach the fundamental goal of devising a strategy to safely implement 

iron supplementation campaigns in malaria endemic regions.  
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Table 5.1 – Questions for future investigation of erythrocytic stage P. falciparum 

utilization of host iron. 

Observation Questions 

pRBCs contain more bioavailable 

iron than uninfected RBCS, and 

bioavailable iron content increases 

with parasite maturation from ring 

stage to schizony. 

What intra-erythrocytic host iron sources are 

utilized by the malaria parasite? 

Where is the bioavailable iron localized to in 

pRBCs? 

Do changes in the amount of intra-erythrocytic 

iron (as would be observed in iron deficiency, 

iron supplementation or iron overload) affect 

malaria parasite growth and virulence?  

Can malaria merozoites sense host intra-

erythrocytic iron? 

How does the malaria parasite regulate iron? 

Does the malaria parasite store iron? 

Addition of transferrin or ferric 

citrate (NTBI) culture media 

increases the bioavailable iron 

content of trophozoite stage pRBCs 

but not ring stage pRBCs or 

uninfected RBCs. 

How does the malaria parasite access and 

incorporate extracellular iron? 

Do changes in serum iron levels (as would be 

observed in iron deficiency, iron supplementation, 

or iron overload) affect malaria parasite growth 

and virulence?  

Is the association of transferrin with trophozoite 

and schizont stage pRBCs receptor mediated? 

Neither depletion nor addition of 

iron to culture media affects 

erythrocytic stage P. falciparum 

propagation. 

Have lab parasite isolates adapted to a low iron 

extracellular environment?  

Would field isolates be more sensitive to 

extracellular iron? 
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Table 5.2 – Questions for future investigation of the protection provided by 

microcytic iron deficient and old RBCs against erythrocytic stage P. falciparum 

infection. 

Observation Questions 

P. falciparum invasion of microcytic 

iron deficient and old RBCs is 

reduced. 

What step of P. falciparum RBC invasion is 

impeded during invasion of microcytic iron 

deficient and old RBCs? 

What are the RBCs factors that result in reduced 

P. falciparum invasion of microcytic iron 

deficient and old RBCs?  

What merozoite invasion factors are being 

affected during invasion of IDA and old RBCS? 

Can P. falciparum merozoites differentiate 

between IDA and IR or young and old RBCs? 

Does decreased hematocrit affect P. falciparum 

infection? 

P. falciparum production of invasion 

competent merozoites is reduced 

within microcytic iron deficient and 

old RBCs 

Is hemoglobin a limiting resource in IDA RBCs? 

Does the smaller size of IDA and old RBCs limit 

parasite growth? 

Does the gene transcription profile of P. 

falciparum differ between IDA and IR or young 

and old RBCs? 
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Table 5.3 – Questions for future investigation of the relationship between host RBC 

population dynamics and erythrocytic stage P. falciparum infection. 

Observation Questions 

Replacement of microcytic iron 

deficient RBCs with young iron-

replete RBCs increases the growth 

rate of erythrocytic stage P. 

falciparum infection. 

What is the relationship between IDA and young 

IR RBCs in the context of P. falciparum 

invasion? 

Is the reduced hematocrit of IDA also protective 

against erythrocytic stage P. falciparum 

infection?  

How does hematocrit affect parasite biomass? 

Elevated frequency of young iron-

replete RBCs increases the risk of an 

iron-replete RBC population to 

erythrocytic stage P. falciparum 

invasion. 

Are young RBCs formed during stress 

erythropoiesis different from young RBCs formed 

during steady stage erythropoiesis in their 

susceptibility to P. falciparum infection? 

Why does P. falciparum invasion rate of young 

iron-replete RBCs plateau? 

What physiological properties may be utilized to differentiate IR from IDA RBCs and 

young from old RBCs on a cell by cell basis? 

Are effects of changing RBC population dynamics on erythrocytic stage P. falciparum 

infection that I observe in vitro also present in vivo? 
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Table 5.4 – Future Questions. 

Questions 

Are parasitized IDA and old RBCs more likely to be cleared by the host? 

Does iron deficiency and iron supplementation affect parasite cytoadhesion to host 

endothelium? 

How are the host innate and adaptive immune responses to malaria affected by iron 

deficiency and iron supplementation? 

What is the effect of host iron deficiency and iron supplementation on P. falciparum 

gametocytogenesis? 

Is anemia of inflammation protective against malaria? 

How does the presence of iron deficiency anemia modify the effects of HbS, HbC, or 

HbE on parasite growth, maturation, microvascular adhesion, or endothelial cell 

activation? 
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