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ABSTRACT 

Rachel L. Redler: The impact of post-translational modifications on aggregation of Cu, Zn 
superoxide dismutase in amyotrophic lateral sclerosis 

(Under the direction of Nikolay V. Dokholyan) 

 

Aberrant conformers of disease-linked proteins have been proposed as cytotoxic agents in 

several late-onset neurodegenerative disorders, including Alzheimer’s disease and amyotrophic 

lateral sclerosis (ALS). Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1) are 

present in a subset of familial ALS (FALS) cases; most of these mutations destabilize the 

protein, although typically by a small margin relative to SOD1’s exceptionally high stability. 

Therefore, SOD1 with FALS-linked substitutions often misfolds and aggregates, adopting 

aberrant conformations that interact with numerous cellular components and disrupt their 

functioning, despite having a more stable folded state than would be expected for an 

aggregation-prone protein. This fact, together with the specific death of motor neurons late in life 

despite ubiquitous expression of mutant SOD1 since birth, implicates factors in the cellular 

environment as substantial contributors to the cytotoxicity of mutant SOD1 in FALS. One non-

genetic factor likely to influence misfolding and aggregation of SOD1 in human tissue is its 

susceptibility to abundant post-translational modifications, including phosphorylation and 

numerous oxidative modifications. We find that reversible oxidative modification of Cys-111 by 

the glutathione tripeptide destabilizes the native SOD1 homodimer, increasing the equilibrium 

dissociation constant of the WT dimer from low nanomolar to the low micromolar range, and 
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further destabilizes SOD1 containing a FALS-linked substitution within the dimer interface 

(A4V). Assessment of the effect of glutathionylation on dimer dissociation kinetics using surface 

plasmon resonance revealed that this modification causes minimal change in dimer dissociation 

rate; therefore, the increased Kd observed for glutathionylated WT and A4V SOD1 must result 

from slowed association of modified monomers. In addition to inducing dissociation of the 

native dimer, Cys-111 glutathionylation promotes the assembly of soluble non-native oligomers 

that contain an epitope specific to disease-relevant misfolded SOD1. Our findings suggest that 

soluble non-native SOD1 oligomers share structural similarity to pathogenic misfolded species 

found in ALS patients, and therefore represent potential cytotoxic agents and therapeutic targets 

in ALS. Furthermore, the induction of SOD1 misfolding and aggregation by glutathionylation 

represents a possible mechanism by which oxidative stress brought on by aging triggers the 

transition of SOD1 from its natively folded state to cytotoxic conformations.  
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CHAPTER ONE: INTRODUCTION 

ALS is a deadly neurodegenerative disorder 

 Amyotrophic lateral sclerosis (ALS) was first described by the noted French neurologist 

Jean-Martin Charcot in 1869, who connected the progressive paralytic syndrome with lesions in 

both white and grey matter of the central nervous system (CNS) (1). Over 140 years later, ALS is 

the most common adult-onset motor neuron disorder, affecting approximately 1-2 per 100,000 

people worldwide. Considering the short course of disease progression (death/tracheotomy 

typically within 2-5 years of diagnosis), 1 of every 800 individuals is expected to face ALS in 

his/her lifetime (2-4). 

As described by Charcot, ALS involves degeneration of the upper motor neurons (UMN) 

of the motor cortex and of the lower motor neurons (LMN), which extend through the brainstem 

and spinal cord to innervate skeletal muscle. Though the upper and lower motor systems are 

known to be interconnected, controlling voluntary muscle movement in concert, the primary site 

of dysfunction in ALS has long been a source of debate (5-7). Questions of UMN/LMN primacy 

aside, ALS is clearly specific for motor neurons and largely spares cognitive ability, sensation 

and autonomic nervous functions. Muscles controlling eye movement and the pelvic floor are the 

only skeletal musculature left unaffected. However, in a minority of cases (5-10%), patients also 

develop frontotemporal lobar dementia (FTLD). It has been suggested that a greater percentage 
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of patients experience some cognitive change (such as loss in executive function) without 

crossing the threshold required for a diagnosis of dementia (8). 

Clinical presentation varies but most commonly consists of weakness, fasciculations 

(twitching muscles), and/or hyperreflexivity of facial muscles (bulbar onset) or limbs (spinal 

onset). Interestingly, initial symptoms usually appear at a focal site and later spread along 

contiguous anatomic paths (9). Diagnosis is achieved by a combination of clinical examination 

and electromyography (EMG), in which positive sharp waves and fibrillation potentials provide 

evidence for active denervation. The El Escorial criteria were developed in 1990 and are still 

utilized to diagnose and classify ALS cases as “possible,” “probable,” or “definite” (10) (Figure 

1.1). Guidelines on implementation of the El Escorial criteria have been revised to place greater 

emphasis on electrophysiological abnormalities, which can be detected earlier and thus facilitate 

timely diagnosis (11). 

 

!
Figure 1.1. El Escorial criteria for diagnosis of ALS. UMN = upper motor neuron; LMN = 
lower motor neuron. 
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Etiology of ALS 

The majority of ALS cases (≈ 82%) are sporadic (SALS) (9), having no apparent 

heritability. Up to 5% of SALS cases are caused by mutations in the 43 kDa trans-activating 

response region DNA-binding protein (TDP-43). TDP-43 mutations have also been linked to ≈ 

3% of inherited, or “familial” ALS (FALS) (12). The most commonly-occurring mutations in 

FALS patients are found in the gene for Cu, Zn superoxide dismutase (SOD1) and account for 

approximately 20% of all FALS (13, 14). Most of these mutations are missense mutations that 

cause autosomal dominant ALS, except the D90A polymorphism, which can also behave as a 

recessive mutation (15). FALS-causative mutations have also been found in genetic loci 

corresponding to alsin, a guanine exchange factor for Rac1 that plays a role in cytoskeletal 

dynamics (16, 17); senataxin, a DNA/RNA helicase that may be involved in RNA processing 

(18, 19); vesicle-associated membrane protein-associated protein B (VAPB), which facilitates 

intracellular vesicular trafficking (20); and angiogenin (21-23) (Table 1.1). Some polymorphisms 

found in ALS 

patients do not 

segregate 

completely with 

disease and may 

represent 

genetic risk 

factors rather 

than causative 

mutations. 

!
Table 1.1. Genetic loci associated with ALS 
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Mutations in the neurofilament-heavy subunit (24, 25), vascular endothelial growth factor 

(VEGF) (26) and ciliary neurotrophic factor (CNTF) (27, 28) fall under this category. All genetic 

loci that have been reported as putative modifiers of ALS susceptibility are listed in the ALS 

Online Genetics Database (http://alsod.iop.kcl.ac.uk). 

There is evidence to suggest that specific environmental factors play a prominent role in 

the etiology of some ALS cases. Geographically-limited populations with dramatically increased 

ALS incidence, such as inhabitants of the Kii peninsula in Japan (29), the Chamorro people of 

Guam, Gulf War veterans (30, 31), and Italian soccer players (32), certainly lead one to suspect 

the environment as a potential modifier of disease susceptibility. There also have been reports of 

ALS in individuals with intense exposure to particular stressors, such as harsh chemicals and 

heavy metals (33, 34), viral infection (35), electrical shock (36) and traumatic nerve injury (37). 

Most of these reports, however, involve a very small number of cases and do not permit rigorous 

evaluation of these stressors as potential risk factors for ALS. 

 

SOD1-related pathology as a general model for ALS  

The discovery of SOD1’s role in FALS (14) offered the first insight into the molecular 

mechanisms of ALS and the study of SOD1-mediated pathology has contributed much to our 

current understanding of the disease. The majority of in vivo work has utilized transgenic mice 

expressing FALS mutants of human SOD, which develop a progressive motor neuron syndrome 

reminiscent of the human ALS phenotype (reviewed in (38)). The sporadic disease differs little 

clinically from SOD1-related FALS, leading to the widespread supposition that all cases of ALS 

share some common mechanism(s) of pathology (2, 39, 40).  



!

! 5!

!

Misfolding and aggregation is the most likely source of SOD1 toxicity 

SOD1 is a ubiquitous cytosolic enzyme whose primary function is the dismutation of the 

superoxide radical (O2
¯•) to a less oxidizing species (H2O2) via a bound Cu2+ ligand. Although 

this enzyme plays an important role as a cellular antioxidant, the ability of SOD1 mutants to 

selectively kill motor neurons is not linked to a loss of dismutase function. Not only do many 

FALS mutants retain enzymatic activity at or near wild type levels (41-43), SOD null mice do 

not exhibit neurodegeneration (44). Furthermore, the toxicity of SOD1 mutants cannot be 

rescued by co-expression of wild type SOD1 (45). This evidence has lead to widespread 

acceptance of the hypothesis that SOD1 mutants acquire a novel toxic property independent of 

their enzymatic function.  

Despite over 15 years of research, the mode(s) by which SOD1 mutants selectively kill 

motor neurons has not been clearly delineated. However, a large body of evidence implicates a 

common propensity to misfold and aggregate as the primary toxic gain of function. 

Destabilization of the native fold is an attractive hypothesis for SOD1 mutant pathogenicity, 

offering a plausible explanation for the common disease outcome of over 140 mutants spanning 

the sequence and structure. Early in silico studies by our laboratory predicted that a majority of 

SOD1 mutations would destabilize the native fold or quaternary structure (46), a trend that since 

has been verified experimentally (47-50). Especially severe destabilization caused by certain 

mutations could account for their inherently higher aggressiveness (short disease duration) (51, 

52). Indeed, several recent analyses of in vitro SOD1 mutant behavior and FALS patient survival 

showed that protein instability and increased aggregation rate correlated with decreased survival 

time (53, 54). Furthermore, the presence of SOD1-immunoreactive proteinaceous aggregates in 

SALS patient motor neurons (55-58) suggests that aberrant oligomerization of SOD1 could be a 
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common feature of ALS, regardless of genotype. It thus appears that ALS is a protein 

conformational disorder, akin to other neurodegenerative diseases such as Alzheimer’s, 

Parkinson’s and Huntington’s (2). 

 Though a primary role for SOD1 aggregation in FALS seems likely, deconstruction of 

the molecular determinants and mechanisms of this process is incomplete. SOD1 is an extremely 

stable enzyme in its fully mature, homodimeric form, remaining active in the presence of 6 M 

guanidinium or 8 M urea (59, 60). SOD1 owes its extraordinary stability largely to the 

coordination of Zn2+, which constrains the relatively unstructured electrostatic and zinc-binding 

loops, “tethering” them together and protecting the protein core, an eight-stranded Greek key β-

barrel (47, 61, 62) (Figure 1.2). The catalytic copper ligand and an intrasubunit disulfide bridge 

between Cys-57 and Cys-146 appear to contribute relatively little to monomer thermodynamic 

stability, but the latter modification constrains loop mobility and facilitates dimer formation (59, 

61, 63). Metal-bound, disulfide-oxidized SOD1 forms an exceptionally stable homodimer, with 

low nanomolar binding affinity (64, 65). These maturation events are mutually interdependent—

metal binding promotes disulfide bond formation, disulfide bond formation and metal binding 

promote dimerization, and dimeric SOD1 is more resistant to disulfide reduction/metal loss (61, 

64, 66).  

In vitro studies show that dimer dissociation is a necessary initiating step in SOD1 

aggregation (65, 67). The resultant monomeric SOD1 is more susceptible to the loss of the 

stabilizing zinc ligand and disulfide bridge (68, 69), leading to freer loop movement (70) and 

exposure of β-barrel edge strands (61, 71). Dynamical studies of wild type and FALS mutant 

SOD1 revealed a transient “excited state” whose population is enhanced by mutations and zinc 

loss, but unaffected by disulfide status (72). Increased surface hydrophobicity of metal-free,
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disulfide reduced mutant SOD1 was shown directly by Tiwari et al. using 1-anilinonaphthalene-

8-sulfonic acid (ANS), a fluorescent dye that binds to hydrophobic surfaces (73). Munch et al. 

obtained similar results using a different hydrophobic dye, Sypro Orange, and found that 

increased exposure of hydrophobic regions promotes aggregation (74). A general model of 

SOD1 aggregation in ALS has emerged in which dimer dissociation and subsequent metal loss 

(and/or disulfide reduction) induce structural distortions that favor assembly into non-native 

oligomers (oligomers other than the native homodimer) (Figure 1.3). FALS mutations promote 

aggregation by increasing the tendency of SOD1 to lose its stabilizing post-translational 

modifications and/or by decreasing the intrinsic stability of the apo-monomer (46, 48-50, 61, 75-

77). Substantial gaps remain in our understanding of the relation between SOD1 aggregation and 

ALS pathology. These include aggregate structure, mechanism of formation and toxicity. 

 

SOD1 aggregate structure 

No high-resolution structural information is available for misfolded monomeric SOD1 or 

non-native oligomers. The transient nature of many structurally-perturbed SOD1 species makes 

!
Figure 1.3. General mechanism of SOD1 aggregation. 
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their isolation for study impractical. However, misfolded dimeric or monomeric SOD1 can be 

detected using an antibody specific for residues 145-151, which are normally buried within the 

native dimer interface (78). SOD1 monomers with a more substantially disrupted fold can be 

tracked using an antibody recognizing the natively-buried residues of β-strand 4 (residues 42-48) 

(79). Chromatographic methods have also been utilized to isolate misfolded SOD1 using their 

affinity to hydrophobic resins (80). Continued study using these and similar methods will be 

useful in tracking the spatial and temporal distribution of misfolded SOD1 in cell culture, 

transgenic mouse models, and ALS patients, providing insight into the molecular determinants 

and cellular consequences of SOD1 destabilization.  

 Electron microscopic, immunohistological, and biochemical studies have shed some light 

on the structural properties of SOD1 aggregates. Both insoluble, detergent-resistant aggregates 

and soluble oligomers have been noted in cell culture, transgenic mice and in vitro (56, 57, 81-

83). These species contain metal-free SOD1 that is full-length and usually lacks the native 

disulfide bridge (84).  Aggregates formed in vitro under near-physiological conditions are often 

fibrillar and bind thioflavin T (ThT+, suggestive of amyloid character) (75, 85-87), while in vivo 

aggregates sometime appear amorphous or pore-shaped and do not always bind amyloid-

sensitive dyes (79, 82, 88-90). Soluble misfolded SOD1 populates a wide range of oligomeric 

states and also accumulates as non-native monomers, dimers or trimers (55, 80, 85). The 

instability of some soluble oligomers may preclude the use of static structural techniques, such as 

x-ray crystallography, to determine structural details, but solution-state methods such as nuclear 

magnetic resonance (NMR) or limited proteolysis, especially coupled with computational 

structural modeling, may yield insights into their conformations. 
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Mechanism of SOD1 aggregation  

The likelihood that misfolded SOD1 samples a multitude of conformational and energetic 

states also complicates detailed mechanistic study of oligomer formation. However, it is clear 

that post-translational modifications of the SOD1 polypeptide modulate oligomer formation to 

some extent. As discussed above, the native intramolecular disulfide bridge and metal binding 

both impart exceptional stability to SOD1 and, unsurprisingly, loss of these factors drives 

misfolding and aggregation. However, reduction of the native Cys57-Cys146 disulfide has been 

putatively linked to the initiation, but not elongation, of amyloid-like fibril formation in vitro 

(75, 86). Fully mature, but metal-free, SOD1 incubated at physiological pH and temperature can 

be induced to aggregate by disrupting noncovalent interactions with a chaotrope, but treatment 

with a reducing agent instead results in a 20-fold shorter lag period (86). Disulfide bond 

reduction, while apparently dispensible for fibril formation in vitro, may specifically accelerate 

nucleation. Indeed, the presence of a small amount of disulfide-reduced wild type or mutant 

SOD1 appeared to “recruit” disulfide-intact wild type SOD1 into fibrils without need for 

additional reducing agent (86). The mechanism by which disulfide-reduced SOD1 facilitates 

fibril nucleation has not yet been demonstrated, although the requirement of cysteines 57 and 

146 suggest that intermolecular cross-linking between these two residues may play a role (86). It 

is also unclear whether in vivo SOD1 aggregation, which is not always amyloid-like, proceeds by 

elongation of nuclei.  

 The two free cysteines in SOD1, at positions 6 and 111, also appear to be involved in 

SOD1 oligomer assembly. In vitro aggregation of metal-free wild type SOD1 coincides with a 

loss of free cysteines and oligomer formation is ablated by mutations at either or both sites (85, 

91), leading to the hypothesis that intermolecular disulfide cross-linking mediates 
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oligomerization. However, more recent studies in mutant SOD1 transgenic mice show that 

aberrant disulfide linkages are present only in large-scale aggregates appearing late in the disease 

(92, 93). A secondary role for intermolecular disulfide cross-linking in aggregation is 

unsurprising given the reducing environment of the cytosol and may be due to kinetic “trapping” 

of SOD1 in a misfolded state after an initial destabilizing trigger, such as Zn2+ loss or altered 

conformational dynamics resulting from mutation (76, 77). Cell culture experiments reveal a key 

role for Cys-111 in the promotion of SOD1 oligomerization, as mutation of this residue, but not 

Cys-6, attenuated oligomer formation and protected cells from mutant SOD1-mediated toxicity 

(94). 

 An emerging question in the study of mutant-mediated SOD1 aggregation is the extent of 

involvement of wild type protein. Since most FALS patients with SOD1 mutations are 

heterozygous, recent studies have utilized transgenic mice expressing both human wild type and 

FALS mutant protein to more accurately recapitulate SOD1 behavior in vivo. Co-expression of 

SOD1WT exacerbates the disease phenotypes of SOD1G93A (95, 96), SOD1G85R (97), SOD1L126Z 

and SOD1A4V mice (81), hastening the appearance of cellular pathologies and shortening survival 

times. The effect of the wild type protein on SOD1A4V mice is particularly dramatic; even though 

FALS patients with this mutation exhibit particularly rapid disease progression, mice expressing 

only SOD1A4V do not develop motor neuron disease within their lifetimes (42). The toxic effect 

of co-expressing wild type protein may be a simple issue of protein copy number. An earlier 

study of G85R mice (45) did not find any effect of human wild type co-expression on survival, 

but both SOD1G85R and SOD1WT were expressed at lower levels than in the more recent model 

(97). The observation that mutant SOD1 toxicity depends heavily on protein abundance, while 

not surprising, is troubling since nearly all mutant SOD1 transgenic mice dramatically 
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overexpress the protein (38). However, mice overexpressing SOD1WT alone, while exhibiting 

minor deficits in motor function, do not experience paralysis or die prematurely (96). Thus, 

FALS mutants clearly possess intrinsic pathogenicity independent of gene dosage. Mutant-wild 

type heterodimers and disulfide-linked aggregates containing both wild-type and mutant SOD1 

have been observed (81, 97), suggesting that wild type SOD1 is “recruited” into non-native 

oligomers by pathogenic mutants, possibly under conditions of oxidative stress. These studies 

present an incomplete picture of the role of SOD1WT in aggregation but highlight the need for 

further scrutiny of the physiological relevance of commonly-used transgenic mouse models. 

 

Toxicity of SOD1 aggregates 

While misfolding and aggregation has been convincingly linked to ALS pathogenesis, the 

species responsible for motor neuron death has not been identified. Insoluble inclusion bodies 

appear in brain stem and spinal cord coincident with symptom onset and accumulate 

progressively in the terminal stages (98-102), leading to an initial belief that large-scale 

aggregates are themselves toxic. However, the ability to detect soluble misfolded SOD1 led to 

the discovery that these non-native forms are present from birth (80, 103) and selectively 

enriched in motor neurons (78, 80) of FALS transgenic mice. It thus appears that small 

misfolded SOD1 may be the actual toxic culprit(s), present throughout life but causing symptoms 

only when cells can no longer keep their deleterious effects in check. In such a scenario, 

assembly of soluble misfolded SOD1 into relatively inert inclusions is expected to be 

neuroprotective, a phenomenon that has been demonstrated for aggregation of Aβ and huntingtin 

in Alzheimer’s and Huntington’s diseases, respectively (104-106). However, the relative 
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toxicities of small soluble oligomers and large-scale aggregates of SOD1 remain to be directly 

proven. Similarly, no consensus has yet been reached on the mode(s) by which non-native SOD1 

kills cells. The evidence at present, though sometimes contradictory, identifies a diverse set of 

targeted organelles, signaling pathways, and other cellular processes (107). On a subcellular 

level, ALS pathology is staggeringly complex and includes abnormalities in nearly all cellular 

compartments (Figure 1.4). Many of these are undoubtedly secondary effects or compensatory 

mechanisms for an initial dysfunctional “trigger,” the identification of which has remained 

elusive despite nearly 20 years of research on the molecular bases of ALS.  

 

!
Figure 1.4. Diverse pathological processes in SOD1-related FALS are highly 
interrelated and many stem directly from SOD1 misfolding/aggregation and 
cytosolic calcium overload. mutSOD1 = mutant SOD1; UTR = untranslated region; 
VDAC = voltage-dependent anion channel; ETC = electron transport chain; UPR = 
unfolded protein response; ROS/RNS = reactive oxygen/nitrogen species.  

!
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CHAPTER 2 

GLUTATHIONYLATION AT CYS-111 INDUCES DISSOCIATION OF WILD TYPE 
AND FALS MUTANT SOD1 DIMERS 

Introduction 

 Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder for which 

effective treatment is extremely limited. The majority of ALS cases have no known genetic 

cause, but substantial insights into the disease have been gained by the study of Cu/Zn 

superoxide dismutase (SOD1), mutations of which are linked to inherited, or familial, ALS 

(FALS). Mutant SOD1 appears to play a prominent role in FALS pathology through an acquired 

propensity to misfold and aggregate (1-5).  Notably, misfolded and/or aggregated wild type 

SOD1 has also been documented in patients with sporadic ALS (6, 7), suggesting that this 

enzyme can be induced to adopt toxic conformational states by non-genetic factors. Such a 

phenomenon was recently demonstrated for wild type SOD1: Bosco et al. found that oxidative 

modification of SOD1WT induced structural rearrangement and conformational similarity to the 

FALS-associated G93A mutant (6). Oxidative stress may thus represent a factor in the cellular 

environment that is capable of inducing SOD1 to adopt noxious misfolded conformations. 

 Oxidative stress is thought to be a factor in the pathogenesis of several neurodegenerative 

diseases, including Alzheimer’s disease, Parkinson’s disease and ALS (8, 9). Conditions of 

oxidative stress produce a shift in the cellular environment that is reflected in altered ratios of 

various redox couples, notably the tripeptide glutathione. Glutathione is a primary regulator of 

oxidizing species in the cell and protects against oxidative damage by acting as a reducing agent, 
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as well as by reversibly modifying proteins to prevent permanent oxidation (10, 11). Mixed 

protein-glutathione disulfides may later be removed by glutaredoxins, making protein S-

glutathionylation an important defense against irreversible oxidative damage to proteins (11). We 

recently found that SOD1 is heavily glutathionylated at cysteine-111 in human tissue, with the 

modified enzyme constituting nearly 50% of the pool of SOD1 in freshly-drawn erythrocytes 

(12). 

SOD1 misfolding and aggregation is initiated by dissociation of the native homodimer, 

leaving monomers more prone to loss of the stabilizing zinc ion (13-15). As such, dimer 

dissociation is a critical first step in the pathway to SOD1 aggregate formation. In light of our 

finding that a major fraction of SOD1 in human cells is glutathionylated at cysteine-111, a 

residue proximal to the dimer interface (12), we considered it pertinent to evaluate the influence 

of this modification on SOD1 dimer stability. We find that cysteine-111 glutathionylation has a 

profound effect on the dimer stabilities of wild type SOD1 and the FALS mutant A4V, and that 

this effect is attributable to decreased association rate (kon). Using Discrete Molecular Dynamics 

(DMD) simulations, we show that glutathionylation affects specific interface contacts in the 

SOD1 dimer, offering structural insight into the experimental differences we observe in 

measurements of dimer stability.  

 

Methods 

Expression and purification of SOD1 variants  

Wild type and mutant variants of SOD1 were produced in S. cerevisiae and isolated as 

previously described (12). After the final remetallation step, samples were separated by anion-
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exchange chromatography using a MonoQ column (GE Healthcare), which resolves two 

populations of SOD1 isolated from S. cerevisiae. µ-ESI-FT-ICR-MS analysis shows that SOD1 

eluted at lower ionic strength is primarily unmodified, while the protein eluted at higher ionic 

strength is enriched >8-fold in the glutathione modification (12). The degree of enrichment is 

estimated by comparing mass spectrum intensities of modified and unmodified SOD1 in the 

high- and low-charge populations. By comparing the ratio of intensities for unmodified and 

modified SOD1, we control for any differences in ionization of these two species. Assuming 

equal ionization of SOD1 with and without glutathione, approximately 75% of SOD1 monomers 

in the high-charge population are glutathionylated, and over 90% of SOD1 dimers are expected 

to be modified on one or both subunits. The glutathione-enriched population eluted at high ionic 

strength is referred to as glutathionylated SOD1 (GS-SOD1).  

 

Size exclusion chromatography  

 Purified samples of SOD1 at 88 or 8.8 µM in a buffer containing 20 mM Tris, 150 mM 

NaCl, pH 7.8 were applied to a Superdex 200 PC 3.2/30 column (GE Healthcare) equilibrated in 

the sample buffer at 4 °C using a 20 µl sample loop. DTT treatment was administered by 

dialyzing samples overnight against sample buffer containing 1 mM DTT.  

 To estimate dissociation constants, A280 data from size exclusion chromatography (SEC) 

was deconvoluted to determine approximate concentrations of monomeric and dimeric SOD1. 

Diffusion and other band-broadening effects often create significant peak asymmetry in SEC 

chromatograms, and accurately modeling peak shapes is nontrivial (16). In all chromatograms 

from the Superdex 200 PC 3.2/30 column, even those of single-subunit standard proteins that do 
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not self-associate, there is skewness toward the trailing edge of peaks that increases with the 

quantity of protein loaded (17). To deconvolute peaks corresponding to monomeric and dimeric 

SOD1 while taking this skewness into account, we assume the A280 curve for unmodified wild 

type SOD1 as the peak shape for completely dimeric SOD1. This assumption is justified since 

SEC experiments are performed at an SOD1 concentration well above the previously reported 

value of Kd, which is 10 nM (15). This “standard” dimeric SOD1 curve is subtracted from each 

data set to be deconvoluted to yield the signal attributable to monomeric SOD1.  To control for 

the band-broadening effects of increased sample load, we subtract the curve for dimeric SOD1 

collected at equivalent total protein concentration. The concentrations of monomeric and dimeric 

SOD1 in each sample are then calculated using: 

[M ]= AM
AM + AD

×[D]total ×2  

[D]= AD
AM + AD

×[D]total  

where [M] and [D] are the concentrations of SOD1 monomer and dimer, respectively in the 

equilibrated sample; AM and AD are the areas under the curves corresponding to monomeric and 

dimeric SOD1, respectively; and [D]total  is the starting concentration of dimeric SOD1 (88 or 8.8 

µM). Kd is then calculated usingKd =
[M ]2

[D]
. A Kd of 10 nM for unmodified SOD1 (15) 

corresponds to monomer concentrations of 0.93 and 0.29 µM at equilibrium when the initial 

dimer concentrations are 88 and 8.8 µM, respectively, as calculated using: 

0.01µM =
[M ]2

[D]total − 2[M ]
 



!

! 30!

!

Hence, the maximum contribution of unmodified SOD1 dimer dissociation to the estimated 

monomer population for GS-SOD1 is less than 5% (see Figure 2.1b). 

 

Determination of dimer dissociation rate constants using surface plasmon resonance  

Wild type and mutant SOD1 dimers were biotinylated on a single subunit as previously 

described (13); briefly, SOD1 was incubated with a primary amine-reactive biotinylating agent 

(EZ-Link NHS-LC-LC Biotin, Pierce) for 30 minutes at 25°C and brought to 20 mM Tris, 150 

mM NaCl, pH 7.8 using a 1 ml Sephadex G-25 medium spin column. Dimer dissociation was 

monitored by surface plasmon resonance (SPR) using a Biacore 2000 instrument with 

biotinylated SOD1 dimers immobilized on a streptavidin-coated flow cell (sensor chip SA or 

Biotin CAPture Kit, GE Healthcare). Biotinylated SOD1 at approximately 40 µM was loaded 

onto the surface at 5 µl/minute until achieving a signal gain of 1500 – 2500 response units (RU), 

at which point the dissociation reaction was initiated by flowing SOD1-free buffer over the 

surface. Biotinylation and SPR measurements were conducted at 25 °C and biotinylated SOD1 

was stored at 4 °C until use. 

 Measuring kinetics of very slow reactions using SPR is complicated by non-covalent 

interactions of buffer components with the chip surface, resulting in signal drift over time (18). 

We corrected for this drift by subtracting the signal from a reference streptavidin surface from 

each data sat, as well as by calculating rate constants using the Guggenheim method (19), which 

removes the need for an accurate infinite time value. For SOD1WT and SOD1I112T, 5000 s of 

Guggenheim data (dRU/dt) were fit using the equation for double exponential decay, excluding 

the first 1000 s that were typically noisy. Since the A4V mutant dissociates rapidly, data fitting 
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was performed for the first 1000 s only. While SOD1 dimer dissociation is a first order process, 

an additional, fast decay was present in all reactions, evidenced by the comparatively poor fit of 

a single exponential. We therefore fit SPR data to a double exponential decay, and the rate 

constant for dimer dissociation was taken to be that of the process that accounted for the majority 

of signal loss (>70%). The half time of the minor exponential function was invariably between 1 

and 15 minutes, and accounted for approximately 5 - 30% of the signal loss during the reaction 

(Table 2.1). Due to the consistent presence of this process across all reactions, we conclude it to 

be an instrumental artifact, or perhaps the dissociation of transient noncovalent interactions 

 Average fast rate (s-1, n = 3) Average contribution of fast 
rate (%, n = 3) 

WT 1.60 x 10-3 ±  3.7 x 10-4 3.8  ±  0.7 

GS-WT 2.23 x 10-3 ±  9.3 x 10-4 4.6  ±  2.9 

I112T 1.27 x 10-3 ±  2.2 x 10-4 9.2  ±  2.9 

GS-I112T 1.03 x 10-3 ±  0.7 x 10-4 16.4  ±  1.3 

A4V 1.10 x 10-2 ±  2.1 x 10-3 31.2  ±  3.7 

GS-A4V 1.20 x 10-2 ±  1.7 x 10-3 15.8  ±  10.0 

Table 2.1. Average values for the rate and contribution of the artificial fast decay 

obtained by double exponential fit to Guggenheim data. The derivative of raw SPR data 

was fit to a double exponential: 

   (1) 

Average rates are listed ± S. D. The contribution of each rate is calculated using:  

  (2) 

where t0 is the initial time value of the data set fit using Eq. 1. 

!
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between non-immobilized and immobilized SOD1 dimers following the transition from sample 

loading to buffer flow. Such observations have been made previously concerning SPR 

measurements (20). 

  

Comparison of SOD1 monomer stability using thermal denaturation monitored by circular 

dichroism (CD) spectroscopy 

SOD1 variants with and without Cys-111 glutathionylation were analyzed using a Jasco 

J-815 CD spectrometer (Jasco Inc. Easton, MD). Yeast-expressed SOD1 mutants were dialyzed 

overnight against 10 mM phosphate buffer and diluted to 0.2 mg/ml for analysis. Sample spectra 

were taken at 20 °C and 96 °C and the major loss of signal occurred at 230 nm. Upon cooling to 

20 °C, the decrease in ellipticity at 230 nm was reversible for all samples to within 65 – 85% of 

the initial value (Figure 2.4a). All subsequent unfolding experiments were temperature ramps 

from 20 °C to 96 °C monitored at 230 nm by 1 °C increments with a 5 s dwell time at each. 

Dialysis buffer was used as a blank. To obtain apparent melting temperature Tm (Tm
*) values, 

blank-corrected thermal melting data were fit to a modified form of the van’t Hoff equation, as 

previously described in (21). This equation includes parameters for the melting transition as well 

as the baselines corresponding to the native and denatured states (22): 

θ(T ) = anT + bn + (adT + bd )K
1+K

 

where Θ(T) is the observed ellipticity at a given temperature T; an(ad) and bn(bd) are the slopes 

and intercepts, respectively, of the baselines corresponding to the native (and denatured) states; 

and K is the equilibrium constant for unfolding: 
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K = e
−ΔGu
RT  

where ΔGu is the difference in Gibbs free energy between the native and denatured states at a 

given temperature T, and R is the universal gas constant. ΔGu was calculated according to the 

Gibbs-Helmholtz equation (23): 

ΔGu = ΔHu(1−
T
Tm
)−ΔCu[(Tm −T )+T ln(

T
Tm
)]  

where Tm is the temperature at which ΔGu=0, and ΔHu and ΔCu are the changes in enthalpy and 

heat capacity, respectively, associated with thermal denaturation. Data were fit with the 

parameters an, ad, bn, bd, ΔHu, ΔCu, Tm using non-linear least-squares regression, and Tm values 

were reported as apparent Tm (Tm
*) due to the incomplete reversibility of the unfolding transition. 

 

All-atom DMD simulations of glutathionylated SOD1 mutants  

 To obtain the structures of post-translationally modified mutant and wild type SOD1, we 

use the known X-ray crystallographic structure of wild type SOD1 (PDBID: 1SPD) as a 

reference structure, and constrain glutathione molecules to their respective SOD1 residues. 

Mutations are made to these structures using the Eris suite (24), avoiding changes to residues 

participating in the metal-binding, glutathionylation, or disulfide bond interactions. The overall 

structure energy was minimized using an all-atom protein model with discrete molecular 

dynamics (DMD) simulations (25-27). 
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We perform equilibration and production simulations using DMD. DMD is a molecular 

dynamics engine that uses discrete potentials in place of continuous potentials, which transforms 

the simulation into simple calculations of ballistic equations, increasing the speed and efficiency 

of the simulation and extending sampling of conformational space. Each system is equilibrated 

for 500 ps at 226 K with a heat exchange occurring every 5 fs. We conduct 50 ns equilibrium 

simulations of dimeric SOD1 277 K. We perform simulations for each case of mutant or wild 

type, both the glutathionylated and unmodified structures, resulting in 6 cases total (2 

(glutathionylated or unmodified) × 3 (two mutants and wild type)).  

 

Dimer interface contact maps  

In our DMD simulations, we define two residues as being in contact in the dimer 

interface if two Cα atoms of opposing chains are within 10 Å of each other. At each simulation 

snapshot (5 picoseconds of simulation time), we evaluate the contacts present between the two 

monomers. We then normalize the count between every pair of residues over the entire 

simulation. 

 

Calculation of dimer interface area  

We sample even intervals of single-temperature simulations for structure snapshots of 

unmodified and glutathionylated SOD1WT, SOD1A4V, and SOD1I112T and for each snapshot 

calculate the solvent accessible surface area (SASA) of each individual monomer and of the 

dimer. The SASA of the dimer is subtracted from the sum of the SASAs of the monomers, 
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resulting in the total buried area of both monomers in the respective dimer structure. We divide 

this resulting total area by two (since two monomers form the interface) to obtain the dimer 

interface area. All SASAs are calculated using the Gaia suite (28). 

 

Results 

SOD1 wild type and mutant dimers are destabilized by glutathionylation under physiological 

conditions  

Size exclusion chromatography (SEC) analysis of GS-SOD1WT reveals the substantial 

destabilization of dimers by this physiologically prevalent modification (Figure 2.1). GS-SOD1 

used in these assays was isolated from the endogenous pool of enzyme expressed in S. cerevisiae 

using ion-exchange chromatography, yielding a population that is heavily (~8-fold) enriched in 

glutathionylated protein (12). While some unmodified enzyme remains in this sample, we do not 

perform additional in vitro glutathionylation of SOD1, in order to avoid non-physiological 

modification of cysteine-6 (12). Hence, we report a lower limit for the destabilizing effect of 

cysteine-111 glutathionylation.  

 We examined the effect of cysteine-111 glutathionylation on the SOD1 monomer-dimer 

equilibrium by assaying the oligomeric state of unmodified and glutathionylated SOD1 at 

physiological pH and concentration (estimated as 50 – 100 µM in neurons (29, 30)). Unmodified 

wild type SOD1 is completely dimeric under these conditions (thick solid curve, Figure 2.1a), in 

agreement with the previously reported Kd of 10 nM for wild type SOD1 expressed in S. 

cerevisiae (15). Glutathionylation of SOD1WT results in the appearance of a significant 

monomeric population (thick dashed curve, Figure 2.1a). To estimate Kd, we must deconvolute 
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the overlapping peaks for dimeric and monomeric SOD1. We estimate the monomer contribution 

 

Figure 2.1. Wild type SOD1 dimers are destabilized by Cys-111 glutathionylation. (a) 
Size exclusion chromatography at physiological [SOD1] (88µM) shows marked 
destabilization of GS-SOD1WT that is reversed by treatment with DTT to remove the 
glutathione moeity. Solid lines indicate unmodified SOD1 while dashed lines represent 
GS-SOD1. Broad and fine lines show these species before and after treatment with DTT, 
respectively. The elution volumes corresponding to dimeric (~1.74 ml) and monomeric 
(~1.89 ml) SOD1 are indicated above the panel. Experiments were performed at least in 
duplicate. (b) Comparison of dimeric and monomeric populations of SOD1 at low and 
high concentration. Dashed lines show A280 data for each species (reproduced from panel 
(a)), which was deconvoluted as described in Materials and Methods. Solid and dotted 
lines show curves corresponding to dimeric and monomeric SOD1, respectively. 
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while accounting for peak skewness (see discussion in Materials and Methods) by assuming the 

peak shape for unmodified SOD1 (solid curves, Figure 2.1b) to be characteristic of dimeric 

SOD1. By removing the contribution of this curve from the observed A280 (dashed curves, 

Figures 2.1b and 2.2b), we obtain the signal attributable to monomeric SOD1 (dotted curves, 

Figures 2.1b and 2.2b). We estimate the Kd of the GS-SOD1WT homodimer to be approximately 

10-20 µM, which represents an increase of approximately 1000-fold over that of the extremely 

stable unmodified enzyme (previously reported as 10 nM (15)). SOD1A4V is also destabilized by 

glutathionylation, experiencing an approximately 30-fold increase in Kd (Figure 2.2). In contrast, 

SOD1I112T stability is unaffected by this modification, remaining dimeric when glutathionylated 

(Figure 2.2a). The mean elution volume for monomeric SOD1A4V is slightly lower (~1.84 ml) 

compared to that of the wild type (~1.89 ml). This mutation is reported to increase the radius of 

gyration of monomeric SOD1 (31), accounting for the decrease in mobility in SEC. The 

differences in oligomeric state between unmodified and glutathionylated SOD1A4V and SOD1WT 

are observed in replicate experiments and are abrogated by treatment with DTT to remove the 

glutathione moiety (thin curves, Figures 2.1a and 2.2a), implying that the observed 

destabilization is due to the presence of the glutathione modification at cysteine-111. All SOD1 

species remained dimeric after DTT treatment (Figures 2.1a and 2.2a), demonstrating that only 

the mixed SOD1-glutathione disulfide was reduced, leaving the native intramolecular disulfide 

intact. This fact is unsurprising since SOD1 retains this disulfide (between Cys-57 and Cys-146) 

in the reducing environment of the cytosol. 
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Figure 2.2. Effect of Cys-111 glutathionylation on Kd of selected FALS mutants. 
(a) Size exclusion chromatography at physiological [SOD1] (88µM) shows 
destabilization of GS-SOD1A4V that is reversed by treatment with DTT to remove the 
glutathione moeity. The oligomeric state of SOD1I112T (bottom panel) is relatively 
unaffected by modification. Solid lines indicate unmodified SOD1 while dashed lines 
represent GS-SOD1. Broad and fine lines show these species before and after 
treatment with DTT, respectively. The elution volumes corresponding to dimeric 
(~1.74 ml) and monomeric (~1.89 ml) SOD1 are indicated above the panel. 
Experiments were performed at least in duplicate. (b) Comparison of dimeric and 
monomeric populations of SOD1A4V and GS-SOD1A4V. Dashed lines show A280 data 
for each species (reproduced from panel (a)), which was deconvoluted as described in 
Materials and Methods. Solid and dotted lines show curves corresponding to dimeric 
and monomeric SOD1, respectively. 
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Effects of glutathionylation on dimer dissociation kinetics  

To measure the effect of glutathionylation on the rate of SOD1 dimer dissociation, we 

use surface plasmon resonance (SPR) to monitor the dissociation of biotinylated SOD1 dimers 

immobilized to a streptavidin-coated sensor chip (13). We observe a clear distinction between 

the effects of the A4V and I112T mutations on dissociation kinetics. SOD1112T has an average 

half time of 1.10 hours, compared to 1.29 hours for the wild type, a difference that is within 

experimental error (Figure 2.3). SOD1A4V dimers, by contrast, dissociate significantly faster than 

the wild type, with an average half time of 4.51 minutes (Figure 2.3). This observation is in stark 

agreement with the common classification of A4V as a mutation that particularly affects dimer 

 

Figure 2.3. Dimer dissociation rate constants for unmodified and glutathionylated 
SOD1. Dissociation of immobilized dimers was monitored by surface plasmon resonance. 
Guggenheim plots (50 s intervals) of data from representative experiments are shown in grey; 
colored lines indicate double exponential decay curves fitted to the data. All values are 
reported as the mean of triplicate experiments ± S. D.. 
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stability (32, 33), with the dimer dissociation rate constant koff for unmodified SOD1A4V nearly 

20-fold greater than that of the unmodified wild type. Glutathionylation has a minimal effect on 

dissociation rate for all SOD1 variants studied: koff values for unmodified and glutathionylated 

dimers do not differ significantly for the wild type and the A4V mutant. SOD1I112T shows a 

significant, but small (20%), increase in dimer dissociation rate as a result of glutathionylation. 

The minimal effect of glutathionylation on the dissociation rate constants (koff) of SOD1WT and 

SOD1A4V dimers cannot account for the significant destabilization at equilibrium revealed by 

SEC (Figures 2.1 and 2.2); thus, the effects of this modification on Kd are attributable to 

decreases in the association rate constant (kon) of modified monomers. 

 

Glutathionylation has little effect on SOD1 monomer stability  

We assess the effect of mutations and glutathionylation on SOD1 monomer stability 

using thermal unfolding experiments monitored by circular dichroism (CD). Because CD 

primarily reflects protein secondary structure content, we expect that changes in signal upon 

thermal denaturation of SOD1 are mainly attributable to the loss of β-strand structure as 

monomers unfold, rather than dissociation of the homodimer. The effect of glutathionylation on 

monomer unfolding is minimal for the wild type protein, but results in a modest decrease in 

apparent Tm for SOD1A4V (Figure 2.4). These results, in agreement with a computational study 

by Proctor et al. (34), indicate that glutathionylation primarily exerts effects on dimer stability 

while leaving monomer stability largely unchanged. 
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Structural effects of glutathionylation on SOD1 dimer interface  

Using DMD simulations, we show that dimer interface contacts are changed in the 

glutathionylated versus the unmodified structures. SOD1WT and SOD1A4V exhibit a general loss 

 

Figure 2.4. Effect of glutathionylation on monomer thermal stability. (a) Representative 
CD spectra of SOD1 before and after cooling shows reversible decrease in ellipticity at 230 
nm. (b) Representative curves for thermally-induced unfolding of unmodified (closed 
symbols) and glutathionylated (open symbols) wild type and mutant SOD1 monitored by 
circular dichroism at 230 nm. (c) Apparent Tm (Tm

*) values obtained by fitting blank-
corrected thermal melting data as described in Methods. Experiments were performed at least 
in duplicate; Tm

* values are reported as the mean of all experiments ± S.D.. 
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Figure 2.5. Effects of glutathionylation on the SOD1 dimer interface. (a) The top ten most 
frequently changed Cα interface contacts upon glutathionylation are highlighted with a three-
dimensional rod representation for SOD1WT, SOD1A4V, and SOD1I112T. Rod thickness is 
proportional to the change in frequency of the interaction. Blue rods represent a loss in 
frequency of the interaction; red rods represent a gain in frequency of the interaction. (b) 
Distributions of changes in frequency of Cα interface contacts upon Cys-111 
glutathionylation for SOD1WT, SOD1A4V, and SOD1I112T. Wild type SOD1 and the A4V 
mutant have distributions that are skewed towards loss of contacts, while the I112T mutant is 
balanced in loss and gain of contacts. (c) Distributions of dimer interface areas for unmodified 
(solid line) and glutathionylated (“GSH”, dashed line) SOD1WT, SOD1A4V, and SOD1I112T. 

!
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in overall interface Cα contacts, while the I112T mutant experiences a shift in Cα dimer interface 

contacts upon glutathionylation (Figures 2.5a-b). In SOD1I112T, residues that lose interface 

contacts are balanced by neighboring residues that gain contacts, resulting in an overall change 

in composition of the interface, without significantly changing the number of interface contacts. 

Interestingly, in wild type SOD1, we observe that, while the net number of Cα contacts decreases 

upon glutathionylation, the net number of Cβ contacts increases (Figure 2.6). This would indicate 

rearrangement of the side chains in the dimer interface in order to accommodate the glutathione 

moiety. We do not observe this effect in the A4V or I112T mutants, which have the same 

qualitative distribution of losses and gains in contact frequency upon glutathionylation in Cα and 

Cβ contacts. 

 This phenomenon brings into question the size of the dimer interface in each SOD1 

variant. We calculate the area of the dimer interface over the course of single-temperature 

simulations, and find that all three unmodified SOD1 variants show a single population, 

featuring an approximately Gaussian distribution around a central value of 750-800 Å2 for the 

interface area (Figure 2.5c). However, upon glutathionylation, a second population is present in 

SOD1WT and SOD1A4V near 150 Å2, while the dimer interface area distribution of SOD1I112T is 

relatively unaffected. This finding agrees with that of decreased Cα (backbone) contacts found in 

SOD1WT and SOD1A4V upon glutathionylation. 
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Figure 2.6. Comparison of Cα and Cβ dimer interface contacts. Distributions of changes in 
frequency of both Cα-Cα (backbone) and Cβ-Cβ (side-chain) dimer interface contacts upon 
Cys-111 glutathionylation for (a) wild type, (b) A4V, and (c) I112T SOD1. Wild type SOD1 
shows a reversal of behavior in the two types of contacts; the interface undergoes an overall 
loss of backbone contacts, but gains side-chain contacts, indicating the ability of the side-
chains to rearrange upon separation of the monomer backbones. This behavior is not observed 
in A4V or I112T SOD1, whose distributions have similar qualitative behavior between 
backbone and side-chain contacts. 

!
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Discussion 

SOD1 is abundantly glutathionylated at cysteine-111 in human tissue (12). Due to the 

proximity of this tripeptide moiety to the dimer interface, we hypothesized that it introduces 

steric clashes that favor dimer dissociation and/or hinder association of modified monomers. To  

distinguish these kinetic effects, we estimate the equilibrium dissociation constant Kd using size 

exclusion chromatography and measure the rate constant for dimer dissociation (koff) with 

surface plasmon resonance. Since the equilibrium dissociation constant Kd is equal to the ratio of 

the rate constants for dissociation and association, we can then deduce effects on dimer 

formation rate from these two parameters. Dimer dissociation precedes disulfide reduction and 

!
Figure 2.7. Summary of effects of Cys-111 glutathionylation on the stabilities of WT 
SOD1 and the FALS mutants I112T and A4V. Above, general schematic of SOD1 
aggregation pathway. Below, effect of glutathionylation on dimer dissociation rate (koff – 
reaction 1), monomer association rate (kon – reaction 2), and monomer thermal stability 
(3) for each SOD1 variant. For simplicity of representation, we condense metal loss, 
intramolecular disulfide reduction, and structural distortion of monomers into a single step 
(reaction 3). The effect of glutathionylation on kon is inferred from the measured effects on 

Kd (Figures 2.1 and 2.2) and koff  (Figure 2.3) using the relationship .  

!
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metal loss (13) (Figure 2.7), so the contribution of the latter processes and irreversible 

aggregation is minimal compared to the dimer dissociation reaction in our SEC (Figures 2.1 and 

2.2) and SPR (Figure 2.3) experiments. 

Glutathionylation has a dramatic effect on wild type dimer stability at equilibrium. The 

SOD1 homodimer is exceptionally stable, having low nanomolar binding affinity (12, 15). In 

agreement with these findings, the unmodified wild type enzyme is dimeric under the conditions 

of our assay (Figure 2.1a). In contrast, the Kd of GS-SOD1WT is increased by several orders of 

magnitude, to approximately 10-20 µM, such that there is appreciable (~20%) dissociation at 

physiological concentration (Figure 2.1b). Although GS-SOD1WT is destabilized at equilibrium 

relative to the unmodified enzyme, the rate of dimer dissociation does not differ significantly as a 

result of modification (Figure 2.3). We therefore conclude that glutathionylation destabilizes 

SOD1WT dimers by decreasing kon, the rate constant for monomer association. These results 

indicate a much greater destabilizing effect than we initially estimated for the glutathione 

modification (12). However, we previously estimated Kd using an activity assay to quantify 

SOD1 dissociation. This method of Kd estimation is predicated on the decreased activity of 

monomeric SOD1 due to loop disorder (35) and is sensitive enough for use at low protein 

concentrations that are unobservable by A280 (36). However, this method has the disadvantage of 

being an indirect measure of the oligomerization state, and is susceptible to interference by 

factors unrelated to monomerization that influence the mobility of active site loops. It may be 

that altered loop mobilities caused by glutathionylation result in dismutase-active monomeric 

SOD1, which would cause an underestimation of Kd using this method. SEC analysis, by 

contrast, is a simple and direct method for assessing the extent of dimer dissociation, and clearly 

demonstrates the striking destabilization of SOD1WT dimers by Cys-111 glutathionylation. 
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Glutathionylation also destabilizes SOD1A4V dimers. The Kd of this variant has 

previously been reported as 3 µM (32), which agrees with our calculated lower limit of 1 µM 

(Figure 2.2b). Modification by the glutathione moiety results in a significant shift toward 

monomeric SOD1 and an approximately 10-fold increase in Kd (Figure 2.2). As in the wild type, 

glutathionylation does not affect dissociation kinetics in SOD1A4V, indicating that destabilization 

of GS-SOD1A4V dimers occurs primarily through effects on kon. Glutathionylation may hinder 

monomer association in SOD1WT and SOD1A4V by sterically blocking the formation of certain 

interface contacts. Alternatively, glutathionylation at cysteine-111 may promote local structural 

rearrangements in these monomers that impede formation of interface contacts. The ~3.8°C 

decrease in apparent melting temperature of GS-SOD1A4V monomers (Figure 2.4) may provide 

evidence for this; however, it is also possible that structural differences exist that do not 

significantly alter secondary structural elements. 

To our knowledge, the stability of the I112T mutant of SOD1 has not previously been 

studied experimentally. Although SEC peaks for SOD1I112T show increased skewness compared 

to those of unmodified SOD1WT, all appear to be unimodal and centered at the elution volume of 

dimeric SOD1 (Figure 2.2a). This difference in peak shape may reflect increased conformational 

flexibility of SOD1I112T, resulting in a broader distribution of radii of gyration for the dimer. 

Alternatively, if this mutant has micromolar rather than nanomolar binding affinity, the peak 

could be skewed by the contribution of monomeric SOD1. Computational analysis of SOD1I112T 

thermodynamics showed that this mutation has increased dimer stability compared to the wild 

type (1), supporting the interpretation that this variant is solely dimeric under the conditions of 

our assay. Regardless of the effect of the I112T mutation itself, changes in dimer stability 

resulting from glutathionylation are clearly minimal (Figure 2.2a). In contrast to wild type SOD1 
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and the A4V mutant, glutathionylation of SOD1I112T dimers results in little to no effect on Kd 

despite a modest but statistically significant increase in the dissociation rate constant (Figure 

2.3). Modification may exert opposing effects on this SOD1 mutant, destabilizing the dimer but 

facilitating the re-association of modified monomers. 

DMD simulations reveal a structural basis for the distinct effects of cysteine-111 

glutathionylation on wild type and FALS mutant SOD1. SOD1WT and SOD1A4V experience a net 

loss of both dimer interface area and Cα interface contacts as a result of glutathionylation (Figure 

2.5), and these dimers are both destabilized exclusively by decreased kon. Therefore, some losses 

in interface Cα contacts may be indicative of structural changes that hinder monomer association 

(kon) rather than directly impacting the rate constant for dissociation (koff). In particular, a net 

loss of Cα contacts specifically indicates backbone movements that separate the two monomers, 

rather than simple rearrangement of the residue side-chains. The appearance of a significant 

smaller-interface population in the glutathionylated species of SOD1WT and SOD1A4V during 

simulations (Figure 2.5c) further indicates that this modification stabilizes a partially dissociated 

intermediate, as seen in (34). In the SOD1I112T dimer interface, glutathionylation results in a shift 

in interface composition rather than a net loss of Cα contacts (Figure 2.5a-b); likewise, no 

smaller-interface population is observed for GS-SOD1I112T (Figure 2.5c). For this variant, change 

in the dissociation constant Kd is minimal even though koff is increased. These trends raise the 

possibility that the identity, not quantity, of the residues participating in the dimer interface 

affects dissociation kinetics.  

 The late-onset nature of ALS suggests a connection to a natural process of aging that 

either allows the initiation of a previously suppressed pathology (e.g. SOD1 aggregation) or 

renders the organism less able to cope with an ongoing threat that was previously tightly 
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regulated. While symptom onset occurs in mid-life (>45 years) or later for the vast majority of 

ALS patients, disease duration is variable, even amongst patients with identical SOD1 mutations 

(2). Patients with the A4V mutation experience particularly aggressive motor function loss (< 2 

years average disease duration (2)) while I112T is apparently incompletely penetrant (not all 

individuals with this allele develop ALS (37)). The phenotypic heterogeneity of disease duration 

amongst those with identical SOD1 genotype implies that non-genetic environmental factors 

contribute significantly to mutant SOD1 pathogenicity. 

Oxidative stress, manifested as a dysregulation of reactive oxygen species (ROS) or 

reactive nitrogen species (RNS), is one such process. The levels of ROS and RNS are normally 

tightly regulated by a variety of enzymes, such as SOD1, and small molecule or peptide redox 

couples. Glutathione, one such redox couple, is present at a high concentration in the cytosol (up 

to 12 mM (38)) and protects against oxidative damage by acting as a reducing agent, as well as 

by reversibly modifying proteins to prevent permanent oxidation (10, 11). Protein S-

glutathionylation occurs more frequently under conditions of oxidative stress as a result of two 

mechanisms. In the first, thiyl radicals generated by oxidizing species react with reduced 

glutathione (GSH). Under oxidizing conditions, there also exists a greater proportion of cellular 

glutathione in the disulfide-linked oxidized form (GSSG), which modifies free cysteine residues 

by disulfide exchange.  

SOD1 is an enzyme that directly interacts with oxidizing species, converting superoxide 

to hydrogen peroxide, and glutathionylation is a common modification of SOD1 in human tissue, 

including that of ALS patients (12, 39). SOD1 is glutathionylated at a steady state level that 

likely reflects the immediate degree of oxidative stress occurring in the individual organism, 

rather than accumulating over the entire lifespan (discussed in (12)). Because a large fraction of 
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SOD1 from a variety of healthy human donors is glutathionylated (12), SOD1 glutathionylation 

alone is unlikely to cause ALS. The substantial drop in glutathionylated wild type dimer stability 

to micromolar affinity (Figure 2.1b), has not previously been observed even though this 

modification is prevalent in SOD1 from both human tissue and recombinant sources (12, 39, 40). 

Since enrichment of the glutathionylated protein by ion exchange is necessary to observe this 

destabilizing effect, it may be that the decreased kon we report is only associated with formation 

of dimers of two modified subunits.  

Given the central importance of dimer dissociation in the initiation of SOD1 aggregation 

(13, 14), the high levels of glutathionylated SOD1 expected to be present in an oxidatively 

stressed motor neuron could trigger or exacerbate dysfunction by substantially increasing the 

monomer population. A prolonged shift in the monomer-dimer equilibrium, especially in harsh 

conditions, would result in increased populations of metal-free, misfolded, and aggregated SOD1 

(Figure 2.6). It has been observed that Cys-111 mediates mutant SOD1 aggregation in a cell 

culture model of ALS and that overexpression of glutaredoxin-1 (which reduces both protein-

protein and protein-glutathione disulfides) or mutation of Cys-111 attenuate this toxic process 

(41). While initially interpreted as further evidence of the involvement of intermolecular 

disulfide bonds in aggregate formation (30, 42), these data also support the hypothesis that 

destabilization caused by Cys-111 glutathionylation promotes aggregation and cell death in ALS. 

The A4V and I112T mutant SODs are affected differently by glutathionylation, suggesting 

differing sensitivities of these SOD1 variants to an oxidizing intracellular environment. These 

differences could explain some of the variability in disease progression among the over 140 

mutations implicated in the familial form of the disease.  Furthermore, the significant 

destabilization of both wild type SOD1 and the FALS mutant A4V by glutathione suggests that 
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this modification could promote formation of non-native SOD1 oligomers in both sporadic and 

familial ALS cases. The modulation of SOD1 dimer stability by cysteine-111 glutathionylation, a 

post-translational modification linked to redox status, suggests a novel mechanism by which 

oxidative stress and SOD1 aggregation are interconnected in ALS pathology. 
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CHAPTER THREE 

NON-NATIVE SOLUBLE SOD1 OLIGOMERS CONTAIN A CONFORMATIONAL 
EPITOPE LINKED TO CYTOTOXICITY IN ALS 

Introduction 

Accumulating evidence supports a prominent contribution of misfolding and aggregation 

of SOD1 to the dysfunction and progressive death of motor neurons in ALS. Over 140 mutations 

(mostly missense) in the SOD1 gene have been identified in patients with familial ALS (FALS), 

most of which destabilize the native SOD1 homodimer and/or increase aggregation propensity 

(1, 2). Current evidence supports the pathogenic capacity of soluble misfolded SOD1, rather than 

the large insoluble aggregates that appear only near the onset of paralysis in ALS mouse models 

(3–7). However, little is known about the structural features of soluble non-native SOD1 

conformers or the factors in the cellular environment that influence misfolding and aggregation. 

Soluble misfolded WT SOD1 has been found in spinal cord from sporadic ALS patients that do 

not carry mutations in SOD1 (8, 9), demonstrating the sufficiency of non-genetic factors to 

induce formation of potentially toxic oligomers by SOD1.  

To identify misfolded SOD1 conformers with greatest relevance to ALS pathology, we 

probed isolated oligomeric species with a conformation-specific antibody (C4F6) to identify 

those with potential cytotoxicity. In FALS patients and mouse models, C4F6 specifically 

recognizes soluble SOD1 found only in disease-affected tissue, suggesting a connection between 
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FALS pathology and the as-yet unidentified epitope bound by C4F6 (7).  Here we show that 

higher-order non-native oligomers of mutant SOD1, but not dimers or monomers, contain the 

epitope recognized by the C4F6 antibody. To assess the impact of the cellular redox environment 

on formation of potentially toxic soluble oligomers, we determine the effect of a physiologically 

prevalent oxidative modification (glutathionylation at Cys-111) on oligomerization. Cys-111 

glutathionylation increases both abundance of soluble oligomers and exposure of the disease-

specific epitope recognized by C4F6, revealing a novel mechanism by which oxidative stress 

modulates potentially toxic SOD1 aggregation. Our results suggest that SOD1 acquires 

pathogenic features upon formation of soluble non-native oligomeric assemblies, indicating a 

particular relevance of these species to neuronal dysfunction in ALS. 

 

Methods 

Cloning, expression and purification of recombinant SOD1 from S. cerevisiae  

Mutagenesis of constructs for expression of human SOD1, expression in S. cerevisiae, 

and SOD1 purification were performed according to previously published methods (10, 11). The 

final step of purification of recombinant SOD1 is anion-exchange chromatographic separation 

using a MonoQ HR 10/10 column connected to an AKTA purifier system (GE Healthcare), 

which separates a population of predominantly unmodified SOD1 from one enriched in SOD1 

that is glutathionylated at Cys-111 (10). Samples were stored at -80°C in 20 mM Tris, 150 mM 

NaCl, pH 7.4 until use. 
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High-resolution mass determination of intact recombinant SOD1  

SOD1 sample buffer was exchanged with 10 mM ammonium acetate using 2 KDa 

VIVACON 500 filtration devices (Sartorius Stedim Biotech GmbH), after which samples were 

collected by centrifugation of the inverted concentrator body within a fresh tube. These samples 

were then diluted 1:10 in a 50% acetonitrile/49% water/1% formic acid mixture and directly 

infused into the LTQ Orbitrap Velos (Thermo Fisher Scientific) using a Picoview 

nanoelectrospray source (New Objective). Spectra were collected with the Orbitrap analyzer in 

positive ion mode at a resolution of 30,000 (at 400 m/z), with maximum ion injection time of 

200 ms, spray voltage of 5KV, and the automatic gain control (AGC) set to 2 × 105. Spectra were 

deconvoluted using Promass for Xcalibur, Ver. 2.5 SR-1 (Thermo Fisher Scientific). 

 

Time-resolved analytical size exclusion chromatography (SEC)  

Cu2+ and Zn2+ were removed from as-isolated remetallated SOD1 by dialysis against 50 

mM sodium acetate, 10 mM EDTA, pH 3.8 for 1.5 hours in the case of mutant SOD1 and 2 

hours in the case of the WT enzyme. Complete removal of copper and zinc was confirmed by 

inductively coupled plasma mass spectrometry (data not shown). Removal of EDTA and return 

to physiological pH were achieved by overnight dialysis against 20 mM Tris, 150 mM NaCl, pH 

7.4. All dialysis was performed at 4°C.  Demetallated (“apo”) SOD1 was brought to a 

concentration of 100 µM in 20 mM Tris, 150 mM NaCl, pH 7.4 and incubated in a 37°C water 

bath. At each indicated time point, an aliquot containing 64 µg of apo-SOD1 was removed, 

filtered using a 0.22 µm centrifugal filter and injected onto a Superdex 200 10/300 GL column 

(GE Healthcare) at 4°C equilibrated in 20 mM Tris, 150 mM NaCl, pH 7.4. 
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Estimation of molecular weight of oligomers using size exclusion chromatography combined 

with multi-angle light scattering (SEC-MALS) 

Apo-SOD1 incubated for 1 week under the pH, temperature, and ionic strength 

conditions listed above was analyzed using a DAWN HELEOS II light scattering instrument 

(Wyatt Technology), which detects scattered light at 18 angles with respect to the incident beam. 

The light scattering instrument is interfaced to an Agilent FPLC System with a connected 

Superdex 200 10/300 GL column (GE Healthcare), a T-rEX refractometer, and a dynamic light 

scattering module (Wyatt Technology). SEC separation and detection by MALS were performed 

at room temperature. Data were analyzed and weight average molar masses as a function of 

elution volume were determined using ASTRA software (Wyatt Technology) with the Zimm fit 

method, which assumes weak protein-solvent interactions (38). 

 

Measurement of C4F6 epitope exposure of isolated apo-SOD1 oligomer populations  

Apo-SOD1 oligomers were prepared by incubation at 100 µM in 20 mM Tris, 150 mM 

NaCl, pH 7.4 at 37°C for 1 week. Samples containing 640 µg of apo-SOD1 were filtered and 

separated by SEC as described above. Immediately following elution, individual oligomeric 

populations were collected and individually loaded onto PVDF membranes equilibrated in 20 

mM Tris pH 7.4 using a chilled Minifold I dot-blot system (S&S). Samples were blotted in 

duplicate simultaneously; one blot was immediately incubated with monoclonal antibody to 

misfolded SOD1 (C4F6, MediMabs) diluted 1:250 in blocking buffer (TBS-T with 5% (w/v) 

nonfat dry milk); the duplicate blot was stained with Ponceau S in 5% acetic acid to visualize 
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total protein loaded onto the membrane. Duplicate blotting was carried out in lieu of fixation 

with Ponceau S prior to incubation with primary antibody due to our observation of increased 

C4F6 reactivity following Ponceau S staining and destaining, as well as to minimize the time 

elapsed between isolation of oligomers by SEC and probing with C4F6. Blots were incubated 

with C4F6 overnight at 4°C and C4F6 binding was visualized using HRP-conjugated anti-mouse 

antibodies (GE Healthcare, Pierce, Millipore).  

To quantify abundance of individual oligomeric populations represented in SEC 

chromatograms, A280 data from Ve = 7.5 – 19 ml were deconvoluted into multiple single 

Gaussian distributions using Matlab (Mathworks), and the area under each Gaussian curve was 

calculated as a percentage of the total area under all Gaussian curves in the deconvoluted 

chromatogram. For comparison of oligomeric populations in glutathionylated and unmodified 

apo-SOD1, oligomers were grouped based on Ve at the center of the Gaussian curve obtained by 

deconvolution: O1 consists of oligomers eluting between 14 and 15 ml, O2 consists of oligomers 

eluting between 11.3 and 13.5 ml, O3 consists of oligomers eluting between 9.2 and 11.2 ml, and 

Vo consists of oligomers eluting between 8.0 and 9.0 ml (corresponding to the approximate void 

volume of the column). 

 

Effect of reducing agent treatment on apo-SOD1 oligomer stability 

Oligomers of apo-SOD1 were prepared as described above and DTT was added to a final 

concentration of 1 mM to the sample and SEC running buffer. Aliquots from the mixture of 

oligomers were separated by SEC as described above immediately following addition of DTT 

and after two hours and overnight incubation at room temperature.  
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Results 

Formation of metastable soluble oligomers by apo-SOD1 with FALS-linked substitutions 

To identify potentially disease-relevant metastable SOD1 oligomers, we incubated apo-

SOD1 at physiological pH, temperature, ionic strength, and SOD1 concentration for up to one 

week, separating the reaction mixture by SEC at multiple time points. We use recombinant 

protein in which SOD1’s native free cysteines (Cys-6 and Cys-111) are retained, as they have 

!
Figure 3.1. Formation of metastable soluble non-native oligomers of metal-free SOD1. 
(A) Positions of the glutathione modification and of the FALS-linked amino acid substitutions 
included in the current study; residue positions are indicated by colored spheres on the 
background of the WT SOD1 crystal structure (PDB ID: 1spd). (B) SEC chromatograms 
showing aggregation of 100 µM apo-WT SOD1 at 37°C in 20 mM Tris, 150 mM NaCl, pH 
7.4 for up to 1 week. (C) Aggregation of 100 µM apo-SOD1 with the indicated FALS-linked 
amino acid substitutions under identical conditions as described for (B). Insets show 
chromatograms with expanded y-axes.!
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been demonstrated to play crucial roles in oligomerization (12, 13). Metal-free (“apo”) SOD1 is 

utilized in all experiments since it is widely considered to be the common precursor to misfolded 

and aggregated species (4, 14, 15). We analyze soluble oligomers because of their particular 

relevance to ALS pathology; apo-SOD1 remains soluble throughout the 1-week incubation 

period, as evidenced by the minimal changes in total A280 from SEC chromatograms (Figures 

3.1B, 3.1C). WT SOD1 (Figure 3.1B) and SOD1 containing the FALS-linked G93A and G37R 

substitutions (black curves, Figure 2B) have low propensities to form soluble oligomers under 

these conditions, whereas SOD1 with the A4V or I112T substitutions shows substantial 

oligomerization (Figure 3.1C). Analysis of SEC-separated oligomers with multi-angle light 

scattering is consistent with the presence of native-like dimers, non-native-like expanded dimers,  

trimers, tetramers, and hexamers (Figure 3.2). The presence of an expanded dimer is inferred 

from the SEC-MALS data based on the presence of a peak eluting before the native-like dimer 

(indicating its larger hydrodynamic radius), yet having a calculated molecular weight equivalent 

!
Figure 3.2. Estimation of apoSOD1 oligomer size by SEC-MALS. Weight average molar 
masses of metastable soluble SOD1 oligomers separated by SEC, as determined by multi-angle 
light scattering (SEC-MALS). Black curves: Absorbance at 280 nm (A280) vs. elution volume 
(Ve); colored curves: molecular weight (MW) calculated at each Ve from the intensities of 
scattered light at multiple fixed detectors. Dashed grey lines indicate approximate theoretical 
molecular masses for SOD1 oligomers.!
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to that of the native-like dimer (red vs. cyan curves, Figure 3.2). In the case of the aggregation-

prone A4V and I112T variants, small soluble oligomers are apparent by 2 hours of incubation at 

37°C (Figure 3.1C) and remain detectable throughout the 1-week incubation period. The smallest 

non-native oligomers (those eluting near 13 ml and 14.5 ml following injection onto the gel 

filtration column) increase in abundance for the first 8-24 hours, after which their populations 

decline concomitant with the appearance of higher-order species (Figure 3.1C).  

 

Glutathionylation at Cys-111 induces monomerization of apo-SOD1 and increases propensity to 

form non-native oligomers  

Protein S-glutathionylation is a reversible post-translational modification that serves, in 

addition to regulatory and signaling functions, as a protective measure against irreversible 

oxidation of cysteines (16). SOD1 glutathionylated at Cys-111 is abundant in SOD1 isolated 

from human tissue or expressed in S. cerevisiae, can be partially resolved from the unmodified 

enzyme by ion-exchange chromatography, and destabilizes the holo-SOD1 dimer (10, 17–19). 

To assess the effects of Cys-111 glutathionylation on assembly of soluble SOD1 oligomers, we 

analyzed the impact of this modification on the oligomeric distributions of soluble WT and 

mutant apo-SOD1. For each SOD1 variant studied, a predominantly unmodified SOD1 

population and one enriched in glutathionylated SOD1 (GS-SOD1) (Figure 3.3A) were incubated 

at physiological pH, temperature, ionic strength, and SOD1 concentration. We assess the effect 
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Figure 3.3. Cys-111 glutathionylation promotes the formation of non-native apo-SOD1 
oligomers. (A) Analysis of full-length SOD1 by mass spectrometry. For each SOD1 variant 
studied, deconvoluted mass spectra are shown for two populations separated by ion exchange 
chromatography: one in which unmodified SOD1 is the predominant species (black spectra), 
and one enriched in post-translationally modified SOD1 (red spectra). Labeled masses 
correspond to the average masses obtained by deconvolution of spectra using ProMass for 
Xcalibur software. (B) Left, SEC chromatograms showing populations of soluble metastable 
oligomers of unmodified (black) and glutathionylated (red) apo-SOD1 incubated at 100 µM 
(initial dimeric concentration) for 1 week at 37°C in 20 mM Tris, 150 mM NaCl, pH 7.4. Right, 
oligomeric populations quantified by deconvolution of SEC data and integration of Gaussian 
curves corresponding to individual oligomeric populations. Bar heights represent average 
values and error bars represent S. D. from at least 3 independent experiments. Student’s t-test 
was used to compare the abundance of oligomers in the presence and absence of Cys-111 
glutathionylation. * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001.  
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of glutathionylation on oligomer formation by comparing these two populations of recombinant 

human SOD1, which are modified endogenously as the protein is expressed in S. cerevisiae. The 

GS-SOD1 population is not subjected to further in vitro glutathionylation in order to avoid 

modification of Cys-6, which is not glutathionylated in SOD1 isolated from human tissue (10).  

For the wild type as well as all FALS mutants studied, glutathionylation of apo-SOD1 

results in a significant increase in the proportion of soluble protein present as monomers (Figure 

3.3B). Glutathionylation also significantly increases the abundance of several non-native higher-

order species, especially in G93A SOD1 (Figure 3.3B). In all variants except A4V SOD1, 

glutathionylation significantly increases formation of the oligomeric population eluting just prior 

to the native-like dimer: O1, the putative expanded dimer (Figures 3.3B, 3.2). 

 

Metastable oligomers show enhanced exposure of an epitope common to SOD1 found in ALS 

patients 

Though soluble misfolded SOD1 (as opposed to that which is present in insoluble 

aggregates) is increasingly implicated in motor neuron dysfunction (4, 5, 20, 21), the potential 

cytotoxicities of individual oligomeric species have not been evaluated. Direct determination of 

the effects of specific oligomers on motor neuron viability is complicated by the difficulty of 

delivering metastable protein assemblies to the cytoplasm of living cells. To begin to evaluate 

the cytotoxic potential of the apo-SOD1 oligomers we isolate by SEC, we probed for exposure of 

an epitope known to be exposed on misfolded SOD1 in disease-affected cell populations of ALS 

patients (7, 8). The various apo-SOD1 oligomeric populations isolated by SEC and dimeric holo-

SOD1 were bound to PVDF membranes and probed with the C4F6 conformation-specific 
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antibody (Figure 3.4). The species with 

greatest reactivity to C4F6 are higher-

order non-native oligomers, those 

eluting at post-injection volumes 

ranging from the column void to ~14.5 

ml, just prior to elution of native-like 

SOD1 dimer (Figure 3.4). Monomeric 

apo-SOD1 is not C4F6-reactive in any 

of the SOD1 variants studied, while 

dimeric holo- and apo-SOD1 is faintly 

reactive in some cases. Oligomers of 

glutathionylated apo-SOD1 were also 

probed with C4F6 to determine 

whether this modification induces 

structural rearrangements that enhance 

exposure of the disease-specific 

epitope. In the case of SOD1 with the 

FALS-linked A4V or I112T 

substitutions, glutathionylation 

enhances exposure of the C4F6-

recognized epitope in higher-order 

soluble oligomers (Figure 3.4), 

suggesting that glutathionylation 

!
Figure 3.4. Non-native oligomers of SOD1 are 
potentially toxic in ALS.  Dot blots of apo-SOD1 
oligomers isolated by SEC and probed with the 
C4F6 monoclonal conformation-specific antibody, 
which has been proposed to recognize a toxic subset 
of misfolded SOD1 (Brotherton et al., 2012). 
Dimeric SOD1 isolated from S. cerevisiae and 
remetallated (“holo”) was also probed to determine 
initial C4F6 reactivity prior to removal of metals and 
oligomerization. The amounts of each oligomeric 
population bound to the membrane were visualized 
by Ponceau S staining.!
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substantially alters the conformations of oligomers formed by these disease-associated mutant 

proteins.  

 

Cys-111 modulates soluble oligomer formation through mechanism(s) independent of 

intermolecular disulfide bonding 

The two free cysteines of SOD1, especially Cys-111, have been recognized to modulate 

its aggregation propensity (12, 13). The most commonly assumed mechanism by which free 

cysteines affect aggregation is their participation in intermolecular disulfide bonds that stabilize 

oligomers (22). However, our findings of decreased dimer stability ((17), Figure 3.3B), altered 

aggregation propensity (Figure 3.3B), and altered oligomer conformation (Figure 3.4) in GS-

SOD1 suggest that glutathionylation affects SOD1 aggregation through complex mechanisms not 

limited to intermolecular cross-linking through Cys-111. We therefore sought to determine 

whether intermolecular disulfide bonds are required for stability of the apo-SOD1 oligomers we 

observe in vitro. Oligomers of A4V and I112T SOD1 generated by incubation at physiological 

pH, temperature, ionic strength, and SOD1 concentration for one week (WT, G93A, and G37R 

SOD1 form few oligomers under these conditions (Figure 3.3B)) were incubated at room 

temperature with the reducing agent DTT, and aliquots were removed at various time points for 

SEC analysis. The largest oligomers, those eluting from the void volume to ~13.5 ml post-

injection on the Superdex 200 10/300 GL column, are most sensitive to dissociation by treatment 

with reducing agent (Figure 3.5). The oligomeric population eluting at ~14.5 ml (O1) is 

relatively resistant to DTT treatment, exhibiting little decrease in abundance or continuing to 

accumulate throughout the course of incubation with DTT (Figure 3.5).  
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Discussion 

Relevance of the in vitro system to pathological SOD1 aggregation in ALS 

Although misfolding and aggregation of SOD1 is believed to be a major contributor to 

ALS pathology, little is known about the potential toxicities of individual aggregate species or 

!
Figure 3.5. Intermolecular disulfide bonding is not universally required for the 
persistence of metastable non-native oligomers in vitro. (A) Apo-SOD1 oligomers generated 
by incubation for 1 week at 37°C in 20 mM Tris, 150 mM NaCl, pH 7.4 were separated by SEC 
in the absence (black curves) of DTT and in the presence of 1 mM DTT following incubation at 
room temperature (red curves). Designations of oligomeric populations (D, M, O1, O2, O3, and 
V0) correspond to those in Figure 2A, while M* denotes a species that that appears subsequent 
to DTT treatment and whose elution volume is consistent with an expanded monomer. (B) 
Quantification of oligomeric populations prior to DTT treatment and after room temperature 
incubation with 1 mM DTT for the indicated time periods. ON = overnight incubation. 
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the cellular determinants of their formation. Here we examine the propensities of WT and FALS 

mutant SOD1 to form metastable soluble oligomers with an epitope linked to toxicity in ALS, 

and explore the effects of oxidative modification of Cys-111, a residue known to modulate 

SOD1 aggregation. We assess oligomerization of SOD1 under conditions approximating 

physiological pH (7.4), temperature (37°C), and SOD1 concentration (100 µM, (22)), without 

agitation. The degrees to which the various FALS-linked mutations increase SOD1 

destabilization and aggregation propensity have been shown to be correlated with disease 

severity (2). Although this correlation was recently challenged (23), this latter study employed 

the use of SOD1 in which both free cysteines (at positions 6 and 111) are mutated to alanine and 

serine, respectively, potentially restricting the applicability to physiological SOD1 aggregation. 

We find that the A4V and I112T substitutions, which are found in patients with rapidly-

progressing FALS (2), exhibit the highest propensities to form soluble oligomers (Figures 3.1C, 

3.3B). These results would be predicted by the correlation of aggregation propensity with disease 

severity, as would the minimal aggregation of SOD1 containing the G37R substitution (black 

curve, Figure 3.3B), which causes relatively slowly-progressing paralysis in ALS patients and 

mouse models (2, 24). The higher oligomerization propensity we observe for the A4V and I112T 

variants may stem from the proximity of these substitutions to the native homodimeric interface. 

The average disease duration (taken from the meta-analysis by Wang et al. (2)) for patients 

harboring the G93A mutation (3.1 years, n = 16) is closer to that of patients with A4V (1.2 years, 

n = 205) or I112T (0.9 years, n = 2) substitutions than to that associated with the G37R mutation 

(17 years, n = 27). Despite causing relatively rapidly-progressing FALS, the G93A substitution 

was linked to very minimal aggregation of apo-SOD1 under the conditions of our assay (black 

curve, Figure 3.3B), making it the only SOD1 variant in our study whose propensity to form 
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soluble oligomers was not consistent with the previously-reported correlation between SOD1 

aggregation propensity and disease severity in FALS (2).   

 

Identification of species with potential toxicity in ALS 

While we observe differences in aggregation propensities among the SOD1 variants 

studied, the formation of certain metastable non-native oligomers (such as those eluting at 14.5 

ml) by both wild type and FALS mutant SOD1 suggests that some common mechanism(s) 

underlie SOD1 oligomerization. To explore potentially unifying conformational changes that 

occur as apo-SOD1 transitions from dimeric to monomeric and higher-order oligomeric species, 

we analyzed exposure of a putatively disease-relevant epitope. The epitope recognized by C4F6 

is not known, but this antibody binds to soluble misfolded SOD1 in disease-affected motor 

neuron populations in ALS patient spinal cord (7, 8), For this reason, the C4F6 monoclonal 

antibody has been proposed to recognize an epitope present specifically in toxic conformers of 

SOD1 (7). We find that the C4F6 antibody binds to several higher-order oligomers of apo-SOD1, 

but not to monomers and rarely to native-like dimers (Figure 3.4). The C4F6 antibody was raised 

against apo-G93A, and has been shown to have specific reactivity to this sequence element (WT 

SOD1, FALS mutants other than G93A, and SOD1 with other substitutions other than alanine at 

position 93 show little reactivity to C4F6 when denatured) (8, 24). However, C4F6 also exhibits 

conformation-specific reactivity, which is not restricted to G93A under nondenaturing conditions 

(8). We probe apo-SOD1 oligomers under nondenaturing conditions in order to detect species 

with the conformation-specific epitope recognized by C4F6 in ALS-affected motor neurons. The 

strong C4F6 reactivity of unmodified apo-G93A oligomers may owe partially to recognition of 
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the G93A sequence epitope. 

Interestingly, non-native oligomers 

of unmodified G93A still exhibit 

robust C4F6 reactivity relative to 

that of dimers and monomers, 

despite their very low abundance. 

Previous work has implicated 

soluble misfolded SOD1 in a range 

of oligomeric states in specific 

cytotoxic phenomena (5, 20, 21). 

Our findings suggest that, of the 

pool of soluble species formed by 

apo-SOD1 in vitro, metastable 

oligomers larger than the native 

dimer are the most likely toxic 

culprits (modeled in Figure 3.6).  

 

Oxidative modification of Cys-111 induces conformational changes that promote oligomer 

assembly and exposure of the disease-linked C4F6 epitope 

Oxidation of SOD1 has been shown to induce its misfolding and aggregation (8, 25, 26), 

and various oxidized forms of SOD1 have been linked to toxicity in cultured neurons (27), a 

mouse model of FALS (28), and a subset of sporadic ALS cases (29). In particular, the presence 

!
Figure 3.6. Model of early SOD1 oligomerization. 
Following loss of metals and dimer dissociation, 
apoSOD1 acquires potentially pathogenic 
conformational features upon assembly into soluble 
higher-order oligomers. Red stars represent the epitope 
recognized by the C4F6 conformation-specific antibody. 
Intermolecular disulfide bonds stabilize some, but not 
all, of these non-native oligomers.  
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of an oxidizable cysteine at position 111 has been shown to promote SOD1 aggregation (12, 26), 

an effect that has been widely attributed to stabilization of insoluble aggregates and soluble 

oligomers by intermolecular disulfide bonds involving Cys-111 (13, 22, 28, 30). However, others 

have suggested that intermolecular disulfide cross-linking is a secondary event to non-native 

oligomer assembly and is not universally present in SOD1 oligomers (31, 32).  

We find that glutathionylation of Cys-111, a reversible oxidative modification present 

extensively on SOD1 from human tissue (10, 19, 33), increases the proportion of monomeric 

apo-SOD1 in all studied variants and enhances the formation of several soluble non-native 

oligomers (Figure 3.3B). This observation, as well as the increased C4F6 reactivity of GS-I112T-

SOD1 and GS-A4V-SOD1 oligomers (Figure 3.4), suggests that conformational changes in 

SOD1 induced by Cys-111 glutathionylation (17, 18) have significant effects on the abundance 

and morphologies of SOD1 oligomers. We also find that while intermolecular disulfide bonds 

stabilize higher-order soluble SOD1 oligomers, these bonds are absent or not essential for 

stability in the smallest and earliest-appearing non-native oligomers (the O1 population, Figure 

3.5).  

Taken together, these results suggest that intermolecular disulfide cross-linking 

represents just one mechanism by which Cys-111 facilitates oligomerization. At the earliest 

stages of SOD1 misfolding and aggregation, oxidative modification of Cys-111 induces 

conformational changes that destabilize the dimer (17, 18) and favor assembly into potentially 

toxic non-native oligomers (Figures 3.3B, 3.4). Given the central role of Cys-111 in SOD1 

aggregation (12) and the abundance of glutathionylated SOD1 in human tissue (10), we 

hypothesize that Cys-111 glutathionylation is a physiologically relevant mechanism by which 

oxidative stress induces aberrant oligomerization of SOD1.  
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Overall, our results highlight the toxic potential of soluble oligomers of apo-SOD1 and 

demonstrate the ability of Cys-111 oxidation to promote formation of oligomers with the 

disease-linked epitope. The latter finding implicates oxidative stress as a factor in the cellular 

environment that can induce formation of potentially toxic SOD1 oligomers. Our use of C4F6 

binding as a proxy for disease relevance is, to the best of our knowledge, the first evaluation of 

the potential toxicities of SOD1 oligomers isolated in vitro. Enhanced exposure of the disease-

linked epitope in non-native SOD1 oligomers supports a cytotoxic role for these assemblies, in 

parallel with previous findings directly demonstrating toxicity of small oligomers of Aβ and α-

synuclein in models of Alzheimer’s disease and Parkinson’s disease, respectively (34, 35). A 

pattern is thus emerging among numerous neurodegenerative disorders in which small oligomers 

exert neurotoxic effects that are mitigated by assembly into large, insoluble species such as 

amyloid fibrils (36, 37). Inhibition of small oligomer formation of disease-linked proteins 

therefore represents a therapeutic approach with potentially broad applicability to many 

neurodegenerative disorders. Knowledge of atomic-level structural features of putatively toxic 

soluble SOD1 oligomers and identification of factors modulating their formation would facilitate 

the direct determination of their contribution(s) to cellular pathology, as well as provide an 

avenue for development of anti-oligomerization therapeutics for ALS. 
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CHAPTER FOUR: DISCUSSION AND FUTURE DIRECTIONS 

Vulnerability of SOD1 to destabilizing post-translational modifications 

  An abundance of recent work has documented the presence of a wide spectrum of 

posttranslational modifications of SOD1 from human tissue, including numerous oxidative 

modifications of cysteines and histidines (1-3), phosphorylation (1), sumoylation (4), 

succinylation (5), palmitoylation (6), and cysteinylation (7). The effects of many of these 

modifications on stability and enzymatic activity of WT and FALS mutant SOD1 have not yet 

been fully delineated, including the question of whether they serve any functional regulatory 

purposes. A great deal of interest in the field has focused on oxidative modifications of SOD1’s 

free cysteines, as these residues have been shown to modulate SOD1 aggregation propensity (8) 

and since oxidative stress increases concomitant with ALS disease progression (9). Our work 

shows that an oxidative modification prevalent on SOD1 from human tissue, Cys-111 

glutathionylation, promotes loss of SOD1’s native quaternary structure. In addition to promoting 

the first step in SOD1 misfolding, dimer dissociation (10,11), this modification induces 

conformational changes that favor assembly into non-native oligomers that contain an epitope 

characteristic of disease-implicated misfolded SOD1 (12).  

This work motivates further inquiry into the prevalence of glutathionylated SOD1 (GS-

SOD1) in ALS patients. Enrichment of GS-SOD1 in tissue of ALS patients vs. healthy age-

matched controls, or in disease-affected vs. disease-resistant cell populations in ALS patients, 
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would further support a role for this modification in onset and/or progression of motor neuron 

degeneration. A correlation between abundance of SOD1 containing oxidative modifications 

(including glutathionylation) and ALS risk would also allow the evaluation of modified forms of 

SOD1 as potential biomarkers. As SOD1 isolated from blood of healthy human donors contains 

substantial amounts of GS-SOD1, this modification alone is unlikely to cause ALS; however, in 

the context of prolonged oxidative stress or impaired proteostasis due to aging, genetic 

variability, and/or exposure to toxins, misfolding and aggregation of SOD1 induced by 

glutathionylation could cross a pathogenic threshold. In addition, destabilizing post-translational 

modifications of SOD1 may be especially deleterious to motor neurons innervating the lower 

extremities; since SOD1 must be transported from the cell body to the distal axon (involving 

distances in excess of one meter), the lifetime of this protein (> 1 year) is longer than in other 

cell types by multiple orders of magnitude (13). The slow turnover of SOD1 in the largest motor 

neurons could lead to the enrichment of post-translationally modified SOD1 at axon termini, 

which is also the location at which abnormalities are detected earliest in mouse models of ALS 

(14). Modifications of SOD1 (and other proteins implicated in ALS, such as TDP-43 (15)) merit 

further investigation as factors through which an altered cellular environment modulates protein 

misfolding and aggregation.  

 

Relative cytotoxicities of misfolded SOD1 species 

 As for several other neurodegenerative diseases involving protein aggregation, existing 

evidence supports the idea that soluble misfolded SOD1, rather than larger insoluble aggregates, 

are most toxic (16). In Chapter 3, we provide evidence that higher-order soluble non-native 
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oligomers of SOD1 (as opposed to native-like dimers or monomers) are toxic, on the basis that 

these assemblies expose an epitope present on misfolded SOD1 found only in pathologically-

affected cell populations in ALS patient spinal cord (12). Directly testing the toxicities of various 

non-native SOD1 oligomers is desirable but technically challenging; these metastable assemblies 

are likely to be present predominantly or exclusively intracellularly and no details regarding their 

structures are yet known.  

Studies assessing toxicity of various Aβ40 and Aβ42 oligomers  (e.g., Ladiwala et al. (17)) 

often involve addition of these assemblies to cell culture media, which is physiologically relevant 

since these peptides are generated extracellularly. SOD1, by contrast, is a cytosolic protein, so 

extracellular application of oligomers would not allow observation of toxic character that is most 

relevant to ALS. Delivering oligomers isolated in vitro by protein transfection or microinjection 

is possible for some cultured neurons, but oligomers may not remain in their initial 

conformations upon association with transfection reagents or dilution into the cytosol. 

Stabilization of oligomers using covalent cross-linking for delivery to cells via microinjection or 

protein transfection may be a feasible strategy; however, this approach will require extensive 

optimization of cross-linking reaction conditions (such as linker length) and validation that such 

derivatization does not substantially alter oligomer conformations. Such validation also requires 

some degree of knowledge of the original structural features of oligomers. Cytosolic α-synuclein 

oligomers were demonstrated to be toxic through rational manipulation of oligomerization 

propensity by mutagenesis (18). However, to employ this strategy for soluble SOD1 oligomers 

would require atomic-level structural information from which to propose mutations to 

preferentially stabilize non-native oligomers. Further characterization of potentially toxic non-

native SOD1 oligomers (such as those that we identify in Chapter 3) may eventually reveal 
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strategies for direct experimental assessment of their toxicities. A combined experimental and 

computational approach for characterizing structural features and cytotoxicity of soluble SOD1 

oligomers is currently being developed by the Dokholyan lab and is described briefly at the end 

of this chapter.  

 

Future directions 

Effects of Cys-111 glutathionylation and Thr-2 phosphorylation on SOD1 dimer structure 

While we have demonstrated experimentally and in simulations that glutathionylation of 

Cys-111 destabilizes the native SOD1 homodimer, a high-resolution experimental structure of 

GS-SOD1 would be invaluable for understanding the effect of this modification on SOD1 

folding and stability. SOD1 purified from human erythrocytes is glutathionylated in sub-

stoichiometric amounts (typically 40-60% of the total pool of isolated SOD1) and is also 

phosphorylated (1). Crystallization of a GS-SOD1 enriched fraction of SOD1 from erythrocytes 

(isolated by ion-exchange chromatography as described in Chapter 3 Methods) yields crystals 

with high mosaicity (Figure 4.1B), most likely due to the inhomogeneity of the starting material. 

To improve the purity of GS-SOD1 used for crystallization, we treated this GS-SOD1 enriched 

fraction sequentially with alkaline phosphatase and oxidized glutathione (GSSG) to 

dephosphorylate and glutathionylate SOD1, respectively. Separation by anion-exchange 

chromatography yielded a fraction of protein that was confirmed by mass spectrometry to lack 

phosphorylation and contain at least 95% GS-SOD1. Crystallization of this purified GS-SOD1 

yielded improved crystals (Figure 4.1B), but none of sufficient quality for structure 

determination. Continued efforts to crystallize GS-SOD1 are ongoing. 
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 We also seek detailed structural information for phosphorylated SOD1 (p-SOD1), but 

isolation of p-SOD1 from the pool of enzyme purified from human erythrocytes is infeasible due 

to the low prevalence (1) and small differences in mass and charge associated with this 

modification. Therefore, we 

have introduced mutations at 

Thr-2, a position identified by 

MS/MS to be a site of 

phosphorylation in SOD1 from 

human erythrocytes (1), that 

correspond to aspartic acid and 

glutamic acid substitutions. 

Such substitutions are often 

used to mimic phosphorylation 

at serine and threonine residues 

due to the similar steric and 

electrostatic changes introduced 

(19-21, Figure 4.1A).  

 SOD1-T2D and SOD1-

T2E were expressed in S. 

cerevisiae, purified as described 

in Chapter 2 Methods, and 

crystallized using the hanging 

drop method of vapor diffusion. 

!
Figure 4.1. Strategies for crystallization of post-
translationally modified SOD1. (A) Crystals of SOD1 
containing phosphomimetic aspartic acid and glutamic acid 
substitutions at Thr-2. (B) Crystals of a GS-SOD1 enriched 
fraction of SOD1 as purified from human erythrocytes, and 
following enrichment and purification of GS-SOD1. 
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After an initial screen of crystallization buffers using a version of the “sparse matrix” method 

(22) modified by Dr. Hengming Ke, conditions supporting crystal growth were optimized until 

crystals of sufficient size and apparent quality were produced. Crystals were harvested and 

preliminary studies of X-ray diffraction were performed at the UNC Macromolecular X-Ray 

Crystallography Core Facility. Diffraction data for crystals deemed to be of high quality based 

on this initial screen were obtained using a synchrotron source (Brookhaven National  
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Figure 4.2. Crystal structure of SOD1-T2E. (A) Asymmetric unit of the SOD1-T2E crystal 
structure. The grey box indicates the physiological dimer. (B) Alignment of SOD1-T2E 
(green) and SOD1-WT (cyan, PDB ID: 1spd) structures. Glutamic acid residues at position 2 
are represented as sticks; Cu2+ and Zn2+ ions are represented as spheres. 
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Laboratory). Diffraction data were processed using the program HKL (23). Structures were 

solved using molecular replacement using SOD1-WT (PDB ID: 1spd) as a starting structure (24), 

and structural models were built using O (25) cycled with refinement by CNS (26).  

SOD1-T2E crystallized in the C121 space group and the structure was solved to 2Å  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

Figure 4.3. Crystal structure of SOD1-T2D. (A) Asymmetric unit of the SOD1-T2D 
crystal structure. The grey box indicates the physiological dimer. (B) Alignment of SOD1-
T2D (green) and SOD1-WT (cyan, PDB ID: 1spd) structures. Aspartic acid residues at 
position 2 are represented as sticks; Cu2+ and Zn2+ ions are represented as spheres. 
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resolution (Figure 4.2); the SOD1-T2D crystal was twinned, but the structure could be solved in 

the P1 space group to 1.99 Å resolution (Figure 4.3). The structures of SOD1-T2E and SOD1-

T2D dimers differ little from that of SOD1-WT (Figure 4.2B and 4.3B), with both having overall 

RMSDs calculated to be less than 0.9 Å with respect to the wild type dimer. The arrangement of 

monomers in the asymmetric unit is similar for both structures, except for the presence of a 7th 

monomer (colored pink in Figure 4.2A) adjacent to the central dimer, which corresponds to the 

biological homodimeric assembly.  

  While the crystal structure of SOD1-T2E reveals no large-scale rearrangements of the 

homodimer, we cannot rule out the possibility that this substitution produces subtle alterations in 

SOD1 dynamics that would only be apparent in the solution state. We are particularly interested 

in whether this substitution alters the sensitivity of SOD1 to destabilization by the glutathione 

modification. To approximate the effect of glutathionylation on stability of phosphorylated 

SOD1, we characterized the effect of this modification on stability of the phosphomimetic 

SOD1-T2E dimer. SEC and SPR of unmodified and glutathionylated SOD1-T2E were performed 

as described for WT, A4V, and I112T variants in Chapter 2 Methods. DMD simulations of 

unmodified and glutathionylated SOD1-T2E followed by evaluation of intermonomer contacts 

were also performed in an identical manner as described in Chapter 2 Methods.  Interestingly, in 

these preliminary SEC experiments, we observe minimal destabilization of SOD1-T2E dimers by 

glutathionylation despite increased dimer dissociation rate (as measured by SPR) (Figure 4.4). 

Thus, SOD1-T2E appears to behave similarly to SOD1-I112T upon glutathionylation: rate of 

dissociation increases but is not reflected in an increased equilibrium dissociation constant (Kd), 

indicating that association rate of SOD1-T2E monomers may also increase upon 

glutathionylation. The change in dimer interface contacts induced by glutathionylation of SOD1-
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T2E also mirrored that observed for SOD1-I112T: loss of intermonomer contacts present in 

unmodified SOD1-T2E dimers was balanced by a gain of new contacts in the dimer interface. 

(Figure 4.4).  
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Figure 4.4. Effect of glutathionylation on SOD1-T2E dimer stability and interface 
composition. Top, SEC separation of unmodified (black curves) and glutathionylated (red 
curves) SOD1-T2E. Dimeric SOD1 elutes ~1.74 ml after injection onto the column 
(Superdex 200 PC 3.2/30, GE Healthcare). Half times for dimer dissociation ± S. D. (based 
on at least three independent SPR experiments) are shown at right. Bottom, distribution of 
of changes in frequency of Cα interface contacts upon Cys-111 glutathionylation for 
SOD1-T2E, based on structural models generated using DMD.  
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Further SEC experiments are currently in progress to confirm the lack of destabilization 

of SOD1-T2E by glutathionylation and to characterize the effect of glutathionylation on SOD1-

T2D, but our preliminary results suggest that phosphorylation of SOD1 may desensitize the 

protein to the destabilizing effects of the glutathione modification. The potentially protective 

effect of phosphorylation, allowing SOD1 to remain dimeric under oxidizing conditions, raises 

the intriguing question of which kinase(s) target SOD1. Identification of the kinase(s) capable of 

phosphorylating SOD1 would give insight into the cellular conditions under which this 

modification would likely occur and could potentially enable the production of sufficient p-

SOD1 for biophysical characterization through in vitro phosphorylation. Recent work 

implicating Ca2+/calmodulin protein kinase II (CaMKII) in SOD1 phosphorylation that occurs in 

rat hepatocytes exposed to nodularin (27) motivates further investigation of this protein’s ability 

to phosphorylate human SOD1 in vitro.  

 

Assessment of oligomer cytotoxicity 

 As mentioned above, an outstanding question in the field of SOD1-related ALS is the 

identity of toxic misfolded SOD1 conformers. We therefore have undertaken efforts to develop a 

strategy for the generation of structural models of metastable non-native oligomers, which can 

then be used to identify single amino acid substitutions predicted to alter oligomer stability 

(Figure 4.5). Briefly, a non-native oligomer of SOD1-WT that can be generated in abundance by 

incubation at pH 3.5 in the presence of EDTA was subjected to limited proteolysis by multiple 

proteases of varying specificities. Products of proteolytic cleavage were identified by mass 

spectrometry, and this information was used to bias molecular dynamics simulations based on 
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the fact that cleavage sites and flanking residues must be solvent-accessible and flexible (not 

participating in secondary structural elements). The generated structural model was then used to 

identify mutations to residues participating in intermonomer contacts that would be expected to 

alter trimer stability (as calculated by the Eris software, which estimates the effect of amino acid 

substitutions on the stability of proteins with known structures (28)). 

 Amino acid substitutions computationally predicted to have greatest effects on trimer 

stability are currently being evaluated for their aggregation propensities in vitro by performing 

time-resolved SEC of purified SOD1 containing the identified substitutions (under the same 

conditions utilized to generate the SOD1-WT trimer). These experiments are intended to validate 

the predictive ability of the structural model, as well as to generate a set of mutations confirmed 

to alter trimer stability in vitro. SOD1 containing substitutions confirmed to promote or inhibit 

trimer formation will be expressed in motor neuron-like cells (NSC-34 (29)) and their effects on 

cell viability will be assessed using standard assays. We will test the hypothesis that trimeric 

SOD1 is cytotoxic by determining whether a correlation exists between the “trimerogenic” 

character of each substituted variant of SOD1 (i.e., the probability of adopting a trimeric 

conformation in vitro) and its effect on viability of motor neuron-like cells. If the SOD1 trimer is 

cytotoxic, we would expect that mutations which stabilize the trimeric state would decrease cell 

viability more than mutations that destabilize the trimer. Immunostaining with the C4F6 

conformational antibody and a pan-SOD1 antibody to detect small soluble oligomers and 

insoluble aggregates, respectively, can be utilized to connect the oligomerization behavior 

observed in vitro with that occurring within the cellular environment. 
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Figure 4.5. Strategy for assessing cytotoxicity of a non-native soluble SOD1 oligomer. 
Top left, SEC chromatogram of 100 µM SOD1-WT incubated at pH 3.5 in the presence of 10 
mM EDTA for 24 hours. The dashed line indicates the elution volume of the native dimer 
under these conditions (prior to incubation), and peaks corresponding to trimeric and 
monomeric SOD1 are indicated “T” and “M”, respectively. The red box indicates the eluted 
material that was pooled for subsequent proteolysis experiments. Upper right, sites of initial 
proteolytic cleavage of SOD1 trimers (by multiple proteases) are shown in pink on the 
structure of the WT dimer (PDB ID: 1spd). Lower right, structural model of a SOD1 trimer 
obtained by molecular dynamics simulations biased to penalize contacts made by residues 
near sites of proteolytic cleavage. Lower left, set of amino acid substitutions within trimer 
interfaces predicted to have greatest effects on trimer stability, as predicted by Eris software 
(28). 
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