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ABSTRACT

OANA IZABELA LUNGU: Sensing the Light: Design of Photoactivatable Protein-Protein
Interactions Using the LOV2 Domain

(Under the direction of Brian Kuhlman, Ph.D. and Klaus Hahn, Ph.D.)

Photocontrol of protein-protein interactions is a powerful tool for precise spatial and tem-

poral control of cell signaling networks. This dissertation has sought to expand the use of

naturally occurring, light-sensitive proteins to photocontrol protein-protein interactions. This

method allows for genetically encoded, reversible photoacitvation, or caging, of critical protein-

protein interactions in a signaling network cascade. The small, globular GTPase protein Rac1

was caged through the use of the light-sensitive LOV2 domain as steric block to Rac1 effector

binding in the dark. The resulting photoswitch which was created, PA-Rac, was able to induce

membrane ruffling, protrusions, and directed cell movement upon blue light irradiation at the

leading edge of mammalian cells. Its use has resulted in deeper understanding of the role of

Rac1 in mammalian cell motility. Modeling and characterization of PA-Rac enabled caging of

the related GTPase Cdc42 in a similar manner. The LOV2 domain was also used to create

a photoactivatable peptide, LOV-ipaA. The photoswitch, which binds the adhesion protein

vinculin, was designed by embedding a peptide sequence by into the Jα helix of the LOV2

domain. As a model case, LOV-ipaA demonstrated the ability to alter the sequence of the

LOV2 domain Jα helix while maintaining its photoswitching capacity in order to introduce

new functionality into the helix. LOV-ipaA light activated heterodimerization to vinculin was

used as tool for light-induced protein expression in S. cerevisiae. This tool allowed for pho-

toactivatable overexpression of the proteins Ste4 and Gpa1, which are critical components in

regulation of the yeast pheromone mating response pathway. Through this work, significant

progress was achieved toward being able to photactivate two classes of proteins, and using

those proteins as tools to manipulate biological systems.
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CHAPTER 1

INTRODUCTION

1.1 Photoactivation as a tool for cell biology

Perturbing protein-protein interactions in a biological process and observing the outcome is

a valuable method for understanding how signaling networks are modulated. This method has

been used to understand basic biological processes such as cell division, signaling, and motility

(1). Yet, questions remain as to how proteins interact with each other, and thus regulate

biological responses, in a dynamic manner. How are protein-protein interactions regulated

spatially and temporally? How do these regulatory events translate into cellular events, such

as motility, that occur at the sub-micron and second scales?

Traditional methods of perturbing a signaling pathway have relied on biochemical, genetic,

and chemical approaches. Constitutively active, inactive, and dominant negative mutations

are used instead of wild type versions of key signaling proteins (2; 3; 4). RNA interference

knock-downs eliminate a protein from a signaling network (5; 6). Small molecules can act as

chemical activators and inhibitors for signaling proteins (7). While these methods have been

successfully used in cellular studies, they suffer from certain limitations. Biochemical and

genetic perturbations are slow processes that allow time for a cell to compensate for aberrant

signaling through other means. Chemical activators and inhibitors generally do not have a

high specificity for protein targets. In addition, none of these methods are able to finely disrupt

signaling events in a spatially and temporally controllable manner.

Photoactivation is a useful tool to solve these problems. Photoactivation, or caging, in-

volves trapping a protein in a inactive conformation. The protein is then activated using light,



enabling it to interact with downstream effectors to activate or inhibit pertinent signalling

networks. In this way, one can express a caged protein in a cell, irradiate subsection of that

cell using a laser beam, thus photoactivating, or uncaging the protein, and observe the down-

stream signaling events that occur in a precise spatially and temporally controlled manner.

In tissues or whole organisms, groups of cells may be photoactivated in order to understand

intercellular signalling.

Figure 1.1: Photoactivation of Rac1 using light. A mouse embryo fibroblast expressing Pho-
toactivatable Rac (PA-Rac) is selectively irradiated by a laser. The Rac1 protein is only
uncaged in the area of irradiation (blue circle).

In order to perturb protein signaing networks through caging, interactions that propagate

downstream functional or physiological changes in a cell or tissue must be inhibited under dark

conditions, but allowed under particular wavelengths of light. Many of the most important

such interactions in signaling networks are protein-protein interactions.

Two principle methods have been developed for photoactivation of peptides and proteins.

The first method relies on photocleavable chemical agents to inhibit protein-protein interac-

tions in the dark, while allowing for protein-protein signaling interactions in the light, when

the chemical agent is removed. The second method relies on naturally occurring light sensing

proteins. Such proteins undergo conformational changes upon irradidiation with wavelengths
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of light absorbed by their chromophores. These conformational changes have been taken ad-

vantage of to create general mechanism of caging. In one tissue-level caging mechanism, pho-

toactivtable ion channnels are used to propagate signaling networks controlled by ion gradients

and action potentials rather than protein-protein interactions. Other systems use interactions

between light sensitive proteins and their effectors to enable light-activated heterodimerization

of proteins linked to the light sensor and effector. Yet other systems directly use a naturally

occurring protein as a caging agent, enabling a dark state steric block of the targeted protein

interactions. Light irradiation alters the conformation of the photosensitive protein, relieving

the block and allowing for desired protein interactions.

In this work, naturally occurring photoactivatable proteins are used to cage proteins as well

as peptides. Both proteins and peptides are caged by sterically blocking protein-protein inter-

actions in the dark using a genetically encoded, naturally occurring protein as a caging agent,

and releasing that steric block in the the light. As an application, the peptide photoswitch is

used to induce transcription through light-activated heterodimerization in yeast.

1.2 Chemical caging of proteins

The use of chemical compounds to cage peptides and proteins is technically challenging.

Caging of signaling proteins overcomes many of the limitations of using traditional perturbation

techniques and is spatially and temporally controllable. In order to achieve perturbation of

signaling events through the use of light, key macromolecules controlling a biological process

are modified using photo-cleavable chemical compounds. These chemicals block activity of the

macromolecule, and irradiation with light of a specific wavelength in the UV range removes the

modification, regenerating activity. Chemicals typically used in light activated caging include

derivatives of the 2-nitrobenzyl group and the coumarin moiety (8). Activating these caged

molecules is not reversible and often requires high intensity UV light, which can be damaging

to cellular processes.

Disruption of protein-protein complexes that modulate signaling events can often be achieved

with chemically caged peptides that allow for control over when and where cellular signaling

3



events are disrupted (9). The first in vivo use of peptide chemical caging technology probed the

role of calcium- calmodulin and myosin light chain kinase in amboid locomotion of eosinophil

cells (10). Subsequently, caged analogs of inhibitory phosphopeptides examined the function

of 14-3-3 proteins in control of the cell cycle (11). More recently, Caged protein localization

peptides were used to direct proteins to subcellular locations (12). However, one chemical

caging strategy cannot be easily transferable from one peptide inhibitor to another due to the

fact that only certain residues are chemically reactive to covalent modification, and so changing

the sequence of a peptide changes the positions available for its caging.

While various small caged peptides have been used in many studies, caging of full length

proteins with chemical compounds poses a number of challenges. In order for caging to be

successful, chemical modifications must occur only on particular residues of the protein. This

is hard to control for, as generally all solvent exposed residues able to interact with the photo-

cleavable compound get modified.

Some methods for overcoming the labeling challenge have been developed and recently

used in vivo. Semi-synthesis of proteins has been employed to label only one selected peptide

sequence of a protein, after which it is expressed ligated onto the whole polypeptide (13). In this

way, the protein Smad2 was caged and studied for its ability to trimerize only when located in

a cell nucleus. The addition of unnatural amino acids has also shown promise as an alternative

way to chemically label proteins. Nonnatural, photo-cleavable amino acids are incorporated

into a protein using chemically synthesized misacylated tRNAs (14; 8). The technology has

been used to control activity of potassium ion channels and nicotinic acetylcholine receptors

in Xenopus oocytes (15; 16). While the method ensures site-specific incorporation of caging

groups into proteins, the difficulty of synthesizing misacylated tRNAs limits its efficiency.

In order to overcome the synthesis limitation, orthogonal tRNA- tRNA synthetase pairs

that only allow the addition of caged tyrosine (17; 18), caged cysteine (19), and caged serine

(20) residues into polypeptide chains have been engineered for use in yeast and bacterial cells.

The caged serine was used to observe the spatial regulation and kinetics of the transcription

factor Pho4 in yeast cells. One of the limitations of this technology is the limited possibilities

of placing a caging group only on tyrosine, serine, and cystine residues. Also, if such a protein

4



were to be used in mammalian cell studies, it would have to be microinjected.

One of the most significant finding to come out of protein caging involves the protein cofilin.

Cofilin was caged on a residue that is usually phosphorylated, leading to inactivation of the

protein. Upon photo-illumination, the caging group fell off, restoring the protein’s activity

(21). The caged protein was used in live cell studies to determine whether it is a polymerizing

or depolymerizing factor of actin. It was determined that cofilin polymerized actin and that

it contributed to the directionality of cell motility (22).

More recent advances in chemical caging have lead to the development of multiple pho-

toactivatable enzymes. DNA polymerases (23), RNA polymerases (24), as well as zinc finger

nucleases (25) have been designed to regulate gene expression (26). The development of pho-

tocleavable rapamycin enabled caging of kinases, including focal adhesion kinase and MEK1

(27; 28).

Although great progress has been made, caging of macromolecules using photo-cleavable

chemicals for in vivo studies is technically challenging. It is difficult to covalently modify only

a desired key residue to be used for caging. Additionally, most large chemically labeled caged

peptides and all proteins must be microinjected into mammalian cells, an often tedious process

that limits the number of cells in an experiment. Lastly, because of the specific sterics involved

in each caged interaction, there is no method of caging that is easily transferable from target

to target.

1.3 Strategies for genetically encoded photoactivation of proteins

As an alternative to chemical caging of proteins, various naturally occurring photosensing

proteins have been used as genetically encoded caging agents. All of these proteins are found

fungal, plant, or algal organisms. Using such proteins alleviates certain problems associated

with chemical caging agents. Proteins may be engineered and constructed with a wide lati-

tude of conformations, regardless of which labile amino acids are available at the desired site

of caging. Light activation in these proteins in reversible. Microinjecting genetically encoded

proteins into cells is unnecessary. Lastly, organismal-derived photosensory proteins can gener-
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ally sense a wide range of colors, including red (29), yellow (30), and blue (31; 32; 33; 34; 35),

abolishing the need for use of damaging ultraviolet light.

Channelrhodopsins have been used for optogenetic control of neuronal as well as cardiac

cells. They are part of the family of Rhodopsin proteins that are integral membrane proteins

found in plants, animals, and microorganisms. Rhodopsins have long been identified as pho-

toreceptors in animal retinas (36). Channelrhodopsins2 (ChR2), used in optogentetics studies,

was discovered in the Chlamydomonas reinhardtii organism and acts as light-gated cation

channel (37). The channel is composed of seven transmembrane helices connected by short

loops, and a retinol cofactor in the middle (Figure 1.2). The channel undergoes very rapid

(within 30 µs) light-induced conformational changes (38; 39) in response to light of around

500 nm wavelength (31). It closes quickly in darkness.

Channelrhodopsins have been used to quickly depolarize neurons and trigger trains of

neuronal spikes. This has allowed researchers to study patterns of spike activity in a precise

spatial and temporal manner, and understand various functions of neural circuits. In one

such study, in zebrafish, ChR2 was used to activate individual mechanosensory neurons (40).

In another study, Alilain et al. restored function to damaged neuronal circuits by activating

ChR2 in rat spinal chords (41; 42).

Another variant of the rhodopsin family, halorhodopsin (NpHR), is a yellow-light driven

chloride ion pump from halobacteria (30; 43). Genetically expressing this pump in organisms

allows for hyperpolarization of cells and suppression of action potentials in response to light

activation. ChR2 and NpHR have been used together in zebrafish brains and hearts to map

out small groups of neurons in the brain that control directional swimming and rapid eye

movement (44), as well as to study cardiac pacemaker function during organ development

(45).

Although they have been have been critical to advancing the field of neurobiology, channel-

rhodopsins are not optimal for all applications. They are best used in cells that signal through

large electrophysiological changes in ion gradients and through action potentials. Channel-

rhodopsins also must be used in groups of cells, rather than to study spatially and temporally

mediated phenotypic change in a single cell.
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Figure 1.2: Structure of the halorhodopsin protein. Protein is from the Natronomonas pharao-
nis organism. Individual domains of the biological unit from are shown in cyan, green, and
purple. The retionol chromophore is shown in red (PDB code 3ABW).

Other systems have taken advantage of naturally occurring phytochrome proteins to pho-

toactivate signaling pathways in vitro and in vivo. Found in plants as well as microbes,

phytochromes (46) and baceriophytochromes (47; 48) respectively, act as red light to far-red

light photoreceptors. In plants, these receptors regulate aspects of photomorphogenesis. Phy-

tochromes use a bilin cofactor for red and far-red light absorption, with bacteriophytochromes

binding biliverdin, and plant phytochromes binding phycocyanobilin (PCB) or phytochromo-

bilin (PΦB) (49; 50). The four pyrrole ring bilin chromophore of a phytochrome protein in

its Pr state absorbs a photon of red light around 660 nm in wavelength (29). This leads to

isomerization of a double bond in the chromophore, and the flipping of its D ring (Figure 1.3)

(51; 52; 53). The protein then adopts the Pfr conformation, wherein the pyrrole ring shifts

slightly, and side chains around the chromophore alter their positions and interacting partners

(53). The phytochrome Pfr state reverses back to the Pr state through the absorption of a
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photon of far-red light of around 750 nm in wavelength (29).

Figure 1.3: The Pr and Pfr states of the bacteriophytochrome biliverdin chromophore. Pro-
tein is from the Pseudomonas aeruginosa organism. The (a) Pr and (b) Pfr states of the
chromophore are shown in yellow. The protein main chain is shown in white (PDB code
3IBR).

Phytochromes contain two domains, the PAS and GAF domains that together comprise

the chromophore binding module (CBM) (50). By itself the CBM has reduced photoactivity.

C-terminal to the CBM is a phytochrome-specific PHY domain in most such proteins, which

together with the CBM is responsible for the full activity of the protein.

The A. thaliana CBM of PhyB binds the PIF3 protein upon irradiation with red light in

the presence of chromophore PΦB (54). Irradiation with far red light releases this heterodimer-

ization. This system was used by Shimizu et al. (29) to activate transcription through the

GAL1 promoter in budding yeast. The GAL4 activation domain was linked to PIF3, while the

GAL4 binding domain was linked to PhyB. Irradiation with red light in the presence of the

PΦB chromophore led to binding of PhyB to PIF3, bringing the GAL4 domains into proxim-

ity, and activating transcription of the LacZ reporter gene downstream of the GAL1 promoter.

Red light irradiation produced a thousand-fold increase in LacZ activation, and irradiation

with far-red light quickly decreased activity (29).

Tyszkiewicz et al. extended this work to generate a light-controlled conditional protein

splicing system (CPS) in budding yeast (55). In this system, the actions of an intein are

red-light regulated. Inteins are protein domains that autocatalytically splice themselves out
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of a larger protein, concurrently ligating together the extein polypeptides on either side of

the splice (56). The vacuolar ATPase intein was artificially split into two fragments, with one

fragment fused to PhyB, while the other was joined to PIF3. Irradiation with blue light led to

joining of the two intein fragments and splicing of the polypeptide, leading to the formation

of an MBP-FLAG reporter fusion protein.

Phytochromes were utilized to photoactivate signaling networks modulating cell motility

(57; 58). PIF3 was linked to the Wiskott-Aldrich Syndrome protein (WASP), while an inactive,

GDP-bound Cdc42 protein was linked to PhyB. Normally Cdc42, when GTP bound, activates

WASP (59; 60), thus allowing for actin nucleation through activation of the Arp2/3 complex

(61; 62). Through irradiation with red light, PhyB-Cdc42 activated PIF3-WASP while in the

GDP bound state, allowing for actin filament formation in vitro through Arp2/3 activation.

Activation of WASP was reversible through irradiation with far-red light. Levskaya et al.

performed cell motility studies in mammalian cells using PhyB and the PIF6 protein (58).

In these studies, the PhyB protein was linked to a membrane localization tag, while PIF6

was linked to the DH-PH catalytic domain cassette of the Tiam or intersectin Rac1 or Cdc42

specific GEFs, respectivley (63; 64). Irradiation with patterns of red and far-red light led to

the recruitment of the GEFs to the cell membrane in specific subcellular locations, allowing for

activation of Rac1 and Cdc42, and localized patterns of membrane protrusion and filopodial

formation.

In one instance, bacteriophytochromes were used for creating a photosensitive bacterial

film. Levskaya et al. fused a cyannobacterial phytochrome containing a membrane-bound,

extracellular light receptor (65) and an E. coli the EnvZ-OmpR histidine kinase domain (66).

This particular domain was able to activate the OmpR dependent ompC promoter, allowing

for transcription of the downstream lacZ reporter (67), which generated a black dye. Light

irradiation repressed lacZ transcription, allowing for light-driven gradient projections of designs

into a biological film. The mechnism of light sensing in the cyannobacterial phytochrome is

unknown.

While phytochromes have been used extensively for light driven signalling, and particulary

heterodimerization, the system poses certain challenges. The bilin chromophores used by
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phytochromes must be either supplied exogenously, or introduced into host organisms through

gene manipulations. The phytochromes are also very large, making them cumbersome to work

with. Full-length phytochrome protein structures are unavailable, and the overall mechanism

of light-induced switching in the proteins is still a mystery. These two factors combine to

make design of phytochromes in order to generalize the switches for caging many types of

protein-protein interactions challenging.

Figure 1.4: Structure of the PHR domain of Cryptochrome1. The domain from A. thaliana is
shown in green, and the FAD chromophore is shown in tan (PDB code 1U3C).

Cryptochromes, like phytochromes, have also been used for light-mediated dimerization of

proteins. Cryptochrome proteins are found in plants as well as animals (68; 69; 70; 71; 72; 73)

and entrain circadian rhythms in these organisms (74; 75) by absorbing blue light from 390-480

nm in wavelength (32). Structurally, these proteins contain a U-shaped photolyase homology

region (PHR) or domain linked to a C-terminal extension (Figure 1.4) (76). The center of

PHR domain holds a non-covalently bound flavin-adenine dinucleotide (FAD), the primary

chromophore of the system. Little is know of how light absorption in the system results in

signal transduction.

Kennedy et al. determined that the PHR domain is the minimal region of Cryptochrome2
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(CRY2) from Arabidopsis thaliana required for signal phototransduction (77). The protein

CIB1, a basic loop-helix-loop domain, naturally interacts with the CRY2 PHR domain in a

light-dependent manner (78). In order to induce photodimerization of the two proteins in

mammalian cells, CRY2 was fused to a red fluorescent mCherry protein, while CIB1 was

fused to a prenylated, membrane-interacting GFP protein. Dimerization, and subsequent

localization of CIB1 to the plasma membrane, was observed a lightning-fast 10 s after blue

light irradiation. The light induced heterodimerization system was then used to generate light

induced DNA recombination in mammalian cells (77). The CRY2 protein was fused to the N

terminal portion of a Cre recombinase, while CIB1 was fused to the Cre C-terminal portion

and introduced into HEK293 cells. Upon irradiation with continuously pulsed blue light, the

system allowed for transcription of an EGFP sequence when downstream of a stop codon but

flanked by loxp sites (77).

While the cryptochrome system has proved very useful, CRY2 and CIB1 proteins are quite

large, limiting their application. The proteins are challenging to express and not very stable

(77). Due to this limitation, little is known about how the CRY2- CIB1 heterodimerization

occurs. In fact, little is known about the structure or the mechanism of light induced signal

transduction in the CRY2 protein, rendering this a poor system for extending genetically

encoded protein light activation to other applications, and particularly poor for designable

applications (79).

Photoactive yellow protein (PYP) has been used to photocontrol DNA binding proteins (80;

81; 82). PYP is a small photoreceptor that is part of the PAS domain family. PYP structures

have been well-characterized through NMR and crystallographic techniques (83; 84; 85; 86; 87).

PYP undergoes a reversible photocycle when its chromophore, a 4-hydroxycinnamic acid,

absorbs blue light (33; 34). The chromophore is buried within the PAS fold and covalently

linked by a thioester bond to a cysteine residue (88). Cis to trans isomerization of the double

bond of the chromophore upon light absorption leads to strain in the PAS core, causing large

structural changes within the protein, including exposure of the chromophore to solvent and

unfolding of two helices at the N-terminus of the protein (Figure 1.5) (33; 34; 89). No PYP

interacting partner or biological role has been identified.
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Figure 1.5: Structures of the dark state and blue light activated state of PYP. (a) Dark state
crystal structure of PYP from Halorhodospira halophila (PDB code 2PHY) (b) Light activated
NMR structure of the protein. Main chain is shown in yellow, and the 4-hydroxycinnamic acid
chromophore is shown in blue (PDB code 2KX6).

Morgan et al. (80) fused the N-terminus of PYP from Halorhodospira halophila (86)

to the C-terminus of GCN4-bZIP, a lecuine-zipper DNA binding protein (90; 91; 92). The

GCH4-bZIP is kept in a sterically blocked conforation when PYP is in the dark state and

the N-terminus helices remain folded. Upon irradiation with blue light, the N-terminal helices

unfold, and the GCN4-bZIB proteins are able to dimerize. This leads to a small, 2-fold change

in binding affinity of the designed protein to DNA in light versus the dark state conditions

(80). The switch was then engineered to act in reverse, with 3- fold enhanced affinity in the

dark versus under light conditions (81). The switch was slightly improved through design of

a chimeric sequence between PYP and GCN4-bZIP, to have a 3.5-fold difference between lit

and dark state binding of DNA (82).

The PYP domain hold promise as genetically encoded caging agent due to its small size

and well investigated structure. Current work, though, suggests it might be difficult to achieve

a photoswitch with a substantial dynamic range using the domain. Additionally, the 4-

hydroxycinnamic acid chromophore must be synthesized added to protein cultures, potentially

limiting in-cell uses for PYP. LOV domains, whose structures are similar to that of PYP do

not share this problem, and also have a number of well-characterized structures.

LOV domains (Light Oxygen and Voltage) are found in many plant, fungal, and bacterial
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proteins (79). They have been used extensively as genetically-encoded caging domains for

proteins. Three families of LOV domain have been identified; those from phototropin proteins

that control aspects of phototropism (93; 94); those from ZEITLUPE circadian photoreceptors

(95; 96); and those from aureochrome proteins which are found in certain diatoms (97). LOV

domains, like PYP, adopt a putative PAS fold (98). They may contain either a N-terminal

or C-terminal helical extension. A flavin-adenine dinucleotide (FAD) or flavin mononucleotide

(FMN) is located at the center of the PAS fold, and is the primary chormophore of the domain.

The ZEITLUPE LOV domain from the A. thaliana organism has also been used as a

tool for light-induced heterodimerization. In a concept similar to that of the phytochrome

and cryptochrome designed photoswitches, Yazawa et al. utilized two proteins that naturally

interact only upon blue light activation: the LOV domain FKF1 and GIGANTEA (GI) (35;

99). This system was used to target FKF1-linked Rac1 protein the the plasma membrane

through light-induced heterodimerization to CAAX-box containing, membrane-associated GI.

Through recruitment to the plasma membrane, Rac1 was able to activate signal transduction

and induce membrane protrusions in areas of light activation (35). The system was further

tested to induce gene transcription through the Gal4 transcription factor, VP16 transactivation

domain, and UAS gene promoter, a commonly used transcription activation method in fly and

rodent organisms. The VP16 and Gal4 domains need to bind in order to induce UAS promoter

transcrption activation (100; 101). Gal4 was fused to GI, while FKF1 was fused to VP16. Blue

light irradiation induced measurable transcription of a luciferase reporter gene downstream of

the UAS promoter (35).

Generalizing the FKF1-GI system for use in other applications poses certain problems.

As is the case for the Cry2-CIB1 system, the proteins are large and difficult to characterize

(35). Affinity of FKF1 to GI is fairly strong even in the absence of light. Mutations in FKF1

weaken the affinity of the two proteins for each other, but no quantification of the system

exists (35). With no structures or other biophysical knowledge of how light activation in the

system induces heterodimerization, design in this system is challenging. Lastly, the FKF1-GI

heterodimerization interaction occurs very slowly, and the two proteins associated for hours,

limiting spatial and temporal control of activated signaling networks (77).
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Figure 1.6: Structure of the LOV domain of YtVa. The domain from Bacillus subtilis is shown
in red, and the FMN chromophore is shown in green (PDB code 2PR5).

Also in the family of LOV domains, the YtVa protein was used to create a light-switchable

kinase (Figure 1.6) (102). The heme-binding PAS domain of the FixL protein that normally

responds to oxygen was replaced with the structurally similar YtVa LOV domain of Bacillus

subtilis. The FixL protein of Bradyrhizobium japonicum is involved in the organism’s nitrogen

fixation. FixL is initially autophosphorylated, and then transfers the phosphate moiety to a

response regulator protein, FixJ, enabling activation of nitrogen metabolism genes (103; 104;

105). Möglich et al. were able to regulate the kinase activity of FixL through light activation

in the designed fusion protein, leading to a thousand-fold decrease in kinase activation of the

protein under dark conditions in vitro. The photoswitch also showed significant transcription

in vivo of a reporter gene downstream of the FixK2 promoter, which responds to phospho-FixJ.

As structures are available, the YtVa domain might prove useful for other applications.

Not much, however is known about the domain’s light activation mechanism.

The LOV2 domain is the best characterized of the LOV domains, in terms of structure,
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function, and photoswitching mechanism. The LOV2 domain shows great promise as a genet-

ically encoded caging agent due to its large dark state to lit state conformational change. The

domain has been used successfully in many instances for genetically encoded photoactivation

of protein-protein interactions.

1.4 Structural and photochemical properties of the LOV2 domain

The LOV2 domain plays a critical role in the ability of plants to sense light. Found in

higher plants, it is part of the phototropin1 (phot1) kinase protein that allows plants to grow

directionally toward sunlight (106). The LOV2 domain acts as an inhibitory domain for the

kinase domain of phot1. Upon irradiation with blue light, the LOV2 domain undergoes a

conformational change, releasing inhibition of the kinase domain (107).

Figure 1.7: Structure of the LOV2 domain. The LOV2 domain from phototropin1 of Avena
sativa is in the dark state, inactive conformation (PDB code 2V0U). The PAS fold is in green,
Jα helix is in navy and the flavin mononucleotide (FMN) is in light blue.

LOV2 has a typical PAS fold, characterized by a central 5-stranded anti-parallel sheet
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flanked by four α-helices (Figure 1.7). (98; 108; 109). The center of the protein binds a flavin

mononucleotide (FMN) that is responsible for absorption of light. The FMN cofactor is kept

in place through contacts with residues in virtually all domain helices and strands (110). This

creates a very rigid core that is sensitive to small changes in conformation caused by light

absorption. Outside of the core, a large helix, termed the Jα helix, links the LOV2 domain to

the kinase domain in phot1.

Figure 1.8: The LOV2 domain thiol adduct. A thiol bond forms between LOV2 domain residue
C450 (green) and FMN (blue) upon light-induced activation. (a) The dark state structure
(PDB code 2V0U) is shown on the left. (b) The lit state structure is shown on the right (PDB
code 2V0W).

The FMN cofactor catalyzes a conformational change in the LOV2 domain through the

absorption of light. A covalent adduct is formed between a cysteine side chain and a carbon

atom of an FMN ring upon irradiation with a photon of blue light (109). In A. sativa, this

residue is Cys450 (Figure 1.8). FMN is able to absorb light of 400 to 500 nm wavelength,

having a principle peak absorption at 447 nm and a secondary peak at 478 nm (111; 112).

Once formed, the thiol adduct shifts the LOV2 absorption spectrum, to a principle peak in
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the ultra violet range, centered at 378 nm. Upon thiol bond formation, the LOV2 domain

undergoes a significant structural change. The thiol bond within the FMN ring causes a ring

pucker, leading to a 6 degree tilt of the tricyclic isoalloxazine FMN ring and slight movements

of the side chains surrounding it (79). In particular, a glutamine residue (Q513) in the 5-

stranded β sheet alters its hydrogen bonding partners due to this shift. Mutation of this

residue to a leucine leaves the LOV2 domain in a pseudo dark state (113). Mutation of the

glutamine to an asparagine, on the other hand, leaves the LOV2 domain in a pseudo lit state

(113).

The LOV2 domain further experiences large conformational changes in its Jα helix region

upon thiol bond formation. NMR and spectroscopic studies indicate the Jα helix unfolds with

exposure to blue light (114; 115; 116), in a process that has not been fully elucidated. The

helix seems to unfold in a cooperative manner (117). The change in free energy resulting from

this conformational change has been calculated at 3.8 kcal mol-1, whereas 15 times more energy

enters the LOV2 domain when a single photon of blue light is absorbed (117). This indicates a

large amount of energy is dissipated in the system, and there is enough energy introduced into

the LOV2 domain for the dark state to lit state free energy conversion barrier to be increased

in order to engineer a more tightly regulated switch. The thiol bond formation along with the

Jα helix unfolding is thermally reversible. Various LOV2 domain orthologs have different lit

state to dark state reversion times, with the LOV2 domain from Avena sativa having a half

time of 27 seconds (111). Other LOV domains, such as that from the A. thalia FKF1 protein

have much longer half lives (118). FAD containing LOV domains, such as the fungal protein

VVD, undergo thermal reversion that have half lives in the range of hours(119).

Mutations in the LOV domain are able to shift the half life of thermal reversion. Mutations

V416I L496I lengthen the thermal reversion lifetime of Avena sativa LOV from 81 s to 1,009 s,

a 12-fold increase (119). These mutation are theorized to affect this change by decreasing the

size of a solvent accessible channel in the LOV2 domain core, thus minimizing the accessibility

of water molecules to the FMN pocket, which are a critical component to the formation of

a reversion intermediate needed for full reversion to occur (119). Conversely, increasing the

size of the solvent accessible channel is theorized to decrease the half life of thermal reversion.
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The mutation I427V decreases the size of the solvent accessible area around the FMN and also

decreases half life of A. sativa LOV2 from 27 s to 4 s (120). Imidazole base molecules have a

similar effect, decreasing the half life of thermal reversion by deprotonating a nitrogen critical

to the thiol reversion intermediate formation (119).

Mutations have been used to mimic the two states of the LOV2 domain: dark, inactivated

and lit state, activated. Mutating the cysteine residue required for thiol bond formation to

alanine or serine inhibits formation of the lit state thiol adduct (111; 112). This renders the

protein unable to undergo a dark state to lit state conformational change, and hence in a

permanently dark, or dark mimetic state. Mutations have been shown to destabilize the Jα

helix, thus rendering it unfolded and in a permanently lit or lit mimetic state (121). The

mutation I539E in the full length phot1 protein of A. sativa abolishes the LOV2 dark state

inhibition of the phot1 kinase domain, rendering it constitutively active. Mutations I532E and

A536E individually partially activate the phot1 kinase domain in the dark.

1.5 Photoswitches that have made use of the LOV2 domain

The large conformation change that occurs within the G528A LOV2 Jα helix has been

harnessed to create a photoswitchable transcriptional repressor and a photoactivatable DHFR

enzyme. Both of these switches use LOV2 domain from the Avena sativa organism.

Strickland et. al. linked the TrpR transcriptional repressor E. coli protein to LOV2, thus

designing the LOV-TAP switch (122). The linkage was made by connecting the C-terminus

of the Jα helix to the N-terminal helix of TrpR, creating a large, shared, end-to end helix

between the two proteins. The light switching mechanism of LOV-TAP proposed that the

shared helix is docked to the LOV2 domain when in the dark, leaving TrpR sterically blocked

from binding DNA. Irradiation with blue light undocked the helix from the LOV2 domain,

wherein it docked to TrpR and relieved the steric block between the transcriptional repressor

and DNA, allowing for binding and subsequent transcription repression. The LOV-TAP switch

was shown to under go only a 5-fold dynamic range, or increase in affinity from dark state

to lit state binding of DNA. In order to increase the dynamic range of the LOV-TAP switch,

18



mutations were engineered into the LOV2 domain. These mutations, G528A and N538E, were

chosen for their helical propensity and stabilizing electrostatic properties (123). The reasoning

behind the introduction of these mutations was to stabilize the Jα so that it would remain

docked to LOV2, and raise the energy barrier of the lit state to dark state transition. Indeed,

introduction of the two mutation into LOV-TAP increased the dynamic range of the switch

from 5-fold to 70-fold (123).

The LOV2 domain was also used to photoactivate the enzyme dihydrofolate reductase

(DHFR). DHFR catalyzes a step in the folate metabolism pathway. It contains a nicotinamide

adenine dinucleotide phosphate (NADPH) cofactor that is used to catalyze the reduction of

of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (124; 125). Lee et al. used statistical

coupling analysis to pinpoint areas where the LOV2 conformational change would lead to

allosteric regulation of DHFR (124). Statistical coupling analysis quantifies areas of evolu-

tionary sequence changes within a protein family allowing for identification of correlated areas

of structural significance. The entire LOV2 domain, including Jα helix, was inserted into the

βF-βbG loop of DHFR, close to the active site of the enzyme. The enzymatic, hydride transfer

activity of the enzyme was reduced by about one-thousand fold in the dark state due to the

insertion. Low levels of enzyme activity were seen upon light activation, a two-fold increase

from the dark state activity.

This dissertation was embarked upon with the goal of expanding the ability to use naturally

occurring proteins as genetically encoded caging agents. We sought to design photoswitches

in a manner that could be be readily generalized to cage multiple proteins in varied systems.

With this goal in mind, designing protein-protein interactions that can be switched on using

light was a reasonable step to generalizing such interactions, allowing for signaling network

activation in this manner. Due to its well characterized photo-switching mechanism, its small,

easily expressible size, and multiple available crystal structures, the LOV2 domain was chosen

as the principle protein caging agent in this work. The work describes the significant progress

that was achieved toward being able to photactivate two classes of proteins, and using those

proteins as tools to manipulate biological systems.

In Chapter 2, the caging of small, globular GTPase proteins is discussed. The photoacti-

19



vatable protein PA-Rac was created by caging the globular small GTPase Rac1 through the

use of the LOV2 domain. This photoswitch was able to induce membrane ruffling, protrusions,

and directed cell movement upon blue light irradiation at the leading edge of mammalian cells.

Its use has resulted in deeper understanding of the role of Rac1 in mammalian cell motility.

The modeling and characterization of PA-Rac was critical in understanding its mechanism of

photoswitching. The knowledge gained from elucidating this mechanism was used to cage the

small GTPase Cdc42, thus extending the ability to cage an entire class of proteins.

Chapter 3 describes the design and charactrization of LOV-ipaA, a photoactivatable pep-

tide. The peptide ipaA, which naturally binds vinculin, was caged by creating a large, chimeric

Jα-ipaA helix. As a model case, LOV-ipaA demonstrated the ability to alter the sequence of

Jα helix of LOV2 while maintaining its photoswitching capacity in order to introduce new

functionality into the helix.

In Chapter 4, the use of the LOV-ipaA-vinculin photoactivatable binding interaction in

vivo is demonstrated. LOV-ipaA light activated heterodimerization to vinculin is used as tool

for light induced transcription in yeast. This tool allowed for photoactivatable transcription

of proteins Ste4 and Gpa1, critical in the yeast pheromone mating pathway.

In the concluding Chapter 5, the future directions of photoactivation are discussed. In

particular, novel information gained from the use of PA-Rac in fruit files, zebrafish, and single

cell studies is touched upon. The evolving, novel uses of LOV-ipaA, as well as its contribution

to the creation of other photoactivatable peptides are detailed.

1.6 The molecular modeling program Rosetta as a tool for designing genetically
encoded, caged proteins

The Rosetta program for for macromolecular modeling, prediction and design was used

both to model PA-Rac function and to design LOV-ipaA. This program in an important tool

for protein structure prediction and design. Rosetta is composed of three principle components

that sample changes in the conformation of a protein, analyze the energy of the sampled

protein, and sort changes as favorable or unfavorable in order to yield a protein structure

prediction.

In order to sample the changes in the structure of a protein, Rosetta uses a combination of
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side chain as well as backbone movement (126). Backbone perturbations consist of either small

changes in phi and psi angles of up to five residues such as small moves and shear moves, or

insertion of small backbone fragments from experimentally determined structures. Side chains

which increase in energy upon backbone perturbation are repacked, and rotamers are sampled

in these spots for their ability to optimize energy. An energy minimization step then alters

backbone torsion angles (phi and psi) within ten residues of the initial perturbation in order

to relive any clashes (127).

Rosetta uses a scoring function to evaluate the energy of sampled protein structures. This

function is made of knowledge-based as well as atom-based terms which describe the likelihood

and the favorability of a structure. Van der Waals attraction and repulsion interactions are cal-

culated using the atom-based The Lennard-Jones potential (128). Another atom based term,

the Lazaridis and Karplus implicit model (129), measures solvation energies of structures.

Hydrogen bond energies are calculated through a secondary structure and orientation depen-

dent model which is obtained from analyzing hydrogen bonds in experimentally determined

crystal structures (130; 131). One energy term derives favorable Ramachadran torsion angles

for amino acids based in part on probabilities of seeing those angles in experimentally deter-

mined structures (132). Similarly, amino acid side chain energies are based on the probability

of finding a particular conformation in experimentally determined structures (133). Pairwise

interactions, such as electrostatics and disulfides, are calculated using a knowledge-based term

(128). A reference term describing the energy of the unfolded state of an amino acid is also

included (128).

The scores generated by Rosetta’s potential energy function and its terms are evaluated

according to the Metropolis Monte Carlo criterion (134). Using this criterion, a change such as

particular shear or small move which lowers the energy of the protein is accepted while a move

that increases the protein’s free enery is rejected. Once in a while, as determined by a random

number generator, an unfavorable move will be accepted, so that the protein conformation can

escape local energy minima.

In order to model PA-Rac (Chapter 2), both the protein backbone as well as protein

sidechains were optimized. A protocol that combined both of these elements, domain assembly,

21



was utilized. The protein was initially modeled in low-resolution, centroid form, and small

moves of the backbone phi and psi angles connecting LOV2 to Rac1 were imposed. In the

next round of design, when modeled to full-atom resolution, flexible backbone small moves on

linking amino acids were iterated with side chain optimizations on residues on and around the

linker.

For the design of LOV-ipaA (Chapter 3), only fixed backbone operations were conducted.

Due to this, only optimization of residue side chains was used, and at atomic level resolu-

tion. Sampling for Rosetta’s side chain optimization with design protocol involves sampling

side chains of all amino acids except for cysteine at the position to be designed. Side chain

conformations are chosen from a backbone-dependent rotamer library, minus those rotamers

rarely seen in nature (133; 128). In this way, Rosetta enabled design of photoswitches.
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CHAPTER 2

A GENETICALLY ENCODED PHOTOACTIVATABLE RAC CONTROLS THE
MOTILITY OF LIVING CELLS

2.1 Summary

The precise spatio-temporal dynamics of protein activity are often critical in determining

cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to

manipulate protein activity at precise times and places within living cells. Protein activity has

been controlled by light, through protein derivatization with photocleavable moieties (1) or

using photoreactive small-molecule ligands (2). However, this requires use of toxic ultraviolet

wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of

the cell membrane (for example, through microinjection). Here we have developed a new

approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase

regulating actin cytoskeletal dynamics in metazoan cells (3; 4). Rac1 mutants were fused

to the photoreactive LOV (light oxygen voltage) domain from phototropin1 (5; 6), sterically

blocking Rac1 interactions with effector PAK1 until irradiation unwound a helix linking LOV

to Rac1. Rac1 interactions with PAK1 under dark and lit state conditions were quantified using

Isothermal Titration Calorimetry. Photoactivatable Rac1 (PA-Rac1) could be reversibly and

repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions

and ruffling. We used molecular modeling to probe the mechanism of Rac caging in the dark.

We show that the interface formed between loops of the LOV2 domain and the effector binding

region of Rac1 block interaction between Rac1 and PAK1 in the dark, thus leading to Rac1

caging. Introduction of a similar interface between LOV2 and Cdc42 led to the dark state

caging of the Cdc42 small GTPase.



2.2 Introduction

NMR studies have revealed the mechanism of a protein light switch in Avena sativa pho-

totropin1 (6; 7): a flavin-binding LOV2 domain interacts with a carboxy-terminal helical

extension (Jα) in the dark. Photon absorption leads to formation of a covalent bond between

Cys 450 and the flavin chromophore, causing conformational changes that result in dissociation

and unwinding of the Jα helix.

We fused the complete LOV2-Jα sequence (404-547) to the amino terminus of a constitu-

tively active Rac1, anticipating that the LOV domain in its closed conformation would block

the binding of effectors to Rac1, and that light-induced unwinding of the Jα helix would re-

lease steric inhibition, leading to Rac1 activation. Sampling of different junctional sequences in

pull-down assays revealed that connecting Leu 546 of LOV2-Jα to Ile 4 of Rac1 led to substan-

tial reduction in Rac1 binding to its effector PAK. To ensure that the photoactivatable Rac1

would induce no dominant-negative effects and that its activity would not be subject to up-

stream regulation, mutations were introduced to abolish GTP hydrolysis (Q61L) and diminish

interactions with nucleotide exchange factors, guanine nucleotide dissociation inhibitors and

GTPase activating proteins (E91H and N92H). This resulted in the photoactivatable analogue

of Rac1 (PA-Rac1) used in the following studies. Pull-down assays showed that PA-Rac1 has

greatly reduced affinity for its effector protein PAK in the dark, as does a PA-Rac1 construct

containing a light-insensitive LOV2 mutation (C450A) (8). Effector binding was restored in

a PA-Rac1 construct containing a LOV2 mutant (I539E) (9) which mimics the unfolded lit

state.

Activation of PA-Rac1 was examined in HeLa cells expressing a YFP fusion of PA-Rac1 to

gauge expression level. The cells remained quiescent when illuminated with wavelengths longer

than flavin absorbance but within seconds after switching to 458nm, lamellipodial protrusions

and membrane ruffles appeared around the cell edges. To show that this effect was due to PA-

Rac1, kymograms were used to quantify maximum protrusion length; irradiation of PA-Rac1

elicited protrusions that were four times as long as those seen in cells expressing either LOV

domain alone or the light-insensitive PA-Rac1(C450A) mutant. An important advantage of
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PA-Rac1 is its ability to control precisely the subcellular location of Rac activation. We first

examined this in mouse embryo fibroblasts (MEFs) stably expressing PA-Rac1, and cultured

without serum to minimize cell activity before irradiation. Irradiation of 20-mm spots at

the cell edge generated large protrusions clearly localized next to the point of irradiation.

Repeated irradiation led first to ruffles and then to protrusion. Movement of a laser spot to

different positions led to cessation of ruffling or protrusion at the initial irradiation position

and new activities appearing where the laser spot was brought to rest, demonstrating reversible

activation. In MEF cells, more prone to movement than HeLa cells, complex shape changes

were produced by painting the cell with the laser spot).

We sought to understand how PA-Rac1 drives such a large phenotypic change in live cells.

In order to do so, we studied how Rac1 is maintained in a caged conformation in the dark state,

thus inhibiting binding to its effector PAK1; and at what affinity PAK1 binds PA-Rac1 in both

the lit and dark states. PAK1 drives actin polymerization and formation of cell protrusions

at the leading edge of motility (10; 11). We modeled the construct of PA-Rac1 that inhibited

binding of Rac1 to PAK1 in the dark (546-4) in pull-down assays, along with the constructs of

PA-Rac1 connecting Glu 545 of LOV2-Jα to Ile 4 of Rac1 (545-4) that was too short to inhibit

binding of Rac1 to PAK1 in the dark, and the constructs of PA-Rac1 connecting Pro 547 of

LOV2-Jα to Ile 4 of Rac1 (547-4) that was too long to inhibit binding of Rac1 to PAK1 in the

dark. Isothermal titration calorimetry experiments were conducted to quantify the affinity of

that PA-Rac1 dark and lit state mutants to the CRIB domain of PAK1.

The crystal structure of PA-Rac1 was later solved. Models of PA-Rac1 were compared to

this structure. The Crystal structure was then used to model a PA-Cdc42 photoswitch.

2.3 Methods

2.3.1 Rosetta domain assembly protocol

The Rosetta program (12; 13) was used to predict the dark state structure of LOV2-

Rac1 based on the solved crystal structures of dark state LOV2 (PBD code 2V0U) (14) and

Rac1(PBD code 1MH1) (15). Structure prediction simulations were performed on LOV2-Rac1
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545-4, 546-4, and 547-4 constructs. In these simulations, the torsion angles of the residues con-

necting the two proteins were optimized with Monte Carlo sampling. Using the Rosetta domain

assembly protocol (16), we first applied 1000 Φ and Ψ backbone torsion angle movements of

up to 180◦ each to three residues connecting LOV2 to Rac1 in a low resolution representation.

Small backbone torsion angle moves of up to 4◦ were then performed on a high-resolution

representation of LOV2-Rac1, followed by a global repacking of all sidechain rotamers. After

every 15 cycles of small moves and repacking, further repacking was restricted to the rotamers

at the interface and next to the LOV2-Rac1 linkers. This sequence of refinement was repeated

for a total of 150 cycles. Next, we adopted a series of small moves, global rotamer repacking, as

well as backbone minimization within 5 residues of the LOV2-Rac1 linker for high-resolution

optimization cycles. After every ten cycles, only rotamers at the interface and next to the

LOV2-Rac1 linkers were repacked. A total of 100 such high resolution optimizations were used

to generate models, which were further scored using Rosetta’s energy function. One thousand

models, each representing a different folding trajectory, were generated per construct from

simulations using the domain assembly protocol.

2.3.2 Modeling of Rac binding to CRIB

The complex structure of Rac3 and the CRIB domain of PAK4 (PBD code 2OV2) was used

to model the interaction of CRIB-containing effectors with LOV2-Rac1 constructs. The crystal

structure of Rac1 (1MH1) (15) was superimposed onto the complex structure by mapping the

Cα atoms of Rac1 onto those of Rac3. This derived complex structure was then superimposed

onto the LOV2-Rac1 models to create model-CRIB complexes. Side chain rotamers at the

interface of each complex were optimized using rotamer repacking (17). These complexes were

scored using the Rosetta energy function. A low-scoring model-CRIB complex indicated the

model could bind CRIB, while a high-scoring model-CRIB complex indicated clashes between

atoms of the model and the CRIB domain, resulting in reduced binding.
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2.3.3 Clustering of models

Models generated in a simulation were grouped into clusters according to their pairwise

root mean square deviation (RMSD). The RMSD (in Å) of the Cα atom positions of each model

from all other models in the simulation was calculated. Those models falling within a radius

of 3 Å RMSD from each other were grouped into a cluster. A cluster member representing the

center of each cluster was chosen.

2.3.4 Cloning and protein purification

Dark and lit state mimetics of PA-Rac1, C450A and I539E, were cloned into a pTriEx4

vector with an N terminal six Histidine tag. Residues 65-150 of PAK1, comprising the extended

CRIB domain, were cloned into a pET23 vector, with a C-terminal 6 Histidine tag. All proteins

were expressed in E.coli strain BL21(DE3) cells(Stratagene) at 16◦C overnight in the dark.

Cells were lysed in 50 mM sodium phosphate pH 7.0, 300 mM NaCl, and 5 mM MgCl2.

Proteins were purified under yellow light using TALON Metal Affinity Resin (Clontech) and

eluted with 150 mM Imidazole at pH 7.0. The proteins were dialyzed against 50 mM sodium

phosphate, 150 mM NaCl, 7.15 mM 2-mercaptoethanol, 5 mM MgCl2, and 1% glycerol.

2.3.5 Isothermal titration calorimetry

ITC experiments were performed by injecting the dark state mutant C450A of PA-Rac1

(0.14 mM) or the lit state mutant I539E (0.13 mM) into the CRIB domain of PAK1 (10 µM)

using a Microcal VP-ITC calorimeter at 25◦C. Each titration consisted of 29 injections of 10

µL of mutants of PA-Rac1. The baseline of each titration was determined and subtracted from

all of the data points. Titration data for the heat change per injection were fitted to a one-site

binding model using Origin software (OriginLab).
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2.4 Results

2.4.1 Structure prediction of LOV2-Rac1 constructs

One striking result from our study is that the caging of Rac1 is very sensitive to the length

of the linker that connects Rac1 to LOV2. Adding or removing a single residue from the linker

disrupts caging. To determine the physical basis for this length dependence we performed

structure prediction simulations with the Rosetta molecular modeling program on three of

the constructs (545-4, 546-4, 547-4) used in the dark state pull down experiments. The most

prevalent conformation of 546-4 was similar to the crystal structure of 546-4 and contains an

extensive interface between Rac1 and LOV2 that is predicted to occlude CRIB binding. A

similar interface was not observed in the low energy conformations predicted for 545-4 and

547-4, and the binding site for CRIB is predicted to be accessible in the majority of the low

energy conformations.

Models of the dark state 546-4 structure showed a marked difference in quaternary structure

from models of 545-4 and 547-4, and importantly, were similar to the crystal structure of PA-

Rac1 (Figure 2.1). Our lowest RMSD model was 1.7 Å away from the solved crystal structure.

Furthermore, the largest cluster of 546-4 models was on average 4.5 Å RMSD away from

the solved crystal structure. As in the crystal structure, a well-packed binding interface was

formed between the two domains (Figure 2.2, Table 2.1). Residues Leu422, Pro423, Ile428,

Tyr508, Leu546 from LOV2 as well as Phe37 and Trp56 of the beta sheet from Rac1 created

hydrophobic contacts across the LOV2-Rac1 interface. Residues Asp419 and Trp56 also made

a hydrogen bond across the interface. The tight packing of the Rac1 β-strand against LOV2

occluded the strand addition binding of CRIB to the Rac1 β-sheet.

An interface did not form in models of the 545-4 construct. In these models, Rac1 orients

away from the LOV2 domain, and thus CRIB is not occluded from binding LOV2-Rac1 (Figure

2.3, Table 2.2). Also, a LOV2-Rac1 interface did not form in most of the models of the 547-4

construct. Clusters generated using the 547-4 simulations contained less models per cluster

than all other simulations (Table 2.2). Because of the longer linker, 547-4 could sample more

conformational space (Figure 2.3). In the majority of conformations the Rac1 β-sheet was
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Figure 2.1: Comparison of PA-Rac models to X-ray crystal structure. (a) Superposition of
X-ray structure of PA-Rac1 (white) and the 546-4 model with the lowest RMSD to the X-ray
structure. LOV2 is in blue, Rac1 in purple. (b) The model with the lowest RMSD to the
PA-Rac1 X-ray structure is unable to bind PAK4 CRIB (yellow). (c) Superposition of X-ray
structure of PA-Rac1 (white) and the best-scoring 546-4 model. LOV2 is in blue, Rac1 in
green. (d) The model with best Rosetta score is unable to bind PAK4 CRIB (yellow).

not adjacent to the LOV2 domain and the CRIB domain binding site was predicted to be

accessible.

2.4.2 Binding of LOV2-Rac1 to CRIB

Isothermal titration experiments were performed to analyze the ability of lit as well as

dark state 546-4 to bind the CRIB domain of PAK1. The lit state mimetic, I539E, of 546-4

bound to PAK1 CRIB with an affinity of 220-280 nM. In contrast, the dark state C450A 546-4

mimetic bound PAK1 CRIB with a ten-fold weaker affinity of 2.3-3.1 µM (Figure 2.5, Table

4.1).
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Table 2.1: Simulation of the LOV2-Rac1 546-4 construct. The five most populated model
clusters are listed, along with their Rosetta score. Rosetta scores listed are averages of the
best 10% scoring models in each cluster. The center member of each cluster was analyzed for
its RMSD to the X-ray structure of PA-Rac1 and its ability to bind the CRIB domain of p-21
activated kinase 4 (PAK4). Of the 1000 models generated during the simulations, 813 were
unable to bind PAK4 CRIB.

Cluster Number Members Score RMSD from X-ray (in Å) Binds CRIB?

1 566 -512 4.5 No

2 151 -512 2.1 No

3 62 -513 7.6 Yes

4 60 -506 4.5 No

5 54 -503 9.0 Yes

Figure 2.2: Models of the LOV2-Rac1 546-4 construct. The model representing the center
member of the five most populated clusters is pictured. LOV2 is in blue, and Rac1 is in red,
and PAK4 CRIB is in yellow.

43



Table 2.2: Simulations of LOV2-Rac1 545-4 construct. The five most populated model clusters
are listed, along with their Rosetta score. Rosetta scores listed are averages of the best 10%
scoring models in each cluster. The center member of each cluster was analyzed for its ability
to bind the CRIB domain of PAK4. All 1000 models generated from the simulations were able
to bind PAK4.

Cluster Number Members Score Binds CRIB?

1 553 -509 Yes

2 178 -509 Yes

3 107 -507 Yes

4 46 -508 Yes

5 43 -509 Yes

Figure 2.3: Models of the LOV2-Rac1 545-4 construct. The model representing the center
member of the five most populated clusters is pictured. LOV2 is in blue, and Rac1 is in red,
and PAK4 CRIB is in yellow.
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Table 2.3: Simulations of LOV2-Rac1 547-4 construct. The five most populated clusters are
listed, along with their Rosetta score. Rosetta scores listed are averages of the best 10% scoring
models in each cluster. The center member of each cluster was analyzed for its ability to bind
the CRIB domain of PAK4. Of the 1000 models generated during the simulations, 967 were
able to bind PAK4 CRIB.

Cluster Number Members Score Binds CRIB?

1 337 -507 Yes

2 115 -500 Yes

3 104 -508 Yes

4 100 -508 Yes

5 63 -491 Yes

Figure 2.4: Models of the LOV2-Rac1 547-4 construct. The model representing the center
member of the five most populated clusters is pictured. LOV2 is in blue, and Rac1 is in red,
and PAK4 CRIB is in yellow.
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KD ∆H ∆S (Kcal

PA-Rac Mutant (µM) (Kcal mol-1) mol-1 K -1) N

C450A 2.3 ± 0.36 -7.0 ± 0.49 ×103 2.6 1.0 ± 0.051

dark state 3.1 ± 0.90 -5.6 ± 1.9 ×103 6.6 0.64 ± 0.18

I539E 2.2 ± 0.14 ×10-1 -1.8 ± 0.016 ×104 -30.0 0.95 ± 0.0057

lit state 2.8 ± 0.51 ×10-1 -1.8 ± 0.036 ×104 -31 0.95 ± 0.013

Table 2.4: Binding affinities of PA-Rac1 mutants to the PAK1 CRIB domain. Values measured
by ITC for binding affinity, enthalpy, entropy, and molar ratio are listed. Two experiments
are shown per mutant.

Figure 2.5: Isothermal titration calorimetry experiment measuring binding of PAK1 CRIB to
PA-Rac1. Measruements of (a) Pa-Rac1 lit state (I539E) and (b) dark state (C450A) binding
to CRIB are shown. The raw data of heat generated per injection is shown in the top panels,
and integrated data of heat output per mole of injected PA-Rac1 versus molar ratio of PA-Rac1
to CRIB is shown at the bottom.
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2.4.3 Application of modelling to PA-Cdc42 interface

Figure 2.6: PA-Rac1 and predicted Pa-Cdc42 interfaces. (a) The interface between LOV2 and
Rac1 of Pa-Rac1 546-4 construct Rosetta predicted model. (b) The interface between LOV2
and Rac1 in the Pa-Rac1 solved crystal structure (PDB code 2WKP) in stick representation
and (c) in space filling representation. (d) The Rosetta predicted PA-Cdc42 interface.

The Rosetta models as well as the crystal structure of PA-Rac1 were used to create a

caged Cdc42 construct. When examining the models and crystal structure of PA-Rac1, it

became evident that the interface between LOV2 and Rac1 played a critical role in inhibiting

PAK1-CRIB binding to Rac1 while in the dark. We sought to expand on this knowledge to

cage Cdc42.

Cdc42 is a protein that has large sequence and structure identity to Rac1. About 70% of

residues are shared between the two proteins (18). The effector binding region of both proteins
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is located in the same place within their structures, ad Cdc42 also binds the CRIB domain

of proteins such as PAK1 and WASP. While Rac1 is thought to control membrane ruffling

and cell protrusion, overexpression of Cdc42 leads to cell polarization, and the formation of

spike-like cell structures termed filipodia. Cdc42 is, thus, also a critical protein in cell motility.

While a large sequence identity existed between Rac1 and Cdc42, initial efforts to cage

Cdc42 in the same manner as Rac1 failed. Upon examining a model of PA-Cdc42 having

sequence of Cdc42 threaded onto the Rac1 portion of the PA-Rac1 crystal structure, we were

able to determine why this was the case. A tryptophan residue in Rac1 (W56) forms a large

hydrophobic patch with the loops of LOV2. That residue, however, is a phenylalanine in Cdc42

(Figure 2.6). The hydrophobic patch formed at the interface of Cdc42 and LOV2 is therefore

smaller and less well-packed, thus lessening the inhibition of Cdc42 binding to CRIB in the

dark. When a tryptophan was substituted for phenylalanine in PA-Cdc42, the interaction

between Cdc42 and CRIB was better inhibited in the dark, as seen in pull-down assays of

PA-Cdc42 binding PAK1-CRIB.

2.5 Discussion

Through the use of the domain assembly protocol in the Rosetta molecular modeling

program, we were able to model the structure of PA-Rac1 constructs. The Crystal structure

of PA-Rac1 was within 4.5 Å RMSD of the model, indicating close structural similarity between

the two. The domain assembly protocol can be used as a tool to create other photoactivatable

proteins, by modeling how the LOV2 domain could act as a dark state cage. The domain

assembly protocol may also act as a tool to model the structures of multidomain proteins

wherein the individual domains have known structures and are linked together through various

linkages (16). Such a tool could serve a powerful function in predicting structures of large

multidomain proteins where conformational changes play an important role in function, such

as FRET biosensors.

PA-Rac1 had a tenfold tighter binding affinity for its effector CRIB in the lit versus the

dark state. While this is seems a small difference in affinity, or dynamic range, it mimics the
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binding of Rac1 to it effector in the GTP versus the GDP bound states (19). When in the GTP

bound state, Rac1 binds CRIB with an affinity of 90 nM; PA-Rac1 lit state binds CRIB with

an affinity of about 200 nM. When in the GDP bound state, Rac1 binds CRIB with an affinity

of 4 µM; PA-Rac1 dark state binds CRIB with an affinity of about 2-3 µM. So, even though

the dynamic range of the photoswitch is small, it straddles the binding affinties where Rac1

has maximal in vivo effect on CRIB binding. Photoswitches for other proteins might have to

be engineered take into account their lit state and dark state effective ranges. Caged proteins

might have to be engineered in two ways, by shifting their affinities to effectors either by

weakening or tightening the interaction, and by changing the dynamic range, or the difference

in affinity the switch achieves in the dark versus the lit state. In this way photoactivatable

proteins could be fine-tuned to have the maximal effect on protein-protein interactions.

Using models and a crystal structure of PA-Rac1, we were able to create a caged version

of PA-Cdc42. By introducing a tryptophan mutation into Cdc42 (F56W), we were able to

make an interface between Cdc42 and LOV2 similar to that found between LOV2 and Rac1

in PA-Rac1. This mutation, however, is in the effector binding region of Cdc42 (20). Such a

mutation has the potential to alter the avidity of Cdc42 for its effectors, increasing its affinity

for some, while decreasing affinity for others. Due to these changes, PA-Cdc42 F56W as it is

currently designed might not be ideal for in vivo cell motility studies. Other strategies must

be tested. Most promisingly, the interface on the LOV2 side of PA-Cdc42 is being evolved to

compensate for the loss of hydrophobic surface area on Cdc42.
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CHAPTER 3

DESIGN OF A PHOTOACTIVATABLE VINCULIN BINDER

3.1 Summary

Photocontrol of protein binding interactions is a powerful tool for studying cell signaling

networks, allowing for precise spatial and temporal control of cellular functions. We have

created a light switchable peptide that binds vinculin with enhanced affinity under blue light

using the photoactivatable LOV2 domain. The peptide, ipaA, binds with low nanomolar

affinity to vinculin, a protein critical to inside-out and outside-in signaling at focal adhesions

and adherens junctions. The photoswitch, termed LOV-ipaA, embeds the functionality of ipaA

into the sequence of LOV2. In the switch, ipaA-vinculin binding is sterically blocked when in

the dark, and the inhibition is relieved upon blue light activation. We show that the LOV-ipaA

protein can be photoactivated by blue light and undergoes spectral and secondary structural

changes from a lit/active to a dark/inactive state. Through the use of a novel fluorescence

polarization competition assay, we report the on and off rates, as well as the binding affinities,

of the LOV-ipaA photoswitch binding to vinculin under dark or blue light conditions. We

show LOV-ipaA binds the vinculin D1 subdomain with a 25-fold tighter affinity in the lit than

in the dark state. Mutations on the LOV2 domain have extended the dynamic range of this

photoswitch to 48-fold. The LOV-ipaA switch is able to control binding of full-length vinculin

to actin, releasing the auto-inhibition between the head and actin-binding tail of vinculin.

This indicates that LOV-ipaA is a physiologically relevant switch that may be used to control

vinculin signaling through actin binding in vivo.



3.2 Introduction

Photocontrol of protein-protein interactions is a powerful approach to studying signaling

networks (1; 2; 3; 4). Using light to activate these networks allows for precise spatial and

temporal control of cell functions. Unlike chemical activators of signaling, proteins allow

for specific control of desired interactions and quick reversibility (5). Naturally-occurring

photoactivatable proteins are ideal for use in designed light switches due to their specificity,

reversibility, and ease of use as genetically encoded effectors (6).

The LOV2 domain has been used to photocontrol protein-protein interactions (3; 7; 8).

Found in higher plants (9), it is part of the PAS superfamily of domains (10), and contains a

flavin mononucleotide (FMN) co-factor located in the center of the PAS fold, as well as a large

α-helical region C-terminal to the fold, termed the Jα helix (11; 12). Upon irradiation with a

photon of blue light, a covalent adduct is formed between a cysteine side chain in the PAS fold

and a carbon atom of the FMN (13; 14). NMR and spectroscopic studies indicate this leads

to a larger overall conformational change in the domain wherein the Jα helix cooperatively

unfolds (15; 16). Reversion of the thiol bond and conformational change back into the dark

state occurs spontaneously within seconds to hours, depending on the LOV2 domain ortholog

(17).

The large conformation change that occurs within the Jα helix has been previously har-

nessed to create a photoswitchable GTPase, PA-Rac (3); a transcriptional repressor, LOV-TAP

(7; 18); and a photoactivatable DHFR enzyme (8). In PA-Rac, constitutively active Rac1 was

linked to the C-termius of LOV2 and the Jα helix in such a way as to occlude the binding site

of Rac1 to its effector, PAK1, in the dark. Upon blue light irradiation, unfolding of the Jα

helix relieves steric blocking of the PAK1 binding site on Rac1, and allows Rac1 to interact

with its downstream effectors. PA-Rac exhibits a 10-fold dynamic range in its ability to inhibit

Rac1-effector interactions in the dark versus under blue light irradiation conditions. PA-Rac

has been used to study cell motility in single cells (3) as well as in whole organisms. In the

LOV-TAP switch, Strickland et. al. linked the TrpR transcriptional repressor E. coli protein

through its N-terminal helix to the C- terminus of the Jα helix, creating a large end-to end

53



helix that is shared by the two proteins (7). The reaction mechanism of this switch proposes

that the helix remains docked to the LOV domain in the dark, sterically blocking interaction

between TrpR and DNA binding. Upon irradiation with blue light, the helix undocks from

the LOV2 domain and the steric block is relieved, allowing for binding between TrpR and

DNA and subsequent transcription repression. Although important as a proof of concept,

LOV-TAP was calculated to undergo only a small change in binding affinity to DNA between

lit and dark states, a dynamic range of 5-fold. Recently, the dynamic range of this switch was

improved through the introduction of 2 mutations into the Jα helix, G528A and N538E, which

stabilized the structure of the helix in the dark state (18). The LOV2 domain was also used

to photoactivate the enzyme dihydrofolate reductase (DHFR) (8). Using statistical coupling

analysis to pinpoint areas where LOV2 conformational change would lead to allosteric regula-

tion of DHFR, the entire LOV2 domain and Jα helix were inserted into an active site loop of

the DHFR enzyme. Low levels of enzyme activity were seen upon light activation.

All three of the previously designed switches based on the LOV2 domain were constructed

by simple fusions or domain insertions. An alternative design approach is to embed the desired

functionality within the conformational switch. For instance, redesign the Jα helix so that it

still folds against the rest of the LOV2 domain in the dark but can bind another protein when

released from the LOV2 domain in the light. This strategy was recently used to cage a coiled-

coil interaction by creating a chimeric sequence of a leucine zipper and the N-terminus of the

photoactivable yellow protein (PYP) (19). Like the Jα helix from LOV2, the N-terminus of

PYP docks more tightly with the rest of the protein in the dark. One challenge of this approach

is that a linear stretch of sequence must be created that it is compatible with alternative

conformations and binding events. A potential advantage of this approach is greater caging

capacity as the target functionality is more tightly embedded within the switch protein.

We have used the LOV2 domain to create LOV-ipaA, a photoactivatable switch that

binds to vinculin with enhanced affinity in the light (20). Vinculin is a critical protein in

forming focal adhesions and adherens junctions (21; 22). It is composed of 3 domains; the

head domain, containing 5 4-helix bundles D1-D5, a proline rich neck region, and the tail

domain (23; 24). Integrin signaling proteins talin and α-actinin bind vinculin through a helix
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addition mechanism in a groove in the D1 head domain bundle, while the tail domain binds

polymerized F-actin (25; 26). The F-actin binding site on the tail domain is autoinhibited

through an interaction between the head and tail domains (27). Interaction between high-

affinity vinculin binding sites (VBS) in proteins such as talin with the D1 subdomain in the

presence of F-actin releases autoinhibition between the head domain and the actin-binding site

of the tail (28). This allows vinculin to form a tensile bridge linking integrin binding proteins

to the actin cytoskeleton (29) The invasin protein ipaA from the Shigella flexneri bacterium

contains a VBS that binds to the D1 groove with a much tighter affinity than those from

talin or α-actinin, thus out-competing naturally occurring interactions in epithelial cells and

activating vinculin- F-actin binding (20). Selectively photo controlling the binding of ipaA

to vinculin through the LOV-ipaA photoswitch could render it useful as a dominant negative

inhibitor of vinculin in mammalian cells, and an integral tool for studying the role of vinculin

dynamics in cell motility.

We have designed LOV-ipaA using the Rosetta molecular modeling program so that the

functionality of the ipaA VBS peptide is embedded within the LOV2 Jα helix (30). The last

ten residues of the Jα helix and the first ten residues of ipaA form a chimeric sequence. We

were able to maintain LOV2 reversibility in the FMN thiol bond formation and the Jα helix

conformational change using the chimeric sequence. Under dark conditions, the LOV2 domain

in LOV-ipaA reduces the binding affinity of the ipaA sequence for vinculin; upon blue light

irradiation, the Jα helix unfolds, the LOV2 steric block is relieved, and LOV-ipaA is able to

bind vinculin with high affinity. This conformational switching leads to a 20-fold change in

binding affinity for vinculinD1. Mutations designed on the LOV domain extended this dynamic

range to almost 50-fold. These changes in dynamic range between lit and dark states of LOV-

ipaA to the vinculin subdomain translated into large changes in apparent binding affinity of

LOV-ipaA to full-length vinculin between lit and dark states. The LOV-ipaA switch was

able to control binding of full-length vinculin to actin, releasing the auto-inhibition between

the head and actin-binding tail of vinculin. This indicates the photoswitch could be used to

control vinculin signaling through actin binding in vivo. Mutations in the LOV2 domain that

lengthened or shortened the reversibility time of the LOV2 domain were also tested in the
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LOV-ipaA system. Kinetics measurements indicate these mutations have a small effect on

binding between ipaA and vinculinD1.

3.3 Methods

3.3.1 Cloning

The LOV-ipaA gene was synthesized with a 6 histidine N-terminal tag (Genscript) and

cloned into the pET21b vector. Mutations on LOV-ipaA were performed using site-directed

mutagenesis. VinculinD1 subdomain (residues 1-258) and full-length vinculin (residues 1-1066)

cloned into a pET15b vector were a gift from the Craig lab at Johns Hopkins University.

3.3.2 Protein expression and purification

LOV-ipaA WT and mutants were expressed in E.coli strain BL21(DE3) cells (Genese)

at 16◦C overnight in the dark. Cells were lysed in buffer containing 50 mM sodium phos-

phate pH 7.5, 150 mM NaCl and 5 mM 2-mercaptoethanol. Proteins were purified by affinity

chromatography over HiTrap HisTrap columns (GE) and eluted with 150 mM Imidazole at

pH 7.5. The proteins were further purified through size exclusion chromatography over a

Sephadex S75 column (GE) equilibrated with 50 mM sodium phosphate, 150 mM NaCl and

5 mM 2-mercaptoethanol. VinculinD1 subdomain was expressed in E.coli strain BL21(DE3)

cells (Stratagene) at 16◦C overnight. Cells were lysed in buffer containing 50 mM Tris-HCl

pH 8.0, 500 mM NaCl and 5 mM 2-mercaptoethanol. The protein was purified by affinity

chromatography over HiTrap HisTrap columns (GE) and eluted with 500 mM Imidazole at

pH 8.0. The protein was further purified by ion exchange chromatography using a HiTrap Q

column (GE) eluted with a NaCl gradient. VinculinD1 was stored in 20 mM Tris-HCl with 2

mm DTT and 2 mM EDTA.

Vinculin full-length protein was expressed in E.coli strain BL21(DE3) cells (Genese) at

37◦C for four hours. Cells were lysed in buffer containing 50 mM Tris-HCl pH 8.0, 500 mM

NaCl and 5 mM 2-mercaptoethanol. The protein was purified by affinity chromatography over
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HiTrap HisTrap columns (GE) and eluted with 500 mM Imidazole at pH 8.0. The protein was

then purified by ion exchange chromatography using a HiTrap Q column (GE) eluted with a

NaCl gradient. Vinculin was further purified through size exclusion chromatography over a

Sephadex S200 column (GE) equilibrated with 50 mM sodium phosphate, 150 mM NaCl and

5 mM 2-mercaptoethanol.

Protein concentrations for LOV-ipaA and vinculinD1 were determined using Bradford

assays (Thermo). Protein concentrations for full-length vinculin were determined using ab-

sorbance at 280 nm measurements with an extinction coefficient of 62,000 M-1 cm-1.

3.3.3 Peptide synthesis

Peptides containing the sequence TANNIIKAAKDATTSLSKVLKNIN, TANNIIKAAK-

DATTSASKVLNIN and TANNIIKAAKDATTSLSKALKNIN were synthesized by the Strahl

Lab at UNC-Chapel Hill and amine labeled using 5-(and-6)-Carboxytetramethylrhodamine

TAMRA dye (Anaspec). Peptide concentration was determined by measuring absorbance of

the TAMRA dye at 555 nm using 65,000 M-1 cm-1 extinction coefficient.

3.3.4 Illumination

LOV-ipaA WT and mutants were irradiated using a collimated blue LED with maximum

emission wavelength of 455 nm (ThorLabs). Illumination power was measured to be 6.8 mW

cm-2

3.3.5 Spectrophotometry

All spectrophotometry experiments were carried out using a Cary 50 UV-Vis spectropho-

tometer (Varian). LOV-ipaA WT and mutant spectra were determined by irradiating samples

in a 1 cm path-length cuvette for 1 min and measuring absorbance from 285 to 525 nm every 4

nm. Irradiation was subsequently turned off and the spectrum was measured at 30 s or 5 min

(for the V416I L496I mutant) intervals until no change in absorbance at 450 nm was observed.
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Kinetics of adduct recovery were determined by irradiation of a LOV-ipaA sample for 1 min

to saturate the protein in the lit state. Irradiation was then turned off and absorbance at 450

nm was measured over 2 s or 30 s intervals. Recovery kinetics were fit in Prism software using

a first order exponential decay equation to determine FMN adduct recovery half-life.

3.3.6 Circular dichroism

All Circular Dichroism experiments were carried out using a Jasco J600 circular dichroism

spectrometer. All proteins were dialyzed into 50 mM potassium phosphate buffer pH 7.5.

LOV-ipaA WT and mutant residue molar ellipticity was determined by irradiating samples

in a 0.1 cm path-length cuvette for 1 min to saturate the protein in the lit state. Irradiation

was turned off and absorbance at 207 nm and 222 nm was measured over 2 s or 30 s intervals.

Recovery kinetics were fit in Prism software using a first order exponential decay equation to

determine Jα helix re-folding half-life.

3.3.7 Fluorescence polarization competition experiments

All fluorescence polarization experiments were conducted usinga Jobin Yvon Horiba Fluo-

roMax3 fluorescence spectrometer. All proteins were dialyzed into 50 mM sodium phosphate

pH 7.5 150 mM NaCl, 5 mM 2-mercaptoethanol, and 0.01% triton X100 buffer. TAMRA

labeled peptides were excited with polarized light at 555 nm and the polarization of emitted

light was measured at 583 nm.

The binding affinity of synthesized TAMRA-labeled ipaA peptide to vinculinD1 was de-

termined by titrating increasing concentrations of vinculinD1 into 2 nM TAMRA labeled ipaA

peptide and measuring fluorescence polarization at the emission wavelength of TAMRA, 583

nm. The curve was fit using a one site binding model in Sigma Plot software.

The off rate of TAMRA-labeled ipaA peptide binding to vinculinD1 was determined by

using 50 nM TAMRA-ipaA peptide 85 bound to vinculinD1 in a 0.3 cm path length cuvette.

A 30-fold excess of unlabeled ipaA peptide was then added to the reaction. The reaction was

allowed to proceed for 3 hours at 25◦C, with polarization of TAMRA dye emission measured
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at intervals of 5 min and was fit to a one phase exponential decay equation to determine the

first order rate constant.

Competition assays were conducted using 50 nM TAMRA-ipaA peptide and a concen-

tration of vinculin appropriate for binding 85% of the TAMRA-ipaA peptide, as determined

from the previously measured dissociation constant for TAMRA-ipaA and vinculin. Varying

concentrations of LOV-ipaA were then added to the reaction. The reaction was allowed to

proceed for 3 hours at 25◦C, with polarization of TAMRA dye emission measured at intervals

of 5 min. Competition curves were fit using a first order exponential decay equation to deter-

mine the polarization at time point zero. The fraction of TAMRA-ipaA bound to vinculin was

determined by normalizing each curve using the time point zero as the calculated 85% bound

point and the polarization of TAMRA-ipaA alone as the zero fraction bound point in the dark.

In the light, each curve was normalized with a zero fraction bound point determined by mixing

TAMRA-ipaA and LOV-ipaA at the concentration used in the titration under blue light and

setting the resulting polarization as the zero fraction bound point. Normalized curves were fit

for kon and KD rates using a numerical integration script in Matlab. Six curves were used per

fit, and two fits were averaged for each kinetic measurement.

3.3.8 Surface plasmon resonance

Surface plasmon resonance experiments were conducted using a Biacore 2000 machine

(GE). VinculinD1 was immobilized through amine coupling to the surface of a CM5 chip (GE)

Different concentrations of LOV-ipaA were flown over the immobilized protein and the change

in response units over time was recorded. Data were fit simultaneously for kon and koff to a

pseudo-first order binding model.

3.3.9 Actin co-sedimentation assays

Purified rabbit actin (invitrogen) was polymerized for 30 min at room temperature in 10

mM Tris-HCl pH 7.5 containing 100 mM KCl, 2 mM MgCl2 , 2 mM DTT and 1 mM ATP. 2

mM vinculin and either ipaA peptide or LOV-ipaA mutants were mixed for vinculin:ipaA ratios
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of 1:0, 1:1, 1:2.5, 1:5, 1:10, 1:20, or 1:50 per sample. 12 mM polymerized actin was added per

sample, within a volume of 45 µL per sample. Samples were incubated at room temperature

for 1 hour. They were then centrifuged in a TLA-100 rotor in a Beckman Coulter Optimax XP

ultracentrifuge at an acceleration of 150,000 g for 30 min cooled to 20◦C. Samples were split

into supernatant and pellet fractions. Pellets were resuspended into 45 µL 2x tris-glycine SDS

buffer. All fractions were denatured and run onto an 8 SDS-page polyacrylamide gel. Gels

were comassie stained and analyzed using ImageJ software to determine the fraction of vinculin

present in the pellet versus total vinculin in each sample. Apparent binding affinity of ipaA

or LOV-ipaA to vinculin was determined by plotting the fraction of vinculin bound to actin

versus concentration of LOV-ipaA and fitting the curve to the equation below using Prism

software. A total of 3 gels were quantified and averaged for each binding affinity measurement

(31).

F = a+ (b− a)×

[
(K +X0 + V0)−

√
(K +X0 + V0)2 − 4(X0V0)

2V0

]

F is the fraction of vinculin bound to actin in the pellet, a is the minimum fraction bound,

b is the plateu for fraction bound (set to 0.39), K is the binding affinity, X0 is the concentration

of ipaA or LOV-ipaA added to the reaction, and V0 is concentration of vinculin in the reaction

(set to 2 µM).

3.4 Results

3.4.1 Design of LOV-ipaA

The ipaA VBS1 helical peptide was identified as good a candidate for caging with the

LOV2 domain by performing a search of the protein data bank for protein-binding peptides

with sequences similar to the LOV2 Jα helix. The first ten residues of the ipaA helix were

identified as a good match to the last ten residues of the Jα helix. In addition to having strong

sequence similarity, 5 of the 10 positions are identical, and the hydrophobic residues on the Jα

helix that make critical contacts with the LOV2 domain β-sheet (539, 542, 543) are conserved

in the alignment with ipaA. Additionally, residues in the ipaA sequence that make extensive
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Figure 3.1: LOV-ipaA design (a) The LOV-ipaA switch was designed as a chimera between
the LOV2 Jα helix and ipaA VBS peptide. Upon irradiation with blue light, the Jα helix
unfolds and ipaA can bind effector vinculin. (b) Sequence alignment of LOV2-Jα, ipaA, and
LOV-ipaA. Jα sequence (blue) ipaA sequence (purple), chimera sequence (cyan), and designed
residues (red) are indicated. (c) Model of LOV-ipaA with residues colored as in (b). (d)
Crystal structure of ipaA in complex with vinculin, PDB code 2GWW.

contacts with vinculin are conserved in the alignment (Ile 612, Ala 615, Ala 616, and Val 619

in ipaA). The number, placement, and identity of polar residues are also very similar in both

sequences. The close similarty of these two sequences suggested that it may be possible to

create a chimera sequence that could dock against the LOV2 domain in the dark, but then

bind to vinculin when the Jα helix is released by light activation.

To further evaluate the viability of the proposed chimera sequence we used the Rosetta

molecular modeling program to assess the impact of altering the LOV2-Jα and vinculin-ipaA
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Design LOV2 -Jα Vinculin -ipaA

Residue ∆Score ∆Score

540 Y +3.4 0 (native sequence)

540 D -1.9 -0.20

540 I -2.5 +2.1

Table 3.1: Rostta energies for LOV-ipaA designed residues. Change in Rosetta Energy Units
of native minus designed sequences is given. Designed sequences incorporate all ipaA residues
into the Jα helix or ipaA peptide, with the exception of position 540, which is designed to the
residue listed.

complex sequences. Side chain optimization simulations were used to thread the first ten

residues of ipaA onto the last ten residues of the Jα helix. The protein backbone was held fixed

during the simulations, but side chains on the Jα helix and the neighboring β-sheet were allowed

to adopt alternative conformations. The Rosetta scores of individual residues were examined

to determine if particular residues in the IpaA sequence packed unfavorably against the LOV2

domain β-sheet. A single position showed unfavorable scores, the mutation of aspartic acid

540 to tyrosine. This mutation, D540Y, led to a high Van der Waals repulsive energy for the

residue, indicating a clash between side chain atoms of Y540 and the LOV2 β-sheet. To search

for an alternative amino acid to place at this position, Rosetta was used to perform a sequence

optimization simulation in which position 540 was allowed to adopt alternative identities and

neighboring side chains were free to adopt new side chain conformations. One of the best

scoring residues in the 540 position on the Jα helix was isoleucine. The designed LOV2-Jα

structure containing this sequence improved protein stability by 2.5 Rosetta energy units (Table

3.1). When designed onto vinculin-ipaA, the isoleucine mutation was predicted to destabilize

the protein complex by 2.1 Rosetta energy units. This was considered a desirable outcome

since the binding affinity of ipaA to vinculin had previously been reported to be a staggeringly

tight 110 pM. Destabilizing the vinculin-ipaA complex could lead to a slightly lower binding

affinity, enabling easier working conditions for assays. In contrast to the isoleucine mutation,

retaining aspadric acid, the Jα helix native amino acid, and incorporating it into both the Jα

helix and ipaA would have slightly stabilized both LOV2-Jα and the vinculin-ipaA complex.

Incorporating Tyrosine along with all 10 other residues of ipaA onto the last ten residues of
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Jα would have destabilized LOV2-Jα by a substantial amount, while maintaining the same

stability for vinculin-ipaA. A working model for LOV-ipaA was then created by using the

threaded LOV2-Jα design and adding the remaining 11 residues of ipaA onto the C-terminal

end of Jα using the fragment insertion capability of Rosetta’s domain assembly protocol.

3.4.2 LOV-ipaA photoswiching characterization

Figure 3.2: Spectrophotometric and circular dichroism characterization of LOV-ipaA photo-
switching. (a) LOV-ipaA FMN absorbance vs. wavelength spectrum as LOV-ipaA reverts
from lit state (0 s) to dark state (255 s). (b) LOV-ipaA FMN absorbance at 450 nm over time
as LOV-ipaA reverts from lit state to dark state (c). LOV-ipaA residue molar ellipticity at
207 nm and 222 nm over time as LOV-ipaA reverts from lit state to dark state.

Spectrophotometric and circular dichrochorism experiments were performed to measure

the photoswitching ability of LOV-ipaA. The Absorption spectrum of FMN within LOV-ipaA

was measured in both the lit and dark states. Upon irradiation with blue light, a thiol bond
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forms between cysteine 450 of Avena sativa LOV2 and FMN. This creates an absorbance

spectrum from the FMN with a peak at a wavelength of 378 nm. Upon reversion to dark

state, the thiol bond is broken, and the FMN has two peaks of absorption at 447 nm and

478 nm (32; 13). The absorption spectrum of LOV-ipaA in both the blue light and in the

dark state remains the same as that of the wildtype LOV2 domain, with LOV-ipaA showing

a 378 nm peak absorbance under blue light irradiation conditions. When the protein is then

placed in the dark, the absorption shifts to dark state with peaks at 447 nm and 478 nm over

the course of about 250 s, indicating that LOV-ipaA also retains the wildtype LOV2 domain

ability to shift from lit to dark state (Figure 3.2).

We measured the time required for LOV-ipaA to revert from lit state to dark state after

blue light irradiation by following the protein’s increasing absorption at of 450 nm wavelength

light (Figure 3.2). As it reverted from lit stare to dark state, the 450 nm absorbance peak

increased. Fitting the subsequent absorbance trace over time to an equation for first order

exponential decay, we measured the half life of LOV-ipaA lit state to dark state reversion as

being 25 s, similar to the reported wildtype LOV2 domain rate of 27 s (32).

We also took circular dichroism measurements of the lit state to dark state conversion of

LOV-ipaA. By following the residue molar ellipticity at 207 nm and 222 nm over time, we

observed an increase in helical content of LOV-ipaA (Figure 3.2). Fitting to a first order

exponential decay equation, we calculated the change in helical content to have a half life of

31 s for absorption of both 207 nm and 222 nm. This indicated that LOV-ipaA gained more

helical structure as it converted from lit state to dark state, most likely from the Jα helix

unfolding under blue light conditions, then re-folding in the dark.

3.4.3 Dark and lit state binding between LOV-ipaA and vinculinD1

We developed a fluorescence polarization competition assay to measure the binding affinity

of LOV-ipaA to the vinculinD1 subdomain under dark as well as blue light irradiation condi-

tions. We first labeled an ipaA peptide with fluorescent 5-(and-6)-Carboxytetramethylrhodamine

(TAMRA) and measured its binding affinity to the vinulinD1 subdomain by measuring its fluo-
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rescence polarization emission at 583 nm. The assay was then designed with the TAMRA-ipaA

peptide 85% bound to vinculinD1, yielding a high fluorescence polarization signal readout. In-

creasing concentrations of LOV-ipaA would be titrated into the complex, competing vinculinD1

off and decreasing the fluorescence polarization as an increasing amount of free TAMRA-ipaA

peptide was generated. The titration curves would be generated for LOV-ipaA in both dark

and blue light conditions, and fit for binding affinity under steady state conditions. After at-

tempting a test titration, we observed that the dissociation of TAMRA-ipaA-vinculinD1 and

formation of the LOV-ipaA-vinculinD1 complex did not reach equilibrium for at least 3 hours,

making titration measurements under steady state conditions less practical. Instead, kinetic

measurements were measured for the competition assay. First, the off rate for TAMRA-ipaA

dissociation from the TAMRA-ipaA-vinculinD1 complex was measured. Then, LOV-ipaA

was added to the TAMRA-ipaA-viculinD1 reaction, and the dissociation of vinculinD1 from

TAMRA-ipaA-vinculinD1 along with the formation of the LOV-ipaA-vinculinD1 complex was

observed over time through the decrease of fluorescence polar. The experiment was repeated

with six different concentrations of LOV-ipaA. Experiments were fit simultaneously for the on

rate and binding affinity of LOV-ipaA to vinculinD1 in Matlab using a numerical integration

protocol.

The same concentrations of LOV-ipaA under either blue light irradiation or dark state

conditions yielded very different kinetic curves. The figure below illustrates a global fit for

LOV-ipaA WT under dark and blue light conditions, respectively. Plots of the fraction of

TAMRA-ipaA bound to vinculinD1 over time are shown (Figure 3.3). Five to ten times more

LOV-ipaA WT was used under dark conditions than under blue light to reach roughly the

same fraction of TAMRA-ipaA peptide bound to vinculinD1. These results were globally fit

to determine on rates, off rates and binding affinities (Table 3.2). The binding affinity of LOV-

ipaA WT in the light is 3.5 nM, while it is 69 nM in the dark, a 19-fold change. Interestingly,

the on rate of binding is extremely slow under both dark and blue light conditions, on the

order of 1×103 or 1×104 M-1 s-1. The slow kon rates require hours of reaction time for the

competition assay to reach steady state, indicating why it was challenging for us to measure

these rates under steady state conditions. The off rates of the reactions seem to be unchanged
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between lit and dark state measurements, remaining around 5×10-5 s-1 to 9×10-5 s-1. In fact,

most of the change in the binding affinity between lit and dark states seems to be contributed

by an order of magnitude change in the reaction kon rates of the two states, slowing from

Figure 3.3: Fluorescence polarization competition assay (a) TAMRA labeled ipaA (ipaA*) is
bound to vinculinD1 subdomain (vinD1). Vinculin dissociates from the complex with rates
k-1, k1 and binding affinity KD1. LOV-ipaA (LOVipaA) binds vinculin with rates kon, koff and
affinity KD2. Fluorescence polarization decreases as the fraction of TAMRA-ipaA bound to
vinculin decreases. (b) Fraction of TAMRA-ipaA bound to vinculin over time with varying
concentrations of LOV-ipaA titrated in the dark and (c) under blue light.
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around 1×104 M-1 s-1 in the lit state to 1×103 M-1 s-1 in the dark state. This was seen

for both LOV-ipa WT protein under dark and blue light conditions as well as for LOV-ipaA

mutants that either abolish FMN-thiol bond formation (C450A) and lead to a pseudo dark

state (32) or mutants that destabilized the Jα helix (A532E I536E), causing a pseudo lit state

conformation (33).

Next, we tested two sets of mutations predicted to change the dynamic range of the LOV-

ipa photoswitch. The first set, L514K L531E was designed using the interactive protein folding

game FoldIt (34). This set of mutations replaces two hydrophobic residues, one in the Jα helix,

and the other on the β-sheet contacting the Jα helix, with a salt bridge. The design is meant

to stabilize interactions between the β-sheet and Jα helix and so lead to a more tightly bound

helix within the protein dark state. Indeed, the binding affinity of LOV-ipaA L514K L531E

to vinculinD1 in the dark state weakened to 245 nM, while the lit state affinity increased only

slightly, to 5 nM (Table 3.2). This set of mutations makes LOV-ipaA a photoswitch with a

49-fold dynamic range between lit state and dark state effector binding. The second set of

mutations we tested were designed by Strickland et al. to stabilize the helical structure of

Jα (18). The mutations, G528A and N538E, increased the dynamic range of the LOV-TAP

photoswitch for its effector from 5-fold to 70-fold. When used in the LOV-ipaA system, the

mutations did have a large effect on LOV-ipaA dark state binding to vinculinD1, decreasing

affinity more that 7-fold to 475 nM (Table 3.2). However, the mutations also weakened lit state

binding affinity over 10-fold, to 110 nM. The net effect of the G528A and N538E mutations in

LOV-ipaA then, was a decrease in the photoswitching dynamic range of the protein.

To independently validate results from the florescence polarization competition assay, sur-

face plasmon resonance experiments were conducted (Figure 3.4). The on rate, off rate, and

binding affinity of vinculinD1 to LOV-ipaA L514K L531E was measured using this method.

Since light cannot be controlled in the Biacore 2000 surface plasmon resonance machine (SPR),

LOV-ipaA L514K L531E pseudo lit (A532E I536E) and pseudo dark (C450A) states were used.

Pseudo-dark state LOV-ipaA L514K L531E was able to bind vinculinD1 with an on rate of

4.5×102 M-1 s-1 and an off rate of 2.9×10-5 s-1. A binding affinity of 64 nM was calculated from

the kinetic data. The on rate was identical to that measured for LOV-ipaA L514K L531E un-
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LOV-ipaA Construct kon M-1 s-1 koff s-1 KD (nM)

Dark Mimetic (C450A) 1.3 ± 0.3 ×103 8.0 ± 0.7 ×10-5 64 ± 9.5

WT Dark 1.4 ± 0.1 ×103 9.6 ± 0.1 ×10-5 69 ± 0.5

Lit Mimetic (A532E I536E) 2.9 ± 0.2 ×104 8.5 ± 0.3 ×10-5 3.0 ± 1.0

WT Blue Light 1.3 ± 0.3 ×104 4.5 ± 1.2 ×10-5 3.5 ± 0.5

L514K L531E Dark 4.5 ± 1.5 ×102 1.1 ± 0.4 ×10-4 245 ± 5.0

L514K L531E Blue Light 2.5 ± 0.1 ×103 1.3 ± 0.1 ×10-5 5.0 ± 0.1

G528A N538E Dark 1.8 ± 0.3 ×102 8.2 ± 0.2 ×10-5 475 ± 75

G528A N538E Blue Light 8.0 ± 2.0 ×102 1.2 ± 0.1 ×10-4 160 ± 40

Table 3.2: Kinetic rates and binding affinities of LOV-ipaA binding to vinculinD1. kon koff, and
KD rates of varying LOV-ipaA mutants binding vinculinD1 were measured using a fluorescence
polarization competition assay.

der dark state condition using the fluorescence polarization assay. The off rate varied slightly,

leading to a 4-fold difference in binding affinity between the two measurements. In part, the

discrepancy might be due to the fact that it is quite difficult to fit an off rate that is so slow.

Measuring the LOV-ipaA L514K L531E pseudo lit photoswitch binding to vinculinD1, an on

rate of 3.8×104 M-1 s-1 and an off rate of 8.7×10-5 s-1 were obtained. The binding affinity was

fit to be 2.3 nM. These numbers corresponded well to the kinetic rates measured for LOV-

ipaA lit mimetic using the fluorescence polarization assay. SPR data, then, confirmed kinetic

measurements obtained from the fluorescence polarization competition assay.

Figure 3.4: Surface plasmon resonance measurements and fits of vinculinD1 binding to (a)
LOV-ipaA L514K L531E C450A pseudo-dark and (b) LOV-ipaA L514K L531E A532E I53E
pseudo-lit mutants.
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3.4.4 Binding to full-length Vinculin: actin co-sedimentation assays

Figure 3.5: Actin co-sedimentation assay (a) Full-length vinculin, LOV-ipaA, and polymerized
actin are incubated 1 hr at room temperature. Vinculin that is bound to LOV-ipaA will bind
polymerized actin. The mixture is centrifuged at 150,000 g, pelleting polymerized actin and
all vinculin bound to it out of solution. (b) SDS-page gel of LOV-ipaA C450A and (c) LOV-
ipaA A532E I536E actin co-sedimentation assay with vinculin. Molar ratios from 1:0 to 1:50
vinculin:LOV-ipaA were used. Supernatant (S) and pellet (P) fractions are shown side by
side. Apparent binding affinity curves of fraction of vinculin bound to actin v. concentration
of LOV-ipaA are plotted below.

Actin co-sedimentation assays were performed to measure the apparent binding affinity

of LOV-ipaA to full-length vinculin. Full-length vinculin is able to interact through its head
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domain to bind ipaA; this releases the vinculin tail domain to bind with polymerized f-actin. In

the actin co-sedimentation assay, polymerized actin, vinculin, and LOV-ipaA were incubated

together (Figure 3.5). Only vinculin that has bound to LOV-ipaA should be able to interact

and bind to f-actin. The resulting mix of bound and unbound vinculin was centrifuged at high

speeds, resulting in fractionation of f-actin polymers out of solution, along with the vinculin-

LOV-ipaA complexes that had bound to them. By measuring on an SDS-page gel the amount

of vinculin that fractionated out of solution along with f-actin versus the total concentration of

vinculin, we obtained the fraction of full-length vinculin bound to LOV-ipaA. By repeating the

assay with increasing concentrations of LOV-ipaA, a binding curve of vinculin fraction bound

to LOV-ipaA versus concentration of LOV-ipaA was plotted. The figure below illustrates the

SDS-page gel of an assay with concentrations of LOV-ipaA pseudo dark mutant C450A added

in molar ratios from 1:0 to 1:50 of vinculin:LOV-ipaA. Supernatant (S) and pellet (P) fractions

of each molar ratio sample are side by side. The resulting binding curve and plot is drawn

below the gel. The co-sedimentation assay performed with LOV-ipaA C450A pseudo dark

state mimetic mutant, contrasts greatly with the gel and analysis of a co-sedimentation assay

performed with LOV-ipaA A532E I536E, the pseudo lit state mutant. Gels clearly show more

vinculin in the pellet fractions of the LOV-ipaA A532E I536E as the molar ratio of vinculin

to lov-ipaA increased. The binding curves for the two mutants show these differences.

LOV-ipaA Mutant KD (µM) Error (µM)

IpaA Peptide 7.8 1.3

Dark Mimetic (C450A) 54 12

Lit Mimetic (A532E I536E) 7.4 2.3

L514K L531E Dark Mmetic 116 34

L514K L531E Lit Mimetic 8.15 2.1

G528A N538E Dark Mimetic 315 81

G528A N538E Lit Mimetic 12 2.1

Table 3.3: Apparent binding affinity of LOV-ipaA to full-length vinculin. Binding affinities
determined from actin co-sedimentation assays are listed.

We fit the binding curves generated from SDS-page gels to calculate apparent binding

affinities of full-length vinculin to LOV-ipaA mutants (Table 3.3). The equation chosen to fit
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the curves relates vinculin binding affinity to fraction of vinculin bound to LOV-ipaA. LOV-

ipaA pseudo lit state, LOV-ipaA L514K L531E pseudo lit state as well as ipaA peptide all

have similar apparent biniding affinities to full-length vinculin, about 8 µM. In contrast, all

dark state mimetic mutants bound vinculin with an affinity of at least 50 µM, 6-fold weaker,

indicating the difference between dark state and lit state binding held for full-length vinculin

as well as for assays involving the D1 domain alone. The binding of vinculin to ipaA in

the presence of polymerized actin also gives us a window into the reactions that occur in

vivo, where full-length vinculin must be bound both by ipaA and by f-actin. The difference in

binding affinity between lit and dark states of LOV-ipaA to full-length vinculin in the presence

of polymerized actin suggests that LOV-ipaA may have photoswitching abilities in vivo.

3.4.5 LOV-ipaA fast and slow reversion mutations

Mutations that slow down or speed up the reversion from lit state to dark state in the

LOV2 domain were also tested in the LOV-ipaA photoswitch (Figure 3.6). These mutations,

I427V and V416I L496I were previously designed and characterized within the LOV2 domain

(35; 17). The mutation I427V was found to decrease LOV2 reversion half life from 27 s to

4 s. Indeed, when tested within the LOV-ipaA photoswitch, spectrophotometric experiments

indicated the FMN absorption spectrum changes from the initial lit state to dark state within

45 s. When measuring absorbance at 450 nm, we found that the FMN-thiol bond breaks and

is reverted with a half-life of 4 s. Circular dichroism data on the mutant also indicated that

the helical structure increased as the protein reverted from dark state to lit state. Both 207

nm and 222 nm absorbance spectra indicated a half-life for the helix reversion of 4 s, consistent

with the FMN-thiol bond reversion experiments. Mutations V416I L496I in the LOV2 domain

were previously reported to lengthen the FMN lit state to dark state reversion lifetime. When

the mutations were made in LOV-ipaA, the lit state and dark state spectra maintained the

same peaks as LOV-ipaA WT. The reversion half life was measured to be 10 minutes.

While the lit state to dark state reversion lifetimes for the I427V and V416I L496I mutations

in the LOV2 domain had been previously reported, no work has been done on identifying how
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Figure 3.6: Photoswitching characterization of LOV-ipaA I427V and V416I L496I (Photo-
switching characterization of LOV-ipaA V416I L496I. (a) LOV-ipaA I427V FMN absorbance
at 450 nm over time as LOV-ipaA reverts from lit state to dark state. Reversion half-life was
measured to be 4 s (b). LOV-ipaA I427V residue molar ellipticity at 207 nm and 222 nm over
time as LOV-ipaA reverts from lit state to dark state. Half-life was measured to be 4 s (c)
LOV-ipaA V416I L496I FMN absorbance v. wavelength spectrum as LOV-ipaA reverts from
lit state (0 s) to dark state (5400 s). (d) LOV-ipaA V416I L496I FMN absorbance at 450 nm
over time as LOV-ipaA reverts from lit state to dark state. Reversion half-life was measured
to be 10 min.

these mutations change the dynamic range of LOV2. In order to do so, we examined the

binding affinity and kinetics of LOV-ipaA fast reversion (I427V) and slow reversion (V416I

L496I) mutants to vinculinD1 (Table 3.4). For both mutants, the off rate was on the order

of 1×10-4 s-1 in both the dark and lit states, similar to LOV-ipaA WT. The on rates stayed

around 1×103 M-1 s-1 in the dark state and 1×104 M-1 s-1 in the lit state. Binding affinities

for both mutants in the dark were close to those measured for WT LOV-ipaA in the dark.
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LOV-ipaA Construct kon M-1 s-1 koff s-1 KD (nM)

I427V Dark 1.6 ± 0.3 ×103 1.1 ± 0.1 ×10-4 78 ± 13

I427V Blue Light 1.3 ± 0.1 ×104 1.2 ± 0.1 ×10-4 9.5 ± 1.5

V416I L496I Dark 4.0 ± 0.1 ×103 2.0 ± 0.4 ×10-4 50 ± 10.0

V416I L496I Blue Light 1.3 ± 0.2 ×104 1.2 ± 0.1 ×10-4 10.0 ± 0.5

Table 3.4: Kinetic parameters for LOV-ipaA altered lifetime mutations. kon koff, and KD

rates of varying LOV-ipaA mutants binding vinculinD1 were measured using a fluorescence
polarization competition assay.

Binding affinities of both mutants under blue light to vinculinD1 were slightly weaker than

those for LOV-ipaA WT under blue light, falling about 3-fold, from 3.5 nM to about 10 nM.

This led to a slightly diminished dynamic range for the switches, from 19-fold to 5 to 8-fold for

slow reversion and dark reversion mutations, respectively. These results indicate that the slow

and fast reversion mutations on LOV2 can be used in photoswitches to regulate the amount

of time the photoswitch is active while maintaining switching behavior.

3.5 Discussion

We have designed a photoswitchable peptide using the blue light switching properties of

the LOV2 domain. The photoswitch, LOV-ipaA, incorporates both residues from the LOV2-

Jα helix and ipaA peptide into a chimera helical sequence. This allows for enhanced binding

of ipaA effector vinculinD1 subdomain under blue light conditions, while maintaining the

LOV2 domain ability to photoconvert. LOV-ipaA binds vinculin with 20-fold enhanced affinity

under blue light conditions than in the dark. Mutations L514K L531E on the LOV2 domain

strengthened contacts between the Jα helix and PAS fold β-sheet through the addition of a

salt bridge and enhanced the dynamic range of LOV-ipaA to binding to vinculinD1 to nearly

50-fold. Turning LOV-ipaA on also led to the activation of full-length vinculin, allowing

full-length vinculin to bind polymerized actin, a biologically important event in cell motility.

Mutations that altered the half-life of LOV-ipaA reversion from lit to dark state did not affect

its binding kinetics to vinculinD1.

The kinetics of LOV-ipaA binding to the vinculinD1 subdomain were measured for both

dark and blue light activating conditions. Interestingly, off rates for LOV-ipaA WT and
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mutants binding vinculinD1 were measured to be around 1×10-4 s-1, regardless of the LOV-

ipaA activation state. This indicates the interaction between ipaA and vinculin is the main

contributor to the slow off kinetics of the LOV-ipaA photoswitch. One reason the off rate

for ipaA- vinculin interaction may be so slow is the nature of the binding that takes place

between the two proteins. It is thought that ipaA and other vinculin binding proteins bind

the D1 subdomain groove through a helix addition interaction, wherein the vinculinD1 4-helix

bundle is rearranged into a 5-helix bundle through the addition of ipaA (36). The nature of

this protein rearrangement may lead to less reversible vinculin-ipaA binding and hence, slow

off rates. The on rates of LOV-ipaA binding to vinculin are, however, highly dependent on the

photostate of the LOV2 domain. In the dark, these rates are as slow as 2×102 M-1 s-1, while

under blue light conditions they are at least an order of magnitude faster. This indicates the

principle mechanism of altered binding affinity for LOV-ipaA to vinculin in dark versus blue

light states is through a slowdown of on rates when LOV-ipaA is in the dark state. When

the LOV2 domain is attached and sterically occluding ipaA-vinculin binding, ipaA is simply

available for binding vinculin less of the time in the dark than in the lit state, leading to slower

on rates.

The difference in binding affinities between LOV-ipaA in the lit and dark state to vin-

culinD1 translated into differences in full-length vinculin activity. Through actin co-sedimentation

assays, we saw large differences in the amount of LOV-ipaA bound to full-length vinculin in

the dark or lit states. This, in turn, led to vinculin binding to full-length actin. This suggests

that LOV-ipaA binding to the vinculinD1 subdomain causes a conformational change in vin-

culin that relieves the autoinhibition between the head and tail domains, thus allowing the tail

domain to bind f-actin. Through such a mechanism, ipaA mimics native protein interactions

with vinculin, and thus could be used in vivo to as a dominant negative inhibitor of vinculin.

Overall, the LOV-ipaA photoswitch illustrates how a peptide can be caged through direct

threading onto the Jα helix. In this manner, LOV-ipaA is a good proof of principle for the

caging of peptides. By incorporating the ipaA sequence onto the Ja helix, we can more tightly

regulate photoswitching of the peptide. Whereas in engineering PA-Rac, the linkage of the Ja

helix to Rac1 had to be fine tuned through many trials in order to achieve the exact orientation
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to cage Rac1 in the dark, only the correct alignment of the ipaA and Jα helices were required

for dark state caging of ipaA. Even so, the dynamic range of the PA-Rac switch was only

10-fold, whereas by directly harnessing the Jα conformational change, the LOV-ipaA switch

had a dynamic range of at least 20-fold. Such a method of photoactivation could further be

extended to cage other helical peptides.

By testing on and off rates as well as binding affinities of mutations that speed up or slow

down lit state to dark state reversion lifetimes in the LOV2 domain within the LOV-ipaA

system, we were able to ascertain how these mutations affect binding between LOV2 domain-

based switches and their effectors. We saw that the rates of the photoswitch binding to

vinculin in both the lit and dark remained unchanged in comparison to the 27 s half life LOV2

previously tested, indicating these mutations do not alter dynamic range of switches utilizing

the LOV2 domain. This result has broader implications for all switches using the LOV2

domain, indicating the altered lifetime mutations could potentially be used in photoswitches

for experiments where desired outcomes are on longer or shorter timescales than possible using

the unaltered LOV2 domain without leading to deleterious decreases of the switches’ dynamic

range.
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Baker, D., Popović, Z., et al. (2010) Predicting protein structures with a multiplayer

78



online game. Nature 466, 756–760

35. Christie, J., Corchnoy, S., Swartz, T., Hokenson, M., Han, I., Briggs, W., and Bogo-
molni, R. (2007) Steric interactions stabilize the signaling state of the lov2 domain of
phototropin 1. Biochemistry 46, 9310–9319

36. Van Nhieu, G. and Izard, T. (2007) Vinculin binding in its closed conformation by a
helix addition mechanism. The EMBO journal 26, 4588–4596

79



CHAPTER 4

INDUCING PHOTOACTIVATABLE GENE EXPRESSION IN BUDDING YEAST
USING LOV-IPAA

4.1 Summary

Photoactivation of protein-protein interactions is a powerful tool for manipulating signaling

pathways and phenotypic responses. We demonstrate the use of the LOV-ipaA photoswitch to

induce gene expression by blue light. LOV-ipaA binds the vinculinD1 subdomain with an en-

hanced affinity of 2.4 µM under blue light, allowing for light-induced heterodimerization of the

two proteins. When introduced into a yeast-two hybrid system, this heterodimerization inter-

action brings together the GAL4 activation and binding domains, allowing for photoactivatable

induction of yeast reporter gene expression. The light-inducible heterodimerization system was

used to induce overexpression of Ste4 and Gpa1, two genes critical to yeast pheromone response

pathway. Phenotypic and biochemical responses are obsereved as a result.

4.2 Introduction

Photoacivation of protein-protein interactions is a valuable tool for studying signaling

networks in cells (1; 2; 3; 4). This technology allows one to perturb cellular processes in a

precise spatial and temporal manner, thus enabling fine control over when and how a signaling

cascade is activated (5). Naturally-occurring light-sensitive proteins have been successfully

used for genetically encoded, reversible photoacivation of interactions in signaling networks

(6).

One of the most predominant manners in which naturally occurring light-sensitive proteins



have been used to control cell signaling has been through light-induced heterodimerizaion of

protein-protein interactions (2; 7; 8). In such heterodimerization photoswitches, A naturally

occurring photosensitive protein is linked to a critical signaling protein, while its binding

partner is linked to the effector target of the signaling protein. Light irradiation activates the

photosensitive protein so that it may then bind its partner, thus bringing into proximity the

signaling protein and its effector, enabling activation of a signaling cascade. Such as strategy

has been used to photoactivate Rac1-induced ruffling in mammalian cells through the red light

absorbing Pif-PhyB protein system (1). This strategy has also been used to photoactivate Cre-

Lox DNA recombination using the blue light sensing Cryptochrome2 protein and its binding

partner CIB1 (4). Both of these systems make use of large, difficult to express proteins as light

sensing domains. Clear knowledge of their structures and light sensing systems is lacking, thus

presenting challenges to their broader applicability.

In this work, we discuss use of the LOV2 domain for light-activated heterodimerizaion. To

our knowledge, this is the first system that has used the LOV2 domain for such a purpose.

The LOV2 domain is part of the PAS superfamily of domains (9) and is found in higher plants

(10). A flavin mononucleotide (FMN) co-factor located in the center of the PAS fold absorbs

photon of blue light, converting this energy into the formation of a covalent adduct between

a cysteine side chain in the PAS fold and a carbon atom of the FMN (11; 12) A large helix

extends C-terminal to the fold, termed the Jα helix (13; 14). NMR and spectroscopy studies

indicate this leads to a large conformational change in the domain, including the unfolding of

the Jα helix (15; 16). When irradiation ceases, reversion of the thiol bond and conformational

change back into the dark state occurs spontaneously (17).

We have used the previously designed LOV-ipaA photoswitch to photoactivate gene expres-

sion in S. cerevisiae organisms. LOV-ipaA was previously characterized to bind the vinculin

D1 subdomain (vinD1) with low nanomolar affinity under blue light irradiation, and high

nanomolar affinity in dark conditions. We weakened the affinity of the LOV-ipaA photoswitch

for vinD1 to 2.4 µM under blue light conditions, a 500-fold change. We then introduced

LOV-ipaA and vinD1 as the two principle components of a photoactivatable heterodimeriza-

tion system in yeast transcriptional activation. The LOV-ipaA photoswitch was linked to the
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GAL4 activation domain, while vinD1 was linked to the GAL4 binding domain. Irradiation

with blue light enabled activation of the GAL4 transcriptional activator, leading to expression

of reporter genes controlled by the GAL promoter.

We applied light-induced gene transcriptional activation to overexpress two protein critical

to the yeast pheromone mating response pathway, Ste4 and Gpa1. Overexpression of Ste4

leads to the activation of the pheromone mating response pathway, while overexpression of

Gpa1 inhibits the pathway (18; 19; 20). Traditional methods to induce expression of yeast

genes such as galactose induction, or nocodazole use to induce growth arrest, lead to a large

stress responses in yeast, activating a substantial portion of the organisms’ genomes (21), thus

potentially altering responses of signalling networks. Additionally, use of α factor to activate

the pheromone mating response pathway is costly. Light induction is an innocuous, cost-

effective alternative to such harsh, less-isolated methods of gene expression. Light-induced

gene expression has the potential to expand knowledge of yeast G protein signaling.

4.3 Methods

4.3.1 Cloning for E. coli expression

The LOV-ipaA gene was synthesized with a 6 histidine N-terminal tag (Genscript) and

cloned into the pET21b vector. Mutations on LOV-ipaA were performed using site-directed

mutagenesis. VinculinD1 subdomain (residues 1-258) cloned into a pET15b vector was a gift

from the Craig lab at Johns Hopkins University.

4.3.2 Protein expression and purification

LOV-ipaA L623A lit mimetic (I532E A536E) and dark mimetic were expressed in E.coli

strain BL21(DE3) cells (Genese) at 16◦C overnight in the dark. Cells were lysed in buffer

containing 50 mM sodium phosphate pH 7.5, 150 mM NaCl and 5 mM 2-mercaptoethanol.

Proteins were purified by affinity chromatography over HiTrap HisTrap columns (GE) and

eluted with 150 mM Imidazole at pH 7.5. The proteins were further purified through size
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exclusion chromatography over a Sephadex S75 column (GE) equilibrated with 50 mM sodium

phosphate, 150 mM NaCl and 5 mM 2-mercaptoethanol.

VinculinD1 subdomain was expressed in E.coli strain BL21(DE3) cells (Stratagene) at

16◦C overnight. Cells were lysed in buffer containing 50 mM Tris-HCl pH 8.0, 500 mM NaCl

and 5 mM 2-mercaptoethanol. The protein was purified by affinity chromatography over

HiTrap HisTrap columns (GE) and eluted with 500 mM Imidazole at pH 8.0. The protein

was further purified by ion exchange chromatography using a HiTrap Q column (GE) eluted

with a NaCl gradient. VinculinD1 was stored in 20 mM Tris-HCl with 2 mm DTT and 2 mM

EDTA.

Protein concentrations for LOV-ipaA and vinculinD1 were determined using Bradford

assays (Thermo). Protein concentrations for full-length vinculin were determined using ab-

sorbance at 280 nm measurements with an extinction coefficient of 62,000 M-1 cm-1.

4.3.3 Illumination

LOV-ipaA WT and mutants were irradiated using a collimated blue LED with maximum

emission wavelength of 455 nm (ThorLabs). Illumination power was measured to be 6.8 mW

cm-2

4.3.4 Isothermal titration calorimetry

All ITC experiments were performed at UNC-Chapel Hill in the Macromolecular Inter-

action Facility using a MicroCal Auto-ITC200. Purified LOV-ipaA L623A lit state (A532E

I536E), dark state (C450A) mimetics, and vinculinD1 were dialyzed for four hours in 50 mM

sodium phosphate, 150 mM NaCl and 5 mM 2-mercaptoethanol buffer. ITC experiments were

performed by injecting the dark state mutant C450A of LOV-ipaA L623A (50 µM) or the lit

state mutant I532E A536E (50 µM) into vinculinD1 (970 µM) at 25◦C. Each titration con-

sisted of 19 injections of 2 µL of LOV-ipaA. The baseline of each titration was determined and

subtracted from all of the data points. Titration data for the heat change per injection were

fitted to a one-site binding model using Origin software (OriginLab)
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4.3.5 Yeast strains and plasmids

LOV-ipaA L623A WT, lit state mutants, dark state mutants, LOV2 domain and ipaA

were cloned into a pGADT7 vector (Clonetech), while the vinculinD1 subdomain was cloned

into a pGBKT7 vector (Clonetech). Yeast two hybrid and Miller assays were conducted us-

ing pGADT7 constructs transformed into S. cerevisiae Y187 strain, and pGBKT7 constructs

transformed into S. cerevisiae Y2Hgold strain (Clonetech). Empty vectors were also trans-

formed into the appropriate strains. For Gpa1 and Ste4 assays, GAL1-Ste4 cloned into a

pRS316 vector as well as GAL1-Gpa1 cloned into a pG1501 were a gift from the Dohlman

lab at UNC-Chapel Hill. GAL1-Gpa1 or GAL1-Ste4 were triple transformed, along with con-

structs in pGADT7 and pGBKT7 vectors, into S. cerevisiae YPH499 strain for all GAL-Gpa1

and GAL-Ste4 transcription activation experiments.

4.3.6 Yeast two hybrid assays

Transformed colonies of Y2Hgold and Y187 yeast strains were mated at 30◦C overnight

and plated on synthetic dropout (SD) -Leu -Trp media. Mated colonies were serially diluted

(1:5, from right to left on plates shown) and replica plated onto SD -Leu -Trp agar; SD -Leu

-Trp agar with auerobasidin A and 5-bromo-4-chloro-3-indolyl-α-D-gactopyranoside (x-α-gal);

SD -Leu -Trp -His agar with auerobasidin A and x-α-gal; and SD -Leu -Trp -His -Ade agar

with auerobasidin A and x-α-gal. Plates were grown for 3 days at 30◦C.

4.3.7 Miller assays

Mated aα colonies were picked and grown to saturation in SD -Leu -Trp media at 30◦C.

Saturated colonies were diluted to low-log phase and grown for 4 hours under dark or blue light

conditions. Cells were lysed open and treated with Chlorophenol red-β-D-galactopyranoside

(CPRG) substrate to determine β-galactosidase activity in Miller Units.
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4.3.8 Plate growth assays

Transformed colonies were grown to saturation in SD -Leu -Trp -Ura media in the dark

. Colonies were serially diluted (1:5) and replica plated onto SD -Leu -Trp -Ura and YPD

media. Plates were grown for 3 days at 30◦C in blue light or dark conditions. For galactose

induction controls, colonies were serially diluted and replica plated onto SD -Leu -Trp -Ura

medial containing 2% glucose or 2% galactose, and YPD media as a control. Plates were grown

for 3 days at 30◦C in dark conditions.

4.3.9 Microscopy

Transformed colonies of the YPH499 yeast strain were picked and grown to saturation in

SD -Leu -Trp -Ura media at 30◦C in the dark. For galactose induction, colonies were grown

in SD 2% raffinose -Leu -Trp -Ura media. Cells were diluted to low-log phase and grown for

6 hours under blue light or dark conditions. Colonies grown in SD 2% raffinose were induced

with the addition of 2% galactose. Samples were taken and imaged every hour for 6 hours.

4.3.10 Cell extract preparation and immuno-blotting

Transformed cells expressing AD-LOV-ipaA, BD-vinD1, and GAL-Ste4 were grown in SD

-Leu -Trp -Ura media to mid-log phase. Cell cultures were divided in half, and treated with

blue light or left in the dark over the course of 120 minutes. Transformed cells expressing

AD-empty vector, BD-empty vector, and GAL-Ste4 were grown in SD -Leu -Trp -Ura 2% raf-

finose media to mid-log phase. Cell cultures were divided in half, and treated with galactose

for 0 min or 120 min. Protein extracts were produced by glass bead lysis in trichloroacetic

acid (TCA). Protein extract concentrations were determined through DC assays (Bio-Rad),

and equal amounts of protein were resolved on 10% SDS-PAGE gels and immunoblotted with

Phospho-p44/42 MAPK antibodies (Cell Signaling Technology) at 1:500. Immunoblotted pro-

teins were visualized by chemiluminescent detection (PerkinElmer) of horseradish peroxidase-

conjugated antibodies (Bio-Rad). Protein concentration was determined by DC protein assay
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(Bio-Rad).

4.3.11 Pheromone halo assays

Transformed colonies of the YPH499 yeast strain were picked and grown to saturation in

SD -Leu -Trp -Ura media at 30◦C in the dark. Cells from saturation cultures were plated in a

lawn of 0.5% top agar on SD -Leu -Trp -Ura plates. For galactose induction, cells were plated

on SD 2% galactose -Leu -Trp -Ura plates. Four concentrations of α factor (1.5 µg, 4.5 µg, 15

µg, and 45 µg) were spotted in 15 µL drops on the solidified agar. Plates were grown for 2

days at 30◦C in blue light or dark conditions.

4.4 Results

4.4.1 LOV-ipaA L623A Mutation

Figure 4.1: LOV-ipaA L623A mutation. (a) Model of LOV-ipaA. Jα residues (blue) ipaA
residues (purple), chimera residues (cyan), and designed residues (red) are indicated. (b)
Mutation L623A on LOV-ipaA is shown. Residues are colored as in (a).

Originally, the designed LOV-ipaA photoswitch had a dark state binding affinity for vin-

culinD1 of 65 nM. Mutations L514K L531E increased the dynamic range of the switch by

deceasing its affinity for vinculinD1 to 245 nm. This is still a considerably tight affinity. For

some applications, it may be useful to have a switch that has weaker binding affinity in the

dark. To test if we could switch the range of affinities over which LOV-ipaA functions, we
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made a mutation to LOV-ipaA that was predicted to reduce affinity for vinculin, but should

have negligible effect on the interactions between the Jα helix and the LOV domain. The

mutation, L623A, was located in the section of LOV-ipaA that only interacted with vinculin,

and had no interactions with the LOV domain (Figure 4.1).

The L623A mutation weakened the affinity of the LOV-ipaA lit state mimetic (I532E

A536E) for the vinculin D1 domain from 3 nM to 2.4 µM, an almost 1000-fold decrease in

affinity (Figure 4.2 and Table 4.1). The dark state mimetic (C450A) had no detectable binding

as monitored with isothermal titration calorimetry. Considering concentration of proteins used

in the study, This suggested that binding in the dark was weaker than 40 µM. In this manner,

we were able to dramatically shift the binding affinity of the photoswitch for vinculinD1.

Figure 4.2: ITC of LOV-ipaA L623A mutation binding the vinculinD1 subdomain. (a) dark
state LOV-ipaA (C450A) or (b) lit state LOV-ipaA (I532A I536E, right) binding vinculinD1.
Both experiments were done with identical amounts and concentrations of protein. Binding
affinity of dark state could was too weak to fit. Binding affinity of lit state was determined to
be 2.4 µM
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LOV-ipaA L623A KD ∆H ∆S (Kcal

Lit state mimetic (µM) (Kcal mol-1) mol-1 K -1) N

Titration 1 2.0 ± 0.32 -2.4 ± 0.059 ×103 18 0.85 ± 0.051

Titration 2 2.4 ± 0.31 -2.5 ± 0.050 ×103 17 0.92 ± 0.18

Table 4.1: Binding affinity of LOV-ipaA L623A lit mimetic mutant to vinculinD1. Values
measured by ITC for binding affinity, enthalpy, entropy, and molar ratio are listed.

4.4.2 Light-induced yeast two-hybrid interactions

We wanted to test whether we could use the LOV-ipaA-vinculinD1 interaction for light-

induced heterodimerization. We chose to do so in S. cerevisiae, as it is an orthogonal system,

lacking proteins that would cross-react with the LOV-ipaA-vinculinD1 interaction. We linked

LOV-ipaA L623A to the GAL4 activation domain (AD), while linking vinculinD1 (vinD1) to

the GAL4 binding domain (BD), and monitored the GAL4-induced activation of the tran-

scriptional GAL1 promoter through a yeast two-hybrid assay (Figure 4.3). This is a strategy

that has been widely used to identify protein-protein interactions. In our case, LOV-ipaA and

vinculinD1 should only interact upon irradiation with blue light, thus bringing the GAL4 AD

and BD into proximity. The full GAL4 protein can then activate transcription of reporter

genes downstream of the GAL promoter. We tested the ability to activate the reporter gene

LacZ under both dark state and lit state conditions through quantification of β-galactosidase

activity. We observed a modest activity of 6 Miller Units under blue light conditions, and

an activity of 20 Miller Units with substantial activity using the LOV-ipaA L623A lit state

mimetic (20 units) and the ipaA peptide as a positive control. Almost no activity (0.4 Miller

Units) was seen under dark or dark state conditions, and no activity was seen in empty vector

negative controls. We also tested activation of genes MEL1, HIS3, and ADE2 under dark and

lit state conditions by replica plating BD-vindD1 colonies mated with AD-LOV-ipaA L623A lit

state and dark state mimetic mutants or AD-LOV-ipaA L623A WT. We saw strong growth of

colonies containing LOV-ipaA L623A lit mimetic or WT grown in blue light on plates lacking

His as well as those lacking His and Ade, indicating transcription of both HIS3 and ADE2

genes. Furthermore, colonies were blue, indicating transcription of the MEL1 gene whose
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Figure 4.3: LOV-ipaA induces reporter gene transcription under lit state conditions. (a)
LOV-ipaA L623A is linked to the GAL4 activation domain (AD), while vinculinD1 (vinD1)
is linked to GAL4 binding domain (BD). Irradiation with blue light brings AD-LOV-ipaA
into proximity to BD-vinD1, allowing for GAL-induced transcription of reporter genes LacZ,
MEL1, HIS2, and ADE2. (b) LacZ transcription is quantified. β galactosidase activity of S.
cerevisiae mated strains containing BD and AD linked proteins, as specified, is shown. (c) S.
cerevisiae mated strains containing BD-vinD1 and AD-LOV-ipaA mutants, as indicated, are
grown in dark or blue light conditions on SD plates. Difference in levels of transcription of
MEL1, HIS3 and Ade2 in dark v. lit state conditions can be seen.

product, α-galactosidase, interacted with the x-α-gal substrate for blue screening. Colonies

containing LOV-ipaA L623A dark mimetic or WT grown in the dark grew on control plates,

but did not grow on plates lacking His or Ade, showing low to no transcription of HIS2, ADE2

or MEL1 genes. This indicates that LOV-ipaA-vinculinD1 heterodimerization can be used as

a tool to photocontrol yeast transcription.

The LOV-ipaA L623A mutation was critical to achieving a lit state to dark state change
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of phenotype in yeast transcription. When experiments for MEL1 and HIS3 were conducted

using LOV-ipaA lacking this mutation, no observable growth change was seen between colonies

containing lit state and dark state AD-LOV-ipaA mated with BD-vinD1. The binding affinity

of LOV-ipaA to vinculinD1, was hence, so tight, even in the dark state, as to allow binding

events and subsequently yeast transcription to occur. The L623A mutation shifted the binding

affinity of LOV-ipaA to vinculinD1 to a range where there was no binding in the dark, but

significant activation in the light. This result highlights the usefulness of being able to tune

the switches for specific applications.

4.4.3 Photoactivation of Ste4 transcription

We applied the LOV-ipaA-vinculinD1 heterodimerization system in order to photoacitvate

transcription of two yeast proteins, Gpa1 and Ste4. Both are part of the pheromone response

mating pathway (22). Gpa1 is the α subunit of the yeast mating G protein, while Ste4 is

the β subunit (23). In haploid yeast, stimulation of the Ste2 receptor by the peptide mating

pheromone released by yeast of the opposite mating type leads the exchange of GDP for GTP

in the Gα subunit, allowing for the dissociation of the α subunit (Gpa1) from the βγ (Ste4 and

Ste18, respectively) subunits (23). In yeast of MATa mating type, stimulation with the α-factor

peptide WHWLQLKPGQPMY allows for this response to occur. The βγ subunits may then

go on to signal through a mitogen-activated protein kinase (MAPK) cascade encompassing

Ste20, Ste11, Ste7, and Fus3 (24). The scaffolding protein Ste5 spatially directs this process

by bringing together the three MAPKs Ste11, Ste7, and Fus3. Downstream activation of the

MAPK pathway leads to activation of genes responsible for growth arrest in the G1 phase

of the cell cycle, the formation of shmoo mating projections, and eventual fusion with MATa

type yeast cells to produce diploid strains (25; 26). Inactivation of the pathway occurs as the

Gα subunit slowly catalyzes hydrolysis of GTP back to inactive GDP (27).

Overexpression of Ste4 leads to pheromone-independent activation of the mating response

pathway (18; 19; 20). This allows for continuous expression of the mating cascade and per-

manent growth arrest. Overexpression of Gpa1 leads to insensitivity to pheromone response.
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Gpa1 sequesters the G β and γ subunits, thus inhibiting activation of the mating cascade.

We attempted to induce pheromone-independent activation of the yeast mating response

pathway through blue light. In order to do so, we tested whether we could overexpress Ste4

through light-induced heterodimerization of AD-LOV-ipaA and BD-vinD1.

Figure 4.4: LOV-ipaA heterodimerization induces Ste4 expression under blue light. Bud-
ding yeast transformed with GAL-Ste4, BD-vinD1, and AD-LOV-ipaA WT or AD-LOV-ipaA
C450A (Dark state) were grown under dark (non-inducing) and blue light (inducing) condi-
tions. Resulting growth arrest is seen on serially diluted colonies (1:5, ascending concentrations
from left to right). Empty pRS316 vector is used as a control.

Figure 4.5: Galactose induction of Ste4 expression. Budding yeast transformed with GAL-Ste4
or empty pRS316 vector were grown under glucose (non-inducing) and galactose (inducing)
conditions. Resulting growth arrest is seen on serially diluted colonies (1:5, ascending concen-
trations from left to right).

We tested phenotypic responses to light-induced overexpression of Ste4 through two sep-

arate assays. We first looked at the ability to induce growth arrest in yeast cells using blue

light. S. Cerevisiae cells were transformed with GAL1-Ste4, BD-vinD1, and AD-LOV-ipaA

genes, and grown under blue light (inducing) or dark state (non-inducing) conditions for two

days. As a control, growth was compared to cells transformed with empty vector versions

(pGADT7, pGBKT7, and pRS316) of the genes described. Cultures expressing AD-LOV-

ipaA WT serially diluted and grown on plates under blue light conditions showed slightly less

growth at the lowest dilutions than those grown under dark conditions (Figure 4.4). Both
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colonies grown under dark as well as lit state conditions showed slight growth arrest at the

lowest concentrations as compared to those cultures grown on YPD media, possibly indicating

leaky expression of Ste4 in the dark state. We repeated the experiment using the AD-LOV-

ipaA C450A mutated gene, rendering LOV-ipaA in a pseudo-dark state. We saw no difference

in growth of replica plated colonies under YPD, dark, or blue light conditions, indicating no

residual overexpression of Ste4 in the dark.

We compared our slight growth arrest to that seen by overexpression of GAL1-Ste4 through

galactose induction. Colonies transformed with empty pGADT7 (AD), pGBKT7 (BD), and

GAL1-Ste4 were serially diluted, replica plated, and grown on YPD, glucose (non-inducing),

and galactose (inducing media) media (Figure 4.5) As a control, growth was compared to cells

transformed with the empty vector version of GAL1-Ste4(pRS316). When grown on galactose,

colones with containing the GAL1-Ste4 gene experienced substantial growth arrest as compared

to those grown on glucose media. This indicated galactose induction of Ste4 overexpression

was more robust than that achieved through blue light, either because the induction under blue

light condition was dampened, or more transient than that seen under galactose induction.

We next looked at the ability of blue light to induce shmoo formation. Shmoos are elon-

gated structures used for sexual mating. Cell exposed to pheromone will respond by enlarging

and elongating in one direction, going from a round to a triangular shape. Yeast colonies

transformed with GAL1-Ste4, BD-vinD1, and AD-LOV-ipaA genes were exposed to blue light

and their shape was monitored over the course of five hours (Figure 4.6). As a control, cells

espressing GAL1-Ste4 were induced by galactose, thus allowing side-by side comparison of the

two induction conditions. No yeast colonies initially had the shmoo projectile shape. Over

time, after about two hours, the shape became evident in both samples treated with blue light

as well as galactose. The shmoo shape predominated in those samples by the end of 2 hrs.

In contrast, colonies transformed with GAL1-Ste4, BD-vinD1, and AD-LOV-ipaA C450A lit

mimetic genes and exposed to blue light showed no shmoo formation whatsoever. This indi-

cated that shmoo formation was a result of LOV-ipaA-vinD1 heterodimerization interactions.

We also biochemically tested for overexpression of Ste4. Overexpression of Ste4 leads to

activation of the mitogen activated protein kinase (MAPK) cascade. Activation of the cascade
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Figure 4.6: Blue light induces cell shmooing. Shmoo formation in S. cerevisiae cells trans-
formed with GAL-Ste4, BD-vinD1, and AD-LOV-ipaA WT and induces through blue light
was observed over the course of 5 hours. As a control, S. cerevisiae cells transformed with
GAL-Ste4, BD-empty vector, and AD-empty vector were monitored for shmoo formation in
tandem.
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Figure 4.7: Blue light induces activation of the MAPK pathway. S. cerevisiae transformed
with GAL-Ste4, BD-vinD1, and AD-LOV-ipaA WT were grown under dark (non-inducing)
and blue light (inducing) conditions over the course of 120 min. Resulting activation of the
downstream MAPK pathway is seen through the appearance of phospho-Fus3 and phospho-
Kss1 MAP kinases. Untransformed S. cerevisiae strain YPH499 is used as a control.

can be monitored through the appearance of dually phosphorylated Fus3 protein as well as

that of the phosphorylated, redundant Kss1 protein (28). We transformed cells with GAL-

Ste4, BD-vinD1, and AD-LOV-ipaA WT, and grew transformed colonies to mid-log phase.

Cultures were then exposed to blue light or dark conditions over the course of two hours. Cells

were lysed and immunoblotted using a p44/42 antibody in order to probe for phosphorylated

Fus3 and Kss1 proteins. The appearance of the phosphorylated proteins is evident only in the

cultures exposed to light (Figure 4.7). Cultures only grown in the dark show no increase in

levels of either protein over the course of an hour. A slight increase in phosphorylation is seen

for samples in the dark after two hours, indicating a small amount of residual Ste4 expression

in the dark.

4.4.4 Photoactivation of Gpa1 transcription

We tested the ability to photoactivate Gpa1 expression through the use of a halo assay.

In the assay, S. cerevisiae cells transformed with the GAL1-Gpa1 gene are plated in a lawn

of top agar on selective SD plates. Varying concentrations of α-factor are added as a single

spot on the solidified top agar. This generates a gradient of pheromone radiating out from

the spot, and induces growth arrest in cells sensitive to pheromone signaling (29; 30). Thus,

a transformed strain’s response to α-factor is observed as a function of the size of the halo
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Figure 4.8: LOV-ipaA heterodimerization induces Gpa1 expression under blue light. Budding
yeast transformed with GAL-Gpa1, BD-vinD1 and AD-LOV-ipaA WT were grown under (a)
dark and (b) blue light conditions. Yeast transformed with GAL-Gpa1, BD-vinD1 and (c) AD-
LOV-ipaA dark state, C450A mutation or (d) AD-LOV-ipaA lit state, I532E A536E mutation
were grown. As a control, yeast transformed with BD-empty vector, AD-empty vector, and
GAL-Gpa1 were grown under (e) glucose, non-inducing and (f) galactose, inducing conditions.
Halo sizes in response to 1.5 µg, 4.5 µg, 15 µg, and 45 µg of α-factor (white pads, clockwise
on each plate) are seen.
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created by α-factor induced growth arrest. Overexpression of Gpa1 has been shown to dampen

cells’ sensitivity to α-factor.

In order to examine whether we could observe a phenotype in response to light-induced

expression of Gpa1, we performed halo assays on cells transformed with GAL1-Gpa1, BD-

vinD1 and AD-LOV-ipaA WT genes. These cells were replica plated and exposed to blue light

(inducing) or dark (non-inducing) conditions over two days (Figure 4.8). Plates grown under

blue light conditions showed less sensitivity to α-factor induced growth arrest. Halos on these

plates were substantially smaller than those grown under dark conditions. As a control, cells

expressing GAL1-Gpa1, BD-vinD1 and AD-LOV-ipaA C450A (dark state) or I532A A536E

(lit state) genes were grown in dark conditions. In this case as well, cells expressing the AD-

LOV-ipaA lit state gene were less sensitive than cells expressing the AD-LOV-ipaA dark state

gene to pheromone induced growth arrest. This indicated that heterodimerization between

AD-LOV-ipaA and BD-vinD1 rather than nonspecific light effects lead to insensitivity of cells

to α-factor induced growth arrest.

A similar amount of insensitivity was observed in cells overexpressing Gpa1 through galac-

tose induction. When cells expressing AD-empty vector, BD-empty vector and GAL1-Gpa1

were replica plated onto SD plates containing either galactose(inducing)or glucose (non-inducing)

carbon sources, cells grown on galactose plates showed insensitivity to pheromone-induced

growth arrest, but not those grown on glucose media.

Differences in pheromone-induced halo sizes were measured and averaged over three repli-

cates. Cells grown on plates under inducing conditions required three times as much α factor

to generate a halo equivalent in diameter to those cells grown on plates under non-inducing

conditions (Table 4.2). Halo diameters were almost identical when cells were grown under blue

light or under galactose induction Similarly, Halo diameters were almost identical, regardless

of whether cells were grown under dark or under glucose induction. This indicates that we

were able to demonstrate a clear phenotype of light-induced overexpression of Gpa1 in yeast

cells.
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AD-LOV-ipaA Dark State Lit State WT WT —— ——

Inducing Condition —— —— Dark Blue Light Glucose Glalactose

α factor(µg) Halo Diameter (cm)

1.5 0.8 0.0 0.7 0.0 0.7 0.0

4.5 1.3 0.9 1.4 0.8 1.4 0.8

15 1.8 1.4 1.8 1.3 1.8 1.5

45 2.3 1.8 2.3 1.8 2.3 1.8

Table 4.2: Diameters of pheromone halos due to induced expression of Gpa1. Induction
of Gpa1 overexpression by blue light or galactose was measured as a response to α factor
concentration. Halo diameters versus α factor concentrations are given for yeast expressing
GAL1-Gpa1 along with BD-vinD1 and AD-LOV-ipaA lit state, dark state, or WT grown under
blue light (inducing) or dark (non-inducing) conditions. These can be compared to galactose
induction of Gpa1.

4.5 Discussion

In this work, we sought to use LOV-ipaA binding to the vinculinD1 subdomain as a light-

driven heterodimerization switch. We altered LOV-ipaA by introducing the L623A mutation

that weakened its affinity to vinculinD1 by 500-fold. We introduced the mutated LOV-ipaA

and vinD1 protein into a yeast-two hybrid system. LOV-ipaA was attached to the GAL4

activation domain, while the vinculinD1 subdomain was linked to the GAL4 binding domain.

Light-induced heterodimerization of the two portions of GAL4 upon binding of LOV-ipaA to

vinD1 induced expression of reporter genes LacZ, MEL1, HIS3 and ADE2. We applied the

light-in inducible heterodimerization system to induce overexpression of Ste4 and Gpa1, two

genes critical in the yeast pheromone response pathway.

Induction of Ste4 overexpression through blue light irradiation led to observance of two Ste4

phenotypes: growth arrest and shmoo formation. Both of these phenotypes were expressed

weakly in blue light irradiated cells, when compared to cells induced by galactose. Biochemical

data indicated strong activation of the MAPK pathway by blue light irradiation, however. This

indicated strong overexpression of Ste4 over the course of two hours, but the activation may

be too transient to show robust phenotypic activation over a longer course of time, which is

required for growth arrest and shmoo formation. One other possibility for weak phenotype

expriession might be heterogeneity of the transformed GAL-Ste4 cultures. In order to induce
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overexpression with blue light in yeast cells, these cells must be transformed by three separate

plasmids; these genes are not integrated into the yeast genome. Such a strategy might lead to

over- or under-expression of one of the three components needed for a phenotypic response.

Gpa1 overexpression through blue light irradiation was more consistent. Gpa1 exxpressed

the same phenotype, to the same extent, under blue light irradiation or under galactose in-

duction. Experiments are still needed, however, to quantify the extent of Gpa1 overexpression

upon irradiation with blue light, as compared to galactose induction.

We demonstrate that the LOV-ipaA photoswitch can be used as a tool for inducing gene

expression using blue light. The pheromone mating response pathway can now be activated

or inhibited by blue light, without the use of α-factor or other harsh or expensive chemical

treatment of yeast cells. This technology can easily be adapted to induce expression of other

critical yeast genes through light-induced heterodimerization, allowing for more studies into

the workings of yeast genetics.
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CHAPTER 5

CONCLUSION

5.1 PA-Rac and LOV-ipaA photoactivatable tools and applications

This thesis has described the development of two photoactivatable tools: PA-Rac and

LOV-ipaA. However, only a small subsection of the the possible applications of each tool has

been touched upon. The next few sections will cover current research in applying PA-Rac

and LOV-ipaA to answer biological questions and understand signaling networks, as well as

ways in which knowledge from the design of these photoswitches is aiding toward the goal of

generalizable design of photoactivatable small GTPases and peptides.

5.2 Current uses of PA-Rac

PA-Rac has been used extensively to study the biology of Rac1 signaling and its effect on

cell motility. These studies have been performed on the single cell level, as well as on the tissue

and organismal level.

The first application of PA-Rac described was for single cells studies of motility (1). The

effect of Rac1 activation on cell polarity was investigated. It was found that Rac1 induces cell

polarity to induce protrusion locally, at the site of activation, while inducing retraction at the

opposite side of the cell. It was found that myosin allows for this polarized cell movement

to occur, while Rac1 activity through activation of PAK was the principle reason for overall

protrusions in the cell. It was also seen that Rac1 activity in localized areas of the cell led

to inhibition of RhoA activity in these places, possibly indicating RhoA is inhibited at cell



protrusions.

PA-Rac was used in zebrafish (2; 3) to study polarized cell migration. Activating Rac1 was

found to direct polarized cell migration in vivo, in a Danio rerio embryo. Inhibiting the protein

phosphoinositide 3-kinase (PI(3)K) while activating Rac1 allowed for membrane protrusion,

but not polarized cell movement. This study has allowed scientists to understand how cell

polarization occurs in vivo.

PA-Rac was also used to investigate the motility of a group of cells in the Drosophila ovary

(4). These cells, called border cells, move about 175 µm in the egg chamber of a D. melogaster

organism. Activation of Rac1 in one of the border cells proved sufficient to polarize and allow

for cell motility in the entire group of border cells. This suggested that the cells jointly sense

Rac1 activity level in order to induce polarized movement. The protein Jun N-terminal kinase

was shown to be important for this intercellular communication, demonstrating yet another

way in which PA-Rac was able to tease apart the mechanisms of cell signaling networks.

5.3 Future of PA-Rac: caging small GTPases

In section 2.4.3, the application of PA-Rac modeling to design PA-Cdc42 was described.

Although the addition of Trp mutation on Cdc42 at its interface with the LOV2 domain

led to caging of the small GTPase, the mutation also altered the effector binding region of

Cdc42. This may alter the avidity of Cdc42 for its many effectors. Currently, efforts have

been undertaken to identify other means to cage Cdc42 without disrupting its effector binding

domain. One of the strategies being tested is the introduction of mutation sets G528A N538E

and L514K L531E into the LOV2 domain, as described in section 3.4.3, to increase the dynamic

range of LOV-ipaA. These same mutations are being applied to PA-Rac as well, in order to

decrease its affinity of its effectors in the dark. The small GTPases RhoA and RhoG are being

caged using the same strategy as that used to design PA-Rac. These efforts are ongoing and

currently being tested.
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5.4 Caging peptides using the LOV2 domain: lessons from LOV-ipaA

We are working on generalizing the caging of peptides through the use of the LOV2 do-

main. The challenge is altering the peptide and Jα sequences so that they maintain peptide

functionality but are compatible with the Jα helix (Figure 5.1). One face of the Jα helix is

exposed to solvent while the other face forms hydrophobic interactions with a β-sheet in the

LOV2 domain. Residues on the surface of the helix are expected to be tolerant to mutation,

while the buried residues should be more conserved. Similarly, most peptides have sets of

residues that are required for binding target proteins, while other positions can be varied.

These observations indicate that it may be possible to identify more chimeric sequences for

the Jα helix that maintain key interactions with the LOV2 domain but incorporate residues

critical to peptide function.

Figure 5.1: General design strategy for caging peptides using the LOV2 domain. Photoswitches
are designed as sequence chimeras between the LOV2 Jα helix and the peptide to be caged.
Residues that are important to LOV2-Jα interactions (cyan), important to peptide-target
interaction (purple), important to both interactions (red), and residues that are important to
neither interaction (white) are identified and mutated accordingly. Irradiation unfolds the Jα
helix, and the peptide can bind its target.

We extended the design strategy used to cage ipaA in order to create a second photo-

switchable peptide, LOV-SsrA. The SsrA peptide interacts with the protease delivery protein

SspB from E. coli as a linear epitope using the seven residue sequence AANDENY (5). Caging

of the SsrA peptide was considered an advancement of our peptide caging techniques, and a

complimentary system to LOV-ipaA, for a variety of reasons. First, at functionally important

residues both peptides align well with the Jα helix. Indeed, several alternative alignments were
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identified for the SsrA peptide. Second, the peptides adopt alternative conformations when

binding their targets, ipaA adopts a helix while SsrA binds in an extended conformation. By

testing both peptides, we examine if our approach can be used to cage peptides regardless of

the conformation they adopt when bound to their target protein. Third, the peptides have

different intrinsic affinities for their target proteins. IpaA binds the D1 domain of vinculin very

tightly, Kd less than 1 nM, while SrrA binds SspB with an affinity of about 30 nM. Fourth, for

separate reasons they are well suited for controlling cell biology. The SsrA and SspB sequences

are specific to bacteria, and therefore it is expected that they will not interact with other pro-

teins and peptides in higher organisms. Fusing proteins of interest to a photoactivable SsrA

and SspB should provide a general approach for light-induced heterodimerization, which can

be used to localize proteins in the cell and activate cell-signaling pathways.

This approach may, in the future, be applied to a variety of peptides, since only a subset

of residues on the Jα helix need to be conserved to maintain favorable interactions with LOV

domain. Additionally, most protein-binding peptides contain residues that can be mutated

without significantly weakening affinity for binding partners. In the case of LOV-ipaA and

LOV-SsrA we also took advantage of the fact that not all of the peptide needs to be embedded

in the Jα helix to create a steric block against effector binding. In this scenario, only a few

residues from the N-terminal portion of the peptide need to be compatible with the folded Jα

helix.

The switching power of the LOV-peptide switches can be manipulated by introducing mu-

tations that stabilize the interaction between the Jα helix and the rest of the LOV domain, as

well as by varying how deeply the caged peptide is embedded in the helix. Both the LOV-ipaA-

vinculinD1 and the LOV-SsrAa-SspBb photoactivatable binding interactions can be harnessed

as tools for photoactivatable heterodimerization. The LOV-ipaA- vinculin switch can be used

in bacteria and in yeast cells, as these systems do not contain vinculin or vinculin binders

that would affect the LOV-ipaA-vinculin interaction. The LOV-SsrA-SspB photoactivatable

heterodimerization binders, on the other hand, should be useful in higher organisms such as

mammalian cells. LOV-ipaA has a very slow off rate for vinculinD1, so it is better suited for

long time-scale applications such as yeast mating. In contrast, LOV-SsrA binding to SspB is
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rapidly reversible so can be used for more transient interactions, such as single cell motility

experiments. In these ways, both LOV-ipaA and LOV-SsrA should be useful tools to spatially

and temporally bring together proteins for activating signaling cascades.

5.5 Applications of the LOV-ipaA photoswitch

Apart from its use as a model system for caging peptides, LOV-ipaA is currently being

researched for other applications. Since LOV-ipaA binds vinculin with high affinity in the

lit state and weaker affinity in the dark state, it is being used to study vinculin-effector in-

teractions. The photoswitch is added to mutated versions of full-length vinculin that alter

its binding to polymerized actin and paxillin. LOV-ipaA acts as a regulatable activator of

vinculin-actin and vinculin-paxillin interactions. This allows researchers to study the effects

of full-length vinculin mutations on paxillin and actin binding when vinculin is in an on or off

state.

Since the LOV-ipaA-vinculin binding interaction has been described so extensively, it is

being used for screening of mutations in the LOV2 domain. The goal is to find mutations in the

LOV2 domain of LOV-ipaA that favorably change its binding kinetics to vinculin. Mutations

that maintain lit state binding affinity while decreasing the binding of the photoswitch to

vinculin in the dark state are being particulary sought for.

LOV-ipaA was particularly successful at allowing for light induced heterodimerization in

budding yeast. However, LOV-ipaA can only be used in orthogonal system such as yeast. The

photoswitch cannot currently be used in mammalian cells a a light induced heterodimerization

switch, as it would interact with endogenous vinculin in these cells. Efforts are being made

to redesign both ipaA and the vinculinD1 subdomain at the ipaA interface. The end goal is

to have an orthogonal interface, wherein redesigned LOV-ipaA only interacts with redesigned

vindulinD1, rather than with endogenous vinculin, and redesigned vinculinD1 cannot interact

with endogenous vinculin proteins such as talin and α-actinin.
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5.6 A bright future for photoactivation

Photoactivation holds many future promises for the development of useful biological tools.

This technology has already enabled us to study the underpinnings of signaling networks that

lead to polarized cell motility, as well as to photoactivate yeast transcription at will. By gen-

eralizing the design of photoactivatable tools using the LOV2 domain, it will be possible to

photoactivate many members of two classes of proteins; small GTPases and peptides. In the

future, by combining the tools and systems in use today for genetically encoded photoacti-

vation, we will be able to cage many more types of proteins using various different colors of

light, even allowing for multiplexing of protein signaling in a cascade. One can envision a

future in which any desired protein may be caged through genetically encoded means using a

step-by-step protocol, and is uncaged using any one of a selectable number of wavelengths and

colors of light. Such a future would lead to a dramatic advancement in our understanding of

protein-protein signaling dynamics in a spatially and temporally precise manner. The future

for photoactivation looks truly bright.
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5.7 Appendix

5.7.1 Appendix A: Journal article adapted for Chapter 2
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5.7.2 Appendix B: Matlab code used to analyze fluorescence polarization assays

in Chapter 3
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5.7.3 Appendix C: Yeast two-hybrid experiments with controls

LOV-ipaA L623A Lit state and dark state mimetic yeast two-hybrid assay and controls.

SD media conditions are indicated. S cerevisiae strain Y2Hgold containing the Gal4 activation

domain (AD) linked to the construct indicated was mated with strain Y187 containing the Gal4

binding domain (BD) linked to the construct indicated. Mated colonies were serially diluted

(1:5), replica plated, and grown for 3 days at 30 ◦C
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LOV-ipaA L623A WT yeast two-hybrid assay and controls. SD media conditions are

indicated. S cerevisiae strain Y2Hgold containing the Gal4 activation domain (AD) linked to

the construct indicated was mated with strain Y187 containing the Gal4 binding domain (BD)

linked to the construct indicated. Mated colonies were serially diluted (1:5), replica plated,

and grown for 3 days at 30 ◦C in either blue light or in the dark, as indicated.
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LOV-ipaA WT lit state and dark state mimetic yeast two-hybrid assay and controls. SD

media conditions are indicated. S cerevisiae strain Y2Hgold containing the Gal4 activation

domain (AD) linked to the construct indicated was mated with strain Y187 containing the

Gal4 binding domain (BD) linked to the construct indicated. Mated colonies were serially

diluted (1:5), replica plated, and grown for 3 days at 30 ◦C
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5.7.4 Appendix D: Photoactivation of Ste4 expression plates

Budding yeast transformed with GAL-Ste4, BD-vinD1, and AD-LOV-ipaA WT or empty

pRS316 vector were grown under dark (non-inducing) and blue light (inducing) conditions.

Resulting growth arrest is seen on serially diluted colonies.
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Budding yeast transformed with GAL-Ste4, BD-vinD1, and AD-LOV-ipaA C450A or

empty pRS316 vector were grown under dark (non-inducing) and blue light (inducing) condi-

tions. Resulting growth arrest is seen on serially diluted colonies.
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Budding yeast transformed with GAL-Ste4 or empty pRS316 vector were grown under

glucose (non-inducing) and galactose (inducing) conditions. Resulting growth arrest is seen

on serially diluted colonies.
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