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ABSTRACT 

Janelle Corrinne Arthur:  NLRP12 regulates immunity by controlling cell migration 

(Under the direction of Dr. Jenny P-Y. Ting) 

 

NLRP12 is a member of the NLR family of genes that are responsible for 

coordinating inflammatory responses upon recognition of invading pathogens and host 

danger signals.  Remarkably, mutations in several NLR genes have been linked to 

autoinflammatory diseases; greatly expanding our understanding regarding the etiology of 

these debilitating conditions.  NLRP12 is expressed exclusively in innate immune cells and 

suppresses inflammation by negatively regulating the noncanonical NF-κB pathway.  This is 

achieved by inducing proteasome-mediated degradation of NF-κB inducing kinase (NIK) in 

response to pathogens and activation through pro-inflammatory receptors.  Because NLRP12 

functions to dampen these signals, it is clear that NLRP12 must be controlled in order to 

mount an adequate cellular response to such insults.  Here we find that NLRP12 stability is 

regulated by the evolutionarily conserved molecular chaperone Hsp90.  In the presence of 

Hsp90 inhibitors, NLRP12 protein is rapidly degraded via the proteasome leading to 

increased NIK stability and function.  Thus, Hsp90 activity is a critical regulatory factor for 

NLRP12 function and is required for NLRP12-induced degradation of NIK and suppression 

of the noncanonical NF-κB pathway. 

Human NLRP12 polymorphisms have been linked to atopic dermatitis and hereditary 

periodic fevers with skin urticaria, however the mechanisms by which NLRP12 affects these 

conditions remain largely unknown.  To better understand these mechanisms, we tested 
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several well defined models of inflammation using Nlrp12 knockout mice.  Remarkably, we 

found that Nlrp12 deficient mice failed to mount T cell mediated responses in hapten induced 

contact hypersensitivity, a model of allergic dermatitis, and EAE, a model of multiple 

sclerosis.  Mechanistically this is due to defective migration of peripheral dendritic cells.  

These innate immune cells express Nlrp12 and play a pivotal role in T cell activation.  

Molecular analysis reveals that in the absence of NLRP12, dendritic cells display an 

inappropriate activation of NIK, resulting in high levels of NIK dependent gene expression.  

These findings expand our understanding of NLRP12 function in vivo and provide a 

rationale for the diseases associated with this NLR.  Furthermore our results reveal a novel 

role for NLRP12 in bridging innate and adaptive immunity. 
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A.  INTRODUCTION 

Vertebrates utilize the immune system to protect themselves against pathogens.  Over 

the course of evolution, they have developed two systems of immune detection – the innate 

and adaptive immune systems.  All vertebrates employ the innate immune system, however, 

only jawed vertebrates employ both innate and adaptive immune systems.  Adaptive immune 

cells, such as T and B lymphocytes, can express nearly an unlimited number of antigen-

specific receptors that are generated through somatic rearrangement.  After activation 

through these receptors, lymphocytes undergo clonal expansion to exponentially increase the 

number of antigen-specific lymphocytes.  This generates effector cells capable of clearing the 

infection, as well as memory cells that are poised to react quickly upon secondary exposure 

to the same antigen.  Activation and expansion of an adaptive immune response occurs over 

several days.  In contrast, an innate immune response can be initiated within minutes to hours 

and shapes the ensuing adaptive immune response.  Accordingly, the innate immune system 

is considered the first line of defense against pathogens.   

Nearly two decades ago it was predicted that the immune system utilizes germline 

encoded receptors to rapidly detect and alert the host to invading pathogens.  Janeway 

hypothesized that the immune system employs pattern-recognition receptors (PRR) to detect 

conserved microbial products, termed pathogen associated molecular patterns (PAMPs), and 

distinguish “self” from “non-self” 
1
.  Matzinger hypothesized that invading pathogens cause 

the host to produce danger signals that alert the adaptive immune system to infection 
2,3

.  

Both theories have proven to be correct. 

In 1997, the discovery of a human homolog of the Drosophila innate immune 

receptor Toll launched the field of innate immunology into view 
4
.  This Toll homolog was 
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the first member identified in a family of eleven PRR called Toll-like receptors (TLR).  TLRs 

are type I transmembrane glycoproteins that recognize pathogen products through their 

extracellular leucine-rich repeat (LRR) domain.  Their cytosolic TIR (Toll/IL-1β Receptor) 

domain recruits cytosolic adaptor proteins including MyD88, TIRAP/Mal, TRAM, and TRIF 

to transduce downstream signals leading to activation of the NF-κB and mitogen-activated 

protein kinase (MAPK) pathways 
5-7

.  This signaling induces the secretion of pro-

inflammatory cytokines and upregulation of costimulatory molecules important for shaping 

the ensuing adaptive immune response.  All members of the TLR family recognize conserved 

microbial structures such as viral double stranded RNA 
8
, the Gram negative bacterial cell 

wall component lipopolysaccharide (LPS) 
9-11

, flagellin – a component of the bacterial 

motility apparatus flagellum 
12

, and unmethylated CpG motifs in bacterial DNA 
13

.  TLRs 

localize to the plasma membrane or within endosomes, however, many bacteria and viruses 

invade the host cell’s cytosol.  Thus it was believed that there similar molecules might reside 

in the intracellular and cytosolic compartments.  

In 2002, our lab reported the discovery of a large family of intracellular pattern 

recognition molecules, which we termed CATERPILLER.  This family has recently been 

renamed NLR, for Nucleotide-binding domain, Leucine-rich Repeat containing proteins 
14

 

(see section A.1).  Approximately 20 members were identified in humans and were expressed 

predominantly in immune cells.  Genes belonging to this family were predicted to encode 

proteins with a central nucleotide binding domain and, similar to TLRs, C-terminal leucine-

rich repeats 
15

.  It was soon realized that these mammalian proteins share striking structural 

homology to a large family of plant disease resistance (R) proteins with nucleotide binding – 

leucine rich repeat (NB-LRR) architecture
16

, hinting that the NLR family represents an 
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ancient family of immune defense genes.  In addition, several members of this newly 

discovered family had previously been linked to human immune and autoinflammatory 

diseases 
17

 (see section A.3).  In response to pathogen products and endogenous danger 

signals, NLR proteins trigger signaling pathways that can enhance or suppress immune 

responses, such as those mediated by the innate immune Toll-like receptors (TLRs)
18

.  

However, many questions remain regarding how NLR proteins function at the biochemical 

level and what physiologic response is evoked by their activation.   

In this dissertation I discuss two major findings regarding the NLR protein NLRP12:  

an evolutionarily conserved mechanism that controls the stability and function of NLRP12, 

as well as an in vivo role for NLRP12 in bridging innate and adaptive immunity by 

controlling dendritic cell migration. 

    

1.  Discovery of the NLR family 

Within the past decade, we and others have discovered the NLR family as a large 

evolutionarily conserved gene family that serves an important role in innate and adaptive 

immunology 
14

.  Many NLR family members with known function participate in the innate 

immune response, such as sensing pathogenic insult and regulating inflammatory signaling 

and cell death.  In addition, several NLR gene products have recently been shown to affect 

adaptive immune responses.  At least half of the NLR genes encode proteins with functions 

that remain elusive or not yet studied.  For this reason it is exciting to consider what will be 

discovered in the near future within the field of NLR biology. 

The NLR family was discovered in our lab by mining the human genome for open 

reading frames encoding proteins with predicted domain architecture similar to that of 
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CIITA, the MHC class II transcriptional activator and founding member of the NLR gene 

family (see section B.1).  Approximately 20 genes are present in humans, and all encode a 

putative central nucleotide binding domain and C-terminal leucine rich repeats (LRR).  We 

named this family CATERPILLER, an acronym for caspase activation and recruitment 

domains [CARD], transcription enhancer, R [purine]-binding, lots of leucine repeats 
15

.  

Others have named this group or subgroups of these genes NOD (nucleotide oligomerization 

domain) 
19

, NOD-LRR 
20

, PYPAF 
21

, PAN 
22

 and NALP (NACHT domain-, leucine-rich 

repeat-, and pyrin- containing protein) 
23

.  Recently a unifying nomenclature has been 

adopted for the NLR family, designated “NLR”, as well as individual NLR family members.  

The gene symbol for each family member begins with “NLR” plus an additional letter 

signifying the subfamily to which the individual NLR member belongs.  The subfamily is 

based upon the N-terminal effector domain: NLRA, NLR family, acidic domain containing; 

NLRB, BIR domain containing; NLRC, CARD domain containing; NLRP, pyrin domain 

containing; NLRX, N terminal domain with no known homology.  Within the subfamily, the 

individual NLRs are numbered sequentially, i.e. NLRP1, NLRP2, etc.  CIITA, NAIP, NOD1 

and NOD2 have retained their original names in addition to their new NLR designation 
14

.  

Please refer to Table 1.1. 

 

2.  NLR domain organization 

 In general, the N terminal domains of NLR family members consist of six α-helices 

that adopt a coiled coil structure and can be further classified as either CARD, pyrin, BIR or 

Activation Domain 
14

.  It is believed that these domains engage in homotypic interactions to 

mediate signaling downstream of NLR molecule activation.  For example, homotypic CARD 
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interactions are utilized by NOD1/NLRC1 and NOD2/NLRC2 to bind receptor-interacting 

protein kinase 2 (RIP2) and elicit downstream NF-κB activation 
24-26

.  Several NLRs utilize 

the N terminal pyrin domain in homotypic interactions with the adaptor ASC (apoptosis-

associated speck-like protein containing a CARD domain) to activate caspase-1 
27

.  The N 

terminal domain of several NLRs acts as a dominant negative when overexpressed (Lich, 

J.D. unpublished data), raising the possibility that unidentified splice variants may serve to 

negatively regulate the activity of these NLRs.   

The central nucleotide binding domain (NBD) of the NLRs is required for the 

activation and oligomerization of the NLR protein 
28

.  The NBD encoded by NLR family 

members can be classified with AAA+ (ATPases associated with various cellular activities) 

ATPases, which are utilized by many plant R proteins 
29

.  AAA+ ATPases contain well-

conserved motifs, the Walker A and Walker B motifs, important for nucleotide binding and 

hydrolysis, respectively 
30

.  Mutation of one key lysine in the Walker A motif typically 

abolishes nucleotide binding 
31

.  This mutagenesis strategy has been used to assess the 

importance and specificity of nucleotide binding in NLR function.  Binding preference of 

each NLR is generally specific to one nucleotide.  The exception thus far is NLRP1, which 

binds nucleotides indiscriminately to activate caspase-1 
32

.  ATP binding is required for 

NLRP3 and NLRC4-mediated cell death and inflammation, as well as formation of the large 

multi-protein complex termed the inflammasome (see section B.2) 
33,34

.  ATP binding is 

required for NLRP12 self-oligomerization and suppression of NF-κB 
35

.  GTP binding is 

required for CIITA self-oligomerization, association with and activation of MHC class II 

promoters 
36-40

.   



 7 

The C-terminus of NLR molecules is comprised of a varying number of leucine rich 

repeats (LRR), which are involved in autoregulation, ligand recognition, and protein-protein 

interactions.  LRRs are defined by repeating units of LxxRxxL (‘x’ being any amino acid) 

and each unit is a structural motif of 20-30 amino acids forming a beta strand-turn-alpha 

helix 
41,42

.  In both plant R proteins and mammalian NLRs, truncation of the LRRs can yield 

a constitutively active molecule, suggesting the LRRs maintain the NLR protein in an auto-

inhibited state until an activating stimulus is received 
43-46

.  Evidence of a direct interaction 

between the LRRs of NLR proteins and pathogens or pathogen products is sparse 
32

.  In 

plants, however, yeast two-hybrid experiments have detected an interaction between the 

LRR-like region of Pi-ta, a rice R gene, and its cognate avirulence effector from the rice blast 

fungus Magnaporthe grisea 
47

.  However, such interactions have only been demonstrated in 

artificial systems and not verified with endogenous protein.  Thus further studies are required 

to determine whether or not NLRs are activated through direct ligand binding. 

 

3.  Associations with human disease 

 The importance of NLR family members in human immunity is continually 

highlighted by the discovery of mutations in NLRs that are linked to human immune and 

auto-inflammatory disorders.  Not surprisingly, many of these mutations are located in the 

region encoding the NBD domain.  The first disease linked to an NLR family member was 

bare lymphocyte syndrome, a severe immunodeficiency disorder caused by the lack of MHC 

class II expression on the cell surface.  Mutations in CIITA, the class II transcriptional 

activator and founding member of the NLR family, are linked to this disease 
48

. 
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Of the CARD-containing NLRs, mutations in NOD1 and NOD2 are the best studied.  

Mutations in NOD2 have been linked to Crohn’s disease, an inflammatory disease of the 

intestines, and Blau’s syndrome, a familial granulomatous disease characterized by 

inflammation of the eyes, joints and skin 
26,49,50

.  Mutations in NOD1 are associated with 

numerous inflammatory disorders such as inflammatory bowel disease (IBD), asthma, and 

sarcoidosis 
51,52

.   

Several pyrin-containing NLRs have been linked to human inflammatory disorders.  

Mutations in NLRP3/Cryopyrin are associated with a group of dominantly inherited 

autoinflammatory disorders that are referred to as cryopyrinopathies or Cryopyrin-Associated 

Periodic Syndromes (CAPS).  CAPS is comprised of three syndromes, listed as least to most 

severe:  Familial cold auto-inflammatory syndrome (FCAS)
53

, Muckle-Wells syndrome 

(MWS)
53,54

 and Neonatal-onset multisystem inflammatory disease (NOMID) / Chronic 

infantile neurologic cutaneous articular syndrome (CINCA)
55,56

.  Symptoms of these 

syndromes include recurrant rash, fever/chills, joint pain, deafness, systemic amyloidosis, 

central nervous system inflammation, mental retardation, and bone deformities.  Recently, 

mutations in the most closely related NLR to NLRP3, NLRP12, have been linked to 

hereditary periodic fevers with nearly identical symptoms to CAPS 
57

.  Mutations in NLRP12 

have also been linked to atopic dermatitis, where inflammation manifests in the skin of 

affected individuals 
58

.  Other NLRs associated with human autoinflammatory disease 

include NLRP1, linked to vitiligo 
59

, Addison’s disease and type 1 diabetes 
60

, and 

NAIP/NLRB1, linked to spinal muscular atrophy 
61

.  
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B.  MECHANISM OF ACTION 

 NLR proteins organize and assemble into multi-protein complexes to assert their 

function(s).  Based upon these functions, NLRs can be categorized into three groups.  It 

should be noted, however, that many NLRs likely have overlapping functions and should 

only be loosely categorized into these three groups.  CIITA is the sole member of the first 

group and serves as a transcriptional coactivator at the promoter of MHC class II genes 

(reviewed in 
62

).  The second group contains NLRP1, NLRP3, NLRC4, and NAIP/NLRB1.  

These NLRs assemble into multi-protein complexes with ASC and caspase-1 to promote IL-

1β processing and secretion (reviewed in 
63

).  They also perform an important but less studied 

role in promoting distinct forms of cell death (reviewed in 
64

).  The third and final group, the 

signaling NLRs, includes NOD1, NOD2, NLRX1 and NLRP12.  These NLR proteins fine-

tune inflammation by enhancing or suppressing distinct arms of inflammatory signaling 

pathways, such as those leading to interferon regulatory factor (IRF) and NF-κB 
65-67

.  

 

1.  CIITA, the MHC class II transactivator 

 The founding member of the NLR family, CIITA, controls constitutive and cytokine-

induced activation of MHC class II genes.  However, while CIITA drives expression of MHC 

class II genes, it does not directly bind DNA 
48

.  Instead, it acts as a transcriptional 

coactivator by organizing other proteins in the appropriate spatial orientation to interact with 

and induce transcription from MHC class II promoters 
68

.  MHC class II promoter 

organization is highly conserved and is comprised of a group of cis acting elements, the W-

X-Y module 
69

.  This module is recognized and bound by the transcription factors RFX and 

NFY 
62,70-73

 and by CREB 
74,75

.  These DNA-bound transcription factors assemble into a 
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multi-protein complex and recruit CIITA to MHC class II promoters, forming the MHC class 

II enhanceosome and promoting MHC class II transcription 
76

.  While these transcription 

factors are constitutively expressed, transcription of MHC class II genes is not induced in the 

absence of CIITA 
48

.  CIITA organizes and stabilizes this complex of transcription factors, 

chromatin modifiers (including Brahma-related gene 1 (BRG-1)) and the requisite 

transcriptional machinery (histone acetyltransferases, CREB binding protein (CBP)/p300, 

CBP/p300 associated factor (pCAF), steroid receptor coactivator 1 (SRC-1), the TATA-

binding protein (TBP), TATA associated factors), and transcriptional elongation factors 

necessary for MHC class II gene expression 
62,77,78

.   

CIITA is encoded by MHC2TA, which was identified by complementation cloning of 

an MHC class II negative RJ 2.2.5 cell line 
48

.  MHC2TA is expressed in a cell type and 

differentiation state specific manner that mirrors MHC class II expression.  MHC2TA is 

epigenetically activated in response to IFNy through histone acetylation and chromatin 

remodeling 
79,80

 and epigenetically silenced through DNA hypermethylation 
81

.  MHC2TA 

transcription is controlled by at least three different promoters based upon cell type 
82

.  

 CIITA activity is primarily controlled through its cellular localization, as CIITA 

exerts its transactivating function in the nucleus.  Two conventional nuclear localization 

signals (NLS) and a bipartite NLS direct CIITA into the nucleus; two nuclear export motifs 

direct export via CRM1 
83,84

.  The LRRs of CIITA influences both nuclear import and export, 

as truncating or mutating the LRRs leads to decreased nuclear localization 
44,85

.  Regions of 

the LRR are also important for CIITA self-association and transactivating function 
37,86,87

.  

CIITA binds GTP 
88

, and GTP binding controls both the nuclear import and export of CIITA.  

Mutation of the GTP binding domain blocks nuclear import and accumulation of CIITA 
88

.  
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Furthermore, deletion of 140 amino acids containing the GTP binding domain increases 

CIITA nuclear export and association with the nuclear export protein CRM1 
89

.  GTP binding 

is also required for CIITA self-association 
36,37

 and activation of the MHC class II promoter 

38-40
.  

Post-translational modifications are important in modulating CIITA activity, as 

unmodified CIITA is not recruited to the MHC class II enhanceosome 
90

.  CIITA activity is 

inhibited through phosphorylation by ERK1/2 
91

 and protein kinase A (PKA), such as upon 

prostaglandin E (PGE) treatment 
92

.  Phosphorylation of CIITA may signal its nuclear export, 

as mutating these phosphorylation sites 
93

 or inhibiting ERK1/2 causes retention of CIITA in 

the nucleus and prevents association with and nuclear export via CRM1 
91

.  Ubiquitination of 

CIITA, however, enhances the ability of CIITA to activate MHC class II gene expression 
94

.     

 

2.  Inflammasome-forming NLRs 

Similar to the requirement for CIITA to form higher multiprotein structures to 

coordinate MHC class II expression , several other NLR proteins have also been shown to 

form protein complexes termed the inflammasome, which functions in inflammatory 

cytokine activation 
95

.  Assembly of this molecular platform leads to processing and release 

of the potent pro-inflammatory cytokine, IL-1β, and related cytokines, IL-18 and IL-33.  The 

inflammasome includes the core components ASC and caspase-1.  In the absence of either of 

these core components, pro-IL-1β is not processed into its active form 
95

.   

Most inflammasomes studied to date contain the core components ASC and caspase-

1.  However, the particular NLR involved in inflammasome formation appears to be 

stimulus-specific (reviewed in 
63

).  For example, NLRP1 forms an inflammasome and 
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promotes IL-1β processing and secretion in response to muramyl dipeptide and anthrax lethal 

toxin of Bacillus anthracis 
96

.  The NLRC4 inflammasome is formed in response to multiple 

Gram-negative bacteria expressing flagellin 
97

 while NLRP3 inflammasomes have been 

shown to respond to a variety of pathogen and host derived molecules.  Recently an 

additional layer of complexity has been revealed by the discovery of an inflammasome 

complex consisting of both NOD2 and NLRP1.  This heterogenous inflammasome was 

formed in response to B. anthracis and the bacterial cell wall component muramyl dipeptide 

(MDP) 
98

.  Given the well defined role of NOD2 in NF-κB activation, it is tempting to 

speculate that this heterogeous inflammasome couples transcriptional activation of 

inflammatory genes with IL-1β production.  Further research will likely reveal the existence 

of other heterogenous inflammasomes and may explain the apparent overlap between certain 

elicitors and NLR proteins.   

 

The NLRP3 inflammasome 

The NLRP3 inflammasome is arguably the best studied among the NLR family.  

Therefore it provides a model for understanding the molecular mechanisms underlying 

inflammasome formation and activation leading to IL-1β and IL-18 production.  A collection 

of dominantly inherited human autoinflammatory disorders are associated with mutations in 

NLRP3.  Interestingly, symptoms are relieved by IL-1β neutralization, suggesting that 

excessive and improperly regulated NLRP3 inflammasome activation and downstream IL-1β 

production underly these disorders.   

IL-1β is a potent pro-inflammatory cytokine that is translated as a leaderless 35 kDa 

precursor protein that must be processed into its active form. The processing of pro-IL-1β is 
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mediated predominantly by the IL-1β converting enzyme caspase-1. Treatment of 

macrophages with LPS results in the production of high levels of pro-IL-1β that accumulate 

in secretory lysosomal structures 
99

. Yet, the release of mature IL-1β is very inefficient in the 

absence of a second signal. This second signal can be provided by ATP, which activates the 

ion-gated channel P2X7. This triggers the rapid activation of caspase-1 and subsequent 

processing and release of bioactive IL-1β 
100

.  The role of P2X7 in IL-1β release has been 

well documented over the years.  However, it was not until the discovery of NLRP3 that the 

molecular mechanisms began to be revealed.   

NLRP3, formerly known as Cryopyrin, PYPAF1 or NALP3, is encoded by the 

NLRP3 gene, formerly known as CIAS1, and is a pyrin-containing member of the NLR 

family of genes 
101

.  Hoffman et al. first identified point mutations within exon 3 of NLRP3 

that segregate with Muckle-Wells Syndrome (MWS) and Familial Cold Autoinflammatory 

Syndrome (FCAS) 
53

, two inflammatory diseases characterized by fever, rash, and excessive 

IL-1β production.  However, until recently, the role of NLRP3 in these disorders has 

remained elusive.  In 2006, four groups described an important role for NLRP3 in promoting 

IL-1β maturation, leading to the release of this potent pro-inflammatory cytokine 
102-105

.       

Two groups observed that when prestimulated with LPS, wild-type (wt) macrophages 

activated caspase-1 and released large quantities of IL-1β upon ATP stimulation, whereas 

macrophages from Nlrp3
−/−

 mice did not 
102,103

.  This indicates that NLRP3 is a key factor in 

caspase-1 activation and IL-1β secretion after ATP stimulation.  Another group determined 

that NLRP3 is required for IL-1β maturation in response to R848 (TLR7/8 agonist), R837 

(TLR7 agonist), bacterial mRNA (TLR7/8 agonist) and viral RNA 
105

.  Interestingly, these 

agonists induce NLRP3-dependent IL-1β maturation in the absence of TLR signaling. 
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Because R848 and R837 are purine analogs, it is possible that these compounds stimulate 

members of the P2X or P2Y family of purine receptors, similar to ATP stimulation.  

Alternatively, NLRP3 may “sense” these agonists within the cytoplasm in a manner 

analogous to the recognition of the bacterial cell wall component muramyl dipeptide (MDP) 

by NOD2.   

Further support for NLRP3 in bacterial recognition lies in the finding that NLRP3 is 

also required for IL-1β secretion in response to the Gram-positive bacteria Staphylococcus 

aureus and Listeria monocytogenes (Lm).  NLRP3 displays a level of specificity, as it is not 

required for caspase-1 activation and IL-1β release in response to Salmonella typhimurium or 

Francisella tularensis 
103

.  A previous report demonstrated that NLRC4, another member of 

the NLR family, is required for IL-1β release in response to Salmonella typhimurium 
106

. 

These findings support the general assumptions that distinct NLR family members respond to 

different stimuli. 

The reports described above indicate a role for NLRP3 in caspase-1 activation and 

IL-1β maturation in response to a variety of stimuli.  A question is undoubtedly raised 

regarding how NLRP3 can respond to such diverse stimuli with no shared molecular 

structure.  A shared characteristic of these stimuli, however, is the ability to induce K
+
 efflux.  

Indeed, others more recently have described a role for K
+
 efflux in activating the NLRP3 

inflammasome 
107

.  In the case of ATP, extracellular ATP binds the cell surface receptor 

P2X7 and induces the rapid efflux of K
+
.  The depletion of K

+
 leads to the activation of 

calcium-independent phospholipase A2 (iPLA2) 
99

.  iPLA2 induces the colocalization of 

caspase-1 and pro-IL-1β within secretory lysosomes 
99

; presumably, this leads to caspase-1 

activation and processing of pro-IL-1β.  Perhaps this iPLA2-mediated mechanism also 
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permits vesicular import of the NLRP3 inflammasome, thus allowing it to colocalize with 

caspase-1 and pro-IL-1β.  This supports the observation that inflammasome components are 

released from stimulated macrophages along with IL-1β.  Interestingly, iPLA2 activity also 

leads to the production of cytoplasmic lipids such as lysophospholipids and arachidonic acid.  

This has prompted the suggestion that NLRP3 may respond to lipid second messengers 

generated by phospholipase activity 
99

. 

In addition to the stimuli described above, NLRP3 mediates IL-1β maturation and 

secretion induced by endogenous danger signals and crystalline particles including asbestos 

108
, silica 

108-110
, aluminum hydroxide 

111-114
, and fibrilar amyloid-β 

115
.  The first of these 

found to activate the NLRP3 inflammasome are monosodium urate (MSU) and calcium 

pyrophosphate dehydrate (CPPD) crystals 
104

, the deposition of which lead to gout.  In the 

case of MSU and CPPD, IL-1β maturation occurred in the presence of a P2X7 inhibitor, 

suggesting NLRP3 responds to signals other than those initiated from this ATP receptor.  IL-

1β processing and secretion was blocked by the microtubule inhibitor colchicine, suggesting 

that cytoskeletal events, such as endocytosis or vesicle trafficking, are required for NLRP3-

mediated IL-1β release.  This observation was further supported by the finding that 

destabilization of the lysosomal membrane in response to phagocytosis of crystalline 

particles activates the NLRP3 inflammasome 
109

.  Conflicting reports exist regarding the role 

of reactive oxygen species in activating the inflammasome under these conditions 
108,109

.  It 

appears, however, that the lysosomal protease Cathepsin B plays a role in NLRP3-mediated 

events as it is required for caspase-1 activation by silica, as well as caspase-1 independent 

NLRP3-induced cell death pathways 
116

.  Thus, additional studies are needed to fully 

understand the mechanisms underlying NLRP3 inflammasome activation.   
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3.  Signaling NLRs 

 In addition to NLR proteins that comprise the inflammasome, a smaller but growing 

number of NLRs function in controlling pro- and anti-inflammatory signal transduction.  

Signaling NLRs include NOD1, NOD2, NLRX1, and NLRP12 (see section C for greater 

detail on NLRP12).  These NLRs enhance or suppress inflammation by fine-tuning 

inflammatory signaling pathways such as NF-κB, MAPK, and IRF3/7 
65-67

.  By controlling 

these inflammatory pathways, signaling NLRs not only control the innate immune response, 

but also influence the ensuing adaptive immune response 
117-120

.   

 

NOD1 and NOD2 

Both NOD1 and NOD2 were identified before the discovery of the NLR gene family.  

NOD1 was cloned in 1999 by two groups interested in identifying CARD-containing proteins 

resembling the pro-apoptotic protein APAF-1 
24,25

.  NOD2 was identified based upon its 

homology to NOD1 
26

.  Their importance in human immunity was evident as mutations in 

these genes could be linked to Crohn’s disease, Blau syndrome, and inflammatory bowel 

disease 
26,49,50

.  While NOD1 and NOD2 were identified based upon their homology to the 

pro-apoptotic protein APAF-1, it was soon found that NOD1 and NOD2 act as cytosolic 

molecular sensors that promote host resistance to a variety of bacteria by activating 

inflammatory signaling pathways.  

NOD1 and NOD2 reside in the cytoplasm and recognize distinct breakdown products 

of the bacterial cell wall component peptidoglycan.  The composition of peptidoglycan 

differs between Gram positive and Gram negative bacteria, and while NOD2 responds to a 
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moiety found in both Gram positive and negative bacteria, NOD1 responds to a moiety found 

predominantly in Gram negative bacteria.  The minimal structure required to activate NOD1 

is GlcNAc-MurACc-LAla-c-D-Glu-meso-diaminopimelic acid (GM-triDAP)
121

, whereas 

NOD2 responds to MDP and the minimal component GlcNAc-MurNAc-LAla-D-isoGlen 

(GM-Di)
122,123

.  NOD1 and NOD2 clearly display a high level of specificity, however, 

neither have been shown to directly bind these bacterial products. 

NOD1 and NOD2 activate multiple pro-inflammatory signaling pathways that result 

in the secretion of inflammatory cytokines and chemokines like IL-6, IL-8 and TNFα and 

antimicrobial peptides including defensins.  Upon activation, NOD1 and NOD2 are recruited 

to the plasma membrane 
124,125

, self-oligomerize and recruit the CARD-containing kinase 

RIP2 through homotypic CARD interactions 
126,127

.  RIP2 is activated by K63-ubiquitination 

which recruits transforming growth factor-β-activated kinase 1 (TAK1) 
128-130

.  Signaling can 

proceed through the mitogen activated protein kinases (MAPK) p38, JNK and ERK, as well 

as to NF-κB via ubiquitination of IKKγ/NEMO, the regulatory subunit of the IKK (inhibitor 

of NF-κB (IκB) kinase) complex, phosphorylation of IκB, and nuclear translocation of NF-

κB 
26,131,132

.  NOD2-mediated NF-κB activation can be suppressed by A20 
130

, an enzyme 

with both ubiquitinating and de-ubiquitinating machinery that suppresses NF-κB downstream 

of pro-inflammatory receptors 
133

.   

The importance of NOD1 in protecting the host from bacterial infection is supported 

by numerous in vitro and in vivo studies.  NOD1 induces an inflammatory response by 

activating NF-κB upon stimulation with Bacillus species
133

, Shigella flexneri
134

, 

enteroinvasive Escherichia coli 
135

, Listeria monocytogenes 
127

, and Campylobacter jejuni 

136
.  NOD1-deficient mice are more susceptible to infection with pathogenic cagPAI-positive 
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Helicobacter pylori, but not to infection with nonpathogenic cagPAI-negative Helicobacter 

137
.   This finding suggests that NOD1 may participate in distinguishing between commensal 

and noncommensal flora in the gut, where NOD1 is highly expressed in intestinal epithelial 

cells.  NOD1 can also drive antigen-specific T cell responses and antibody responses, but the 

mechanism involved remains unknown 
119

.   

NOD2 typically activates NF-κB and promotes an inflammatory response upon 

recognition of pathogens, some of which include Streptococcus pneumoniae
138

, 

Mycobacterium tuberculosis
139

, Staphylococcus aureus
140

, and Listeria monocytogenes 

(Lm)
117

.  Interestingly, NOD2 may also suppress inflammatory pathways under certain 

conditions.  NOD2 suppresses NF-κB activation when stimulated in concert with TLR2, an 

extracellular TLR that like NOD2, recognizes peptidoglycan.  Accordingly, IL-12 secretion 

is reduced, as is the ensuing TH1 response
118

.  Perhaps NOD2 cooperates with TLR2 to 

promote a TH2 response and enhanced clearance of extracellular bacteria.  Other groups, 

however, have found a synergism upon co-stimulation of NOD2 and TLRs 
141-143

.  Thus in 

vivo studies utilizing whole bacteria may provide a clearer view in characterizing the role of 

NOD2 in host defense. 

NOD2 is highly expressed in Paneth cells located in the intestinal crypts, thus its 

location is ideal for recognition of ingested pathogens 
144

.  NOD2-deficient mice have 

increased susceptibility to Lm, not upon intravenous or intraperitoneal infection, but only 

upon intragastric infection
117

.  These findings have direct relevance to human heath as 

Listeriosis is a foodborne illness caused by oral infection with Lm.  During Lm infection, 

NOD2-deficient mice fail to release antimicrobial peptides called cryptidins (α-defensins in 

humans)
117

.  Similarly, Crohn’s disease patients with NOD2 mutations are deficient in 
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intestinal defensin expression 
145

.  It is not fully understood whether or not decreased 

defensin expression contributes to the pathology of Crohn’s disease, or how mutations in 

NOD2 contribute to the pathology of Crohn’s disease.    

 

NLRX1 

 NLRX1 is a newly characterized NLR that suppresses anti-viral signaling.  

Intracellular viral RNA is sensed by RIG-like helicases (RLH) that associate with 

mitochondrial anti-viral signaling protein (MAVS) to activate IRF3 and NF-κB.  This results 

in the production of type 1 interferon and inflammatory cytokines that are essential for anti-

viral defenses, but when dysregulated can cause excess inflammation and tissue damage in 

the host 
146

.  

 NLRX1 was identified as a member of the NLR family in 2003 
15

, however, its 

physiologic role remained uncharacterized until 2008 
147

.  NLRX1 is ubiquitously expressed 

in human cells and cell lines and encodes an unclassified N-terminal domain, central 

nucleotide binding domain, and C-terminal leucine-rich repeats.  It contains a mitochondrial 

targeting sequence in the N-terminus that targets it to the mitochondrial outer membrane
147

.  

NLRX1 is the first NLR, with the exception of CIITA, that requires localization to a 

particular organelle.   

 NLRX1 performs its anti-viral function by associating with MAVS at the 

mitochondrial outer membrane and preventing its interaction with the viral RNA sensor 

retinoic acid inducible gene 1 (RIG-I).  Consequently, NLRX1 suppresses the release of 

interferon-β (IFNβ) and inhibits the activation of IRF3 and NF-κB in response to Sendai 

virus, Sindbis virus, and intracellular poly(I:C), a viral double-stranded RNA analog.  This 
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response is independent of the extracellular viral RNA sensor TLR3 and requires 

mitochondrial localization of NLRX1
147

.  When overexpressed, NLRX1 can cause a modest 

change in the level of reactive oxygen species
148

.  This too may serve to fine-tune antiviral 

responses.  Many questions remain regarding NLRX1 – most notably, the mechanism by 

which NLRX1 prevents MAVS association with RIG-I, and the in vivo role of NLRX1 in 

host defense against viral infection.     
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C.  NLRP12 / MONARCH-1 

1.  NLRP12 identification and expression 

NLRP12, formerly named RNO, PYPAF7, and Monarch-1, is a pyrin-containing 

NLR protein expressed in cells of myeloid lineage.  A partial 3’ portion of the gene encoding 

NLRP12 was first identified in the HL60 human leukemic cell line.  This gene was 

upregulated when these cells were stimulated with nitric oxide, thus it was first named rno – 

Regulated by Nitric Oxide 
149

.  The full-length gene product was subsequently cloned two 

groups:  Our group named this gene Monarch-1 
150

 and the other group named it PYPAF7 
151

.  

In 2008, the HUGO Gene Nomenclature Committee approved the designation NLRP12 for 

this gene
14

. 

NLRP12 encodes an intracellular protein with an N-terminal pyrin domain, a central 

nucleotide binding domain, and C-terminal leucine-rich repeats.  The full-length human 

cDNA has a 3189-bp open reading frame (accession no. AY116204) encoded by 10 exons.  

There are also four known splice forms of NLRP12 
150

, however it remains unknown if these 

splice forms are differentially expressed and/or serve different functions from the full-length 

product.  In humans, NLRP12 is expressed exclusively in cells of myeloid lineage – 

granulocytes including neutrophils and eosinophils, monocytes/macrophages, and immature 

dendritic cells 
149-151

.  NLRP12 expression is upregulated by nitric oxide, yet it is 

downregulated in response to pathogens, pathogen products, and inflammatory cytokines 

149,150,152
.  Downregulation of NLRP12 after TLR stimulation is achieved, at least in part, by 

binding of B lymphocyte-induced maturation
 
protein-1 (Blimp-1) to the NLRP12 promoter 

153
.   
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2.  NLRP12 as a negative regulator of inflammation 

The expression of NLRP12 is restricted to immune cells and its expression is 

downregulated in response to pathogens, pathogen products, and inflammatory cytokines, 

thus we and others predicted that NLRP12 functions in regulating inflammation and 

immunity.  Early studies, however, describe conflicting roles for NLRP12.  One study 

describes that NLRP12 co-localizes with ASC and activates NF-κB and caspase-1, leading to 

IL-1β secretion 
151

.  This is reminiscent of other pyrin-containing NLRs that regulate IL-1β 

processing by forming an inflammasome with ASC.  Another report describes that NLRP12 

can control expression of classical and non-classical MHC I genes 
150

.  Again, this is 

reminiscent of CIITA, an NLR that is essential for the expression of MHC II genes.  

However both studies relied upon overexpression in non-immune cells.  Thus they provide 

little information about the function of NLRP12 in cells that naturally express the gene 

product.  They do, however, imply a complex role for NLRP12.    

More recent studies utilizing the human THP-1 monocytic cell line have uncovered 

an important biological function for NLRP12 as a negative regulator of inflammatory 

signaling in human monocytes.  In these studies, endogenous NLRP12 expression was 

silenced in THP-1 cells using siRNA.  Compared to cells treated with a control siRNA, 

NLRP12-silenced cells displayed a dramatic enhancement of NF-κB activation.  Furthermore, 

NLRP12-silenced cells stimulated with TNFα, TLR ligands and whole bacteria produced 

greater amounts of NF-kB-regulated pro-inflammatory cytokines, such as IL-6, IL-8, IL-1β 

and TNFα 
152

.  These observations were some of the first to indicate that NLRP12 serves as a 

negative regulator of inflammation in human monocytes. 
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3.  Molecular mechanisms of NLRP12-mediated NF-κB suppression 

Biochemical studies in our lab have revealed that NLRP12 suppresses pro-

inflammatory cytokine and chemokine production downstream of TLRs by targeting multiple 

points in the NF-κB pathway 
152,154

.  Stimulation through TLRs leads to the recruitment of 

cytoplasmic adaptor proteins, such as MyD88, that then recruit the kinase IRAK1.  IRAK1 

becomes activated through autophosphorylation and accumulates in a hyperphosphorylated 

form, leading to downstream NF-κB activation 
155,156

.  Exogenous expression of NLRP12 

reduces IRAK1-induced activation of an NF-κB luciferase reporter plasmid, suggesting that 

NLRP12 may intersect the NF-κB pathway by affecting IRAK1 signaling.  Indeed, minutes 

after TLR stimulation, NLRP12 7associates with IRAK1 and prevents the accumulation of 

hyperphosphorylated IRAK1 
152

.  Current literature support that the loss of 

hyperphosphorylated IRAK1 would hinder downstream signaling leading to NF-κB 
157

.  As 

NLRP12 expression declines upon TLR stimulation but returns within 24 hours in THP-1 

monocytes (Arthur, J.C. unpublished data), this suggests a possible role for NLRP12 in the 

resolution of inflammation and may even play a role in the transition from innate to adaptive 

responses.  

In addition to suppressing classical NF-κB activation, we have found that NLRP12 

inhibits an alternative and tightly controlled pathway, the noncanonical NF-κB pathway.  

This pathway is activated downstream of TNFR superfamily members 
158,159

.  In antigen 

presenting cells, this may occur during the transition from innate to adaptive responses, such 

as downstream of CD40 after binding to CD40L expressed on T cells.  To understand the 

complexity of the canonical and noncanonical NF-κB pathways, a brief explanation is 

provided below.   
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4.  Canonical and noncanonical pathways of NF-κB activation 

NF-κB represents a family of dimeric transcription factors that mediates cellular 

responses during inflammatory conditions.  NF-κB subunits include RelA (also known as 

p65), RelB, c-Rel, NF-κB1 (p105/p50) and NF-κB2 (p100/p52) 
160

.  The latter two are 

expressed as large precursors that must be proteolytically cleaved to their corresponding 

smaller and active forms 
161,162

.   

NF-κB activation occurs through two distinct pathways, referred to as canonical and 

noncanonical (Figure 1.1).  The canonical pathway proceeds rapidly upon activation of pro-

inflammatory receptors, such as TLRs.  In this pathway, RelA/p50 heterodimers are 

sequestered in the cytoplasm in an inactive state by a family of inhibitors of NF-κB (IκB).  

Activation is mediated through a large IκB kinase (IKK) complex comprised of the 

regulatory subunit IKKγ/NEMO, and two catalytic subunits, IKKα and IKKβ.  This complex 

can be activated by a wide range of upstream kinases and serves to phosphorylate IκB, 

leading to its degradation.  Newly liberated RelA/p50 heterodimers then rapidly translocate 

to the nucleus to regulate the activation of early inflammatory genes.  One of these genes is 

NF-κB2/p100, whose gene product must be processed to its active form p52 through the 

noncanonical pathway 
163-165

. 

In contrast to the canonical pathway, the noncanonical NF-κB pathway displays 

slower kinetics and tighter regulation.  It is commonly activated downstream of TNF receptor 

superfamily members such as BAFF, LTβR and CD40 
158,159

.  While initial canonical NF-κB 

activation NF-κB1/p105 processing to p50 is constitutive, processing of NF-κB2/p100 to p52 

is inducible and relies upon the activity of NF-κB inducing kinase, NIK 
166,167

.  In this 

alternate pathway, NIK selectively activates IKKα, leading to phosphorylation and 



 25 

subsequent processing of p100 to its active form p52.  Nuclear translocation of RelB/p52 

dimers results in the activation of a different set of inflammatory genes that support the 

ongoing immune response 
168-170

.      

 

5.  NLRP12 targets NIK to control the noncanonical NF-κB pathway 

Detailed analysis of the canonical and noncanonical NF-κB pathways in THP-1 cells 

has revealed that while elevated expression of NLRP12 moderately suppresses the canonical 

NF-κB pathway, NLRP12 nearly abolishes activation of the noncanonical NF-κB pathway.  

In THP-1 cells expressing elevated levels of NLRP12 and stimulated with TLR agonist 

followed by CD40L, nuclear translocation of the canonical NF-κB subunits RelA and p50 

proceeds normally.  However, processing of NF-kB2/p100 to p52 and nuclear translocation 

of p52 is nearly absent in these cells.  To exert this effect, NLRP12 targets NIK, the sole 

kinase responsible for activation of the noncanonical pathway.  NLRP12 associates with NIK 

and induces its degradation via the proteasome, a major protein degradation pathway 
154

.  

Accordingly, in NLRP12-silenced cells, NIK and p52 levels are elevated (Lich, J.D., 

unpublished data).  This results in increased expression p52-regulated cytokines and 

chemokines including CXCR4, CXCL12 and CXCL13 
154

 (see Appendix 1).   

 

6.  Conclusions  

Detailed analyses of inflammatory signaling pathways both affected and unaffected 

by NLRP12 provide us with novel mechanism of regulation that is distinct from other NLR 

family members.  Thus, from this work, it is clear that NLRP12 controls the noncanonical 

NF-κB pathway by associating with and inducing proteasome-mediated degradation of NIK 
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(Figure 1.1).  Consequently, NF-kB2/p100 to p52 processing is abolished, and p52-regulated 

genes are suppressed until NLRP12 expression fades.  The noncanonical NF-κB pathway is 

triggered later than the canonical NF-κB pathway, and often in response to a second signal 

through TNF receptor superfamily members.  In this manner, the noncanonical pathway 

drives later events in innate immunity.  In addition, in antigen presenting cells like 

monocytes/macrophages and dendritic cells, activation of noncanonical NF-κB may come 

from the interaction with cell-surface molecules on T cells, indicating that this alternative 

pathway is also intimately involved in the transition from innate to adaptive immunity.   

Based on these statements, two key hypotheses are raised.  

1).  In order for the noncanonical pathway to operate, NLRP12 must be tightly 

regulated in a manner that allows NIK to function.  We hypothesize that NLRP12 

activity is controlled at the level of protein stability. 

2).  Because NLRP12 is expressed in antigen presenting cells, we hypothesize that 

NLRP12 affects adaptive immune responses in vivo. 

In this dissertation we provide support for these two hypotheses.  First we provide a 

mechanism by which the stability of the NLRP12 protein is regulated in human monocytes.  

This is through an evolutionarily conserved mechanism involving the chaperone Hsp90.  

Second, we reveal that NLRP12 affects immunity in vivo by controlling dendritic cell 

migration.  This is due to the ability of NLRP12 to modulate intracellular signaling pathways, 

including noncanonical NF-kB, that are integral to dendritic cell function. 
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Table 1.1.   Human NLR family members 

NLR name Alternative names      Protein accession  

CIITA  NLRA, MHC2TA, C2TA     NP_000237 

NAIP  NLRB1, BIRC1, CLR5.1     NP_004527 

NOD1  NLRC1, CARD4, CLR7.1     NP_006083 

NOD2  NLRC2, CARD15, CD, BLAU, IBD1, PSORAS1, CLR16.3 NP_071445 

NLRC3  NOD3, CLR16.2      NP_849172 

NLRC4  IPAF, CARD12, CLAN, CLR2.1    NP_067032 

NLRC5  NOD27, CLR16.1      NP_115582 

NLRP1  NALP1, DEFCAP, CARD7, CLR17.1    NP_127497 

NLRP2  NALP2, PYPAF2, NBS1, PAN1, CLR19.9   NP_060322 

NLRP3  CIAS1, PYPAF1, NALP3, CLR1.1, Cryopyrin   NP_004886 

NLRP4  NALP4, PYPAF4, PAN2, RNH2, CLR19.5   NP_604393 

NLRP5  NALP5, PYPAF8, MATER, PAN11, CLR19.8   NP_703148 

NLRP6  NALP6, PYPAF5, PAN3, CLR11.4    NP_612202 

NLRP7  NALP7, PYPAF3, NOD12, PAN7, CLR19.4   NP_996611 

NLRP8  NALP8, PAN4, NOD16, CLR19.2    NP_789781 

NLRP9  NALP9, NOD6, PAN12, CLR19.1    NP_789790 

NLRP10 NALP10, PAN5, NOD8, PYNOD, CLR11.1   NP_789791 

NLRP11 NALP11, PYPAF6, NOD17, PAN10, CLR19.6   NP_659444 

NLRP12 NALP12, PYPAF7, RNO2, PAN6, CLR19.3, Monarch1  NP_653288 

NLRP13 NALP13, NOD14, PAN13, CLR19.7    NP_789780 

NLRP14 NALP14, NOD5, PAN8, CLR11.2    NP_789792 

NLRX1  NOD9, CLR11.3      NP_078894 
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Figure 1.1.  NLRP12 suppresses noncanonical NF-κB activation 
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CHAPTER 2: HSP90 ASSOCIATES WITH MONARCH-1/NLRP12 AND 

REGULATES ITS ABILITY TO PROMOTE DEGRADATION OF NF-κκκκB 

INDUCING KINASE 
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regulates its ability to promote degradation of NF-κB inducing kinase.   
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A. ABSTRACT 

Monarch-1/NLRP12, is expressed in myeloid cells and functions as a negative 

regulator of inflammation by inducing proteasome mediated degradation of NF-κB inducing 

kinase, NIK.  NLRP12 is a member of the CATERPILLER (CLR) gene family, also known 

as the Nucleotide Binding Domain-Leucine Rich Repeat gene family (NLR).  This family 

shares strong structural homology to major immune regulators expressed in lower organisms, 

including plants.  In plants, these disease resistance (R) proteins sense pathogenic insult and 

initiate a protective response to limit pathogen growth.  To perform this role, many R 

proteins require the highly conserved chaperone molecule, heat shock protein 90 (Hsp90).  

Using a 2-D gel/mass spectrometry system, we detected the association of the NLR protein 

NLRP12 with heat shock proteins.  Further analysis indicates that analogous to plant R 

proteins, Hsp90 is required for NLRP12 activity.  In human monocytes, NLRP12 associates 

with Hsp90, and these complexes are sensitive to treatment with specific Hsp90 inhibitors.  

Disruption of these complexes results in rapid degradation of NLRP12 via the proteasome 

and prevents NLRP12-induced proteolysis of NIK.   This demonstrates that Hsp90 is a 

critical regulator of NLRP12 anti-inflammatory activity.  
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B. INTRODUCTION 

Inflammation is a dynamic protective response that must be controlled at both the 

initiation and resolution phase as improper regulation underlies many human diseases.  

Nucleotide Binding Domain- Leucine Rich Repeat (NLR) proteins (previously known as 

CATERPILLER, NOD-LRR or NACHT-LRR) play a critical role in this regulation 

19,23,67,101
.  The importance of NLR proteins in controlling inflammation is highlighted by 

strong linkage of the NLR proteins CIITA, NOD2, and NALP3 to human immunodeficiency 

and autoinflammatory diseases 
171

.  Yet despite the critical role of NLR proteins in human 

health, relatively little is known regarding their molecular regulation.     

NLR proteins share a strong structural and functional homology to a class of disease 

resistance (R) proteins that comprise a major immune response system in the plant kingdom.  

These plant proteins function as molecular sensors that mediate the containment of a broad 

range of pathogens including bacteria, viruses, fungi, parasites, nematodes, and insects 
16,172

.  

Recent evidence suggests that a critical component in R protein mediated defense responses 

is Hsp90.  This evolutionarily conserved molecular chaperone associates with a subset of 

proteins, deemed “client proteins,” to promote their maturation and stability  

The Hsp90 chaperone cycle is a multi-step process where client proteins first form an 

early complex with Hsp70.  An intermediate complex then forms with the incorporation of 

Hsp90.  Within this intermediate complex, the client protein is transferred from Hsp70 to 

Hsp90.  Finally, Hsp70 dissociates from the complex and the client protein remains bound to 

Hsp90 in an activation-competent state (reviewed in 
173

).  Pharmacologic inhibition of Hsp90 

prevents the transfer of client proteins to Hsp90 and stalls this chaperone cycle at the 

intermediate stage.  In the absence of Hsp90 binding, the client protein remains bound to 
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Hsp70 and is degraded by the proteasome 
174-176

.  Notably, the majority of known Hsp90 

client proteins are signaling molecules such as kinases and transcription factors (reviewed in 

177
).    

NLRP12 is an understudied NLR protein with a unique function.  Previously, we 

demonstrated that NLRP12 serves as a novel attenuating factor of inflammation by 

destabilizing NIK, which results in suppression of noncanonical NF-κB activation 
178

.  In the 

present study, we demonstrate that this activity is regulated by Hsp90.  We find that NLRP12 

associates with Hsp90 in a stable, functionally competent state.  In the presence of Hsp90 

inhibitors, this association is lost resulting in degradation of NLRP12 via the proteasome.  

This rescues NIK from NLRP12-induced proteolysis, demonstrating that Hsp90 performs an 

integral role in regulating NLRP12 activity.   
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C. MATERIALS AND METHODS 

Cell lines:  HEK293T cells (GenHunter) were maintained in DMEM (Gibco) 

supplemented with 10% fetal calf serum (FCS) and 100mg/ml penicillin and 100mg/ml 

streptomycin.  Undifferentiated THP-1 cells were maintained in RPMI (Gibco) supplemented 

with 10% FCS, 1mM sodium pyruvate, 0.1mM nonessential amino acids, 100mg/ml 

penicillin and 100mg/ml streptomycin.  THP-Ha-NLRP12 and THP-EV cells have been 

previously described 
178

.   

Primary cell isolation:  Peripheral blood mononuclear cells (PBMC) were isolated 

from whole blood (American Red Cross) using a ficol hypaque gradient (ICN-Cappel).  To 

enrich human primary adherent monocytes, PBMC were plated in serum-free RPMI (Gibco) 

and allowed to adhere for 2 hours at 37°C; at this time non-adherent cells were removed and 

adherent cells were washed with sterile PBS in triplicate.  Cells were cultured in RPMI 

supplemented as described above.   

Antibodies and Reagents: Anti-Hsp70 (W27), anti-Hsc70 (B-6), anti-Hsp90 (H-114), 

anti-TAK1 (C-9), anti-NIK (H-248) and anti-actin-HRP (C-11) antibodies were obtained 

from Santa Cruz.  Anti-Ha antibodies (12CA4 and 13F10) were obtained from Roche 

Applied Science.  Purified anti-mouse I-A
d
 (control Ig) was obtained from Pharmingen.  

Rabbit polyclonal anti-CagA (b-300, control Ig) was obtained from Santa Cruz.  Normal 

rabbit serum was obtained from Vector Laboratories.  Rabbit polyclonal anti-NLRP12 and 

mouse monoclonal anti-NLRP12 have been described previously 
179

.  Geldanamycin, 

Radicicol and MG132 were obtained from Calbiochem.  TLR2 agonist Pam3Cys4 was 

obtained from Invivogen.     
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Two-dimensional gel electrophoresis and mass spectrometry:  HEK293T cells seeded 

in 10 cm plates were transfected with 5 µg Flag-tagged NLRP12 or pcDNA control vector.  

Twenty-four hours later the cells were lysed in 0.5% CHAPS and protein complexes 

immunoprecipitated for 18 hours with M2-agarose.  Protein complexes were dissociated in 

an 8M urea solution and individual proteins separated by two-dimensional gel 

electrophoresis.  Briefly, protein eluate was loaded on
 
18-cm immobilized pH gradient strips 

(pH 4–7) and separated by pI for a total of 58,000 V-h. The strips were transferred to SDS-

PAGE gels (10%; 19 x 18 cm) and the proteins were then separated by molecular weight.  

Silver stained gels were analyzed and spots unique to precipitates derived from NLRP12 

transfected cells were excised from the gel and analyzed by MALDI-MS as described 

previously 
180

.  Protein identities were established using the MASOCT search engine (Matrix 

Sciences) with the following settings: peptide mass tolerance of 0.1 Da, zero missed cleavage 

sites, one fixed modification of carboxymethyl cysteine, one variable modification of 

methionine oxidation, and no restrictions on protein molecular weight or pI.  The protein 

identities reported received a Mowse score greater than the significance threshold (p<0.05).      

Immunoprecipitations and Western Blot analysis:  HEK293T cells seeded in 6-well 

plates were transfected with 1µg Ha-tagged NLRP12 plasmid described previously using 

Fugene 6 (Roche).  Twenty hours later the cells were lysed in 1% TX-100, 150mM NaCl, 

50mM Tris pH 8 supplemented with protease inhibitor cocktail (Roche).  Samples were 

immunoprecipitated with 2µg of the indicated antibody and rotated end-over-end for 18 h.  

Antibody complexes were captured by the addition of protein A/G agarose beads (Pierce) for 

an additional 2 h.  The beads were washed three times in lysis buffer, eluted into boiling 

sample reducing buffer and separated by SDS-PAGE.  Proteins were transferred to 
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nitrocellulose (BioRad), probed with the indicated primary antibody and visualized by 

chemiluminescence (Pierce).    

To examine stably expressed proteins in THP-1 cells, THP-Ha-NLRP12 and THP-EV 

cells were seeded at a density of 8x10
6
 per 25cm

2
 tissue culture flask.  To examine 

endogenous NLRP12 protein, THP-1 cells were seeded at a density of 2x10
7
 in 75cm

2
 tissue 

culture flasks; primary adherent monocytes were seeded at 1x10
7
 in 25cm

2
 flasks.  Samples 

were immunoprecipitated with 2µg of the indicated antibody or 10µl NLRP12 rabbit anti-

sera.  Cell lysis and Western blot analysis were performed as described above.     
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D. RESULTS 

NLRP12 interacting proteins include Hsp70.    

NLR proteins assemble into large, multi-protein complexes that serve as functional 

platforms to promote downstream activities such as transcription regulation and IL-1β 

processing 
101

.  To begin to identify the protein complexes formed by NLRP12, HEK293T 

cells were transfected with Flag-NLRP12 or a pcDNA control vector and cellular lysates 

were immunoprecipitated with anti-Flag antibodies.  Captured protein complexes were 

resolved by two-dimensional gel electrophoresis.  The gels were stained and protein spots 

unique to NLRP12 transfected cells were identified (Figure 2.1A).  These spots were excised 

and processed for MALDI-MS (Table 2.1).  Protein identities were determined by comparing 

the resulting peptide mass fingerprints to the MASCOT search engine.  Among the proteins 

that achieved high confidence scores were members of the Hsp70 family.   

Mammalian Hsc/Hsp70 binds to a wide range of newly synthesized proteins in 

unstressed cells 
181

.  To confirm the association of NLRP12 with Hsp70, we performed co-

immunoprecipitation experiments.  HEK293T cells were transfected with Ha-NLRP12 or 

pcDNA control vector, and endogenous Hsp70 complexes were immunoprecipitated from 

cellular lysates.  Western blots were then probed with anti-Ha to detect NLRP12 (Figure 

2.1B, lanes 1-2).  In agreement with the results obtained from two-dimensional gels (Figure 

2.1A), NLRP12 co-precipitated with endogenous Hsp70.  Identical results were obtained 

from THP-1 monocytes stably transfected with Ha-tagged NLRP12 (THP-Ha-NLRP12) 

(Figure 2.1B, lanes 3-4).  As NLRP12 is expressed exclusively in cells of myeloid lineage 

150,151
, this is a more physiologically relevant model system.  NLRP12 was not detected in 

control samples that were immunoprecipitated with an isotype matched antibody (Figure 
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2.1B, lane 5).   

 

NLRP12 associates with endogenous Hsp90.   

The molecular chaperone Hsp70 is an essential component of the Hsp90 multi-

chaperone complex.  This complex aids in the maturation and stabilization of a select set of 

client proteins, predominantely signaling molecules 
177

.  We identified Hsp70 as a NLRP12-

interacting protein, and combined with the important role of Hsp90 in plant R protein 

function, we hypothesized that NLRP12 also associates with Hsp90.  To test this hypothesis, 

we transfected HEK293T cells with Ha-NLRP12 or pcDNA control vector and endogenous 

Hsp90 containing complexes were immunoprecipitated.  Western blots were then probed 

with anti-Ha to detect NLRP12.  NLRP12 co-precipitated with endogenous Hsp90 but not in 

control samples employing an isotype matched antibody (Figure 2.2).  Importantly, this 

association was also found in THP-Ha-NLRP12 monocytic cells, demonstrating that 

NLRP12 forms molecular complexes with Hsp90 in a more relevant model system (Figure 

2.2, lanes 3-4).    

 

Hsp90 inhibition alters the association of NLRP12 with Hsp70 and Hsp90.   

Pharmacologic inhibition of Hsp90 prevents the transfer of client proteins to Hsp90.  

This then leads to the accumulative association of client proteins within Hsp70 complexes 

173
.  The observation that NLRP12 associated with both Hsp70 and Hsp90 led us to 

hypothesize that NLRP12 serves as an Hsp90 client protein.  If this is the case, treatment of 

cells with the ansamycin antibiotic geldanamycin (GA), a specific Hsp90 inhibitor, would 

result in reduced association of NLRP12 with Hsp90 and increased association with Hsp70.  
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To test this, we treated THP-Ha-NLRP12 cells with GA and then immunoprecipitated 

endogenous Hsp70 or Hsp90 complexes at multiple time points over a 6 h period (Figure 

2.3A).  Western blots were probed with anti-Ha to detect co-precipitated NLRP12.  After 2 h 

of GA treatment, NLRP12 was barely detectable in Hsp90-containing complexes.  Notably, 

NLRP12 levels decreased with GA treatment, suggesting that the stability of NLRP12 is 

dependent upon Hsp90 activity.  However, since NLRP12 levels were comparable at 1 h and 

6 h post-GA treatment (lanes 2 and 5) the loss of NLRP12/Hsp90 complex formation was 

due to Hsp90 inhibition and not due to decreased levels of NLRP12 protein.   

In sharp contrast to its association with Hsp90, the association of NLRP12 with 

Hsp70 increased after 2 h of GA treatment and strengthened throughout the 6 h time course 

(Figure 2.3B).  This agrees with other studies where GA treatment causes an increase in 

association of the Hsp90 client protein with Hsp70 
182-184

.  Also in line with previous reports 

185-188
, a minimal increase in Hsp70 levels was detected upon inhibition of Hsp90.  These 

results indicate that Hsp90 inhibition leads to the accumulation of NLRP12 within Hsp70 

containing molecular complexes and supports our hypothesis that NLRP12 is processed 

through the Hsp90 chaperone cycle. 

In addition to Hsp70, we also analyzed the association between NLRP12 and Hsc70.  

In contrast to Hsp70, which is induced upon cell stress, Hsc70 is constitutively expressed and 

performs multiple functions distinct from Hsp70 
189

.  Also in contrast to Hsp70, the 

association between NLRP12 and Hsc70 decreased upon treatment of cells with GA (Figure 

2.3C).  Thus, the pattern of association was similar to that seen with Hsp90.  These results 

suggest different roles for Hsp70 and Hsc70 in NLRP12 function and demonstrate that the 
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association between NLRP12 and Hsc70 is dependent upon Hsp90 activity.  Taken together, 

these results demonstrate that NLRP12 is a substrate of the Hsp90 multi-chaperone complex.   

 

Endogenous NLRP12 stability in THP-1 cells and primary monocytes is dependent 

upon Hsp90 activity. 

In addition to altering the dynamic association of client proteins with Hsp70 and 

Hsp90, inhibition of Hsp90 also results in degradation of the client protein 
173

.  Consistently, 

Western blot analysis of cellular lysates indicated that NLRP12 levels decreased upon Hsp90 

inhibition.  In fact, in THP-Ha-NLRP12 cells, NLRP12 protein levels were dramatically 

reduced after only 1 h of treatment with GA (Figure 2.3).  This was also observed upon 

treatment of THP-Ha-NLRP12 cells with Radicicol, an Hsp90 inhibitor that is structurally 

dissimilar and chemically unrelated to GA (Figure 2.4A) 
190

. 

To ensure that the effect of Hsp90 inhibition on NLRP12 levels was not due to 

overexpression of a tagged protein, we next analyzed endogenous NLRP12 levels in wild 

type THP-1 monocytes.  In agreement with the results obtained with tagged NLRP12, 

endogenous NLRP12 protein levels were significantly reduced after 1 h of treatment with 

GA (Figure 2.4B), demonstrating that NLRP12 stability is regulated by Hsp90. 

Next we examined endogenous NLRP12 levels in the presence of GA in primary 

human monocytes.  Endogenous NLRP12 is expressed at very low levels in monocytes 
151

.  

In these experiments, NLRP12 was first immunoprecipitated with a NLRP12 specific rabbit 

polyclonal antibody and then Western blots were probed with a NLRP12 specific mouse 

monoclonal antibody (Figure 2.4C).  In agreement with the results obtained from THP-1 

cells, NLRP12 levels declined after 1 h of GA treatment and were undetectable following 2.5 
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h of treatment.  Control samples using normal rabbit serum in the immunoprecipitation 

confirmed the specificity of the NLRP12 band.  Together these data demonstrate that in 

human monocytes, NLRP12 stability is dependent upon Hsp90 activity.   

 

Hsp90 inhibition results in proteasome-mediated degradation of NLRP12.   

It is generally believed that Hsp90 inhibition leads to proteasome mediated 

degradation of Hsp90 client proteins 
174-176

.  To determine if the reduction of NLRP12 

protein levels upon GA treatment was due to proteasome mediated degradation, we treated 

THP-Ha-NLRP12 cells with GA in the presence or absence of the proteasome inhibitor, 

MG132.  In agreement with the results presented above, NLRP12 protein levels declined 

after 1 h of treatment with GA.  In contrast, however, NLRP12 protein levels remained stable 

in cells that were pre-treated with proteasome inhibitor (Figure 2.5).  No change was 

observed in the cellular levels of TAK1, demonstrating that these treatments were not 

globally affecting signaling molecules.  In addition, no change was observed in cellular 

levels of Hsp90 or actin under these treatment conditions.  Together, these results 

demonstrate that Hsp90 controls NLRP12 stability and upon Hsp90 inhibition, NLRP12 is 

degraded via the proteasome. 

 

Hsp90 regulates NLRP12-induced NIK degradation.  

Recently, we demonstrated that NLRP12 suppresses the production of pro-

inflammatory cytokines and chemokines 
178,179

.  One mechanism by which NLRP12 performs 

this function is by associating with and destabilizing NIK 
178

.  NIK is degraded when co-

expressed with NLRP12, thus providing a measurable function of NLRP12.  To examine the 
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role of Hsp90 in NLRP12-induced NIK degradation, NIK and NLRP12 were co-expressed in 

HEK293T cells in the presence or absence of GA.  NIK levels were then monitored by 

Western blot analysis.  In cells expressing NIK alone, inhibition of Hsp90 caused a slight 

reduction in NIK levels (Figure 2.6A, lane 2).  This agrees with an earlier report indicating 

that NIK is an Hsp90 client protein and NIK levels are reduced upon Hsp90 inhibition 
191

.  In 

agreement with our previous report, co-expression of NLRP12 and NIK resulted in the near 

ablation of NIK protein (Figure 2.6A, lane 3).  However, GA treatment restored NIK levels 

to those observed in cells treated with GA in the absence of NLRP12 (Figure 2.6A, compare 

lanes 2 and 4), thus demonstrating that Hsp90 activity is required for NLRP12-induced NIK 

degradation.   

NLRP12 and NIK associate to form molecular complexes 
178

.  Therefore, we next 

sought to determine if the inability to induce NIK degradation in the presence of GA was due 

to a loss of association.  NLRP12 and NIK were co-expressed in HEK293T cells and co-

immunoprecipitation experiments were performed.  Although NLRP12 and NIK protein 

levels were both reduced by an incubation with GA (see lysate controls, row 2 and 3), there 

was sufficient residual protein expression that permitted the examination of their interaction 

(Figure 2.6B), in the absence (lane 2) or presence (lane 3) of GA.  The cells were treated with 

GA for 6 h, NIK complexes were immunoprecipitated and Western blots were probed with 

anti-Ha to detect associated NLRP12.  Interestingly, the association of NLRP12 with NIK 

was not affected by Hsp90 inhibition, suggesting that this chaperone is not required for 

NLRP12 to form molecular complexes with NIK.  NLRP12-induced NIK degradation, 

however, was prevented upon Hsp90 inhibition (Figure 2.6A), thus demonstrating that Hsp90 

is required for the functional activity of NLRP12.    
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E. DISCUSSION 

NLR proteins are rapidly emerging as important mediators of innate and adaptive 

immune signaling.  Yet, despite recent reports describing the physiologic role of NOD2, 

NALP3, and IPAF in the response to numerous ligands, relatively little is known concerning 

the molecular events that regulate these proteins.   Recently, we demonstrated that the NLR 

protein, NLRP12, functions as a negative regulator of NF-κB activation through its 

association with NIK 
178

.  In this report we show NLRP12 requires Hsp90 for both its 

stabilization as well as its negative regulatory activity. 

Hsp90 is a highly conserved chaperone molecule that plays a critical role in the 

stability and function of many signaling proteins.  These client proteins generally follow a 

pathway where upon translation they associate with Hsp70 to achieve proper folding 

conformation.  The client protein is then transferred to Hsp90 where it is held in a 

functionally active state.  Upon the addition of Hsp90 inhibitors, the client protein no longer 

associates with Hsp90, but instead remains in a complex with Hsp70 and undergoes 

proteasome-mediated degradation 
177

.  In this study, we show that NLRP12 follows the same 

mechanism as reported Hsp90 client proteins.  We found that upon Hsp90 inhibition with 

GA, NLRP12 proteins dissociated from Hsp90 and, simultaneously, accumulated within 

Hsp70 complexes.  As a result, NLRP12 protein levels rapidly decreased due to degradation 

via the proteasome.   

 These results are analogous to those reported for NLR structural homologs found in 

the plant kingdom.  In Arabidopsis, inhibition of Hsp90 reduces steady-state levels of the R 

proteins RPS2 and RPM1 
192

.  Consequently, the pathogen-induced defensive response is 

attenuated and disease resistance conferred by these proteins is impaired 
192-194

.  Similarly, in 
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Nicotiana benthamiana, virus-induced gene silencing of Hsp90 results in the loss of 

resistance mediated by R proteins PRF (against P. syringae), RX (against potato virus X), 

and N (against tobacco mosaic virus) 
195,196

.  Thus, Hsp90 is critical for disease resistance in 

plants as this chaperone regulates both the stability and function of multiple R proteins.   

Similar to these R proteins, in this report we demonstrate that, in addition to 

regulating NLRP12 stability, Hsp90 also controls NLRP12 function.  Although NLRP12 still 

bound NIK, it no longer induced NIK degradation in the presence of an Hsp90 inhibitor.  

Thus, while Hsp90 is required for the negative regulatory function of NLRP12, it is not 

required for NLRP12 to form molecular complexes with NIK.  A similar observation has 

been made for the Hsp90 client protein, Raf.  In this report, inhibition of Hsp90 reduced 

cytoplasmic Raf levels but did not prevent Raf from binding downstream signaling proteins 

197
.  These results suggest that Hsp90 activity is required for the processing steps that 

function downstream of NLRP12-NIK complex formation to promote degradation of the 

kinase.  Future studies will elucidate if Hsp90 regulates the association if NLRP12-NIK 

complexes with ubiquitin conjugating enzymes and/or the proteasome degradation complex.    

In addition to our findings regarding NLRP12, two recent reports have demonstrated 

a role for Hsp90 in the regulation of other NLR family members.  During the review of this 

manuscript, Hsp90 was shown to be critical for the pro-inflammatory activity of NOD1, 

NOD2, IPAF and NALP3 
198

.  Furthermore, inhibition of Hsp90 resulted in proteasome 

mediated degradation of NOD1 and NALP3 
198,199

, demonstrating that similar to NLRP12, 

Hsp90 also serves to stabilize these NLR proteins.  Together with our results, these findings 

suggest that a role for Hsp90 in regulating NLR stability and function represents a common 

feature of this family.   
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 In summary, in this report we utilized an unbiased proteomic approach to show that 

NLRP12 associates with Hsp70, and a further investigation shows that it also associates with 

Hsp90.  These two heat shock proteins regulate protein stability, and Hsp90 in particular is 

required for the stability of numerous inflammatory signaling molecules 
177,191

.  The effect of 

Hsp90 on NLRP12 was studied using specific Hsp90 inhibitors, and was observed not only 

in experiments investigating NLRP12 protein derived from transfected expression plasmids, 

but also with endogenous NLRP12 protein in both a monocytic cell line and primary human 

monocytes.  Our results indicate that Hsp90 protects NLRP12 from proteasome-mediated 

degradation, and further regulates the function of NLRP12.  These findings suggest an 

evolutionary conserved regulation of mammalian NLR proteins by Hsp90 that is strikingly 

similar to the regulation of plant R proteins. 
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Table 2.1  Summary of Hsp70 proteins identified by MALDI-TOF MS 

Spot 

Number 
Accession Protein Identity 

Matched/ 

Total Peptides 
% Coverage 

5 AAA52697 Hsp70 7/16 12 

7 AAD21816 Hsp70.1 4/9 7 

8 BAD96505 Hsp70 protein 8 isoform 1 variant 7/20 10 

10 NP_006588 Hsp70 protein 8 isoform 1 11/16 20 
1 
Protein spots shown above achieved a Mowse score above the significance threshold (p<0.05) 
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Figure 2.1 

 

 

 
 

 

Figure 2.1:  NLRP12 interacting proteins include Hsp70.  (A) HEK293T cells were 

transfected with empty vector or Flag-NLRP12.  Cell lysates were immunoprecipitated with 

anti-Flag antibodies and protein complexes were fractionated by 2D gel electrophoresis.  

Individual proteins were visualized by silver stain and those unique to NLRP12 transfected 

cells were excised and analyzed by MALDI mass spectrometry.  Protein identities are 

described in Table 2.1. (B) HEK293T cells transfected with an empty control vector (lane 1) 

or Ha-NLRP12 (lane 2), or THP-1 monocytic cells stably transfected with an empty control 

vector (lane 3) or Ha-NLRP12 (lane 4) were lysed and protein complexes were 

immunoprecipitated with an anti-Hsp70 antibody.  Following fractionation by SDS-PAGE, 

Western blots were probed with an anti-Ha antibody to detect NLRP12.  Lysate controls 

show the presence of Hsp70 in all lanes and Ha-NLRP12 in the expected lanes (2 and 4).  In 

lane 5, lysates from THP-1 cells stably expressing Ha-NLRP12 were immunoprecipitated 

with an isotype control antibody, mouse anti-I-A
d
, and Western blots do not show non-

specific binding of NLRP12.  These data are representative of at least three independent 

experiments. 



 47 

Figure 2.2 

 

 

 
 

 

Figure 2.2: NLRP12 interacts with Hsp90.  HEK293T cells transfected with an empty 

control vector (lane 1) or Ha-NLRP12 (lane 2), or THP-1 cells stably transfected with an 

empty vector (lane 3) or Ha-NLRP12 (lane 4) were lysed and protein complexes were 

immunoprecipitated with an anti-Hsp90 antibody.  Following fractionation by SDS-PAGE, 

Western blots were probed with an anti-Ha antibody to detect NLRP12.  Lysate controls 

show the presence of Hsp90 in all lanes and Ha-NLRP12 in the expected lanes (2 and 4).  In 

lane 5, lysates from THP-1 cells stably expressing Ha-NLRP12 were immunoprecipitated 

with an isotype control antibody, rabbit anti-CagA, and Western blots do not show any non-

specific binding of NLRP12.  These data are representative of at least three independent 

experiments. 
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Figure 2.3 

 

 

 
 

 

Figure 2.3: Hsp90 inhibition alters the association of NLRP12 and heat shock proteins.  

THP-Ha-NLRP12 monocytes were treated over the course of six hours with 0.2µM of the 

Hsp90 inhibitor, geldanamycin (GA).  Lysates were immunoprecipitated with (A) anti-Hsp90 

antibodies, (B) anti-Hsp70 antibodies, and (C) anti-Hsc70 antibodies, and fractionated by 

SDS-PAGE.  Western blots were probed with an anti-Ha antibody to detect NLRP12.  

Immunoblots were performed with the indicated antibodies to monitor protein expression.  

All panels are representative of at least three independent experiments. 
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Figure 2.4 

 

  

 
 

 

Figure 2.4:  Endogenous NLRP12 stability is dependent on Hsp90 activity. (A) THP-Ha-

NLRP12 monocytes were treated with 0.1µM of the Hsp90 inhibitor, Radicicol, for 1 hour.  

Lysates were fractionated by SDS-PAGE.  Western blots were probed with an anti-Ha 

antibody to detect NLRP12.  Control immunoblots were probed with an anti-Hsp90 antibody 

to ensure equal loading.  (B) Human THP-1 monocytes were treated over the course of six 

hours with 0.2µM GA and lysates were fractionated by SDS-PAGE.  Western blots were 

probed with a mouse anti-NLRP12 antibody to detect endogenous NLRP12.  Control 

immunoblots were probed with an anti-actin antibody to ensure equal loading.  (C) Human 

primary adherent monocytes were enriched from PBMC by adherence and treated with 

0.2µM GA for the indicated times.  To detect endogenous NLRP12, lysates were 

immunoprecipitated with a rabbit anti-NLRP12 antibody, fractionated by SDS-PAGE, and 

Western blots were probed with a mouse anti-NLRP12 antibody.  Control 

immunoprecipitations were performed with normal rabbit serum and Western blots were 

probed with a mouse anti-NLRP12 antibody.  Control immunoblots were probed with an 

anti-actin antibody to ensure equal loading.  Each panel is representative of at least three 

independent experiments. 
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Figure 2.5 

 

  
 

 

Fig. 2.5:  Inhibition of Hsp90 induces proteasome-mediated degradation of NLRP12.  

THP-Ha-NLRP12 human monocytes were treated with 0.2µM GA for the indicated times in 

the absence (lanes 1-3) or presence (lanes 4-6) of the proteasome inhibitor, MG-132 (10µM).  

Lysates were fractionated by SDS-PAGE and immunoblots were probed with an anti-Ha 

antibody to detect NLRP12.  Lysate controls show protein levels of Hsp90, Hsp70, TAK1, 

and Actin.  These data are representative of at least three independent experiments. 

 



 51 

Figure 2.6  

 

  

 
 

 

Fig. 2.6:  Hsp90 is required for NLRP12-induced NIK degradation.  (A) HEK293T cells 

were transfected with NIK and in the indicated lanes, Ha-NLRP12.  Cells were treated for six 

hours with 0.1µM GA.  Lysates were fractionated by SDS-PAGE and Western blots were 

probed with an anti-NIK antibody.  NLRP12 was detected in the expected lanes using an 

anti-Ha antibody; “n.s.” denotes non-specific band.  Control immunoblots were probed with 

an anti-actin antibody.  (B) HEK293T cells were transfected with NIK and Ha-NLRP12 and 

treated the following day for six hours with 0.2µM GA, where indicated.  Protein complexes 

were immunoprecipitated from cellular lysates with an anti-NIK antibody (lanes 1-2), 

fractionated by SDS-PAGE, and Western blots were probed with an anti-Ha antibody to 

detect NLRP12 in NIK-containing complexes.  In lane 3, lysates were immunoprecipitated 

with an isotype control antibody, rabbit anti-CagA and Western blots do not show any non-

specific binding of NLRP12.  NLRP12 was detected in cellular lysates using anti-Ha, NIK 

was detected using an anti-NIK antibody, and control immunoblots were probed with an anti-

actin antibody.  Each panel is representative of at least three independent experiments. 



 

 

 

 

 

CHAPTER 3:  NLRP12 CONTROLS ADAPTIVE IMMUNE RESPONSES BY 

REGULATING DENDRITIC CELL MIGRATION 
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A. ABSTRACT 

Long-term immuno-reactivity is a salient feature of protective immunity as well as 

destructive autoimmune and hyperinflammatory responses.  The establishment of this 

reactivity relies largely on the ability of dendritic cells (DCs) to orchestrate innate and 

adaptive immune pathways 
200,201

.  Under homeostatic conditions, these cells survey 

peripheral tissues, collect local antigens, and then migrate to secondary lymphoid organs.  

Under inflammatory conditions the migration to draining lymph nodes intensifies and these 

cells become highly potent activators of antigen specific T cells 
200, 202

.  In this study, we 

described an unexpected role for a nucleotide-binding domain leucine rich repeat (NLR) 

protein, NLRP12 (formerly Monarch-1
154

), an NLR linked to atopic dermatitis
58

 and 

hereditary periodic fever
57

.  We show that Nlrp12 is expressed in DCs and is required for the 

adaptive immune response to hapten-induced contact hypersensitivity, a model of atopic 

dermatitis, and experimental autoimmune encephalitis (EAE), a model of multiple sclerosis.   

The inability of Nlrp12
-/-

 cells to induce adaptive immunity is not due to failure in antigen 

processing and presentation nor to defects in cytokine production including IL-1β.  Rather, 

Nlrp12
-/-

 DCs display a significantly reduced capacity to migrate to draining lymph nodes, 

associated with a perturbation of intracellular signaling pathways that govern DC activation 

and migration.   These findings reveal a novel role for NLRP12 in regulating the ability of 

DCs to influence adaptive immunity.   
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B.  INTRODUCTION 

NLRs constitute a large gene family of 20-30 members that are preserved from plants 

to humans.  NLR proteins have rapidly emerged as important components of inflammation 

and immunity.  To date, at least five NLR proteins are predicted to form a large protein 

complex termed the inflammasome 
95

.  This complex functions in caspase-1 activation and 

subsequent release of bioactive IL-1β and related cytokines.  Other NLR proteins have been 

shown to function as regulators of inflammatory signals such as NF-κB 
118,147,203

.  We 

previously showed that human NLRP12/Monarch-1 is expressed by monocytes/macrophages 

and granulocytes and it inhibits the activation of noncanonical NF-κB 
152,154

.  This activity 

requires ATP binding by NLRP12 
35,154

.   More recently, a mutation that results in a truncated 

form of NLRP12 has been linked to periodic fever syndrome, a recurrent hyperinflammatory 

disease of unknown etiology 
57

.   
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C.  MATERIALS AND METHODS 

Mice: An Nlrp12 targeting vector was electroporated into 129SvEvBrd Lex-1 

embryonic stem (ES) cells and homologous recombinant ES cells were microinjected into 

C57BL/6 blastocysts.  Chimeras were backcrossed to C57BL/6 mice (Jackson Laboratories) 

for 9 generations and PCR of genomic tail DNA confirmed germline transmission.  Nlrp3
-/-

 

mice
204

 were also backcrossed onto C57BL/6 for 9 generations.  OT-II mice, which express
 

the OVA323–339-specific TCR transgene on the C57BL/6 background,
 
were obtained from M. 

Croft (La Jolla Institute of Allergy
 
and Immunology).  All mice were maintained in specific 

pathogen free housing at the University of North Carolina (UNC) at Chapel Hill.  All 

experiments were performed with age- and sex- matched mice between 6-12 weeks old.  All 

studies were conducted
 
in accordance with the National Institutes of Health Guide for

 
the 

Care and Use of Laboratory Animals as well as the Institutional
 
Animal Care and Use 

Committee guidelines of UNC Chapel Hill.   

Genotyping:  Genomic tail DNA was isolated from Nlrp12
+/-

 crosses and amplified by 

PCR with the following primers: F1 5’-CCCACAAAGTGATGTTGGACTG-3’, F2 5’-

GCAGCGCATCGCCTTCTATC-3’, R1 5’-GAAGCAACCTCCGAATCAGAC-3’.   

Generation of bone marrow derived dendritic cells (BMDC): Dendritic cells were 

generated from bone marrow precursors as previously described
205

.  Surface marker 

phenotype was determined by single-color flow
 
cytometry as described

205,206
.  Staining was 

quantified with a CyAn ADP flow cytometer (Beckman Coulter), and analyzed using FlowJo 

software (Tree Star Inc.).  

Contact hypersensitivity (CHS)
207

: Mice were sensitized by topical application of 

hapten to the depilated abdomen and footpads: either 200µl of 3% oxazolone (Sigma-
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Aldrich) in ethanol, or 200µl of 0.5% FITC (Sigma-Aldrich) in 1:1 acetone:dibutyl phthalate 

(Sigma-Aldrich).  Five days later, 20µl of 1% oxazolone in ethanol or 20µl of 0.5% FITC in 

acetone:dibutyl phthalate was topically applied to one ear.  The contra-lateral ear was mock-

treated with carrier, and control mice were treated with carrier on both ears.  After 24 hours, 

mice were euthanized and 8mm circular samples of ear tissue were excised and weighed.  

CHS response was assessed by subtracting the weight of the carrier-treated ear from that of 

the hapten-treated ear.  Ear tissue was then fixed in formalin, paraffin embedded, sectioned, 

and stained with H&E.  Immune cell infiltration was quantified as average pixel density (x 

10
4
) using ImageJ software

208
 from 4 fields per ear.  Ear thickness was measured at 20 µm 

intervals under 40x magnification.   

Ear tissue homogenates: Ear tissue harvested during CHS experiments was 

homogenized and sonicated in T-PER reagent (Thermo Scientific) as previously described
209

.  

Total protein concentration was determined by Bradford assay (Bio-Rad) and IL-1β was 

measured by ELISA (BD Biosciences). 

EAE:  EAE was induced as previously described
210

.  Mice were immunized s.c. to the 

flanks with MOG35-55(250µg; Genemed Synthesis) in CFA containing 500µg of heat-killed 

Mycobacterium tuberculosis  H37Ra (Difco laboratories); 200 ng pertussis toxin (List 

Biological Labs) was administered  i.p. at the time of immunization and 2 days later. Animals 

were scored daily by two independent observers:  0 absence of tail weakness, 0.5 tail 

touching ground frequently, 1 tail dragging on ground constantly, 1.5  weakness of hind 

limbs, 2 severe paralysis of at least one hind limb, 2.5 severe paralysis of both hind limbs, 3 

complete hind limb paralysis, 3.5 front limb weakness, 4 severe paralysis of front limbs, 4.5 

complete front limb paralysis, 5 moribund state. 
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FITC-induced in vivo migration
211

: Twenty µl of 0.5% FITC in 1:1 acetone:dibutyl 

phthalate was applied topically to both ears.  After 24 or 48 hours, draining and non-draining 

lymph nodes were removed and single-cell suspensions were stained with anti-CD11c-APC 

(HL3, BD Biosciences) and analyzed by flow cytometry.  Ear epidermal sheets were 

prepared 24 hours after FITC application,
212

 stained with biotin-labeled anti-I-A
b
 (AF6-

120.1; BD Biosciences) followed by streptavidin-Alexa Fluor 595 (Invitrogen), then mounted 

with Vectashield (Vector Laboratories) and visualized by fluorescent microscopy.  DCs per 

400x field are represented as the mean of 4 fields per sample, counted by a blinded reader.  

Percent of DCs remaining after FITC treatment was calculated as DCs per 400x field in 

treated ear divided by DCs per 400x field in contra-lateral untreated ear x 100.   

Ova-induced in vivo migration
213

: Mice were injected s.c. into either flank with 50µl 

of Alexa Fluor 647 – labeled Ova (4 mg/ml in PBS; Invitrogen) emulsified in CFA.  After 24 

hours, draining and non-draining lymph nodes were removed and single-cell suspensions 

were stained with anti-CD11c-PeCy7 (HL3, BD Biosciences) and analyzed by flow 

cytometry. 

In vitro migration: BMDC were seeded at 2x10
5
 per upper well of 96-well transwell 

plates with 5µm pores (ChemoTx System; NeuroProbe) and chemokines (Peprotech) in 

serum-free RPMI were added to lower wells.  Plates were incubated at 37°C for 3 hours.  

Cells were removed from upper wells and plates were centrifuged to recover migrated cells.  

Migrated cells were incubated for 4 hrs with Tetrazolium hydroxide XTT (Sigma) then 

quantified by measuring the reduction of XTT to formazan at 450nm-650nm. 

Immunoblots: BMDC were serum starved, stimulated as indicated, and lysed in 1% 

Triton X-100, 150 mM NaCl, 50 mM Tris-HCl (pH 8), 50 mM NaF, 2 mM plus protease 
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inhibitor cocktail (Roche).  Protein concentrations
 
were determined by Bradford assay (Bio-

Rad), separated by SDS-PAGE, transferred to nitrocellulose (Bio-Rad), probed with the
 

indicated antibody, and visualized by chemiluminescence (Pierce).  TNFα and CCL19 were 

obtained from Peprotech.  Antibodies to pAKT and pERK were from Cell Signaling 

Technologies, antibodies to AKT, ERK and HSP90 from Santa Cruz Biotechnology, and 

antibody to histone H3 from Upstate Biotechnology.      

Statistics: Central tendencies are presented as mean ± s.e.m.  Pairwise comparisons 

were evaluated for statistical significance using two-tailed Mann Whitney U test, α = 0.05.  

Statistics were computed using Prism 4 (GraphPad). 
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D.  RESULTS AND DISCUSSION 

To assess the in vivo role of NLRP12, mice deficient in Nlrp12 (Nlrp12
-/-

) were 

generated by homologous recombination, replacing a region of exon 3 containing the Walker 

A and Walker B sequences with the neomycin resistance gene (Fig. 3.1 a-b).  Animals were 

backcrossed to the C57BL/6 strain for nine generations.  Nlrp12
-/-

 mice displayed no gross 

abnormalities, and there was no difference from wild type C57BL/6 (WT) mice in cellularity 

of the peripheral blood, bone marrow, spleen or lymph nodes (Fig. 3.2 and Table 3.1).  In 

line with myeloid expression of human NLRP12 
151,179

, mouse Nlrp12 was expressed in bone 

marrow and spleen tissues but not other non-immune organs (not shown) and, at the cellular 

level, in granulocytes and dendritic cells (Fig. 3.3). Unlike human NLRP12, mouse Nlrp12 

was not detected in bone-marrow derived or residential peritoneal macrophages. 

Previous studies have demonstrated that deletion of other NLR genes expressed in 

innate immune cells, such as Nlrp3, results in a profound protection from endotoxic shock 

102,103
.  To determine if Nlrp12

-/-
 mice share a similar phenotype, mice were administered 

LPS via intraperitoneal (i.p.) injection.  No statistically significant difference in mortality 

was observed, although Nlrp12
-/-

 displayed a trend of decreased survival at two difference 

doses of LPS (Fig. 3.4).  Liver and kidney functions were similar between WT and Nlrp12
-/-

 

mice (Table 3.2).   The resistance to endotoxic shock observed in Nlrp3
-/-

 mice has been 

attributed to its role in IL-1β secretion 
102

.  Nlrp12
-/-

 mice displayed no significant defect in 

IL-1β production from bone marrow cells or bone marrow derived dendritic cells (BMDCs) 

stimulated with different TLR agonists while Nlrp3
-/-

 did (Fig 3.5).  Similarly, no differences 

were observed in the production of IL-12p40 in BMDCs or IL-6 and TNFα in TLR 

stimulated bone marrow cells (Fig. 3.5).  To determine if NLRP12 functions in the innate 
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immune response to live bacteria, Klebsiella pneumoniae was administered intra-tracheally 

in a model of bacterial pneumonia 
214

.  This bacteria causes a Nlrp3-dependent inflammation 

(S. Willingham, personal communications).  Similar to LPS, no statistically significant 

differences were detected in body temperature, weight loss, BALF cellularity or mortality 

(Fig. 3.6).  These results demonstrate that unlike Nlrp3, NLRP12 does not play a detectable 

role in these models of innate immune activation.  

An emerging role for NLR genes is the regulation of the adaptive immune response 

102,118
.  Nlrp12 expression in dendritic cells suggests that NLRP12 may affect these pathways.  

To evaluate the role of NLRP12 in adaptive immunity and due to a previous genetic 

association of NLRP12 with atopic dermatitis
58

, we performed a model of contact 

hypersensitivity (CHS) 
207

.  WT and Nlrp12
-/-

 mice were sensitized epicutaneously to the 

abdomen with hapten, oxazolone or fluoroscein isothiocyanate (FITC).  Five days later, the 

same hapten was epicutaneously applied to the ear to elicit a hapten-specific immune 

response.  Twenty-four hours post-elicitation, Nlrp12
-/-

 mice displayed a significantly weaker 

response to both haptens, as indicated by reduced swelling and reduced inflammatory cell 

infiltration to the site of elicitation (Fig. 1 c-g).  In Nlrp3
-/-

 mice, CHS is attenuated due to 

decreased production of IL-1β 
215

.  In Nlrp12
-/-

 mice, however, equivalent levels of IL-1β 

were detected in ear tissue homogenates from hapten-treated WT and Nlrp12
-/-

 mice (Fig. 

1h).  This suggests that the role of NLRP12 in CHS is independent of inflammasome-

mediated cytokine production.      

To further investigate the role of NLRP12 in adaptive immunity, we induced EAE by 

subcutaneous (s.c.) immunization with MOG peptide in complete Freund’s adjuvant (CFA).  

Severity of EAE was evaluated by daily monitoring and scoring of mean clinical score as 
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described by others
210

.  WT mice developed measurable EAE within 8 days of immunization 

(mean ± s.e.m., 7.25 ± 0.750) and progressed steadily (Fig. 1i).  In sharp contrast, Nlrp12
-/-

 

mice displayed no measurable abnormalities for up to 15 days following immunization (mean 

± s.e.m., 15.43 ± 2.08).  Overall, the onset was delayed (p=0.0037) and the disease less 

severe in Nlrp12
-/-

mice.    

These results indicate that NLRP12 plays a key role in adaptive immunity.  Based 

upon the expression pattern of Nlrp12, we next focused on other DC functions.  Analysis of 

cell surface levels of MHC class II and co-stimulatory factors indicated no difference in 

BMDC maturation between WT and Nlrp12
-/-

 mice (Fig 3.7).  To determine if Nlrp12
-/-

 DCs 

have a defect in antigen processing and presentation, WT and Nlrp12
-/- 

BMDCs were 

cultured in the presence of ovalbumin (Ova) and then incubated with CFSE-labeled Ova-

specific T cells (Fig. 3.8).  WT and Nlrp12
-/-

 BMDCs induced antigen dependent T cell 

proliferation to similar levels, indicating that NLRP12 is not required for antigen processing 

and MHC class II restricted presentation.   

A key function of DCs in CHS and EAE models is to collect peripheral antigens and 

migrate to draining lymph nodes.  To evaluate DC migration in vivo, FITC was applied 

epicutaneously to the ears of WT and Nlrp12
-/-

 mice
211

.  Draining lymph nodes were removed 

24 and 48 hours later, and migration of FITC
+
CD11c

+
 dendritic cells was assessed by flow 

cytometry.  In agreement with the CHS results, the amount of FITC
+
 DCs in the draining 

lymph nodes of Nlrp12
-/-

 mice was significantly reduced compared to WT mice at both 24 

and 48 hours after FITC application (Fig. 3.9 a-b).  These DCs did not traffic to other 

immune organs, as no FITC
+
CD11c

+
 DCs were detected in the bone marrow or spleen (data 

not shown).  In contrast to Nlrp12
-/-

 mice, Nlrp3
-/-

 DCs migrated to draining lymph nodes to 
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levels comparable to WT DCs. (Fig. 3.9c).  Quantification of DCs in untreated skin revealed 

no difference in overall resting DC numbers (Fig. 3.9d).  However, following FITC treatment 

the number of WT DCs decreased by approximately 40% while the number of Nlrp12
-/-

 skin 

DCs did not change, indicating that more WT DCs egressed from the skin than Nlrp12
-/-

 DCs 

(Fig. 3.9e).  These data suggest that DC migration from the periphery to the draining lymph 

node is significantly impaired in Nlrp12
-/-

 mice.  

During CHS, antigen is administered epicutaneously; whereas in the EAE model, 

antigen is administered subcutaneously.  Thus we next determined if upon s.c. antigen 

delivery, Nlrp12
-/-

 DCs fail to migrate to the lymph nodes.  Fluorescent-labeled Ova in CFA 

was injected s.c. into the flanks of WT or Nlrp12
-/-

 mice and draining lymph nodes were 

removed after 24 hours
213

.  Ova
+
CD11c

+
 DCs were quantified by flow cytometry (Fig 3.9f).  

Analogous to epicutaneous application of FITC, Nlrp12
-/-

 DCs displayed a significant 

decreased in migration to draining lymph nodes following s.c. administration of Ova antigen.  

Together, these results demonstrate that Nlrp12
-/-

 mice have a defect in the ability of DCs to 

migrate from the periphery to the draining lymph node, and this provides a mechanism by 

which CHS and EAE are attenuated in Nlrp12
-/-

 mice.  

Peripheral DCs migrate to draining lymph nodes in response to lymph node homing 

chemokines that act through CCR7 and CXCR4 on DCs 
216-218

.  Analysis of CCR7 and 

CXCR4 surface expression demonstrated that Nlrp12
-/-

 BMDCs expressed these chemokine 

receptors at levels similar to WT cells (Fig. 3.10), suggesting that reduced in vivo migration 

was not due to differences in CCR7 or CXCR4 expression.  To determine if Nlrp12
-/-

 DCs 

were deficient in their ability to respond to CCR7 and CXCR4 ligands, BMDC migration 

was evaluated in an in vitro transwell migration assay.  Compared to WT cells, Nlrp12
-/-
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BMDCs demonstrated significantly reduced migration toward CCL19, CCL21, and CXCL12 

(Fig. 3.11 a-c and Table 3.3).  In contrast, Nlrp3
-/-

 BMDCs migrated toward these 

chemokines at levels nearly identical to WT cells (Fig. 3.11 e-g).  BMDC from all genotypes 

failed to migrate toward CCL5, a chemoattractant to immature dendritic cells
219

, supporting 

the earlier observation that NLRP12 does not affect DC maturation (Fig. 3.11 d, h).  These 

data suggest that NLRP12 plays a role in DC migration and this is not dependent on Nlrp3.  

Furthermore, based upon the restricted expression of Nlrp12 to DCs, these results suggest 

that the inability of Nlrp12
-/-

 cells to migrate is DC intrinsic.    

In the periphery, DC migration toward draining lymph nodes is triggered by local 

production of inflammatory cytokines, such as TNFα, that induce the expression of CCR7 

216
.  To model peripheral activation of DCs, WT and Nlrp12

-/-
 BMDCs were stimulated with 

TNFα and then treated with CCL19, a CCR7 agonist.  Key signal transduction pathways 

downstream of chemokine receptor activation include the PI3K, MAPK and NF-κB 

pathways
216

.  The activation of PI3K leads to AKT phosphorylation.  Levels of 

phosphorylated AKT (pAKT) were not reduced in Nlrp12
-/-

 cells, indicating that AKT 

activation proceeded normally in both WT and Nlrp12
-/-

 cells following treatment with 

CCL19 (Fig. 3.12a).  In contrast, notable differences were found in ERK phosphorylation 

following CCR7 stimulation (Fig. 3.12b).  In WT BMDCs, ERK phosphorylation was 

detected within minutes of CCL19 treatment.  However, ERK activation was profoundly 

delayed in Nlrp12
-/-

 cells, with ERK phosphorylation not detectable until 3 hours after CCR7 

activation.  Finally, our previous work in human monocytic/macrophage cell lines showed 

that NLRP12 suppresses activation of the noncanonical NF-κB pathway by inducing 

degradation of NF-κB inducing kinase (NIK)
154

.  NIK is required for noncanonical NF-κB 
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p100 cleavage to its active form p52
167

, thus to determine if NLRP12 has a similar function 

in mouse cells, we assessed p52 production in BMDC.  Treatment of Nlrp12
-/-

 BMDCs with 

TNFα alone induced the activation of noncanonical NF-κB, as evidenced by the presence of 

p52 (Fig. 3.12c).  In contrast, TNFα treatment alone did not activate noncanonical NF-κB in 

WT BMDCs.  Rather, these cells required secondary stimulation via CCR7 to induce 

detectable levels of p52.  Thus Nlrp12
-/-

 DCs displayed decreased activation of ERK but 

increased activation of p52 downstream of CCR7.  These results demonstrate that the 

molecular signaling pathways in response to a combination of TNFα and CCL19 are 

perturbed in Nlrp12
-/-

 mice and provide a basis for NLRP12 regulation of adaptive immunity.   

The reduction in ERK activation is congruent with the reduction of migratory 

properties of Nlrp12
-/-

 cells
220

.  However, although it confirmed our previous findings, the 

enhanced activation of noncanonical NF-κB is more difficult to link to reduced DC 

migration.  In aly/aly mice, which do not activate noncanonical NF-κB, DCs migrate 

normally
221

.  This suggests that noncanonical NF-κB activation is not required for DC 

mobilization.  Our findings support these results and correlate inappropriate activation of 

noncanonical NF-κB with suppressed DC migration, although the direct link between these 

two events remains to be elucidated. 

In summary, this work describes an NLR protein with a novel regulatory role in 

dendritic cell migration that affects chemokine signal transduction and impacts the outcome 

of CHS and EAE, respectively animal models of atopic dermatitis and multiple sclerosis.  It 

is of interest that NLRP12 polymorphisms  have been associated with atopic dermatitis
58

 and 

skin urticaria
57

.  This is the first description of an NLR protein expressed by dendritic cells 

that directly affects the function of these cells to alter adaptive immunity and associated 
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disease models. While NLRP3, NOD1 and NOD2 also affect adaptive immune response, 

NLRP3 and NOD2  likely mediate this through the indirect effects of cytokines such as IL-

1β, IL-18 or IL-12 on T cell function, and the mechanism of NOD1 is not well 

understood
102,118,119

.  This expands the biologic importance of this family of novel proteins.    
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Table 3.1 

 

 

Table 3.1: Cellularity of peripheral blood

WBC

(10
3
/mm

3
)

RBC

(10
6
/mm

3
)

HGB

(g/dl)

HCT

(%)

MON

(10
3
/mm

3
)

GRA

(10
3
/mm

3
)

LYM

(10
3
/mm

3
)

WT 8.5 ± 1.0 9.5 ± 0.2 15.3 ± 0.5 42.5 ± 1.4 0.8 ± 0.1 0.9 ± 0.0 6.8 ± 0.9

Nlrp12
-/-

7.2 ± 2.5 9.2 ± 0.4 14.5 ± 0.6 41.3 ± 1.7 0.7 ± 0.2 1.1 ± 0.3 5.4 ± 2.0

All values fall within normal reference ranges and depict mean ± s.e.m. WT n=3, Nlrp12
-/-

n=3.

WBC, white blood cells; HGB, hemoglobin; HCT, hematocrit; MON, monocytes; GRA, granulocytes; LYM, lymphocytes.

Mice were euthanized and cardiac blood was collected into tubes containing EDTA.

Analysis was performed by the Animal Clinical Chemistry and Gene Expression Laboratory

at UNC Chapel Hill with the HESKA CBC Veterinary Hematology System.  
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Table 3.2 

 

 

Table 3.2: Liver and Kidney function

Albumin AST ALT ALP BUN Creatine Na+ Cl-

(g/dL) (U/L) (U/L) (U/L) (mg/dL) (mg/dL) (mmol/L) (mmol/L)

WT 2.7± 0.2 69.4 ± 13.5 46.9 ± 1.6 32.1 ± 8.4 19.0 ± 0.9 0.1 ± 0.0 151.0 ± 1.9 114.8 ± 1.8

Nlrp12
-/-

2.4 ± 0.2 71.4 ± 17.2 47.8 ± 0.9 35.2 ± 12.0 17.8 ± 1.6 0.1 ± 0.0 149.0 ± 1.4 120.4 ± 3.9

All values depict mean ± s.e.m. WT n=7, Nlrp12
-/-

n=5.

AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen.

Serum from survivors of the LPS endotoxic shock experiment (5 mg/kg) were tested for liver and kidney function

Analysis was performed by the Animal Clinical Chemistry and Gene Expression Laboratory at UNC Chapel Hill  
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Table 3.3 

 

Table 3.3: In vitro DC migration

Chemokine n P value

CCL19 (ng/ml)

1000 19,813 ± 1,225 12,454 ± 1,082 5 0.0004 ***

100 16,527 ± 1,017 9,736 ± 982 5 0.0002 ***

10 6,569 ± 777 4,180 ± 416 5 0.0465 *

1 1,908 ± 520 2,120 ± 239 4 0.4025

CCL21 (ng/ml)

1000 9,900 ± 1,633 3,814 ± 784 3 0.0244 *

100 2,941 ± 869 1,166 ± 404 3 0.1304

10 433 ± 194 352 ± 150 3 0.7962

1 272 ± 175 647 ± 309 3 0.6048

CXCL12 (ng/ml)

1000 22,666 ± 2,527 15,530 ± 1,823 4 0.0338 *

100 14,270 ± 1,907 8,482 ± 1,568 3 0.0360 *

10 3,862 ± 841 2,766 ± 562 3 0.3865

1 1,127 ± 279 1,807 ± 298 2 0.2403

CCL5 (ng/ml)

1000 915 ± 520 436 ± 174 3 0.8148

100 364 ± 152 553 ± 150 3 0.3213

10 420 ± 206 325 ± 153 3 0.7430

1 292 ± 119 916 ± 376 3 0.1996

Media

1,342 ± 324 1,071 ± 195 4 0.6446

Pairwise comparisons were made using a two-tailed Mann Whitney U test, α = 0.05

The number of migrated cells is indicated as mean ± s.e.m.

XTT was used to calculate the number of migrated cells; the lowest standard was 1,563 cells.

The number of experiments are indicated as n; replicate wells were seeded in each experiment.

Migrated cells

WT Nlrp12 -/-
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Figure 3.1 

 

 

 
 

 

Figure 3.1:  Nlrp12
-/-

 mice fail to mount robust adaptive immune responses.  (a-b), 

Targeted disruption of the Nlrp12 gene.  A 352bp region of Exon 3 containing the Walker 

A/B motifs was replaced with an IRES-LacZ/MC1 neo cassette.  b, PCR genotyping of tail 

DNA from Nlrp12
+/-

 crosses amplified a 318bp wild-type (primers F1 and R1) and a 390bp 

targeted band (primers F2 and R1).  c-g, Nlrp12
-/-

 mice exhibit reduced CHS response to (c, 

e-g) oxazalone (WT n=12, Nlrp12
-/-

 n=13, Mock n=6) and (d) FITC (WT n=7, Nlrp12
-/-

 n=8, 

Mock n=3).  Results depict mean ± s.e.m and comparisons between WT and Nlrp12
-/-

 were 

made using two-tailed Mann Whitney U test, α = 0.05.  Data are each comprised of two 

independent experiments.  i, Development of EAE in WT (○ n=8) and Nlrp12
-/-

 (♦ n=7).  

EAE was induced by s.c. injection of MOG35-55 in CFA.  Animals were scored daily by two 

independent observers, one blinded.  Data are presented as mean clinical score ± s.e.m. and 

are representative of 2 experiments totaling at least 10 mice per group. 

 

 



 70 

Figure 3.2 
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Figure 3.2:  Quantification of total cells in WT (○) or Nlrp12
-/-

 (♦) a, bone marrow b, 

lymph nodes and c, spleen.  Total live cell number in bone marrow, spleen and lymph nodes 

were enumerated after red blood cell lysis using Trypan blue exclusion and hemacytometer.   
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Figure 3.3 
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Figure 3.3:  Expression analysis of Nlrp12.  cDNA was synthesized from total RNA using 

moloney murine leukemia virus (MMLV) reverse transcriptase (Invitrogen) according to the 

manufacturer’s protocol.  Nlrp12 expression was assessed by PCR using intron-spanning 

primers:  forward 5’-GTCCAGACTCAGTCCACATA, reverse 5’-

GTATAAGGCCAGCTCGATCA.  GAPDH was amplified with: forward 5’-

TGAAGCAGGCATCTGAGGG, reverse 5’-CGAAGGTGGAAGAGTGGGAG.  Cell 

populations were isolated from C57BL/6 mice by methods previously described:  Splenic T 

cells
222

 and B cells
223

 were isolated by negative selection; Granulocytes were isolated from 

bone marrow
224

;  Dendritic cells
205

, macrophages
225

, mast cells
226

 and osteoclasts
227

 were 

generated from bone marrow precursors; Raw264.7 macrophages were purchased from the 

American Type Culture Collection (ATCC);  Resident peritoneal macrophages were obtained 

by lavage with PBS and enriched by adherence overnight. 
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Figure 3.4 
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Figure 3.4:  LPS-induced endotoxic shock in Nlrp12
-/-

 mice. Mice were injected i.p. with 

a, 10 mg/kg or b, 5 mg/kg of E. coli LPS (serotype 0111:B4; Invivogen).  Mice were 

monitored for lethality twice daily for up to 14 days.  Percent survival was compared 

between WT (○) and Nlrp12
-/-

 (♦) mice. 
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Figure 3.5 
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Figure 3.5:  Cytokine production in Nlrp12
-/- 

cells.  a-b, BMDCs were stimulated for 24 

hours with the indicated agonists (Invivogen).  IL-1β and IL-12p40 were measure in 

supernatants by ELISA (R&D Systems and BD Bioscience).  c-f, Freshly isolated bone 

marrow cells were stimulated with LPS or Pam3Cys4 (Invivogen) at the indicate 

concentrations.  IL-6 and TNFα were measured in supernatants by ELISA (BD Bioscience). 
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Figure 3.6 
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Figure 3.6:  In vivo challenge of Nlrp12
-/-

 mice with Klebsiella pneumoniae (K.p.).  K. p. 

were grown
 
in Luria broth (LB) for 1 h at 37°C. Bacteria numbers were

 
estimated by 

measuring the absorbance at 600 nm
214

.  The exact number used in each experiment was 

measured by plating aliquots on LB agar plates and counting
 
CFUs.

 
 4 x 10

4
 CFU of K.p. in 

50 µl Hank’s balanced salt solution (HBSS) was delivered
 
onto the trachea of anesthetized 

mice. a, Body weight and b, temperature were monitored to assess morbidity (WT n=7, 

Nlrp12
-/-

 n=7, saline n=3).  Forty-eight hours post infection
 
the lungs of surviving mice were 

lavaged with HBSS.  c, Cytospin slides were prepared, stained with Diff-Quick (Dade-

Behring) and differential cell counts determined. Cellularity of bronchial alveolar lavage 

fluid from saline treated and inoculated mice (WT n=3, Nlrp12
-/-

 n=5, saline n=4).  Data (a-c) 

are represented as mean ± s.e.m.  d,  Percent survival was compared between WT (○ n=15) 
and Nlrp12

-/-
 (♦ n=13) mice up to 48 hours.  Data are representative of three independent 

experiments.   
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Figure 3.7 

 
 

Figure 3.7:  Analysis of BMDC cell surface markers on WT and Nlrp12
-/-

 BMDC.  

BMDC were collected on a, days 8, b,10, and c, day 10 + 48hr TNFα and surface marker 

phenotype was determined by single-color flow
 
cytometry after gating on live cells.  The 

following PE-conjugated antibodies were used: CD11c (N418; eBioscience), I-A
b
 (AF6-

120.1; BD Biosciences), CD80 (53-6.7; BD Biosciences), CD86 (PO3.1; eBioscience), CD40 

(1C10; eBioscience).  Data are representative of three independent experiments.  
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Figure 3.8 
 

 

 

 
 

 

Figure 3.8:  Antigen presentation assays comparing WT and Nlrp12
-/-

 BMDC. BMDC 

from WT or Nlrp12
-/-

 mice were pulsed with Ova whole protein (Worthington Biochemical 

Corp.) or mock-pulsed for 18-20 hours.  Splenocytes were isolated from OT-II mice, labeled 

with carboxyfluorescein succinimidyl ester (CFSE; Invitrogen), and cultured 5:1 with BMDC 

(1 x 10
6
) in 6-well plates.  After 3-5 days in culture, cells were stained with biotin-labeled 

anti-Vβ5 (MR9-4 BD Biosciences), specific for the OTII transgenic TCR, followed by 

streptavidin-APC (eBioscience).  Dilution of CFSE on Vβ5-positive cells was detected using 

flow cytometry.  The data presented show the greatest observed difference between WT and 

Nlrp12
-/-

 BMDC out of three independent experiments.  
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Figure 3.9 

 

 

 
 

 

Figure 3.9:  Nlrp12
-/-

 mice exhibit attenuated migration of peripheral dendritic cells to 

draining lymph nodes.  (a-b), Migration of CD11c
+
 WT (n=5) and Nlrp12

-/-
 (n=5) DCs (a) 

24 h and (b) 48 h following FITC application.  c, Migration of CD11c
+
 WT (n=5) and Nlrp3

-

/-
 (n=5) DCs 24 h following FITC application.  d, Quantitation of I-A

b+
 skin DCs in untreated 

WT (n=6) and Nlrp12
-/-

 (n=6) ear epidermal sheets.  e, Percent, relative to untreated, of I-A
b+

 

DCs remaining in the skin 24 h following FITC application (WT n=4, Nlrp12
-/-

 n=5).  e, 

Migration of WT (n=3) and Nlrp12
-/-

 DCs (n=3) 24 hours following s.c. injection of 

fluorescent Ova in CFA.  All experiments were repeated 2-3 times.  Data in all panels are 

presented as mean ± s.e.m. and pairwise comparisons were made using two-tailed Mann 

Whitney U test, α = 0.05. 
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Figure 3.10 

 

 

 

 
 

 

Figure 3.10:  Cell surface expression of CCR7 and CXCR4 on WT and Nlrp12
-/-

 BMDC.  

BMDC were stained with anti-CD11c-PeCy7 (HL3; BD Biosciences), anti-I-A
b
-PE (AF6-

120.1; BD Biosciences), and either anti-CCR7-APC (4B12; eBioscience) or anti-CXCR4-

Alexa Fluor 647 (2B11; eBioscience).  Staining was quantified by flow cytometry and 

analyzed using FlowJo software (Tree Star Inc.).  BMDCs were gated on CD11c
+
I-A

b+
 cells, 

and the percentages of (a) CCR7
+
 and (b) CXCR4

+
 DCs are shown. 
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Figure 3.11 

 

 

 
 

 

Figure 3.11:  Nlrp12
-/-

 BMDCs exhibit attenuated migration toward lymph node homing 

chemokines.  Migration of (a-d) WT (○) and Nlrp12
-/-

 (♦) BMDCs, and of (e-g) WT (○) and 

Nlrp3
-/-

 (■) BMDCs to the indicated chemokine.  Data are representative of 3-5 experiments 

and are presented as mean ± s.e.m. of one experiment.  Data from all experiments with 

associated pairwise comparison statistics are presented in Supplemental Table A2.3. 
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Figure 3.12 

 

 

 
 

 

Figure 3.12:  Nlrp12
-/-
 BMDCs display altered activation of ERK and noncanonical NF-

κB following CCR7 activation.  a-c, BMDCs were pretreated with TNFα for 8 h and then 

stimulated with CCL19 for the indicated times.  Immunoblots were probed with the indicated 

antibodies.  Each panel is representative of at least three independent experiments.  
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CONCLUSIONS AND FUTURE DIRECTIONS 

This dissertation describes an unexpected role for the NLR family member NLRP12.  

Mutations in NLRP12 have recently been linked to atopic dermatitis
58

 and hereditary periodic 

fever with skin urticaria 
57

.  The etiology of these human disorders is not clear and mounting 

literature suggests that NLR mediated pathways may play a prominent role.  Using rodent 

models, we demonstrate that NLRP12 functionally links innate and adaptive immune 

responses.  In mice, Nlrp12 is expressed almost exclusively in DCs and is required for DC 

migration from the periphery to secondary lymphoid tissues.  Consequently, Nlrp12
-/-

 mice 

fail to mount a robust immune response in two models of T cell mediated immunity, contact 

hypersensitivity (CHS) that models atopic and allergic dermatitis, and experimental 

autoimmune encephalitis (EAE) that models multiple sclerosis.  The inability of Nlrp12
-/-

 

DCs to induce adaptive immunity is not due to failure in antigen processing and presentation.  

Rather, Nlrp12
-/-

 DCs display a significantly reduced capacity to migrate to draining lymph 

nodes and respond to lymph node homing chemokines.  This attenuated migratory capacity 

of Nlrp12
-/-

 DCs is due to dysregulated NF-κB and MAPK signaling pathways.  These results 

suggest that NLRP12 mediated pathways regulate the trafficking of antigen presenting cells.  

Disrupted migration of these cells may cause the advancement of atopic dermatitis and 

periodic fevers in individuals with mutations in NLRP12.   

The discovery of a physiologic role for NLRP12 represents a significant advance in 

the study of this NLR protein.  It is remarkable that an NLR with limited expression to innate 

immune cells can directly influence adaptive immune responses.  In fact, with the exception 

of CIITA, NLRP12 is the first NLR found to directly affect the function of antigen presenting 

cells.  Consequently, NLRP12 affects adaptive immunity and associated disease models.  
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While NLRP3, NOD1 and NOD2 also affect adaptive immune response, NLRP3 and NOD2  

likely mediate this through the indirect effects of cytokines such as IL-1β, IL-18 or IL-12 on 

T cell function, and the mechanism of NOD1 is not well understood
102,118,119

.  Of course, the 

role of NLRP12 in dendritic cell function and associated disease models is far from fully 

characterized.   

 

Accordingly, four key questions remain: 

1).  How does NLRP12 control dendritic cell migration? 

 

2).  In the absence of NLRP12, are other peripheral dendritic cell subsets  

impaired in migration?  What is the physiologic consequence? 

 

3).  Does deletion of NLRP12 affect neutrophil migration? 

 

4).  What stimulus/stimuli activates NLRP12? 

 

The following discussion will address these issues. 

 

 

1.  How does NLRP12 control dendritic cell migration? 

 In this dissertation we show that NLRP12 regulates pro-inflammatory signaling 

pathways important for DC activation and migration.  Previously our laboratory 

demonstrated that in human monocytes, NLRP12 induces proteasome-mediated degradation 

of NIK 
154

, the kinase responsible for activating the noncanonical NF-κB pathway 
166

.  In 

agreement with these findings, NIK levels are also increased in Nlrp12
-/-

 DCs.  Noncanonical 

NF-κB is inappropriately activated in these cells downstream of inflammatory stimuli, such 

as those encountered in the skin during CHS.  The role of NIK and noncanonical NF-κB 

(NF-κB2) in dendritic cell migration is not well-studied.  Studies of migration in vivo have 

been hampered by the phenotype of the NIK-deficient and NF-κB2-deficient mice, neither of 
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which have secondary lymphoid organs or normal lymphatic structure 
228,229

.  To determine if 

NLRP12 affects DC migration by controlling NIK and noncanonical NF-κB, Nlrp12
-/-

 mice 

can be crossed to the NIK
-/-

 mice.  DC migration can be assessed using our in vitro migration 

assay.  If NLRP12 affects DC migration through NIK, the phenotype of NLRP12 / NIK 

double-deficient mice should revert the migration phenotype back to wild type levels.   

Our results suggest that in Nlrp12
-/-

 DCs, excess NIK leads to defective DC 

migration.  Known noncanonical NF-κB target genes include chemokines, chemokine 

receptors and adhesion molecules – all of which influence DC trafficking to draining lymph 

nodes.  In Nlrp12
-/-

 DCs, however, we have not detected a difference in expression, secretion, 

or cell surface levels of most noncanonical NF-κB targets.  One NIK-regulated target we are 

currently evaluating is cyclooxygenase-2 (COX-2) 
230,231

.  COX-2 is an enzyme that 

metabolizes arachidonic acid to an intermediate prostaglandin, PGH2.  PGH2 is then further 

metabolized by individual prostaglandin synthases to yield prostanoids including 

prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), prostacyclin (PGI2) and thromboxane 

(TXA2)
232

.  It is well established that prostaglandins affect migration of many cell types, 

including dendritic cells.  In fact, others have found that PGD2 is made by dendritic cells and 

suppresses dendritic cell migration 
233-237

.  We are currently assessing COX-2 expression in 

and prostaglandin production from Nlrp12
-/-

 DCs.  Preliminary data suggest that Nlrp12
-/-

 

DCs express higher levels of COX-2 compared to wildtype DCs.  To determine if excess 

COX-2 affects migration, we are currently utilizing COX-2 inhibitors in our in vitro and in 

vivo DC migration assays.  If COX-2 inhibitors restore migration, we will conclude that 

Nlrp12
-/-

 DCs exhibit impaired migration due to increased expression of COX-2.  



 85 

In contrast to noncanonical NF-κB, Nlrp12
-/-

 DCs exhibit profoundly delayed ERK 

activation downstream of inflammatory stimuli and chemokine receptor activation.  ERK 

activation is important for rear-end detachment and efficient cellular migration 
220,238

, thus a 

defect in ERK activation could contribute to impaired migration seen in Nlrp12
-/-

 DCs.  

However, the mechanism by which NLRP12 affects ERK activation remains unclear.  To 

determine if the effect of NLRP12 on ERK is mediated through NIK, we can assess ERK 

activation in NIK-deficient DCs.  If NLRP12 promotes ERK activation by suppressing NIK 

and noncanonical NF-κB activation, NIK-deficient DCs will display robust ERK activation 

downstream of inflammatory stimuli and chemokine receptor activation.  If the opposite 

occurs, NLRP12 likely is affecting ERK activation through another mechanism that is yet to 

be identified.  

 

2.  In the absence of NLRP12, are other peripheral dendritic cell subsets impaired in 

migration?  What is the physiologic consequence? 

 

 Dendritic cells are constantly sampling antigens from the outside environment; 

consequently they reside in tissues that serve as surveillance sites.   These include the skin, 

lungs, and gastric mucosa.  In this dissertation we have shown that NLRP12 is required for 

efficient DC migration from the skin to the draining lymph nodes.  It will be of interest to 

determine if Nlrp12
-/-

 DCs residing in other peripheral tissues are also impaired in migration.  

In the lungs, DC activation and migration to draining lymph nodes are important in clearing 

viral lung infections like influenza 
239

.  An influenza mouse model is currently employed in 

our lab.  Using this model, we can assess DC migration and determine what physiologic 

consequences arise from NLRP12 deletion during influenza lung infection.  We are also 

interested in assessing the role of NLRP12 in DC function in the gastric mucosa.  The role of 
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DCs in inflammatory bowel disease and colitis is not completely understood.  However, their 

importance in resolving gut inflammation is highlighted by the finding that DC-depletion 

worsens colitis in mice 
240

.  The dextran sodium sulfate (DSS) colitis model is currently 

employed in our lab and we will utilize this model to assess the role of NLRP12 in gut 

inflammation. 

 

3.  Does deletion of NLRP12 affect neutrophil migration?   

In addition to dendritic cells, Nlrp12 is expressed in granulocytes, including eosinophils and 

neutrophils.  Preliminary results suggest that neutrophil recruitment to the site of CHS 

elicitation is impaired in Nlrp12
-/-

 mice.  Impaired neutrophil recruitment during CHS may 

contribute to the reduced CHS response in Nlrp12
-/-

 mice.  We are currently evaluating 

Nlrp12
-/-

 neutrophil migration in vitro toward the neutrophil-recruiting chemokine KC / IL-8.  

Migration of Nlrp12
-/-

 neutrophils to KC is reduced to approximately half that of wildtype 

cells.  Thus our data suggest that deletion of Nlrp12 affects the migratory capacity of both 

dendritic cells and neutrophils.  This affects CHS, a model dependent on both dendritic cells 

and neutrophils, and EAE, a model dependent on dendritic cells but not neutrophils.  It will 

be interesting to utilize the Nlrp12
-/-

 mice to assess the role of NLRP12 in a neutrophil-

dependent model.  For example, is NLRP12 important for neutrophil activation and clearance 

of bacterial skin infections, such as Staphylococcus aureus?  Further studies will allow us to 

explore the role of NLRP12 in neutrophil-dependent infections and skin conditions.   
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4.  What stimulus / stimuli activates NLRP12 

 

 One of the most pressing questions in NLR biology remains, what stimulus activates 

a particular NLR?  Biochemical studies in human cell lines have shown that an activating 

stimulus is required for NLRP12 to associate with and induce the degradation of NIK 
154

.  

These data suggest that NLRP12 responds to some molecular cue.  One possibility is that 

NLRP12 responds to pathogen product(s), akin to NOD1 and NOD2 that respond to 

components of peptidoglycan in bacterial cell walls.  However even in the case of NOD1 and 

NOD2, direct binding of these NLR proteins by peptidoglycan has not been shown despite 

many attempts.  Thus to date the concept of NLR proteins as “pathogen receptors” has not 

been backed by experimental data.  Another possibility is that NLRP12 responds to ion 

fluxes or endogenous danger signals, similar to that proposed for NLRP3.   

A different possibility is that NLRP12 does not directly recognize pathogen products 

or danger signals, but instead recognizes modified self, as described by the “guard 

hypothesis.”  The guard hypothesis has been proposed as a mechanism by which plant R 

proteins indirectly recognize their cognate pathogen avirulence factors.  Simply put, this 

hypothesis proposes that the plant R protein or mammalian NLR “guards” a host protein that 

is targeted by one or more microbial effectors / avirulence proteins.  Upon recognition of this 

“pathogen-induced modified-self,” 
241

 the plant R protein or mammalian NLR protein 

becomes activated and elicits a protective response.  Because many pathogens activate the 

same signaling pathways and modify the same molecules, NLR proteins could respond to 

multiple effectors by guarding one host target.   

Support for the guard hypothesis in NLRP12 activation lies in the following 

observations.  In human THP-1 monocytes, NLRP12 resides in a molecular complex with 
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transforming growth factor beta-activated kinase 1 (TAK1), a kinase that is activated 

downstream of IL-1 receptor, TNF receptor, and TLRs.  Within an hour of stimulation, 

NLRP12 leaves the TAK1-containing complex (Arthur, J.C., unpublished observations).  In 

cells expressing a dominant negative TAK1, NLRP12 cannot associate with or induce NIK 

degradation (Lich, J.D. unpublished data).  Perhaps NLRP12 guards TAK1 and in response 

to TAK1-activating stimuli, becomes activated and induces NIK degradation to suppress 

noncanonical NF-κB.  Thus further investigation into host signaling components required for 

NLRP12 function may illuminate the specific NLRP12 activating stimulus.   

 

Final Conclusions 

This dissertation describes, for the fist time, the physiologic role of the NLR protein 

NLRP12.  Earlier work in human monocytic cell lines suggested an anti-inflammatory role 

for NLRP12.  Thus we hypothesized that Nlrp12-deficient mice would exhibit a pro-

inflammatory phenotype.  Our data have demonstrated this is not the case.  NLRP12 does not 

play a detectable role in cytokine secretion or mouse models of innate immune activation.  

Instead, Nlrp12
-/-

 mice fail to mount a robust immune response during CHS and EAE, two 

models of T cell mediated immunity.  NLRP12 affects the outcome of these models by 

controlling dendritic cell migration.  We find that Nlrp12
-/-

 dendritic cells exhibit a reduced 

capacity to migrate to draining lymph nodes and respond to lymph node homing chemokines.         

How does deletion of Nlrp12, a negative regulator of inflammation in human 

monocytic cell lines, lead to an anti-inflammatory phenotype in the mouse?  There are a 

number of possibilities: a difference between primary cells and cell lines; a difference 

between monocytes and dendritic cells; a difference between human and mouse.  Our data 
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suggests that the molecular mechanism by which NLRP12 exerts its effect is the same in 

both mouse dendritic cells and human monocytes.  However, the resulting cellular phenotype 

is different.  NLRP12 associates with NIK and induces its degradation via the proteasome.  

NIK is the sole kinase responsible for activating the noncanonical NF-κB pathway.  By 

controlling the availability of NIK, NLRP12 controls activation of noncanonical NF-κB.  

Silencing of Nlrp12 in human monocytic cell lines leads to NIK accumulation and 

inappropriate activation of noncanonical NF-κB.  This results in increased expression of 

proinflammatory cytokines and chemokines including IL-6, TNFα, CXCL13, CXCL12, and 

CXCR4.  In Nlrp12-deficient mouse dendritic cells, NIK accumulates and noncanonical NF-

κB is inappropriately activated.  In contrast to human monocytes, however, these cells do not 

express increased levels of cytokines or chemokines.  They do display a reduced capacity to 

migrate both in vivo and in vitro.  We are currently testing the hypothesis that an increased 

level of NIK-regulated genes affects the migratory capacity of these cells.  One NIK-

regulated gene whose expression is increased in Nlrp12
-/-

 dendritic cells is COX-2.  COX-2 is 

an inducible enzyme that metabolizes arachidonic acid to prostanoids.  Prostanoids are well 

known to affect migration.  Thus increased COX-2 expression seems a plausible mechanism 

by which NLRP12 affects migration.  We are currently evaluating if COX-2 inhibition 

restores the migratory capacity of Nlrp12-deficient dendritic cells.  It will be interesting to 

determine if Nlrp12-silenced human monocytes also express increased levels of COX-2 and 

exhibit a reduced migration capacity.    

In conclusion, our findings demonstrate that NLRP12 provides a functional link 

between innate and adaptive immune responses.  A central component of both protective and 

harmful immune responses is the ability of dendritic cells to collect peripheral antigens and 
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transport them to draining lymph nodes.  Thus the ability to manipulate dendritic cell 

migration would open the door to more effective vaccines and better treatments for allergic 

and autoimmune diseases.  The work presented in this dissertation furthers our knowledge of 

the role NLRP12 in such diseases and expands the biologic importance of the NLR family at 

the interface of innate and adaptive immunity.  

 



 

 

 

 

 

APPENDIX 1.  MONARCH-1/NLRP12 SUPPRESSES NONCANONICAL NF-ΚΚΚΚB 

ACTIVATION AND P52 DEPENDENT CHEMOKINE EXPRESSION IN 

MONOCYTES 
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A. ABSTRACT 

NLR (CATERPILLER, NOD, NBD-LRR) proteins are rapidly emerging as important 

mediators of innate and adaptive immunity.  Among these, NLRP12 operates as a novel 

attenuating factor of inflammation by suppressing inflammatory responses in activated 

monocytes.  However, the molecular mechanisms by which NLRP12 performs this important 

function are not well understood.  In this report, we show that NLRP12 inhibits CD40-

mediated activation of NF-κB via the noncanonical pathway in human monocytes.  This 

inhibition stems from the ability of NLRP12 to associate with and induce proteasome-

mediated degradation of NF-κB inducing kinase (NIK).  Congruently, silencing NLRP12 

with shRNA enhances the expression of p52-dependent chemokines. 
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B. INTRODUCTION 

NLRP12, also known as Monarch-1 or Pypaf7, harbors an N-terminal pyrin domain 

and is expressed exclusively in cells of myeloid lineage 
151

.  We recently demonstrated that 

NLRP12 suppresses pro-inflammatory cytokine production in monocytes stimulated with 

TLR ligands, TNF-α, and Mycobacterium tuberculosis 
242

.  The mechanisms by which 

NLRP12 performs this anti-inflammatory function are not clear; however, a role for NLRP12 

in the inhibition of NF-κB was suggested by these studies.  

NF-κB activation occurs through two distinct mechanisms referred to as the canonical 

and noncanonical pathways.  The canonical pathway proceeds very rapidly and can be 

activated by a number of upstream kinases that signal through the IKKα/β/γ complex.  This 

results in nuclear accumulation of primarily RelA/p50 heterodimers that induce early 

immune response genes.  In contrast, the noncanonical pathway displays slower kinetics and 

is dependent upon NIK 
166

.  In this alternative pathway, NIK activates IKKα leading to the 

nuclear accumulation of p52-containing NF-κB complexes that induce a different set of 

inflammatory genes to support the ongoing immune response 
168

.  The present study was 

initiated to elucidate the mechanisms by which NLRP12 suppresses NF-κB in monocytes.  

We found that NLRP12 suppresses activation of the noncanonical pathway by associating 

with NIK and inducing its proteasome-mediated degradation.       
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C. MATERIALS AND METHODS 

Cell lines, Antibodies, and Reagents:  HEK293T and Cos-7 cells were maintained in 

DMEM (Gibco) with 10% fetal calf serum, 100 mg/ml penicillin and 100 mg/ml 

streptomycin.  THP-1 derived cell lines stably expressing Ha-NLRP12 or shRNA targeting 

NLRP12 have been described 
242

.  The antibodies used were: anti-NIK (H-248), anti-p52 (C-

5), anti-p50 (H-119) and anti-CagA (b-300; control Ab) from Santa Cruz Biotechnology; 

anti-HA antibodies (12CA4 and 13F10) from Roche; and anti-V5 from Invitrogen.  CD40L 

was obtained from Peprotech, MG132 from Calbiochem.  Ha-NLRP12 has been described 

242
.  NIK (MGC:45335) was obtained from the ATCC Mammalian Genome Collection.  The 

luciferase reporter plasmids and p53 were obtained from Dr. Albert Baldwin.  NLRP12 

truncation mutants were PCR amplified and cloned into pcDNA3.1 V5/HIS TOPO cloning 

vector.   

Luciferase Assays: HEK293T cells were transfected with 50 ng NF-κB or p53 

reporter plasmid and 500 ng of NIK or p53.  NLRP12 was co-transfected at the indicated 

concentrations and pcDNA3.1 was used to equalize the plasmid concentration among 

samples.  Luciferase assays were performed in triplicate 
242

.    

RNA Preparation and Real-time PCR: Total RNA was isolated with RNeasy 

(Qiagen).  Real-time PCR was performed using SYBER Green as described 
243

.  Primer 

sequences are available upon request.  Results were normalized to 18S ribosomal RNA 

internal controls and expressed in relative numbers.   

Immunoprecipitations and Western Blot Analysis: HEK293T cells were transfected 

using Fugene 6 (Roche).  The cells were lysed as described 
242

.  Nuclear and cytoplasmic 

fractions were generated using the NE-PER kit (Pierce).  Protein concentrations were 
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determined by Bradford assay (BioRad) and equilibrated samples were immunoprecipitated 

with 2 ug of the indicated antibody for 18 h with rotation.  Antibody complexes were 

captured with protein A/G agarose beads (Pierce).  The beads were washed, eluted into 

sample buffer, boiled and separated by SDS-PAGE 
242

.  Unless indicated, all plasmids were 

used at equal concentrations.   

Pulse-Chase analysis: Cos-7 cells were transfected with 3 ug of the indicated 

plasmids using Fugene 6 (Roche).  The cells were incubated for 18 h, starved for 30 min in 

methionine/cysteine free DMEM with 5% FBS, pulsed with 0.4 mCi/ml (35)S methionine for 

30 min, washed with warm PBS and incubated in methionine fortified DMEM containing 

10% FBS.  At the indicated time points, cells were washed in ice cold PBS then lysed in 1% 

Tx-100, 0.1% SDS, 0.5% DOC, 150 mM NaCl, 50 mM Tris pH 8, 50 mM NaF, 2 mM 

EDTA supplemented with protease inhibitors (Roche).  NIK was immunoprecipitated and 

eluted into reducing sample buffer.  Proteins were fractionated by SDS-PAGE and gels were 

dried.  Control samples consisting of protein A/G beads alone confirmed the specificity of 

protein bands visualized in autoradiographs.  Autoradiographs were scanned and analyzed by 

densitometry.   
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D.  RESULTS AND DISCUSSION 

NLRP12 inhibits noncanonical NF-κκκκB in monocytes. 

Previously, we reported that NLRP12 inhibits TLR-induced NF-κB driven luciferase.  

However, this reporter assay could not determine which NF-κB pathway was inhibited 
242

.  

Activation of canonical NF-κB requires the degradation of IκBα to release RelA/p50 

heterodimers.  RelA is then phosphorylated allowing the expression of NF-κB responsive 

genes such as IκBα and NF-κB2/p100.  To determine the role of NLRP12 in canonical NF-

κB activation, THP-1 monocytes stably expressing Ha-NLRP12 (THP-Ha-NLRP12) or an 

empty vector control (THP-EV) were stimulated with the TLR2 ligand Pam3Cys for the 

indicated times (Figure 1A).  Activation was monitored by western blot analysis of IκBα 

degradation, RelA phosphorylation, and the induction of NF-κB responsive genes.  No 

difference in IκBα degradation or RelA phosphorylation was detected between THP-EV and 

THP-Ha-NLRP12 cells at the time points assayed.  In addition, the expression of NF-

κB2/p100 and IκBα was equally up-regulated in both cells.  Although a more detailed kinetic 

analysis indicated that NLRP12 did decrease RelA phosphorylation at 60 min (Figure 1B), 

these results indicate that initial activation of canonical NF-κB is not affected by NLRP12.   

We next analyzed the role of NLRP12 in noncanonical NF-κB activation.  This 

alternative pathway can be induced by TNF receptor family members such as CD40 and 

requires the processing of NF-κB2/p100 to its active form p52, which then rapidly 

translocates to the nucleus 
158

.  THP-Ha-NLRP12 cells or empty vector controls were pre-

treated with Pam3Cys to induce p100 expression and then stimulated with CD40L to 

promote p100 processing (Figure 1C).  Such prior activation of the canonical pathway 

followed by the subsequent activation of the noncanonical pathway has been documented 
169

.  



 97 

Cytoplasmic and nuclear extracts were prepared and noncanonical NF-κB activation was 

determined by monitoring p100 processing to p52 by western blot.  Pam3Cys treatment 

induced p100 expression in both THP-Ha-NLRP12 and THP-EV cells, confirming that the 

canonical pathway remained intact (Figure 1C).  Subsequent CD40L treatment of THP-EV 

cells resulted in the accumulation of nuclear p52 within 1 h of treatment.  The level of p52 

peaked by 3 h and was maintained in the nucleus throughout the 6 h time course.  In contrast, 

p52 was significantly reduced in THP-Ha-NLRP12 cells.  A weak p52 band was detected 

within 1 h of treatment; however, this effect was only transient as p52 was not detected at 

later time points.  Importantly, no difference in nuclear p50 levels was detected between the 

two cell lines, indicating that nuclear translocation of NF-κB proteins was not globally 

inhibited by the presence of NLRP12.  These results indicate that NLRP12 suppresses 

noncanonical NF-κB activation.  

 

NLRP12 associates with NIK. 

While many kinases can stimulate the canonical pathway, the noncanonical pathway 

is uniquely dependent upon NIK 
244

.  To determine if NLRP12 intersects the noncanonical 

pathway by associating with this kinase, we performed co-immunoprecipitation experiments.  

HEK293T cells were transfected with Ha-NLRP12 and NIK, and NIK complexes were 

immunopurified and analyzed by western blot.  NLRP12 co-precipitated with NIK but not a 

control isotype Ig (Figure 2A).  As additional controls, no association was found between 

NLRP12 and IKKα when both proteins were overexpressed, nor did two other NLR proteins, 

CIITA and NOD2, interact with NIK (data not shown).   
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NLRP12 failed to co-precipitate with endogenous NIK when expressed alone in 

unstimulated cells (Figure 2A, lane 2).  Instead, these complexes only formed when both 

proteins were co-expressed.  It is known that ectopically expressed NIK displays a high level 

of functional activity, while endogenous NIK does not 
245

.  Thus an explanation for this result 

is that NLRP12 preferentially associates with active forms of the kinase.  To explore this 

possibility in monocytic cells, THP-Ha-NLRP12 cells were stimulated with CD40L to 

activate endogenous NIK (Figure 2B) 
158

.  NLRP12 co-precipitated with endogenous NIK 

only in stimulated cells, thus supporting our hypothesis that complex formation depends on 

the activation status of NIK.   

 

Structural domains of NLRP12 required for NIK binding. 

NLRP12 possesses a tripartite domain architecture conserved in most NLR proteins 

15
.  To determine which structural elements of NLRP12 are required for NIK binding, 

truncation mutants were constructed and tested for the ability to bind NIK in 

immunoprecipitation assays.  The N-terminal pyrin domain of NLRP12 failed to co-

precipitate with NIK (Figure 3).  However, the pyrin-NBD truncation mutant did co-

precipitate with NIK, indicating a role for the NBD domain in NIK binding.  NIK also co-

precipitated with truncation mutants comprised of the NBD-LRR and the LRR alone.  Thus, 

both the NBD and LRR domain of NLRP12 encode elements that mediate NIK binding.  In 

contrast, the pyrin domain is not required for this interaction. 
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NLRP12 inhibits NIK-induced NF-κκκκB activation. 

To directly test the effect of NLRP12 on NIK-induced NF-κB activation, luciferase 

reporter assays were performed.  As expected, ectopic expression of NIK led to strong 

activation of an NF-κB reporter plasmid (Figure 4A).  Co-expression of NLRP12 resulted in 

a dose dependent inhibition of NIK-induced NF-κB activity, confirming a negative 

regulatory role for NLRP12.  In contrast, NLRP12 did not inhibit activation of a p53-

inducible reporter plasmid indicating specificity of its function.   

 We next sought to determine the biologic consequences of NLRP12-mediated 

suppression of NIK in monocytes using RNA silencing.  THP-Ha-NLRP12 cells or THP-1 

cells in which NLRP12 expression was silenced by shRNA (THP-shNLRP12) were 

stimulated with Pam3Cys and CD40L to induce activation of noncanonical NF-κB.  Next, 

the expression of the p52-dependent genes CXCR4, CXCL12, and CXCL13 was analyzed and 

compared to control THP-EV cells 
246,247

.  All three genes were strongly up-regulated in 

THP-shNLRP12 cells, demonstrating enhanced p52 activity in these cells in the absence of 

NLRP12.  In contrast, gene expression was inhibited in THP-Ha-NLRP12 cells, indicating 

reduced activity of noncanonical NF-κB in the presence of NLRP12.  No difference was 

detected in the expression of CXCL8 or CXCL9, which are not known to be p52 dependent 

(data not shown).  Together, these results suggest a mechanism whereby NLRP12 associates 

with NIK and suppresses its ability to activate noncanonical NF-κB in monocytic cells.   

 

NLRP12 induces NIK degradation through a proteasome-dependent pathway. 

Throughout the course of this study we consistently noticed reduced levels of NIK in 

cells co-expressing NIK and NLRP12, compared to cells in which NIK was expressed alone 
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(Figure 2A).  Furthermore, a significant reduction in endogenous NIK was also observed 

upon stimulation of THP-Ha-NLRP12 cells compared to THP-EV cells (Figure 5A).  These 

observations led us to question if NLRP12 suppresses NIK activity by regulating the stability 

of the kinase.  To test this hypothesis, Cos-7 cells were transfected with NIK in the presence 

or absence of NLRP12 and pulse-chase assays were performed.  NIK protein levels declined 

sharply in the presence of NLRP12 and densitometry quantified an approximate 75% 

decrease over the course of the experiment (Figure 5B).  In contrast, in the absence of 

NLRP12 NIK remained stable throughout the 6 h chase period.   

To determine which domains of NLRP12 regulate NIK stability, truncated forms of 

NLRP12 were co-expressed with NIK, and NIK levels were determined by western blot.  

These experiments revealed that the NBD is required to reduce NIK stability (Figure 5C).  

Interestingly, although the LRR domain associated with NIK, it had only a subtle effect on 

NIK stability (Figure 5C, lane 5).  The LRR domains of the NLR proteins NOD1 and NOD2 

sense breakdown products of peptidoglycan to trigger downstream signaling pathways, 

although there is no evidence that NOD1/2 directly bind to these products 
19

.  A specific 

ligand for NLRP12 also has not been identified; however, we predict that in the presence of 

ligand, the LRR domain would function to regulate NLRP12 activity.  Nevertheless, our 

results indicate that the NBD is required for reducing NIK stability.  The pyrin domain, in 

contrast, stabilizes NIK and may play an auto-inhibitory role in NLRP12 function (Figure 

5C, lane 2).   

The stability of many cellular proteins is regulated by the proteasome.  To determine 

if NLRP12 regulates NIK stability through a proteasome dependent mechanism, cells were 

transfected with NIK in the presence or absence of NLRP12 (Figure 5D).  Proteasome 
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inhibitor was added at increasing concentrations and NIK levels were determined by western 

blot analysis.  As expected, co-expression of NIK and NLRP12 resulted in greatly reduced 

levels of NIK protein.  This reduction was blocked in a dose dependent manner upon 

treatment of cells with proteasome inhibitor, demonstrating a role for the proteasome in 

NLRP12-mediated NIK degradation.   

This report reveals a second mechanism whereby NLRP12 associates with and 

negatively regulates a signaling molecule in activated monocytes.  In a previous report, we 

demonstrated that NLRP12 associates with IRAK-1 following TLR stimulation and blocks 

its hyperphosphorylation 
242

.  Since this correlated with decreased production of pro-

inflammatory cytokines, we were initially surprised to find that immediate early activation of 

canonical NF-κB occurred normally in THP-Ha-NLRP12 cells.  However, it has been shown 

that IRAK-1 can activate downstream signaling pathways in the absence of phosphorylation 

248
.  Therefore, it is likely that NLRP12 regulates other functions that are associated with 

IRAK-1 phosphorylation such as the ability to interact with other signaling molecules 
155

.  

This may result in NLRP12-mediated suppression of canonical NF-κB activity at later time 

points.  Indeed, we did observe decreased RelA phosphorylation 60 min after TLR2 

stimulation in the presence of NLRP12. 

It is not clear if the suppression of IRAK-1 phosphorylation and NIK degradation 

occur through a common pathway.  Nevertheless, the results presented here demonstrate that 

NLRP12 operates at multiple points to attenuate inflammatory signaling.  Given the 

preponderance of NLRP12 expression in monocytes, neutrophils and eosinophils, our results 

suggest NLRP12 may be critical for controlling inflammatory responses such as those that 

occur during allergy, asthma and infection. 
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Figure A1.1 
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Figure A1.1:  NLRP12 suppresses noncanonical NF-κκκκB activation.  (A, B)  THP-EV and 

THP-Ha-NLRP12 cells were treated with 200 ng/ml Pam3Cys for the indicated times.  

Western blots were probed with Ab to detect IκBα, RelA, or p100.  (C) THP-EV and THP-

Ha-NLRP12 cells were stimulated with 200 ng/ml Pam3Cys to induce p100 expression and 

then treated with 250 ng/ml CD40L to activate noncanonical NF-κB.  Nuclear and 

cytoplasmic fractions were analyzed by western blot.   
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Figure A1.2 
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Figure A1.2:  NLRP12 associates with NIK.  (A) HEK293T cells were co-transfected with 

Ha-NLRP12 and NIK or pcDNA.  Cell lysates were immunoprecipitated with anti-NIK and 

fractionated by SDS-PAGE.  Western blots were probed with anti-Ha to detect NLRP12.  

Control samples (lanes 4 and 5) were immunoprecipitated with a control polyclonal Ab to 

monitor specificity.  Lysate controls show the presence of NIK and NLRP12 in the expected 

lanes.  (B)  THP-EV or THP-Ha-NLRP12 cells were treated with 250 ng/ml CD40L.  Cells 

were lysed and immunoprecipitated with anti-NIK.  Western analysis of the precipitates was 

performed using anti-Ha to detect NLRP12.   
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Figure A1.3 
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Figure A1.3:  The NBD and LRR domains of NLRP12 mediate NIK binding.  HEK293T 

cells were transfected with NIK and the indicated NLRP12 truncation mutant.  Cell lysates 

were immunoprecipitated with anti-NIK and western blots probed with anti-V5 to detect 

NLRP12.  The bottom panels show the presence of NLRP12 and NIK in lysates.   
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Figure A1.4 
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Figure A1.4:  NLRP12 suppresses NIK-induced NF-κκκκB activation.  (A) HEK293T cells 

were transfected with NF-κB or p53 luciferase reporter plasmids in the presence of NIK or 

p53. NLRP12 was transfected at the indicated concentrations and luciferase activity was 

assessed.  (B)  THP-EV, THP-shNLRP12, and THP-Ha-NLRP12 cells were treated as 

described in Figure 1B.  The expression of the indicated genes was measure by real-time 

PCR.  The values presented are the average of three experiments measured in triplicate.  The 

student’s t-test was used to determine statistical significance in gene expression compared to 

control THP-EV cells, p<0.05.     
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Figure A1.5 
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Figure A1.5:  NLRP12 induces proteasome-mediated degradation of NIK.  (A) THP-EV 

or THP-Ha-NLRP12 cells were stimulated as indicated and NIK levels were assessed by 

western blot.  (B) Cos-7 cells were transfected with NIK in the presence or absence of 

NLRP12 and pulse-chase assays were performed.  Gels were visualized by autoradiography 

and NIK bands were analyzed by densitometry.  The percent NIK remaining, as compared to 

the 0 time point, is shown below each panel.  (C) HEK293T cells were transfected with NIK 

plus full length or truncated NLRP12.  NIK levels were determined by western blot.  HSP70 

was monitored to ensure equal loading.  Immunoblots showing NLRP12 expression were 

cropped for space considerations.  (D) HEK293T cells were transfected with NIK in the 

presence or absence of NLRP12.  Six hours post-transfection the indicated samples were 

treated with increasing concentrations of MG132.  Western blots were probed with anti-NIK.  

Actin levels were assessed to ensure equivalent protein loading.   
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