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ABSTRACT 
 

JEREMY DAY: Nucleus Accumbens Neurons Encode Pavlovian Approach Behaviors: 
Evidence from an Autoshaping Paradigm 
(Under the direction of Regina Carelli) 

 
 

 Environmental stimuli predictive of appetitive events can elicit Pavlovian 

approach responses that enhance an organism’s ability to track and secure natural 

rewards.  We examined the activity of individual nucleus accumbens (NAc) neurons 

during the performance of approach behaviors. Animals were presented with conditioned 

stimuli that were either positive (the CS+) or negative (the CS-) predictors of reward. 

Approach responses directed at these cues were recorded as lever presses and were 

significantly more likely to occur during CS+ presentations. On the test day, 75% of NAc 

neurons exhibited changes in firing rate (termed 'phasically active') during CS+ 

presentations. Of these cells, 47% were characterized by time-locked increases in cell 

firing while 53% showed reductions in firing for the duration of the CS+. The same cells 

typically showed little or no change during CS- presentations.  These results suggest that 

NAc neurons encode reward prediction and/or approach responses elicited by reward-

paired cues. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Species survival and propagation requires that individual organisms learn about their 

surroundings and continually adjust behavior accordingly. One elementary yet biologically 

critical form of learning involves the connection of positive outcomes with predictive cues. 

This ability enables organisms to track, locate, and secure food and necessary materials in 

demanding environments, revealing obvious survival value. Moreover, such learning is often 

the background for both normal and maladaptive human behaviors. Thus, understanding 

reward-related learning could shed light on a variety of human activities, including drug 

taking, food seeking, social attachment, and sexual behavior.  

Pavlovian reward learning 

Historically, reward-related learning has been divided into stimulus-outcome 

(classical or Pavlovian) and action-outcome (operant or instrumental) branches. In the 

context of Pavlovian learning, biologically relevant outcomes such as food, water, and sexual 

stimuli are labeled unconditioned stimuli (US) because they are able to evoke innate or 

unconditioned responses (UR) such as salivation, approach, and consumption (Pavlov, 1927). 

Pavlovian conditioning procedures involve the pairing of a neutral sensory stimulus, termed 

the conditioned stimulus (CS) with a US in a temporally contingent manner. Learning occurs 

as the previously neutral stimulus obtains predictive value for the coming reward based on 

repeated pairings of the CS and US. Eventually, this novel cue is able to evoke a response 



that is often topographically similar to that produced by the US itself. The learned response 

that the CS elicits is called the conditioned response (CR). 

The existence of a Pavlovian association is typically inferred from the presence or 

absence of a CR. Therefore, complete understanding of the neurobiological basis of 

Pavlovian learning requires not only advanced cellular and pharmacological technologies, 

but also reliable behavioral techniques that can measure the acquisition and maintenance of 

an association. For example, stimulus-reward learning in animals is often quantified using an 

“autoshaping” or “sign-tracking” design, in which a CS predicts the availability of a natural 

reward such as food (US). Initially, food delivery produces orienting and approach responses 

that are followed by consumption. With repeated CS-US pairings, the CS itself begins to 

elicit highly selective approach responses even though reward delivery is independent of any 

specific behavior (Bussey et al., 1997; Robbins and Everitt, 2002). After extended 

conditioning, approach responses are observed nearly every time the reward-predictive CS is 

presented to an animal, indicating a strong association between this cue and the future 

reward. Interestingly, conditioned approach behaviors have been observed in a variety of 

species, including rats, monkeys, pigeons, and humans (Brown and Jenkins, 1968; Sidman 

and Fletcher, 1968; Wilcove and Miller, 1974; Bussey et al., 1997), and track diverse 

rewards such as heat, food, water, intracranial stimulation, intravenous cocaine, and 

copulation (Peterson et al., 1972; Jenkins and Moore, 1973; Wasserman, 1973; Burns and 

Domjan, 1996, 2001; Uslaner et al., 2006). Thus, although directed approach behaviors are 

unlike traditional Pavlovian visceral or glandular responses, they provide a convenient 

measure of associative reward learning that is highly similar across species. In addition, 

approach behaviors may be linked to impulsive choice and could provide an interesting 
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analogue to compulsive behaviors that develop following repeated drug use (Tomie et al., 

1998, 2000).  

From an ecological standpoint, reward-related Pavlovian learning may provide 

several adaptive advantages for an organism in a rapidly changing environment. Successful 

identification and consumption of unconditioned stimuli such as food involves physical 

contact that engages proximal receptors of taste, olfaction, and somatosensation.  However, 

because these sensory modalities are not equipped to identify stimuli in a larger 

environmental field, they may not make up a complete set of tools for efficient foraging 

behavior. Through Pavlovian learning, visual and auditory information can be incorporated 

in the foraging experience and utilized to detect and predict available rewards. 

Role of the nucleus accumbens in Pavlovian reward learning 

The ability to form and use Pavlovian associations requires the existence and 

cooperation of brain circuits equipped to integrate sensory and motivational information and 

alter motor output. The nucleus accumbens (NAc) has received much attention in this 

respect. It receives convergent glutamatergic input from the prefrontal cortex, hippocampus, 

and basolateral amygdala, as well as a dopaminergic projection from the ventral tegmental 

area (VTA). The NAc also projects to motor areas such as the ventral pallidum, making it an 

ideal location for detailed reward information to be turned into motivated action(Mogenson 

et al., 1980). Indeed, several lines of research converge in suggesting that the NAc mediates 

goal-directed behaviors for both drug and natural (e.g., water, sucrose, & food) rewards 

(Carelli and Deadwyler, 1994; Wise, 1998; Kelley, 1999; Carelli et al., 2000; Robbins and 

Everitt, 2002; Di Chiara et al., 2004; Roitman et al., 2004). Moreover, conditioned cues 

associated with primary reinforcement can evoke patterned responses among NAc neurons 
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and elicit dopamine release in this structure (Carelli, 2000; Phillips et al., 2003; Nicola et al., 

2004b; Roitman et al., 2005).  

The NAc (especially the core subregion) also plays an important role in the 

development and expression of Pavlovian autoshaping behaviors. Cardinal et al. (Cardinal et 

al., 2002) demonstrated that excitotoxic lesions of the NAc core impaired the ability of rats to 

discriminate between a CS+ predictive of reward and a CS- with no predictive value. 

Furthermore, depletion of dopamine in the NAc resulted in similar deficits in the acquisition 

and expression of approach behaviors (Parkinson et al., 2002). These results echoed an 

earlier finding that dopamine antagonists infused into the NAc core impaired approach 

behavior in ways dissociable from glutamate antagonists (Di Ciano et al., 2001).  

Although previous studies identified important roles for specific NAc subnuclei and 

neurotransmitter systems in mediating the Pavlovian approach response, the firing patterns of 

NAc cells during this process remain poorly understood. Here, we tested the hypothesis that 

individual NAc neurons encode both the predictive value of a stimulus and Pavlovian 

approach actions elicited by conditioned stimuli. In vivo electrophysiological methods were 

employed to characterize the activity of single NAc neurons during an autoshaping paradigm, 

where cues either predicted or did not predict sucrose delivery. Thus, the present study 

assessed the responsiveness of NAc neurons relative to a fundamental aspect of learning 

(prediction of reward), but also examined the relationship between learned cue-reward 

associations and biologically significant approach responses.  
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CHAPTER 2 
 

METHODS 
 
 

Animals 

 Male, Sprague Dawley rats (n=9, Harlan Sprague Dawley, Indianapolis, IN) aged 90-

120 d and weighing 260-330 gm were used as subjects and individually housed with a 12:12 

light:dark cycle. All experiments were conducted between 9:00 am and 1:00 pm. 

Bodyweights were maintained at no less than 85% of pre-experimental levels by food 

restriction (10-15 gm of Purina laboratory chow each day, in addition to approximately 1 gm 

of sucrose consumed during daily sessions). This regimen was in place for the duration of 

behavioral testing, except during the post-operative recovery period when food was given ad 

libitum. All procedures were approved by the University of North Carolina Institutional 

Animal Care and Use Committee.  

Autoshaping Procedure 

 Experimental sessions occurred in 43 × 43 × 53 cm Plexiglas chambers (Med 

Associates, St. Albans, VT) housed within sound-attenuating boxes (Fibrocrete, Crandall, 

GA). Two symmetrically located retractable levers (Colburn Instruments, Allentown, PA) 

were placed 17 cm apart on one wall of the chamber. Cue lights were positioned above each 

lever, but were not active in this experiment. A food receptacle was centered between the 

levers, 2.5 cm from the floor. A house light was centrally located on the wall opposite the 

food receptacle and levers, 2 cm from the ceiling.  



A session began by placement of an animal into the chamber with the house light 

illuminated and white noise present. Daily 1 h sessions consisted of 50 experimental trials. 

On 25 trials, one retractable lever (the CS+) was inserted into the chamber for 10 s and then 

retracted, immediately followed by delivery of a 45 mg sucrose pellet (Sucrose Reward 

Formula F; Noyes, Lancaster, NH) into the food receptacle.  On the other 25 trials, a separate 

lever (the CS-) was inserted into the chamber for 10 s and then retracted. Importantly, the 

retraction of the CS- lever was never followed by the unconditioned stimulus (UCS, sucrose). 

Thus, the CS+ was a positive predictor of sucrose, whereas the CS- was not. Trials were 

initiated on a variable schedule every 45 to 75 s; the average inter-trial interval was 60 s. 

Trial type (i.e., CS+ or CS-) was chosen semi-randomly, with no more than two trials of 

either type occurring in sequence. Additionally, the CS+ lever was counterbalanced left-right 

across animals and across experimental chambers. Contact with each CS, registered as a 

lever press, was recorded during every trial. However, lever pressing had no programmed 

consequences, as sucrose delivery was not dependent upon contact with the CS+. As in 

previous studies, repeated contact with either cue was interpreted as approach behavior (Di 

Ciano et al., 2001). After 10 training sessions, all rats exhibited approach responses on more 

than 80% of CS+ trials, and were surgically prepared for electrophysiological recording.  

Surgery 

Animals were anesthetized with ketamine hydrochloride (100 mg/kg) and xylazine 

hydrochloride (20 mg/kg) and microelectrode arrays were implanted with the NAc, using 

established procedures (Carelli et al., 2000).  Electrodes were custom-designed and 

purchased from a commercial source (NB Labs, Dennison, TX). Each array consisted of 

eight microwires (50 µm diameter) arranged in a 2x4 bundle that measured ~1.5 mm 
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anteroposterior and ~.75 mm mediolateral.  Arrays were targeted for permanent, bilateral 

placement in the core and shell subregions of the NAc (AP, +1.3-1.7 mm; ML, ±0.8 or 1.3 

mm; DV, -6.2 mm; all relative to bregma on a level skull, (Paxinos and Watson, 2005)). 

Ground wires for each array were coiled around skull screws and placed 3-4mm into the 

ipsilateral side of the brain, ~5mm caudal to bregma. After implantation, both arrays were 

secured on the skull using surgical screws and dental cement.  All animals were allowed at 

least 6 post-operative recovery days before being reintroduced to the autoshaping paradigm. 

Thereafter, animals underwent a final autoshaping training session to ensure stable approach 

responding before the commencement of electrophysiological recordings during the final test 

day. 

Electrophysiological Recordings 

Electrophysiological procedures have been described in detail previously (Carelli et 

al., 2000; Carelli, 2002a; Hollander and Carelli, 2005). Before the start of the recording 

session, the subject was connected to a flexible recording cable attached to a commutator 

(Med Associates Inc., St. Albans,VT) that allowed virtually unrestrained movement within 

the chamber. The headstage of each recording cable contained 16 miniature unity-gain field 

effect transistors. NAc activity was recorded differentially between each active and the 

inactive (reference) electrode from the permanently implanted microwires. The inactive 

electrode was examined before the start of the session to verify the absence of neuronal spike 

activity and served as the differential electrode for other electrodes with cell activity. Online 

isolation and discrimination of neuronal activity was accomplished using a 

neurophysiological system commercially available (multichannel acquisition processor, MAP 

System, Plexon, Inc., Dallas, TX). Multiple window-discrimination modules and high-speed 
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analog-to-digital (A/D) signal processing in conjunction with computer software enabled 

isolation of neuronal signals based on waveform analysis. The neurophysiological system 

incorporated an array of digital signal processors (DSPs) for continuous spike recognition. 

The DSPs provided a continuous parallel digital output of neuronal spike events to a Pentium 

computer. Another computer controlled behavioral events of the experiment (Med Associates 

Inc., St. Albans,VT) and sent digital outputs corresponding to each event to the MAP box to 

be time stamped along with the neural data. The neurophysiological system has the capability 

of recording up to four neurons per microwire using real-time discrimination of neuronal 

action potentials. However, in the present study 1-2 neurons were typically recorded per 

active microwire (Chang et al., 1994; Nicolelis et al., 1997; Roitman et al., 2005). Principle 

component analysis (PCA) of continuously recorded waveforms was performed prior to each 

session and aided in the separation of multiple neuronal signals from the same electrode. This 

sophisticated analysis generates a projection of waveform clusters in a three-dimensional 

space, enabling manual selection of individual waveforms. Before the session, an individual 

template made up of many “sampled” waveforms was created for each cell isolated using 

PCA. During the behavioral session, waveforms that “matched” this template were collected 

as the same neuron. Cell recognition and sorting was finalized after the experiment using the 

Offline Sorter program (Plexon, Inc., Dallas, TX), when neuronal data were further assessed 

based on PCA of the waveforms, cell firing characteristics, and interspike intervals.  

Data Analysis 

Pavlovian approach responses directed at conditioned stimuli were recorded as lever 

presses. These data are presented here as the probability of approach for each CS, or the 

number of trials in which the animal made at least one press on that lever divided by 25 (the 
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total number of trials). The differential acquisition of stimulus-selective conditioned 

appetitive responses was evaluated using a within-subjects cue (2 levels, CS+ and CS-) x 

session (12 levels) repeated measures ANOVA (Statistica, StatSoft, Tulsa, OK). Newman-

Keuls post-hoc tests were used to elucidate time-specific differences between the cues (CS+ 

and CS-). Further analyses compared cue-specific contact (mean lever presses during each 

second of cue presentations) during the test session using a within-subjects cue (2 levels) x 

time (10 levels), repeated measures ANOVA. Statistical significance was assessed using an 

alpha level ≤ 0.05. 

Neuronal firing patterns in the NAc were characterized using raster displays and 

perievent histograms (PEHs) constructed with commercially available software 

(NeuroExplorer, Plexon, Inc.). These displayed the activity of each cell during three time 

epochs: (1) a “baseline” (-10 to 0 s) period prior to CS presentation, (2) the 10 s cue 

presentation (0 to 10 s), and (3) the 10 s following the CS presentation (10 to 20 s). The 

result was a histogram that represented cell firing throughout a 30 s window surrounding 

CS+ and CS- presentations and sucrose delivery (CS+ only). Consistent with other reports 

from this laboratory (e.g., (Carelli et al., 2000; Roitman et al., 2005), NAc cells were 

described as “phasically active” during a given epoch if rates of cell firing increased or 

decreased by 40% from baseline rates. Here, cells were classified as having either an 

“excitatory” or “inhibitory” response to the CS+ or CS- if they exhibited a 40% rise or fall in 

activity during any of the first three 1 s time bins of the CS presentations. In cases where a 

cell showed both an excitation and inhibition during the initial three seconds of CS onset, the 

first response was used for classification. Cellular responses to the UCS were similarly 

assessed during the 5s period that followed CS+ retraction/sucrose delivery. Cells that 
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exhibited no phasic response to the CS+ were classified as CS- specific (displaying a change 

in activity in the first 3 s of the CS- presentation only), sucrose specific (displaying a change 

in firing rate during the 5 s following the sucrose delivery, but no response to either cue), or 

nonphasic (no change in firing rate relative to any experimental event).  

The primary goal of this study was to compare cellular responsiveness to cues that did 

and did not elicit approach responses. Therefore, neuronal data for the excitatory and 

inhibitory subpopulations of CS+ responsive cells were separately averaged. Then, the mean 

firing rate for these populations during the CS- presentation was plotted, allowing for a direct 

comparison between the changes in neural activity evoked by these cues. The effect of a 

cue’s predictive value (and ability to evoke approach responses) on neuronal firing rates was 

assessed independently for CS+ excitatory and inhibitory cell populations using repeated 

measures cue (2 levels) x time (11 levels, including baseline) ANOVAs that compared mean 

baseline firing rates to mean activity during each one-second bin of the cue periods. 

Newman-Keuls post-hoc tests of the interaction terms were used to determine the time bins at 

which firing rate differed significantly from baseline or at which a cue difference existed. 

Signal-to-baseline (S:B) ratios for CS+ excitatory and CS+ inhibitory populations were 

computed by dividing the “signal” (firing rate for an individual cell during a single second of 

the cue period), by the baseline (averaged activity for that cell during the 10 s prior to cue 

presentation). This analysis controlled for the heterogeneity in baseline firing rates among 

cells, providing a more conclusive and substantive examination of cue-induced changes in 

neuronal activity.  
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Histology 

Upon completion of the experiment, rats were deeply anesthetized with a ketamine 

and xylazine mixture (100 mg/kg and 20 mg/kg, respectively). In order to mark the 

placement of electrode tips, a 15µA current was passed through each microwire electrode for 

5 seconds. Transcardial perfusions were then performed using physiological saline and 10% 

formalin, and brains were removed. After post-fixing and freezing, 50 µm coronal brain 

sections were mounted and stained with thionin and potassium ferricyanide to reveal a blue 

reaction product corresponding with the location of an electrode tip. The specific position of 

individual electrodes was assessed by visual examination of successive coronal sections. 

Placement of an electrode tip within the NAc core or shell was determined by examining the 

relative position of observable reaction product to visual landmarks (including the anterior 

commissure and the lateral ventricles) and anatomical organization of the NAc represented in 

a stereotaxic atlas (Paxinos and Watson, 2005). Statistically significant differences in the 

distribution of excitatory and inhibitory cells in the core and shell subregions were assessed 

by performing a Chi-square test on the frequency of observed cell types. 
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CHAPTER 3 
 

RESULTS 
 

Pavlovian Approach Behavior  

Animals rapidly acquired approach behaviors directed at reward-predictive stimuli. 

Fig. 1A displays the mean probability of approach for all rats across sessions for each cue. 

On the initial day of testing, naïve rats rarely approached either cue. However, as the number 

of CS-UCS pairings increased, the probability of approach behaviors directed at the CS+ also 

increased. In contrast, approaches directed at the CS- did not change. By the final test 

session, approach probability was stable (mean CS+ approach probability, 0.97 ± 0.02; mean 

CS- approach probability, 0.08 ± 0.05). A repeated measures ANOVA revealed a main effect 

of cue (F(1,8) = 151.14; p < 0.01) and a main effect of session (F(11,88) = 14.23; p < 0.01) on 

approach probability. Furthermore, a cue x session interaction was present (F(11,88) = 28.81; p 

< 0.01), demonstrating that the variance in approach responding was session-specific. Post-

hoc comparisons revealed that rats approached the CS+ more than the CS- at all time points 

after the third session (all p’s < 0.05). The probability of approach towards the CS- never 

increased from levels achieved in the initial session (p > 0.05 for all post-hoc comparisons). 

The approach response towards the CS+ typically occurred within seconds of its onset. 

Figure 1B displays an average histogram of the latency to approach the lever (measured as 

the first press following CS+ extension). 

In addition to discriminated approach behavior, rats also exhibited more contact with 

the CS+, as measured by the number of lever presses during cue periods. This contact 



typically took the form of biting, grasping, and pawing at the lever.  Fig. 1C shows the mean 

number of lever presses for all rats during each second of the CS+ and CS- presentations on 

the test day. A repeated measures ANOVA revealed a significant effect of cue on lever 

contact (F(1,8) = 98.09; p < 0.01), but no significant effect of time and no interaction between 

cue and time. The CS+ engendered significantly more lever presses than the CS- during each 

time bin. Moreover, lever contact was relatively stable during the CS+ presentation; the rate 

of lever presses was not significantly increased or decreased across the 10 s presentation.  

NAc neurons selectively encode aspects of the autoshaping paradigm 

 Our primary goal was to characterize the activity of NAc neurons during the 

presentation of cues that either predicted or did not predict sucrose. Thus, although we 

observed phasic cellular responses to the CS+, CS-, and the UCS, we first sought to 

characterize response types based on firing rates relative to the CS+.  Of 76 NAc neurons 

isolated and recorded during the autoshaping task, 57 (75%) showed a phasic change 

(increase or decrease) in firing rate within seconds of the CS+ onset. Of these neurons, 27 

cells responded with excitations in firing rate, while 30 responded with inhibitions. Nearly 

half of all CS+ responsive cells (28 out of 57, or 49%) exhibited opposite or nonphasic 

responses during the CS- period. Only 19 neurons did not show a phasic change in firing 

pattern relative to the CS+, but the majority (15/19 cells) were responsive during other 

aspects of the task. Specifically, some neurons (n = 4) responded to the CS- alone while 

another population of cells (n = 11) responded to sucrose delivery alone.  Finally, the 

remaining 4 cells exhibited no phasic patterned activity during the autoshaping task, 

classified as nonphasic. A more detailed description of each type of neuronal pattern during 

the autoshaping procedure is presented below.  
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Responses to sucrose-predictive cue (CS+) 

The rasters/peri-event histograms (PEHs) in Figure 2 show the activity of a single 

NAc neuron that was excited during CS+ presentation, across baseline, cue, and post-cue 

epochs. This neuron exhibited a baseline firing rate of 0.28 Hz, but peaked to 10.72 Hz 

during the first second of the CS+ presentation (top panel). Firing rate then declined 

monotonically during the remainder of the CS+ period, spiked again upon lever retraction 

and sucrose delivery, and remained elevated during sucrose consumption. In contrast, during 

the CS- presentation (bottom panel) the same cell exhibited no substantial changes in activity 

compared to baseline firing.  

  The mean activity of all CS+ excitatory cells (n=27; mean baseline firing rate ± 

SEM = 2.62 ± 0.93) is illustrated in the composite PEHs in Figure 3. Interestingly, the 

majority of CS+ excitatory cells (19 of 27, or 70%) also responded to the CS- with 

excitations. However, as is evident in Figure 3, the magnitude of the composite response for 

the CS- was relatively blunted as compared to the CS+ response. A repeated measures 

ANOVA on mean cell firing during these periods revealed a main effect of time (F(10,260) = 

4.26; p < 0.01), as well as a significant interaction between cue and time (F(10, 260) = 1.87; p < 

0.05). There was no main effect of cue (F(1,26) = 2.40; p = 0.13). Newman-Keul post hoc 

comparisons revealed that firing rate was significantly increased over baseline rates during 

each 1-s time bin of the CS+ period (all p’s < 0.05). In contrast, firing rate was only 

significantly increased during the first second of the CS- presentation. Additionally, firing 

rate was significantly higher in the first, second, third, fifth, and sixth seconds of the CS+ 

period than during the same seconds of the CS- period. Thus, this population of neurons 

responded to the sucrose predictive cue with robust excitations that were strongest during the 
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first few seconds of the cue presentation. The same cells responded to the non-predictive cue 

with transient, less substantial excitations.  

Figure 4 shows an example of a representative CS+ neuron that displayed an 

inhibition in cell firing during the CS+ period. This neuron had a baseline firing rate of 3.8 

Hz, but fired at 1.44 Hz or lower during each second of the CS+ presentation. Cell activity 

returned to baseline levels following cue retraction, and then increased steadily until roughly 

8 s seconds after sucrose delivery. Conversely, no changes were observed during the CS- 

presentation. The inhibitory response of this neuron was therefore selective for the predictive 

cue.  

Composite PEHs showing the average activity of all CS+ inhibitory neurons (n=30; 

mean baseline firing rate ± SEM = 1.909 ± 0.51) relative to CS+ and CS- presentations are 

displayed in Figure 5. Mean firing rate of CS+ inhibitory cells was significantly affected by 

cue (F(1,26) = 23.09; p < 0.01) and time (F(10,260) = 3.59; p < 0.01) as assessed by a repeated 

measures ANOVA. In addition to these main effects, there was a significant interaction 

between cue and time (F(10,260) = 6.82; p < 0.01). Post hoc comparisons revealed that mean 

firing rate was significantly decreased from baseline at all time points during the CS+ 

presentation (all p’s < 0.05). Furthermore, neuronal activity during the CS+ period was lower 

than activity during the CS- period for every 1-s time bin (p’s < 0.05 for each second). On 

average, these cells exhibited no patterned phasic response to the cue that did not precede 

sucrose.  

 Signal-to-baseline (S:B) ratios were calculated for CS+ excitatory and CS+ inhibitory 

neurons to control for differences in baseline firing rates across cells, and provide more 

detailed information  regarding second-to-second changes in cell firing during each cue 
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presentation. S:B ratios across time for CS+ excitatory and CS+ inhibitory neurons are 

shown in Figures 6A and 6B, respectively. The mean S:B ratio of CS+ excitatory neurons (n 

= 27) increased to over 3 during the first second of the CS+, signifying a 200% increase in 

cell firing relative to baseline.  In contrast, the same cells exhibited more modest increases 

(~70%) during the first second of the CS- period. The excitatory action of these cells was 

evident for the duration of the CS+ period, but returned to baseline levels for the majority of 

the CS- period. The mean S:B ratio of CS+ inhibitory cells was even more striking (Figure 

6B). At each time point during the presentation of the sucrose predictive cue, the S:B ratio 

was close to 0.5, meaning that the firing rate of these cells was reduced by half. Conversely, 

the mean S:B ratio of the same cells during the CS- presentation was never below 1, 

indicating that activity of this subpopulation did not change relative to the non-predictive 

cue.  

Reponses to non-predictive cue (CS-) 

 Fifty-five percent of all NAc neurons were phasically active during the CS- period, 

with 29 cells exhibiting an excitatory response and only 13 displaying an inhibitory response. 

However, of 76 neurons recorded in this study, only 4 (5%) responded to the CS- but not the 

CS+. Three of these cells exhibited an excitation when the CS- was presented. A 

representative example of this cell type is displayed in Figure 7A. During the baseline period 

for the CS+, this cell fired at an average of 2.95 Hz. The activity of this cell did not deviate 

by more than 40% from this rate during any 1 s bin of the sucrose-predictive cue. The 

baseline rate preceding the CS- period was 2.92 Hz, but increased to 5.0 Hz during the first 

second of the CS- presentation, a clear excitatory response. Firing rate returned to baseline 

levels during the remainder of the CS- presentation, and exhibited another excitation 

 16



(peaking at 6.28 Hz) upon lever retraction. As the occurrence of this cell type (CS- specific) 

was infrequent, composite data are not presented here.  

Responses to sucrose 

Sixty-eight NAc units (89%) exhibited changes in firing rate within 5 s following 

sucrose delivery. Eleven (16%) of these cells were not responsive to either cue, but exhibited 

phasic changes in cell firing only during sucrose delivery and consumption. Of this group, 9 

cells displayed robust excitations in response to sucrose, whereas 2 responded with 

inhibitions. Figure 7B shows an example of a single representative neuron that displayed an 

excitatory response during sucrose availability alone. Cell activity was stable during the 

baseline periods (CS+ baseline, 3.97 Hz; CS- baseline, 3.72 Hz) and did not deviate during 

the presentation of either cue. However, 4 s after the retraction of the CS+, the firing rate was 

elevated to 14.4 Hz. There was no excitatory response during the same period following the 

retraction of the CS-. Indeed, the phasic response of this cell was selective for sucrose, and 

was not influenced by predictive or non-predictive cues. Again, because this and similar cells 

accounted for a relatively small percentage of overall patterned responding, composite data 

are not shown here. 

Histology 

 A total of 144 microwire electrodes (16 per animal) were implanted in the brains of 9 

animals. Forty-nine neurons were recorded from 72 wires histologically verified to be in the 

NAc core.  Likewise, 27 neurons were recorded from 44 wires located in the shell.  Thus, not 

every wire yielded neural data, and in some cases, more than one cell was recorded per wire 

(i.e., there was not a one-to-one correspondence between each wire and neural data).  

Additionally, 17 individual neurons were recorded on the remaining 28 electrodes placed 
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outside of the NAc.  Since those wires were distributed randomly across multiple neural 

structures, resulting data were excluded from this study. Across all animals, bilateral 

electrode placements in the NAc ranged from 0.96-2.52 mm anterior to bregma and 0.5-2.5 

mm lateral to the midline. Figure 8A shows the distribution of marked electrode tip 

placements across all animals according to the stereotaxic atlas of Paxinos and Watson 

(2005). Only electrodes that recorded at least one neuronal waveform are included in this 

figure.  

Figure 8B shows the observed frequency of cellular response types across stimuli (as 

a percentage of total neurons recorded in the core or shell).  There was a differential 

distribution of neurons that exhibited excitations to the CS+ or CS- during the task.  

Specifically, a significantly greater percentage of neurons in the NAc core displayed 

excitations to conditioned stimuli (χ2 = 6.503, p = 0.01 for CS+; χ2 = 5.615, p = 0.017 for CS-

). However, no significant differences were observed between excitatory responses in core 

and shell neurons following the UCS (p = 0.39).  Additionally, there were no significant 

core/shell differences in the proportion of neurons that displayed inhibitory responses to the 

conditioned cues or the UCS (all p’s > 0.05).  It is important to note that there was overlap in 

populations of neurons that were classified across the dimensions shown in Figure 8B.  In 

other words, the CS+, CS-, and UCS categories constructed in this figure are not mutually 

exclusive. For example, an individual neuron could be both inhibitory relative to the CS+ 

presentation and excitatory relative to UCS delivery.  
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CHAPTER 4 
 

DISCUSSION 
 
 

The present study offers the first evidence of patterned NAc activity during the 

execution of simple Pavlovian approach behaviors toward stimuli that predict rewards. 

Consistent with other reports (Bussey et al., 1997; Di Ciano et al., 2001; Cardinal et al., 

2002), rats rapidly acquired approach responses directed almost exclusively at a CS+ that 

predicted sucrose delivery. A series of studies have demonstrated that such repetitive 

approach behaviors are subserved by key interactions between the NAc and associated nuclei 

(Parkinson et al., 2000; Di Ciano et al., 2001; Cardinal et al., 2002; Parkinson et al., 2002). 

The present results confirm those reports and provide insight into cellular mechanisms 

involved in autoshaping.  Specifically, the vast majority of NAc cells recorded here exhibited 

robust, phasic changes in firing rate within milliseconds of CS+ onset.  However, several 

subpopulations were observed. One subset was characterized by sustained increases in firing 

rate during CS+ presentation. This population also responded to the seldom-approached CS-, 

but excitations were significantly smaller in magnitude than those observed for the CS+. 

Another group of neurons showed significant inhibitions in firing rate for the duration of the 

CS+ period. The same cells exhibited little or no change in activity during the CS- period, 

indicating a relative specificity for stimuli that predict sucrose and elicit approach responses. 

The finding that NAc neurons demonstrate two distinct patterned responses during 

autoshaping corroborates evidence suggesting that functional ensembles – or coordinated 



neuronal networks – in the NAc act to integrate diverse signals and carry out different tasks 

during reward-related events (Carelli and Wightman, 2004). Additionally, our observation 

that the firing patterns reported here were differentially distributed in the NAc core and shell 

suggests that these subregions play different roles during autoshaping. 

A cue predicting a natural appetitive stimulus (sucrose) elicited striking excitations in 

a considerable percentage (36%) of NAc neurons (classified as CS+ excitatory cells). Recent 

investigations have reported similar excitations evoked by cues signaling both drug and food 

rewards (Nicola et al., 2004b). These excitations may originate from glutamatergic inputs 

from cortical and limbic structures (Pennartz et al., 1994; Nicola et al., 2000; Nicola et al., 

2004b; Wilson and Bowman, 2004).  However, temporally similar cue-evoked excitations 

have also been observed in dopamine neurons in rodent and primate striatum (Schultz et al., 

1993; Pan et al., 2005). The degree of these responses vary based on the nature, size, and 

certainty of the reward being predicted (Hassani et al., 2001; Cromwell and Schultz, 2003; 

Fiorillo et al., 2003). The dopaminergic innervation from the VTA is required for cue 

responses in the NAc (Yun et al., 2004). Additionally, NAc dopamine concentration rapidly 

increases in response to predictive cues (Phillips et al., 2003; Roitman et al., 2004), 

supporting the hypothesis that NAc dopamine modulates the ability of glutamatergic inputs 

to drive NAc cell firing (Cepeda and Levine, 1998; Nicola et al., 2000; Wise, 2004; Goto and 

Grace, 2005). Thus, while cortical areas could excite NAc neurons during autoshaping, 

dopaminergic signals may gate the nature and function of those excitations.  

The magnitude of CS+ excitatory responses identified here may only partially depend 

on the predictive value of the cue. The non-predictive CS- also elicited significant (but 

relatively blunted) excitations in the same cells, but did not produce conditioned approach 
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responses. Thus, the excitatory signal may not encode conditioned movements per se, but 

may simply reflect orienting responses directed at dynamic events in a changing 

environment, or rapid movements in general. While this is certainly a possibility, several 

studies suggest otherwise. Using detailed videotape analysis, Woodward and colleagues 

(Chang et al., 1994) compared NAc cell activity relative to lever presses and orienting motor 

responses in a cocaine-self administration paradigm with similar movements that occurred 

during the inter-trial interval. Those authors demonstrated that phasic patterns of cell firing in 

the NAc were specific to goal-directed events. NAc neurons did not exhibit patterned 

discharges (excitations or inhibitions) during the execution of similar actions that did not 

produce cocaine. Other investigations have corroborated these findings (Ljungberg et al., 

1992; Peoples et al., 1998), suggesting that the firing patterns of NAc neurons are 

specifically altered by reward-related events, and not movement alone.  

It is possible that the excitations observed for the CS- may also be the result of 

conditioning history. Both NAc and dopamine neurons respond to predictive and non-

predictive stimuli, and this effect had been attributed to stimulus generalization (Mirenowicz 

and Schultz, 1996; Nicola et al., 2004b). In the present study, the CS+ and CS- were alike in 

every way except spatial location, leaving open the possibility that generalization occurred. 

As a predictive cue, the CS+ may produce a response among NAc neurons as its incentive 

value increases (Berridge and Robinson, 1998). Likewise, other stimuli that share its physical 

properties may develop their own salience and come to elicit similar cellular responses. The 

observation that excitatory responses were generally much larger relative to the CS+ onset 

seems to support the latter explanation. Furthermore, significant differences between CS+ 

and CS- excitations tended to occur early in the cue period (see Fig. 6), when spatial 
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distinction between cues would be necessary to direct an approach response. Another 

intriguing possibility is that the CS- elicits a conditioned avoidance response in well-trained 

animals. If so, it seems likely that such a response would also be encoded by the NAc. 

Another subset of NAc neurons (39%) exhibited strong inhibitions in cell firing for 

the duration of the CS+ (termed CS+ inhibitory cells). The same cells showed no change in 

activity when the CS- was presented, indicating that NAc inhibitions may be critical to the 

execution of approach responses.  As discussed by Nicola and colleagues (2004b) and 

supported elsewhere (Kelley, 2004; Roitman et al., 2005), NAc inhibitions may be linked to 

motor actions leading to or associated with food consumption. Decreases in the firing rate of 

NAc neurons are tightly correlated with oro-motor behavior directed at sucrose consumption 

(Roitman et al., 2005), and also during operant responding for sucrose, water, cocaine, and 

heroin (Carelli et al., 1993; Carelli and Deadwyler, 1994; Chang et al., 1994; Chang et al., 

1996; Chang et al., 1997; Ghitza et al., 2004; Nicola et al., 2004b).  Here, approach responses 

usually occurred less than 2s after the CS+ presentation, and animals maintained contact with 

the CS+ for the remainder of the cue period. The finding that inhibitory responses were time-

locked to the initial approach as well as subsequent contact suggests that inhibitory signals 

may encode appetitive reactions to reward-predictive cues. A major output of the NAc is a 

GABAergic connection with the ventral pallidum (VP) (Usuda et al., 1998). The inhibition of 

this projection would result in the disinhibition of VP neurons, which can elicit feeding 

behavior (Stratford and Kelley, 1999) and increase locomotion (Gong et al., 1997). Thus, the 

NAc inhibitions observed here may act through the VP to sustain appetitive contact with the 

CS+. These inhibitions may originate from reciprocal connections between NAc neurons 

(Nicola et al., 2004b). This hypothesis accounts for the observation that excitatory and 
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inhibitory subpopulations tend to be of equal sizes, as reported here. Alternatively, an 

inhibitory response could arise from the GABAergic projection back from the VP, in which 

case the inhibition of NAc neurons would reflect (but not mediate) Pavlovian approach 

behaviors.  

The magnitude of cue-related neural responses reported here, coupled with the 

prevalence of cells exhibiting such changes, provides compelling evidence that the NAc 

encodes aspects of the autoshaping paradigm. Electrophysiological investigations in the NAc 

typically report that less than half of recorded neurons exhibit a phasic change in firing rate 

relative to behavioral or environmental events (Chang et al., 1996; Carelli et al., 2000; 

Carelli, 2002a; Nicola et al., 2004a). Here, 89% of NAc neurons exhibited robust changes in 

activity when either sucrose or a sucrose-predictive cue was presented. Some evidence 

suggests that NAc neurons can develop responses to an event even when they are not initially 

activated by that event (Carelli, 2002b; Hollander and Carelli, 2005). Interestingly, responses 

to cues in a subset of NAc neurons do not appear to be innate (i.e., they are not present in 

naïve animals), but emerge when cues predict appetitive or aversive events (Setlow et al., 

2003; Roitman et al., 2005).  

The high percentage of phasically active cells in the present study may indicate that 

the NAc becomes increasingly engaged after repetition of a behavior or a learned association. 

One theory holds that predictive stimuli promote a specific behavioral action by competing 

for motor resources controlled by striatal circuits (Pennartz et al., 1994; Plenz, 2003). The 

response of NAc neurons to predictive cues may originate from this competition and produce 

the relatively inflexible approach responses observed here. Indeed, the NAc may add a 

compulsive element to the stimulus-outcome associations present in this design, allowing 
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them to dominate behavioral output. Interestingly, approach responses persist even when 

they cancel reward delivery (Brown and Jenkins, 1968), supporting the idea that impulsivity 

and autoshaping may be linked phenomena that are both controlled by the NAc (Tomie et al., 

1998; Cardinal et al., 2001; Winstanley et al., 2005).  

Several researchers have proposed that conditioned approach responses may be a 

central component of the drug-addicted state (Newlin, 1992; Tomie et al., 2002; Everitt and 

Robbins, 2005). However, such assertions are not without controversy. Kearns and Weiss 

(Kearns and Weiss, 2004) recently employed cocaine as a UCS in an autoshaping paragdigm 

and found that, unlike sucrose, neither high nor low doses of cocaine are able to promote 

approach responses to stimuli that predict reward delivery. Additionally, requiring an 

artificial consummatory response before the cocaine infusion did not increase approach 

responding. This conclusion seems to suggest that cocaine alone cannot support Pavlovian 

approach responses. However, it is also possible that differences between cocaine and 

sucrose delivery, such as the timing of the cocaine infusion, may have contributed to the 

results. Indeed, a previous investigation demonstrated that an ingested ethanol/saccharine 

combination can support Pavlovian approach responses to spatial predictors (Krank, 2003). 

Clearly, future parametric studies will be required to determine precise similarities and/or 

differences between natural and drug reinforcers with respect to conditioned approach 

liability. 

In addition to describing the phasic activity of NAc neurons during autoshaping, our 

findings may also highlight potential differences between NAc subregions. Significantly 

fewer neurons in the NAc shell exhibited excitatory responses to conditioned cues, regardless 

of whether those cues elicited approach responses. While this discrepancy is based on 
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relatively small sample sizes, and should be interpreted carefully, it is perhaps not surprising 

that we found differences between these two regions.  Lesions and pharmacological 

manipulations in the NAc core disrupt selective approach towards predictive stimuli, 

indicating that this subregion may help organisms discriminate between biologically relevant 

and irrelevant cues (Di Ciano et al., 2001; Cardinal et al., 2002). Furthermore, recent 

electrophysiological studies have also unmasked distinctions between neural responses in the 

core and shell (Ghitza et al., 2004; Ghitza et al., 2006). However, it should also be noted that 

there were no differences in the present study between the proportion of core and shell 

neurons that responded with inhibitions. While the NAc core and shell subregions have some 

overlapping outputs, they also send separate projections to functionally dissimilar regions. 

For example, the core sends outputs to the substantia nigra and dorsal globus pallidus, while 

the shell sends more axons to the VTA (Heimer et al., 1991; Everitt and Wolf, 2002). At this 

time, the precise downstream significance of NAc excitations and inhibitions with respect to 

autoshaping are unclear.   

The present results provide support for the hypothesis that limbic information 

concerning predictive stimuli is integrated by the NAc, which promotes the motor behaviors 

necessary to obtain rewards (Mogenson et al., 1980). A recent review posited that critical 

interactions between the NAc core, central nucleus of the amygdala (CeN), and anterior 

cingulate cortex (ACC) underlie the proper acquisition and performance of the Pavlovian 

approach response (Robbins and Everitt, 2002), as lesions to the CeN or ACC impair the also 

acquisition of approach responding. Indeed, glutamatergic inputs from the ACC may 

disambiguate the CS+ and CS- during autoshaping, while the CeN may invigorate approach 

responding through control of midbrain dopaminergic signals to the NAc (Robbins and 
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Everitt, 2002). In the context of drug addiction, conditioned cues may precipitate relapse by 

promoting impulsive, engrained approach responses via this circuitry (Robbins and Everitt, 

2002). Understanding the functional interactions between limbic, cortical, and striatal 

networks may elucidate the processes by which predictive cues come to exert powerful 

control over behavioral output. 
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Figure 1. Behavioral performance during autoshaping paradigm. A, Acquisition of Pavlovian 
approach responses. Animals (n = 9) approached the predictive conditioned stimulus (CS+) 
significantly more than the non-predictive conditioned stimulus (CS-) after session 3 (* p < 
0.05 stimulus comparison). After 10 training sessions animals received surgical implantation 
of microelectrode arrays (indicated by break in graph) followed by one post surgical recovery 
session (session 11).  Electrophysiological data was collected during the test session 
completed the next day (indicated by “T”). B, Averaged histogram of latency to approach the 
CS+ on the test day. The majority of approach responses occurred within seconds of the CS+ 
presentation. C, Lever presses per second on the test day. Animals made more contact with 
the CS+ than the CS- in every 1s time bin. After the initial approach, contact with the CS+ 
was maintained for the duration of the cue period.  
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Figure 2. Single nucleus accumbens (NAc) neuron showing a characteristic increase in firing 
rate within seconds of the CS+ (top panel) but not the CS- (bottom panel) presentation. Top, 
raster plot and perievent histogram (PEH) in a 30s window relative to CS+ extension (first 
dashed line) and lever retraction/sucrose delivery (second dashed line). Bottom, raster plot 
and PEH for the same neuron during a 30s window surrounding the CS- period, after which 
no sucrose was delivered. 
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Figure 3. Composite peri-event histograms (PEHs) showing average activity of CS+ 
excitatory NAc neurons (n = 27). A, NAc neurons exhibit excitatory responses to a sucrose 
predictive cue. Composite PEH of NAc neurons during a 30s window surrounding the CS+ 
presentation (first dashed line) and lever retraction/sucrose delivery (second dashed line). B, 
Composite PEH showing the same neurons during the CS- extension and retraction. 
Excitations were of lesser magnitude and shorter duration.  
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Figure 4. Example NAc neuron  showing a decrease in firing rate during the CS+ but not the 
CS- presentation. Top, raster plot and PEH in a 30s window relative to CS+ extension (first 
dashed line) and lever retraction/sucrose delivery (second dashed line). Bottom, raster plot 
and PEH for the same neuron during a 30s window surrounding the CS- period, after which 
no sucrose was delivered. 
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Figure 5. Composite PEH showing average activity of CS+ inhibitory NAc neurons (n = 30). 
A, Composite PEH of NAc neurons during a 30s window surrounding the CS+ presentation 
(first dashed line) and lever retraction/sucrose delivery (second dashed line). NAc neurons 
exhibit robust inhibitions during the presentation of a sucrose-predictive cue.   B, Composite 
PEH showing no change in cell firing for the same neurons during a 30s window surrounding 
the CS- presentation. 
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Figure 6. Signal-to-baseline ratios (S:B) for CS+ excitatory and CS+ inhibitory neurons 
shows differential responsiveness during sucrose predictive versus non-predictive cues.  A, 
Average S:B ratios for CS+ excitatory cells during each second of the CS+ and CS- 
presentations (see methods for details).   While the CS- elicited significant excitations only in 
the initial second, the CS+ produced significant increases in firing rate for each time point. B, 
Average S:B ratios for CS+ inhibitory cells during each second of the CS+ and CS- 
presentations.  Mean firing rate during the CS+ period was significantly decreased from 
baseline rates and was lower than activity during the corresponding time points of the CS- 
period. * significant (p < 0.05) change in mean firing rate from baseline levels, ** significant 
(p < 0.05) difference in mean firing rate between stimuli for that second and in mean firing 
rate from baseline levels.  
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Figure 7. A minority of NAc neurons exhibited phasic responses to events other than the 
CS+. A, Raster and PEH for single NAc unit exhibiting a 40% increase in firing rate when 
the CS- was presented, but no significant change when the CS+ was presented. Only 5% of 
neurons recorded here responded to the CS- but not the CS+. B, Raster and PEH for 
individual sucrose-responsive NAc cell. This cell showed no changes in activity when either 
cue was presented, but was specific to the period after sucrose delivery. Only 14% of cells 
responded to sucrose alone. 
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Figure 8. Anatomical distribution of electrode placements and cell response types. A, 
Coronal diagrams displaying marked electrode tip locations across all 9 animals. Marked 
locations are limited to electrodes that contributed neuronal data. Filled circles indicate wires 
located in the NAc core subregion; open circles indicate wires located in the NAc shell. 
Electrode tip locations were marked by the presence of a blue dot reaction product. Numbers 
to the right indicate the anteroposterior coordinates (in millimeters) rostral to bregma. 
Coordinates were taken from the stereotaxic atlas of Paxinos and Watson (2005). B, 
Percentage of phasic neurons in the core and shell subregions of the NAc, separated by 
response type and stimulus. Significantly more neurons in the NAc core responded to 
conditioned stimuli with an excitation (*p < 0.05). There were no core/shell differences with 
respect to UCS excitations or inhibitions relative to any stimulus. 
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