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ABSTRACT

Hsuan-Wei Lee: Dynamics and Social Clustering on
Coevolving Networks

(Under the direction of Peter J. Mucha)

Complex networks offer a powerful conceptual framework for the description and analysis of

many real world systems. Many processes have been formed into networks in the area of random

graphs, and the dynamics of networks have been studied. These two mechanisms combined creates

an adaptive or coevolving network – a network whose edges change adaptively with respect to its

states, bringing a dynamical interaction between the state of nodes and the topology of the network.

We study three binary-state dynamics in the context of opinion formation, disease propagation

and evolutionary games of networks. We try to understand how the network structure affects the

status of individuals, and how the behavior of individuals, in turn, affects the overall network

structure. We focus our investigation on social clustering, since this is one of the central properties

of social networks, arising due to the ubiquitous tendency among individuals to connect to friends of

a friend, and can significantly impact a coevolving network system. Introducing rewiring models

with transitivity reinforcement, we investigate how the mechanism affects network dynamics and the

clustering structure of the networks.

We perform Monte Carlo simulations to explore the parameter space of each model. By applying

improved compartmental formalism methods, including approximate master equations, our semi-

analytical approximation generally provide accurate predictions of the final states of the networks,

degree distributions, and evolution of fundamental quantities. Different levels of semi-analytical

estimation are compared.
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CHAPTER 1

Introduction

1.1 Networks Overview

We are surrounded by systems that are extremely complicated. The emergence of network science

is a brilliant demonstration that interdisciplinary science can take up the challenge of studying such

systems [9, 110]. These systems are collectively called complex systems, capturing the fact that it is

difficult to derive their collective behavior from a knowledge of the system’s components. Network

science deals with complexity by summarizing complex systems as components and capturing the

interplay between them. Despite or even perhaps because of such simplifications, informative

discoveries can and have been made. A network based mathematical and statistical approach is

extremely desirable for such endeavors as it is a formalism allowing one to couple microscopic and

macroscopic dynamics. The following is a sample of some of the applications in which network

science are becoming increasingly significant.

Biological processes are often represented in the form of graphs or networks, and a biological

network is any network that applies to biological systems [3, 12, 78]. A biological system could

be represented in a framework of networks consisting of a set of nodes representing biological

entries and edges denoting relationships between pairs of nodes. Biological networks provide a

mathematical model of connections found in ecological, evolutionary, and physiological studies, such

as protein-protein interaction networks, metabolic pathways, gene regulatory networks, cell signaling

networks, neural networks, and food webs. The study of biological networks, their construction,

mathematical and statistical analysis, and visualization are significant tasks in life science today.

The fabric of our environments and societies is held together by physical systems of various kinds,

such as power grid systems, water supply, sewage disposal, telecommunications and transportation

systems [2, 6, 17]. A transportation network is a realization of a spatial network, referring to a

structure which allows either vehicular movement or flow of some commodity, with a set of nodes



and links that represent the infrastructure or supply side of the transportation. Perhaps the most

historically famous problem at the beginning of this field is the Seven Bridges of Königsberg; its

negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured

the idea of topology and network structure. Examples of transport networks are roads and streets,

railways, aqueducts, pipes, and power lines.

Social network analysis examines the structure of relationships and interactions between social

entities, such as individuals and organizations [36, 76]. The analysis of social networks is an inherently

interdisciplinary academic field which emerged from sociology, political science, social psychology,

business and economics, statistics, and graph theory. Within the social sciences, network theory

has had an unprecedented impact. Social network analysis is now one of the major paradigms in

contemporary sociology and is also implemented in other social and formal sciences.

1.2 Networks with Complex Structural Properties

A network is simply a collection of connected objects. The structure of a network is usually

described by a given set of nodes and edges. In mathematics, networks are often referred to as graphs

and in the scientific literature, the terms network and graph are frequently used interchangeably.

Suppose a graph G is a network having N nodes and L edges (or links), we can label all the nodes and

edges in the network to be {n}Nn=1

and {l}Ll=1

. The links of a network can be directed or undirected.

For directed (undirected) networks a link corresponds to an ordered (unordered) pair of nodes. For

directed and undirected networks of N nodes without multiple connections, the network structure

can be represented by an N ⇥N adjacency matrix A of ones and zeros, where a one indicates the

presence of a connection and each entry Amn is nonzero if and only if a link exists from node m to

node n. In a weighted network, the entries of Amn can be non-unitary.

Network models serve as a foundation to understanding interactions within empirical complex

networks. The following are some types of networks that have been well studied: regular, lattices in

low dimensional spaces, random graphs such as Erdős-Rényi model [39], Watts-Strogatz small world

model [154], and Barabási-Albert preferential attachment model [10] and so on. Various random

network formation models produce structures that may be compared to real-world complex networks.

Here we introduce some basic network concepts and properties that are fundamental in social
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network analysis.

• Degree, average degree and degree distribution - Degree (or connectivity in graph

theory) is the number of edges that connect a node. We denote with kn the degree of the nth

node in the network. In an undirected network the total number of links, L, can be expressed

as the sum of the node degrees:

L =

1

2

N
X

n=1

kn.

There is a 1/2 in front of the sum because every edge is counted twice. Average degree is an

important quantity of a network, and in an undirected network it is defined as:

hki = 1

N

N
X

n=1

kn =

2L

N
.

The degree distribution pk of a network is defined to be the fraction of nodes in the network

with degree k. This pk is a probability, hence,

1
X

k=0

pk = 1.

Note that one also has

hki =
1
X

k=0

kpk.

• Node centrality - Network centrality is the answer to the question "What characterizes an

important vertex?" The word "importance" has a wide number of meanings, leading to many

different definitions of centrality [23]. Centrality concepts first originated in social network

analysis, and many of the terms used to measure centrality reflect their sociological origin.

The following are some types of network centralities: degree centrality, closeness centrality,

betweenness centrality, eigenvector centrality, Katz centrality. In social networks, nodes with

high centrality may play important roles in the overall composition of a network.

• Clustering coefficient - A clustering coefficient is a measure of the degree to which nodes in

a graph tend to cluster together. Evidence suggests that in most real-world networks, and in

particular social networks, nodes tend to create tightly knit groups characterized by a relatively
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high density of ties, or put it another way, friends of friends are often one’s friends. The

following are the two common definitions of clustering coefficient.

The global clustering coefficient [151] is based on triplets of nodes. A triplet consists of three

connected nodes. A triangle therefore includes three closed triplets, one centered on each of

the nodes. The global clustering coefficient is defined as:

C =

3⇥ number of triangles
number of connected triplets of nodes

=

number of closed triplets
number of connected triplets of nodes

.

The local clustering coefficient [154] captures the degree to which the neighbors of a given node

link to each other, that is, it quantifies how close its neighbors are to being a clique (complete

graph). For a node n with degree kn the local clustering coefficient is defined as

Cn =

2Ln

kn(kn � 1)

where Ln denotes the number of edges between the kn neighbors of node n. Furthermore, the

degree of clustering of a whole network is represented by the average clustering coefficient hCi,

and it is defined as

hCi = 1

N

N
X

n=1

Cn.

Note that all the global, local and average clustering coefficients are between 0 and 1. The

clustering coefficient is also known in social network analysis as transitivity. In this thesis,

we consider the global clustering coefficient in Chapter 2 and the local clustering coefficient

in Chapter 3, and for simplicity, the clustering coefficient in this thesis means the different

clustering coefficients accordingly.

• Subgraph Motifs - In social and real-world networks there are often some small structures

that are more frequently shown than expectation. Network motifs are sub-graphs that repeat

themselves in various networks [105]. Each of these sub-graphs, defined by a particular pattern

of interactions between vertices, may reflect a framework in which specific functions are

achieved efficiently. Motifs are of notable importance primarily because they may reveal

functional properties. They have recently gathered much attention as a useful concept to
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uncover topological design principles of complex networks.

• Community Structure - A network is said to have community structure if the nodes of

the network can be easily grouped into sets of nodes such that each set of nodes is densely

connected internally, or, subsets of nodes within which node and node connections are denser,

but between which connections are less dense. In the study of social networks, it is common to

see people have the same traits or experience such as race, ethnicity, location, income, hobby,

or ideology would form groups or communities. This homophily effect makes individuals have

a stronger bond with similar others, and this effect is also widely studied in social networks.

In network science, detecting community structures in different levels is also a very significant

topic of research [50, 113].

1.3 Network Dynamics and Coevolving Networks

When studying a dynamical process, one is concerned with its behavior as a function of time,

space, and its parameters. Real networks are not simply lists of nodes where some pairs are linked,

and others aren’t. Nodes may have locations, opinions, affiliations, and demographic characteristics

that change over time; links between them have timing, durations, capacities, and so on. Hence,

nodes may come and go and edges may crash and recover. Substantial progress has been made both

in the classification of real and synthetic networks and in the study of dynamical models of networks.

The phrase "network dynamics" can be interpreted as the study of dynamical systems on or

of networks [111, 125]. The notion of dynamical networks has so far referred to either one of two

distinct concepts. "Dynamics on networks" refers to the different classes of processes taking place

on networks, e.g. biological contagion [16], social contagion [75], coupled oscillators [143], diffusion

[91], percolation [22], etc. The effectiveness of such processes is deeply influenced by the topology of

the network. On the other hand, "dynamics of networks" mainly refers to various phenomena that

happen to the network structure to bring about certain changes over time in the topology of the

network. The Barabási-Albert preferential attachment model, interpreted such that the addition of

each new node is a time step, is an example of this kind of dynamics. New nodes could join the

network and edges could be formed or deleted.

Therefore, it has become clear that properties in dynamical systems such as stability, bifurcation,
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robustness, periodicity, phase transition, etc. could be discussed on and of the network dynamics.

And the study of dynamical processes on and of networks are among some of the hottest theoretical

challenges for complex network research.

Static networks are networks with fixed topology that do not change with time. The static

network has been studied widely, and many phenomena are also explored. However, on networks

with static topology, the coupling of topology and information flow is only a one-way road. The

states of nodes do not affect the structure of such static networks.

Coevolving or adaptive networks are obtained by combining the dynamics on and of networks

[59, 60, 74]. A coevolving network is a network whose network topology and states of nodes coevolve,

that is, its links change according to its states, and vice versa, resulting in a dynamic interplay

between the state and the structure of the network. Most networks in real life are coevolving networks

to some extent. Hence, lots of examples in coevolving networks models could be applied to different

fields of science. The study of coevolving networks is a fast growing topic in epidemiology, social and

economic networks, and biological networks. Perhaps the most typical example is in epidemiology,

with an infectious disease spreading on a network. To control the epidemic, an infected individual

might be quarantined, hence, the local topology of the node is changed by losing its susceptible

neighbors [101]. In the study of terrorist networks [40], not only are the networks temporal, the

number of links one node has is strongly dependent on its activeness at a specific time.

In this thesis, we will study three different models of coevolving networks and explore the

interaction between states of nodes and structure of networks.

1.4 Analytical Methods

Dynamics in real life are extremely complicated, and it is almost impossible to analyze or predict

the outcome without simplification. The framework and analytical methods offered by statistical

physics could allow us to explore the dynamics of various systems using simplified yet, insightful

models. To capture the dynamics in mathematical models, and more specifically, networks, we need

to reply on some level of approximation. Various degrees of simplification have different analytical or

computational cost, and yield different accuracy. Because of such simplifications, mathematical and

statistical inference and informative discoveries can and have been made. In the study of this thesis,

6



we focus on the study of binary-state dynamics on networks, that is, a node (or, as we will encounter

in Chapter 6, a link) could only take one of two possible states, e.g. susceptible-infected-susceptible

(SIS) dynamics on networks. Here we introduce the analytical methods we use in this thesis to study

the dynamics of our models.

In statistical physics, mean field (MF) theory studies the behavior of large and complex stochastic

models by investigating a simpler model of average interactions [11, 15, 18, 115]. Such models simply

assume the environment of the system is well-mixed, and the effect of all the other individuals on any

given individual is approximated by a single averaged effect, thus reducing a many-body problem to

a one-body problem. In binary-state dynamics, the MF method only uses one differential equation

to describe the dynamics, since the other one is redundant (by conservation of the total number of

nodes, the fraction in one state minus the fraction in the other). Mean field theory simplifies the

system dynamics hugely by only focusing on the change of quantities of different classes, whereas this

method ignores the network topology and may not be accurate when systems have more complicated

structures. Usually, this method works well when the network is sparse and locally tree-like, which

is often interpreted to require that there are fewer cliques inside the network. However, there are

some studies that show mean field theory can yield a good approximation of the network dynamics

(see, e.g., [99] for an investigation of the accuracy of heterogeneous mean field theory, wherein the

variables describing the system capture the fractions of nodes in each state for each distinct degree).

Pair approximation (PA) is an improvement for the mean field method [35, 88, 142, 146]. This

method keeps track of the quantities of pairs or the frequencies of neighbor-site pairs of each possible

type in the systems. For example, in the SIS dynamics in a system, one could follow the quantities

of S nodes, SS, and SI edges (other information is redundant) to study the dynamics. Hence, in

binary-state dynamics, the PA method uses three differential equations to describe the dynamics.

Pair approximation has often provided accurate qualitative information about spatial stochastic

models for epidemic, population, and evolutionary dynamics especially when the network topology is

not complicated. Generally speaking, a large network essentially has an infinite hierarchical system,

and the information of one level of approximation depends on its next level. Mean Field theory

makes a closure approximation for the numbers of edges (that is, pairs) in terms of the number

of nodes. Similarly, the differential equations of pairs depend on the densities of triplets, so Pair

Approximation assumes a closure for the number of connected triples in terms of the numbers of
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pairs, closing the system so that the densities of triplets are not explicitly tracked.

Master equations are used to portray the dynamics of a system that can be modeled as being

in exactly one of the states at any given time, and where switching between states is treated

probabilistically. The equations are usually a set of differential equations for the variation over time

of the probabilities that the system occupies each of the different states. The approximate master

equations (AME) framework [52, 53, 90, 97] on networks considers both the state and degree of

nodes and the states of their immediate neighbors, generating a system of differential equations to

model the co-evolution of the dynamics of states and network structure. For example, in the SIS

dynamics, one can write down the differential equations of Sk,m, that is, the change of an S node that

has degree k and m infected neighbors. Similarly, one can also write down the Ik,m compartment.

In binary-state dynamics, the AME method generates O(k2
max

) number of differential equations,

where k
max

denotes the maximum degree cutoff of a system. The AME method usually provides a

very accurate approximation of the evolution of networks, including near the critical point of the

dynamics. Moreover, the AME method performs well in both static and coevolving networks, since

more equations are being used to gain this accuracy.

The differential equations of these systems keep track of the quantities of different classes of nodes,

and in PA and AME, also their neighbors’ states. The MF, PA, and AME above are categorized

as node classification methods. Beyond the method of AME, [159] provides a link-based formalism

method that includes the information not only of nodes but every set of links. Again in the SIS

dynamics, for an SI edge, the classification is done by writing it as SijIkl, that is, the S end has i

neighbors, j of them are infected, and the I end has k neighbors, l of them are infected. The other

systems could be formulated similarly. The link-based formalism method could provide slightly more

accurate results compared with AME. However, this would also raise the computing costs to O(k4
max

)

number of differential equations, where k
max

denotes the maximum degree cutoff of a system. This

method also provides subtly detailed information of degree correlation, and it could give a better

approximation when the dynamics, say the spreading or rewiring process, is based on the degree of

nodes. Since the method of AME has been slightly more widely used and its computational cost

is more reasonable, here in the thesis we only use AME as our framework, though more extension

could be explored in the future.
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1.5 Overview of Thesis

• Chapter 1 - In Ch. 1, we have provided an overlook and a broad introduction to network

science. We defined the scope of our study – coevolving networks in the field of network

dynamics. A survey of dynamics on and of networks was provided, and different level of

analytical approximations have been briefly discussed. The importance and universality of

coevolving networks makes such study an important topic of complex systems.

• Chapter 2 - In Ch. 2, we provide a new transitivity reinforcement voter model. Rather

than rewiring randomly, there is a certain probability that a node rewires to its distance two

neighbors, close a triangle, and the clustering coefficient of the network increases. We study

this new model on an initially Erdős-Rényi G(N, l) random graph and also approximate the

dynamics by using the method of approximate master equations. We investigate the parameter

spaces, clustering coefficient, degree distribution in the stationary states, and the network

evolution.

• Chapter 3 - In Ch. 3, we provide a new clustering reinforcement model of the SIS dynamics.

Rather than rewiring randomly, there is a certain probability that a node rewires to its distance

two neighbors, and close a triangle. We study this new model on different structures of networks,

and also approximate the dynamics by using the method of approximate master equations. We

investigate the parameter spaces, the disease prevalence level, clustering coefficients, degree

distribution in the stationary states, network evolution and finally, provide a bifurcation

analysis.

• Chapter 4 - In Ch. 4 we introduce a partner switching model in evolutionary games on

networks. We explore the parameter space and study the dynamics thoroughly. By using

the method of approximate master equations, we provide better estimation than existing

methods. Furthermore, we use this semi-approximation technique to approximate the evolution

of dynamics and degree distribution in stationary states. Lastly, we discuss the final cooperative

level in this partner switching model.

• Chapter 5 - Motivated by results in Ch. 4, we study another version of the partner switching

model in Ch. 5, expanding the partner states that can be switched. We perform similar
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investigations as in Ch. 4. The network evolution and the parameter spaces are explored.

Also, the method of approximate master equations provides a good estimation of the network

dynamics.

• Chapter 6 - Motivated by results in Ch. 4 and Ch. 5, we study a theoretical extension of the

partner switching model in Ch. 6. In the link-based network dynamics we study here, a node

could play different strategies (or states) with its different neighbors. We provide simulations

of the new model and discuss the possibilities of various levels of approximations.

• Chapter 7 - We close this thesis with some concluding discussion and several directions of

future work are indicated.
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CHAPTER 2

Voter Model and Social Clustering on Complex Networks

2.1 Background Information

Almost all people have opinions about numerous topics, from weather, sports, environment,

fashion, and the society to politics. These judgments can be either the result of sober reflection

or, through the process of information spreading, formed through interactions with others that

hold views on given issues. A large scale of media and social networking applications have made it

possible for news, innovations, opinions and rumors to spread quickly, which affect and change our

daily lifestyle significantly. People depend on others and the environment to shape their views of the

world. To apprehend the process of opinion formation, it demands an exploration of the interaction

between the structure of the social network and the dynamics that affects the system and human

behavior.

Many researchers are dedicated to understanding the implication of different mechanisms and

network structures and their interactions. Moreover, investigation of the opinion leaders, or zealots

[98, 147], and external fields [79] has been implemented. Not only on synthetic networks, empirical

[28, 153] and experimental [32, 109] studies have also contributed to the understanding of opinion

dynamics. For example, social media such as Twitter, Facebook and Instagram have become

important to lots of people’s daily lives and are essential to the spread of opinions and information

[5, 139]. Furthermore, television and internet ads also play crucial roles in elections and businesses

[26, 153]. Hence, it is very natural to model, quantify and even give predictions to these social

contagion dynamics in different settings, scopes, and mechanisms.

Various opinion dynamics models on complex networks have been brought up and investigated.

In the setting of the threshold model [42, 55, 57, 152], a node turns active/infected if a sufficient

number or ratio of its neighbors are already active/infected. The threshold model has been widely

used in the study of fads, marketing, elections, disease propagation and contact process models.



Take the spreading of a fad, the size of the population getting it, its duration, the dynamics of

spreading, and the interplay of network structure are usually the topics people study. The model is

essentially asymmetric as when two nodes communicate only the inactive/susceptible node becomes

active/infected thus resulting in a spread like dynamics.

The naming game is another model of opinion dynamics [13, 14, 95, 158]. It was first introduced

in the context of linguistics and communications. This model describes how a global agreement or

convention can automatically emerge in a population of artificial agents that interact locally with

their peers, without any central control [85]. Hence, the formation of a language in a society could

be studied. For example, in the context of a group of robots or sensor networks, the naming game

model imitates the emergence of common communication schemes.

Models of continuous states of opinion dynamics have also been extensively investigated. In the

bounded confidence model, opinions are not anymore binary or discrete, but it could be extended

to a spectrum of values. First introduced by Krause and Hegselmann [67] and Deffuant et al. [30]

independently, this is a probabilistic model for the evolution of continuous-valued opinions within a

finite group of peers, and this could also be generalized to a network setting. The concept of bounded

confidence is that artificial agents only interact if they share opinions close enough to each other.

People study the emergence of the consensuses, the size of them, their duration, and distribution or

the spatial properties of the various communities [92, 93].

A simpler model, the voter model is independently brought by Clifford and Sudbury [29], and by

Holley and Liggett [70]. This is a mathematical model of opinion formation in which individuals, or

voters, play as nodes in a complex network; each voter has an opinion at each time, and a randomly

chosen voter accepts the opinion of one of its neighbors. It is also a stochastic process that is a

peculiar type of interacting particle system. The voter model is a sequential dynamical system, and

it is also similar to disease propagation and contact process. At random times, a random node or

link is selected, and the voter’s opinion is changed in agreement with some probabilistic rule. To

be more specific, pick one node and choose a neighbor of this node, the neighbor’s opinion could

transfer to the chosen node following some stochastic rule. Or the chosen voter could see his or

her neighbors’ majority or minority opinion and act accordingly. Therefore, network topologies

also plays an important role in the dynamics. Theoretical efforts have been devoted to fathom and

quantify features in the dynamics of spread of opinions or contagions considering various local and
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global structural attributes of the underlying complex systems [133, 138].

The voter model has been studied on many network topologies, and the underlaying networks

could be static or adaptive. Investigations have been performed in networks with homogeneous and

heterogeneous degree distributions [137], scale-free networks [24], small world networks [25], and

multilayer networks [31]. In coevolving networks, networks structures could change depending on

the states of nodes, usually by the mechanism of rewiring [19, 34, 71, 116, 135]. Individuals could

have their preference to stay with others sharing the same opinions with them and break their links

with people with discordant opinions. Although mainly people study only binary-state dynamics,

lots of phenomenon such as graph fission and community structure could be explored.

In the study of opinion formation on complex networks, one of the critical components has

been missing: the influence of clustering in coevolving networks on the resulting dynamics and

network structure. Clustering is one of the central properties of social networks, arising from the

ubiquitous tendency among individuals to connect to friends of a friend, and can significantly impact

a coevolving network system. The role of clustering and environment could play a vital role in

the network dynamics [96]. Random graph models and random rewiring processes usually lead to

networks with zero clustering coefficients, which is a result not very realistic in social networks.

Hence, in our study, we want to find a simple model that could lead to nontrivial local clustering of

networks and investigate how this mechanism could lead to different network dynamics.

The outline of the Chapter is as follows. In Section 2, we define our model and in Section 3,

we derive our semi-analytical method. In Section 4, we compare the simulation results with the

estimation we obtained. We investigate the rewiring parameter space, the final state of consensuses,

the clustering coefficient, the degree distribution, and the comparison of simulation and semi-

analytical results. Finally, in Section 5, we give our conclusions and some further remarks.

2.2 Model Description

In this Chapter, we introduce and study a new model of opinion formation with clustering

reinforcement. Our goal is to try to build a mechanism that fits one of the most fundamental

observation of social network: friends of friends’ friend are often ones’ friends. We incorporate the

clustering effect into the evolution of network, that is, we want to construct a mechanism such that
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the clustering coefficient of network increases as the opinions are formed. Therefore, we introduce a

simple preferential attachment to an existing rewire-to-random opinion formation model. Under our

new model, there is a certain probability that if a rewiring happens, a node rewires to its neighbors’

neighbor, a triangle is closed, and the local clustering extent is thus increased.

To begin with, consider a network G(N, l), that is, a network with N nodes and l edges. Each

node in the network has an opinion, or state, attached to it: 0 or 1. We want to investigate how

these two opinions change with the evolution of networks. At each time step, we pick a discordant

edge, or an edge with different states at its two ends. With probability 1� ↵, a node at the end

of the discordant edge would change its state to imitate the state on the other end. We call this

process voting. With probability ↵, a node at the end of the discordant edge dismisses its neighbor

and rewires to some node in the network. We call this process rewiring. When the rewiring process

happens, there is also a probability � that the node rewires to its neighbors’ neighbor, or the distance

two neighbor, otherwise, the node would rewire to a random node in the network. Hence, in our new

model, when we update a discordant edge, the voting process happens with probability 1� ↵, one

node rewires to its distance two neighbor with probability ↵�, and one node rewires to a random

node in the network with probability ↵(1� �). Hence, whenever a rewiring to neighbor’s neighbor

happens (with probability ↵�), a triangle is closed, and the clustering coefficient of the network

increases. We illustrate this process in Figure 2.1.

We simulate networks with total number of nodes N = 100, 000, total number of edges l = 800, 000,

and hence the mean degree of the network is fixed to be hki = 4. Initially, we start the networks to

be an Erdős-Rényi G(N, l) random graph model, that is, a network is chosen uniformly at random

from the collection of all graphs which have N nodes and l edges. Hence with N large enough, we

could approximate the initial degree distribution of the networks by a Poisson distribution,

pk =

hkike�hki

k!
.

Also, initially, we let 50% of nodes have opinion 0 and 50% of nodes have opinion 1. Then we

start the opinion formation with clustering reinforcement process. At each time step, a discordant

edge is picked and updated. The whole dynamic stops if there are no discordant edges in the network,

and we say the network reaches its consensus state or final state. Hence, the network structure and
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the state of nodes coevolve during the evolution of the network and the network stops changing until

there are no discordant edges. Note that during the evolution of the network, both the total number

of nodes N and the total number of edges l are fixed to be constants.

br

Figure 2.1: Illustration of the clustering reinforcement mechanism. At each time step, a discordant
edge is picked. There is probability ↵� for one node rewires to its neighbor’s neighbor and closes
a triangle. In this figure, white nodes are with opinion 0 and gray nodes are with opinion 1. A
discordant edge XY is picked and node Y dismisses X and it rewires to its distance two neighbor
W .

2.3 Semi-analytical Methods

In the voter model, consider the effect of the � term, the probability of a node rewiring to its

neighbor’s neighbor. Now a node has probability ↵� rewiring to its neighbors’ neighbor. Let N
0

be the number of vertices with opinion 0, and N
1

be the number of vertices with opinion 1. Nij is

the number of oriented i-j links, and Nijk is the number of oriented triples x-y-z having states i, j

and k. Note that in this notation, N
01

= N
10

and N
00

counts every unoriented 0-0 link twice. Let

Sk,m(t) and Ik,m(t) be the fraction of nodes with opinion 0 and 1, respectively, of degree k which

have m neighbors of opinion 1.

We follow [53] to develop differential equations describing the evolution of the objects Sk,m(t)

and Ik,m(t). First we note that Sk,m(t) and Ik,m(t) obey a few conservation laws: conservation of
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nodes leads to
X

k,m

Sk,m(t) +
X

k,m

Ik,m(t) = 1,

and conservation of edges leads to

✓

X

k,m

Sk,m(t)

◆

2

+

✓

X

k,m

Ik,m(t)

◆

2

+ 2

X

k,m

Sk,m(t)
X

k,m

Ik,m(t) = hki.

If an ✏ amount of nodes are made to hold opinion 1 at random at t = 0 then the initial conditions

for Sk,m and Ik,m are given by

Sk,m(0) = (1� ✏)pk(0)

✓

k

m

◆

✏m(1� ✏)k�m,

and

Ik,m(0) = ✏pk(0)

✓

k

m

◆

✏m(1� ✏)k�m.

Where pk(0) is the initial degree distribution, we assume it to be a Poisson distribution as our

starting topology is a random network, and we have set ✏ = 0.5, i.e., half of the nodes hold opinion 0

and the other half holds opinion 1.

To write a differential equation governing the evolution of Sk,m we will require to know the

probability of center S having a neighbor’s neighbor (distance 2 neighbor) with opinion 0. We

represent this probability by P (nn0 | Sk,m) and estimate it as:

P (nn0 | Sk,m) =

m� 1

k � 1

· l
10

1

2

l
11

+ l
10

+

k �m

k � 1

·
1

2

l
00

1

2

l
00

+ l
01

.

Similarly we can obtain this probability for P (nn0 | Sk,m+1

)

P (nn0 | Sk,m+1

) =

m

k � 1

· l
10

1

2

l
11

+ l
10

+

k �m� 1

k � 1

·
1

2

l
00

1

2

l
00

+ l
01

.

We have the following ODE governing the time evolution of the Sk,m compartment:
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d

dt
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⇤
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� �s
(k �m)Sk,m + �s
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(2.1)

where

�s
=

P

k,mmSk,m
P

k,m Sk,m
=

⌧
001

l
00

�s =

P

k,m(k �m)

2Ik,m
P

k,m(k �m)Ik,m
=

⌧
010

l
01

+ 1,

i.e., �s is the number of 1 neighbors of a 0-0 edge and �s gives the number of 0 neighbors of the 1 at

the end of a 0-1 edge and the +1 counts the 0 on the conditioning edge.

In a Sk,m class, the probability that the center has a neighbor’s neighbor (the distance two

neighbor) with opinion 0 is estimated by P (nn0 | Sk,m). Similarly, in a Sk,m+1

class, the probability

that the center has a neighbor’s neighbor with opinion 0 is estimated by P (nn0 | Sk,m+1

). Here �s

is the estimated number of 1 neighbors of a 0-0 edge. Moreover, �s gives the estimated number of 0

neighbors of the 1 at the end of a 0-1 edge and the +1 counts the 0 on the conditioning edge.

Following the same procedure as stated above for Sk,m, we obtain the following differential

equation governing the evolution of the Ik,m:
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d

dt
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where
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To understand the differential equations, take an Sk,m class of Equation (2.1). The first line of

the right-hand side represents the center actively rewiring to a distance two neighbor, the second

line means the center actively rewires to any node in the network, the third to sixth lines are the

case the center is passively rewired by its distance two neighbors, the seventh line means the center

is passively rewired by any node in the network. Finally, the last two lines are the case no rewiring

happens and the nodes just simply update their opinions.

There are 2(k
max

+ 1)

2 equations of the Sk,m(t) and Ik,m(t) governing ODEs, where k
max

is the

maximum degree a node could have in the system. MATLAB’s ode45 solver was used starting with

a Poisson degree distribution with averaged degree � = 4. We set k
max

= 20 and we observe that the

results are not appreciably affected by increasing k
max

. The illustration of some rewiring processes
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is shown in Figure 2.2.

( (

( (

Figure 2.2: Suppose the center is a node with opinion 0. The following are illustrations of the center
passively rewired by different distance two neighbors: (a) 0 rewires to node X, a class of Sk,m, (b) 1

rewires to node Y, a class of Sk,m, (c) 0 rewires to node Z, a class of Sk�1,m and (d) 1 rewires to
node W, a class of Sk�1,m�1

. The case of the center with opinion 1 is similar.

2.4 Numerical Experimentation and Discussion

2.4.1 Consensus States of the Networks

Results in this subsection were led and provided by my collaborators Nishant Malik and Feng Shi.

In our opinion formation with clustering reinforcement model, both network topology and state

of nodes change during the evolution of networks. The dynamic stops when there are no discordant

edges, and networks become static. We denote the stopping time of the dynamics to be tf , which

means the network reaches its final state. We also call the final state of the network a consensus

state, since there would be no discordant edge in this state. Note that l(tf ) = l
00

(tf ) + l
11

(tf ).

The consensus state of the network could be characterized by two different consensuses: hegemonic

consensus and segregated consensus. To see these outcomes, we define a variable ⇢ to be the fraction

of nodes holding minority opinions in the consensus states; and also we define a variable s
1

to be the

size of the largest connected component in the consensus state. In the hegemonic consensus state,
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there exists a dominant opinion in the network, ⇢ is close to 0, and s
1

is close to 1. In this scenario,

a giant component with a size close to the whole network has nodes with the same opinion. On the

other hand, in the segregated consensus state, there is no dominant opinion in the network, ⇢ is close

to 0.5, and s
1

is close to 0.5. In this scenario, a graph fission happens such that the final network

comprises two nearly equal-sized components, each having nodes with a single opinion. In Figure

2.3, we plot ⇢ and s
1

with different combinations of ↵ and �.

Furthermore, in Figure 2.3, we observe that there exists a sharp transition of ↵ for networks to

have a graph fission. Fixing the level of �, there is a critical value of ↵, or ↵c(�), which separates

the hegemonic and segregated consensus states. This critical value ↵c(�) suggests the importance of

� in this dynamic. When ↵ is large enough (↵ > 0.7), regardless of different values of �, there is a

graph fission of the network. However, when ↵ is not large enough, as � increases, the critical value

of ↵c(�) decreases. This shows us the significance of the parameter � we introduce to the network

dynamic. To see a graph fission, the rewiring probability does not need to be large if there is a

strong tendency for an individual to rewire to his or her neighbors’ neighbor. Or put it another way,

if individuals have a high preference to cut the links of discordant neighbors and resort to a closer

neighbor to form small groups, then it will be hard for the network to have a dominant consensus

and a giant component in its final state.

2.4.2 Clustering Coefficients

Results in this subsection were led and provided by my collaborators Nishant Malik and Feng Shi.

To show that this opinion formation with clustering reinforcement model could indeed increase

the clustering coefficient in the networks, in Figure 2.4, we provide the evolution of the clustering

coefficients with different values of � with ↵ = 1. In this figure, circles are the highlight of the

clustering coefficient in the consensus states. As we can see, if � = 0, the clustering coefficient stays

at 0 as the network evolves. On the other hand, for a nonzero �, the clustering coefficient grows

approximately linearly until the networks stop evolving. In Figure 2.4 (b), we plot the clustering

coefficients of networks in their final consensus states at time tf with circles and provide an estimation

of the clustering coefficients with the gray straight line. The higher the � is, the higher the final

clustering coefficients would be. Using mean-field arguments we could acquire the final clustering
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Figure 2.3: (a) Levels of ⇢, the fraction of nodes holding minority opinions in the consensus states
with different combinations of ↵ and �. In the hegemonic consensus state region, the minority
opinion fraction is close to 0. However, in the segregated consensus state region, the minority opinion
fraction is close to 0.5. Note that when � increases, the region of the hegemonic consensus shrinks.
(b) Levels of s

1

, the size of the largest connected component in the consensus state with different
combinations of ↵ and �. In the hegemonic consensus state region, the largest connected component
in the consensus state is close to 1, the original size of the network. On the other hand, in the
segregated consensus state region, the largest connected component in the consensus state is close to
0.5, half of the original size of the network.

coefficients in their consensus states, and we found that

C(tf ) =
3�

3hki � 2

.

These two results match very well, and we can also see how � plays a role with the final clustering

coefficient. We include the derivation of this estimated final clustering coefficient in Appendix A.1.

2.4.3 Degree Distribution

Results in this subsection were led and provided by my collaborators Nishant Malik and Feng Shi.

We now want to study another fundamental measurement of complex networks: degree distribu-
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Figure 2.4: (a) Evolution of clustering coefficients with different values of � with ↵ = 1. Circles are
the clustering coefficients in the consensus states. (b) The clustering coefficients with different values
of � with ↵ = 1 in the consensus states at time tf . Circles denote the simulation results, and the
line denotes the theoretical estimation.

tion. Degree distribution usually tells how connected a network is. In the opinion formation with

clustering reinforcement model, the interaction of the two mechanisms: voting and rewiring, would

together generate nontrivial outcomes of the final degree distribution in the consensus states.

In Figure 2.5, we plot the initial and final degree distributions in the consensus states with

different values of ↵ and �. Note that as we mentioned before, we start the networks as an Erdős-

Rényi G(N, l) random graph model. Hence, with N large enough, we could approximate the initial

degree distribution of the networks by a Poisson distribution,

pk =

hkike�hki

k!
.

Here we have the initial degree distribution highlighted by thick gray bands in each subfigure. When

↵ = 0, there is no rewiring happening in the dynamics. Nodes only change their opinions back and

forth, but the network structure does not change. Therefore, regardless of �, the degree distribution

remains the same.

The most interesting scenario must be the cases when ↵ is small (↵ = 0.2 and ↵ = 0.4). In these

two cases, the effects of voting and rewiring are of the same magnitude. The voting mechanism

makes nodes nearby competing for their opinions with each other. On the other hand, the rewiring

mechanism makes nodes escaping from nodes with different opinions. To put it another way, the

voting process promotes convergence to consensus states, but the rewiring process slows this down by
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encouraging graph fission. Since these two mechanisms have the same magnitude, it takes networks

longer time to reach their final consensus states. The network structures are shuffled so much for a

long time that the final degree distributions have more deviation from the initial ones. We can also

see the greater the � is, the larger the deviation is.

When ↵ gets greater, the rewiring mechanism starts dominating the network evolution. Nodes in

the networks quickly find the components they belong to or the components of nodes with the same

opinion by rewiring. This takes shorter time of networks to reach their consensus states. Although

↵ is greater, the actual rewiring event is not more than the previous case when ↵ is small. Hence,

the deviation of the degree distribution is also small in this case.

To study the impact of � on the final degree distributions, we perform a numerical analysis of

data in Figure 2.5 and obtain the following best fit of the distribution:

p(k) =

8

>

>

>

>

<

>

>

>

>

:

hkik

k!
e�hki, if ↵ = 0

b
1

1.25hki(
k

1.25hki)
b
1e

�(

k
1.25hki )

b
1

, if ↵ 6= 0

Where the ↵ 6= 0 case is captured by Weibull distribution with b
1

as the shape parameter and scale

parameter fixed constant equal to 1.25hki, and b
1

is also a parameter depends on ↵ and �. This

parameter b
1

encapsulates the variance in the degree distribution introduced by the interplay of the

voting mechanism and the preferential rewiring towards closing the triangles, that is, it contains the

information of both ↵ and �. The values of the parameter b
1

are provided in Appendix A.2.

2.4.4 Qualitative Exploration

Results in this subsection were led and provided by my collaborators Nishant Malik and Feng Shi.

In Section 2.4.1, we discuss the sharp transition of ↵ for networks to have a graph fission without

appreciable change in the populations of voters. This critical value of ↵ depends on �. Moreover, we

have observed in Figure 2.3 that for ↵ > ↵c(�), the minority opinion fraction ⇢ is close to 0.5. On

the other hand, for ↵ < ↵c(�), the minority opinion fraction ⇢ trends to 0 with decreasing ↵. To

have a better understanding of the model, here we provide a holistic picture in Figure 2.6 and take a

closer look at the dynamics.
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Figure 2.5: Initial and final degree distributions in the consensus state with different values of ↵ and
�. We start with Erdős-Rényi networks with mean degree hki = 4, which has a Poisson distribution,
highlighted by thick gray bands in each subfigure. We see a various level of deviation from the initial
degree distribution as ↵ and � change.

In Figure 2.6 (a), we plot the dynamics of the opinion formation with clustering reinforcement

model in the phase space of variables l
01

and n
1

. Fixing the value of ↵, different values of � are

labeled with different colors in the figure. We start with half of the population with opinion 0 and

half of the population with opinion 1. At each time step, we pick a discordant edge l
01

and update it.

We see in the cases when ↵ is large (↵ = 0.8 and ↵ = 1), l
01

drops to 0 relatively quickly, the final

n
1

is around 0.5, and the dynamics stop. When ↵ is smaller, different arches appear, the dynamics

spend lots of time doing random walk on the arches, gradually reaches the l
01

= 0 level, and the

dynamics stop. The smaller the ↵ is, the wider the arch span, as explored in detail (but restricted

to our � = 0 case) in [34]. We also see that in Figure 2.6 (b), fixing ↵ = 0.4, the greater the � is, the

narrower the arch. When � = 1, the arch breaks and this makes the minority opinion fraction ⇢

closed to 0.5, and it is consistent with our previous ↵c(�) argument.
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For ↵ < ↵c(�), the density of discordant edges at time t, or l
01

(t), can be approximated by

l
01

(t) = c
1

(1� n
1

(t))n
1

(t) + c
2

,

where n
1

(t) is the density of number of nodes having the opinion 1 and c
1

and c
2

are constants. We

drop the argument t for the sake of simplicity later. Solving the quadratic equation for l
01

, we get

n
1± = 1/2± 1/2

p

1 + 4c
2

/c
1

. We denote n
1

+

to be the state when n
1

is the majority opinion and

n
1� to be the state when n

1

is the minority opinion. The minority opinion fraction ⇢ here is the

smaller solution of these two, which is ⇢ = 1/2� 1/2
p

1 + 4c
2

/c
1

. In Figure 2.6 (a-b) we show the

arches described by the quadratic equations above, as ↵ and � increase, these arches disappear for

↵ > ↵c(�). As we mentioned before, these arches behave like attracting manifolds for the dynamics,

in Figure 2.6 (b), we observe that as � increases, the arches are squeezed, i.e., the area enclosed

within the arches contracts.

We estimate c
1

and c
2

using the data generated from simulations (see Appendix A.3). For ↵ 6= 0

we found that ↵c(�) could be found by solving the equation

↵2.1 exp(�0.75�)
= 0.5.

To demonstrate the existence of this transition point in Figure 2.6 (c) we plot ⇢ for different ↵ and

� vs. ↵2.1 exp(�0.75�), we observe that for ↵2.1 exp(�0.75�) > 0.5, ⇢ ' 0.5 (segregated consensus). For

� < 0.8 we observe that all the data for ⇢ fall onto the same universal curve.

2.4.5 Semi-analytical Approximation

Lastly, we compare the numerical simulation results with the semi-analytical approximation we

have. In Figure 2.7, fixing ↵ = 0.4, with different values of �, the approximate master equation

(AME) estimation also gives us different levels of arches as the simulation results suggest. We set

different values of the stopping time t = 500, 1000, and 2000, and we see that the AME results stay

on the arches for a long time. In the opinion formation with clustering reinforcement model we

provide, eventually, the discordant edges l
01

disappear. But it takes a long time for the simulation

results to reach this state. The simulations would do random walks on the arches, gradually go to
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Figure 2.6: (a) The dynamics of the clustering reinforcement model in the phase space of l
01

and n
1

with different values of ↵ and �. Note that the dynamics forms arches when ↵ is small, and as ↵
increases, the size of the arch shrinks. When ↵ = 0.8 and ↵ = 1, there are no such arches formed.
Fix ↵ = 0.4, the dynamics of the model plotted as l

01

versus n
1

. The width of the arches is squeezed
as we increase �, and when � = 1, the arch is destroyed. (c) Levels of ⇢, the fraction of nodes holing
minority opinions in the consensus states versus ↵. Here we transformed ↵ into ↵2.1 exp(�0.75�). Note
that this transformation forces all the data for � < 0.8 collapses onto one universal line. Moreover,
there is a clear transition in when ↵2.1 exp(�0.75�)

= 0.5.

l
01

= 0 and stop evolving. The arches are just temporary states of the network dynamic. Hence, the

difference of the AME and simulation results on the n
1

axis, i.e., l
01

= 0 level, would be the error of

our semi-analytical approximation. Note that the smaller the � is, the better the estimations one

can get from the AME method. This is because the AME method and, in particular, the model

terms in our equations for rates of rewiring to second nearest neighbors, assumes a network to be

locally tree-like, and when � is greater, the greater this assumption is violated. Therefore, AME

could give us a good qualitative estimation of the simulation results, and also good predictions of

the final fraction of opinions when � is not large.

In Figure 2.8, we compare the numerical simulations and the semi-analytical solution by Ap-

proximate Master Equation (AME) at ↵ = 0.4 with different levels of � on a n
1

� l
01

coordinate

system. The AME approximation gives us a good estimation of the qualitative behavior of the

simulations. As we discussed previously, the smaller the � is, more accurate result the AME method

could provide.

2.5 Conclusion

All social networks in the real world have one thing in common: high local clustering. This is a

nontrivial trait of social networks that few coevolving or adaptive network dynamics models deal with

directly. Its influence on a variety of contagion dynamics occurring on social or real-world networks
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Figure 2.7: Comparison between Approximate Master Equation (AME) and simulations for ↵ = 0.4.
Solutions for AME were sampled at t = 500, 1000, 2000.

has been studied in some detail, but systematic studies investigating its role in more realistic models

such as the ones with coevolving network component are still lacking.

Here, we provide an opinion formation model with simple clustering reinforcement. We introduce

a preferential attachment to an existing rewire-to-random opinion formation model. Under our new

model, there is a certain probability that if a rewiring happens, a node rewires to its neighbors’

neighbor, a triangle is closed, and the local clustering extent increases. We show that this new

mechanism we establish indeed fundamentally affects the network dynamics, and leads to different

qualitative and quantitative results.

We explore the parameter spaces and find out that there are mainly two types of consensus

could be reached in our model, namely the hegemony consensus and the segregated consensus. The

clustering coefficient of networks indeed increases in our clustering reinforcement dynamics. By using

some mean field arguments, we give an estimation of the final clustering coefficient of the networks.

We also investigate the final degree distribution and discuss how the parameters we introduce would
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Figure 2.8: Comparison between numerical simulations and the semi-analytical solution by Approxi-
mate Master Equation (AME) at ↵ = 0.4. Different colors represents different values of �, the color
scheme used here is the same as in Figure 2.4 and Figure 2.5 above.

impact it. Moreover, we provide a full investigation of the qualitative behavior of the network

dynamics; we see in some cases arches are formed, and how these related to the final fraction of

minority opinions. Furthermore, we also provide a semi-analytical framework based on approximate

master equation (AME) to study models with reinforcement of clustering. Using this estimation, we

could accurately predict the dynamical behaviors of the model for a variety of parameter settings.
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CHAPTER 3

SIS Model and Social Clustering on Complex Networks

3.1 Background Information

Mathematical modeling has provided significant insights into the processes involved in the spread

of epidemics [4, 81]. In recent years, the study of dynamical processes on complex networks has

caught much attention in this field [80, 112]. Loosely speaking, there are two types of dynamics that

are studied in the context of modeling epidemic spread on networks: in the first type, each node

is allowed to change its state with no evolution of the underlying network structure through time,

while in the second the temporal evolution of the network structure co-evolves or is adaptive with

the states of the nodes [58, 132]. Dynamics on coevolving networks may be more appropriate for

modeling epidemic spread, as people might avoid contact with individuals infected by a infectious

disease while readily building connections to healthy individuals. Such a preference in attachment

between individuals will not only lead to change in the social network but thus also influences the

spread of disease. Therefore, studying the interplay between dynamics and the adaptive coevolving

structure of networks has a potential to provide several critical insights into the processes involved

in the spread of epidemics.

Many real world networks are coevolving to some extent, and there are numerous studies on

coevolutionary networks in epidemic models, with several important analytical and computational

results [38, 58, 71, 132]. People studied fluctuations and the spread of disease as an SIS or SIR model

on large static or coevolving networks [48, 134, 157]. Many studies also focus on preventing infectious

diseases [21, 86, 150]. Moreover, network topology has a great impact on propagation dynamics

[73, 87, 107]. Recently, percolation or epidemic processes on networks with clustering have also been

studied broadly [51, 114]. More specifically, [103] shows that the clustering of networks could raise

the epidemic threshold and reduce the epidemic size from networks comparing to networks with the

same degree correlations but without clustering.



One of the critical components that has been missing in these studies is the influence of clustering

in coevolving networks on the resulting dynamics and network structure. Clustering is one of the

central properties of social networks, arising due to the ubiquitous tendency among individuals to

connect to friends of a friend, and can greatly impact a coevolving network system [96]. In this

paper, we generalize a model for coevolution of disease spreading on an adaptive network, in order

to investigate the role of local clustering. We also explore the additional complexity induced by

reinforcement of clustering with a new parameter which has preferential rewiring to close triangles.

The outline of the Chapter is as follows. In Section 2, we define our model and in Section 3, we

derive our semi-analytical method. In Section 4, we compare simulation results with the estimation

we obtained. We investigate the rewiring parameter space, study the change of degree distribution

and the evolution of clustering coefficients. We also carry out a numerical bifurcation analysis.

Finally, in Section 5, we give our conclusions and some further remarks.

3.2 Model Description

Social networks are observed to have high clustering, because of the natural tendencies in social

ties for friends of friends being friends themselves. Therefore it is unrealistic to study dynamics

on social networks without taking clustering coefficient into account. We also know that in real

world networks, especially in networks in epidemiology, network topologies are often coevolving with

the dynamics on them. The change of network topologies could be modeled through the process

of rewiring. If individuals catch an infectious disease, the infected ones may be quarantined or

avoided by healthy individuals, resulting in losses of their social ties. We here introduce an additional

component in this rewiring mechanism that reinforces the local clustering, i.e., a preference to rewire

to friends of a friend.

We employ a susceptible-infected-susceptible (SIS) model on a coevolving network [20, 59]. We

consider a network with constant numbers of nodes, N , and undirected links, M = hkiN/2, where

hki is the average degree in the network. At a given time, each node is either in a susceptible

(S) or infected (I) state. In every time step, infected individuals infect their susceptible neighbors

with probability �, while recovering from the disease with probability ↵. Meanwhile, susceptible

individuals break a link with an infected neighbor with probability � and—generalizing previously
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k , Z Z

Figure 3.1: Illustration of rewiring to neighbors’s neighbor. Before the rewiring, node X is of class
Sk,l (the left subfigure). Suppose a discordant edge Y Z is picked, with probability ⌘, Y would
actively dismiss its infected neighbor and rewire to its neighbors’s neighbor X. Then node X becomes
of class Sk+1,l (the right subfigure).

studied models—either rewire to a neighbors’ neighbor with probability ⌘, or rewire uniformly at

random to another susceptible node in the network with probability 1� ⌘. Importantly, rewiring to

a neighbors’ neighbor closes a triangle between three nodes, directly reinforcing network transitivity,

whereas rewiring uniformly at random can rapidly randomize any initial state of the network

structure.

Here we illustrate the effect of rewiring to neighbor’s neighbor, with probability ⌘, in Figure 3.1.

3.3 Semi-analytical Methods

We study this generalized adaptive network model with a combination of simulations and

approximate analytic models. The frameworks of Pair Approximation (PA) and Approximate Master

Equations (AME) have both been used effectively as analytical tools in similar settings [34, 52, 80].

PA is a method for moment closure where the density of triplets is given by an approximate equation

in terms of pairs, while AME can be used to achieve greater accuracy [52]. The AME framework

considers both the infection state and degree of nodes and the states of their immediate neighbors,

generating a system of differential equations to model the coevolution of the disease and network.

The AME method generally provides accurate approximation of the evolution of networks, and it is

still good around the critical point of the dynamics. Moreover, the AME method performs well in

both static and coevolving networks.

Inspired by this improved compartmental formalism or master equation method, [159] used an

approach (for studying adaptive SIS dynamics without any transitivity reinforcement) that treated
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the links as the objects and classify them according to the disease states, the number of neighbors,

and the number of infected neighbors of each node of its links. This link-based method could

generally improve the accuracy compared to the AME method. However, it also enormously increases

the computational cost from O(k2
max

) to O(k4
max

), where k
max

is the maximum degree a node could

have in the network.

We use an approach similar to the one used in [97] to combine AME with PA, extending the

method to study the effect of reinforcement of clustering. Let Skl(t) and Ikl(t) be the fraction of

susceptible and infected sites of total degree k which have l infected neighbors at time t. Following

the notation in [97], we also define the zeroth order moments of the Skl(t) and Ikl(t) distribution

by S ⌘
P

kl Skl and I ⌘
P

kl Ikl; the first order moments by SS ⌘
P

kl(k � l)Skl, SI ⌘
P

kl lSkl,

IS ⌘
P

kl(k � l)Ikl and II ⌘
P

kl lIkl; and the second order moments by SSI ⌘
P

kl(k � l)lSkl,

SII ⌘
P

kl l(l � 1)Skl, etc.

It is worth noting that while the network states and topologies coevolve, there are different

conserved quantities the system should obey. For example, since the networks are not losing

nodes, we always have S + I = 1, and this is the conservation of nodes. Similarly we always have

SS + SI + IS + II = hki, and this is the conservation of edges. The system should conserve all its

quantities at different orders of moments.

Again, let Skl(t) and Ikl(t) be the fraction of susceptible and infected sites of total degree k

which have l infected neighbors. We have the following ODE governing the time evolution of the Skl

compartment:

dSkl

dt
= ↵Ikl � �lSkl + ↵

⇥

(l + 1)Sk(l+1)

� lSkl

⇤

+ �
SSI

SS

⇥

(k � l + 1)Sk(l�1)

� (k � l)Skl

⇤

+ �
⇥

(l + 1)Sk(l+1)

� lSkl

⇤

+ �⌘
�⇥ l

k � 1

IS
1

2

II + IS

SI

S

+

k � l � 1

k � 1

1

2

SS
1

2

SS + SI

SI

S

⇤

S
(k�1)l

�
⇥ l

k

IS
1

2

II + IS

SI

S
+

k � l

k

1

2

SS
1

2

SS + SI

SI

S

⇤

Skl

 

+ �(1� ⌘)
SI

S

⇥

S
(k�1)l � Skl

⇤

.
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Similarly the ODE governing the time evolution of the Ikl compartment is:

dIkl
dt

= �↵Ikl + �lSkl + ↵
⇥

(l + 1)Ik(l+1)

� lIkl
⇤

+ �
�

1 +

SII

SI

�⇥

(k � l + 1)Ik(l�1)

� (k � l)Ikl
⇤

+ �
⇥

(k � l + 1)I
(k+1)l � (k � l)Ikl

⇤

.

To determine the initial condition, in each case, a fraction ✏ of nodes is initially infected at

random. This gives us

Skl(0) = (1� ✏)pk(0)

✓

k

l

◆

✏l(1� ✏)k�l,

Ikl(0) = ✏pk(0)

✓

k

l

◆

✏l(1� ✏)k�l,

and where pk(0) is the degree distribution at t = 0.

The differential equation system above contains 2(k
max

+ 1)

2 differential equations. This level of

complexity provides a reasonable accuracy we need for the new reinforcing clustering model and we

do not need to deal with an O(k4
max

) system using the link-based formalism method. We use these

differential equations to estimate the evolution of networks and solve their solutions numerically,

arriving at a semi-analytical approximation of the network evolution.

3.4 Numerical Experimentation

We simulate networks with total number of nodes N = 25, 000, and total number of edges

M = 25, 000, and hence our mean degree is fixed to be hki = 2. To implement the simulations, as in

[97], we choose three different initial degree distributions of the networks. The first distribution is

the Poisson distribution,

pPk =

hkike�hki

k!
,

and we could use this to approximate the degree distribution of an Erdős-Rényi model with large N .

The second one is a truncated power law distribution,

pTPL
k =

8

>

<

>

:

1

C k
�⌧

0 < k 6 kc

0 k > kc,
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where we choose ⌧ = 2.161 and kc = 20 in order to make the mean degree hki = 2. The last one is a

degree regular distribution:

pDR
k = �k,k

0

,

where � is the Kronecker �, hence every node would have the same degree k
0

.

We perform Monte Carlo simulations of the disease propagation on a network. In each simulation,

we use a Gillespie algorithm to accelerate the iteration process, and the step size here is a fixed

number 1/M . Self-loops and repeated links are not allowed in the simulation. Unless stated otherwise,

we will do 1,000 simulations for each set of parameters.

3.4.1 Exploration of the Parameter Space

Since the effect of the parameter ⌘ depends on the rewiring parameter �, the first thing we want

to do is to explore the parameter space of � and ⌘. In order to compare with the original study in

[97], we fix the infection rate � = 0.04 and the recovery rate ↵ = 0.005, and we want to see how �

and ⌘ would affect the disease prevalence I in the long run. The phase portrait of Figure 3.2 shows if

� is large, the susceptible nodes could easily get rid of the infected ones by breaking their links, and

all networks become disease free. When � = 0, there would be no rewiring process, network topology

does not change, and ⌘ would have no effect on the network dynamics as well. More interesting

behavior happens when � is close but greater than zero, in this case ⌘ plays an important role for the

disease prevalence I, and this is the case we are interested in. Hence in the rest of the experiments

we will fix � = 0.04 and change the value of ⌘ to see how it influences the network dynamics.

3.4.2 Network Dynamics and the Effect of ⌘

We plot the disease prevalence I against time t with different ⌘’s in Figure 3.3. When ⌘ = 0 in

Figure 3.3 (a), our model would go back to the previous case in [97]. We see networks with different

initial topologies will lead to different results. In the Poisson and truncated power law cases, the

disease prevalence I is always positive, and people call these networks to be endemic. However, in

the degree regular case, the disease gradually disappears, and people call this situation disease free.

For an individual network, if the disease persists in it, the quantities of nodes being infected at

each time would fluctuate. That is, the disease prevalence I will vary within a band when time
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Figure 3.2: Phase plots in parameter space (�, ⌘) for the disease prevalence I on networks with
an initial (a) Poisson, (b) truncated power law, and (c) degree regular degree distribution. Other
parameters are � = 0.04, ↵ = 0.005 and ✏ = 0.1. We choose t = 10, 000, when most of the networks
reach their stationary states. The disease prevalence I is averaged over 30 simulations in all cases.
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Figure 3.3: Disease prevalence I against time t on networks with mean degree hki = 2 but with
different initial degree distributions (pPk (Poisson): blue, pTPL

k (truncated power law): magenta, and
pDR
k (degree regular): red). Dots correspond to the mean computed over 1,000 simulations and lines

are the semi-analytical approximations. Parameters are � = 0.04, � = 0.04, ↵ = 0.005 and ✏ = 0.1 in
all cases. The ⌘ here are: (a) ⌘ = 0, (b) ⌘ = 0.2, (c) ⌘ = 0.4, (d) ⌘ = 0.6.
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t is large enough. However, this stochastic variation would be averaged out if we perform more

experiments and take the mean of their disease prevalence I. We declare a stationary state of the

process when the average disease prevalences of the ensemble of networks between two consecutive

steps differ by at most 10

�5, and we also define the stationary or final disease prevalence level to be

I1. Under this definition, networks with all three different initial topologies reach their stationary

states before t = 5, 000 when ⌘ is not very large. Note that the disease prevalence I1 in stationary

state decreases with ⌘, indicating that ⌘ indeed affects the network dynamics. When the networks are

still in their transient states, there are difference between simulations and our approximation, which

might be accounted for if we use link-based formalism method used in [159]. But most importantly,

our semi-analytical approximation captures the disease prevalence level of stationary states in all

four cases ⌘ = 0, 0.2, 0.4, and 0.6.

3.4.3 Degree Distribution

One nice thing about our semi-analytical approximation is this gives us information of degree

distribution of a network. AME uses (and keeps) degree information from nodes and their neighbors.

In Figure 3.4, we choose different initial topologies with ⌘ = 0.4 and plot the degree distribution

in their stationary states with a log-log scale. Our semi-analytical approximation provides a good

estimation of the stationary degree distributions in each case. We then separate nodes into susceptible

(S) and infected (I) classes and our method still captures their stationary degree distributions very

well. Similarly, the Poisson and truncated power law cases show indistinguishable final degree

distributions.

To see how ⌘ affects network degree distribution, we plot the initial and stationary degree

distribution of networks with different ⌘ on a log-log scale in Figure 3.5. We separate the cases

of networks with three different initial topologies, and plot their initial and stationary degree

distributions. Our semi-analytical approximation also gives us good predictions up to ⌘ = 0.8. We

see different ⌘’s do not make much difference of each stationary degree distribution. Again, the

stationary degree distributions of Poisson and truncated power law cases become indistinguishable.

Moreover, for the truncated power law case, the heavy tail property is gone after the rewiring

processes that shuffle the network topologies.
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Figure 3.4: (a) Degree distribution and (b) degree distribution of S and I nodes on networks with
mean degree hki = 2 on log-log scale but with different initial degree distributions (pPk (Poisson):
blue, pTPL

k (truncated power law): magenta, and pDR
k (degree regular): red). Dots correspond to

the mean computed over 200 simulations. Solid lines in (a) are the semi-analytical approximation of
total degree, dashed lines and dotted lines in (b) are the semi-analytical approximation of degree
distribution of S and I, respectively. Parameters are � = 0.04, � = 0.04,↵ = 0.005, ✏ = 0.1 and
⌘ = 0.4.
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Figure 3.5: Degree distribution with mean degree hki = 2 on log-log scale on networks with an
initial (a) Poisson, (b) truncated power law, and (c) degree regular degree distribution. We choose
⌘ = 0, 0.2, 0.4, 0.6, and 0.8. Other parameters chosen are � = 0.04, � = 0.04, ↵ = 0.005, and ✏ = 0.1.
We set t = 5, 000, all networks reach their stationary states at this time. Squares in each subplot are
the initial degree distributions. Dots correspond to the mean computed over 200 simulations. Lines
are the semi-analytical approximation of the stationary state degree distributions.
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3.4.4 Clustering Coefficient

In order to make sure that our model really provides us nonzero clustering coefficient and it

reinforces the clustering while rewiring, we study the clustering coefficient against time. In Figure 3.6

(a), we explore ⌘ from 0 to 1, keep other parameters fixed and choose the initial degree distribution

to be Poisson. Like before, the case of ⌘ = 0 would go back to the previous case in [97], and we can

see the clustering coefficient stays at C = 0 all the time. As time evolves, for networks with nonzero

⌘’s, the clustering coefficients would rapidly increase and stop changing after these networks reach

their stationary states. However, in the case ⌘ = 1, networks again do not reach their stationary

states at time t = 5, 000, but we could still see the increasing pattern of the clustering coefficient

against time. We also study this on the other two initial topologies. In Figure 3.6 (b), we see the

stationary clustering coefficients increase as we increase ⌘. At time t = 5, 000, except the case ⌘ = 1,

all other networks reach their stationary states. As we showed before, networks with regular degree

distributions initially at this time would be disease free and they have higher clustering coefficients

comparing to the other two cases. Moreover, the initially Poisson and truncated power law degree

distribution networks again show indistinguishable result of clustering coefficient when ⌘ < 1. We

believe ⌘ = 1 is a special case in our model and we will study this case separately later.

3.4.5 Disease Prevalence

To study the whole picture of the parameter ⌘, again, we explore ⌘ from 0 to 1, keep other

parameters fixed and choose the initial degree distribution to be Poisson. We compare the simulation

results and the semi-analytical approximation in Figure 3.7. As we increase ⌘, the disease prevalence

at the stationary state gets lower and the error between simulation and approximation gets larger.

Although our approximation does not match the simulation result very well before they reach their

stationary state, this approximation still captures the disease prevalence level I1 when ⌘ is not very

large.

Unlike other cases are in their stationary states at the time t = 5, 000, in the case ⌘ = 1, we see

the disease prevalence I is still decaying gradually. Our semi-analytical approximation suggests that

I1 would go to 0 when ⌘ = 1, but it’s not clear what would be the disease prevalence level I1 of

the simulation. So we increase time to t = 10

7 when ⌘ = 1 as shown in Figure 3.7. As we can see
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Figure 3.6: (a) Clustering coefficient C versus time t on networks with the same mean degree hki = 2

initial Poisson degree distributions. The parameters of the system are � = 0.04, � = 0.04,↵ = 0.005,
and ✏ = 0.1. Dots correspond to the mean computed over 30 simulations. Different chosen values
of ⌘ are shown in the figure. (b) Clustering coefficient C at t = 5, 000 versus ⌘ on networks with
the same mean degree hki = 2 but different initial degree distributions (pPk (Poisson): blue, pTPL

k
(truncated power law): magenta, and pDR

k (degree regular): red). At time t = 5, 000, except the case
⌘ = 1, all other networks reach their stationary states.

41



0 1000 2000 3000 4000 5000
0

0.25

0.5

0.75

1

t

I

η = 0

η = 0.2

η = 0.4

η = 0.6

η = 0.8

η = 0.9

η = 0.95

η = 1.0

Figure 3.7: Disease prevalence I against time t on networks with the same mean degree hki = 2

initial Poisson degree distribution. The parameters of the system are � = 0.04, � = 0.04,↵ = 0.005,
and ✏ = 0.1. Dots correspond to the mean computed over 1,000 simulations and the lines are the
semi-analytical approximation. Different chosen values of ⌘ are shown in the figure.
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Figure 3.8: Disease prevalence I against time t until t = 10

7 in the case ⌘ = 1 on networks with
mean degree hki = 2 initial Poisson degree distributions. (a) Dots are sampled every t = 1,000
correspond to the mean computed over 30 simulations. (b) The curve fitting on a log � log plot of
the data. We can see the data becomes a straight line and this suggests the data has a power law
decay.

in Figure 3.8 (a), the disease prevalence I reaches 0.12 at t = 10

7 but we are not sure whether it

will keep decreasing or not. If we plot I and t in the log-log scale, the simulation data becomes a

straight line. This suggests that the disease prevalence I has a power law decay. Using the curve

fitting software in MATLAB, the simulation result is well fitted by the curve I = 0.179t�0.173. Hence

although we do not know the disease prevalence level I1 when ⌘ = 1, we would say it is at most 0.12

and this will be our I1 we use later. Moreover, in our semi-analytical approximation, all the cases

except ⌘ = 1 have positive disease prevalence levels I1. Combining this fact and the very different

time scale, we surmise that there is a phase transition happening when ⌘ = 1, which deserves further

investigation.
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We have shown that networks with different initial topologies present different behaviors. Using

the parameter set we chose before, networks starting with a degree regular degree distribution

would become disease free. On the other hand, networks starting with Poisson or truncated power

law degree distributions would be endemic. That is, in the degree regular case, networks have

I1 = 0, and in the other two cases we see networks with different positive I1 depending on different

⌘’s. In Figure 3.9 (a), we plot the I1 against ⌘ in Poisson and truncated power law cases, and

our semi-analytical approximation captures the I1 quite well when ⌘ is not close to 1. Moreover,

networks with these two different initial topologies again show the indistinguishable I1 when ⌘ < 1

and ⌘ = 1 is a special case as in our previous discussion. In the degree regular case, since we know

networks will be disease free, we plot the time networks reach their stationary states as in Figure 3.9

(b) and we call this time tf . As ⌘ increases, tf increases. Large ⌘ would also create higher clustering

coefficient as we saw before and this makes the time for networks to become disease free longer.

Although our semi-analytical approximation knows these network will become disease free, the tf

it predicts are not accurate. That means our approximation method is not very good when the

networks are still in transient states, and again, this might be improved if people use link-based

formalism method in the future.

3.4.6 Bifurcation Analysis

We plot two bifurcation diagrams of the systems in Figure 3.10 and Figure 3.11. in order to

explore the properties of the systems at equilibrium. As we mentioned before, it takes longer time

for the cases ⌘ = 1 to reach their stationary states so we plot these cases separately. In Figure 3.10,

the first row is the case ⌘ < 1 and the second row is the case ⌘ = 1. When ⌘ < 1, in all three cases of

initial topologies, there are small bistable regions around � = 0.16. The transition is discontinuous

when ⌘ = 0 as we show in the insets in the plots, and the gap between the transition starts shrinking

when we increase ⌘. When ⌘ = 0.8, the transition becomes continuous and this means ⌘ could make

a qualitative change of the dynamical system. In the case ⌘ = 1, the systems do not reach their

stationary states in the given time t = 10, 000 we set. However they still show continuous transitions,

which are very different from the case ⌘ = 0. Last but not least, the critical value of � also decreases

in the case ⌘ = 1.
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Figure 3.9: (a) Disease prevalence I versus ⌘ at time t = 10, 000 on networks with the same mean
degree hki = 2 but different initial degree distributions (pPk (Poisson): blue, pTPL

k (truncated power
law): magenta, and pDR

k (degree regular): red). (b) tf versus ⌘ on networks with the same mean
degree hki = 2 initial degree regular degree distribution. Dots correspond to the mean computed
over 30 simulations and the lines are the semi-analytical approximations.
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Figure 3.10: Bifurcation diagrams of the disease prevalence I versus ⌘ on networks with an initial
(a) and (d): Poisson, (b) and (e): truncated power law, and (c) and (f): degree regular degree
distribution. In (a), (b) and (c), we plot all the simulation results of 30 experiments. In (d), (e) and
(f), dots and the error bar are the mean and standard deviation over 30 Monte Carlo simulations.
The first row are the cases ⌘ < 1 and the second row are the cases ⌘ = 1. We vary the values of �
and ⌘. The other parameters of the system are � = 0.02, and ↵ = 0.005. We run simulations for
each value ✏ = 0.001, 0.01, 0.05, 0.99, and, 0.999. We set t = 10, 000, all networks with ⌘ not close to
1 reach their stationary states at this time.
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Finally, using the same parameter set as before, we study the effect of ⌘ on bifurcation diagrams

on the three initially different networks. Instead of fixing the initial infected fraction ✏ = 0.1, we

choose ✏ to be 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 0.99, and, 0.999. We choose t = 10, 000 and at this time,

networks with ⌘ not close to 1 would reach their stationary states. In Figure 3.11, our semi-analytical

approximation gives us the same disease prevalence curves in the three cases. But in the degree

regular case, there is also a horizontal line I = 0 as in Figure 3.9 (a). In this case, if the initial

infected fraction ✏ is not large enough, networks would stay disease free. And if ✏ is larger, networks

would become endemic. On the other hand, in the truncated power law case, all networks with

different ✏ would become endemic. The case in between is the Poisson case, when ✏ = 0.001, about

5% of the networks would become disease free. The stochasticity of simulations plays a role here.

In all networks with different initial topologies, when ⌘ is closed to 1, we could see the simulations

spread more and this shows these networks are still in their transient states. If the networks are

endemic in their stationary states, our approximation gives us a good prediction of the disease

prevalence level I1. Moreover, in all these three cases, they share the same disease prevalence curve

even though they have different stationary degree distributions as we showed in Figure 3.5. Our

conjecture here is given a set of parameters, when the networks reach their stationary states, the

disease prevalence level I1 would always fall on the same universal curve independent of the network

topologies, and that is the endemic state of the network. On the contrary, networks could go to

disease free if the initial infected fraction ✏ is not large enough. Like we showed in Figure 3.10, these

are the two stable regions or fixed points of the dynamics.

3.5 Conclusion

In this chapter we have introduced a model that includes reinforcement of clustering during the

rewiring process, hence providing a unique opportunity to study the role of clustering in altering the

dynamics of epidemic spread. In this new model clustering is controlled by combination of rewiring

parameter � and parameter ⌘. We also saw that the initial topologies of networks play important

roles on network dynamics.

We explored the parameter space of the rewiring parameters � and ⌘, identified the regimes ⌘

affects network dynamics the most. By extending the AME method to its second and third layers
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Figure 3.11: Bifurcation diagrams of the disease prevalence I versus ⌘ on networks with an initial
(a) Poisson, (b) truncated power law, and (c) degree regular degree distribution. Lines are the
predictions of our semi-analytical approach and dots are the outcome of 30 Monte Carlo simulations.
We run simulations for each value ✏ = 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 0.99, and, 0.999 and plot them
with different colors. We set t = 10, 000, all networks with ⌘ not close to 1 reach their stationary
states at this time.

we were able to capture the dynamics on the networks when ⌘ is not very large. Our semi-analytical

approximation gives a good prediction of the disease prevalence when networks reach their stationary

states. In addition, this method also provides us a good estimation of network degree distribution as

well.

We carried out a bifurcation analysis in order to understand the properties of the systems at

equilibrium. We observed that introduction of the parameter ⌘ brought several quantitative changes

to the dynamics. We found there are bistable regions correspond to endemic and disease free states

of the systems. Moreover, there is a universal disease prevalence curve independent of network

topologies and our semi-analytical approximation could capture the disease prevalence accurately

when ⌘ is not close to 1.

A key assumption of our model is that the networks we investigate are locally tree-like. When ⌘

is large, this assumption will no longer be valid and our approximate master equation method was

not able to provide a good estimation. We showed that there exists an apparent phase transition at

⌘ = 1. We also observed that for ⌘ = 1, the time evolution of the system is slower than compared to
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any ⌘ < 1 case.

We provided a simple scheme that reinforces the clustering effect on coevolving networks. Our

semi-analytical method takes the information of the status and degree of nodes, their neighbor nodes,

and their distance 2 or 3 neighbors. Using similar semi-analytical method, people could study more

complicated rewiring methods based on the degree of a node or arbitrary distance from a node.
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CHAPTER 4

Evolutionary Games on Complex Networks

4.1 Background Information

Game theory is the study of strategic decision making and the analysis of mathematical models

of conflict and cooperation between intelligent rational participants [49, 62, 108]. Game theory is

mainly used in biology, economics, political science, computer science, psychology, and even military

research. Classical game theory requires that all of the rational actors make their choices to optimize

their individual payoffs, that is, they make their strategic choices on a wholly rationally determined

evaluation of probable outcomes, or utility. Therefore, it is essential that in game theory each player

must consider the strategic analysis that the players’ opponents are making in determining their

own strategic choice.

Evolutionary game theory [65, 69, 119, 136, 155] is the application of game theory to evolving

populations of lifeforms in biology, and recently it has been expanded to various areas in social

science. Evolutionary game theory is useful in this context by defining a framework of contests,

strategies, behaviors, and analytics into which competition can be modeled. The key point in the

evolutionary game theory model is that the success of a strategy is not just determined by how

good the strategy is in itself, it is a question of how good the strategy is in the presence of other

alternative strategies, and of the frequency that other strategies are employed within a population.

How good the strategy is of course matters because in the biological world a successful strategy will

eventually dominate a population and competing individuals in it end up facing identical strategies

to their own.

One of the great difficulties of Darwinian theory, and one recognized by Darwin himself was the

problem of altruism [106]. The exploited cooperators are worse off than defectors. Hence according

to the basic principles of Darwinian selection, it would seem that the extinction of cooperation is

almost certain to happen. If the basis for selection is at the individual level, altruism is a hard to



interpret phenomenon. But universal selection at the group level, or, for the "greater good", fails to

pass the test of the assumption of individuals maximizing their own utility of game theory and is

certainly not found to be the general case in nature. In many social animals altruistic behaviors can

be found, and often altruism could be fundamental for species to survive [41].

The solution to this paradox can be demonstrated in the application of evolutionary game

theory to the prisoner’s dilemma game [7, 104], a game which tests the outcomes of cooperating

or in defecting from cooperation. Cooperation is usually analyzed in game theory by means of a

non-zero-sum game. The prisoner’s dilemma game is a standard example of a game analyzed in game

theory that shows why two completely rational individuals may not cooperate, even if it appears

that it is in their best interests to do so. It is certainly the most studied game in all of game theory.

As with all games in evolutionary game theory the analysis of prisoner’s dilemma is as an iterative

game [100]. This repetitive nature affords competitors the possibility of retaliating or defecting based

on the results of previous rounds of the game. There is a multitude of strategies which have been

tested by the mathematics of evolutionary game theory and in computer simulations of contests [43]

and the conclusion is that the best competitive strategies are general cooperation with a reserved

retaliatory response if necessary. The most famous and perhaps one of the most successful of these

strategies is Tit for Tat which carries out this approach by executing a simple algorithm [7, 117].

In recent years, investigations have taken place on different games played on random graphs and

social networks [1, 37, 45, 46, 64, 68, 77, 83, 89, 118, 124, 129]. For example, individuals could play

a prisoner’s dilemma game on a graph with various strategies and the option to switch partners,

hence, this game could be put into a framework of coevolving networks. On a coevolving or adaptive

network with a game, the vertices represent players and the edges denote the pairwise partnership,

or game interaction, between individuals.

The studies devoted to evolutionary games on complex networks are extensive. We can broadly

say that one of the most important goals of such studies is to find what kind of mechanism of

dynamics, different game rules, or various network topologies can provide cooperation among selfish

and unrelated individuals.

The settings of spatial structure could enable cooperators to form small groups or clusters to

protect themselves against exploitation by defectors [118]. Studies have shown that the spatial

structure can promote cooperation [82], but there is also evidence that suggests the spatial structure
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may not necessarily favor cooperation [64]. Many studies have elaborated on different aspects of

cooperation on scale-free [54, 126], square lattice [123, 128], small world [84, 130, 141], social and

real-world networks [44, 72, 94], and multilayer networks [149].

In addition to network reciprocity inherent to games on complex networks, other notable rules

encouraging cooperative behavior are kin selection [61], group selection [33, 145], direct reciprocity

[122], indirect reciprocity [120, 121], social diversity [131, 156], voluntary participation [27, 63, 66],

and reputation [45]. All of these have been studied as interesting mechanisms that may promote

cooperation in evolutionary games.

In this Chapter, we focus our study on how players play a prisoner’s dilemma game with the

ability to change their strategies and switch partners if they are exploited by their neighbors. We

are interested in exploring the cooperative level among the individuals. By using the technique

of approximate master equations, we will provide a better approximation of the evolution of the

network structure and the individual status. We will compare the existing analytical methods and

the new approximation we developed, and provide qualitative and quantitative estimations of various

network properties. In Section 2, we introduce the model we investigate. We then describe the

improved approximation method in Section 3. In Section 4 we provide the numerical results and

comparison of the approximation methods. Lastly, in Section 5 and Section 6, we make concluding

remarks.

4.2 Model Description

We study the partner switching model in [46], on a coevolving network with a game, the vertices

represent players and the edges denote the pairwise partnership between individuals. We want to

study how players play a prisoner’s dilemma (PD) game with the ability to change strategies based

on the links they have and switch partners. We start with an Erdős-Rényi network with N nodes and

M edges. Each node has an equal probability to be a cooperator (C, denoted by two-dimensional

unit vector s = [1, 0]T ) or defector (D, s = [0, 1]T ) on one end of each link and engages in pairwise

interactions with his immediate neighbors defined by the partner network. That is, individual i
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plays a PD game with all his social partners and obtains an income as

Pi =
X

j2Ni

sTi Psj ,

where Ni represents the neighborhood set of i and the 2-by-2 payoff matrix P is

C D
0

@

1

A

C 1 0

D 1 + u u

where a single-parameter cost-to-benefit ratio u 2 (0, 1) is used to rescale the relative benefits of

outcomes in the payoff matrix. That is, if the player i plays C and the player j plays C, then both

of them get the payoff of 1; if the player i plays C and the player j plays D, then the player i gets

the payoff of 0 and the player j gets the payoff of 1 + u, and so on.

In each time step, we first randomly pick an edge that connects a pair of players with different

strategies, i.e., a CD link denoted by Eij to update. Later on, we will extend the model to allow

all individuals to switch their defective partners, that is, both CC and DD links can be rewired.

With a given probability w, node i and node j connected by the edge Eij update their strategies;

otherwise, Eij is rewired (with probability 1� w). When one node updates its strategy, the node

has a probability � given by the Fermi function to change its state, as first proposed by [140], and

specified in detail below. When link Eij is rewired, the player with end state C unilaterally gets

rid of the partnership with its neighbor with end state D on the edge Eij . Suppose node i has the

end with state C, then it will randomly pick a player k from the remaining population as its new

partner. Figure 4.1 shows an illustration of the rewiring process.

When a strategy updating event occurs, node i and j consider play in the PD game with all

of their neighbors respectively, envisioning a total payoff Pi and Pj as calculated above. Then the

strategy j replaces that of i on the edge Eij with likelihood given by the Fermi function

�(si  sj) =
1

1 + exp[↵(Pi � Pj)]
,

where ↵ represents the intensity of the selection [47, 144], or equivalently, its inverse 1/↵ could also
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Figure 4.1: Illustration of the rewiring process. Pick a discordant edge XY . Suppose node X is of
state C and node Y is of state D. Then with probability 1�w, the rewiring process happens. Node
X would dismiss its defective neighbor Y and rewire to a random node Z in the network, regardless
of the state of node Z.

represent the amplitude of noise [127, 148]. To be more specific, ↵! 0 leads to random drift while

↵!1 leads to deterministic imitation dynamics. Otherwise, the strategy of i replaces the strategy

of j on the edge Eij with likelihood �(sj  si) = 1� �(sj  si). Figure 4.2 shows an illustration of

the rewiring process.

This partner switching evolution game model stops evolving when there are no discordant edges

remaining in the network. In the stationary state of the system, there are no CD edges, only CC

and DD edges exist. Hence, the final state creates a fission of these two (cooperative and defective)

groups of individuals. In Figure 4.3, we provide a visualization of the model shortly before fission

occurs.

4.3 Semi-analytical Methods

We study this generalized coevolving network model with a combination of simulations and

approximate analytic models. The frameworks of Mean Field theory (MF), Pair Approximation

(PA) and Approximate Master Equations (AME) have all been used effectively as analytical tools in

similar settings. Among these approximations, AME can be used to achieve greater accuracy [53].
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Figure 4.2: Illustration of the strategy updating process. Pick a discordant edge XY . Suppose
node X is of state C and node Y is of state D. Then with probability w, the strategy updating
process happens. Node X and Y would compare their utility and the node with lower utility
would change its strategy with probability according to the Fermi functions. Suppose u = 0.5,
then node X has 1 unit of utility and node Y has 4 units of utility. By the Fermi function,
�(sX  sY ) =

1

1+exp[↵(PX�PY )]

=

1

1+exp[30(1�4)]

⇡ 1, that is node X has a probability close to 1 to
imitate node Y ’s state.

The PA estimation was obtained by [46], and here we provide the AME approximation.

The AME method is widely used in both static and coevolving networks. The difficulty of the

derivation of AME in this model is that usually the transition probabilities of states are constant or

depending on their neighbors’ states. For example, in the SIS model, the recovery rate is often a

constant µ while in the voter model, the probability for a node to change its state could rely on its

neighbors’ majority opinion. In the partner switching evolutionary game model, for a node to change

its state, at each time we need to compute its utility and compare with its neighbors’ utility, plug it

in the Fermi function, and obtain the transition probability. AME only contains the information of

the state of nodes, their degree and the state of their neighbors. Hence, we need some clever way to

estimate the utility of every node in the network and be able to compare them. We will explain how

we approximate these equations after we introduce the equations.

Let Ckl(t) and Dkl(t) be the fraction of cooperative and defective nodes of total degree k

which have l defecting neighbors at time t. We also define the zeroth order moments of the

Ckl(t) and Dkl(t) distribution by NC ⌘
P

kl Ckl and ND ⌘
P

kl Dkl; the first order moments by

NCC ⌘
P

kl(k � l)Ckl, NCD ⌘
P

kl lCkl + (k � l)Dkl and NDD ⌘
P

kl lDkl; and the second order

moments by NCCD ⌘
P

kl(k � l)lCkl, NCDD ⌘
P

kl l(l � 1)Dkl, etc.

55



Figure 4.3: Visualization of the partner switching model soon before fission occurs, for N = 1, 000
nodes, M = 5, 000 edges, cost-to-benefit ratio u = 0.5, strategy updating probability w = 0.1, and
initial fraction of defectors ⇢ = 0.5. Colors correspond to the two states of node; blue: cooperative
and red: defective.
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It is worth noting that while the network states and topologies coevolve, there are different

quantities that must remain conserved by the system. For example, since the networks are not

gaining or losing nodes, we have conservation of nodes NC + ND = 1. Similarly we always have

conservation of edges NCC +NCD +NDD = hki.

The following pair approximation method was derived by Fu et al. [46],

dNC

dt
= w ·NCD · tanh



�

2

(⇡C � ⇡D)

�

dNCC

dt
= w ·

✓

NCD�C!D � 2NCD
NCC

NC
�D!C +NCD

NCD

ND
�C!D

◆

+ (1� w) · NC

N
NCD

dNDD

dt
= w ·

✓

NCD�D!C � 2NCD
NDD

ND
�C!D +NCD

NCD

NC
�D!C

◆

(4.1)

Again, let Ck,l(t) and Dk,l(t) be the fraction of cooperative and defective sites of total degree k

which have l defective neighbors. We have the following ODE governing the time evolution of the

Ck,l compartment:

dCk,l

dt
= w

⇢

�D
k,l(k � l)Dk,l � �C

k,llCk,l

+ �C
k,l+1

�C(l + 1)Ck,l+1

� �C
k,l�

C lCk,l

+ �C
k,l�1

�C
(k � l + 1)Ck,l�1

� �C
k,l�

C
(k � l)Ck,l

�

+ (1� w)

⇢

NC

N

⇥

(l + 1)Ck,l+1

� lCk,l

⇤

+

NCD

N

⇥

Ck�1,l � Ck,l

⇤

�

(4.2)
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Similarly the ODE governing the time evolution of the Dk,l compartment is:

dDk,l

dt
= w

⇢

� �D
k,l(k � l)Dk,l + �C

k,llCk,l

+ �D
k,l+1

�D(l + 1)Dk,l+1

� �D
k,l�

DlDk,l

+ �D
k,l�1

�D(k � l + 1)Dk,l�1

� �D
k,l�

D
(k � l)Dk,l

�

+ (1� w)

⇢

⇥

(k � l + 1)Dk+1,l � (k � l)Dk,l

⇤

+

NCD

N

⇥

Dk�1,l �Dk,l

⇤

�

(4.3)

To see how the AMEs are derived, we will focus on explaining the Ck,l compartment, as the

derivation of the Dk,l compartment is similar. The first three lines of equation (4.2) with w are the

effect of strategy updating and the last two lines with 1� w are the effect of rewiring. To write the

AMEs, we need to keep track of all the quantities flowing in and out each time to our center class,

Ck,l. Refering to Figure 4.4, there are six flows related to the Ck,l compartment, and these are the

first six terms in the Ck,l equation. As we mentioned before, at each time step, one needs to know

the utility of the center and compare it with their neighbors’ utility. The first term is for a Dk,l class,

the center node with state D compares its utility with one of its C neighbors, changes its states to

C, and thus Dk,l becomes Ck,l, which is a positive change for the class Ck,l. And the second term is

for a Ck,l class, where the center node with state C compare its utility with one of its D neighbors,

changes its states to D, and thus Ck,l becomes Dk,l, which is a negative change for the class Ck,l.

Here we need to use the Fermi function � to find all the transition probabilities. Recall that the

payoff matrix of a game is

C D
0

@

1

A

C 1 0

D 1 + u u

where u 2 (0, 1). For a Dk,l class, the center node is of state D, it has k neighbors and l of them are

of state D. Hence we can compute the center’s utility as

PD = l · u+ (k � l) · (1 + u).
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Figure 4.4: Illustration of transitions to/from the Ck,l and Dk,l sets in the AME. For each set, only
parts of its neighbors are shown here, and the classes of sets are shown next to the corresponding
compartments.
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But, we do not have information about the neighbors of the center node’s C neighbors. We can only

approximate their utility by averaging the total payoff across all C nodes. Therefore here we have

PC = 1 · 2NCC

NC
+ 0 · NCD

NC
.

Then we compare the center node D’s utility with one of its C neighbor’s utility by using the Fermi

function, and we denote this as:

�D
k,l(D  C) =

1

1 + exp[↵(PD � PC)]
.

Likewise, for a Ck,l class, the center node is of state C, it has k neighbors and l of them are of state

D. We can compute the center’s utility as

PC = l · 0 + (k � l) · 1.

Then we estimate their D neighbors’ utility by

PD = (1 + u) · NCD

ND
+ u · 2NDD

ND
.

Lastly, we denote this transition probability as

�C
k,l(C  D) =

1

1 + exp[↵(PC � PD)]
.

The third term to the sixth term in the Ck,l equation are the effects of one of the neighbors

changing its state and leading to a change of the total quantity of Ck,l. We use � to denote rates of C

changing to D, � for rates of D changing to C, and superscripts to represent the state of the center

node. If the center is a C node and one of its neighbors changes its state from C to D, then we

denote this probability by �C . In similar fashion, if the center is a D node and one of its neighbors

changes its state from D to C, then we denote this probability by �D. To compute �C , we count

the number of CC edges in the network at each time, and then compute the number of edges which

switch from being CC to CD in the next time step. Here �C provides the expected number of D
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neighbors of a CC edge, that is, we define �C as

�C
=

P

k,l(k � l)lCk,l
P

k,l(k � l)Ck,l
.

Similarly we have

�D
=

P

k,l l
2Ck,l

P

k,l lCk,l
,

�C =

P

k,l(k � l)2Dk,l
P

k,l(k � l)Dk,l
,

and

�D =

P

k,l l
2Dk,l

P

k,l lDk,l
.

Following the six flows related to the Ck,l compartment, we obtain the first three lines of equation

(4.2), describing the strategy updating effect in the Ck,l class.

The last two lines in the Ck,l equations are the rewiring effect. The class Ck,l+1

would contribute

to the Ck,l if the center node C drops one of its defected neighbors and rewires randomly to a C

in the network. Similarly, the class Ck,l would decrease if for a Ck,l node, the center node C drops

one of its defected neighbors and rewires randomly to a C in the network. Lastly, a Ck�1,l would

contribute to Ck,l if the center receives a C node during rewiring and the class Ck,l would decrease

if a Ck,l center receives a C node during rewiring. The fourth line of equation (4.2) is an expression

corresponding to the center node actively rewiring to some other node in the network while the fifth

line describes the center node passively rewiring by the action of some other node in the network.

Figure 4.5 and Figure 4.6 illustrate this active and passive rewiring.

By following a similar fashion, we can obtain the equation of the Dk,l compartment as well.

The differential equation system above contains 2(k
max

+1)

2 coupled differential equations, where

k
max

is the maximum degree a node can have in the network. Usually, k
max

depends on network

structure and the mean degree. Here we choose k
max

= 50. We use these differential equations to

estimate the evolution of networks and solve their solutions numerically, arriving at a semi-analytical

approximation of the network evolution. To solve these thousands of ODEs, we use the ode45 solver

in MATLAB until the solutions converge to a steady state.
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X- l

R

Figure 4.5: Illustration of active rewiring. Before the rewiring, node X is of class Ck,l. Suppose
one of X’s discordant edge is picked, and X actively dismisses its defective neighbor, rewiring to a
random node in the network. If node X rewires to a node of state C, then node X becomes of class
Ck+1,l. We recall that only C’s actively rewire in the present model.

X- l

R R

B

Figure 4.6: Illustration of passive rewiring. Before the rewiring, node X is of class Ck,l. Suppose in
the rewiring process, node X is passively rewired by a random node in the network. Then node X
becomes of class Ck+1,l. We recall that only C’s actively rewire in the present model.
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4.4 Numerical Experimentation

We simulate networks with N = 1, 000 nodes and M = 5, 000 edges, and hence the mean degree

of the network is fixed to be hki = 10. We set the imitation parameter � in the Fermi function equal

to 30. We also introduce a parameter ⇢ to denote the initial fraction of defectors. First, we set

⇢ = 0.5, and we will explore the effect of this parameter later. Initially, we start the networks to be

an Erdős-Rényi G(N,M) random graph model, that is, a network is chosen uniformly at random

from the collection of all graphs which have N nodes and M edges. Hence with large N , we could

approximate the initial degree distribution of the networks by a Poisson distribution,

pk =

hkike�hki

k!
.

We perform Monte Carlo simulations of the evolution of the networks. In each time step, we

choose 100 edges and update them (as will be further explained below). In the case when only

discordant edges (i.e., CD edges) are updated, the dynamics will stop when there are no discordant

edges remaining or when the simulation reaches our selected stopping time t = 1, 000. Unless stated

otherwise, we do the Monte Carlo simulations 1,000 times for each experiment.

4.4.1 Exploration of the Parameter Space

In the stationary states of the network, either the dynamics would stop because of lacking

discordant edges or the change of quantities in each state is balanced. In our setting of dynamics

and parameter sets, every scenario we simulated reaches its stationary state before our stopping time

t = 1, 000. To see the effect of u and w, first, we investigate the final fraction of cooperators in the

stationary states. For both u and w, we start from 0 and increase the step by 0.05 to 1, and we want

to explore the cooperative levels in the stationary states. In Figure 4.7, we have the heat map of this

result. When u is small, there is a high level of cooperators in the stationary states. And when w is

close to 0, there is a medium level of cooperators in the stationary states. Other than small u or w,

the networks would be full of defectors in the stationary states, which we will explore and explain

this phenomenon with our semi-analytical approximation together in Figure 4.8 and Figure 4.9.
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Figure 4.7: Simulation results of the final fraction of cooperators with different combinations of u
and w. For both u and w axes, we pick the step to be 0.05 and plot the fraction of cooperators in
the stationary states in simulations. We take the mean of 50 simulations of each parameter set here.
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4.4.2 Final Level of Cooperation

Now we want to compare the simulation results and the two semi-analytical approximations. In

Figure 4.8, we consider w = 0, w = 0.05, w = 0.1, and w = 0.5, plotting the fraction of nodes in

state C in the stationary state of the networks against the cost-to-benefit ratio, u. There are three

sets of outcomes here: markers are the simulation results, dotted lines are the PA approximation,

and the dashed lines are the AME approximation. Although this figure only shows us the final

fraction of C’s, one also knows the final fraction of D’s simply because the sum of C and D ratios

should always be 1.

In the case w = 0, since there are no strategy updates happening in the networks, nodes couldn’t

change their states during the evolution. Hence, the final fraction of C and D will remain constant.

Since first we set ⇢ = 0.5, regardless of u we should get 50% of C and 50% of D in the stationary

states. In Figure 4.8, simulations, PA, and AME give us the same results, final ratio of C stays

constant of 0.5 with regard to u. Therefore, both the PA and AME approximations are satisfying.

When w > 0, the strategy updating starts playing a role. The greater the cost-to-benefit u is,

the stronger the incentive for nodes to defect. Hence, the final fraction of cooperators decreases as u

increases. In the cases w = 0.1 and w = 0.5, simulation results decrease slowly at first and suddenly

drop to zero around u = 0.2 and u = 0.6, respectively. This phenomenon is captured by AME

approximation not only by the qualitative behavior but also the critical dropping value of u. On

the other hand, although PA gives good qualitative estimation of the behavior, PA lines both drop

earlier and fail to provide a good prediction of critical points. Hence, comparing to PA, AME offers

better predictions of the simulation. Lastly, in the case w = 0.05, the simulation results gradually

decrease when u increases. The gaps between simulation results and PA and AME gradually increase.

The PA curve drops to zero around u = 0.85, however, the AME curve does not have this qualitative

change. Therefore, throughout all the scenarios listed in this figure, AME always provides fitting

qualitative approximations of the simulation results, and it gives accurate predictions at the critical

points.

Similarly, we plot the final fraction in the stationary state of cooperators C versus w with different

cost-to-benefit ratios, u in Figure 4.9. Here we consider four cases: u = 0, u = 0.01, u = 0.2, and

u = 0.8. All of them start from ⇢ = 0.5 when w = 0, because when w = 0 there is no strategy
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Figure 4.8: Fraction of cooperators versus cost-to-benefit ratio u with different strategy updating
rates w in stationary states. Markers are the averages of 1,000 simulations results, dotted lines are
the semi-analytical results of pair approximation (PA), and the dashed lines are the semi-analytical
results of approximate master equations (AMEs). The PA results are different from the ones shown
in [46], but we have confirmed the accuracy of our results in personal communication with the
authors of that paper.
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updating in the dynamics. Hence, all of the nodes only rewire but do not change their states. The

final fraction of C’s remains 50% in the networks. As w increases, the effect of strategy updating in

the dynamics becomes stronger. In the cases u = 0 and u = 0.01, u is so small that there is almost

no incentive to defect, so in the strategy updating process C’s and D’s are almost indistinguishable.

However, because of the effect of rewiring, C would drop its defective neighbor D, reducing the

number of partners for D. Comparing with C nodes, D nodes would not have as many neighbors and

hence would have less payoff. This effect makes more D’s change to C’s and leads to the dominance

of C’s when u is small. In the cases u = 0 and u = 0.01, both PA and AME provide accurate results

and behave well qualitatively.

When u = 0.8, as w increases, C nodes become more disadvantaged since the payoff of defecting

is high. The final fraction of cooperators decreases to zero around w = 0.1, and both PA and AME

capture this critical value of w well. Although both approximations have humps when w is small,

they still give satisfying predictions and AME does not do worse than PA.

Finally, in the case u = 0.2, the incentive of defecting is not too large. The final fraction of

cooperators would increase at first due to the rewiring effect, that is, C nodes gain more neighbors

and have higher payoffs when comparing the payoffs with D nodes. But when w gets greater, the

effect of rewiring diminishes, C nodes would not have more neighbors rewiring to them and start

losing payoff to their D neighbors. This effect makes more C’s become D’s and the networks will be

dominated by defectors. Both of the semi-analytical approaches capture this qualitative change of

the dynamics. The fraction of final cooperators curve drop around w = 0.35, w = 0.2, and w = 0.4

for simulation, PA, and AME, respectively. Though not perfect, AME in this case still yields more

accurate prediction than PA. Hence, generally speaking, we can see that AME improves the results

PA could acquire in this figure.

4.4.3 Network Dynamics

Having explored the populations in the stationary states, now we explore how the networks

evolve. We are aware that there are two things happening to the networks: the states of the nodes

change and the structure of the networks also change. To see how the networks change with time, we

investigate the evolution of five fundamental quantities of the networks: the fractions of nodes/edges
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Figure 4.9: Fraction of cooperators versus w with different cost-to-benefit ratio u values in stationary
states. Markers are the averages of 1,000 simulations results, dotted lines are the semi-analytical
results of pair approximation (PA), and the dashed lines are the semi-analytical results of approximate
master equations (AMEs).
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in states C, D, CC, CD, and DD. We compare the simulation results with the two semi-analytical

approximations we have. We choose a set of parameters u = 0.5 and w = 0.1, for which neither

of the approaches perform very well here. Since the time scale of PA and AME are fixed to the

equations, in order to keep our simulation results and semi-analytical results on the same time scale,

we carry out 100 updates at each unit time in the simulations. In this fashion, the three results

will enjoy the same time scale as we show in Figure 4.10. To perform the experiment, we do the 50

simulations and take the averages of them at each time step. In this figure, since the initial fraction

of defectors ⇢ is set to be 0.5, and we follow the Erdős-Rényi G(N,M) random graph model, both

C and D are 0.5, CC and DD are 0.25, and CD is 0.5. These are also the initial conditions of

PA and parts of the initial conditions of AME. One thing worth noting is that the total number of

nodes and edges are constant during the evolution, requiring both C +D and CC + CD +DD to

be equal to 1. The networks evolve with time until there are no discordant edges, i.e. when CD (the

black markers) equals 0. At a time slightly before t = 100, the networks stop evolving and all five

quantities keep constant after this stopping time. The PA method, in this case, stops evolving before

t = 10, and it gives the prediction that the networks are occupied by defectors and their links, which

is totally at odds with the simulations. On the other hand, the AME method stops evolving around

t = 160, when the black line goes to zero and the other four lines stay constant. Although the final

prediction of these five quantities is still off, the result is still better than PA. Not only does AME

gives the correct order of these quantities, but during the evolution, AME provides qualitatively

correct trajectories of how these quantities change with time. For example, the quantity of D first

goes up and then goes down below the quantity of C. AME captures this phenomenon. There is a

hump at the beginning of the red line and it goes down gradually below the blue line. The other

AME curves have similar qualitatively correct trajectories. Hence compared to PA, even if AME

does not give us an accurate prediction in this specific parameter set, this still works much better

than PA.

In Figure 4.11, we compare the simulation results with AME approximation. Since we know AME

does no worse than PA in all of our observed cases, we only compare AME and simulation results.

We choose four different parameter sets here: u = 0.2, w = 0.1; u = 0.2, w = 0.3; u = 0.5, w = 0.1;

and u = 0.5, w = 0.3. In each case, AME provides the correct order of C (blue), D (red), CC

(green), CD (magenta), and DD (black) ratios in the stationary states. In cases like u = 0.2, w = 0.1;
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Figure 4.10: Evolution of five fundamental quantities versus time t when u = 0.5 and w = 0.1.
We plot C (blue), D (red), CC (green), CD (magenta), and DD (black) ratios and compare these
with two semi-analytical approximations. Markers are the averages of 50 simulations results, dotted
lines are the semi-analytical results of pair approximation (PA), and the dashed lines are the semi-
analytical results of approximate master equations (AMEs). PA dynamics stop around t = 10, and
it gives bad estimations. On the other hand, AME provides better estimations of the simulation
results.
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Figure 4.11: Evolution of five fundamental quantities versus time t in different parameter sets, upper
left: u = 0.2, w = 0.1, upper right: u = 0.2, w = 0.3, lower left: u = 0.5, w = 0.1, and lower right:
u = 0.5, w = 0.3. We plot C (blue), D (red), CC (green), CD (magenta), DD (black) ratios and
compare these with our semi-analytical approximations. Markers are the averages of 50 simulations
results and the lines are the semi-analytical results of approximate master equations (AMEs). AME
provides qualitatively good estimations of the simulation results.

u = 0.2, w = 0.3; and u = 0.5, w = 0.3, AME method gives fairly accurate prediction of the final

levels of these quantities. Moreover, throughout the evolution, AME generates similar qualitatively

correct curves as the simulation results. Hence not only do we have a better idea of the final level of

these important quantities, we can also get qualitatively good evolution trajectories by plotting the

AME trajectories while solving these equations.

4.4.4 Degree Distribution

As we discussed before, the AME method takes in more information and has higher computational

cost, but it can generally provide better approximation than PA. There are also things that AME

could predict but PA could not, such as degree distributions. Since AME needs the information of

the states of nodes, the states of nodes’ neighbors, and the degree of nodes, this method can also

give us this information during the network evolution. Therefore by examining the variables of in
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the AME method, we can have knowledge of the degree distributions of the networks at any given

time. We simply cannot get the same information from PA. Here in Figure 4.12, we plot the degree

distribution of C and D nodes separately in the stationary states and compare the simulation results

and AME approximation. In each case, since we initialize with random strategies on the Erdős-Rényi

G(N,M) random graph model, the initial degree distributions are approximately Poisson when the

network size N is large enough. To see the degree distributions in the stationary states, we choose the

same parameter sets as in the previous figure: u = 0.2, w = 0.1; u = 0.2, w = 0.3; u = 0.5, w = 0.1;

and u = 0.5, w = 0.3. In the case u = 0.5, w = 0.3, the AME method yields very accurate prediction

of C, D, CC, CD, and DD levels as we showed before. Not surprisingly, AME also gives us a superb

prediction of the final degree distribution. In the stationary state of this case, D nodes dominate

the whole network, and there is no C node left. The AME method successfully provides us the

degree distribution of C and D nodes respectively. In the other three cases, although the AME

predictions are not that accurate, we can still see it gives us a hint of how the degree distribution

behaves. Hence, we know generally speaking, if the AME gives us good predictions of the dynamics,

it will also give us a nice prediction of its degree distribution. And this is a result PA method can

not provide.

4.4.5 Exploration of the Initial Fraction of Defectors, ⇢

Finally, we explore the effect of the initial fraction of defectors parameter ⇢ in Figure 4.13 and

Figure 4.14. In these two figures, we fix the parameter to be w = 0.1 in Figure 4.13 and u = 0.2 in

Figure 4.14, and we change the other parameter u, and w, respectively, to see the final fraction of

cooperators against ⇢ in stationary states. And we compare the simulation results (markers) with

our AME approximation (lines). It is worth noting that in both figures, all the trajectories generated

by simulation and approximation results would pass through the upper left and the lower right

corners. This is because when ⇢ = 0, there are no D nodes in the networks, there is no discordant

edge, and the networks would not evolve. The final fraction of cooperators remains 100%. The final

fraction of cooperators is 0% for the similar reason in the case ⇢ = 1. In Figure 4.13, for all u curves,

the final fraction of cooperators would first gradually decrease and drop to zero suddenly at different

values of ⇢, and AME method captures this qualitative behavior in different levels of u. Moreover,
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Figure 4.12: Degree distribution in the stationary states in different parameter sets, upper left:
u = 0.2, w = 0.1, upper right: u = 0.2, w = 0.3, lower left: u = 0.5, w = 0.1, and lower right:
u = 0.5, w = 0.3. Bars are the averages of 50 simulations results and the lines are the semi-analytical
results of approximate master equations (AMEs). AME provides qualitatively good estimations of
the simulation results. Blue bars and lines are degrees of cooperative nodes, and red bars and lines
are degrees of defective nodes.
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Figure 4.13: Fraction of cooperators versus ⇢ with w = 0.1 in stationary states. Different cost-to-
benefit ratio u: 0, 0.1, ..., 1 are chosen. Markers are the averages of 50 simulations results and the
dashed lines are the semi-analytical results of approximate master equations (AMEs).

fixing w = 0.1, smaller u would result in higher cooperative level, since the incentive of defecting is

less when u is small. We also find out that AME is more accurate when u is small in this figure.

In Figure 4.14, fixing u = 0.2, the diagonal line is the case w = 0, there are no strategy updates

happening, hence the cooperative level remains the same during the evolution. The w curves drop to

zero more quickly when ⇢ increases, that means the strategy updating effect is more sensitive to the

initial fraction of defectors ⇢. When w is large, the networks count more on the strategy updating

dynamics, and the stationary cooperative level would drop to zero more quickly. As we show in this

figure, the AME curves suddenly drop to zero when w > 0.4. Although not very accurate, AME

method still gives us qualitatively correct predictions of these scenarios.

4.5 Discussion

We are interested in how to increase the final level of cooperation, that is, the final ratio of

cooperators, and how to maximize the overall utility in the network. The first question could

be answered by Figure 4.7, where we investigate the final fraction of cooperators with different
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Figure 4.14: Simulation results of the final fraction of CC links with different combinations of u and
w. For both u and w axes, we pick the step to be 0.05 and plot the fraction of cooperators in the
stationary states in simulations. We take the mean of 50 simulations of each parameter set here.

combinations of u and w. To increase the final fraction of cooperators, the most effective way is to

reduce the cost-to-benefit ratio, u in the model. Then nodes do not have much incentive to defect

and this would increase the final cooperative level greatly, in many cases getting close to 1. Or one

could also make the parameter w small. In this case, nodes do not have much chance to update

their strategy; they do a lot of rewiring and the dynamics will stop when there are no discordant

edges. However, this would only make the final cooperative level close to 0.5, the initial cooperative

level. Furthermore, one can decrease the initial fraction of defectors parameter ⇢. As we studied in

Figure 4.13 and Figure 4.14, the smaller the ⇢ is, the greater of final cooperative level.

The second question, how to maximize the total utility or payoff is slightly different. In the

partner switching evolutionary game model we study here, no matter how the structure of networks

and the state of the nodes change, the total number of nodes and edges are fixed. Utility comes from

every edge in the network. According to the model, the total utility of a CC edge is 2, the total

utility of a CD edge is 1 + u, and the total utility of a DD edge is 2u, where u 2 (0, 1). Hence, the

average utility of a CC edge is greater than CD and than DD. And this is a trait of a prisoner’s
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dilemma game. If we want to maximize the overall utility, we need to have more CC links. We not

only wish to increase the fraction of C’s, but we also need to make sure the links mostly belong to

CC, not DD. As we will discuss next chapter, if we also let DD rewire, we can increase the overall

utility even more.

We plot the final fraction of CC edges with different combinations of u and w in Figure 4.15. It

generally shows the same pattern as in Figure 4.6, but when w is close to 0, the CC level increases to

around 0.75. This is because when there is no strategy updating, nodes can not change their states,

and the only thing for the nodes to do is to rewire until there is no discordant edge. If w = 0, then

the network would stop evolving until all the C’s in the CD edges dismiss their defective neighbors

and rewire to the C nodes. Since no nodes could change their states, the final CC ratio would equal

to 1 minus the initial DD ratio, that is 1 - 0.25 = 0.75.

We used PA and AME approaches to approximate the simulation results here. It is also worth

noticing that [159] used an approach for studying adaptive SIS networks that treated the links as the

objects and classifies them according to the disease states, the number of neighbors, and the number

of infected neighbors of each node of its links. This link-based method could generally improve the

accuracy compared to the AME method. However, it also enormously increases the computational

cost from O(k2
max

) to O(k4
max

), where k
max

is the maximum degree a node could have in the network.

4.6 Conclusion

Investigations have taken place on different evolutionary games played on random graphs and

social networks. Individuals could play a prisoner’s dilemma game on graphs with various strategies

and the option to switch partners. Therefore, this game could be put into a framework of coevolving

networks. We follow the node-based dynamics, which means each node can use only one strategy

(cooperate or defect) towards all of his or her neighbors. We explore the overall parameter space

and see the combination effect of the parameter related to partner switching and strategy updating.

Also in our work, we improve the existing pair approximation (PA) by using approximate master

equations (AMEs), and get more accurate approximations of the dynamics in the stationary states.

We investigate the evolution of the dynamics and see how the AMEs could approximate this. We

also use the AME method to estimate the degree distributions of different parameter sets in their
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Figure 4.15: Simulation results of the final fraction of CC links with different combinations of u and
w. For both u and w axes, we pick the step to be 0.05 and plot the fraction of cooperators in the
stationary states in simulations. We take the mean of 50 simulations of each parameter set here.
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stationary states, which PA is not able to predict. Furthermore, we explore the parameter ⇢, the

initial fraction of defectors, and see how it affects the final cooperative level.

Following the existing partner switching model, we holistically explore the effects of its parameters.

We discuss how to increase the final cooperative level and improve the existing method to approximate

the network dynamics. In the next chapter, we extend the current model and see how the networks

behave if we change the network dynamics. We hope that our results provide insight into the

understanding of the evolution of the games playing on coevolving networks.
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CHAPTER 5

Evolutionary Games on Complex Networks – A Variation Model

5.1 Model Description

In this Chapter, we will study a slightly different dynamics of the partner switching evolution

game model in the previous Chapter. We want to investigate the network evolution when we also let

DD edges rewire, and we want to investigate how this dynamic affects the final cooperation level.

Following the previous Chapter, on a coevolving network with a game, the vertices represent

players and the edges denote the pairwise partnership between individuals. We want to study how

players play a prisoner’s dilemma (PD) game with the ability to change strategies on each individual

links they have and switch partners. We start with an Erdős-Rényi network with N nodes and M

edges.

The strategy updating part is the same as in the previous Chapter. The only different thing is

now we not only let CD edges but also DD edges to rewire. In each time step, we first randomly

pick a CD or DD edge. If a CD edge is picked, then with probability w, the strategy updating

process happens, and with probability 1 � w, the player with state C unilaterally gets rid of the

partnership with its neighbor with state D and rewires to an arbitrary node in the network. On the

other hand, if a DD edge is picked, then with probability w nothing happens, and with probability

1 � w one end chosen randomly dismisses the other end and rewires to an arbitrary node in the

network. Hence during the whole process, the total amount of nodes and edges remain constant.

This variation partner switching evolution game model stops evolving when there are no CD

and DD edges in the system, or it also stops when there is only one state in the network. To put

it another way, there would be two cases in the stationary state of the network. Case 1: C and D

nodes coexist in the network, but there are no CD or DD edges. Case 2: There is only one state of

nodes (either C or D) in the network. In both cases, there is no possibility for a node to change its

state and hence, we stop the dynamics.



In Figure 5.1, we provide a visualization of the model in the stationary state (case 1). We choose

cost-to-benefit ratio u = 0.5, strategy updating probability w = 0.1, and initial fraction of defectors

⇢ = 0.5. In this case, C and D coexist in the network, but there are no CD or DD edges. The C

nodes own all the edges and they form a single component to defend the exploitation of D. Moreover,

note that all the D nodes in this case are isolated nodes.

On the other hand, in Figure 5.2, we have another visualization of the model in the stationary

state (case 2). We choose cost-to-benefit ratio u = 1, strategy updating probability w = 0.5, and

initial fraction of defectors ⇢ = 0.5. In this case, only D nodes exist in the network, and all the

edges are DD edge. The dynamics stops because of lacking of C nodes for D nodes to update their

strategies. In contrast to many isolated nodes we see in the previous case, this final network forms a

giant component instead.

5.2 Semi-analytical Methods

We study the second version of the partner switching models on coevolving networks with a

combination of simulations and approximate analytic models. Likewise, we also compare the pair

approximation (PA) and the approximate master equation (AME) approach with the simulation

results.

Following the notation of the previous Chapter, here we derive the PA equations for this variation

partner switching evolution game model.

dNC

dt
=w ·NCD · tanh



�

2

(⇡C � ⇡D)

�

dNCC

dt
=w ·

✓

NCD�C!D � 2NCD
NCC

NC
�D!C +NCD

NCD

ND
�C!D

◆

+ (1� w) · NC

N
NCD

dNDD

dt
=w ·

✓

NCD�D!C � 2NCD
NDD

ND
�C!D +NCD

NCD

NC
�D!C

◆

� (1� w) · NC

N
NDD

Suppose now both CD and DD could break their links. We also have the following ODE governing
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Figure 5.1: Visualization of the second partner switching model in the stationary state, for N = 1, 000
nodes, M = 5, 000 edges, cost-to-benefit ratio u = 0.5, strategy updating probability w = 0.1, and
initial fraction of defectors ⇢ = 0.5. Colors correspond to the two states of node; blue: cooperative
and red: defective. In this case, C nodes and D nodes coexist in the network, but there are no CD
or DD edges.
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Figure 5.2: Visualization of the second partner switching model in the stationary state, for N = 1, 000
nodes, M = 5, 000 edges, cost-to-benefit ratio u = 1, strategy updating probability w = 0.5, and
initial fraction of defectors ⇢ = 0.5. Colors correspond to the two states of node; blue: cooperative
and red: defective. In this case, only D nodes exist in the network, and all the edges are DD edges.
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the time evolution of the Ck,l compartment:

dCk,l

dt
= w

⇢
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Similarly the ODE governing the time evolution of the Dk,l compartment is:
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The differential equation system above contains 2(k
max

+ 1)

2 differential equations, where

k
max

is the maximum degree a node can have in the network. Usually, k
max

depends on network

structure and the mean degree. Here we choose k
max

= 50. We use these differential equations to

estimate the evolution of networks and solve their solutions numerically, arriving at a semi-analytical

approximation of the network evolution. To solve these thousands of ODEs, we use the ode45 solver

in MATLAB when all the solutions converge.

5.3 Numerical Experimentation

As in the previous Chapter, we simulate networks with N = 1, 000 nodes, M = 5, 000 edges, and

hence the mean degree of the network is fixed to be hki = 10. We set the imitation parameter ↵ in
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the Fermi function equal to 30. As before, we introduce a parameter ⇢ to denote the initial fraction

of defectors. First, we set ⇢ = 0.5 and we will explore the effect of this parameter later. Initially, we

start the networks to be an Erdős-Rényi G(N,M) random graph model, that is, a network is chosen

uniformly at random from the collection of all graphs which have N nodes and M edges. Hence

with large N , we could approximate the initial degree distribution of the networks by the Poisson

distribution,

pk =

zke�z

k!
.

We perform Monte Carlo simulations of the evolution of the networks. In each time step, we

choose 100 edges and update them with the same reason provided in the previous Chapter, that

is, to match the time scale of numerical simulations and the semi-analytical approximations. The

dynamics will stop when there are no CD or DD edges, only one state of nodes in the network, or

when it reaches our stopping time t = 1, 000.

5.3.1 Exploration of the Parameter Space

To see the effect of cost-to-benefit ratio u and strategy updating probability w, first, we investigate

the final fraction of cooperators and fraction of CC links in the stationary states. For both u and w,

we start from 0 and increase the step by 0.05 to 1, and we want to explore the cooperative levels in

the stationary states. In Figure 5.3 and Figure 5.4, we have the heat map of this result. There are

not many differences with the heat map we got in the previous Chapter. When u is small, there is a

high level of cooperators in the stationary states. And when w is close to 0, there is a medium level

of cooperators in the final states. Most importantly, when w is small and u is large, the cooperative

level is higher than the first model in Chapter 4. We see that letting DD to be able to rewire can

increase the cooperation level when w is small. Other than small u or w, the networks are full of

defectors in the stationary states, which we will explore and explain this phenomenon with our

semi-analytical approximations together in Figure 5.5 and Figure 5.6.

Note that in the stationary state of this second model, there would only be CC links if C and

D nodes coexist in the network; or in the other case, if there is no C node, only DD links would

exist. There exist two clear regions in the parameter space where C or D nodes dominate, and on

the boundary, that is the place where stochasticity of the dynamics happens. Sometimes C nodes
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Figure 5.3: Simulation results of the final fraction of cooperators with different combinations of
cost-to-benefit ratio u and strategy updating probability w. For both u and w axes, we pick the
step to be 0.05 and plot the fraction of cooperators in the stationary states in simulations. We take
the mean of 50 simulations of each parameter set here.

dominate and sometimes D nodes dominate so that we could see different colors on the boundaries

of Figure 5.3 and Figure 5.4.

5.3.2 Final Level of Cooperation

Now we want to compare the simulation results and the two semi-analytical approximations. In

Figure 5.5, fix w = 0, w = 0.05, w = 0.1, and w = 0.5, we plot the ratio of C’s in the stationary

state of the networks against the cost-of-benefit ratio, u. There are three sets of outcomes here:

markers are the simulation results, dotted lines are the PA approximation, and the dash lines are

the AME approximation. Although this figure only shows us the final fraction of C’s, one could also

know the final fraction of D’s simply because the sum of C and D ratios should always be 1.

In the case w = 0, since there are no strategy updates happening in the networks, nodes couldn’t

change their states during the evolution. Hence, the final fraction of C and D will remain constant.

Since first we set ⇢ = 0.5, regardless of u we should get 50% of C and 50% of D in the stationary

states. In Figure 5.4, simulations, PA, and AME give us the same results, where the final ratio of C

stays constant of 0.5 with regard to u. Therefore, both the PA and the AME approximations here are
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Figure 5.4: Simulation results of the final fraction of CC links with different combinations of cost-to-
benefit ratio u and strategy updating probability w. For both u and w axes, we pick the step to be
0.05 and plot the fraction of cooperators in the stationary states in simulations. We take the mean
of 50 simulations of each parameter set here.

accurate. When w > 0, the strategy updating starts playing a role. The greater the cost-of-benefit u

is, the more incentive for nodes to defect. Hence, the final fraction of cooperators decreases as u

increases.

In the cases w = 0.1 and w = 0.5, both simulation results decrease slowly at first and drop

faster to zero around u = 0.2 and u = 0.6, respectively. This phenomenon is captured by the AME

approximation not only by the qualitative behavior but also the critical dropping value of u. On

the other hand, although PA could give us a good qualitative estimation of the behavior, PA lines

both drop earlier and fail to provide a good prediction of critical points. Hence comparing to PA,

the AME method offers better predictions of the simulation. Lastly, in the last case w = 0.05, the

simulation results gradually decrease when u increase. The gaps between simulation results and PA

and AME gradually increase. PA curve drops to zero around u = 0.9, however, the AME curve

does not have this qualitative change. Therefore, throughout all the scenarios listed in this figure,

PA does no better prediction than the AME method. The AME method always provides satisfying

qualitative approximation of the simulation results, and it gives accurate predictions at the critical

points.
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Figure 5.5: Fraction of cooperators versus cost-to-benefit ratio u with different strategy updating
probability w values in stationary states. Markers are the averages of 1,000 simulations results,
dotted lines are the semi-analytical results of pair approximation (PA), and the dashed lines are the
semi-analytical results of approximate master equations (AMEs).

Comparing Figure 5.5 with Figure 4.8, the difference between these two models is that if DD

edges are also allowed to rewire, when in the case when w is small but not zero, the final fraction of

C nodes is higher. In the case when w = 0.05 and w = 0.1, in these two cases the two trajectories

start at the same high when u = 0, and the C ratio in the second model is always no less than the

first model as u increases. This is because when we allow DD to rewire, D nodes become more

unfavorable. In the first model, if a DD link is formed, then it is fixed unless the state of either

node changes. This effect provides less chance for a node to escape its defective partner.

Similarly, we plot the final fraction in the stationary state of cooperators C versus strategy

updating probability w with a different set of cost-to-benefit ratio, u in Figure 5.6. Though not

perfect, AME in this case still yields more accurate prediction than PA. Hence, the AME method

improves the results PA could acquire in this figure.

5.3.3 Network Dynamics

After knowing the status in the stationary states, now we explore how the networks evolve. We

know there are two things happening to the networks: nodes change their states and the structure
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Figure 5.6: Fraction of cooperators versus strategy updating probability w with different cost-to-
benefit ratio u values in stationary states. Markers are the averages of 1,000 simulations results,
dotted lines are the semi-analytical results of pair approximation (PA), and the dashed lines are the
semi-analytical results of approximate master equations (AMEs).

of the networks also change. To see how the networks change with time, we also investigate the

evolution of five fundamental quantities of the networks: C, D, CC, CD, and DD as in the previous

Chapter. And we compare the simulation results with the two semi-analytical approximations we

have. We choose a set of parameters u = 1 and w = 0.05. Since the time scale of PA and AME

are fixed in the differential equations, in order to keep our simulation results and semi-analytical

results on the same time scale, we carry out 100 updates at each time step in the simulations. In

this fashion, the three results will enjoy the same time scale as we show in Figure 5.7. To perform

the experiment, we do the 50 simulations and take the averages of them at each time step.

In this figure, since the initial fraction of defectors ⇢ is set to be 0.5, and we follow the Erdős-Rényi

G(N,M) random graph model, both C and D are 0.5, CC and DD are 0.25, and CD is 0.5 initially.

These are also the initial conditions of PA and parts of the initial conditions of AME. One thing

worth noticing is that the total amount of nodes and edges are constant during the evolution, as

both the fraction of C and D and the fraction of CC, CD, and DD should always be summed up

to be 1. The networks evolve as time goes by, and it stops evolving when there are no CD and DD

edges, i.e. when CD (the black markers) and DD (the magenta markers) both equal to zero. At the
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time soon after t = 200, the networks stops evolving and all five quantities keep constant after this

stopping time. The PA method in this case stops evolving before t = 10, and it gives the prediction

that the networks are dominated by defectors and their links, which is totally off. On the other

hand, the AME method stops evolving around t = 150, the black line goes to zero and other four

lines stay as constants. And the AME method gives us a fairly good estimation in this case. Not

only the AME method gives the correct order of these quantities, but during the evolution, the AME

method provides qualitatively correct trajectories of how these quantities change with time. For

example, the quantity of D first goes up and then goes down below the quantity of C. The AME

method could capture this phenomenon. Moreover, the AME method also knows that DD edges

would disappear before CD in this case. Hence comparing to PA, the AME method still works much

better in the second model.

In Figure 5.8, we compare the simulation results with the AME approximation. Since we know

the AME method does no worse than PA, we only focus on AMEs and simulation results comparison.

We choose the same four different parameter sets as the previous Chapter here: u = 0.2, w = 0.1,

u = 0.2, w = 0.3, u = 0.5, w = 0.1, and u = 0.5, w = 0.3. In the case u = 0.2, w = 0.3 the AME

method is off, it predicts that ratio of C nodes would go to 0. However, in Figure 5.5, PA gives the

same wrong results too. This is a case when there are no C nodes for the network to have future

strategy updating and hence the network stops. In the other three cases, the AME method gives a

fairly accurate prediction of the final levels of these quantities. Moreover, throughout the evolution,

the AME method generates similar qualitatively correct curves as the simulation results. Hence,

not only do we have a better idea of the final level of these important quantities, but we can also

get qualitatively good evolution trajectories by plotting the AME trajectories while solving these

equations.

5.3.4 Degree Distribution

Here in Figure 5.9, we also plot the degree distribution of C and D nodes separately in the

stationary states and compare the simulation results with the AME approximations. In each case,

since we start with the Erdős-Rényi G(N,M) random graph model, the initial degree distribution

is approximately Poisson when the network size N is large enough. Here we only show the degree
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Figure 5.7: Evolution of five fundamental quantities versus time t when cost-to-benefit ratio u = 1

and strategy updating probability w = 0.05. We plot C (blue), D (red), CC (green), CD (magenta),
DD (black) ratios and compare these with two semi-analytical approximations. Markers are the
averages of 50 simulations results, dotted lines are the semi-analytical results of pair approximation
(PA), and the dashed lines are the semi-analytical results of approximate master equations (AMEs).
The dynamic stops evolving when there are no CD and DD edges, which happens around t = 220.
PA dynamics stop around t = 10, and it gives bad estimations. On the other hand, the AME method
provides better estimations of the simulation results.
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Figure 5.8: Evolution of five fundamental quantities versus time t in different parameter sets, upper
left: u = 0.2, w = 0.1, upper right: u = 0.2, w = 0.3, lower left: u = 0.5, w = 0.1, and lower right:
u = 0.5, w = 0.3. We plot C (blue), D (red), CC (green), CD (magenta), DD (black) ratios and
compare these with our semi-analytical approximations. Markers are the averages of 50 simulations
results and the lines are the semi-analytical results of approximate master equations (AMEs). The
AME method provides qualitatively good estimations of the simulation results.

91



distributions in the stationary states. We choose the same parameter sets as in the previous figure:

u = 0.2, w = 0.1; u = 0.2, w = 0.3; u = 0.5, w = 0.1; and u = 0.5, w = 0.3. Except the case u = 0.2

and w = 0.3, which AME goes off, the method yields really accurate prediction of C, D, CC, CD,

and DD levels as we shown in the figure. In the case u = 0.5, w = 0.3, not surprisingly, since it

predicts the evolution so well, the AME method also gives us a very good prediction of the final

degree distribution. In the stationary state of this case, D nodes dominate the whole network and

there are no C nodes.

The difference between the two models in the stationary distribution is as follows. In the case

when DD could also rewire, there would be no DD links unless the whole network is full of D

nodes. Hence, this makes D node in every edge extremely unfavorable, a lot of D isolated nodes are

generated, and they can’t change anymore. Therefore, in the case u = 0.2, w = 0.1, u = 0.2, w = 0.3,

and u = 0.5, w = 0.1, we see the only D nodes are isolated nodes and the AME method could

successfully capture this occurrence if it predicts the network evolution correctly.

5.3.5 Exploration of the Initial Fraction of Defectors, ⇢

Finally, we explore the effect of the initial fraction of defectors parameter ⇢ in Figure 5.10 and

Figure 5.11. In these two figures, we fix the parameter w = 0.1 in Figure 5.10 and u = 0.2 in

Figure 5.11 and we change the other parameter u, and w, respectively, to see the final fraction of

cooperators against ⇢ in stationary states. And we compare the simulation results (markers) with

our AME approximation (lines). It is worth noting that in both figures, all the trajectories generated

by simulation and approximation results would pass through the upper left and the lower right

corners. This is because when ⇢ = 0, there is no D nodes in the networks, there is no discordant

edge, and the networks would not evolve. The final fraction of cooperators remains 100%. The final

cooperators is 0% for the similar reason in the case ⇢ = 1.

In Figure 5.10 for all u curves, the final fraction of cooperators would first gradually decrease

and drop to zero suddenly at different values of ⇢, and the AME method generally captures this

qualitative behavior in different levels of u. Moreover, fixing w = 0.1, smaller u results in higher

cooperative level, since the incentive of defecting is smaller when u is small. We also find out that

the AME method is more accurate when u is small in this figure.
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C nodes (simulation)

D nodes (simulation)
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D nodes (AME)

Figure 5.9: Degree distribution in the stationary states in different parameter sets, upper left:
u = 0.2, w = 0.1, upper right: u = 0.2, w = 0.3, lower left: u = 0.5, w = 0.1, and lower right:
u = 0.5, w = 0.3. Bars are the averages of 50 simulations results and the lines are the semi-analytical
results of the approximate master equations (AMEs). AME provides qualitatively good estimations
of the simulation results. Blue bars and lines are degrees of cooperative nodes, and red bars and
lines are degrees of defective nodes.
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Figure 5.10: Fraction of cooperators versus the initial fraction of defectors ⇢ with strategy updating
probability w = 0.1 in stationary states. Different cost-to-benefit ratio u: 0, 0.1, ..., 1 are chosen.
Markers are the averages of 50 simulations results and the dashed lines are the semi-analytical results
of approximate master equations (AMEs).

In Figure 5.11, fixing u = 0.2, the diagonal line is the case w = 0, there are no strategy updates

happening, hence the cooperative level remains the same during the evolution. The w curves drop to

zero more quickly when ⇢ increases, that means the strategy updating effect is more sensitive to the

initial fraction of defectors ⇢. When w is large, the networks count more on the strategy updating

dynamics, and the final cooperative level drops to zero more quickly. As we show in this figure, the

AME curves suddenly drop to zero when w > 0.3. Although not very accurate, the AME method

still gives us qualitatively correct predictions of these scenarios. Moreover, the qualitative difference

between the two models is not too much.

5.4 Conclusion

We study a slightly different dynamics as a partner switching evolutionary game model in

this Chapter. We explore the overall parameter space and see the combination effect of the

parameter related to partner switching and strategy updating. Also in our work, we provide the

pair approximation (PA), the approximate master equations (AMEs) of the system, and get more

accurate approximations of the dynamics in the stationary states. Following the previous partner
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Figure 5.11: Fraction of cooperators versus the initial fraction of defectors ⇢ with cost-to-benefit
ratio u = 0.2 in stationary states. Different w: 0, 0.1, ..., 1 are chosen. Markers are the averages of
50 simulations results and the dashed lines are the semi-analytical results of approximate master
equations (AMEs).

switching model, we also give a holistic investigation of the effects of its parameters. We discuss how

to increase the final cooperative level and improve the existing method to approximate the network

dynamics. We show if we let DD edges could also rewire, this would increase the cooperation level

when strategy updating probability w is small. Moreover, the final state would be either a network

full of nodes with one state, or C nodes and D nodes coexist and all the D nodes are isolated. We

investigate the evolution of the dynamic and see how the AMEs could approximate this. We also use

the AME method to estimate the degree distributions of different parameter sets in their stationary

states, which PA is not able to give this prediction. Furthermore, we explore the parameter ⇢, the

initial fraction of defectors and see how it affects the final cooperative level and use the AME method

to estimate the dynamics.

.
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CHAPTER 6

Link-based Evolutionary Games on Complex Networks

The contents of this Chapter are theoretical extensions of the previous two Chapters. However, the

results here are still preliminary. We nevertheless include this Chapter in the thesis for completeness.

6.1 Model Description

We studied two partner switching models of evolutionary games on complex networks. In

these settings, each individual could either play cooperatively or defect against all of his or her

neighbors. However, this assumption is unrealistic compared to the availability and, indeed, the

probable preferability to behave differently to different partners. In the models with node-based

states considered in the previous Chapters, if a person chooses to be cooperative, then he or she

needs to cooperate with all of the neighbors at the same time. On the other hand, if a person

chooses to be defective, then he or she needs to defect with all of the neighbors at the same time too.

This situation is contradictory to the observation we have in daily life where people form groups

to collaborate and defend themselves from other groups of people. Hence, an individual in a social

network should be able to cooperate with some people and defect with other people simultaneously.

The previous two models simply could not offer this possibility since there are states attached to each

node and the node behaves accordingly. Previous research has studied playing different strategies

with different people, usually finding group formation in the society [8, 56, 102]; however, there

appears to have been little such work in the setting of typical complex networks.

In this Chapter, we want to extend the previous partner switching models to a link-based model.

That is, each individual could play different strategies with different neighbors based on the states of

their links, without restricting a node to behave the same way across all of its links. We want this

extended model to be as close as possible to our previous node-based model in order to compare and

contrast the models. On an adaptive network with a game, the vertices represent players and the

edges denote the pairwise partnership (game interaction) between individuals. We want to study



how players play a prisoner’s dilemma (PD) game with the ability to change strategies on each

individual link they have and switch partners.

We use a very similar setting to the node-based dynamics. Initially, individual strategies and

graphs start from a random and statistically homogeneous state. Each of N individuals has the

same expected number of interaction partners which are their neighbors on the network. The total

M edges uniformly pair the nodes up at random, and each node has an equal probability to be

a cooperator (C, denoted by two-dimensional unit vector s = [1, 0]T ) or defector (D, s = [0, 1]T )

associated with its end of each of its links. Note that a node here does not have its own state, instead,

it has different states on its side of its edges (also known as ’stubs’). For example, say one node has

10 neighbors: 7 of its ends could be in state C and then the remaining 3 ends would be in state D.

Maintaining similarity with the models of the previous Chapters, the utility matrix is still

controlled by the parameter u, and the individual still has probability 1� w to switch a partner.

In each time step, we first randomly pick an edge that connects a pair of players with different

strategies on the two ends of their link, i.e., a CD link denoted by Eij to update. With a given

probability w, stub i and stub j connected by the edge Eij update their strategies; otherwise, Eij is

rewired (with probability 1� w). When link Eij is rewired, the player with end state C unilaterally

gets rid of the partnership with its neighbor with end state D on the edge Eij . Suppose node i has

the end with state C, then it will randomly pick a player k from the remaining population as its

new partner, and player k would play a strategy on the new stub with probability matching its own

existing C and D ratio.

When one stub updates its strategy, the stub has probability � given by the Fermi function to

change its state. The payoff matrix is again controlled by the cost-to-benefit ratio u as before. Two

chosen nodes would compare their overall utility, and the one selected probabilistically according to

the Fermi function to change its stub’s state selects its ’new’ state with probabilities in agreement

with the C and D ratios of the other node. Under this rule, it is possible that both stubs maintain

their current strategies after the strategy updating process.

This link-based partner switching evolution game model would stop evolving when there is no

discordant edge in the network. In the stationary state of the network, there would be no CD edges,

only CC and DD edges would exist.
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Figure 6.1: Visual depiction of the available information maintained in three different levels of
analytical approximations — mean field (MF), pair approximation (PA), and approximate master
equation (AME) —, in link-based dynamical evolutionary games in a network setting.

6.2 Semi-analytical Methods

Figure 6.1 depicts different levels of analytical approximation of the link based partner switching

model. In the mean field (MF) approximation, one only has local information of a node. To be more

specific, we use the information of a node’s degree and numbers of C and D stubs to form a set of

differential equations. In pair approximation (PA), one has the information of a node’s degree and

the pairs that node has. Lastly, in the approximate master equation (AME) method, one has the

overall information of nodes and their neighbors.
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6.2.1 Mean Field Approximation

Let Nk,mC denote the quantity of nodes with degree k and mC C-stubs. Then we have the

following Mean Field approximation.

dNk,mC

dt
= w ·

⇢

�Nk,mC ·mC ·
1

2

NCD

NCC +

1

2

NCD
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NDD
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1
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�
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=
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N

The differential equation system above contains 2(k
max

+ 1)

2 differential equations, where

k
max

is the maximum degree a node can have in the network. Usually k
max

depends on network

structure and the mean degree. Here we choose k
max

= 50. We use these differential equations to

estimate the evolution of networks and solve their solutions numerically, arriving at a semi-analytical

approximation of the network evolution. To solve these hundreds of ODEs, the ode45 solver in
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MATLAB is used and we stop when all the solutions converge.

6.2.2 Pair Approximation

Let Nk,mCC ,mCD,mDC ,mDD denote the quantity of nodes with degree k, mCC CC links and so on,

and SC and SD are numbers of C stubs and Dstubs. Note that mDD is redundant.

Then we have the following pair approximation.

dNk,mCC ,mCD,mDC ,mDD

dt
= w·

⇢
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1
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2
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�Nk,mCC ,mCD,mDC ,mDD +Nk�1,mCC�1,mCD,mDC ,mDD

mCC � 1 +mCD

k � 1

+�Nk�1,mCC ,mCD,mDC�1,mDD

mDC � 1 +mDD

k � 1

��

The differential equation system above contains 2(k
max

+ 1)

4 differential equations, where

k
max

is the maximum degree a node can have in the network. Usually, k
max

depends on network

structure and the mean degree. Here we choose k
max

= 10. We use these differential equations to

estimate the evolution of networks and solve their solutions numerically, arriving at a semi-analytical

approximation of the network evolution. To solve these thousands of ODEs, the ode45 solver in

MATLAB is used and we stop when all the solutions converge.
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6.3 Numerical Results and Discussion

We study networks with N = 1, 000 nodes and M = 1, 000 edges and hence the mean degree of

the network is fixed to be hki = 2. We set the imitation parameter � in the Fermi function equal to

30. Initially, we start the networks to be drawn from an Erdős-Rényi G(N,M) random graph model,

that is, a network is chosen uniformly at random from the collection of all graphs which have N

nodes and M edges. Hence with large N , we could approximate the initial degree distribution of the

networks by the Poisson distribution,

pk =

hkike�hki

k!
.

Moreover, we start from networks with 50% C stubs and 50 % D stubs distributed uniformly. We

perform Monte Carlo simulations of the evolution of the networks. In each time step, we select

and update a discordant edge. We define the unit time as 100 such updates for comparison with

our semi-analytical results below. In the case when only discordant edges (i.e., CD edges) are

updated, the dynamics will stop when there is no discordant edge or when it reaches our stopping

time t = 1, 000 (that is, 100,000 selections of discordant edges). We do the Monte Carlo simulations

100 times for each experiment.

The numerical simulations and the MF and PA approximations are provided in Figures 6.2 and

6.3. Note that now nodes do not have states, only edges have states. We plot the final ratio of CC

to the total edges in the stationary state against the cost-to-benefit ratio u.

As we can see in the two figures, the dynamics does not depend on u value much. In order to

perform a prisoner’s dilemma game, we need the cost-to-benefit ratio u 2 (0, 1) to keep the order in

the payoff matrix. However, in this region of u, fixing the value of w, the final ratio of CC links with

different w levels behave almost like a constant. If we posit rational players, then their objective is

to maximize the expected reward. Since the reward is aggregated linearly across edges, this means

maximizing the reward on each edge separately. In steady-state, given sufficient opportunities to

change strategy, it appears that the state of each stub of a node is effectively independent of the

other stubs. Then what we see is the behavior is the same as if each node of degree were replaced

with independent nodes of degree 1. The cost-to-benefit ratio u simply does not play a role when
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Figure 6.2: Fraction of cooperators versus cost-to-benefit ratio u with different w values in stationary
states. Markers are the averages of 100 simulations results and the dashed lines are the semi-analytical
results of mean field (MF) approximation (note that all 4 dashed lines for w < 1 combine under the
black dashed line at the value 1).

the action of each stub is effectively independent.

In Figure 6.2, the MF approximation shows the dynamics is independent of the cost-to-benefit

ratio u. However, it does not give us a satisfying result. It predicts for the four cases of w < 1,

they all have the final CC level of 1. And for the case w = 1, it would stay on the 50 % of the CC

level in the stationary state. In Figure 6.3, the PA also shows the dynamics is independent of the

cost-to-benefit ratio u. However, this time, the order of the different w level is wrong, opposite to

the trend observed in simulations. Both of the estimations are off, and we are not sure at this time

whether our equations are not correct or there exist glitches in our codes. But since the dynamics

does not depend on u, we think that perhaps we should come up with another link-based evolutionary

game which has a richer behavior in the future.
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Figure 6.3: Fraction of cooperators versus cost-to-benefit ratio u with different w values in stationary
states. Markers are the averages of 100 simulations results and the dashed lines are the semi-analytical
results of pair approximation (PA).
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CHAPTER 7

Summary

In this thesis, we have investigated three distinct models of dynamics of coevolving networks.

Each of these models considers the effects of distinct interaction mechanisms for the constituent

nodes. The evolution of the complex systems depends on the interaction mechanism in play. Not

only the network behavior itself is interesting, but also we could use mathematical approaches to

capture the fundamental phenomenon of these systems.

Clustering is one of the central properties of social networks, arising due to the ubiquitous

tendency among individuals to connect to friends of a friend, and can greatly impact a coevolving

network system. We study a voter model and the SIS epidemic model on a coevolving network with a

certain probability to close a triangle while rewiring, leading to reinforcement of network transitivity.

Under our new models, there is a probability that if a rewiring happens, a node would rewire to

its neighbors’ neighbor, a triangle is closed, and the local clustering increases. We show that this

new mechanism we establish would indeed fundamentally affect the network dynamics, and lead to

different qualitative and quantitative results. These models provide a unique opportunity to study

the role of transitivity in altering the voter model and the SIS dynamics on a coevolving network.

Social networks play an important role in spreading information and forming opinions. A voter

model on adaptive networks is a simplified model of a social network in which individuals have

one of two opinions and their opinions and the network connections coevolve. In Chapter 2, we

extend the method of approximate master equations to study our preferential attachment model and

gave an accurate prediction of the stationary states of the evolution as well as study the clustering

coefficients and degree distribution in the consensus states.

Coevolving networks have been introduced in the context of disease propagation on complex

systems. In Chapter 3, we study disease propagation on coevolving networks and introduce a

simple social network model that has a certain probability to close a triangle while rewiring. By

using improved compartmental formalism method or method of approximate master equations, our



semi-analytical approximation could provide accurate predictions of disease prevalence and degree

distribution of networks in their stationary states. Furthermore, in the SIS model, we studied the

bifurcation diagrams and found out there exists a universal disease prevalence curve seemingly

independent of initial network topologies. More complicated rewiring methods based on the degree

of a node or an arbitrary distance from a node can be studied using similar semi-analytical methods.

Game theory is the study of strategic decision making and many investigations have taken place

on different games played on random graphs and social networks. In Chapter 4 and 5, we bring more

sophisticated mechanisms into adaptive networks. We improve the existing pair approximation by

using approximate master equations, we study the model on different dynamics, and finally, explore

the network structure of the stationary states. Then we extend the node-based evolutionary game

model to a link-based model in Chapter 6. In this setting, each node will not have to cooperate or

defect with all of his or her neighbors. This extended model gives us a more realistic scenario of the

real world dynamics. We provide different level of approximation to study this model as well.

In the above models we study, the semi-analytical approximation could usually provide us

satisfying results. Using approximate master equations, we can approximate in detail how the

networks evolve. Although there are some limitations of the method we use, such as the tree-like

assumption, it is still better than many existing approaches. We study networks with different

topology and see how this could affect network dynamics, we explore the parameter spaces, investigate

the dynamics of some fundamental quantities of the networks, and predict degree distributions

in stationary states. With this analytical tool, we can provide a comprehensive estimation and

understanding of the network dynamics.

The voter model in Chapter 2 has an assumption that the two opinions "0" and "1" are

indistinguishable. Starting with the same initial fraction, the two opinions have the same probability of

dominating the final consensus state, or they can together form two matching segregated consensuses.

In Chapter 3, we break this symmetry between the two states, susceptible and infected individuals

now have different probabilities to interchange their states, and the rewiring mechanism is also

different depending on the states of nodes. Therefore, we no longer see symmetric arches in the voter

model, and instead, we see endemic and disease-free states in various settings of parameters. The

approximate master equations method is usually used in a situation that the transition probability

is fixed or dependent on local topology. Furthermore, in Chapter 4 and 5, the game theory model
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suggests a more complicated updating process. An individual needs to compare his or her utility

with neighbors and changes their strategies accordingly, and thus, we need information more than

ones’ neighbors have. The transition probability is no longer a fixed constant, but it depends on the

network topology and the specific game the model plays. To find a mathematical prediction of the

system’s overall behavior becomes a challenging but exciting mission.

In this thesis, we only study binary-state dynamics on coevolving networks, and surely with effort

these approaches can generalize to multi-states networks. This extension will take an enormous

increase in the the number of differential equations and computational costs to study the dynamics.

However, we do think this field will be explored and more fascinating dynamics and complicated

behaviors could also be examined in the near future.

We developed simple network dynamics models that take into account a variety of different

interaction rules. Furthermore, we provide mathematical methods to study the systems and often

give good approximations. However, with the growing availability of real-world network data recently,

it will be more important to test and corroborate these models. Specifically, temporal network

data, multilayer networks, and networks with metadata could all be very beneficial in improving our

knowledge of the dynamics of opinion formation, diseases propagation, and strategy development in

social networks and complex systems.
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APPENDIX A

Voter Model and Social Clustering on Complex Networks

This part of the joint work was led by my coauthors, Nishant Malik and Feng Shi. For the sake

of completeness, I include this in the thesis.

A.1 Evolution of Clustering in the model

Let TG be the number of triangles and ⌧G be the number of connected triplets of nodes (triads)

at a given time t in the network G. Then at time t clustering will be C(t) = 3TG/⌧G. Further, let us

consider a triad centered at a node j is represented by the notation ⌧ jG. Then the total number of

triads centered at j are given by
✓

kj
2

◆

, where kj is the degree of node j. If during the rewiring step

in the model a link is removed from a node j and rewired to a node m, then the number of triad

centered at j reduces by
✓

kj
2

◆

�
✓

kj � 1

2

◆

and triads centered at m increases by
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2

◆
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.

Then the change in the number of triads in single rewiring step
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kj
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◆

+
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◆

=) �⌧G = km � kj + 1.

Assuming that node degree is an iid variable, then on average the change in number of triads in

time t will be h�⌧Gi = 1 (because hkmi = hkji = hki ). The amount rewiring at given time t

is proportional to probability of rewiring ↵ and number of discordant edges in the network l
01

.

Therefore, instantaneous rate of change of ⌧G will be ⌧̇G = ↵l
01

h�⌧Gi , that is

⌧̇G = ↵l
01

(A.1)

Rewiring step also changes the number of triangles TG in the network. Let T ij
G is the number of

triangles which include an edge i—j, if this edge is removed during the rewiring then T ij
G triangles will

be eliminated. There are two types of triads involved with edge i—j, the one centered at node i i.e.,

⌧ iG = ki � 1 and the other one centered at node j i.e., ⌧ jG = kj � 1. Then the total number of triads

involved with edge i—j are ⌧ iG + ⌧ jG = ki + kj � 2. Not all of these triads are part of triangles T ij
G ,

as to form one triangle only two triads involving edge i—j are required. Therefore, number of triads

involved in T ij
G triangles must be (ki + kj � 2)/2. We know clustering coefficient is the fraction of
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triads that are involved in triangles, assuming independence and uniformity T ij
G = C(ki + kj � 2)/2.

This is the amount of triangles that will be eliminated in rewiring of i—j. Again assuming that

node degree is an iid variable, then on average the decrease in number of triangles in time t will

be h�TGi = �C(hki � 1) (because hkmi = hkji = hki ). In the presented model there also exist a

counter mechanism: rewiring to neighbor’s neighbor with probability �. If for simplicity we neglect

the special rare case of 4-cycles, then this step will increase number of triangle by 1. We can combine

these two mechanism into one equation and can write the instantaneous rate of change of TG as:

˙TG = �↵l
01

C(hki � 1) + ↵�l
01

(A.2)

Using the definition C(t) = 3TG/⌧G, we can write

˙C = 3

˙TG⌧G � TG⌧̇G

(⌧G)
2

(A.3)

When ˙C = 0 then ˙TG⌧G � TG⌧̇G = 0, therefore

C = 3

TG

⌧G
= 3

˙TG

⌧̇G
.

Implying,

C = 3

�↵l
01

C(hki � 1) + ↵�l
01

↵l
01

(A.4)

or C = �3C(hki � 1) + 3�, solving for C we get

C =

3�

3hki � 2

. (A.5)

A.2 Degree Distribution

As rewiring is introduced into the model ↵ > 0, the structure of the network evolves. The degree

distribution for ↵ > 0 is described by the Weibull distribution. In Fig. A.2 we have plotted the scale

parameter b
1

used to fit the b
1

in Section 2.4.3. We observe bigger dispersion in the values of b
1

for

small ↵’s (↵ = 0.2, 0.4). It is apparent that there are two regimes in the values of b
1

, one for ↵ < 0.6

and ↵ > 0.6. In the equation above the shape parameter is a constant therefore, larger the values of
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Figure A.1: Values of the parameter b
1

in Section 2.4.3

b
1

larger is the spread of the degree distribution. In other words neither the parameter ↵ nor the

parameter � are changing the basic shape of the distribution, their combination merely stretches or

contracts the spread of the degree distribution.

A.3 Transitions

The dynamics of discordant edges at time t, l
01

(t) is governed by

l
01

(t) = c
1

(1� n
1

(t))n
1

(t) + c
2

(A.6)

where c
1

and c
2

are constants and n
1

is the ratio of nodes holding opinion 1. c
1

and c
2

can be

estimated from the simulation data by fitting Eq. A.6 to it. The simulation data used to estimate c
1

and c
2

is shown in Figure 2.6 (a). We found that c
1

/c
2

⇠ ↵2.1 exp(�0.75�) for ↵ < ↵c(�), where ↵c(�)

is the solution of ↵2.1 exp(�0.75�). In Figure A.2 we have plotted the ratio c
1

/c
2

, we observe that for

↵2.1 exp(�0.75�) < 0.5 all the values falls on same line with slope 1. Whereas for ↵2.1 exp(�0.75�) > 0.5

the values fall on line with slope 0. There are only very few points which show some scattering from
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Figure A.2: In this figure we show that c
1

/c
2

⇠ ↵2.1 exp(�0.75�)
for ↵ < ↵c(�), where ↵c(�) is the solution of

↵2.1 exp(�0.75�)
= 0.5. The transition point is emphasized by grey dashed line. c

1

and c
2

were obtained by

fitting A.6 to the simulation data presented in Figure 2.6 (a).

this behavior, these points are due to numerical noise.
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