
INTERACTIVE SOUND PROPAGATION FOR MASSIVE
MULTI-USER AND DYNAMIC VIRTUAL ENVIRONMENTS

Micah Taylor

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2014

Approved by:

Dinesh Manocha

Gary Bishop

Ming Lin

Russ Taylor

Nicolas Tsingos



©2014
Micah Taylor

ALL RIGHTS RESERVED

ii



ABSTRACT

Micah Taylor: Interactive Sound Propagation for
Massive Multi-user and Dynamic Virtual Environments

(Under the direction of Dinesh Manocha)

Hearing is an important sense and it is known that rendering sound effects can enhance the level

of immersion in virtual environments. Modeling sound waves is a complex problem, requiring vast

computing resources to solve accurately. Prior methods are restricted to static scenes or limited

acoustic effects. In this thesis, we present methods to improve the quality and performance of

interactive geometric sound propagation in dynamic scenes and precomputation algorithms for

acoustic propagation in enormous multi-user virtual environments.

We present a method for finding edge diffraction propagation paths on arbitrary 3D scenes for

dynamic sources and receivers. Using this algorithm, we present a unified framework for interactive

simulation of specular reflections, diffuse reflections, diffraction scattering, and reverberation effects.

We also define a guidance algorithm for ray tracing that responds to dynamic environments and

reorders queries to minimize simulation time. Our approach works well on modern GPUs and can

achieve more than an order of magnitude performance improvement over prior methods.

Modern multi-user virtual environments support many types of client devices, and current phones

and mobile devices may lack the resources to run acoustic simulations. To provide such devices

the benefits of sound simulation, we have developed a precomputation algorithm that efficiently

computes and stores acoustic data on a server in the cloud. Using novel algorithms, the server can

render enhanced spatial audio in scenes spanning several square kilometers for hundreds of clients

in realtime. Our method provides the benefits of immersive audio to collaborative telephony, video

games, and multi-user virtual environments.

iii



Dedicated to Christine, Charlotte, and Thomas.

iv



ACKNOWLEDGEMENTS

I want to thank the members of my committee for their feedback and advice: Gary Bishop, Russ

Taylor, and Nicolas Tsingos. I want to thank Dinesh Manocha, Ming Lin, and the members of the

GAMMA group for all their support, criticism, and insight over the years. I have enjoyed working

with all of you.

I especially want to thank Zhimin Ren, Qi Mo, and Lakulish Antani for their support. I also

thank my colleagues at Rose-Hulman, who supported and trusted me during the last years of this

work. Each of you helped me grow as a scientist and a friend.

There were many people who helped me see the joy in learning, long before I understood their

generosity: James Frazier, Ken Holmes, Mark Ardis, and J. P. Mellor. My family back in Indiana

also gave me tremendous support before and during this work; I cannot thank them enough for their

love and encouragement.

I am very grateful for my friend Anish Chandak, without whom I would never have completed

this work. I could always go to him for valuable advice and careful consideration, no matter the

difficulty of the problems facing me.

Finally, I want to thank my lovely wife, Christine, for holding my hand during this adventure.

Her endless love and wisdom led me to where I am today.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Physical properties of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Multi-user voice communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Information in sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Sound simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7.1 Diffraction modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7.2 RESound: unified propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.3 Guided visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.4 Rendering massive multi-user environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Sound synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Sound propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



2.2.1 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Geometrical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.1 Image source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2.2 Accelerated image source methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.3 Additional wave effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Audio rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Voice communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 FRUSTUM DIFFRACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Preprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Edge containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Diffraction frustum construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 Path generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Bell Lab Box comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Accuracy of diffraction frustum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Diffraction cost and benefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 RESOUND: A UNIFIED RAY FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Acoustic modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Ray-based path tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 RESound components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Interactive sound propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Specular paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Edge diffraction paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



4.2.3 Diffuse component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Reverberation estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Audio rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Integration with sound propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Issues with dynamic scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 3D sound rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 Adding late reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 GUIDED MULTIVIEW TRACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Guided propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Ray traced propagation cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Guidance algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Multi-view GPU ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 GPU propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Multi-view tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Path creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Audio processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Dynamic scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Parameter interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Variable fractional delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 Audio processing limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



5.4.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 RENDERING MASSIVE
MULTI-USER ENVIRONMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Geometric acoustic similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.2 Surface orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.3 Surface discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.4 Surface material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.5 Overall similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Scene decomposition and sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Similarity comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Sample merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.3 Acoustic regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.4 Simulation of sound propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Storage and reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Response representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Storage data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2.1 Storing acoustic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2.2 Efficient data indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.3 Response reconstruction and rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Error computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Similarity measure thresholds and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.3 Acoustic property error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.4 Error map calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.5 Error analysis for reduction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.6 Metric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Implementation and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



6.5.1 Similarity and reduction cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.2 Precomputation: time and storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.3 Runtime cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 RESound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Guided visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Massive scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



LIST OF TABLES

3.1 Time/accuracy cost: We compare various subdivision levels to a beam
tracing solution on the Bell Lab Box. Our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Volume error: As the subdivision level increases, the error in the volume
of the diffraction cone decreases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Scene overview: Data on the scenes used for the performance results.
Some scenes are very open with much geometry visible from any given
point. Others are closed, with short visibility distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Diffraction benefit: Diffraction incurs a slight performance decrease, but
often finds more propagation paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Performance scaling: We show the performance scaling of our frustum
tracing and ray tracing implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Performance: Test scene details and the performance of the RESound components. . 53

4.3 Reverberation timings: The time cost to estimate the reverberation decay
is quite small compared to propagation times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Reverberation decay times Statistical predicted times compared to RE-
Sound measured times for two models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Performance in static scenes: The top two represent simple indoor and
outdoor scenes. The third one is a well known acoustic benchmark and the
fourth one is the model of Sibenik Cathedral. The number of reflections
(R) and edge diffraction (D) are given in the second column. The time
spent in computing propagation paths (on GPU) is shown in the PT column
and audio processing (on CPU) is shown in the AT column. The simulation
begins with 50k visibility samples; we measure the performance after 50
frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Performance per recursion: Average performance (in ms) of our GPU-
based path computation algorithm as a function of number of reflections
performed. The Desert scene also includes edge diffraction. 50k visibility
samples were used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Example scenes: Physical sizes for the indoor and outdoor scenes are
given in meters (m). The sample count is for a regular grid at the given
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



6.2 Precomputation time cost: Region segmentation using cube maps allows
a significant reduction in precomputation time. The full grid data is
generated based on the grid size given in Table 1 for each benchmark.
Due to the high time and space cost, times marked with an * are based on
partial simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Diffuse reflection cost: Diffuse reflections requires more simulation time
and slightly more storage space. Reduction results are for 75% node
reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4 Storage cost: We compare storage cost of our reduction algorithm to
a full grid, both stored in our efficient sparse data structure.We observe
significant improvement for large scenes. Due to the high time and space
cost, times marked with an * could not be computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Compression: We combine several algorithms to produce highly com-
pressed scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Max realtime mixes per core: This table shows mixing costs for 500ms
of decay data per stream. The setup time includes data structure access
and LOS traces. The realtime mixing step in our system is performed in
less than 20ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Comparison: We compare some features of our approach with other
precomputation methods, including PART [Siltanen et al., 2009], Wave-
grid [Raghuvanshi et al., 2010], IS gradient [Tsingos, 2009], DP Cache
[Foale and Vamplew, 2007], and Reverb graph [Stavrakis et al., 2008]. . . . . . . . . . . . . . 106

xii



LIST OF FIGURES

1.1 Wavelength and object size: Objects and details much larger than the
wavelength (a) cause the wave to reflect in a specular manner, while objects
much smaller than the wavelength (b) have little influence on the wave. . . . . . . . . . . . . . 2

1.2 Diffraction: Edge diffraction occurs when a wave encounters an object
edge and some of the wave propagates in the shadow region. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Wave scattering: Diffuse reflections (a) are a result of many diffraction
interactions when surface details match wavelength; if wavelength is much
smaller than the details (b) specular reflection occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Image source: From the Source, image sources SA and SB are created
over walls A and B respectively. Only SA is occlusion free; a reflection
sequence using SB is physically impossible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Receiver size: For the subset of first order reflection rays shown, smaller
receivers (a) result in fewer visibility samples needing to be culled, but
may have aliasing artifacts if the scene changes slightly. Larger receivers
(b) will have more sequences that must be validated and discarded, but
fewer aliasing artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Adaptive Frustum Tracing [Chandak et al., 2008]: Adaptive Frustum
Tracing traces frusta primitive from the source S (a). As subdivision
increases (b,c), frustum tracing approaches the ideal solution (d). . . . . . . . . . . . . . . . . . . 22

3.1 Overview of our edge diffraction algorithm: Possible diffracting edges
are detected and marked as a preprocess. During the simulation, frusta are
checked for diffracting edge containment. If so, a new diffraction frustum
is created. After the propagation is complete, the diffraction paths are
attenuated by the UTD coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Preprocessed edge types: (a) Planar edges that never diffract; (b) exterior
edges that always diffract; (c) interior edges and (d) disconnected edges
that can be configured by user choice to diffract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Diffraction frustum creation: (a) Given a frustum’s origin o and its edge
intersection points i1 and i2, (b) the edge axis e and the initial diffraction
vectors d1 and d2 are created. (c) Rotating d1 and d2 about the edge axis
towards the far side of the diffracting wedge sweeps a diffraction cone in
the shadow region bounded by the final vectors d3 and d4. (d) We create
complete the frustum volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



3.4 Edge containment check: After the frustum encounters a triangle (a), its
face is projected into the triangle plane (b). Each diffracting edge is then
checked for intersection with the face (c) to find the intersection points i1
and i2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 UTD attenuation: A radio is playing behind the door. The light green
region shows the spectrum for the direct path when the door is open. The
dark green region shows the spectrum of strongest diffraction path as the
door closes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Bell Lab Box [Tsingos et al., 2002]: The Bell Lab Box is a simple room
divided by a diffracting baffle. The image shows the 45 paths resulting
from two orders of specular reflection and one order of diffraction. . . . . . . . . . . . . . . . . . 35

3.7 Path length: As subdivision level increases, more paths are found and
the error decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Frustum subdivision accuracy: the resulting diffraction cone with a
subdivision of 0 (a), subdivision of 1 (b), and subdivision of 2 (c). The
diffraction frustum approximates the ideal cone (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Evaluation scenes: (a) Q3dm1, (b) Atrocity, (c) Chartres, (d) Sibinek,
(e) Sponza, (f) Highway, (g) Sodahall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The main components of RESound: scene preprocessing; geometric
propagation for specular, diffuse, and diffraction components; estimation
of reverberation from impulse response; and final audio rendering. . . . . . . . . . . . . . . . . . . 41

4.2 Example propagation paths: This scene shows (a) specular, (b) diffrac-
tion, and (c) diffuse propagation paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Unified ray engine: Both (a) frustum tracing and (b) ray tracing share a
similar rendering pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Extrapolating the IR to estimate late reverberation: The red curve is
obtained from a least-squares fit (in log-space) of the energy IR. The green
vertical line is the RT60 mark where the signal has decayed by 60 dB. . . . . . . . . . . . . . . 48

4.5 Algorithm overview: An overview of the integration of audio rendering
system with the sound propagation engine. Sound propagation engine
updates the computed paths in a thread safe buffer. The direct path and
first order reflection paths are updated at higher frequency. The audio
rendering system queries the buffer and performs 3D audio for direct and
first order paths and convolution for higher order paths. The cross-fading
and interpolation components smooth the final audio output signal. . . . . . . . . . . . . . . . . . 49

4.6 IR convolution: The input audio signal S is band passed into N octave
bands which are convolved with the IR of the corresponding band. . . . . . . . . . . . . . . . . . . 50

4.7 Test scenes used: (a) Room, (b) Conference, (c) Sibenik, and (d) Sponza. . . . . . . . . . . 53

xiv



4.8 Specular paths: With a subdivision (a) level of 2, frustum tracing finds
13 paths. A subdivision (b) level of 5 finds 40 paths. The (c) image-source
solution has 44 paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Diffraction paths: Increasing the frustum subdivision improves the diffrac-
tion accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Path direction: From source S to listener L: (a) The simple direct path is
physically impossible, but (b) diffraction and (c) reflection paths direct the
listener as physically expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Sample-based visibility: Visibility rays are traced from source S into the
scene. Paths that strike receiver R are then validated. (a) A small receiver
requires dense visibility sampling to find the propagation path. (b) Using a
larger receiver allows sparse sampling resulting in fewer visibility tests,
however more validation tests are need to remove invalid path sequences. . . . . . . . . . . . 60

5.2 Propagation test count: With a goal of finding 90% of the total paths
in the scene, an increasing number of visibility rays are traced and the
minimum required size of the receiver sphere changes accordingly. With
sparse visibility sampling, a large sphere is required, resulting in many
validation tests. With dense sampling, the sphere size can be reduced. For
specific cost values for visibility and path validation tests, some minimal
total cost exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Guiding state machine: This state machine tracks the number of unique
contribution paths found. Solid lines are followed if the current path count
matches the recorded maximum count, dashed lines are followed if the
path count is less than the recorded maximum. States marked R+ and S+
increase the ray count and sphere size, while states marked R− and S−
decrease the ray count and sphere size, respectively. At the Restart state,
the maximum paths count is set to the current count. The (R+, S+) states
attempt to recover lost paths before recording a new count. The main top
and bottom arms focus on reducing rays and receiver size respectively. . . . . . . . . . . . . . . 62

5.4 Implementation overview: All scene processing and propagation takes
place on the GPU: hierarchy construction, visibility computations, specular
and edge diffraction. The sound paths computed using GPU processing
are returned to the host for guidance analysis and audio processing. The
guidance results are used to direct the next propagation cycle. . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Multiview tracing: (a) From the source, rays are grouped into packets
that can be efficiently processed on the vector units. (b) However, a single
packet may hit multiple surfaces, resulting in reflection packets that are
inefficient. (c) We reorder packets so that each reflection view can be traced efficiently. 64

5.6 Multiview performance: Multi-view ray tracing out performs standard
ray tracing for scenes (80k triangle scene shown) with many specular views.
The multi-view timings include the time cost of all necessary sorting and reordering. 66

xv



5.7 Barycentric diffraction hit points: Using the barycentric coordinates of
a ray hitpoint, a diffraction origin d can be found on the triangle edge. . . . . . . . . . . . . . . 68

5.8 Edge diffraction: (a) Rays near the edge are detected for resampling. (b)
Diffraction samples are cast through the shadow region, bounded by the
adjacent triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Interpolation schemes: Different attenuation schemes applied for attenu-
ation interpolation. Discontinuity in attenuation between two audio frames
interpolated with linear interpolation and Blackman-Harris interpolation.
Delay interpolation is performed using a linear interpolation. Variable
fractional delays due to linear delay interpolation are handled by applying
low order Lagrange fractional delay filter on a supersampled input audio
signal during the audio processing step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 Fractional delay: Applying fractional delay filter and supersampling
input signal to get accurate Doppler effect for a sound source (2 KHz sine
wave) moving away from the receiver at 20 m/s. The sampling rate of the
input audio is 8 KHz. The supersampling factors are 4x and 8x for left and
right figures respectively. Zeroth order and third order Lagrange filters are applied. . . 72

5.11 Example scenes: The scenes used to test the performance of our imple-
mentation: (a) Music hall model; (b) Sibenik cathedral; (c) Indoor scene;
(d) desert scene. While the music hall scene is not often used for low order
acoustic simulation, we selected it to show the animation sequence in
Figure 5.13. Sibenik cathedral was selected as a very challenging visibility
test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.12 Recursion path count: These figures show the number of paths found for
varying visibility rays. The receiver size is fixed at 1 meter. As visibility
ray count increases, low triangle count scenes like the Music hall (a) are
quickly saturated. However, in complex scenes like Sibenik cathedral (b),
higher visibility ray counts are required to explore the scene. . . . . . . . . . . . . . . . . . . . . . . . 75

5.13 Music Hall animation: This figure compares various receiver size models
to our guided method. During frames 100-199, the source moves to a new
position; during frames 300-399, the receiver moves to a new position.
The top charts show the accuracy and the time cost over the animation
sequence. The three middle charts show number of validation and visibility
tests conducted by our guided method, in addition to the radius of the
receiver. The bottom charts show the impulse response of our method
compared to an accurate image source simulation for frames 50, 150, and
250. Our method is more accurate than the others, while incurring a small
additional time cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvi



6.1 Sample signature for FPS scene in Figure 6.8(b): The components of
the similarity measure: (a) distance with black being near and white far,
(b) direction with vectors shown as RGB components, (c) discontinuities
in depth and direction, and (d) materials with three frequency bands shown
in RGB components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Surface distance: The first-order propagation distance p is directly related
to nearby reflectors. v is the direct path to the receiver. fs represents the
shortest first-order reflection path as φs goes to 0. f` represents the longest
first-order reflection path as φ` goes to π. Our algorithm measures the f
terms of p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Surface orientation: Reflection direction r varies as a property of the
incoming vector v and the surface normal orientation n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Adaptive sampling: (a) Regular grid sampling creates a very high number
of samples; (b) we remove redundant samples; (c) adaptive sampling of
the scene with fewer samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Data insertion: The decay data A, B, C is appended to a linked list and
the length of the list is the data index. The index is stored with a pointer
to the decay data as a pair in a map. The index is paired with a position
hash and stored in a hash table. The insertion can be performed in average
O(log n) time. After all the data is stored, the linked list is converted to a
linear array, for a total time complexity of O(n) and average storage cost
of O(n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Data access: For runtime access, the query position is hashed and the
decay index is found in average O(1) time. The data array is then queried
for the final decay data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Early response attenuation: The early response pressure is attenuated
for source/receiver pairs in the same region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 Example scenes: Our algorithm can generate environmental acoustic
effects in large virtual worlds and games. We show different benchmarks
with their dimensions in meters: (a) simple outdoor scene (33× 33× 10);
(b) first person shooter (FPS) game scene (30× 60× 20); (c) city scene
(600× 980× 33); (d) canyon model (4000× 4000× 100). Our approach
scales with the size of these models and can handle a large number of
sources and receivers in multi-player enviroments at interactive rates. . . . . . . . . . . . . . . 94

6.9 Sampling accuracy vs. error and cost: Naive subsampling (a) is the
most common way of reducing time and storage cost. As the threshold
error in our adaptive sampling algorithm changes (b), the overall error
in the acoustic evaluation metrics increases, while overall storage, pre-
computation time, and number of samples decrease (FPS game scene).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvii



6.10 Error maps: We compute acoustic evaluation properties in the FPS scene
for (a) full dataset and (b) our reduced dataset. The details of these datasets
are given in Table 6.2. The difference between these datasets represents
the error in our solution (c). The total energy values for the source position
outlined in green are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.11 Segmentation error: The segmentation map for the FPS scene is shown
in (a), where each unique color is an acoustic region. The total energy
relative error resulting from this segmentation is shown in (b) We show
the source position sampled in Figure 6.10 as a green circle. The legend
for (b) is the same as the legend in Figure 6.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.12 Error maps: We compute the relative error in FPS scene with respect to
different evaluation metric: (a) onset delay; (b) onset wave direction; (c)
RT60; (d) and definition D. A wireframe of the scene is overlaid on the
error maps. Red areas indicate high error. In most regions the errors in
terms of onset delay, RT60 and definition are low. A few locations result
in high values of the onset direction relative error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.13 Error values for different reduction algorithms corresponding to dif-
ferent acoustic evaluation metrics: The (a) adaptive algorithm performs
better than any other; the other node placement algorithms guided by our
signature, (b) flood fill and (c) sorted merge, perform much better than
naive (d) subsampling. These error plots demonstrate the benefit of using
our geometric acoustic similarity criteria along with the adaptive scheme
as compared to other approaches. For example, the error reduction over
sub-sampling algorithms can be large, as compared to that over flood-fill
and single sort reduction. Due to high compute cost, these results only
include specular and diffraction responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.14 Individual metric results: We show the reduction results when only a
single metric is enabled on the Small City scene. The chart title indicates
which metrics are enabled with a 0 or 1: distance (d), direction (r), dif-
fuseness (f), and material (m). The top row shows the results with all
metrics enabled and the results from naive subsampling. The vertical axis
is maximum error of any measured acoustic property, while the horizontal
axis is the nodes remaining from the original count. Due to high compute
cost, these results only include specular and diffraction responses. . . . . . . . . . . . . . . . . . . 103

xviii



CHAPTER 1: INTRODUCTION

Our ability to hear sound waves is one of our most important senses. Along with sight, it is

the only sense that can detect remote objects with high-fidelity [Blauert, 1997]. Unlike sight, our

hearing is not limited to a small field of view in front of us; hearing allows us to sense the world

in any direction. Without turning to direct our focus, our sense of hearing can distinguish sounds

that come from in front from those that come form behind. Our ability to emit sound complements

our hearing, allowing communication through sound. Interaction with sound waves is shared by all

humans and other animals. As a society, we have invested a great deal of effort in harnessing sound

for communication and entertainment.

Like all waves, sound has complicated interactions with the environment. Sound waves begin at

some vibrating source and propagate out through a medium. The waves may reflect and scatter as

they encounter objects in the medium. These interactions alter the wave in ways that are understood.

Our perception of sound is adapted to recognizing these changes in the wave, and we can derive

information about the source and environment from the modified wave patterns.

1.1 Physical properties of sound

Sound begins as a mechanical vibration (itself a wave) of an object. The vibrations may be

transmitted into the object’s containing medium and longitudinal waves propagate forth [Kinsler

et al., 1999]. These waves are compressions and rarefactions of the medium.

The waves may vary in amplitude and frequency; our ears can perceive and distinguish both.

The source of the mechanical vibration determines the wave properties. A high frequency vibration

results in a high frequency wave. As the vibration is transmitted to the medium, the medium directly

influences the speed of the wave, and consequently, its wavelength.

As the wave propagates through the medium, it may encounter objects or variations in the

medium, for example density. These may reflect or scatter the wave in various ways. Sound



reflections result in the echoes heard in canyons or large empty rooms. The wave may also transfer

some of its energy when it encounters objects, causing the object to vibrate. The object’s vibration

may cause another sound wave to propagate. This is how sound travels through apartment walls.

Some of these wave effects vary based on the wavelength of the wave. Since wavelength and

frequency have an inverse relationship with wave speed, throughout the text we will often use

wavelength and frequency interchangeably.

(a) (b)

Figure 1.1: Wavelength and object size: Objects and details much larger than the wavelength (a)
cause the wave to reflect in a specular manner, while objects much smaller than the wavelength (b)
have little influence on the wave.

If the object’s surface is smooth relative to the wavelength, the wave can be reflected specularly

(Figure 1.1a). This kind of reflection is similar to how light reflects in a mirror: the angle of incidence

to the surface is the same as the exit angle for any portion of the wavefront. Similarly, if the entire

object is much smaller than the wavelength, the wave continues propagation with change (Figure

1.1b).

However, for objects that have details that are similar in scale to the wavelength size, diffraction

occurs (Figure 1.2). For example, when a wave encounters an edge, some of the energy in the wave

bends around the edge. Since the bending is related to wavelength, some frequencies may bend more

than others. This can lead to audible sounds even when the sound source is out of sight of receiver.

This is an important effect for humans, since it allows us to detect sound sources even when they are

visually occluded.

If the object’s surface has surface complexity in similar scale to the wavelength of the sound

wave, diffraction occurs due to the surface complexity and the resulting wave is scatters in a complex

2



Figure 1.2: Diffraction: Edge diffraction occurs when a wave encounters an object edge and some
of the wave propagates in the shadow region.

(a) (b)

Figure 1.3: Wave scattering: Diffuse reflections (a) are a result of many diffraction interactions
when surface details match wavelength; if wavelength is much smaller than the details (b) specular
reflection occurs.

pattern (Figure 1.3a). This interaction reflects the wave in a diffuse manner; the exit angle has a

complex relationship to the incident angle. However, if the surface complexity is much larger than

the wavelength of the sound wave, the wave reflects specularly off the individual surface facets

(Figure 1.3b).

As the wave moves through the environment, some energy is lost due to propagation through

the medium. Additionally, each encounter with an object or medium change alters the waveform

and may absorb energy. Since the speed of sound is hundreds of meters per second and typical

indoor spaces are only a few meters big, the wave may undergo hundreds of interactions in just a few

seconds. As the wavefront scatters, different portions are scattered and reflected along different paths

through the environment, causing the wave’s energy to be spread out over time and frequency, and

the wave amplitude to vary.

3



Eventually, some portion of the wave energy may arrive at a receiver. Human ears have

organs that can sense the wave as changes in pressure. The changes in pressure in our ear canal

are transmitted to our brain as neural signals, which are perceived as sounds. Since our ears are

asymmetrical in the horizontal plane and the vertical plane, waves arriving from different directions

diffract around our bodies in unique ways. Additionally, the wave must diffract around the head to

reach both ears. This can delay the arrival of sound to one ear. All of these properties allow our

brains to localize the sound source, that is, determine the approximate direction of the source.

1.2 Multi-user voice communication

Sound has been subject to much use and investigation over the centuries. Speech, the act of

emitting purposeful sounds, is humanity’s fundamental method of communication.

As science established the properties of sound waves, humans have sought to harness sound for

our advancement. Telephones and recording tools are the most obvious recent advancements. The

invention of the telephone was humanities first tool that allowed natural two-way communication

over vast distances. Telephones leverage our already existing biological tools in a natural way, unlike

any technology heretofore.

Our technology continues to advance and humanity’s knowledge is now stored in more permanent

and convenient written form. Even so, audio communication remains important, as written storage

requires training and tools to use. Indeed, audio communication is so basic, that realtime voice

communication between any two places in the world is almost taken for granted.

With the advent of the Internet, voice communication became extremely affordable and reliable.

The flexibility of modern computers has allowed voice communication over vast distances to be

trivially accessible and collaboration between large groups easily attained. Voice over Internet

Protocol (VoIP) is the process of using the internet to enable voice communication. Voice data is

recorded and compressed on one computer, then transmitted to a remote computer for reconstruction.

The remote system attempts to recreate the input sound using rendering software and an output

speaker system.

In modern VoIP systems, many people may be communicating in a single conversation. Since

each person wishes to hear all other speakers, all voice data must be streamed to each client computer.

4



A peer-to-peer arrangement is when each clients sends all recorded voice data to each other client,

but this may require significant network resources. An alternative is a client-server arrangement,

where the voice data is sent to an intermediary, which aggregates the data and sends the result to each

client. This moves the network and compute burden to the intermediary server.

1.3 Information in sound

Given the physical properties of sound waves and the way humans use sound to communicate, it

is clear that waves can carry explicit information from their source as well as implicit information due

to their propagation. From birth, our sense of hearing continually saturates us in sound information

and our brains adapt to what we hear. We grow to be able to infer a great deal from the sounds that

we hear and become naturally trained at coupling hearing with our other senses.

As discussed in Section 1.1, human ears allow localization of sound sources. There is also a

discrepancy between the perceptions of sight and sound. We spend most of our lives in an air medium

where light travels very quickly and sound relatively slowly. We learn to recognize that when an

accompanying sound response is delayed from a visual response, that the action that propagated

the light and sound wave is some distance away. Children use this to determine the distance of

thunderstorms by counting the seconds between a lightning strike and the corresponding thunder

sound. Relative to our perception, light travels practically instantaneously, while sound travels at

approximately 343 meters per second. Thus, every three seconds between lightning strike and thunder

indicates that the storm is one kilometer away.

Each reflection of the sound wave sends energy along a new path through the environment.

Some sound energy may arrive at the receiver along a path with no reflections, and is only delayed

by the distance between source and receiver based on the speed of sound. Other energy arrives by

way of several reflections. This energy must travel a greater distance and more energy is lost to the

medium and the reflection, and is thus delayed with a lower amplitude. This results in echoes and

reverberation. Humans come to expect sounds in large enclosed spaces to produce such reflected

effects. Additionally, we can infer the size of the enclosed space based on the density and length

of the echoes and reverberation. Cathedrals and canyons will have lots of echo and reverberations,

living rooms will not.

5



Since we hear sounds our entire lives, we come to expect certain actions to have certain sounds. If

the sound source is well known, we can detect changes in frequency and amplitude from the expected

sound. Someone speaking from around a corner will be slightly muffled; music heard through a wall

will be very muffled; a voice from far away will be quieter. The effect of the environment on the

wave conveys information about the environment and the location of the source to us.

1.4 Sound simulation

Given how pervasive sound is in the physical world, it is desirable to be able to simulate the

properties of sound. It is convenient to divide sound simulation into three parts: input, propagation,

and output. Each part can be combined with others to form a complete sound rendering pipeline.

There are many applications for sound simulation. Architectural acoustics is the study of

sound in man-made structures. Buildings have been designed with acoustics in mind for centuries.

Many modern auditoriums have been built without regard to acoustic properties and suffer from

intelligibility issues for both speech and music. Acoustic simulations can provide valuable insight

into acoustic problems with existing structures as well as guide design of future structures . The

propagation of sound waves through the architectural environment is the most important process that

is modeled for this application. Most commercial acoustic simulators, such as CATT1, EASE2, and

ODEON3, are designed for architectural acoustics.

Many entertainment mediums rely on high quality visuals and audio. In film, Foley artists have

long designed the sound effects that accompany on screen actions. Various physical objects are used

to create artificial sounds that are expected by viewers, for example banging coconuts for horse foot

steps. Many film visual effects are simulated in virtual environments for cost and safety reasons.

It is reasonable that sound simulation could assist Foley artists in the creation of sound. For this

application, the creation of sounds by physical contact would be important to simulate.

Video games are another medium that could benefit from sound simulation. Just as with film,

three types of simulation could be useful: sound synthesis from contacts, sound propagation through

environments, and sound output from speakers. An additional requirement is that all these simulations

1 http://www.catt.se

2 http://ease.afmg.eu

3 http://odeon.dk

6

http://www.catt.se
http://ease.afmg.eu
http://odeon.dk


must run interactively meaning that the simulation must match the visual simulation, often within a

few milliseconds. Many games feature highly dynamic environments, where doors open and close,

buildings collapse, and vehicles move around. The acoustic simulation must be able to respond to

these dynamic events.

Virtual training simulations are interactive virtual environments similar to video games, but with

clearly defined goals of enhancing the participant’s ability in specific areas. Possible simulations

could be street crossings for blind people, battle training for soldiers, and emergency situations for

medical personal. These applications require interactive and realistic visual and audio simulations to

avoid the possibility of negative training.

Multimodal visualization is the use of several senses to convey data relationships. Visual displays

are the most common way to visualize data, but sound can be used also. Voice communication

systems with many participants can place each participant in a virtual auditory space to allow the

listener’s natural localization to determine which participant is speaking. Simple auditory displays

include how many operating systems alert users when long operations complete with an audible

alert (a ’ding’ or such). In more realistic virtual environments, non-physical auditory cues can aid

the participant in understand the virtual environment. With realistic propagation simulations, a

participant could be alerted to activity in other parts of the virtual environment. Simplified versions

of this exist in some video games in the form of ’map pings’ where an audible noise is made to draw

attention to the environment. Auditory displays are not restricted to virtual environments.

Simulations can also be used to design better transmitters and receivers for very complex audio

problems such as medical ultrasounds and underwater sonars. These require propagation simulations

to account varying media in addition to the effects described above. Density changes result in changes

in the speed of sound and make predicting wave propagation difficult.

1.4.1 Input

All sound simulations begin with some input sound signal. This can come from a recording of a

real-world sound or synthesized using a simulation. Most common input sounds come from physical

vibrations of materials in the environment captured with a recording device. Without careful planning,

the specific radiation pattern of the physical event is not captured. Indeed, most recordings capture a

single sound channel and this is insufficient to fully represent the input signal in a virtual environment.

7



A beamforming technique can use an array of recording devices to measure the radiation field more

accurately.

An alternative to measuring physical sounds is to create the sounds synthetically. Sound synthesis

is the process of creating sound signals algorithmically. Frequency modulations uses combinations

of pure tones to form useful signals for music. Physical contact sounds can also be modeled by

simulating material vibrations in contacting virtual objects.

1.4.2 Propagation

Once a sound wave is transferred to the environment’s medium, it begins propagating through

the environment. Simulate of wave propagation must balance accuracy and speed. Humans can

perceive a wide range of frequencies: 20 hertz to 20 kilohertz. With a typical speed of 343 meters

per second in air, sound waves have a wavelength in the range of 17 meters to 1.7 centimeters. Most

objects built and used by humans (furniture, office doors, cups, etc.) have similar scale to sound

waves. This means sound has wave-like interactions with these objects. An acoustic wave equation

predicts the propagation of sound waves. The details of this are discussed in Section 2.2.

For visual simulations of light propagation, most wave effects can be ignored since the wave-

length of light is on the order of hundreds of nanometers and wave effects on that scale are hard for

humans to observe visually. Moreover, light travels much faster than sound, so only the steady state

needs to be computed. Most light simulations model the light wave as a wave front of particles and

ignore the time component.

Sound simulation is much more challenging as compared to visual simulation. Wave effects, like

diffraction and interference are prominent and easily audible to humans. Sound also travels much

slower and humans can easily detect delays, echoes, and reverberation effects caused by interactions

from the environment.

Accurate simulations should be able to compute a wide range of frequency inputs and outputs,

handle wave effects, and output correct time domain values. Solving all of these effects in a

single simulation is difficult. The acoustic wave equation predicts all these effects, but is very

time consuming to solve, as it scales with the fourth power of the maximum simulation frequency.

Dynamic scenes further complicate simulation, since objects may shift during the simulation step

8



and frequency shifts from the Doppler effect are audible. Another consideration is environments

where the medium density varies and the medium is in motion, such as atmosphere or ocean currents.

1.4.3 Output

Synthesis and propagation simulations are of no use without a means to render audible sounds

for the listener. Since humans can hear frequencies up to 20 kilohertz, accurately reconstructing

sound signals requires sampling rate of about 40 kilohertz, due to the Nyquist limit. Humans can

perceive a wide range of amplitudes, from approximately one ten-thousandth of a pascal of pressure

to tens of pascals of pressure.

Further complicating matters is the fact that sound waves arrive at a receiver from some direction,

allowing the receiver to spatialize the source direction. Humans can spatialize in three dimensions

since our ears are asymmetrical vertically and horizontally. The asymmetrical shape means that

a wave will scatter differently based on arrival direction. This effect requires at least two output

channels for realistic spatialization cues to be reconstructed (i.e. binaural audio). The scattering

effects of ear, head, and shoulder shape is usually encoded in special Head Related Transfer Functions

(HRTF). In cases of more complex output, such as moving sources and receivers or high numbers of

output channels, more advanced reconstruction techniques are required.

If an unit impulse response is used as the input signal to an acoustic simulator, an impulse

response is generated. This response represents how the environment modifies the input signal. The

impulse response can then be convolved with any signal to auralize output. Depending on the type

of simulator, the impulse response can measure the pressure response or the energy response of the

environment.

1.5 Thesis statement

Prior methods are restricted to only specular reflection and diffraction on dynamic scenes. Wave

based solvers can simulate all wave effects, but are too slow for any kind of dynamic scenes. Even

when precomputing the propagation, current methods are restricted to scenes of tens of meters and a

few sources.

9



Geometrical acoustics does not fully model the wave equation and needs additional effects

to simulate realistic sound propagation. Such simulations should harness the parallel capabilities

of modern many-core CPUs and GPUs. Additionally, low-power mobile devices must also be

considered when developing propagation algorithms, especially as virtual environments increase in

size and number of users. Our thesis solves these problems:

Using parallel ray tracing methods and precomputation algorithms, realistic interactive

geometrical sound propagation can be performed on dynamic scenes and massive multi-

user virtual environments.

1.6 Challenges

Interactive sound propagation is a challenging problem and potential solutions must match

both the goal application and the type of target hardware. For example, some applications (e.g.

games) may require low latency simulations of sound propagation, others (architectural acoustics)

may require high accuracy, while other may have combinations of multiple requirements. Some

hardware may support high single thread performance, some other hardware may support hundreds

of low performance threads, while another architecture is heterogeneous. Given the variation in

requirements, it is unlikely that a single algorithm will satisfy all needs for several decades.

When developing our algorithms, we considered current and likely future hardware trends.

Compute hardware is increasingly moving away from fast single threaded models to wider parallel

configurations. This trend is seen in CPU designs and GPU designs. Intel’s most recent server

architecture 4 supports 120 threads on 60 cores; the most recent GPUs from AMD 5 and NVIDIA 6

support more than 5,600 threads. Clearly, it is desirable to have algorithms that parallelize across

CPUs and GPUs.

Another important trend in computing is the widespread use of mobile devices or thin-clients.

Phones, media players, and other pocket computers are in widespread use. These devices also show

a trend towards parallel architectures, but with much greater restrictions on power use. Often, mobile

4 Intel Xeon Processor E7-4890 v2, http://ark.intel.com/products/75251/
5 AMD Radeon R9 295X2, http://www.amd.com/en-us/products/graphics/desktop/r9/295x2
6 NVIDIA GeForce GTX TITAN Z, http://blogs.nvidia.com/blog/2014/03/25/titan-z/

10

http://ark.intel.com/products/75251/
 http://www.amd.com/en-us/products/graphics/desktop/r9/295x2
 http://blogs.nvidia.com/blog/2014/03/25/titan-z/


devices rely on networked servers (colloquially ’the cloud’) to spend compute power on their behalf,

then retrieve compute results over the network.

It can be difficult to design propagation algorithms that parallelize well on modern hardware. It

requires that the global propagation solution be decomposed into a very high number of independent

steps with similar workloads. Even highly parallel problems like ray tracing are non-trivial when

implemented on actual hardware. Often, memory access patterns and cache issues become the

limiting factors in such parallel algorithms.

Mobile implementations of sound propagation add further complexities. The mobile client often

does not have the compute power or the battery power to simulate many propagation effects. If a

backing server computes the propagation results, it must be able to handle many client renders in

order to be effective. This means the propagation simulation must be formatted in a way to minimize

the per-client compute cost.

Specific applications of sound propagation often require certain properties for plausible rendering.

This can make simulation for some applications difficult. For example, if the source or receiver is

fixed, optimizations can be employed in the simulation algorithm. However, many interactive applica-

tions, like video games, require that the source and receiver be allowed to move freely. Additionally,

video games may require the entire scene to be dynamically updated when the simulation is running.

Since many rendering methods assume a static scene, this presents significant difficulties.

Diffraction is another important property that is practically required in all propagation simulations

that are used for auralization (or audio outout). Diffraction is especially difficult to model in

geometrical acoustic methods since it results in a scattering effect. This can lead to very high

compute costs when multiple diffracting edges interact. Diffraction is important because we rely on

sound bending around corners to hear before we can see. Sound propagation without diffraction has

unnatural discontinuities and shadow regions, where even nearby sound sources cannot be heard.

1.7 Contributions

In this thesis, we present algorithms for fast, accurate simulation of sound propagation in a

medium of constant density. Moreover, these algorithms are designed to work well on commodity

processors and scale to be capable to rendering acoustic effects in massive environments. We first

11



present a method for rendering diffraction effects using the Unified Theory of Diffraction (UTD)

. We then use our diffraction algorithm to develop RESound, a CPU based unified ray engine that

support specular reflections, diffraction, diffuse reflections, and reverberation effects. For GPUs, we

present a multiview visibility algorithm that adapts to changing environments. Finally, we design

a precomputation algorithm that can render hundreds of sources in parallel on massive multi-user

environments. The details and contributions of each algorithm are shown below.

1.7.1 Diffraction modeling

Diffraction is one of the most important wave effects sound undergoes. When the sound wave

encounters a boundary, the wave is reflected. If the boundary has discontinuities, the wave scatters

based on wavelength. This effect is prominent at edges. For example, sounds propagate around open

door ways, allowing people in a room to hear approaching footsteps before the person walking is

visible.

Some propagation simulations directly simulate wave propagation and can render this effect

without any special handling. However, other simulators only model high frequency effects and treat

sound as linear rays. These simulators are called Geometrical Acoustic (GA) simulators since they

primarily consider the bounding geometry and not the actual wave front. These simulators are often

very fast, but cannot render important effects like diffraction without special additions.

We have designed efficient ways to augment GA simulators with diffraction effects. The

diffraction rendering is based on the Unified Theory of Diffraction (UTD). This is the first algorithm

capable of rendering diffraction effects in dynamic scenes at interactive rates.

1. Interactive dynamic scenes: Our algorithm can find diffraction paths at interactive rates for

moving objects in dynamic scenes.

2. Accurate simulation: A subdivision process allows performance versus accuracy adjustment

at runtime. We show that our algorithm approaches the accuracy of state-of-the-art GA methods

for high subdivision levels.

12



1.7.2 RESound: unified propagation

While diffraction is a very important effect, there are still other important wave effects that

must be handled. If a wave reflects off a surface with many discontinuities on the same scale as the

wavelength, the wave will experience many diffraction effects. The wave will then scatter off the

surface in many directions. This is called diffuse reflection.

Since modeling these very small scale diffractions is difficult, diffuse reflection is often consid-

ered a separate effect in GA simulation. We have developed an algorithm that can handle specular

reflection, diffuse reflection, and diffraction in a single framework. All effects are supported on by a

single Bounding Volume Hierarchy (BVH) acceleration data structure to reduce precomputation time

cost and runtime memory cost. Moreover, this algorithm supports interactive scene dynamism of any

type simultaneously: sources may move, receivers may move, and scene boundaries may transform.

1. Unified ray model: Using a single ray acceleration structure, we support specular reflections,

diffuse reflections, and diffraction effects This allows most major acoustic effects to be

simulated with a single method.

2. Fully dynamic scenes: We use recent BVH algorithms [Lauterbach et al., 2009] to quickly

build and modify our ray acceleration structure to support moving sources, receivers, and ob-

jects. Our method is the first to support specular reflections, diffuse reflections, and diffraction

in fully dynamic environments.

3. Robust acoustic signals: Propagation simulation provides the signals for the early acoustic

response. We complement the early signal with a reverberation estimation to provide a full

acoustic signal.

1.7.3 Guided visibility

As processor design shifts from fast single cores to many parallel cores, appropriate parallel

algorithms must be developed. Some of the techniques in the unified algorithm described above map

very well to CPU designs, but not to modern GPUs due to memory access and branch restrictions.

We design a multiview algorithm that allows portions of the unified framework to effectively use the

parallel computing power of GPUs.

13



In all GA methods, there is time cost in finding possible sound paths and verifying the paths as

valid. The parallel simulation we designed is very flexible and can vary the time spent on finding

paths versus validating them. With an easy mechanism to vary time cost, we develop a guidance

algorithm that can adjust to find local minima in rendering time cost interactively with no loss in

accuracy.

1. Fully dynamic scenes: Supports moving sources, receivers, and objects.

2. Guided visibility and validation: We present a novel algorithm to reduce the cost of the

visibility and validation steps. Using simple algorithms, the cost of both operations can often

be reduced while retaining an accurate set of sound propagation paths.

3. Multi-viewpoint ray casting: We describe a ray casting algorithm that performs approximate

visible surface computations from multiple viewpoints in parallel. We use this to accelerate

specular reflection calculations on GPUs.

4. Diffraction computation by barycentric coordinates: To enhance our implementation, we

have developed a low cost method of detecting rays near diffracting edges. Using the barycen-

tric coordinate of ray intersections, we can create an origin for diffraction propagation.

5. Interactive auralization: Using the above algorithms, we implemented a GPU based system

to demonstrate the method.

1.7.4 Rendering massive multi-user environments

Given the above methods to quickly compute realistic sound propagation on CPUs and GPUs, it

is natural to use them in interactive virtual environments. However, many modern clients are mobile

devices and thin-clients that lack significant compute resources. For such devices, the propagation

results can be precomputed. However, even with fast propagation simulation, computing propagation

effects on large scene is challenging due to the time and space costs.

We present an algorithm that can select a small number of sample points in large scenes so as

to minimize error while maintaining reasonable time and space costs. This algorithm performs low

order sampling of the scene to discover the most critical sample points, then forms enclosing regions

14



where the sound field is likely to experience minimal change. A single sample is used for each region,

reducing both time and storage costs.

We combine this reduction with efficient simulation, storage, and rendering techniques. Our

algorithms support diffraction effects, multiple frequency bands, and full surround sound capabilities.

We show that implementations of these algorithms can render hundreds of sources in scenes spanning

tens of square kilometers in size.

1. Geometrical acoustic similarity measure: We introduce a geometric measure based on the

properties that influence the acoustic field. The measure can be computed quickly using the

local neighborhood of a given point location in the environment. This enables us to perform

scene sampling in O(n) time for n sample points (section 6.1).

2. Scene subdivision: We use the similarity measure to sample the virtual environment and

then segment the scene into regions based on the measure. The full acoustic response is only

sampled at the center of each region, resulting in a reduction of both the precomputation time

and the storage overhead, and thereby enables us to handle very large scenes which span

kilometers in virtual space.

3. Efficient response storage: We present an efficient approach that scales in both time and

space complexity to accommodate large acoustic scenes. Our storage algorithm compresses

redundant data while supporting fast inserts and constant average time retrieval. This enables

efficient storage of the tens of billions of acoustic responses needed for kilometer-sized scenes.

1.8 Organization

The contributions of this thesis are divided into two main parts. We first discuss interactive GA

simulations on dynamic scenes. Chapter 3 details how to improve the realism of geometrical acoustic

methods by adding support for diffraction effects. We then cover a unified framework for multicore

CPUs in Chapter 4 and a guided multiview algorithm for GPUs in Chapter 5.

We then discuss precomputation methods for mobile devices and thin-clients. Using variations

of our interactive GA methods, we present an algorithm for simulation of sound propagation in

massive multi-user virtual environments in Chapter 6.

15



CHAPTER 2: RELATED WORK

In this section, we give a brief overview of prior work in acoustic simulation. Acoustic simulation

for virtual environment can be divided into three main components: sound synthesis, sound propa-

gation, and audio rendering. In this dissertation, we focus on sound propagation and the necessary

audio rendering. Modeling the creation of sound is only briefly discussed. Our work is based in GA

methods, and previous methods are detailed. Audio output is also covered, since it is necessary to

render the signal for the user to hear.

In many algorithms, the input signal can be model separately from the propagation. A response

signal can be convolved with an input signal to output a modified version of the input signal. If

the response signal is the unit impulse, the convolved output will be the same as the input signal.

If propagation of a unit impulse is simulated, the output response signal represents the effect the

environment had on the unit impulse. By the distributive property, the propagated unit impulse can

be convolved with an input signal to produce a signal as if the input signal had been used in the

simulation. This allows propagation to be decoupled from the input signal.

2.1 Sound synthesis

Sound synthesis generates audio signals based on interactions between the objects in a virtual

environment. Synthesis techniques often rely on physical simulators to generate the forces and object

interactions [Cook, 2002, O’Brien et al., 2002]. Many approaches have been proposed to synthesize

sound from object interaction using offline [O’Brien et al., 2002] and online [Raghuvanshi and Lin,

2006, van den Doel, 1998, van den Doel et al., 2001] computations. Anechoic signals in a sound

propagation engine can be replaced by synthetically generated audio signal as an input. Thus, these

approaches are complementary to the presented work and could be combined with most propagation

simulations for an immersive experience.



2.2 Sound propagation

Sound propagation deals with modeling how sound waves propagate through a medium. Wave

effects such as reflections, transmission, and diffraction are the important components. The acoustic

wave equation (AWE) 2.1 is a partial differential equation that predicts how sound waves behave in a

medium with obstructions.

∂2p

∂t2
− c2∇2p = F (x, t) (2.1)

where x is the position, t is the time, p is the pressure as a function of position and time, c is the

speed of sound, F is a forcing term representing sound sources, and∇ is the Laplacian in 3D. This

equation describes how the pressure p changes over time in response to dispersion∇2p and the input

source terms F .

The wave equation also has a frequency domain representation and the time domain and frequency

domain representations can be solved by standard numerical techniques. Such simulations are quite

accurate and discussed below. These simulations are unfortunately quite costly in terms of compute

time and memory space. Geometrical Acoustics are approximate methods that model the wave front

as particles. This is typically very fast to simulate, but is unacceptably inaccurate due to missing

wave effects, notably diffraction. GA simulation methods and attempts at improving their accuracy

are also discussed below.

2.2.1 Numerical solutions

The wave equation can be solved directly by numerical techniques, such as the Boundary Element

Method (BEM), the Finite Element Method (FEM), the Finite-Difference Time-Domain method

(FDTD), and Digital Waveguide Meshes (DWM), and others [Kleiner et al., 1991].

Each method discritizes space and solves the wave equation across the elements. For the BEM,

the boundary elements are discritized, while for the FEM, space is divided into tetrahedra. FDTD

methods [Botteldooren, 1994] divide space into a grid of cells and are the most common method of

solving wave equations [Shlager and Schneider, 1995]. The DWM method [Duyne and Smith, 1993]

is very similar to FDTDs.

17



For frequency f , compute costs for solving the AWE scales with f4. Similarly, memory cost

scales with scene volume. Thus, for 3D simulations, memory cost is the product of scene dimensions

x, y, and z. These scaling issues limit the utility of wave based simulation methods.

There have been recent advances in making these simulations tractable on modern desktop

computers. Adaptive Rectangular Decomposition (ARD) [Raghuvanshi et al., 2008] uses analytical

solutions to the wave equations for carefully defined rectangular regions and has been used on larger

scenes and higher frequencies than previous methods. FDTD [Savioja, 2010] and ARD [Mehra et al.,

2012] can be implemented in a parallel efficient manner, leveraging modern parallel hardware like

GPUs.

Even with these advances, large scenes and high frequencies remain a problem. Solutions have

been proposed [Mehra et al., 2013, Raghuvanshi et al., 2010], but these still have very high compute

costs over large scenes.

2.2.2 Geometrical methods

The most widely used methods for interactive sound propagation in virtual environments are

based on geometrical acoustics. GA methods are so named because they compute sound propagation

only accounting for the geometry which describes the scene. This is a high frequency approximation

and essentially models sound waves as particles emitted from a source.

2.2.2.1 Image source

All GA methods are variations of the image source method. The image source method [Allen

and Berkley, 1979, Borish, 1984] assumes a small wavelength relative to the objects in the scene

and models only specular reflections. The goal of the image source method is to enumerate all valid

specular reflection paths between a source and a receiver in an acoustic scene composed of planar

walls. The general algorithm is to recursively reflect the source point about all of the geometry in the

scene to find specular reflection paths.

The image source method works on 3D scenes composed of walls as planar surfaces. Given

a sound source position, the source is reflected over all walls forming a reflected image source for

each wall. These image sources represent a single level of reflection. For each subsequent level of

reflection, each image source must be reflected over all walls. High orders of reflection are thus

18



extremely expensive, with wr images for w walls and r orders of reflection. The basic image source

method is tractable on small scenes and low orders of reflection.

The images represent every possible reflection sequence for the specified reflection order. There

are likely to be many physically invalid sequences, so an image validation process is used to cull

invalid sequences. Given a receiver position in the scene, line-of-sight between the receiver and

the highest order of reflection images is verified to pass through the wall that caused the reflection

image. Such a case represents an unoccluded and valid reflection path segment. This validation

process repeats all the way to the source. Any sequences that are completely validated represent

valid specular reflection paths between the source and the receiver. See Figure 2.1 for details.

Figure 2.1: Image source: From the Source, image sources SA and SB are created over wallsA and
B respectively. Only SA is occlusion free; a reflection sequence using SB is physically impossible.

These paths represent the specular reflection that sound will follow when propagated from the

source. Sound that propagates on these paths is attenuated by the medium and the reflections with the

walls. Not all of the paths are the same total distance, so the signal from the source will be distributed

over time when it arrives at the receiver.

2.2.2.2 Accelerated image source methods

The high cost of the image source method can be reduced by avoiding calculating images that are

known to produce invalid paths. This is typically done using visibility queries. A visibility query is a

geometric query that can tell if an object is in line-of-sight to a point or region. The validation step

of the image source method uses a simple visibility query to verify that an image’s reflecting wall is

19



unoccluded to the receiver. Visibility queries can also indicate if any portion of a wall is visible to a

point. This can be used to avoid the creation of images that cannot lead to physical reflection paths.

Consider if a wall is not visible to a source point. It is impossible for the sound to specularly reflect

off a wall that is hidden from the source, so an image source should not be created for such a wall.

Binary Spatial Partition (BSP) trees have been used to directly reduce the number of invalid sources

created [Schröder and Lentz, 2006] in the image source algorithm.

Beam tracing: Many techniques designed for accelerating visual rendering are applicable to

accelerating GA methods. Beam tracing was one of the earliest methods used, first described for

visual rendering [Heckbert and Hanrahan, 1984] and later adapted for use in acoustics [Funkhouser

et al., 1998]. In beam tracing, a view volume is projected out from the source and repeatedly clipped

against the nearest polygons. The polygons that clip the initial volume represent surfaces that are

visible for the first reflection order. View volumes can be reflected off the polygon surfaces to form

reflection beams for the next order of reflection.

Computing all the beams is costly and can take several minutes to an hour to compute. Once

computed, the visibility information can be stored in a visibility tree structure for fast queries. A

validation step still takes place to compute the final path segments and measure the paths for signal

output. The validation step is fast enough that interactive rendering of the propagation signal is

possible.

Beam tracing was initially an expensive operation, requiring complex clips against all the

objects in the space. Recently, Binary Spatial Partitioning (BSP) trees have been used to accelerate

the clipping operations [Laine et al., 2009], resulting in beam tracers that can render 6 orders of

reflections in a few minutes. Memory costs are quite high and scenes with high numbers of polygons

are not viable.

Ray tracing: The beam tracing method uses object space visibility, which means the visibility

results are analytically calculated from scene data. Such GA methods thus compute the same answer

as the brute force image-source algorithm. Other methods use less accurate visibility queries for

large improvements in speed and capabilities, at the possible expense of accuracy.

Ray tracing is a type of visibility query that can test a ray for intersection against objects in a

scene. If enough rays are cast into the scene, a rough estimate of the visible objects can be determined.

20



This is a sample space visibility query, since the visibility results are the result of repeated samplings

of the scene. If the sampling density is too low, some visible objects may not be reported.

One of the earliest uses of ray tracing [Krokstad et al., 1968] precedes even the image source

method. In the ray tracing method, many rays are traced from the source and reflected in the scene.

The rays eventually intersect a receiver and their visibility information recorded.

Since intersecting an arbitrary ray with a receiver point is unlikely, a sphere is often used as a

detector to collect the rays [Ondet and Barbry, 1989]. The size of the sphere is related to the number

of rays collected, as well as the accuracy of the simulation. A large sphere size can lead to incorrect

sound paths being detected [Lenhert, 1993]. Different methods have been developed to select an

appropriate sphere size, usually based on the number of rays traced or distance between source and

receiver [Lenhert, 1993, Xiangyang et al., 2003]. The methods for selecting an appropriate ray count

are based the assumption that all surfaces are visible to any one source position [Lenhert, 1993]. In

scenes where most paths occur after at least one reflection or the scene configuration changes, it is

difficult to reliably predict an appropriate sampling density.

(a) (b)

Figure 2.2: Receiver size: For the subset of first order reflection rays shown, smaller receivers (a)
result in fewer visibility samples needing to be culled, but may have aliasing artifacts if the scene
changes slightly. Larger receivers (b) will have more sequences that must be validated and discarded,
but fewer aliasing artifacts.

21



The visibility paths can be validated [Bertram et al., 2005, Svensson, 2008, Vorländer, 1989]

as occlusion free. Simulations that use sample based visibility may not produce the same results as

the image source method, especially if the sampling is sparse. However, if enough initial samples

are used, the complete set of acoustic paths can be found and the output matches the image source

method.

Radiance transport: Radiosity based methods are similar to BEM methods in that they discritize

the scene surface into patches. A visibility factor is computed between all patches and is used to

compute attenuate between any two points in the scene [Siltanen et al., 2007, 2009]. Similarly,

the acoustic radiance of a scene can be computed and stored efficiently for interactive auralization

[Antani et al., 2012a,b]. Radiance transfer methods improve on radiosity by allowing endpoint

motion, while radiosity requires the source to be fixed.

Discrete volumes: Ray tracing techniques are fast, but can suffer from aliasing or sampling

errors. Beam tracing is a volumetric technique and performs accurate geometric propagation, but

relies on elaborate clipping algorithms and acceleration structures that are limited to static scenes.

Frustum tracing [Lauterbach et al., 2007a] attempts to strike a balance between ray tracing and beam

tracing by performing discrete clipping along with volumetric tracing. This greatly reduces sampling

issues and uses hierarchical acceleration structures to handle complex, dynamic scenes. Frustum

tracing traces convex frustum primitives through the scene.

(a) (b) (c) (d)

Figure 2.3: Adaptive Frustum Tracing [Chandak et al., 2008]: Adaptive Frustum Tracing traces
frusta primitive from the source S (a). As subdivision increases (b,c), frustum tracing approaches the
ideal solution (d).

AD-Frustum [Chandak et al., 2008] is an adaptive subdivision algorithm for frustum tracing.

This algorithm automatically increases detail level at object edges (Figure 2.3) by subdividing large

frusta into smaller frusta. This increases accuracy at boundaries, while maintaining high performance

by using large frusta when intersecting object interiors. FastV [Chandak et al., 2009] uses similar

22



visibility primitives, but computes conservative visibility results. This means that the visibility queries

may include walls that are not necessarily visible to the source. While this increases the number of

validation tests needed, the final validated results match the analytical solution. Additionally, the

validation can be completed at interactive rates and the initial tree computation is much faster than

beam tracing.

2.2.2.3 Additional wave effects

The GA methods above mainly support specular reflection. However, sound waves may undergo

many other types of interactions with the environment. The wave could reflected in a scattered

manner or the wave could bend around corners.

Diffuse reflections: The methods thus discussed compute pressure values and supporting wave

interference. For diffuse reflections, the reflection waves scatter and interference effects become less

prominent. If interference simulation is not needed, energy based methods can be used. Energy based

methods act as if each ray carried part of the acoustic energy and some of that energy is collected

at the receiver and integrated. Such methods can avoid the validation step, since unique reflection

paths are not needed. However, in this type of model, the receiver size must be set correctly to avoid

integrating too much energy. Diffuse reflections have been shown to be important for modeling sound

propagation [Dalenbäck et al., 1994] and are often modeled with such simulators, since interference

effects are minor. Cone tracing [Dalenbäck, 1996], variations of ray tracing [Kapralos et al., 2004],

and similar methods have been used to compute diffuse reflections.

Diffraction: There has also been work on complementing GA methods with edge diffraction

effects. Diffraction effects are very noticeable at corners, as the diffraction causes the sound wave to

propagate in regions that are not directly visible to the sound source. The two primary diffraction

models used in geometrical simulations are the Uniform Theory of Diffraction (UTD) [Kouyoumjian

and Pathak, 1974] and the Biot-Tolstoy-Medwin (BTM) [Biot and Tolstoy, 1957, Medwin, 1981]

method. A time domain formulation of BTM [Svensson et al., 1999] is very useful in acoustics.

These methods are widely used since they describe the diffraction of a ray path incident on an edge.

The BTM method is considered more accurate than UTD and can be formulated for use with finite

edges. However, the BTM method is compute intensive, which has led to different techniques to

improve its performance [Antani et al., 2012c, Calamia and Svensson, 2005, 2007].

23



Due to its high cost, the BTM methods has only recently been used in interactive simulation [An-

tani et al., 2012c, Schröder and Pohl, 2009]. The UTD, however, has been adapted for use in several

interactive simulations [Antonacci et al., 2004, Cowan and Kapralos, 2011, Schissler and Manocha,

2011, Taylor et al., 2009b, Tsingos et al., 2001]. The UTD assumes all edges are infinite, which

results in low computational requirements. Even with this restrictive assumption, the UTD has been

used to calculate diffraction coefficients for several interactive simulations, based on beam tracing

[Tsingos et al., 2001] and 2D visibility diagrams [Antonacci et al., 2004]. Such simulations compare

well to measured results [Tsingos et al., 2002]. In practice, these approaches have been mainly

limited to static scenes.

Reverberation: Sound wave can propagate for many hundreds of reflections. After so many

reflections, an individual wavefront may not have enough energy to be audible. However, constructive

interference can allow low energy waves to form audible signals. In some enclosed spaces like

cathedrals and music halls, these late reflections have a significant effect. Along with the early

reflections, the later acoustic response must also be calculated [Hodgson, 1990]. This is often done

through statistical methods [Eyring, 1930] or ray tracing [Embrechts, 2000].

2.3 Audio rendering

Audio rendering generates the final audio signal which can be heard by a listener over the

headphones or speakers [Kuttruff, 2007]. In the context of geometrical sound propagation, it involves

convolving the impulse response computed by the propagation algorithm with an anechoic input

audio signal and introducing 3D cues in the final audio signal to simulate the direction of incoming

sound waves.

In many interactive virtual environments (e.g. video games), the environment responses are not

computed based on the actual scene. Instead, reverberation is either directly pre-rendered into the

sound effects or implemented at run-time using dynamic artificial reverberation filters [Jot, 1999].

Parameters of reverberation decay can be directly manipulated by the sound designer to achieve

a desired effect without requiring any geometrical modeling [3D Working Group of Interactive

3D Audio SIG, 1999]. While simplifying the authoring process, traditional artificial reverberators

suffer from a number of issues. They impose a “single room” model [Eyring, 1930] and constrain

24



the shape of the decay profile (e.g., exponential). Because of their limited use of scene geometric

representation, these methods also fail to convincingly model coupled or outdoor spaces. In [Bailey

and Brumitt, 2010], distance histograms extracted from a cube map rendered at a position of interest

are used to select the parameters for such an artificial reverberator. However, distances to the camera

origin alone fail to capture local variations of the surfaces, which have a strong influence on the

scattering properties [Tsingos et al., 2007].

Moving sound sources, receivers, and scene objects can cause variations in the impulse response

from source to receiver and could lead to artifacts in the final audio output. Several methods have

been proposed to reduce the artifacts in scenes with moving sources and receivers, including motion

prediction [Tsingos, 2001], simple interpolation and windowing techniques [Savioja et al., 2002,

Siltanen et al., 2009, Wenzel et al., 2000], and imposing restrictions on source and receiver motion

[Taylor et al., 2009a]. Furthermore, many techniques have been proposed to reduce the runtime

computational cost of 3D audio in scenarios with large number of sound sources (including virtual

sources) based on clustering [Tsingos et al., 2004, Wand and Straßer, 2004] and perceptual methods

[Moeck et al., 2007].

Simple binaural output (stereo output) is easy to implement and very common, but cannot

represent sound sources in full 3D [3D Working Group of Interactive 3D Audio SIG, 1998] space.

Introducing 3D cues in the final audio signals requires convolution of an incoming sound wave with

a Head Related Impulse Response (HRIR) [Algazi et al., 2001, Larcher et al., 2000]. This can only

be performed for a few sound sources in real-time. Recent approaches based on audio perception

[Moeck et al., 2007, Tsingos et al., 2004] and sampling of sound sources [Wand and Straßer, 2004]

can handle 3D sound for thousands of sound sources.

It is often desirable to reproduce sounds on multichannel surround output systems. Wave field

synthesis [Berkhout et al., 1993] is based on Huygens’s superposition principle and uses an array

of output speakers to create virtual sound sources in an environment. Ambisonics [Gerzon, 1973]

is a method of encoding the sound field using a spherical harmonic basis. Ambisonics has robust

multichannel support, since output can be decoded per channel. Spatial Impulse Response Rendering

(SIRR) [Merimaa and Pulkki, 2005] is another method for rendering multichannel output. By storing

time domain direction and diffuseness information for several frequency bands, SIRR rendering

algorithms can reproduce spatial audio over any type of multichannel system.

25



2.4 Voice communication

For networked virtual environments, such as social communities or massively multiplayer on-

line (MMO) games, meaningful interaction through voice conversation with other participants is a

valuable feature [Sallnäs, 2005, Wadley et al., 2007, Williams et al., 2007]. First adopted through

side-clients that enabled telephone-quality, walkie-talkie style communication, voice services are

becoming more integrated and are now connecting hundreds of millions of users on PCs, game

consoles and cell phones. For instance, group voice chat is integral to gaming services such as

Microsoft Xbox LIVE, Sony Playstation Network, and Valve Steam, and is also directly integrated

into such games as Blizzard’s World of Warcraft, CCP Games’s EVE Online, Electronic Arts’s Need

for Speed World, and Linden Lab’s Second Life.

There has been much work on voice communication over the internet, typically called VoIP

(Voice over Internet Protocol) [Goode, 2002]. Some of the key issues include latency, voice coding

efficiency, network error resilience, and endpoint voice cleaning and processing [Benesty et al.,

2000, Markopoulou et al., 2002]. While most work in scalable VoIP focuses on the infrastructure

system, there has also been significant research on improving the immersive effects of the voice

communication, typically through spatialized rendering [Hollier et al., 1997, West et al., 1992].

Studies have shown [Gibbs et al., 2006, Halloran, 2009] that, while voice communication helps users

coordinate in virtual environments, a lack of environmental effects can make it difficult for users

identify sound sources.

Modeling the effects of sound propagation, such as occlusion and echoes, can help convey

scenes where participants communicate from different rooms or areas. For example, the direction

of the direct sound path and early sound reflections can help a user spatialize the sound source

position, while the time it takes for the late reverberation relfections to decay conveys the scale of the

environment and the materials present. However, these acoustic effects are difficult to implement in a

large-scale VoIP system. Since the voice mixing is generally performed on a remote server, network

delivery cost restricts the amount of data that can be transferred. Moreover, a typical multi-core

server platform must handle thousands of remote clients simultaneously [Dolby, 2012], strongly

limiting the processing capabilities. Peer-to-peer VoIP systems remove the need for a server system

to process all client audio, but push the communication and simulation cost to the clients. In these

26



systems, implementing spatialized audio is possible [Zimmermann and Liang, 2008], but that only

supports distance attenuation.

Even VoIP systems that include effects beyond simple direct-path distance attenuation [Boustead

and Safaei, 2004, Radenkovic et al., 2002, Safaei, 2005] only support direct line-of-sight occlusion

modeling and simplified diffraction effects, which result in unrealistic proximity cues. This is because

the storage or compute cost of propagation simulations (discussed below) is quite high. This load

must be either borne by the clients (handling 3-4 simulations in real-time) or the server (handling

hundreds of simulations in real-time).

Client-server solutions have been proposed to dynamically compute sound propagation paths

using the actual scene representation [Funkhouser et al., 1999]. But even the most recent geo-

metrical acoustic (GA) approaches, which can model dynamic sound reflection and diffraction

interactively [Taylor et al., 2012], cannot scale to large environments with a high number of sources.

Other geometrical acoustic methods [Chandak et al., 2009, Funkhouser et al., 1998] take advantage

of the static nature of the scene to precompute a visibility tree. However, these methods assume that

either the source or the receiver position is fixed.

One practical approach to simulating the acoustics of virtual environments is to pre-compute

the acoustical impulse response (IR) at several locations throughout the environment in an off-line

process; the results can then be efficiently re-used to process the audio signals at run-time by querying

the response database and reconstructing a reasonable solution for a given source and microphone

pair [Antani et al., 2012a, Mehra et al., 2013, Pope et al., 1999, Raghuvanshi et al., 2010, Siltanen

et al., 2009, Tsingos, 2009]. The main benefit of the off-line computation is that both early and

high-order sound scattering (reflection/diffraction) can be simulated, providing improved proximity

cues and distance perception. However, most of these techniques have been designed for small indoor

or outdoor acoustic spaces with only a few sources or objects and may not scale to large virtual

worlds with a high number of sources and receivers.

27



CHAPTER 3: FRUSTUM DIFFRACTION

Ray-frustum tracing has been shown to be an efficient algorithm for GA simulation [Lauterbach

et al., 2007b]. However, it is limited to specular reflections and suffers from sharp discontinuities in

the sound field without diffraction effects.

The frustum tracing algorithm is described in Section 2.2.2. The underlying algorithm generates

4-sided frusta based on specular reflections and edge diffractions and intersects the frusta with the

scene primitives. After intersection, if a frustum is not fully contained within a scene triangle, part of

the frustum must lie outside the triangle edges. To find the region outside the triangle, the frustum is

sub-divided into sub-frusta using a quad-tree structure. These sub-frusta are then intersected with the

triangle and the process repeats to a user defined limit. This sub-division allows a frustum to more

accurately represent the shape of the scene primitives encountered. For more details, we refer to

[Chandak et al., 2008, Lauterbach et al., 2007b].

In this chapter, we present our algorithm for support ray-frustum diffraction in detail and address

the issues that arise in terms of incorporating edge diffraction in ray-frustum tracing.

3.1 Algorithm

In this section, we present our algorithm for diffraction in detail and address the issues that arise

in terms of incorporating edge diffraction in ray-frustum tracing. The frustum tracing algorithm is

described in Section 2.2.2. The underlying algorithm generates 4-sided frusta based on specular

reflections and edge diffractions and intersects the frusta with the scene primitives. After intersection,

if a frustum is not fully contained within a scene triangle, part of the frustum must lie outside the

triangle edges. To find the region outside the triangle, the frustum is sub-divided into sub-frusta using

a quad-tree structure. These sub-frusta are then intersected with the triangle and the process repeats

to a user defined limit. This sub-division allows a frustum to more accurately represent the shape of

the scene primitives encountered.



Figure 3.1: Overview of our edge diffraction algorithm: Possible diffracting edges are detected
and marked as a preprocess. During the simulation, frusta are checked for diffracting edge contain-
ment. If so, a new diffraction frustum is created. After the propagation is complete, the diffraction
paths are attenuated by the UTD coefficients.

In order to reduce the runtime overhead of checking if a triangle edge can diffract, our algorithm

precomputes all of the diffraction edges in the scene. When a sub-frustum is found to contain a

potentially diffracting edge, a new frustum is created to contain the possible diffraction contributions.

After all propagation paths are found, they are attenuated based on the path characterization and

scene primitives as described in Section 3.1.5. Figure 3.1 shows the various steps of our algorithm.

While we are immediately concerned with the direct, specular, and diffraction components, our

algorithm could also be combined with diffuse and late reverberation calculations for more accurate

simulations.

3.1.1 Preprocess

Since the UTD is formulated for long edges, we allow the user to set a minimum diffracting

edge length. Rather than explicitly testing whether an edge is a candidate for diffraction at runtime,

we find all possible diffraction edges as part of a preprocess by analyzing the scene and marking

possible diffracting edges. Specifically, we use a data structure that links each edge to its incident

triangles. The edges of each triangle are classified based on the surface normals of the incident faces

(see Figure 3.2).

If the triangles incident to an edge have similar normals, they are considered almost planar and

the resulting edge is not considered as a candidate for diffraction (see Figure 3.2(a)). If the normals

are exterior and point away from one another, the edge is part of a diffracting wedge (Figure 3.2(b)).

The two surface normals are used to compute the wedge angle that is later used for calculating the

diffraction coefficients. There are two other remaining cases that can be marked as diffracting or

29



(a) (b) (c) (d)

Figure 3.2: Preprocessed edge types: (a) Planar edges that never diffract; (b) exterior edges that
always diffract; (c) interior edges and (d) disconnected edges that can be configured by user choice
to diffract.

(a) (b)

(c) (d)

Figure 3.3: Diffraction frustum creation: (a) Given a frustum’s origin o and its edge intersection
points i1 and i2, (b) the edge axis e and the initial diffraction vectors d1 and d2 are created. (c)
Rotating d1 and d2 about the edge axis towards the far side of the diffracting wedge sweeps a
diffraction cone in the shadow region bounded by the final vectors d3 and d4. (d) We create complete
the frustum volume.

non-diffracting depending on the scene design. In scenes where triangles form both the interior and

exterior sides of a wall, the user can elect to have triangles with normals facing inwards (Figure

3.2(c)) marked as diffracting edges from the backface. Similarly, disconnected edge (i.e. triangles

without neighbors, see Figure 3.2(d)) can be marked as diffracting edge if the user desires. If marked,

30



each disconnected edge would have a wedge angle of 2π radians. Edges may also be marked by

other general criteria, such as direct user selection or minimum and maximum length.

3.1.2 Edge containment

During scene traversal, it is necessary to identify the diffracting edges that are contained within

a propagating frustum. Consider the case where a frustum intersects a triangle and is not fully

contained within the triangle. In this case, at least one of the corners of the frustum face lies outside

of the triangle edges (Figure 3.4(a)). After many iterations of the adaptive frustum subdivision, the

subdivision limit is reached and the edge is approximated by many sub-frusta, as shown in Figure

3.4(b). Some of these sub-frusta must contain the edge that caused the initial subdivision.

(a) (b) (c)

Figure 3.4: Edge containment check: After the frustum encounters a triangle (a), its face is
projected into the triangle plane (b). Each diffracting edge is then checked for intersection with the
face (c) to find the intersection points i1 and i2.

A series of tests determine whether a diffracting edge is contained within a frustum and thus

whether we need to compute a diffraction frustum. Since the preprocessing step has assigned each of

the triangle’s edges a type, if none are marked as a diffracting edge, the test terminates. However, if

any of the edges are diffracting, it is necessary to find the portion of each edge that is exposed to

the sound field. This is tested by performing intersection between the edge and the four lines that

form the frustum face boundaries in the plane of the triangle. The diffracting edge is checked for

intersection against the boundaries of the frustum face. If the edge does not cross the bounds of the

sub-frustum, the diffracting edge must not be within this sub-frustum and the test is repeated with

the next sub-frustum.

In the case that the frustum boundaries intersect the diffracting edge, the exact orientation of the

edge within the frustum needs to be determined. This is performed by completing the intersection

31



calculation and finding the two intersection points i1, i2 (see Figure 3.4 (c)), of the edge on the

frustum boundary. These intersection points are used in the construction of the diffraction frustum.

3.1.3 Diffraction frustum construction

When a diffracting edge is found within a frustum, a diffraction frustum is created and propagated

through the scene. This diffraction frustum should encompass the shadow region that is hidden from

the direct contribution or specular contribution. We will now detail the calculations used during

frustum creation (see Figure 3.3). Since most diffracting edges are located at wedges formed where

two triangles meet, we will differentiate between the two triangles as the source side and the receiver

side of the wedge. The source side is the side that is exposed to the original propagation path; the

receiver side is the side where the new diffracted field will propagate in the shadow region.

In order to create a diffraction frustum, given the diffracting edge, the region of the edge

that is contained within the initial frustum must be known. The intersection points from the edge

containment test describe this portion of the edge. Using these points i1 and i2 on the edge and

the origin of the original frustum o, two new vectors d1 and d2 are defined as d1 = i1 − o and

d2 = i2− o. These vectors describe the side of the new diffraction frustum that borders the transition

from line-of-sight contribution to shadow contribution.

Next, we construct the vectors that are used to represent the far plane of the diffraction frustum.

This far plane will border the face of the triangle on the receiver side of the diffracting edge,

and combined with the first set of vectors, bounds a portion of the shadow region. We begin the

computation by defining an edge axis vector e = i1 − i2. There is a vector fr which is perpendicular

to the diffracting edge and lies in the plane of the triangle that represents the receiver side of the

diffracting edge. This receiver face vector is defined as fr = e× nr, where nr is the normal of the

receiver side triangle. We also compute the vector dperp by projecting d1 onto the plane perpendicular

to e. Once these vectors are computed, we find the angle between them, and rotate d1 and d2 about

e towards fr by this angle. Beginning at d1 and d2, at intervals along the rotation, new frusta are

created to approximate the diffraction cone, with the rotation ending at the vectors d3 and d4, which

lie in the plane of the triangle corresponding to the receiver side.

32



In order to create the full diffraction region about the edge (not just the shadow region), the

vectors d3 and d4 can be created efficiently as:

df =

 (ds · e)e+ (ds · fr)fr if ds · fr < 0

(ds · e)e− (ds · fr)fr otherwise

Where df is the resulting vector in the plane of the receiver triangle and ds is a vector that borders the

shadow region. Similar to the example in Figure 3.3, d4 results from d1 and d3 results from d2. The

vectors d4 and d3 are then rotated about e towards the triangle face on the source side of the wedge.

At intervals along this swept region, new frusta are created to approximate the diffraction region.

3.1.4 Path generation

The frustum tracing algorithm generates new reflection and edge diffraction frusta based on

the intersections with scene primitives. As each frustum traverses the scene, the data needed to

attenuate its contribution is pushed on a stack. This includes the data that describes the direction

and location of the frustum and the geometric primitives encountered. The reflected frusta have the

material attenuation values pushed, while diffraction frusta have the wedge angle and triangle data

pushed onto the stack. This data is later used to create the contribution paths used in generating an

IR (Impulse Response).

As each frustum is propagated through the scene, it is checked for containment of the receiver. If

the receiver is contained in the frustum, there is some reflection or diffraction path from the source to

the receiver. We wish to compute the path segment found inside the receiver containing frustum as

well as the segments inside each parent frustum that was propagated up to the containing frustum.

These path segments are computed from a linear combination of the four the rays that form the

frustum edges. Together, these path segments represent the entire contribution path through the

scene.

This is quick to compute and accurately represents the contribution path for specular reflection.

However, for diffraction, there is slight error in the path vectors since the UTD cone is being

approximated by a finite number of frusta. The details of this error are outlined in Section 3.2.2.

33



3.1.5 Attenuation

After all the frusta are computed, the contribution paths are used to compute an impulse response

for the scene. Algorithms to compute the attenuation values for reflection have been described

previously [Lauterbach et al., 2007b]. In this section, we highlight the calculation of the diffraction

attenuation coefficients.

The UTD was chosen as the method to generate the diffraction coefficients for the paths since it

works well with the discrete intersection tests performed for ray-frustum culling. The UTD assumes

that an edge has infinite length and the actual length or subset of the edge that is exposed to sound

energy is not used. Specifically, a single frustum can be checked if it contains a valid diffraction path

completely independently of all other frusta.

Each path is attenuated using the UTD calculations for a user defined number of frequency bands

(see Figure 3.5). Since only paths in the shadow region are attenuated, there will be a discontinuity in

the field at the boundary of the shadow region. Near this boundary, approximate attenuation values

are found by normalization [Tsingos et al., 2001]. This allows a smooth transition at the shadow

boundary.

Figure 3.5: UTD attenuation: A radio is playing behind the door. The light green region shows
the spectrum for the direct path when the door is open. The dark green region shows the spectrum of
strongest diffraction path as the door closes.

3.2 Accuracy

In this section we validate the results computed by our edge diffraction algorithm against results

from the well known Bell Lab Box benchmark [Tsingos et al., 2002]. We compare the number

of paths our algorithm finds for various subdivision levels to the number of paths that the beam

34



tracing algorithm finds in the Bell Lab Box benchmark. In addition, we discuss the frustum tracing

approximation of diffraction cones and detail the limitations of our approach.

Throughout this section and the next, we will refer to the subdivision level chosen for the frustum

tracing system. Given a maximum subdivision level of x, a frustum may be recursively split up to 2x

times.

3.2.1 Bell Lab Box comparison

The “Bell Lab Box” is an acoustic benchmark. The Bell Lab Box (Figure 3.6) is a large closed

box which contains a sound source and receiver. An optional baffle may be inserted that obstructs

the visibility between portions of the box. This Bell Lab Box was used to conduct a controlled

study [Tsingos et al., 2002] of audio diffraction. Knowing the scene dimensions and layout, physical

measurements were compared to a beam tracing simulation of a similar virtual scene. The resulting

output compares well with the physical measurements from the Bell Lab Box.

Figure 3.6: Bell Lab Box [Tsingos et al., 2002]: The Bell Lab Box is a simple room divided by a
diffracting baffle. The image shows the 45 paths resulting from two orders of specular reflection and
one order of diffraction.

The referenced paper provides the earliest 60 geometric paths traced from a source position to

a receiver out of line-of-sight. We match the path sequences from their highly accurate geometric

simulation to sequences generated by our diffraction frustum propagation. For these comparisons,

we compute frusta for the full diffraction region about the edge as predicted by the UTD, instead of

using the shadow region approximation.

35



In the Bell Lab Box path data there are a large number of paths that encounter the diffracting

edge, and depart the edge traveling parallel along the diffracting wedge. Due to its basis on ray

tracing methods, frustum tracing may not find these paths that are parallel to and travel along the

plane of the diffracting wedge. Consider a frustum with corner rays that travel parallel to the wedge

face plane. Even if there are more diffracting edges in this plane, they will not be found, since such

edges are not contained within the frustum shape. This is similar to intersecting a ray with a triangle

oriented such that the triangle normal is perpendicular to the ray direction.

We compare the number of paths found by each simulation in Figure 3.7. As the subdivision

level of frustum tracing increases, more paths are found and the accuracy increases. For clarity, we

include results from a hypothetical frustum tracing simulator that correctly calculates all paths except

those that are parallel to the diffracting surface. As shown in the figure, the number of paths found

by high subdivision frustum tracing compares very favorably with this ideal frustum tracer.

Figure 3.7: Path length: As subdivision level increases, more paths are found and the error
decreases.

Since our algorithm has a time to accuracy tradeoff, we have measured the cost of various

subdivision levels compared to beam tracing results on the Bell Lab Box (Table 3.1). All simulations

compute 4 orders of specular reflection and 2 orders of diffraction. We compare the accuracy results

by percentage of the first 60 paths found. Please note that the beam tracing time was measured in

2002. We estimate that CPU single thread performance has increased 3-4 times since then.

36



Subdivision % paths found Time cost (s)
3 58 2.5
4 63 11
5 73 47

beam 100 610

Table 3.1: Time/accuracy cost: We compare various subdivision levels to a beam tracing solution
on the Bell Lab Box. Our method

3.2.2 Accuracy of diffraction frustum

Frustum tracing is an approximate method and can achieve high update rates by reducing

simulation accuracy. Conversely, higher accuracy can be achieved by reducing the simulation update

rate. The creation of diffraction frusta follows this same property. Diffraction frusta are initially

subdivided based on the subdivision level chosen by the user. Since each diffraction frustum is

bounded above and below by an approximate diffraction cone, it is helpful to evaluate the difference

in volume between a subdivided approximation and a perfect diffracting cone. Figure 3.8 and Table

3.2 shows that as the subdivision level increases, the diffraction frustum quickly converges to the

ideal volume.

(a) (b) (c) (d)

Figure 3.8: Frustum subdivision accuracy: the resulting diffraction cone with a subdivision of 0
(a), subdivision of 1 (b), and subdivision of 2 (c). The diffraction frustum approximates the ideal
cone (d).

37



Subdivision level Volume error
0 36.34%
1 9.97%
2 2.55%

Cone 0.0%

Table 3.2: Volume error: As the subdivision level increases, the error in the volume of the
diffraction cone decreases

3.3 Performance

In this section we evaluate the performance of our method with various scenes and settings.

Unless otherwise noted, all simulations are rendered with 8 frequency bands and 4 threads on a

modern 2.66 Ghz multi-core machine. The scenes used are detailed in Table 3.3 and Figure 3.9.

We use a maximum subdivision level of 3 for all benchmarks. Also, unlike in the Bell Lab Box

comparison, we only propagate diffraction frusta in the shadow region.

(a) (b) (c)

(d) (e) (f) (g)

Figure 3.9: Evaluation scenes: (a) Q3dm1, (b) Atrocity, (c) Chartres, (d) Sibinek, (e) Sponza, (f)
Highway, (g) Sodahall.

3.3.1 Diffraction cost and benefit

Generating the diffraction frusta during simulation incurs a time cost in addition to direct

contributions and specular reflections. The time cost needed to propagate the diffraction frusta varies

greatly from scene to scene due to the number of triangles and edges encountered. The benefit of

38



Scene Type Triangles Diffracting edges
Q3dm1 Closed 14k 4032
Atrocity Closed 12k 1531
Chartres Open 192k 40489
Sibinek Open 76k 1358
Sponza Open 66k 1021

Highway Open 350k 1248
Sodahall Closed 1510k 9457

Table 3.3: Scene overview: Data on the scenes used for the performance results. Some scenes are
very open with much geometry visible from any given point. Others are closed, with short visibility
distances.

using diffraction also varies; depending on the scene layout and source/receiver position, very few

valid diffraction paths may be found. Table 3.4 shows the added cost and benefit of using diffraction

in various scenes with 3 orders of recursion. To highlight the effects of diffraction, in each scene

we chose the source and receiver positions such that few specular paths are found. For example,

in the highway scene, the receiver is placed behind an occluder that blocks all direct and specular

contributions.

Scene Diffraction # Frusta Time Paths found
Q3dm1 Off 80844 219 ms 3

On 114372 338 ms 5
Atrocity Off 114183 282 ms 4

On 140454 370 ms 7
Chartres Off 219865 1306 ms 2

On 292256 2078 ms 8
Sibinek Off 370594 1614 ms 12

On 377521 1636 ms 15
Sponza Off 198022 861 ms 2

On 209737 921 ms 11
Highway Off 21178 62 ms 0

On 23553 84 ms 5
Sodahall Off 81269 436 ms 0

On 91879 510 ms 3

Table 3.4: Diffraction benefit: Diffraction incurs a slight performance decrease, but often finds
more propagation paths.

39



CHAPTER 4: RESOUND: A UNIFIED RAY FRAMEWORK

Diffraction is a form of wave scattering that occurs at discontinuities and results in the acoustic

field having smooth transitions as sources and receivers move out of line-of-sight. In addition to the

scattering is that caused by edge diffraction, variations in an object’s material may cause incoming

waves to reflect in a scattered manner. These diffuse reflection are an important acoustic effect when

modeling environments, since they influences the overall acoustic field.

In this chapter, we introduce a unified simulation method called RESound which can simulate

specular reflections, diffuse reflections, diffraction effects. These effects are complemented with

statistical reverberation estimation, for a full and robust acoustic signal. Our system is the first that

can render these effects in general dynamic scenes on a modern PC.

4.1 System overview

In this section, we give an overview of our approach and highlight the main components.

RESound simulates the sound field in a scene using geometric acoustics (GA) methods.

4.1.1 Acoustic modeling

All GA techniques deal with finding propagation paths between each source and the listener.

The sound waves travel from a source (e.g. a speaker) and arrive at a listener (e.g. a user) by traveling

along multiple propagation paths representing different sequences of reflections, diffraction, and

refractions at the surfaces of the environment. Figure 4.2 shows an example of such paths. In this

chapter, we limit ourselves to reflections and diffraction paths. The overall effect of these propagation

paths is to add reverberation (e.g. echoes) to the input sound signal. Geometric propagation

algorithms need to account for different wave effects (described below) that directly influence the

response generated at the listener.



Figure 4.1: The main components of RESound: scene preprocessing; geometric propagation for
specular, diffuse, and diffraction components; estimation of reverberation from impulse response;
and final audio rendering.

(a) (b) (c)

Figure 4.2: Example propagation paths: This scene shows (a) specular, (b) diffraction, and (c)
diffuse propagation paths.

When a small, point like, sound source generates non-directional sound, the pressure wave

expands out in a spherical shape. Due to the spreading of the field, the amplitude at the listener is

attenuated. The corresponding GA component is a direct path from the source to the listener. This

path represents the sound field that is diminished by distance attenuation.

As the sound field propagates, it is likely that it will encounter objects in the scene. These objects

may reflect or otherwise scatter the waves. If the object is large relative to the field’s wavelength,

the field is reflected specularly, as a mirror does for light waves. In GA, these paths are computed

by enumerating all possible reflection paths from the source to the listener, which can be a very

costly operation. There has been much research focused on reducing the cost of this calculation

[Funkhouser et al., 2003], as most earlier methods were limited to static scenes with fixed sources.

The delay and attenuation of these contributions helps the listener estimate the size of the propagation

space and provides important directional cues about the environment.

Objects that are similar in size to the wavelength may also be encountered. When a sound wave

encounters such an object, the wave is influenced by the object. We focus on two such scattering

effects: edge diffraction and diffuse reflection.

41



Diffraction effects occur at the edges of objects and cause the sound field to be scattered around

the edge. This scattering results in a smooth transition as a listener moves around edges. Most

notably, diffraction produces a smooth transition when the line-of-sight between the source and

listener is obstructed. The region behind an edge in which the diffraction field propagates is called

the shadow region.

Surfaces that have fine details or roughness of the same order as the wavelength can diffusely

reflect the sound wave. This means that the wave is not specularly reflected, but reflected in a Lam-

bertian manner, such that the reflected direction is isotropic. These diffuse reflections complement

the specular components [Dalenbäck et al., 1994].

As the sound field continues to propagate, the number of reflections and scattering components

increases and the amplitude of these components decreases. The initial orders (e.g. up to four

or six) of reflection are termed early reflections. These components have the greatest effect on a

listener’s ability to spatialize the sound. However, the early components are not sufficient to provide

an accurate acoustic response for any given scene. The later reverberation effects are a function of

the scene size and material [Eyring, 1930] and convey an important sense of space. For example,

large cathedrals are often known for their long decay times. Without late reverberation, these decay

times cannot be simulated.

4.1.2 Ray-based path tracing

RESound uses a unified ray representation for specular reflections, diffuse reflections, and

diffraction path computations. The underlying framework exploits recent advances in interactive

ray tracing in computer graphics literature. We compute diffuse reflections using a discrete ray

representation [Lauterbach et al., 2006, Wald, 2004] and specular reflections and diffraction using a

ray-frustum representation [Chandak et al., 2008, Lauterbach et al., 2007b]. A frustum is a convex

combination of four corner rays. We use fast ray tracing algorithms to perform intersection tests for

the discrete rays as well as volumetric frusta.

We assume that the scene is composed of triangles and is represented using a bounding volume

hierarchy (BVH) of axis-aligned bounding boxes. A BVH can be used to handle dynamic scenes

efficiently [Lauterbach et al., 2006]. The same underlying hierarchy is used for both discrete rays

and ray-frusta as part of our unified representation. Rays are shot as ray packets [Lauterbach et al.,

42



2006] and efficient frustum culling is used for fast intersection of ray packets and frusta with the

BVH. In order to perform fast intersection tests with scene triangles the frustum representation uses

Pücker coordinates [Shoemake, 1998].

4.1.3 RESound components

Our system consists of three main processing steps. These are outlined in Figure 4.1.

Preprocessing: As part of preprocessing, a scene bounding volume hierarchy is created. This is

a hierarchy of axis-aligned bounding boxes and is updated when the objects in the scene move. This

hierarchy is used to perform fast intersection tests for discrete ray and frustum tracing. The edges of

objects in the scene are also analyzed to determine appropriate edges for diffraction.

Interactive Sound Propagation: This stage computes the paths between the source and the

listener. The direct path is quickly found by checking for obstruction between the source and listener.

A volumetric frustum tracer is used to find the specular and edge diffraction paths. A stochastic ray

tracer is used to compute the diffuse paths. These paths are adjusted for frequency band attenuation

and converted to appropriate pressure components.

Audio Rendering: After the paths are computed, they need to be auralized. A statistical

reverberation filter is estimated using the path data. Using the paths and the estimated filter as input,

the waveform is attenuated by the auralization system. The resulting signal represents the acoustic

response and is output to the system speakers.

4.2 Interactive sound propagation

In this section, we give an overview of our sound propagation algorithm. Propagation is the

most expensive step in the overall sound rendering pipeline. This large computational cost arises

from the calculation of the acoustic paths that sound takes as it is reflected or scattered by the objects

in the scene. Under the assumption of geometric acoustics, this is primarily a visibility calculation.

Thus, we have chosen rays as our propagation primitive. For example, the direct sound contribution

is easily modeled by casting a ray between the source and listener. If the path is not obstructed, there

is a direct contribution from the source to the listener. The other propagation components are more

expensive to compute, but rely on similar visibility computations.

43



When computing the propagation components, many intersection computations between the

scene triangles and the ray primitives are performed. In order to reduce the computation time, we

minimize the cost of intersection tests using a BVH acceleration structure. Since this structure can

be updated with refitting algorithms [Lauterbach et al., 2006], it allows elements of the scene to be

dynamically moved and repositioned with little cost. Also, we mark all possible diffraction edges.

This allows the diffraction propagation to abort early if the scene edge is not marked as a diffracting

edge.

4.2.1 Specular paths

We use volumetric frustum tracing [Lauterbach et al., 2007b] to calculate the specular paths

between the source and listener. From our basic ray primitive, we form a convex volume bounded by

4 rays. In order to model a uniform point sound source, we cast many of these frustum primitives

such that all the space around the source is covered. For each frustum, the bounding rays of the

volume are intersected with the scene primitives. After the rays have hit the geometric primitives,

they are specularly reflected. This gives rise to another frustum that is recursively propagated. This

continues until a specified order of reflection is achieved.

However, it is possible that the 4 bounding rays of the frustum did not all hit the same object in

the scene. In this case, it cannot be guaranteed that the resulting specular frustum correctly contains

the reflection volume. As such, we employ an adaptive subdivision strategy [Chandak et al., 2008]

to reduce the error in the volume. If it is found that the 4 rays do not intersect the same geometric

primitive, that is, the frustum face is not fully contained within the bounds of the geometric primitive,

the frustum is subdivided using a quad-tree like structure into 4 sub-frusta. The sub-frusta are then

intersected with the scene and the subdivision process continues until a user-defined subdivision

level is reached. When the subdivision is complete, any ambiguous intersections are resolved by

choosing the closest intersected object and reflecting the subdivided frustum’s rays against it. This

process results in a simulation that becomes more accurate as more time is spent subdividing.

Given any propagation frusta, if the listener is contained within the volume, there exists some

sound path from the source to the listener. This path is verified by casting a ray from the listener

towards the frustum origin. If the ray intersection point is contained in the frustum origin face

on the triangle, the path segment is valid. This validation process is repeated using the computed

44



(a) (b)

Figure 4.3: Unified ray engine: Both (a) frustum tracing and (b) ray tracing share a similar
rendering pipeline.

intersection point to the origin of the previous frustum. If the entire path is valid, the path distance

and attenuation are recorded. Figure 4.3(a) shows an overview of the frustum engine.

4.2.2 Edge diffraction paths

Frustum tracing can be modified to account for diffraction contributions [Taylor et al., 2009b]

using the Uniform Theory of Diffraction (UTD) as described in Chapter 3. The UTD can be used to

calculate the diffraction attenuation for ray paths used in GA. When a sound ray encounters an edge,

the ray is scattered about the edge. In the UTD formulation, the region covered by the diffraction

contribution is defined by the angle of the entrance ray. If a ray hits the edge with an angle of θ, the

ray is scattered about the edge in a cone shape where the cone makes an angle θ with the edge.

45



As the frusta intersect the scene triangles, the triangle edges are checked to see if they are marked

as diffracting edges. If the triangle has diffracting edges, and the edges are contained within the

frustum face, a new diffraction frustum is created. Similar to other approaches [Taylor et al., 2009b,

Tsingos et al., 2001], we compute the diffraction component only in the shadow region. As such, the

frustum is bounded by the line-of-sight from the frustum origin and the far side of the triangle. This

frustum then propagates through the scene as normal.

The final sound path is verified using the same process described for specular paths. However,

for diffraction sequences, the path is attenuated using the UTD equation [Kouyoumjian and Pathak,

1974]. The UTD equation is in the frequency domain, and is thus computed for a number of frequency

bands. The resulting UTD coefficients are combined with the attenuation for the other path segments

to create the final path attenuation.

4.2.3 Diffuse component

In order to compute sound reflected off diffuse materials, we use a stochastic ray tracer (Figure

4.3(b)). Rays are propagated from the sound source in all directions. When a ray encounters a triangle

it is reflected and tracing continues. The reflection direction is determined by the surface material.

Some surfaces reflect mostly specularly, while others scatter diffusely. The listener is modeled by a

sphere that approximates the listener’s head. As the rays propagate, we check for intersections with

this sphere. If there is an intersection, the path distance and the surfaces encountered are recorded for

the audio rendering step.

The scattering coefficient for surface materials varies for different sound frequencies. Thus, for

one frequency, the incoming rays may be heavily scattered, while for another frequency the reflection

is mostly specular. Since intersecting rays with the objects in the scene is a costly operation, we wish

to trace rays only once for all the frequencies. As such, for each ray intersection, we randomly select

between diffuse and specular reflection [Embrechts, 2000]. The ratio of diffuse to specular paths is

based on the acoustic material properties of the scene.

If a ray hits the listener, the ray’s contribution must be computed for all frequency bands. We

scale the energy for each frequency band appropriately based on the material properties and type of

reflections selected [Embrechts, 2000]. For example, if a ray arrives at the receiver from an entirely

diffuse path, the energy contribution for frequency bands that required specular reflection will be

46



heavily attenuated. If a path is found to be composed entirely of specular reflections, it is discarded

as such paths are found in the frustum tracing step.

Once all paths have been computed and attenuated, each ray’s resulting energy values must be

integrated into a single response. Each path’s time delay is quantized, so contributions with similar

delays are summed into a single, larger contribution. The rays that contribute to this energy response

represent a subset of the total energy emitted by the source. Thus, the energy in the response is scaled

based on the number of rays that have been propagated from the source. Since the response is an

energy (or sound power) value, the square root of the entire response is taken to compute a final

pressure response.

4.3 Reverberation estimation

The propagation paths computed by the frustum tracer and stochastic ray tracer described in

Section 4.2 are used only for the early reflections that reach the listener. While they provide important

perceptual cues for spatial localization of the source, capturing late reflections (reverberation)

contributes significantly to the perceived realism of the sound simulation. Reverberation is necessary

to simulate the long decay in cathedrals or flutter echoes in tiled bathrooms. These effects are the

results of hundreds of wave reflections and are prominent examples of late reverberation effects.

We use well-known statistical acoustics models to estimate the reverberant tail of the energy

impulse response (IR). The Eyring model [Eyring, 1930] is one such model that describes the energy

decay within a single room as a function of time:

E(t) = E0e
cS
4V
t log(1−α) (4.1)

where E0 is the initial energy, c is the speed of sound, S is the total absorbing surface area of the

room, V is the volume of the room and α is the average absorption coefficient of the surfaces in the

room.

Given the energy IR computed using GA, we perform a linear least-squares fit to the IR in log-

space [ISO 3382, 2009]. This gives us an exponential curve which fits the IR and can be extrapolated

to generate the reverberation tail. From the curve, we are most interested in estimating the RT60,

which is defined as the time required for the energy to decay by 60 dB. Given the slope computed by

47



the least-squares fit of the IR data, it is a simple matter to estimate the value of RT60. This value is

used in the audio rendering step to estimate late reverberation effects.

Figure 4.4: Extrapolating the IR to estimate late reverberation: The red curve is obtained from
a least-squares fit (in log-space) of the energy IR. The green vertical line is the RT60 mark where the
signal has decayed by 60 dB.

Note that Equation (4.1) is for a single-room model, and is not as accurate for scenes with

multiple rooms (by “rooms” we mean regions of the scene which are separated by distinct apertures,

such as doors or windows). The single-room model is a good approximation for large interior spaces

and many outdoor scenes. Other models exist for coupled rooms [Summers et al., 2004], but they

require fitting multiple curves to the impulse response IR, and the number of curves to fit would

depend on the number of rooms in the scene. In the interests of speed and simplicity, we have chosen

to use a single-room model.

4.4 Audio rendering

Audio rendering is the process of generating an audio signal which can be heard by a listener

using headphones or speakers. In this section, we provide details on the real-time audio rendering

pipeline implemented in our interactive sound propagation system. Our audio rendering pipeline is

implemented using XAudio21, a cross-platform audio library for Windows and Xbox 360.

Our sound propagation algorithm generates a list of specular, diffuse, and diffracted paths from

each source to the listener. These paths are accessed asynchronously by the audio rendering pipeline

1http://msdn.microsoft.com/en-us/library/bb694503(VS.85).aspx

48



Figure 4.5: Algorithm overview: An overview of the integration of audio rendering system with
the sound propagation engine. Sound propagation engine updates the computed paths in a thread
safe buffer. The direct path and first order reflection paths are updated at higher frequency. The
audio rendering system queries the buffer and performs 3D audio for direct and first order paths and
convolution for higher order paths. The cross-fading and interpolation components smooth the final
audio output signal.

as shown in Figure 4.5 at different rates. Furthermore, each path can be represented as a virtual

source with some attenuation, distance from the listener, and the incoming direction relative to

the listener. The direction of a virtual source relative to the listener is simulated by introducing

3D sound cues in the final audio. Additionally, the source, listener, and scene objects can move

dynamically. In such cases, the impulse response (IR) computed during the sound propagation step

can vary significantly from one frame to another. Thus, our approach mitigates the occurrence of

artifacts by various means described in Section 4.4.2. Our system also uses the previously described

reverberation data to construct the appropriate sound filters, as described in Section 4.4.4.

4.4.1 Integration with sound propagation

The paths computed by the sound propagation algorithm in Section 4.2 are updated at different

rates for different orders of reflection (see Table 4.2). These paths are queried by the audio rendering

system in a thread safe manner. To achieve a high quality final audio signal, the audio rendering

system needs to query at the sampling rate of the input audio signal (44.1 KHz). Our output audio

is computed in fixed sized blocks of data called audio frames. We have found frames containing

10ms worth of audio samples suitable gives a good tradeoff between latency and compute cost.

Various user studies support that a lower update rate [Savioja et al., 1999] can be used without any

perceptual difference (about 100ms). It should be noted that the direct sound component and the early

reflection components are very fast to compute. Thus, we update the direct contribution and first

order reflections at a higher rate than the other components. For the direct and first order reflection

49



Figure 4.6: IR convolution: The input audio signal S is band passed into N octave bands which
are convolved with the IR of the corresponding band.

paths, we also introduce 3D sound cues in the final audio signal. To produce the final audio we band

pass the input signal into eight octave bands. For each octave band we compute an impulse response,

which is convolved with the band pass input audio to compute final audio as shown in Figure 4.6.

The details on computing an impulse response using the paths from the sound propagation engine are

below.

Specular and Diffraction IR: The specular reflections and diffraction are formulated as a

function of the sound pressure, as described in the previous sections. Thus, any path reaching from

a source to the listener has a delay computed as d/C where d is the distance traveled, and C is

the speed of sound. Each impulse is attenuated based on frequency dependent wall absorption

coefficients and the distance traveled. For all the paths reaching from a source to the listener, a value

with attenuation Apath is inserted at time index d/C in the impulse response. One such impulse

response is computed for all different octave bands for a source-listener pair.

Diffuse IR: The diffuse reflections are formulated as a function of the energy of the sound

waves. Using the paths collected at the listener, an energy IR is constructed for all the reflection

paths reaching the listener. This energy IR is converted into pressure IR for audio rendering. We

take the square root of energy response to create a pressure IR for each frequency band. This IR is

combined with specular and diffraction IRs to produce the final IR used in the audio rendering.

50



4.4.2 Issues with dynamic scenes

Our sound propagation system is general and can handle moving sources, moving listener, and

dynamic geometric primitives. This introduces a unique set of challenges for our real-time audio

rendering system. Due to the motion of the sources, listener, and scene objects, the computed

paths from successive simulation frames could change dramatically, so producing artifact-free audio

rendering can be challenging. Therefore, we impose physical restrictions on the motion of sources,

listener, and the geometric primitives to produce artifact-free audio rendering. We restrict source and

receiver motion to one meter per second and object motion to 10 meters per second. If these limits

are exceeded, there may be sharp transitions in the output signal, resulting in audible clicks. Some

scenes may require different limits based on achievable update rates.

To further mitigate the effects of the changing IRs, we convolve each audio frame with the

current and the previous IRs and crossfade them to produce the final audio signal. The window

of cross-fading can be adjusted to minimize artifacts due to motion. Other more sophisticated

approaches like predicting the positions and velocities of source or the listener can also be used

[Tsingos, 2001, Wenzel et al., 2000].

4.4.3 3D sound rendering

In a typical sound simulation, many sound waves reach the listener from different directions.

These waves diffract around the listener’s head and provide cues regarding the direction of the

incoming wave. This diffraction effect can be encoded in a Head-Related Impulse Response (HRIR)

[Algazi et al., 2001]. Thus, to produce a realistic 3D sound rendering effect, each incoming path

to the listener can be convolved with an HRIR. However, for large numbers of contributions this

computation can quickly become expensive and it may not be possible to perform audio rendering

in real time. Thus, only direct and first order reflections are convolved with a normalized HRIR

[Algazi et al., 2001]. Some recent approaches have been proposed to handle audio rendering of large

numbers of sound sources [Tsingos et al., 2003, Wand and Straßer, 2004]. These approaches can

also be integrated with our system.

51



4.4.4 Adding late reverberation

XAudio2 supports the use of user-defined filters and other audio processing components through

the XAPO interface. One of the built-in filters is an artificial reverberation filter, which can add late

decay effects to a sound signal. This filter can be attached to the XAudio2 pipeline (one filter per

band) to add late reverberation in a simple manner.

The reverberation filter has several configurable parameters, one of which is the RT60 for the

room. In Section 4.3, we described a method for estimating this value. The reverberation filter is

then updated with the estimate. This approach provides a simple, efficient way of complementing the

computed IRs with late reverberation effects.

4.5 Performance

Our system makes use of several levels of parallel algorithms to accelerate the computation. Ray

tracing is known to be a highly parallelizable algorithm and our system uses threads to take advantage

of multi-core computers. Also, frustum tracing uses vector instructions to perform operations on

a frustum’s corner rays in parallel. Using these optimizations, our system achieves interactive

performance on common multi-core PCs.

In this section, we detail the performance of RESound. We highlight each subsystem’s perfor-

mance on a varying set of scenes. The details of the scenes and system performance are presented

in Table 4.2, and the scenes are visually shown in Figure 4.7. In all benchmarks, we run RESound

using a machine with multiple Intel Xeon 5355s at 2.66Ghz; the number of threads per component is

described in each section. Thread scaling is described in Table 4.1.

The time to preprocess the scenes was about 4 seconds for the largest (Conference). We note that

scenes with moving objects require varying time costs. We found that our test scenes could undergo

rigid transforms and typical movements like moving doors and cars with time cost on the order of

20ms per frame. Very large non-linear transforms could require up to the full preprocessing time;

refer to [Lauterbach et al., 2006] for details.

52



(a) (b) (c) (d)

Figure 4.7: Test scenes used: (a) Room, (b) Conference, (c) Sibenik, and (d) Sponza.

Method 1 thread 2 threads 4 threads
Frustum tracing 1.0X 2.0X 3.2X

Ray tracing 1.0X 1.9X 3.2X

Table 4.1: Performance scaling: We show the performance scaling of our frustum tracing and ray
tracing implementations.

Specular + diffraction (3 orders) Specular + diffraction (1st order) Diffuse (3 orders)
Scene Triangles Time Frusta Paths Time Frusta Paths Time Paths
Room 6k 359ms 278k 4 77ms 7k 3 274ms 228

Conference 282k 1137ms 320k 7 157ms 5k 2 323ms 318
Sibenik 76k 2810ms 900k 14 460ms 10k 5 437ms 26
Sponza 66k 1304ms 598k 8 260ms 10k 3 516ms 120

Table 4.2: Performance: Test scene details and the performance of the RESound components.

Specular and Diffraction: We generate two separate IRs using frustum tracing. One IR includes

only the first order specular and diffraction contributions. Since these paths are fast to compute, we

devote one thread to this task. The other IR we generate includes the contributions for 3 orders of

reflection and 2 orders of diffraction. This is done using 7 threads. The first order paths are removed

from the higher order results since they are captured by the first order simulation. The performance

details for both simulations cycles are described in Table 4.2.

Diffuse tracing: Our diffuse tracer stochastically samples the scene space during propagation.

As such, the rays are largely incoherent and it is difficult to use ray packets. Nonetheless, even when

tracing individual rays, RESound can render at interactive rates as shown in the performance table.

The timings are for 200k rays with 3 reflections using 7 threads.

Late reverberation: We measured the time taken by our implementation to perform the least-

squares fitting while estimating late reverberation. The execution time was measured by averaging

53



# Impulses Compute time (ms)
10 0.026
50 0.111
100 0.425

1000 37.805
5000 1161.449

Table 4.3: Reverberation timings: The time cost to estimate the reverberation decay is quite small
compared to propagation times.

(a) (b) (c)

Figure 4.8: Specular paths: With a subdivision (a) level of 2, frustum tracing finds 13 paths. A
subdivision (b) level of 5 finds 40 paths. The (c) image-source solution has 44 paths.

over 10 frames. During testing, we vary the density of the impulse response. The reverberation

calculation is not threaded due to its minimal time cost. The results are summarized in Table 4.3.

4.6 Quality

The algorithms used in RESound are based on the physical properties of high frequency acoustic

waves. We discuss the output quality of each component in the RESound system and compare against

the more accurate simulations. We also note the benefits that RESound offers over simpler audio

rendering systems. The underlying limitations of the methods used are also discussed.

4.6.1 Quality

Since adaptive frustum tracing approximates the image source reflection model, its accuracy has

been compared to image-source methods [Chandak et al., 2008]. It was found that as the subdivision

level increases, the number of contributions found by the frustum simulation approach the number

found by the image-method. Moreover, the attenuation of the resulting impulse response from

frustum tracing is similar to that found by image-source (Figure 4.8).

54



Figure 4.9: Diffraction paths: Increasing the frustum subdivision improves the diffraction accuracy.

Similarly, the validity of diffraction using frustum tracing has also been compared to an accurate

beam tracing system with diffraction [Taylor et al., 2009b]. Due to limitations of frustum engines,

it was found that certain types of diffraction paths could not be enumerated. When a diffraction

frustum was created, one plane of the frustum was parallel to the wall on the shadow region of the

diffracting edge. Since this side of the frustum was parallel to the wall, it could not diffract off any

edges that lied in the plane. However, as the frustum subdivision level was increased, the number of

diffraction paths found approached an ideal solution (Figure 4.9) and the paths accurately matched

the reference solution.

The diffuse IR in RESound is generated by stochastic ray tracing. The sampling and attenuation

model RESound uses has previously been shown to be statistically valid with sufficient sampling.

Detailed analysis and validation has been presented by Embrechts [Embrechts, 2000].

We compare our reverberation decay times to statistically estimated times in two simple scenes.

Similar scenes are described in other work [Hodgson, 1990, Kapralos et al., 2004]. The results are

presented in Table 4.4.

55



Room size (m) Absorption Predicted RESound
4x4x4 0.1 1030 ms 1170 ms

27.5x27.5x27.5 0.0 8890 ms 7930 ms

Table 4.4: Reverberation decay times Statistical predicted times compared to RESound measured
times for two models.

Most other interactive acoustic simulations cannot render diffuse reflections [Chandak et al.,

2008] and some have restrictions on source movement [Tsingos et al., 2001]. Others are restricted to

simple scenes of a few thousand triangles [Savioja et al., 2002]. Since our system has a unified ray

model based on advanced ray tracing acceleration structures, it can handle large and complex scenes

while providing diffraction, specular reflections, and diffuse reflections.

4.6.2 Benefits

Interactive audio simulations used in current applications are often very simple and use pre-

computed reverberation effects and arbitrary attenuations. In RESound, the delays and attenuations

for both reflection and diffraction are based on physical approximations. This allows RESound to

generate acoustic responses that are expected given scene materials and layout.

In addition to calculating physically based attenuations and delays, RESound also provides

accurate acoustic spatialization. Simple binaural rendering often only uses the direct path, which may

not be valid. With RESound, the reflection and diffraction path directions are included. Consider a

situation when the sound source is hidden from the listener’s view (Figure 4.10). In this case, without

reflection and diffraction, the directional component of the sound field appears to pass through the

occluder. However, propagation paths generated by RESound arrive at the listener with a physically

accurate directional component.

Simple binaural rendering is very cheap to compute, but computes responses that do not included

acoustic effects and spatial queues that can be physically incorrect. RESound has a greater compute

cost, but for applications where plausible acoustics are needed at interactive rates, it represents the

first system to handle several major acoustic effects in general scenes.

56



(a) (b) (c)

Figure 4.10: Path direction: From source S to listener L: (a) The simple direct path is physically
impossible, but (b) diffraction and (c) reflection paths direct the listener as physically expected.

57



CHAPTER 5: GUIDED MULTIVIEW TRACING

Modern programable GPUs have become very useful in solving many computationally intensive

problems. Unfortunately, the method introduced in the previous chapter does not map well to modern

GPUs due to the locally adaptive frustum tracing process. In this chapter, we describe algorithms to

efficiently simulation GA on a GPU. Since our method uses ray samples, we introduce a method

to dynamically adjust sampling parameters to minimize time cost while preserving accuracy. In

addition, we present an algorithm for computing ray diffraction.

5.1 Guided propagation

In this section we describe a cost function for specular GA propagation. We then describe our

approach to reducing the number of tests conducted during propagation.

Some GA methods, such as beam tracing, compute a very accurate, minimal visibility tree.

Since the reflection data in the tree is very detailed, the complete set of valid paths can be created

very quickly [Funkhouser et al., 1998]. However, generating such an accurate tree is costly. Other

methods, such as conservative frustum culling [Chandak et al., 2009], compute accurate trees that

may be overly conservative. The visibility tree can be generated faster, but the path creation time may

increase, since some of the paths will be occluded and must be discarded. This concept is similar for

other GA based methods, leading to a simple cost function for specular propagation:

T =
n∑
i=0

Si +
n∑
i=0

m∑
j=0

Ri,j

Where T is the total cost of specular propagation, Si is the cost of generating the visibility tree for

source i, and Ri,j is cost of path creation for source i to receiver j. Each source requires separate

visibility tree and path calculations. It should be noted that propagation paths are reciprocal when

ignoring source and receiver directivity, so the endpoint types can be swapped if it minimizes

propagation cost.



5.1.1 Ray traced propagation cost

Sample based visibility methods like ray tracing are not guaranteed to generate an accurate

visibility tree. This is because some triangles that are visible to the source may be missed by the

samples and incorrectly excluded from the visibility tree. However, ray tracing is still used in sound

propagation because of its high performance and ease of implementation. Since our system uses ray

based propagation, we focus our discussion on the cost of ray traced propagation.

The general form of ray traced propagation is to trace a distribution of visibility rays from the

source into the scene, reflecting the rays to the desired order of recursion. A sphere of some radius is

set at each receiver location and some of the visibility rays may hit this detector sphere. The visibility

rays that strike the sphere represent likely propagation paths and should be validated to be occlusion

free.

For ray traced sound propagation systems with visibility and validation, S and R can then be

expanded as:

T =
n∑
i=0

NiVi +
n∑
i=0

m∑
j=0

NiPi,jLi,j

where T is the total time cost of the simulation, Ni is the number of visibility rays cast for source

i, Vi is the cost of propagating a visibility ray for source i, Pi,j is the probability that a visibility

ray from source i strikes receiver j and must be validated, and Li,j is the cost of validating this

propagation path.

The cost of visibility and path creation are scene and position dependent and can be minimized

by efficient ray tracing techniques or reducing the number of tests in the propagation step. We discuss

efficient tracing techniques in Section 5.2. To minimize the number of tests, we decouple visibility

and validation and use a guidance algorithm to minimize the cost of each independently.

5.1.2 Guidance algorithm

In most simulations, it is desirable to reduce the time cost T while maintaining simulation

accuracy. This can be accomplished by controlling the terms in the cost equation. Given a minimum

number of propagation paths to be discovered, there exists some efficient values for N and the

receiver radius (and thus P ) that find the specified number of paths while minimizing T .

59



R
S

(a)

R S

(b)

Figure 5.1: Sample-based visibility: Visibility rays are traced from source S into the scene. Paths
that strike receiver R are then validated. (a) A small receiver requires dense visibility sampling
to find the propagation path. (b) Using a larger receiver allows sparse sampling resulting in fewer
visibility tests, however more validation tests are need to remove invalid path sequences.

Conducting a large number of visibility tests N with a high probability P of discovering many

paths to validate (by way of a large receiver size) will likely find the wanted paths, but with high time

cost. If N is reduced, there will be fewer rays that encode each unique path sequence. Accuracy can

be maintained if the probability of these rays being detected is increased by increasing receiver size.

Similarly, with a high N , the receiver size can likely be decreased (reducing P ) while still detecting

the necessary path sequences (see Figure 6.4).

The base cost values of visibility rays V , and of path validation L, vary vastly based on the

underlying algorithms and implementations. Also, when the source or receiver move, or objects

in the scene move, V and L can change, altering the total cost function. Indeed, since the optimal

values may change throughout the course of the simulation, it is difficult to find the best values to

reduce the time cost.

Instead of attempting to find the optimal values, our guidance algorithm seeks to independently

minimize the number of visibility and validation tests used in propagation. It works by adjusting the

number of visibility rays cast and the size of the detection sphere. These two factors correspond to

N and P , respectively. Figure 5.2 shows an example cost function in terms of the minimal number

of tests needed to find a specific percentage of the total paths in a scene.

Our algorithm monitors the count of unique contribution paths found during a single simulation

frame. The goal on subsequent frames is to find an equal or greater number of paths to this maximum

recorded path count, while using a minimal number of visibility and validation tests. The algorithm

60



0

200

400

600

800

1000

1200

1400

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Pa
th

Va
lid

at
io
n
Te
st
s

Visibility Rays Cast

0

0.2

0.4

0.6

0.8

1

1.2

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Re
ce
iv
er

Ra
di
us

(m
)

Visibility Rays Cast

Figure 5.2: Propagation test count: With a goal of finding 90% of the total paths in the scene, an
increasing number of visibility rays are traced and the minimum required size of the receiver sphere
changes accordingly. With sparse visibility sampling, a large sphere is required, resulting in many
validation tests. With dense sampling, the sphere size can be reduced. For specific cost values for
visibility and path validation tests, some minimal total cost exists.

achieves this by reducing the number of rays traced and the size of the detection sphere. If at any

time the path count decreases (i.e. a path is lost), the algorithm responds by increasing the number of

rays and receiver size until the path is recovered. If the path cannot be recovered after aggressive

adjustment, the lower path count is selected as the maximum known path count. If at any time the

current path count exceeds the recorded maximum count, the maximum count is updated to the new

higher count. This allows our method to respond conservatively to scene changes.

On startup, the algorithm begins by tracing a user specified number of rays and with a user

specified receiver sphere size. We use 50k rays and a sphere radius of 1
4 the length of the maximal

scene axis in our tests. From this point, the number of rays and sphere size are reduced to find local

61



R- S-

S+

R+

S- R- R+

S+

S+
R+

S+
R+

Restart

Restart

Figure 5.3: Guiding state machine: This state machine tracks the number of unique contribution
paths found. Solid lines are followed if the current path count matches the recorded maximum count,
dashed lines are followed if the path count is less than the recorded maximum. States marked R+
and S+ increase the ray count and sphere size, while states marked R− and S− decrease the ray
count and sphere size, respectively. At the Restart state, the maximum paths count is set to the
current count. The (R+, S+) states attempt to recover lost paths before recording a new count. The
main top and bottom arms focus on reducing rays and receiver size respectively.

minima of the total cost function without decreasing accuracy. A small initial number of visibility

rays can lead to sampling errors that are further discussed in Section 6.4.

Our guiding algorithm is easily represented as a state machine. Figure 5.3 shows the details of

the state machine. After each simulation cycle a new state is found and the propagation parameters

are adjusted. This process continuously adjusts the number of rays traced and the size of the receiver

spheres. Each receiver sphere is adjusted independently; if the state machine enters a state where

sphere size is increased, but no paths have been missed to a certain receiver, that specific receiver

sphere is not increased. The accuracy and performance of the algorithm is discussed in Section 6.4.

5.2 Multi-view GPU ray tracing

We use a high performance GPU ray tracer to conduct the visibility and validation tests needed

during sound propagation. To further improve performance, we attempt to process each specular

view in parallel independently using a multi-view tracing approach. We describe our basic GPU ray

tracer, the multi-view tracing process, and our diffraction and validation approaches.

62



Figure 5.4: Implementation overview: All scene processing and propagation takes place on the
GPU: hierarchy construction, visibility computations, specular and edge diffraction. The sound paths
computed using GPU processing are returned to the host for guidance analysis and audio processing.
The guidance results are used to direct the next propagation cycle.

5.2.1 GPU propagation

We divide the processing work between the host and GPU device. The host handles all audio

processing, while the GPU device computes the propagation results. Figure 5.4 shows the overall

details. Our propagation algorithm traces visibility rays through the scene, intersects them with a

receiver sphere, and validates the possible propagation paths to be occlusion free.

For general ray tracing, previous approaches have investigated efficient methods to implement

ray tracing on massively parallel architectures such as GPUs, which have a high number of cores

as well as wide vector units on each core. Current methods for GPU-based ray tracing mainly

differ in the choice of acceleration structure such as kd-trees [Zhou et al., 2008] or BVHs and the

parallelization of ray traversal step on each GPU core. For example, rays can be traced as a packet

similar to CPU SIMD ray tracing [Popov et al., 2007] and some recent approaches can evaluate them

independently [Aila and Laine, 2009], as more memory is available for local computation on current

GPUs.

We build on the bounding volume hierarchy (BVH) ray tracing ideas in [Lauterbach et al., 2009]

and implement our multi-view ray casting system in CUDA. This allows us to render scenes with

dynamic geometry, as the BVH can be refit or rebuilt as needed. While NVIDIA provides a ray

tracing system [Parker et al., 2010] for use on CUDA hardware, we use our own fast ray tracer due to

its flexibility.

Rays are bundled into packets that are executed on each core while scheduling each ray on a

lane in the vector unit. The rays are then traversed through the BVH and intersected against the

triangles. For primary visibility samples, we use a simple ray tracing kernel that exploits the common

63



(a) (b) (c)

Figure 5.5: Multiview tracing: (a) From the source, rays are grouped into packets that can be
efficiently processed on the vector units. (b) However, a single packet may hit multiple surfaces,
resulting in reflection packets that are inefficient. (c) We reorder packets so that each reflection view
can be traced efficiently.

ray sources for efficiency. Reflections are handled by a secondary kernel which loads the previous hit

data and traces a reflection ray. To decouple the number of visibility samples from the number of

threads allocated for processing, we iteratively process visibility samples in small thread blocks until

all samples have been traced. As rays exit the scene, they are removed from the work queue and no

longer processed. The algorithm ends when no more active samples exist or the maximum recursion

depth is reached in terms of reflections. At any point during tracing, if the ray coherence is reduced

past a user specified threshold, multi-view tracing is employed.

Once the visibility computations have been performed up to a specified order of reflection, the

visibility data is tested against the receiver spheres. Each ray is tested against each receiver sphere for

intersection and is marked if it hits the sphere and needs to be included in the path validation tests.

As a final step, once the receiver intersect tests are complete, we compute the valid contribution

paths to the receiver. For each valid path, image source and triangle data is retrieved. A test checks

if the line connecting the source image point to the receiver passes through the associated triangle.

This test immediately discards most invalid paths. Then, for each receiver, a ray is constructed from

the receiver towards each image point and traced through the scene. From the resulting hit point, a

new ray is traced to the parent image, continuing back to the initial source point. If the entire path is

unoccluded, there is a contribution.

64



5.2.2 Multi-view tracing

The underlying formulation of the image source method is such that each reflection path can

be evaluated independently. When using ray tracing visibility with the image source method, all

visibility and validation tests are also independent. As such it is possible to evaluate queries in parallel.

For example, if there are multiple sound image sources, we may perform visibility computations

from each of them in parallel. Our multi-view algorithm exploits this: in order to achieve high

performance, we process all independent visibility and validation tests simultaneously.

When considering specular reflection rays, it is helpful to view rays as visibility queries that

accelerate the image source process. From the source point, the ray visibility query returns the set of

triangles visible to the source (subject to sampling error). From this set of visible triangles, image

sources can be created by reflecting the source point over each triangle face. New samples can then

be generated on each triangle face, forming a reflection visibility query with the image point at the

ray origin. This process repeats to the recursion limit.

In our case, it is natural to bundle all the reflected visibility samples from one origin together

in ray packets. Since the main factor determining performance in our packet based ray tracer is ray

coherence, such bundling allows efficient use of memory bandwidth and SIMD vector units. As

described in the previous section, primary visibility rays are easy to group into coherent packets.

However, as the rays are reflected, it is likely that the rays in the packet will hit different triangles,

and thus be reflected in different directions with different ray origins. As a result, the packets are less

coherent and may require multiple queries to the BVH, thus wasting computational resources.

On the GPU, each thread block is treated as if it is running on independent hardware from all

other blocks. Our ray packets are formed with a ray for each thread in the thread block. When all the

rays in a packet share a common origin, the packet represents a single ray traced view that can be

traced very efficiently. The goal of our multi-view system is to achieve this as often as possible. Our

system detects when packets become incoherent and restructures all rays into more efficient packets.

Given the results of visibility ray casting as a list of triangle IDs, we perform a data-parallel

bitonic sort using the vector unit. Using the list sorted by ID, it is trivial to find out for each hit

or intersection point whether the ID is a duplicate (i.e. hit by multiple ray samples) by comparing

against its successor. If all IDs are duplicates, all rays in the packet hit the same triangle and reflection

65



Figure 5.6: Multiview performance: Multi-view ray tracing out performs standard ray tracing for
scenes (80k triangle scene shown) with many specular views. The multi-view timings include the
time cost of all necessary sorting and reordering.

rays are likely to share the same origin (at the image source) and direction. Such a packet is likely to

be coherent and efficient. However, if the sort reveals multiple triangle IDs, the reflection rays will

likely not share a common origin, and are probably incoherent.

After each trace recursion, the coherency test is applied to each ray packet. The number of

packets that are likely to be incoherent is then recorded. The percent of packets that are incoherent is

compared to a user specified limit (we use 80% in all our tests). If the threshold is exceeded, the ray

packets are reordered into more efficient views (see Figure 5.5).

This is done by performing a parallel radix sort on triangle ID across all hit data. The hit and

ray data is reordered according to the sort results. Since each ray’s index is no longer indicative of

its parent ray, an index table is also created to find parent hit and ray data. As a result of this view

reordering process, our multi-view tracing algorithm performs high specular reflection orders faster

than standard ray tracing (see Figure 5.6).

5.2.3 Diffraction

We use an approximate edge diffraction algorithm based on the UTD formulation.

Similar to other approaches, only certain edge types [Taylor et al., 2009a] are considered to

cause diffraction. We select two types of edges as diffracting edges: disconnected edges that are

only shared by one triangle and edges shared by triangles with normals that differ by > 1
8π radians.

For each diffracting edge, we store the indices of the triangles that share the edge. This edge data

66



is precomputed before simulation. As part of the ray casting algorithm, we compute barycentric

coordinates of each intersection point on the triangle face [Arenberg, 1988]. These coordinates

represent how far an intersection point in the interior of a triangle is from the triangle vertices; in

the intersection routine, the barycentric coordinates are used to detect if the ray hit point lies within

the triangle boundaries. We reuse the barycentric coordinates when detecting if diffraction rays

need to be traced. If a hit point’s barycentric coordinates show that the hit point is within 10% of a

diffracting edge, as measured along the triangle surface, we consider the ray close enough to the edge

to continue diffraction propagation. Using the barycentric coordinates of the hit point, we project the

hit point on to the diffracting edge. This point on the edge becomes the origin from which diffraction

propagation takes place.

Given the barycentric coordinates of the hit point: λ1, λ2, λ3 and a triangle with edges e1, e2,

e3, a diffraction origin o can be created on e3 from a hit point that hit near e3 as follows. Figure 5.7

shows the arrangement visually.

s = λ1 + λ2

α = λ2
s

d = αe3

Rays are then traced from the diffracting origin according to the UTD: the outgoing diffracting

rays have the same angle relative to the diffracting edge as the incident ray. However, we only trace

diffraction rays in the shadow region, not the full diffraction cone, as described by the UTD. The

diffracting edge is shared by the triangle that was hit by the ray and an occluded triangle (possibly

the backface of the hit triangle). These two triangle faces form a diffracting wedge as describe by the

UTD. In order to create diffraction rays for the shadow region, we create a vector based at the origin

that was previously found and with the incident ray’s direction. This vector is rotated towards the

occluded triangle face, sweeping out only the part of the diffraction cone that is in the shadow region.

Since we only conduct first order diffraction in our simulation, we only trace rays that pass near the

receiver spheres. This greatly reduces the required computation. It is also possible to trace higher

order diffraction rays by sampling the swept surface of the cone, discretizing the region. See Figure

5.8 for details.

67



e2 e3

e1

λ1

λ2

λ3
αe

3
d

Figure 5.7: Barycentric diffraction hit points: Using the barycentric coordinates of a ray hitpoint,
a diffraction origin d can be found on the triangle edge.

Source

(a)

Source

(b)

Figure 5.8: Edge diffraction: (a) Rays near the edge are detected for resampling. (b) Diffraction
samples are cast through the shadow region, bounded by the adjacent triangle.

Even low order diffraction can branch rapidly [Calamia et al., 2008]. Since our ray tracer is

implemented on a GPU and such branching would require expensive dynamic allocation and kernel

management, our system only conducts one order of diffraction. As each ray intersects a triangle,

the hit point is checked for nearness to a diffracting edge. If the hit point is within 10% of the edge

in triangle space, a diffraction ray is traced to the receiver point. Only diffracting rays where the

incident and outgoing rays differ by < 10◦ are retained. These paths are sent back to the host after

tracing and the shortest (i.e., least error) paths are kept for attenuation and output.

68



If a diffraction path is found to reach the receiver, the acoustic signal must be attenuated based on

the diffraction interaction. Our system uses the UTD attenuation function [Kouyoumjian and Pathak,

1974], adjusted for smoothness at the shadow region. This function gives the band attenuation based

on the properties of the diffracting edge and the ray geometry. We apply the function for each of the

frequency bands that the user has selected, resulting in appropriate attenuation of high frequencies

when the path is diffracted.

5.2.4 Path creation

During the ray tracing visibility step, all visibility information is recorded in GPU memory. This

data is used in the path creation stage to determine which paths are occlusion free between the source

and receiver.

When using ray tracing to determine visibility, we recognize that there will be many visibility

rays that record duplicate sequences of triangle IDs. In the path creation stage, it would be most

efficient to perform a validation test for unique sequences only, not for each individual visibility ray.

However, it can be difficult to remove duplicate visibility sequences.

Our initial attempts at efficient path validation removed duplicate paths by creating visibility

hashes for each sequence. Visibility rays were sorted by sequence hash, then the unique visibility

sequences were found, and a single validation ray was cast for each unique sequence. This resulted

in very low cost visibility tests for path creation: a single ray for each sequence. However, the cost of

the required sorting and scans to arrange the sequences was very expensive.

Our final path validation method is less elegant, but much simpler to perform. For each visibility

ray, a validation test is performed. This results in many duplicate validation tests, but these can be

efficiently performed on parallel hardware. Each path is validated to be occlusion free in reverse,

from receiver to source. Path data is returned to the host, where duplicate removal takes place.

The visibility ray order is not changed before validation; this results in the first order of validation

reflection rays being as coherent as the last order of visibility reflection rays. The directional

coherence of the zeroth order of validation rays is not guaranteed, but all zeroth order validation rays

share the receiver as a common origin.

Unlike specular paths, our diffraction validation is approximate. Rather than creating each

optimally short UTD path, we select the most optimal path from the unmodified visibility samples.

69



Figure 5.9: Interpolation schemes: Different attenuation schemes applied for attenuation interpola-
tion. Discontinuity in attenuation between two audio frames interpolated with linear interpolation and
Blackman-Harris interpolation. Delay interpolation is performed using a linear interpolation. Vari-
able fractional delays due to linear delay interpolation are handled by applying low order Lagrange
fractional delay filter on a supersampled input audio signal during the audio processing step.

On the host, the diffraction path are sorted by a visibility sequence hash. For each unique diffraction

sequence, the shortest path is selected for audio output. This path has a possible error of < 10◦ in

edge angle and < 10% error spatially on the triangle surface.

5.3 Audio processing

Sound propagation from a source to a receiver computes an impulse response (IR) based on the

length of the propagation paths and attenuation along the path due to spreading, reflection, diffraction,

and medium absorption. The IR is convolved with the anechoic source audio to compute the final

audio. Such a convolution based audio processing works well for static scenes, i.e., static sound

sources, receiver, and scene geometry. However, dynamic and interactive scenes introduce variations

in the paths reaching from a source to a receiver between two consecutive simulation frames and

can lead to artifacts in final audio due to the variations in the IR between frames. In this section,

we present our method to process audio in dynamic scenes and to minimize artifacts in final audio

output.

5.3.1 Dynamic scenes

In many interactive applications, the source and receiver movements could be quite large. This

can lead to sudden changes in the propagation paths (i.e. delay and attenuation) from a source to a

70



receiver. New paths may suddenly appear when a receiver comes out of a shadow region or due to

the movement of scene geometry. Existing paths may disappear due to occlusion or sampling errors.

To handle such scenarios, we track the paths and interpolate the changes in the paths to produce

artifact-free audio output. Our approach combines parameter interpolation [Savioja et al., 1999,

2002, Wenzel et al., 2000] and windowing based schemes [Siltanen et al., 2009] to reduce the audio

artifacts.

5.3.2 Parameter interpolation

In interactive applications, audio is typically processed in chunks of audio samples, called audio

frames. For example, an audio signal sampled at 48 KHz could be processed at 100 audio frames

per second, i.e. each audio frame has 480 samples. Between two such adjacent audio frames the

propagation paths from a source to a receiver may vary, leading to a jump in attenuation and delay

values per sample at the audio frame boundaries (see Figure 5.9). We track propagation paths and

interpolate the delay and attenuation for a path per audio sample to reduce the artifacts due to changes

in the path. To track propagation paths, each path is assigned a unique identifier.

We perform parameter interpolation of propagation paths for audio processing to achieve artifact-

free final audio. It is equivalent to computing an IR per sample based on the parameter interpolation

per path. Such an approach is physically intuitive and different interpolation schemes can be applied

[Tsingos, 2001, Tsingos et al., 2004]. We treat each path from a source to a receiver as a parameter

and represent it as an equivalent image source, i.e. delay, attenuation, and direction in 3D space

relative to the receiver. Each image source is treated as an independent audio source during audio

processing. Thus, changes in the paths are equivalent to changes in the corresponding image sources.

As an image source changes, its attenuation, delay, or direction relative to receiver may change.

We perform attenuation interpolation between audio frames by applying a windowing function

(Blackman-Harris) to smoothly interpolate attenuation at the audio frame boundary. This interpolation

is performed on a per sample basis and leads to smooth transition across the audio frame boundary. To

interpolate delay, we perform linear interpolation between audio frames. Linear delay interpolation

augmented with supersampling and low order fractional delay lines work well to reduce the artifacts

due to delay discontinuities between audio frames (see Section 5.3.3). Figure 5.9 shows interpolated

attenuation per sample for an image source with attenuation discontinuities.

71



(a) Lagrange Filter Order = 0 (b) Lagrange Filter Order = 3

Figure 5.10: Fractional delay: Applying fractional delay filter and supersampling input signal to
get accurate Doppler effect for a sound source (2 KHz sine wave) moving away from the receiver at
20 m/s. The sampling rate of the input audio is 8 KHz. The supersampling factors are 4x and 8x for
left and right figures respectively. Zeroth order and third order Lagrange filters are applied.

5.3.3 Variable fractional delay

Fractional delay filters have been applied to speech coding, speech synthesis, sampling rate

conversion, and other related areas [Välimäki, 1995]. In our application, we apply fractional delay

filters to handle interpolated delays as sources (or image sources) and receivers move in a virtual

environment. Rounding off the interpolated delays to nearest integer as sources and receivers move

can lead to noticeable artifacts in the final audio (see Figure 5.10). Thus, we require efficient variable

fractional delay filter that can provide fidelity and speed required in virtual environments. A good

good survey of FIR and IIR filter design for fractional delay filter is provided in [Laakso et al., 1996].

We use a Lagrange interpolation filter due to explicit formulas to a construct fractional delay

filter and flat-frequency response for low-frequencies. Combined with supersampled input audio

signal, we can model fractional delay accurately. Variable delay can be easily modeled by using

a different filter computed explicitly per audio sample. To compute an order N Lagrange filter,

the traditional methods [Välimäki, 1995] require Θ(N2) time and Θ(1) space. However, the same

computation can be reduced to Θ(N) time and Θ(N) space complexity [Franck, 2008]. Many

applications requiring variable fractional delay oversample the input with a high-order interpolator

and use a low-order variable fractional delay interpolator [Wise and Bristow-Johnson, 1999] to

avoid computing a high-order variable delay filter during run time. Wise and Bristow-Johnson

[Wise and Bristow-Johnson, 1999] analyze the signal-to-noise-ratio (SNR) for various low-order

polynomial interpolators in the presence of oversampled input. Thus, for a given SNR requirement,

optimal supersampled input signal and low-order polynomial interpolator can be chosen to minimize

computational and space complexity. Ideally, a highly oversampled input signal is required (see

72



(a) (b) (c) (d)

Figure 5.11: Example scenes: The scenes used to test the performance of our implementation: (a)
Music hall model; (b) Sibenik cathedral; (c) Indoor scene; (d) desert scene. While the music hall
scene is not often used for low order acoustic simulation, we selected it to show the animation
sequence in Figure 5.13. Sibenik cathedral was selected as a very challenging visibility test case.

Figure 5.10) to achieve 60 dB or more SNR for a low-order Lagrange interpolation filter, but it might

be possible to use low oversampling to minimize artifacts in final audio output [Savioja et al., 2002].

5.4 Analysis

In this section, we analyze the performance of our algorithm, highlight the error sources, and

compare it with prior methods.

5.4.1 Performance

We have used our algorithms on several different scenarios and scenes. The complexity of

these scenes is similar to those used in current games with tens of thousands of triangles for audio

processing. We test the performance of the system on a multi-core PC with NVIDIA GTX 480 GPU

and use a single CPU core (2.8 GHz Pentium) for audio processing. We used some common scenes to

evaluate the performance of our system (Figure 5.11). Results for static source and receiver positions

are shown in Table 5.1. We also show the cost of conducting higher order recursion in Table 5.2.

In addition to static scenes, we show results with dynamic movement in the Music hall scene

using a 500 frame sequence. For this test, we use the coordinates defined in the round robin III

dataset 1. The source and receiver begin at coordinates S1 and R1, respectively. Over frames 100-200,

the source moves linearly from S1 to S2. Over frames 300-400, the receiver moves linearly from

R1 to R2. We compare our guidance method to other receiver size models. In each method, r is the

1http://www.ptb.de/en/org/1/16/163/roundrobin/roundrobin.htm

73



predicted receiver radius, N is the ray count, V is the scene volume, ` is the ray length, and d is the

distance between source and receiver.

• Lehnert model: This model increases the receiver radius for rays that travel farther, adjusting

the radius as rays spread out [Lenhert, 1993].

r = `
√

2π
N

• NORMAL model: Originally a method for predicting the number of rays needed based on

scene volume [Dance and Shield, 1994, Yang and Shield, 2000], this algorithm has been

adapted as a receiver size model [Xiangyang et al., 2003].

r = 3

√
15V
2πN

• Xiangyang model: This model accounts for the minimal sphere receiver size needed for

detection and adjusts the radius based on scene volume [Xiangyang et al., 2003].

r = log10(V )d
√

4
N

It should be noted that these receiver models are intended for simulations that include high orders

of diffuse reflections and are not necessarily optimal for low orders of specular reflections. Each

of these receiver models have been implemented in a parallel efficient manner and integrated into

our simulation. All simulations begin with 50,000 rays. Figure 5.13 shows detailed data for the

animation sequence.

Model #Tri Bounces #Paths PT (ms) AT (ms)
Desert 35k 3R+1D 15 53 3

Indoor scene 1.5k 3R+1D 27 62 5
Music Hall 0.2k 3R 62 23 7

Sibenik 80k 2R 11 90 3

Table 5.1: Performance in static scenes: The top two represent simple indoor and outdoor scenes.
The third one is a well known acoustic benchmark and the fourth one is the model of Sibenik
Cathedral. The number of reflections (R) and edge diffraction (D) are given in the second column.
The time spent in computing propagation paths (on GPU) is shown in the PT column and audio
processing (on CPU) is shown in the AT column. The simulation begins with 50k visibility samples;
we measure the performance after 50 frames.

5.4.2 Audio processing limitations

Our interpolation scheme presented in Section 5.3.2 produces smooth audio. It could be improved

by interpolating image sources by predicting their new position based on their current positions and

74



Model 1R 2R 3R 4R
Desert 30 41 53 57
Sibenik 51 90 153 226

Table 5.2: Performance per recursion: Average performance (in ms) of our GPU-based path
computation algorithm as a function of number of reflections performed. The Desert scene also
includes edge diffraction. 50k visibility samples were used.

0

20

40

60

80

100

120

140

2k 4k 8k 16k 32k 64k 128k Exact

Va
lid

Pa
th
s

Sampling

4th order
3rd order
2nd order
1st order

(a) Music Hall

0

2

4

6

8

10

12

14

16

18

2k 4k 8k 16k 32k 64k 128k Exact

Va
lid

Pa
th
s

Sampling

2nd order

1st order

(b) Sibenik Cathedral

Figure 5.12: Recursion path count: These figures show the number of paths found for varying
visibility rays. The receiver size is fixed at 1 meter. As visibility ray count increases, low triangle
count scenes like the Music hall (a) are quickly saturated. However, in complex scenes like Sibenik
cathedral (b), higher visibility ray counts are required to explore the scene.

velocities [Tsingos, 2001]. Additionally, in cases where the number of image sources (or paths)

is large, it is possible to apply clustering and perceptual acceleration [Moeck et al., 2007, Tsingos

et al., 2004] for efficient audio processing. Currently, our audio processing step does not interpolate

direction of an image source relative to the receiver but we encode it by computing delays and

attenuation for left and right ears for 3D audio.

5.4.3 Comparisons

We compare our system with other general GA methods and specific rendering systems.

Ray tracing algorithms: Previous ray-shooting based propagation algorithms [Krokstad et al., 1968,

Vorländer, 1989] trace each ray or ray packets independently to compute paths from the sources

to the receiver. These methods model the receiver as an object of some size to determine when a

discrete ray is close enough to the receiver to be considered a valid contribution path. This can lead

to missed contributions, duplicate contributions (see Figure 6.4), or statistical errors [Lenhert, 1993].

Since we can adjust the visibility sampling and detection sphere size, our method can achieve better

performance than prior ray tracing methods.

75



0%

20%

40%

60%

80%

100%
0 50 100 150 200 250 300 350 400 450

Fo
un

d
Pa

th
s

Frame Number

0

10

20

30

Ti
m
e
Co

st
(m

s)

Guided

NORMAL

Lehnert

Xiangyang

G
ui
de
d

Re
fe
re
nc
e

0

0.04

0.08

0.12

0.16

0 20 40 60 80 100 0 20 40 60 80 100

0

0.04

0.08

0.12

0.16

0 20 40 60 80 100

0

1

2

3

0 50 100 150 200 250 300 350 400 450

Re
ce
iv
er

Ra
di
us

(m
)

Frame Number

0

50

100

Vi
si
bi
lit
y
Te

st
s

(t
ho

us
an

ds
)

0

10

20

Va
lid

at
io
n

Te
st
s

(t
ho

us
an

ds
)

Co
m
pa

ris
io
n
W
ith

O
th
er

G
ui
de

d
M
et
ho

d
St
at
is
tic

s
Re

sp
on

se
Co

m
pa

ris
on

Am
plitude

Delay (ms)

1st order

2nd order

3rd order

Frame 50 Frame 150 Frame 250

Figure 5.13: Music Hall animation: This figure compares various receiver size models to our
guided method. During frames 100-199, the source moves to a new position; during frames 300-399,
the receiver moves to a new position. The top charts show the accuracy and the time cost over
the animation sequence. The three middle charts show number of validation and visibility tests
conducted by our guided method, in addition to the radius of the receiver. The bottom charts show
the impulse response of our method compared to an accurate image source simulation for frames 50,
150, and 250. Our method is more accurate than the others, while incurring a small additional time
cost.

76



Exact GA algorithms: Exact GA algorithms are based on beam tracing [Laine et al., 2009] and

conservative ray-frustum tracing [Chandak et al., 2009]. These methods can accurately compute all

the specular reflection and edge diffraction paths. However, frustum tracing methods [Chandak et al.,

2009] can take a 6− 8 seconds on simple models composed of a few thousand triangles with three

orders of reflections on a single core and beam tracing algorithms are almost an order of magnitude

slower than frustum tracing.

Ray-frustum tracing: These methods trace frusta and use a combination of exact intersection tests

and discrete clipping. Overall, their accuracy lies between discrete ray tracing and beam tracing

methods. However, current implementations can compute the propagation paths with specular

reflection and edge diffraction at 2 − 3 fps on a 7-core PC. In our tests, our system running on a

single GPU is about an order of magnitude faster than ray-frustum tracing.

Other systems: ODEON is a popular acoustics software which can compute specular reflections,

diffuse reflections, and diffraction [Christensen, 2009] and is perhaps the most widely used commer-

cial system for architectural acoustics. ODEON performs early specular reflections and diffraction

using a combination of ray tracing and image source method [Christensen, 2009]. For diffrac-

tion, ODEON computes at most one diffraction path from a source to a receiver [Pierce, 1974].

CATT-Acoustic [CATT, 2002] is another popular room acoustic software which performs specular

and diffuse reflections using a combination of image source and ray tracing methods, along with

randomized tail-corrected cone tracing [Dalenbäck, 1996]. RAMSETE [RAMSETE, 1995] is a GA

based prototype acoustic system. It performs indoor and outdoor sound propagation using pyramid

tracing [Farina, 1995]. It can perform specular reflections, diffuse reflections, and multiple orders

of diffraction using the Kurze-Anderson [Kurze, 1974] formula for free edges. RAVEN at RWTH

Aachen University is a framework for real-time auralization of virtual environments [Lentz et al.,

2007, Schröder and Lentz, 2006]. RAVEN uses spatial hierarchies to render specular reflection and

simplified diffraction in dynamic scenes with hundreds of triangles. Another prototype system for

real-time auralization is based on beam tracing [Funkhouser et al., 1998, Tsingos et al., 2004]. It can

perform specular reflections and diffraction using beam tracing. A beam tree is constructed in an

offline step which limits the system to either a static source or receiver position. RESound [Taylor

et al., 2009a] is also a real-time auralization system. It is based on a combination of frustum tracing

77



and ray tracing to handle specular reflections, diffuse reflections, and UTD diffraction in dynamic

scenes.

78



CHAPTER 6: RENDERING MASSIVE

MULTI-USER ENVIRONMENTS

The methods presented thus far have high computational requirements. Many modern mobile

devices lack such capabilities. It is possible to precompute acoustic responses for scenes using GA

methods like the ones described in the previous chapters. In this chapter we discuss how to efficiently

precompute, store, and render audio for thin mobile clients using a server in the cloud.

We introduce a similarity metric for reducing the amount of GA simulation samples needed in

the scene. We also discuss how the simulation results can be compressed and stored efficiently, while

still having fast rendering capabilities for thin clients.

6.1 Geometric acoustic similarity measure

In this section, we introduce our metric and present a GPU-based algorithm for fast computation.

In Section 3, we use this metric to decompose the scene into regions.

Our goal is to sample the acoustic field and form a database of acoustic responses, using as

few samples as possible, while still generating a reasonable set of responses. The final output of

any acoustic simulation is derived from the source/receiver configuration, the location of obstacles

and the material properties of the scene. This can be expressed using the room acoustic rendering

equation (RARE) [Siltanen et al., 2007], which describes the acoustic radiance from a point in the

scene as

`(x′,Ω) = `0(x
′,Ω) +

∫
G
R(x, x′,Ω)`(x,Γ)dx, (6.1)

where the outgoing acoustic radiance ` for point x′ and angle Ω is a sum of the emissive radiance

`0(x
′,Ω) and the integral of all reflected radiance from point x. The reflected radiance is scaled by

the function R

R(x, x′,Ω) = V (x, x′)ρ(x′,Θ,Ω)g(x, x′), (6.2)



(a) (b) (c) (d)

Figure 6.1: Sample signature for FPS scene in Figure 6.8(b): The components of the similarity
measure: (a) distance with black being near and white far, (b) direction with vectors shown as RGB
components, (c) discontinuities in depth and direction, and (d) materials with three frequency bands
shown in RGB components.

which accounts for the visibility V between points, the reflectance function ρ, and the distance and

orientation of the points g. The function g() can be expressed as:

g(x, x′) =

⌊
n(x) · x

′ − x
|x′ − x|

⌋⌊
n(x′) · x− x

′

|x− x′|

⌋
S|x−x′|

|x− x′|2
, (6.3)

where n represents the surface normal at a point and S represents the effects of propagation over a

distance, i.e. delay and attenuation.

Our goal is to quickly sample the scene and find locations where the acoustic field has a high

gradient to guide the sampling. One possibility is to use the RARE to sample the scene, but this can

be rather expensive for a large environment. Instead, we compute a first-order approximation that can

be evaluated quickly using standard rasterization algorithms such as cube mapping [Greene, 1986].

Using axis-aligned cube maps, we sample geometric and spatial data from the scene. From the cube

map data, we extract several values related to the physical properties that influence the propagation of

sound waves in the scene: surface distance, surface orientation, surface discontinuities, and surface

absorption. Figure 6.1 shows the visual data that is sampled.This spatial data corresponds to some of

the physical properties that influence first-order reflections: path length, reflection direction, surface

reflectance properties, and diffusion.

6.1.1 Distance

Acoustic waves that arrive at the receiver as reflections must first bounce off an object in the

scene. The path the sound travels results in delay, creating temporal effects that humans use to

determine environment properties. In media that absorbs sound, the distance the sound travels

80



fℓ

fs

v

Source

Receiver

ϕs

ϕℓ

Figure 6.2: Surface distance: The first-order propagation distance p is directly related to nearby
reflectors. v is the direct path to the receiver. fs represents the shortest first-order reflection path
as φs goes to 0. f` represents the longest first-order reflection path as φ` goes to π. Our algorithm
measures the f terms of p.

modifies the signal further, as some energy is lost to absorption. The S term in RARE (Equation 6.3)

accounts for effects that are related to the propagation distance. However, in order to measure this

effect exactly, one must perform an acoustic simulation that computes both early reflections and late

reverberations between the source and the receiver. It can be expensive to perform this computation

for each source-receiver pair. Instead, we use a simpler approximation, and only sample first-order

geometric properties to compute the reflection paths.

We note, using the law of cosines, that the length of the reflection path, p, can be computed by

forming a triangle between the source, the reflector, and the receiver (Fig. 6.2). This is given as

p = f +
√
f2 + v2 − 2fv cosφ,

where f represents the path to the reflector, v is the direct path to the receiver position, and φ is

the angle between these vectors. As φ approaches zero, the path approaches the shortest possible

reflection path between the source and the receiver; when φ is π, the reflection path is the longest

possible path between the source and the receiver. Figure 6.2 illustrates the shortest path as fs and

the longest path as f`. The value of φ, and consequently p, are only known at runtime, so we sample

the f component and use it to approximate the distance in the final acoustic response.

6.1.2 Surface orientation

The direction of earliest incoming sound paths to a receiver is highly indicative of the direction

of the sound source, and is a key element in sound localization. The g() function in Equation 6.3

81



vSource

n
r

Figure 6.3: Surface orientation: Reflection direction r varies as a property of the incoming vector
v and the surface normal orientation n.

describes how the direction of an object’s surface normal directly influences the direction of any

reflected sound paths off the surface. As in our handling of arrival delay, we avoid computing the full

acoustic simulation by sampling only the first-order geometric properties.

Reflection direction r can be determined based on the view direction v and the surface normal

direction n (Fig. 6.3). We note that v is fixed by the cube map sample location and the reflection

direction is a function of n, given as:

r = 2(v · n)n− v.

Since the surface normal directly influences the direction of first-order reflection, computing the

difference in first-order normals between two scene locations provides an approximation of the

difference in reflection direction, and the actual difference in early onset direction.

6.1.3 Surface discontinuities

The amount of diffraction and diffuse scattering from surfaces can significantly influence

the final acoustic response at the receiver’s location. The RARE does not directly account for

edge diffraction effects, but the reflectance function ρ() (Equation 6.2) can model such scattering.

Scattering occurs at the boundaries, which correspond to edges in 3D scenes. Simulating scattering

effects using geometric acoustics is time-consuming and challenging, as compared to reflection

effects [Calamia and Svensson, 2007, Taylor et al., 2012], and may require an accurate wave-based

solver [Raghuvanshi et al., 2010]. Instead, we use an approximation based on first-order geometric

properties that influences these effects, including depth and orientation discontinuity.

We measure the surface gradient with respect to surface normal and depth to estimate diffraction

and diffuse properties. When sampling our cube maps, we record the depth values and surface

82



normals. Next, we use a series of 2D operators over the cube face to find discontinuities in depth

gradient and normal gradient. These discontinuities represent potential regions where diffraction and

diffusion effects are significant. First, a 2D gradient is computed from the depth information:

∇x = [1,−1]; ∇y =

 1

−1

 .
This results in a two-component image that represents depth changes in x and y directions. We look

for discontinuities in this image to estimate where scattering is likely to originate from. An edge

detection kernel is applied to the components of the gradient:

k =


0 1 0

1 −4 1

0 1 0

 .

The maximum value, u, of the two components is retained and clamped to the range [0, 1], resulting

in a black and white map used to detect depth and normal discontinuities. Since the depth and

normal discontinuities influence the scattering of sound in the scene, we use these discontinuities as

a component in our measure.

6.1.4 Surface material

The material properties govern the absorption and scattering effects. The RARE accounts for

materials in the bidirectional reflectance distribution function (BRDF) term, ρ(Ωi,Ωe;x
′) (Equation

6.2). A commonly used BRDF segments the reflectance into pure absorption, diffuse reflection, and

specular reflection components using an absorption factor α and a diffusion factor δ. These factors

are defined over several frequency bands to define absorption, diffuse, and specular coefficients:

α︸︷︷︸
absorption

+ δ(1− α)︸ ︷︷ ︸
diffusion

+ (1− δ)(1− α)︸ ︷︷ ︸
specular

= 1.

We directly sample the material of the first-order surface and use that to approximate the resulting

effect. Note that α is a vector over several frequency bands.

83



6.1.5 Overall similarity measure

The components of the measure are stored on each face of the cube map and constitute a first-

order response measure related to the surfaces near the sampling point. Storing all cube-face images

for each sample point requires large amounts of storage. In order to reduce the memory overhead,

we perform an integration step to compute the mean of the geometric properties on each cube face.

Given a geometric value q (representing one of the four data values) across s cube map samples, we

compute the mean qavg =
∑s

i=0
qi
s .

After the integration step, the cube map data for each axis is reduced to a four tuple of mean

surface distance favg, mean surface orientation ravg, mean surface absorption αavg, and mean

number of pixels that lie on possible scattering edges uavg. The final similarity measure G is a six

row matrix composed of this four tuple for each of the six axis-aligned sample directions. Each

direction is referred to as a superscript (shown as x below):

G = [fxavg, r
x
avg, α

x
avg, u

x
avg].

6.2 Scene decomposition and sampling

In this section, we present our scene-decomposition algorithm, which greatly reduces the time

and storage cost of the acoustic precomputation while incurring only small error in response accuracy.

The similarity measure, G, described above is simple and fast to compute. As a result, our algorithm

first evaluates the similarity measure on a dense grid of sample points over the scene. Once the

surface properties near each sample point have been measured, sample points with similar properties

are merged, which reduces the total sample point count in the scene. We first discuss the method to

compute the difference between two samples, followed by the techniques used to segment the scene

and compute acoustic responses.

6.2.1 Similarity comparison

In the previous sections, we described our method for extracting geometric properties that

correspond to expected reflection-path length, expected reflection direction, and expected diffuse

84



(a) (b) (c)

Figure 6.4: Adaptive sampling: (a) Regular grid sampling creates a very high number of samples;
(b) we remove redundant samples; (c) adaptive sampling of the scene with fewer samples.

energy. We assume that if two sample points have similar values for these parameters, it is likely that

the acoustic field measured around the sample positions will be similar. The difference S between

sample points a and b can be computed by taking the component-wise difference of the quantities

described above:

S = |Ga −Gb|.

When calculating the difference in the mean surface distance, favg, the percent difference distances is

used. This results in a difference value in the range [0, 1], which can account for changes in both short

and long distances. Similarly, for direction, the dot product is taken and scaled to the range [0, 1].

Since the absorption vector, α, is already bounded [0, 1], we use the maximum scalar absorption

difference for any sub band. The discontinuity measure is also naturally bounded [0, 1]. The result is

that S is a 6× 4 matrix with the components being scalars in the range [0, 1].

S will be used to determine if two locations in the scene are similar. In addition to the S

parameters, line of sight is also used to restrict similarity; we assume that there is a line of sight

(LOS) between the sample points considered similar. This forms the basis of our similarity metric:

sample points are likely to have a similar acoustic response if the early response (i.e., cube map

measured data) is similar and if the points are visible to each other (LOS restriction).

6.2.2 Sample merging

Once the similarity properties between all neighboring sample points have been measured, the

scene-decomposition algorithm is used to compute adaptive sampling. We note that the similarity

85



measure S is useful for evaluating whether two sample positions are similar, but not directly useful

for eliminating sample positions. If a sample point is removed, the nearby acoustic field will be

sampled sparsely, which may lead to more error at reconstruction when a receiver is placed near that

sample point.

The sample points are merged in an adaptive quad-tree like manner. This is done by recursively

subdividing the sample points into regions. The corners of regions are evaluated for similarity. Most

quad trees divide the working set by four at each level. Our reduction algorithm also attempts to

subdivide the four half regions (two along each dimension). This reduces the number of subdivision

steps by a small amount.

The maximum norm is taken for each property in S across all dimensions (e.g. column vectors),

and the result is used to form a weighted average error, sp. This error is compared against the

similarity threshold sthr:

sp =
1

4
(||S0||∞ + ||S1||∞ + ||S2||∞ + ||S3||∞),

sp < sthr.

If the error criterion is satisfied, all points bounded by the corners may be combined into a single

region. If the corners do not satisfy the metric, the region is further subdivided and the tests are

repeated for all sub-regions. Each resulting region then contains similar geometric properties based

to the degree specified in sthr. The details of the adaptively merging algorithm is given in Algorithm

1.

6.2.3 Acoustic regions

The output of the refinement stage is an irregular arrangement of merged samples (see Figure

6.4). The process of sample merging also gives us acoustic regions: if two sample points are merged,

they were classified to be similar by the error criteria, and their original positions in the 2D grid

are marked as belonging to the same region. As points are merged, the acoustic regions grow until

the edges at the boundary of the region no longer satisfy the error criteria. At runtime, the acoustic

86



Algorithm 1 Adaptively merge regions with similar signatures. Each region can be subdivided into
four subregions. Neighboring subregions could form larger rectangular regions. In this algorithm, the
ordering of merges ensures that the largest possible regions are merged. That is, if there is a possible
merge of a rectangular region, it is used. The similar() function tests if the signatures in the region
satisfy the LOS and sp < sthe constraints.

function MERGE(corner, size)
c← corner
s← size
h← size/2
entireRegion← (c, c), (s, s)
topRect← (c, c), (s, h)
botRect← (c, c+ h), (s, h)
lefRect← (c, c), (h, s)
rigRect← (c+ h, c), (h, s)
topLef ← (c, c), (h, h)
topRig ← (c+ h, c), (h, h)
botLef ← (c, c+ h), (h, h)
botRig ← (c+ h, c+ h), (h, h)

if similar(entireRegion) then
merge(entireRegion)

else if similar(topRect) and similar(botRect) then
merge(topRect); merge(botRect)

else if similar(lefRect) and similar(rigRect) then
merge(lefRect); merge(rigRect)

else if similar(topRect) then
merge(topRect); merge(botLef ); merge(botRig)

else if similar(botRect) then
merge(botRect); merge(topLef ); merge(topRig)

else if similar(lefRect) then
merge(lefRect); merge(topRig); merge(botRig)

else if similar(rigRect) then
merge(rigRect); merge(topLef ); merge(botLef )

else
merge(topLef ); merge(topRig); merge(botLef ); merge(botRig)

end if
end function

87



region of the source point and the receiver point must be selected based on the spatial position of the

source and the receiver.

Since the source and the receiver will not lie exactly on the sample points used during precom-

putation, the appropriate acoustic region is computed by checking the four nearest grid locations.

The simplest case is when the four nearest grid locations belong to a single acoustic region. This

region can be immediately identified. If not, LOS queries with O(log n) time cost are performed

from the four points against the objects in the scene. The closest point with a clear LOS is selected

as the closest grid node.

6.2.4 Simulation of sound propagation

Our method treats sound propagation simulation as a black box, and its only requirement is

with respect to the input: the scene representation, along with the positions of source and receiver.

From this input, it computes an impulse responses as the output. We use geometric acoustics (GA)

simulation in order to compute responses on large scenes, since the complexity of wave-based

simulators is a linear function of the scene volume. Our simulator traces specular rays and diffraction

rays [Taylor et al., 2012, Vorländer, 1989] and computes paths between a source-receiver pair; it then

outputs an acoustic impulse response that represents environmental effects on sound waves traveling

from the source to the receiver. This impulse response can be convolved with any input sound signal

to render an output signal with the appropriate effects.

We identify the center of each region obtained from the decomposition process; this point

becomes a sample point for the propagation simulation. Each sample is modeled as a source from

which rays are traced into the scene. Every sample is also considered a receiver, and propagation

paths are recorded at each sample. Even with region segmentation, there are still a high number of

source-receiver pairs. Since each ray would require intersection with n receivers at the sample points,

and each sample point also acts as a source, this results in O(n2) ray tests using naive methods.

We include receiver locations in a standard ray-tracing acceleration structure to reduce the receiver

intersection cost to O(n log n).

88



6.3 Storage and reconstruction

This section describes our storage algorithm. We have designed a method to efficiently compress,

store, and retrieve audio-response data. Since our method is designed for large scenes, our storage

database must scale in time and space. An acoustic response is a signal over time or frequency. If

spatialization effects are desired, direction data must also accompany the signal. For our purposes,

three portions of the response data are recorded: decay profile, incident direction, and diffusion.

However, the methods described below can encode any type of data.

6.3.1 Response representation

The paths computed in the trace step form the acoustic response between the two samples and

represent the environment’s filter of the acoustic signal between the two locations. Such filters can

be represented compactly by sampling the energy decay profile through time [Merimaa and Pulkki,

2004, Tsingos, 2009]. The decay profiles are built by integrating the energy in the impulse response

over small time-steps and a number of frequency sub-bands. In this way, both temporal and frequency

resolution can be controlled by the user.

The response is stored in three parts: pressure values, a direction value in 2D, and a diffuse

coefficient to indicate how strong the directionality is. Similarly to other methods [Tsingos, 2009],

we store pressure values for several spectral sub-bands quantized in the time domain. An energy-

weighted average direction of incidence is stored at time-step resolution; all pressure frequency bands

share the same direction. Similarly, a directional-to-diffuse energy value is also computed [Merimaa

and Pulkki, 2004].

In the theoretical worst case, n2 responses could be generated (n sources to n receivers), this

does not happen in practice. Since there exists a maximum sound energy level for each source (e.g.

human voices), there must be a bound on the number of responses generated. Moreover, the energy

emitted is diminished by air absorption as it travels. For a given grid of n sample points, only k

samples will have audible response to the human voice. The k factor is based on the distance between

the sampling points, dissipation by the air attenuation model, the maximum pressure level that is

simulated, and the minimum pressure level that can be sensed.

89



A

B

C

h(x,y)
4 4

h(x,y)
3 3

h(x,y)
1 1

h(x,y)
2 2

B A C

A

C
B
A

Decay DecayDecay

(x,y)
Decay

input

linked list

map

h

hash table

decay pointer
decay index

position hash
decay index

(a)

Figure 6.5: Data insertion: The decay data A, B, C is appended to a linked list and the length of
the list is the data index. The index is stored with a pointer to the decay data as a pair in a map. The
index is paired with a position hash and stored in a hash table. The insertion can be performed in
average O(log n) time. After all the data is stored, the linked list is converted to a linear array, for a
total time complexity of O(n) and average storage cost of O(n).

This bounds the number of responses that can be be inserted in the database, i.e. kn. This also

bounds the time cost of the simulation, since the simulation can be confined to a region large enough

to enclose the k sample points. As the scene size increases, the fact that k is constant allows the time

and space required by the simulation to be bounded.

6.3.2 Storage data structures

Since there is response data for each source-receiver pair, it is logical to store the data in a linear

vector with an index table to query by source-receiver. This approach allows O(1) insert and retrieval

time. However, since the number of source-receiver pairs can be very large, the O(n2) scaling of the

table index dominates the storage cost. For example, a scene of 35K sample points would result in

nearly 5GB of storage for the table itself. On very large scenes, the size of the index can exceed the

storage needed for the acoustic data. It is thus desirable to reduce the size of the actual data stored

and the size of the index needed to query the data.

6.3.2.1 Storing acoustic data

Based on acoustic reciprocity, we assume that acoustic responses from swapping source position

and receiver position should be similar. We capitalize on this factor to reduce the amount of acoustic

90



data stored. To perform this step, we detect if an insertion will result in duplicate data. We can

impose strict weak ordering on all the acoustic data, so a map offers fast insertion and query time.

However, the ordering of map nodes is not fixed until all the insertions are completed. Since the

index must be built at the same time, we use a linked list to store the actual acoustic data, and the

map references this data. The ordering of this list is fixed through the insertion process, and the index

is built against the list. This allows insertions to take place in O(1) time for the list and O(log n)

time for the map. Moreover, space complexity for both structures is O(n). Refer to Algorithm 2 for

details.

In our algorithm, we store decay profile, direction, and diffusion separately, and store only

unique responses to take advantage of reciprocity. This allows very efficient duplicate storage, and,

most importantly, sparse storage of the empty response. Since we are simulating very large scenes,

the most common output from the simulator is an empty acoustic response.

Algorithm 2 Insert response data. All the insertions are performed during simulation phase. We give
details of our insertion algorithm based on the hash table representation.

function INSERTRESPONSEDATA(data, location)
if data = emptyData then

return
end if
ptrD ← pointer(data)
id← map.Query(ptrD)
if id = emptyID then

list.Insert(data)
ptrD ← pointer(list.End)
map.Insert(ptrD)
pair(location, list.Size)
hashmap.Insert(pair)

else
pair(location, id)
index.Insert(pair)

end if
end function

6.3.2.2 Efficient data indexing

For the acoustic data, both insertions and queries are performed during the simulation. At

runtime, only the acoustic data is queried. Thus, when all insertions are complete, the map is

discarded and the list is converted to a vector for efficient storage. The separate index is used to

91



h(x,y)
4 4

h(x,y)
3 3

h(x,y)
1 1

h(x,y)
2 2

B A C
A

C
B
A

h
Decay Decay Decay

Decay

hash table

array

(x,y)

outputinput

(a)

Figure 6.6: Data access: For runtime access, the query position is hashed and the decay index is
found in average O(1) time. The data array is then queried for the final decay data.

query acoustic data from this vector. Since the vector representation supports random access in O(1)

time, the cost of querying acoustic data is thus dominated by index lookup.

The data stored in the index is a key-value pairing of a hash with the index to the acoustic data

in the previously discussed list. When the list is converted to a vector, the ordering is preserved.

Combining the source-receiver indices results in a good hash function; it can be represented as a

single integer that is guaranteed to not collide with any other hashed values. We also note that we

expect many responses to be empty and thereby, represent such a quiet response (i.e. no sound).

Based on these assumptions, we do not store keys that reference empty acoustic data. Instead, if a

key is not found at query time, it is assumed that the data for the key is the empty response. This

significantly reduces the size of the index.

This data is queried often at run time to lookup the acoustic data vector locations. Therefore,

during we construct a hash map from the unordered vector to represent the final index for O(1) query

time and O(n) storage cost on average. We also found that sorted vectors performed equally well,

even with O(log n) query time due to the constant values associated with each data structure. The

responses can be accessed in constant time using our data structure (see Figure 6.6 and Algorithm 3).

The source-receiver hash map can be queried in O(1) time on average.

Algorithm 3 Get response data. This query is performed at runtime to lookup the acoustic data
vector locations.

function GETRESPONSEDATA(location)
id← index.Query(location)
if id = emptyID then

return emptyData
else

return data[id]
end if

end function

92



Time

A
m
p
lit
u
d
e

Time

A
m
p
lit
u
d
e

Time

A
m
p
lit
u
d
e

*
Figure 6.7: Early response attenuation: The early response pressure is attenuated for source/re-
ceiver pairs in the same region.

6.3.3 Response reconstruction and rendering

When sampling an acoustic region, the source and receiver positions for response sampling

are centered in the region. However, at runtime, the source and the receiver may be in the same

region separated by the full width of the the region. Since our algorithm has only computed a single

response for the entire region, we approximate the distance attenuation by scaling the early portion of

the decay response. For example, we define the early portion as the first 140ms of the response. We

scale each pressure value in the early portion by 1
d , where d is the distance that leads to a response

during that time step. This attenuation factor is linearly reduced for each consecutive time step, so

that no attenuation is applied to the final early time sample. This process allows the early field to be

attenuated without altering the standing late reverberation field (see Fig. 6.7). The direct path and

early reflection rendering is performed on the server using a block-based convolution in the Modified

Cosine Transform Domain [Tsingos et al., 2011]. This is efficient as audio is often coded in that

same domain. The direct path and decay data are interpolated over time as the user moves through

the scene to avoid audible discontinuities in the output.

In many situations, the server can process the reverberation in realtime and operates in full

mixing mode. This means all the processing is done on the server and stereo or multichannel results

are generated and sent back to the client. Thanks to our representation of reverberation filters, it is

also possible to send only a mono mixture and energy-weighted direction and direct/diffuse metadata

to further reduce bandwidth and enable flexible spatialization on the client. No matter the rendering

arrangement, all head-related filtering is performed at the client-side.

93



(a) (b) (c) (d)

Figure 6.8: Example scenes: Our algorithm can generate environmental acoustic effects in large
virtual worlds and games. We show different benchmarks with their dimensions in meters: (a) simple
outdoor scene (33 × 33 × 10); (b) first person shooter (FPS) game scene (30 × 60 × 20); (c) city
scene (600× 980× 33); (d) canyon model (4000× 4000× 100). Our approach scales with the size
of these models and can handle a large number of sources and receivers in multi-player enviroments
at interactive rates.

For environments with very long reverberations, which cannot be completely processed on the

server, a further optimization would be to process only the direct + early part of the response (up

to some number of blocks) on the server. An additional dry mono mixture and representative late

reverb metadata would also be sent to the client so that it can provide local late reverb processing but

this is not demonstrated in our video or results. This necessary metadata is the local late decay rate

in the vicinity of the listener and an average late decay rate for all the sources.

6.4 Validation

In this section, we evaluate the accuracy of our approach using various perceptual metrics used

in room-acoustic analysis. We used several example scenes, shown in Figure 6.8. These selected test

scenes represent the likely use cases, and comprise both indoor and outdoor scenes, corresponding to

game maps and virtual worlds. The details about these models and the underlying grid resolution are

given in Table 6.1.

Scene # Triangle Size (m) Grid spacing (m) Sample count
Simple outdoor 2k 33 x 33 x 10 4 81

FPS game 14k 30 x 60 x 20 4 128
Small city 2k 100 x 100 x 33 4 625
Large city 2k 247 x 168 x 33 4 4.9k
Canyon 540k 4k x 4k x 100 4 1,000k

Table 6.1: Example scenes: Physical sizes for the indoor and outdoor scenes are given in meters
(m). The sample count is for a regular grid at the given resolution.

94



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Node reduction

R
el

at
iv

e 
ch

an
ge

●

● ●
● ●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

Change with sub−sampling

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
Energy error
Size
Render time

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Node reduction

R
el

at
iv

e 
ch

an
ge

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

Change with adaptive reduction

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
Energy error
Size
Render time

(b)

Figure 6.9: Sampling accuracy vs. error and cost: Naive subsampling (a) is the most common
way of reducing time and storage cost. As the threshold error in our adaptive sampling algorithm
changes (b), the overall error in the acoustic evaluation metrics increases, while overall storage,
precomputation time, and number of samples decrease (FPS game scene).

6.4.1 Error computation

We have measured various errors related to acoustic responses generated by our algorithms,

including the similarity measure and the scene decomposition. We measured these errors in the

reconstructed results based on certain properties of the impulse responses. In particular, we used

some well-known acoustic evaluation metrics related to evaluating acoustic responses: onset time

delay, initial onset direction, reverberation time in the form of RT60, and signal definition in the

form of D [ISO 3382, 2009, Kuttruff, 2007]. We performed GA simulation using our precomputation

algorithm, computed impulse responses, and compared our results to a ground truth dataset. The

ground-truth data is the full set of responses from the GA simulator with the source and the receiver

positions at the same grid size, but without any sample reduction. We used a dense, uniformly-

sampled grid to generate the ground-truth, as shown in Table 6.1. In both simulations, we traced 50K

rays from each sample point, performing 50 orders of specular and diffuse reflections and 5 orders

of edge diffraction. The relative error is calculated by dividing the absolute error by the maximum

possible error for each metric. Below we give details related to error computation and evaluation and

illustrate many error maps (as shown in Figure 6.10 and Figure 6.11). The low error in these maps

validates our approach with respect to various acoustic evaluation metrics.

95



6.4.2 Similarity measure thresholds and validation

During the precomputation step, our method computes an acoustic similarity measure for

positions in the environment. An error threshold is used to select similar regions during the scene

decomposition. When merging the sample points and performing scene decomposition, the error

between two sample points ranges in the interval (0, 1]. For the results presented in this thesis, we

set our error threshold sthr to such that 75% of the original nodes are removed.

Since our approach reduces the number of acoustic responses based on our similarity measure,

it is possible that the final acoustic map may not accurately represent the responses of the original

acoustic environment. In order to show the accuracy of our decomposition algorithm, we compare

the properties of a full ground-truth simulation to properties generated from our method in two scenes

with the initial grid size set to 4m× 4m.

By adjusting the error threshold in the region-segmentation step, higher accuracy in acoustic

properties can be achieved. However, this increases the number of acoustic regions that need to be

stored. We expect simulations with fewer regions to have greatly reduced computational overhead,

but to also have a small increase in errors in the impulse response. Figures 6.9 highlights the relative

variation in error and computation cost as the region merge threshold is adjusted. The errors in this

figure are computed by taking the average of the error for every possible position of the receiver,

similar to the error maps used in Figure 6.10.

6.4.3 Acoustic property error calculation

In order to compare our approach to a ground-truth simulation, we consider four acoustic

evaluation metrics described below. More details about these metrics can be found in [ISO 3382,

2009, Kuttruff, 2007]. We give details on how we compare the values of these metrics to our

simulation results with the ground-truth. Due to our adaptive decomposition, some positions in our

precomputed solution may be associated with empty responses, while the corresponding solution in

the ground-truth data may have a non-zero response (and vice versa). In this case, the error at those

positions is undefined and we use a worst case error value at these locations for our error metrics.

Onset delay (Onset): This is the time it takes for the earliest first-order path (reflection or

diffraction) to reach the receiver. This is very similar to the Initial Time Delay Gap [Andō, 1998],

96



but we cannot guarantee the presence of a direct contribution; so we measure the delay from the

initial simulation time. We compute this parameter by finding the delay of the first impulse in the

acoustic response. Moreover, we assume that a missing value indicates that the onset occurred

outside the measurement range (4 seconds in our implementation). In these cases we set the error to

the difference between the maximum measurable onset and the known delay. Otherwise, this error is

computed as a time difference between the two response onset delays.

Onset direction (Dir): This is the average direction of all contributions for the initial impulse.

It is the first directional sound that a listener hears in the absence of direct sound and is important

for localization. We compute this parameter by averaging the directions of all contributing paths

that contribute the first impulse. This error is computed as the dot product of the normalized onset

directions of the responses. We scale the error over the [0, 1] interval, where an error of 1 represents

the maximum error of 90◦. Since highly diffuse signals will have nearly random direction, the

direction error is scaled by the strength of the spatial response. This means that highly diffuse signals

will produce low directional error, while signals with less diffusion could produce more error.

Reverberation (RT60): This corresponds to the time it takes for sound waves to decay past

a certain threshold. In particular, RT60 is the time needed for the sound to decay -60dB. The

reverberation decay helps the listener to determine the size of the space. We compute this using the

Schroeder method [ISO 3382, 2009, Schroeder, 1965] by matching a least-squares fit of the pressure

decay in log space. We compute the time to decay to -60 dB by fitting a least square line to both

the decay responses; we report the error as the time difference in decay time. For reverberation, we

assume that a missing value indicates that the signal decayed immediately, so the error is the decay

time from the other signal.

Definition (D) This value represents the ratio between energy levels in the early and late portions

of the acoustic response. We use D, the ratio of the integral of the first 50 milliseconds of energy to

the total energy in the response, as defined in [ISO 3382, 2009, Kuttruff, 2007]. D represents the

intelligibility of speech signals. If both responses have a value, the error is the difference between

the measured D values. If the response is empty, we assume it has a D value of 0.

Clarity (C80) This value is similar to D, except it is the ratio between the energy in the first 80

milliseconds of the response to the rest of the energy [Kuttruff, 2007]. In short responses, this can

lead to a division by 0 if there is no energy past the initial 80 milliseconds. We compute error in

97



this value as a percent difference in decibel values. If there is no energy in the later portion of the

response, we avoid dividing by 0 and assign a default value of 20 decibels.

Strength (G) This value represents the strength of the response as a ratio of response energy to

the direct path at 10m [Kuttruff, 2007]. We compute error in this value as a percent difference in

decibel values.

Total energy (Energy) This value represents the sum of the sound pressure levels over the

length of the response. Before the sum, the frequency band values are averaged into a single time

domain response. We compute relative error in this value as a percent difference in decibel values.

6.4.4 Error map calculation

Since it is difficult to report the thousands of error values from a single scene, we compute various

maps that average the error values over the entire scene. All of these calculations are performed on

the acoustic evaluation metrics defined above. The most intuitive error is the difference between

a property f from a ground-truth acoustic response and a property c from our region-segmented

acoustic response. For a given source position, we measure the acoustic property difference of all

receiver positions over the entire map as |f − c|. This differencing process is shown in Figure 6.10.

We weight the acoustic property error relative to audibility a, which we define as the maximum

decibel value in the acoustic response. The error for a response is scaled over the range 0 to 2 for

audibility of -60 to 0 dB. Thus, the error in quiet responses is weighted less, while error in loud

responses is weighted more.

Using these difference maps, we compute the relative error in acoustic evaluation metric over

the range of that metric (g) and scale it by the audibility factor a as |f−c|g a. The average relative error

A for a single source position s to any of n receiver positions can be given as

A =

∑n
s=0

|fs−cs|
g as∑n

s=0 as

Figure 6.11 shows the value A visually. The average relative error M is computed for all

positions:
∑n

s=0As/n. This is the value shown in Figure 6.9. We note that for large maps, many

responses are silent, as the sound decays before reaching distant receivers. These responses are

trivially equal (i.e. empty) and are not included in any error calculations.

98



(a) (b) (c)

Figure 6.10: Error maps: We compute acoustic evaluation properties in the FPS scene for (a)
full dataset and (b) our reduced dataset. The details of these datasets are given in Table 6.2. The
difference between these datasets represents the error in our solution (c). The total energy values for
the source position outlined in green are shown.

We have computed the ground-truth for the FPS Game scene using our simulator with no

segmentation. The results in Figure 6.12 are the relative error for an initial sampling of 4 meters with

a merge threshold Sthr set such that the simulated node count is 75% of the original grid sample

count.

6.4.5 Error analysis for reduction algorithms

We investigated other possible reduction algorithms: naive sub-sampling, greedy flood fill

reduction, and greedy sorted merge, and compared them with our adaptive schemes. Subsampling

is placing the sample points in a regular grid at lower resolution sampling rates. This is the most

natural way to reduce sampling in a scene. Flood fill is performed by sorting edges according to the

99



(a) (b)

Figure 6.11: Segmentation error: The segmentation map for the FPS scene is shown in (a),
where each unique color is an acoustic region. The total energy relative error resulting from this
segmentation is shown in (b) We show the source position sampled in Figure 6.10 as a green circle.
The legend for (b) is the same as the legend in Figure 6.12.

minimum error, then greedily merging the lowest error nodes to form a region. Any nodes connected

to the region are merged, provided the resulting error is low enough. In greedy sort merge, the edges

are sorted according to the minimum error. Edges are merged in a greedy fashion until all possible

edges are merged. We investigated all these methods and observed that adaptive reduction is the

most effective (see Figure 6.13).

6.4.6 Metric analysis

We use four metrics in our similarity measure: distance, direction, diffuseness, and material.

We weight the metrics identically since it is difficult to know which metric will perform best for a

given scene. For example, the material metric may be very useful in an office environment with many

different materials, but less useful in a stone cathedral where all materials share similar properties. In

Figure 6.14 we show the results of reduction with some metrics disabled.

100



(a) (b) (c) (d)
Figure 6.12: Error maps: We compute the relative error in FPS scene with respect to different
evaluation metric: (a) onset delay; (b) onset wave direction; (c) RT60; (d) and definition D. A
wireframe of the scene is overlaid on the error maps. Red areas indicate high error. In most regions
the errors in terms of onset delay, RT60 and definition are low. A few locations result in high values
of the onset direction relative error.

6.5 Implementation and performance

We describe our implementation and highlight the performance of our algorithm on game scenes

and virtual worlds. We have implemented our precompute system on a PC with an NVIDIA GPU

with 480 threads and 1.5 GB video memory. The precompute system CPU is an Intel Xeon with

48 threads and 256 GB main memory. The runtime system is a common Intel Core i7 CPU at 3.3

GHz with 16GB memory. The cube sampler and similarity metrics were implemented in OpenGL

with GLSL shaders to compute the diffusion and integration steps. The precomputation algorithm is

implemented in C++ with OpenMP threading.

6.5.1 Similarity and reduction cost

Our similarity metrics are computed on cube faces using the GPU. We used GLSL shaders to

sample the surface distance and normals. The distance is computed in the object space and recorded

along with the normals. The diffusion metric is computed in one pass based on the gradient for each

query using the edge-convolution kernel. The integration step is performed using a simple texture

101



0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e 
ch

an
ge

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

Change with adaptive reduction

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
maxdB error
Early diffuse
Late diffuse

(a)

0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e 
ch

an
ge

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

Change with flood fill reduction

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
maxdB error
Early diffuse
Late diffuse

(b)

0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e 
ch

an
ge

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

Change with single sort reduction

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
maxdB error
Early diffuse
Late diffuse

(c)

0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Node reduction

R
el

at
iv

e 
ch

an
ge

●

● ●
●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●

Change with sub−sampling

●

●

●

RT60 error
D error
Onset error
Direction error
C80 error
G error
maxdB error
Early diffuse
Late diffuse

(d)

Figure 6.13: Error values for different reduction algorithms corresponding to different acous-
tic evaluation metrics: The (a) adaptive algorithm performs better than any other; the other node
placement algorithms guided by our signature, (b) flood fill and (c) sorted merge, perform much
better than naive (d) subsampling. These error plots demonstrate the benefit of using our geometric
acoustic similarity criteria along with the adaptive scheme as compared to other approaches. For
example, the error reduction over sub-sampling algorithms can be large, as compared to that over
flood-fill and single sort reduction. Due to high compute cost, these results only include specular and
diffraction responses.

value summation kernel and scaled by the kernel size. In our benchmarks, we found that a kernel

size of 4 pixels gives the best performance on our GPU. In the reduction and similarity comparison

step, LOS queries are performed using a fast CPU-based BVH ray tracer. All edge-reduction and

region computations are performed using custom data structures backed by STL containers. The

reduction process has a low computational overhead. Given the appropriate error thresholds, we

perform sampling and segmentation on our benchmark scenes. The time to compute the similarity

measure at each sample point as well as the time cost to eliminate similar sample points are shown in

Table 6.2. The results in this section are for specular and diffuse responses only. Diffuse reflection

102



Node reduction

E
rr

or

0.0
0.2
0.4
0.6

0.0 0.2 0.4 0.6 0.8 1.0

●

●● ●
●

●
●

●
●

●
●

●

d0r0f0m1−adaptive

●

●●
●

● ●
●

●
●

●
●

●

d0r0f1m0−adaptive

0.0 0.2 0.4 0.6 0.8 1.0

●

●● ●●

●●●
●

●
●

●

d0r1f0m0−adaptive

●

●●●● ●
●

●
●

●
●

●

d1r0f0m0−adaptive
●

●●
● ●

●
●

●
●

●
●

●

d1r1f1m1−adaptive

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6

●

●●● ●
● ● ●● ●●●

●

●●
● ●●●●●●

●

Sub−sampling

Figure 6.14: Individual metric results: We show the reduction results when only a single metric is
enabled on the Small City scene. The chart title indicates which metrics are enabled with a 0 or 1:
distance (d), direction (r), diffuseness (f), and material (m). The top row shows the results with all
metrics enabled and the results from naive subsampling. The vertical axis is maximum error of any
measured acoustic property, while the horizontal axis is the nodes remaining from the original count.
Due to high compute cost, these results only include specular and diffraction responses.

requires four times as many rays to be traced in order to model per frequency effects. Table 6.3

shows the cost of simulating diffuse reflections.

Full Reduced Time
Scene grid Cubemap Segmentation Trace improvement

Simple outdoor 15.14s 1.3s 1ms 6.4s 2.0x
FPS game 141.0s 2.0s 1ms 41.6s 3.2x
Small city 8.8m 8.6s 3ms 4.6m 1.9x
Large city 68m* 26s 69ms 14.4m 4.7x
Canyon 52d* 1.24h 3s 174h 7.17x

Table 6.2: Precomputation time cost: Region segmentation using cube maps allows a significant
reduction in precomputation time. The full grid data is generated based on the grid size given in
Table 1 for each benchmark. Due to the high time and space cost, times marked with an * are based
on partial simulation.

6.5.2 Precomputation: time and storage

By segmenting the scene and reducing the number of sample points during precomputation, the

time and storage costs can be considerably reduced. Our sound propagation simulator is based on

discrete ray tracing, accelerated by efficient BVH trees. The ray tracer is heavily multi-threaded,

but not SIMD optimized, as high-order reflections are very incoherent. The simulator computes the

response at each receiver in the scene from a single source in one simulation cycle. This results in n

simulation cycles for n acoustic regions or source positions.

103



With diffuse Without
full reduced full reduced

FPS time 554s 223s 141s 42s
FPS space 2.0MB 0.5MB 1.3MB 0.3MB

Small city time 33.5m 14.9m 8.8m 4.6m
Small city space 39MB 3.3MB 39MB 3MB

Table 6.3: Diffuse reflection cost: Diffuse reflections requires more simulation time and slightly
more storage space. Reduction results are for 75% node reduction.

We store our acoustic data as quantized decay filters. A four second reverberation decay profile

can be efficiently encoded using 200 blocks, each containing 6 bytes of information, for a total of

1.2 KB. Our reduced sample count and efficient storage structure significantly reduce the storage

overhead, as compared to grid based methods. Table 6.4 compares our storage overhead (“Reduced”)

to standard grid based methods (“Full”).

We design our storage algorithms to reduce both time and space costs. For n insertions, the time

cost is O(n log n), which is dominated by map operations and sorting the index vector. Additionally,

data is stored sparsely when possible. Sparse data, response quantization, and node reduction result

in highly compressed acoustic databases (Table 6.5).

Full grid Reduced Storage
Scene inserts storage inserts storage improvement

Simple outdoor 5.5k 1.6MB 1k 0.3MB 5.3x
FPS game 7.3k 1.3MB 1.6k 0.3MB 4.3x
Small city 229k 39MB 7.3k 3MB 13x
Large city * * 722k 173MB *
Canyon * * 11.6B 20.8GB *

Table 6.4: Storage cost: We compare storage cost of our reduction algorithm to a full grid, both
stored in our efficient sparse data structure.We observe significant improvement for large scenes.
Due to the high time and space cost, times marked with an * could not be computed.

Method Error Space savings
Value quantization ∼2% 75%

No duplicates None ∼50%
Node reduction ∼20% ∼80%

Total ∼ 22% ∼99.99%

Table 6.5: Compression: We combine several algorithms to produce highly compressed scenes

6.5.3 Runtime cost

The direct sound and early reflection computations are performed on the server for a viable VoIP

application. A single server would be expected to support thousands of clients (e.g. Axon supports

104



8K clients on an 8-core server [Dolby, 2012]). The results for the maximum number of streams

that can be mixed on a single core in realtime are given in Table 6.6. By implementing our runtime

mixing using efficient GPU kernels, we can further scale the approach to thousands of streams in

realtime using high-end GPUs [Tsingos et al., 2011].

Scene # Mixes Convolve (ms) Setup (ms)
Walkway 764 16.2 5.0

Game FPS 731 13.7 4.8
Small city 800 15 5.6
Large city 692 14.8 5.2
Canyon 684 14.2 5.8

Table 6.6: Max realtime mixes per core: This table shows mixing costs for 500ms of decay data
per stream. The setup time includes data structure access and LOS traces. The realtime mixing step
in our system is performed in less than 20ms.

In traditional spatial VoIP systems, occluded voices that are not in direct LOS would fade into

silence, and therefore would not be considered for mixing; this indirectly improves the computation

and bandwidth scalability of the system. In contrast, we take into account occluded voices for

clustering and mixing as they might be audible due to early scattering and reverberation effects. This

can decrease the forwarding-to-mixing ratio and requires more runtime processing.

We measure the performance of our algorithm by changing the number of audio streams that can

be rendered simultaneously. For our purposes, an audio stream is the data that must be mixed for each

source to each receiver. For example, if a single source is within the range of three receivers, three

streams would need to be mixed. If source or receiver is moving, the decays must be interpolated at

region boundaries. This results in an extra multipy-add for each impulse, decreasing performance by

a slight degree. All numbers shown in Table 6.6 are for moving sources and receivers.
In this section, we compare our approach with other precomputation methods and highlight

some limitations.

6.5.4 Comparison

Many precomputation techniques have been proposed for interactive sound propagation and

rendering. We compare some features of our approach to other precomputation methods in Table 6.7.

Numerical propagation: Wave-based precomputation approaches [Mehra et al., 2013, Raghu-

vanshi et al., 2010] are more accurate than GA methods and can model higher order diffraction

and scattering effects. However, the complexity of this simulation increases as a fourth power of

105



Algorithm Ours PART Wave-grid IS-gradient DP-Cache Reverb-graph

Mem. use <Low Low High Low Medium Low
Convolution >Realtime Interactive Realtime >Realtime Realtime Realtime
Regions Acoustic Spatial None Cell+Portal Cell+Portal Cell+Portal
Directionality All samples 1st order 1st order All samples 1st order 1st order
Decomposition Automatic Automatic Automatic Manual Manual Manual

Table 6.7: Comparison: We compare some features of our approach with other precomputation
methods, including PART [Siltanen et al., 2009], Wave-grid [Raghuvanshi et al., 2010], IS gradient
[Tsingos, 2009], DP Cache [Foale and Vamplew, 2007], and Reverb graph [Stavrakis et al., 2008].

frequency and is a linear function of the volume of the virtual world. As a result, these techniques are

currently limited to small indoor scenes and are used only for low frequencies (e.g. less than 1000

Hz) . Although our current implementation is based on GA, we believe that our similarity-measure

and decomposition method could also be combined with wave-based solvers [Raghuvanshi et al.,

2010].

Cell and portals: Many games and interactive applications use cell-and-portal scene decom-

positions, which can be utilized to precompute higher-order reflections of sound between moving

sources and listeners using ray tracing [Foale and Vamplew, 2007, Stavrakis et al., 2008, Tsingos,

2009]. These approaches typically store IRs sampled at a single position for each cell and/or portal

encountered along the paths between the source and the receiver. However, these approaches require

significant manual intervention to define regions and portals, making them impractical for large-scale

environments. Defining cells and portals suitable for acoustic rendering can often be unintuitive,

especially for large outdoor scenes. In contrast, our approach can automatically partition any large

environment into acoustic regions.

Frequency and time decomposition: Some techniques perform frequency-domain precompu-

tation based on the acoustic rendering equation [Siltanen et al., 2009], which limits them to static

sources. Recently, [Antani et al., 2012a] extended the approach by precomputing acoustic transfer

operators. However, this approach can only handle a few moving sources, since it performs ray

tracing to compute early reflections at runtime. As a result, the runtime overhead can be very high

for a large number of sources and receivers. Furthermore, its storage overhead is about 50− 100X

higher than our approach.

106



CHAPTER 7: CONCLUSION

We have presented novel algorithms for interactive sound propagation. Our GA algorithms all

support diffraction simulation by the UTD. This allows sound to propagation out of line-of-sight as

expected. Our methods map well to parallel architectures and mobile devices.

RESound combines frustum tracing, ray tracing, and statistic reverberation for a simulation that

supports early specular reflection, early diffraction, early diffuse reflection, and statistical late field.

Tracing random rays is more difficult on GPUs, so our guided algorithm focuses on fast specular

simulation on GPUs. Both algorithms support fully dynamic scenes with moving sources, receivers,

and objects.

These algorithms are far too compute intensive to be interactive on mobile devices. For such

devices, we rely on a precompute scheme. Our method samples the scene, finds the most important

acoustic propagation points, then simulates and stores the related data. At runtime, a database of

response signals can be queried and sent to the client device. This places the compute burden on the

network server, while only requiring the client to receive the data over the network.

In this section, we discuss the limitations of our methods and possible future work.

7.1 Diffraction

The presented edge diffraction method enhances frustum tracing by allowing diffraction contri-

bution paths that can be computed and auralized. Our resulting system computes direct contributions,

specular reflections and edge diffraction using ray-frustum tracing. To the best of our knowledge,

this is the first edge diffraction method that results in near-interactive performance in complex scenes

with dynamic objects with reasonable GA accuracy. The overall performance of the system increases

as the order of reflections and diffraction increases. We have observed comparable results with

the beam tracing method on the Bell Labs Box, and our algorithm can generate plausible acoustic

simulation results on complex benchmarks.



7.1.1 Limitations

Since the UTD is used to calculate the diffraction coefficients, the underlying restrictions of the

UTD model naturally apply to our algorithm. UTD is a high frequency approximation, and is not

very accurate for low frequency diffraction. Moreover, UTD assumes that the diffracting edge is

of infinite length and the source and receiver are far from the edge (relative to wavelength). These

restrictions are discussed in further detail in [Kouyoumjian and Pathak, 1974].

Frustum tracing can be regarded as an approximation of beam tracing and introduces some

additional limitations. While it is a volumetric technique, some paths are missed since the frusta

cannot be subdivided infinitely to represent the scene primitives. The level of subdivision is controlled

either using a uniform global parameter [Lauterbach et al., 2007b] or an adaptive subdivision scheme

[Chandak et al., 2008]. This error can be avoided entirely by extending frustum tracing to compute

accurate object-space visibility and perform accurate geometric acoustics [Chandak et al., 2009].

Since our method approximates the diffraction cone with many linear frusta, this subdivision can

result in over-estimation or under-estimation in the final frustum volume. This results in the back

projected path having a slightly over or under estimation of the path length. As discussed in 3.2.2,

this error is reduced as the subdivision limit is increased.

Due to the approximation of computing only shadow region diffraction, a discontinuity exists at

the shadow boundary. While this can certainly be resolved by computing the entire diffraction region

exactly, this greatly increases the number of frusta that must be propagated. As such, we resolve the

discontinuity by using approximate normalized attenuation values, resulting in a few dB of signal

error near the boundary.

As previously mentioned, frusta may have difficulty finding paths that lie parallel to the corner

ray of the frustum. This may cause some important contribution paths to be unaccounted for. These

paths could be found by including impostor structures at edges such that impostor will be encountered

during propagation. Other potential approaches would be 2D ray intersection of the scene primitives

in the plane of the wedge or propagating a special frustum along the plane that contains the region of

the plane.

108



7.2 RESound

We have presented an interactive sound rendering system for dynamic virtual environments.

RESound uses GA methods to compute the propagation paths. We use a ray-based underlying

representation that is used to compute specular reflections, diffuse reflections, and edge diffraction.

We also use statistical late reverberation estimation techniques and present an interactive audio

rendering algorithm for dynamic virtual environments. We believe RESound is the first interactive

system that can generate plausible sound rendering in complex, dynamic virtual environments.

7.2.1 Limitations

RESound has several limitations. The accuracy of our algorithm is limited by the use of

underlying GA algorithms. In practice, GA is only accurate for higher frequencies. Moreover,

the accuracy of our frustum-tracing reflection and diffraction varies as a function of maximum

subdivision. Our diffraction formulation is based on the UTD and assumes that the edge lengths are

significantly larger than the wavelength. Also, frustum tracing based diffraction also is limited in the

types of diffraction paths that can be found. Our approach for computing the diffuse IR is subject to

statistical error [Embrechts, 2000] that must be overcome with dense sampling. In terms of audio

rendering, we impose physical restrictions on the motion of the source, listener, and scene objects to

generate an artifact free rendering.

7.3 Guided visibility

We have presented a new auralization algorithm for interactive scenes. Our guidance algorithm

reduces visibility and path cost while maintaining accuracy. Moreover, we exploit the computational

power of GPUs to perform the visibility computations in parallel and achieve significant performance

improvement over prior GA methods for the same number of contributions. In practice, we are able

to compute most of the contribution paths to the receiver in game like scenes with thousands of

triangles. Overall, we are able to generate plausible audio rendering in dynamic game-like scenes at

8− 30 fps on current PCs. Moreover, our approach aligns well with the current technology trends

and its accuracy and performance would improve with the increased parallelism available in the

GPUs.

109



7.3.1 Limitations

Overall, our approach is designed to exploit the computational power of GPUs to perform

interactive visibility queries. The overall goal is accurate auralization, but our approach can result in

the following errors:

1. Visibility errors: The accuracy of the visible surface or secondary image source computation

algorithm is governed by the number of ray samples and relative configuration of the image sources.

Our algorithm can miss some secondary sources or propagation paths and is more accurate for the

first few orders of reflections and diffraction. Figure 5.12 compares the found paths on two scenes of

varying complexity.

2. Limited path count: Our algorithm uses the number of valid paths found as input to the

guiding algorithm. If the initial visibility sampling is too low, it is possible that some paths will not

be found. Since the guiding algorithm cannot account for these unknown paths, it cannot increase

sampling density to find them.

3. Diffraction errors: Our formulation is a variation of the UTD method and its application

to finite edges can result in errors. Moreover, our system only simulates one order of approximate

diffraction paths and it is possible that we miss some of the diffraction contributions due to sampling

errors. It is also possible that the found paths will have slight geometric error.

4. Acoustic response errors: The overall GA method is a high frequency approximation and

may not be applicable to scenes with very small and detailed features. Furthermore, our system does

not model diffuse reflections or high order specular reflection and diffraction. Other complementary

algorithms [Antani et al., 2012b] could allow diffuse responses to be included with little cost.

5. Sound rendering artifacts: Our approach tends to reduce audio artifacts, but cannot eliminate

them. Since our rendering algorithm uses the image sources computed by the propagation algorithm,

any inaccuracy in image source computation affects its performance. In particular, if a high number

of image sources appear or disappear between successive frames, we may observe artifacts.

The governing factor in the accuracy and performance of our approach is the number of ray

samples that are cast in a single simulation frame. This directly impacts visibility accuracy and

indirectly affects validation accuracy. As we use a higher number of visibility samples, errors are

reduced (see Figure 5.12). This aligns well with the current technology trends as the performance of

110



future GPUs will improve in terms of ray tracing throughput [Aila and Laine, 2009]. Another factor

that governs the accuracy is the size of the triangles. Most GA methods are applicable to models

where the size of the features or triangles is comparable (or larger) than the audible wavelengths.

Moreover, as the size of the primitives increase, it improves the coherence of the multi-viewpoint ray

casting algorithm and makes it possible to trace a higher number of ray samples per second.

7.4 Massive scenes

We present a new approach to generating environmental voice reverberation in large virtual

worlds. Our algorithm scales with the size of the model and computes early and late acoustic

responses complete with diffraction and reverberation effects. We use a local geometrical similarity

metric to efficiently sample key positions and create zones with similar acoustical properties. Due

to our sample reduction algorithm and efficient storage structures, we observe more than an order

of magnitude improvement in precomputation time and storage overhead. We demonstrate results

on kilometer-sized virtual worlds with a large number of sources and receivers. In practice, our

approach can generate plausible environmental audio effects and is targeted towards gaming and

virtual environments.

7.4.1 Limitations

Our approach introduces several approximations with respect to reverberation computation. Our

method makes heavy use of quantization and all sound data is relatively low frequency ( 16 KHz).

While this can create viable voice output, it is not suited for higher-frequency data, such as most

music. While it would be possible to accommodate higher frequency responses, storage size and

compression would be affected. Within regions, the direct path can be rendered with occlusion and

distance attenuation. However, the decay data has been precomputed and cannot be adjusted within

region. We attempt to mitigate this issue by restricting the region sizes and apply a heuristic scaling

to the early response. Nonetheless, the interpolation within regions is not physically based and may

lead to incorrect decay responses.

We render integrated decay profiles reconstructed with a random phase, rather than the original

impulse response. This reduces the accuracy with which the early reflections can be rendered. In

111



particular, flutter echoes might not be captured by our approach unless the number of sub-bands is

increased. Since we use GA simulation, it cannot accurately simulate all wave effects.

Since our similarity measure computation is a heuristic based on scene geometric representation,

which only takes into account first-order reflections or responses, this formulation may fail in some

cases to accurately estimate the late responses. In scenes where the depth variance is large, the early

response time cannot be reliably estimated from the local geometric representation. Moreover, in

scenes with high depth complexity or occlusion, the diffraction paths contribute significantly towards

the early responses, and our approach may not work well in such scenes. Finally, our reduction

metrics can be overly conservative in some scenes, resulting in less time and storage benefits.

7.5 Future work

There are many avenues for future work. Stronger validation of the found diffraction paths

could be conducted to reduce or eliminate the slight path error. Computing more conservative

diffraction frusta would reduce the possibility of missing important paths. Conducting a conservative

region visibility test from each encountered diffracting edge would make it possible to find paths

suitable for auralization with the BTM (Biot-Tolstoy-Medwin) method. While this may have a

large computational cost, it would allow more accurate simulation of lower frequencies and shorter

diffracting edges. Another way to improve the performance is to reduce the number of diffraction

frusta generated. This would allow more time to perform higher levels of subdivision or reflections.

There has been some work in the area of diffraction culling [Calamia and Svensson, 2005]. This

would reduce the number of insignificant frusta created. We would also like to create conservative

diffraction frusta that always contain the full diffraction cone.

We would like to further analyze the accuracy of our RESound approach. It is possible to

further improve the accuracy of edge diffraction by using the BTM formulation, as opposed to UTD.

Similarly, the accuracy of diffuse reflections can be improved based on better sampling methods.

We would also like to investigate ways to improve late reverberation estimation by using decay

curves appropriate for the local environment. Many interactive applications such as games or VR

need 30− 60 Hz update rates and we may need faster methods to achieve such a performance on

current commodity hardware. We are also investigating using frustum tracing for very accurate GA

112



simulations [Chandak et al., 2009]. Finally, we would like to use RESound for other applications

such as tele-conferencing and design of sound-based user interfaces.

We would like to extend our guided multiview algorithm to work on scenes with a high number

of sound sources based on clustering methods or perceptual rendering algorithms. Online analysis

of the propagation cost coefficients may allow for improved guidance algorithms. A preprocess

sampling pass could be used select more appropriate initial sampling and radius values for better

guidance. Furthermore, we would like to perform perceptual evaluation of our system and perform

user studies. Since the ray tracing algorithm can also be used to perform diffuse reflections, it may

be possible to adapt our algorithms for rendering diffuse scattering effects. During tracing, some

form of dynamic resampling may improve the accuracy of our algorithm. We also want to investigate

the use of multi-view tracing with other software, such as NVIDIA’s OptiX 1 engine or acoustic

precomputation methods [Antani et al., 2012a]. Finally, we would like to integrate our auralization

system with other interactive applications and evaluate its performance.

Our current precompute method is limited to static scenes; we plan to investigate techniques to

update the acoustic response based on dynamic objects using precomputed filters. We also would

like to investigate possible perceptual reduction techniques to further reduce the number of samples

that need to be stored. We need to perform more validation and error analysis, especially for large

outdoor scenes. Our current error analysis is based on standard ISO-3382 parameters, which were

primarily designed for room acoustics. We believe that a user study to evaluate the accuracy of

reduced sampling strategies and plausibility would be useful.

1http://www.nvidia.com/object/optix.html

113



BIBLIOGRAPHY

3D Working Group of Interactive 3D Audio SIG (1998). Interactive 3d audio rendering guidelines,
level 1.0. http://www.iasig.org/pubs/3dl1v1.pdf. 25

3D Working Group of Interactive 3D Audio SIG (1999). Interactive 3d audio rendering guidelines,
level 2.0. http://www.iasig.org/pubs/3dl2v1a.pdf. 24

Aila, T. and Laine, S. (2009). Understanding the efficiency of ray traversal on gpus. In Proceedings
of High-Performance Graphics, pages 145–149. 63, 111

Algazi, V., Duda, R., and Thompson, D. (2001). The CIPIC HRTF Database. In IEEE ASSP
Workshop on Applications of Signal Processing to Audio and Acoustics. 25, 51

Allen, J. B. and Berkley, D. A. (1979). Image method for efficiently simulating small-room acoustics.
The Journal of the Acoustical Society of America, 65(4):943–950. 18

Andō, Y. (1998). Architectural Acoustics: Blending Sound Sources, Sound Fields, and Listeners.
Modern Acoustics and Signal Processing Series. Springer Verlag. 96

Antani, L., Chandak, A., Savioja, L., and Manocha, D. (2012a). Interactive sound propagation using
compact acoustic transfer operators. ACM Transactions on Graphics, 31(1):7:1–7:12. 22, 27,
106, 113

Antani, L., Chandak, A., Taylor, M., and Manocha, D. (2012b). Direct-to-indirect acoustic radiance
transfer. IEEE Transactions on Visualization and Computer Graphics, 18(2):261 – 269. 22, 110

Antani, L., Chandak, A., Taylor, M., and Manocha, D. (2012c). Efficient finite-edge diffraction using
conservative from-region visibility. Applied Acoustics, 73:218–233. 23, 24

Antonacci, F., Foco, M., Sarti, A., and Tubaro, S. (2004). Fast modeling of acoustic reflections and
diffraction in complex environments using visibility diagrams. In Proceedings of 12th European
Signal Processing Conference (EUSIPCO ’04), pages 1773–1776. 24

Arenberg, J. (1988). Re: Ray/triangle intersection with barycentric coordinates. Ray Trac-
ing News, 1(11). http://tog.acm.org/resources/RTNews/html/rtnews5b.
html#art3. 67

Bailey, R. and Brumitt, B. (2010). Method and system for automatically generating world envi-
ronment reverberation from a game geometry. Technical report, U.S. Patent Application US
2010/0008513 A1. 25

Benesty, J., Gaensler, T., and Eneroth, P. (2000). Multi-channel sound, acoustic echo cancella-
tion, and multi-channel time-domain adaptive filtering. In Acoustic Signal Processing for
Telecommunication, pages 101–120. Kluwer Academic Publishers. 26

Berkhout, A. J., de Vries, D., and Vogel, P. (1993). Acoustic control by wave field synthesis. The
Journal of the Acoustical Society of America, 93(5). 25

Bertram, M., Deines, E., Mohring, J., Jegorovs, J., and Hagen, H. (2005). Phonon tracing for
auralization and visualization of sound. In Proceedings of IEEE Visualization, pages 151–158.
22

114

http://www.iasig.org/pubs/3dl1v1.pdf
http://www.iasig.org/pubs/3dl2v1a.pdf
http://tog.acm.org/resources/RTNews/html/rtnews5b.html#art3
http://tog.acm.org/resources/RTNews/html/rtnews5b.html#art3


Biot, M. A. and Tolstoy, I. (1957). Formulation of wave propagation in infinite media by normal
coordinates with an application to diffraction. Journal of the Acoustical Society of America,
29(3):381–391. 23

Blauert, J. (1997). Spatial Hearing : The Psychophysics of Human Sound Localization. M.I.T. Press,
Cambridge, MA. 1

Borish, J. (1984). Extension of the image model to arbitrary polyhedra. The Journal of the Acoustical
Society of America, 75:1827–1836. 18

Botteldooren, D. (1994). Acoustical finite-difference time-domain simulation in a quasi-cartesian
grid. The Journal of the Acoustical Society of America, 95(5):2313–2319. 17

Boustead, P. and Safaei, F. (2004). Comparison of delivery architectures for immersive audio in
crowded networked games. In Proceedings of the 14th international workshop on Network and
operating systems support for digital audio and video, NOSSDAV ’04, pages 22–27, New York,
NY, USA. ACM. 27

Calamia, P., Markham, B., and Svensson, U. P. (2008). Diffraction culling for virtual-acoustic
simulations. Acta Acustica united with Acustica, Special Issue on Virtual Acoustics, 94:907–920.
68

Calamia, P. T. and Svensson, U. P. (2005). Edge subdivision for fast diffraction calculations. In Proc.
2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA
2005), pages 187–190. 23, 112

Calamia, P. T. and Svensson, U. P. (2007). Fast time-domain edge-diffraction calculations for
interactive acoustic simulations. EURASIP J. Appl. Signal Process., 2007(1):186–186. 23, 82

CATT (2002). CATT-Acoustic User Manual. CATT, Sweden, v8.0 edition. http://www.catt.se/. 77

Chandak, A., Antani, L., Taylor, M., and Manocha, D. (2009). Fastv: From-point visibility culling
on complex models. Eurographics Symposium on Rendering. 22, 27, 58, 77, 108, 113

Chandak, A., Lauterbach, C., Taylor, M., Ren, Z., and Manocha, D. (2008). AD-Frustum: Adaptive
Frustum Tracing for Interactive Sound Propagation. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1707–1722. xiii, 22, 28, 42, 44, 54, 56, 108

Christensen, C. L. (2009). ODEON Room Acoustics Program User Manual. ODEON A/S, Denmark,
10.1 edition. http://www.odeon.dk/. 77

Cook, P. R. (2002). Real Sound Synthesis for Interactive Applications. A. K. Peters. 16

Cowan, B. and Kapralos, B. (2011). Gpu-based acoustical diffraction modeling for complex virtual
reality and gaming environments. In Audio Engineering Society Conference: 41st International
Conference: Audio for Games. 24

Dalenbäck, B. (1996). Room acoustic prediction based on a unified treatment of diffuse and specular
reflection. The Journal of the Acoustical Society of America, 100(2):899–909. 23, 77

Dalenbäck, B.-I., Kleiner, M., and Svensson, P. (1994). A Macroscopic View of Diffuse Reflection.
Journal of the Audio Engineering Society (JAES), 42(10):793–807. 23, 42

115



Dance, S. M. and Shield, B. M. (1994). The effect on prediction accuracy of reducing the number of
rays in a ray tracing model. Inter-Noise94, 3(1):2127–2130. 74

Dolby (2012). Axon surround sound chat for gamers. http://www.dolby.com/us/en/
consumer/technology/gaming/dolby-axon.html. 26, 105

Duyne, S. V. and Smith, J. O. (1993). The 2-d digital waveguide mesh. In Applications of Signal
Processing to Audio and Acoustics, 1993. Final Program and Paper Summaries., 1993 IEEE
Workshop on, pages 177–180. 17

Embrechts, J. J. (2000). Broad spectrum diffusion model for room acoustics ray-tracing algorithms.
The Journal of the Acoustical Society of America, 107(4):2068–2081. 24, 46, 55, 109

Eyring, C. F. (1930). Reverberation time in “dead” rooms. The Journal of the Acoustical Society of
America, 1(2A):217–241. 24, 42, 47

Farina, A. (1995). RAMSETE - a new Pyramid Tracer for medium and large scale acoustic problems.
In Proceedings of EURO-NOISE. 77

Foale, C. and Vamplew, P. (2007). Portal-based sound propagation for first-person computer games.
In Proceedings of the 4th Australasian conference on Interactive entertainment, IE ’07, pages
9:1–9:8. xii, 106

Franck, A. (2008). Efficient Algorithms and Structures for Fractional Delay Filtering Based on
Lagrange Interpolation. J. Audio Eng. Soc., 56(12):1036–1056. 72

Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., and West, J. (1998). A beam
tracing approach to acoustic modeling for interactive virtual environments. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer graphics and interactive techniques,
pages 21–32, New York, NY, USA. ACM. 20, 27, 58, 77

Funkhouser, T., Tsingos, N., and Jot, J.-M. (2003). Survey of Methods for Modeling Sound
Propagation in Interactive Virtual Environment Systems. Presence and Teleoperation. 41

Funkhouser, T. A., Min, P., and Carlbom, I. (1999). Real-time acoustic modeling for distributed
virtual environments. In Proc. of ACM SIGGRAPH, pages 365–374. 27

Gerzon, M. A. (1973). Periphony: With-height sound reproduction. J. Audio Eng. Soc, 21(1):2–10.
25

Gibbs, M., Wadley, G., and Benda, P. (2006). Proximity-based chat in a first person shooter: using
a novel voice communication system for online play. In Proceedings of the 3rd Australasian
conference on Interactive entertainment, IE ’06, pages 96–102, Murdoch University, Australia,
Australia. Murdoch University. 26

Goode, B. (2002). Voice over internet protocol (voip). In Proceedings of the IEEE, pages 1495 –
1517. 26

Greene, N. (1986). Environment mapping and other applications of world projections. IEEE
Computer Graphics and Applications, 6(11). 80

Halloran, J. (2009). It’s talk, but not as we know it: Using voip to communicate in war games. In
Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications,
VS-GAMES ’09, pages 133–140. 26

116

http://www.dolby.com/us/en/consumer/technology/gaming/dolby-axon.html
http://www.dolby.com/us/en/consumer/technology/gaming/dolby-axon.html


Heckbert, P. S. and Hanrahan, P. (1984). Beam tracing polygonal objects. In Proc. of ACM
SIGGRAPH, pages 119–127. 20

Hodgson, M. (1990). Evidence of diffuse surface reflection in rooms. The Journal of the Acoustical
Society of America, 88(S1):S185–S185. 24, 55

Hollier, M. P., Rimell, A. N., and Burraston, D. (1997). Spatial audio technology for telepresence.
BT Technology Journal, 15(4):33 – 41. 26

ISO 3382 (2009). Measurement of room acoustic parameters. 47, 95, 96, 97

Jot, J.-M. (1999). Real-time spatial processing of sounds for music, multimedia and interactive
human-computer interfaces. Multimedia Systems, 7(1):55–69. 24

Kapralos, B., Jenkin, M., and Milios, E. (2004). Acoustic Modeling Utilizing an Acoustic Version of
Phonon Mapping. In Proc. of IEEE Workshop on HAVE. 23, 55

Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V. (1999). Fundamentals of Acoustics.
John Wiley and Sons, Inc. 1

Kleiner, M., Dalenbck, B.-I., and Svensson, P. (1991). Auralization-an overview. In Audio Engineer-
ing Society Convention 91. 17

Kouyoumjian, R. G. and Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an
edge in a perfectly conducting surface. Proc. of IEEE, 62:1448–1461. 23, 46, 69, 108

Krokstad, A., Strom, S., and Sorsdal, S. (1968). Calculating the acoustical room response by the use
of a ray tracing technique. Journal of Sound and Vibration, 8(1):118–125. 21, 75

Kurze, U. J. (1974). Noise reduction by barriers. The Journal of the Acoustical Society of America,
55(3):504–518. 77

Kuttruff, H. (2007). Acoustics. Routledge. 24, 95, 96, 97, 98

Laakso, T. I., Valimaki, V., Karjalainen, M., and Laine, U. K. (1996). Splitting the unit delay [fir/all
pass filters design]. IEEE Signal Processing Magazine, 13(1):30–60. 72

Laine, S., Siltanen, S., Lokki, T., and Savioja, L. (2009). Accelerated beam tracing algorithm.
Applied Acoustic, 70(1):172–181. 20, 77

Larcher, V., Warusfel, O., Jot, J.-M., and Guyard, J. (2000). Study and comparison of efficient
methods for 3-d audio spatialization based on linear decomposition of hrtf data. In Audio
Engineering Society 108th Convention preprints, page preprint no. 5097. 25

Lauterbach, C., Chandak, A., and Manocha, D. (2007a). Adaptive sampling for frustum-based sound
propagation in complex and dynamic environments. In Proceedings of the 19th International
Congress on Acoustics. 22

Lauterbach, C., Chandak, A., and Manocha, D. (2007b). Interactive sound propagation in dynamic
scenes using frustum tracing. IEEE Transactions on Visualization and Computer Graphics,
13(6):1672–1679. 28, 34, 42, 44, 108

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and Manocha, D. (2009). Fast bvh construc-
tion on gpus. In Proc. Eurographics ’09. 13, 63

117



Lauterbach, C., Yoon, S., Tuft, D., and Manocha, D. (2006). RT-DEFORM: Interactive Ray Tracing
of Dynamic Scenes using BVHs. IEEE Symposium on Interactive Ray Tracing. 42, 44, 52

Lenhert, H. (1993). Systematic errors of the ray-tracing algoirthm. Applied Acoustics, 38:207–221.
21, 74, 75

Lentz, T., Schröder, D., Vorländer, M., and Assenmacher, I. (2007). Virtual reality system with
integrated sound field simulation and reproduction. EURASIP J. Appl. Signal Process., 2007:187–
187. 77

Markopoulou, A., Tobagi, F., and Karam, M. (2002). Assessment of voip quality over internet
backbones. In IEEE INFOCOM 2002, pages 150 – 159. 26

Medwin, H. (1981). Shadowing by finite noise barriers. Journal of the Acoustical Society of America,
69(4):1060–1064. 23

Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., and Manocha, D. (2013). Wave-
based sound propagation in large open scenes using an equivalent source formulation. ACM
Trans. on Graphics, 32(2):19:1–19:13. 18, 27, 105

Mehra, R., Raghuvanshi, N., Savioja, L., Lin, M. C., and Manocha, D. (2012). An efficient gpu-based
time domain solver for the acoustic wave equation. Applied Acoustics, 73:83–94. 18

Merimaa, J. and Pulkki, V. (2004). Spatial impulse response rendering. Proc. of the 7th Intl. Conf.
on Digital Audio Effects (DAFX’04). 89

Merimaa, J. and Pulkki, V. (2005). Spatial impulse response rendering i: Analysis and synthesis. J.
Audio Eng. Soc, 53(12):1115–1127. 25

Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., and Alloza, D. (2007).
Progressive perceptual audio rendering of complex scenes. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games, pages 189–196, New York, NY, USA. ACM.
25, 75

O’Brien, J. F., Shen, C., and Gatchalian, C. M. (2002). Synthesizing sounds from rigid-body
simulations. In The ACM SIGGRAPH 2002 Symposium on Computer Animation, pages 175–
181. ACM Press. 16

Ondet, A. M. and Barbry, J. L. (1989). Modeling of sound propagation in fitted workshops using ray
tracing. The Journal of the Acoustical Society of America, 85(2):787–796. 21

Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D.,
McGuire, M., Morley, K., Robison, A., and Stich, M. (2010). Optix: A general purpose ray
tracing engine. ACM Transactions on Graphics. 63

Pierce, A. D. (1974). Diffraction of sound around corners and over wide barriers. The Journal of the
Acoustical Society of America, 55(5):941–955. 77

Pope, J., Creasey, D., and Chalmers, A. (1999). Realtime room acoustics using ambisonics. Proc. of
the AES 16th Intl. Conf. on Spatial Sound Reproduction, pages 427–435. 27

Popov, S., Gnther, J., Seidel, H.-P., and Slusallek, P. (2007). Stackless KD-Tree Traversal for
High Performance GPU Ray Tracing. Computer Graphics Forum (Proc. EUROGRAPHICS),
26(3):415–424. 63

118



Radenkovic, M., Greenhalgh, C., and Benford, S. (2002). Deployment issues for multi-user audio
support in cves. In Proceedings of the ACM symposium on Virtual reality software and
technology, VRST ’02, pages 179–185, New York, NY, USA. ACM. 27

Raghuvanshi, N., Galoppo, N., and Lin, M. C. (2008). Accelerated wave-based acoustics simulation.
In Symposium on Solid and Physical Modeling, pages 91–102. 18

Raghuvanshi, N. and Lin, M. C. (2006). Interactive sound synthesis for large scale environments. In
Symposium on Interactive 3D graphics and games, pages 101–108. 16

Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., and Govindaraju, N. (2010). Precomputed wave
simulation for real-time sound propagation of dynamic sources in complex scenes. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages 68:1–68:11, New York, NY, USA. ACM. xii,
18, 27, 82, 105, 106

RAMSETE (1995). RAMSETE User Manual. GENESIS Software and Acoustic Consulting, Italy,
version 1.0 edition. http://www.ramsete.com/. 77

Safaei, F. (2005). Dice: Internet delivery of immersive voice communication for crowded virtual
spaces. In Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR ’05, pages
35–41, Washington, DC, USA. IEEE Computer Society. 27

Sallnäs, E.-L. (2005). Effects of communication mode on social presence, virtual presence, and
performance in collaborative virtual environments. Presence: Teleoper. Virtual Environ.,
14(4):434–449. 26

Savioja, L. (2010). Real-time 3D finite-difference time-domain simulation of low- and mid-frequency
room acoustics. In Proc. Int. Conf. Digital Audio Effects, Graz, Austria. 18

Savioja, L., Huopaniemi, J., Lokki, T., and Väänänen, R. (1999). Creating interactive virtual acoustic
environments. Journal of the Audio Engineering Society (JAES), 47(9):675–705. 49, 71

Savioja, L., Lokki, T., and Huopaniemi, J. (2002). Auralization applying the parametric room
acoustic modeling technique - the diva auralization system. In International Conference on
Auditory Display. 25, 56, 71, 73

Schissler, C. and Manocha, D. (2011). Gsound: Interactive sound propagation for games. AES
International Conference on Audio for Games. 24

Schröder, D. and Lentz, T. (2006). Real-Time Processing of Image Sources Using Binary Space
Partitioning. Journal of the Audio Engineering Society (JAES), 54(7/8):604–619. 20, 77

Schröder, D. and Pohl, A. (2009). Real-time Hybrid Simulation Method Including Edge Diffraction.
In EAA Auralization Symposium, Espoo, Finland. 24

Schroeder, M. R. (1965). New method of measuring reverberation time. The Journal of the Acoustical
Society of America, 37:409. 97

Shlager, K. and Schneider, J. (1995). A selective survey of the finite-difference time-domain literature.
Antennas and Propagation Magazine, IEEE, 37(4):39–57. 17

Shoemake, K. (1998). Pluecker coordinate tutorial. Ray Tracing News, 11(1). 43

119



Siltanen, S., Lokki, T., Kiminki, S., and Savioja, L. (2007). The room acoustic rendering equation.
The Journal of the Acoustical Society of America, 122(3):1624–1635. 22, 79

Siltanen, S., Lokki, T., and Savioja, L. (2009). Frequency domain acoustic radiance transfer for
real-time auralization. Acta Acustica united with Acustica, 95:106–117(12). xii, 22, 25, 27, 71,
106

Stavrakis, E., Tsingos, N., and Calamia, P. (2008). Topological sound propagation with reverberation
graphs. Acta Acustica/Acustica - the Journal of the European Acoustics Association, 94:921–932.
xii, 106

Summers, J. E., Torres, R. R., and Shimizu, Y. (2004). Statistical-acoustics models of energy decay
in systems of coupled rooms and their relation to geometrical acoustics. The Journal of the
Acoustical Society of America, 116(2):958–969. 48

Svensson, P. (2008). The early history of ray tracing in room acoustics. In Svensson, P., editor,
Reflections on sound: In honour of Professor Emeritus Asbjørn Krokstad. Norwegian University
of Science and Technology. 22

Svensson, U. P., Fred, R. I., and Vanderkooy, J. (1999). An analytic secondary source model of edge
diffraction impulse responses . Acoustical Society of America Journal, 106:2331–2344. 23

Taylor, M., Chandak, A., Antani, L., and Manocha, D. (2009a). Resound: interactive sound rendering
for dynamic virtual environments. In MM ’09: Proceedings of the seventeen ACM international
conference on Multimedia, pages 271–280, New York, NY, USA. ACM. 25, 66, 77

Taylor, M., Chandak, A., Mo, Q., Lauterbach, C., Schissler, C., and Manocha, D. (2012). Guided
multiview ray tracing for fast auralization. IEEE Transactions on Visualization and Computer
Graphics, 18:1797–1810. 27, 82, 88

Taylor, M., Chandak, A., Ren, Z., Lauterbach, C., and Manocha, D. (2009b). Fast Edge-Diffraction
for Sound Propagation in Complex Virtual Environments. In EAA Auralization Symposium,
Espoo, Finland. 24, 45, 46, 55

Tsingos, N. (2001). A versatile software architecture for virtual audio simulations. In International
Conference on Auditory Display (ICAD), Espoo, Finland. 25, 51, 71, 75

Tsingos, N. (2009). Pre-computing geometry-based reverberation effects for games. 35th AES
Conference on Audio for Games. xii, 27, 89, 106

Tsingos, N., Carlbom, I., Elbo, G., Kubli, R., and Funkhouser, T. (2002). Validation of acoustical
simulations in the ”bell labs box”. IEEE Computer Graphics and Applications, 22(4):28–37.
xiv, 24, 34, 35

Tsingos, N., Dachsbacher, C., Lefebvre, S., and Dellepiane, M. (2007). Instant sound scattering. In
Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). 25

Tsingos, N., Funkhouser, T., Ngan, A., and Carlbom, I. (2001). Modeling acoustics in virtual
environments using the uniform theory of diffraction. In Proc. of ACM SIGGRAPH, pages
545–552. 24, 34, 46, 56

Tsingos, N., Gallo, E., and Drettakis, G. (2003). Perceptual audio rendering of complex virtual
environments. Technical Report RR-4734, INRIA, REVES/INRIA Sophia-Antipolis. 51

120



Tsingos, N., Gallo, E., and Drettakis, G. (2004). Perceptual audio rendering of complex virtual
environments. ACM Trans. Graph., 23(3):249–258. 25, 71, 75, 77

Tsingos, N., Jiang, W., and Williams, I. (2011). Using programmable graphics hardware for acoustics
and audio rendering. Journal of Audio Engineering Society, 59(9):628–646. 93, 105

Välimäki, V. (1995). Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters. PhD
thesis, Helsinki University of Technology. 72

van den Doel, K. (1998). Sound Synthesis for Virtual Reality and Computer Games. PhD thesis,
University of British Columbia. 16

van den Doel, K., Kry, P. G., and Pai, D. K. (2001). Foleyautomatic: physically-based sound effects
for interactive simulation and animation. In SIGGRAPH ’01: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 537–544, New York, NY,
USA. ACM Press. 16

Vorländer, M. (1989). Simulation of the transient and steady-state sound propagation in rooms using
a new combined ray-tracing/image-source algorithm. The Journal of the Acoustical Society of
America, 86(1):172–178. 22, 75, 88

Wadley, G., Gibbs, M., and Benda, P. (2007). Speaking in character: using voice-over-ip to
communicate within mmorpgs. In Proceedings of the 4th Australasian conference on Interactive
entertainment, IE ’07, pages 24:1–24:8. 26

Wald, I. (2004). Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Computer
Graphics Group, Saarland University. 42

Wand, M. and Straßer, W. (2004). Multi-resolution sound rendering. In SPBG’04 Symposium on
Point - Based Graphics 2004, pages 3–11. 25, 51

Wenzel, E., Miller, J., and Abel, J. (2000). A software-based system for interactive spatial sound
synthesis. In International Conference on Auditory Display (ICAD), Atlanta, GA. 25, 51, 71

West, J., Blauert, J., and MacLean, D. (1992). Teleconferencing system using head-related signals.
Applied Acoustics, 36(3-4):327 – 333. 26

Williams, D., Caplan, S., and Xiong, L. (2007). Can You Hear Me Now? The Impact of Voice in an
Online Gaming Community. Human Communication Research, 33(4):427–449. 26

Wise, D. K. and Bristow-Johnson, R. (1999). Performance of Low-Order Polynomial Interpolators
in the Presence of Oversampled Input. In Audio Engineering Society Convention 107. 72

Xiangyang, Z., Ke’an, C., and Jincai, S. (2003). On the accuracy of the ray-tracing algorithms based
on various sound receiver models. Applied Acoustics, 64(4):433 – 441. 21, 74

Yang, L. N. and Shield, B. M. (2000). Development of a ray tracing computer model for the prediction
of the sound field in long enclosures. Journal of Sound and Vibration, 229(1):133 – 146. 74

Zhou, K., Hou, Q., Wang, R., and Guo, B. (2008). Real-time kd-tree construction on graphics
hardware. In Proc. SIGGRAPH Asia. 63

Zimmermann, R. and Liang, K. (2008). Spatialized audio streaming for networked virtual envi-
ronments. In Proceedings of the 16th ACM international conference on Multimedia, MM ’08,
pages 299–308, New York, NY, USA. ACM. 27

121


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Physical properties of sound
	Multi-user voice communication
	Information in sound
	Sound simulation
	Input
	Propagation
	Output

	Thesis statement
	Challenges
	Contributions
	Diffraction modeling
	RESound: unified propagation
	Guided visibility
	Rendering massive multi-user environments

	Organization

	RELATED WORK
	Sound synthesis
	Sound propagation
	Numerical solutions
	Geometrical methods
	Image source
	Accelerated image source methods
	Additional wave effects


	Audio rendering
	Voice communication

	FRUSTUM DIFFRACTION
	Algorithm
	Preprocess
	Edge containment
	Diffraction frustum construction
	Path generation
	Attenuation

	Accuracy
	Bell Lab Box comparison
	Accuracy of diffraction frustum

	Performance
	Diffraction cost and benefit


	RESOUND: A UNIFIED RAY FRAMEWORK
	System overview
	Acoustic modeling
	Ray-based path tracing
	RESound components

	Interactive sound propagation
	Specular paths
	Edge diffraction paths
	Diffuse component

	Reverberation estimation
	Audio rendering
	Integration with sound propagation
	Issues with dynamic scenes
	3D sound rendering
	Adding late reverberation

	Performance
	Quality
	Quality
	Benefits


	GUIDED MULTIVIEW TRACING
	Guided propagation
	Ray traced propagation cost
	Guidance algorithm

	Multi-view GPU ray tracing
	GPU propagation
	Multi-view tracing
	Diffraction
	Path creation

	Audio processing
	Dynamic scenes
	Parameter interpolation
	Variable fractional delay

	Analysis
	Performance
	Audio processing limitations
	Comparisons


	RENDERING MASSIVE MULTI-USER ENVIRONMENTS
	Geometric acoustic similarity measure
	Distance
	Surface orientation
	Surface discontinuities
	Surface material
	Overall similarity measure

	Scene decomposition and sampling
	Similarity comparison
	Sample merging
	Acoustic regions
	Simulation of sound propagation

	Storage and reconstruction
	Response representation
	Storage data structures
	Storing acoustic data
	Efficient data indexing

	Response reconstruction and rendering

	Validation
	Error computation
	Similarity measure thresholds and validation
	Acoustic property error calculation
	Error map calculation
	Error analysis for reduction algorithms
	Metric analysis

	Implementation and performance
	Similarity and reduction cost
	Precomputation: time and storage
	Runtime cost
	Comparison


	CONCLUSION
	Diffraction
	Limitations

	RESound
	Limitations

	Guided visibility
	Limitations

	Massive scenes
	Limitations

	Future work

	BIBLIOGRAPHY

