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Abstract 
 

DAMON J. DEMING: GENETIC APPROACHES TO THE STUDY OF 
CORONAVIRUS REPLICATION AND PATHOGENESIS 

(Under the direction of Dr. Ralph S. Baric) 
 

The recently developed coronavirus reverse genetic systems have been a tremendous 

asset for improving our understanding of the viruses’ complex replication strategy, 

pathogenesis, mechanisms of host-range expansion, and in the development of anti-viral 

therapies.  We completed two studies using coronavirus infectious clones.  The first 

evaluated a severe acute respiratory syndrome coronavirus (SARS-CoV) vaccine to protect 

against an antigenically divergent strain.  The second study determined the requirement for 

proteolytic processing of a highly conserved region of the replicase polyprotein for efficient 

replication.   

Ideally, a SARS-CoV vaccine should confer long-term protection, especially in 

vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains 

that may yet emerge from animal reservoirs.  Using Venezuelan equine encephalitis virus 

replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) 

glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N) as 

candidate vaccines, we tested their ability to protect young and senescent mice when 

challenged with homologous and heterologous SARS-CoV strains.  The novel heterologous 

SARS-CoV strain (icGDO3-S) was constructed using synthetic biology and reverse genetics 

to generate a chimeric virus encoding a synthetic S glycoprotein gene of the most genetically 

divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV, and 

represents a strain of SARS-CoV that emerged into the human population independently of 
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the epidemic strain.  VRP-S, but not VRP-N, provided protection for both young and 

senescent mice when challenged with the epidemic strain.  When challenged with icGDO3-S, 

VRP-S protected young mice but only partially protected senescent animals.  VRP-N 

vaccinated mice demonstrated enhanced pulmonary inflammation, which included 

eosinophils among the cellular infiltrates, following SARS-CoV or icGDO3-S challenge. 

The highly conserved region at the carboxy-terminus of the coronavirus replicase 

ORF1a polyprotein is processed by the main proteinase (Mpro) into mature products including 

nsp7, nsp8, nsp9 and nsp10, proteins with predicted or identified activities involved with 

RNA synthesis.  Mpro continuous translation and processing of ORF1ab polyproteins is 

required for replication, but specific cleavage events may be dispensable.  We determined the 

requirement for the nsp7-10 proteins and their proteolytic processing during the replication of 

murine hepatitis virus (MHV), which is phylogenetically grouped with the human 

coronaviruses OC43 and SARS-CoV.  Using the MHV reverse genetics system, in frame 

deletions of the coding sequences for nsp7, 8, 9, and 10 were either deleted, or the flanking 

cleavage sites ablated, and the effect upon replication determined.  Viable viruses were 

characterized through analysis of Mpro processing, subgenomic RNA transcription, and in 

vitro growth fitness.  Deletion of any of the four regions encoding nsp7 through 10 was 

lethal.  Disruption of the cleavage sites flanking the protein domains were lethal with the 

exception of the nsp9/10 cleavage site, which resulted in a mutant virus with severely 

attenuated replication.  In order to determine if a distinct function could be attributed to pre-

processed forms of the replicase polyprotein including nsp7-10, the genes encoding nsp7 and 

nsp8 were rearranged.  The mutant virus MHV8/7 was not viable, suggesting that the 

noncleaved intermediate protein may be essential for replication or proteolytic processing. 
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Chapter I 
 

Introduction 

 

The order Nidovirales includes a broad group of mammalian, avian and crustacean 

viruses grouped among the families Coronaviridae, Arteriviridae, and Roniviridae.  The 

family Coronaviridae is further divided into the genera Coronaviruses and Toroviruses.  

Although nidoviruses differ significantly in genome size, sequence, virion morphology, and 

host-range specificity, they are grouped within the same order due to several shared traits 

(reviewed in (66)).  All Nidoviruses are positive-stranded RNA viruses with large replicase 

domains (designated ORF1a and ORF1b) which are functionally conserved and encoded at 

the 5’ end of the genome.  Translation of the replicase polyprotein is regulated by a 

ribosomal frame-shift event which directs the expression of either an ORF1a or an ORF1a/b 

full-length polyprotein, which is in turn proteolytically processed by virally encoded 

proteases.  Another characteristic unique to nidoviruses is that several structural and 

nonstructural ORFs are encoded downstream of the replicase polyprotein and expressed by a 

3’ co-terminal nested set of subgenomic mRNAs (sg mRNAs) generated by a unique strategy 

of attenuated transcription.  There are significant differences between the genome sizes of 

nidoviruses ranging from the smallest arterivirus genomes of ~13 kb to the largest 

coronavirus genomes of ~31 kb.  The genomes of nidoviruses are infectious, and virus 

replication is initiated as the genome is delivered to the cytoplasm and the replicase is 
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translated by host cell ribosomes.  For many nidoviruses, including coronaviruses, a typically 

narrow host range is dictated by the highly specific interaction between the glycoprotein 

spike displayed on the virion and a particular receptor on permissive cells.  However, 

characteristic high mutation and recombination rates allow these viruses to evolve to infect 

new cells and expand beyond their normal tissue tropisms and host range limitations. 

 Coronaviruses are perhaps the most extensively studied of the nidoviruses, due in part 

to the fact that coronaviruses are the only known nidoviruses to infect humans.  The desire to 

improve our understanding of coronaviruses is further motivated by the fact that several of 

these viruses present a direct threat to human health and interests.  Coronaviruses are 

associated with human respiratory diseases which induce pathologies ranging in severity 

from relatively benign cold-like illnesses to fatal pneumonia.  The human coronaviruses 

229E and OC43 were identified in the 1960’s and have been attributed as the cause of ~15% 

of the common cold in winter (75, 135).  In 2003 a new coronavirus was identified (49, 107) 

which emerged from an animal reservoir(72, 147), most likely bats (113, 118, 149), which 

was associated with the SARS epidemic and resulted in nearly 8000 confirmed infections and 

nearly 800 deaths (77).  Since then, two new coronaviruses have been isolated from humans 

exhibiting lower respiratory infections, NL63 (55, 58, 203) and HKU1 (219).  Several 

coronaviruses are responsible for veterinary diseases, usually respiratory or enteric in nature, 

and are responsible for agricultural economic loss associated with a reduction of animal 

weights and increased neonatal mortality.  Transmissible gastroenteritis virus (TGEV) (162), 

porcine epidemic diarrhea virus (PEDV) (148), infectious bronchitis virus (IBV) (25), and 

bovine coronavirus (BCoV) (121) are some of the coronaviruses effecting loss in the swine, 

poultry, and bovine industries, respectively.   
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 Coronavirus reverse genetic systems were recently developed and have been a 

tremendous asset as new tools in facilitating our understanding of the viruses’ complex 

replication strategy, pathogenesis, and mechanisms of host-range expansion.  Reverse 

genetics systems are also proving to be useful in the development of safe and effective anti-

viral therapies.  The small size of the arterivirus, the smallest of the nidoviruses with 

genomes ranging in size from 13-16kb, facilitated the rapid development of molecular clones 

as early as 1997 (205).  In contrast, the large size of the coronavirus genome and E. coli 

associated toxicity of regions within the polymerase gene had delayed the construction of 

stable full-length cDNA templates until 2000 (2, 229).  Fortunately for coronavirus research, 

several strategies were successfully employed to overcome these limitations and develop 

viable reverse genetics systems. 

 

ORF1 Domain Organization and Expression 

 ORF1, which comprises approximately two-thirds of the 5’ portion of the genome, 

encodes the polycistronic replicase, while the remaining third of the genome codes for the 

structural and accessory proteins (Fig. 1).  The organization and composition of the replicase 

gene is a hallmark of nidoviruses and sets them apart from other RNA viruses (242) (Fig. 2).  

Coronavirus replicases share structurally and functionally conserved domains, despite the 

fact that there may be limited sequence homology between the elements of the different 

genera.  Several domains of ORF1 are shared by all nidoviruses.  Shared features falling 

within ORF1a include the accessory protease, 3 trans-membrane domains (TM, MP1 and 

MP2), the main protease, and the ribosomal frame-shift site.  Cleavage of the 5’ end of the 

ORF1a polyprotein is mediated by one or two active domains of accessory, or papain-like 
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cysteine protease, PLP.  In some coronaviruses, such as EAV and IBV, the first PLP domain 

is inactive, suggesting that although proteolytically inactive, they may serve another function 

in replication.  SARS-CoV lacks the first PLP and relies upon the activity of its one PLP, 

denoted PLpro2 due to its position relative to that of other coronaviruses, for cleavage of the 

5’ end of the replicase polyproteins.  The three TMs (TM1, MP1, and MP3) likely anchor the 

replication complex to intracellular membranes.  MP1 and MP2 flank another functionally 

conserved domain within the ORF1a polyprotein, a papain-like protease responsible for 

mediating cleavage of most of the replicase polyproteins into its constituent components.  

These proteases are often referred to as either 3CLpro, due to their structural and substrate 

similarity to the picornavirus 3C proteinase, or Mpro, the main protease.  The Mpro designation 

refers to the fact that these proteases are responsible for processing the majority of the ORF1 

polyprotein, including all components of the ORF1b, which encode the major replicative 

enzymes and most highly conserved domains.  A narrowly conserved domain encoding an 

ADP-ribose 1’-phosphatase (X) was recently identified within the nsp3 of corona- (152, 153) 

and toroviruses (48).   

 The -1 ribosomal frame-shift site demarcating the ORF1a/b interface is made up of a 

“slippery” heptanucleotide sequence followed by a conserved pseudoknot structure which 

mediates differential ORF1a and ORF1a/b translation.  During translation, most ribosomes 

terminate translation at the 3’ end of ORF1a to generate polyprotein 1a (pp1a).  However, a 

relatively small proportion of ribosomes undergo a -1 frame-shift when contacting the 

“slippery sequence” to read through the translational stop at the end of ORF1a and continue 

the carboxyl-extension of pp1a to form the fusion polyprotein 1ab (pp1ab) (14, 16, 116).  

Treatment of infected cells with protease inhibitors interrupts infection, indicating that 
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constitutive proteolytic processing of the replicase polyprotein is required for replication and 

suggests that distinct roles may exist for both the fully processed and precursor forms of the 

polyproteins (13, 45, 103, 165, 168, 243).  The necessity for the proteolytic processing of the 

polyprotein for efficient nidovirus replication has also been demonstrated in equine arteritis 

virus (EAV) and the mouse hepatitis coronavirus (MHV) by mutation of the cleavage sites 

recognized by Mpro or PLP (46, 206). 

 Several domains conserved across all nidoviruses fall within ORF1b (Fig. 2).  In 

order from N to C-terminus, these elements are the RNA-dependent RNA polymerase 

(RdRp) (18, 47, 67), the putative Zinc-binding domain (ZBD; Z in Fig. 2) (171), a 

superfamily-1 helicase (Hel) (92, 93, 171), and an endoribonuclease (EndoU; EU in Fig. 2) 

(7, 91).  The orientation of the RdRp and Hel domains, with the RdRp N-terminal to that of 

the Hel, is unique to the nidoviruses among message-sense ssRNA viruses.  Also, the ZBD 

and NendoU domains are unique to nidoviruses and as such are considered hallmark genetic 

markers for the order (66).  Other ORF1 functional domains are conserved over many, but 

not all, nidoviruses.  For example, exoribonuclease (ExoN) (137) and a putative ribose-2’-O-

methyltransferase (O-MT; OMT in Fig. 2) are only conserved within the pp1ab of corona-, 

toro-, and roniviruses (39, 178, 212).   

 Many elements of the replicase gene have no known function.  One such region of the 

coronavirus genome encodes four small proteins, denoted nsp7 to nsp10 in coronaviruses, are 

translated from 3’ end of ORF1a and are conserved among corona- and toroviruses (66).  

These proteins are processed by Mpro into mature products of 10, 22, 12, and 15 kDa, 

respectively.  The nsp7-10 co localize with the replication complex bound to double 

membrane vesicles and are presumably involved with RNA synthesis (11, 12, 68, 126, 204).  
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Although the replicative function of these proteins are yet to be experimentally demonstrated, 

recent work has provided some insight into their purpose.  Structure analyses of SARS-CoV 

nsp7 and 8 demonstrated that the two proteins form a hexadecameric supercomplex with 

electrostatic properties favorable for nucleic acid binding that may function as a processivity 

factor for the RdRp (234).  A biochemical report described a primase function associated 

with the SARS-CoV nsp8 protein, implicating another important role for one of these small 

proteins in replication (32, 89).  The SARS-CoV nsp9 crystal structure has also been resolved 

and shown to form homodimers possessing single-stranded RNA-binding properties, and it 

has been suggested that the protein may serve to stabilize nascent and template RNA during 

replication, transcription, and processing (22, 53).  Temperature sensitive mutations localized 

in nsp10 suggest that the protein may be involved with negative strand synthesis (165).  

Recent reports describing the refinement of the nsp10 structure have revealed that the protein 

includes two Zn fingers, exhibits nucleic acid binding affinity (97), and that it may form a 

spherical dodecameric structure made up of 12 nsp10-11 fused subunits (187).  Another 

recent structural study has described nsp10 crystals that formed monomers and homodimers 

and possessing nucleic acid binding affinity (97).  Collectively, this data implies that the 

nsp7-nsp10 proteins are important – if not critical – to coronavirus, and likely torovirus, 

replication. 

 

Organization of the Structural and Accessory protein genes 

 Genes downstream of ORF1 encode several structural and, for some viruses, non-

structural proteins (Fig. 1).  Although the structural genes vary significantly across the 

nidoviruses and most likely evolved independently for each family, all viruses of the order 
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express a single nucleocapsid protein (N) as well as the proteins making up the enveloped 

virion (66).  In coronaviruses, the structural genes maintain the same order: 5’- spike 

glycoprotein (S), envelope protein (E), membrane spanning integral protein (M), and 

nucleocapsid (N) - 3’ (Fig. 1).  Some group-2 coronaviruses, such as BCoV, mouse hepatitis 

virus (MHV), and HCoV-OC43 also include a gene encoding hemagluttinin esterase (HE).  

SARS-CoV is an exception.  In addition to the major structural genes, “accessory” proteins 

are encoded by ORFs located among, or overlapping with, the structural genes.  These 

proteins, of which coronaviruses typically have between 2 and 8, may or may not be 

integrated within the mature virion, are not ubiquitously present within viruses of a given 

group, and are often dispensable for in vitro replication (42, 57, 73, 74, 145, 169, 217, 227).  

Although not involved with efficient growth in tissue culture, deletion of some of these 

accessory ORFs have been reported to attenuate pathology in animal models (42, 73, 145).   

 

Expression of ORF2+ Proteins via Subgenomic mRNAs 

 Nidoviruses express all proteins other than those encoded by ORF1, which are 

translated directly from genomic RNA, from a 3’ co-terminal nested set of mRNAs (Fig. 3).  

These templates are generated by a mechanism referred to as attenuated transcription.  As the 

viral polymerase transcribes the negative sense RNA from the 3’ end of the positive sense 

RNA template, it encounters a conserved sequence, the transcriptional regulatory sequence 

(TRS), located at the beginning of every ORF (Fig. 4, step 1).  Upon encountering each TRS 

there is a chance that the polymerase will dissociate from the RNA template.  In this cartoon, 

considerable distance between the body and leader TRS junction sites are indicated, although 

some argue that folding of the intervening genomic sequences places the TRS sites in close 
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proximity.  In the case of corona- and arteriviruses, their transcription strategy may more 

specifically be called discontinuous attenuated transcription.  This refers to an additional 

recombination event that transfers the incomplete negative sense RNA strand to a TRS 

located near the 5’ end of the genomic template (Fig. 4, step 2).  Transcription continues to 

include the complementary sequence of the 5’ UTR on the newly synthesized minus strand.  

In turn, the minus sense strand serves as the template for mRNA sense RNAs (Fig. 4, step 3).  

Typically, there is a decreasing chance that the polymerase will retain its association with the 

genomic template as it progresses past each TRS which leads to a nested set of mRNAs 

which decreases in relative amount the longer the mRNA.   

 

Nidoviruses as Emerging and Reemerging Infectious Agents 

 It is estimated that 73% of human emerging and reemerging infectious diseases -- 

pathogens rapidly increasing in incidence, expanding in geographic range, or extending 

infection into new host species -- are zoonotic pathogens that have bridged the species barrier 

(108, 221).  At 37% of all emerging and reemerging pathogens, RNA viruses are well 

represented (221).  In order for a virus to expand outside of its normal host range, the virus 

must evolve the capacity to interact with novel cellular factors and adapt to evade or usurp 

mechanisms which normally function to ablate virus entry, replication, or transmission in a 

new host species.  An emerging virus requires both the opportunity to interact with a new 

prospective host as well as possess molecular mechanisms with which to adapt and replicate 

efficiently within the hostile cellular environment.  With a very broad distribution among 

several different animal species, many of which maintain close contact to humans, 

coronaviruses are often presented with the opportunity to interact with a new potential host.  
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With replication characterized by high mutation and recombination rates, coronaviruses also 

possess the means to rapidly evolve to changing cellular environments and selective 

pressures. 

 With established reservoirs in humans, wild and domesticated animals, coronaviruses 

have plenty of opportunity to make contact with species normally outside of their restricted 

host range.  Many animals hosting coronaviruses are maintained close to other animals or 

humans, such as in the case of livestock and companion animals, such as equine, swine, 

bovine, canine, feline, and avian species.  Several examples of emergent viruses have been 

found during the extensive studies of the coronaviruses’ ability to expand their host range.  

For instance, the porcine epidemic diarrhea virus (PEDV), an economically significant cause 

of severe swine gastroenteritis in Europe and Asia, is closely related to the human 

coronavirus HCV-229E and is believed to be the result of transmission from humans to swine 

(15, 51, 148).  BCoV is believed to have passed into several species of ruminants including 

elk (128), waterbuck, sambar deer, and white-tailed deer populations (201), dogs (54), and 

has been associated with at least one enteric infection in humans (76, 236).  Close genetic 

and antigenic similarities between the group II coronaviruses BCoV, HCoV-OC43, and 

porcine hemagglutinating encephalomyelitits virus (PHEV) suggests that they may have only 

recently diverged from a common ancestor (211). 

 The most significant example of an emerging coronavirus is the severe acute 

respiratory syndrome coronavirus (SARS-CoV) (49, 107).  The epidemic strains of SARS-

CoV likely evolved from a zoonotic strain (72, 147) maintained in bats (113, 118, 149).  It is 

believed that the virus crossed into humans through use of a liaison species such as the palm 

civet or raccoon dog infected while maintained in live-animal markets in close proximity to 
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other species (72, 119, 180, 202).  Similarly, sero-positive wet-market animal handlers who 

were asymptomatic for signs of SARS suggests that a SARS-like progenitor virus was also 

transmitted to humans during their contact with animals in the live-animal markets (28, 72, 

150)}.  Indeed, antibody detected in a low percentage (1.8%) of people in Hong Kong 2 years 

prior to the epidemic suggests that exposure to SARS-like viruses had infringed into human 

populations at least 2 years before the virus evolved the ability to efficiently replicate within 

a human host, cause disease, and spread from human-human (240).   

 Although nidoviruses have the opportunity to expand their host ranges, they must be 

able to exploit such opportunities by rapidly adapting to fit their new host.  The potential for 

a virus to successfully adapt to a new host and cross the species barrier involves its ability to 

adapt to new or changing cellular environments and find new ecological niches via genetic 

variation (124).  Nidoviruses can explore the range of viable genetic variation through two 

mechanisms, mutation and recombination.  As viruses dependent upon a polymerase lacking 

a proof-reading mechanism, replication introduces approximately 1x10-3 - 1x10-5 errors per 

replication cycle (130), or up to 3 mutations per newly synthesized coronavirus genome.  

This high rate of error is common for RNA viruses and leads to the generation of genetically 

variable quasispecies and contributes to their genetic plasticity and ability to rapidly evolve 

to changes in selective pressure (8, 86, 210).  Comparing the sequences of SARS-CoV 

isolated from live-market animals and early human cases to those of the late epidemic virus 

illustrates the rapid adaptation and high mutation rate, estimated at approximately two-

mutations per human passage (between 1.8x10-6 and 8.3x10-6 nucleotide substitutions per site 

per day or ~0.17 mutations per genome per day) (195, 207, 226). 
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 There is reason to believe that multiple strains of SARS-like CoVs emerged 

independently into the human population, although not as successful as the Urbani and 

related epidemic strains in adapting to human hosts.  Between December 16, 2003 and 

January 8, 2004, four patients were independently hospitalized in Guangdong Province, 

China and confirmed as SARS cases.  The patients did not have contact with each other or 

other SARS patients, and all four patients presented mild symptoms, and likely contacted the 

SARS-CoV through contact with infected animals from live-markets.  Analysis of these 

isolates showed sequence similarity closer to zoonotic strains than that of the initial epidemic 

strain (98, 142, 180, 195).  Given the facts that they were found relatively late in the 

epidemic and their sequences did not appear to derive from the epidemic strain, these viruses 

likely represent an independent reemergence of a SARS-CoV into human populations whose 

success may have been limited due to the rapid response of the Chinese government to 

quarantine infected individuals and cull animals suspected of harboring the virus. 

 A second aspect of coronavirus biology that contributes to remarkably high 

adaptability to new hosts is a high rate of recombination.  In 1995, the high recombination 

rates of coronaviruses were recognized as an aspect of replication that would likely 

contribute to these viruses becoming known as a significant threat as emerging pathogens (3).  

Coronaviruses, along with arteriviruses and toroviruses, rely on homologous recombination 

as part of their replication strategy to generate subgenomic RNAs from which to express their 

downstream genes.  Using complementation of temperature sensitive mutants, the 

homologous recombination frequency for the entire genome of the coronavirus mouse 

hepatitis virus (MHV) was found to approach 20% or more (4, 111).  Increasingly higher 

recombination rates progressing from the 5’ to 3’ end have also been shown in coronavirus 
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(61, 62) and arteriviruses (138).  The increasing occurrence of recombination moving from 

the 5’ to 3’ end of genome is likely a reflection of the increasing number of templates with 

which recombination can occur as a result of the co-terminal nested set of subgenomic RNA 

strands formed during replication (61, 129).  Indeed, the highly efficient targeted RNA 

recombination system relies upon the frequent recombination between these RNA templates. 

 New strains of nidoviruses have been generated by recombination in the lab and in 

the wild.  For example, recombination resulting in viable viruses has been illustrated in 

experimentally infected animals with murine coronaviruses (100) and in eggs infected with 

IBV (106).  Evidence of homologous recombination between coronaviruses in the wild has 

also been found in novel strains of IBV (26, 94, 110, 114), including recombination 

involving vaccine strains (115, 176, 213).  Several examples of recombination within feline 

coronaviruses are also known.  A novel serotype of FCoV, serotype II, is the result of a 

double recombination event with canine coronavirus, CCoV (85).  Four FCoV type II strains 

have been isolated and shown to be the result of independent recombination events (208), 

suggesting that such recombination events are not rare.  SARS-CoV has been postulated to 

have been derived from multiple recombination events among progenitor coronaviruses of all 

three groups, although these analyses are more tenuous (157, 184, 185, 237).  Critics of the 

recombinatory origin hypothesis of SARS-CoV point out that these studies are based on the 

assumption that there is ample opportunity for recombination events to occur between 

divergent groups, which often exhibit distinctly different host-ranges, and that there is little 

data to support extensive recombination between different coronavirus groups (64, 131).  

Evidence of recombination between genotypes of the recently identified HKU-1 may be the 

first demonstration of coronavirus recombination in humans (220). 
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 Nidoviruses have the opportunity and ability to quickly adapt to new cellular 

environments, and ongoing studies are devoted to understanding the molecular changes 

mapping to expanded tropisms.  Coronavirus specificity is primarily mediated at binding and 

entry by the interaction of the spike glycoprotein with specific cellular receptors (23, 37, 44), 

as transfection of genomic RNA (117, 136) or expression of the appropriate receptor (44, 52, 

199, 225) allows infection of otherwise non-permissive cells.  Not surprisingly, many of the 

mutations critical for extended host ranges are the result of mutations within the spike 

glycoprotein.   

 Several in vitro models have been developed for studying the molecular determinants 

of coronavirus cross species expansion.  Persistent cell models were developed to identify the 

genetic alterations that arise in coronaviruses that occur as the viruses and their host cells co-

evolve in response to long-term persistent infections (5, 30).  In one such model, murine 

astrocytoma cells (DBT) were infected with MHV-A59 and serially passaged for 210 days.  

Persistent infection of these cultures by MHV establishes a selective pressure whereby the 

DBT host cells decrease their ability to be infected by down-regulating expression of the 

MHV receptor, carcinoembryonic antigen-related receptor glycoprotein (CEACAM) (30, 

37).  In response, the virus adapts by altering the S gene to alter receptor specificity (30).  

Changes within MHV S altered its receptor subunit specificity and significantly enhanced 

viral infectivity of hamster and human cells (30) by increasing its ability to bind the non-

murine CEACAM orthologues which are poorly recognized by wild-type MHV S (37).  A 

similar persistent infection model using MHV and murine 17Cl1 cells resulted in an extended 

host range mutant with affinity for hamster, feline, bovine, rat, monkey, and human cells 

(166, 167, 193, 194).  Such changes occurring over the course of a persistent infection could 



 14

account for the altered tropism of viruses such as FCoV.  The lethal form of FCoV, feline 

infectious peritonitis virus (FPIV), likely arises from accumulated mutations within the S 

gene which alter the tropism of the persistent low virulence feline enteric coronavirus 

(FECV) from cells of the enteric tract to macrophages (160, 209). 

 A second in vitro model of coronavirus host range expansion uses persistently 

infected mixed cell cultures.  A culture containing two cell lines, the MHV permissive DBT 

and the resistant Syrian baby hamster kidney (BHK) were infected with MHV-A59, MHV-

JHM, or a combination of the two strains.  Although both MHV strains are unable to infect 

BHK cells, MHV-JHM causes receptor independent fusion between DBT and BHK cells in 

vitro, and was included in the study for its potential to enhance virus evolution and 

adaptation to the BHK cells (6, 63).  The ratio of the permissive DBTs to resistant BHKs was 

changed over time with passage, with the relative amount of DBT cells being decreased.  

This pressure for the virus to adapt to infect the normally non-permissive cells produced an 

extended host range mutant in the case of the co-infected cultures.  After 200 days of virus 

derived from the MHV-A59/JHM cultures were able to efficiently infect BHK cells.  This 

virus also had adapted the ability to infect human, primate, as well as retaining efficient 

replication in murine cell lines, further emphasizing the plasticity of the coronavirus genome 

and demonstrating the ability of these viruses to rapidly evolve new tropisms.   

 Although the models used to examine host range expansion emphasize the 

importance of the spike glycoprotein/receptor interaction as determinants for host range 

expansion, there is evidence that mutation of other regions of the genome can also be 

critically important for the successful adaptation of a coronavirus to a new host.  In an 

attempt to develop a mouse model for HCoV-229E, mice were genetically engineered to 
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express the viral receptor, human aminopeptidase N (APN) (199, 218).  Although primary 

cell cultures established from the animals were permissive to infection, mice were resistant to 

direct infection (218).  However, infection of double transgenic mice expressing APN and 

deficient in Stat1 were highly susceptible to HCoV-229E infection (112), indicating that the 

virus was not able to replicate within an immunocompetent animal despite successful binding 

and entry. 

 

Nidovirus Reverse Genetics Systems 

 Reverse genetics systems allow viral genomes to be directly manipulated and linked 

to a given phenotype.  The development of reverse genetic systems sparked a revolution in 

Nidovirus research, significantly contributing to the understanding of gene function and 

factors that regulate transcription, replication, pathogenesis, assembly and release.  The first 

Nidovirus reverse genetics system was developed by Paul Masters in 1992 based on a 

targeted recombination system that matured to allow for the ready manipulation of the 3’ 

most ~10Kb of the genome.  However, this system didn’t allow modification to most of the 

replicase gene which makes up nearly two-thirds of the viral genome.  Modification of the 

replicase genes required the development of a full length cDNA based infectious clone.  An 

infectious clone provides a cDNA template which can be manipulated by standard molecular 

biological techniques to alter the viral genome sequence.  Virus is generated from the full-

length cDNA either by placing a polymerase II promoter or a T7 promoter upstream of the 

viral sequence.  RNA is transcribed from the template, either directly from the DNA 

transfected into the nucleus of a cell or synthetically in vitro from the T7 promoter.  Once the 

RNA is delivered into the cells cytoplasm, the replicase ORFs are translated into a functional 
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replication complex that directs the transcription of subgenomic mRNAs and genome length 

RNA replication, resulting in the production of infectious progeny viruses.   

 Although an infectious DNA clone for the arterivirus equine arteritis virus (EAV) was 

reported in 1997, attempts to develop a system for coronaviruses were complicated by the 

large genome size and cDNA instability when amplified in bacterial vectors.  Eventually, 

stable coronavirus infectious cDNA systems were developed by overcoming the 

amplification difficulties by one of three different strategies.  One strategy, and the first to 

report the successful generation of infectious virus from a full-length infectious clone, makes 

use of highly stable bacterial artificial chromosomes.  A second strategy disrupts toxic 

regions encoded within the cDNA copy of the viral genome by separating the clone into 

contiguous fragments in multiple bacterial plasmids.  The full-length cDNA clone is then 

reconstructed by excising the viral cDNA from the bacterial plasmids and ligating them 

together in vitro.  A more recent approach is stably cloning the full length genome in 

poxvirus vectors.  All three of these systems, targeted RNA recombination, full-length 

infectious cDNA expressed in stable amplification systems, and infectious clones amplified 

as multi-component cDNAs, are currently used in research and have relative strengths.   

 

Targeted RNA Recombination 

The first nidovirus genetics approach was developed for mouse hepatitis virus (MHV), the 

prototypic coronavirus (reviewed in (132)).  Recognizing the difficulty in developing full 

length 30 Kb molecular clones, the targeted RNA recombination approach takes advantage of 

the high recombination rate which occurs during coronavirus replication.  The system relies 

upon a recombination event to transfer genes from a donor construct to a recipient viral 
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genome, followed by selection conditions which efficiently promote and amplify the 

replication of recombinants over the parent genome.  The earliest version of the system relied 

upon a temperature sensitive mutant genome recipient, Alb4, which contained a mutation in 

the nucleocapsid gene (N) that allowed normal replication at permissive temperatures 

(<34oC) but becomes severely attenuated at higher, or nonpermissive, temperatures (~39oC) 

(Fig. 5).  Successful recombination transferred the donor RNA lacking the thermolabile 

mutation to the host genome and the resulting recombinants were capable of efficient growth 

and plaqued efficiently at the nonpermissive temperature.  Recombinant viruses were 

selected on the basis of plaque size when grown at the nonpermissive temperature.  

 Several improvements have been made to the system since its original conception 

over a decade ago.  The original iteration of the targeted RNA recombination system was 

limited to the production of robust viruses, since selection was made based on the 

comparison of growth fitness at the nonpermissive temperature.  In the case of genetic 

manipulations resulting in viruses attenuated at the nonpermissive temperature, whether due 

to their own temperature sensitivity or simply to a loss of growth fitness in general, selection 

was lost.  The target size of the portion of the genome amenable to mutagenesis was mostly 

limited to the nucleocapsid gene located at the 3’ end of the genome.  These limitations were 

overcome by taking advantage of the narrow host ranges of certain coronaviruses.  A 

chimeric donor virus was engineered which expressed the ectodomain of the spike 

glycoprotein, which determines receptor specificity in coronaviruses, of feline infectious 

peritonitis virus (FIPV) fused with the c-terminal membrane spanning domain of the MHV S 

glycoprotein encoded within the MHV genetic background (109) (Fig. 6).  The chimeric 

fMHV was able to grow on feline cell lines while wild-type MHV cannot, confirming 
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previous data that argued that the S glycoprotein was a principle determinant of coronavirus 

host range.  More importantly, fMHV was unable to infect cells derived from mice which are 

permissive to MHV.  However, following successful recombination with a donor construct 

containing MHV S, the recombinant virus simultaneously lost the ability to infect feline cells 

and gained the ability to infect murine cells.  This system provided a powerful positive 

selection step (i.e., growth on murine cells) which readily allowed for the isolation of 

attenuated mutant viruses.  Later improvements to the targeted recombinant system include a 

mechanism for limiting multiple recombination events, especially at the 3’ end of the 

genome.  Although successful recombination required that a functional copy of the MHV S 

gene be selected, there was the possibility of further recombination events occurring (Fig. 7).  

These are particularly likely when an introduced mutation at the 3’ end of the genome is 

debilitating.  The likelihood of multiple recombination events occurring was reduced by 

moving the N gene of the recipient virus immediately downstream of the S gene.  In the 

event of a second recombination event downstream of S, the resulting virus would lack the 

essential N gene and would be unviable.  The targeted recombination system has been 

extended to MHV-JHM (144), TGEV, and FIPV and remains a powerful technology for 

altering genes and sequence motifs at the 3’-most 10 Kb of the genome (74).   

 

Infectious cDNA clones 

BAC System 

The first full-length cDNA infectious clone of a coronavirus was that of the transmissible 

gastroenteritis virus (TGEV) and was accomplished by the stepwise reconstruction of the full 

genomic cDNA from a defective minigenome (DI) which required a helper virus to replicate.  
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The final missing fragment of the TGEV genome, which caused instability in standard 

bacterial vectors, was added in the last step and the full-length cDNA was transferred to a 

bacterial artificial chromosome (BAC), which attains a high degree of stability by 

maintaining a very low plasmid copy number, no more than two copies per cell (2).  The full-

length genomic cDNA is transfected directly into cells and RNA is transcribed from within 

the nucleus of a cell from a CMV promoter located upstream of the viral sequence.  Notably, 

the majority of viral RNA does not undergo deleterious mRNA splicing and is transferred 

from the nucleus of transfected cells into the cytoplasm where the virus replicates normally.  

After detecting that there was some level of instability in the TGEV BAC system with 

passage in E. coli, the system was further stabilized by inserting an intron into the region of 

the ORF1 gene responsible for the toxicity in bacteria.  Expression of full-length infectious 

cDNA clones of the human coronaviruses OC43 (186) and SARS-CoV (1) have also been 

reported using this approach.  The full-length cDNA copies of these two clones, however, 

were not constructed by rebuilding an incomplete DI genome but were pieced together using 

unique restriction sites either present within the genome or added with the introduction of 

silent mutations. 

 

Vaccinia Virus Expression System 

After reporting difficulty in maintaining cDNA stability in bacterial systems, including BAC, 

Thiel and associates described a technique by which full-length cDNA of the human 

coronavirus 229E was amplified in a vaccinia virus cloning vector (196) (reviewed in (197)).  

The cDNA was systematically assembled and cloned into a vaccinia virus vector.  

Recombinant vaccinia virus DNA containing the 229E genome cDNA was transfected into 
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cells and recombinant vaccinia viruses were rescued by co-infection with fowlpox virus.  

Recombinant vaccinia virus DNA was purified and used as template for the in vitro 

transcription of genomic RNA, which is then electroporated into cells.  Avian infectious 

bronchitis virus (IBV) (24) was derived from a full-length cDNA by an alternative strategy 

using vaccinia virus vectors.  Following transfection of the vaccinia virus DNA containing 

the IBV cDNA, cells were infected with fowlpox virus expressing TR RNA polymerase.  A 

T7 promoter was engineered before the IBV cDNA, and viral RNA was transcribed within 

the cell initiating viral replication. 

 One of the novel aspects of propagating coronavirus cDNA within the vaccinia virus 

is the ability to mutate the clone by taking advantage of homologous recombination.  There 

are two recombination steps in the procedure.  A donor plasmid DNA containing the desired 

mutation and containing a dominant selectable marker gene recombines with the recipient 

cDNA by homologous recombination.  Recombinant viruses containing the dominant marker 

are selected.  Next, the selected virus is allowed to grow in the absence of selection.  This 

results in two recombination events: the cDNA reverts to its original sequence or the 

selectable marker gene is excised and the clone successfully integrates the modification.  

Isolates containing the mutation are screened by PCR (17).  A similar strategy was recently 

employed for creating and modifying an MHV-A59 infectious clone (36).  

 A third strategy for producing full-length cDNA infectious clones, and the basis of 

the systems used for the experiments presented in this manuscript, was presented in 2000 

from the Baric Lab.  The stability problems in bacterial amplification systems were overcome 

by breaking up the viral genome into several smaller contiguous subclones.  The components 

of the genome are propagated individually in bacterial vectors and full-length cDNA clones 
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generated after the genome fragments are excised from the plasmid vectors and ligated.  

Synthetic RNA is produced in vitro through the use of a polymerase promoter at the 5’ end of 

the construct and electroporated into cells.  This strategy was first applied to the development 

of a six-component TGEV infectious clone (229).  Subclones were flanked by BglI or BstXI, 

restriction enzymes that recognize symmetric palindromes but cleave within asymmetric sites 

resulting in a 3- or 4- nucleotide complementary overhang.  Use of these enzymes allows for 

a high degree of variability among different BglI digests, unique complementation, and high-

specificity between contiguous fragments.   

 The first full-length infectious clones of MHV-A59 (231), SARS-CoV (230), and 

IBV (228) were also generated by using the multi-component approach.  The development of 

molecular clones for the group II coronaviruses had been complicated by the presence of 

several toxic regions within the cDNA copy of the viral genome.  Toxic regions were 

identified by systematically removing viral sequence until plasmid stability had been 

achieved, then engineering BsmBI or BglI restriction sites to allow reassembly between 

adjacent fragments.  As a result, regions of the genomic cDNA that were toxic in bacteria 

could be specifically disrupted by separating the region into two genomic segments (Figure 

7).  Following digestion with the restriction enzyme, cDNA fragments could be seamlessly 

ligated to generate the full-length cDNA copy of the viral genome from which RNA could be 

transcribed and electroporated into cells to form virus.  
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Figure 1.  Genome organization of MHV-A59 and SARS-CoV.  The 5’ two-thirds of the 
genome encode the polycistronic replicase protein in ORF1.  Two polyproteins are expressed 
from ORF1, pp1a and 1ab.  Pp1ab is a c-terminal extension of pp1a which is dependent upon 
a -1 ribosomal frame-shift event at a conserved pseudoknot structure.  The primary structural 
genes, Spike glycoprotein (S), Envelope associated protein (E), Membrane protein (M), and 
Nucleocapsid (N), as well as a series of virus specific accessory proteins are encoded within 
the 3’ one-third of the genome from ORFs 2-7 for MHV-A59 and ORFs 2-9 in SARS-CoV. 
 

 

 

 

Figure 2.  ORF1ab polyprotein: Proteolytic processing and conserved elements.  
Cleavage is mediated by three proteases in MHV or by two in SARS-CoV.  The box color for 
each proteolytic domain and triangles at each nsp interface are color coordinated to the 
protease which cleaves at each position (red for PLpro1, blue for PLpro2, and white for Mpro).  
MHV and SARS-CoV conserved domains are shown, including the accessory protease (PLP), 
ADP-ribose 1’-phosphatase (X), transmembrane domains (TM, MP1 and MP2), main 
protease (Mpro), RNA dependent RNA polymerase (RdRp), zinc-binding domain (Z), 
helicase (Hel), exoribonuclease (ExoN), an endoribonuclease (EU), and ribose-2’-O-
methyltransferase (OMT). 
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Figure 3.  Expression of ORF2+ from subgenomic RNAs.  A nested set of RNA sharing 
co-terminal ends is generated during coronavirus replication for expression of the structural 
and accessory proteins.  Each subgenomic RNA is associated with one ORF defined by a 
conserved transcriptional regulatory sequence (TRS) at the beginning of its encoded protein.  
Each subgenomic RNA generally only expresses the protein expressed at the 5’ end of the 
RNA template.  The relative abundance of each RNA species typically increases progressing 
from longer to shorter molecules. 
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Figure 4.  Generation of subgenomic RNA by discontinuous attenuated transcription.  
(1)  The replication complex begins to transcribe the negative strand from the genomic RNA 
template.  (2)  The polymerase has a chance of disassociating from the template upon 
encountering transcriptional regulatory sequences (TRS) located immediately upstream of 
each ORF and reannealing with the genomic template at the 5’-most TRS.  (3)  After 
reassociating with the template, the polymerase continues to transcribe the complement to the 
5’ leader.  (4)  The subgenomic negative strand then functions as template for message sense 
RNA. 
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Figure 5.  Initial version of targeted recombination reverse genetics system for 
coronaviruses.  Alb4 produced a limited number of small plaques at the nonpermissive 
temperature.  Following transfection of subgenomic mRNA 7 and infection of Alb4, RNA 
recombinants would be generated that resulted in wildtype plaque phenotypes, evidenced by 
large plaques that could be easily distinguished from Alb4. 
 

 

 

 

 

Figure 6.  Improved targeted recombination system using cell specificity for screening.  
A chimeric virus of MHV, fMHV, expressing the S of FIPV infects feline cells transfected 
with RNA from a donor molecule, pMH54, bearing a mutated MHV spike glycoprotein.  
Successfully recombined virus is screened by growth on murine cells. 
 



 26

 

 

 

 

 

Figure 7.  Rearrangement of structural genes to limit the occurrence of multiple 
recombination events.  The first generation of the target recombinant fMHV system could 
undergo a second recombination event which could exclude introduction of the desired 
mutation (round N gene) while integrating the MHV-S gene.  By moving N gene position 
immediately downstream of S (fMHV.v2), downstream recombination events will often be 
lethal as they exclude critical genes encoding major structural genes. 
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Figure 8.  Multi-component reverse genetics system for SARS-CoV.  cDNA stability in E. 
coli DNA amplification vectors is maintained by separating the viral genome over several 
overlapping constructs.  Each fragment is ligated to form a full-length cDNA copy of the 
genome from which to drive transcripts through use of a T7 promoter at the 5’ end of the 
construct and unique overlapping nucleotides left by digestion with Bgl I.   



 

CHAPTER II 

 

Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing 
Epidemic and Zoonotic Spike Variants 

 

Abstract 

 In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified 

as the etiological agent of severe acute respiratory syndrome, a disease characterized by 

severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that 

crossed the species barrier, most likely originating from bats or from other species including 

civets, raccoon dogs, domestic cats, swine, and rodents.  A SARS-CoV vaccine should confer 

long-term protection, especially in vulnerable senescent populations, against both the 2003 

epidemic strains and zoonotic strains that may yet emerge from animal reservoirs.  We report 

the comprehensive investigation of SARS vaccine efficacy in young and senescent mice 

following homologous and heterologous challenge.  Using Venezuelan equine encephalitis 

virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike 

(S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we 

demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term 

protection against homologous strain challenge in young and senescent mice.  To test VRP 

vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, 

synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a 

synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which 
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clusters among the zoonotic SARS-CoV.  icGD03-S replicated efficiently in human airway 

epithelial cells and in the lungs of young and senescent mice, and was highly resistant to 

neutralization with antisera directed against the Urbani strain.  This work tests the hypothesis 

that vaccination of young and old mice with VRP-S and VRP-N provide protection from 

replication by epidemic and heterologous strains of SARS-CoV.  Although VRP-S vaccines 

provided complete short-term protection against heterologous icGD03-S challenge in young 

mice, only limited protection was seen in vaccinated senescent animals.  VRP-N vaccines not 

only failed to protect from homologous or heterologous challenge, but resulted in enhanced 

immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged 

mice.  VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted 

through day 14, and was likely mediated by cellular immune responses.  This study identifies 

gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially 

in vulnerable elderly populations.  The availability of a SARS-CoV virus bearing 

heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine 

efficacy against zoonotic strains, the most likely source of future outbreaks. 

 

Introduction 

Severe acute respiratory syndrome coronavirus (SARS-CoV) infection results in 

severe acute respiratory disease, pneumonia, and sometimes death (49, 107).  The disease 

was reported in Guangdong Province, China, in 2002 and spread to more than 30 nations 

within a few months. Disease severity was linked to age and other comorbidities, with 

mortality rates increasing with age and exceeding 50% in individuals over 65 y (77).  SARS-

CoV is a zoonotic virus that crossed the species barrier, most likely originating from 
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bats(113, 118, 149) or from other species including civets, raccoon dogs, domestic cats, 

swine, and rodents(72).  New zoonotic variants may emerge as evidenced by sporadic cases 

of human disease in late 2003 and early 2004, which arose from strains distinct from that of 

the epidemic (195).  In 2004, several laboratory-acquired infections were reported, including 

secondary spread resulting in fatal disease (141).  Given the significant health and economic 

impact, the development of an effective vaccine strategy that is protective against both 

epidemic and zoonotic SARS-CoV strains is highly desirable. 

Attenuated and killed SARS-CoV, DNA, and viral vectored vaccines are being 

evaluated in a number of animal models including mouse, ferret, hamster, and primate (9, 20, 

21, 81, 90, 99, 170, 181, 183, 192, 215, 223, 232, 238), and have demonstrated that the 

SARS-CoV spike (S) glycoprotein is the principal component of protective immunity (20, 

155, 161).  Although strong immune responses are elicited against both S glycoprotein and 

nucleocapsid (N) protein (20, 154, 215, 241), passive transfer studies have illustrated that 

only anti-S antibody confers protection from SARS-CoV replication in the mouse model (9, 

99, 188).  Vaccine development faces a series of potential concerns including reversion or 

recombination repair of attenuated vaccine strains, induction of immune-mediated 

enhancement of pathology, waning immune protection, lack of cross-protection for 

heterologous strains, and limited vaccine efficacy within senescent populations.  

Furthermore, immune enhancement has been demonstrated with another coronavirus, feline 

infectious peritonitis coronavirus (143), and more recently with a modified vaccinia vector 

expressing SARS-S that exacerbated hepatitis in ferrets while failing to protect from 

infection (216).  Notably, some antibodies against the epidemic Urbani strain increased the 

infectivity of lentiviruses pseudotyped with an animal SARS-S glycoprotein in an in vitro 
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model, raising the specter of vaccine-mediated immune enhancement of disease following 

heterotypic challenge (224).  Another potential problem is that SARS vaccines might fail to 

induce antibodies that protect from infection with divergent strains of SARS-CoV. The S 

glycoprotein of SARS-CoV contains about 2%–20% amino acid variation between zoonotic 

and the 2003 epidemic strains (195, 224), possibly limiting the effectiveness of monotypic 

SARS-S vaccines.  Finally, studies measuring the duration of protective immunity or vaccine 

efficacy in animals greater than 4 mo post-boost have not yet been reported (99). 

In this report, the efficacy of Venezuelan equine encephalitis virus replicon particle 

(VRP) vaccines expressing the Urbani SARS-CoV S glycoprotein (VRP-S) and N protein 

(VRP-N), either individually or in combination (VRP-S+N), are determined in young and 

senescent mouse models.  We tested whether the senescent mouse model, which exhibits an 

age-related susceptibility to SARS-CoV similar to that seen in the human disease (158), will 

provide a sensitive measure of vaccine efficacy and reveal potential complications in SARS-

CoV vaccine development for vulnerable elderly populations.  We evaluated the duration of 

protective immunity following homologous and heterologous SARS virus challenge, 

examining the impact of waning immunity on long-term protection.  Through the use of 

publicly available SARS-CoV sequence databases, bioinformatics approaches, synthetic 

biology, and reverse genetics, we constructed a viable heterologous challenge virus to test the 

ability of current vaccine regimens to protect against zoonotic strains; the likely source of 

future epidemics (195). 

 

Methods 
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Viruses and Cells.  The Urbani, Tor-2, recombinant Urbani (icSARS), and a recombinant 

chimeric virus encoding the S gene of GDO3 SARS-CoV (icGD03-S ), strains were 

propagated on VeroE6 cells in Eagle’s MEM supplemented with 10% fetal calf serum, 

kanamycin (0.25 μg/ml), and gentamycin (0.05 μg/ml) at 37 °C in a humidified CO2 

incubator.  For virus growth, cultures of VeroE6 cells were infected at a multiplicity of 

infection (MOI) of 1 for 1 h, the monolayer washed twice with 2 ml of PBS and overlaid 

with complete MEM.  Virus samples were harvested at different times post-infection and 

titered by plaque assay.  Plaques were visualized by neutral red staining and then counted. 

Human nasal and tracheobronchial epithelial cells were obtained from airway 

specimens rejected from patients undergoing elective surgery under University of North 

Carolina (UNC) Institutional Review Board–approved protocols by the UNC Cystic Fibrosis 

(CF) Center Tissue Culture Core.  Briefly, primary cells were expanded on plastic to generate 

passage 1 cells and plated at a density of 250,000 cells per well on permeable Transwell-Col 

(T-Col, 12-mm diameter; Corning [http://www.corning.com]) supports.  Human airway 

epithelium (HAE) cultures were generated by provision of an air–liquid interface for 4–6 wk 

to form well-differentiated, polarized cultures that resemble in vivo pseudo-stratified 

mucosciliary epithelium, and infected with wild-type or recombinant SARS-CoV as 

previously described by our laboratory (174).  All virus work was performed in a biological 

safety cabinet (BSC cabinet) in a biosafety level three (BSL3) laboratory containing 

redundant HEPA-filtered exhaust fans. Personnel were double gloved and wore Tyvek suits 

with hoods supplied with HEPA-filtered air by a powered air-purifying respirator (PAPR). 
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Construction and Isolation of the icGDO3-CoV Variant Virus.  The GD03-S glycoprotein 

sequence has been reported. A synthetic DNA containing the 5′-most GD03 mutations was 

purchased (Blue Heron Biotechnology [http//www.blueheronbio.com]) and inserted into the 

SARS-E fragment.  The plasmid clone (SARS-E GD03) was fully sequenced and shown to 

contain all of the appropriate mutations.  The remaining GDO3 mutation was incorporated by 

PCR mutagenesis (5′ amplicon A: 5′-CTGTTTTCCCTGGGATCGC-3′; 3′ amplicon A: 5′-

NNNNNNCACCTGCTTTTGGGCAACTCCAATGCC-3′; 5′ amplicon B: 5′-

NNNNNNCACCTGCAGTTGCCCAAAATGTTCTCTATGAGAAC-3′; 3′ amplicon B: 5′- 

CATAAATTGGATCCATTGCTGG), followed by seamless ligation of the amplicons as 

previously described (230) into the SARS-F subclone.  The final construct (SARS-F GD03) 

was fully sequenced and found to contain the appropriate set of GD03-S glycoprotein alleles. 

The icGDO3-S was generated as previously described.  Infectious clone fragment 

plasmid DNA was prepared in Escherichia coli (TOP-10, Invitrogen 

[http://www.invitrogen.com]), isolated, and purified (Qiagen [http://www.qiagen.com]).  

Infectious clone fragments B, C, D, and E were digested with BglI. Infectious clone 

fragments A and F were digested with EcoRI and NotI, respectively.  Infectious clone 

fragments A and F were then dephosphorylated and then digested with BglI. Individual 

cDNA fragments were gel purified (Qiagen) and ligated (Roche [http://www.roche.com]) to 

form a full-length genomic cDNA and then chloroform extracted and EtOH precipitated. N 

cDNA and full-length viral genomic cDNA were then used as templates for in vitro 

transcription reactions (Ambion [http://www.ambion.com]).  N and full-length viral genomic 

transcripts were then electroporated into Vero cells. Cell culture media containing virus was 
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harvested 48 h post-electroporation. Virus was plaque purified and then passaged twice in 

Vero cells.  The resultant stock was plaque titered and cyropreserved at −80 °C. 

 

Western Blot Analysis.  Twelve hours post-infection, Urbani–, icSARS-CoV–, SARS-CoV–, 

Tor-2–, and icGD03-S–infected cells were washed in 1X PBS, lysed in buffer containing 20 

mM Tris-HCL (pH 7.6), 150 mM NaCl, 0.5% deoxycholine, 1% nonidet-p-40, 0.1% sodium 

dodecyl sulphate (SDS), and post-nuclear supernatants added to an equal volume of 5 mM 

EDTA/0.9% SDS, resulting in a final SDS concentration of 0.5%.  Samples were then heat 

inactivated for 30 min at 90 °C in the BL3 prior to removal.  At BL2, samples were again 

heat inactivated for 30 min at 90 °C before use. Equivalent sample volumes were loaded onto 

4% to 20% Criterion gradient gels (BioRad [http://www.bio-rad.com]) and then transferred 

to PVDF membrane (BioRad).  Blots were probed with polyclonal mouse antisera directed 

against the Urbani-S glycoprotein diluted 1:200 or human sera 1128 diluted 1:400 and 

developed using electrogenerated chemiluminescence (ECL) reagents (Amersham 

Biosciences [http://www5.amershambiosciences.com]).  Patient sera #1128 was collected 

from a patient infected during the second disease outbreak in Toronto, Canada. 

 

Plaque Reduction Neutralization Titer Assays.  One-hundred plaque forming units (pfu) of 

either icSARS-CoV or icGDO3-S were treated with heat-inactivated serum diluted to final 

concentrations of 1:100, 1:200, 1:400, 1:800, or 1:1,600 and incubated at 37 °C for 30 min, 

and the resulting titer determined by plaque assay.  Plaque numbers formed by virus treated 

with each dilution of sera from individual mice vaccinated with VRP-S or VRP-S+N were 

compared to the average number of plaques formed after treatment with a given dilution of 

sera from VRP expressing the influenza A HA protein (VRP-HA)- or PBS-vaccinated mice 
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and expressed as the relative percentage.  The dilution at which 80% of plaques were 

neutralized was determined for each VRP-S– or VRP-S+N–vaccinated animal. 

 

Mice.  Female BALB/c mice (Charles River Laboratories [http://www.criver.com]) were 

anesthetized with a ketamine (1.3 mg/mouse) and xylazine (0.38 mg/mouse) mixture 

administered intraperitoneally with a 50-μl volume.  Each mouse was intranasally (i.n.) 

inoculated with 50 μl of virus at a concentration of 2 × 106 pfu/ml of virus.  Four days post-

infection, the right lung was removed and frozen at −70 °C for later plaque assay 

determination of viral titers.  Half of the left lung was placed into Trizol Reagent (Invitrogen) 

for RNA extraction.  The second half of the left lung was fixed in 4% PFA in PBS (pH 7.4) 

for at least 7 d prior to paraffin imbedding and sectioning for histopathological analysis.  All 

mice were housed under sterile conditions, and sentinel mice were used to verify that the 

colony was mouse hepatitis virus (MHV) negative.  Experimental protocols were reviewed 

and approved by the Institutional Animal Care and Use Committee at UNC Chapel Hill.  

Young mice refer to those challenged with SARS-CoV at ages equal or less than 5 mo old, 

whereas old or senescent mice are those animals with ages greater than 1y at the time of 

challenge. 

 

Plaque Assay Titration of Virus from Lungs.  Lungs were weighed and homogenized in four 

equivalent volumes of PBS to generate a 20% solution.  The solution was centrifuged at 

13,000 rpm on a tabletop centrifuge for 5 min, the clarified supernatant serially diluted in 

PBS, and 200-μl volumes of the dilutions placed onto monolayers of Vero cells in 60-mm 
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dishes.  Following a 1-h incubation at 37 °C, cells were overlaid with 1% agarose-containing 

medium.  Two days later, plates were stained with neutral red and then plaques counted. 

 

VRP-S and VRP-N.  The VRP constructs were made in two rounds of PCR, the first to 

generate two amplicons, and a second round of overlapping PCR to fuse them together.  The 

fused DNA was digested with ApaI and AscI, and ligated into the similarly digested pVR21 

plasmid.  PCR reactions were performed with Expand Long Taq (Roche Molecular 

Biochemicals http://www.roche-applied-science.com) in 30 cycles of 94 °C for 30 s, 55 °C 

for 30 s, and extensions at 68 °C for 1 min.  The first amplicon, which was used in the 

construction of both VRP-S and VRP-N, was generated with primers 5′nsp4Sw (5′-

GATTGAGGCGGCTTTCGGCG) and 3′26S (5′-

TTAATTAAGTCAATCGGCGCGCCCTTGGCGGACTAGACTATGTC) using pVR21 as 

template. The N-gene–specific amplicon was produced using primers V5′SARNg (5′-

AGTCTAGTCCGCCAAGATGTCTGATAATGGACCCCAATC) and 3′SARSNg (5′-

NNNNTTAATTAATTATGCCTGAGTTGAATCAGC) with SARS-F plasmid for template.  

The S-gene–containing amplicon was made with V5′SARSg (5′-

AGTCTAGTCCGCCAAGATGTTTATTTTCTTATTATTTCTTACTCTCAC) and 

SARS3′Sg (5′-NNNNTTAATTAATTATGTGTAATGTAATTTGACACCC) using ligated 

SARS-E and -F fragments.  The VRP-S and VRP-N cDNA templates were sequenced for 

verification and replicon particles produced as previously described (40).  Mice were 

vaccinated with 106 infectious units (IU) of VRP in a 10-μl volume in the left rear footpad. 
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Lung Histopathology.  Lungs were fixed in 4% PFA in PBS for 7 d before being submitted to 

the Histopathology Core Facility (UNC, Chapel Hill) for paraffin imbedding, sectioning at 5-

μm thickness, and hematoxylin and eosin staining.  Approximately one-quarter of the total 

lungs were sectioned, with four to six sections mounted from cuts taken at five different 

depths within the paraffin-imbedded tissue.  Lung pathology was scored in a blinded manner, 

in which six to ten sections per animal were evaluated and scored using the following scale. 

1.0 to 2.0 = no to mild inflammation, 2.0 to 3.0 = mild to moderate inflammation, 3.0 to 4.0 = 

moderate to severe inflammation in less than half of the tissue section, and 4.0to 5.0 = severe 

inflammation in more than half of the tissue section.  The same sets of tissues were also 

evaluated qualitatively by a respiratory pathologist (author JH). 

 

In Situ Hybridization.  The 5 μm–thick paraffin-embedded sections were probed with 35S 

UTP-labeled riboprobes complementary to the N gene of SARS-CoV (Urbani) or the HA 

gene of the A/PR8 strain of influenza as a negative control using previously described 

methods (83).  In brief, following treatment to prevent nonspecific probe binding, the tissues 

were incubated overnight with either probe at 5 × 104 cpm/μl in hybridization buffer at 42 

°C.  The slides were then washed, dehydrated, and coated with NBT emulsion (Kodak 

[http://www.kodak.com]), and incubated at −80 °C. for 1 wk prior to development.  Positive 

signal, as determined by silver grain deposition, was then evaluated. 

 

Enzyme-Linked Immunosorbent Assay.  Antibody titers were determined by standard indirect 

enzyme-linked immunosorbent assay (ELISA). High-binding 96-well round-bottom plates 

(Corning [http://www.corning.com]) were coated with 10 μg/ml of SARS-S, SARS-N, or 



 38

inactivated influenza A diluted in carbonate buffer containing 32 mM sodium carbonate, 68 

mM sodium bicarbonate, pH 9.6 at 4 °C overnight.  Mouse sera, diluted 1:100 in casein 

blocking buffer (Sigma [http://www.sigmaaldrich.com]), were added to wells in duplicate, 

and 2-fold serial dilutions were performed, followed by incubation for 2 h at 37 °C.  Plates 

were then incubated for 1 h with goat anti-mouse IgG with alkaline phosphatase (AP) 

conjugate (Sigma), developed with p-nitrophenyl phosphate (pNPP; Sigma), and the optical 

density (OD) at 405 nm was measured (Bio-Rad Model 680 microplate reader).  Log10 half-

maximum ELISA titers were calculated with Sigmaplot (Systat [http://www.systat.com]) for 

the dilution at which an absorbance of 2.1, half that of the maximum measurable absorbance, 

was achieved.  Since very low amounts of antibody were being measured in the passive 

transfer experiment, log10 OD = 0.2 ELISA titers were calculated. 

 

Passive Sera Transfer.  Mice were inoculated with 106 IU of VRP-HA, VRP-S, or VRP-N at 

7 wk of age, boosted 4 wk later, and terminally bled via cardiac puncture 3 wk post-boost.  

The sera of each group were pooled and 150 μl transferred by tail vein injection into mice at 

7 or 43 wk of age.  Mice receiving sera were bled and i.n. challenged with 105 pfu of 

icSARS. 

 

Statistical Analysis.  Unless otherwise noted, two-tailed Mann-Whitney tests were used for 

statistical comparisons.  The Fischer exact tests were completed by comparing the number of 

animals positive for viral replication within the lungs of a group of animals vaccinated with 

VRP-S or VRP-S+N to that of the negative control group, VRP-HA or PBS.  Values outside 
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the limit of detection were assigned a value equal to the limit of detection for any analysis.  

The plus or minus (±) symbol is used to refer to standard deviation. 

An amino acid multiple alignment was generated for the entire S gene of viral 

sequences representing early, middle, and late phases of the SARS epidemic in humans, as 

well as animal strains of SARS-CoV isolated from civets and raccoon dogs found in Chinese 

live animal markets or housed on farms in China that supplied the markets.  The sequences 

were aligned using ClustalX 1.83 with default settings (33).  A phylogenetic tree was 

generated using Bayesian inference as implemented in the program MrBayes v3.0b4 (87).  

Briefly, the alignment was exported in the nexus format, the amino acid substitution model 

was set to JTT (96) using the lset command, and Markov chain Monte Carlo simulation (87) 

was used to approximate the posterior probabilities of trees with sampling conducted on four 

chains over 500,000 generations (159).  Trees were sampled every 100 generations, and the 

5,001 trees collected were summarized with the sumt command set to a burnin of 1,000, 

which generated a consensus tree using the 50% majority rule (159).  The burnin value was 

determined using the sump command with an arbitrary burnin of 250, which demonstrated 

that stationarity occurred prior to the 100,000th generation, indicating that a burnin of 1,000 

was appropriate for the sumt command (159). 

 

Results 

Venezuelan Equine Encephalitis Virus Replicon Particles Expressing SARS-CoV S and N.  

The SARS-CoV S glycoprotein gene and N protein gene were PCR cloned, sequence 

verified, and inserted into Venezuelan equine encephalitis VRPs.  VRP-S and VRP-N 

constructs were packaged to give titers greater than 109 IU per ml and shown to express 
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antigenically relevant recombinant proteins.  VRP-infected cell lysates were probed with 

antiserum 1128, derived from a convalescent human SARS patient. Western blot analysis of 

VRP-S–infected lysates revealed the expected S glycoprotein doublet of approximately 180–

210 kDa, whereas that of VRP-N–infected lysates revealed a major product of less than 50 

kDa, the expected sizes for SARS-S and -N, respectively (Fig. 9A).  VRP-S was inoculated 

into BALB/c mice and tested for its ability to induce antigen-specific antibody.  Western 

blots were performed with Vero cell lysates infected with Urbani, SARS-CoV Tor-2, 

icSARS-CoV (the Urbani recombinant virus), and icGD03-S, a chimeric SARS-CoV 

expressing the S glycoprotein of the heterologous GDO3 strain.  Blots were probed with 

anti–VRP-S mouse serum, 1128 human convalescent serum, or with anti–VRP-N mouse 

serum. The Western blots demonstrated that probing with human serum resolved bands 

corresponding to the major SARS antigens S (a doublet at ~180–210 kDa) and N (triplet at 

<50 kDa), as well as other unidentified SARS-CoV proteins (Fig. 9B).  Serum from mice 

vaccinated with VRP-S only identified SARS-S (Fig. 9C), whereas serum from mice 

vaccinated with VRP-N recognized SARS-N in addition to another SARS-CoV protein that 

is probably a dimer of N (Fig. 9D). 

 

VRP Vaccine Efficacy against icSARS-CoV Replication in the Mouse Model.  As a general 

measure of vaccine efficacy (Table 1, experiment 1), six 4-wk-old BALB/c mice were 

vaccinated with either 105 IU of VRP-S or VRP-HA, boosted 4 wk later with an equal 

amount of VRP, and then i.n. challenged with 105 pfu of icSARS-CoV 8 wk post-boost.  

Consistent with other studies that made use of vectored SARS-S–expressing vaccines to 

induce protective responses (9, 21, 31, 56), vaccination with VRP-S also prevented the 
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replication of icSARS-CoV following challenge.  No virus was detected by plaque assay 

(250 pfu/g limit of detection) in the lungs of VRP-S–vaccinated animals at 2 d post-infection, 

whereas the VRP-HA–vaccinated mouse lung had a mean titer of 6.7 ± 0.5 log10 pfu/g (Fig. 

10A).  Vaccination with VRP-S demonstrated significant protection at the time of peak lung 

titer relative to VRP-HA–vaccinated control animals (p = 0.007 Fisher exact test). 

A second vaccine experiment was completed to evaluate long-term VRP protection.  

Five-week-old BALB/c mice were vaccinated with 105 IU of VRP-HA, VRP-S, VRP-N, or a 

combination of VRP-S and VRP-N (VRP-S+N), and boosted 5 wk later.  Fifty-four weeks 

post-boost, mice were i.n. challenged with 105 pfu of icSARS-CoV and lungs removed 4 d 

post-infection (summarized in Table 1, experiment 2).  Although day 2 post-challenge 

demonstrates peak viral titers, day 4 was chosen to harvest lungs because it is the time at 

which the highest level of pathology is evident in senescent mice (158).  Titers in the lungs 

(Fig. 10B) of animals vaccinated with VRP-S or the combination of VRP-S+N were below 

the limit of detection (250 pfu/g).  In contrast, the lung titers of VRP-HA–vaccinated animals 

were 5.8 ± 0.6 log10 pfu/g, comparable to the VRP-N–vaccinated animal titers of 5.3 ± 0.6 

log10 pfu/g (p = 0.2).  These plaque assay results were confirmed by SARS-CoV–specific in 

situ hybridization on lung tissues from the infected mice (Fig. 10C).  Radiolabeled 

riboprobes complementary to the SARS-CoV N gene were hybridized to sectioned lungs of 

five mice from VRP-HA, VRP-N, VRP-S, or VRP-S+N vaccinated groups.  Lung sections 

from VRP-HA (unpublished data) and VRP-N (Fig. 10C, image a) vaccinated animals 

exhibited extensive in situ signal (arrows), whereas only one of five sections from VRP-S–

vaccinated (Fig. 10C, image b) and zero of five sections from VRP-S+N–vaccinated (Fig. 

2C, image c) mice exhibited SARS-CoV N-specific signal.  Both VRP-S and the 
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combination of VRP-S+N provided complete long-term protection against challenge with the 

homologous vaccine strain of SARS-CoV at 4 d post-infection (p < 0.001 Fisher exact test 

for both VRP-S- and VRP-S+N–vaccinated groups relative to VRP-HA). 

 

Protection against Heterologous Challenge.  To perform cross-protection efficacy studies, it 

was necessary to construct a heterologous SARS-CoV.  Selection of a likely candidate strain 

was made after Bayesian analysis of the SARS-CoV S glycoprotein, which demonstrated 

three main phylogenetic branches.  Two of the branches include viruses isolated from 

animals, such as the palm civet and raccoon dog, and low pathogenic viruses sporadically 

isolated from humans, such as GDO3 and GZ0401.  Viruses representing the 2003 early, 

middle, and late phases of the epidemic strains form the third branch in the SARS-S 

phylogenetic tree (Fig. 11A).  We resurrected the S glycoprotein of GDO3, a virus reported 

from a sporadic SARS case on December 22, 2003.  Although GDO3 was not successfully 

isolated, its S glycoprotein was sequenced and reported.  Compared to epidemic strains, 

GDO3 likely represented an independent introduction, was reported to be less pathogenic, 

and its S glycoprotein sequence is among the most divergent of all human strains (195).  The 

GDO3-S glycoprotein contains 17 amino acid changes relative to Urbani-S (Fig. 11B), many 

of which map within neutralizing epitopes between amino acids 130–150 and 318–510, part 

of the receptor binding domain (RBD) (31, 34, 50, 71, 82, 101, 190, 200, 214).  Importantly, 

polyclonal antibody directed against the late-phase Urbani strain was less effective at 

neutralizing pseudotyped viruses bearing GDO3-S glycoproteins than those bearing Urbani-S 

(224).  The Urbani-S glycoprotein was removed from the SARS-CoV molecular clone, 

replaced with a synthetic cDNA encoding the GD03-S sequence, and used to generate 
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recombinant virus (230).  Sequence analysis of plaque-purified icGDO3-S recombinant virus 

confirmed the presence of the GDO3-S glycoprotein and two additional changes in the S 

gene relative to Urbani-S (F7L and D613G), which likely arose as tissue-culture adaptations.  

The chimeric icGDO3-S, which only differs from Urbani SARS-CoV in its S glycoprotein, 

and wild-type icSARS-CoV recombinant viruses replicated in Vero cells to comparable titers 

that approached 107 PFU/ml within 24 h (unpublished data) and their proteins were both 

detected in Western blots with human antiserum from convalescent patients (Fig. 9B).  Given 

the reduced amount of N present in the lysate of icGDO3-S–infected cells, the reduced 

intensity of the GDO3-S band probed with either anti–VRP-S mouse sera or the convalescent 

human serum is most likely due to the presence of lower GDO3-S protein rather than a 

marked difference in antibody specificity between GDO3-S and Urbani-S.  icGD03-S 

replicated efficiently in HAE cells, although its maximum titer was approximately 1 log 

lower than that of icSARS or Urbani (Fig. 11C).  To compare the growth of icSARS and 

icGDO3-S in animals, 6-wk-old BALB/c mice were i.n. infected with 105 pfu of either 

icSARS or icGDO3-S. At 2 d post-infection, icSARS-CoV mean lung titer was 6.8 ± 0.5 

log10 pfu/g, whereas icGDO3-S titers were lower at 6.3 ± 0.2 log10 pfu/g (p = 0.04).  The 

mean lung titer of icSARS-CoV–infected mice on day 4 was 4.5 ± 0.5 log10 pfu/g compared 

to icGDO3-S titers of 3.7 ± 0.3 (p = 0.04).  By the seventh day, virus replication in the lungs 

of three of five mice infected with icSARS-CoV and four of five mice infected with 

icGDO3-S fell below the limit of detection (50 pfu/g).  Average icSARS-CoV and icGDO3-S 

titers were similar on day 7 with 1.7 ± 0.1 log10 pfu/g and 1.8 ± 0.1 log10 pfu/g (p = 0.9), 

respectively (Fig. 11D). 
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To evaluate VRP protection against short-term heterologous challenge, groups of 

eight animals were primed at 7 wk of age with 106 IU of VRP-S, VRP-N, VRP-S+N, or 

VRP-HA, boosted 3 wk later, and then challenged 7 wk post-boost with 105 pfu of icGD03-S 

(summarized in Table 1, experiment 3).  Lungs were harvested 2 d after challenge.  VRP-S 

and VRP-S+N protected (p < 0.001 Fisher exact test for both VRP-S and VRP-S+N groups 

relative to VRP-HA) against heterologous icGD03-S recombinant virus replication (Fig. 

12A).  Although high titers of virus were detected in VRP-N– and mock-vaccinated animals 

with mean titers of 6.3 ± 0.1 and 7.0 ± 0.1 log10 pfu/g, respectively, the VRP-N–vaccinated 

animals had a lower mean titer (p < 0.001). 

SARS-CoV vaccines should confer protection to elderly subjects who face infection 

with a new variant of the virus.  To model this scenario, we vaccinated 6-mo-old to 1-y-old 

BALB/c retired breeders with 106 IU of VRP-S, VRP-N, VRP-S+N, or PBS, boosted them 4 

wk later, and then challenged them 32 wk post-boost with 105 pfu of icGDO3-S (summarized 

in Table 1, experiment 4).  At 4 d post-infection, mean titers in the lungs of animals 

vaccinated with VRP-N and PBS were similar at 4.4 ± 0.5 and 4.7 ± 0.6 log10 pfu/g (p = 0.2), 

respectively (Fig. 12B).  VRP-S vaccination provided partial protection when compared to 

the PBS control group (p = 0.026 Fisher exact test), with the lungs of three of eight animals 

positive for viral replication at a mean titer of 2.9 ± 1.8 log10 pfu/g. All eight of the lungs 

harvested from the VRP-S+N–vaccinated animals were positive for viral replication, 

although a mean titer of 3.5 ± 1.2 log10 pfu/g was comparable to the mean titer for VRP-S–

vaccinated mice (p = 0.4) and reduced relative to the PBS control (p = 0.02).  The presence 

of SARS-CoV replication in the lungs of control and vaccinated animals was confirmed by in 

situ hybridization (Fig. 12C).  SARS-CoV N-specific riboprobe was hybridized to lung 
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sections of mice from PBS-, VRP-N–, VRP-S–, and VRP-S+N–vaccinated groups (Fig. 

12C).  All tested lung sections from PBS mocks (unpublished data) and VRP-N–vaccinated 

(Fig. 12C, image a) animals exhibited in situ signal (arrows), although the signal did not 

appear to be as intense as that of the icSARS-CoV–infected animals (Fig. 10C).  Lungs of 

the VRP-S–vaccinated animals (Fig. 12C, image b) had two of five slides exhibiting SARS-

CoV–specific signal above background levels, whereas VRP-S+N (Fig. 12C, image c) had 

three of four slides. 

 

Senescence and VRP-S Immune Responses.  Because neutralizing antibody has been reported 

to confer protection from SARS-CoV replication within the lungs of mice (9, 188, 223), it 

was of interest to determine whether the VRP-S vaccine established high neutralizing 

antibody levels that persisted until challenge.  Plaque reduction neutralization titer (PRNT) of 

serum samples harvested prior to vaccination showed no neutralization of icSARS-CoV; 

similar results were noted from serum collected from mice vaccinated with the negative 

controls, VRP-HA or PBS (unpublished data).  The 80% PRNT values (PRNT80), the dilution 

of serum at which plaque numbers are reduced by 80% relative to virus treated with control 

sera, for VRP-S– and VRP-S+N–vaccinated animals at 5 and 53 wk post-boost against both 

icSARS-CoV and icGDO3-S were compared (Fig. 13A and Table S1).  The mean reciprocal 

dilutions for the PRNT80 of VRP-S and VRP-S+N against icSARS were measured at 796 ± 

307 at 5 wk post-boost and 628 ± 363 at 53 wk.  Sera from mice vaccinated with the 

combination of VRP-S+N had mean reciprocal PRNT80 of 1,091 ± 361 and 370 ± 179 at 5 

and 53 wk, respectively.  The initial neutralizing response in animals vaccinated with VRP-S 

and VRP-S+N was similar (p = 0.2 at 5 wk post-boost), and although there was not 
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significant waning of the icSARS-neutralizing activity over the 48-wk period in the VRP-S–

vaccinated animals (p = 0.3 Wilcoxin matched pairs signed-rank test), VRP-S+N serum was 

diminished by about 3-fold (p = 0.03 Wilcoxin matched pairs signed-rank test).  All tested 

sera remained above the lower limit of detection (1:100) and were sufficient to prevent 

icSARS replication within the lungs of challenged animals (Fig. 10B).  The neutralizing 

activity of sera from the vaccinated animals was more effective against the vaccine strain 

than against heterologous icGDO3-S virus for both sera harvests and vaccine combinations.  

The reciprocal dilutions for the PRNT80 of the VRP-S samples at 5 wk post-boost were 

below the limit of detection, whereas two samples of the week 53 bleed were measured 

above the limit of detection with a mean value of 112 ± 28.  The icGDO3-S PRNT80 

measurements for VRP-S+N at weeks 5 and 53 post-boost were below the limit of detection 

with one exception for each time point: one mouse was measured to have a PRNT80 of 124 at 

5 wk, for an average titer of 103 ± 8, and another a PRNT80 of 107 at 53 wk post-boost, an 

average of 101 ± 3. 

Given that the VRP-S vaccine’s ability to provide long-term protection was likely due 

to the strong SARS-CoV–neutralizing response induced in vaccinated mice, we measured the 

PRNT80 of the VRP-S immune sera from mice vaccinated when old (Table 1, experiment 4) 

to determine if the incomplete protection seen in that study could be linked to a reduced 

neutralizing antibody response in the senescent animals (Fig. 13B and Table S1).  Against 

the vaccine strain, the reciprocal dilutions of the mean PRNT80 were 170 ± 82 with two of six 

samples falling below the limit of detection for VRP-S mice at 12 wk and 142 ± 65 at 29 wk 

post-boost with four of six falling below the limit of detection.  Sera from the VRP-S+N–

inoculated mice had PRNT80 values falling near or below the limit of detection with only one 
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measurable sample at 114, for an average of 103 ± 6 and no icSARS-neutralizing ability 

detected at week 29.  Against icGDO3-S, the VRP-S PRNT80 values were below the limit of 

detection with the exception of a single VRP-S–vaccinated animal showing a neutralizing 

titer of 179 at 12 wk post-boost, for an average dilution of 116 ± 35 for the group.  Sera 

harvested from these animals exhibited a marked reduction in neutralizing ability when 

compared to the response in animals vaccinated when young, even against the vaccine strain 

(p = 0.008 for VRP-S week 5 versus VPP-S week 12 post-boost; p = 0.006 VRP-S+N week 5 

versus VRP-S+N week 12 post-boost).  A strong anti–SARS-CoV neutralizing response was 

not induced by the VRP vaccines when administered to senescent mice. 

ELISAs for total IgG specific for SARS-S and influenza-HA were performed to 

compare the VRP vaccines’ ability to induce antibody to those antigens in mice vaccinated 

when young or senescent.  ELISA for SARS-S was performed on sera collected prechallenge 

from the VRP-S– and VRP-S+N–vaccinated mice of experiments 2 and 4 (Fig. 14A).  Mice 

vaccinated young with VRP-S (experiment 2) had an average log10 half-maximum ELISA 

titer of 2.6 ± 0.6 at 53 wk post-boost, whereas that of the senescent animals was 

approximately a log lower at 1.5 ± 0.9 at 29 weeks post-boost (p = 0.007).  The difference 

between animals of the two age groups was even more striking when anti-S IgG levels were 

compared in the VRP-S+N mice.  The animals vaccinated young with VRP-S+N had an 

average titer of 2.6 ± 0.3, whereas the average for senescent animals was at the limit of 

detection of 0.02 log10 half-maximum ELISA titer.  To verify that the reduced ability of the 

senescent animals to mount specific antibody responses was not limited to the SARS-S 

antigen; anti-HA IgG titers were compared in mice vaccinated with VRP-HA.  The average 

anti-HA titer of animals vaccinated when young was 4.7 ± 0.2, whereas the titer of the 
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vaccinated senescent mice was approximately one-tenth the size with a mean titer of 3.7 ± 

0.8 (p < 0.001).  The reduced ability of sera harvested from senescent animals to neutralize 

virus correlates to a general reduction in antigen-specific antibody production. 

 

Pathologic Findings in Mice.  Lungs from the vaccinated senescent mice challenge studies 

(Table 1, experiments 2 and 4) were sectioned, hematoxylin and eosin stained, and analyzed 

for pathology.  Though there was some animal-to-animal variation, in general only minor 

inflammatory changes were observed in the senescent control mice challenged with either 

icSARS or icGDO3-S (Fig. 15, panel C, and Fig. 16, panels A and B).  However, following 

SARS-CoV challenge in senescent mice, the N-vaccinated groups exhibited more marked 

bronchiolitis and alveolitis, as well as a conspicuous perivascular and peribronchiolar 

interstitial accumulation of numerous mononuclear leukocytes (mainly lymphocytes and 

plasma cells; i.e., lymphoplasmacytic cuffing) and increased numbers of widely scattered 

eosinophils (Fig. 15 images b and c; Fig. 16 images c and d).  Upon SARS-CoV challenge, 

the animals vaccinated with S+N also exhibited a similar, but less severe, lymphoplasmacytic 

infiltration around pulmonary vessels and bronchiolar airways, although alveolitis and 

eosinophil infiltration were not a prominent feature in these animals (Fig. 15 panel F and Fig. 

16 panels G and H).  The lungs of animals vaccinated with VRP-S were similar to VRP-HA– 

or PBS mock-vaccinated animals with minimal lymphoplasmacytic cell accumulations (Fig. 

15 image e; Fig. 16 images e and f).  Therefore, not only did N vaccination fail to control 

SARS-CoV replication within the lungs, but N vaccination also resulted in an enhanced 

immunopathology in the lungs of the senescent animals upon viral challenge. 
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Duration of N-Induced Pathology.  In order to determine the kinetics of the VRP-N–

associated immunopathology and whether this effect was age dependent, young and old 

VRP-N– or VRP-HA–vaccinated mice were challenged with icSARS and sacrificed on days 

2, 4, 7, and 14 post-challenge.  Young (8 wk of age) or senescent (53 wk of age) female 

BALB/c mice were vaccinated with 106 IU of VRP-N or VRP-HA, boosted 7 wk later, then 

i.n. challenged with 105 pfu of icSARS-CoV 4 wk post-boost.  Lungs were harvested on days 

2, 4, 7, and 14, titered, and processed for histology (Summarized in Table 1, experiments 5 

and 6).  In young mice, day 2 average lung titers were 7.5 ± 0.2 log10 pfu/g and 8.1 ± 0.1 

log10 pfu/g for the VRP-N– and VRP-HA–vaccinated animals, respectively.  Day 4 average 

titers were 5.5 ± 0.3 log10 pfu/g for VRP-N–vaccinated and 5.7 ± 0.1 log10 pfu/g for VRP-

HA–vaccinated mice.  SARS titers in the VRP-N–vaccinated mice lungs had dropped to the 

limit of detection by day 7, with two of the three lungs from VRP-HA–vaccinated mice 

showing measurable titers at a mean of 3.2 ± 0.3 log10 pfu/g. By day 14, virus was 

undetectable in either group.  In senescent animals, the day 2 average lung titers were 8.2 ± 

0.2 and 8.5 ± 0.1 log10 pfu/g for the VRP-N– and VRP-HA–vaccinated animals, respectively.  

By day 4, the mean titers had dropped to 5.4 ± 0.6 log10 pfu/g for VRP-N–vaccinated animals 

and 5.7 ± 0.5 log10 pfu/g for the VRP-HA controls. On day 7, one VRP-N–vaccinated mouse 

had a detectable titer of 3.7 log10 pfu/g, whereas the lungs of two VRP-HA–vaccinated mice 

were positive for replication with a titer of 3.7 ± 0.5 log10 pfu/g.  No virus was detected in 

either group on day 14 post–challenge. 

Though enhanced inflammation was observed in a subset of the VRP-N–vaccinated 

animals at day 2 post–infection (Fig. 17 panel B), the inflammatory infiltrates were readily 

apparent in both young and senescent animals at day 4 post-infection (Fig. 17 panel D and 
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unpublished data) and were maintained at days 7 and 14 post-infection (Fig. 17 panels F and 

H).  As had been noted previously, VRP-HA– and VRP-N–vaccinated animals also differed 

by the presence of eosinophils (Fig. 18).  At day 2 post-infection, eosinophils were rarely 

seen in either VRP-HA– or VRP-N–vaccinated mice (Fig. 18, panels A and B, respectively).  

In VRP-N–vaccinated animals, but not HA–vaccinated animals, eosinophils were widespread 

on days 4 and 7 (Fig. 18. panels D and F), but had largely cleared from the lungs by day 14 

(Fig. 18, panel H).  There was no apparent difference in severity between the young and 

senescent animals, suggesting that the immune pathology was specific to pre-existing N 

immunity, but was not age dependent (unpublished data). 

 

Anti–SARS-N Antibody and Inflammation.  A passive transfer of anti-N, anti-HA, or anti-S 

sera into naive mice was performed to determine if the increased inflammatory response 

could be attributed to N-specific antibody, and to confirm that protection in S-vaccinated 

animals was mediated by S-specific antibody.  Hyperimmune sera against VRP-HA (5.26 

log10 OD = 0.2 ELISA titer), VRP-N (5.6 log10 OD = 0.2 ELISA titer), or VRP-S (5.5 OD = 

0.2 ELISA titer) were intravenously transferred in 150-μl volumes to groups of 8-wk-old or 

43-wk-old naive BALB/c mice prior to challenge with 105 pfu of icSARS.  Prior to 

challenge, serum was collected from mice and antigen-specific IgG titered to verify 

successful transfer.  Young mice receiving anti–VRP-HA (n = 4) had a mean ELISA serum 

titer of 2.8 ± 2.4 log10 OD = 0.2, whereas senescent mice (n = 4) had a 2.9 ± 1.8 log10 OD = 

0.2 ELISA titer.  The average serum titers for mice injected with anti–VRP-N were 2.7 ± 2.4 

log10 OD = 0.2 ELISA titer in young (n = 4) and 2.3 ± 1.9 log10 OD = 0.2 ELISA titer in 

senescent animals (n = 4).  The anti–VRP-S log10 OD = 0.2 ELISA titers were 3.1 ± 3.1 in 
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young animals (n = 3) and 2.9 ± 2.3 in senescent mice (n = 3).  Lungs were harvested 4 d 

post-challenge, virus titers determined, and processed for histological analysis.  Virus titers 

in the young mice were 5.0 ± 0.1 log10 pfu/g in the anti–VRP-HA group, 5.2 ± 0.1 in the anti 

VRP-N group, and below the limit of detection (2.4 log10 pfu/g) in animals injected with the 

anti–VRP-S.  Titers in the senescent mice were 5.3 ± 0.3 log10 pfu/g in the anti–VRP-HA 

group, 5.6 ± 0.6 in animals receiving the anti–VRP-N, and below the limit of detection in 

mice inoculated with anti–VRP-S.  None of the mice displayed the enhanced inflammation 

noted in VRP-N–vaccinated animals (unpublished data), indicating that the observed 

immunopathology was not the result of antibody-dependent enhancement. 

 

Discussion 

VRP vaccine vectors induce robust mucosal and cellular immune responses against a 

large number of foreign antigens (40, 41) and were evaluated as candidate vaccines against 

homologous and zoonotic SARS-CoV challenge in young and senescent animals.  

Inoculation of mice with VRP-S induced antibody that recognized the epidemic SARS-CoV 

S glycoprotein as well as the S of a highly divergent strain, GDO3.  The VRP-S vaccine 

induced long-term protection against challenge with the vaccine strain, complete short-term 

protection against icGDO3-S challenge, and partial protection against the divergent virus in 

the senescent mouse model.  In contrast, vaccination with VRP-N failed to inhibit viral 

replication within the lungs of either young or senescent animals, resulted in enhanced 

immunopathology following viral challenge, and did not provide any measurable benefit 

when combined with VRP-S.  The data suggest that vaccine regimens eliciting complete 

protection against antigenically heterologous forms of SARS-CoV in healthy individuals may 
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not be sufficient for higher risk groups, including vulnerable elderly populations, and that 

there is a need for further testing of candidate vaccines that induce an anti-N response. 

VRP-S vaccination generated a strong neutralizing antibody response (PRNT80 > 

1:600) that persisted for over a year and provided complete protection against challenge with 

the vaccine strain.  In humans, neutralization titers have been measured from 1:12 to 1:512 

with a geometric mean titer of 1:61 (235).  In a study evaluating an inactivated virus vaccine, 

neutralizing antibody titers greater than 1:114 resulted in complete protection against 

challenge (181).  Mice inoculated with vesicular stomatitis virus vectors expressing SARS-S 

developed lower average neutralizing titers of 1:32, which were nevertheless protective 

against SARS-CoV infection for up to 4 mo after vaccination (99).  We followed animals for 

over 1 y after boost. To our knowledge, these are the first assays illustrating waning immune 

responses to a SARS-CoV candidate vaccine.  On average, mice vaccinated when young with 

VRP-S did not show a significant reduction in neutralizing titers up to 53 wk post-boost, 

whereas mice vaccinated with the combination of VRP-S+N experienced about a 3-fold 

reduction over the same period of time. Although it is problematic to compare our 

neutralizing antibody titers to those induced by other SARS vaccines due to the use of 

different assays, we demonstrate protection from challenge with either vaccine or 

heterologous challenge virus strains in animals with an icSARS PRNT80 greater than 1:114, 

near the assay’s limit of detection.  Vaccines that induce robust neutralizing titers against the 

homologous strain will likely confer protection against zoonotic reintroductions, especially in 

younger populations. 

As reported with other SARS-N–expressing DNA and vectored vaccines (20, 155), 

VRP-N did not protect mice from SARS-CoV replication, and no benefit to vaccination with 
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a cocktail of both VRP-S and VRP-N was observed, although an approximately half-log 

reduction in viral titers within the lungs of some VRP-N–vaccinated mice was occasionally 

observed.  Although any reduction in SARS-CoV titer can be interpreted as a positive aspect 

of a potential vaccine, given the relationship between viral titer and SARS disease severity 

(35, 88), the increased number of lymphocytic and eosinophilic inflammatory infiltrates, 

which are also characteristic of the immune pathology observed with respiratory syncytial 

virus (RSV) infection following vaccination with formalin-inactivated RSV (43, 78), raises 

concerns that vaccination with N alone will not only fail to effectively protect against SARS-

CoV replication, but may result in vaccine-enhanced pulmonary disease (102).  N-induced 

pathology has not been previously reported, probably because most studies examined young 

mice at 2–3 d post-infection, prior to the infiltration of inflammatory cells into the lung.  

VRP-N–induced pathology was clearly evident by day 4 and persisted for 1–2 wk following 

wild-type virus challenge, suggesting the potential for serious complications in lung 

physiology and function.  This finding has particular significance for SARS-N and 

inactivated SARS-CoV vaccines currently under development that also induce anti-N 

antibody and T cell responses (104, 122, 170, 181, 192, 222, 233, 241), because they may 

lead to adverse effects.  Therefore, caution is merited with respect to the inclusion of SARS-

CoV N protein in any vaccine formulation.  The passive transfer of anti-N antibody did not 

contribute to inflammation and leads us to hypothesize that it is the activity of SARS-N–

specific T cells in the absence of effective neutralizing anti–SARS-CoV antibody that 

mediates the adverse response.  It is interesting that a Th2–skewed cytokine profile is a 

hallmark of the RSV vaccine-enhanced disease, which raises the possibility that the N-

specific immune response is skewed in a similar manner (95). 
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SARS-CoV strain diversity was mostly confined to China where many human and 

animal isolates were not successfully cultured in vitro (195).  Consequently, most available 

experimental strains, like Urbani, are nearly identical and do not reflect natural diversity 

(156, 175).  Recent advances in synthetic biology used to reconstruct extinct viruses, or 

specific genes of those viruses, de novo from their nucleotide sequences (29, 105, 177) 

provide the means for expanding the number of available SARS-CoV test strains.  Using a 

comprehensive SARS-CoV genetic database (195, 224), we resurrected the divergent GDO3-

S glycoprotein in the Urbani genetic backbone.  The icGD03-S recombinant virus was 

identical to the molecular clone except for the presence of two mutations in S that likely 

evolved after transfection of full-length RNA and virus passage in Vero cells, similar to the 

cell culture adaptations reported in S for other SARS-CoV strains isolated from human 

clinical specimens and passaged in vitro (182).  The icGDO3-S CoV’s sequence divergence 

from Urbani, efficient in vitro replication in HAE and Vero cultures, and robust in vivo 

replication in the mouse model, make it an excellent heterologous challenge inoculum for 

vaccine studies.  The GD03 RBD is also present in many zoonotic isolates described in civets 

and raccoon dogs, supporting its use as a zoonotic model strain (195).  Furthermore, the 

reduced replication in HAE cultures of icGDO3-S compared to Urbani-CoV is consistent 

with the reduced pathogenesis noted in the GDO3 human case (35, 88, 195). 

Consistent with previous work comparing the susceptibility of pseudotyped 

lentiviruses bearing the S glycoproteins of various SARS strains to neutralization by anti-S 

(Urbani) IgG (224), anti–VRP-S antibody demonstrated reduced neutralization of icGDO3-S 

relative to the vaccine strain.  In spite of this, the VRP-S vaccine successfully provided short-

term protection against the divergent virus.  Vaccination of senescent animals produced 
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significantly reduced antibody responses compared with younger mice, and when challenged 

with the heterologous icGDO3-S virus, protection was incomplete.  However, any animal 

with a PRNT80 value above 1:114 against icSARS showed reduced viral replication within 

the lungs following challenge with either the vaccine or icGDO3-S strains.  As noted for the 

homologous challenge studies, the combination of VRP-S+N did not enhance protection 

from heterologous challenge, but may actually have weakened it, with senescent animals 

showing even lower anti-S antibody responses and an even higher rate of viral replication, 

albeit with reduced titers, and increased lung pathology.  One possible cause for vaccine 

failure is the emergence of an escape mutant in an environment of suboptimal neutralization.  

However, initial data comparing the neutralization susceptibility of viruses isolated from 

these mice to the challenge stock refute this conjecture (unpublished data).  Incomplete 

protection by a vaccine in immunosenescent animals and humans is well documented and is 

more likely the result of an age-related compromise in one or more stages of the immune 

response to the vaccine.  For instance, antibody responses in the immunosenescent tend to 

offer less protection with limited switching to secondary isotypes, lower antibody levels in 

general, and production of antibody with lower affinities (59, 84, 134, 139, 179, 239).  

Although we have not tested single-vaccine dose regimens, previous studies have 

demonstrated that these are efficacious against SARS-CoV challenge in young animals (99).  

Given the low antibody titers following boost in senescent populations, single-vaccine dose 

formulations will likely prove ineffective.  Rather, improving the VRP-S efficacy in older 

vaccinees may require additional vaccine boosts, the use of adjuvants, or other additional 

therapies (60).  Another likely contributing factor to vaccine failure in older animals was the 

resistance of icGDO3-S to neutralization relative to the vaccine strain, icSARS-CoV.  At 
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least three neutralizing sites have been identified in the SARS-CoV S glycoprotein, two of 

which map at the N-terminus and in the RBD of the S glycoprotein, and one to a weak third 

site near the carboxy-terminus of S.  Given that most of the GD03 mutations map in and 

around the N-terminus and RBD in S1 (224), it is possible that either one or both of these 

critical epitopes are significantly different in icGD03-S, and likely explains the resistance to 

neutralization with antisera against Urbani-S.  These data suggest that robust neutralizing 

titers should be induced by candidate vaccines to provide long-term protection from SARS-

CoV infection, especially in the vulnerable senescent population and against heterologous 

strains. 

Earlier work had indicated that antibodies to the Urbani strain of SARS-CoV 

enhanced the in vitro infectivity of pseudotyped viruses bearing the S glycoprotein of 

zoonotic strains, primarily with strains SZ16 and SZ3, and raised the specter of S-vaccine–

induced complications with newly emergent strains (224).  In contrast, it was shown that 

monoclonal, but not polyclonal, antibodies that neutralized the epidemic strain may enhance 

the infectivity of pseudotyped viruses bearing GD03-S glycoproteins, although the enhanced 

infection was marginal at best (224).  Our research with antibody directed against Urbani-S 

indicated that the polyclonal antibody neutralized icGD03-S on Vero cells, although less 

efficiently than the vaccine strain, which is consistent with the previous report (224).  

Moreover, in the young and senescent mouse models, VRP-S–vaccinated animals challenged 

with homologous or heterologous icGD03-S recombinant viruses did not display vaccine-

mediated enhancement of virus replication or enhanced pathology.  Because VRP-S vaccines 

induce broad neutralizing antibody responses that likely target multiple epitopes across the S 

glycoprotein, it is possible that the noted enhancement of infectivity with monoclonal 
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antibodies is nullified.  Indeed, recent work showed that antibody specific for the RBD of 

Tor-2–S, GDO3–S, and SZ3–S glycoproteins did not reproduce enhanced infectivity in 

pseudotyped viruses bearing SZ3-S and identified conserved epitopes that allowed all three 

strains to be effectively neutralized, raising hope that a single vaccine could be effective 

against widely divergent strains of SARS-CoV (80).  Clearly, additional studies are needed 

with more heterologous strains in alternative animal models before the possibility of vaccine-

induced enhancement of infection and pathology can be discounted. 

To our knowledge, this study is the first to demonstrate that a SARS-CoV vaccine 

conferred long-term protection into the period in which a host is most susceptible to SARS-

CoV pathology: senescence.  Furthermore, the VRP-S vaccination of young animals 

protected against challenge with a divergent strain of SARS-CoV, indicating that current 

vaccines may also provide protection from many zoonotic strains that might emerge in the 

future.  Such cross protection has been observed among other vaccines, such as HA 

formulations for influenza virus (38) and VRP vaccines against norovirus (123).  Inducing 

robust immune responses in older animals is more challenging, but VRP-S vectors provided 

some protection from icGDO3-S challenge, and did so without the enhanced pathology 

induced by the VRP-N vaccine. 

Because human infections have not been reported since 2004, animal models are 

essential for the development of SARS-CoV vaccines.  The young mouse model provides 

readily available animals on a homogenous genetic background and efficient replication 

within the respiratory tract.  The senescent mouse model adds the benefit of enhanced 

pathogenesis and mimics the age-related susceptibility seen in humans (158).  Although 

aging decreases B and T cell immunity and innate immune function in humans and mice, 
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characterization of these immune deficiencies is incomplete in both species.  SARS-CoV 

infection in senescent mice provides a key model to evaluate the mechanisms by which aging 

deters immune responsiveness to highly pathogenic emerging viruses like SARS-CoV and 

influenza virus, and develop key intervention approaches to enhance vaccine efficacy in the 

elderly.  The expense and limited availability of other senescent species makes the mouse 

model invaluable. 

Important caveats must be considered while evaluating this work.  Murine models of 

SARS disease have limitations.  The disease progression in mice is faster than in humans, 

rodents and humans do not share the same symptoms, and virus infection is less severe; 

limitations that are also evident in the hamster, primate, and ferret models (189).  These 

shortcomings necessitate that vaccine candidates be tested in other animal systems and 

underscore the critical need for the development of highly pathogenic challenge models for 

vaccine and therapeutic testing.  This report does not provide a mechanism for the VRP-N–

induced pathology nor provide solutions for minimizing potential risks associated with it.  

Although the passive transfer of anti–SARS-N serum did not reproduce the inflammation 

seen in VRP-N–vaccinated animals, these results must be interpreted with caution because 

the anti-N antibody levels in the recipient mice were lower than those of mice directly 

immunized by VRP-N. 

The data presented in this manuscript do reveal critical needs and potential 

complications in vaccine design, laying the foundation for continuing and future studies to 

improve the quality, safety, and efficacy of SARS-CoV vaccines.  Our model systems 

provide a means for identifying the host factors that contribute to immune senescence and 

will allow us to evaluate whether changes in vaccine design or regimen will improve vaccine 
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efficacy in senescent animals.  The models provide clear rational to test candidate SARS 

vaccines in the hamster, ferret, and primate models in which pathology and clinical disease 

are more prominent following wild-type virus challenge.  Our research provides a model for 

future experiments designed to characterize the components and inducers of the VRP-N–

enhanced pulmonary inflammation, and suggests that vaccine regimens that contain N 

protein should be used with caution in human populations until further testing.  The 

successful resurrection of a novel recombinant SARS challenge virus bearing zoonotic S 

glycoproteins suggests that it might be feasible to reconstruct other rare zoonotic SARS-

CoVs that have never been successfully cultured, providing novel challenge viruses for 

vaccine and therapeutic drug testing against potential future zoonotic SARS introductions 

into human populations.  Finally, these studies should encourage the development of 

senescent animal models of human disease and encourage vaccine testing and design against 

influenza, West Nile virus, and other pathogens that produce disproportionate disease 

burdens in the elderly (27, 140). 
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Table 1. Summary of Vaccine Groups and Select Results for Mouse Experiments 

Exp n Vaccine 
Age 

Vaccinated 
(weeks) 

Age 
Boosted 
(weeks) 

Challenge 
Virus 

Age 
Challenged 

(weeks) 

Lungs 
Harvested 
(days post 
challenge) 

Lung 
Titer  

+ for viral 
replication 

6 VRP-S 4 8 icSARS 16 2 0 0/6 
1 

6 VRP-HA 4 8 icSARS 16 2 6.7±0.5 6/6 

8 VRP-S 5 10 icSARS 64 4 0 0/8 

8 VRP-N 5 10 icSARS 64 4 5.3±0.6 7/7 

8 VRP-S+N 5 10 icSARS 64 4 0 0/8 
2 

7 VRP-HA 5 10 icSARS 64 4 5.8±0.6 8/8 

8 VRP-S 7 10 icGDO3-S 17 2 0 0/8 

8 VRP-N 7 10 icGDO3-S 17 2 6.3±0.1 8/8 

8 VRP-S+N 7 10 icGDO3-S 17 2 0 0/8 
3 

8 VRP-HA 7 10 icGDO3-S 17 2 7.0±0.1 8/8 

8 VRP-S >26 >30 icGDO3-S >62 4 5.0±0.9 3/8 

7 VRP-N >26 >30 icGDO3-S >62 4 4.4±0.5 8/8 

8 VRP-S+N >26 >30 icGDO3-S >62 4 3.7±1.2 8/8 
4 

8 PBS >26 >30 icGDO3-S >62 4 4.9±0.6 8/8 

3 VRP-N 8 15 icSARS 19 2 7.5±0.2 3/3 

3 VRP-HA 8 15 icSARS 19 2 8.1±0.1 3/3 

3 VRP-N 8 15 icSARS 19 4 5.5±0.3 3/3 

3 VRP-HA 8 15 icSARS 19 4 5.7±0.1 3/3 

3 VRP-N 8 15 icSARS 19 7 0 0/3 

3 VRP-HA 8 15 icSARS 19 7 3.2±0.5 2/3 

3 VRP-N 8 15 icSARS 19 14 0 0/3 

5 

2 VRP-HA 8 15 icSARS 19 14 0 0/2 

3 VRP-N 53 60 icSARS 64 2 8.2±0.2 3/3 

2 VRP-HA 53 60 icSARS 64 2 8.5±0.1 2/2 

3 VRP-N 53 60 icSARS 64 4 5.4±0.6 3/3 

3 VRP-HA 53 60 icSARS 64 4 5.7±0.5 3/3 

2 VRP-N 53 60 icSARS 64 7 3.7 1/2 

2 VRP-HA 53 60 icSARS 64 7 3.7±0.5 2/2 

3 VRP-N 53 60 icSARS 64 14 0 0/3 

6 

2 VRP-HA 53 60 icSARS 64 14 0 0/2 
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Table S1.  Titers and PRNT80 Dilutions for Individual Senescent Mice 
 

icSARS-CoV icGDO3-S 
Experiment Vaccine Mouse Challeng

e Virus 
Lung Titer 
(log10pfu/g) PRNT80 

week 5 
PRNT80 
week 53 

PRNT80 
week 5 

PRNT80 
week 53 

VRP-S 1 icSARS ND 500 526 <100 <100 

VRP-S 2 icSARS ND 938 755 <100 <100 

VRP-S 3 icSARS ND  1417  <100 

VRP-S 4 icSARS ND 585 159 <100 <100 

VRP-S 5 icSARS ND 695 493  114 

VRP-S 6 icSARS ND 1260 574 <100 181 

VRP-S 7 icSARS ND  652  <100 

VRP-S 8 icSARS ND  445 <100 <100 

VRP-N 1 icSARS 6.1     

VRP-N 2 icSARS 4.9     

VRP-N 3 icSARS 5.2     

VRP-N 4 icSARS 4.2     

VRP-N 5 icSARS 5.8     

VRP-N 6 icSARS 5.6     

VRP-N 7 icSARS 5.4     

VRP-N 8 icSARS 5.1     

VRP-S+N 1 icSARS ND >1600 549 <100 <100 

VRP-S+N 2 icSARS ND 628 150 <100 <100 

VRP-S+N 3 icSARS ND 1417  124  

VRP-S+N 4 icSARS ND 775 308 <100 <100 

VRP-S+N 5 icSARS ND 1159 346 <100 107 

VRP-S+N 6 icSARS ND  594 <100 <100 

VRP-S+N 7 icSARS ND 1243 487 <100 <100 

VRP-S+N 8 icSARS ND 817 159 <100 <100 

VRP-HA 1 icSARS 5.2     

VRP-HA 2 icSARS 6.2     

VRP-HA 3 icSARS 5.8     

VRP-HA 4 icSARS 6.1     

VRP-HA 5 icSARS 6.6     

VRP-HA 6 icSARS 5.2     

2 

VRP-HA 7 icSARS 5.2     
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Table S1.  Titers, PRNT80 Dilutions, and Inflammation Scores for Individual Senescent 
Mice (continued) 
 

icSARS-CoV icGDO3-S 
Experiment Vaccine Mouse Challenge 

Virus 
Lung Titer 
(log10pfu/g) PRNT80 

week 12 
PRNT80 
week 29 

PRNT80 
week 12 

PRNT80 
week 29 

VRP-S 1 icGDO3-S ND 237 100 100 <100 

VRP-S 2 icGDO3-S ND 106 100 <100 <100 

VRP-S 3 icGDO3-S 4.3    <100 

VRP-S 4 icGDO3-S ND    <100 

VRP-S 5 icGDO3-S ND 185 237 179 <100 

VRP-S 6 icGDO3-S 6.0 100 100 <100  

VRP-S 7 icGDO3-S ND 291 212   

VRP-S 8 icGDO3-S 4.7 100 100 <100  

VRP-N 1 icGDO3-S 3.6     

VRP-N 2 icGDO3-S 4.6     

VRP-N 3 icGDO3-S 4.5     

VRP-N 4 icGDO3-S 5.3     

VRP-N 5 icGDO3-S 3.8     

VRP-N 6 icGDO3-S 4.3     

VRP-N 7 icGDO3-S 4.6     

VRP-S+N 1 icGDO3-S 4.7    <100 

VRP-S+N 2 icGDO3-S 4.0  <100  <100 

VRP-S+N 3 icGDO3-S 2.2 <100 <100 <100 <100 

VRP-S+N 4 icGDO3-S 4.3 <100 <100 <100 <100 

VRP-S+N 5 icGDO3-S 2.4 114 <100 <100 <100 

VRP-S+N 6 icGDO3-S 4.8 <100 <100 <100  

VRP-S+N 7 icGDO3-S 3.5 <100  <100  

VRP-S+N 8 icGDO3-S 1.7     

PBS 1 icGDO3-S 4.9     

PBS 2 icGDO3-S 5.0     

PBS 3 icGDO3-S 4.7     

PBS 4 icGDO3-S 4.6     

PBS 5 icGDO3-S 5.1     

PBS 6 icGDO3-S 4.9     

PBS 7 icGDO3-S 5.2     

4 

PBS 8 icGDO3-S 3.2     
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Figure 9. VRP Expression of SARS S and N and VRP-S Induction of Anti-SARS S 
Antibody.  (A)  Western blot of cell lysates infected with VRP-S or VRP-N and probed with 
human serum collected from a convalescent SARS patient, 1128.  (B)  Western blot of 
lysates from cells infected with the SARS-CoV strains Urbani, Tor2, icSARS, or icGDO3-S 
and probed with human convalescent serum, 1128,  (C)  mouse anti–SARS-S serum from 
VRP-S–vaccinated animals, or  (D)  mouse serum from a mouse vaccinated with VRP-N.   
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Figure 10. VRP-S Induces Short- and Long-Term Protection against icSARS-CoV 
Challenge.  icSARS titers are expressed as the log10 plaque forming units per gram (pfu/g) of 
lung.  Tissues were homogenized in PBS to form a 20% suspension and titered on Vero 
monolayers.  The titers for individual mice are shown as a filled circle, and the mean titer for 
the group is represented by a solid bar. Limit of detection (lod) is 2.4 log10 pfu/g.  (A)  Lung 
titers of16-wk-old BALB/c mice harvested 2 d after being i.n. infected with 105 PFU of 
icSARS-CoV (n = 6).  (B)  Lung titers of BALB/c mice vaccinated and boosted with 106 
infectious units (IU) of VRP expressing the influenza HA (VRP-HA), SARS-S glycoprotein 
(VRP-S), SARS-N protein (VRP-N), or a combination of VRP-S and VRP-N (VRP-S+N).  
Mice (n = 7 VRP-HA, n = 8 for other groups) were vaccinated at 5 wk of age, boosted 5 wk 
later, then i.n. challenged with 105 pfu of icSARS-CoV 54-wk post-boost. Lungs were 
harvested 4 d later and titered.  (C)  Plaque assay results were confirmed by in situ 
hybridization to sectioned lungs of five mice from each vaccinated group with a radiolabeled 
riboprobe complementary to the SARS CoV N gene.  In senescent mice challenged with the 
icSARS-CoV, representative lung sections from VRP-HA– (unpublished data) and VRP-N–
vaccinated (a) animals exhibited extensive in situ signal (black arrows), whereas only one of 
five sections from VRP-S–vaccinated (b) and zero of five sections from VRP-S+N–
vaccinated (c) mice exhibited SARS-CoV–specific signal above background levels. 
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Figure 11. Synthetic Reconstruction of icGD03-S.  (A)  Unrooted phylogenetic gene tree 
of 35 SARS isolates ranging from early, middle, and late phases of the 2002–2003 epidemic 
to 2003–2004 animal isolates.  Branch confidence values are shown as posterior 
probabilities.  The three human isolates that fall within the cluster otherwise isolated from 
animals (shown in boxes), GZ0402, GD03, and GZ0401, may represent infections in which a 
human acquired the virus from a Himalayan palm civet.  (B)  The GDO3- S glycoprotein.  
Amino acid changes unique to the GDO3-S with the GDO3-S amino acid listed on the left 
and the corresponding Urbani to the right.  The GDO3-S amino acid changes are shown in 
relation to the S1 and S2 subunits, the receptor binding domain (RBD), heptad repeats one 
(HR1) and two (HR2), the transmembrane domain (TM), and known neutralizing epitopes.  
Two mutations that arose during tissue culture passage of the chimeric icGDO3-S are shown 
in red.  (C)  Growth curves of the Urbani strain of SARS-CoV (diamond, solid line), the 
recombinant Urbani icSARS (squares, dashed line), and the recombinant chimeric virus 
icGDO3-S (triangles, dotted line) in human airway epithelial cells.  (D)  Comparing growth 
of icSARS-CoV to icGDO3-S in the lungs of mice.  Six-week-old female BALB/C mice 
were infected with icSARS-CoV or icGDO3-S (n = 5 per group).  The individual titer of each 
mouse is represented by a filled circle, and the mean titer of the group is represented as a 
solid bar. 
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Figure 12. VRP-S Induces Short-Term Protection against icGDO3-S in Young and 
Partial Protection in Old Mice.  (A)  Lung titers of BALB/c mice vaccinated and boosted 
with 106 IU of VRP-S, VRP-N, a combination of VRP-S plus VRP-N (VRP-S+N), or mock 
vaccinated with PBS, then challenged with 105 pfu of icGDO3-S challenge (n = 8 per group).  
Lungs were harvested 2 d post-challenge.  (B)  Lung titers of aged BALB/c mice vaccinated 
at greater than 26 wk of age, boosted 4 wk later, then challenged 12 wk post-boost with 
icGDO3-S (n = 7 VRP-N, n = 8 for other groups).  Tissue was harvested 4 d post-challenge.  
(C)  SARS CoV specific in situ signal (black arrows) was observed in the lungs of senescent 
mice that were vaccinated with PBS (unpublished data) or VRP-N (a) and challenged with 
icGDO3-S, although overall, the signal appeared to be less intense than that observed in the 
icSARS challenge animals (Figure 10C).  Vaccination with VRP-S (b) or VRP-S+N (c) 
failed to induce complete protection from icGD03-S challenge, as sections from two of five 
S- and three of four S+N-vaccinated animals exhibited signal above that of uninfected 
controls. 
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Figure 13.  An 80% Plaque Reduction Neutralization Titers (PRNT80) for VRP-S and 
VRP-S+N Hyperimmune Serum.  (A)  Mice vaccinated young: icSARS-CoV (left) and 
icGDO3-S (right) PRNT80 for VRP-S immune serum (experiment 2) collected at 5 wk post-
boost (n = 5) and 53 wk post-boost (n = 8).  (B)  Mice vaccinated old: icSARS (left) and 
icGDO3-S (right) PRNT80 values for VRP-S and VRP-S+N immune serum (experiment 4) at 
12 and 29 wk post-boost (n = 6 for icSARS; n = 5 for icGDO3-S).  The PRNT80 values for 
individual animals are show as black circles, and the mean value is shown as a solid bar.  The 
limits of detection (1:1,600 upper and 1:100 lower) are represented by horizontal dotted 
lines. 
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Figure 14. ELISA Titers for Anti-S and Anti-HA IgG in Vaccinated Animals.  (A)  
Log10 half-maximum ELISA titers for anti-S IgG antibody in aged mice vaccinated with 
VRP-S or VRP-S+N when young (Table 1, experiment 2) or senescent (Table 1, experiment 
4).  Values represent mean values, and error bars indicate standard deviation.  (B)  Log10 
half-maximum ELISA titers for anti-HA IgG antibody in aged mice vaccinated when young 
(experiment 2) or senescent (experiment 4). 
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Figure 15.  Pathogenic Findings Following Homologous Challenge.  Light 
photomicrographs of representative histologic lung sections (Table 1, experiment 2) taken 
from an untreated control mouse (A), a VRP-N–vaccinated mouse (B) and (D), a VRP-HA–
vaccinated mouse (C), a VRP-S–vaccinated mouse (E), and a VRP-S– and VRP-N–treated 
mouse (F).  No histopathology was evident in (A).  A marked mixed inflammatory infiltrate 
composed mainly of mononuclear leukocytes (lymphocytes and plasma cells) and widely 
scattered eosinophils are evident in the perivascular and peribronchiolar interstitium 
(asterisk) in (B).  Similar inflammatory cells are also present in bronchiolar (br) airways and 
alveolar airspaces along with enlarged and vacuolated alveolar macrophages (arrows).  The 
box in (B) denotes the site of the light photomicrograph (D) that was taken at a higher 
magnification to better illustrate the lymphoplasmacytic inflammatory cell infiltrate with 
lesser numbers of eosinophils (arrows). Similar, but slightly less severe, perivascular 
inflammatory infiltrates (asterisk) are also present in (F), but without accompanying 
alveolitis.  Minimal lymphoplasmacytic cell accumulations around the pulmonary arteriole 
(a) are evident in (C) and (E).  All tissues were stained with hematoxylin and eosin.  Bars 
denote the scale of the magnification. a, pulmonary arteriole; ap, alveolar parenchyma; br, 
bronchiolar lumen; e, surface epithelium of the bronchiole.  
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Figure 16.  Pathogenic Findings Following Heterologous Challenge.  Light 
photomicrographs of representative histologic lung sections (Table 1, experiment 4) taken 
from a mock PBS–vaccinated mouse (A) and (B), a VRP-N–vaccinated mouse (C) and (D), a 
VRP-S–vaccinated mouse (E) and (F), or a VRP-S+N–vaccinated mouse (G) and (H).  The 
boxes in (A), (C), (E), and (G) (200× magnification) denote the site of the light 
photomicrograph that was taken at a higher magnification (400×) to better illustrate the 
lymphoplasmacytic inflammatory cell infiltrates including eosinophils (yellow arrows).  All 
tissues were stained with hematoxylin and eosin. 
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Figure 17.  Kinetics of VRP-N–Associated Inflammation.  Light photomicrographs of 
lung sections taken from VRP-HA– and VRP-N–vaccinated mice harvested at days 2, 4, 7, 
and 14 post–icSARS-CoV challenge (Table 1, experiment 5).  Representative lung sections 
(200× magnification) comparing pulmonary inflammation between VRP-HA–vaccinated (A), 
(C), (E), and (G) and VRP-N–vaccinated (B), (D), (F), and (H) mice.  Enhanced 
inflammation was evident by day 2 (A) and (B) in some VRP-N–vaccinated animals relative 
to lung sections of VRP-HA–inoculated mice.  By day 4 post-infection (C) and (D), 
increased inflammation in VRP-N–vaccinated animals was widely apparent and was 
maintained through days 7 (E) and (F) and 14 (G) and (H). 
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Figure 18.  Identifying Eosinophils among Inflammatory Infiltrates.  The 400 × 
magnification comparing eosinophil infiltration within the lung sections of VRP-HA–
vaccinated (A), (C), (E), and (G) and VRP-N–vaccinated (B), (D), (F), and (H) mice (Table 
1, Experiment 5).  At day 2 post-infection (A) and (B), eosinophils are rarely evident in the 
lungs of either VRP-HA (A) or VRP-N (B) mice.  Day 4 post-infection (C) and (D), 
extensive eosinophils (yellow arrows) are present within the lungs of VRP-N–vaccinated 
mice.  Widespread eosinophils are seen at day 7 post-challenge in VRP-N–vaccinated (F), 
but not VRP-HA–vaccinated (E) mice. By day 14 (G) and (H), eosinophils are rarely found 
among inflammatory cells of VRP-N–vaccinated mice.  An identical experiment in old 
animals was performed simultaneously (Table 1, experiment 6), showed results 
indistinguishable from those of young mice (unpublished data).  All tissues were stained with 
hematoxylin and eosin. 
 



 
 
 
 
 

Chapter III 
 

MHV-A59 ORF1A REPLICASE PROTEIN NSP7-NSP10 PROCESSING IN 
REPLICATION 

 
 

The coronaviruses express ORF1a and 1b polyproteins from which are processed 16 

nonstructural proteins (nsps).  The highly conserved region at the carboxy-terminus of the 

coronavirus ORF1a is processed by the nsp5 proteinase (3CLpro or Mpro) into mature 

products including nsp7, nsp8, nsp9 and nsp10, proteins with predicted or identified activities 

involved with RNA synthesis.  Mpro continuous translation and processing of ORF1ab is 

required for replication, but specific cleavage events may be dispensable.  We test the 

hypothesis that the nsp7-10 proteins, and their efficient processing by Mpro, are required for 

replication.  We determined the requirement for the nsp7-10 proteins and their processing 

during murine hepatitis virus (MHV) replication.  Using an MHV reverse genetics system, in 

frame deletions of the coding sequences for nsp7-10 were either deleted, or the flanking 

cleavage sites ablated, and the effect upon replication determined.  Viable viruses were 

characterized through analysis of Mpro processing, RNA transcription, and growth fitness.  

Deletion of any of the regions encoding nsp7-10 was lethal.  Disruption of the cleavage sites 

were lethal with the exception of the nsp9-10 site, which resulted in a mutant virus with 

severely attenuated replication.  Serial passage of the attenuated nsp9-10 cleavage mutant 

increased fitness to near wild-type kinetics without reverting to a virus with the ability to 

process nsp9-10.  We also confirm the presence of a second cleavage site between nsp7-8.  In 

order to determine if a distinct function could be attributed to pre-processed forms of the 
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polyprotein including nsp7-10, the genes encoding nsp7 and nsp8 were rearranged.  The 

mutant virus was not viable, suggesting that the uncleaved protein may be essential for 

replication or proteolytic processing. 

 

Introduction 

 Coronaviruses were identified in the 1960’s and have since been isolated from almost 

all species of animals tested, including humans.  Disease in animals is often severe and 

contributes to significant agricultural and economic loss.  Until an emergent coronavirus was 

identified as the etiological agent of the SARS outbreak in 2003 (49, 107), human 

coronaviruses were typically associated with mild upper respiratory tract infections in winter 

(75, 135).  In addition to the more severe SARS-CoV (49, 107), two new human 

coronaviruses were found associated with more severe lower respiratory disease, NL-63 and 

HKU-1(55, 58, 203, 219).  Since the SARS epidemic, new research into coronaviruses has 

been driven by the desire to better understand coronavirus replication, pathology, 

mechanisms of host range expansion, and spurred development of anti-coronavirus therapies 

in the event of another deadly emergence.   

Coronavirus replication is mediated by a complex of cellular and virus-encoded 

proteins of the first open reading frame (ORF1), which comprises the first two-thirds of the 

viral 27-to-32 kb positive strand RNA genome (Fig. 19A).  Translation of ORF1 produces 

two polyproteins, designated ORF 1a and ORF 1ab (Fig. 19B).  The larger of the two 

polyproteins, pp1ab, is a carboxyl-extension of pp1a that depends upon a minus 1 ribosomal 

frame-shift at a pseudoknot structure to read through the translational stop at the end of ORF 

1a and translate through ORF1b (14, 116).  For murine hepatitis virus (MHV) the 
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polyproteins are processed into intermediate and mature nonstructural proteins (nsps) by two 

papa in-like proteinase activities in nsp3 (PLP1 and PLP2) and by the nsp5 proteinase 

(3CLpro or Mpro) (65, 67, 125, 127, 198).  Continuous translation and proteolytic processing 

of the polyproteins is required for productive infection, making the proteases attractive 

targets for antiviral therapies, and suggesting that distinct roles may exist for both the mature 

and intermediate precursor forms of the proteins (13, 45, 103, 120, 165, 224). 

The components of the coronavirus replication complex and their individual roles 

have only partially been defined.  Processing of pp1a and pp1ab by nsp3 and nsp5 of most 

coronaviruses, MHV and SARS-CoV, yields 16 nsps that are associated with the replication 

complex (Fig. 19B) (67, 151, 172, 173, 242, 243).  Although functions have been assigned to 

many of these proteins by comparative sequence or biochemical analysis (10, 65, 67, 116), 

several are either poorly understood or unknown.  In addition to the proteinases, putative or 

known functions of ORF1a derived proteins include hydrophobic trans-membrane domains 

in nsp3 (TM) (79), nsp4 (MP1), and nsp6 (MP2) that likely anchor the replication complex to 

cellular membranes.  An ADP-ribose-1"-phosphate (Appr-1”-p; X in Fig. 19B) domain has 

also been identified in nsp3 (152, 153, 163).  The proteins encoded by ORF1b have been 

associated directly with transcription of the viral genes.  These include the RNA-dependent 

RNA polymerase (RdRp) in nsp12 (18, 47, 67), putative zinc-binding domain (ZBD; Z in 

Fig. 19B) (171), nucleoside triphosphatase and superfamily-1 helicase (Hel) in nsp13 (92, 93, 

171), 3’ to 5’ exonuclease (ExoN) in nsp14 (137), an endoribonuclease (EndoU; EU in Fig. 

19B) in nsp15 (7), and an S-adenosylmethionine-dependent ribose 2’-O-methyltransferase 

(OMT) in nsp16 (178).   
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Among the poorly understood replicase proteins are the “cassette” of nsp7, nsp8, nsp9 

and nsp10 (nsp7-10) near the 3’ end of ORF 1a (Fig. 19B).  These proteins are present in all 

coronaviruses with significant identity and similarity, and are processed by Mpro into mature 

products of 10, 22, 12.7, and 15 kDa, respectively.  The nsp7-10 co-localize with the 

replication complex and are presumably involved with viral RNA synthesis (11, 12, 68, 126, 

204).  Although the exact function of these proteins is unknown, recent work has provided 

some insight into their purpose.  Structure analyses of SARS-CoV nsp7 and nsp8 

demonstrated that the two proteins form a hexadecameric supercomplex with electrostatic 

properties favorable for nucleic acid binding that may function as a processivity factor for the 

RNA-dependent RNA polymerase (234).  Nsp8 has also been shown to possess a low fidelity 

primase activity and was proposed to provide the RNA primers required by the nsp12 RdRp 

during replication (32, 89).  The SARS-CoV nsp9 crystal structure has also been resolved 

and shown to form homodimers possessing single-stranded RNA-binding properties, and it 

has been suggested that the protein may serve to stabilize nascent and template RNA during 

replication, transcription, and processing (22, 53, 191).  Putative temperature sensitive 

mutations localized within nsp10 suggest that the protein may be involved with negative 

strand synthesis (165).  Recent reports describing the refinement of the nsp10 structure have 

revealed that the protein includes two Zn fingers (97, 133), exhibits nucleic acid binding 

affinity (97, 133), and can crystallize to form a spherical dodecameric structure made up of 

12 nsp10-11 subunits (187) or nsp10 monomers and homodimers (97).  Collectively, this 

data implies that nsp7-10 is important – if not critical – to coronavirus replication. 

In this report we describe the requirement for nsp7-10 and their proteolytic processing 

in MHV replication.  Using the established MHV reverse genetics system (231), we 
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individually deleted the genes encoding each protein and disrupted each of the cleavage sites 

associated with the nsp7-10 and evaluated whether the protein domain was essential for 

productive virus infection. For all viable mutants, we characterized virus growth and RNA 

synthesis in cultured cells, transcription function, and in vitro growth fitness.  A potential 

second cleavage site at the interface of nsp7-8 in class 2 coronaviruses was previously 

identified (Fig. 19C) (126), and we determined if ablation of either or both of the putative 

cleavage sites affects replication.  We also determined if the precursor protein containing the 

nsp7-10 performs a distinct role in viral replication by attempting to rescue viable virus by 

rearranging the nsp7 and nsp8 genes within the infectious clone.  This work contributes to the 

growing body of data indicating that these small proteins are intimately involved with and 

critical to viral replication, and as such, are attractive targets for both research aimed at 

understanding the intricacies of the coronavirus replication complex and as the focus of anti-

viral therapies. 

 

Methods 

Cells.  The viruses were generated from infectious clones using delayed brain tumor (DBT) 

and baby hamster kidney cells stably expressing the MHV receptor (BHK-MHVR) as 

previously described (231).  DBT cells were maintained in Eagle's minimum essential 

medium supplemented with 10% fetal clone II, 5% tryptose phosphate broth, 0.05 μg of 

gentamicin/ml, and 0.25 μg of kanamycin/ml.  BHK-MHVR cells were maintained in alpha 

minimum essential medium supplemented with 10% fetal calf serum, 10% tryptose 

phosphate broth, 0.05 μg of gentamicin/ml, 0.25 μg of kanamycin/ml, and 800 μg/ml of 

Geneticin (G418 sulfate; Sigma).   
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Assembly of a full-length MHV-A59 and mutant infectious cDNA templates.  Viruses 

were produced from the MHV infectious clone as previously described (231).  Plasmids 

containing the viral genome were grown to a high concentration, isolated, and digested with 

Esp3I, BglI, or NotI according to the manufacturer's directions (New England Biolabs).  Viral 

cDNA inserts were visualized in 1% agarose gels in TAE buffer (Tris-acetate-EDTA) on a 

Darkreader (Claire Chemical Research, Denver, Colo.) and isolated with the QIAquick Gel 

Extraction Kit (Qiagen Inc., Valencia, Calif.).  The concentration of the individual MHV A-

G DNA fragments were measured, pooled in stoichiometrically equivalent amounts to 1 ug 

total DNA, and ligated with T4 DNA ligase (15 U/100 μl) at room temperature overnight in 

30 mM Tris-HCl (pH 7.8)-10 mM MgCl2-10 mM dithiothreitol-1 mM ATP.  The ligated 

products were purified by phenol-chloroform-isoamyl alcohol (1:1:24) and chloroform 

extraction, ethanol precipitated, and resuspended in H20.  Efficient ligation was confirmed by 

gel electrophoresis prior to in vitro transcription reactions. 

 Transcripts of the MHV N gene were co-electroporated with full-length transcripts of 

the genome.  The N-gene transcripts were driven from a T7 promoter at the 5’ end of a DNA 

template generated by PCR from the MHV-G plasmid.  The T7 bearing 5’ primer (5′-

ATGCAT TAATACGACTCACTATAGGGAGAATGTCTTTTGTTCCTGGGCAAG-3′) 

(5’T7MHV-N) and the poly-A containing 3’ primer (5′-TCCGGA(TTT)8-

TTACACATTAGAGTCATCTTCTAACC-3′) (A59Ng3′(−)).  

 

RNA transfection.  Full-length transcripts of the MHV-A59’s constructs were generated in 

vitro with some modification to the manufacturer’s instructions (Ambion, Austin, Tex; 
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mMessage mMachine).  Reactions were performed for 3 h at 37oC with 20-μl reaction 

mixtures supplemented with 3 μl of a 30 mM GTP stock for a 1:1 ratio of GTP to cap analog.  

The transcripts were treated with DNase I, precipitated in the provided LiCl solution, and 

resuspended in H20.  Full-length transcripts were verified by electrophoresis in 0.5% agarose 

gels in TAE buffer containing 0.1% sodium dodecyl sulfate (SDS).  Subconfluent cultures of 

BHK-R and DBT cells were trypsinized, washed twice with ice-cold PBS, and resuspended 

in PBS at 107 cells/ml.  Full-length RNA transcripts were mixed with N-gene transcripts and 

electroporated into 800 ul of the BHK-R cell suspension with three pulses at 850 V and 25 

μF in a Bio-Rad Gene Pulser II electroporator.  The transfected BHK-MHVR cells were 

diluted 1:10, 1:100, and 1:1000 in 5 ml volumes of fresh media, mixed with 105 DBT cells, 

seeded in 60-mm-diameter cell culture dishes, and incubated at 37°C.  Three hours later, the 

media was removed from each dish and replaced with 5 ml of 1% agarose melted in 10% 

FCS MEM.  The overlaid plates were then incubated at 37oC in 5% CO2 and checked for 

plaques the next day.  Plaques were isolated at 24 or 48 h post electroporation and amplified 

on DBT monolayers in 60-mm-diameter cell culture dishes.  The virus containing media was 

removed 18 to 24 h post infection, aliquoted, and frozen at -70oC until titered.  RNA was 

isolated from the monolayers for sequence analysis of the plaque purified viruses by RT-

PCR.  If plaques were not visible by 72 hours post electroporation the transfection was 

repeated and the cells were transferred to a single 75cm2 flask with 105 DBT cells and 

passaged 1:10 (cells and media) every 2-3 days.  RNA was extracted from cells during each 

passage and analyzed for leader containing transcript. 
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Cloning of the MHV deletion and cleavage mutants.  Overlapping PCR was employed for 

constructing the mutant cDNA templates.  Mutations were introduced with two rounds of 

PCR.  The first round generated two amplicons which were then fused by a second round of 

PCR using the 5’ primer for amplicon 1, the 3’ primer of amplicon 2, and the two 

overlapping amplicons for template.  The first round of PCR consisted of 35 cycles of 94oC 

annealing for 30 seconds, 55oC annealing for 30 seconds, and 68oC extension for 30 seconds.  

The second round of PCR increased the extension time to 1 minute.  The fused overlapped 

PCR products were purified (Qiagen, PCR Purification Kit), digested at two unique 

restriction sites, purified a second time (PCR Purification Kit), and ligated into a similarly 

digested MHV plasmid.  Primers, template DNA, restriction sites, and the plasmid backbone 

the PCR product was ligated into are included in Table 2.  Mutations inserted into the MHV 

infectious clone were verified by sequence analysis.   

 

Rearranging nsp7 and nsp8 genes.  DNA encoding rearranged nsp7 and nsp8 genes were 

synthesized (Bio Basic Inc., Ontario, Canada), digested with PstI and HindIII according to 

the manufacturer’s instructions (NEB), and ligated into the similarly digested MHV-D 

plasmid.  The mutated template was verified by sequence analysis and assembled as part of 

the infectious clone. 

 

Plaque Assay Titration of Virus Titer.  DBT cells in 60-mm-diameter cell culture dishes 

(~106 cells) were infected with 200 ul of serially diluted virus in PBS.  After 1 hour 

incubation at 25oC, cells were washed 3X with PBS and then overlaid with 5 ml of 1% 
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agarose melted in 10% FCS MEM and incubated at 37oC in 5% CO2.  The next day, plates 

were stained with neutral red and plaques counted. 

 

RTPCR verification of non-viable mutants.  Mutants failing to generate plaque forming 

viruses were tested for their ability to generate leader containing transcripts, whose presence 

would indicate at least low levels of replication even in the absence of cytopathic effects.  

RNA harvested from passaged cells was used as template for generating cDNA by reverse 

transcription using superscript II (Ivitrogen) and random hexamers (Invitrogen) by the 

manufacturer’s instructions.  Following cDNA synthesis, PCR was completed using the 

primers (5’-AAGAGTGATTGGCGTCCGTA-3’) (MHV-4), which anneals to the leader 

sequence of MHV, and (5’-GCAGTAATTGCTTCTGCTG-3’) (30019c), which is 

complementary to the N-gene.  Simultaneous PCR for GAPDH was also run as RNA quality 

and RT controls using primers GAPDHF (5’-CATGGGGAAGGTGAAGGTCG-3’) and 

GAPDHR (5’-TTGATGGTACATGACAAGGTGC-3’). 

 

Northern Blot Analysis.  DBT cells in 60-mm-diameter cell culture dishes (106 cells) were 

infected with MHV-A59 or one if the recombinant viruses at an MOI of 0.01.  At 12 hrs post 

infection, intracellular RNA was isolated using TRIzol Reagent (Invitrogen) as directed by 

the manufacturer, and 0.05 µg of total mRNA was treated with glyoxal and separated on 

agarose gels using NorthernMax®-Gly according to the manufacturer's directions (Ambion).  

The RNA was transferred to BrightStar-Plus membrane (Ambion) for 3.5 hrs and then cross-

linked to the membrane by UV light.  The blot was prehybridized and probed with a labeled 

RNA complementary to ~200 bp of the 5’ portion of the N gene.  The RNA probe was 

generated by PCR using the primers (5'-ATGTCTTTTGTTCCTGGGCAAG-3') (MHV-5’N) 



 82

and (5’ATATAT 

TAATACGACTCACTATAGGGAGACCAGAAAACCAGGAGTAATGG-3’) (T7-

30019c).  RNA transcripts were driven from the T7 promoter included in the 3’primer.  RNA 

was biotinylated with the BrightStar® Psoralen-Biotin Nonisotopic Labeling Kit as directed 

by the manufacturer (Ambion).  Following prehybridization, blots were hybridized overnight, 

and washed with low and high stringency buffers as recommended by the manufacturer 

(Ambion).  Filters were incubated with the chemi-illuminescent substrate CDP-STAR 

(Ambion).  The blots were overlaid with film and developed. 

 

Radiolabeling MHV proteins and immunoprecipitation of cell lysates.  DBT cells in 60-

mm-diameter cell culture dishes (3 × 106 cells) were infected with MHV, one of its mutants, 

or mock infected with PBS.  At 4.5 h.p.i., the medium was replaced with fresh 5% FCS 

DMEM lacking methionine and cysteine and containing actinomycin D (20 μg/ml).  At 6 

h.p.i. [35S]methionine-cysteine (100 uCi/ml) was added and incubated at 37C for 3 hours.  

Cells were washed with 1 M Tris and then lysed in 1 ml of lysis buffer (150 mM NaCl, 1% 

NP-40, 0.5% deoxycholate [DOC], 50 mM Tris, pH 8.0).  Immunoprecipitations were 

performed in a final volume of 1 ml, using protein A-Sepharose beads (Sigma), 100 μl of 

radiolabeled lysate and 2 to 10 μl of polyclonal antiserum specific for one of the nsp7-10 

proteins (12) after the lysate was boiled for 5 min in 1% SDS, in buffer C (150 mM NaCl, 

1% NP-40, 1% DOC, 1% SDS, 10 mM Tris, pH 7.4).  Protein-bead conjugates were washed 

three times in the same buffer used for immunoprecipitations, and the proteins were eluted 

from the beads, followed by boiling for 5 min in 2× protein loading buffer (200 mM 

dithiothreitol, 100 mM Tris, pH 6.8, 0.04% bromophenol blue, 20% glycerol).  The proteins 
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were resolved by SDS-PAGE in 5 to 18% polyacrylamide gradient gels and analyzed by 

fluorography.  The [14C] high-molecular-weight standard (Gibco) and full-range rainbow 

marker (Invitrogen) were used as molecular weight standards.  

 

Immunofluorescence assays and confocal microscopy.  DBT cells grown on glass 

coverslips were infected with MHV or PBS mock and then rocked at 25°C for 30 min. 

Following virus adsorption, the infected medium was replaced with fresh prewarmed 10% 

FCS MEM, and the cells were incubated at 37°C.  At 8 h.p.i., the cells were fixed and 

permeabilized with 100% methanol cooled to -20oC.  Indirect immunofluorescence assays 

were performed as previously described (12).  Secondary antibodies conjugated to 

fluorophores were used at 1:1,000 dilution and included α-guinea pig-Alexa 546, α-rabbit-

Alexa 488, and α-mouse-Alexa 633.  Immunofluorescence was detected using a Zeiss LSM 

510 laser scanning confocal microscope with a 40× oil immersion objective. Image analysis 

and merging was performed using Adobe Photoshop version 7.0.  

 

Results 

Viability of nsp7-10 deletion mutants.  Mpro targets amino acid sequences 

(L,F,I)Q↓(S,N/,A) and cleaves after the essential Gln at position 1 (P1) (116).  Individual 

protein domains were deleted from the MHV genome while preserving functional cleavage 

sites by fusing the N-terminal P1 amino acid to the carboxyl P1’ residues of the flanking 

proteins (Table 3).  Virus was produced from cDNA templates as previously described (231) 

and viability was determined by syncytia formation in cells electroporated with in vitro-

transcribed mutant genome RNA.  All of the deletion mutants failed to yield virus or produce 
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viral cytopathic effect.  A series of MHV temperature-sensitive mutants have been described 

where viruses only grow at a lower permissive temperature (165).  With this in mind, a 

second attempt to generate non-viable viruses was made and electroporated cells incubated at 

32oC instead of 37oC.  However, none of the deletion mutants demonstrated the temperature-

sensitive phenotype; no viable viruses were detected at 32oC even after several passages 

spanning at least a week, and no leader-containing transcripts indicative of subgenomic 

mRNA synthesis were detected in transfected cultures by RTPCR indicating that these 

deletions were truly lethal for replication. 

 

Viability of cleavage site-disrupted mutants.  To evaluate the requirement of nsp7-10 

proteolytic processing on virus replication,  cleavage sites flanking nsp7, nsp8, nsp9 and 

nsp10 were individually disrupted by substituting the P1 Gln with Ala (Table 4).  There are 

two potential cleavage sites at the nsp7-8 interface, an LQ↓A and LQ↓S (present at positions 

P5-P3 and P2-P1’ in Table 2, respectively).  Although the LQ↓S has been shown to be 

cleaved during nsp7-8 processing (126), it is possible that the upstream LQ↓A site is also 

functional.  To address this possibility, both sites were substituted, either individually 

(MHV7/8A and MHV7/8B) or in combination (MHV7/8AB).   

Full length cDNAs of each of the seven cleavage site mutants were assembled using 

standard techniques and transcripts were electroporated into cells.  Viability was determined 

by syncytia formation and, for viruses that failed to produce syncitia, detection of leader 

containing transcripts by RT-PCR of transfected cell RNA harvested at each of three 

passages (Fig. 20).  Following electroporation of mutant genome RNA into cells, no syncytia 

or infectious virus was detected from mutants MHV6/7, MHV7/8AB, MHV8/9, and 
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MHV10/11.  A second attempt to generate non-viable viruses was made with incubations at 

32oC, but none of the cleavage mutants failing to grow at 37oC were rescued by growth at the 

lower temperature.  These data indicated that disruption of cleavage sites nsp6-7, both sites at 

nsp7-8, nsp8-9, and nsp10-11 were lethal to viral replication.  In contrast, disruptions of 

either of the nsp7-8 or the nsp9-10 cleavage sites were not lethal and recombinant viruses of 

each were plaque purified for future use.  Plaque morphology of MHV7/8A and MHV7/8B 

were similar to wildtype, but MHV9/10 displayed a small plaque phenotype (data not 

shown).  Sequence analysis of RNA from virus infected cells demonstrated the presence of 

the appropriate mutations in each of the viable viruses.  Growth kinetics of these viable 

viruses were compared to wild-type MHV in DBT cells at a MOI of 0.01 pfu/cell (Fig. 21A).  

MHV, MHV7/8A, and MHV7/8B reached peak titers at 18 hours post infection of 7.4±0.1, 

7.3±0.2, and 7.4±0.1 log10 pfu/ml, respectively.  The MHV9/10 mutant displayed an 

attenuated growth phenotype with peak titers almost two logs lower titer at the 18 hour time 

point (5.5±0.1 log10pfu/ml).   

Stability of the replication-attenuated MHV9/10 mutation was tested by successive 

blind serial passage on DBT cells for 15 passages, followed by 3x plaque-purification of the 

resulting virus.  The growth kinetics of two passage-15 isolates, MHVp15-1 and MHVp15-3, 

were compared to that of MHV (Fig. 21B).  In contrast to the parent mutant virus, the 

passage 15 isolates displayed near wild-type growth kinetics in DBT cells, MHVp15-1 and 

MHVp15-3 reached peak titers of 6.8±0.1 and 6.9±0.1 that approached that of MHV (7.2±0.1 

log10pfu/ml).   

Sequence analysis of the nsp7-10 region of the revertant viruses illustrated that the 

inserted mutation did not revert to wild-type sequence at the nsp9-10 cleavage site.  Two 
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patterns of mutations were found.  Three of the six plaque isolates sequenced, including 

MHVp15-1, had mutated the guanosine at nt 13164 to an adenosine, changing the introduced 

alanine at P1 of the nsp9-10 cleavage site to a threonine (Table 5).  The other mutants, 

including MHVp15-3, maintained the alanine at the P1 position, but had a guanosine instead 

of a adenosine at nt 13102, producing an arginine instead of lysine 21 amino acids upstream 

of the nsp9-10 P1 position.   

Three mutants were constructed to determine if the changes found in nsp9 of the 

passage 15 isolates could be attributed to the improved fitness of the viruses (Table 5).  

Engineered mutant MHVQ4319T contained the P1-Gln4319Thr, reproducing the nsp9 sequence 

found in MHVp15-1.  In order to determine if the Lys4298Arg substitution in nsp9 identified 

in MHVp15-3 affects viral replication in DBT cells, the single mutation was introduced in 

the wild-type infectious clone and used to produce the mutant virus, MHVK4298R.  The final 

mutant, MHV9/10K4298R, possessed the nsp9 Lys4298Arg substitution in addition to the P1-

Gln4319Ala introduced to disrupt nsp9-10 cleavage, giving it an nsp9 sequence identical to 

MHVp15-3.  Viable viruses were recovered for all three and growth curves of plaque 

purified viruses indicated that neither of the changes in nsp9 of MHVp15-1 or MHVp15-3 

were solely responsible for the improved growth kinetics of the passage 15 revertants (Fig. 

22).  MHVQ4319T reached a titer of 6.3±0.2 log10 pfu/ml at 30 h.p.i., comparable to that of 

MHV9/10 at 6.0±0.4 and indicating that the nsp9 mutation found in MHVp15-1 was not 

responsible for its improved fitness relative to the attenuated parent.  Introduction of 

Lys4298Arg into the MHV backbone did not reduce the peak titer of the virus; MHVK4298R 

attained a titer of 7.5±0.1 log10pfu/ml at 30 h.p.i. which was comparable to wild-type with 

7.4±0.1.  The combination of K4298R and Q2319T found in the nsp9 of MHVp15-3 were 
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not sufficient to return the mutant MHV9/10K4298R to wild-type growth, although it did 

improve growth kinetics relative to the parent MHV9/10.  Although MHV9/10K4298R reached 

a peak titer of 6.5±0.1 log10pfu/ml at 30 h.p.i, similar to MHV9/10 at 6.0±0.4, the virus 

maintained better growth than the parent mutant from 12 to 24 h.p.i.  MHV9/10K4298R 

reached average titers of 5.1±0.2, 6.1±0.1, and 6.4±0.1 log10pfu/ml at 12, 18, and 24 h.p.i., 

respectively.  In comparison, MHV9/10 had titers of 3.7±0.2, 4.7±0.3, and 5.4±0.3 at the 

same time-points.  The mutation(s) responsible for the increased in vitro fitness of the 

serially passaged virus at least require the contribution of more distal mutations within the 

genome that remain to be identified. 

 

Rearranging nsp7/nsp8.  The domain order of coronavirus ORF1ab non-structural proteins 

is conserved.  However, it has been possible to recover mutant viruses with deletion and 

rearrangement of nsp2 ((69)and unpublished data).  To test whether the nsp7-10 order must 

be maintained for efficient replication, the nsp7 and nsp8 genes were rearranged.  Transcripts 

were driven from the cDNA templates and electroporated into cells.  Viability was 

determined by syncitia formation and detection of leader containing transcripts by RTPCR of 

RNA harvested at each of three passages.  Following electroporation of cells with mutant 

genome RNA containing the nsp8-7 rearrangement, no virus was obtained and no leader-

containing transcripts were detected, suggesting that the domain order for nsp7, nsp8, and 

perhaps the other components of the precursor polyprotein, were essential for replication.    

 

Verification of ablated cleavage sites in viable mutant viruses.  Processing of the ORF1a 

nsp8, 9 and 10 replicase proteins were evaluated in DBT cells infected at a MOI of 1, treated 

with actinomycin D at 4.5 hpi, and radiolabeled from 6 at 9 hpi.  Immunoprecipitation (i.p.) 
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using either anti-nsp8 (for the MHV7/8 mutants) or anti-nsp9 and anti-nsp10 antibody (for 

the MHV9/10 and passage 15 mutants) (11) was used to evaluate the impact of the specific 

cleavage site mutations on ORF1a polyprotein processing.  Substitution of the P1-Gln to Ala 

prevented processing at the cleavage sites for the MHV9/10, MHVp15-1 and MHVp15-3 

viruses (Fig. 23).  Normal processing of nsp8 (22 kDa), nsp9 (12 kDa) and nsp10 (15 kDa) 

was detected during wildtype MHV infection but not in mock-infected cells.  In contrast, 

nsp10 was absent following MHV9/10 and MHVp15 infection.  However, a slower migrating 

band of approximately 27 kDa, which is the predicted size for an nsp9-10 fusion protein, was 

present in the mutants, but absent in the wild-type controls.  These data indicate that neither 

the nsp9 P1-Ala110Thr in the MHVp15-1 nor the nsp9 Lys89Arg change in MHVp15-3 

restored cleavage at the nsp9-10 junction.   

Analysis of MHV7/8A and MHV7/8B infected cultures indicated that both the LQ↓A 

and LQ↓S sites bordering the nsp7-8 junction are functional cleavage sites.  Following 

immunoprecipitation, 22 kDa proteins were precipitated with anti-nsp8 antibody for the wild-

type control, MHV7/8A, and MHV7/8B.  Notably, the immunoprecipitated protein from 

MHV7/8B had slightly slower migration than that of the control or the MHV7/8A mutant, 

consistent with the prediction that the LQ↓A site was cleaved and yielded an nsp8 protein 3 

amino-acids larger (~366Da) than that of the LQ↓S cleaved protein.   

 

Transcriptional profile of viable mutant viruses.  With the exception of the attenuated 

MHV9/10 mutant, viable mutants were found to be similar to MHV in their transcriptional 

activity and generation of subgenomic RNA (Fig. 22).  To determine if differences in RNA 

synthesis were associated with the different growth phenotypes, cultures of DBT cells were 
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infected with the mutant panel at a MOI of 0.05, and total intracellular RNA was harvested at 

12 h p.i.  Northern blots hybridized with an RNA probe complementing the 5’ end of the N-

gene showed no differences in either the pattern or relative amounts of subgenomic to 

genomic RNA in most mutants when compared to control virus.  Consistent with the reduced 

growth of the mutant virus in vitro relative to MHV, MHV9/10 had significantly reduced 

amounts of RNA with only the mRNA 6 and 7 bands clearly resolved.  Importantly, revertant 

viruses had restored efficient growth kinetics and transcription of full length and subgenomic 

mRNAs.  We did not identify any significant differences in the relative molar ratios of the 

viral plus sensed RNAs (data not shown). 

 

Association of mutant proteins with replication complexes.  The distribution of the mutant 

proteins within cells was compared to their wild-type counterparts.  The nsp7-10 are known 

to colocalize with sites of viral replication while being excluded from regions of virion 

assembly (11, 12).  In order to determine if abolition of  processing in the mutant viruses 

affected the distribution, subcellular localization, or the ability of the protein to traffic into 

the replication complex, we used confocal microscopy to compare the colocalization of wild-

type and mutated proteins to sites of replication and assembly.  DBT cultures were infected 

with either MHV-A59, mock, or mutant virus and at 8 hrs postinfection were methanol fixed 

and dual-stained for either nsp8 or nsp10 (depending on the mutant, as above) and 

nucleocapsid (N), which colocalizes with sites of active viral replication, or membrane (M), 

which is targeted to regions of virus assembly.  Regardless of the construct, the nsp8 and 

nsp10 proteins colocalized with N in subcellular compartments that were separate from M 
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(Fig. 23).  These results are identical to those for wild-type MHV (not shown) indicating that 

incorporation of the mutated proteins into the replication complex is not disrupted (11). 

Discussion 

The nsp7-10 are highly conserved among, and perhaps unique to, the family 

coronaviridae.  Indeed, even the arteriviruses, another family member of the order 

Nidovirales, do not appear to possess homologs to the coronavirus nsp7-nsp10 (146).  The 

roles of these proteins in coronavirus replication are only just beginning to be studied, with 

the existing body of data suggesting that they are components of the replication complex.  

However, the details of their involvement in replication and RNA synthesis remain to be 

determined.  This study used an infectious clone of MHV to define fundamental features of 

the nsp7-10 during viral replication in culture.  Each of the four proteins appears to be critical 

for viral replication, since deletion of any of the four protein domains was lethal for RNA 

synthesis and productive virus infection.  Furthermore, the results indicate that processing of 

the proteins from each other is necessary for replication, with the one exception of the nsp9-

10 cleavage site.  Finally, we determined that rearranging two of the replicase proteins, nsp7 

and nsp8, was not permissive for virus replication.   

 To date, only the nsp2 coronavirus replicase protein has been shown to be dispensable 

for replication in both MHV-A59 and SARS-CoV, albeit attenuating in vitro and in vivo 

(70).  Portions the carboxy-terminal half of MHV nsp1 has also been deleted in viable 

mutants (19), but otherwise, no full or partial deletions of replicase protein domains has been 

reported in viable mutants of any coronavirus.  In contrast, deletion of each of the nsp7-10 

resulted in a lethal phenotype as evidenced by the lack of recoverable viruses and an inability 

to detect subgenomic mRNAs by RT-PCR.  These data suggest that each of the nsp7-10 may 
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be an indispensable component of the replication complex, which is consistent with the 

highly conserved nature of these proteins.  Alternatively, deletion of nsp coding sequences 

may sufficiently alter the structure of the polyprotein template to interfere with Mpro 

accessibility to its cleavage sites.  Interestingly, an MHV temperature sensitive mutant, LA6, 

contains a mutation in nsp10 that blocks processing of nsp4-10 at the non-permissive 

temperature suggesting that mutations or deletions at the c-terminus of ORF1a might disrupt 

Mpro activity  (165).   

Although it is known that global inhibition of coronavirus proteinases that process the 

replicase polyproteins prevents replication (103), the requirements for each of the 15 

cleavage sites in the ORF1ab polyprotein are not completely determined. Cleavage of nsp1, 

nsp2 and nsp3 has been abolished in viable MHV mutants (46, 69).  Otherwise, little is 

known of the requirements for processing, including nsp7-nsp10.  Our results show that 

changes at cleavage sites between nsp6-7, nsp7-8, nsp8-9, and nsp10-11 were not replication 

viable.  Lethality could be due to disruption of nsp7-10 proteolytic processing causing a 

failure of precursor, intermediate, or mature protein function within the replication complex.  

However, not all of the cleavage site mutants were nonviable.  Based on genetic analysis, 

MHV has two functional nsp7-8 cleavage sites, LQ↓A and LQ↓S, and disruption of either of 

these potential sites failed to affect replication competence, cleavage patterns, or cellular 

localization in vitro.  Interestingly, the LQ↓A site is conserved across all coronavirus 

families, while the second LQ↓S site is limited to group II coronaviruses, including MHV, 

BCoV, HKU1, and OC43, but not SARS-CoV.  Wild-type replication efficiency when either 

one or the other site was knocked out suggests that either, or both, sites are cleaved during 

replication.  Although we cannot detect any significant impact on in vitro replication, 
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variations in N or C-terminal processing of nsp7-8 may influence in vivo pathogenesis or 

affect cell signaling pathways.   However, simultaneous mutation of both sites was lethal, 

indicating that nsp7 and nsp8 must be fully separated to function in mRNA synthesis.   

The only cleavage site that tolerated inactivation was the nsp9-10 cleavage site.  The 

mutant MHV9/10 virus produced a fusion nsp9-10 protein and was highly attenuated in its 

replication efficiency.  Serial passage of this virus restored near wild-type replication fitness, 

but did so without reverting at the mutated cleavage site or regaining the ability to process 

nsp9-10, demonstrating that efficient replication can be achieved without nsp9-10 proteolytic 

processing.  The data demonstrate that with the exception of cleavage between the nsp9 and 

nsp10 proteins, Mpro processing of the nsp7-nsp10 are essential in coronavirus RNA 

transcription and replication.   

 Previous work has indicated that nsp7 and nsp8 in solution form a complex 

hexadecameric structure that is proposed to function in processivity and generation of RNA 

primers for the RNA replicase (89, 234).  If these structures represent those seen in during 

infection, then formation of the structures would require cleavage of nsp7 from nsp8.  

Similarly, the virus could not replicate when the relative positions of the genes encoding 

nsp7 and nsp8 were switched.  This loss of viability could be due to an alteration of the 

precursor polyprotein that interfered with processing or prevented a distinct function 

associated with the uncleaved precursor.  It is unclear why only the MHV9/10 mutant was 

viable.  Nsp9 associates with the replication complex, interacting at least with nsp8 (191), 

and has been shown to possess single-stranded RNA binding affinity (11, 53, 191).  Nsp10 is 

known to associate with several proteins of the replication complex, including nsp1, nsp5, 

nsp7, nsp8, and nsp12 (18, 19).  Nsp10 has been shown to be critical for the formation of 
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functional replication complexes (165), and has recently been shown to crystallize to form 

monomers and homodimers as well as a complex dodecameric structure when expressed as 

an nsp10-11 fusion (97, 187).  It is puzzling why this critical protein with broad interactions 

with other replicase proteins would retain its function without full separation from nsp9.  

Interestingly, mutation of the nsp10-11 cleavage site was nonviable despite the report that the 

spherical structure formed by 12 units of nsp10 was crystallized as an nsp10-11 construct 

(187).  Collectively, our data indicates that the C-terminal cleavage site for the nsp10 protein 

is essential for infectivity, raising doubt about the biological relevance of the reported nsp10-

11 crystal structure (187).   

 Prior to this study, two viable cleavage mutants of coronaviruses had been reported, 

the PLP1-mediated cleavage sites between nsp1-nsp2 and nsp2-nsp3 were removed in MHV 

(46, 69).  Loss of cleavage site function resulted in attenuated replication and suggested that 

efficient cleavage of nsp1-2 and nsp2-3 was important, but not required, for replication in 

tissue culture (46, 69).  Indeed, viable mutant virus could be generated even when PLP1, 

which solely mediates nsp1-2 and nsp2-3 processing in MHV, was inactivated (69).  With 

this report, three cleavage sites in the MHV ORF1a polyprotein have been shown to be 

dispensable for replication: nsp1-2, nsp2-3 and nsp9-10 (46, 69).  It is possible that this 

reflects the use of these proteins in natural precursors, such as has been reported for nsp2-3 

and nsp4-10.  Thus the engineered changes may reproduce some component of the normal 

lifecycle and at least residual function of these proteins.  Interestingly, rearrangement of the 

nsp7 and nsp8 encoding sequences was lethal, a result that lends support to the idea that their 

may be an independent function in replication associated with the nsp4-10 precursor (165). 
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 There are still many aspects of coronavirus replication that are not clearly understood.  

Several conserved components of the coronavirus replicase have no known homologs and 

serve unknown or poorly defined functions.  The proteolytic processing of the replicase 

polyproteins are a critical step in replication of these viruses, and such processing my provide 

a level of regulation over replication in general, such as providing the molecular switch for 

altering the output of the replication complex from minus strand RNA to that of  positive 

strand RNA (13, 164).  This work will be progressed by experimentally pursuing new 

questions defined by these results.  Although processing of either of the sites at the nsp7-8 

boundary had no impact on in vitro growth, work will be done to determine if both sites are 

required for efficient replication in vivo.  Some insight may be gained into nsp7-10 function, 

such as cis versus trans activity, by determining if lethal cleavage mutants can complement 

each other to form viable replication complexes to rescue virus.  The distal mutation(s) which 

arose during serial passage to allow the attenuated MHV9/10 mutant to recover will also be 

identified and may expand our understanding of the interactions that occur between proteins 

of the replication complex.  The presented data supports existing information that the 

proteins of the 3’ c-terminus of ORF1a are critical for replication, establishes the importance 

of processing in their function, and lays the foundation for future studies. 
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TABLE 2.  Primers, template DNA, and restriction sites used in the generation of deletion 
and cleavage mutants 

 

 
 
 
 
 

Mutant Amplicon Primer Primer 
Name Sequence (5’->3’) Template 

DNA 
Restriction 

Sites 
5' D 3500: CGGAGGCTTTTGACTTTCTG 1 
3' D 470c: AATTTGAGATACTTCAATGACTGG 

MHVD 

5' 5'Δnsp7 GTATCTCAAATTCAAAGTGAATTTGTTAAT
ATGGC 

Δnsp7 
2 

3' D 1001c: GCAGACACTACCTTACTCTTC 
MHVD 

PstI+NdeI 

5' D 3500: CGGAGGCTTTTGACTTTCTG 1 
3' D743c TAAGGCTTGCAAGACAGTATTGTC 

MHVD 

5' 5'Δnsp8 GTCTTGCAAGCCTTACAGAACAATGAGTTG
ATGCCTCAG 

Δnsp8 
2 

3' D 1570c: CAGTTACGCTGGAGTCTG 
MHVD 

PstI+HindII
I 

5' D 880: CAGCAGATTAAGCAGCTAG 1 
3' D 1328c: CAAAACAACAGTAGACACTTC 

MHVD 

5' 5'Δnsp9-D CTACTGTTGTTTTGCAGCCTAAGAGACGAA
GGGCG 

Δnsp9-
D 2 

3' D 1769C GCGCTCTGCTGAAGCCAG 
MHVD 

HindIII+Nd
eI 

5' E 4031 CCACGCTGATGAGCTTTACC 1 
3' E 1c TAGGAGAGACGAAGGGC 

MHVE 

5' 5'Δnsp9-E CCTTCGTCTCTCCTAGCGGGTACGGCAACT
GAG 

Δnsp9-
E 

2 
3' E 462c: CCATCAACATCTGGATGTTC 

MHVE 
ClaI+MscI 

5' E 4031 CCACGCTGATGAGCTTTACC 1 
3' E 199c: CAATCTCACTGTCGAGG 

MHVE 

5' 5'Δnsp10 CGACAGTGAGATTGCAGTCAAAAGACACG
AACTTTTTAAACG 

Δnsp10 
2 

3' E: 1021c: CATTGCGGTCAAAATGACGC 
MHVE 

ClaI+KpnI 

5' D 3500: CGGAGGCTTTTGACTTTCTG 1 
3' D 470c: AATTTGAGATACTTCAATGACTGG 

MHVD 

5' QAnsp6/7: GTATCTCAAATTGCATCAAGATTGACG 
nsp6*7 

2 
3' D 1001c: GCAGACACTACCTTACTCTTC 

MHVD 
PstI+NdeI 

5' D 3500: CGGAGGCTTTTGACTTTCTG 1 
3' D 1328c: CAAAACAACAGTAGACACTTC 

MHVD 

5' QAnsp7/8 CAAGCCTTAGCGAGTGAATTTGTTAATATG 
nsp7*8 

2 
3' D 1001c GCAGACACTACCTTACTCTTC 

MHVD 
PstI+NdeI 

5' D 880: CAGCAGATTAAGCAGCTAG 1 
3' D 1328c CAAAACAACAGTAGACACTTC 

MHVD 

5' QAnsp8/9: CTACTGTTGTTTTGGCGAACAATGAGTTGA
TGC 

nsp8*9 
2 

3' D 1570c: CAGTTACGCTGGAGTCTG 
MHVD 

NdeI+HindI
II 

5' E 4373: GTTCGGTGTAGGTCGTTC 1 
3' E 199c: CAATCTCACTGTCGAGG 

MHVE 

5' QAnsp9/10 GTGAGATTGGCGGCGGGTACGG 
nsp9*10 

2 
3' E 462c: CCATCAACATCTGGATGTTC 

MHVE 
ClaI+MscI 

5' E 4031 CCACGCTGATGAGCTTTACC 1 
3' E 606c+: GCAAACTGGGAGCCTGTGCCTAC 

MHVE 

5' QAnsp10/ns
p11 CCCAGTTTGCGTCAAAAGACACG 

nsp10*1
1 

2 
3' E 1021c: CATTGCGGTCAAAATGACGC 

MHVE 
ClaI+KpnI 
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TABLE 3.  nsp7-10 cleavage sites of wild-type MHV 
and deletion mutants 

  Wild-type amino acid sequence of the nsp7-10 cleavage sites 
 P5 P4 P3 P2 P1 P1' P2' P3' P4' P5' 
nsp6-7 V S Q I Q S R L T D 
nsp7-8 L Q A L Q S E F V N 
nsp8-9 T V V L Q N N E L M 
nsp9-10 T V R L Q A G T A T 
nsp10-11 G S Q F Q S K D T N 
 Mutant amino acid sequence of the nsp7-10 cleavage sites 
 P5 P4 P3 P2 P1 P1' P2' P3' P4' P5' 
Δnsp7 V S Q I Q S E F V N 
Δnsp8 L Q A L Q N N E L M 
Δnsp9 T V V L Q A G T A T 
Δsnp10 T V R L Q S K D T N 

 
 
 
 
 

TABLE 4.  Mutagenesis of the nsp7-10 cleavage sites 
 
 
 
 
 
 
 
 
  a  The upstream LQ↓A site is substituted. 
  b  The downstream LQ↓S site is substituted. 
  c  Both sites are substituted. 
 
 

 Mutating P1-Q to A at Cleavage Sites 
 P5 P4 P3 P2 P1 P1' P2' P3' P4' P5' 
MHV6/7 V S Q I A S R L T D 
MHV7/8Aa L A A L Q S E F V N 
MHV7/Bb L Q A L A S E F V N 
MHV7/8ABc L A A L A S E F V N 
MHV8/9 T V V L A N N E L M 
MHV9/10 T V R L A A G T A T 
MHV10/11 G S Q F A S K D T N 
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TABLE 5.  Genomic variation of nsp9 between MHV, MHV9/10,  
and the passage 15 mutants 

 
 

Genome Position (aa) 4298 4319

MHV Lys Gln 

MHV9/10 Lys Ala 

MHVp15-1 Lys Thr 

MHVp15-3 Arg Ala 

MHVQ4319T Lys Thr 

MHVK4298R Arg Gln 

MHV9/10K4298R Arg Ala 
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Figure 19.  MHV genome organization, proteolytic processing of the replicase 
polyproteins, and putative cleavage sites of nsp7-10.  (A)  The 5’ two-thirds of the MHV 
genome encode the ORF1 replicase proteins, pp1a and pp1ab.  ORFs 2-7 encode the major 
structural proteins, S, E, M, and N along with several accessory proteins.  (B)  The replicase 
polyproteins are processed by three proteases to produce 16 mature proteins.  PLP1 is 
responsible for cleaving between nsp1-2 and nsp2-3 (black arrows) while PLP2 cleaves 
between nsp3-4 (open circle).  Mpro processes the remainder of the polyproteins (open 
triangles).  The replicase proteins include a number of functionally conserved domains 
including the two PLP proteases, an ADP-ribose-1"-monophosphate processing enzyme (X), 
three hydrophobic trans-membrane domains (TM, MP1 and MP2), the nsp5 protease (Mpro), 
RNA-dependent RNA polymerase (RdRp), putative zinc-binding domain (Z) and helicase 
(Hel), exonuclease (ExoN), endoribonuclease (EU), and an S-adenosylmethionine-dependent 
ribose 2’-O-methyltransferase (OMT).  (C) The amino acid sequences of the Mpro cleavage 
sites falling within the nsp7-10 region of the replicase polyproteins are shown (open arrows 
denote point of cleavage) along with their P1-Gln amino acid positions.  A second putative 
cleavage site falling between nsp7-8 is identified with a question mark and a vertical dotted 
line illustrating its proposed cleavage site. 
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Figure 20.  RTPCR verification of the replication deficiency of non syncitia forming 
cleavage mutant viruses.  RNA was extracted from cells over 3 passages of electroporated 
DBT cells and supernatants.  PCR was completed using primers specific for leader 
containing N-gene transcripts and GAPDH as a control of RNA quality and successful RT 
reactions.  RNA from cells infected with wild-type MHV was used as a positive control. 
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Figure 21.  Replication kinetics of the viable cleavage mutants and MHV9/10 
revertants.  (A)  Comparison of the growth curves for MHV (black circle and solid line), 
MHV7/8A (black square and solid line), MHV7/8B (black triangle and dashed line), and 
MHV9/10 (black circle and dashed line).  (B)  Replication fitness of the revertant MHV9/10 
passage 15 viruses.  Growth curves comparing MHV (black circle and solid line), to the 
passage-15 isolates, MHVp15-1 (black square and solid line) and MHVp15-3 (black triangle 
and dashed line).  Growth curves were performed on DBT cell monolayers infected at an moi 
of 0.05 pfu/cell.  Supernatants sampled for replicating virus at 0, 6, 12, 18, and 24 hours post 
infection and titers determined by plaque assay.  Data points represent the average of three 
replicate experiments.  The limit of detection (lod) is represented by a horizontal dashed line 
at 1.7 log10 pfu/ml. 
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Figure 22.  Characterizing the nsp9 genetic components of MHVp15-1 and MHVp15-3.  
Comparison of MHV (black circle and solid line), the attenuated parent virus MHV9/10 
(black square and solid line), MHVQ4319T (black triangle and dotted line), MHVK4298R (black 
square and dotted line), and MHV9/10K4298R (black circle and dotted line).  Growth curves 
were performed on DBT cell monolayers infected at an moi of 0.05 pfu/cell.  Supernatants 
sampled for replicating virus at 0, 6, 12, 18, and 24 hours post infection and titers determined 
by plaque assay.  Data points represent the average of three replicate experiments.  The limit 
of detection (lod) is represented by a horizontal dashed line at 1.7 log10 pfu/ml. 
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Figure 23.  ORF1a Polyprotein Processing in Recombinant Viruses.  Cultures of cells 
were infected with MHV, MHV7/8A, MHV7/8B, MHV9/10, MHVp15-1, or MHVp15-3 for 
4.5 hrs.  The cultures were radiolabeled for 3 hrs and antisera against nsp8 (22 kDa), nsp 9 
(12 kDa) or nsp10 (15 kDa) used for immunoprecipitation .  DBT cells were infected at an 
MOI of 1 pfu/cell and labeled with [35S]-Met/Cys containing medium from 6 to 9 h.p.i. in the 
presence of actinomycin D.  Approximately 9 h.p.i. cells were lysed and immunoprecipitated 
with polyclonal sera against nsp8, nsp9, or nsp10, then resolved by SDS-PAGE and 
fluorography.  Bands corresponding to nsp8, nsp9, nsp10, and the fused nsp9+nsp10 (nsp9-
10) are indicated.  The protein corresponding to nsp8 isolated from MHV7/8B infected cells 
(+) migrated slower than those of MHV or MHV7/8A. 
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Figure 24.  Recombinant and wildtype virus RNA Synthesis.  Cultures of cells were 
infected with the wildtype MHV or recombinant viruses and intracellular RNA harvested 
from DBT cells at 12 hours post infection.  The RNA was separated on a 1% agarose gel, 
transferred to nylon filters and hybridized with biotinylated RNA probe specific for 
nucleocapsid.  The filters were incubated with a chemi-illuminescent substrate and exposed 
on film. 
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Figure 25.  Immunofluoresence of MHV cleavage mutant infected cells.  Cells were 
infected with either MHV7/8A, MHV7/8B, or MHVp15-3, fixed and permeabilized with 
MeOH, then dual-stained with antibody specific for nsp8 (MHV7/8A and MHV7/8B) or 
nsp10 (MHVp15-3) and nucleocapsid or membrane protein.  The green fluorescent anti-nsp 
image (A, D) was overlayed with the corresponding red fluorescent anti-N (B) or anti-M 
image (E) to determine points of co-localization (yellow) between the nsp and either N, 
representing localization with the replication complexes (C), or M, which is excluded from 
sites of replication (F).   
 



 
 
 
 

Chapter IV 

Summary 

The recently developed coronavirus reverse genetic systems have been a tremendous 

asset for improving our understanding of the viruses’ complex replication strategy, 

pathogenesis, mechanisms of host-range expansion, and in the development of anti-viral 

therapies.  We completed two studies using coronavirus infectious clones.  The work 

presented in chapter two evaluated the ability of a severe acute respiratory syndrome 

coronavirus (SARS-CoV) vaccine to protect against an antigenically divergent strain.  The 

study described in chapter three determined the requirement for the highly conserved nsp7-10 

replicase proteins and their proteolytic processing by the Mpro viral proteinase for efficient 

replication.  This work contributes to the active field of SARS-CoV vaccine development and 

presents a new animal model for the study of improving vaccine efficacy in an aged 

population.  In the case of the vaccine based on expressing SARS nucleocapsid as an antigen, 

it also demonstrates a previously undescribed enhanced inflammatory response. 

 

SARS-CoV vaccines, senescent animal models, and a heterologous challenge virus 

VRP vaccine vectors have been shown to induce robust mucosal and cellular immune 

responses against a large number of foreign antigens (40, 41), and in this work have been 

evaluated as candidate vaccines against SARS-CoV strains in young and senescent animals.  

Specifically, Venezuelan equine encephalitis virus replicon particles (VRP) expressing either 

the 2003 epidemic Urbani SARS-CoV strain spike glycoprotein (VRP-S) or nucleocapsid 
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protein (VRP-N) were tested for their ability to protect young and senescent mice challenged 

with homologous and heterologous strains of SARS-CoV.   

Since the ideal SARS-CoV vaccine will provide long-term protection against 

emergent strains which might arise from their zoonotic hosts, the evaluation of candidate 

vaccines should include a challenge virus antigenically similar to newly emergent strains.  

However, SARS-CoV strain diversity was mostly confined to China where many human and 

animal isolates were not successfully cultured in vitro (195) and most available experimental 

strains are nearly identical and do not reflect natural diversity (156, 175).  Fortunately, recent 

advances in synthetic biology allow researchers to reconstruct extinct viruses, or specific 

genes of those viruses, de novo from their nucleotide sequences (29, 105, 177).  Using a 

comprehensive SARS-CoV genetic database (195, 224), we resurrected the divergent GDO3-

S glycoprotein in the Urbani genetic backbone.  The icGD03-S recombinant virus was 

identical to the molecular clone except for the presence of two mutations in S that likely 

evolved after transfection of full-length RNA and virus passage in Vero cells, similar to the 

cell culture adaptations reported in S for other SARS-CoV strains isolated from human 

clinical specimens and passaged in vitro (182).  The icGDO3-S CoV’s sequence divergence 

from Urbani, efficient in vitro replication in HAE and Vero cultures, and robust in vivo 

replication in the mouse model, make it an excellent heterologous challenge inoculum for 

vaccine studies.  The amino acid sequence of the GD03 receptor binding domain (RBD) is 

found in many zoonotic isolates described in civets and raccoon dogs, supporting its use as a 

zoonotic model strain (195).  Additionally, the reduced replication in human airway epithelial 

(HAE) cultures of icGDO3-S relative to the Urbani strain is consistent with the reduced 

pathogenesis noted in the GDO3 human case (35, 88, 195). 
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Our results were similar to those reported for other SARS-N–expressing DNA and 

vectored vaccines (20, 155): VRP-N did not protect mice from SARS-CoV replication, and 

no benefit to vaccination with a cocktail of both VRP-S and VRP-N was observed.  We did 

note about a half-log reduction in viral titers within the lungs of some VRP-N–vaccinated 

mice, although this was only occasionally observed.  Of course, any reduction in SARS-CoV 

titer can be interpreted as a positive aspect of a potential vaccine, given the relationship 

between viral titer and SARS disease severity (35, 88), but the increased number of 

lymphocytic and eosinophilic inflammatory infiltrates, which are also characteristic of the 

immune pathology observed with respiratory syncytial virus (RSV) infection following 

vaccination with formalin-inactivated RSV (43, 78), raises concerns that vaccination with N 

alone will not only fail to effectively protect against SARS-CoV replication, but may result 

in vaccine-enhanced pulmonary disease (102).  This finding has particular significance for 

SARS-N and inactivated SARS-CoV vaccines currently under development that also induce 

anti-N antibody and T cell responses (104, 122, 170, 181, 192, 222, 233, 241).  SARS-CoV 

N-induced pathology has not been previously reported, possibly because most studies 

examined lungs at 2–3 d post-infection, prior to the infiltration of inflammatory cells into the 

lung.  VRP-N–induced pathology was clearly evident by day 4 and persisted for 1–2 weeks 

following wild-type virus challenge.  The passive transfer of anti-N antibody did not 

contribute to inflammation and suggests that it is the activity of SARS-N–specific T cells in 

the absence of effective neutralizing anti–SARS-CoV antibody that mediates the adverse 

response.  It is interesting that a Th2–skewed cytokine profile is a hallmark of the RSV 

vaccine-enhanced disease, which raises the possibility that the N-specific immune response is 

skewed in a similar manner (95). 
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 VRP-S alone provided long-term protection in animals when they were vaccinated 

young and suggests that a simple vaccine regimen could provide effective long-term 

protection in healthy individuals.  The high level of protection conferred to young animals 

against icGDO3-S also suggests that an Urbani SARS-CoV S vaccine may effectively 

provide at least short-term protection against more divergent strains, such as newly emergent 

SARS-CoV.  However, only limited protection was seen in vaccinated senescent animals, a 

limitation most likely due to immunosenescence and an ineffective anti-SARS-S response 

following vaccine administration (59, 84, 134, 139, 179, 239).  The challenge of inducing a 

protective immune response in the elderly is not limited to developers of coronavirus 

vaccines and will likely involve utilizing techniques to induce stronger reactions from the 

senescent immune system to administered vaccines (60).   

Consistent with previous work comparing the susceptibility of pseudotyped 

lentiviruses bearing the S glycoproteins of various SARS strains to neutralization by anti-S 

(Urbani) IgG (224), anti–VRP-S antibody demonstrated reduced neutralization of icGDO3-S 

relative to the vaccine strain.  In spite of this, the VRP-S vaccine successfully provided short-

term protection against the divergent virus, indicating that current vaccines may also provide 

protection from many zoonotic strains that might emerge in the future.  Such cross protection 

has been observed among other vaccines, such as HA formulations for influenza virus (38) 

and VRP vaccines against norovirus (123).  Vaccination of senescent animals produced 

significantly reduced antibody responses compared with younger mice, and when challenged 

with the heterologous icGDO3-S virus, protection was incomplete.  However, any animal 

with a PRNT80 value above 1:114 against icSARS showed reduced viral replication within 

the lungs following challenge with either the vaccine or icGDO3-S strains.  As noted for the 
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homologous challenge studies, the combination of VRP-S+N did not enhance protection 

from heterologous challenge, but may actually have weakened it, with senescent animals 

showing even lower anti-S antibody responses and an even higher rate of viral replication, 

albeit with reduced titers, and increased lung pathology.  One possible cause for vaccine 

failure is the emergence of an escape mutant in an environment of suboptimal neutralization.  

However, initial data comparing the neutralization susceptibility of viruses isolated from 

these mice to the challenge stock refute this conjecture (unpublished data).  Reduced 

antibody responses have been described in immunosenescent mice and humans characterized 

by limited switching to secondary isotypes, lower antibody levels in general, and production 

of antibody with lower affinities (59, 84, 134, 139, 179, 239).  Although we have not tested 

single-vaccine dose regimens, previous studies have demonstrated that these are efficacious 

against SARS-CoV challenge in young animals (99).  Given the low antibody titers following 

boost in senescent populations, single-vaccine dose formulations will likely prove 

ineffective.  Rather, improving the VRP-S efficacy in older vaccinees may require additional 

vaccine boosts, the use of adjuvants, or other additional therapies (60).  Another likely 

contributing factor to vaccine failure in older animals was the resistance of icGDO3-S to 

neutralization relative to the vaccine strain, icSARS-CoV.  At least three neutralizing sites 

have been identified in the SARS-CoV S glycoprotein, two of which map at the N-terminus 

and in the RBD of the S glycoprotein, and one to a weak third site near the carboxy-terminus 

of S.  Given that most of the GD03 mutations map in and around the N-terminus and RBD in 

S1 (224), it is possible that either one or both of these critical epitopes are significantly 

different in icGD03-S, and likely explains the resistance to neutralization with antisera 

against Urbani-S. 
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Earlier work had indicated that antibodies to the Urbani strain of SARS-CoV 

enhanced the in vitro infectivity of pseudotyped viruses bearing the S glycoprotein of 

zoonotic strains, primarily with strains SZ16 and SZ3, and raised the specter of S-vaccine–

induced complications with newly emergent strains (224).  In contrast, it was shown that 

monoclonal, but not polyclonal, antibodies that neutralized the epidemic strain may enhance 

the infectivity of pseudotyped viruses bearing GD03-S glycoproteins, although the enhanced 

infection was marginal at best (224).  Our research with antibody directed against Urbani-S 

indicated that the polyclonal antibody neutralized icGD03-S on Vero cells, although less 

efficiently than the vaccine strain, which is consistent with the previous report (224).  

Moreover, in the young and senescent mouse models, VRP-S–vaccinated animals challenged 

with homologous or heterologous icGD03-S recombinant viruses did not display vaccine-

mediated enhancement of virus replication or enhanced pathology.  Because VRP-S vaccines 

induce broad neutralizing antibody responses that likely target multiple epitopes across the S 

glycoprotein, it is possible that the noted enhancement of infectivity with monoclonal 

antibodies is nullified.  Indeed, recent work showed that antibody specific for the RBD of 

Tor-2–S, GDO3–S, and SZ3–S glycoproteins did not reproduce enhanced infectivity in 

pseudotyped viruses bearing SZ3-S and identified conserved epitopes that allowed all three 

strains to be effectively neutralized, raising hope that a single vaccine could be effective 

against widely divergent strains of SARS-CoV (80).  Of course, additional studies are needed 

with more heterologous strains in alternative animal models before the possibility of vaccine-

induced enhancement of infection and pathology can be discounted. 
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Future Directions 

 Two areas of study currently being pursued involve the use of vaccine vectors 

expressing the S glycoproteins of different strains of SARS-CoV and the generation of new 

heterologous challenge strains.  VRPs expressing the S of zoonotic strains such as GDO3 and 

SZ16 will be compared to the VRP expressing the Urbani glycoprotein for their ability to 

induce cross-neutralizing antibody responses.  Studies employing a combination of multi-

strain SARS-CoV S-antigens as well as multiple challenge strains have not been reported and 

are likely to make a significant contribution to the field by helping to determine an optimal 

vaccine design that provides the broadest level of protection.  Additionally, a murine-adapted 

strain of SARS-CoV provides a lethal challenge virus that should provide increased 

sensitivity for comparing the efficacy of candidate vaccines. 

 Future work will also be devoted to evaluating whether changes in vaccine design or 

regimen will improve vaccine efficacy in senescent animals.  Based on our work comparing 

the antibody responses to VRP-S in senescent mice, the vaccine’s incomplete protection 

against icGDO3-S was likely due to insufficient response of the immune system to the S-

antigen.  The reduced ability of the anti-Urbani S antibody to neutralize the heterologous 

virus coupled with the reduced response to the vaccine were both likely contributors to the 

vaccine’s limited success.  This shortcoming might be overcome by inducing a more robust 

response from the senescent animals.  The use of different vaccine vectors, vaccination with 

purified protein, adjuvants, killed virus vaccines, and variations in the number and 

scheduling of boosts are all components of the vaccine that can be tested for improved 

responses in senescent animals.   



 112

 Our research provides a model for future experiments designed to characterize the 

components and inducers of the VRP-N–enhanced pulmonary inflammation.  Experiments to 

characterize and compare the inflammatory infiltrates and cytokine profiles within the lungs 

of SARS-N, -S, and control vaccinated animals should provide insight into the 

immunological mechanisms underlying the different responses.  It has been noted that a 

similar reaction in the murine model to RSV vaccines is the result of a Th2 skewed response 

in those animals.  If the cellular components and cytokine profiles of the SARS-CoV N 

vaccine-induced immunopathology are consistent with this observation, the use of IL-4 

knockout mice will be used to verify the connection between a Th2-skewed response and the 

characteristic eosinophil-containing inflammation.  SARS N vaccines in the hamster, ferret, 

and primate models in which pathology and clinical disease are more prominent following 

wild-type virus challenge will also be used to determine if similar immunopathology is 

limited to the murine model or demonstrable across multiple species.   

  

MHV replicase protein processing in replication  

The nsp7-10 of the coronavirus replicase polyprotein are highly conserved among the 

family coronaviridae (146).  The details of their involvement in replication and RNA 

synthesis are largely unknown.  This study used an infectious clone of MHV to define 

fundamental features of the nsp7-10 during viral replication in culture.  Each of the four 

proteins appears to be critical for viral replication, since deletion of any of the four protein 

domains was lethal for RNA synthesis and productive virus infection.  Furthermore, the 

results indicate that processing of the proteins from each other is necessary for replication, 
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with the one exception of the nsp9-10 cleavage site.  Finally, we determined that rearranging 

two of the replicase proteins, nsp7 and nsp8, was not permissive for virus replication.   

 Only the nsp2 coronavirus replicase protein has been shown to be dispensable for 

replication in both MHV-A59 and SARS-CoV, although its omission is attenuating both in 

vitro and in vivo (70).  Portions the carboxy-terminal half of MHV nsp1 has also been 

deleted in viable mutants (19), but otherwise, no full or partial deletions of replicase protein 

domains has been reported in viable mutants of any coronavirus.  In contrast, deletion of each 

of the nsp7-10 resulted in a lethal phenotype as evidenced by the lack of recoverable viruses 

and an inability to detect subgenomic mRNAs by RT-PCR, suggesting that each of the nsp7-

10 may be an indispensable component of the replication complex.  Alternatively, deletion of 

nsp coding sequences may sufficiently alter the structure of the polyprotein template to 

interfere with Mpro accessibility to its cleavage sites.  Interestingly, an MHV temperature 

sensitive mutant, LA6, contains a mutation in nsp10 that blocks processing of nsp4-10 at the 

non-permissive temperature suggesting that mutations or deletions at the c-terminus of 

ORF1a might disrupt Mpro activity  (165).   

Although it is known that global inhibition of coronavirus proteinases that process the 

replicase polyproteins prevents replication (103), the requirements for each of the 15 

cleavage sites in the ORF1ab polyprotein are not completely determined. Cleavage of nsp1, 

nsp2 and nsp3 has been abolished in viable MHV mutants (46, 69).  Otherwise, little is 

known of the requirements for processing, including nsp7-nsp10.  Our results show that 

changes at cleavage sites between nsp6-7, nsp7-8, nsp8-9, and nsp10-11 were not replication 

viable.  Lethality could be due to disruption of nsp7-10 proteolytic processing causing a 

failure of precursor, intermediate or mature protein function within the replication complex.  
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However, not all of the cleavage site mutants were nonviable.  Based on genetic analysis, 

MHV has two functional nsp7-8 cleavage sites, LQ↓A and LQ↓S, and disruption of either of 

these potential sites failed to affect replication competence, cleavage patterns, or cellular 

localization in vitro.  Interestingly, the LQ↓A site is conserved across all coronavirus 

families, while the second LQ↓S site is limited to group II coronaviruses, including MHV, 

BCoV, HKU1, and OC43, but not SARS-CoV.  Wild-type replication efficiency when either 

one or the other site was knocked out suggests that either, or both, sites are cleaved during 

replication.  Although we cannot detect any significant impact on in vitro replication, 

variations in N or C-terminal processing of nsp7-8 may influence in vivo pathogenesis or 

affect cell signaling pathways.   However, simultaneous mutation of both sites was lethal, 

indicating that nsp7 and nsp8 must be fully separated to function in mRNA synthesis.   

The only cleavage site that tolerated inactivation was the nsp9-10 cleavage site.  The 

mutant MHV9/10 virus produced a fusion nsp9-10 protein and was highly attenuated in its 

replication efficiency.  Serial passage of this virus restored near wild-type replication fitness, 

but did so without reverting at the mutated cleavage site or regaining the ability to process 

nsp9-10, demonstrating that efficient replication can be achieved without nsp9-10 proteolytic 

processing.  The data demonstrate that with the exception of cleavage between the nsp9 and 

nsp10 proteins, Mpro processing of the nsp7-nsp10 are essential in coronavirus RNA 

transcription and replication.   

 Previous work has indicated that nsp7 and nsp8 in solution form a complex 

hexadecameric structure that is proposed to function in processivity and generation of RNA 

primers for the RNA replicase (89, 234).  If these structures represent those seen in during 

infection, then formation of the structures would require cleavage of nsp7 from nsp8.  
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Similarly, the virus could not replicate when the relative positions of the genes encoding 

nsp7 and nsp8 were switched.  This loss of viability could be due to an alteration of the 

precursor polyprotein that interfered with processing or prevented a distinct function 

associated with the uncleaved precursor.  It is unclear why only the MHV9/10 mutant was 

viable.  Nsp9 associates with the replication complex, interacting at least with nsp8 (191), 

and has been shown to possess single-stranded RNA binding affinity (11, 53, 191).  Nsp10 is 

known to associate with several proteins of the replication complex, including nsp1, nsp5, 

nsp7, nsp8, and nsp12 (18, 19).  Nsp10 has been shown to be critical for the formation of 

functional replication complexes (165), and has recently been shown to crystallize to form 

monomers and homodimers as well as a complex dodecameric structure when expressed as 

an nsp10-11 fusion (97, 187).  It is puzzling why this critical protein with broad interactions 

with other replicase proteins would retain its function without full separation from nsp9.  

Interestingly, mutation of the nsp10-11 cleavage site was nonviable despite the report that the 

spherical structure formed by 12 units of nsp10 was crystallized as an nsp10-11 construct 

(187).  Collectively, our data indicates that the C-terminal cleavage site for the nsp10 protein 

is essential for infectivity, raising doubt about the biological relevance of the reported nsp10-

11 crystal structure (187).   

 Prior to this study, two viable cleavage mutants of coronaviruses had been reported, 

the PLP1-mediated cleavage sites between nsp1-nsp2 and nsp2-nsp3 were removed in MHV 

(46, 69).  Loss of cleavage site function resulted in attenuated replication and suggested that 

efficient cleavage of nsp1-2 and nsp2-3 was important, but not required, for replication in 

tissue culture (46, 69).  Indeed, viable mutant virus could be generated even when PLP1, 

which solely mediates nsp1-2 and nsp2-3 processing in MHV, was inactivated (69).  With 
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this report, three cleavage sites in the MHV ORF1a polyprotein have been shown to be 

dispensable for replication: nsp1-2, nsp2-3 and nsp9-10 (46, 69).  It is possible that this 

reflects the use of these proteins in natural precursors, such as has been reported for nsp2-3 

and nsp4-10.  Thus the engineered changes may reproduce some component of the normal 

lifecycle and at least residual function of these proteins.  Interestingly, rearrangement of the 

nsp7 and nsp8 encoding sequences was lethal, a result that lends support to the idea that their 

may be an independent function in replication associated with the nsp4-10 precursor (165). 

  

Future Directions 

 Although we have demonstrated that coronavirus replication depends upon the 

presence of the nsp7-10 coding sequences and, with one exception, their full processing by 

Mpro, there are still many aspects of the nsp7-10 proteins’ role in replication that remain to be 

answered.  One aspect of this research, defining the fundamental role that these small 

proteins play in coronavirus replication, will be advanced by introducing mutations across 

the proteins.  By altering the amino acid sequence of the proteins their function may be 

perturbed to various degrees and allow us to determine a specific function in replication 

based on the point at which attenuation occurs.   

 The mutations which arose in MHVp15-1 and MHVp15-3 during serial passage of 

the highly attenuated MHV9/10 mutant may provide valuable insight into interactions 

between nsp9-10 and other components of the replicase proteins.  Mutations that arise to 

offset the diminished replication efficiency as a result of inhibiting nsp9-10 processing could 

identify new interactions between individual proteins of the replication complex.  Sequencing 

the genomes of MHVp15-1 and MHVp15-3 has been completed and the notable mutations 



 117

are listed in Table 6.  These mutations are currently being added to the MHV infectious clone 

and will be used to generate recombinant viruses and allow us to determine the relative 

contributions each alteration makes to the MHV9/10 replication efficiency.  The mutations in 

nsp3 and S are particularly attractive as they are present in both passage 15 isolates.   

 Other avenues of research are also available to further our understanding of the roles 

nsp7-10 play in coronavirus replication.  Although processing of either of the sites at the 

nsp7-8 boundary permitted efficient in vitro growth, the MHV mouse model can be used to 

determine if use of both, or preferential use of a single site, has an effect in vivo.  

Furthermore, distinct roles in replication for both fully processed and precursor forms of the 

proteins could be identified by determining if lethal cleavage mutants can complement each 

other to form viable replication complexes.  Of course, a system limiting the chance of 

simple rescue by recombination, such as through use of expression vectors or stable cell 

expression systems would need to be established; and not a trivial task given the notable 

instability of MHV replicase cDNA in E. coli plasmid amplification vectors.  Still, such a 

system could allow us to determine the minimum unit of a functional replicase polyprotein 

required for trans rescue of a lethal mutant and identify the specific replicase precursor 

needed for efficient replication.  Similar answers could be found with further use of the 

rearrangement mutants.  Other combinations of rearrangements within the nsp4-10 

polyprotein could provide evidence that subcomponents of the precursor are required thereby 

identifying a functional unit within the precursor protein. 

 

 The development of coronavirus reverse genetics systems has provided a valuable 

tool for aspects of applied and basic coronavirus research.  Through use of the SARS-CoV 
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and MHV infectious clones, we have developed systems for the rigorous testing of candidate 

vaccines as well as for elucidating fundamental aspects of coronavirus biology.  Although 

many questions remain to be answered, we have developed model systems with which we -- 

and other researchers -- can address them and continue to contribute to the development of 

anti-coronaviral therapies and expand our understanding of the viruses’ complex replication 

strategy. 
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Table 6.  Genomic variation between MHV, MHV9/10, MHVp15-1, and MHVp15-3. 
 

Genome position (nt) 65-69 1628 3874 10428 13102 13164-5 16793 22741 26738 28607 

Gene  5’UTR nsp2 nsp3 nsp5 nsp9 nsp9 nsp13 ORF2a S ORF6 

MHV  Met His Ser Lys Gln Phe Gln Phe Ser 

MHV9/10 tctaa Met His Ser Lys Ala Phe Gln Phe Ser 

MHVp15-1 tctaa Leu Leu Ser Lys Thr Val stop Tyr Ile 

MHVp15-3 tctaa Met Leu Gly Arg Ala Phe Gln Tyr Ser 
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