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ABSTRACT

SUNYOUNG SHIN: Contributions to Penalized Estimation
(Under the direction of Jason P. Fine and Yufeng Liu)

Penalized estimation is a useful statistical technique to prevent overfitting problems.

In penalized methods, the common objective function is in the form of a loss function

for goodness of fit plus a penalty function for complexity control. In this dissertation,

we develop several new penalization approaches for various statistical models. These

methods aim for effective model selection and accurate parameter estimation.

The first part introduces the notion of partially overlapping models across multi-

ple regression models on the same dataset. Such underlying models have at least one

overlapping structure sharing the same parameter value. To recover the sparse and

overlapping structure, we develop adaptive composite M-estimation (ACME) by dou-

bly penalizing a composite loss function, as a weighted linear combination of the loss

functions. ACME automatically circumvents the model misspecification issues inherent

in other composite-loss-based estimators.

The second part proposes a new refit method and its applications in the regression

setting through model combination: ensemble variable selection (EVS) and ensemble

variable selection and estimation (EVE). The refit method estimates the regression

parameters restricted to the selected covariates by a penalization method. EVS com-

bines model selection decisions from multiple penalization methods and selects the

optimal model via the refit and a model selection criterion. EVE considers a factor-

izable likelihood-based model whose full likelihood is the multiplication of likelihood

factors. EVE is shown to have asymptotic efficiency and computational efficiency.
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The third part studies a sparse undirected Gaussian graphical model (GGM) to

explain conditional dependence patterns among variables. The edge set consists of con-

ditionally dependent variable pairs and corresponds to nonzero elements of the inverse

covariance matrix under the Gaussian assumption. We propose a consistent valida-

tion method for edge selection (CoVES) in the penalization framework. CoVES selects

candidate edge sets along the solution path and finds the optimal set via repeated sub-

sampling. CoVES requires simple computation and delivers excellent performance in

our numerical studies.

iv



ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my two advisors, Dr.

Jason Fine and Dr. Yufeng Liu. Without their guidance and support, this dissertation

would not be possible. Their keen insight and inspiring intuition have motivated me

to focus on this dissertation and pursue more research opportunities. The fruitful

academic discussions with them have made my research experience more enjoyable and

their invaluable advices have made my career path more clear.

Next I would like to thank my committee members, Dr. Michael Kosorok, Dr. J.

S. Marron, and Dr. Kai Zhang. I really appreciate that they have taken time out from

their busy schedule to serve as members of my committee. Their helpful advices and

comments have made this dissertation significantly better.

Last but not least, my sincere gratitude goes out to my friends and family. They

always believe in me and have encouraged me through my Ph.D. journey. With their

belief, support and encouragement, I was able to successfully complete this journey.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on Penalization . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Loss Functions in Penalized Estimation . . . . . . . . . . . . . . 2

1.1.2 Properties and Computational Issues of
Penalized Estimation . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 New Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 10

2 Adaptive Estimation for Partially Overlapping Models . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Oracle M-estimator for Overlapping Models . . . . . . . . . . . . . . . 16

2.2.1 Models and Notations . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Distinct Parametrization and Distinct Or-
acle M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Asymptotic Properties of Distinct Oracle
M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Adaptive Composite M-estimation for Overlap-
ping Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Choice of Penalty Functions . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Choice of Weights and Tuning Parameters . . . . . . . . . . . . 28

2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



2.4.1 Classical Linear Regression Model . . . . . . . . . . . . . . . . . 31

2.4.2 Linear Location-Scale Model . . . . . . . . . . . . . . . . . . . . 34

2.5 Baseball Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.3 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.4 Proof of Corollary 2.1 . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.5 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.6 Lemma 2.5 and Theorem 2.2 . . . . . . . . . . . . . . . . . . . . 45

2.7.7 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Ensemble Variable Selection and Estimation . . . . . . . . . . . . . . 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Ensemble Variable Selection (EVS) . . . . . . . . . . . . . . . . 52

3.1.2 Ensemble Variable Selection and Estima-
tion (EVE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Refitting for Variable Selection . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 The Refit Method and Its Theoretical Properties . . . . . . . . 55

3.2.2 Refit Least Squares Approximation (LSA)
Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Ensemble Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Ensemble of Decisions on Variable Selection . . . . . . . . . . . 63

3.3.2 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



3.3.3 South African Heart Disease Data Analysis . . . . . . . . . . . . 70

3.4 Ensemble Variable Selection and Estimation . . . . . . . . . . . . . . . 72

3.4.1 Likelihood Factorization and Ensemble Estimation . . . . . . . 72

3.4.2 The Cox Proportional Hazards Model with
Prospective Doubly Censored Data . . . . . . . . . . . . . . . . 74

3.4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.4 Multicenter AIDS Cohort Study (MACS)
Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Consistent Validation for Edge Selection in High
Dimensional Gaussian Graphical Models . . . . . . . . . . . . . . . . 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Edge Selection in High Dimensional Gaussian
Graphical Models (GGM) . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Settings and Notations . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Consistent Validation for Edge Selection
(CoVES) Method . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Preliminary Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Double Chain Graphs . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Hub Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



LIST OF TABLES

2.1 Simulation Results with Model Errors and Num-
bers of Correct Non-Zeros/Incorrect Zeros (n=100) . . . . . . . . . . . 32

2.2 Simulation Results with Model Errors and Num-
bers of Correct Non-Zeros/Incorrect Zeros (n=500) . . . . . . . . . . . 33

2.3 Simulation Results with Grouping Ratios . . . . . . . . . . . . . . . . . 35

2.4 Regression Coefficients of Baseball Dataset . . . . . . . . . . . . . . . . 39

2.5 Test Errors of Baseball Data for Three Quantiles . . . . . . . . . . . . 40

3.1 Refit LSA for Linear Regression Models . . . . . . . . . . . . . . . . . . 61

3.2 Refit LSA for Median Regression Models . . . . . . . . . . . . . . . . . 62

3.3 K Models Votes Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Simulation Results for Linear Regression (Gaus-
sian Error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Simulation Results for Median Regression (Mix-
ture Error) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Simulation Results for Logistic Regression . . . . . . . . . . . . . . . . 69

3.7 Optimal τ for Linear, Median, Logistic Regression . . . . . . . . . . . . 70

3.8 Estimates and Standard Deviations for South
African Heart Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Test Error for South African Heart Data . . . . . . . . . . . . . . . . . 72

3.10 Mean Squared Error of Estimators for Simulated
Prospective Doubly Censored Data (n = 250) . . . . . . . . . . . . . . 79

3.11 Mean Squared Error of Estimators for Simulated
Prospective Doubly Censored Data (n = 500) . . . . . . . . . . . . . . 80

3.12 Variable Selection Performance for Simulated Prospec-
tive Doubly Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.13 Analysis Exclusion Criteria of Subjects . . . . . . . . . . . . . . . . . . 83

ix



3.14 Description of Risk Factors . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.15 MACS Analysis with LTRC Data or CS Data . . . . . . . . . . . . . . 86

3.16 MACS Data Analysis with Ensemble Methods . . . . . . . . . . . . . . 88

4.1 Edge Selection Results for Double Chain Graph
p = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Edge Selection Results for Double Chain Graph
p = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Edge Selection Results for Double Chain Graph
p = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Edge Selection Results for Double Chain Graph
p = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Edge Selection Results for Hub Graph with p = 10 . . . . . . . . . . . 108

4.6 Edge Selection Results for Hub Graph with p = 40 . . . . . . . . . . . 108

4.7 Edge Selection Results for Hub Graph with p = 50 . . . . . . . . . . . 109

4.8 Edge Selection Results for Hub Graph with p = 100 . . . . . . . . . . . 109

x



LIST OF FIGURES

1.1 Simple Undirected Graph Example (Lee 2013) . . . . . . . . . . . . . . 7

1.2 Geometry of Lasso (p = 2) (Tibshirani 1996) . . . . . . . . . . . . . . . 8

2.1 Partially Overlapping Models . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Illustration of Distinct Parametrization with β0
14 =

β0
23 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Prospective Doubly Censored Data . . . . . . . . . . . . . . . . . . . . 75

3.2 Information Decomposition of Prospective Dou-
bly Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Double Chain Graph with p = 10 . . . . . . . . . . . . . . . . . . . . . 104

4.2 Double Chain Graph with p = 40 . . . . . . . . . . . . . . . . . . . . . 105

4.3 Double Chain Graph with p = 50 . . . . . . . . . . . . . . . . . . . . . 106

4.4 Double Chain Graph with p = 100 . . . . . . . . . . . . . . . . . . . . . 106

4.5 Hub Graph with p = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Hub Graph with p = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Hub Graph with p = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Hub Graph with p = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xi



CHAPTER1: INTRODUCTION

1.1 Background on Penalization

In the past two decades, there have been significant developments in penalization

techniques, both in terms of methodology and applications. One of the most popu-

lar examples is the least absolute shrinkage and selection operator (Lasso) proposed

by Tibshirani (1996), which is closely related to nonnegative garrote (Breiman 1995).

Other examples include smoothly clipped absolute deviation (SCAD), elastic net and

adaptive Lasso. See Fan and Li (2001), Zou and Hastie (2005), Zou (2006) and Hastie,

Tibshirani, and Friedman (2001) and references therein for details.

We consider a training dataset with n independently and identically distributed

random samples zi = (xi, yi), i = 1, · · · , n, where xi ∈ Rp is a vector of predictors and

yi ∈ R is the response variable. Our interest is to identify the underlying relationship

between the predictors and the response. Such a relationship is commonly learned

through a loss function, L(z, (α,βT )), where α ∈ R is an intercept parameter, β ∈ Rp

is a parameter vector of interest. In classical statistics, the estimator of the parameters

is the minimizer of the empirical loss function as below:

argmin
(α,βT )T

1

n

n∑
i=1

L(zi, (α,β
T )). (1.1)

The loss function is used to measure the goodness of fit of the model on the data.

Some common examples of the loss term include the squared error loss in ordinary least

squares regression and the negative log-likelihood in maximum likelihood estimation.
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Penalized methods add a penalty term to (1.1), which controls the model complexity

to avoid overfitting. Many penalized methods can be cast as optimization problems.

The common objective function for optimization in a penalization method is in the

form of loss+penalty as follows:

min
(α,βT )T

1

n

n∑
i=1

L(zi, (α,β
T )) + λp(β), (1.2)

where p(·) is the penalty function and λ ≥ 0 is the regularization parameter. The regu-

larization parameter determines the amount of penalty on the model complexity(Hastie,

Tibshirani, and Friedman 2001). A number of penalty functions have been developed

for sparse and structured estimation in numerous statistical models. For example, the

penalty function for Lasso is the L1-norm penalty,

p∑
j=1

|βj|.

This chapter first discusses some loss functions and briefly examines penalization

methods. Section 1.1.1 reviews various loss functions and their corresponding statistical

models. Section 1.1.2 explores intuitions, properties, and computational algorithms of

penalization techniques.

1.1.1 Loss Functions in Penalized Estimation

Many loss functions are available for penalization methods. To address a statistical

problem, we may choose a suitable loss function. Several examples include least squares

loss, check loss, asymmetric least squares loss, composite loss and negative log-likelihood

loss for various statistical models. We first review them and briefly introduce related

penalization methods.

A simple and popular choice of loss functions is the following least squares loss in a

2



linear regression setup:

n∑
i=1

L(zi, (α,β
T )) =

n∑
i=1

(yi − α− xTi β)2. (1.3)

Many studies on penalized methods started with this loss function and extended the

methods to other loss functions. Breiman (1995) and Tibshirani (1996) introduced

nonnegative Garrote and Lasso for the least squares loss function. These penalization

techniques have been adapted for likelihood-based regression, quantile regression, and

etc.

Koenker and Bassett (1978) introduced the quantile regression model to provide a

complete picture on the conditional distribution of the response. The τth conditional

quantile function, fτ (x), is defined as P (y ≤ fτ (x)|x) = τ , for 0 < τ < 1 (Wu and

Liu 2009). We estimate the τth quantile as a linear function of the predictors with the

check loss function:

n∑
i=1

L(zi, (α,β
T )) =

n∑
i=1

{τ(yi − α− xTi β)+ + (1− τ)(yi − α− xTi β)−}, (1.4)

where t+ = tI(t ≥ 0) and t− = tI(t < 0). Some penalized methods for quantile

regression were studied by Wu and Liu (2009) and Wang, Li, and Jiang (2007a).

Motivated by quantile regression, Newey and Powell (1987) proposed asymmetric

least squares regression. The check function is replaced with the asymmetric least

squares loss function:

n∑
i=1

L(zi, (α,β
T )) =

n∑
i=1

{τ(yi − α− xTi β)2
+ + (1− τ)(yi − α− xTi β)2

−}. (1.5)

The τth expectile is defined as µτ (x) = α̂aLS + xT β̂aLS, where (α̂aLS, β̂
T

aLS)T is the
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minimizer of (1.5). It has the interpretation that the average distance from the re-

sponses, yi below µτ (x) to µτ (x) is 100τ% (Fan and Gijbels 1996). To our knowledge,

penalization methods for the asymmetric least squares have not been studied.

Recent studies on penalization have introduced a composite loss function, a weighted

linear combination of multiple loss functions. When we combine K loss functions,

the composite loss function has the intercept parameters, αT = (α1, · · · , αK) and

K parameter vectors of interest, β1, · · · ,βK . Most existing work assumes the same

regression slope across the multiple losses, that is β = β1 = · · · = βK ∈ Rp. Zou and

Yuan (2008) proposed the equally weighted composite quantile regression (EWCQR)

based on the following loss function:

n∑
i=1

L(zi, (α,β
T )) =

n∑
i=1

{
K∑
k=1

{τk(yi−αk −xTi β)+ + (1− τk)(yi−αk −xTi β)−}}, (1.6)

where 0 < τ1 < · · · < τK < 1. They developed the penalized EWCQR estimator

with the adaptively weighted L1 penalty. Bradic, Fan, and Wang (2011) introduced a

composite quasi-likelihood (CQ), a more general composite loss function. The CQ is a

weighted combination of K convex loss functions, ρk(yi−α−xTi β), k = 1, · · · , K with

weights w = (w1, · · · , wK). The corresponding loss function is written as follows:

n∑
i=1

L(zi, (α,β
T )) =

n∑
i=1

{
K∑
k=1

wkρk(yi − α− xTi β)}. (1.7)

They proposed a robust and efficient penalized CQ estimator with theoretically optimal

weights.

Generalized linear model (GLM) is one of the well-known likelihood-based ap-

proaches. Suppose that yi has a density f(g(α + xTi β), yi) conditioning on xi, where

g is a known link function. The negative log-likelihood loss function is used for the
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model as follows:

n∑
i=1

L(zi, (α,β
T )) = −

n∑
i=1

logf(g(α + xTi β), yi). (1.8)

GLM includes linear regression model, logistic regression model and poisson regression

model. Logistic regression is used for binary response modelling and poisson regression

is commonly used for count response modeling. For such models, Fan and Li (2001)

and Zou (2006) proposed SCAD and adaptive Lasso penalty functions.

Cox proportional hazards model is a popular semi-parametric model for survival

data (Cox 1972). The Cox model has a parameter of interest and a nuisance parameter,

(β,Λ). We first consider a simple model with right censoring. Denote Ti as the survival

time of ith observation and Ci as the subject’s right censoring time. Assume that Ti and

Ci are independent given xi. We observe n independently and identically distributed

samples of the triplet (Yi, δi,xi), i = 1, · · · , n, where Yi = min(Ti, Ci) and δi = I(Ti ≤

Ci). Furthermore, denote t1 < t2 < · · · < tN as N ordered observed event times and

(j) as the subject’s index corresponding to tj (Fan and Li 2002). The loss function for

the right censored data is the partial likelihood for the parameters of interest:

n∑
i=i

L(zi, (α,β
T )) = −

N∑
j=1

[xT(j)β − log{
∑
i∈Rj

exp(xTi β)}], (1.9)

where Ri is the risk set at time ti, Ri = {j : Yj ≥ ti}. Tibshirani (1997) and Fan and

Li (2002) studied penalization methods for the partial likelihood-based Cox model.

Some survival models do not have an explicit partial likelihood form, such as Cox

frailty model and Cox models for interval or doubly censored data. We consider their

profile likelihood as an alternative, where the nuisance parameter is profiled out (Mur-

phy and Van der Vaart 2000). Fan and Li (2002) imposed direct penalization for the
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profile likelihoods for the frailty model. Similarly, we can regularize the profile likeli-

hood with interval or doubly censored data. Note that these are challenging problems

since the corresponding profile likelihoods do not have closed form expressions (Fan

and Li 2002).

Undirected graphical models are known to be useful for explaining association struc-

ture in multivariate random variables (Lauritzen 1996, Drton and Perlman 2007). We

denote a graph as G = (V,E), where V = {x1, · · · , xp} is the set of vertices and E is

the set of edges between vertices. Each vertex corresponds to a variable and an edge

between vertices identifies their conditional dependence given all the other vertices.

Figure 1.1 shows a graphical model with five vertices, (x1, x2, x3, x4, x5) and four edges,

{(x1, x3), (x2, x3), (x3, x4) (x4, x5)}. The first edge, (x1, x3) implies that x1 and x3

are conditionally dependent given (x2, x4, x5). The other edges can be interpreted in

the same manner. Gaussian graphical models (GGM) impose a multivariate Gaussian

distribution to the p-dimensional vector, x = (x1, · · · , xp). Denote the distribution as

N (µ,Σ), where µ is a mean vector and Σ is a nonsingular covariance matrix. The

corresponding loss function is the negative log-likelihood function:

−log|Θ|+ tr(SΘ), (1.10)

where Θ = Σ−1 is the precision matrix, S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T is the sample

covariance matrix, and x̄ =
1

n

n∑
i=1

xi. The maximum likelihood estimator of Θ exists

and is unique with probability one if n > p, and Buhl (1993) studied the case of n < p.

Estimating the structure of GGM is equivalent to recovering the support of the precision

matrix (Lauritzen 1996). Specifically, non-zero off-diagonal elements in the precision

matrix correspond to the edge elements of E. Friedman, Hastie, and Tibshirani (2008)

and Yuan and Lin (2007a) proposed a L1 regularization framework for GGM to recover
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the support of the precision matrix.

Figure 1.1: Simple Undirected Graph Example (Lee 2013)

1.1.2 Properties and Computational Issues of Penalized Estimation

Penalized estimation can perform simultaneous variable selection and estimation

with a proper choice of the penalty function. Tibshirani (1996) gave an intuitive expla-

nation on the sparse estimation for the Lasso. Assume that each predictor is standard-

ized to have mean zero and variance one. The Lasso intercept estimate is
n∑
i=1

yi/n and

the Lasso estimate for β, β̂, is determined by the following constrained optimization

problem

min
β

1

n

n∑
i=1

(yi − xTi β)2 subject to

p∑
j=1

|βj| ≤ t, (1.11)

where t is the tuning parameter. Note that the loss term in (1.11) can be rewritten

as
1

n
(β − β̂ls)TXTX(β − β̂ls) plus a constant, where β̂ls is the ordinary least squares

estimate and X = [x1, · · · ,xn]T . Figure 1.2 illustrates its elliptical contours and the

constraint as the black square for p = 2. The Lasso estimate is the coordinate that

the contours first touch the square. It will be sometimes on the axes, and hence a zero

coefficient can be obtained via the Lasso.

Many penalization methods have the general formulation of penalized estimation in

(1.2). The Lasso problem in (1.11) can be reformulated as the equivalent optimization
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Figure 1.2: Geometry of Lasso (p = 2) (Tibshirani 1996)

problem:

min
β

1

n

n∑
i=1

(yi − xTi β)2 + λ

d∑
j=1

|βj|. (1.12)

It is the summation of a least squares loss function and L1 norm penalty. Another

example is the graphical Lasso (glasso) for sparse inverse covariance estimation (Fried-

man et al. 2008). It is known to be useful for explaining association structure in

high-dimensional data such as gene expression data and microRNA data. We regular-

ize the negative log-likelihood for GGM in (1.10) with the L1-penalty over a positive

definite constraint:

min
Θ>0
− log|Θ|+ tr(SΘ) + λ||Θ||1, (1.13)

where ||Θ||1 is the L1-norm, the sum of the absolute values of the elements of Θ. We

estimate the true edge set of the GGM with a proper choice of tuning parameter, and

then obtain a sparse GGM.

The penalty functions in penalized estimation can be roughly categorized into two

classes: convex penalty functions and nonconvex penalty functions. The convex penal-

ties such as Lasso and adaptive Lasso have computational advantage since the cor-

responding optimization problems have convex objective functions. The nonconvex

penalties might have theoretical advantage over the convex penalties, but their com-

putation might be challenging due to the nonconvexity of the objective function. The
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SCAD penalty, the minimax concave penalty (MCP), and the folded concave penalties

are common examples of the nonconvex penalties. Further details on these penalty

functions can be found in Fan and Li (2001), Zhang (2010) and Fan, Xue, Zou, et al.

(2014).

The theoretical properties of penalized estimation have been studied in the liter-

ature. Certain penalization methods such as SCAD and adaptive Lasso satisfy the

desirable theoretical properties (Fan and Li 2001, Zou 2006). These are known as the

oracle properties since the methods asymptotically perform as well as the oracle esti-

mator, which knows the true model in advance (Donoho and Johnstone 1994). The

oracle procedures have consistency in variable selection and asymptotic normality of

the nonzero coefficients with the same efficiency as the oracle estimator.

Computational algorithms have been intensively studied for many penalization

methods. Efron, Hastie, Johnstone, and Tibshirani (2004) proposed a powerful least

angle regression (LARS) algorithm, an advanced version of forward selection with the

least squares loss. The computational cost for the entire solution path is of the same

order as the full ordinary least squares. Its simple modification calculates Lasso and

adaptive Lasso estimates with the least squares loss. Zou and Li (2008) developed a

unified algorithm based on local linear approximation (LLA) for the nonconvex penal-

ties with negative log-likelihood loss. The proposed one-step LLA estimator from the

algorithm reduces the computational burden. Friedman, Hastie, and Tibshirani (2010)

suggested a coordinate-wise descent algorithm for the convex penalized least squares

regression and GLM. Later, Breheny and Huang (2011) studied its applications to the

nonconvex penalties for the least squares regression and the logistic regression. Given

the tuning parameter, each step of the algorithm is applied to a single parameter with

the remaining parameters fixed, and the updated solution is used as a warm start for the

next step. The algorithm can be also used to solve iterative modified Lasso problems
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in GGM (Friedman, Hastie, and Tibshirani 2008).

1.2 New Contributions and Outline

The contribution of this dissertation is to give new insights on penalized estima-

tion in various statistical models. We propose some new methods with theoretical

investigation and extensive numerical studies. The outline of the proposal is as follows:

• Chapter 2 introduces the notion of overlapping structure in a composite loss

function and defines partially overlapping models for several models of inter-

est. We develop the oracle M-estimator for partially overlapping models and

establish its theoretical properties. Furthermore, we suggest adaptive composite

M-estimation, regularized estimation for the sparsity and overlapping structure

recovery of the overlapping models. The method is theoretically justified and

numerically demonstrated as competitive against several existing methods with

composite loss functions.

• Chapter 3 first introduces the refit method, a simple two-step procedure based

on a penalization method. Based on the refitting, we propose ensemble vari-

able selection (EVS) and ensemble variable selection and estimation (EVE). EVS

obtains candidate refit estimators according to voting results from several penal-

ization methods and chooses the optimal one by a certain information criterion

or cross-validation. Numerical studies illustrate that EVS can often identify the

best penalized method in each scenario. Next, EVE is studied for a factorizable

likelihood-based model in the penalization framework. In such a model, the full

likelihood can be factorized into distinct likelihood factors. EVE is a multi-step

procedure based on information combination across the factors, the refitting, and

the least squares approximation (LSA) penalization method in Wang and Leng
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(2007). We perform numerical studies for simulated prospective doubly censored

data and analyze Multicenter AIDS Cohort Study (MACS) data with EVE.

• Chapter 4 studies the edge selection for sparse high-dimensional undirected GGM.

We develop consistent validation for edge selection (CoVES) motivated by con-

sistent cross-validation for generalized linear models in Feng and Yu (2013). Its

underlying target is a sparse graph model, where a small number of variables

are conditionally dependent. CoVES first obtains the candidate edge structures

from the entire glasso solution path. For each selected graph structure, CoVES

computes the empirical negative log-likelihood via repeated random subsampling

validation. Finally, CoVES selects the edge structure having the smallest negative

log-likelihood as the optimal structure. We study its asymptotic property under

growing sample size with fixed dimension and show its competitive performance

to conventional selection methods from numerical studies.
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CHAPTER2: ADAPTIVE ESTIMATION FOR PARTIALLY
OVERLAPPING MODELS

2.1 Introduction

Regression modeling has been a popular statistical tool to explain the association

between a response variable and covariates in a dataset. A statistical regression model

targets a profile of the conditional distribution of the response given the predictors.

We estimate conditional mean of response as a linear function of predictors in classical

linear regression while we estimate conditional median as a linear function of predictors

in median regression. It is of great interest to consider several linear models to describe

a more complete picture of the conditional distribution. We may simultaneously fit

the models on the dataset and estimate the parameters. Such joint estimation borrows

information across the models and is referred as to composite estimation.

The composite estimation may be based on combing loss functions as weighted

averages of loss functions tailored to individual models. Given n independent identically

distributed samples, z1 = (x1, y1), · · · , zn = (xn, yn) ∈ Rp × R, consider the following

K different empirical convex loss functions to each model:

1

n

n∑
i=1

Lk(zi, (αk,βk)) ≡
1

n

n∑
i=1

Lk(yi, αk + xTi βk), k = 1, · · · , K, (2.1)

where αk’s are the different intercept terms across the models and β1, · · · ,βK ∈ Rp are

the parameter vectors for all models of interest. We employ distinct parameter vectors
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for the loss functions. Our composite loss function is formulated as:

L(zi, (α
T ,βT )) ≡

K∑
k=1

wkLk(yi, αk + xTi βk), (2.2)

where α = (α1, · · · , αK)T , β = (βT1 , · · · ,βTK)T ∈ RK×p, and w = (w1, · · · , wK)T is

a positive weight vector. Note that minimizing (2.2) without further assumptions on

parameter overlap is equivalent to minimizing the loss functions separately. The loss

functions may have the same or different forms. For example, in composite quantile

regression (CQR), each Lk is a check function with the arguments to Lk being used to

fit models to different quantiles (Zou and Yuan 2008). For the τ -th quantile, Lτ (t) =

τt+ + (1− τ)t−, where t+ = tI(t ≥ 0) and t− = tI(t < 0) respectively. Combining the

check function for median regression with the usual least squares loss function yields

an example of composite loss functions derived from different Lk.

Figure 2.1: Partially Overlapping Models

Composite estimation is useful when the underlying parameter structures are par-

tially overlapped. In the partially overlapping models, some parameters are the same

across loss functions, while others are different. Overlap may occur between two or

more loss functions. Figure 2.1 shows a simple example of the partially overlapping

models. Each parameter vector corresponds to both loss functions (β1 and β2). The

first and second covariates (X1 and X2) have rows of the same color, which impart the
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same parameter values (β1 and β2) to both loss functions. We call this arrangement

overlapping structure. According to the definition of overlapping structure, the third

and fourth covariates in this example do not overlap across the models. The fourth

element of β1 and the third element of β2 demonstrate sparse structure. They appear

white-shaded, which indicates that they are zero-valued parameters. Both CQR and

L1-L2 loss functions may have overlapping parameter vectors for different quantiles or

median and expectation, depending on the effects of the covariates on the variance

function.

A complete overlapping structure is one extreme of partially overlapping structures,

where all parameters are common to all loss functions. For the completely overlapping

models, Bradic, Fan, and Wang (2011) and Zou and Yuan (2008) used the composite loss

functions, with the goal of improving efficiency of the regression parameter estimators.

Their composite loss function has the following form:

L(zi, (α
T ,βT )) ≡

K∑
k=1

wkLk(yi, αk + xTi β), (2.3)

where α ∈ RK and β ∈ Rp. The composite loss in (2.3) is identical to that in (2.2),

except that the regression slopes are the same for different k. Such M-estimation has

been studied for efficient and sparse estimation when the underlying model follows a

classical linear model. The assumption leads to completely overlapping models, where

the individual loss functions have a common parameter vector. Note that the exist-

ing methods do not consider each loss as a model, but rather consider the composite

loss function as an approximation of the unknown log-likelihood function of the error

distribution (Bradic, Fan, and Wang 2011).

The completely overlapping modeling in composite loss estimation (Bradic et al.

2011) may limit flexibility in statistical modelling. Consider a linear location-scale
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model whose several covariates affect the scale of response and its error is centered to

zero but not symmetric. Different loss functions estimate different parameters defined

both by the mean and variance of the response. The parameters are the same for the

covariates which have no effect on the variance function (Carroll and Ruppert 1988).

Parameter vector for L2 is the same as the regression parameter vector of the model

while parameter vector for L1 is the weighted sum of the regression parameter vector

and the scale parameter vector. Other examples in which different loss functions may

correspond to models with partially overlapping parameters include composite quantile

regression (CQR), in which multiple L1 loss functions are linked to different quantiles.

In this chapter, we aim for the efficient composite estimation under weaker as-

sumptions on the overlapping structure, the partially overlapping structure. To adapt

such overlapping structure in the models, we incorporate penalization into (2.2). The

penalty is applied to all absolute pairwise differences between coefficients corresponding

to each covariate. In addition to this grouping penalty, we also employ a penalty for

sparse estimation, as in Bradic et al. (2011). The objective function for our empirical

composite loss function with double penalties is

K∑
k=1

n∑
i=1

wkLk(yi, αk +xTi βk) + n
K∑
k=1

p∑
j=1

pλ1n(|βkj|) + n
∑
k<k′

p∑
j=1

pλ2n(|βk′j − βkj|). (2.4)

The penalty terms in (2.4) applied to the difference in the coefficients enable recovery of

the overlapping structure by shrinking small differences towards zero. The penalty term

applied to each coefficient encourages sparsity by shrinking small coefficients towards

zero. One should recognize that the penalization of the differences is used not for

variable selection, but for selecting the overlapping structure across the multiple loss

functions. The fused lasso (Tibshirani, Saunders, Rosset, Zhu, and Knight 2004) also

has a sparse penalty term combined with a penalty term for pairwise differences. Their
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pairwise penalty serves a different purpose, that of identifying local consistency of

coefficients in a single model.

In the sequel, we propose and study adaptive composite M-estimation (ACME)

based on (2.4) which simultaneously shrinks towards the true overlapping model struc-

ture while estimating the shared coefficients in that structure. As in Bradic et al. (2011),

our procedure yields estimators with improved efficiency by information combination

across the models. Our procedure correctly selects both the true overlap structure

and the true non-zero parameters in the true model structure with probability 1 in

large samples. The parameter estimators hereby obtained are oracle in the sense that

they have the same distribution as the oracle estimator based on knowing the true

model structure a prior, both the true overlapping parameters and the true non-zero

parameters.

The rest of the chapter is organized as follows. In Section 2.2, we introduce notation

for the distinct parameter vector across models, based on overlap in the βk’s, and

define the oracle estimator. The large sample properties of the oracle estimator are

established under partially overlapping models. Section 2.3 presents ACME for partially

overlapping models and describes its implementation along with a rigorous discussion

of its theoretical properties. Section 2.4 contains numerical results from an extensive

simulation study and Section 2.5 reanalyzes a well known dataset on the annual salaries

of professional baseball players. All proofs are relegated to Section 2.7.

2.2 Oracle M-estimator for Overlapping Models

Before discussing our procedure, it would be helpful to understand the underlying

model and the oracle estimator. Oracle procedures estimate the parameters of inter-

est when the underlying parameter structure is known in advance (Fan and Li 2002).

For partially overlapping models, we define the oracle estimation as the unpenalized
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estimation with constraints on the sparsity and overlapping structure. We first intro-

duce notations and settings for partially overlapping models and investigate theoretical

properties of the oracle estimation.

2.2.1 Models and Notations

We first consider the K separate models with their corresponding loss functions in

(2.1). The risk function for the kth model is defined as the expectation of kth loss

function, Rk(αk,βk) = Ez[Lk(y, αk + xTβk)] for βk ∈ Rp, k = 1, · · · , K. The true

parameter vector for the kth model is the minimizer of the corresponding risk function,

Rk(αk,βk), with (α0
k,β

0T
k )T = argmin

(αk,β
T
k )T∈Θ⊂Rp+1

Rk(αk,βk). We estimate the parameter

vector of each model by minimizing its corresponding loss function. Consider a stack

of all parameter vectors across all models, and define the K · (p + 1)-dimensional true

parameter vector as (α0T ,β0T )T = (α0
1, · · · , α0

K ,β
0T
1 , · · · ,β0T

K )T .

Next we describe the underlying parameter structure across the multiple models

with set notations. We can identify the underlying sparse and overlapping structure

with sparsity sets and overlap sets. Denote Ak = {j ∈ {1, . . . , p} : β0
kj 6= 0} as the

index set of the non-zero parameters to the kth model and Ack = {1, . . . , p}\Ak as

its complement. This set notation implies β0
Ac

k
= 0 ∈ R|Ac

k|, k = 1, · · · , K, and thus

describes the sparse structure of the model k. Note that the underlying sparse structure

for all models can be obtained from the collection of the nonzero parameter index sets,

A0 ≡ {Ak}Kk=1.

We further introduce notations between two models for the overlapping structure

illustration. Denote Okk′ = {j ∈ {1, . . . , p} : β0
kj = β0

k′j 6= 0} as the index set of the

same valued non-zero parameters between β0
k and β0

k′ for k 6= k′. Note that elements of

Okk′ corresponds to non-zero same valued parameters to the model k and the model k′.

We can obtain the overlapping structure information across all models from the sets
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for all model pairs, O12, · · · ,O1K ,O23, · · · ,OK−1,K . In other words, the underlying

overlapping structure can be illustrated from the collection of the overlapping index

sets, G0 ≡ {Okk′}k 6=k′ . Consider a collection of all possible overlappings, Γ = {G}G∈Γ.

The true grouping, G0, is an element of Γ.

With the true sparse structure, A0, we can decompose the parameters into two parts

for partially overlapping models. The first part is for the entire true zero parameters,

βAc
k

= [βkj]j∈Ac
k
∈ R|Ac

k|, and the second part is the entire true non-zero and intercept

parameters, (αT ,βTA)T = (αT ,βTA1
,βTA2

, · · · , βTAK
)T , where βAk

= [βkj]j∈Ak
. Note

that the true parameter vector for all models, (αT ,βT )T , corresponds to the union of

the two parts, (αT ,βTA)T and βAc
k
, k = 1, · · · , K.

For joint estimation, we define the composite loss function as the linear combination

of all loss functions with weights in (2.2). The composite risk function is the expectation

of the composite loss function as R(αT ,βT ) = E
K∑
k=1

wkLk(αk,βk) =
K∑
k=1

wkRk(αk,βk).

Note that the composite risk function is a weighted linear combination of all risk func-

tions and is separable into K risk functions. Hence, the minimizer of the composite

risk function, R(αT ,βT ), is the true parameter vector for all K models: (α0T ,β0T )T =

argmin
(αT ,βT )T∈Θ⊂RK·(p+1)

R(αT ,βT ). The composite risk function can be viewed as the risk

function of the parameter vector across all models. Note that the true non-zero and

intercept parameter vector is the minimizer of the composite risk function restricted to

the non-zero parameters with the overlapping constraint:

(α0T ,β0T
A )T = argmin

(αT ,βT
A)T

K∑
k=1

wkRk(αk,βAk
) (2.5)

subject to βAkj = βAk′j
∀j ∈ Okk′ , ∀k < k′,

where Rk(αk,βAk
) = EzLk(y, αk + xkTβAk

) and xki = [xij]j∈Ak
.
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The oracle M-estimator of (αT ,βT )T for partially overlapping models is the unpe-

nalized M-estimator obtained under the assumption that the sparsity and overlapping

structure is known in advance. Denote the oracle estimator as (α̂oT , β̂
oT

)T . Similar to

the true parameters, we have the decomposition of the oracle estimator into the zero

parameter part and the non-zero parameter part:

β̂
o

Ac
k

= [βokj]j∈Ac
k

= 0|Ac
k| ∈ R|Ac

k|

(α̂oT , β̂
oT

A )T = (α̂oT , β̂
oT

A1
, · · · , β̂

oT

AK
)T ∈ RK+

∑K
k=1 |Ak|, where β̂

o

Ak
= [βokj]j∈Ak

.

The first part estimates the true zero parameters of all models and the second part

estimates the true non-zero and intercept parameters. Since we know the sparsity

pattern of the models, Ac1, · · · ,AcK , we estimate the corresponding parameters as zeros.

Analogous to the definition of the true parameters in (2.5), the oracle estimator to the

non-zero parameters minimizes the empirical weighted multiple loss functions with the

overlapping structure constraint:

(α̂oT , β̂
oT

A )T = argmin
(αT ,βT

A)T

1

n

n∑
i=1

K∑
k=1

wkLk(yi, αk + xkTi βAk
)

subject to βAkj = βAk′j
∀j ∈ Okk′ , for any k < k′.

2.2.2 Distinct Parametrization and Distinct Oracle M-estimator

The common parametrization in Section 2.2.1 includes the duplication of the same

valued parameters from overlapping structures. That is, the parametrization is redun-

dant for partially overlapping models. The left panel of Figure 2.2 shows an exam-

ple of such redundant parametrization. We use two 4-dimensional parameter vectors,

β1,β2 ∈ R4, to describe the models from Figure 2.1. The first parameter pair, β11 and

β21, has the same value, and the second parameter pair, β12 and β22, also has another
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same value. We can use one parameter, θ11, for β11 and β21, and another parameter, θ21,

for β12 and β22 as in the right panel of Figure 2.2. Furthermore, this parametrization

excludes the zero-valued parameters, β23 and β14. We call such parametrization dis-

tinct parametrization or non-redundant parametrization. The underlying sparse and

overlapping structure is imposed on the non-redundant parametrization for the true

non-zero and intercept parameters. The distinct parametrization is used for a lower

dimensional formulation of the oracle M-estimator.

Figure 2.2: Illustration of Distinct Parametrization with β0
14 = β0

23 = 0

To define our distinct oracle estimator, we borrow the notations from Bondell and

Reich (2007) for the parametrization. Consider the union of the index sets of the non-

zero parameters of all models,
K⋃
k=1

Ak = {j1, · · · , jQ}. It corresponds to the index set of

covariates with a non-zero true parameter in at least one model. Denote its cardinality

as Q = |
K⋃
k=1

Ak|, which is less than or equal to the number of covariates, p. Given a

variable, xjq , jq ∈
K⋃
k=1

Ak, consider the unique true non-zero parameter values among

the elements of {β0
Akjq

: ∀k s.t. jq ∈ Ak}. They are called the true distinct parameters

to the variable, xjq . For example, we have
K⋃
k=1

Ak = {1, 2, 3, 4} for the models in Figure

2.2. The first two covariates, x1 and x2, have one true non-zero parameter value from

{β0
11, β

0
21} and {β0

12, β
0
22} respectively since we have β0

11 = β0
21 and β0

12 = β0
22. For the

third and fourth covariates, x3 and x4, each has one true non-zero parameter value, β0
13
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and β0
24, respectively.

Suppose we have the Gq(≤ K) true distinct parameters denoted as θ0
q1, · · · , θ0

qGq
for

q = 1, · · · , Q. We denote the true distinct parameter vector across all covariates as

θ0 = (θ0
0,θ

0
1, · · · ,θ0

Q)T

= (θ0
01, · · · , θ0

0K , θ
0
11, · · · , θ0

1G1
· · · , θ0

Q1, · · · , θ0
QGQ

)T ∈ RK+
∑Q

q=1Gq ,

where θ0
0 = (θ0

01, · · · , θ0
0K)T is the true intercept vector, α0. The true distinct pa-

rameter vector is the non-redundant enumeration of the true parameters in terms of

overlapping structure for all models along the predictors.

We can define the distinct composite loss function with the non-redundant parametriza-

tion as L(zi,θ) =
K∑
k=1

wkLk(yi,θ0k + xkTi βAk
(θ)), where [βAk

(θ)]j is an element of θ

corresponding to βAkj
, j ∈ Ak. The distinct composite loss function is a random con-

vex function on RK+
∑Q

q=1Gq . The distinct composite risk function is the expectation of

the distinct composite loss function with R(θ) = Ez[L(z,θ)] =
K∑
k=1

wkRk(θ0k,βAk
(θ)).

Note that the minimizer of the distinct composite risk function is the true distinct

parameter vector.

The distinct oracle M-estimator of θ is defined as the minimizer of the distinct loss

function as follows:

θ̂
o

= (θ̂o01, · · · , θ̂o0K , θ̂o11, · · · , θ̂o1G1
, · · · , θ̂oQ1, · · · , θ̂oQGQ

)T

= argmin
θ

1

n

n∑
i=1

L(zi,θ) ∈ RK+
∑Q

q=1Gq .

We assume that the dimension of the distinct oracle M-estimator, K +

Q∑
q=1

Gq, is less

than the sample size, n. The distinct oracle M-estimator can be viewed as the non-

redundant enumeration of the oracle M-estimator, (α̂oT , β̂
oT

A )T , in terms of overlaps.
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Specifically, every element of θ̂
o

q (q = 1, · · · , Q) corresponds to some nonzero elements

among β̂o1jq , · · · , β̂
o
Kjq

when they are overlapped. Conversely, every nonzero element

among β̂o1jq , · · · , β̂
o
Kjq

corresponds to one element of θ̂
o

q.

2.2.3 Asymptotic Properties of Distinct Oracle M-estimator

Before introducing ACME in Section 2.3, we establish the asymptotic properties

of the distinct oracle M-estimator in Section 2.2.3. For the theoretical properties, the

following assumptions on all K separate loss functions are required.

A1. (α0
k,β

0T
k )T = argmin

(αk,β
T
k )T∈Θ⊂Rp+1

ELk(y, αk + xTβk), k = 1, · · · , K are bounded and

unique.

A2. ELk(y, αk + xTβk) <∞ for each (αk,β
T
k ) ∈ Rp+1, k = 1, · · · , K.

A3. a) Lk(y, αk + xTβk) is differentiable w.r.t. (αk,β
T
k )T at (α0

k,β
0
k) for Pz-almost

every z = (x, y) with derivative ∇(αk,β
T
k )TLk(y, αk + xTβ0

k) and

Jk(α
0
k,β

0
k) ≡ E[∇(αk,β

T
k )TLk(y, αk + xTβ0

k) · ∇(αk,β
T
k )TLk(y, αk + xTβ0

k)
T ] <∞.

b) The risk function Rk(αk,βk) = E[Lk(y, αk+xTβk)] is twice differentiable w.r.t.

(αk,β
T
k )T at (α0

k,β
0T
k )T with a positive definite Hessian matrix, Hk(α

0
k,β

0
k).

A4. The loss function, Lk(y, αk + xTβk), is convex with respect to (αk,β
T
k )T for Pz-

almost every z.

Similar conditions can be found for one model setting in Section 2.1 of Rocha, Wang,

and Yu (2009). The assumption, A1, ensures that the parameter for the kth model,

(α0
k,β

0T
k )T , is well defined. The second assumption, A2, guarantees that the pointwise

limit of the loss function is the risk function. From A3, we can consider local quadratic

asymptotic approximations to the risk function around the parameter. Note that we
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approximate the loss function to the risk function at each point near the parameter.

The last assumption, A4, is used to apply Convexity Lemma (Pollard 1991) for the

uniformity of approximation.

Lemma 2.1 shows that the composite loss function of (2.3) satisfies the same as-

sumptions as A1-A4 if all loss functions, L1, · · · , LK , satisfy the assumptions. In other

words, the composite loss function automatically satisfies the desirable properties for

such approximation.

Lemma 2.1. If all loss functions, Lk(y, αk+xTβk), k = 1, · · · , K, satisfy the assump-

tions, A1, · · · ,A4, then the composite loss function, L(zi, (α
T ,βT )) also satisfies the

same assumptions.

Next we present Lemma 2.2 under the same assumptions for theoretical investigation

of the oracle M-estimator and ACME. We prove consistency and asymptotic normal-

ity of the distinct oracle M-estimator and
√
n-consistency, selection and overlapping

consistency, and asymptotic normality of ACME in Section 2.3.2.

Lemma 2.2. If each loss function, Lk(y, αk + xTβk), k = 1, · · · , K, satisfies the

assumptions, A1-A4, then

(a) There exists a K · (p + 1) dimensional random vector W ∼ N(0, J(α0T ,β0T ))

such that

n∑
i=1

[L(zi, (α
0T ,β0T )+

uT√
n

)−L(zi, (α
0T ,β0T ))]−[

1

2
uT ·H(α0T ,β0T )·u+W T ·u]

p→ 0

for each u ∈ RK·(p+1)

(b) For every compact set K ⊂ RK·(p+1),

sup
u∈K
||

n∑
i=1

[L(zi, (α
0T ,β0T ) +

uT√
n

)− L(zi, (α
0T ,β0T ))]
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− [
1

2
uT ·H((α0T ,β0T )) · u+W T · u]|| p→ 0

Lemma 2.2 shows the pointwise convergence and the uniform convergence of the

loss,
n∑
i=1

[L(zi, (α
0T ,β0T ) +

uT√
n

)− L(zi, (α
0T ,β0T ))]. It is a generalization of Lemma

2 of Rocha et al. (2009), which considers the setting of a single loss function.

The distinct oracle M-estimator is a special type of M-estimators based on the

distinct loss function. Its asymptotic properties are established using M-estimation

theories.

Lemma 2.3. If the loss assumptions, A1-A4, are satisfied for all K separate loss

functions, then θ̂
o

converges in probability to θ0 as n→∞.

Lemma 2.3 shows the consistency of the distinct oracle M-estimator, which is used

for Theorem 2.1. It states that the distinct oracle M-estimator has the asymptotic

normality.

Theorem 2.1. If the loss assumptions, A1-A4, are satisfied for all K separate loss

functions, then

√
n(θ̂

o
− θ0)

d→ N(0,H(θ0)−1J (θ0)H(θ0)−1)), as n→∞

where [H(θ0)]ij =
∂2R(θ)

∂θi∂θj
|θ=θ0 , and J (θ0) = E[∇θL(z,θ0)∇θL(z,θ0)T ].

The non-redundant oracle estimator across models asymptotically follows a normal

distribution, similar to some oracle estimators based on a single model. We can extend

the results for the original estimators as shown in Corollary 2.1.

Corollary 2.1. If the above assumptions are satisfied, then
√
n(β̂

o

Ak
− β0

Ak
) = Op(1)

for all k = 1, · · · , K.
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From Corollary 2.1, we also have
√
n−consistency of the composite oracle estimator,

β̂
o

A. The asymptotic property is preserved because the oracle estimator for each model

is a subset of the distinct oracle estimator.

2.3 Adaptive Composite M-estimation for Overlapping Structure

The joint estimation procedure, ACME, improves the performance of all models as

it shares the information across the multiple models. The penalized estimation recovers

the true parameter structure in terms of the sparsity and overlapping. The two penalty

terms in ACME objective function, (2.4), control the sparsity and overlapping level.

2.3.1 Choice of Penalty Functions

For the two penalty terms, pλ1n(|t|) and pλ2n(|t|), we consider folded concave penalty

functions and weighted L1 penalty functions. First, the general folded concave penalty

functions on t ∈ [0,∞) satisfy the conditions below (Fan, Xue, Zou, et al. 2014)

(i) pλ(t) is increasing and concave in t ∈ [0,∞);

(ii) pλ(t) is differentiable in t ∈ (0,∞) with p′λ(0) := p′λ(0+) ≥ a1λ;

(iii) p′λ(t) ≥ a1λ for t ∈ (0, a2λ];

(iv) p′λ(t) = 0 for t ∈ [aλ,∞) with the pre-specified constant a > a2,

where a1 and a2 are some fixed positive constants. The penalty function is differentiable

on t ∈ (0,∞) and right differentiable at zero, thus it can produce sparse solutions. The

penalty functions are flat for t ∈ [aλ,∞) to reduce the estimation bias. The SCAD and

MCP penalty functions are typical examples of the folded concave penalty functions.
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For θ > 0, the first derivative of the SCAD penalty is

p′λ(θ) = λI(θ ≤ λ) +
(aλ− θ)+

(a− 1)λ
I(θ > λ),

where a > 2 and λ > 0 are tuning parameters (Fan and Li 2001). We commonly select

a = 3.7. Note that SCAD has a1 = 1 and a2 = 1 in the form of the folded concave

penalty functions. MCP is defined as

pλ(θ) = λ

∫ θ

0

(1− x

aλ
)+dx,

with a tuning parameter a > 1. MCP has a1 = 1− a−1 and a2 = 1 in the form of the

folded concave penalty functions (Zhang 2010).

The weighted L1 penalties take the form of p′λ(|θ̂(0)|)|θ|, where θ̂(0) is a consistent

estimator of θ0. The weighted L1 penalty function provides a one-step local linear

approximation estimator (Zou and Li 2008). We consider two types of the preliminary

penalty functions for the weighted L1 penalty functions, pλ(t). The first function is the

folded concave penalty and the second one is pλ(t) = λp(t), where p′(t) is continuous

on (0,∞) and there is some s > 0 such that p′(t) = O(t−s) as t → 0+. Additionally,

the adaptive Lasso penalty is obtained by letting p′λ(θ̂
(0)) ≡ λ|θ̂(0)|−s, where s > 0 (Zou

2006). We adopt the one-step SCAD penalty in numerical studies for both steps in

Section 2.4.

2.3.2 Theoretical Results

We establish the theoretical properties of ACME under the assumptions, A1-A4,

on all models. We develop the asymptotic theories based on the objective function in

(2.4), which is denoted as Qn(αT ,βT ). In particular, we focus on the oracle properties

of ACME for partially overlapping models.
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Lemma 2.4. If λ1n → 0, λ2n → 0 for folded concave, one-step folded concave penalty

functions, and
√
nλ1n →∞,

√
nλ2n →∞ for weighted L1 penalty functions, there is a

local minimizer of Qn(αT ,βT ) such that

√
n|(α̂T , β̂

T
)T − (α0T ,β0T )T | = Op(1).

If both pλ1n(t) and pλ2n(t) are weighted L1 penalty functions, then (α̂T , β̂
T

)T is the

unique global minimizer.

Lemma 2.4 demonstrates the existence of a
√
n-consistent penalized M-estimator

with a proper choice of λn. We control the magnitude of Qn((αT ,βT ) + uT/
√
n) −

Qn(αT ,βT ) for a sufficiently large |u| to show the selection and overlapping consis-

tency in Theorem 2.2. The notion of overlapping consistency is analogous with that

of selection consistency. We achieve the overlapping consistency and both β̂kj and β̂k′j

have the exactly same values for any index j ∈ Okk′ with probability tending to 1.

Theorem 2.2. Suppose that λ1n → 0, λ2n → 0,
√
nλ1n →∞,

√
nλ2n →∞ for folded

concave, one-step folded concave penalty functions. For weighted L1 penalty functions,

suppose
√
nλ1n → 0,

√
nλ2n → 0, n

s+1
2 λ1n →∞, n

s+1
2 λ2n →∞. If there exists at least

one j ∈ Okk′ for some k < k′, then P (
K⋂
k=1

⋂
j∈Ac

k

{β̂kj = 0} ∩
⋂
k<k′

⋂
j∈Okk′

{β̂kj = β̂k′j}) → 1

as n→∞.

Theorem 2.2 implies that the ACME achieves selection consistency and overlapping

consistency. Let Âk = {j ∈ {1, · · · , p} : β̂kj 6= 0} denote as the non-zero coefficient

index set corresponding to the kth loss function. Denote Ĝ as the estimated group-

ing. The selection and overlapping consistency can be written as P ({Âk = Ak, k =

1, · · · , K} ∩ {Ĝ = G0})→ 1.

Let θ̂A0(G0) denote our distinct ACME from (2.4) provided we know the true over-

lapping structure, G0, and the true sparse structure, A0. We focus on the asymptotic
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distribution of θ̂A0(G0) since our estimator selects the true K models and has the true

overlapping structure with probability tending to one. Note that its dimension is same

as the dimension of the distinct oracle estimator.

Theorem 2.3. If the assumptions in Theorem 2.2 are satisfied, then

√
n(θ̂A(G0)− θ0)

d→ N(0,H(θ0)−1J (θ0)H(θ0)−1)).

Theorem 2.3 states that the distinct estimator has the same asymptotic distribution

as the distinct oracle estimator in Theorem 2.1. The ACME across the multiple models

follows a normal distribution in terms of non-zero non-redundant enumeration as the

penalized estimators of a single model for the non-zero parameters follow a normal

distribution (Fan and Li 2001).

2.3.3 Choice of Weights and Tuning Parameters

The asymptotic distribution of the distinct ACME in Theorem 2.3 leads to theoreti-

cal optimal weights to achieve the efficiency across the multiple models. The theoretical

criterion for the choice of weights is to maximize the efficiency of the estimator (Bradic

et al. 2011). We can use the determinant of the asymptotic covariance matrix of the

estimator or its trace as the criterion. Note that its asymptotic covariance is a function

of the unknown matrices of J (θ0) and H(θ0), and both depend on the weight vector,

w. Similarly, completely overlapping models also have the asymptotic normal distribu-

tion and their asymptotic covariance depends on the weight vector (Bradic et al. 2011).

In this underlying classical linear model setup, the asymptotic covariance matrix can

be simplified as the multiplication of a scalar function and a function of predictors.

The scalar function has the weight vector and the random errors of the model as its

variables, thus the weight vector can be decoupled from the asymptotic covariance
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matrix. Bradic et al. (2011) chooses the weight vector by minimizing the function.

However, such decoupling cannot be obtained for partially overlapping models, due to

the complex form of the asymptotic covariance.

To address the problem, we suggest a data dependent approach to select weights.

We first obtain the separate penalized M-estimators as the initial separate estimators

with

β̂
(0)

k = argmin
(αk,β

T
k )T∈Θ⊂Rp+1

n∑
i=1

Lk(yi, αk + xTi βk) + n

p∑
j=1

pλ1n(|βkj|), k = 1, · · · , K.

The preliminary M-estimator achieves sparse estimation, but does not attain overlap-

ping estimation. Note that zero-estimated parameters can be estimated as non-zero

in the ACME procedure. Next we calculate data-driven weights, w = (w1, · · · , wK)T

based on the preliminary estimators. We set wk to be proportional to the reciprocal of

the empirical loss function of the initial estimators with

wk ∝ [
1

n

n∑
i=1

Lk(yi, αk + xTi β̂
(0)

k )]−1, k = 1, · · · , K.

We recommend this weight ratio for the same leverage of each loss function to the

composite loss function. For computational efficiency, they are rescaled to have sum to

one as
K∑
k=1

wk = 1. We adopt this choice of weights in numerical studies of Section 2.4,

which yields excellent performance. We assume positive weights because the presence of

a zero weight automatically removes the parameter vector of the corresponding model.

To obtain the optimal tuning parameters for λ1n and λ2n, we use 5-fold cross-

validation (Fan and Li 2001). Denote the full dataset by T = {z1, · · · , zn}. We

randomly divide T into the five test sets, T1, · · · , T5. Then, their corresponding

training sets are T − T1, · · · , T − T5. We obtain the ACME from the vth training set

T − Tv as (α̂(v)T , β̂
(v)T

)T = (α̂(v)T , β̂
(v)T

1 , · · · , β̂
(v)T

K )T . We choose the optimal tuning
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parameter pairs by minimizing the following cross-validation criterion:

CV (λ1n, λ2n) =
5∑
v=1

∑
zi∈Tv

K∑
k=1

Lk(yi, α̂
(v)
k + xTi β̂

(v)

k )

Lk(yi, α̂
(0)
k + xTi β̂

(0)

k )
.

A two dimensional grid search is performed for the selection of (λ1n, λ2n).

2.4 Simulation Studies

We first perform simulation studies under a classical linear model and a linear

location-scale model. Each dataset in Sections 2.4.1-2.4.2 is generated from both of

these two models. We obtain ACME for both least absolute deviations (LAD) regression

and least squares (LS) regression with a composite L1-L2 loss function. We compare

it with separate LAD and LS estimators such as ordinary unpenalized LAD and LS

estimators (Ordinary), adaptive Lasso penalized LAD and LS estimators (AdLasso),

and one-step SCAD penalized LAD and LS estimators (SCAD). We also compare with

penalized composite quasi-likelihood (PCQ) in Bradic et al. (2011), which is developed

for a classical linear model. PCQ assumes the completely overlapping structure across

all loss functions.

For comparison, we report the median of model errors (MME), the standard error of

model errors (SE), the number of correctly classified non-zero estimators (TP), and the

number of incorrectly classified zero estimators (FP). The model error of each estimator

is defined as ME(β̂) = (β̂ − β0)TE(XTX)(β̂ − β0). We also evaluate the overlapping

performance across the LAD and LS models. The overlapping structures are categorized

into four types: truly grouped estimators, truly grouped non-zero estimators, truly

grouped zero estimators, and truly ungrouped estimators. Denote the index set of each

category as TG, NG, ZG, and UG respectively. Since TG is partitioned into NG and

ZG, TG ratio is the weighted average of NG ratio and ZG ratio with the weights of
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|NG|/|TG| and |ZG|/|TG|.

2.4.1 Classical Linear Regression Model

In this section, we consider the classical linear model from Fan and Li (2001):

yi = xTi β
0 + εi,

where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0). The covariate xi is multivariate normal

with zero mean and covariance, Cov(xij1 , xij2) = 0.5|j1−j2|, 1 ≤ j1, j2 ≤ 12. Suppose

that the error term, ε1, · · · , εn, follows a normal distribution (N(0, 3)), a double expo-

nential distribution (DE), and a t distribution with d.f. 4 (t(4)). We consider both

LAD regression and LS regression. In this case, the true models are completely over-

lapped since the true parameter vector of the LS regression is the same as the true

parameter vector of the LAD regression. For these models, both PCQ and ACME

use the composite L1-L2 loss function. Our choice of weight for ACME is (w1, w2) ∝

(1/MAE(α̂SCADlad , β̂
SCAD

lad ), 1/MSE(α̂SCADls , β̂
SCAD

ls )), whereMAE(α̂SCADlad , β̂
SCAD

lad ) is the

mean of absolute errors of the SCAD-LAD estimator and MSE(α̂SCADls , β̂
SCAD

ls )) is the

mean of squared errors of the SCAD-LS estimator. The results are obtained from 100

simulated datasets with n = 100 and n = 500. We use 5-fold cross-validation for the

tuning parameter selection.

From the first three columns of Tables 2.1 and 2.2, the performance of ACME is

the best for both L1 and L2 under DE error with n = 100, 500 and under t(4) with

n = 100 in terms of MME. Under N(0, 3) with n = 100, 500, the MMEs of the PCQ

are smaller than those of ACME, but ACME outperforms the others. In this setting,

PCQ is generally comparable to ACME because PCQ achieves the oracle overlapping

structure. All the estimators successfully select the significant variables, β0
1 , β

0
2 , β

0
5 , as
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evidenced by TP. ACME performs the best in terms of FP in most cases.

N(0,3) DE t(4) LLS
Estimation MME MME MME MME

(TP, FP) (TP, FP) (TP, FP) (TP, FP)

LAD Oracle 0.1192 0.0484 0.0482 0.4853
(3 , 0) (3 , 0) (3 , 0) (10 , 0)

Ordinary 0.5643 0.34 0.2493 0.9383
(3 , 9) (3 , 9) (3 , 9) (10 , 8)

AdLasso 0.2713 0.1115 0.1008 0.7472
(3 , 2.52) (3 , 1.84) (3 , 2.44) (9.97 , 2.42)

SCAD 0.2632 0.091 0.1014 0.6476
(3 , 2.48) (3 , 1.59) (3 , 2.17) (9.96 , 1.56)

PCQ oracle 0.0738 0.067 0.0386 6.8094
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

PCQ 0.1395 0.1356 0.0981 14.3802
(3 , 1.97) (3 , 3.72) (3 , 3) (9.59 , 7.1)

ACME oracle 0.0786 0.0642 0.0411 0.6278
(3 , 0) (3 , 0) (3 , 0) (10 , 0)

ACME 0.1761 0.085 0.0694 0.6717
(3 , 1.62) (3 , 1.16) (3 , 1.4) (9.78 , 1.03)

LS Oracle 0.0727 0.0881 0.0428 2.866
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

Ordinary 0.3892 0.3871 0.2794 10.0807
(3 , 9) (3 , 9) (3 , 9) (7 , 11)

AdLasso 0.1569 0.1647 0.1054 6.0877
(3 , 1.79) (3 , 1.88) (3 , 1.83) (6.88 , 3.26)

SCAD 0.1436 0.1719 0.1038 6.4209
(3 , 1.96) (3 , 2.11) (3 , 2.06) (6.88 , 4.82)

PCQ oracle 0.0738 0.067 0.0386 1.6273
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

PCQ 0.1395 0.1356 0.0981 8.3698
(3 , 1.97) (3 , 3.72) (3 , 3) (7 , 9.69)

ACME oracle 0.0786 0.0642 0.0411 1.48
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

ACME 0.1434 0.1238 0.0802 5.3363
(3 , 1.63) (3 , 1.41) (3 , 1.51) (6.85 , 2.38)

Table 2.1: Simulation Results with Model Errors and Numbers of Correct Non-
Zeros/Incorrect Zeros (n=100)

In this setting, we have TG= {1, 2, · · · , 11, 12}, NG={1, 2, 5}, ZG={3, 4, 6, · · · , 12}

and UG= ∅. In the first three rows of Table 2.3, ACME has reasonable ratios of the

NG as well as the ZG. Most ZGs are higher than NGs since the two penalty terms for

overlapping and sparsity encourage to increase the ZG ratio. We can view that the NG

ratio is a more accurate measure on the performance of the overlapping penalization
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N(0,3) DE t(4) LLS
Estimation MME MME MME MME

(TP, FP) (TP, FP) (TP, FP) (TP, FP)

LAD Oracle 0.0255 0.0072 0.0072 0.0453
(3 , 0) (3 , 0) (3 , 0) (10 , 0)

Ordinary 0.1074 0.0409 0.0403 0.0589
(3 , 9) (3 , 9) (3 , 9) (10 , 7.99)

AdLasso 0.0453 0.0134 0.0148 0.0544
(3 , 1.69) (3 , 1.52) (3 , 1.79) (10 , 1.17)

SCAD 0.0393 0.0126 0.0132 0.0489
(3 , 1.53) (3 , 1.42) (3 , 1.58) (10 , 0.85)

PCQ oracle 0.014 0.0082 0.0074 5.6941
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

PCQ 0.0174 0.0224 0.0148 8.8911
(3 , 1.12) (3 , 3.38) (3 , 2.56) (9.99 , 7.85)

ACME oracle 0.0156 0.0088 0.0071 0.059
(3 , 0) (3 , 0) (3 , 0) (10 , 0)

ACME 0.0311 0.0108 0.01 0.0542
(3 , 0.82) (3 , 1.17) (3 , 1.14) (10 , 0.3)

LS Oracle 0.0135 0.0133 0.0096 0.6803
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

Ordinary 0.0712 0.0671 0.0471 1.7359
(3 , 9) (3 , 9) (3 , 9) (7 , 11)

AdLasso 0.0229 0.0238 0.0178 1.0036
(3 , 1.16) (3 , 1.27) (3 , 1.39) (7 , 2.31)

SCAD 0.0191 0.024 0.012 1.1313
(3 , 1.22) (3 , 1.56) (3 , 1) (7 , 3.39)

PCQ oracle 0.014 0.0082 0.0074 1.4777
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

PCQ 0.0174 0.0224 0.0148 1.5568
(3 , 1.12) (3 , 3.38) (3 , 2.56) (7 , 10.84)

ACME oracle 0.0156 0.0088 0.0071 0.2633
(3 , 0) (3 , 0) (3 , 0) (7 , 0)

ACME 0.0189 0.0206 0.0132 0.7471
(3 , 0.92) (3 , 1.32) (3 , 1.28) (7 , 1.01)

Table 2.2: Simulation Results with Model Errors and Numbers of Correct Non-
Zeros/Incorrect Zeros (n=500)
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than the ZG ratio. The ZG ratio of ACME is almost 30% higher than that of all

separate estimators under the both n = 100 and n = 500. ACME has almost two

thirds NG ratio except for the normal distribution with n = 100. Note that Ordinary,

AdLasso, and SCAD have zero NG ratios because the separate estimation does not

involve any overlapping penalization. PCQ possesses complete overlapping because

the dataset is assumed to be generated from a classical linear model. Hence, PCQ

successfully recovers the overlapping structure.

2.4.2 Linear Location-Scale Model

Under linear location-scale models, both LS regression and LAD regression are

partially overlapping models as some covariates affect the scale of the response. Our

dataset is generated from the following linear location-scale model:

yi = xTi β
0 + xTi γ

0εi,

where β0 = (3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and γ0 = (0, 0, 0, 0, 3,−3, 3,−3, 3,

−3, 0, 0, 0, 0, 0, 0, 0, 0)T . The covariate, xi = (xi1, · · · , xi18)T , is generated from a mul-

tivariate standard normal distribution, N(0, I18×18). Assume that the error term, εi,

follows a shifted gamma distribution, Γ(0.25, 2) − 0.5. Note that the distribution is

skewed to the right and centered to mean 0. The true parameter vector of the LS

regression model is β0
ls = β0 and the true parameter vector of LAD regression model is

β0
lad = (3, 3, 3, 3, 1.762, 4.238, 1.762, 1.238,−1.238, 1.238, 0, 0, 0, 0, 0, 0, 0, 0)T . Similar to

Section 2.4.1, we use the composite L1-L2 loss function. We implement the simulation

with 100 repetitions under n = 100 and n = 500.

From the last columns of Tables 2.1 and 2.2, the ACME has the second smallest

MME for LAD regression, and the smallest MME for LS regression with n = 100, 500.
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n=100 n=500
Category TG NG ZG UG TG NG ZG UG

N(0,3) Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0.0008 0 0.0011
AdLasso 0.4883 0 0.6511 0.56 0 0.7467
SCAD 0.4758 0 0.6344 0.57 0 0.76
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.78 0.5567 0.8544 0.8692 0.69 0.9289

t(4) Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0 0 0
AdLasso 0.4767 0 0.6356 0.5333 0 0.7111
SCAD 0.4725 0 0.63 0.5683 0 0.7578
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.8508 0.6867 0.9056 0.8575 0.7033 0.9089

DE Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0 0 0
AdLasso 0.5008 0 0.6678 0.5567 0 0.7422
SCAD 0.5117 0 0.6822 0.5392 0 0.7189
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.8333 0.6667 0.8889 0.8408 0.6833 0.8933

LLS Oracle 0.6667 0 1 0 0.6667 0 1 0
Ordinary 0 0 0 0 0 0 0 0
AdLasso 0.3458 0 0.5187 0.0033 0.45 0 0.675 0
SCAD 0.3017 0 0.4525 0.0017 0.4125 0 0.6188 0
PCQ oracle 1 1 1 1 1 1 1 1
PCQ 1 1 1 1 1 1 1 1
ACME oracle 1 1 1 0 1 1 1 0
ACME 0.7458 0.53 0.8538 0.2217 0.8642 0.6925 0.95 0.005

Table 2.3: Simulation Results with Grouping Ratios
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The SCAD has the smallest MME for LAD and the SCAD has the second smallest

MME for LS. Both the separate estimators and ACME show much better performance

for the LAD regression than the LS regression due to the skewed error distribution.

From this point of view, it is desirable to have a trade-off between LAD and LS estima-

tion performance as in ACME. The ACME sacrifices the LAD estimation performance

about 5% with n = 100 and 10% with n = 500 while it gains the LS estimation per-

formance almost 15% with n = 100 and 30% with n = 500. Overall, ACME has very

competitive performance in terms of MME, sparsity and overlapping structure recov-

ery. The performance of PCQ is poor as expected because both LAD and LS regression

models are assumed to be completely overlapped.

The grouping performance results under this model is summarized at the bottom

of Table 2.3. We have TG= {1, 2, 3, 4, 11, · · · , 18}, NG= {1, 2, 3, 4}, ZG= {11, · · · , 18}

and UG= {5, 6, · · · , 10}. ACME has much higher TG, NG, ZG ratios than separate

estimation. Both NG and ZG ratios increase as the sample size increases. ACME also

has higher UG ratio, whose oracle target is zero. However, the ratio drastically drops

to 0.005 from 0.2217 as the sample size is increased to n = 500 from n = 100. PCQ

shows successful performance for underlying grouped variables (TG, NG, ZG), while it

groups the variables which are not truly overlapped (UG).

2.5 Baseball Data Analysis

We analyze the major league baseball (MLB) players’ annual salary dataset. We are

interested in the salary determinants of low-paid, median-paid, and highly-paid players

respectively. We obtain ACME for three quantile regression models to the quantiles,

0.25, 0.5, 0.75. The baseball dataset was obtained from http://lib.stat.cmu.edu. The

dataset consists of the records and information on 263 North American MLB players

in 1986 season and their salary in 1987 season. This dataset was previously studied
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by He, Ng, and Portnoy (1998) and Li, Liu, and Zhu (2007). They assumed that the

salary is a function of only the number of home runs in the previous year (HR) and the

number of years in MLB (YEARS).

In addition to HR, YEARS, we consider all covariates such as their performance in

the previous years and their league, division, and position information. The response

is the annual salary on opening day in 1987 in thousands of dollars. The first seven

predictors are as follows: the number of hits (HIT), the number of runs (RUN), the

number of runs batted in (RBI), the number of walks (WALK), the number of put outs

(PUTOUT), the number of assists (ASSIST), and the number of errors (ERROR). We

employ seven dummy variables for league & division and position information: Na-

tional East (NE), National West (NW), American East (AE), Infielder (IN), Outfielder

(OUT), Catcher (CC), and Designated Hitter (DH). We treat American West (AW)

and Utility Players (UP) as the base groups of the league & division and the position

respectively. Note that we dropped the players’ number of batting in 1986 (BAT) and

performance records in their career. The BAT is highly correlated with the other vari-

ables such as HIT, HR, RUN, RBI, and WALK. Especially, the correlation between the

BAT and the HIT is 0.9640. Most of the correlations between the performance records

during their career are almost 0.9, which indicates severe collinearity.

Our goal is to determine important covariates on the first, second, and third quan-

tiles of the players’ salaries. We use a CQR loss function for the analysis with the

quantile vector, τ = (0.25, 0.5, 0.75). Each quantile corresponds to the low-paid,

median-paid and highly-paid players. We perform separate quantile regression esti-

mation methods, PCQ, and ACME. The separate regression methods include ordinary,

adaptive Lasso and one-step SCAD penalized quantile regression estimation. We use

the 5-fold cross-validation for the tuning parameter selection.
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ACME provides interpretable results by grouping the similar effects across the dif-

ferent quantiles. In Table 2.4, ACME selects HIT, YEARS, PUTOUT, league & divi-

sion and positions across the three quantiles. The second quantile regression model is

partially overlapped with the third quantile regression for the three covariates: HIT,

YEARS, and PUTOUT. In other words, they are seen to have the same strength of

impact on the median-paid and highly-paid baseball players’ salary. Note that their

effects are weaker in the low-paid players’ salaries. It is interesting that HR is found

to be significant only for the highly-paid players. The other coefficients such as RUN

and RBI shrink to zero across all quantiles. Both WALK and ASSIST are non-zero in

the preliminary estimator for the third quantile, but they shrink to zero in the ACME

procedure.

The players’ position is shown to be another important factor on the annual salary.

Across all quantiles, the outfielders (OUT) are seen as the most-paid position. The

catchers’ (CC) and the infielders’ (IN) salaries are the second and third highest, and

the designated hitters (DH) and the utility players (UP) have the second-lowest and

lowest salaries. Similar to the position, we can analyze the league & division factor

on the players’ salaries. Table 2.4 also reports the standard errors of the ordinary

coefficients and their significance. They are obtained from the Markov chain marginal

bootstrap (MCMB) with 500 repetitions (He and Hu 2002, Kocherginsky, He, and

Mu 2005). ACME selects all variables known to be significant by MCMB under the

significance level of 0.1.

Table 2.5 shows the test errors for all estimation procedures from 10 repetitions.

In each iteration, randomly selected 28 data points are assigned as a test set and

the remaining 235 data points are assigned as a training set. ACME is shown to

have the best performance across all quantiles. It outperforms the ordinary quantile

regression models to all quantiles. Compared with the other estimators, ACME has
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Ordinary (SE) Sig. AdLasso SCAD PCQ ACME

(Intercept) -245.5120 (73.4387) 3.5418 -219.1371 -515.5512 -222.0246
HIT 0.7907 (1.7183) 0 1.2864 2.9716 1.2815
HR -5.3061 (4.9069) 0 0 2.0697 0
RUN 1.8274 (2.7044) 1.2953 0 0 0
RBI 2.4403 (2.6514) 0.2118 0 0 0
WALK 0.7804 (1.5287) 0 0 2.4083 0
YEARS 30.2551 (4.3717) (**) 25.0385 31.0540 34.7556 31.2286
PUTOUT -0.0890 (0.0978) 0 0.0015 0.1878 0.0118
ASSIST -0.1639 (0.2459) 0 0 -0.0423 0
ERROR -4.0178 (4.5298) 0 0 -5.4835 0
NE -0.3179 (50.4264) 0 0 119.9565 0
NW 14.4817 (46.9023) 0 24.2768 49.2665 19.6613
AE 45.4914 (48.4438) 0 38.5924 94.8061 40.6199
IN 158.2192 (70.4252) (**) 0 131.8874 146.3136 130.0462
OUT 103.3899 (71.0636) 0 163.0241 104.6079 160.9292
CC 192.0264 (75.5660) (**) 0 144.9067 180.0394 147.7828
DH -79.9613 (122.5664) 0 -10.3131 -37.9423 -11.7313
(Intercept) -433.8376 (70.6211) -377.3501 -350.5207 -389.9337 -345.8087
HIT 4.0231 (1.5517) (**) 2.9242 2.9508 2.9716 2.9707
HR 6.6351 (6.2462) 2.5825 0 2.0697 0
RUN -1.8305 (2.7047) 0 0 0 0
RBI -1.4046 (2.5405) 0 0 0 0
WALK 2.0973 (1.3878) 1.7366 0 2.4083 0
YEARS 40.8095 (4.6872) (**) 38.4487 42.1105 34.7556 42.5428
PUTOUT 0.2477 (0.1416) (*) 0.2641 0.3109 0.1878 0.2662
ASSIST -0.2267 (0.2770) -0.0258 0 -0.0423 0
ERROR -1.8804 (4.0841) -0.5691 0 -5.4835 0
NE 108.5532 (52.4478) (**) 93.8747 128.5615 119.9565 130.8570
NW 12.7587 (47.3871) 0 29.9324 49.2665 32.3740
AE 40.8497 (45.3921) 23.4914 81.1657 94.8061 73.9340
IN 190.6089 (78.3024) (**) 89.7357 54.3756 146.3136 66.6862
OUT 136.6861 (62.7354) (**) 95.4291 104.7711 104.6079 103.4506
CC 145.0478 (81.5529) (*) 103.9739 80.8829 180.0394 90.0636
DH -1.8963 (133.4392) 0 0 -37.9423 0
(Intercept) -391.8350 (81.0963) -361.7759 -399.4956 -245.9810 -374.7126
HIT 4.8975 (2.1460) (**) 4.1554 3.4490 2.9716 2.9707
HR 13.3862 (7.9316) (*) 12.4493 9.6505 2.0697 13.0354
RUN -2.4222 (3.7428) -1.4637 0 0 0
RBI -1.9237 (3.7097) -1.6779 0 0 0
WALK 3.2575 (1.9991) 3.5655 1.9914 2.4083 0
YEARS 39.3092 (6.4817) (**) 41.4364 40.8961 34.7556 42.5428
PUTOUT 0.2982 (0.1529) (*) 0.3053 0.2727 0.1878 0.2662
ASSIST -0.6020 (0.3831) -0.5430 -0.3295 -0.0423 0
ERROR -1.7205 (6.3196) -0.4648 0 -5.4835 0
NE 172.1072 (61.4199) (**) 151.9045 156.2564 119.9565 183.7244
NW 46.0431 (60.8648) 33.0716 54.2641 49.2665 66.9276
AE 112.6242 (70.0346) 95.4571 101.6325 94.8061 82.9392
IN 224.1558 (100.9911) (**) 164.4403 137.2256 146.3136 120.8592
OUT 62.4650 (87.4832) 42.4966 86.4714 104.6079 149.6180
CC 49.1510 (106.0594) 17.4022 63.3216 180.0394 91.7776
DH -129.9760 (216.2998) -174.4692 -69.4182 -37.9423 7.7997
Note. (**) indicates significant level 0.05 and (*) indicates significant level 0.1.

Table 2.4: Regression Coefficients of Baseball Dataset
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better performance in two of the three quantiles. For example, ACME has smaller

errors than SCAD in the second and third quantiles. Note that the performance of

PCQ is substantially biased in the first quantile. Because PCQ assumes complete

overlapping models, the first quantile regression modeling is dragged upward to the

other two quantiles.

Ordinary AdLasso SCAD PCQ ACME

Q1 75.9326 75.9482 72.7219 81.9500 74.2914
Q2 106.4342 105.3914 106.0978 103.6183 105.4999
Q3 92.7157 92.3668 93.7098 93.7860 91.9224

Table 2.5: Test Errors of Baseball Data for Three Quantiles

2.6 Discussion

In this chapter, we have proposed adaptive composite estimation for partially over-

lapping models. We have first introduced the notion of partially overlapping regression

models on a given dataset. The overlapping structure is the same effect of a covariate

on the response across multiple models. Partially overlapping models have at least one

overlapping structure. We have also considered the sparse structure of the regression

parameters for all models. ACME achieves both goals with a doubly penalized compos-

ite loss function. Its regular penalty function encourages the sparse structure recovery

and the other penalty function induces the overlapping structure recovery. The argu-

ments of the second penalty function are all pairwise differences of the coefficients for

each covariate across the models. We have showed its selection and overlapping consis-

tency under the proper choice of the tuning parameters. We have also established the

asymptotic normality of non-redundant ACME, given the true sparse and overlapping

structure. In the numerical studies, ACME have outperformed the separate penalized

M-estimation and the composite M-estimation under the complete overlapping struc-

ture assumption.
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2.7 Proofs

2.7.1 Proof of Lemma 2.1

From A1, the minimizer of the composite risk function, β0 is bounded and unique.

The composite risk function is finite for each (αT ,βT )T ∈ RK·(p+1) since it is a weighted

linear combination of the finite separate risk functions from A2. The composite loss

function, L(z, (αT ,βT )), is also differentiable with respect to (αT ,βT )T at (α0T ,β0T )T

for Pz-almost every z with derivative

∇(αT ,βT )TL(z, (αT ,βT ))

=(w1∇(α1,β1)L1(y, α1 + xTβ1)T , · · · , wK∇(αK ,βK)LK(y, αK + xTβK)T )T .

The variance of the score function at the true parameters is

J(α0T ,β0T ) ≡ E[∇(αT ,βT )TL(z, (α0T ,β0T )) · ∇(αT ,βT )TL(z, (α0T ,β0T ))T ]

= E[wk∇(αk,β
T
k )TLk(y, αk + xTβ0

k) · wl∇(αl,β
T
l )TLl(y, αl + xTβ0

l )
T ]Kk,l=1.

Note that the J(α0T ,β0T ) is a K(p + 1) × K(p + 1) block matrix with K2 blocks of

(p + 1) × (p + 1) submatrices, denoted as [Jkl(α
0,β0)]Kk,l=1. All the on-diagonal block

matrices are finite since Jkk(α
0T ,β0T ) = w2

kJk(α
0
k,β

0
k) <∞ from A3 a). The finiteness

of the off-diagonal blocks is elementwise shown by Cauchy-Schwarz inequality.

The gradient vector and the Hessian matrix of the composite risk function are as

follows:

∇(αT ,βT )TR(αT ,βT ) = (w1∇(α1,β
T
1 )TR1(α1,β1)T , · · · , wK∇(αK ,β

T
K)TRK(αK ,βK)T ),

H(αT ,βT ) = diag(w1H1(α1,β1), · · · , wKHK(αK ,βK)).
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The Hessian matrix at the true parameters, H(α0T ,β0T ), is also positive definite from

A3 b). The composite risk function also has the same assumption on its twice differ-

entiability and the positive definiteness of Hessian matrix. Lastly, the composite loss

function is a linear combination of the convex functions with respect to (αT ,βT )T .

Hence, the composite loss function achieves the assumption, A4.

2.7.2 Proof of Lemma 2.3

By definition, both θ̂
o

and θ0 are the unique minimizers of the empirical distinct

loss function and the distinct risk function respectively. We obtain the pointwise con-

vergence of the empirical distinct loss function to the distinct risk function by the weak

law of large numbers for any θ. The uniform convergence of the empirical distinct loss

function to the distinct risk function can be verified by Convexity Lemma from Pollard

(1991). The conditions on Theorem 5.7 of Van der Vaart (2000) are satisfied, thus this

completes the proof.

2.7.3 Proof of Theorem 2.1

The distinct loss function and risk function satisfy the conditions for the asymptotic

normality of an M-estimator. See Theorem 5.23 of Van der Vaart (2000) for further

details. The distinct loss function, L(z,θ), is differentiable with respect to θ at θ0 for

Pz-almost every z with derivative ∇θL(z,θ0) and E[∇θL(z,θ0) · ∇θL(z,θ0)T ] < ∞.

The distinct risk function is twice differentiable with respect to θ at θ0 with the positive

definite Hessian matrix H(θ0).
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2.7.4 Proof of Corollary 2.1

Note that the
√
n-consistency of distinct oracle estimator is equivalent to the

√
n-

consistency of separate oracle estimator:

√
n(θ̂

o
−θ0) = Op(1)⇔

√
n(β̂

o

A0−β0
A0) = Op(1)⇔

√
n(β̂

o

A0
k
−β0

A0
k
) = Op(1) ∀k = 1, · · · , K.

The “If” part of the first equivalence is obtained from
√
n|θ̂

o
− θ0| ≤

√
n|β̂

o

A0 − β0
A0|.

The “Only if” part is from
√
n|β̂

o

A0 −β0
A0| =

√
n

K∑
k=1

|β̂
o

A0
k
−β0

A0
k
| ≤
√
nK|θ̂

o
−θ0|. The

second equivalence is straightforward as
√
n|β̂

o

A0 − β0
A0| = (

K∑
k=1

√
n|β̂

o

A0
k
− β0

A0
k
|2)

1
2 .

2.7.5 Proof of Lemma 2.4

Our aim is to show that, for a sufficiently large constant C,

P{inf |u|=C, ∀kQn((α0T ,β0T ) + n−
1
2uT ) > Q(α0T ,β0T )} → 1,

where u = (uT0 ,u
T
1 , · · · , uTK)T ∈ RK(p+1), u0 ∈ RK and uk ∈ Rp. That is, there is a

minimizer inside the ball |(αT ,βT )T − (α0T ,β0T )T | < n−
1
2C, with probability tending

to 1. It is the same argument as in the proof of Theorem 1 in Fan and Li (2001). Our

objective function is (2.4). Let us define

Dn(u) ≡ Qn((α0T ,β0T ) + n−
1
2uT )−Qn(α0T ,β0T )

=
n∑
i=1

[L(zi, (α
0T ,β0T ) +

uT√
n

)− L(zi, (α
0T ,β0T )]

+n
K∑
k=1

p∑
j=1

(pλ1n(|β0
kj + n−

1
2ukj|)− pλ1n(|β0

kj|)
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+n
∑
k<k′

p∑
j=1

(pλ2n(|β0
k′j + n−

1
2uk′j − β0

kj − n−
1
2ukj|)− pλ2n(|β0

k′j − β0
kj|))

≥
n∑
i=1

[L(zi,β
0 +

u√
n

)− L(zi,β
0)] + n

K∑
k=1

∑
j∈Ak

(pλ1n(|β0
kj + n−

1
2ukj|)− pλ1n(|β0

kj|))

+n
∑
k<k′

∑
j∈Oc

kk′

(pλ2n(|β0
k′j + n−

1
2uk′j − β0

kj − n−
1
2ukj|)− pλ2n(|β0

k′j − β0
kj|))

≡T1 + T2 + T3

The inequality holds because β0
kj = 0 if j ∈ Ack and β0

k′j = β0
kj if j ∈ Okk′ . By Lemma

2.2, the T1 converges to 1
2
uTH(α0T ,β0T )u+W Tu in probability and further uniformly

converges on any compact subset of Rd. We consider the T2 and T3 parts with three

types of penalty functions: folded concave, one-step folded concave and weighted L1

penalty functions. We first examine the folded concave penalty functions. For a large

n, if |t| > aλ1n and λ1n → 0,

T2 = n
K∑
k=1

∑
j∈Ak

(pλ1n(β0
kj + n−

1
2ukj)− pλ1n(β0

kj)) = 0 (2.6)

since p′λ1n(t) = 0. The same argument is applied to the T3 for a large n:

T3 = n
∑
k<k′

∑
j∈Oc

kk′

(pλ2n(β0
k′j − β0

kj + n−
1
2 (uk′j − ukj))− pλ2n(β0

k′j − β0
kj)) = 0. (2.7)

For the weighted L1 penalty, the terms T2 and T3 go to zero in probability. We now

consider one-step folded concave penalty functions under the assumption of λ1n → 0.

T2 =
√
n

K∑
k=1

∑
j∈Ak

p′λ1n(|β(0)
kj |)
|β0
kj + n−

1
2ukj| − |β0

kj|
1/
√
n

= op(1) (2.8)

Note that
|β0
kj + n−

1
2ukj| − |β0

kj|
1/
√
n

→ sgn(β0
kj)ukj and

√
np′λ1n(|β(0)

kj |)
p→ 0 as |β(0)

kj |
p→
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|β0
kj| 6= 0 and p′λ1n(t) = 0 for t > aλ1n. For T3,

T3 =
√
n
∑
k<k′

∑
j∈Oc

kk′

p′λ2n(|β(0)
k′j − β

(0)
kj |)
|β0
k′j − β0

kj + n−
1
2 (uk′j − ukj)| − |β0

k′j − β0
kj|

1/
√
n

(2.9)

Similar to T2, we obtain
|β0
k′j − β0

kj + n−
1
2 (uk′j − ukj)| − |β0

k′j − β0
kj|

1/
√
n

→ sgn(β0
k′j −

β0
kj)(uk′j − ukj) and

√
np′λ2n(|β(0)

k′j − β
(0)
kj |)

p→ 0. Thus, T3 is also op(1). For the other

weighted L1 penalty functions, we obtain

T2 =
√
nλ1n

K∑
k=1

∑
j∈Ak

p′(|β(0)
kj |)
|β0
kj + n−

1
2ukj| − |β0

kj|
1/
√
n

, (2.10)

under the assumption that
√
nλ1n → 0.

Each term converges to a certain value in a probabilistic sense. p′(|β(0)
kj |)

p→ p′(|β0
kj|)

by the continuity of the derivative of the penalty function and the last term goes to

sgn(β0
kj)ukj. As

√
nλ1n → 0, we have T2 = op(1). In a similar way, we can write T3 as

T3 =
√
nλ2n

∑
k<k′

∑
j∈Oc

kk′

p′(|β(0)
k′j − β

(0)
kj |)
|β0
k′j − β0

kj + n−
1
2 (uk′j − ukj)| − |β0

k′j − β0
kj|

1/
√
n

(2.11)

p′(|β(0)
k′j − β

(0)
kj |)

p→ p′(|β0
k′j − β0

kj|) and the next term goes to sgn(β0
k′j − β0

kj)(ukj − ukj).

We have T3 = op(1) as
√
nλ2n → 0. The terms T2 and T3 converge to zero in probability

under every penalty function. For the |u| equal to a sufficiently large C, Qn((α0T ,β0T )+

n−
1
2uT )−Qn(α0T ,β0T ) is dominated by the quadratic term, 1

2
uTH(α0T ,β0T )u. Thus,

the
√
n consistency is achieved.

2.7.6 Lemma 2.5 and Theorem 2.2

Lemma 2.5. Suppose that λ1n → 0, λ2n → 0,
√
nλ1n → ∞,

√
nλ2n → ∞ for

folded concave, one-step folded concave penalty functions. For weighted L1 penalty
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functions, suppose
√
nλ1n → 0,

√
nλ2n → 0, n

s+1
2 λ1n → ∞, n

s+1
2 λ2n → ∞. As-

sume that there exists at least one j ∈ Okk′ for some k < k′. Consider a given

random vector (αDT ,βDT )T and c, whose lengths are K · (p + 1). Denote βDT =

(βD1T , · · · , βDKT ), where βDk = [βDk
j ]pj=1. Suppose that βDkj = 0 ∀j ∈ Ack for every

k and βDkj = βDk′j ∀j ∈ Okk′ for all k < k′. Denote cT = (cT0 , c
T
1 , · · · , cTK), where

c0 = [c0k]
K
k=1, ck = [ckj]

p
j=1 and ckj = 0 for j ∈ Ak and j /∈ Okk′ ∀k′ 6= k. De-

fine (αD
′T ,βD

′T ) = (αDT ,βDT ) + cT and denote βD
′T = (βD

′
1T , · · · , βD′KT ), where

βD
′
k = [β

D′k
j ]pj=1. Assume that |(αDT ,βDT )T − (α0T ,β0T )T | = Op(n

−1/2). With proba-

bility tending to one, for any constant C1,

Qn(αDT ,βDT ) = min
|c|≤n−1/2C1

Qn(αD
′T ,βD

′T ).

Note that given a constant C1,
∑

k<k′
∑

j∈Okk′
|ck′j−ckj| ≤ n−1/2C2, where the constant,

C2, depends on all Okk′s, Aks, K, and p.

Proof. It follows the same line as the proof of Lemma 1 of Wu and Liu (2009). We

let γ0 = (α0T ,β0T )T , γD = (αDT ,βDT )T and γD
′
= (αD

′T ,βD
′T )T .

Qn(γDT )−Qn(γD
′T ) = [Qn(γD)−Qn(γ0)]− [Qn(γD

′
)−Qn(γ0)]

=
n∑
i=1

[L(zi,γ
DT )− L(zi,γ

0T )]−
n∑
i=1

[L(zi,γ
D′T )− L(zi,γ

0T )]

+n
K∑
k=1

∑
j∈Ak

(pλn1(|βDkj|)− pλn1(|βD
′

kj |))− n
K∑
k=1

∑
j∈Ac

k

pλn1(|βD
′

kj |)

+n
∑
k<k′

∑
j∈Oc

kk′

(pλn2(|βDk′j − βDkj|)− pλn2(|βD
′

k′j − βD
′

kj |))− n
∑
k<k′

∑
j∈Okk′

pλn2(|βD
′

k′j − βD
′

kj |)

≡U1 + U2 + U3 + U4 + U5 + U6,

where Ockk′ = {1, 2, · · · , p}\Okk′ . Note that |βD − β0| = Op(n
−1/2) and |βD′ − β0| =
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Op(n
−1/2). It implies that βD

p→ β0 and βD
′ p→ β0. First, from Lemma 2.2, U1 and U2

are bounded in probability.

U1 + U2 =
n∑
i=1

[L(zi,γ
DT )− L(zi,γ

0T )]−
n∑
i=1

[L(zi,γ
D′T )− L(zi,γ

0T )]

=
√
n(γD − γ0)TH(γ0T )

√
n(γD − γ0) +W T

√
n(γD − γ0) + op(1)

−
√
n(γD

′ − γ0)TH(γ0T )
√
n(γD

′ − γ0)−W T
√
n(γD

′ − γ0) + op(1)

=Op(1) +W T
√
nc+ op(1) = Op(1)

Next, U3, U4, U5, U6 are considered with folded concave, one-step folded concave, and

weighted L1 penalty functions. We have the conditions such that 0 < c ≤ n−1/2C1 and

0 <
∑
k<k′

∑
j∈Okk′

|ck′j − ckj| ≤ n−1/2C2. For folded concave penalty functions, each term

of U3 is op(1), thus U3 = op(1) by continuous mapping theorem and ckj → 0. The U5

is also op(1) from the same argument. We now show that bothU4 and U6 dominate in

magnitude.

U4 =− n
K∑
k=1

∑
j∈Ac

k

pλ1n(|ckj|) = −np′λ1n(0+)
K∑
k=1

∑
j∈Ac

k

|ckj|(1 + o(1))

≤− a1

√
nλ1n ·

√
n

K∑
k=1

∑
j∈Ac

k

|ckj|(1 + o(1))

As
√
nλ1n → ∞ and 0 <

√
n

K∑
k=1

∑
j∈Ac

k

|ckj| ≤ C1, we have U4
p→ −∞. We obtain the

same result for the U6 as follows:

U6 =− n
∑
k<k′

∑
j∈Okk′

pλ2n(|ck′j − ckj|) = −np′λ2n(0+)(
∑
k<k′

∑
j∈Okk′

|ck′j − ckj|)(1 + o(1))

≤− a1

√
nλ2n ·

√
n
∑
k<k′

∑
j∈Okk′

|ck′j − ckj|(1 + o(1)).
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With one-step folded concave and weighted L1 penalty functions, the U3, U4, U5 and

U6 are written as follows:

U3 = n

K∑
k=1

∑
j∈Ak

p′λ1n(|β(0)
kj |)(|β

D
kj| − |βDkj + ckj|) (2.12)

U4 = −n
K∑
k=1

∑
j∈Ac

k

p′λ1n(|β(0)
kj |)|ckj| (2.13)

U5 = n
∑
k<k′

∑
j∈Oc

kk′

p′λ2n(|β(0)
k′j − β

(0)
kj |)(|β

D′

k′j − βD
′

kj | − |βD
′

k′j − βD
′

kj + ck′j − ckj|) (2.14)

U6 = −n
∑
k<k′

∑
j∈Okk′

p′λ2n(|β(0)
k′j − β

(0)
kj |) · |ck′j − ckj| (2.15)

Both U3 and U5 converge to zero in probability in the same sense of (2.8) and (2.9). Both

U4 and U6 are bounded by−a1

√
nλ1n

√
n

K∑
k=1

∑
j∈Ak

|ckj| and−a1

√
nλ1n

√
n
∑
k<k′

∑
j∈Okk′

|ck′j−

ckj|. Both go to the negative infinity in probability as
√
nλ1n → ∞. Now, we plug-in

the weighted L1 penalty function to (2.12)-(2.15).

U3 = nλ1n

K∑
k=1

∑
j∈Ak

p′(|β(0)
kj |)(|β

D
kj| − |βDkj + ckj|)

U4 = −nλ1n

K∑
k=1

∑
j∈Ac

k

p′(|β(0)
kj |)|ckj| = −n

1+s
2 λ1n

K∑
k=1

∑
j∈Ac

k

(
√
n|β(0)

kj |)
−sp

′(|β(0)
kj |)

|β(0)
kj |−s

√
n|ckj|

U5 = nλ2n

∑
k<k′

∑
j∈Oc

kk′

p′(|β(0)
k′j − β

(0)
kj |)(|β

D′

k′j − βD
′

kj | − |βD
′

k′j − βD
′

kj + ck′j − ckj|)

U6 = −nλ2n

∑
k<k′

∑
j∈Okk′

p′(|β(0)
k′j − β

(0)
kj |) · |ck′j − ckj|

= −n
1+s
2 λ2n

∑
k<k′

∑
j∈Okk′

(
√
n|β(0)

k′j − β
(0)
kj |)

−sp
′(|β(0)

k′j − β
(0)
kj |)

|β(0)
k′j − β

(0)
kj |−s

√
n|ck′j − ckj|

As
√
nλ1n → ∞ and

√
nλ2n → ∞, both U3 and U5 go to zero in probability as

(2.10) and (2.11). As n
1+s
2 λ1n → ∞ and n

1+s
2 λ2n → ∞, both U4 and U6 go to the
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negative infinity in probability. This term is higher order than any other terms, thus

dominates the remaining terms. In other words, Qn(γDT )−Qn(γD
′T ) < 0 for a large n.

Thus, the minimizer of Qn(γD
′T ) satisfies βkj = 0 ∀j ∈ Ack for every k and βk′j = βkj

∀j ∈ Okk′ for every k < k′ with probability tending to 1. Note that there exists at least

one non-empty set of Okk′ for some k < k′. This extra condition is needed because the

third term is zero without the condition. �

From Lemma 2.5, the (α̂T , β̂
T

)T does not minimize the objective function, Qn(αT ,βT )

if at least one of the true zero parameters is estimated as non-zero or at least one over-

lapping structure is estimated with different values with probability tending to one.

Theorem 2.2 is the straightforward result from Lemma 2.5.

2.7.7 Proof of Theorem 2.3

Our proof follows the proof of the Theorem in Wang, Li, and Jiang (2007a).

Denote θ̂A0(G0) the minimizer of Q′n(θ) ≡ Qn(βA0(θ)), where βA0(θ) is written as

(θ01, · · · , θ0K ,β
T
A1

(θ), · · · ,βTAK
(θ), )T .

Q′n(θA0) =
K∑
k=1

n∑
i=1

wkLk(yi, θ0k + x
A0

kT
i βA0

k
(θ)) + n

K∑
k=1

∑
j∈Ak

pλ1n(βAkj(θ))

+ n
∑
k<k′

∑
j∈Oc

kk′

pλ2n(βA′kj(θ)− βAkj(θ))

Let Ψn(u) = Q′n(θ0 +
u√
n

), then
√
n(θ̂A0(G0)−θ0) is the minimizer of Ψn(u)−Ψn(0).

For any u ∈ RK+
∑Q

q=1Gq , denote

Vn(u) ≡ Ψn(u)−Ψn(0)

=
n∑
i=1

L(zi,θ
0 +

u√
n

)−
n∑
i=1

L(zi,θ
0) + n

K∑
k=1

∑
j∈Ak

pλ1n(β0
Akj

(θ) +
ũkj(u)√

n
)− pλ1n(β0

Akj
(θ))
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+n
∑
k<k′

∑
j∈Oc

kk′

pλ2n(β0
Ak′j

(θ)− β0
Akj

(θ) +
ũk′j(u)− ũkj(u)√

n
)− pλ2n(β0

A′kj
(θ)− β0

Akj
(θ))

≡Vn1(u) + Vn2(u) + Vn3(u),

where ũk(u) = [ũkj]j∈Ak
is the element of u corresponding to β0

Ak
. Similar to Lemma

2.2, we have

Vn1(u)
d→ 1

2
uTH(θ0)u+W T

θu,

whereW θ ∼ N(0,J (θ0). Both Vn2(u) and Vn3(u) are op(1) under any penalty function

form as (2.6)-(2.11) in the proof of Lemma 2.4. Finally, we obtain

Vn(u)
d→ 1

2
uTH(θ0)u+W T

θu.

Lemma 2.2 and Remark 1 of Davis, Knight, and Liu (1992) imply that if an objective

function converges in distribution to a strictly convex function, its minimum converges

in distribution to the unique minimum of the strictly convex function. Hence, we

complete the proof.
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CHAPTER3: ENSEMBLE VARIABLE SELECTION AND
ESTIMATION

3.1 Introduction

Penalization is a widely used technique for simultaneous variable selection and pa-

rameter estimation. There are numerous sparse penalized variable selection techniques

in the literature, including LASSO (Tibshirani 1996), SCAD (Fan and Li 2001), and

adaptive LASSO (Zou 2006). In a regression setting, one theoretical goal of variable

selection is oracle estimation (Fan and Li 2001), which requires both consistency in

variable selection and asymptotic normality of the non-zero coefficient estimators with

the same efficiency as the oracle estimator under the true model, where the non-zero

coefficients are known a priori.

Certain procedures, such as SCAD and adaptive LASSO, are known to satisfy or-

acle properties (Fan and Li 2001, Zou 2006). However, other penalization methods

may suffer deficiencies, in which selection consistency may be achieved without oracle

estimation. LASSO was shown to be able to yield consistent variable selection if the

underlying model satisfies some conditions, but the LASSO estimator does not have

oracle efficiency (Meinshausen and Bühlmann 2006, Zhao and Yu 2007, Zou 2006, Yuan

and Lin 2007b). Model selection criteria like Bayesian Information Criterion (BIC) can

produce consistent model selection but suboptimal estimation (Yang 2005). A simple

and general approach to variable selection was suggested in Wang and Leng (2007),

which presents a unified theoretical framework for the regression setting. They proved

that their least squares approximation (LSA) penalization method yields sparse and
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consistent model selection, but the penalized estimators may not be oracle equiva-

lent when the asymptotic covariance matrix of a preliminary estimator violates certain

assumptions.

To address the above issue, we first propose a simple refit method based on an

initial selection consistent estimator. The first step is to obtain a selection consistent

estimator via a variable selection method, e.g., the LSA penalization method. In the

second step, we only use the selected variables from the first step to refit the parameters

using the corresponding unpenalized objective function. Regardless of whether the first

step estimator satisfies the oracle property, the refit estimator has the oracle property,

as long as the first step estimator is consistent in selection. For the LSA penalization

method, the refit step gives an estimator having the oracle property, regardless of

whether the covariance assumption holds.

We further suggest two novel methods based on the refit method: ensemble variable

selection (EVS) and ensemble variable selection and estimation (EVE). Both meth-

ods perform simultaneous variable selection and estimation with penalization methods.

EVS is applicable to a general regression setting, and EVE is useful for a likelihood-

based model which satisfies the factorization assumption on the full likelihood function.

3.1.1 Ensemble Variable Selection (EVS)

One practical issue of a penalized method for variable selection and estimation is

the choice of penalty functions from the numerous available penalty functions. The

performance of each variable selection method is case-specific, that is, we cannot guar-

antee any universally preferable procedure. For each scenario, we may select the model

chosen from the method with the smallest test error, but the error calculation via

cross-validation is sometimes computationally expensive.

EVS combines the variable selection decisions from multiple candidate penalization
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methods. We view each method as casting votes on important covariates and obtain

nested candidate models according to the vote counts. EVS refits each candidate model

without penalization, and selects the optimal model by selection criteria such as BIC

and cross-validation (Schwarz 1978). We automatically avoid the worst performance

and nearly perform the best in practice. Furthermore, it reduces the computational

burden as the number of the candidate models is less than or equal to the number of

the methods. We apply EVS to the South African Heart Disease (SAHD) dataset from

Friedman et al. (2001) for risk factors analysis for myocardial infarction (MI).

3.1.2 Ensemble Variable Selection and Estimation (EVE)

Penalized method is a useful tool for variable selection in numerous likelihood-based

models such as generalized linear models (Zou 2006, Fan and Li 2001) and Cox propor-

tional hazards models (Zhang and Lu 2007). In the literature, the direct penalization

techniques were shown to have the oracle properties, and their numerical algorithms

were developed. However, for certain likelihood-based models, such direct penaliza-

tion methods require model-specific theoretical work and may not be computationally

feasible with existing software.

To tackle the problem, we propose an indirect penalization method, EVE for a fac-

torizable likelihood-based model. In such model, the full likelihood is the multiplication

of two likelihood factors. Its full estimator can be obtained by ensemble estimation,

asymptotic efficient combination of the separate estimators from the likelihood factors

via generalized least squares (GLS) (Cox 2001). By exploiting the ensemble estimation

and the refit LSA method, EVE selects variables and estimates parameters without

asymptotic efficiency loss. We analyze the Multicenter AIDS Cohort Study (MACS)

dataset described in Kaslow et al. (1987) with EVE to find out risk factors strongly

associated with HIV infection.
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3.1.3 Outline

Section 3.2 presents the refit method based on a preliminary selection consistent

estimator. We show its theoretical properties in Section 3.2.1 and illustrate the refit

estimation based on the LSA penalization technique as an example in Section 3.2.2.

We present the results of simulated data from linear regression and median regression

with heteroscedasticity in Section 3.2.3.

Section 3.3 studies the EVS method based on the multiple penalization methods.

We describe the procedure in Section 3.3.1 and demonstrate the performance of EVS

from numerical studies and the SAHD data analysis in Sections 3.3.2-3.3.3.

Section 3.4 proposes the EVE method under the assumption that the full likelihood

is factorized into two likelihood factors. We examine the likelihood factorization and

the ensemble estimation in Section 3.4.1. In particular, we consider the Cox model for

prospective doubly censored data in Section 3.4.2. We present numerical results from

simulation studies and real data analysis in Sections 3.4.3-3.4.4.

3.2 Refitting for Variable Selection

Penalization techniques may suffer from the potential bias in the non-zero coeffi-

cients in finite sample studies. The two-step refit procedure eliminates the shrinkage

effect of the non-zero coefficients to zero, maintaining the important variables from

the penalization. We use the penalization only for variable selection, and then esti-

mate the coefficients with the selected important variables. Classical inference is valid

when the selected model includes all the important variables. The refit least squares

approximation (LSA) estimator is introduced as an example of the refit method.
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3.2.1 The Refit Method and Its Theoretical Properties

We consider a general regression model with independently and identically dis-

tributed random vectors, (x1, y1), · · · , (xn, yn), where xi = (xi1, · · · , xip)T ∈ Rp is

a p-dimensional covariate and yi is a 1-dimensional dependent variable. Let β =

(β1, · · · , βp)T ∈ Rp be the parameter vector of interest and Ln(β) be the objective

function without penalization such as least squares and negative log likelihood, which

we want to minimize.

The true regression parameter is written as β0. Denote the index set of non-zero

parameters as A = {j : β0
j 6= 0} and its complement as Ac = {j : β0

j = 0}. Their

cardinalities are written as |A| and |Ac| respectively. We let β0
A = [β0

j ]j∈A ∈ R|A| and

β0
Ac = [β0

j ]j∈Ac ∈ R|Ac|. If the true underlying model is known in advance, we obtain

the oracle estimator by

β̂
o

= argmin
{β∈Rp: βj=0, ∀j∈Ac}

Ln(β). (3.1)

Similar to β0, the oracle estimator can be decomposed into βoA = [βoj ]j∈A ∈ R|A| and

βoAc = [βoj ]j∈Ac ∈ R|Ac|.

Next, we describe the refit procedure based on a selection consistent estimator,

denoted by β̂. We select important coefficients based on β̂, and then derive an un-

penalized estimator for the coefficients corresponding to the selected variables. Let

Â = {i : β̂i 6= 0} denote the set of important variables in β̂ and Âc = {i : β̂i = 0}

denote its complement. If |Â| is less than n, the refit estimate is

β̂
r(Â)

= argmin
{β∈Rp: βj=0, ∀j∈Âc}

Ln(β). (3.2)

In the following, we simply denote the refit estimate as β̂
r

and decompose it to β̂
r

A =

[β̂rj ]j∈A and β̂
r

Ac = [β̂rj ]j∈Ac . The refit selected model is Âr = {j : β̂rj 6= 0} and its

complement is Ârc = {j : β̂rj = 0}.
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We establish general theoretical properties of the refit estimator based on an arbi-

trary preliminary selection consistent model estimator:
√
n-consistency, selection con-

sistency, and the oracle property.

Theorem 3.1.
√
n-Consistency

If P (Â = A)→ 1 and
√
n(β̂

o

A − β0
A) = Op(1), then

√
n(β̂

r
− β0) = Op(1).

It suffices to show that
√
n(β̂

r
−β̂

o
) = op(1) because

√
n(β̂

o
−β0) =

√
n(β̂

o

A−β0
A) =

Op(1). Given for all ε > 0, P (
√
n|β̂

r
− β̂

o
| ≥ ε) = P (

√
n|β̂

r
− β̂

o
| ≥ ε, β̂

r
6= β̂

o
) ≤

P (β̂
r
6= β̂

o
) ≤ P (Â 6= A) → 0. The key point in this proof is the last inequality,

which holds since β̂
r

is equivalent to β̂
o

on the set {Â = A}. This result applies in

general, regardless the asymptotic distribution, as long as β̂
o

A is
√
n-consistent. That

is, nonnormal n1/2 limit distributions are permitted.

In Theorem 3.2, we obtain asymptotic normality of β̂
r

A by assuming asymptotic

normality of β̂
o

A. The proof is omitted since it follows along the same lines as that of

Theorem 3.1.

Theorem 3.2. Asymptotic Normality

If P (Â = A)→ 1 and
√
n(β̂

o

A−β0
A)

d−→ N(0,ΣA), then
√
n(β̂

r

A−β0
A)

d−→ N(0,ΣA).

Next, our interest is to show consistency of the refit estimator in variable selection.

Theorem 3.3. Selection Consistency

If P (Â = A)→ 1 and
√
n(β̂

o

A − β0
A) = Op(1), then P (Âr = A)→ 1.

We only need to show that P (β̂rj 6= 0) → 1 for all j ∈ A and P (β̂rj = 0) → 1

for all j ∈ Ac. Theorem 3.1 implies that P (β̂rj = 0) → 0 for all j ∈ A. By selection

consistency of the original estimator, P (β̂rj 6= 0)→ 0 for all j ∈ Ac.

Summarizing the results in Theorems 3.2 and 3.3, if the oracle estimator is asymp-

totically normal, then the refit estimator is also asymptotically normal with asymptotic
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covariance matrix equal to that of the oracle estimator. The refit procedure is generally

selection consistent, regardless of the asymptotic distribution of the refit estimator.

3.2.2 Refit Least Squares Approximation (LSA) Estimation

Establishing the oracle properties can be challenging, with the results often being

model- and objective function-dependent. Moreover, the corresponding computations

may need to be addressed on a case by case basis. In the LSA penalization framework,

a least squares approximation replaces the unpenalized objective function based on

a preliminary model fit and is regularized using the LASSO penalty. The resulting

penalized objective function is intended to approximate the LASSO penalized least

squares. The powerful path-finding algorithm LARS (Efron et al. 2004) can be directly

applied, greatly simplifying the implementation of the original LASSO problem.

Wang and Leng (2007) demonstrated consistent variable selection and the oracle

property for LSA, under an assumption about the asymptotic covariance matrix of the

preliminary estimators. Although the covariance assumption holds when the prelimi-

nary estimators are asymptotically equivalent to maximum likelihood estimators, the

assumption is not satisfied when the covariance matrix has a sandwich variance form.

The sandwich form may arise in non-likelihood based estimation, for example, least

squares estimation of heteroscedastic linear models, L1 estimation of quantile regres-

sion with heteroscedastic errors, and generalized estimating equations for correlated

data. In such applications, Wang and Leng (2007) proved that LSA yields sparse and

consistent model selection, but that the penalized estimators may not be oracle.

We illustrate how the refit method is applied to the LSA estimator. First, one

calculates β by finding β̃ = argmin
β∈Rp

Ln(β). Similar to β0, we partition β̃ into two parts:

β̃A, β̃Ac . The assumptions follow those of Wang and Leng (2007). One necessary

condition is that β̃ is
√
n-consistent and asymptotically normal, that is,

√
n(β̃−β0)

d−→
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N(0,Σ), where Σ is the asymptotic covariance matrix of β̃. In addition, the procedure

requires a consistent estimate of the asymptotic covariance matrix of β̃, Σ, denoted by

Σ̂. Lastly, for all B ⊃ A,

√
n(β̃

B
B − β0

B)
d−→ N(0,ΣB), (3.3)

where β̃
B
B and β0

B are the subvectors of β̃
B

and β0 associated with the candidate model

B respectively, and β̃
B

= argmin
{β∈Rp: βj=0, ∀j /∈B}

Ln(β). The LSA estimator is defined as

β̃
λ

= argmin
β∈Rp

(β − β̃)T Σ̂
−1

(β − β̃) +

p∑
j=1

λj|βj|, (3.4)

where λj is a tuning parameter for βj. The estimator consists of two components:

β̃
λ

A = [β̃λj ]j∈A and β̃
λ

Ac = [β̃λj ]j∈Ac . The LSA selected model is Âl = {i : β̃λi 6= 0}. The

convex optimization problem in (3.4) may be solved via a two step algorithm employing

LARS (Efron, Hastie, Johnstone, and Tibshirani 2004). The first step is to obtain β̃

and Σ̂, and the second step is to minimize the resulting L1-penalized least squares.

Wang and Leng (2007) demonstrated the oracle properties of β̃
λ

under certain

conditions: the suitable choice of tuning parameters, which guarantees selection con-

sistency, and the covariance assumption, which ensures efficiency relative to the oracle

estimator based on Ln(β). Define an = max{λj, j ∈ A} and bn = min{λj, j ∈ Ac}.

If
√
nan

p−→ 0 and
√
nbn

p−→ ∞, β̃
λ

is
√
n-consistent and consistent in variable selec-

tion. One example of such tuning parameters is the inverse of the absolute values of

consistent estimators for β. The oracle property of LSA specifically requires that:

Σ−1
B = Σ−1

(B), (3.5)

where Σ−1
(B) is the submatrix of Σ−1 associated with B for any B ⊃ A. The assump-

tion is violated if the asymptotic covariance matrix of the consistent estimate β̃ has a
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sandwich form, Σ = W−1VW−1 for some matrices W and V , where W 6= V . In such

settings, LSA estimators may not be as efficient as the oracle estimator even though

they are
√
n-consistent, selection consistent, and asymptotically normal.

The refit LSA method does not require the covariance assumption to achieve the

oracle property, while taking advantage of the easy and general implementation of

the LSA method. The LSA method yields Âl, an estimate of the non-zero regression

coefficients. One then minimizes the unpenalized loss function over those coefficients,

that is, ∀j ∈ Âl. The refit LSA estimator is

β̂
r(Âl)

= argmin
{β∈Rp:βj=0, ∀j /∈Âl}

Ln(β). (3.6)

To ease notation, we write the refit estimator as β̂
rl

and Ârl = {j : β̂rlj 6= 0}. We

decompose β̂
rl

into β̂
rl

A and β̂
rl

Ac .

Corollary 3.1 below states the
√
n-consistency of the refit LSA estimator, assuming

β̃ is a
√
n-consistent estimator and there exists a consistent estimate of asymptotic

covariance of β̃.

Corollary 3.1.
√
n-Consistency of Refit LSA

If
√
nan

p−→ 0,
√
nbn

p−→∞ and
√
n(β̂

o

A − β0
A) = Op(1), then

√
n(β̂

rl
− β0) = Op(1).

Corollary 3.2 shows the consistent variable selection and the oracle property for the

refit LSA method without the covariance assumption in Wang and Leng (2007).

Corollary 3.2. Selection Consistency and Oracle Properties of Refit LSA

If
√
nan

p−→ 0,
√
nbn

p−→∞ and
√
n(β̂

o

A − β0
A)

d−→ N(0,ΣA), β̂
rl

satisfies:

(a) Selection consistency: P (Ârl = A)→ 1, and

(b) Asymptotic normality:
√
n(β̂

rl

A − β0
A)

d−→ N(0,ΣA).
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3.2.3 Simulation Studies

We perform simulation studies to compare the refit method with the LSA method.

We consider linear and median regression with heteroscedasticity. Note that the sce-

nario violates the covariance assumption for the oracle property of LSA. We generated

500 datasets with sample sizes n = 100 and n = 250 for each setting.

The model error of an estimator, β̂, µ(xT β̂) is defined as ME(β̂) = E{µ(xT β̂) −

µ(xTβ0)}2, where µ(xTβ) = E(y|x) (Zou and Li 2008). The relative model error

(RME) of β̂ to the ordinary estimator, β̃, is defined as ME(β̂)/ME(β̃). Median RME

(MRME) is reported, along with true positives (TP) and false positives (FP). TP is the

average number of coefficients set to non-zero among the true non-zero coefficients and

FP is the average number of coefficients set to non-zero among the true zero coefficients

(Bradic, Fan, and Wang 2011). We also summarize the ratios of simulated datasets

which are underfit (UF), correctly fit (CF) or overfit (OF) relative to the true model. An

underfitted model is any candidate model which fails to select at least one significant

variable, while an overfitted model includes all important variables and at least one

insignificant variable (Wang et al. 2007b).

Example 3.1. (Linear Regression with Heteroscedasticity). We consider linear re-

gression models with unequal variance assumption. We generate n observations from a

linear regression model yi = xTi β
0+σiεi, where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T . The covari-

ate xi is multivariate normal with mean 0 and covariance Cov(xij1 , xij2) = 0.5|j1−j2|.

The components of εi follow standard normal distribution. We denote σi = σ|xTi β0|θ

and choose σ = 1, θ = 1 and σ = 2, θ = 0.5.

Table 3.1 compares the refit estimator, the LSA estimator and the oracle estimator

across the 500 simulated datasets. The results exhibit that the refit LSA may outper-

form the LSA method in terms of model error, under heteroscedascity, as might be

expected. One should recognize that both methods have the same average number of
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TP, FP and the same ratios of correctly fitted, overfitted or underfitted models. Thus,

any improvements with the refit should be attributable to the method of estimation,

not the model selection.

σ θ n Method MRME (SE) TP FP UF CF OF

1 1 100 LSA 74.83 (2.19) 2.74 0.4 0.24 0.52 0.24
R-LSA 70.94 (1.99) 2.74 0.4 0.24 0.52 0.24
Oracle 47.82 (1.03) 3 0 0 1.00 0

1 1 250 LSA 66.71 (1.39) 2.96 0.22 0.04 0.77 0.19
R-LSA 62.63 (1.30) 2.96 0.22 0.04 0.77 0.19
Oracle 50.04 (0.97) 3 0 0 1.00 0

2 0.5 100 LSA 65.30 (1.69) 2.88 0.34 0.12 0.64 0.24
R-LSA 64.81 (1.57) 2.88 0.34 0.12 0.64 0.24
Oracle 45.62 (1.00) 3 0 0 1.00 0

2 0.5 250 LSA 59.74 (1.09) 3 0.15 0 0.85 0.15
R-LSA 54.27 (1.04) 3 0.15 0 0.85 0.15
Oracle 46.02 (0.96) 3 0 0 1.00 0

Table 3.1: Refit LSA for Linear Regression Models

Example 3.2. (Median Regression with Heteroscedasticity). We consider a median

regression model yi = xTi β
0 + σiεi, where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0). The covariates xi

are generated in the same manner as above, and εi follows a mixture distribution, where

90% of observations come from a standard normal distribution and the other 10% come

from a standard Cauchy distribution. Let σi = σ|xTi β0|θ. The selection of σ, θ is the

same as the above simulation study.

In Table 3.2 we observe a more substantial decrease in model error of the refit

method comparing to that of the LSA method versus the linear regression setting. The

decrease is more notable, which agrees with our theoretical findings regarding the oracle

property of the refit technique. A reduction of 10-15% in MRME is evidenced in such

settings.
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σ θ n Method MRME (SE) TP FP CF OF UF

1 1 100 LSA 75.43 (1.45) 2.95 0.24 0.05 0.77 0.18
R-LSA 65.42 (2.04) 2.95 0.24 0.05 0.77 0.18
Oracle 51.02 (1.64) 3 0 0 1.00 0

1 1 250 LSA 70.74 (1.10) 3 0.05 0 0.96 0.04
R-LSA 58.94 (1.63) 3 0.05 0 0.96 0.04
Oracle 56.65 (1.64) 3 0 0 1.00 0

2 0.5 100 LSA 76.24 (1.72) 2.86 0.43 0.13 0.59 0.28
R-LSA 68.11 (1.81) 2.86 0.43 0.13 0.59 0.28
Oracle 43.55 (1.40) 3 0 0 1.00 0

2 0.5 250 LSA 61.67 (1.19) 2.99 0.13 0.01 0.88 0.11
R-LSA 56.22 (1.41) 2.99 0.13 0.01 0.88 0.11
Oracle 49.04 (1.33) 3 0 0 1.00 0

Table 3.2: Refit LSA for Median Regression Models

3.3 Ensemble Variable Selection

In this subsection, we suggest robust EVS from the multiple penalization methods

to avoid the worst and have nearly the best performance. We first evaluate the number

of votes for each covariate from the multiple methods. The candidate models of our

interest are obtained based on the number of votes, from the model with unanimously

chosen covariates to the model with at least one voted covariates. The next step

selects the best model among the refitted candidate models, which is computationally

cheap since we have a handful of nested candidate models. The preliminary penalized

techniques should have
√
n-consistency and selection consistency for oracle estimation.

Regardless of whether they are asymptotic efficient or not, the efficiency is finally

achieved as we use the refit method in the last step. Not only EVS does reduce the bias

of the non-zero coefficients as the refit procedure but also it is robust for the penalty

function choice. The improvement on the model selection accuracy is evidenced by

results from numerical studies.
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3.3.1 Ensemble of Decisions on Variable Selection

Assume that we obtainK candidate models fromK penalization methods, P1, · · · , PK .

Suppose we have six covariates, x1, x2, x3, x4, x5, x6. We aggregate the vote results of

the K methods for each covariate into a frequency table in Table 3.3. If a penalization

method selects a covariate, record 1 in the corresponding cell, otherwise, record 0 in

the cell. We construct multiple nested models with covariates selected by at least m

methods, 1 ≤ m ≤ K. For example, the first and second covariates are selected by all

the methods (m = K), hence the corresponding model has x1 and x2 as its covariates.

When the m is K − 1 or K − 2, the corresponding model has x1, x2 and x3 as its

covariates. We obtain three possible candidate models: (x1, x2, x3, x4), (x1, x2, x3),

and (x1, x2). Note that the first model is the union of the selected variables of each

model and the last one is the intersection of them.

Method x1 x2 x3 x4 x5 x6

P1 1 1 1 1 0 0
P2 1 1 0 1 0 0
...

...
...

...
...

...
...

PK−1 1 1 1 0 0 0
PK 1 1 1 0 0 0
Total K K K − 1 K − 3 0 0

Table 3.3: K Models Votes Table

The next step is to select the best model among the nested models. We propose two

selection criteria for the final model selection: BIC and K-fold cross-validation. BIC

asymptotically selects the true sparse model if the nested models include the true model

(Zou, Hastie, and Tibshirani 2007). K-fold cross-validation first requires the data to

be split into K subsamples. The K − 1 subsamples are used for training data and the

remaining subsample is used for validation data. On the training data, we perform the

entire procedures: the multiple penalization methods and the votes table construction.
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We obtain the candidate models from the votes table and select the model having the

smallest cross-validation error. The best model is then fitted to the whole dataset.

Since the models are nested, we assign one single value to each model, τ , which implies

that at least τ procedures select the covariates in the model.

Some penalties may be more competitive under certain settings while other penal-

ties may be more competitive under other settings. Averaging out the results is the

compromise between the performance of the penalty functions. It is not always the

best but tends to work much better than the worst choice, further it can be almost

the best in some numerical studies. Most studies of the penalty functions numerically

demonstrate the performance of their penalization method by test error comparison.

The comparison procedure may require intensive computation while the multiple penal-

ization methods may only require simple computation. EVS is a simple method taking

advantage of the information from the penalization methods. It is the combination of

covariates screening from the penalization methods and the best subset selection pro-

cedure. The best subset selection can be computationally feasible in high dimensions

due to the screening step.

3.3.2 Simulation Studies

In this section, we investigate the performance of the refit method and EVS under

various scenarios such as linear and median regression with homoscedasticity and logis-

tic regression. We first consider four penalty methods: adaptive Lasso, SCAD, MCP,

and LSA. They are used as preliminary procedures for the refit methods and EVS. We

consider both EVS with BIC (EVS-BIC) and with K-fold cross-validation (EVS-CV),

discussed in Section 3.3.1. As in Section 3.2.3, we evaluate the performance of the

refitting and EVS in terms of MRME, variable selection performance, and the ratios of

correct model fitting. We simulate 500 datasets for each setting.
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We can easily implement Adaptive Lasso, MCP and SCAD method for linear and

logistic regression using R packages such as glmnet and ncvreg (Breheny and Huang

2011, Friedman, Hastie, and Tibshirani 2010). Each package develops coordinate de-

scent algorithms for Lasso type penalties and concave penalties such as SCAD and

MCP respectively. For SCAD and MCP penalized median regressions, we employ local

linear approximation algorithms. All of the tuning parameters are selected by 5-fold

cross-validation.

Example 3.3. (Linear Regression with Homoscedasticity). We consider linear regres-

sion model of Example 1 in (Zou and Li 2008). We generate n observations from a lin-

ear regression model yi = xTi β
0 +σεi, where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T ∈ R12.

The covariate xi is multivariate normal with mean 0 and covariance Cov(xij1 , xij2) =

0.5|j1−j2|. The components of εi follow standard normal distribution and σ=3. Sample

sizes are n = 100 or n = 200.

The model error is written asME(β̂) = (β̂−β0)TE(xxT )(β̂−β0). The RME of β̂ to

β̃ is ME(β̂)/ME(β̃). Table 3.4 shows the results for median RME (MRME), variable

selection performance measures (TP, FP), and model fitting accuracies (UF, CF, OF).

EVS-BIC may outperform the other penalization methods and refit methods except

SCAD and R-LSA in terms of model error. EVS-BIC has almost the same variable

selection performance as that of LSA. Thus, both are shown to be the most accurate

fitting procedure. EVS-CV does not perform as well as EVS-BIC but is acceptable

in terms of variable selection and parameter estimation. As the sample size increases,

EVS-BIC tends to be closer to R-LSA. The EVS method may not be the best but

does avoid the worst case. Moreover, the method reduces the variability on the results

caused by the choice of penalty function.

Next, we focus on the refit methods based on the four penalty functions. They have

advantage over the regular penalized methods only for LSA and SCAD with n = 200.
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MRME (SE) TP FP UF CF OF

n=100 Oracle 0.19 (0.01) 3.00 0.00 0.00 1.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 1.00
AdLasso 0.45 (0.01) 2.99 1.62 0.01 0.36 0.63
MCP 0.33 (0.01) 2.97 1.12 0.02 0.48 0.49
SCAD 0.28 (0.02) 2.98 1.39 0.02 0.37 0.61
LSA 0.34 (0.01) 2.96 0.33 0.03 0.72 0.24
R-AdLasso 0.60 (0.01) 2.99 1.62 0.01 0.36 0.63
R-MCP 0.46 (0.02) 2.97 1.12 0.02 0.48 0.49
R-SCAD 0.51 (0.01) 2.98 1.39 0.02 0.37 0.61
R-LSA 0.28 (0.01) 2.96 0.33 0.03 0.72 0.24
EVS-CV 0.36 (0.02) 2.97 0.86 0.03 0.62 0.35
EVS-BIC 0.30 (0.01) 2.96 0.35 0.03 0.71 0.26

n=200 Oracle 0.21 (0.01) 3.00 0.00 0.00 100.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 100.00
AdLasso 0.45 (0.01) 3.00 1.48 0.00 43.00 57.00
MCP 0.31 (0.01) 3.00 0.76 0.20 68.00 31.80
SCAD 0.28 (0.01) 3.00 0.89 0.20 64.20 35.60
LSA 0.31 (0.01) 3.00 0.21 0.20 83.60 16.20
R-AdLasso 0.60 (0.01) 3.00 1.48 0.00 43.00 57.00
R-MCP 0.37 (0.01) 3.00 0.76 0.20 68.00 31.80
R-SCAD 0.39 (0.01) 3.00 0.89 0.20 64.20 35.60
R-LSA 0.28 (0.01) 3.00 0.21 0.20 83.60 16.20
EVS-CV 0.32 (0.01) 3.00 0.65 0.20 75.80 24.00
EVS-BIC 0.28 (0.01) 3.00 0.22 0.20 82.80 17.00

Table 3.4: Simulation Results for Linear Regression (Gaussian Error)
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The refit method has improvement in parameter estimation when the original method

attains reasonable variable selection results.

Example 3.4. (Median Regression with Homoscedasticity). This median regression

model is similar to the model of Example 3.2 in Section 3.2.3. We generate a sample of

size n from a median regression model, yi = xiβ
0+σεi, where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0,

0, 0, 0, 0)T ∈ R12 and σ = 3. The covariates xi are generated in the same manner as

above, and εi follows a mixture distribution, where 90% of observations come from a

standard normal distribution and the other 10% come from a standard Cauchy distri-

bution. Consider sample sizes of n = 100 or n = 200.

For this model, we use n log(σ̂2) + d log n as the BIC (Hurvich and Tsai 1990).

Table 3.5 summarizes the MRME, variable selection performance, and model fitting

accuracies. The refit and EVS methods have a significant 30-40% decrease in MRME

compared to those of the penalized methods. R-LSA and EVS-BIC show the best

performance in terms of model error and model selection. EVS-BIC tends to select a

sparser model than EVS-CV in the setting of n = 100 as expected, but this tendency

is reduced under n = 200.

Example 3.5. (Logistic Regression). We simulate the data from a logistic regression

model similar to Example 1 in Zhang, Li, and Tsai (2010). Consider the model yi ∼

Bernoulli{p(xTi β0}, where p(u) =
exp(u)

1 + exp(u)
and β0 = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T ∈

R12. The first nine components of xi are generated from the multivariate normal distri-

bution with mean 0 and Cov(xij1 , xij2) = 0.5|j1−j2|. The last three components identically

and independently follow an independent Bernoulli distribution with p = 0.5. Sample

sizes are n = 200, 400.

For this model, we estimate model error by Monte Carlo simulation because it does
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MRME (SE) TP FP UF CF OF

n=100 Oracle 0.22 (0.01) 3.00 0.00 0.00 1.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 1.00
AdLasso 0.59 (0.02) 2.98 2.92 0.01 0.21 0.78
MCP 0.71 (0.02) 2.96 2.91 0.02 0.24 0.72
SCAD 0.73 (0.01) 2.96 3.01 0.02 0.20 0.77
LSA 0.48 (0.01) 2.94 1.11 0.03 0.42 0.52
R-AdLasso 0.42 (0.01) 2.98 2.92 0.01 0.21 0.78
R-MCP 0.43 (0.01) 2.96 2.91 0.02 0.24 0.72
R-SCAD 0.44 (0.01) 2.96 3.01 0.02 0.20 0.77
R-LSA 0.28 (0.01) 2.94 1.11 0.03 0.42 0.52
EVS-CV 0.39 (0.01) 2.97 2.38 0.02 0.31 0.66
EVS-BIC 0.28 (0.01) 2.95 1.03 0.03 0.44 0.51

n=200 Oracle 0.22 (0.01) 3.00 0.00 0.00 100.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 100.00
AdLasso 0.49 (0.01) 3.00 2.14 0.40 36.20 63.40
MCP 0.58 (0.02) 3.00 2.12 0.20 40.60 59.00
SCAD 0.59 (0.01) 3.00 2.22 0.20 37.40 62.20
LSA 0.36 (0.01) 2.99 0.37 0.80 72.20 26.80
R-AdLasso 0.34 (0.01) 3.00 2.14 0.40 36.20 63.40
R-MCP 0.34 (0.01) 3.00 2.12 0.20 40.60 5.90
R-SCAD 0.35 (0.01) 3.00 2.22 0.20 37.40 62.20
R-LSA 0.20 (0.01) 2.99 0.37 0.80 72.20 26.80
EVS-CV 0.31 (0.01) 2.99 1.67 0.40 51.60 47.80
EVS-BIC 0.21 (0.01) 3.00 0.41 0.20 71.40 28.20

Table 3.5: Simulation Results for Median Regression (Mixture Error)
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not have a closed form (Zou and Li 2008). The BIC for the logistic regression is

{−2yTxT β̂ + 2
n∑
i=1

(log(1 + exp(xT β̂))}+ d log n,

whose the first term is the binomial deviance. Table 3.6 shows that SCAD and MCP

outperform LSA in terms of model error while their corresponding refit methods per-

form worse than the R-LSA. The model error of EVS-BIC is the smallest for the both

sample sizes and its selection performance has a comparative advantage over any other

procedures. With a larger sample size, EVS-BIC has more similar performance to R-

LSA. The numerical studies confirm that the EVS methods are robust to the penalty

function choices with competitive performance.

MRME (SE) TP FP UF CF OF

n=200 Oracle 0.22 (0.01) 3.00 0.00 0.00 1.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 1.00
AdLasso 0.41 (0.01) 3.00 1.36 0.00 0.36 0.63
MCP 0.36 (0.01) 2.99 0.77 0.01 0.50 0.49
SCAD 0.35 (0.01) 3.00 1.52 0.00 0.23 0.76
LSA 0.43 (0.01) 2.74 0.14 0.17 0.71 0.12
R-AdLasso 0.57 (0.01) 3.00 1.36 0.00 0.36 0.63
R-MCP 0.45 (0.01) 2.99 0.77 0.01 0.50 0.49
R-SCAD 0.58 (0.01) 3.00 1.52 0.00 0.23 0.76
R-LSA 0.33 (0.01) 2.74 0.14 0.17 0.71 0.12
EVS-CV 0.41 (0.01) 2.95 0.67 0.05 0.60 0.35
EVS-BIC 0.33 (0.01) 2.94 0.33 0.05 0.71 0.24

n=400 Oracle 0.25 (0.01) 3.00 0.00 0.00 100.00 0.00
Ordinary 1.00 (0.00) 3.00 9.00 0.00 0.00 1.00
AdLasso 0.44 (0.01) 3.00 1.16 0.00 47.60 52.40
MCP 0.36 (0.01) 3.00 0.64 0.20 0.64 35.80
SCAD 0.34 (0.01) 3.00 1.12 0.20 40.20 59.60
LSA 0.39 (0.01) 2.99 0.18 0.60 83.60 15.80
R-AdLasso 0.54 (0.01) 3.00 1.16 0.00 47.60 52.40
R-MCP 0.42 (0.01) 3.00 0.64 0.20 64.00 35.80
R-SCAD 0.54 (0.01) 3.00 1.12 0.20 40.20 59.60
R-LSA 0.31 (0.01) 2.99 0.18 0.60 83.60 15.80
EVS-CV 0.35 (0.01) 3.00 0.39 0.40 76.40 23.20
EVS-BIC 0.31 (0.01) 3.00 0.19 0.40 83.40 16.20

Table 3.6: Simulation Results for Logistic Regression

Table 3.7 shows the optimal τ from cross-validation. EVS-CV usually selects the
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variables chosen by all penalization methods.

Mean Median SE Mean Median SE

Linear 3.354 4.000 0.047 3.536 4.000 0.044
Median 2.684 3.000 0.048 2.872 3.000 0.052
Logistic 3.252 4.000 0.042 3.650 4.000 0.036

Table 3.7: Optimal τ for Linear, Median, Logistic Regression

3.3.3 South African Heart Disease Data Analysis

The South African heart disease data set has been analyzed with logistic regression

in many literatures (Friedman, Hastie, and Tibshirani 2001, Park and Hastie 2007,

Wang and Leng 2007). The dataset is a part of the Coronary Risk-Factor Study baseline

survey conducted in three rural areas of the Western Cape, South Africa (Rossouw,

Du Plessis, Benadé, Jordaan, Kotze, Jooste, and Ferreira 1983). The response is the

presence or absence of myocardial infarction (MI) at the time of the survey. There

are 462 subjects and nine predictors: systolic blood pressure (sbp); cumulative tobacco

(kg) (tobacco); low density lipoprotein cholesterol (ldl); adiposity (adiposity); family

history of heart disease (famhist), type-A behavior (typea); obesity (obesity); current

alcohol consumption (alcohol); and, age at onset (age).

Table 3.8 presents the estimators and their standard errors from the ordinary, pe-

nalized, refit, and EVS methods. Note that the refit adaptive Lasso has the same

performance as EVS-CV and the refit LSA performs as well as EVS-BIC. EVS-BIC

exactly selects all significant variables in the ordinary logistic regression. The non-zero

coefficients of the refit LSA have larger magnitudes than those of the LSA. The 5-fold

cross-validation is used for tuning parameter selection for adaptive Lasso, MCP and

SCAD. We compare the three penalization methods in terms of variable selection. The

adaptive Lasso has the smallest model, SCAD selects one more variable, sbp, and MCP
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additionally selects adiposity.

Ordinary (SE) AdLasso MCP SCAD LSA

(Intercept) -6.1507 (1.31) -5.3048 -6.1501 -6.337 -5.508
sbp 0.0065 (0.01) 0 0.0065 0.0025 0
tobacco 0.0794 (0.03) 0.0779 0.0795 0.08 0.065
ldl 0.1739 (0.06) 0.1748 0.1738 0.1717 0.1306
adiposity 0.0186 (0.03) 0 0.0186 0 0
famhist 0.9254 (0.23) 0.9136 0.9258 0.9135 0.7893
typea 0.0396 (0.01) 0.0308 0.0396 0.0379 0.0277
obesity -0.0629 (0.04) -0.0249 -0.063 -0.02 0
alcohol 0.0001 (0.00) 0 0 0 0
age 0.0452 (0.01) 0.0462 0.0452 0.05 0.0473

R-MCP (SE) R-SCAD (SE) EVS-CV (SE) EVS-BIC (SE) Sig.
R-AdLasso R-LSA

(Intercept) -6.1501 (1.31) -6.4169 (1.24) -5.7027 (1.08) -6.4464 (0.92)
sbp 0.0065 (0.01) 0.0068 (0.01) 0 (0.00) 0 (0.00)
tobacco 0.0795 (0.03) 0.0799 (0.03) 0.08 (0.03) 0.0804 (0.03) ∗∗
ldl 0.1738 (0.06) 0.1821 (0.06) 0.1837 (0.06) 0.162 (0.06) ∗∗
adiposity 0.0186 (0.03) 0 (0.00) 0 (0.00) 0 (0.00)
famhist 0.9258 (0.23) 0.9245 (0.23) 0.9161 (0.23) 0.9082 (0.23) ∗∗
typea 0.0396 (0.01) 0.039 (0.01) 0.0383 (0.01) 0.0371 (0.01) ∗∗
obesity -0.063 (0.04) -0.0422 (0.03) -0.0376 (0.03) 0 0.00
alcohol 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
age 0.0452 (0.01) 0.0489 (0.01) 0.0521 (0.01) 0.0505 (0.01) ∗∗

Table 3.8: Estimates and Standard Deviations for South African Heart Data

Table 3.9 reports the test error of all the methods based on 100 repetitions. We

randomly split the dataset into training and test datasets with a ratio of 9 to 1. We

fit each model on the training data, and obtain the binomial deviance of the model on

the test set as its test error. All the refit estimators have smaller test errors than their

corresponding penalized methods except the refit adaptive Lasso. Both EVS methods,

EVS-CV and EVS-BIC, show better performance than the other procedures. EVS-BIC

has the smallest test error, which is the same as that of the refit LSA. This implies that

the EVS-BIC identifies the refit LSA in every repetition. Further, EVS-CV has better

performance than the refit MCP and the refit SCAD.
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Ordinary AdLasso MCP SCAD LSA

Mean 49.3975 49.0492 49.4069 49.4188 49.1468
SE 0.7009 0.672 0.6968 0.6924 0.6224

R-AdLasso R-MCP R-SCAD EVS-CV EVS-BIC

Mean 49.1082 49.3523 49.2917 49.2682 48.7897
SE 0.6989 0.7012 0.6963 0.7007 0.6917

Table 3.9: Test Error for South African Heart Data

3.4 Ensemble Variable Selection and Estimation

In this section, we suggest EVE, the variable selection and estimation technique

for a factorizable likelihood-based model when the direct penalization on the full like-

lihood is intractable. EVE is a multi-layer procedure, which incorporates the ensemble

estimation via GLS and the refit LSA method. Cox (2001) showed that the ensemble

estimation is asymptotically efficient based on the combination of information across

the likelihood factors. The first step of EVE is the ensemble estimation on the full

likelihood to obtain the ensemble estimator and its covariance estimate. The LSA

method uses these estimates as the preliminary estimators and the refit method is ap-

plied to each likelihood factor-based model. We finally obtain the EVE estimator via

the ensemble estimation to the refit estimators. We illustrate the procedure on the

Cox proportional hazards model for the prospective doubly censored data. Simulation

studies and MACS data analysis confirm that EVE is competitive with other methods.

3.4.1 Likelihood Factorization and Ensemble Estimation

We consider the full likelihood for parameter vector θ based on observations, (y1, · · · ,yn).

Suppose that the likelihood is decomposed into two parts:

L(y|θ) = L1(y|θ)L2(y|θ). (3.7)
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Cox (2001) suggests an asymptotically efficient estimation of the common parame-

ter, θ. Denote θ̂1 and θ̂2 as separate maximum likelihood estimates and Σ̂1 and Σ̂2 as

associated observed information matrices. The efficient estimation is a combination of

information via the generalized least squares estimator:

2∑
i=1

(θ − θ̂i)T Σ̂
−1

i (θ − θ̂i). (3.8)

The ensemble estimator is the minimizer of (3.8), (Σ̂
−1

1 + Σ̂
−1

2 )−1(Σ̂
−1

1 θ̂1 + Σ̂
−1

2 θ̂2) and

its covariance estimate is (Σ̂
−1

1 + Σ̂
−1

2 )−1. The efficiency loss of ensemble estimator is

Op(1/n), which implies no asymptotic efficiency loss.

We propose a variable selection and estimation procedure incorporating ensemble es-

timation, the refit method, and LSA. It performs variable selection and estimation even

when direct penalization on the full likelihood or the likelihood factors is intractable.

We first obtain the ensemble estimator and its covariance matrix from the likelihood

factorization. LSA method is applied with the preliminary estimator to select impor-

tant variables. We separately refit the model of each likelihood on the selected model.

Finally, the refit estimators are combined into the ensemble refit estimator in the same

manner as above.

The procedure only requires a maximum likelihood estimation of each factor. En-

semble estimation is performed twice to obtain the preliminary estimators for LSA and

the final refit estimator for the selected model. The proposed method is indirect but

feasible when the full likelihood can be factorized into separate parts. Further, its com-

putation is simple with existing programmings. It is not applied directly to the n << p

situation, but we have an alternative method similar to the modified LSA of Wang

and Leng (2007). Suppose two likelihood factors have a feasible direct penalization

method. Two penalized estimators select two models, whose cardinality is less than n.
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We perform the refit method for each likelihood factor under the union of the models.

The ensemble estimator and its covariance matrix is obtained by combining the refit es-

timators and their observed information matrices. The regularized ensemble estimator

and covariance matrix replace the ordinary ensemble estimate and its covariance.

3.4.2 The Cox Proportional Hazards Model with Prospective Doubly Cen-
sored Data

The Cox proportional hazards model is a popular likelihood based technique to

examine the effect of covariates on the survival time (Cox 1972). Several approaches

are suggested for the Cox model for prospective doubly censored data (Cai and Cheng

2004, Kim, Kim, and Jang 2010; 2013). To our knowledge, there is no study on the

penalized proportional hazards model for prospective doubly censored data. Moreover,

the existing works have focused on estimation rather than variable selection due to

the complexity of the We study sparse estimation of the Cox model for prospective

doubly censored data via ensemble estimation and refit LSA estimation. Assume that

the prospective doubly censored dataset has information on the left censoring time

for all the observations. It is an extra information for prospective doubly censored

data, but plays a key role in the likelihood factorization. With the left censoring time

information, the likelihood function is factorized to the likelihood of interval censoring

data and the likelihood of left-truncated right-censored (LTRC) data.

First, we describe the study design of the prospective doubly censored data. The

study monitors n independent individuals and each individual has the random moni-

toring time, Ci and the failure time, Ti. The patients are from a cross-sectional sam-

ple at baseline and have the covariates, xi, i = 1, · · · , n influencing on their failure

time. We follow the subjects who have not had the event until they have an event
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Figure 3.1: Prospective Doubly Censored Data

or are lost to follow-up. They are doubly censored because the failure time is un-

known before the monitoring time (Ci) begins or after the right censoring time Ri

but known between the time points. The subsamples are left-truncated right-censored

(LTRC) data while the original cross sectional samples at the baseline are current sta-

tus data. The current status data have the observed monitoring time and consist of

the triplets, (Ci, δi = I(Ti ≤ Ci), xi), i = 1, · · · , n. The LTRC data observe the min-

imum between the event time and the right censoring time and consist of the triplets,

(Yi = min(Ti, Ri), νi = I(Ti ≤ Ri), xi), i = 1, · · · , n.

We further examine the details of the likelihood function and its likelihood fac-

torization. Suppose Ti follows this distribution F (Ti = t|xi). The likelihood for the

current status data conditional on Ci,xi is as follows:

n∏
i=1

L(δi|Ci,xi) =
n∏
i=1

F (Ci|xi)δi(1− F (Ci|xi))1−δi . (3.9)
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(b) Left truncated right censored data: L2

Figure 3.2: Information Decomposition of Prospective Doubly Censored Data

The likelihood for the LTRC conditional on δi, Ci,xi is written as below:

n∏
i=1

L(Yi, νi|δi, Ci,xi) =
n∏
i=1

{[ f(Yi|xi)
1− F (Ci|xi)

]νi [
1− F (Yi|xi)
1− F (Ci|xi)

]1−νi}1−δi . (3.10)

It is divided by the truncation probability 1− F (Ci|xi) because the observations con-

tributing this likelihood survive beyond Ci. Right censored observations at Ri con-

tribute the likelihood with the probability to survive beyond Ri given that they have

already survived beyond Ci. Both likelihood functions are the factors of the following

likelihood function for prospective doubly censored data:

n∏
i=1

L(Yi, νi, δi|Ci,xi) =
n∏
i=1

F (Ci|xi)δif(Yi|xi)νi(1−δi)(1− F (Yi|xi))(1−νi)(1−δi). (3.11)

Note that the dataset has an additional information on the baseline Ci for i = 1, · · · , n.

By the virtue of the information, we decompose the doubly censored likelihood into the

two likelihood factors and analyze them separately.

The Cox proportional hazards model of (3.11) has β as the vector of regression

coefficients and Λ as the cumulative hazard function. We use the profile likelihood of
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β, where Λ has been profiled out as a full likelihood for β (Murphy and Van der Vaart

2000). We can easily implement the procedure of Section 3.4.1 with publicly available

codes. We conjecture that the profile likelihood has an asymptotically efficient ensemble

estimator under the likelihood factorization.

3.4.3 Simulation Studies

Prospective doubly censored data are generated following the example of Fan and

Li (2002). The event time follows the exponential hazard model:

h(t|x) = exp(xTβ), (3.12)

where β0 = (0.8, 0, 0, 1, 0, 0, 0.6, 0, 0, 0). The left censoring time (Ci) follows Exp(6.9)

and right censoring time (Ri) is from Ri = Ci + Exp(0.163). The parameters of the

censoring distributions are chosen according to the specified censoring rates, which are

as follows: left censoring and right censoring rates are 20.26%, 19.70% for n = 250, and

19.93%, 20.01% for n = 500. All results are obtained from 100 simulated datasets.

We assess the estimation performance of estimators in terms of mean squared error

(MSE). The estimators are given from 100 simulated datasets, β̂
1
, · · · , β̂

100
. MSE of

the first component of estimator, β̂1 is MSE(β̂1) =
100∑
i=1

(β̂i1 − β01)2/100 and MSE of

β̂ is the summation of MSE of all the elements. We follow the criteria of Section

3.2.3 to measure performance of variable selection and model fitting. We fit the LTRC

part using coxph in R and fit the current status data using intcox in R. For current

status data, we obtain parameter estimation for full model and selected model with

intcox R package, and estimate covariance matrix using bootstrap with replication

of B = 1000. coxph function in survival R package gives parameter estimators and

covariance estimators of full model and selected model for LTRC data. LSA estimator
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is easily obtained from lsa function based on the preliminary estimators.

Tables 3.10-3.11 present mean squared error of estimators for the simulated dataset

for n = 250, 500. We compare ensemble estimation with several estimators on current

status data and LTRC data: oracle, ordinary, LSA, and refit LSA estimators. For

comparison, we also include ensemble oracle estimator, which is optimal combination

of two oracle estimators. MSE Comparison is considered first across estimators to

each dataset and oracle estimator to each dataset performs best. Among the other

three estimators, refit LSA estimator outperforms not only for current status data

and but for LTRC data. Across all the estimators, the ensemble oracle estimator

performs best. Note that ensemble oracle, ordinary, LSA, refit estimators have smaller

MSE than those for current status data and LTRC data. It demonstrates that more

efficient estimation is possible via combining information from two likelihoods. Double

ensemble refit estimation decreases MSE even if the base refit LSA estimators have

worse performance than LSA estimator under n = 500. MSE of double ensemble refit

estimator is the smallest and is closer to that of ensemble oracle estimator as the sample

size increases.

We further investigate MSE for each component of estimators. Refit LSA estimation

mainly contributes to a reduction in MSE of non-zero coefficients, such as β1, β4, and

β7. The analysis of the current status data yields the noticeable result that MSE of

refit LSA is 40% less than that of LSA for β4 under n = 100 and for β1 and β7 under

n = 500. In the LTRC data, MSE to β7 is decreased by 35% from LSA to refit LSA

under n = 100. Non-zero coefficients of refit procedure attains a smaller MSE than

ordinary estimation in the LTRC data and the combination. On the other hand, the

MSE of the zero coefficients is increased as a trade-off, but it is negligible compared to

the non-zero coefficients. As the LTRC data analysis is stabilized with a larger sample

size, such improvements are less obvious under n = 500.
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β̂1 β̂2 β̂3 β̂4 β̂5

CS Oracle 0.0395 0 0 0.0369 0
Ordinary 0.0563 0.0679 0.0547 0.0555 0.0592
LSA 0.1697 0.0068 0.0034 0.1391 0.0008
R-LSA 0.1427 0.0171 0.0097 0.0829 0.0021

LTRC Oracle 0.0115 0 0 0.0111 0
Ordinary 0.0161 0.016 0.015 0.0205 0.0124
LSA 0.0168 0.0022 0.003 0.0148 0.0004
R-LSA 0.0133 0.0031 0.0047 0.0132 0.0007

ENS Oracle 0.009 0 0 0.0086 0
Ordinary 0.012 0.0129 0.0126 0.0135 0.0101
LSA 0.0134 0.0005 0.0012 0.013 0.0001
R-CS 0.0393 0.004 0.0039 0.0388 0.0003
R-LTRC 0.012 0.0006 0.0023 0.0123 0.0003
R-ENS 0.0092 0.0008 0.0023 0.0099 0.0002

β̂6 β̂7 β̂8 β̂9 β̂10 β̂

CS Oracle 0 0.027 0 0 0 0.1034
Ordinary 0.0539 0.0471 0.0512 0.0491 0.0415 0.5365
LSA 0.0061 0.1438 0.0021 0.0013 0 0.4732
R-LSA 0.0083 0.139 0.0036 0.0021 0 0.4074

LTRC Oracle 0 0.0069 0 0 0 0.0296
Ordinary 0.0193 0.0121 0.0117 0.0142 0.0129 0.1502
LSA 0.0025 0.0112 0.0002 0.0004 0.0011 0.0527
R-LSA 0.0049 0.0072 0.0004 0.0009 0.0023 0.0507

ENS Oracle 0 0.0053 0 0 0 0.0228
Ordinary 0.0156 0.0093 0.0085 0.0101 0.0089 0.1135
LSA 0.0011 0.0097 0.0002 0 0.0004 0.0396
R-CS 0.0017 0.0278 0.0006 0 0.0012 0.1176
R-LTRC 0.0023 0.0073 0.0003 0 0.0014 0.0386
R-ENS 0.0019 0.0057 0.0003 0 0.0011 0.0314

Table 3.10: Mean Squared Error of Estimators for Simulated Prospective Doubly Cen-
sored Data (n = 250)
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β̂1 β̂2 β̂3 β̂4 β̂5

CS Oracle 0.0174 0 0 0.021 0
Ordinary 0.0166 0.0254 0.0203 0.0273 0.0188
LSA 0.0307 0.0051 0.0018 0.0347 0.0023
R-LSA 0.0174 0.0065 0.002 0.0246 0.0038

LTRC Oracle 0.0062 0 0 0.0058 0
Ordinary 0.0086 0.0052 0.0063 0.0078 0.0068
LSA 0.0071 0 0.0003 0.007 0.0002
R-LSA 0.0064 0 0.0006 0.0061 0.0004

ENS Oracle 0.0039 0 0 0.0053 0
Ordinary 0.0048 0.0046 0.0048 0.0055 0.0045
LSA 0.0047 0.0001 0.0001 0.0067 0
R-CS 0.0174 0.0003 0.0001 0.0211 0
R-LTRC 0.0064 0.0002 0.0003 0.006 0
R-ENS 0.0041 0.0002 0.0002 0.0053 0

β̂6 β̂7 β̂8 β̂9 β̂10 β̂

CS Oracle 0 0.0144 0 0 0 0.0529
Ordinary 0.0247 0.024 0.0185 0.0191 0.0142 0.2088
LSA 0.0049 0.0324 0.002 0.0012 0.0018 0.1169
R-LSA 0.0101 0.0201 0.0031 0.002 0.0027 0.0925

LTRC Oracle 0 0.0046 0 0 0 0.0166
Ordinary 0.0054 0.0075 0.0074 0.007 0.0054 0.0674
LSA 0.0005 0.0063 0.0007 0.0002 0.0002 0.0226
R-LSA 0.0011 0.005 0.0011 0.0005 0.0003 0.0214

ENS Oracle 0 0.003 0 0 0 0.0122
Ordinary 0.0044 0.0051 0.006 0.005 0.0042 0.0489
LSA 0.0004 0.0047 0.0006 0.0002 0 0.0174
R-CS 0.0003 0.0151 0.0014 0.0005 0 0.0561
R-LTRC 0.0008 0.0045 0.0007 0.0004 0 0.0193
R-ENS 0.0007 0.0032 0.0007 0.0004 0 0.0148

Table 3.11: Mean Squared Error of Estimators for Simulated Prospective Doubly Cen-
sored Data (n = 500)
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TP FP UF CF OF

n=250 CS Oracle 3.0000 0.0000 0 100 0
Ordinary 3.0000 7.0000 0 0 100
LSA 2.4300 0.1400 34 52 10
R-LSA 2.4300 0.1400 34 52 10
LTRC Oracle 3.0000 0.0000 0 100 0

Ordinary 3.0000 7.0000 0 0 100
LSA 3.0000 0.3000 0 76 24
R-LSA 3.0000 0.3000 0 76 24

Ensemble Oracle 3.0000 0.0000 0 100 0
Ordinary 3.0000 7.0000 0 0 100
LSA 3.0000 0.1300 0 92 8
R-CS 3.0000 0.1300 0 92 8
R-LTRC 3.0000 0.1300 0 92 8
R-ENS 3.0000 0.1300 0 92 8

n=500 CS Oracle 3.0000 0.0000 0 100 0
Ordinary 3.0000 7.0000 0 0 100
LSA 2.9900 0.2800 0 76 23
R-LSA 2.9900 0.2800 0 76 23

LTRC Oracle 3.0000 0.0000 0 100 0
Ordinary 3.0000 7.0000 0 0 100
LSA 3.0000 0.1200 0 90 10
R-LSA 3.0000 0.1200 0 90 10

Ensemble Oracle 3.0000 0.0000 0 100 0
Ordinary 3.0000 7.0000 0 0 100
LSA 3.0000 0.0800 0 93 7
R-CS 3.0000 0.0800 0 93 7
R-LTRC 3.0000 0.0800 0 93 7
R-ENS 3.0000 0.0800 0 93 7

Table 3.12: Variable Selection Performance for Simulated Prospective Doubly Censored
Data
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Table 3.12 summarizes ratios of the true positives/false positives and ratios of the

underfitted model, the correct model, and the overfitted model with 100 repetitions.

The LSA estimation for the current status data tends to select a sparser model under

n = 250 and a redundant model under n = 500. Thus, it increases the ratio of the

underfitted model to 34% and the ratio of the overfitted model to 25% respectively.

Ensemble estimation not only eliminates such tendencies by borrowing strength from

both likelihoods but is very likely to find the true model. The finite sample studies

supports that the ensemble estimation performs fairly well even for the case where the

sample size is relatively small. Note that LSA is a benchmark for the variable selection

of refit LSA and ensemble estimation.

3.4.4 Multicenter AIDS Cohort Study (MACS) Data Analysis

The Multicenter AIDS center study (MACS) is the first and the largest study to

examine the natural history of AIDS (Cole et al. 2012). The study participants are

5619 homosexual and bisexual men enrolled in four cities across the United States, be-

ginning in 1984: Baltimore, Maryland; Chicago, Illinois; Pittsburgh, Pennsylvania; and

Los Angeles, California. Every 6 months, the participants underwent a physical exam

and provided a blood sample. At each visit, they completed a questionnaire on demo-

graphics, habits, disease history, and sexual activities. The seropositivity for HIV type

1 is determined by positive enzyme-linked immunosorbent assays with confirmatory

Western blots.

We use the participants’ birth date as the study baseline and the time to HIV in-

fection as the response. The midpoint between the last negative seroconversion visit

and the first positive seroconversion visit is chosen as the surrogate time-to-event end-

point for HIV infection (Cole et al. 2012). It is considered as a reasonable surrogate

for the infection time as long as the time difference between the two visits is less than
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or equal to 4 years. We drop 686 observations with missing information, incomplete

information and record errors. Table 3.13 summarizes the exclusion criteria with their

corresponding number of the subjects. The remaining 4801 subjects are of interest for

the analysis. In the group, 1869 subjects were HIV infected prior to the first monitoring

time, and 2497 subjects were not infected until the study ended. We have the event

time information of 435 subjects since they were infected within the time window of

the study.

Obs. No. Description

652 Missing values in the risk factors
8 Missing HIV infection time

125 No follow-ups after the monitoring time for HIV non-infection subjects
30 Time gap between the HIV infection determining visits > 4 years
4 Record errors

Table 3.13: Analysis Exclusion Criteria of Subjects

For simplicity, we constrain possible risk factors of interest to 21 variables from the

participants’ information at their first visit. Table 3.14 gives a detailed description

on the risk factors on sexual behaviors, drug usage, sexual disease, medical histories,

and demographics. We categorize Race and Education into four classes respectively:

WHITE, BLACK, HISPA, OTHER; HIGH, PRECOL, COL, POSTCOL. Dummy vari-

ables are used to model the effects, and WHITE and HIGH are their base categories

respectively. The final model has 27 covariates. NDRNK is a continuous variable and

and the rest of them are binary variables.

We apply EVE to find out important risk factors for HIV infection and estimate their

effects. For purposes of comparison, we also report the four preliminary estimators of

EVE: ensemble ordinary estimation, ensemble LSA, ensemble refit LTRC and ensemble

refit CS. Further, we can obtain the parameter estimates using a part of the data such

as the follow-up information of the non-censored subsamples at the monitoring time
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(LTRC) or the infection status information at the first monitoring time (CS). Table

3.15 presents the results from the partial information (LTRC data and CS data) and

Table 3.16 presents the analysis results based on EVE and its preliminary procedures.

Variables Description

COK2Y Used cocaine last 2 years
CON2P Had anal receptive with condom last 2 years
CON2Y Had anal insertive with condom last 2 years
DIABE Diabetes diagnosed ever
GONOE Gonorrhea ever
HAS2Y Took marijuana/hashish last 2 years
MOU2P Had oral receptive last 2 years
MOU2Y Had oral insertive last 2 years
MSX2Y Drugs used with sex last 2 years
NDRNK Number of drinks/day since last 12 months
NEEDL Share a needle last 5 years
OPI2Y Took heroin/other opiates last 2 years
PIE5Y Body part pierced in last 5 years
RADTE Radiation therapy/treatment ever
REC2P Had anal receptive last 2 years
REC2Y Had anal insertive last 2 years
SMOKE Ever smoked cigarettes
WARTE Genital warts or anal warts ever
UNEMP Current employment, unemployed
WHITE White race
BLACK Black race
HISPA Hispanic race
OTHER American Indian, Alaskan Native, Asian or Pacific Islander, etc.
HIGH High school or less
PRECOL At least one year college but no degree
COL Four years college/got a degree
POSTCOL Some graduate work or Post-graduate degree

Table 3.14: Description of Risk Factors

We first investigate the analysis results from the left non-censored subsamples

(LTRC) at the top of Table 3.15. The first column corresponds to the ordinary es-

timator from the Cox model for LTRC data. Its second column is the LSA estimator

based on the LTRC ordinary estimator and its third column is the refitted estimator.

84



The asterisks are marked for coefficient significance at the level of 0.05. All of the

procedures agree in terms of the risk factors selection. We choose nine variables, and

include gonorrhea (GONOE ), drug usage during sex (MSX2Y ), the number of drinks

(NDRNK ), needle sharing (NEEDL), body part piercing (PIE5Y ), and anal receptive

sex (REC2P). Black people are seen at to be higher risk than the other races and the

risk of the HIV infection among blacks relative to the risk of HIV infection among

whites is exp(0.8087) = 2.2450. We can analyze the effects of other risk factors in

the same manner. For example, people with at least one year college but no degree

(PRECOL) or post-graduate degree (POSTCOL) are at higher risk than high school

graduates (HIGH ). The risk level of the education factors can be ranked in the following

order: PRECOL (the group at most risk), POSTCOL (at second-highest risk level),

and HIGH and COL (at lowest risk). However, the effects of the education factors

are not consistent with the natural order of the factors: HIGH, PRECOL, COL, and

POSTCOL. Unfortunately, the LTRC subsample-based procedures do not select the

risk factors known to be important to HIV infection such as genital warts (WARTS )

but select a spurious variable, the number of drinks per day (NDRNK ). Overall, each

estimation procedure based on the LTRC subsamples shows poor performance in terms

of variable selection.

We next focus on the estimation procedures based on the CS data at the bottom

of Table 3.15. Compared to the LTRC data analysis, the ordinary estimation for the

CS data selects more variables such as cocaine usage (COK2Y ), smoking (SMOKE ),

and genital warts (WARTE ). The HIV hazard rate is higher among black people. Also,

unlike the LTRC results, here the lowest risk education group is POSTCOL, the next

lower one is COL, and PRECOL. This corresponds to the education level and might

be more convincing than the results from the LTRC data. Even though the event time

information is not used, the sampling bias reduction is considered to contribute to this
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LTRC ORD (SE) Sig. LSA REFIT (SE)

COK2Y 0.0306 (0.1133) . .
CON2P -0.0938 (0.6149) . .
CON2Y 0.3767 (0.5315) . .
DIABE -0.6366 (0.7162) . .

GONOE 0.5300 (0.1036) (**) 0.5074 0.5333 (0.1010)
HAS2Y -0.1757 (0.1563) . .

MOU2P 0.0420 (0.1068) . .
MOU2Y -0.0517 (0.1239) . .
MSX2Y 0.5428 (0.1617) (**) 0.4448 0.4896 (0.1430)

NDRNK 0.0928 (0.0243) (**) 0.0841 0.0926 (0.0236)
NEEDL 0.7174 (0.2432) (**) 0.7186 0.8108 (0.2286)
OPI2Y 0.2416 (0.2555) . .
PIE5Y 0.4378 (0.1170) (**) 0.4004 0.4358 (0.1148)

RADTE 0.4011 (0.3847) . .
REC2P 0.4610 (0.1230) (**) 0.3984 0.4438 (0.1176)
REC2Y -0.1839 (0.1259) . .

SMOKE 0.1157 (0.1058) . .
WARTE 0.0713 (0.1103) . .
BLACK 0.8087 (0.1986) (**) 0.6676 0.7514 (0.1891)
HISPA 0.2350 (0.2179) . .

OTHER -0.6785 (0.7109) . .
PRECOL 0.4910 (0.1688) (**) 0.2984 0.3708 (0.1175)

COL 0.1903 (0.1881) . .
POSTCOL 0.3947 (0.1821) (**) 0.1592 0.2618 (0.1263)

UNEMP 0.1842 (0.2009) . .
CS ORD (SE) LSA REFIT (SE)

COK2Y 0.6236 (0.0708) (**) 0.7262 0.6039 (0.0880)
CON2P -0.2180 (0.2999) . .
CON2Y 0.0144 (0.2818) . .
DIABE -0.2839 (0.3314) . .

GONOE 0.4459 (0.1265) (**) 0.2169 0.5007 (0.1252)
HAS2Y 0.1352 (0.1000) . .

MOU2P -0.0926 (0.0572) . .
MOU2Y -0.1352 (0.0899) . .
MSX2Y 0.2505 (0.0816) (**) 0.3595 0.2948 (0.0978)

NDRNK -0.0397 (0.0187) (**) . .
NEEDL 0.4841 (0.1304) (**) 0.3667 0.4888 (0.1273)
OPI2Y -0.0527 (0.1610) . .
PIE5Y 0.2187 (0.0503) (**) 0.1494 0.2222 (0.0620)

RADTE -0.1481 (0.2205) . .
REC2P 0.6182 (0.0523) (**) 0.5754 0.5885 (0.0564)
REC2Y 0.1077 (0.0717) . .

SMOKE -0.2517 (0.0563) (**) -0.2294 -0.2603 (0.0553)
WARTE 0.4013 (0.0509) (**) 0.4026 0.3962 (0.0485)
BLACK 0.6650 (0.1036) (**) 0.6289 0.6962 (0.1167)
HISPA 0.3537 (0.1313) (**) 0.3800 0.3312 (0.1164)

OTHER 0.0495 (0.2346) . .
PRECOL -0.2595 (0.1090) (**) . .

COL -0.3903 (0.1024) (**) -0.1439 -0.2361 (0.0666)
POSTCOL -0.6179 (0.0965) (**) -0.5621 -0.4557 (0.0960)

UNEMP 0.0634 (0.0917) . .
Note. (**) indicates significant level 0.05.

Table 3.15: MACS Analysis with LTRC Data or CS Data
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improved performance. Specifically, the CS dataset considers all study participants,

while the LTRC dataset approximately considers 61% of them. The LSA and refit

estimators have some disagreement from the ordinary estimator in terms of variable

selection. The ordinary estimation selects the number of drinks (NDRNK ) and the

education level with college entrance but no degree (PRECOL) as significant risk factors

while the other procedures regard them having negligible effects.

The analyses with EVE and its preliminary procedures are summarized in Table

3.16. EVE is viewed as the information compromise between the LTRC analysis and the

CS analysis. Note that EVE selects the same risk factors as the CS refit estimator, but

the effects of the selected variables are compromised by the analysis integration. Note

that oral sex is considered as a strong risk factor in the ordinary ensemble estimation at

the significance level of 0.05. In the following step, oral sex is not considered strongly to

be associated with HIV infection from EVE, as evidenced by the previous studies. The

preliminary CS refit estimator has better performance in terms of variable selection

than the preliminary LTRC refit estimator.

Next, we examine the selected risk factors via EVE in detail. First, in terms of the

sexual behaviors, anal receptive sex is strongly associated with HIV infection, while

anal insertive sex is not thought to be a strong risk factor. Further, condom usage

during anal sex does not seem to prevent the participants from HIV infection. Our

risk predictors of interest include the participants’ health status and drug usage. EVE

selects body part piercing and sexual diseases such as gonorrhea, and genital warts as

strong factors. Diabetes and radiation treatment have little effect on HIV infection.

Cocaine usage, drug usage during sex and needle sharing increase the risk of HIV

infection, but users of other drugs (such as marijuana or heroin) are not shown to be

at risk. As in the previous CS data analysis, the infection risk among black people is

the highest and that of Hispanic people is the second highest. The infection risk of
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ORD (SE) Sig. LSA EVE (SE) Sig.

COK2Y 0.4889 (0.0532) (**) 0.5383 0.4081 (0.0575) (**)
CON2P -0.3369 (0.2633) . .
CON2Y 0.1332 (0.2442) . .
DIABE -0.2238 (0.2783) . .

GONOE 0.5010 (0.0699) (**) 0.4128 0.5987 (0.0694) (**)
HAS2Y 0.1104 (0.0757) . .

MOU2P -0.093 (0.0441) (**) . .
MOU2Y -0.1346 (0.0594) (**) . .
MSX2Y 0.3085 (0.0703) (**) 0.3680 0.2935 (0.0841) (**)

NDRNK 0.0020 (0.0134) . .
NEEDL 0.5397 (0.1027) (**) 0.5384 0.5442 (0.0967) (**)
OPI2Y 0.0124 (0.1256) . .
PIE5Y 0.2754 (0.0450) (**) 0.2225 0.3105 (0.0524) (**)

RADTE -0.1020 (0.1883) . .
REC2P 0.6013 (0.0471) (**) 0.5472 0.5441 (0.0465) (**)
REC2Y 0.0752 (0.0549) . .

SMOKE -0.1823 (0.0468) (**) -0.1040 -0.1891 (0.0466) (**)
WARTE 0.3529 (0.0445) (**) 0.3371 0.3474 (0.0426) (**)
BLACK 0.7385 (0.0900) (**) 0.7285 0.7344 (0.0937) (**)
HISPA 0.3914 (0.1007) (**) 0.3511 0.2610 (0.0962) (**)

OTHER 0.0690 (0.2160) . .
PRECOL -0.1474 (0.0755) . .

COL -0.2866 (0.0796) (**) -0.1117 -0.2639 (0.0555) (**)
POSTCOL -0.3839 (0.0784) (**) -0.3134 -0.2852 (0.0647) (**)

UNEMP 0.1007 (0.0815) . .
LTRC (SE) Sig. CS (SE) Sig.

COK2Y 0.0640 (0.1066) 0.6039 (0.0799) (**)
CON2P . .
CON2Y . .
DIABE . .

GONOE 0.4936 (0.1028) (**) 0.5007 (0.1138) (**)
HAS2Y . .

MOU2P . .
MOU2Y . .
MSX2Y 0.5199 (0.1482) (**) 0.2948 (0.1138) (**)

NDRNK . .
NEEDL 0.7922 (0.2310) (**) 0.4888 (0.1148) (**)
OPI2Y . .
PIE5Y 0.4328 (0.1155) (**) 0.2222 (0.0603) (**)

RADTE . .
REC2P 0.4331 (0.1176) (**) 0.5885 (0.0517) (**)
REC2Y . .

SMOKE 0.1289 (0.1034) -0.2603 (0.0542) (**)
WARTE 0.0722 (0.1098) 0.3962 (0.0471) (**)
BLACK 0.7423 (0.1904) (**) 0.6962 (0.1102) (**)
HISPA 0.2611 (0.2165) 0.3312 (0.1148) (**)

OTHER . .
PRECOL . .

COL -0.2189 (0.1313) -0.2361 (0.0636) (**)
POSTCOL -0.0272 (0.1210) -0.4557 (0.0940) (**)

UNEMP . .
Note. (**) indicates significant level 0.05.

Table 3.16: MACS Data Analysis with Ensemble Methods
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white people is similar to other races including Asians and Pacific Islanders. Another

strong risk factor is education, and the risks are significantly different based on college

graduation.

3.5 Discussion

In this chapter, we have proposed a general refit method and two statistical methods

stemmed from the refit: EVS and EVE. The refit method eliminates the estimation bias

inherent in penalization methods, and satisfies asymptotically oracle properties under

the selection consistency assumptions of the preliminary penalization method. EVS

selects important variables based on the voting from multiple penalization methods

and refits the selected model without penalization. The oracle properties of the refit

method carry over to EVS with the selection consistency assumption of the preliminary

methods. EVE is based on the likelihood factorization assumption and takes advantage

of the refit LSA. Its computation is efficient using existing software and its estimation

is asymptotically efficient.

As a future direction, it will be interesting to compare the methods for prospective

doubly censored data analysis, including EVE. We may consider performing test error

calculation based on cross-validation. We first obtain the parametric part of interest

and calculate the nonparametric part as a function of the regression parameter using

the training data. Next, we calculate the empirical likelihood based on those estimators

using the validation data. It may be a challenging problem in terms of computation,

but is an important comparison tool for model fitting.
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CHAPTER4: CONSISTENT VALIDATION FOR EDGE SELECTION
IN HIGH DIMENSIONAL GAUSSIAN GRAPHICAL MODELS

4.1 Introduction

Undirected graphical models are known to be useful for explaining association struc-

ture in multivariate random variables (Lauritzen 1996). An edge between two variables

in an undirected graphical model represents their conditional dependence given all other

variables in the model. Graphical models have had many applications for complex asso-

ciation studies such as gene regulatory networks and social networks (Liu et al. 2010).

For example, we can investigate the underlying biological relations among genes from

the graph analysis of the regulatory network.

Gaussian graphical modeling (GGM) is a popular method used to learn the undi-

rected graph structures (Lauritzen 1996, Dempster 1972). Under the Gaussian assump-

tion, the inverse covariance matrix is of our interest and known as the precision matrix.

Specifically, zero elements of the inverse covariance matrix imply conditional indepen-

dence of the corresponding variables given all other variables in the model. Then, we

can recast the edge selection problem of the graph as a sparsity pattern recovery of the

precision matrix. In high-dimensional data, such recovery is a challenging problem due

to estimation instability and computational complexity (Yuan and Lin 2007a).

To estimate the high dimensional precision matrices for Gaussian data, Friedman,

Hastie, and Tibshirani (2008) and Yuan and Lin (2007a) proposed graphical LASSO

(glasso) for the graph estimation in high-dimensional data. They regularized the neg-

ative Gaussian log-likelihood with the LASSO penalty on the off-diagonal elements of
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the inverse covariance matrix. This framework provides a sparser inverse covariance

estimate with a larger tuning parameter. In other words, the tuning parameter con-

trols the sparsity level of the graph. Several tuning parameter selection methods have

been developed in the literature. In particular, Foygel and Drton (2010) suggested

extended BIC (eBIC), and Liu et al. (2010) proposed stability approaches for regular-

ization parameter selection (StARS). eBIC uses an additional tuning parameter, thus

needs to consider several tuning parameter values in practice. StARS only has the

asymptotic sparsistency under certain assumptions, where many spurious conditional

dependence patterns might be included. Furthermore, it involves the use of a cut point

value requiring as empirical case by case tuning approach.

In this chapter, our aim is to construct an automatic edge selection procedure

excluding such a manual tuning step for high-dimensional GGM. Specifically, the un-

derlying graphical model is assumed to have a small number of true edges. We propose

a consistent validation method for edge selection (CoVES) with a growing sample size

in fixed dimensions. We recast the problem of tuning parameter selection in high-

dimensional L1 regularized GGM as the problem of graph selection from candidate

GGMs along the glasso solution path. Next, we apply the Monte Carlo cross-validation

to the candidate models for the asymptotically consistent pattern recovery. CoVES was

developed from Monte Carlo cross-validation for linear models in Shao (1993) and con-

sistent cross-validation for tuning parameter selection in penalized GLM in Feng and

Yu (2013).

The rest of the chapter is organized as follows. We first introduce notations and

describe the CoVES procedure in Section 4.2. Its theoretical properties are investigated

in Section 4.3 and its performance is compared to other methods from simulation studies

in Section 4.4. We summarize the chapter and discuss possible future directions in

Section 4.5
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4.2 Edge Selection in High Dimensional Gaussian Graphical Models (GGM)

In GGM, the conditional dependent relationship corresponds to the sparsity of the

inverse covariance matrix, which is called the precision matrix. The solution path of

the glasso provides sparse precision matrices along the tuning parameter as candidates.

Their corresponding graph structures comprise candidate graph models of interest.

CoVES performs a Monte-Carlo bootstrap among the candidate models and selects the

optimal graph model.

4.2.1 Settings and Notations

First, denote a graph as G = (V,E), where V = {x1, · · · , xp} is the set of vertices

and E is the set of edges between vertices. Each vertex corresponds to a variable and

an edge between vertices identifies their conditional dependence given all the other

variables. Suppose that x = (x1, · · · , xp) follows a multivariate Gaussian distribution

N (µ,Σ), where µ is a mean vector and Σ is a nonsingular covariance matrix. Without

loss of generality, assume that µ = 0. Denote x̄ =
1

n

n∑
i=1

xi as the sample mean.

Define Θ = Σ−1 as the precision matrix and S =
1

n

n∑
i=1

(xi− x̄)(xi− x̄)T as the sample

covariance matrix. Consider the L1 regularized negative log-likelihood as the objective

function:

min
Θ
− log|Θ|+ tr(SΘ) + λ||Θ||1, (4.1)

where ||Θ||1 is the L1 norm, the sum of the absolute values of the elements of Θ.

Denote the true precision matrix as Θ0 and the true edge set as E0. Note that

Θ0,(j,k) = 0 if (xj, xk) /∈ E0 since xj is conditionally independent of xk given all the

other variables. Following the notation of Feng and Yu (2013), we define the set of

correct models, E0 as the set of graph models with E ⊃ E0. We denote an optimal edge
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set as E∗ ∈ E0 such that for all E ∈ E0 and E 6= E∗, ||E∗||0 < ||E||0, where ||E||0 is the

cardinality of the edge set or the effective number of parameters in the corresponding

precision matrix, Θ. The cardinality of E0 is denoted as d0. The optimal model is the

graph model having the smallest cardinality among the candidate models of interest

without false negatives.

4.2.2 Existing Methods

We first review several general model selection principles and present their math-

ematical formulations to GGM. Akaike information criterion (AIC) and Bayesian in-

formation criterion (BIC) are popular principles for important variable selection in

likelihood-based models (Akaike 1974). In our framework, both AIC and BIC restrict

the graph models of interest to the models along the solution path, Θ(λ), and select a

sparse graph by penalizing the effective number of parameters (Liu et al. 2010). The

formulation of AIC in GGM is

Θ̂AIC(λ) = argmin
Θ(λ)>0

{−2log|Θ(λ)|+ 2tr(SΘ(λ)) + 2||Θ(λ)||0}.

AIC is known to be competitive under the condition that the true graph structure is

complicated. Another useful model selection tool, BIC, is known to be effective when

the underlying model is low-dimensional. The formulation of BIC is similar to that of

AIC. The weight, 2, on the effective number of parameters in AIC is replaced with the

logarithm of the sample size:

Θ̂BIC(λ) = argmin
Θ(λ)>0

{−2log|Θ(λ)|+ 2tr(SΘ(λ)) + logn · ||Θ(λ)||0}.

Since BIC puts a heavier penalty on the model complexity, it tends to select a sparser

graph than AIC. However, both tends to overfit in high-dimensional setting.
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K-fold cross-validation is also frequently used to select the best model. We split the

data into K subsets and use K−1 of them for training and one subset for validation. In

GGM, we first obtain candidate graph models using the training dataset and calculate

the validation errors, the negative log-likelihoods for the models using the validation

dataset. We repeat the steps for different choices of training and validation data subsets

and select the graph model with the smallest validation error. It is known that the cross-

validation tends to select a denser graph under the low-dimensional true structure in

high dimensional data (Liu et al. 2010).

Extended BIC is an adaptation of BIC for high-dimensional GGM proposed by

Foygel and Drton (2010). It adds one term for more model complexity control as

follows:

Θ̂eBIC(λ) = argmin
Θ(λ)>0

{−2log|Θ(λ)|+ 2tr(SΘ(λ)) + logn · ||Θ(λ)||0 + 4||Θ(λ)||0γlogp},

where γ ∈ [0, 1]. The extra term is included so that the eBIC will tend to select a sparser

model than BIC would. Note that eBIC with γ = 0 is equivalent to the classical BIC.

We can theoretically determine γ on the convergence rate of p with n. However, this

is infeasible in practice, thus we set γ as 0.5 or tune empirically.

StARS is a random subsampling method which uses a U -statistic to measure the

stability of the model across the subsamples (Liu et al. 2010). We first draw N random

subsamples s1, · · · , sN from the sample, x1, · · · , xn. The subsample sizes are b, smaller

than the sample size n. We next construct a graph using glasso for each λ based on

each subsample. We denote the N graphs for λ as Ê1
b
(λ), · · · , Êb

N(λ). For every edge

of each graph, we obtain an instability measure from a selection probability estimate

across the subsamples. The selection probability estimate to an edge (xs, xt) is the
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average of the edge existence across the subsamples:

θ̂bst(λ) =
1

N

N∑
j=1

ψλst(Sj),

where ψλst(Sj) =


1 if the algorithm puts an edge between (s, t),

0 otherwise.

The instability measure for the edge is

ξ̂bst(λ) = 2θ̂bst(λ)(1− θ̂bst(λ)).

The measure is zero under the two extreme situations where the edge is selected or

excluded for every subsample. For each graph, StARS obtain the total instability

over all edges, which is the average of the instability measures over all edges, ξ̂bst,

s, t = 1, · · · , p. We construct the monotone total instability by taking the supremum of

the instabilities up to each λ. The optimal tuning parameter is the tuning parameter

whose monotone instability is not larger than a predefined cut point value. Liu et al.

(2010) set 0.05 as the default cut point value. As mentioned in Section 4.1, StARS

was only shown to be sparsistent in an asymptotic sense. With a large sample size in

fixed dimension, the chosen edge set includes all the true important edges but may also

include some spurious edges. Another tuning step is required for the cut point value

selection.

4.2.3 Consistent Validation for Edge Selection (CoVES) Method

We first illustrate the CCV procedure as in Feng and Yu (2013) for GLMs. Suppose

we have n independently and identically distributed observations (xi, yi), i = 1, · · · , n,

where xi is a p-dimensional predictor and yi is the response. We assume the conditional
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distribution y given x is an exponential family with a canonical link. Its density

function is written as follows: f(y;x,β) = c(y, π)exp[(yθ − b(θ))/a(φ)], where θ = xβ

and φ ∈ (0,∞) is the dispersion parameter. Here, β is the parameter of interest, and

β0 is the true parameter, with ||β0||0 = d0 < n, where ||β||0 = |{j : βj 6= 0}|. The

log-likelihood can be written as follows based on an affine transformation:

l(y,β) =
1

n

n∑
i=1

[yiθi − b(θi)].

CCV considers sparse estimation by minimizing a penalized negative log-likelihood

function with a tuning parameter, λ:

β̂ = argmin
β

[−l(y,β) + λ

p∑
j=1

p(|βj|)],

where pλ(·) is the penalty function. Feng and Yu (2013) considered both convex and

folded-concave penalties as the penalty function for CCV. The multi-stage CCV pro-

cedure is described in Algorithm 1.

Algorithm 1. CCV Implementation (Feng and Yu 2013)

1. Compute the solution path using the entire dataset. A sequence of solutions β̂(λ) is

generated as a function of the penalty level λ.

2. Randomly split the whole dataset into {(xi, yi), i ∈ s} (the validation set) and

{(xi, yi), i ∈ sc} (the construction set) r times. The sizes of the validation set and

the construction set are nv and nc respectively. For each split j = 1, · · · , r, compute

the restricted MLE path according to the active set sequence generated in the previous

step.

3. Average the negative log-likelihood over the r splits for each model (from Step 1),

and choose the estimator in the model with the tuning parameter corresponding to the

smallest loss function value.
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4. Compute the restricted MLE for the selected model.

Our proposed method follows the steps of CCV. We first consider the edge struc-

tures from the entire solution path. For each structure, CoVES computes the empirical

negative log-likelihood via repeated random subsampling validation. We finally select

the edge structure having the smallest negative log-likelihood. In CoVES, it is of our

interest to select important edges instead of significant variables, and its correspond-

ing likelihood is based on multivariate Gaussian distribution. Detailed algorithms are

illustrated as follows in Algorithm 2.

Algorithm 2. CoVES Implementation

1. Calculate the solution path of the precision matrices using the entire dataset. A

sequence of solutions is generated with corresponding penalty level λ from (4.1). Along

the path, a sequence of candidate sets of edges are determined based on the precision

estimates, Θ̂(λ).

Ê(λ) = {(xj, xk) : Θ̂(λ)(j,k) 6= 0}

2. Randomly split the dataset into a validation set, s (size nv) and a construction set,

sc (size nc) r times. For each split j = 1, · · · , r, compute the restricted MLE path

according to the active edge sequence generated in Step 1.

3. Average the negative log-likelihood over the r splits for each active edge set in Step

1, and choose the active edge set Ê with the smallest average validation error.

4. Compute the restricted MLE with the selected edge set Ê in Step 3.

In the second step of the CoVES algorithm, we give a detailed description for

each repetition given a set of edges, E. Let Ed = {(1, 1), · · · , (p, p)} and E be one

of the estimated graphs from the full solution path. We minimize an unpenalized

negative log-likelihood function with zero constraints to the unselected edges, Ec and
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the corresponding optimization problem is written as follows:

Θ̃sc,E = argmin
Θ>0

{log det(Θ)− tr(SscΘ)}

subject to Θij = 0, (i, j) ∈ Ed\E,

where Ssc =
1

nc

∑
i∈sc

(xi − x̄sc)
T (xi − x̄sc) is the empirical covariance matrix from the

construction sample and x̄sc =
1

nc

∑
i∈sc

xi is the construction sample average. Note that

all the repetitions have the common set of edges, E, but may give different valued

precision matrix estimators, Θ̃sc,E.

Next, the validation set is used to obtain the empirical negative log-likelihood for

the precision matrix estimator, Θ̃sc,E. The corresponding log-likelihood is from the

multivariate Gaussian density and is written as ls(Θ̃sc,E), where ls(Θ) =
1

2
(log det(Θ)−

tr(SsΘ)). In the log-likelihood, Ss =
1

nv

∑
i∈s

(xi−x̄s)T (xi−x̄s) is the empirical covariance

matrix from the validation sample, and x̄s =
1

nv

∑
i∈s

xi is the validation sample average.

The negative log-likelihood evaluates how well each set of edges fits with the validation

set. Note that the expected loss function evaluated at E is the expectation of the

negative log-likelihood with respect to a random selection of s, ΓE = −E[ls(Θ̃sc,E)].

It is called the risk function at Θ̃sc,E. We take the average of the empirical negative

log-likelihood across the multiple r splits to estimate the risk function, which is denoted

as Γ̂E as follows:

Γ̂E = −1

r

∑
s∈R

ls(Θ̃sc,E).

Note that we now have numerous empirical negative log-likelihoods corresponding to the

candidate sets. We choose the set with the smallest empirical negative log-likelihood.

This step determines the graph structure and the edge set estimate is denoted as Ê.

In the last step, we estimate the signals of the conditional dependency in the selected
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graph using the complete dataset and the estimate is denoted as Θ̂Ê.

4.3 Theoretical Properties

This section describes an asymptotic property of CoVES. Feng and Yu (2013) shows

that CCV consistently selects the optimal GLM among the candidate GLMs with prob-

ability tending to one. Likewise, we conjecture that CoVES recovers the true set of

edges with probability tending to one.

4.3.1 Preliminary Steps

We define the edge selection consistency so that the true set of edges, E0, is selected

in an asymptotic sense. Our investigation takes place under the condition of a growing

sample size with fixed dimension. Note that our method does not not have the true

set as a candidate if the preliminary penalization method does not contain the true

set along the tuning parameter. In order to accommodate such cases, we alternatively

define the optimal edge selection consistency so that the optimal set of edges, E∗, is

selected under a growing sample size with fixed dimension. In other words, the selected

edge set is exactly the same as the optimal set with probability tending to one:

lim
n→∞

P (Ê = E∗) = 1. (4.2)

By definition, the optimal model, E∗, is unique as long as there is only one model with

size d0 among the candidate models.

We can make some interesting remarks regarding the optimal edge selection consis-

tency. If there are more than one model with the size of d0, we consider the collection

of the optimal edge sets, which is defined as {E ∈ E0 : ||E||0 = d0} (Feng and Yu 2013).

In this case, the optimal selection consistency implies that the edge set estimate is an
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element of the optimal model set with probability tending to one. Next, we consider

the situation that the true edge set E0 lies on the solution path. In such case, we obtain

a stronger theoretical property, which is the edge selection consistency since we have

E = E∗.

Next we introduce some notations for random selection of subsamples. Denote the

expectation with respect to the random selection of subsamples, R, as ER and the

variance with respect to R as VR. Below are two likelihoods of Θ and Θ̃E:

ls(Θ) =
nv
2

[log det(Θ)− tr(SsΘ)],

ln(Θ̃E) =
n

2
[log det(Θ̃E)− tr(SΘ̃E)].

Following the notations of Zhou et al. (2011), for any matrix W = (wij) ∈ Rp × Rp,

define the smallest eigenvalue of W as ϕmin(W ) and the largest eigenvalue of W as

ϕmax(W ). Denote ||W ||F =
√∑

i

∑
j w

2
ij as the matrix Frobenius norm and ||W ||2 =√

ϕmax(WW T ) as L2 norm. The vectorized W is denoted as vecW ∈ Rp2 and the

Kronecker product is denoted as ⊗.

4.3.2 Asymptotic Results

Our conjecture is that CoVES satisfies the optimal edge selection consistency given

a collection of candidate edges set, E . In this section, we provide a sketch proof of

this asymptotic property. Similar to Feng and Yu (2013), we assume that nc → ∞,

nc/n → 0 as n → ∞ and the number of the splits r satisfies r−1n−2
c n2 → 0. The

collection, E , is partitioned into two disjoint collections:

E0 = {E : E ⊃ E0} and E1 = {E : E + E0}.
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Each collection is called the collection of the correct edge sets and its complement

respectively. We need to conduct a separate examination on each of them to obtain the

theoretical property as per Shao (1993) and Feng and Yu (2013). The loss function for

the edge set E is

Γ̂E = −1

r

∑
s∈R

1

2
[log det(Θ̃sc)− tr(Ss,EΘ̃sc,E)],

where R is the collection of validation sets in different splits. Note that Θ̃sc,E is the

restricted MLE on the model E using the construction set, sc. Now, it is sufficient to

show the following probabilistic arguments for the optimal edge selection consistency

of (4.2):

P{∃E ∈ E0\{E∗}, Γ̂E∗ > Γ̂E} → 0

P{∃E ∈ E1, Γ̂E∗ > Γ̂E} → 0.

We conjecture that the empirical loss function at E over the subsamples is written as

the full likelihood evaluated at E. Hence, the difference between the empirical loss

function at E and the empirical loss function at E∗ over the subsamples is expected as

Γ̂E − Γ̂E∗ =
1

n
{ln(Θ̃E∗)− ln(Θ̃E)}+O(

1

nc
). (4.3)

To show this, we take the expectation to the empirical loss function with respect to the

random selection of validation sets, R.

ER(Γ̂E) =ER(
1

rnv

∑
s∈R

−ls(Θ)) + ER{
1

rnv

∑
s∈R

[ls(Θ)− nv
2
{log det(Θ̃E)− tr(SsΘ̃E)}]}

+ ER{
1

r

∑
s∈R

[
1

2
{log det(Θ̃E)− tr(SsΘ̃E)} − 1

2
{log det(Θ̃sc,E)− tr(SsΘ̃sc,E)}]}
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=− 1

n
ln(Θ) +

1

n
{ln(Θ)− ln(Θ̃E)}

+

(
n

nv

)−1 ∑
s∈AR

1

2
[{log det(Θ̃E)− log det(Θ̃sc,E)} − {tr(SsΘ̃E)− tr(SsΘ̃sc,E}]

≡− 1

n
ln(Θ) + AE1 +

(
n

nv

)−1 ∑
s∈AR

AE2,s

We expect that the second term, AE1 =
1

n
{ln(Θ)− ln(Θ̃E)} is the dominating term and

the element of the third term, AE2,s can asymptotically be ignored.

4.4 Numerical Studies

In this section, we compare CoVES to other existing model selection criteria in terms

of graph selection performance. The other criteria include classical model selection

criteria such as AIC and BIC and high-dimensional undirected graph selection criteria

such as extended BIC and StARS. See Section 4.2.2 for more details. We present the

StARS results with two cut point values, 0.05 and 0.1 (StARS 1, StARS 2 ) and CoVES

with different subsampling sizes: _n/2^ and _10 ·
√
n ^(CoVES 1, CoVES 2 ).

The comparison criteria are true positivity rate (TPR) and false positivity rate

(FPR), both of which are based on true positives (TP), false positives (FP), true

negatives (TN), and false negatives (FN). TP is the number of true edges selected in

the estimated graph and FP is the number of true edges not selected in the estimated

graph. Similarly, TN is the number of the edges in the complement set of true edges

selected in the estimated graph and FN is the number of the edges in the complement

of true edges not selected in the estimated graph. TPR and FPR are calculated as

follows:

TPR = TP/(TP + FN), FPR = FP/(FP + TN).

TPR indicates what percentage of the selected edges have true conditional dependence

102



and FPR indicates what percentage of the unselected edges have true conditional in-

dependence. The oracle procedure has zero negatives, that is no FP nor FN, which

results in 1 TPR and 0 FPR. Thus, we expect a larger TPR and a small FPR for each

method in practice.

We simulated 100 datasets of n i.i.d. p variate random samples from N(0,Θ0).

We consider n = 200 or n = 400 and p = 10, 40, 50, 100. In each scenario, a true

precision matrix, Θ0 is a determinant of a true graph pattern and is centered to have

zero mean and variance one. We use a glasso package to obtain the entire solution

path with the sample covariance matrix as an input. For computational simplicity,

we pick 100 different equally spaced tuning parameters and obtain their corresponding

edges sets. Asymmetric edge sets among them are excluded and the next procedure

follows Algorithm 2. R packages such as huge and glasso are used to implement BIC,

5-fold cross-validation (5-fold CV), eBIC and StARS. The huge package also provides

the visualization of the adjacency matrix, the graph pattern, the covariance matrix,

and the empirical covariance matrix of the true graph structure (Zhao, Liu, Roeder,

Lafferty, and Wasserman 2012).

4.4.1 Double Chain Graphs

We first investigate a double chain graph, where the vertex, xj is conditionally

dependent to xj−2, xj−1, xj+1 and xj+2, j = 3, ·, n− 2. The rest of the vertices have the

following conditional dependence pattern: x1 is conditionally dependent with x2 and

x3; x2 is conditionally dependent with x1, x3, x4; xn is conditionally dependent with

xn−1, xn−2; xn−1 is conditionally dependent with xn, xn−2, xn−3. The true precision

matrix, Θ0 is tridiagonal, that is, a band matrix with five elements width. In the left

panel of Figure 4.1, the adjacency matrix and the graph pattern of the true graph

structure illustrates a simple double chain pattern example with 10 vertices. The white
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fields of the adjacency matrix correspond to the nonzero off-diagonal true precision

matrix. In the right panel of Figure 4.1, the covariance matrix is the inverse of the true

precision matrix and the empirical matrix is the empirical covariance matrix estimate

from the whole data. In our studies, we set the true precision matrix to have the

following values based on the corresponding elements:

Θ0,(i,j) =


1, i = j

0.6, |i− j| = 1

0.3, |i− j| = 2.

Figures 4.2-4.4 describe the graphs having this same double chain pattern with 40, 50,

and 100 vertices respectively.

Figure 4.1: Double Chain Graph with p =
10

n=200 n=400
TPR FPR TPR FPR

CoVES 1 0.9906 0.3693 1 0.33
CoVES 2 0.99 0.3711 1 0.3264
5-fold CV 0.9959 0.4671 1 0.395

BIC 0.9959 0.4671 1 0.395
StARS 1 0.2276 0.0064 0.1953 0.0011
StARS 2 0.0782 0 0.0671 0

eBIC 0.9947 0.4529 1 0.3889

Table 4.1: Edge Selection Results for Dou-
ble Chain Graph p = 10

We consider four scenarios from the low-dimensional case to the high-dimensional

case with different numbers of variables in Tables 4.1-4.4. All the methods have an

improvement in true edges selection across all scenarios as the sample size increases

from n = 200 to n = 400. While the traditional model selection principles tend to
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Figure 4.2: Double Chain Graph with p =
40

n=200 n=400
TPR FPR TPR FPR

CoVES 1 0.961 0.1306 0.9975 0.101
CoVES 2 0.9618 0.131 0.9981 0.1016
5-fold CV 0.9982 0.2872 1 0.2053

BIC 0.9982 0.2872 1 0.2053
StARS 1 0.7413 0.0677 0.8264 0.0586
StARS 2 0.6018 0.0555 0.437 0.0266

eBIC 0.9188 0.1182 0.9992 0.1805

Table 4.2: Edge Selection Results for Dou-
ble Chain Graph p = 40

select a denser graph, the other methods such as eBIC, and StARS tend to select a

sparser model. The underfitting issue may be inherent in the latter methods since

they are developed for sparse model selection in high-dimensional data. eBIC has

a smaller TPR and FPR than BIC since its penalization terms encourage a sparser

model selection than that of BIC. Both StARS methods have different rates of TP

and FP since they are sensitive to cut value points. This implies that the StARS cut

point value should be tuned with care because such a framework only reformulates the

direct tuning parameter selection problem into the indirect cut point value selection

problem. However, CoVES changes the problem of a tuning parameter selection into

the conventional model selection problem without a tuning parameter.

In a low-dimensional case of p = 10, both StARS select very sparse models, as

evidenced by low TPR (0.1953 and 0.0671) and low FPR (0.0011 and 0) in Table 4.1.

The cut point value should be smaller to select a denser graph. Both CoVES methods

with different subsample sizes have similar performance. For p = 40 and p = 50 in

Tables 4.2-4.3, the performance of CoVES are comparable with that of eBIC. Next, we

consider a high-dimensional setting with p = 100 from Table 4.4. Note that the 5-fold
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Figure 4.3: Double Chain Graph with p =
50

n=200 n=400
TPR FPR TPR FPR

CoVES 1 0.9545 0.1104 0.9973 0.085
CoVES 2 0.9539 0.1098 0.9973 0.0848
5-fold CV 0.9986 0.2735 0.9999 0.1922

BIC 0.9986 0.2735 0.9999 0.1922
StARS 1 0.7622 0.0569 0.8576 0.0477
StARS 2 0.6294 0.0458 0.6578 0.0431

eBIC 0.8574 0.0769 0.9987 0.1418

Table 4.3: Edge Selection Results for Dou-
ble Chain Graph p = 50

Figure 4.4: Double Chain Graph with p =
100

n=200 n=400
TPR FPR TPR FPR

CoVES 1 0.9312 0.0695 0.9966 0.0554
CoVES 2 0.9315 0.0699 0.9969 0.0557
5-fold CV 0.9988 0.2474 0.9999 0.167

BIC 0.9986 0.2444 0.9999 0.167
StARS 1 0.7948 0.0352 0.9066 0.0255
StARS 2 0.6784 0.0252 0.7651 0.022

eBIC 0.7306 0.0290 0.9901 0.0485

Table 4.4: Edge Selection Results for Dou-
ble Chain Graph p = 100
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cross-validation and BIC methods select a denser graph from high TPR and FPR and

StARS and eBIC select a sparser graph from low TPR and FPR. CoVES lies in the

second tier for TPR and FPR, and thus it can be viewed as a compromise between the

two extremes.

4.4.2 Hub Graphs

Next, we consider a hub graph, where a vertex is conditionally dependent on multiple

vertices but the vertices are only connected via the vertex. The central vertex is called

a hub vertex. The setting is similar to the second example of Liu et al. (2010). Figures

4.5-4.8 show the adjacency matrices of the population precision matrices, the graph

patterns, the population covariance matrices, and the sample covariance matrices. In

this setting, the true precision matrix only has nonzero elements on L-shape from the

hub vertex. We construct the true precision matrix as follows. Its rows and columns are

partitioned into J equally-sized disjoint groups: V1 ∪ V2 ∪ VJ = {1, · · · , p}, each group

is associated with a pivotal row k. Let |V1| = 10. We set Ωik = Ωki = 0.5 for i ∈ Vk

and Ωik = Ωki = 0 otherwise. The simple example is a graph with 1 hub vertex among

10 vertices from the left panel of Figure 4.5. The other three settings are illustrated at

the left panel of Figure 4.6-Figure 4.8. Their graphs have 4, 5, 10 hub vertices among

40, 50, and 100 vertices respectively.

We report the results on edge selection from four different scenarios according to

the number of vertices in Tables 4.5-4.8. Similar to the results from the double chain

graphs in Section 4.4.1, the choice of cut point values in StARS has a significant impact

on the edge selection performance and the performance of CoVES tends to be robust

to the choice of the subsample size. Since the true negatives increase with the square

of the number of vertices, FNR noticeably decreases with the increase in the number

of vertices. Table 4.5 shows that only StARS performs poorly in selecting true edges
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Figure 4.5: Hub Graph with p = 10

n=200 n=400
TPR FPR TPR FPR

CoVES 1 1 0.0294 1 0.0311
CoVES 2 1 0.0275 1 0.0292
5-fold CV 1 0.7572 1 0.8406

BIC 1 0.7572 1 0.8406
StARS 1 0.2933 0.0025 0.0333 0
StARS 2 0.0256 0 0.0022 0

eBIC 1 0.7572 1 0.8406

Table 4.5: Edge Selection Results for Hub
Graph with p = 10

Figure 4.6: Hub Graph with p = 40

n=200 n=400
TPR FPR TPR FPR

CoVES 1 1 0.0048 1 0.0049
CoVES 2 1 0.0045 1 0.0049
5-fold CV 1 0.2608 1 0.2206

BIC 1 0.2602 1 0.2206
StARS 1 1 0.1446 1 0.0322
StARS 2 1 0.0146 1 0.0047

eBIC 1 0.2033 1 0.2136

Table 4.6: Edge Selection Results for Hub
Graph with p = 40
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Figure 4.7: Hub Graph with p = 50

n=200 n=400
TPR FPR TPR FPR

CoVES 1 1 0.0038 1 0.0038
CoVES 2 1 0.0039 1 0.0039
5-fold CV 1 0.235 1 0.1879

BIC 1 0.2345 1 0.1879
StARS 1 1 0.1342 1 0.1173
StARS 2 1 0.0196 1 0.0073

eBIC 1 0.1598 1 0.1719

Table 4.7: Edge Selection Results for Hub
Graph with p = 50

Figure 4.8: Hub Graph with p = 100

n=200 n=400
TPR FPR TPR FPR

CoVES 1 1 0.002 1 0.0016
CoVES 2 1 0.002 1 0.0017
5-fold CV 1 0.1805 1 0.126

BIC 1 0.1743 1 0.126
StARS 1 1 0.073 1 0.0704
StARS 2 1 0.0642 1 0.064

eBIC 1 0.0729 1 0.0828

Table 4.8: Edge Selection Results for Hub
Graph with p = 100
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and CoVES has the best performance for the smallest edge set selection among the

sparsistent procedures. From Tables 4.6-4.8, all the methods successfully find the true

edges, thus we focus on FPR for the performance comparison. CoVES outperforms

other methods in terms of having a small FPR and StARS and eBIC show a comparable

performance in the case of p = 100.

4.5 Discussion

In this chapter, we propose CoVES, a repeated subsampling method for edge se-

lection in GGM. It is an extension of Monte Carlo cross-validation for linear models

in Shao (1993) and CCV for GLM in Feng and Yu (2013). We conjecture that it can

asymptotically select an optimal graph with the smallest cardinality among the graph

structures including all the true edges. This will guarantee that the selected edge set

is the same as the true edge set in large samples when the true edge set is contained

in the solution path. For future research, it will be interesting to apply CoVES to the

glioblastoma multiforme cancer dataset studied by the Cancer Genome Atlas Research

Network (McLendon et al. 2008). From the gene expression data analysis, we intend to

infer a gene regulatory network which may help to explain complex associations among

genes.
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Rossouw, J., Du Plessis, J., Benadé, A., Jordaan, P., Kotze, J., Jooste, P., and Ferreira,
J. (1983), “Coronary risk factor screening in three rural communities. The CORIS
baseline study.” The South African Medical Journal, 64, 430–436.

Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics,
6, 461–464.

Shao, J. (1993), “Linear model selection by cross-validation,” Journal of the American
statistical Association, 88, 486–494.

Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 58, 267–288.

— (1997), “The lasso method for variable selection in the Cox model,” Statistics in
Medicine, 16, 385–395.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2004), “Sparsity and
smoothness via the fused lasso,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67, 91–108.

Van der Vaart, A. (2000), Asymptotic statistics, Cambridge University Press.

Wang, H. and Leng, C. (2007), “Unified LASSO estimation by least squares approxi-
mation,” Journal of the American Statistical Association, 102, 1039–1048.

Wang, H., Li, G., and Jiang, G. (2007a), “Robust regression shrinkage and consis-
tent variable selection through the LAD-Lasso,” Journal of Business and Economic
Statistics, 25, 347–355.

Wang, H., Li, R., and Tsai, C.-L. (2007b), “Tuning parameter selectors for the smoothly
clipped absolute deviation method,” Biometrika, 94, 553–568.

Wu, Y. and Liu, Y. (2009), “Variable selection in quantile regression,” Statistica Sinica,
19, 801.

Yang, Y. (2005), “Can the strengths of AIC and BIC be shared? A conflict between
model indentification and regression estimation,” Biometrika, 92, 937–950.

Yuan, M. and Lin, Y. (2007a), “Model selection and estimation in the Gaussian graph-
ical models,” Biometrika, 94, 19–35.

114



— (2007b), “On the non-negative garrotte estimator,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69, 143–161.

Zhang, C.-H. (2010), “Nearly unbiased variable selection under minimax concave
penalty,” The Annals of Statistics, 38, 894–942.

Zhang, H. and Lu, W. (2007), “Adaptive Lasso for Cox’s proportional hazards model,”
Biometrika, 94, 691–703.

Zhang, Y., Li, R., and Tsai, C. (2010), “Regularization parameter selections via gen-
eralized information criterion,” Journal of the American Statistical Association, 105,
312–323.

Zhao, P. and Yu, B. (2007), “On model selection consistency of Lasso,” Journal of
Machine Learning Research, 7, 2541–2563.

Zhao, T., Liu, H., Roeder, K., Lafferty, J., and Wasserman, L. (2012), “The huge
package for high-dimensional undirected graph estimation in r,” Journal of Machine
Learning Research, 13, 1059–1062.
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