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Abstract

WEIMAO KE: Scalability of Findability: Decentralized Search and
Retrieval in Large Information Networks.

(Under the direction of Dr. Javed Mostafa.)

Amid the rapid growth of information today is the increasing challenge for people to

survive and navigate its magnitude. Dynamics and heterogeneity of large information

spaces such as the Web challenge information retrieval in these environments. Collec-

tion of information in advance and centralization of IR operations are hardly possible

because systems are dynamic and information is distributed.

While monolithic search systems continue to struggle with scalability problems of

today, the future of search likely requires a decentralized architecture where many

information systems can participate. As individual systems interconnect to form a

global structure, finding relevant information in distributed environments transforms

into a problem concerning not only information retrieval but also complex networks.

Understanding network connectivity will provide guidance on how decentralized search

and retrieval methods can function in these information spaces.

The dissertation studies one aspect of scalability challenges facing classic informa-

tion retrieval models and presents a decentralized, organic view of information systems

pertaining to search in large scale networks. It focuses on the impact of network struc-

ture on search performance and investigates a phenomenon we refer to as the Clustering

Paradox, in which the topology of interconnected systems imposes a scalability limit.

Experiments involving large scale benchmark collections provide evidence on the

Clustering Paradox in the IR context. In an increasingly large, distributed environment,

decentralized searches for relevant information can continue to function well only when
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systems interconnect in certain ways. Relying on partial indexes of distributed systems,

some level of network clustering enables very efficient and effective discovery of relevant

information in large scale networks. Increasing or reducing network clustering degrades

search performances. Given this specific level of network clustering, search time is well

explained by a poly-logarithmic relation to network size, indicating a high scalability

potential for searching in a continuously growing information space.
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Chapter 1

Introduction

An information retrieval system will tend not to be used whenever it is more

painful and troublesome for a customer to have information than for him

not to have it. – Mooers 1959 (see also Mooers, 1996)

Although often taken out of context, Mooers’ law does relate to common frustra-

tions with information. Amid the rapid growth of information today is the increasing

challenge for people to survive and navigate in its magnitude. Having lots of informa-

tion at hand is not necessarily helpful but often painful because it likely brings more

overload than reward (Farhoomand and Drury, 2002). These problems have motivated

research on intelligent information retrieval, automatic information filtering, and au-

tonomous agents to help process large amounts of information and reduce a person’s

work (Belkin and Croft, 1992; Maes, 1994; Baeza-Yates and Ribeiro-Neto, 2004).

Traditional information retrieval (IR) systems operate in a centralized manner.

They assume that information is on one side and the user on the other; and the problem

is to match one against the other. As Marchionini (1995) recognized, retrieval implies

an information object must have been “known” and those who “knew” it must have

organized it for later being retrieved by themselves or others. However, figuring out

who has what information is not straightforward as we are all dynamically involved in



the consumption and creation of information. It is widely observed that information is

vastly distributed – before matching and ranking operations lays the question of where

relevant information collections are (Gravano et al., 1999; Callan, 2000; Bhavnani, 2005;

Morville, 2005).

We live in a distributed networked environment, where information and intelligence

are highly distributed. In reality, people have different expertise, share information with

one another, and ask trusted peers for advice/opinions on various issues. The World

Wide Web is a good example of information distribution, where web sites serve nar-

row information topics and tend to form communities through hyperlink connections

(Gibson et al., 1998; Flake et al., 2002; Menczer, 2004). Likewise, individual digital

libraries maintain independent document collections and none claims to be all encom-

passing or comprehensive (Paepcke et al., 1998). There is no single global information

repository.

Advances in computing technologies have enabled efficient collection (e.g., crawling),

storage, and organization of information from distributed sources. However, there is

a growing space on the Web where information is difficult to aggregate and make

available to public. Research has observed that much valuable information was not

published online for reasons such as privacy, copyright, and unwillingness to share to

the public (Kautz et al., 1997b; Yu and Singh, 2003; Mostafa, 2005). More critically,

five hundred times larger than the indexable Web is some hidden space called deep

web where information is publicly available but cannot be easily crawled (Mostafa,

2005; He et al., 2007). Sites on the deep web often have large databases behind their

interfaces and provide information only when properly queried. Sometimes, information

is so fresh that storing it for later being found is useless – it might become outdated

hours, if not seconds, after being produced, e.g., for information about stock prices or

current weather conditions.
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The deep web represents a large portion of the entire web that requires various

levels of intelligent interactions, challenging for search engines to penetrate. Research

has been done on the problem but solutions remain ad hoc. Researchers rely on existing

search terms and/or visible contents to guess what keywords can be used to activate

hidden information in deep web databases. However, this is not a general solution.

For any database behind the scene, there are simply too many possibilities to guess

– not to mention the fact that there are at least half million different databases/sites

and more than one million interfaces1 on the deep web (He et al., 2007)2. Moreover,

the problem goes beyond what query terms should be used – you also need to “speak”

in ways deep web systems understand. For example, orbitz.com3 will not take your

query if you simply enter “I need a flight from New York to London on Tuesday.”

Instead, you will need to speak in Orbitz’s language – to specify the different elements

in an acceptable query structure and provide the values. The variety of languages is an

immense challenge and“learning them all” is not an option. And given the evolutionary

nature of the Web, it is unrealistic for one to implement communication channels to

all.

Because of the distributed nature of information and the size, dynamics, and het-

erogeneity of the Web, it is extremely challenging, if not impossible, to collect, store,

and process all information in one place for retrieval operations. Centralized solutions

will hardly survive – they are are vulnerable to scalability demands (Baeza-Yates et al.,

2007). No matter how much can be invested, it will remain a mission impossible to

1One site or database can have multiple interfaces. For example, some offer both free text search
and “advanced” search options while others use various facets for their search interfaces, e.g., to find
a car by “region” and “price” or by “make” and “model.”

2The numbers of deep web databases and interfaces have been growing over the years.

3Orbitz is a commercial web site for travel scheduling, e.g., to book flights and hotels.
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replicate and index the entire Web for search. The deep web, hidden from the index-

able surface, further challenges existing search systems. For the search service market,

barriers to entry are so high that competition is only among the few. Are today’s

search engine giants good enough to serve our information needs? Before this could be

answered, how current models for search would survive the continuous growth of the

Web is another legitimate question.

As the Web continues to evolve and grow, Baeza-Yates et al. (2007) reasoned that

centralized IR systems are likely to become inefficient and fully distributed architectures

are needed. Even when one has sufficient investment to provide a “one for all” search

service on the Web, the architecture will never remain centralized – it will be forced to

break down into distributed and/or parallel computing machines given that no single

machine can possibly host the entire collection. For example, it was estimated that

today’ search engine giant Google4 had about a half million computers behind its ser-

vices (Markoff and Hansell, 2006), a relatively significant proportion to the 60 million

stable Internet-accessible computers projected by Heidemann et al. (2008). In another

word, for every hundred stable Internet-accessible computers in the Internet, there is

one Google machine5. Baeza-Yates et al. (2007) estimated that, by 2010, a Web search

engine will need more than one million computers to survive. Even so, how to manage

them in a distributed manner for efficiency will remain a huge challenge.

More importantly, however, we have to know potential alternative techniques and

better methods to support searches in a less costly way. A potential candidate is to

take advantage of the existing computing infrastructure of the Internet and invent

4Twelve years from now, it might become less relevant, if not irrelevant, to talk about Google –
just as it has become less relevant to talk about Alta Vista now than it was a dozen years ago. But for
the sake of discussions in today’s context, Google will continue to be used as a well recognized search
engine example.

5Note that not all Google machines were Internet-accessible and they were not necessarily a subset
of the 60 million. Neither is it likely that Google used all the half million for search services
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new strategies for them to work together and help each other search. Recent years

have witnessed the large increase of personal and organizational storage in response to

the fast growth of information. Yet the distributed network of computing machines

(i.e., the Internet), with an increasing capacity collectively, have not been sufficiently

utilized to facilitate search. Using distributed nodes to share computational burdens

and to collaborate in retrieval operations appears to be reasonable.

Research on complex networks shows promises as well. It has been discovered that

small diameters, or short paths between members of a networked structure, were a

common feature of many naturally, socially, or technically developed communities – a

phenomenon often known as small world or six degrees of separation (Watts, 2003).

Early studies showed that there were roughly six social connections between any two

persons in the U.S. (Milgram, 1967). The small world phenomenon also appears in

various types of large-scale digital information networks such as the World Wide Web

(Albert et al., 1999; Albert and Barabási, 2002) and the network for email communi-

cations (Dodds et al., 2003).

In addition, studies showed that with local intelligence and basic information about

targets, members of a very large network are able to find very short paths (if not the

shortest) to destinations collectively (Milgram, 1967; Kleinberg, 2000b; Watts et al.,

2002; Dodds et al., 2003; Liben-Nowell et al., 2005; Boguñá et al., 2009). The implica-

tion in IR is that relevant information, in various networked environments, is very likely

a few degrees (connections) away from the one who needs it and is potentially findable.

This provides potentials for distributed algorithms to traverse such a network to find

it efficiently. However, this is never an easy task because not only desired information

items or documents are a few degrees away but so are all documents. The question is

how people, or intelligent information systems on behalf of them, can learn to follow

shortcuts to relevant information without being lost in the hugeness of a networked
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environment (e.g., the Web).

Dynamics and characteristics of a network manifest the way it has been formed by

members with individual objectives, capacities, and constraints (Amaral et al., 2000).

All this is a display of how members of a society have survived and will continue to

scale collectively. To take advantage of a network is to potentiate a capacity potentially

far beyond the linear sum of all as the (communicative) value of a network is said to

grow proportionately to the square of its size in terms of Metcalfe’s law (Ross, 2003).

These networks, developed under constraints, were also found to demonstrate useful

substructures and some topical gradient that can be used to guide efficient searches

(Kleinberg et al., 1999; Watts et al., 2002; Kleinberg, 2006a).

1.1 Problem Statement

Dynamics and heterogeneity of a large networked information space (e.g., the Web)

challenge information retrieval in such an environment. Collection of information in

advance and centralization of IR operations are hardly possible because systems are

dynamic and information is distributed. A fully distributed architecture is desirable

and, due to many additional constraints, is sometimes the only choice. What is poten-

tially useful in such an information space is that individual systems (e.g., peers, sites,

or agents) are connected to one another and collectively form some structure (e.g., the

Web graph of hyperlinks, peer-to-peer networks, and interconnected services and agents

in the Semantic Web).

While an information need may arise from anywhere in the space (from an agent

or a connected peer), relevant information may exist in certain segments but there

requires a mechanism to help the two meet each other – by either delivering relevant

information to the one who needs it or routing a query (representative of the need)

where information can be retrieved. Potentially, intelligent algorithms can be designed
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to help one travel a short path to another in the networked space.

One might question why there has to be so much trouble to find information through

a network. A simple solution would be to connect a system to all other systems and

choose the relevant from a full list. However, no one can manage to have a complete

list of all others and afford to maintain the list given the size of such a space. The

Web, for example, has more than millions of sites and trillions of documents, either

visibly or invisibly. And considering the dynamics and heterogeneity, it is impossible to

implement and maintain communication channels to all – that is why deep web remains

a problem unsolved.

1.1.1 Scalability of Findability

Now let’s review the problem in its basic form. Let G(A,E) denote the graph of a

networked space, in which A is the set of all agents6 (nodes or peers) and E is the

set of all edges or connections among the agents. On behalf of their principals, agents

have individual information collections, know how to communicate with their direct

(connected) neighbors, and are willing to share information with them. Some agents’

information collections are partially known. Many agents, given their dynamic nature,

only provide some information when properly queried – that their information cannot be

collected in advance without a query being properly formulated and submitted. Still,

some provide information that is time sensitive and therefore useless to be collected

beforehand.

Being information providers, agents also represent information seekers. Imagine

an agent in the network, say, Au, has an information need (i.e., receives a request

from a user) and formulates a query for it. Suppose another agent Av, somewhere in

6For the discussion here, an agent is seen as a computer program or system that either provides or
seeks information, on behalf of its human or organizational principal. The term will be defined more
formally in Section 4.
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the network, has relevant information for the need. Assume that Au is not directly

connected to and might not even know the existence of Av. However, we reasonably

assume that the network is a small world and there are short paths from Au to Av.

Now the question is:

Problem 1 Findability: Can agents directly and/or indirectly known (connected) to

Au help identify Av such that Au’s query can be submitted to Av who in turn provides

relevant information back to Au?

A constraint here is that the network should not be troubled too much for each

query. One can reasonably propose a simple solution to the problem above through

flooding or breadth first search. However, flooding may achieve findability at the cost

of coverage – it will reach a significant proportion of all agents in the network for a

single query. Even if each agent issues one query a day, there will be too much traffic

in the network and huge burden on other agents. This type of solutions will not scale7.

We should therefore seek a balance between findability and efficiency:

Problem 2 Efficiency of Findability: Given Av is findable for Au in a network, can

the number of agents involved in the search process be relatively small compared to the

network size so that each query only engages a very small part of the network?

More critically,

Problem 3 Scalability of Findability: Can the number of agents involved in each query

remain small (on a relatively constant scale) regardless of the scale of network size? And

how?

7Here is a simple calculation of flooding scalability. In a network of 10 agents, if each agent submits
a query that reaches half of the network, then every agent will have to process 5 queries on average. If
the network size increases to one million, then every agent will have to take half million queries under
flooding.
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Small world networks such as the World Wide Web, as research has found, usually

have a small diameter8 on a logarithmic scale of network size (Albert et al., 1999).

Experimental simulations on abstract models for network navigation, for example,

achieved findablity through short path lengths bounded by c(logN)2, where c is a

constant and N the network size (Kleinberg, 2000a). A goal of the literature review is

to (hopefully) find an IR research direction for a logarithmic function of information

findability.

Another related goal is to develop improved distributed IR systems by analyzing

the impact of network characteristics on findability of information. The broad aim is

to clarify the relationship of critical IR functions and components to characteristics

of distributed environments, identify related challenges, and point to some potential

solutions. The survey will draw upon research in information retrieval and filtering,

peer-to-peer search and retrieval, complex networks, and multi-agent systems as the

core literature.

1.2 Significance

Shapiro and Varian (1999) discussed the value of information to different consumers and

reasoned that information is costly to create and assemble “but cheap to reproduce” (p.

21). In addition, finding relevant information to be replicated or used is likewise costly.

Without a global repository, it is difficult to know about where specific information is.

Quickly locating relevant information in a distributed networked environment is critical

in the information age.

From a communication perspective, Metcalfe asserted that the value of a network

grows proportionately to the square of its size, or the number of users connected to it

8A network diameter refers to the longest of all shortest pairwise path lengths.
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(Shapiro and Varian, 1999; Ross, 2003). Searching distributed collections of informa-

tion through collective intelligence of networked agents inherits the “squared” potential

and has important implications in IR as well as in Information Science. Applications of

information findability in networks include, but are not limited to, search and retrieval

in peer-to-peer networks, intelligent discovery of (deep) web services, distributed desk-

top search, focused crawling on the Web, agent-assisted web surfing, and expert finding

in networked settings.

Finding relevant information through a peer-to-peer (P2P) or online social network

(e.g., facebook.com) is an obvious application. Another type of application, in the

Semantic Web, is to build information agents through which queries can be directed

efficiently to relevant services and databases. For example, one who needs to book an

air ticket but does not know the existence of Orbitz can activate his software agent to

send the query to connected others, who collectively carry the query forward to and

results back from Orbitz through all intermediaries. We can also implement intelligent

web browser assistants to help navigate through hyperlinks to find relevant web sites

and/or pages.

From the perspective of search and discovery on the Web, efficient navigation in

networks for information retrieval carries challenges as well as opportunities. A brief

discussion follows.

A Broadened Searchable Horizon

In the past decade, we have seen the increased popularity of information retrieval

systems, particularly web search engines, as useful tools in people’s daily information

seeking tasks. Although many enjoy, and some boast, the boosted findability on the

Web, there is a significant portion of it too“hidden”or too“deep” to be found. An ideal

distributed networked retrieval system, nonetheless, will allow deep sites to be reached
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and hidden information to be found through efficient collective routing of queries by

intermediary peers/agents.

Despite taking a different view on the problem of search, a distributed approach

to information retrieval should not be seen as a replacement of current search systems

such as Google. It can become part of a current system, e.g., for Google to deal with

large collections distributed internally. In this way, a distributed architecture is an

approach to scalability for current IR systems. On the other hand, a traditional system

can also be seen as part of the distributed architecture, where Google, for instance, is

a super-node/agent. With the integration of both search paradigms, the entire system

will provide a broadened horizon for search on the Web.

Finding Information Alive

“Information is like an oyster: it has its greatest value when fresh.” (Shapiro and Varian,

1999, p. 56) If crawler-based search systems can be seen as museums, which make copies

of (and obviously not every piece of) information on the Web, then it will be desirable

for people to go to the wild of the Web to find information alive. The idea of going to

the wild is to chase information out to catch it – just like how we chase butterflies –

which retrieval systems such as Google were not born to be. There are so many sites

and databases that cannot be crawled in advance and stored statically. Answers are

not there until questions are asked; information is query driven and often transient.

A distributed search architecture will potentially allow people’s live queries to travel a

short journey in a huge network to chase hidden information out, fresh.
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Chapter 2

Literature Review

The problem concerning how information can be quickly found in networked environ-

ments has become a critical challenge in Information Retrieval (IR), particularly for

IR systems on the Web – a challenge that deserves further investigation from an Infor-

mation Science perspective. To attack the challenge, nonetheless, will draw on inspi-

rations, proposals, and known principles from multiple disciplines. With the problems

of information findability and scalability of findability in mind, this literature review

aims to survey the literature in information science (and particularly information re-

trieval), complex networks, multi-agent systems, and peer-to-peer content distribution

and search.

Section 2.1 starts with a brief discussion on the notion of information in this survey

(i.e., what is to be found when the survey talks about information findability), reviews

the broad research area of information retrieval (IR), and discusses some of the basic

problems and models. Section 2.2 moves on to information retrieval on the Web and

introduces major challenges, solutions, and related areas including distributed IR. Fur-

ther decentralization of distributed IR leads to Section 2.3 on peer-to-peer information

retrieval, an area where the problem of finding information in networks has a very

tangible meaning. Section 2.4 surveys multiple research fronts studying characteristics



and dynamics of complex networks, and discusses, in their basic forms, the challenge of

findability in small world. Finally, Section 4 introduces the notion of agent and uses the

multi-agent system paradigm to revisit the raised IR problems. The literature review

concludes with a summary of main points and unanswered questions in Section 2.6.
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2.1 Information Retrieval

Information Science is about “gathering, organizing, storing, retrieving, and dissem-

ination of information” (Bates, 1999, p. 1044), which has both science and applied

science components. In this survey, framing the problem as finding information in net-

works requires a clear definition of what information is, or what is to be found. In

the literature, however, proposals on defining information abound without broad con-

sensus. Information has been related to uncertainty (Shannon, 1948), form (Young,

1987), structure (Belkin et al., 1982), pattern (Bates, 2006), thing (Buckland, 1991),

proposition (Fox, 1983), entropy (Shannon, 1948; Bekenstein, 2003), and even physical

phenomena of mass and energy (Bekenstein, 2003). Information is so universal that,

as Bates (2006) acknowledged, almost anything can be experienced as information and

there is no unambiguous definition we can refer to.

In Saracevic’s (1999) terms, there are three senses of information, from the narrow

to broader to the broadest sense, used in disciplines such as information science and

computer science. The narrow sense is often associated with messages and probabilities

ready for being operationalized in algorithms. This particular survey is interested in

information that is created, replicated, and transferred in electronic environments, or

digital information that is contained in documents. It is in the sense of information as-

sociated with digital messages that intelligent information retrieval systems or software

agents can be designed, implemented, tested, and used (Saracevic, 1999). Hence, a

pragmatic approach, namely the information-as-document approach, is taken to define

the scope of discussions in this survey. To be specific, the literature review is inter-

ested in the finding of digital information in the form of text documents unless stated

otherwise.

Mooers (1951) coined the term information retrieval to refer to the investigation of

information description and specification for search and techniques for search operations
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(see also Saracevic, 1999). As one of the core areas in information science, information

retrieval (IR) studies the representation, storage, organization, and access to informa-

tion items, and is concerned with providing the user with easy access to the information

he is interested in (Baeza-Yates and Ribeiro-Neto, 2004). System-centric IR, influenced

by computer science, has a focus on studying the effects of system variables (e.g., rep-

resentation and matching methods) on the retrieval of relevant documents (Saracevic,

1999).

It has long been recognized that system-centric IR and user-centric Information

Seeking (IS)1 are independent research areas (Vakkari, 1999; Ruthven, 2005). While IR

research outcomes have become widely adopted well-known due to the development of

the World Wide Web and search engines, wider aspects than models and algorithms of

IR are resistant to being studied in laboratory settings. Robertson (2008) argued that

IR should be heading toward a direction where richer hypotheses – other than the only

form of “whether the model makes search more effective” – are tested.

2.1.1 Representation and Matching

The mainstream research in IR falls in the category of partial match, as opposed to

exact or boolean match (Belkin and Croft, 1987). A classic IR model is illustrated

in Figure 2.1, in which an IR system is to find (partially) matched IR documents

given a query (representative of an information need). Researchers have tried to clas-

sify IR research by using various facets such as browsing vs. retrieval, formal vs.

non-formal methods, and probabilistic vs. algebraic and set theoretic models, etc.

(Baeza-Yates and Ribeiro-Neto, 2004; Jarvelin, 2007). Among the subcategories, the

formal or classic methods, which include probabilistic models and the vector space

1The broader processes of Information Retrieval (IR) and Information Seeking (IS) are largely
overlapped (Vakkari, 1999). Here, the concepts of user-centric IR and user-centric IS are exchangeable,
as opposed to IR or system-centric IR.
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model, have been widely followed and experimented on (Sparck Jones, 1979; Robertson,

1997; Salton et al., 1975).

Document
Representation

Document
Query

Representation
Information

Need

Match

IR SYSTEM

Figure 2.1: Classic Information Retrieval Paradigm, adapted from Bates (1989)

The probabilistic model follows a proposed probability principle in IR (Robertson,

1997), which is to rank documents for the maximal probability of user satisfaction, and

use the principle to guide document representation, e.g., term weighting (Sparck Jones,

1979). The probabilistic model has a strong theoretical basis for guiding retrieval toward

optimal relevance and has proved practically useful. However, among other disadvan-

tages, early probabilistic models only dealt with binary term weights and assumed the

independence of terms. In addition, it is often difficult to obtain and/or to estimate

the initial separation of relevant and irrelevant documents.

To overcome limitations of binary representation and make possible accurate partial

matching, Salton et al. (1975) proposed the Vector Space Model (VSM) in which queries

and documents are represented as n-dimensional vectors using their non-binary term

weights (see also Baeza-Yates and Ribeiro-Neto, 2004). In the dimensional space for IR,

the direction of a vector is of greater interest than the magnitude. The correlation be-

tween a query and a documents is therefore quantified by the cosine of the angle between

the two corresponding vectors. VSM succeeded in its simplicity, efficiency, and supe-

rior results it yielded with a good variety of collections (Baeza-Yates and Ribeiro-Neto,

2004).

Terms can be used as dimensions and frequencies as dimensional values in VSM. Yet

a more widely used method for term weighting is Term Frequency * Inverse Document
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Frequency (TF*IDF), which integrates not only a term’s frequency within each docu-

ment but also its frequency in the entire representative collection (Baeza-Yates and Ribeiro-Neto,

2004). The reason for using the IDF component is based on the observation that terms

appearing in many documents in a collection are less useful. In the extreme case, useless

are stop-words such as “the” and “a” that appear in every English document.

The early tradition of Cranfield2 has had great influence on how IR research is

conducted as an experimental science (Cleverdon, 1991; Saracevic, 1999; Robertson,

2008). The Text REtrieval Conference (TREC), as a platform where IR systems can

be more “objectively” compared, continues the system-centric tradition. TREC aims to

support IR research by providing the infrastructure necessary for large-scale evaluat-

ing of text retrieval methodologies, which includes benchmark collections, pre-defined

tasks, common relevance bases, and standardized evaluation procedures and metrics

(Voorhees and Harman, 1999).

Of various evaluation metrics used in TREC and IR, precision and recall are the

basic forms. Whereas precision measures the fraction of retrieved documents being

relevant, recall evaluates the fraction of relevant documents being retrieved. IR research

has extensively used precision, recall, and their derived measures for system evaluations.

For system comparison, techniques such as precision-recall plots, the F measure (or the

harmonic mean of precision and recall), the E measure, and ROC are often adopted.

With the inverse relationship of precision and recall (Cleverdon, 1991), research

has found recall difficult to scale. Not only is a thorough recall base (e.g., a com-

plete human-judged relevant set) hard to establish when the collection size grows, so

2The Cranfield tests refer to a series of early experiments, led by Cyril W. Cleverdon at College of
Aeronautics at Cranfield, on retrieval effectiveness (or efficiency then) of index languages/techniques.
Prototypical IR experimental setup (e.g., a common query set and relevance judgment) and evaluation
metrics such as recall and precision were established and have since been widely used. One important
finding from the experiments, surprisingly then, was the superiority of single-term-based index over
phrases (Cleverdon, 1991).
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is high recall difficult to achieve with large collections. When Blair and Maron (1985)

conducted a longitudinal study to evaluate retrieval effectiveness of legal documents,

only high precisions and low recalls were achieved, unsatisfactory for lawyers looking

for thoroughness. It was perhaps premature for Blair and Maron (1985) to conclude

on the inferiority of automatic IR and Salton (1986) later dismissed their conclusion

through a systematic comparison.

One approach to improving recall is through identifying similar documents to the

relevant retrieved document set. Clustering, through the aggregation of similar pat-

terns, have some potential (Jain et al., 1999; Han et al., 2001). As the Cluster Hypoth-

esis states, relevant documents are more similar to one another than to non-relevant

documents (van Rijsbergen and Sparck-Jones, 1973). Hence, relevant documents will

cluster near other relevant documents and they tend to appear in the same cluster(s)

(Hearst and Pedersen, 1996). Research also discovered that, in various information

networks (e.g., WWW), similar nodes (e.g., Web pages) tend to connect to each other

and form local communities (Gibson et al., 1998; Kleinberg et al., 1999; Davison, 2000;

Menczer et al., 2004). When a relevant document is reached, more can potentially be

retrieved.

2.1.2 Relevance

As an IR investigation, this survey is concerned with the retrieval of “relevant” informa-

tion for the user. Relevance is a key notion in IR that drives its objectives, hypotheses,

and evaluations, and deserves a good understanding. However, the meaning of relevance

is usually ambiguous while its sufficiency across domains is questionable. According to

Anderson (2006), relevance remains one of the least understood concepts in IR.
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Research has studied and debated over the concept of relevance. Although con-

sensus is lacking, researchers do share some common views of relevance as being dy-

namic and situational, depending on the user’s information needs, objectives, and social

context (Chatman, 1996; Barry and Schamber, 1998; Chalmers, 1999; Ruthven, 2005;

Anderson, 2006; Saracevic, 2007). Ruthven (2005) reasoned that relevance is “subjec-

tive, multidimensional, dynamic, and situational” (p. 63). It is not simply “topical” as

commonly assumed by system-centric IR research using standardized collections as in

TREC tracks, in which relevance was predetermined by other people.

In system-centric IR, the reassessment of relevance and interpretations are rarely

scrutinized. Research simplifies the concept and focuses on its “engineerable” compo-

nent by ignoring its broader context. As Anderson (2006) noted, relevance judgments

merely based on topicality do not incorporate multiple factors underlying a user’s deci-

sion to pursue or use information. Nonetheless, as he pointed out, topical relevance is

widely used in IR “because of its operational applicability, observability, and measura-

bility” (Anderson, 2006, p. 8).

It is true that topical relevance is too simplistic and that the static view of infor-

mation needs is problematic. And it makes sense to incorporate contextual variables in

order to approach the real meaning of relevance in situation. Unfortunately, according

to Saracevic (1999), “in most human-centered [IR] research, beyond suggestions, con-

crete design solutions were not delivered” (p. 1057). Research on retrieval algorithms

often assumes topicality of relevance to make progress on the system side while leaving

user issues for further investigation.
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2.1.3 Searching and Browsing

Searching and browsing represent two basic paradigms in information retrieval. While

searching requires the user to articulate an information need in query terms understand-

able by the system, browsing allows for further exploration and discovery of information.

The two techniques work differently and often operate separately; sometimes, however,

they become more useful when combined.

Bates (1989) argued that the classic IR model, as illustrated in Figure 2.1, offered

a rigid, system-oriented, and single-session approach to searching and should take into

account other forms of interaction so that users could express their needs directly.

An alternative retrieval paradigm, namely, the berrypicking search, was proposed to

accommodate more dynamic information exploration and collection activities over the

course of an evolving search (Bates, 1989). Today’s hypertext environments, e.g., the

WWW or any network (e.g., wikipedia) connecting documents from one another, can

support berrypicking searching very well as one can easily “jump” in the wired space

during browsing.

Similar to the berrypicking approach to browsing and finding information in the

evolving dynamics of information needs is the Information Foraging theory in which

“information scent” can be followed for seeking, gathering, and using on-line infor-

mation (Pirolli and Card, 1998). The recognition of various information seeking and

retrieval scenarios involving lookup, learning, and investigative tasks have motivated a

new research thread in exploratory search (Marchionini, 2006; White et al., 2007b).

As an example for interactive searching and browsing, Scatter/Gather is well known

for its effectiveness in situations where it is difficult to precisely specify a query (Cutting et al.,

1992; Hearst and Pedersen, 1996). It combines searching and browsing through itera-

tive gathering and re-clustering of user-selected clusters. In each iteration, the system

scatters a dataset into a small number of clusters/groups and presents short summaries
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of them to the user. The user can select one or more groups for further examination.

The selected groups are then gathered together and clustered again using the same

clustering algorithm. With each successive iteration the groups become smaller and

more focused. Iterations in this method can help users refine their queries and find

desired information from a large data collection.

Researchers have studied the utility of Scatter/Gather to browse retrieved docu-

ments after query-based searches. It was found that clustering was a useful tool for the

user to explore the inherent structure of a document subset when a similarity-based

ranking did not work properly (Hearst et al., 1995). Relevant documents tended to ap-

pear in the same cluster(s) that could be easily identified by users (Hearst and Pedersen,

1996; Pirolli et al., 1996). It was also shown that Scatter/Gather induced a more co-

herent view of the text collection than query-based search and supported exploratory

learning in the search processes (Pirolli et al., 1996; Ke et al., 2009). Being interactive

and flexible, the Scatter/Gather modality has also been applied to browsing large text

collections distributed in a hierarchical peer-to-peer network (Fischer and Nurzenski,

2005).

2.1.4 Conclusion

According to Salton (1968), information retrieval (IR) is about the “structure, analysis,

organization, storage, searching, and retrieval of information.” Over the past decades,

however, information retrieval research has been focused on matching and retrieval

rather than searching and finding. Morville (2005) defined findability as one’s ability to

navigate a space to get desired information. Whereas retrieval and findability are highly

associated, IR has traditionally assumed that all information (and collections of it) can

be navigated to and found. Findability is less an issue given a well-defined scope for

retrieval, when information is collected and stored in a known repository (Marchionini,
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1995). Rarely is it a question where information collections are or whether relevant

information is yet to be located. These questions, however, are critical for searching

in a large, heterogeneous space such as the Web, especially the deep web, where global

information about individual collections does not exist. Solutions are needed for various

systems to work together in the absence of a global repository. With this, the survey will

now shift to information retrieval on the Web and discuss various challenges, solutions,

and problems that remain to be solved.
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2.2 Information Retrieval on the Web

With large volumes of information, challenges for information retrieval on the Web also

include data (or information) being highly distributed and heterogeneous, sometimes

volatile, and of different quality (Bowman et al., 1994; Brown, 2004; Baeza-Yates and Ribeiro-Neto,

2004). All these have important implications on IR operations for information collection

(crawling), indexing, matching, and ranking.

2.2.1 Web Information Collection and Indexing

Most Web search engines use crawlers, which can be seen as software agents, to traverse

the Web through hyperlinks to gather pages that will later be indexed on main servers.

Provided the size of the Web and its continuous growth, multiple crawlers and indexers

are usually employed in parallel to do the tasks more efficiently. The coordination of the

operations, however, has become a significant challenge. To this end, Bowman et al.

(1994) developed an architecture in which gatherers and brokers focused on individual

topics, interacted, and cooperated with one another for data collection, indexing, and

query processing.

While a centralized index can hardly scale on the Web, Melnik et al. (2001), for

example, presented a distributed full-text indexing architecture that loaded, processed,

and flushed data in a pipelined manner. It was shown that the distributed system, with

the integration of a distributed relational database for index creation and management,

effectively enabled the collection of global statistics such as IDF values of terms. In

recent years, the demand for large scale data processing has increased dramatically in

order to index, summarize, and analyze large volumes of Web pages on large clusters

of computers. MapReduce represents one of the parallel computing paradigms for this

purpose and has been extensively used by Google (Dean and Ghemawat, 2008).
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Various crawler techniques have been developed over the years for collection effi-

ciency and effectiveness , duplicate reduction, focused/topical crawling, and intelligent

updates (Cho et al., 1998; Chakrabarti et al., 2002; Menczer et al., 2004; Fetterly et al.,

2008). Different strategies were proposed for crawling special web sites such as blogs

and forums (Wang et al., 2008). Guidelines were also developed to design better crawler

(robot) behavior. However, there is a large portion of the Web, the so-called deep Web,

resistant to being crawled easily.

While Gulli and Signorini (2005) estimated that there were more than 11.5 billion

indexable Web pages, of which Google was found to index nearly 70% (the largest

compared to Ask, Yahoo!, and MSN), the deep (or invisible) Web is said to have more

than half million sites and approximately seven petabyte3 data, 500 times larger than

the indexable Web (Mostafa, 2005; He et al., 2007). Pages on the deep Web represent

dynamic systems that can only be activated through intelligent interactions, e.g., with

the use of proper query terms (Baeza-Yates and Ribeiro-Neto, 2004).

Current solutions primarily rely on available user queries, term predictions, and

HTML form parsers to interact with deep Web systems for collecting information from

there. Although deep web entrances are easy to reach, they are diverse in topics and

structures (He et al., 2007). Only a small percentage is covered by central deep Web

directories. To build a centralized system to search on all deep Web sites is doomed to

fail because there is no global information about where they are and how they interact.

Even if there is such information, implementation of communication channels to all

deep Web sites remains practically impossible.

31 petabyte = 1024 terrabytes = 1024× 1024 gigabytes ≈ 1015 bytes.
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2.2.2 Link-based Ranking Functions

Classic IR methods provide the foundation for information retrieval on the Web. Most

text-based methods for representation, matching, and ranking can be applied to Web

IR (Rasmussen, 2003; Yang, 2005). While searching and browsing are useful paradigms,

precision- and recall-based evaluation metrics remain, to some extent, applicable. How-

ever, some traditional IR assumptions no longer hold. Ranking Web documents merely

based on textual contents does not suffice because web pages created by diverse indi-

viduals and organizations, different from a traditional homogeneous environment, are

of varied quality levels.

The Web is rich not only in its content but also in its structure (Yang, 2005). Partic-

ularly, information is captured not only in texts but also in hyperlinks that collectively

construct paths for the user to surf from one page to another. Additional structures

such as click-throughs carry implicit clues about what might be relevant to the user’s

interests. Link-based methods have been widely used by information retrieval systems

on the Web.

Techniques for link-based retrieval originated from research in bibliometrics which

deals with the application of mathematics and statistical methods to books and other

media of written communication (Nicolaisen, 2007). The quantitative methods offered

by bibliometrics have been used for literature mining and enabled some degree of ob-

jective evaluations of scientific publications, offering answers to questions about major

scholars and key areas within a discipline (Newman, 2001a,b).

Link analysis based on citations, authorships, and textual associations provides

a promising means to discover relations and meanings embedded in the structures

(Nicolaisen, 2007). Despite bias, the use of citation data has proved effective beyond an

impact factor in bilbiometrics (Garfield, 1972). Its application in information retrieval

has brought new elements to the notion of relevance and produced promising results.
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For example, Bernstam et al. (2006) defined importance as an article’s influence on

the scientific discipline and used citation analysis for biomedical information retrieval.

They found that citation-based methods, as compared with content-based methods,

were significantly more effective at identifying important articles from Medline.

Besides direct citation counting, other forms of citation analysis involve the methods

bibliographic coupling (or co-reference) and co-citation. While bibliographic coupling

examines potentially associated papers that refer to a common literature, co-citation

analysis aims to identify important and related papers that have been cited together in

a later literature. These techniques have been extended to identify key scholars, groups,

and topics in some fields (White and Mccain, 1998; Lin et al., 2003).

In citation analysis, there is no central authority who judges each scholar’s merit.

Instead, peers review each others’ works and cite each other and all this forms the basis

for evaluation of scholarly productivity and impact. Authorities might emerge but

they come from the democratic process of distributed peer-based evaluations without

centralized control.

Similar patterns are exhibited on the World Wide Web where highly distributed

collections of information resources are served with no central authorities. Information

quality is unevenly maintained provided the heterogeneity. It is challenging to define

and measure information quality and relevance merely based on textual contents. Hy-

perlinks on the Web provide additional clues and are often treated as some indication of

a page’s popularity and/or importance – similar to the evaluation of citations for schol-

arly impact. Hence, citation analysis traditionally used in bibliometrics was adopted

by IR researchers for ranking web pages.

Although web pages and links are created by individuals independently without

global organization or quality control, research has found regularities in the use of text

and links. According to Gibson et al. (1998), the Web exhibited a much greater degree
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of orderly high-level structure than was commonly assumed. Link analysis confirmed

conjectures that similar pages tend to link from one to another and pages about the

same topic will be clustered together (Menczer, 2004).

Among link-based retrieval models on the Web, PageRank and HITS are well known.

Page et al. (1998) proposed and implemented PageRank to evaluate information items

by analyzing collective votes through hyperlinks. Page et al. (1998) reasoned that sim-

ple citation counting does not capture varied importance of links and used a propaga-

tion mechanism to differentiate them. The process was similar to a random Web surfer

clicking through successive links at random, with a damping factor to avoid loops. As

experiments showed, PageRank converged after 45 iterations on a dataset of more then

three hundred million links. It effectively supported the identification of popular infor-

mation resources on the Web and has enabled Google, one of the most popular search

engines today, for ranking searched items4.

Brin and Page (1998) also presented Google as a distributed architecture for scalable

Web crawling, indexing, and query processing, taking into account link-based ranking

functions such as PageRank. There has been research on extended versions of PageRank

in which various damping functions were proposed and effectiveness/efficiency studied

(Baeza-Yates et al., 2006; Bar-Yossef and Mashiach, 2008). Nonetheless, in some cases,

PageRank did not significantly outperform simple citation count (or indegree-based)

methods (Baeza-Yates et al., 2006; Najork et al., 2007).

Whereas in PageRank Page et al. (1998) separated popularity ranking from con-

tent, the HITS (Hyperlink-Induced Topic Search) algorithm addressed the discovery

of authoritative information sources relevant to a given broad topic (Kleinberg, 1999).

Kleinberg (1999) defined the mutually reinforcing relationship between hubs and au-

thorities, i.e., good authority web pages as those being frequently pointed to by good

4Detail about Google’s current ranking techniques is unknown.
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hubs and good hubs as those that have significant concentration of links to good author-

ity pages on particular search topics. Following the logic, Kleinberg (1999) proposed

an iterative algorithm to mutually propagate hub and authority weights. The research

proved the convergence of the proposed method and demonstrated the effectiveness of

using links for locating high-quality or authoritative information on the Web. A re-

cent study comparing various ranking methods found that effectiveness of link-based

methods such as PageRank and HITS depended on search query specificity and, in

agreement with Kleinberg (1999), they performed better for general topics and worse

for specific queries compared to content-based BM25F5 (Najork et al., 2007).

For similar page searching, Dean and Henzinger (1999) proposed and implemented

two co-citation-based algorithms for evaluation of page similarity and used them to

identify related pages on the Web given a known one. Without any actual content

or usage data involved, the algorithms produced promising results and outperformed

a state-of-the-art content-based method. Link-based methods are useful not only for

retrieval ranking but also for better web page crawling (Menczer, 2005; Guan et al.,

2008). Besides the use of hyperlinks, anchor texts on the links were found to be useful

to improve retrieval effectiveness. For web site entry search, Craswell et al. (2001)

conducted multiple experiments to show that a ranking method based on anchor text

was twice as effective as another based on document content. Menczer (2005) suggested

content- or link-based methods be integrated to better approximate relevance in the

user’s information context.

Another type of analysis involves usage data. For example, Craswell and Szummer

(2007) applied a Markov random walk model to a click log for image ranking and re-

trieval. They proposed a query formulation model in which the user repeatedly follows

5BM25, or Okapi BM25, was a ranking function developed by Robertson and Spark-Jones and
implemented in the Okapi information retrieval system at the City University of London. BM25F
takes into accout not only term frequencies but also document structure and anchor text.
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a process of query-document and document-query transitions to find desired infor-

mation. Results showed a “backward” random walk algorithm opposite to this pro-

cess, with high self-transition probability, produced high quality document rankings for

queries. Research also extended the PageRank method to leverage user click-through

data. The BrowseRank algorithm relied on a user browsing graph instead of a link graph

for inferring page importance and was shown in experiments to outperform PageRank

(Liu et al., 2008).

Arguably, analysis of actual information usage such as clickthrough data provide

clues for better relevance-based ranking. It is true that clickthroughs have been popu-

larly used as implicit relevance; however, its reliability as relevance assessments should

be further examined. Joachims et al. (2005) analyzed in depth user clickthrough data

on the Web and showed that clicking decisions were biased by the searchers’ trust in the

retrieval function and should not be treated as consistent relevance assessments. For

instance, when a hyperlink is listed first in the search results, its probability of being

chosen increases regardless of its relevance. It is therefore premature to simply assume

that clicking on a listed item indicates relevance.

2.2.3 Collaborative Filtering and Social Search

The Web is additionally rich in its users and interactions between users and informa-

tion items. While many retrieval systems are replacing relevance with authority or

popularity on the “free” space of the Web, most of the tools thus built do not support

the diversity of voice/opinions. In light of preferential attachment and power-law dis-

tribution of connectivity, only a very small number of people and sites catch most of

the attention while many are simply isolated and ignored (Morville, 2005). This calls

for recognition of the diversity of information sources and interests in system design in

order to better serve individual needs.
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Automatic recommendation for personalization is widely needed and many systems

take advantage of collective opinions embedded in links between users and items such

as ratings and clickthroughs for collaborative filtering. Under the name of social in-

formation filtering, Ringo was one early example of collaborative filtering systems, in

which personalized recommendations for music albums and artists were made based on

“word-of-mouth”and similarities of people’s tastes (Shardanand and Maes, 1995). Pre-

senting the Tapestry project for email filtering, Goldberg et al. (1992, p. 291) coined

the phrase “collaborative filtering,”which, according to Schafer et al. (2007), is the pro-

cess of filtering or evaluating items through the opinions of other people. Collaborative

Filtering (CF) is to take advantage of behaviors of people who share similar patterns

for recommendations. The basic idea is that if one has a lot in common with another,

they are likely to share common interests in additional items as well. It demonstrates

the usefulness of collective intelligence for personalization.

Schafer et al. (2007) pointed out that pure content-based techniques are rarely ca-

pable of properly matching users with items they like because of keyword ambiguity

(e.g., for synonyms) and the lack of “formal” content. There are also cases where the

users feel either reluctant or difficult to articulate their information needs. Under these

circumstances, automatic CF can be used to leverage existing assessments/judgement

– sometimes implicit – to predict an unknown correlation between a user and an item.

The need for filtering non-text documents, such as videos, further motivated research

on collaborative filtering (Konstan, 2004). Content-based filtering and CF are comple-

mentary to each other and often used together.

The basic task of CF is, based on a matrix or a network of users and items connected

by existing rating values, to predict the missing values. Various models such as nearest-

neighbor-based and probabilistic methods have been developed. Most research uses

accuracy-based measures such as mean average error (MAE) for system evaluation.
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However, several other measures such as coverage, novelty, and user satisfaction have

shown to be useful and need further exploration (Herlocker et al., 2004; Schafer et al.,

2007).

The effectiveness of collaborative filtering is domain dependent. Specifically, the

technique is very sensitive to patterns of a user-item matrix, or the availability of

ratings, often sparse. Typically, there are a relatively small number of ratings provided

large populations of users and items. The situation is even worse when dealing with new

users – it is hard to overcome cold start when users’ interests are barely known. In the

literature, several solutions have been proposed to alleviate this problem. One example

is to enrich the user-item matrix by propagating rating signals among the nodes of users

and items (Huang et al., 2004). Improvement, however, remains limited. Schafer et al.

(2007) recognized the challenge of making meaningful recommendations with scant

ratings and suggested that incentives be designed to encourage user participation.

Challenges also involve rating bias. Different users rate items differently – some

users tend to give higher ratings than others do. Normalizations of Pearson correlation

against average values, for instance, can potentially reduce the bias (Herlocker et al.,

1999). In addition, while many items are rated differently by different users, some are

commonly favored (e.g., for a popular movie). Ratings of highly popular items tell very

little about the users’ interests, and if not handled properly, contribute more noise than

information. Jin et al. (2004) proposed an improved Pearson coefficient that learned to

reevaluate item ratings from training data and computed user-user associations based

on weighted values.

Another type of bias, caused by people who rate inconsistently to mislead/cheat the

system, is more dangerous. O’Donovan and Smyth (2005) argued that while trust is an

important issue in CF, it has not been emphasized by similarity-based research. The
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study used prediction correctness to evaluate trustworthiness of neighbors (or produc-

ers) and incorporated the trust factor to re-weight recommendations made by neigh-

bors. It was demonstrated that the proposed method improved system performance (a

maximum 22% error reduction). It is useful for the detection of malicious users who

have provided misleading recommendations inconsistent to predictable patterns. How-

ever, it has been shown that users may adjust to match recommenders’ bias, making it

more challenging to probe rating consistency and trustworthiness for the detection of

malicious users (Schafer et al., 2007).

The efficiency of CF largely depends on the user and item population sizes. Although

various techniques such as subsampling, clustering, and dimensionality reduction have

been developed to tackle the problem, reducing algorithmic complexity remains a great

challenge. Many of today’s CF applications have to deal with a huge number of rating

records. For instance, Netflix has billions of user ratings on films (Netflix, 2006). A

data collection of this scale offers opportunities for CF technologies to explore the rich

information space for making more accurate predictions. Yet the challenge of efficiency

and scalability remains for future research.

One potential direction is the use of distributed architectures for collaborative fil-

tering. While many current CF systems are centralized, using distributed nodes to

share the computational burden and collaborate in CF operations makes intuitive sense.

Wang et al. (2005, 2006) presented a distributed collaborative filtering system that self-

organized and operated in a peer-to-peer network for file sharing and recommendation.

Similarly, Kim et al. (2006) employed distributed agents to cooperate in collaborative

filtering to address the problem of efficiency and scalability while showing effective

performance comparable to centralized methods.

The framework of Collaborative Filtering, or the idea of leveraging collective intel-

ligence, has wide applications in search and retrieval on the Web. By analyzing shared
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queries and commonly revisited Web destinations, a system can borrow collective opin-

ions from others to assist individuals in Web search. Smyth et al. (2004), for example,

observed that there was a gap between the query-space and the document-space on

the Web and presented evidence that similar queries tended to recur in Web searches.

They argued that searchers look for similar results when using similar queries and this

query repetition and selection regularity could be used to facilitate searching in special-

ized communities. A collaborative search architecture called I-SPY was developed and

evaluated. The basic idea was to build query-page relevance matrices based on search

histories and relevance judgements done by a community of searchers, which were later

used to quickly identify pages related to the exact or similar queries and to rerank

search results. In a similar spirit, White et al. (2007a) presented a new Web search

interface that identified frequently visited Web sites, or authoritative destinations, and

used this information to boost searches. The user study showed that providing popular

destinations made searches more effective and efficient, especially for exploratory tasks.

2.2.4 Distributed Information Retrieval

Classic IR research takes the view of information centralization (i.e., a single repository

of documents) and focuses on matching and ranking of relevant documents given infor-

mation needs expressed in queries (Baeza-Yates and Ribeiro-Neto, 2004). On the Web,

however, document collections are widely distributed among systems and sites. And

often, due to various reasons such as copyright, a centralized information repository is

hardly realistic (Callan, 2000; Bhavnani, 2005).

In response to the challenges for information retrieval on the Web, researchers dis-

cussed the potential of exploiting a distributed system of computers to spread the work

of collecting, organizing, and searching all documents (Brown, 2004). Distributed IR re-

search investigates approaches to attacking this problem and has become a fast-growing
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research topic over the last decade. Recent distributed IR research has focused on

intra-system retrieval fusion/federation, cross-system communication, and distributed

information storage and retrieval algorithms (Callan et al., 2003).

A classic distributed (meta, federated, multi-database) IR system is illustrated in

Figure 2.2, in which the existence of multiple text databases is modeled explicitly

(Callan, 2000; Meng et al., 2002). Basic retrieval operations include database content

(and characteristics) discovery (Si and Callan, 2003), database selection (French et al.,

1998, 1999; Shokouhi and Zobel, 2007), and result fusion (Aslam and Montague, 2001;

Baumgarten, 2000; Manmatha et al., 2001; Si and Callan, 2005; Hawking and Thomas,

2005; Lillis et al., 2006).

The first layer of challenges involves knowing what each database is about. In a con-

trolled environment (e.g., within one organization), the policy of publishing resource de-

scriptions can be enforced for databases to cooperate. In an uncooperative environment,

however, this information is not always known. Query-based sampling is widely used to

learn about hidden database contents through querying (Thomas and Hawking, 2007;

Shokouhi and Zobel, 2007). The technique has also been used for collection size estima-

tion (Liu et al., 2001; Shokouhi et al., 2006). Some researchers have studied strategies

for updating collection information as they evolved over time (Shokouhi et al., 2007).

Others focused on the estimation of database quality and its impact on database selec-

tion and result fusion (Zhu and Gauch, 2000; Caverlee et al., 2006).

Researchers have proposed many query-based database selection techniques, among

which the inference-network-based CORI (collection retrieval inference network) algo-

rithm and the GlOSS (glossary of servers server) model based on database goodness

were extensively studied (Gravano et al., 1994; Callan et al., 1995; French et al., 1999).

Callan et al. (1995) proposed and evaluated the CORI net algorithm for collection rank-

ing, collection selection, and result merging in distributed retrieval environments. Using
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only collection wide information such as document frequency (df) and inverse collection

frequency (icf) values, the CORI method was efficient in terms of communication and

storage use on the central server. It was realized that term weights were not compa-

rable across databases among which frequency distributions varied and normalizations

were needed. Further on the result merging stage, Callan et al. (1995) proposed the use

of weighted scores based on individual documents scores and collection ranking infor-

mation, which provided an efficient alternative to computationally expensive methods

based on term weight normalization. Results showed both efficiency and effectiveness of

the proposed algorithm. Further optimizations reduced communication costs through

focused collection selection and control on the number of documents to be returned

from each collection.

With an aim for efficient text resource discovery in heterogeneous environments (e.g.,

the Web), Gravano et al. (1994, 1999) developed the GlOSS (or Glossary of Servers

Server) model that evaluated a database’s usefulness or goodness for a query. The

goodness measure used information about the number of documents in a database sim-

ilar to the query and their similarity scores. Similar to CORI, vGlOSS (v for vector

space) was designed to scale using only collection-wide information such as DF and a
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sum of weights for each term. Various estimators for the ideal rank of databases were

proposed and studied. Gravano et al. (1999) also discussed a decentralized version

of GlOSS, or hGlOSS, based on a hierarchical structure in which higher-level GlOSS

servers summarized underlying distributed databases.

Research found that the proposed methods for database selection, including CORI

andGlOSS had significant room for improvement when only a small number of databases

were to be queried (Powell et al., 2000; Powell and French, 2003). Experiments con-

ducted by French et al. (1999) showed that the CORI algorithm, as compared toGlOSS,

produced more accurate predictions and required relatively fewer databases (of totally

up to a thousand databases) to be searched. Given a recall level, search effort with

the algorithms scaled linearly with the number of available databases, which is hardly

scalable for searching a bigger portion of the Web where databases in the range of

hundreds of thousands are served.

Powell et al. (2000) compared retrieval performances among three scenarios, namely,

a) the centralized scenario where all documents are located in a single database; b) the

distributed CWI where a testbed was divided into multiple databases and collection-

wide information6 such as global idf values was maintained; and c) distributed LI

where only local (database-wise) information is known. Surprisingly, results supported

that a distributed system with a good database selection function can achieve better

retrieval effectiveness than a centralized database. Increasing the number of databases

being selected improved effectiveness. Nonetheless, with a small number of databases

selected, good performance was still maintained. Powell et al. (2000) further discovered

that collection-wide information (CWI, across all databases) was not necessarily useful.

Local (database-level) information sufficed for superior performance.

6Collection-wide information (CWI) referred to information across all distributed databases divided
from a entire testbed collection.
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Among many challenges, current distributed IR research encounters difficulties in

being selective and accurate on database selection while achieving high precision. For

scalability, it is desirable that a very small percentage of all databases are searched

(Callan, 2000). This, however, often results in relevant databases being missed (Powell et al.,

2000; Powell and French, 2003).

Despite the name distributed information retrieval, most classic distributed or fed-

erated IR systems work in a centralized manner – there is one meta search server that

accepts all queries, distributes them to selected databases, and merges returned re-

sults. Many distributed IR systems having been investigated only dealt with dozens of

databases (Shokouhi and Zobel, 2007); in rare cases, they reached the scale of thousands

to test effectiveness, efficiency, and scalability (Callan, 2000; Thomas and Hawking,

2007). However, the real world scalability of implementation is yet to be considered.

Given the heterogeneity of the Web, different communication protocols abound and it

requires tremendous effort to implement communication channels to hundreds, if not

thousands, of databases.

Classic distributed or federated IR models build on assumptions that do not always

hold in the context of the Web. First, a meta search engine has to know databases

relevant to a user’s query. If a database is unknown or not known yet, obviously,

information, even when relevant, will not be retrieved from there. Second, the user is

supposed to know the meta search engine and will come to it to conduct searching.

In reality, people are involved in various types of information seeking tasks and, when

dealing with a particular topic, do not necessarily know where to find it. There could

be meta search engines and meta meta search engines and so on to integrate all Web

databases for the user to always have a short list of known portals to visit. However,

it is not clear whether such a structured modeling will scale. Neither is there evidence

that organizations and individuals on the Web will be motivated to organize in this
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way.

2.2.5 Conclusion

Information retrieval research has responded to challenges the Web poses given its large

size, heterogeneity, and dynamics. Various techniques have been developed to collect

and index large volumes of Web pages more effectively and efficiently. Link-based

ranking methods address the issue of no central quality control and the need to estab-

lish alternative metrics such as popularity, authority, or importance. Interconnections

among information items and users, either explicit or implicit, tend to pull related

ones together and form semantic clusters; they have been utilized by IR systems to

make better recommendations. The use of collective intelligence, as demonstrated by

link-based ranking functions and collaborative filtering, displays one aspect of many

potentials a networked society has.

Of several known challenges, the problem of the deep Web remains barely solved.

Distributed information retrieval has shown some potential of bringing different parts

together from the hidden space. However, its reliance on centralization of a metasearch

server will always suffer from critical problems of scalability, single point failure, and

fault tolerance. Further decentralization of meta search models will involve issues be-

yond the main focus of federated IR research. With this, peer-to-peer information

retrieval should be discussed next.
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2.3 Peer-to-Peer Search and Retrieval

Classic distributed IR research continues the centralization tradition of IR, in which a

single meta search system bears all burden for user interaction, database selection, and

result fusion. Such systems are difficult to scale and vulnerable to system failures. Croft

(2003) discussed information retrieval in the bigger context of computer science research

and pointed out a promising area for distributed, heterogeneous information system re-

search that required contributions from peer-to-peer architectures and retrieval models.

Talking about challenges in meta-search and distributed IR, Allan et al. (2003, p. 43)

shared this vision:

A future wherein ubiquitous mobile wireless devices exist, capable of form-

ing ad hoc peer-to-peer networks and submitting and fielding requests for

information, gives rise to a new host of challenges and potential rewards.

2.3.1 Peer-to-Peer Systems

Recent years have seen growing popularity of peer-to-peer (P2P) networks for large

scale information sharing and retrieval. However, research lacks agreement on what

peer-to-peer means. Definitions of peer-to-peer computing either too narrowly refer to

purely distributed peers of equivalent functionality or too broadly include servers with

centralized operations. Recognizing two common characteristics of peer-to-peer from

an “external” perspective, Androutsellis-Theotokis and Spinellis (2004, p. 337) offered

the following definition.

Peer-to-peer systems are distributed systems consisting of interconnected

nodes able to self-organize into network topologies with the purpose of shar-

ing resources such as content, CPU cycles, storage and bandwidth, capable

of adapting to failures and accommodating transient populations of nodes
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while maintaining acceptable connectivity and performance, without requir-

ing the intermediation or support of a global centralized server or authority.

Whereas Grid computing focuses on coordination of persistent and homogeneous

computing nodes for high performance, peer-to-peer systems deal with instability, tran-

sient populations, and self-adaptation (Androutsellis-Theotokis and Spinellis, 2004) –

sometimes, though, the boundary is blurred and a peer-to-peer architecture can be used

for grid computing (Batko et al., 2006a,b; Luu et al., 2006; Skobeltsyn et al., 2007).

The P2P paradigm holds such promises as scalability, failure resilience, and auton-

omy of nodes, and has attracted researchers from databases, distributed systems, net-

working, and information retrieval (Nottelmann et al., 2006). P2P has a wide range of

applications such as for communication and collaboration, distributed computation, dis-

tributed database systems, and content distribution and retrieval (Androutsellis-Theotokis and Spinellis

2004; Lua et al., 2005). Research also studied distributed collaborative filtering in P2P

environments (Wang et al., 2005, 2006; Kim et al., 2006).

According to Androutsellis-Theotokis and Spinellis (2004), peer-to-peer technolo-

gies have been used for file exchange (e.g., Napster and Gnutella) and content publish-

ing and storage systems (e.g., Scan and Freenet). There exist various infrastructures for

routing and location, based on anonymity and/or reputation management. It is often

perceived that peer-to-peer networks are purely decentralized without central coordina-

tion. Nonetheless, there exist partially centralized architectures in which supernodes

assume important roles in sub-communities and hybrid architectures which include a

central server. There were attempts to classify peer-to-peer information retrieval re-

search into a three-dimensional scheme, which includes the application scenario (e.g.,

enterprise search), the task (e.g., recall, precision, or efficiency-oriented), and the tech-

niques employed (e.g., retrieval, clustering, filtering) (Nottelmann et al., 2006).
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Zeinalipour-Yazti et al. (2004) discussed the significance of efficiently finding infor-

mation in peer-to-peer networks and compared various methods for centralized search,

distributed IR, distributed file (object identifier) search, and peer-to-peer IR. While

centralized approaches are fast, thorough, and arguably not scalable, distributed IR

works in a separated manner but usually includes a central meta server and assumes a

global view of individual systems in an always-on environment.

While distributed IR research has made advances in enabling searches across hun-

dreds of repositories and focused on a mediator-based architecture that scales in such

environments, peer-to-peer IR has additional challenges. A P2P network usually has

a much larger number of participants (often tens of thousands, if not millions) who

dynamically join and leave the network, and only offer idle computing resources for

sharing and searching (Tsoumakos, 2003; Zeinalipour-Yazti et al., 2004). Usually there

is no global information about available collections; seldom is there centralized control

or a central server for mediating (Lua et al., 2005). Whereas peer-to-peer file (object

identifier) search requires low dimensionality that can be indexed through distributed

hashing, peer-to-peer IR involves the complexity of relevance or similarity that chal-

lenges the applicability of existing unique-identifier-based routing techniques.

2.3.2 Peer-to-Peer File Search

Some peer-to-peer systems impose no rules for the distribution of files and contents.

They are unstructured in the sense that the placement of content is not associated with

the overlay topology (Lua et al., 2005). Napster (hybrid) and Gnutella (purely decen-

tralized) are unstructured networks. In decentralized unstructured networks, locating

a file is not straightforward and flooding, though computationally expensive, was among

the initial techniques used for searching (Adamic et al., 2001; Androutsellis-Theotokis and Spinellis,

2004). Structured networks, on the other hand, maintain rules on how files should be
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placed in terms of the topology. Chord (Stoica et al., 2001) and CAN (Content Ad-

dressable Network) (Ratnasamy et al., 2001) use Distributed Hashing Tables (DHTs)

like methods for file distribution, indexing, and location.

Adamic et al. (2001) acknowledged the ad hoc nature of networks such as Gnutella

where file locations were unknown before search and examined the question about

how files could be found in different network topologies, namely, a power-law graph

and a Poisson degree distribution network7. Various strategies were proposed and

applied to the network search problem. Mathematical analyses and simulations showed

that the search strategy of following high-degree nodes worked better than a random

walk method in power-law graphs. Search time (in terms of # hops or path length)

and coverage (e.g., half graph cover time) were used to evaluate the results, showing

costs of the algorithms scaled sublinearly with network size. Adamic et al. (2001) also

demonstrated the utility of related search strategies in the Gnutella network, which was

found to be a power-law graph.

Similarly, Amoretti et al. (2006) studied the characterization of peer-to-peer net-

work growth and introduced a new routing method called HALO, which followed high-

est degree neighbors and used a distributed hashing function for corrections. The work

focused on indexing and searching in unstructured P2P networks with super-nodes.

Simulations showed HALO achieved good performance on scale-free networks in terms

of query efficiency.

Lv et al. (2002a,b) argued that flooding-based methods for peer-to-peer search are

hard to scale and structured P2P system design, even with better efficiency, is not

resilient in the face of a transient population of participants. They proposed the use

of random walk search in the presence of heterogeneity of a network (e.g., seen from a

7Various classes of graphs, including random, small world, and power-law networks, will be discussed
in depth in Section 2.4.
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power-law degree distribution perspective such as that of Gnutella) to optimize load bal-

ance of a decentralized unstructured network. Various document replication strategies

and network topologies were studied (Lv et al., 2002a). Simulation results showed the

proposed algorithm reduced network traffic by two orders of magnitude as compared

to Gnutella flooding and achieved the same level of efficiency for resolving queries.

Random networks yielded best performances in the experiments (Lv et al., 2002a). In-

terestingly, it was demonstrated that heterogeneity is not only a challenge but also a

feature that can be taken advantage of for efficient searches in unstructured peer-to-peer

networks.

Tsoumakos (2003) reviewed several different peer-to-peer search algorithms in the

categories of blind search and informed search methods. The authors conducted ex-

perimental simulations on six algorithms from both categories, namely, a) in the blind

search category: (1) a modified Breadth First Search (BFS) that used “small” floods

to optimize the original Gnutella flooding, (2) a random walk that reduced message

production to k × TTL8 in the worst case, and (3) a GUESS algorithm that relied on

ultra-peers as proxies to communities of leaf-nodes, and b) in the informed search cate-

gory: (4) an intelligent BFS that stored recent answered queries and ranked neighbors

in each node and chose most productive neighbors given a recent similar query, (5) a

modified Adaptive Probabilistic Search (s-APS) method that kept track of neighbors

performances on requested objects, and (6) a Distributed Resource Location Protocol

(DRLP) algorithm that stored the found objects in all nodes on the search path and

reused the information for direct access when hit.

Experiments examined that algorithms’ effectiveness (success rate), bandwidth con-

sumption (message production), and their responses to topological changes (removal

and/or relocation of peers) and object popularity. Results showed that modified- and

8TTL, or time to live, denotes the number of hops a message is allowed to travel in a P2P network.
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intelligent-BFS flooding methods achieved very high success rates and were hardly af-

fected by either topological change or object popularity (Tsoumakos, 2003). However,

both profited effectiveness at the cost of huge bandwidth consumption – two orders of

magnitude more than the other four. GUESS and random walk were not designed to

learn from topology nor previous results and achieved low success rates with the least

amount of messages.

Tsoumakos (2003) also found that informed search methods such as DRLP and

s-APS exhibited high accuracy at a low cost of bandwidth consumption in static envi-

ronments. However, they were largely affected by dynamics of the environment. With

DRLP, the frequency of flooding for reinitiating searches became critical. On the one

hand, stored addresses became outdated over time due to network dynamics and needed

regular updates. On the other, reinitiation of searches, similar to modified-BFS flood-

ing, was costly and required many subsequent successful requests to amortize the initial

cost. Interestingly, the DRLP was affected more by object relocation than by node de-

partures and, surprisingly in contrast to other algorithms, achieved increased accuracy

on less popular objects due to the low frequency of object relocation.

In unstructured P2P networks, flooding-based algorithms exhibited high perfor-

mance at the huge cost of bandwidth consumption. Modified versions of flooding can

produce fewer messages but often fail to perform well. Additionally, these techniques

do not adapt to dynamics of the environment. Informed search methods, in general, are

more efficient but incur large overheads for initiation and updates of indices, which can

be amortized if a significant number of consequent searches will take advantage of them.

Although these search mechanisms are not as efficient as algorithms such as CAN and

Chord in structured environments, unstructured P2P systems are widely adopted due

to the uncontrolled manner and resilience to dynamic, transient populations (Lua et al.,

2005).
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2.3.3 Peer-to-Peer Information Retrieval

One important objective of network search optimization is overall system utility, i.e., to

find targets as quickly as possible without burdening many peers. Flooding like methods

often reach a good coverage of a network and are very expensive. Every gain in coverage

means costs – even if the algorithms do not have to visit a peer to cover it, looking

through a large distributed index of neighbors’ files requires significant computational

effort. Beyond file name lookup, distributed information retrieval through flooding

techniques is arguably impractical (Lv et al., 2002b; Cooper and Garcia-Molina, 2005).

As the peer-to-peer paradigm becomes better recognized for IR research, there have

been ongoing discussions on the applicability of existing P2P search models for IR,

the efficiency and scalability challenges, and the effectiveness of traditional IR models

in such environments (Zarko and Silvestri, 2007). Some researchers reasoned that an

IR search query is more complex than key-based file search and exact lookup tech-

niques such as Distributed Hash Tables (DHTs) have limited utilities for peer-to-peer

IR (Bawa et al., 2003; Lu and Callan, 2006). Others, nonetheless, applied DHTs to

structured P2P environments for distributed retrieval and focused on building an index-

ing structure over peers for popular queries (Luu et al., 2006; Skobeltsyn et al., 2007).

Bender et al. (2005) relied on a Chord-style dynamic DHT in the MINERVA architec-

ture for distributed indexing and studied precise overlap-aware collection selection in

structured peer-to-peer environments.

Similar in spirit to DHTs is the duplication of neighbors’ indices or the so-called

look-ahead strategy for indexing files from neighbors within some defined distance

(Adamic et al., 2001; Amoretti et al., 2006). Kurumida et al. (2006), for example, used

combined strategies of random-walk, look-ahead, and restrictive back-walk for searching

in random, small world (WS model), and scale-free networks. Although the methods

produced promising results, their utility very much depends on the assumption that
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peers have capacities to index document in the neighborhood. These strategies are

feasible for exact file name searches on keys (names) and values (locations).

For information retrieval based on a large feature space, which often requires fre-

quent updates in a dynamic environment, it is challenging for distributed hashing to

work in a traffic and space efficient manner. For such a distributed index to be manage-

able, the ALVIS architecture, for example, employed various strategies to choose highly

discriminative keys and to truncate less popular key-document postings (Luu et al.,

2006; Skobeltsyn et al., 2007).

Whereas P2P IR research was primarily concentrated on searching in distributed

environments, some have studied information browsing in structured peer-to-peer net-

works. Fischer and Nurzenski (2005), for example, applied the Scatter/Gathermodality

for content browsing in a hierarchical P2P system called Pepper, in which leaves (or

ordinary peers) maintained local collections while hubs, as intermediaries, organized the

network in a three-tier hierarchy. The system took advantage of precomputed cluster

structures in peers for global Scatter/Gather browsing and used various strategies to

minimize traffic for communicating cluster selection and document data. Experimental

simulations showed that the P2P system offered efficient clustering for Scatter/Gather

browsing of a distributed collection. Surprisingly, for finding desired peers through

Scatter/Gather, connecting similar peers to the same hub did not show advantage over

a randomly connected network.

Zeinalipour-Yazti et al. (2004) reviewed various techniques used for information re-

trieval in peer-to-peer environments, which included flooding techniques and intelligent

search mechanisms (ISM), and conducted simulated experiments on a network of 104

peers, each containing a subset of the Reuters-21578 document collection, to test infor-

mation retrieval effectiveness (recall) and efficiency (# messages used). The following

four techniques that only required local knowledge for IR search were studied, namely,
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1) a breadth-first search BFS or flooding method, used as the baseline given its extreme

cost and thoroughness; 2) an RBFS, which was to improve the efficiency of BFS by es-

timating the probability of a query reaching some large network segments; 3) a >RES,

which forwarded a query to a subset of peers based on aggregated statistics of previ-

ous performance; and 4) an ISM, which maintained a profile mechanism, explored and

learned about neighbors’ topicality, and forwarded queries to peers who were predicted

to have more relevant documents.

Results showed that RBFS, ISM, and>RES used significantly few messages for peer-

to-peer retrieval than flooding. ISM found the largest number of relevant document

(best recall). >RES and ISM started with low recall but caught up after peers learned

about their neighbors. Zeinalipour-Yazti et al. (2004) indicated that ISM worked well

on networks where peers had specialized knowledge and where strong degrees of query

locality presented. The authors discussed existing challenges for efficient information

retrieval in peer-to-peer networks and the use of semantic segmentation to facilitate

search.

Unstructured overlay systems work in a nondeterministic manner and have re-

ceived increased popularity for being fault tolerant and adaptive to transient popu-

lations (Lua et al., 2005). In recent years, semantic overlay networks (SONs) have

been widely used for P2P IR, in which peers containing similar information formed

semantic groups for efficient searches (Crespo and Garcia-Molina, 2005; Tang et al.,

2003; Raftopoulou and Petrakis, 2008). Some research followed a very structured style

for distributed indexing and network topology construction (Tang et al., 2004). Some

central control or flooding mechanism was needed for maintaining overlay hierarchies

(Crespo and Garcia-Molina, 2005). Others applied the semantic overlay technique to

purely decentralized unstructured P2P systems through self-organization and local re-

construction (Doulkeridis et al., 2008).
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Research has studied hybrid peer-to-peer architectures with loosely structured over-

lay networks, in which regional directory services and rules for content placement were

used to facilitate search (Bawa et al., 2003; Lu and Callan, 2003, 2004; Hawking and Thomas,

2005; Lu and Callan, 2006). Freenet, loosely structured, uses a similarity-based ap-

proach for location estimation. In Freenet, it was shown that the enforcement of clus-

tering in the key space significantly improved retrieval performance (Lua et al., 2005).

Drawing on inspirations from social network theory and existing IR techniques,

Bawa et al. (2003) presented SETS, a distributed architecture for peer-to-peer retrieval,

which partitioned sites into topical segments and took advantage of long-distance (weak)

and short-distance (strong, local) links for efficient lookup of relevant information.

Following the cluster hypothesis that closely related documents tend to be relevant

to the same requests (van Rijsbergen and Sparck-Jones, 1973; Rijsbergen, 1979), the

study relied on the topic segmentation and focused on recall of relevant documents

through local propagation. As the authors acknowledged, the importance of recall

is domain dependent (e.g., critical for legal or patent retrieval) and subject to peer

constraints.

Experimental results showed that a cosine-similarity-based query-driven routing

strategy substantially outperformed a random approach and was within a small margin

to the optimal (best possible) in terms of efficiency (overall processing cost or the num-

ber of peers/sites involved) and effectiveness (recall) (Bawa et al., 2003). Scalability of

the architecture was demonstrated on a CiteSeer collection of about eighty thousand

sites, with which the average latency of finding relevant information (or the number

of sites involved to find the first relevant document) was eight. This is not a surprise

given that there were many relevant documents.

Lu and Callan (2003) compared various combinations of algorithms for resource se-

lection and document retrieval in a hybrid hierarchical peer-to-peer networks (of 2, 500
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peers/collections from TREC WT10g) and found that content-based selection and text

retrieval algorithms were substantially more accurate and efficient than name-based

and flooding methods for IR purposes. However, it was acknowledged that the com-

munication costs for updating resource content description required further investiga-

tion and might complicate scalability in environments where bandwidth is an issue

(Lu and Callan, 2003). Lu and Callan (2007) further experimented on a larger testbed

of 25, 000 collections from .GOV2 and demonstrated the effectiveness of hierarchical

overlay networks for search. In these studies, relevant documents were loosely defined

based on top-ranked items from a centralized system. Given a moderate size of rel-

evance base, recall was one of the major evaluation metrics. Lu and Callan (2006)

also studied user modeling for personalization and transient information needs in this

environment.

Doulkeridis et al. (2008) developed an iterative method that employed zone initia-

tors (randomly selected) to create initial groups of peers (zones), perform hierarchical

clustering on information collections within each zone, and work with other initiators to

form higher hierarchical levels. The final result of the process was a semantic tree struc-

ture spanning the entire network, which enabled efficient location of relevant collections

through super-peers without global control.

While certain network structures might be desirable for efficient query routing, one

would argue that the expected structures can hardly be supervised. In the SETS ar-

chitecture, for example, the assumptions about distributed collections of information

and limited local intelligence were strictly followed. Nonetheless, some global informa-

tion about peers and topic segmentation was maintained by a central administrative

site to guide new participants and to propagate information about updated segments

(Bawa et al., 2003). Although the centralization itself might become a scalability issue,

the potential overload was alleviated through the use of a leases strategy in which a
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peer/site contacted the central server only when its lease expired.

With network topology and placement of content tightly controlled, structured peer-

to-peer networks have the advantage of search efficiency. However, they are not widely

used for peer-to-peer IR systems and their ability to handle unreliable peers was not

sufficiently tested (Lua et al., 2005). Although supernodes or central servers in a hybrid

or partially decentralized peer-to-peer system can potentially make searches efficient

(e.g., in KaZaA), they have to coordinate a significant amount of communication traffics

and may eventually become overloaded if not designed properly.

According to Cooper and Garcia-Molina (2005), super-node networks were shown

to be fault susceptible, with a failure (or attacks on the supernodes) potentially lead-

ing to a large disconnected community and a significant decrease in coverage (see also

Albert and Barabási, 2002). A self-organized (ad hoc) network distributes load more

evenly and is less vulnerable to single point failures. In a purely decentralized network,

individual systems or peers give priority to and exercise their self-interest, with auton-

omy to connect to others. Distributed system design usually has to take the network

structure of a connected community as it is and develop better mechanisms to take

advantage of it for efficient search. Given such constraints, it is more “naturalistic” to

study peer-to-peer search in networks self-organized by peers with local visions.

It is worth noting that in many purely decentralized unstructured networks where

there is no global rule for file placement, there is a tendency for similar peers to con-

nect to each other. Hence, similar contents are likely to appear in self-formed clus-

ters, potentially enabling efficient searches (Adamic et al., 2001; Kleinberg et al., 1999;

Albert and Barabási, 2002). Research has found that semantic locality can be rein-

forced and communities formed through peer interactions (Akavipat et al., 2006).

In this direction, Cooper and Garcia-Molina (2005) investigated a self-organized

network for efficient search and load reduction, and focused on how peers self-tuned,

50



with two operations connect and break, to make the network even more efficient.

Whereas connect enabled peers to search and link to one another, break allowed them to

remove a link that caused too much trouble. With all local/individual decisions on how

one peer connected to another for searching and indexing, the network thus formed was

shown to be even more efficient (while reducing peer load significantly) than those with

supernode topologies. This demonstrated the potential of peers’ self-adaptation (self-

organization through connect and self-tuning through break) for global optimization for

search.

In this work, connect was designed as a random process for efficiency and the sys-

tem later relied on break to reconfigure or fine tune the network. A further version of

connect, namely, propertied connect was also developed to avoid redundant links such as

one-index-cycle and search-fork for potentially better network efficiency. In terms of an

efficiency measure based on messages per covered node (MCN), arguably not an ideal

evaluation metric, the self-organization largely outperformed super-node networks with

more central control and scaled very well to a thousand node level (with almost constant

MCN). Performances in terms of search latency showed a mixed story and a conclu-

sion hard to reach. Overall, Cooper and Garcia-Molina (2005) focused on improving

peer-to-peer search in the spirit of intelligent flooding, where coverage was favored for

findability. The work did not study a large number of searches concurrently traveling in

the network and scalability of search algorithms in such a realistic environment. These

questions were left for further research on related methods.

Cooper and Garcia-Molina (2005) observed that breadth first search (flooding) is

more responsive given that searches are conducted in parallel. However, if peers are

burdened by many concurrent queries, the entire network will be slowed down as well.

Some researchers reasoned that flooding is not desirable as it costs too much network
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traffic and greedy routing (a depth first, random walk style method) scales well be-

cause it uses a single query instance for network traversal (Lv et al., 2002a). Li et al.

(2007), in favor of restrictive flooding, recognized that greedy routing is likely less re-

sponsive from a single query perspective but is potentially superior for overall system

utility. Effort is needed for further investigation of individual responsiveness vs. overall

scalability for information retrieval in peer-to-peer networks.

2.3.4 Conclusion

To facilitate searching, many peer-to-peer IR systems used hierarchical structures with

central/regional servers as fast channels that connected various remote parts (e.g.,

Lu and Callan, 2003, 2007; Fischer and Nurzenski, 2005; Zhang and Lesser, 2005). Se-

mantic overlay networks (SONs) were widely adopted as well to support topical segmen-

tation for efficient search operations (e.g., Crespo and Garcia-Molina, 2005; Doulkeridis et al.,

2008). Such architectural designs did lead to improved findability of information items.

However, the central servers or supernodes in these networks are often an issue of scal-

ability and fault tolerance – they could become overloaded and make the entire system

vulnerable to attacks.

Additionally, an artificial structure such as a hierarchy is not commonly seen in

self-organized networks. Some would argue that such a structure cannot be imposed in

many situations given individual objectives for participating in a peer-to-peer environ-

ment. As we will see in the Section 2.4, many real networks, very different from hier-

archical structures, manifested small world, scale free (or broad scale), and highly clus-

tering properties that make efficient searching promising (Albert and Barabási, 2002;

Kleinberg, 2006a). These network structures, produced under individual peer capac-

ities and constraints, have revealed to us how peers can collectively scale given how

much they individually can afford to do. So far, the literature review has come close
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to a point where an unstructured, bottom up (decentralized) approach without global

control seems favourable (Lua et al., 2005).

Existing peer-to-peer IR research has produced promising results. Particularly, sys-

tems such as semantic overlay networks were able to find topically associated segments

quickly and retrieve a significant number of relevant documents. Queries used in these

studies were often broad and the emphasis was usually on recall. Even when the network

was large, related segments were not extremely difficult to reach given a large relevance

base (see also Figure 2.9 in Section 2.6 and Table C.1 in Appendix for detailed data.).

Findability has yet to be tested on large networks when very personalized or specific

items are to be found – or when people only want to receive a few highly relevant items

because more is painful (Mooers, 1951). How to find an information needle from the

haystack remains an issue of scalability.
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2.4 Complex Networks and Findability

Previous sections discussed several challenges faced by information retrieval in general

and IR on the Web in particular. With regard to the problems of large, distributed,

heterogeneous, and dynamically changing information collections on the Web, the focus

has been shifted from distributed information retrieval with some degree of centraliza-

tion to recent development in peer-to-peer search and retrieval. Some studies have

shown promising results for findability of information items in distributed networked

environments (e.g. Bawa et al., 2003; Zhang et al., 2004; Lu, 2007; Doulkeridis et al.,

2008). Yet the scalability of findability in huge networks remains an open question.

More has to be known about common mechanisms in such networks, allowing for bet-

ter understanding of the problems at a proper abstraction level and generalization to

broader contexts. Research on complex networks has studied related problems in their

basic forms and demonstrated useful results.

2.4.1 The Small World Phenomenon

The common experiences of meeting a random person who shares a mutual friend

inspired studies on the small world phenomenon. In 1960s, Milgram (1967) asked the

question about how many intermediate links were needed for any two people in the

world to be connected. Research by Itheilde Sola Pool at MIT and Manfred Kochen at

IBM studied the problem in mathematical terms and found a 50− 50 chance that any

two persons in the U.S. (of 200 million then) could be linked up with two intermediate

acquaintances given each person knew 500 random others. Apparently, the method

based on the assumption of randomness did not take into account the complexity of

social structures, in which a society tends to be fragmented into social classes and

cliques.
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Milgram (1967) studied the small world problem through a direct experimental

approach, in which random people were chosen to start forwarding mail folders through

friends and relatives to targeted persons (one in each experiment set). Among the

successful chains (e.g., 44 packets out of 160 in the Nebraska study reached the target),

the number of intermediate links ranged from two to ten, with the median at five and

projected average length roughly six. As Kleinberg (2000b, 2006b) noted, Milgram’s

research established not only the abundance of short chains connecting pairs of people

in a large social network but also people’s collective ability, without global information,

to find the short chains9.

Milgram (1967) found valuable patterns from the experiments. Interestingly, with

regard to the geographic movement of mail folders being forwarded, “there was a pro-

gressive closing in on the target area as each new person is added to the chain”(Milgram,

1967, p. 66). Results also indicated that participants were three times as likely to for-

ward a mail to a same sex person as to someone of the opposite sex.

Similar results were found when Dodds et al. (2003) conducted an experimental

study that involved more than sixty thousand email users to forward messages to one

of the eighteen targets in thirteen countries. The study found a typical pair-wise chain

length between five and seven, and people often used very simple rules to nominate their

subsequent recipients, e.g., based on geographical proximity and occupational similarity.

Surprisingly, highly connected “hubs,” or people with many social connections, were

rarely useful in successful chains, which primarily relied on friendships formed through

work or school affiliations and took advantage of weak ties to bridge “distant” parts of

9On the one hand, in Milgram’s experiments, chain lengths observed might be longer than shortest
paths that existed – people made good choices but not necessarily best choices to follow the shortest
paths in the experiments. On the other, the high drop-out rates in the studies (e.g., 126 of 160 in
the Nebraska study) not only added uncertainty about the observed chain lengths but also raised
doubts about people’s collective ability to find short cuts if they do exist. A recent analysis conducted
by Goel et al. (2009) projected that search distances in previous small world experiments were much
longer topological distances.
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the network (Granovetter, 1973, 1983; Dodds et al., 2003). It was shown that small

changes in chain lengths and participation rates can change the rate of reached targets

dramatically. Hence, individual incentives, besides network structure, are crucial for

enabling a searchable social network.

Treating the Web as a graph whose vertices are documents and whose edges are

directed hyperlinks, Albert et al. (1999) estimated that there was a nineteen-degree

separation of all documents on the Web. However, to find a relevant document, the

authors argued, is not as easy as the small number 19 looks – not only the desired

document is nineteen clicks away but so are all documents on theWeb. In Broder et al.’s

(2000) macroscopic view of the Web, while the majority of web pages could reach

one another along directed links, a significant portion formed single direction paths

to others but could not be reached the other way. Albert et al. (1999) observed that

efficient traversal of such a network for finding desired information requires an agent be

sufficiently intelligent to interpret links and follow relevant paths. Kleinberg (2000b,

2006b), on the other hand, concluded that certain network structural characteristics

have to be met in order for efficient navigation to be possible.

2.4.2 Complex Networks: Classes, Dynamics, and Character-

istics

Albert and Barabási (2002) conducted a comprehensive review of research on complex

networks and focused on topological statistics. While many real networks were tradi-

tionally treated as random graphs, recent studies showed that most of them departed

far from the random model first proposed and studied by Erdös and Rényi (1959). In

order to compare and evaluate various real networks and models, Albert and Barabási

(2002) proposed the use of quantities measuring the property of small world (average

path length), clustering (clustering coefficient), and degree distribution.
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In a network, the distance or path length between two nodes is the number of

edges along the shortest path connecting them (Albert and Barabási, 2002). Average

path length is the average of all pair-wise distances or path lengths in the network

whereas diameter refers to the longest pairwise distance. Clustering coefficient measures

a network’s tendency to clustering and is defined as the average ratio of a node’s

neighbors being connected as well, or in terms of Newman et al. (2002), the ratio of

connected triples being triangles (fraction of transitive triples).

Erdös and Rényi (1959) used probabilistic methods to study problems in random

graphs and offered some basic understandings of networks. Let N be the total number

of nodes and p the probability of every pair being connected. It was shown that the

critical probability at which almost every graph contains a subgraph with k nodes and

l edges is: pc(N) = cN−k/(k−1). Different subgraphs (e.g., trees and cycles of different

orders) appear at different critical probability levels. For most values of p (not too

small), random graphs tend to have similarly small diameters, i.e., the maximal distance

between any pair of its nodes. In random networks, the clustering coefficient always

follows Crand = p, given that the probability of two neighbors being connected is equal

with the probability of any randomly selected nodes being connected. This is usually

much smaller than small world networks of the same size and an equal number of edges,

in which nodes tend to form local communities and are therefore highly clustered.

Most real networks, including the Internet, WWW, and scientific collaboration net-

works, were found to display small world properties (Albert et al., 1999; Amaral et al.,

2000; Newman et al., 2001; Albert and Barabási, 2002). These networks have a rela-

tively short path between any two nodes, similar to random graphs in which the typical

distance between two nodes scales as a logarithmic function of the size. However, a

real network usually has a much larger clustering coefficient than a random network of

equal numbers of nodes and edges.
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Watts and Strogatz (1998) proposed a small world network model, namely, the

Watts-Strogatz (WS) model, to accommodate networks that lay in between an or-

dered finite dimensional lattice and a random graph. The model starts with an ordered

ring lattice with N nodes, each of which connects to K nearest neighbors (K/2 on each

side), and then randomly rewires each edges with probability p. For p = 0 the original

network is unchanged whereas for p = 1 it becomes a random network. The model was

based on the observation that people have many local connections (e.g., with family

members, friends, and colleagues who often know each other) and some long-range con-

tacts, or weak ties, that bridge subcommunities (Granovetter, 1973). In response to the

problem of potential isolated clusters, Newman and Watts (1999a,b) also developed a

variant of the WS model, in which edges were added to randomly chosen pairs without

any existing edges being removed.

Interestingly, the coexistence of small average path length l and large clustering

coefficient C were found in the WS models, in agreement with characteristics of many

real networks – widely known as small world networks. The average path length l

scales linearly with the network size for small p and logarithmically for large p. The

large clustering coefficients, in social networks, are a result of strong ties within local

groups. Weak ties, as Granovetter (1973, 1983) suggested, bring various subgroups of

the network together and prevent the system from being fragmented and incoherent,

leading to a more connected world with shorter paths.

Many real networks also follow a power-law degree distribution10, largely deviating

from a Poisson distribution exhibited in random networks. In a power-law network,

the distribution of connectivity decays with a power law function linear on log-log

coordinates. Intuitively speaking, in a power-law network, as exemplified in Figure 2.3,

while many nodes are highly connected (rich), the majority of nodes have a very small

10Degree distributions of some networks follow a power-law with an exponential or Gaussian tail.
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number of connections (very poor). Figure 2.3 shows a power-law indegree distribution

of 200 million Web pages (with 1.4 billion links), in which a very small number of

pages received more than 10, 000 incoming links (bottom right) and the majority were

rarely pointed to by others (top left, more a hundred million pages with indegree ≤ 10)

(Donato et al., 2007).

Figure 2.3: Power-law Indegree Distribution of the Web, on log-log coordinates, adapted from
Donato et al. (2007). The X axis denotes indegree, or the number of incoming links a web page
has received. The Y axis represents frequency, or the number of web pages that received a
number of incoming links as indicated on X . Note that power-law has a linear display on log-log
coordinates.

To accommodate real networks with power-law degree distributions, research pro-

posed generalized random graph models by introducing degree distributions to guide the

connections. However, these models did not project other quantities consistent to real

networks. For example, real networks tend to have a larger average path length than

that of random graphs with power-law degree distribution. They usually have much

larger clustering coefficients, a property independent of network size, due to strong

connections within groups.
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Barabási and Albert (1999) proposed the scale free (SF) model to simulate the dy-

namics of power-law network growth based on the observation of preferential attach-

ment, i.e., the probability of two nodes being connected has dependence on the nodes’

current connectivity (or degrees). Barabási and Albert (1999) reasoned that growth

(adding news nodes to a network) and preferential attachment (a degree-dependent

probability for adding connections) are simultaneously needed to capture the degree

distribution as a result of a dynamic process. With new nodes joining the network,

they tend to attach to existing nodes that are already highly connected – the rich get

richer. Results of network growth and preferential attachment in the scale free model

were found to be consistent with observed power-law network properties.

While various preferential attachment formulations have been studied, researchers

also relied on other mechanisms than explicit preferential attachment and offered dif-

ferent perspectives on network dynamics. Inspired by the observation that many hy-

perlinks were “imported” from one site to another on the Web, Kleinberg et al. (1999)

proposed the use of a copying mechanism to explain the power-law distribution of the

Web. The model, without explicitly including preferential attachment, does have a

degree-dependent component of the probability for connectivity. Such models, simi-

lar in the spirit to preferential attachment, plausibly explain the dynamic process of

indegree growth on the Web. The out-degree distribution of the Web and its dynam-

ics, however, remain barely understood in research and have yet to be modeled and

scrutinized (Donato et al., 2007).

Many complex networks exhibit a high degree of robustness. Because of redundant

wiring of network structure, local failures rarely lead to global reduction of network ca-

pacity. At the topological level, simulation experiments and analytical results showed

that scale free networks are more robust against random local failures than random net-

works do (Albert and Barabási, 2002). However, they are more vulnerable to attacks
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targeted on highly connected nodes. This has important implications on partially cen-

tralized peer-to-peer networks, in which reliability of super-nodes is crucial to overall

system performance (Lua et al., 2005).

Some researchers explained the common presence of scale-free and high clustering

characteristics in many real networks as a consequence of hierarchical organization

(Ravasz and Barabasi, 2003). That is, individuals form small groups and organize

hierarchically in increasingly larger groups, resulting in a scaling function in which

clustering of a node is inversely proportional to its number of links. It was shown that

several networks such as the World Wide Web followed the scaling function, consistent

to the hierarchical interpretation (Ravasz and Barabasi, 2003). This view, together

with the clustering effect, is very useful for search in small world networks (Kleinberg,

1999; Watts et al., 2002). Hierarchical segmentation or semantic overlay, as discussed

in Section 2.3, has been widely used in peer-to-peer systems for efficient search (e.g.,

Lu and Callan, 2003, 2007; Doulkeridis et al., 2008).

Amaral et al. (2000) presented evidence in small world networks that, besides scale-

free networks characterized by a power-law connectivity distribution (Barabási and Albert,

1999), several known real networks displayed broad-scale or single-scale characteristics.

Particularly, some networks such as an actor-actor collaboration graph are categorized

as broad-scale or truncated scale-free because they follow a distribution of a power-law

region with a sharp cutoff. Others such as power-grid and airport connectivity dis-

tributions follow a fast decaying tail of, e.g., exponential or Gaussian, and are called

single-scale networks (Amaral et al., 2000).

The original scale-free model, relying on network growth and preferential attach-

ment, properly captures power-law degree distributions but fails to explain the nature

of broad-scale and single-scale networks (Barabási and Albert, 1999). Amaral et al.

(2000) reasoned that two classes of factors or constraints potentially limit the networks
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from a constant preferential attachment of new links and hinder the formation of scale-

free networks. The effect aging of the vertices refers to the potential of a vertex or

node becoming inactive and rejecting new links, e.g., when an actor stops acting. The

other effect, namely, the cost of adding links to vertices or the limited capacity of a

vertex, denotes physical limits of nodes. For example, an airport can only serve a lim-

ited number of landings/departures per hour and do not have the capacity to be a hub

for all airlines. Extensions of the Scale-Free model (Barabási and Albert, 1999) us-

ing the two effects produced connectivity distributions with broad-scale or single-scale

characteristics (Amaral et al., 2000). With moderate constraints of aging or limited ca-

pacity, distributions display a power-law decay followed by a cutoff. Strong constraints,

however, lead to no visible power-law region.

2.4.3 Search/Navigation in Networks

Research not only showed the prevalence of the small world phenomenon but also

demonstrated that nodes, with very local intelligence or limited information, are able

to collectively construct short paths to globally identifiable targets in large networks

(Milgram, 1967; Kleinberg, 2000b; Dodds et al., 2003; Goel et al., 2009). Previous

works have studied dynamics of networks and the potential application of the small-

world phenomenon in searching for information in networks.

Kleinberg (2000b, 2006a) reflected on why people in Milgram’s early small world

experiments were able to follow short paths to expected targets and proposed that there

be “gradient” of some sort, or some particular network properties, to orient searches

and guide them toward destinations. There are, as Kleinberg realized, certain “global

reference frames”in which the network is embedded and by which the targets are defined

and searches guided. Kleinberg (2000b, 2006a) studied the small world phenomenon

from a mathematics perspective and conducted algorithmic investigations of finding

62



short paths using local information. It was shown that finding short chains in some

types of networks is more promising than in others.

Starting from a two dimensional lattice, as shown in Figure 2.4 (a), the study built

a model in which nodes are rich in short distance connections and poor in long distance

links, with the probability of connecting to a long-distance node Pr proportional to

r−α, where r is the distance between the pair being considered. Results, as shown

in Figure 2.4 (c), indicated that only when α = 2 delivery time τ (or the number of

nodes involved for each search) is bounded by a function proportional to (logN)2 on

a 2D lattice. When α is larger (rare long-distance connections and more homogeneous

neighborhood) or smaller (many remote connections and more heterogeneous/diverse

neighborhood), an asymptotically much larger delivery time is required regardless of

the algorithm used. This finding is generalizable to d-dimensional lattices, where for

any value d ≥ 1, efficient navigability can be achieved with a critical value α = d

(Kleinberg, 2000b,a, 2006a).

Figure 2.4: Findability in 2D Network Lattice Model, from Kleinberg (2000b,a, 2006a), derived
from an n × n lattice. A, each node, u, has a short-range connection to its nearest neighbours
(a, b, c and d) and a long-range connection to a randomly chosen node, where node v is selected
with probability proportional to r−α, where r is the lattice (‘Manhattan’) distance between u
and v, and α ≥ 0 is a fixed clustering exponent. More generally, for p, q ≥ 1, each node u
has a short-range connection to all nodes within p lattice steps, and q long-range connections
generated independently from a distribution with clustering exponent α. C, Simulation of the
greedy algorithm on a 20, 000× 20, 000 toroidal lattice, with random long-range connections as
in a. Each data point is the average of 1, 000 runs.
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When long-distance connections are selected at random (i.e., given a uniform dis-

tribution over distance at α = 0), individuals are disoriented and unable to find short

chains when they indeed exist. Strong clustering (i.e., given a large α), on the other

hand, increases the separation of all nodes in the network without sufficient weak ties

for searches to “jump” (Kleinberg, 2000b; Singh et al., 2001). The critical value of α, in

the tradeoff between strong (local) ties and weak (remote) ties, offers some fundamental

clues for individuals to find short paths with local information.

While 2D or geographical models were broadly adopted for studying the network

search problem, hierarchical network organization offers an alternative view. The hi-

erarchical view, as discussed earlier, has been used to effectively explain scale-free and

strong clustering properties in real networks (Ravasz and Barabasi, 2003).

Watts et al. (2002) reasoned that our social space could be broken down into mul-

tiple hierarchical dimensions, in which individuals formed groups and groups of groups

in more than one ways. Following this observation of social partitioning, Watts et al.

(2002) developed a social network model of H independent hierarchical dimensions,

which was iteratively partitioned with a branching ratio b into l levels and individual

groups (tree leaves) of size g. While lowest common ancestor height in a hierarchy was

used to measure pairwise distance x11, the probability of two nodes connecting each

other followed the function: p(x) = c exp (−αx). Figure 2.5 shows an example of the

model representation, in which b = 2, l = 4, and g = 6.

Considering the probability of a node terminating a search p = 0.25 and the chance

of any search chain eventually reaching the target at probability q = 0.05 (i.e., 5%

completed searches), a maximum search chain length 〈L〉 ≤ 10.4 was required – the

longer the chain, the more likely it would be terminated by someone. Provided all

these conditions, Watts et al. (2002) ran simulations on various population sizes, from

11The measured distance of two nodes was the minimum value of all dimensional distances.
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Figure 2.5: H Hierarchical Dimension Model, adapted fromWatts et al. (2002). (A) Individuals
(dots) belong to groups (ellipses) that in turn belong to groups of groups, and so on, giving rise to
a hierarchical categorization scheme. In this example, groups are composed of g = 6 individuals
and the hierarchy has l = 4 levels with a branching ratio of b = 2. Individuals in the same group
are considered to be a distance x = 1 apart, and the maximum separation of two individuals is
x = l. The individuals i and j belong to a category two levels above that of their respective
groups, and the distance between them is xij = 3. Individuals each have z friends in the model
and are more likely to be connected with each other the closer their groups are. (B) The
complete model has many hierarchies indexed by h = 1...H , and the combined social distance
yij between nodes i and j is taken to be the minimum ultrametric distance over all hierarchies
yij = minhx

h
ij . The simple example shown here for H = 2 demonstrates that social distance

can violate the triangle inequality: yij = 1 because i and j belong to the same group under
the first hierarchy and similarly yjk = 1 but i and k remain distant in both hierarchies, giving
yik = 4 > yij + yjk = 2.

a hundred thousand to two hundred million nodes, to discover searchable zones in

terms of α (the homophily or clustering exponent) and H (the number of hierarchical

dimensions).

Results in Figure 2.6 showed that most searchable networks were with parameters

α > 0 (i.e., when nodes associated preferentially with similar/like others) and H >

1 (i.e., using more than one dimensions in searches). Interestingly, over the largest

searchable range of α, best performance was achieved with H = 2 or H = 3. That

is, individuals were able to find an efficient path to a target by using two to three

dimensions when forwarding a message, consistent to existing small world experiments

(Milgram, 1967; Dodds et al., 2003). Increase of H reduced the number of connections

on each dimension and weakened the correlation of network ties, leading to increased

randomness of the network and inefficient searching.
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Figure 2.6: Findability in H Hierchical Dimensions, adapted from Watts et al. (2002). (A)
Regions in H −α space where searchable networks exist for varying numbers of individual nodes
N (probability of message failure p = 0.25, branching ratio b = 2, group size g = 100, average
degree z = g − 1 = 99, 105 chains sampled per network). The searchability criterion is that
the probability of message completion q must be at least r = 0.05. The lines correspond to
boundaries of the searchable network region for N = 102, 400 (solid), N = 204, 800 (dot-dash),
and N = 409, 600 (dash). The region of searchable networks shrinks with N , vanishing at a finite
value of N that depends on the model parameters. Note that z < g is required to explore H − α
space because for H = 1 and α sufficiently large, an individual’s neighbors must all be contained
within their sole local group.

Watts et al.’s (2002) model is potentially applicable to information retrieval in dis-

tributed networked environments (e.g., for P2P IR) and the reported simulation results

will provide guidance on how efficient, scalable searches are possible through hierarchi-

cal clustering. Research on semantic overlay networks for P2P systems shares a similar

hierarchical clustering view on search efficiency (Crespo and Garcia-Molina, 2005). Yet

it is unclear how such multiple hierarchical dimensions can be collectively constructed

and maintained by participating individuals who autonomously strive, with local intel-

ligence, to meet their own objectives. Its broader applicability remains a question.

Liben-Nowell et al. (2005) argued that Kleinberg’s model was too simplified to cap-

ture behavior in real-world social networks and proposed a new model that incorpo-

rated a correlation between geography and friendship (social connection), together with

population density. Using about 1.3 million blogger sites from the LiveJournal online

community, in which inverse relationship with some variance between geographical dis-

tance and probability of friendship was observed, experiments showed some degree of
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findability of target cities within short paths, particularly when the connection proba-

bility function f(δ) = 1/δ−1, where δ is pairwise geographical distance. Observing the

insufficiency of a purely distance-based function, the study then adopted a rank-based

friendship function, in which the probability of connecting (or befriending) a person

was inversely proportional to the number of closer candidates. Taking into account

the variable of population density, Liben-Nowell et al. (2005) demonstrated that the

rank-based relationship was exhibited in the LiveJournal data and that short paths are

discoverable in such networks12.

Hu and Di (2008) acknowledged the importance of navigability in networks but ob-

served discrepancies among existing research, particularly, where findings disagreed on

what network structures enable optimal search (Kleinberg, 2000b; Lambiotte et al.,

2008; Liben-Nowell et al., 2005). Whereas Kleinberg (2000b) and Lambiotte et al.

(2008) showed that navigation in small worlds is optimal given a clustering/homophily

exponent of 2.0 (in a 2D lattice space), Liben-Nowell et al. (2005) found that the op-

timal parameter should be 1.0. Hu and Di (2008) tried to reconcile the models and

reasoned, alongside with Liben-Nowell et al. (2005), that the previous results were ac-

tually consistent – the problem was caused by the difference of population density

(uniform vs. nonuniform). In addition, as Liben-Nowell et al. (2005) acknowledged,

the effective dimensionality of the network also matters – it was estimated that the

fractional dimension of the LiveJournal network was 0.8, which can be represented by

a single-dimension space that requires optimal clustering exponent α ≈ 1, consistent

with Kleinberg’s model.

Simsek and Jensen (2008) identified two features of many networks that are critical

for efficient navigation, namely, 1) homophily, which depicts the tendency of connected

12Intuitively, Liben-Nowell’s (2005) model can be seen as Kleinberg’s 2D lattice distorted by a
population density distribution, in which connections between very close nodes remain rich and remote
links sparse.
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nodes/peers being correlated (in terms of the search space), and 2) out-degree that

denotes the number of connections a node has. It was reasoned that a navigation deci-

sion relies on the estimate of a neighbor’s distance from the target, or the probability

that the neighbor links to the target directly. The authors hence proposed a measure

based the product of a degree term (ks) and a homophily term (qst) to approximate the

expected distance. A method called EVN was designed to forward a message/query

to the neighbor that minimized the distance expectation by maximizing ks · qst. The

experiments found that the simple combined measure (EVN) was very effective, espe-

cially in power-law (degree distribution) and medium homophily networks where both

factors could guide the navigation. One additional advantage of the EVN is that it is

only sensitive to the ratio of values between two neighbors, not the actual values that

might not be accurately measured.

Recognizing the small world properties in a wide range of real networks and their

abilities of efficient information routing/signalling without global intelligence, Boguñá et al.

(2009) described a general mechanism to explain the connection between a network

structure and the function for navigation. They suggested a hidden metric space be-

hind the observable network topology. Experimental simulations revealed that certain

characteristics of the correlation between the two spaces – similar to the clustering

exponent α in Kleinberg (2000b) and the concept of homophily in Simsek and Jensen

(2008) – enable efficient search or navigation through the visible networked space. The

authors discussed the implications in Internet routing scalability, efficient searching for

individuals or contents on the Web, and studies of signal flows in biological networks.

Boguñá et al. (2009) interestingly introduced hidden space for discussions on efficient

navigation in complex networks. The concept, however, was not novel in the literature.

Kleinberg (2000b, 2006a) used a clustering exponent α to correlate the two spaces

whereas Watts et al. (2002) and Simsek and Jensen (2008) adopted the term homophily
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in reference to the correlation. The hidden space, interestingly, is not always as hidden

as the phrase may indicate and is often quite visible. In the air travel example used by

Boguñá et al. (2009), the hidden space actually referred to the geographical space in

which destinations were defined. Apparently, the hidden space should be defined by the

search or navigation function so that we can take advantage of it to optimize search.

For example, to find relevant information in a large peer-to-peer network, we need to

define what relevance is and operationalize it by projecting peers in the information

space thus defined. Potentially, how peers connect to each other will have dependence

on how close they are in the information space, which, in turn, will guide the finding

of relevant information through the visible connection structure.

Although research has widely used the geographic space as a basis for modeling net-

work routing, its applicability in organizational settings is questionable. Adamic and Adar

(2005) explored various search strategies based on connectivity, physical proximity, and

closeness in an organizational hierarchy for finding short paths in social networks. Sim-

ulations on email communication data of 430 individuals within one single organization

showed that the strategies using a contact’s position in the physical or hierarchical space

resulted in effective search results. A similar level of effectiveness was not achieved on

an online frienship network of 2000 students, in which a formal hierarchical structure

could hardly be constructed.

In experimental simulations on synthetic networks, Boguñá et al. (2009) further

manipulated two common properties that appeared in many real small-world networks,

namely, scale-free degree distribution and local clustering. Whereas the scale-free dis-

tribution was controlled by a power-law exponent γ, the following mechanism parame-

terized the correlation of the network space and hidden space and indirectly controlled

various levels of clustering. That is, the pair-wise connection probability r(d; k, k′) of

two nodes depends on the distance d of the two nodes (in the hidden space related to
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search) and their degrees k and k′: r(d; k, k′) = r(d/dc) = (1 + d/dc)
−α, where α > 1

and dc ≈ kk′. With a larger α, remote connections become rare and nodes more locally

connected, leading to stronger clustering13.

Simulation results using greedy routing showed that for smaller degree exponents γ

and stronger clustering exponent α, searches traveled shorter paths τ . When clustering

was above some threshold, some critical value of γ (≈ 2.6) maximized the success

ratio ps. Based on the results, examples of real networks were plotted on an identified

navigable region of clustering and degree exponents.

Investigation of air travel through connected airport illustrated how greedy routing

can take advantage of the geographical hidden space to follow zoom-out (coarse-grained

long-distance search) and zoom-in (find-grained local search) mechanisms to quickly get

to destinations (Boguñá et al., 2009). It was realized that the most navigable topolo-

gies were enabled by small exponents of power-law distribution (i.e., large number of

hubs) and strong clustering (i.e., strong coupling between the hidden geometry and the

observed topology). Boguñá et al. (2009) further illustrated that, with this configura-

tion, the routing process quickly found a way to high-degree hubs, moved further from

there, and settled toward a low-degree destination.

Some conflicts in research findings appeared. Boguñá et al. (2009) observed that

search paths were shorter for smaller power-law degree exponents γ (e.g., 2.0) and

stronger clustering (larger α values, 4.5). However, Simsek and Jensen (2008) showed

different best results for power-law networks at γ ≈ 1.0 and α ≈ 1.5. These differences

were probably caused by a variety of factors such as network model, average degree,

and algorithms employed.

13The α parameters, although appeared in different names in Kleinberg (2000b); Simsek and Jensen
(2008); Boguñá et al. (2009), had very similar (not identical) functions. They all influenced the for-
mation of local clusters and how likely nodes from different parts of the network connected to each
other.
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The usefulness of high-degree nodes (hubs) shown in some research (e.g., Boguñá et al.,

2009) is at odds with other studies in which hubs were found rarely useful, if not harm-

ful, for small-world searches (Dodds et al., 2003). Different degree distributions might

explain the discrepancy. For example, Adamic et al. (2001) found the effectiveness

of a degree-based search function worked well in a power-law network but poorly in

a Poisson network (see also Adamic and Adar, 2005). If high-degree nodes are indeed

useful to redirect long-distance traffics, cautions should be taken at the application level

for load balance – super-nodes should have sufficient capacities to handle the traffics

(Adamic et al., 2001; Zhang and Lesser, 2006). As was demonstrated by Amaral et al.

(2000), structural characteristics of a network manifest individual capacities and con-

straints in the network. Decentralized systems should be designed in such a way that

peers have connectivity in accord with their capacities.

2.4.4 Conclusion

Whereas small worlds have small diameters, collectively constructing short paths to

desired targets without global information is not an easy task (Albert et al., 1999;

Kleinberg, 2006a). It is fair to say that small worlds do not automatically resolve

findability (Morville, 2005). Additional topological characteristics, such as some corre-

lation between the network space and the search (hidden) space, are needed to support

efficient network navigation (Kleinberg, 2000b; Watts et al., 2002; Liben-Nowell et al.,

2005; Simsek and Jensen, 2008; Boguñá et al., 2009). Fortunately, these characteristics

or properties, as suggested by the literature, are not uncommon in real networks.

Information retrieval in a purely distributed networked environment has additional

layers of complexity to the problem of finding targets in a dimensional space. So far

peer-to-peer and multi-agent IR research has produced promising results. But they

do not appear to be as excitingly scalable as findings in complex network research
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on abstract models. It remains highly challenging to traverse roughly one hundred

peers to find a unique information item in a four hundred million population (i.e.,

20, 000× 20, 000) as was the case in, among others, Kleinberg’s (2000b) simulations.

In distributed networked information retrieval, there is no globally unambiguous

way to define peers’ topical identities, their relevance to queries, and where targets

are, as was so in abstract models in complex network research (Kleinberg, 2000b;

Liben-Nowell et al., 2005; Simsek and Jensen, 2008; Boguñá et al., 2009). Moreover,

relevance also depends on the peers who measure it and is never universally precise.

Even when one node or peer is connected to a relevant neighbor (if the relevance can

somehow be judged), the node holding the query might not make the right decision to

choose the target.
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2.5 Agents for Information Retrieval

Complex network research has focused on dynamics of various classes of networks col-

lectively formed by peers with individual objectives, capacities, and constraints, and

demonstrated great potentials for efficient traversal in such environments. Discussions

on Web information retrieval and peer-to-peer systems show a picture of heterogeneous

information collections dynamically changing in a networks of nodes which actively in-

terconnect and interact with one another. Seen from this perspective, components in

the traditional view of an information retrieval system, as well as in a distributed IR

system, are pushed further apart from one another. In a dynamically evolving envi-

ronment such as the web, it can no longer be assumed that various parties – people,

information, and technologies – will automatically know where to find each other and

interact.

2.5.1 A New Paradigm

Baeza-Yates et al. (2007) reasoned that a centralized search engine will become inef-

ficient in the face of Web growth and change, and argued for fully distributed search

engines. As illustrated in Figure 2.7, information needs arise from every location in the

cloud (a networked space) where information collections “hide,”appear, and evolve. No

central system can potentially have full knowledge about where all information collec-

tions are and will be. Neither can one predict where particular information needs might

arise. One who has an information need does not necessarily know where to search.

Huhns (1998) argued that today’s large, open, heterogeneous environments call for

cooperative information systems, as being studied in multi-agent systems, that can

span enterprise boundaries and make intelligent local decisions without global control

in a scalable and cost-effective manner. A schematic view of cooperative information

systems is shown in Figure 2.8, in which agents interact with one another to provide
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Figure 2.7: Fully Distributed Information Retrieval Paradigm

a human user with a natural means for finding, accessing, and interacting with in-

formation over uncontrollable environments. The concept of mediator, which enables

mapping of resources and applications for others, is key in this environment. Clas-

sic distributed information retrieval systems (or meta search engines), as discussed in

Section 2.2, can be integrated as mediators in this view.

With respect to interaction with computer systems for information access, some re-

searchers argued for direct manipulation that affords the user control and predictability,

others believe in some form of delegation, namely software agent, to reduce the user’s

work and information overload (Maes, 1994; Shneiderman and Maes, 1997). From a

human-information interaction perspective, Marchionini (2008) reflected on the dy-

namic interactions of information, people, and technologies and proposed a shift from

an information-centric view to an interaction-centric view of information, where people

and active information interact in a technological substrate and all evolves over time.

Information objects may have varied forms and meanings depending on spatial, tem-

poral conditions, and the ones who interact with them. People are no longer passive

information consumers but actively participate in the creation, revision, and exten-

sion of it. Marchionini (2008) suggested there be an ecological approach to supporting
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Figure 2.8: Multi-Agent Cooperative Information System, adapted from Huhns (1998).

mutual interactions of all active elements in such an environment. Seen in this view,

mechanisms such as cooperative agents are needed to bring related live parties together

in the dynamic environment.

Agents can not only interact with the user and application but also work with other

agents to better assist their human principals. Finding information in networked envi-

ronments, especially a dynamic one, is not straightforward and can be overwhelming.

If one considers retrieval coverage extends to proprietary sites and content in the deep

web, individual users will be able to maximize their potential of retrieving relevant

information through delegations. One way to achieve this is to allow so-called agents

to take partial control and play active roles for searching, learning, collaboration, and

adaptation in the networked environment. This view of information retrieval systems,

as pictured in Figures 2.7 and 2.8, is congruent with a fully distributed information

retrieval paradigm.
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2.5.2 Agent

Jennings and Wooldridge (1998a, p. 4) defined an agent as“a computer system situated

in some environment, and that is capable of autonomous action in this environment in

order to meet its design objectives.” In Huhns’s (1998) terms, an agent is an active,

persistent computational entity that can perceive, communicate with others, reason

about, and act in its environment. Agents are not invoked or controlled by others

– neither humans nor other agents – but may respond to requests from them. In

addition, an intelligent agent is capable of flexible autonomous action, in the sense

of being responsive to changes in the environment, proactive to it, and social in it

(Jennings and Wooldridge, 1998b). Subject to local perspectives and no global control,

agent-based techniques offer great potential for reactive systems too open (dynamically

changing), complex, and ubiquitous to be correctly designed and implemented.

Agent techniques have been used in a wide range of areas such as workflow con-

trol, information retrieval and management, network management, digital libraries, and

entertainment (Jennings and Wooldridge, 1998b; Jennings, 2001; Huhns et al., 2005).

The agent paradigm was extensively used in IR research for modeling peer-to-peer

search and retrieval (Yu and Singh, 2003; Zhang et al., 2004; Zhang and Lesser, 2007),

distributed intelligent crawling (Davison, 2000; Menczer et al., 2004), expert finding

(Zhang and Ackerman, 2005; Ke et al., 2007), and information filtering (Mostafa et al.,

2003; Mukhopadhyay et al., 2005), among others. Agents are key elements in the Se-

mantic Web of “actionable information” – they can provide, connect with, and process

semantic content and services in the flexible environment (Berners-Lee et al., 2001;

Shadbolt et al., 2006).

Classification of current agent technologies involves multiple facets. Nwana and Ndumu

(1998) categorized software agents in terms of characteristics such as mobility (static vs.

mobile agents), internal models for the external environment (deliberative vs. reactive),
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and learning and cooperation. Some agents are called information or Internet agents

because of their role of gathering information from the network. Others, with mixed

functionality embedded in a single agent, are referred to as hybrid. On the WWW,

for example, intelligent topical crawlers were widely used as information agents that

traversed hyperlinks to collect topical relevant web pages or followed references in infor-

mation repositories to answer user questions (Menczer and Belew, 1998; Davison, 2000;

Pereira and Costa, 2002; Menczer et al., 2004; Guan et al., 2008).

While single-agent systems focus on the individual agent as the functional unit,

multi-agent systems emphasize the societal view of agents and their collective capa-

bility. The decision about whether to adopt a single-agent or multi-agent approach,

Jennings and Wooldridge (1998a) reasoned, depends on the domain of application and

can be seen in the light of whether monolithic, centralized solutions or distributed, de-

centralized solutions are appropriate. IR research has used the single-agent paradigm

to model personalization and how changes of personal information needs can be quickly

detected and served (Mostafa et al., 1997, 2003). With multi-agent systems, researchers

investigated the design of distributed systems for information retrieval and filtering op-

erations (Mukhopadhyay et al., 2005; Ke et al., 2007). Research also compared single-

agent and multi-agent systems for information retrieval purposes and argued that multi-

agent systems have such advantages as fault tolerance, adaptability, and flexibility

(Peng et al., 2001; Zhang and Lesser, 2007).

2.5.3 Multi-Agent Systems for Information Retrieval

For the design of complex software systems, Jennings (2001) argued for an agent-

oriented approach in which a collection of interacting, autonomous agents can offer

designers and engineers significant advantages over existing methods. A multi-agent

paradigm enables the decomposition of a complex system into multiple, autonomous
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components that can act and interact with flexibility to collectively achieve their set

objectives. While complex systems are decomposable in such a way that it is natural to

design agents working with each other from bottom up for overall system functionality,

complexity often goes beyond what can be accurately foreseen in advance. Agent in-

teraction and autonomy enable independent decision making at runtime and collective

intelligence through cooperation, negotiation, and compromises.

Narrowly speaking, multi-agent systems are useful for modeling decentralized infor-

mation retrieval, service location, and expert finding14 in various information networks.

Particularly, referral systems for expert finding have attracted increasing research at-

tention. Kautz et al. (1997b) observed that much valuable information was not kept

on-line for issues such as privacy and yet this information might be provided when

the right people were asked (Kautz et al., 1997a; Yu and Singh, 2003). The fact that

people shared information about experts through word-of-mouth motivated researchers

to study automated information filtering and expert location based on referral chains

(Shardanand and Maes, 1995; Kautz et al., 1997a; Foner, 1997).

Kautz et al. (1997a) developed the ReferralWeb system for automatically finding

experts through social networks. With a vision of multi-agent systems, the authors used

the co-occurrence of name in close proximity from Web sources to reconstruct social

networks and focused on utilizing collective intelligence of a networked community,

similar in spirit to collaborative filtering. ReferralWeb prototypes demonstrated the

potential of expert finding through referral chains and provided useful results on referral

accuracy and responsiveness (Kautz et al., 1997a).

Searching social networks for experts has attracted increased research attention and

agent techniques have been extensively used for this purpose. Foner (1997) recognized

14Expert finding, in the context of this survey, is essentially a task of searching for relevant infor-
mation collections representative of individual agents’ (and their human principles’) expertise.
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the challenge of finding experts because many are not known to the public and developed

the Yenta multi-agent system for matchmaking, which, through referrals, identified

people with similar interests and introduced one to another. While functioning in a

decentralized fashion, agents grouped themselves into clusters of related topics, which,

in turn, facilitated agent communications for common interests. Provided the local

constraint of an agent knowing a limited number of neighbors, Yenta-Lite demonstrated

computational efficiency (in terms of network traffics) for referral-based matchmaking.

Research on multi-agent systems has supported development in service-oriented

computing, making possible aggregation of dynamic information and services across

enterprises and on the Web. According to Georgakopoulos and Papazoglou (2009),

service-oriented computing represents a world of loosely coupled cooperating services

in which systems can autonomously and dynamically adapt to changes. Seeing multi-

agent systems and service-oriented computing as deeply coupled, Huhns et al. (2005)

envisioned pervasive service environments in which such applications as heterogeneous

information management and mobile computing are supported, and computational ser-

vice mechanisms that enable dynamic interactions with active services.

Singh et al. (2001) contrasted the ideas of intelligent networks and “stupid net-

works,” and observed a trend toward more distributed information sources and services

in communication networks. The authors focused on the automatic location of good,

trustworthy services in an open environment of autonomous, heterogeneous, and dy-

namic components – a stupid network without central control. A referral approach to

service location was proposed and studied. With the help of software agents, human

principals of the networked community were able to assist each other for locating qual-

ity services. While agents explored the environment through interactions, they learned

about each other through evaluations of expertise (the ability to provide good service)

and sociability (the ability to provide good referrals).
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Simulations on 20−60 agents showed that agent interactions and learning improved

the quality of the network for service location over time, which stabilized at an improved

quality level, while new peers joining the network drifted toward neighbors who helped

(Singh et al., 2001). The existence of pivot agents, or higher out-degree agents with po-

tential weak ties connecting subcommunities, significantly improved the network quality

for service location. Clustering also had an impact on the location of services – results

showed that network quality decreased with increased clustering. Singh et al. (2001)

reasoned that clustering tended to increase the distance to useful experts because more

links are used up within a small community. According to Kleinberg (2000b, 2006a),

a balance should be maintained in order for searches to efficiently traverse a network.

In highly clustered networks, long-distance connections are rare for searches to jump.

On the other hand, too many remote connections will disorient a search from gradually

moving toward the target, especially when it comes near.

Yu and Singh (2003) developed MARS, a multi-agent referral system prototype,

and conducted experimental simulations on a co-authorship network of about 5, 000

scholars in the area of artificial intelligence (AI) with a task to find expert scholars on

given topics. The effects of branching factor (F , width of search) and referral depth

were studied under settings of learning and no learning. Results showed that learning

improved expert finding effectiveness (the number of experts found) and efficiency (the

number of referrals per expert) in dynamic environments. While both the branching

factor and referral depth had a positive impact on the findability of experts, the effect

of the branching factors converged at F = 4. The focus of the study was on intelligent

referral flooding to reach a good number of experts. Yu and Singh (2003) also exper-

imented on minimizing the referral graph by selectively sending a query to the best

candidate and so forth.

Zhang and Ackerman (2005) studied strategies for expert finding in social networks
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and considered three categories of characteristics, namely, social connections (e.g., the

number of neighbors/friends), strength of association, and relevance to desired exper-

tise (e.g., individual expertise and sociability, see also Yu and Singh, 2003). The study

identified eight strategies based on these characteristics and compared them through

agent simulations on the Enron email dataset containing 147 accounts. Results showed

that while most strategies worked effectively, out-degree based strategies outperformed

the others due to the existence of well connected nodes. Particularly, the Hamming

Distance Search (HDS), which picked the neighbor with the most uncommon social

connections from the current agent and favored neighbors with high out-degrees, pro-

duced superior results in terms of success rate (effectiveness) and the number of agents

involved in searches (efficiency).

The works above demonstrated the usefulness of multi-agent simulation for dis-

tributed expert finding and/or service location. Multi-agent systems can also be nat-

urally applied to the study of peer-to-peer systems, in which peers, seen as agents,

have individual objectives and assume some degree of independence and autonomy

(Androutsellis-Theotokis and Spinellis, 2004; Lua et al., 2005). Research on peer-to-

peer information retrieval was often conducted using a multi-agent framework (e.g.,

Zhang et al., 2004; Kim et al., 2006; Zhang and Lesser, 2006, 2007).

Some researchers used multi-agent systems to model distributed information re-

trieval in semantic overlay peer-to-peer networks and focused on federated IR oper-

ations such as resource representation, database selection, and result fusion in P2P

environments (Zhang et al., 2004; Fischer and Nurzenski, 2005; Bender et al., 2005;

Vouros, 2008). Some studied agent learning and adaptation for efficient retrieval in

dynamic environments, and emphasized the overall system utility and throughput

(Zhang and Lesser, 2006, 2007). Others employed multi-agent techniques to build rec-

ommender systems based on agent-user and agent-agent interactions (Birukov et al.,

81



2005). In addition, complex network modeling often relied on agent simulations un-

der the assumptions of local intelligence without global control (Albert and Barabási,

2002; Adamic and Adar, 2005; Kleinberg, 2006a; Simsek and Jensen, 2008). Studies

about peer-to-peer information retrieval in Section 2.3 and complex network simula-

tions in Section 2.4 are within the scope of this section and compatible with discussions

here.

2.5.4 Incentives and Mechanisms

As noted in previous research on complex networks, many social networks are theoret-

ically searchable but success depends heavily on individual incentives (Milgram, 1967;

Watts et al., 2002; Dodds et al., 2003). Provided the autonomous nature of agents

and different objectives of participants in information sharing networks, there is no

guarantee that each search query will reach the target even when it is algorithmically

reachable. Proper incentive mechanisms are needed to ensure good behaviors of indi-

vidual agents and a network’s overall utility (Yu et al., 2003; Kleinberg and Raghavan,

2005; Kleinberg, 2006b).

Yu et al. (2003) observed problems of network congestion and performance degrada-

tion caused by uncontrolled free riding in P2P networks and reasoned that agent-based

system design should take into account rationality of individuals. Yu et al. (2003)

focused on mechanism design for incentives in referral systems. Two micropayment

protocols, namely, the fixed pricing and dynamic pricing mechanisms, were introduced

to charge agents for queries they posted and reward them for referrals or answers they

gave. Experiments showed that free riders, without any contribution and therefore re-

ward, could not survive either payment protocol. Agents had to help others in order

to get helped in the long term. Further experiments also demonstrated the potential of

such mechanisms to guide price adjustment for high-quality services.
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Seeing networks as market places and information as goods, Kleinberg and Raghavan

(2005) formulated a model for query incentive networks, in which information seekers

posted queries with incentives for answers that were propagated along referral paths.

As each node expected to take some portion of the reward by passing the query on to

the “right” answer (i.e., the one that was eventually chosen), the incentives shrank in

the branching propagation tree until it reached an answer or a balance of zero. Pro-

vided answer rarity n and network structure for propagation, Kleinberg and Raghavan

(2005) examined how much initial incentive was needed and showed that initial utility

of O(logn) sufficed for a large branching parameter b > 2 to cheaply find answers. For

b < 2, much greater investment was needed from the node originated a query.

Apparently, for larger branching factors, there is a larger cost associated with the

number of agents involved in the searching process and therefore greater communication

traffics. Kleinberg and Raghavan’s (2005) model was query-centric and did not consider

the overall network throughput as one objective in the incentive design. It is very

likely the result will be different if this is taken into account. With a similar model,

Li et al. (2007) compared query efficiency of the incentive mechanism with existing

methods but left out the depth-first search (DFS) or greedy routing approach for,

arguably, its long response time. Experiments showed superior system utility based on

the incentive design. Nonetheless, Li et al. (2007, p. 275) did acknowledge that DFS

or greedy routing “undoubtedly outperforms the others in terms of system utility.” The

argument about greedy routing’s inferior responsiveness because of its sequential nature

remains arguable in open environments, as was briefly discussed in Section 2.3.3 (see

also Lv et al., 2002a,b; Cooper and Garcia-Molina, 2005).

While incentive design often involves payment in the sense of reward, some P2P ap-

plications have included paying mechanisms for legal requirements (e.g., for users to pay

for music downloads). For example, Yang and Garcia-Molina (2003) developed PPay,
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an alternative to centralized broker based micro-payment systems, with an aim to dis-

tribute transaction load among peers while maintaining sufficient security. Mechanisms

were designed to prevent frauds and to punish cheaters.

Besides incentives, security, trust, and privacy are especially important for sys-

tems without centralized authority and control. Singh et al. (2001) discussed the im-

pact of community-based service location in the perspective of trust management, in

which security techniques do not guarantee the accountability of peers even when they

are authenticated. While it is too challenging for a centralized system to manage

all trust related aspects, the problem “must be handled from the edges of the network

where different parties can build their reputations for trustworthiness in an application-

specific or community-specific manner” (Singh et al., 2001, p. 54). Research has stud-

ied related issues through social network analysis and decentralized reputation man-

agement (e.g., Sabater and Sierra, 2002), distributed policy specification and manage-

ment (e.g., Udupi and Singh, 2007), and self-organization and referral exchanges (e.g.,

Yolum and Singh, 2005), etc. Although not the focus of this survey, these issues have

impacts on whether agents will behave as expected and how the entire system can

perform in a manner within set objectives to support findability.

2.5.5 Conclusion

Dynamics and heterogeneity of large networked environments require information sys-

tems span organizational boundaries and work with one another in the absence of

global control. Multi-agent systems provide a new paradigm in which a complex sys-

tem – an information retrieval system in particular – can be naturally decomposed into

autonomous, heterogeneous, and cooperative components to cope with the complexity

and unpredictability (Jennings, 2001). A monolithic, centralized model is not capable
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of managing the complexity of today’s distributed, dynamic, and heterogeneous in-

formation space. Baeza-Yates et al. (2007) argued for fully distributed search engines

for high quality answers, fast response time, high query throughput, and scalability.

A multi-agent system approach to information retrieval in such environments is in-

deed needed. Multi-agent systems offer an integral view in which research on Web IR,

distributed and peer-to-peer retrieval, and complex networks can all be discussed. It

additionally brings perspectives on designing mechanisms for incentives, trust, privacy,

and security in open environments.

85



2.6 Summary

This literature review discussed the general problem of finding information in dis-

tributed networked environments and surveyed research areas in information retrieval

(IR), Web and distributed IR, peer-to-peer content sharing and search, complex net-

works and their navigability, and the multi-agent paradigm for IR. While traditional IR

and distributed IR research provides classic tools for attacking the problem, the evolv-

ing dynamics and heterogeneity of today’s networked environments have challenged

the sufficiency of classic methods and call for new innovations. Whereas peer-to-peer

offers a new type of architecture for application-level questions and techniques to be

tested (Croft, 2003), research on complex network studies related questions in their

basic forms (Albert and Barabási, 2002). Table B.1 in Appendix B summarizes in a

matrix major research problems and example frameworks in the areas being surveyed.

Seen from the agent perspective of cooperative information systems (Huhns, 1998),

the actionable information view of the Semantic Web (Berners-Lee et al., 2001), or the

interaction-centric perspective of human information interaction (Marchionini, 2008),

the problem of information findability and its scalability becomes crucial. In an open,

dynamic information space such as the Web, people, information, and technologies are

all mobile and changing entities. The classic view of “knowing” where information is

and indexing “known” collections of information for later retrieval is hardly valid in

such environments. Finding where relevant repositories are for the live retrieval of

information is critically needed. Without global information, new methods have to rely

on local intelligence of distributed peers and/or their delegates to collectively find a

way to desired information. Multi-agent systems provide an important paradigm and

tools to attack the problem.

Scalability of findability is about the cost of traversing a network to reach de-

sired information. Unstructured or semi-structured peer-to-peer networks, being widely
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studied, represent a connected space self-organized by individuals with local objectives

and constraints, exhibiting a topological underpinning on which all can collectively

scale (Amaral et al., 2000; Lua et al., 2005). While the small world phenomenon dis-

plays a connected world in which every one (and every piece of information) is within

reach, research suggested there are certain structural characteristics to guide searches

(Kleinberg, 2000b; Watts et al., 2002; Liben-Nowell et al., 2005; Simsek and Jensen,

2008; Boguñá et al., 2009).

Research based on abstract network models has produced exciting results for both

findability and scalability – it has been demonstrated that short paths to desired targets

can be found even in networks of a billion nodes. Information retrieval in networked

environments, nonetheless, has been more complex than that. Not only is the dimen-

sionality of a“hidden”(search) space difficult to define (Kleinberg, 2000b; Yu and Singh,

2003; Boguñá et al., 2009), the ambiguity of relevance further complicates the problem.

Due to local constraints, relevance has to be seen from individual perspectives and a

global measure of it cannot be enforced to guide searches. IR research in distributed

networked environments, with tools from peer-to-peer and multi-agent research, has

produced promising results on finding (or recalling) relevant information (Bawa et al.,

2003; Crespo and Garcia-Molina, 2005; Zhang and Lesser, 2006; Lu and Callan, 2007).

The scalability of findability, however, requires further scrutiny.

To further illustrate the point, Figure 2.9 samples findability and scalability results

from previous research on complex networks, peer-to-peer, and multi-agent IR. Search

experiments based on abstract models and synthetic networks have shown useful results

on very large scales. Kleinberg (2000b), for example, conducted simulations on four

hundred million nodes in which unique targets were found in roughly one hundred

steps (note the top right data point on Figure 2.9). Experiments on real IR data (e.g.,

TREC collections) were typically concentrated on recall and less about findability of
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very specific items. In other words, even when dealing with large networks15, queries

used in the experiments were often so broad that they had a large relevance base. In

general, relevant documents appeared in many segments and finding one of them was

not a huge challenge (see solid points of small rarity NR values on the bottom left of

Figure 2.9).

Figure 2.9: Summary of Existing Findability/Scalability Results. The X axis denotes log-
transformed rarity: NR = N/Nrel, where N is the total number of peers and Nrel the number
of all relevant or target peers. This represents the average size of a peer population for ONE
relevant/target peer to appear. The larger the rarity NR, the more difficult it is to find one
target. The Y axis denotes the path length, or number of peers involved, for finding ONE target
(first if there are more than one). Data can be found in Table C.1 of Appendix C.

Serving diverse users in an open, dynamic environment implies that some queries

are likely to be narrowly defined. Calvin Mooers’ (1951) statement about information

being painful was a realization that humans have limited ability to process voluminous

information and often tend to avoid it. It has long been observed that people rarely

demand high recall – a couple of highly relevant items often suffice even when many more

are presented (Cleverdon, 1991; Zobel et al., 2009). Finding highly relevant information

15The CiteSeer dataset used in Bawa et al. (2003) had more than eighty thousand sites or collections.
Lu and Callan (2007) had twenty five thousand sub-collections from .GOV2.
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in large distributed environments poses great challenges and offers potential rewards.
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Chapter 3

Research Angle and Hypotheses

Although many fads have come and gone in complexity, one thing is increas-

ingly clear: Interconnectivity is so fundamental to the behavior of complex

systems that networks are here to stay. – Barabási 2009

Finding relevant information in distributed environments is a problem concerning

complex networks and information retrieval. We know from the small world phe-

nomenon, common in many real networks, that every piece of information is within

a short radius from any location in a network. However, relevant information is only a

tiny fraction of all densely packed information in the “small world.”

If we allow queries to traverse the edges of a network to find relevant information,

there has to be some association between the network space and the relevance space in

order to orient searches. Random networks could never provide such guidance because

edges are so independent of content that they have little semantic meaning. Fortunately,

research has discovered that development of a wide range of networks follows not a

random process but some preferential mechanism that captures “meanings.”

Surely, these networks, even with a good departure from randomness, do not auto-

matically ensure efficient findability of relevant information. To optimize such a network



for search, mechanisms should be designed to enable more meaningful semantic over-

lay on top of physical connections. In peer-to-peer information retrieval research, such

techniques as semantic overlay networks have been broadly studied.

3.1 Information Network and Semantic Overlay

Let us refer to the type of networks in this research as information networks to em-

phasize the focus on finding relevant information. Practically, information networks in-

clude, but are not limited to, peer-to-peer networks for information sharing, the hidden

web where many large databases reside, and networks formed by information agents.

Close examination of these networks reveals some common characteristics illustrated in

Figure 3.1.

Figure 3.1: Information Network

As shown in Figure 3.1, an information network is formed by nodes (e.g., peers, web

sites, or agents) through edges, e.g., through network communication/interaction/links.

A node has a set of information items or documents, which in turn can be used to define

its topicality or expertise. If we can somehow discover the content of each node and

layout the nodes in terms of their topicality, then the information network in Figure 3.1

can be visualized in the form of Figure 3.2 (a).

Figure 3.2 (a) shows a circle representation of the topical (semantic) space, in which

91



1

7

2

3

4

5

6

1

7

2

3

4

5

6

(a) Weak clustering (b) Stronger. . . (c) Strong clustering

Figure 3.2: Evolving Semantic Overlay

there are two topical clusters of nodes, i.e., cluster 1-3-5-7 and cluster 2-4-6 (visually

separated on the topical circle space). Connection-wise, there are local edges (solid

lines) within each cluster and long-range ones (dashed lines) between the clusters.

Within-group local connections are useful because they bring “close” (topically sim-

ilar) nodes together to form segments, which is consistent to their topical separation.

This establishes an important association between the topological (network) space and

the topical (search) space that potentially guides searches. In terms of Granovetter

(1973), these are strong ties.

Long-distance connections, shown as dashed lines in Figure 3.2, bring randomness to

the network. When there are many long-range connections, the topological (network)

space tells little about the topical space – we can hardly rely on topically non-relevant

edges in the search for topical relevance. Nonetheless, between-group connections, or

weak ties, often serve as bridges and are critical for efficient diffusion of information

(Granovetter, 1973).

While the initial network, shown in Figure 3.2 (a), might not be good enough for

decentralized search, some overlay can be built upon the physical layer to bring more

semantics to the network space. Due to no global control over such an information

network, mechanisms should be designed to guide individual adaptation and network
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evolution for this purpose. Over the course of network development shown in Figures 3.2

(a), (b), and (c), semantic overlay is strengthened through the reinforcement of strong

ties and reestablishment of some weak ties. Note that semantic overlay is a logical

(soft) layer of connectivity – even if two nodes are physically connected, semantic

overlay may maintain a probability function that unlikely allows them to contact each

other for search.

3.2 Clustering Paradox

Semantic overlay discussed above is essentially a type of clustering, which is the pro-

cess of bringing similar items together. Research has found clustering on various levels

useful for information retrieval. The Cluster Hypothesis states that relevant documents

are more similar to one another than to non-relevant documents and therefore closely re-

lated documents tend to be relevant to the same requests (van Rijsbergen and Sparck-Jones,

1973). Traditional IR research utilized document-level clustering to support exploratory

searching and to improve retrieval effectiveness (Hearst and Pedersen, 1996; Fischer and Nurzenski,

2005; Ke et al., 2009).

Distributed information retrieval, particularly unstructured peer-to-peer IR, relied

on peer-level clustering for better decentralized search efficiency. Topical segmentation

based techniques such as semantic overlay networks (SONs) have been widely used for

efficient query propagation and high recall (Bawa et al., 2003; Crespo and Garcia-Molina,

2005; Lu and Callan, 2006; Doulkeridis et al., 2008). Hence, overall, clustering was of-

ten regarded as beneficial whereas the potential negative impact of clustering (or over-

clustering) on retrieval has rarely been scrutinized.

Research on complex networks has found that a proper level of network clustering

with some presence of remote connections has to be maintained for efficient searches

(Kleinberg, 2000b; Watts et al., 2002; Liben-Nowell et al., 2005; Simsek and Jensen,
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2008; Boguñá et al., 2009). Clustering reduces the number of “irrelevant” links and aids

in creating topical segments useful for orienting searches. With very strong clustering,

however, a network tends to be fragmented into local communities with abundant strong

ties but few weak ties to bridge remote parts (Granovetter, 1973; Singh et al., 2001).

Although searches might be able to move gradually toward targets, necessary “hops”

become unavailable.

We refer to this phenomenon as the Clustering Paradox, in which neither strong clus-

tering nor weak clustering is desirable. In other words, trade-off is required between

strong ties for search orientation and weak ties for efficient traversal. In Granovet-

ter’s terms, whereas strong ties deal with local connections within small, well-defined

groups, weak ties capture between-group relations and serve as bridges of social seg-

ments (Granovetter, 1973). The Clustering Paradox, seen in light of strong ties and

weak ties, has received attention in complex network research but requires close scrutiny

in a decentralized IR context.

3.2.1 Function of Clustering Exponent α

One key parameter/variable in complex network research for decentralized search is the

clustering exponent α. Kleinberg (2000), who pioneered this line of research, studied

decentralized search in small world using a two dimensional model, in which peers

had rich connections with immediate neighbors and sparse associations with remote

ones (Kleinberg, 2000b). The probability pr of connecting to a neighbor beyond the

immediate neighborhood was proportional to r−α, where r was the search distance

between the two in the dimensional space and α a constant called clustering exponent1.

It was shown that only when clustering exponent α = 2, search time (i.e., search path

1The clustering exponent α is also known as the homophily exponent (Watts et al., 2002;
Simsek and Jensen, 2008).
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length) was optimal and bounded by c(logN)2, where N was the network size and c

was some constant (Kleinberg, 2000b).

The clustering exponent α, as shown in Figure 3.3, describes a correlation be-

tween the network (topological) space and the search (topical) space (Kleinberg, 2000b;

Boguñá et al., 2009). When α is small, connectivity has little dependence on topical

closeness – local segments become less visible as the network is built on increased ran-

domness. As shown in Figure 3.4 (a), the network is a random graph given a uniform

connectivity distribution at α = 0. When α is large, weak ties (long-distance connec-

tions) are rare and strong ties dominate (Granovetter, 1973). The network becomes

highly segmented. As shown in Figure 3.4 (c), when α → ∞, the network is very reg-

ular (highly clustered) given that it is extremely unlikely for remote pairs to connect.

Given a moderate α value, as shown in Figure 3.4 (b), the network becomes a narrowly

defined small world, in which both local and remote connections present.

Figure 3.3: Network Clustering: Function of Clustering Exponent α

In this way, the clustering exponent α influences the formation of local clusters

and overall network clustering. The impact of α ∈ [0,∞) on network clustering is
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Figure 3.4: Network Clustering: Impact of Clustering Exponent α. Compare to
Watts and Strogatz (1998). (a) a random network, provided no association between connec-
tivity and topical distance at α = 0, (b) a small world network when a moderate α value allows
the presence of both local and remote connections, and (c) a regular network where nodes only
connect to local neighbors at α → ∞ (simulated given α = 1000). The figures were produced
by simulations based on n = 24 nodes and k = 4 neighbors for each. Topical distance is mea-
sured by the angel between two nodes (vectors from the origin/center) in the 1-sphere (circle)
representation.

similar to that of a rewiring probability p ∈ [1, 0] in Watts and Strogatz (1998). How-

ever, α additionally defines the association of connectivity and topical distance. It

was further discovered that optimal value of α for search, in many synthetic networks

previously studied, depends on the dimensionality of the search space. Specifically,

when α = d on a d-dimension space, decentralized search is optimal. Further studies

conducted by various research groups have shown consistent results (Watts et al., 2002;

Liben-Nowell et al., 2005; Simsek and Jensen, 2008; Boguñá et al., 2009). However, the

results were primarily produced by research on low dimensional synthetic spaces using

highly abstract models.

In a decentralized expert finding context, we observed some patterns of the Clus-

tering Paradox, in which either strong clustering or weak clustering led to degraded

search performance (Ke and Mostafa, 2009). More critically, the Clustering Paradox

appeared to have a scaling effect. Although overclustering only moderately degraded

search performance on small networks, it seemed to cause dramatic performance loss for
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large networks. In other words, little performance disadvantage in small networks might

become too big to ignore in large-scale systems. All this requires further scrutiny in

experiments on benchmark IR data collections. In addition, how the clustering paradox

interplays with other variables such as degree distribution remains to be studied.

3.3 Search Space vs. Network Space

As discussed earlier, if queries are to traverse the topological (network) space to find

topical relevance (in the search space), some association between the two spaces is

required to guide searches. The clustering paradox, if applicable in the IR context,

indicates that some balance of network clustering supports best mapping of the topo-

logical space to the topical space, potentially enabling optimal retrieval performance. It

is therefore important to examine the two spaces to figure out what additional variables

should be considered.

3.3.1 Topical (Search) Space: Vector Representation

The topical (search) space is about how nodes can be represented in terms of informa-

tion they possess and how relevant they are to each query. Salton et al. (1975) proposed

the Vector Space Model (VSM) in which queries and documents are represented as n-

dimensional vectors using their non-binary term weights (see also Baeza-Yates and Ribeiro-Neto,

2004). This dimensional view potentially enables us to build a connection between the

IR challenge in this research and general results from previous studies on complex

networks (e.g., Kleinberg, 2000b; Watts et al., 2002).

In the dimensional space for IR, the direction of a vector is of greater interest than

its magnitude. The correlation between two information items (e.g., a query and a

document) is therefore quantified by the cosine of the angle between two corresponding
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vectors. Provided the irrelevance of vector length, all vectors can be normalized to a

common distance from the origin, resulting in a hypersphere representation of docu-

ments and nodes. Figure 3.5 (a) and (b) illustrate a 1-sphere (2D circle) and a 2-sphere

(3D globe), given all vector lengths normalized to 1.
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Figure 3.5: Hypersphere Representation of Search Space. Each node is topically represented by
a vector from the origin (a solid point in the figures). Vector lengths are normalized to 1 because
only vector direction matters. Both figures illustrate local connections with close or topically
similar neighbors and remote connections with topically distant nodes.

Terms can be used as dimensions and frequencies as dimensional values in VSM. Yet

a more widely used method for term weighting is Term Frequency * Inverse Document

Frequency (TF*IDF), which integrates not only a term’s frequency within each docu-

ment but also its frequency in the entire representative collection (Baeza-Yates and Ribeiro-Neto,

2004). The reason for using the IDF component is based on the observation that terms

appearing in many documents in a collection are less useful. In the extreme case, useless

are stop-words such as “the” and “a” that appear in every English document.

Among other limitations, VSM usually uses single terms without examining prox-

imity and co-occurrence patterns for their semantic meanings. While existing models
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often assume term independence, generalized VSM and latent semantic indexing (LSI)

techniques acknowledge the non-orthogonality of natural language terms and project

the observed term space to a smaller dimensional space to improve retrieval effectiveness

(Wong et al., 1987; Landauer et al., 1988; Deerwester et al., 1990). VSM succeeded in

its simplicity, efficiency, and superior results it yielded with a wide range of collections

(Baeza-Yates and Ribeiro-Neto, 2004).

In the proposed research, we plan to use the Vector Space Model for document and

query representation. Given that a node is more than one single document but rather a

collection of documents, strategies are needed for aggregation of individual representa-

tions. A widely used strategy in distributed information retrieval is document frequency

based collection representation (Callan et al., 1995; Phan et al., 2000). A node can be

seen as a metadocument represented by terms using their document frequencies, i.e.,

in how many documents each term appears.

3.3.2 Topological (Network) Space: Scale-Free Networks

To facilitate searching, many peer-to-peer IR systems used hierarchical structures with

central/regional servers as fast channels that connected various remote parts (e.g.,

Bawa et al., 2003; Fischer and Nurzenski, 2005; Lu and Callan, 2007; Doulkeridis et al.,

2008). Nonetheless, most real world networks, very different from hierarchical struc-

tures, manifest small world, scale free (or broad scale), and highly clustering properties

for potential efficient searching (Albert and Barabási, 2002; Kleinberg, 2006a). These

network structures, produced under individual peer capacities and constraints, have

revealed to us how peers can collectively scale given how much they individually can

afford to do.

Many small world networks follow a power-law degree distribution, deviating from a
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Poisson distribution exhibited in random networks. In a power-law network, the distri-

bution of connectivity decays with a power law function linear on log-log coordinates.

Intuitively speaking, in a power-law network, while some nodes are highly connected

(rich), the majority of nodes have a small number of connections (poor). So far, power-

law networks have been well explained by the Scale Free2 model, in which network

growth and preferential attachment are both essential (Barabási and Albert, 1999).

Many complex networks exhibit a high degree of robustness. Because of redundant

wiring of network structure, local failures rarely lead to global reduction of network

capacity. At the topological level, simulation experiments and analytical results showed

that scale-free networks are more robust against random local failures than random

networks do (Albert and Barabási, 2002). However, they are more vulnerable to attacks

targeted on highly connected nodes.

The common presence of scale-free networks and their mathematical simplicity al-

low researchers to study complex problems in a very systematic way. Given a constant

average degree and range, the power-law exponent γ (i.e., the slope value on a log-log

distribution plot) is the only variable needed to control the distribution. We will inves-

tigate the impact of degree distribution on search performance. We will also propose

degree-based search methods and study their effectiveness and efficiency under various

experimental settings.

3.4 Strong Ties vs. Weak Ties

In the Clustering Paradox, strong ties and weak ties play important roles. According to

Granovetter (1973), strong ties were widely studied in network models for small, well-

defined groups in which individuals have strong neighborhood overlap and are similar

2The scale free model is by far the most effective approach to explaining the emergence of power-law
networks. In this research, we use the terms power-law network and scale-free network exchangeable.
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to one other. Emphasis on weak ties, however, shifts the discussion to relations between

groups and to analysis of “segments of social structure not easily defined in terms of

primary groups” (Granovetter, 1973, p. 1360). Weak ties often serve as bridges of

groups, removal of which will lead to fragmented larger structures.

For clarification and operationalization purposes, in this research, the strength of a

tie – the meanings of strong vs. weak ties – will be defined on three levels, namely, 1)

the dyadic meaning in terms of the relationship of interaction between two nodes, 2) the

topological meaning in terms of a tie’s macro-level impact on the network structure, and

3) the topical definition based on pairwise similarity/relevance in the IR context. These

three levels will enable us to scrutinize network clustering from multiple perspectives.

3.4.1 Dyadic Meaning of Tie Strength

Granovetter (1973, p. 1361) loosely defined the strength of an interpersonal tie as

“a combination of the amount of time, the emotional intensity, the intimacy (mutual

confiding), and the reciprocal services which characterize the tie.” While implications

of tie strength are beyond the dyadic characteristics of an interpersonal relationship,

it is still useful to define it on a similar level in the decentralized IR context, in which

interactions and trust among distributed nodes (agents) are important aspects. The

strength of a tie, on the dyadic level of this research, is thus defined as a combination

of time, mutual trust of two nodes (agents) and the value of help they have offered each

other. It can be operationalized as the number of times they interact with each other

and rewards exchanged in interactions.

3.4.2 Topological Meaning of Tie Strength

Whereas strong ties are unlikely to be bridges, all bridges are weak ties. Following the

“bridge” notion of tie strength, the weakness of a tie was referred to as the number of
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broken paths or changes in average path length due to its removal (Granovetter, 1973).

More precisely, it can be defined as a bridge of degree nd, where nd is the shortest path

between its two points if the tie is removed. Besides this, the betweenness centrality

measure, developed by Anthonisse (1971); Freeman (1977), can also be used to evaluate

node or tie centrality/weakness:

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

(3.1)

where σst = σts is the number of shortest paths from s to t and σst(v) the number

of shortest paths from s to t that pass through v (either a tie or a node) in graph V

(see also Brandes, 2001; Girvan and Newman, 2002).

3.4.3 Topical Meaning of Tie Strength

In the IR context, closeness or remoteness of two nodes depends on their topical

relevance or similarity. Provided the vector representation, distance can be mea-

sured by the angle of two vectors and similarity measured as cosine of the angle

(Baeza-Yates and Ribeiro-Neto, 2004). On this level, therefore, the strength of a tie

is defined as the pairwise relevance and operationalized as cosine similarity. Given

two nodes represented by vectors u = [u1, .., ut]
T and v = [v1, .., vt]

T , if they form a

tie/link, the strength can be calculated using cosine coefficient defined in Section 4.2.1.

Thereby, tie weakness can be equated with pairwise topical distance or angle value:

∠uv = arccos(cuv), where cuv is the cosine coefficient of vectors u and v.

cuv = cos(u, v) =

∑t
i=1 xi · yi

√

(
∑t

i=1 x
2
i ) · (

∑t
i=1 y

2
i )

(3.2)

Here we present three levels of tie strength, namely, the dyadic, topological, and
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topical meanings of strong vs. weak ties. They are operationlizable metrics, in addi-

tion to the clustering exponent α, that can be used to scrutinize network clustering.

Potentially, these angles will help us analyze experimental results and understand what

is going on in a network community and why searches do or do not perform well.
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3.5 Hypotheses

Earlier discussions provide evidence for potential hypotheses. In sections 3.2 and 3.2.1,

we discussed previous research on the impact of network clustering on decentralized

search and our observation of the Clustering Paradox, which appears to suggest the

following hypothesis.

Hypothesis 1 Given local constraints3 of a network, there exists some balance of net-

work clustering that enables optimal search performance in an IR context.

Given the balance or optimization, we further conjecture that some local search

algorithm without global information is scalable to very large network sizes. In other

words, search performance should remain more or less stable (with no dramatic change)

even when the network grows dramatically. This leads to the second hypothesis.

Hypothesis 2 With optimal network clustering, search efficiency4 is explained by a

poly-logarithmic function of network size.

We have known that scale-free properties such as power-law degree distribution ap-

pear in many real networks, in which research has found good scalability and robustness

(Albert and Barabási, 2002). Although degree distribution may interact with network

clustering on search performance, we tend to believe that such networks, regardless of

their differences, support scalable decentralized search operations. In other words,

Hypothesis 3 Power-law degree distribution has an impact on network optimization

for search – that is, different distributions may require different network clustering

3Local constraints refer to limited capacities of individual agents/peers, e.g., the number of con-
nections an agent can manage.

4Efficiency, or search time, will be measured by search path length in tasks performed by best
search algorithms.

104



levels for optimal search. However, Hypotheses 1 and 2 remain true with different

degree distributions.

While most search methods rely on topical relevance, research has also found degree-

based methods effective in power-law networks in which hubs have rich connectivity

(e.g., Adamic et al., 2001; Boguñá et al., 2009). We therefore conjecture that:

Hypothesis 4 In large scale networks, search (neighbor selection) methods that utilize

information about neighbors’ degrees and relevance (similarity to a query) are among

scalable algorithms stated in Hypotheses 1 and 2.
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Chapter 4

Simulation System and Algorithms

The problem of decentralized search in networks is too complex to be studied in

a top-down manner. In this research, we propose to use multi-agent systems for a

bottom-up investigation. Jennings and Wooldridge (1998a, p. 4) defined an agent as

“a computer system situated in some environment, and that is capable of autonomous

action in this environment in order to meet its design objectives.” In Huhns’s (1998)

terms, an agent is an active, persistent computational entity that can perceive, com-

municate with others, reason about, and act in its environment.

While single-agent systems focus on the individual agent as the functional unit,

multi-agent systems emphasize the societal view of agents and their collective capa-

bility. Multi-agent systems provide a new paradigm in which a complex system – a

network-based information retrieval system in particular – can be naturally decom-

posed into autonomous, heterogeneous, and cooperative components to cope with the

complexity and unpredictability (Jennings, 2001). A monolithic, centralized model is

not capable of managing the complexity of today’s distributed, dynamic, and heteroge-

neous information space. Baeza-Yates et al. (2007) argued for fully distributed search

engines for high quality answers, fast response time, high query throughput, and scal-

ability. A multi-agent system approach to information retrieval in such environments



is indeed needed.

4.1 Simulation Framework Overview

Based on multi-agent systems, we have developed a decentralized search architecture

named TranSeen for finding relevant information distributed in networked environ-

ments. We emphasize the societal view of agents who have local intelligence and can

collaborate with one another to perform global search tasks. Similar agent-based ap-

proaches have been adopted by various research groups to study efficient informa-

tion retrieval, resource discovery, service location, and expert finding in decentral-

ized environments (Singh et al., 2001; Yu and Singh, 2003; Zhang and Ackerman, 2005;

Zhang and Lesser, 2007). One common goal was to efficiently route a query to a rele-

vant agent or peer. We illustrate the conceptual model in Figure 4.1 (a) and elaborate

on major components shown in Figure 4.1 (b).
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Figure 4.1: Conceptual Framework. (a) Global View of agents work together to route a query
in the network space. (b) Agent Internal View of how components function within an agent.

Assume that agents, representatives of information seekers, providers (sources), and

mediators, reside in an n dimensional space. An agent’s location in the space represents

its information topicality. Therefore, finding relevant sources for an information need
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is to route the query to agents in the relevant topical space. To simplify the discussion,

assume all agents can be characterized using a two-dimensional space. Figure 4.1 (a)

visualizes a 2D circle (1-sphere) representation of the information space. Let agent Au

be the one who has an information need whereas agent Av has the relevant information.

The problem becomes how agents in the connected society, without global information,

can collectively construct a short path to Av. In Figure 4.1 (a), the query traverses a

search path Au → Ab → Ac → Ad → Av to reach the target. While agents Ab and Ad

help move the query toward the target gradually (through strong ties), agent Ac has a

remote connection (weak tie) for the query to “jump.”

Neighbor Selection for Query Forwarding

For decentralized search, direction matters. Pointing to the right direction to the rel-

evant topical space means agents have some ability for query analysis and determine

which neighbor(s) to be contacted given a query representation. When an agent receives

a query, it first runs a local search operation to identify potential relevant information

from its individual document collection. If local results are unsatisfactory, the agent

will contact his neighbors for help. Therefore, there should be a mechanism of match

query representation with potential good neighbors. By good neighbor, we mean an

agent on a short path to the targeted information space – either the neighbor is likely

to have relevant information to answer the query directly or in a neighborhood closer

to relevant targets1. Agents explore their neighborhoods through interactions and de-

velop some knowledge about who serves and/or connects to what information. The

agent environment is assumed to be cooperative – that is, agents are willing to share

information about their topicality and connectivity.

1See also Singh et al. (2001) and Yu and Singh (2003) for related concepts expertise and sociability.
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Network Clustering for Global Search Guidance

Network topology plays an important role in decentralized search. As discussed ear-

lier, topical segmentation based techniques such as semantic overlay networks (SONs)

have been widely used for efficient peer-to-peer information retrieval (Doulkeridis et al.,

2008). Through self-organization, similar peers form topical partitions, which provide

some association between the topological (network) space and the topical space to

guide searches. The clustering paradox, if applicable in the IR context, implies that

such an association, in the form of clustering exponent α, is critical for efficient nav-

igation in networks (Kleinberg, 2000b; Liben-Nowell et al., 2005; Boguñá et al., 2009;

Ke and Mostafa, 2009). The TranSeen framework has a mechanism for self-organized

rewiring and network clustering, which influences the balance of strong ties vs. weak ties

for efficient routing, as discussed in depth in Section 3.2.1 and illustrated in Figure 3.3.

Section 4.2.3 has the algorithmic detail about network clustering.

4.2 Algorithms

In the previous section, we described the TranSeen multi-agent framework for de-

centralized search. Figure 4.1 (b) illustrates how various components work together

within each agent. The TranSeen system is being implemented in Java, based on two

well-known open-source platforms: 1) JADE, a multi-agent system/middle-ware that

complies with the FIPA (the Foundation for Intelligent Physical Agents) specifications

(Bellifemine et al., 2007), and 2) Lucene, a high-performance library for full-text search

(Hatcher et al., 2010).

This section will elaborate on specific algorithms implemented in the TranSeen

framework and used in the research. Section 4.2.1 (A) presents the TF*IDF weighting
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scheme for information representation (to represent documents and queries) while sec-

tion 4.2.1 (B) discusses a similar method we refer to as DF*INF for neighbor (agent)

representation. Section 4.2.1 (C) discusses the cosine coefficient for measuring the sim-

ilarity of two information items. Section 4.2.2 describes five search (neighbor selection)

algorithms based on neighbor relevance (similarity) and/or connectivity. Section 4.2.3

elaborates on the function for agent rewiring (clustering) based on clustering exponent

α and degree exponent γ.

4.2.1 Basic Functions

(A) TF*IDF Information Representation

We use the Vector-Space Model (VSM) for information (document and query) rep-

resentation (Baeza-Yates and Ribeiro-Neto, 2004). Given that information is highly

distributed, a global thesaurus is not assumed. Instead, each agent has to process in-

formation it individually has and produces a local term space, which is used to represent

each information item using the TF*IDF (Term Frequency * Inverse Document Fre-

quency) weighting scheme. An information item (e.g., a document) is then converted

to a numerical vector of terms where term t is computed by:

W (t) = tf(t) · log(
N

df(t)
) (4.1)

where tf(t) is the frequency of term t of the term space in the information item, N

is the total number of information items (e.g., documents) in an agent’s local collection,

and df(t) is the number of information items in the set containing term t of the term

space. We refer to log( N
df(t)

) as IDF. IDF values were computed within the information

space of an agent given no global information. This is to follow the assumption that

global information is not available to individuals and it is impossible to aggregate all
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documents in the network to get global DF values.

(B) DF*INF Agent Representation

For neighbor (agent) representation, we will use a similar mechanism. Specifically, we

assume agents are able to collect their direct neighbors’ document frequency (DF) infor-

mation and use it to represent each neighbor as a metadocument of terms. Distributed

IR research has shown DF information useful for collection selection (Callan et al.,

1995; Powell and French, 2003). Treating each metadocument as a normal document,

it becomes straightforward to calculate neighbor frequency (NF) values of terms, i.e.,

the number of metadocuments (neighbors) that contains a particular term. A meta-

document (neighbor) is then represented as a vector where term t is computed by:

W ′(t) = df ′(t) · log(
N ′

nf ′(t)
) (4.2)

where df ′(t) is the frequency of the term t of the term space in the metadocument,

N ′ is the total number of an agent’s neighbors (metadocuments), and nf ′(t) is the

number of neighbors containing the term t. We refer to this function as DF*INF, or

document frequency * inverse neighbor frequency.

(C) Similarity Scoring Function

Based on the term vectors produced by the TF*IDF (or DF*INF) representation scheme

described above, pair-wise similarity values can be computed. Given a query q, the

similarity score of a document d matching the query is computed by :

∑

t∈q

tf(t) · idf 2(t) · coord(q, d) · queryNorm(q) (4.3)
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where tf(t) is term frequency of term t in document d, idf(t) the inverse docu-

ment frequency of t, coord(q, d) a coordination factor based on the number of terms

shared by q and d, and queryNorm(q) a normalization value for query q given the

sum of squared weights of query terms. The function is a variation of the well-known

cosine similarity measure. Additional details can be found in Hatcher et al. (2010);

Baeza-Yates and Ribeiro-Neto (2004). Given a query, an agent will use this scoring

function to rank its local documents and determine whether it has relevant information.

In addition, when an agent has to contact a neighbor for the query, similarity-based

neighbor selection methods will use this to evaluate how similar/relevant a neighbor is

to a query.

(D) Retrieval Federation/Fusion Method

In some of the search tasks we plan to investigate (e.g., Relevance Search and Au-

thority Search tasks described in Section 5.3), search results will contain a rank list

of relevant documents from multiple distributed systems. Result fusion/federation has

been an important research topic in distributed IR. Drawing on ideas from classic fed-

eration models such as DORI and GlOSS (Gravano et al., 1994; Callan et al., 1995;

French et al., 1999), we plan to use the following method in our experiments.

First, when a search is done (i.e., a query finishes traversing a network for relevant

documents), the method will select top ns (e.g., 5) systems whose metadocuments

are most relevant/similar to the query (based on the DF*INF and similarity scoring

functions described above). Each of the selected systems will be queried again to

provide a list of top nd (e.g., 20) most relevant documents. Given similarity score Sd of

document d from a system with a metadocument similarity score Sm, the document’s

similarity score is then normalized to:
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S ′
d = Sd · Sm (4.4)

All the ns ·nd documents are sorted in terms of their normalized scores S ′
d. Only top

nT (a predefined parameter in each experiment, e.g., 10) documents will be retrieved as

search results. Results will then be evaluated using normalized discounted cumulative

gain (nDCG) at position nT described in Section 5.5.

4.2.2 Neighbor Selection Strategies (Search Algorithms)

The similarity scoring function above produces output about each neighbor’s similar-

ity/relevance to a query. Based on this output, we further propose the following strate-

gies to decide which neighbors should be contacted for the query. Each search will

keep track of all agents on the search path. All strategies below will ignore neighbors

who have been contacted for a query. These strategies will be tested and compared in

experiments.

Random Walk (RW): Effectiveness Lower-bound

The Random Walk (RW) strategy ignores knowledge about neighbors and simply for-

wards a query to a random neighbor. Without any learning module, Random Walk is

presumably neither efficient nor effective. Hence, the Random Walk will serve as the

search performance lower-bound.

SIM Search: Similarity-based Greedy Routing

Let k be the number of neighbors an agent has and S = [s1, .., sk] be the similarity

vector about each neighbor’s relevance to a query. The SIM method sorts the vector

and forwards the query to the neighbor with the highest score. With greedy routing,

only one instance of the query will be forwarded from one agent to another until relevant
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information is found or some predefined conditions are met (e.g., the maximum search

path length or Time to Live (TTL) is reached).

To obtain the similarity vector given a query, neighbors should be represented to

reflect document collections they have. Query-based sampling techniques can be used to

obtain this information. In order to simplify the process and focus on major findability

challenges, we assume that agents are cooperative – that is, they share with one another

document frequency (DF) values of key terms in their collections, based on which a meta

document can be created as representative of a neighbor’s topical area. A query is then

compared with each meta document, represented by DF*INF (see Equation 4.2), to

generate the cosine similarity vector S.

DEG Search: Degree-based Greedy Routing

In the degree-based strategy, we further assume that information about neighbors’

degrees, i.e., their numbers of neighbors, is known to the current agent. Let D =

[d1, .., dk] denote degrees of an agent’s neighbors. The DEG method sorts the D vector

and forwards the query to the neighbor with the highest degree, regardless of what a

query is about. Related degree-based methods were found to be useful for decentralized

search in power-law networks (Adamic et al., 2001; Adamic and Adar, 2005).

SimDeg: Similarity*Degree Greedy Routing

The SimDeg method is to combine information about neighbors’ relevance to a query

and their degrees. Simsek and Jensen (2008) reasoned that a navigation decision relies

on the estimate of a neighbor’s distance from the target, or the probability that the

neighbor links to the target directly, and proposed a measure based on the product

of a degree term (d) and a similarity term (s) to approximate the expected distance.

Following the same formulation, the SimDeg method uses a combined measure SD =
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[s1 · d1, .., sk · dk] to rank neighbors, given neighbor relevance vector S = [s1, .., sk] and

neighbor degree vector D = [d1, .., dk]. A query will be forwarded to the neighbor with

the highest sd value. Simsek and Jensen (2008) showed that this combined method is

sensitive to the ratio of values between two neighbors, not the actual values that might

not be accurately measured.

4.2.3 System Connectivity and Network Clustering

For network clustering, the first step is to determine how many links (degree du) each

distributed system u should have. Once the degree is determined, the system will

interact with a large number of other systems (from a random pool) and select only

du systems as neighbors based on a connectivity probability function guided by the

clustering exponent α.

In main experiments on the ClueWeb09B collection (details in Section 5.1), we

collect information about each web site/system’s incoming hyperlinks and normalize the

in-degrees as their du values. We will control the range of degree distribution [dmin, dmax]

for the normalization and study its impact on search performance. Given the number

of incoming hyperlinks d′u of system u, the normalized degree will be computed by:

du = dmin +
(dmax − dmin) · (d

′
u − d′min)

d′max − d′min

(4.5)

where d′max is the maximum degree value in the hyperlink indegree distribution

and d′min the minimum value in the same distribution. Once degree du is determined

from the degree distribution, a number of random systems/agents will be added to its

neighborhood such that the total number of neighbors d̂u ≫ du, e.g., d̂u = 1, 000 given

du = 30. Then, the current agent (u) queries each of the d̂u neighbors (v) to determine

their topical distance ruv. Finally, the following connection probability function is used

by system u to decide who should remain as neighbors (overlay):
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puv ∝ r−α
uv (4.6)

where α is the clustering exponent and ruv the pairwise topical (search) distance.

The finalized neighborhood size will become the expected number of neighbors, i.e.,

du. With a positive α value, the larger the topical distance, the less likely two sys-

tems/agents will connect. As illustrated in Figure 3.4, large α values lead to highly

clustered networks while small values produce random networks with many topically

remote connections or weak ties.
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Chapter 5

Experimental Design

5.1 Data Collection

We plan to use the ClueWeb09 Category B collection created by the Language Tech-

nologies Institute at Carnegie Mellon University for IR experiments. The ClueWeb09

collection contains roughly 1 billion web pages (25 TB uncompressed) and 8 billion out-

links (71 GB uncompressed) crawled during January - February 2009. The Category

B is a smaller subset containing the first crawl of 50 million English pages (1 TB un-

compressed) from 3 million sites with 454 million outlinks (3 GB uncompressed). The

ClueWeb09 dataset, though new in its first year, has been adopted by several TREC

tracks including Web track and Million Query track. Additional details about the

ClueWeb09 collection can be found at http://boston.lti.cs.cmu.edu/Data/clueweb09/.

A hyperlink graph is provided for the entire collection and the Category B subset.

Anchor text, however, is not provided as part of the link graph. In the Category B

subset, there are 428,136,613 nodes and 454,075,604 edges (hyperlinks). Nodes include

the first crawl of 50 million pages and additional pages that were linked to. Only

18,607,029 nodes are the sources (starting pages) of the edges (average 24 outlinks per

node) whereas 409,529,584 nodes do not have outgoing links captured in the subset.

http://boston.lti.cs.cmu.edu/Data/clueweb09/


Analysis of the Category B hyperlink graph produces Figures 5.1 (a) in-degree frequency

distribution and (b) out-degree distribution (on log/log coordinates). The in-degree

distribution has two linear parts on the log/log coordinates, with a cutoff at k ≈ 50.
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Figure 5.1: ClueWeb09 Category B Web Graph: Degree Distribution

Based on 50, 221, 776 pages extracted from 2, 777, 321 unique domains (treated as

sites) in the Category B subset, we have also analyzed # pages per web site distribu-

tions. The mean number of pages per site is 18. The distribution of the number of

pages per site is shown on log/log coordinates in Figure 5.2 (a). Figure 5.2 (b) shows

the cumulative distribution, in which the Y dimension denotes frequency of web sites

with a size ≥ s represented on X .

Figure 5.3 (a) shows page size (text length) frequency distribution on log/log co-

ordinates. There are a couple of visible high points on the graph – that is, many web

pages have a content length of roughly 12 KB, 17 KB, or 65 KB. The mean size is 1, 109

KB while the median is 622 KB. Figure 5.3 (b) shows the cumulative form, in which

the Y dimension denotes the frequency of page size ≥ l represented on X .

We also analyzed the distribution of web pages across major top level domains such

as .com and .edu. Figure 5.4 shows major top level domains with the largest numbers
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Figure 5.2: ClueWeb09 Category B Data: # pages per site distribution

of web pages. Note that Y is log-transformed.

Another dataset from TREC, namely Genomics track 2004 benchmark collection,

is being considered in this research for additional experiments. The data collection

is a ten-year subset of Medline from 1994 to 2003, with roughly 4, 591, 008 citations

containing titles, abstracts, authors, etc. (Hersh et al., 2004). The number of articles in

each year is shown in Figure 5.5 (a). There are 808, 771 unique scholars and 17, 443, 160

author-article pairs. On average, each scholar (co-)authored five to six articles while

each article has roughly three to four authors. Figure 5.5 (b) shows the frequency

distribution of scholarly productivity (or the number of articles each scholar published)

in the TREC Genomics collection. Probably due to name ambiguity, there are several

authors who published more than one thousand papers (bottom-right of Figure 5.5 (b)).

5.2 Network Model

Based on the TREC data collections, two types of networks can be constructed, namely,

document networks and agent (system) networks. The primary focus of the proposed

study is on decentralized search in networks where information is hosted by distributed
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Figure 5.3: ClueWeb09 Category B Data: Page length distribution

systems/agents. Hence, experiments will conducted on the Agent Network (AN) model

described here. We provide information about additional models that can be used in

future studies in Appendix E.

In the Agent Network (AN) model, each agent represents an IR system serving a

collection of multiple documents. We assume that there is no global information about

all document collections. Nor is there centralized control over individual agents. Agents

have to represent themselves using local information they have and evaluate relevance

based on that. Using web data such as the ClueWeb09 collection, we can simply

treat a web site as an agent and use hyperlinks between sites to construct the initial

network. For a bibliographical dataset such as the TREC Genomics 2004, we can treat

a scholar/author as an agent hosting articles they have published and use collaboration

data (e.g., co-authorship) to establish the initial network topology. Network clustering

will then be performed using the method described in Section 4.2.3.

120



com org edu net uk gov de us ca au it info jp fr cn

Top Level Domains

N
um

be
r 

of
 W

eb
 P

ag
es

1e
+

05
5e

+
05

2e
+

06
1e

+
07

Figure 5.4: ClueWeb09 Category B Data: # web pages per top domain

5.3 Task Levels

Given the large size of TREC data collections to be used, it is nearly impossible to man-

ually judge the relevance of every document and establish a complete relevance base.

Hence, we will rely on existing evidence in data to do automatic relevance judgment.

We plan to use documents (with title and content/abstract) as queries to simulate de-

centralized search on three task levels, each of which involves some arbitrary mechanism

to determine whether a document is relevant to a query. We elaborate on the three

levels below.

5.3.1 Task Level 1: Threshold-based Relevance Search

The first level involves finding documents with relevant information. Relevant docuem-

nts are considered few, if not rare, given a particular information need. For evaluation

purposes, we will first perform centralized IR operations on the entire collection and

treat top-ranked documents (e.g., top 100 of 50 million) as the relevant set, which will
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Figure 5.5: TREC Genomics 2004 Data Distributions

then be used in decentralized IR experiments for relevance judgment. The approach is

potentially biased by the centralized IR system employed and is therefore not entirely

objective. However, this will establish an evaluation baseline and provide basic ideas

about how well search methods work.

5.3.2 Task Level 2: Co-citation-based Authority Search

The second task level involves finding agents that are best “regarded” as relevant to

the query (i.e., a web page). On this level, we define relevant documents as those that

are frequently cited together (linked to) with the given query document. Agents who

host one or more of such documents are therefore considered relevant to the query. On

the web, citation-based (link-based) techniques have been shown to effectively iden-

tify authority evidence (Page et al., 1998; Kleinberg et al., 1999). More importantly,

research showed co-citation techniques are very accurate at discovering similar, impor-

tant (web) documents (e.g., Dean and Henzinger, 1999). This task level, relying on

co-citation patterns as relevance/authority judgment, is potentially more objective but
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challenging than the first level. It can also be seen as popular1 item search because a

web document receives many in-links (and co-citations) only when it has achieved some

popularity level.

5.3.3 Task Level 3: Rare Known-Item Search (Exact Match)

The third task level, presumably most challenging, is to find the source of a given doc-

ument (query). Specifically, when a query document is assigned to an agent, the task

involves finding the site or author who created it and therefore hosts it. In other words,

in order to satisfy a query, an agent must have the exact document in its local collec-

tion. The strength of this task is that relevance judgment is well established provided

the relative objectiveness and unambiguity of creatorship or a “hosting” relationship.

However, in a sense, this is a finding-needle-in-haystack task. Among the 50 million

pages in the ClueWeb09 collection, for example, there are likely only a few copies of

a document being searched for. The extreme rarity will pose a great challenge on the

proposed decentralized search methods.

5.4 Additional Independent Variables

5.4.1 Degree Distribution: dmin and dmax

We will use the degree (in-degree) distribution of the ClueWeb09B hyperlink graph and

normalize the distribution to fall in a range [dmin, dmax]. With different dmin and dmax

values, the degree distribution will continue to follow a pattern similar to Figure 5.1 but

is with a different degree distribution exponent γ because the slope on log-log changes.

We plan to use three degree ranges, namely, [30, 30], [30, 60], and [30, 120] to examine

1Popularity here is in terms of the frequency of an item being cited, rather than the number of
copies that have been duplicated, e.g., in peer-to-peer networks.
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the impact of degree distribution on decentralized searches. With the range [30, 30], all

agents/systems share one common degree, i.e., 30.

5.4.2 Network Clustering: Clustering Exponent α

Based on a degree du picked from a distribution, the clustering exponent α controls

the probability of topically relevant or irrelevant agents connecting to each other (see

Section 4.2.3 for details). We will study the impact of α ∈ [0,∞) on search performance.

As shown in Figures 3.3 and 3.4, when α = 0, the network becomes a random network

as connectivity is independent of topical relevance. When α → ∞, the network is

extremely clustered, in which agents only connect to very close (topically relevant or

similar) neighbors.
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Figure 5.6: Results on Search Path Length τ vs. Clustering Exponent α, based on experimental
replications of Kleinberg (2000b).

To establish a reasonable range of α for experimentation in the proposed study, we

have replicated experimental simulations of Kleinberg (2000b) on various network size

scales. As shown in Figures 5.6 (a) and (b), optimal α is smaller than dimensionality

of the network model (e.g., < 2 for a 2D space) and potentially converges to the

dimensionality when network size becomes extremely large. Further experiments in a

distributed IR environment (in a network of thousands of agents) indicated that search
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is potentially optimal in the range of α ∈ [3, .., 4]. Hence, we plan to use a slightly

wider range α ∈ [0, 1, 2, 3, 4, 5] plus a very large value (1000) to simulate ∞.

Clustering exponent α offers one simple parameter to control network clustering.

This allows simplicity in the analysis of clustering impact on search performance.

Nonetheless, in order to understand network dynamics that support searches, we may

also conduct analysis on tie strength, i.e., strong ties vs. weak ties, to provide poten-

tially more intuitive insight. Discussions on measuring tie strength on multiple levels

can be found in Section 3.4.

5.4.3 Maximum Search Path Length Lmax

Provided the importance of overall network utility and scalability of search, we propose

the use of a parameter, namely the maximum search path length Lmax, which defines the

longest path each search is allowed to traverse. If a search reaches the maximum value,

even when the query has not been answered, the task will be terminated and returned to

its originator. In our replicated experiments on abstract models, as shown in Figures 5.6

(a) and (c), optimal search path length τ roughly follows τ = 1.6 · log210(N), where N is

network size. Treating this as one unit τunit, we will run experiments on a useful range

of Lmax ∈ [τunit, 2 · τunit, 4 · τunit, 8 · τunit, 16 · τunit] in terms of the experimented network

size.

5.5 Evaluation: Dependent Variables

IR research in distributed networked environments, with tools from peer-to-peer and

multi-agent research, has produced promising results on finding relevant information

(Bawa et al., 2003; Crespo and Garcia-Molina, 2005; Zhang and Lesser, 2006; Lu and Callan,

2007). These experiments, however, were typically concentrated on recall. Even when
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dealing with large networks, queries used in the experiments were often very broad to

have a large relevance base.

Serving diverse users in an open, dynamic environment, implies that some queries

are likely to be narrowly defined. The proposed study will focus on how relevant

information can be found and scalability of decentralized searches. We emphasize the

finding of highly relevant information in large distributed environments and propose

the use of the following evaluation measures.

5.5.1 Effectiveness: Traditional IR Metrics

We plan to use traditional IR effectiveness metrics such as precision, recall, F, and

discounted cumulative gain (DCG) for effectiveness evaluation. Of various evaluation

metrics used in TREC and IR, precision and recall are the basic forms. Whereas preci-

sion P measures the fraction of retrieved documents being relevant, recall R evaluates

the fraction of relevant documents being retrieved. The harmonic mean of precision

and recall, known as F1, is computed by:

F1 =
2 · P · R

P +R
(5.1)

In addition, Jarvelin and Kekalainen (2002) proposed several cumulative gain based

metrics for IR evaluation. Specifically, given a rank list of retrieval results, the dis-

counted cumulative gain at a rank position p is defined as:

DCGp = rel1 +

p
∑

i=2

reli
log2 i

(5.2)

where reli is the relevance value of the item at position i. Because search results

(and rank list length) vary on queries, a normalized DCG function was also proposed

for values to be compared and aggregated across multiple queries. Given an ideal DCG
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at position p (DCG achieved based on sorted relevance) iDCG, the normalized DCG

is computed by:

nDCGp =
DCGp

iDCGp
(5.3)

We will primarily use precision, recall, and F1 for evaluating results from exact

match searches. For each query, recall is 1 when an exact match is found; recall is 0

if otherwise. Normalized discounted cumulative gain at position 10 (nDCG10) will be

used in relevance search and authority search experiments, where a federated rank list

of documents gets retrieved for each query.

5.5.2 Effectiveness: Completion Rate

In some search tasks, the goal is not to retrieve relevant documents, but to find relevant

peers/systems. We refer to this type of task as expert finding or relevant peer search,

which will be conducted on the TREC Genomics 2004 collection. A search is considered

successful when at least one relevant peer is found. Completion rate Rc can then by

computed by:

Rc =
Nsuccess

Nqueries
(5.4)

where Nqueries is the total number of queries or searches having been conducted and

Nsuccess the number of successful searches given parametrized limits.

5.5.3 Efficiency

For efficiency, the maximum search path length Lmax (or the max number of hops

allowed) will be controlled in each experiment while the actual search path length will

be recorded. The average search length of all tasks can therefore be calculated to
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measure efficiency:

L̄ =

∑Nq

i=1 Li

Nq

(5.5)

where Li is the search path length of the ith query and Nq the total number of

queries. With shorter path lengths, the entire distributed system is considered more

efficient given fewer agents involved in searches.

Like precision vs. recall, there is tradeoff between effectiveness and efficiency. By

definition, precision is 1 when no document is retrieved; recall is 1 when all documents

are retrieved. Evaluation is useful only when both metrics are considered. The same

applies to effectiveness and efficiency. In the proposed study, our goal is to achieve both

high effectiveness and high overall network utility. As discussed in Section 1, methods

such as flooding are not desirable even when achieving 100% completion rate because

they involve a large number of agents for each search. Effectiveness vs. efficiency plots

will be used for comparison.

5.6 Scalability Analysis

One important objective of this research is to learn how decentralized IR systems can

function and scale in large, heterogeneous, and dynamic network environments. Find-

ings are useless if they are only based on small network sizes. For scalability, we will run

experiments on different network size scales. Effectiveness vs. efficiency patterns will

be compared to discover how search methods work on the size scales. Best results in

terms of efficiency and effectiveness will also be compared and plotted against network

size. Their functional relationships with network size will be analyzed.

Complex network research has found a logarithmic function between search effi-

ciency and network size – that is, under optimal settings, decentralized search time τ is
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bounded by c(logN)2, where N is the network size. Hypothesis 2 states that a similar

poly-logarithmic function is possible for IR in networked environments.

In the decentralized IR context, one additional factor in the scalability analysis is

relevance rarity NR, defined as:

NR = N/Nrel (5.6)

where N is the total number of agents (network size) and Nrel the number of all

agents hosting relevant information to a query. This represents the average size of an

agent population for one relevant agent to appear. The larger the rarity NR, the rarer

relevant agents are – so it becomes more challenging to find them. Scalability analysis

will also be conducted on search effectiveness/efficiency vs. relevance rarity to identify

their functional relationships in optimal searches. In exact match tasks, relevance rarity

NR is identical to network size N given that there is only one document relevant to

each query (Nrel = 1).

5.7 Parameter Settings

Table 5.1 summarizes some of the major independent variables discussed above and

presents combinations of parameters to be tested in the proposed experiments. Under

each experimental setting, each of four proposed search methods will be employed to

conduct searches. Effectiveness and efficiency results will be recorded automatically

for later analysis. Parameter values in the table have been chosen based on pilot

experiments conducted earlier.
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N (Lmax) Task Level α Degree Range Search Method

102 (20) Relevance Search 0 [30, 30] Random Walk (RW)
1

103 (100) 2 Similarity (SIM) Search
Authority Search 3 [30,60]

104 (500) 4 Degree (DEG) Search
5

105 (2500) Exact Match .. [30, 120] Similarity+Degree (SimDeg)

Table 5.1: Major Experimental Settings. Symbols: N denotes network size, i.e., the number of
distributed system in the network; Lmax denotes maximum search path length allowed in each
experiment; α is clustering exponent. Main experiments will be focused on Exact Match searches
in networks of a degree range d ∈ [30, 60].

5.8 Simulation Procedures

Experiments will be conducted on a Linux cluster of 10 PC nodes, each has Dual Intel

Xeon e5405 (2.0 Ghz) Quad Core Processors (8 processors), 8 GB fully buffered system

memory, and a Fedora 7 installation. The nodes are connected internally through a

dedicated 1Gb network switch. The agents (distributed IR systems) will be equally

distributed among the 80 processors, each of which loads an agent container in Java,

reserves 1GB memory, and communicates to each other. The Java Runtime Environ-

ment version for this study is 1.6.0 07. Simulation runs will be mostly automated. We

provide the pseudo code on how experiments will be conducted in Algorithm 1.
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Algorithm 1 Simulation Experiments

1: for each Network Size N ∈ [102, 103, 104, 105] do
2: for each Task Level ∈ [Relevant, Authority, ExactMatch] do
3: for each Clustering Exponent α ∈ [0, 1, 2, 3, 4, 5] do
4: rewire the network using α
5: for each Search Method ∈ [SIM, SimDeg,DEG,RW ] do
6: for each Query do
7: repeat
8: forward a query from one agent/system to another
9: until relevant found OR search path length L ≥ Lmax

10: if relevant found, i.e., similarity scores surpass a threshold then
11: if task is Relevant Search OR Authority Search then
12: query additional neighbors for more relevant documents
13: else if task is Exact Match Search then
14: retrieve the most similar/relevant document
15: end if
16: send the results back to the first agent/system
17: merge and rank all retrieved documents
18: else
19: send message back about failure
20: end if
21: end for
22: measure search effectiveness: precision, recall, F1, nDCG10, and/or Rc

23: measure search efficiency: search path length L and search time τ
24: end for
25: end for
26: end for
27: end for
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Chapter 6

Experimental Results

In the presentation of experimental results, we focus on rare known-item (exact match)

searches on the ClueWeb09B collection described in Section 6.1. We report on detailed

results in Section 6.2 and analyze the clustering paradox in Section 6.3. We evaluate

scalability of searches in Section 6.4 and scalability of network clustering in Section 6.5.

Section 6.6 presents results on search performances when degree distribution varies.

Section 6.7 discusses additional results from relevance search (Section 6.7.1), author-

ity search (Section 6.7.2), and experiments on the TREC Genomics 2004 collection

(Section 6.7.3). We summarize evidence for answers to main hypotheses in Section 6.8.

6.1 Main Experiments on ClueWeb09B

For experiments on the ClueWeb09B collection, we identified 85 documents (web pages

with title and content) from 100 most highly connected (popular) web domains (sys-

tems) by random sampling and manual selection. These 85 web documents were used

as queries in most of our decentralized search experiments1. Main experiments were

1Only 38 queries were used for the task level of authority searches because the others did not have
sufficient incoming hyperlinks for authority evaluation.



focused on finding exact match documents (rare known items) because this task level,

challenging in a distributed environment, can be objectively evaluated.

We sorted all Web domains in the ClueWeb09B collection by connectivity/popularity

and started with the 100 most highly connected web domains for experiments on the

100-system network. Then we extended the network to include more systems on the

sorted list for larger network sizes N ∈ [102, 103, 104, 105]. We set the max search length

length Lmax to [20, 100, 500, 2500] for the network sizes respectively. Table 6.1 shows

the number of web documents in each network thus constructed.

Network Size N 100 1, 000 10, 000 100, 000
Number of Documents ND 0.5 million 1.7 million 4.4 million 10.5 million

Table 6.1: Network Sizes and Total Numbers of Docs

With each network size, we varied the clustering exponent α for network construc-

tion and tested each of the four proposed search methods, namely, Random Walk

(RW), Similarity Search (SIM), Degree Search (DEG), and Similarity*Degree Search

(SimDeg). To determine the number of links (degree) each system should have, we

utilized the Web graph of the ClueWeb09B collection and normalized the degree distri-

bution to the range of [30, 60]2. In all experiments, no document identification informa-

tion was used for indexing or searching. Sections 6.2.1, 6.2.2, 6.2.3, and 6.2.4 present

main experimental results (both effectiveness and efficiency) on the different network

size scales.

133



0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clustering Exponent (ALPHA)

R
ec

al
l Network Size: 100

Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clustering Exponent (ALPHA)

P
re

ci
si

on

Network Size: 100
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

(a) Recall vs. Network Clustering α (b) Precision vs. Network Clustering α

Figure 6.1: Effectiveness on 100-System Network

6.2 Rare Known-Item (Exact Match) Search

6.2.1 100-System Network

Figure 6.1 plots search performance in terms of effectiveness (recall and precision)

across different network clustering levels α ∈ [0, 1, 2, 3, 4, 5] on the 100-system network.

Overall, similarity search (SIM) and similarity*degree (SimDeg) methods performed

very well in terms of effectiveness, showing a very large advantage in recall over degree

(DEG) search and random-walk (RW) methods. For example, as shown in Figure 6.1

(a), SIM and SimDeg searches achieved above 0.9 recall at α = 3 while DEG and RW

searches only had recall values around 0.2. In all searches, precision was maintained at

1.0 because a document was retrieved only when it exactly matched a query (Figure 6.1

(b)).

In terms of efficiency, SIM and SimDeg searches also performed much better than

2The majority had a degree of 30 while very few had 60 connections. Degree ranges [30, 30] and
[30, 120] were used in additional experiments.
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Figure 6.2: Efficiency on 100-System Network

DEG and RW methods on the 100-system network. Figures 6.2 (a) and (b) show

efficiency (search path length and search time respectively) vs. network clustering α.

Whereas SIM and SimDeg methods only involved 5 systems and took less then 150

milliseconds to reach a recall of 0.9 at α = 3, RW and DEG searches traversed 17− 18

systems (and more than 400 milliseconds) for a roughly 0.2 recall. The differences are

large and statistically significant3.

In Figures 6.1 and 6.2, the impact of network clustering (guided by α) on search

performance is not clearly shown. As discussed in Section 3.2, among others, network

structure is increasingly relevant in larger networks, where it becomes important to find

a balance between strong ties for search guidance and weak ties for “jumps.” In small

networks of 100 systems, a balance of strong ties vs. weak ties is likely less crucial – in

a small community, bridges among “remote” segments may not be essentially needed.

In Figure 6.2 (b), results on actual search time look consistent with the search

3In discussions that follow, reported differences are statistically significant unless stated otherwise.

135



path length plot shown in Figure 6.2 (a). Treating query processing of each system as

one computational unit, we will use search path length as a surrogate for search time.

In the following sections, the presentation on efficiency results will be concentrated

on search path length. In addition, we will use a single F1 metric, which combines

precision and recall, to simplify discussions on effectiveness results in larger networks

N ∈ [103, 104, 105].

6.2.2 1,000-System Network
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Figure 6.3: Performance on 1,000-System Network

When the network was extended to 1, 000 systems, SIM and SimDeg search methods

continued to show large advantages on search performance. As shown in Figure 6.3 (a)

and (b), SIM search achieved its best performance higher than 0.9 F1 by only traversing

less than 30 systems (or 3%) in the network. The RW method, as a baseline, involved

roughly 90 systems to reach 0.2 F1. The DEG search appeared to perform much better

than RW in the 1, 000-system network. Because queries used in the experiments were

about web documents in the 100 most highly connected sites/systems, DEG search,
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relying on connectivity information, was able to get out of less connected systems very

quickly to reach targets in popular domains.

Based on results from the 1, 000-system network, it is still unclear how network

structure influenced search performance – visually, there is no obvious pattern of inflec-

tion in Figures 6.3 (a) and (b). In the following sections, we will discuss results from

experiments on the 10, 000- and 100, 000-system networks, and present initial evidence,

which appears to support the Clustering Paradox.

6.2.3 10,000-System Network
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Figure 6.4: Performance on 10,000-System Network

When the network was extended to 10, 000 systems, some interesting patterns on

search performances began to emerge. As shown in Figure 6.4 (a) and (b), while SIM

and SimDeg searches continued to dominate search performance both in effectiveness

(F1) and efficiency (search path length), some network clustering levels appeared to

produce better results than others. For example, SIM search achieved best effectiveness

(highest F1 score) and efficiency (smallest search path length) at α = 2. Reducing α
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(weaker clustering) or increasing α (stronger clustering) led to degraded performances.

The plots provide visual evidence about the Clustering Paradox in IR, in which neither

under- nor over-clustering is desirable. Section 6.3 presents an in-depth statistical

analysis of this phenomenon.

DEG search performances over clustering levels α ∈ [0, 1, .., 5] follow a very differ-

ence pattern. Interestingly, DEG search achieved its best performance at α = 0, i.e.,

with no clustering in a random network. The SimDeg method, which combines similar-

ity and degree information, appears to have mixed the performances of SIM and DEG

methods in Figure 6.4 (a) and (b). It remains a question why DEG searches performed

very well in random networks without clustering while any level of clustering in the

study degraded DEG search performance.

6.2.4 100,000-System Network

Because SIM search produced superior results in the [102, 103, 104]-system networks,

we concentrated on SIM searches for experiments in the largest network proposed, i.e.,

the network of 100, 000 systems. Another reason for not conducting experiments on

the other search methods was because of time constraints – other methods such as RW

were much less efficient and would have taken a very long time to finish with the large

network size 105.

A similar pattern on SIM search performance continued to appear in the 100, 000-

system network, where more than 10 million documents were served. As shown in

Figures 6.5 (a) and (b), SIM search achieved its best effectiveness and efficiency also

at α = 2. Smaller α (weaker clustering) or larger α values (stronger clustering) led to

noticeable performance degradation. The inflection at α = 2 looks much sharper in the

100, 000-system network than in the 10, 000-system network, suggesting a potentially

stronger impact of network clustering on search performance. We conducted further
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Figure 6.5: Performance on 100,000-System Network. Line is the average of individual data
points at each α level.

analysis and relied on statistical tests to better understand the impact of connectivity,

to predict the scalability of search, and to answer related research questions. We discuss

these tests and findings in the following Sections 6.3 and 6.4.
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6.3 Clustering Paradox

Given that the Similarity Search (SIM) method was shown to perform much better

than the other methods, we focus on SIM search in the discussion about the impact of

network clustering on search performance.
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Figure 6.6: Performance on All Network Sizes

Figure 6.6 shows SIM search performances over network clustering levels α ∈ [0, 1, 2, 3, 4, 5]

of networks N ∈ [102, 103, 104, 105] in terms of (a) effectiveness and (b) efficiency. Both

sub-figures demonstrate that network structure (clustering) had an important impact

on decentralized IR performance, particularly in larger networks. Some level of net-

work clustering (i.e., α = 2 in the experiments) supported best search performance.

Effectiveness and efficiency degraded when there was stronger or weaker clustering.

While search efficiency (search path length) under different clustering conditions

only differed slightly or moderately in the 100-, 1, 000-, and 10, 000-system networks,

the difference was dramatic in the network of 100, 000 systems (Figure 6.6 (b)). For

example, when α increased from 2 → 3 in the 10, 000-system network, search path
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length increased from about 190 to 220, roughly a 30 hops (or 15%) increase. The same

degree of network clustering change, however, resulted in an increase of search path

length roughly from 1000 to 1550, by 550 hops (or 55%).

Statistical tests indicated that SIM search achieved significantly better results with

a balanced level of network clustering (i.e., at α = 2) than with over- or under-

clustering. The significant differences appeared in both the 10, 000-system network

and the 100, 000-system network. Results from the tests are shown in Tables 6.2, 6.3

(10, 000-system network) and Tables 6.4, 6.5 (100, 000-system network). We elaborate

on the results below4.

Comparison Difference in F1 Error t value Pr(> |t|) R2

α : 0 → 1 0.08471 0.01299 6.519 0.00018 *** 0.842
α : 1 → 2 0.03294 0.01065 3.092 0.015 * 0.544
α : 2 → 3 -0.1129 0.009843 -11.47 0.000003 *** 0.943
α : 3 → 4 -0.09882 0.006444 -15.34 0.00000032 *** 0.967
α : 4 → 5 -0.09176 0.01299 -7.062 0.00011 *** 0.862

Table 6.2: SIM Search: Network Clustering on Effectiveness in Network 10,000

Table 6.2 compares SIM search effectiveness scores (F1) between every two con-

secutive levels of clustering (α) on the 10, 000-system network. It shows that when

clustering exponent α increased from 0 → 1 → 2, i.e., from random/no clustering to

some level of clustering, search effectiveness improved. When α continued to increase

from 2 → 3 → 4 → 5, search effectiveness degraded.

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -33.39 5.177 -6.45 0.0002 *** 0.839
α : 1 → 2 -14.1 4.422 -3.188 0.013 * 0.56
α : 2 → 3 27.28 3.27 8.341 0.000032 *** 0.897
α : 3 → 4 40.09 4.195 9.557 0.000012 *** 0.919
α : 4 → 5 49.34 3.972 12.42 0.0000016 *** 0.951

Table 6.3: SIM Search: Network Clustering on Efficiency in Network 10,000

4Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1.
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Similar patterns also appear in Table 6.3 on SIM search efficiency in the 10, 000-

system network. When α increased from 0 → 5, the general trend was that search

performance first improved (to smaller search path lengths) and then degraded (to

longer search path lengths). The inflection point appeared at α = 2, where SIM search

performed at its best.

Comparison Difference in F1 Error t value Pr(> |t|) R2

α : 0 → 1 0.1098 0.02531 4.338 0.023 * 0.862
α : 1 → 2 0.1059 0.01617 6.548 0.0028 ** 0.915
α : 2 → 3 -0.2451 0.01103 -22.21 0.0002 *** 0.994
α : 3 → 4 -0.1294 0.02999 -4.315 0.05 * 0.903
α : 4 → 5 -0.04706 0.0506 -0.93 0.45 0.302

Table 6.4: SIM Search: Network Clustering on Effectiveness in Network 100,000

Table 6.4 shows consistent results on the 100, 000-system network, in which best

search effectiveness and efficiency were also found at α = 2. As compared to the

10, 000-system network, the impact of network clustering of 100, 000 systems on search

performance appeared to be stronger. For example, in the 104 network, changing α

from 1 → 2 resulted in an F1 increase of 0.03 and 14 hops shorter in search path length.

The same degree of network clustering change led to a 0.11 increase in F1 and a search

path shortened by 268 in the 105-system network.

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -170.1 21.8 -7.801 0.0044 ** 0.953
α : 1 → 2 -267.9 20.11 -13.33 0.00018 *** 0.978
α : 2 → 3 545.1 24.08 22.64 0.00019 *** 0.994
α : 3 → 4 232.3 49.13 4.729 0.042 * 0.918
α : 4 → 5 141.3 69.37 2.037 0.18 0.675

Table 6.5: SIM Search: Network Clustering on Efficiency in Network 100,000

Overclustering also had a stronger impact in the 105 network than in the 104 net-

work. When α increased from 2 → 3 in the 104 network, F1 had a 0.11 loss while search

path length increased by 27. The same degree of change in the 105 network resulted in
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much more dramatic performance loss – a 0.25 loss in F1 and a 545 increase in search

path length. Although increasing α from 4 → 5 in the 105 network did not lead to

significant performance degradation, the no significance is likely due to the fact that

we only have a couple of data points on each clustering level5. The difference is likely

significant when more experimental data are obtained.

These tests support our first hypothesis about the Clustering Paradox – that there

does exist a level of network clustering (α = 2 in our experiments), below and above

which search perform degrades. In other words, that specific level of clustering supports

best search performance in terms of both effectiveness and efficiency.

One additional important finding is that the clustering paradox appears to have a

scaling effect on search performances. The negative impact of under- or over-clustering

on search effectiveness and efficiency is much greater in larger networks. Small perfor-

mance degradation in a small network may lead to a much greater disadvantage when

the network grows in magnitude. This scaling effect requires closer examination.

5Because it was time consuming to conduct experiments on the 105 network, especially under “bad”
clustering conditions, we only had two experimental runs for α = 4 and α = 5 (each). Each run was
conducted on 85 queries.
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6.4 Scalability of Search

For each network size, we identified network clustering conditions under which superior

performance was observed (i.e., at α = 2 in the experiments). We plotted recall and

precision vs. network size at α = 2 in Figure 6.7. As discussed earlier, SIM and SimDeg

searches consistently achieved very high recall and precision across the various network

sizes, much better than DEG and RW methods. DEG search tended to perform better

in larger networks than in smaller ones given the popular nature of queries we used.
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Figure 6.7: Scalability of Search Effectiveness at α = 2

Figure 6.8 shows average search path length (efficiency) vs. network size at α = 2.

Search path length for RW and DEG increased dramatically in larger networks while

the increases for SIM and SimDeg were relatively moderate. SIM and SimDeg methods

appeared to be much more scalable than RW and DEG methods. To better understand

the scalability of SIM search and to predict how it could perform in even larger networks

(e.g., a network of millions of nodes/systems), we conducted further analysis on the

relationship of search path length to network size.
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Figure 6.8: Scalability of Search Efficiency at α = 2. The only difference between the two
figures is that X axis (network size) in figure (b) is log-transformed.

Previous research on complex networks suggested that optimal network cluster-

ing supports scalable searches, in which search time is a poly-logarithmic function of

network size. We relied on a generalized regression model that modeled search path

length L (and search time τ) against log-transformed network size N . The model was

specified to reach the origin (0, 0) because, when log(N) = 0 (i.e., N = 1), there is

only one node/system in the network and no effort is needed to search further. The

best fit for search path length L was produced by the model in Table 6.6, in which

L = 0.0125 · log710(N) has a nearly perfect R2 = 0.999.

Search Path Length: L ∼ 0 + β log710(N), where N is network size.

Coefficient Estimate Standard Error t value Pr(> |t|)
β 0.0125 7.04e− 05 177 5e− 52 ***
R2 = 0.999 (adj. 0.999), F = 31457 on 1 and 34 DF

Table 6.6: SIM Search: Search Path length vs. Network size

Figure 6.9 shows actual data points on search path length L vs. network size N ,

together with values (dotted line) predicted by the regression model L = 0.0125·log710N .
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Figure 6.9: Scalability of SIM Search

Overall, the scalability analysis supports search time as a poly-logarithmic function

of network size (hypothesis 2) – so that when an information network continues to

grow in magnitude, it is still promising to conduct effective search operations within a

manageable time limit. This poly-logarithmic scalability was supported by a particular

network clustering level, i.e., α = 2 in the experiments. Although we found the order

of the poly-logarithmic relationship to be roughly 7 in this study, a smaller exponent

can be expected when other factors on network structure and search methods can be

optimized.

6.5 Scalability of Network Clustering

We showed that some specific level of network clustering is required for scalable searches.

It is also important to understand how much effort is needed to construct and maintain

such a network structure for effective and efficient search functions. If network clustering

requires intensive computation of individual systems, then it will be challenging for the

network community to swiftly evolve and adapt to dynamic changes over time.
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Figure 6.10: Scalability of Network Clustering

Our search methods relied on local indexes and a network structure self-organized

by distributed systems in the network. Without global information and centralized

control, network clustering was performed locally – distributed systems formed the

network structure in terms of their limited opportunities to interact and individual

preferences/constraints on building indexes for others.

This local mechanism for clustering demonstrated a high level of scalability. As

shown in Figure 6.10, average clustering time τc remained relatively constant, < 1 sec,

across all network size scales N ∈ [102, 103, 104, 105]. When there are changes in the

network (e.g., system arrival/departure and/or new content), the clustering mechanism

does not require the entire community to respond to the changes. Instead, only neighbor

systems directly connected to changed nodes will need to receive updates. As shown by

experimental results, this local mechanism supports very effective and efficient discovery

of relevant information in the global space.
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6.6 Impact of Degree Distribution
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Figure 6.11: Degree Distribution and Normalization of 10, 000 Systems

The main experiments discussed in earlier sections were conducted on a degree

(du, number of connections per system) distribution normalized to du ∈ [30, .., 60].

For example, in experiments on the 10, 000-system network, we obtained the number

of incoming hyperlinks each of the 104 systems (web sites) received from the entire
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ClueWeb09B collection and established the original degree distribution shown in Fig-

ure 6.11 (a). We normalized all degrees to fit in the range of [30, 60] using Equation 4.5

described in Section 4.2.3, resulting in the distribution shown in Figure 6.11 (c). These

degrees were then used in experiments for network construction and clustering.

We varied the range of degrees and studied the impact of degree distribution on

search performance. In addition to range [30, 60], we also used [30, 30] and [30, 120]

for experiments on the network of 10, 000 systems. With range [30, 30], all systems

had a uniform degree, i.e., 30, as shown in Figure 6.11 (b). Figure 6.11 (d) shows the

degree distribution normalized to [30, 120], in which degrees spread over larger values

as compared to those ∈ [30, 60] (Figure 6.11 (c)).
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Figure 6.12: SIM Search Performance with Varied Degree Ranges

Experimental results with different degree ranges [30, 30] and [30, 120], in addition

to main experiments on range [30, 60], are shown in Figures 6.12 (a) and (b). While

results mostly look consistent, those on range [30, 30] look somewhat confounding. In

Figure 6.12 (a), best effectiveness of SIM search with du ∈ [30, 30] appeared at α = 2.

In Figure 6.12 (b), however, α = 2 did not seem to produce best efficiency for that
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degree range (search path length at α = 1 looks shorter/better).

In order to better interpret the plots, we adopted a single measure that combined

both effectiveness (F1) and efficiency (search path length) for easier comparison. We

refer to the new score as F1 per 200 Hops, which is computed by: FL200 = 200F1/L,

where L is search path length. The combined score can be seen as a normalized effec-

tiveness score given a fix time limit. Figure 6.13 shows search performances in terms

of FL200 scores.
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Figure 6.13: SIM Search Performance FL200 with Varied Degree Ranges

Comparison Difference in F1 per 200 Hops Error t value Pr(> |t|) R2

α : 0 → 1 0.1842 0.01515 12.16 0.00026 *** 0.974
α : 1 → 2 0.1374 0.02351 5.844 0.028 * 0.945
α : 2 → 3 -0.2438 0.03198 -7.621 0.017 * 0.967
α : 3 → 4 -0.1332 0.02422 -5.501 0.0053 ** 0.883
α : 4 → 5 -0.09295 0.02839 -3.274 0.031 * 0.728

Table 6.7: SIM Search: Network Clustering on FL200 with du ∈ [30, 120]

As shown in Figure 6.13, best performances on the three different degree distri-

butions [30, 30], [30, 60], and [30, 120] all appeared at α = 2. We tested performance

difference (in terms of FL200) of every two consecutive alpha levels. Table 6.7 shows test
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Comparison Difference in F1 per 200 Hops Error t value Pr(> |t|) R2

α : 0 → 1 0.08398 0.02618 3.207 0.033 * 0.72
α : 1 → 2 0.02542 0.02809 0.905 0.42 0.17
α : 2 → 3 -0.128 0.03078 -4.158 0.014 * 0.812
α : 3 → 4 -0.1357 0.02774 -4.891 0.0081 ** 0.857
α : 4 → 5 -0.03898 0.02234 -1.745 0.16 0.432

Table 6.8: SIM Search: Network Clustering on FL200 with du ∈ [30, 30]

results for degree range [30, 120], supporting the observation that optimized network

clustering level for degrees ∈ [30, 120] was at α = 2.

Tests on degree range [30, 30], as shown in Table 6.8, produced consistent results.

Whereas the general trend looks similar to that of [30, 120], results showed no significant

difference between α = 1 and 2. Hence, the inflection point is likely between 1 and

2. Overall, while search performance changes when degree distribution varies, evidence

continues to support the existence of the Clustering Paradox.
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6.7 Additional Experiments and Results

6.7.1 Relevance Search on ClueWeb09B

At the task level of Relevance Search, the goal was not (only) to find exact matches but

to find documents that were relevant (similar) to each query. Because the ClueWeb09B

was a very new, large collection, there was not a complete human judged relevance base

for evaluation. To establish a relevance base automatically, we followed the following

arbitrary mechanism, which has been widely used by IR researchers for evaluation of

large scale distributed system performance (Bawa et al., 2003; Lu, 2007).
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(a) Effectiveness: nDCG at 10 (b) Efficiency: Search Path Length

Figure 6.14: Relevance Search Performance on 1,000-System Network

First we built a centralized IR system using the core search engine function of our

distributed systems and indexed 4.4 million documents that appeared in the 10, 000-

system network. Then, we issued each query to the centralized IR system and retrieved

top 100 documents. We treated the 100 documents as the only relevant documents

among all 4.4 million pages for each query and used similarity scores produced by the

centralized system as their relevance to the query. Finally, queries were issued to the
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10, 000-system network to obtain a federated rank list of 10 documents. The results were

compared to the gold standard produced by the centralized system and were evaluated

using normalized discounted cumulative gain (nDCG at position 10) (see Section 5.5).

Figure 6.14 shows experimental data from relevance searches in the 10, 000-system

network. Results are consistent with those from exact match searches. While RW search

continued to be a lower-bound baseline, SIM search performed relatively well, with its

best performance at α = 2. DEG search achieved superior search performances with

random/no clustering, i.e., at α = 0, and degraded when there was stronger clustering.

Comparison Difference in nDCG10 Error t value Pr(> |t|) R2

α : 0 → 1 0.06469 0.02042 3.168 0.019 * 0.626
α : 1 → 2 0.03113 0.01309 2.379 0.041 * 0.386
α : 2 → 3 -0.06141 0.01218 -5.04 0.0007 *** 0.738
α : 3 → 4 -0.1069 0.00716 -14.93 0.0000057 *** 0.974
α : 4 → 5 -0.04658 0.01358 -3.429 0.014 * 0.662

Table 6.9: SIM Search: Network Clustering on Relevance Search Effectiveness

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -35.9 3.239 -11.08 0.000032 *** 0.953
α : 1 → 2 -7.863 2.712 -2.9 0.018 * 0.483
α : 2 → 3 21.44 4.654 4.608 0.0013 ** 0.702
α : 3 → 4 25.79 7.07 3.648 0.011 * 0.689
α : 4 → 5 40.41 7.287 5.546 0.0015 ** 0.837

Table 6.10: SIM Search: Network Clustering on Relevance Search Efficiency

We analyzed SIM search performances over different values of α ∈ [0, 1, 2, 3, 4, 5].

Table 6.9 compares SIM search effectiveness scores (nDCG10) between every two con-

secutive levels of clustering (α) on the 10, 000-system network. It shows that when

clustering exponent α increased from 0 → 1 → 2, i.e., from random/no clustering to

some level of clustering, search effectiveness improved. When α continued to increase

from 2 → 3 → 4 → 5, search effectiveness degraded. This trend resembles how F1

changed over α values in exact match searches (compare to Table 6.2).
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Similar patterns also appear in Table 6.10 on SIM search efficiency in the 10, 000-

system network. When α increased from 0 → 5, the general trend was that search

performance first improved (to smaller search path lengths) and then degraded (to

longer search path lengths). The inflection point appeared at α = 2, where SIM search

performed at its best (compare to Table 6.3). This provides further evidence that the

Clustering Paradox also existed in relevance searches (hypothesis 1).
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6.7.2 Authority Search on ClueWeb09B

Experiments on authority searches were conducted in a manner nearly identical to

relevance searches, except for how results were evaluated. In relevance searches, decen-

tralized search results from a network were compared to a gold standard produced by

a centralized search system. In authority searches, we relied on co-citation information

from the ClueWeb09B web graph to establish a gold standard on relevant authority

pages.
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Figure 6.15: Authority Search Performance on 10,000-System Network

For each of the 85 query documents used in exact match and relevance search tasks,

we identified pages among the 4.4 million in the 10, 000-system network that were co-

cited (being linked together) for at least 5 times. The number of citations of each page

with the query was then normalized by the total number of citations (in-links) the page

received to produce an authority score. We selected 100 web documents/pages with

the highest authority scores as the relevance base (gold standard) for each query. Only

38 queries remained because the other queries did not have sufficient co-cited pages.

Results from distributed searches in the 10, 000-system network were then compared to
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the gold standard. We continued to use normalized discounted cumulative gain (nDCG)

at 10 to evaluate retrieval effectiveness.

Figure 6.15 presents results from authority search experiments on the 10, 000-system

network. As shown in Figure 6.15 (a), search effectiveness was low in general – SIM,

SimDeg, and DEG searches only achieved nDCG10 scores slightly higher than 0.1. RW

search effectiveness was well below nDCG 0.02. The major reason for the low nDCG

scores was because the retrieval fusion (federation) method used in distributed searches

only relied on topical similarity scores for ranking retrieved documents. The authority

gold standard might have disregarded many content-wise similar pages if they did not

have enough co-citations. Nonetheless, this task level provides additional evidence on

how system connectivity affects search performance.

In Figures 6.15 (a) and (b), SIM search effectiveness and efficiency results look

consistent with those from relevance searches. For SIM searches, α = 1 seemed to

support its best performance. Visually, larger or smaller α values than 1 degraded both

effectiveness and efficiency.

Comparison Difference in nDCG10 Error t value Pr(> |t|) R2

α : 0 → 1 0.01059 0.004723 2.242 0.055 . 0.386
α : 1 → 2 -0.004764 0.004747 -1.004 0.34 0.112
α : 2 → 3 -0.008683 0.002584 -3.361 0.0099 ** 0.585
α : 3 → 4 -0.01544 0.00385 -4.011 0.0039 ** 0.668
α : 4 → 5 -0.02114 0.004253 -4.97 0.0011 ** 0.755

Table 6.11: SIM Search: Network Clustering on Authority Search Effectiveness

Comparison Difference in Search Length Error t value Pr(> |t|) R2

α : 0 → 1 -23.88 5.866 -4.071 0.0036 ** 0.674
α : 1 → 2 6.063 5.423 1.118 0.3 0.135
α : 2 → 3 14.25 4.201 3.392 0.0095 ** 0.59
α : 3 → 4 39.99 4.324 9.25 0.000015 *** 0.914
α : 4 → 5 27.96 5.131 5.449 0.00061 *** 0.788

Table 6.12: SIM Search: Network Clustering on Authority Search Efficiency
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To understand the performance inflection in authority searches, we tested SIM

search performance difference between any two consecutive clustering levels of α ∈

[0, 1, 2, 3, 4, 5]. Tables 6.11 and 6.12 show the test results on effectiveness and efficiency

respectively. Search performance improved when α increased from 0 → 1 and degraded

when α changed from 2 → 3 → 4 → 5. We found no significant difference between

performances at α = 1 and at α = 2. It is likely that the inflection point is at an

α value between 1 and 2. Regardless of the actual network clustering level for best

authority search performance, analysis here further supports the existence of clustering

paradox in the IR context.
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6.7.3 Experiments on TREC Genomics

Data Collection and Networks

We conducted relevant peer (expert) searches on the TREC Genomics 2004 collection.

The task was to find an expert peer given a topic in a network of peers (representatives of

scholars having document collections). To establish initial peer networks, we first chose

six scholars in the medical informatics domain, i.e., associate editors of the Journal

of the American Medical Informatics Association (JAMIA). We then identified their

direct co-authors (1st degree) who published 10 to 80 articles in the TREC collection,

resulting in a small network of 181 peers. The network was later extended to the 2nd

degree (i.e., co-authors’ co-authors) to total 5890 peers for experiments on a larger

scale.
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(a) 181-Peer Network (b) 5890-Peer Network

Figure 6.16: Genomics 2004 Data: Degree Distributions

Both networks had a diameter (the longest of all shortest pairwise paths) of 8.

Degree distributions of the networks are shown in Figure 6.16 (a) and (b). For each

peer, which represented a scholar, all articles (with titles and abstracts) authored or
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co-authored by the scholar were loaded as the local information collection.

Relevant Peer Search

On the TREC Genomics 2004 collection, we constructed peer-to-peer networks by treat-

ing each unique scholar as a peer, who possessed a local collection of documents pub-

lished by the scholar (author). The task involved finding a peer with relevant infor-

mation in the network, given a query. Applications of this framework include, but are

not limited to, distributed IR, P2P resource discovery, expert location in work set-

tings, and reviewer finding in scholarly networks. However, we focused on the general

decentralized search problem in large networked environments.

Relevant peers/agents were considered few, if not rare, given a particular informa-

tion need. For experiments on the TREC Genomics 2004 collection, we considered those

scholars whose topical similarity to a given query was ranked above the fifth percentile.

Hence, for evaluation purposes, peers were sampled to estimate a threshold similarity

score for each query, which was then used in experiments to judge whether a relevant

peer had been found.

We retrieved citations to articles published in the Journal of the American Medical

Informatics Association (JAMIA) in the Genomics track collection and used all (498)

articles with titles and abstracts to simulate queries/submissions. For each submission,

an agent that represented the editor in chief of JAMIA assigned it to one of the associate

editors, who then began to forward the submission to a potential relevant agent/scholar

through connected neighbors (e.g., co-authors).

Experimental Results

From experiments on the TREC Genomics 2004 data, we present effectiveness and

efficiency results on initial and rewired networks of 181 and 5890 peers and focus on
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the impact of network clustering on decentralized search performance.

Results on 181-Peer Network
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(a) Completion rate vs. Max Search Length (b) Completion rate vs. Average Search Length

Figure 6.17: Effectiveness vs. Efficiency on 181-Agent Network

Figure 6.17 shows experimental results on 181-peers networks. The X axis denotes

the efficiency (search path length) while Y is effectiveness (completion rate). Solid

points refer to the SIM search method. Dotted lines are results based on the initial

co-authorship network. With the initial network (dotted lines), similarity-based SIM

search consistently outperformed random walks (RW), especially within small search

path lengths. For instance, within two hops, SIM search already achieved a completion

rate of more than 50% while random-walk was still at 20%. Allowing for longer search

path lengths helped both models but neither reached a completion rate higher than

90%, suggesting that there were particular characteristics of the initial network that

disoriented some searches after a long path.

Clustering analysis, as plotted in Figure 6.18 (a) on log/log coordinates, showed
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that the association between connectivity frequency and topical distance has a power-

law region (in the middle) with irregularities. We believe that SIM search was well

guided by the network in most instances (when routed through peers with regular

clustering-guided connections) but was lost in others (disoriented in regions where ir-

regular connections dominated).
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Figure 6.18: Clustering of Initial Genomics Networks: Connectivity frequency (Y) vs. Topical
distance (X). Compare to Figure 3.3.

To demonstrate potential utility of network clustering, we rewired the network

(network clustering) based on the connectivity probability function described in Sec-

tion 4.2.3. Experimental results with clustering exponent α = 3.0 are shown as solid

lines in Figure 6.17, in which proper network clustering better guided SIM search and

further improved the results – a higher than 95% completion rate was already achieved

at max search path length 20 (Figure 6.17 (a)) or average path length 5 (Figure 6.17

(b)).
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Figure 6.19: Effectiveness vs. Efficiency on 5890-Agent Network

Results on 5890-Peer Network

On the initial 5890-peer network, experimental results indicated that SIM search had

very limited advantage over random walk, as shown by dotted lines in Figures 6.19 (a)

and (b). Further analysis revealed that the network was very weakly clustered. As

shown in Figure 6.18 (b) on log/log coordinates, the correlation between connectivity

and topical distance departed quite a bit from a power-law function (linear on log/log).

There were many topically remote connections. Peers had many weak ties for a query

to “jump” but insufficient strong ties to circulate the query within the boundary of a

relevant neighborhood.

Again, we performed network clustering described in Section 4.2.3 to reconstruct/rewire

the 5890-peer network. As shown by solid lines in Figure 6.19, given clustering expo-

nent α = 4.0, the SIM search method performed much better and achieved above 90%

completion rate within a max search path length of 40 (Figure 6.19 (a)), or an average

search path length of about 10 (Figure 6.19 (b)).
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Impact of Clustering

In the results above, we have demonstrated that some level of network clustering im-

proved decentralized search for relevant peers. It is unclear yet how much clustering is

enough or how much is too much. Setting max search path length at 10, experiments

on SIM search with various clustering exponent α values on the 5890-peer network

produced results shown in Figures 6.20 (a) and (b).
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Figure 6.20: Impact of Clustering Exponent α (X)

Figure 6.20 shows that the SIM search method achieved best performance, i.e., high-

est completion rate in (a) and shortest search path length in (b), at α ≈ 3.5. Both

smaller and larger α values resulted in less optimal searches. As discussed, smaller α

values produced less visible topical segments and more remote connections that dis-

oriented searches. Larger α values, on the other hand, led to an over-clustered and

fragmented network without sufficient weak ties for searches to move fast.
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This result, obtained in a decentralized relevant peer searching context, is consistent

with findings from relevance search, authority search, and exact match experiments

on the ClueWeb09B collection. It continues to support hypothesis 1 regarding the

Clustering Paradox, in which some balance between strong ties and weak ties should be

maintained for effective and efficient searches.
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6.8 Summary of Results

Experimental results have shown that relevant information can be found quickly not

only in small networks (e.g., a network of 100 distributed systems) but also in networks

of a larger scale (e.g., networks of 100, 000 systems). Experiments in various settings

have produced consistent results well aligned with the theory. We summarize major

findings below in terms of hypotheses stated in Section 3.5.

6.8.1 Hypothesis 1: Clustering Paradox

H1: There exists some level of network clustering, below and above which

search performance degrades.

Yes, there was the Clustering Paradox. Best similarity (SIM) search performance

was supported by α = 2 in most experiments6. Stronger or weaker clustering degraded

search performance. The clustering paradox appeared in all three levels of search tasks,

namely, exact match (rare known item search), relevance search, and authority search.

Additional results from experiments on the TREC Genomics 2004 collection were con-

sistent to this finding.

6.8.2 Hypothesis 2: Scalability of Findability

H2: With optimal network clustering, search time (search path length) is

explained by a poly-logarithmic function of network size.

Yes, there was evidence on scalable searches. Search path length L of SIM search

is poly-logarithmic to network size N at α = 2: L = 0.0125 · log710(N) in exact match

experiments. The model was tested on data containing five network size levels N ∈

6In authority searches, the inflection point was projected to be an α value between 1 and 2.
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[1, 102, 103, 104, 105] (more than 5 experimental runs on each network size) and produced

an ideal fit R2 = 0.999.

6.8.3 Hypothesis 3: Impact of Degree Distribution

H3: Hypotheses 1 and 2 remain true with different degree distributions.

Yes, we observed the clustering paradox in various degree distribution settings. In

the 10, 000-system network, for example, the balanced level of network clustering for

best search performance was at α = 2 given degree range [30, 60]. With a varied distri-

bution ∈ [30, 90] or ∈ [30, 120], an inflection point remained even though it appeared

at a slightly different clustering level (H1 supported). The poly-logarithmic scalability

function was established on degree distribution ∈ [30, 60]. H2 in the other degree set-

tings requires further investigation. In future work, we plan to use a much wider range

of degrees, which is more likely to resemble power-law characteristics in real networks

but will require more computing power to simulate highly connected systems.

6.8.4 Hypothesis 4: Scalable Search Methods

H4: Search methods that utilize information about neighbors’ degrees and

relevance (similarity to a query) are among scalable algorithms stated in

Hypotheses 1 and 2.

Yes, relevance (similarity) information was particularly useful to guide searches.

The similarity search (SIM) method, among the four strategies proposed, consistently

achieved best results. As discussed earlier, given α = 2, search path length of SIM search

is a poly-logarithmic relation to network size. Degree information was also helpful,

especially because queries used in experiments were about web documents from highly

popular web domains. DEG search, which utilized degree information, and SimDeg
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search, which combined similarity and degree information, performed competitively in

large networks.
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Chapter 7

Conclusion

With the rapid growth of digital information, it becomes increasingly challenging for

people to survive and navigate in its magnitude. It is crucial to study basic principles

that support adaptive and scalable retrieval functions in large networked environments

such as the Web, where information is distributed among dynamic systems. In this

research, we aimed to address the scalability challenge facing classic information re-

trieval models and researched on a decentralized, organic view of information systems

pertaining to search in large scale networks. The study focused on the impact of net-

work structure on search performance and investigated a phenomenon we refer to as

the Clustering Paradox, in which the topology of interconnected systems imposes a

scalability limit.

7.1 Clustering Paradox

We conducted experiments on decentralized IR operations on various scales of informa-

tion networks and analyzed effectiveness, efficiency, and scalability of proposed search

methods. Results provided evidence about the Clustering Paradox in the IR context

and showed network structure was crucial for retrieval performance. In an increas-

ingly large, distributed environment, decentralized searches for relevant information



were able to function well only when systems interconnected in certain ways. Relying

on partial indexes of distributed systems, some level of network clustering under local

topical guidance supported very efficient and effective discovery of relevant information

in large scale networks.

In main experiments on the ClueWeb09B collection, we found SIM search, one of

the proposed methods that relied on similarity clues, achieved its best performance only

at clustering exponent α = 2 in larger scale networks of 10, 000 and 100, 000 distributed

systems. This level of network clustering appears to have allowed a balance between

strong ties and weak ties. While strong ties aids in creating local segments useful to

guide searches, weak ties provide opportunties for searches to jump from one segment

to another. Increasing or decreasing the level of network clustering shifts the balance

and degrades search performance in effectiveness and efficiency. This phenomenon of

Clustering Paradox appeared in all of the experimented tasks, namely, relevance search,

authority search, and exact match (rare known-item search). Additional experiments

on another benchmark IR collection, namely, TREC Genomics 2004, supported this

major finding.

7.2 Scalability of Findability

Examining the Clustering Paradox is crucial to understanding how search functions

can scale in large information networks. We have found that search time can be well

explained by a poly-logarithmic relation to network size at a specific level of network

clustering. This poly-log relationship suggests a high scalability potential for searching

in a continuously growing information space.

In our exact match (rare known-item search) experiments, search path length L (a

surrogate for search time) was found to be proportional to log7(N), where N is the

the number of systems in the network. The poly-logarithmic function was modeled on
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a wide range of network size scales N ∈ [1, 102, 103, 104, 105] and showed a very large

goodness of fit R2 = 0.999. The exponent of the poly-log function was found to be

7, larger than 2 discovered by Kleinberg (2000b) in search experiments on simplified

network models. We mainly focused on network clustering for search performance in the

experiments and believe that a smaller exponent can be expected when other variables

in decentralized searches are taken into account.

7.3 Scalability of Network Clustering

In addition to the scalability of decentralized searches, the network clustering function

that supported very high effectiveness and efficiency of IR operations in large networks

was found to be scalable as well. Clustering only involved local self-organization and

required no global control – clustering time remained roughly constant, < 1 second,

across the various network sizes N ∈ [102, 103, 104, 105].

The clustering function required no “hard engineering” of the entire network but

provided an organic way for systems to participate and connect given their opportunities

and preferences. This organic mechanism potentially allows for a bottom-up approach

to coping with dynamics in a fast growing information network.
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Chapter 8

Implications and Limitations

In an open, dynamic information space such as the Web, people, information, and

technologies are all mobile and changing entities. The classic view of “knowing” where

information is and indexing “known” collections of information for later retrieval is

hardly valid in these environments. Finding where relevant repositories are for the live

retrieval of information is critical. Without global information, new methods have to

rely on local intelligence of distributed systems and/or their delegates to collectively

construct paths to desired information.

This study provides guidance on how IR operations can function and scale when

today’s information spaces continue to change and grow. We have found that intercon-

nectivity among distributed systems, based on local network clustering, is crucial to the

scalability of decentralized search methods. The Clustering Paradox on decentralized

search performance appears to have a scaling effect and deserves special attention for

IR operations in large scale networks.

With the magnitude of information and the number of computing systems on the

Internet, any level of centralization will be doomed to great challenges and potential

failure. We believe that the fully decentralized view expressed in this study reflects

a reality we cannot avoid in information retrieval research. While monolithic search



systems continue to struggle with scalability problems of today, the future of search

likely requires a better infrastructure where all can participate.

With a focus on the impact of network structure on search performance, this dis-

sertation has produced promising results on finding relevant information in large scale

distributed environments. Findings, nonetheless, should be interpreted with caution

because experiments were conducted under certain assumptions/conditions. The cur-

rent research is limited in several aspects. We discuss future research directions in light

of current limitations.

Network Dynamics and System Adaptation

In a dynamic networked information space, all can change and evolve. While users

may have different information needs, contents of distributed systems in the network

may appear, disappear, and change over time. Information that is relevant, valid and

findable now may not be so in the future.

Network clustering requires systems/agents to connect to one another in terms of

their similarities/preferences. In a dynamic environment, agents need to interact with

others and understand changing settings. Learning provides an important means for

agents to perceive their environment and act accordingly, critical to overall system

utility and robustness.

In this research, we assumed that contents in distributed systems were relatively

static and a network structure only needed to be built once to reflect the content

distribution. Future studies will investigate how a network structure (clustering) can be

dynamically maintained when systems/agents come and go with evolving information

collections. We also plan to study the dynamics of search traffics and how an entire

network can cope with individual system failures. Agent learning and adaptation will

be a key focus in this research direction.
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User and Relevance

This study relies on automatic simulations based on text queries and pre-established

relevance judgment for the evaluation of distributed IR systems. It is well known in IR

that the notion of relevance involves multiple dimensions beyond topicality. Relevance

often depends on user’s search contexts and can rarely be judged objectively using a

pre-established relevance base. In the future, we hope to develop a user interface for the

decentralized system and involve real users in the study of searching and evaluation.

There might be new interface elements to be studied as well given that searches will be

conducted in a different manner. Because many individual systems participate in the

decision making for search, we expect such a system to provide more diversified results

than those from classic, centralized models. The TREC Web track (the diversity task

in particular) might be a good platform for result comparison in this regard.

Representation, Ranking, and Result Fusion

In this dissertation research, we limited retrieval algorithms to a set of classic methods,

such as TF*IDF for information representation, Cosine similarity for relevance scoring,

and a simple normalization function for result fusion. The underlying assumption was

that every individual information collection (system), large or small, could be repre-

sented using a meta-document based on document frequency values. This assumption,

however, is hardly valid for very large collections containing a diverse set of topics. For

example, en.wikipedia.org contains information about nearly every major subject in the

world. A single meta-document will not be able to represent such a big and diverse

collection accurately. How to determine the granularity for large collection representa-

tion is an important question. Future work will also study other retrieval models such

BM25 ranking and CORI result fusion in distributed network environments.

In this study, we used text contents of documents (e.g., web pages) to simulate
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queries. On the Web, however, users usually issue very short queries, e.g., queries

with only a couple of terms. In addition, existing experiments provided evidence that

it was easier to find relevant information for some queries than for others. Query

representation factors such as query length and model (e.g., binary vs. weighted) are

worth further investigation.

Potential Barriers to Implementation

Although experiments show promises, much remains to be done before our model can

be implemented to work in a real world environment. One additional important as-

sumption in our experimental model was that systems/agents were cooperative and

trustworthy. Decentralization in the reality, however, allows for individual participants

to do independent decision making and exercise self interests. System behaviors, driven

by their own objectives, may become very different from what is ideally expected.

Why would systems participate in decentralized search and contribute their com-

puting power? There have to be benefits and/or incentives that motivate individuals

to do so. Ideas can be borrowed from peer-to-peer applications, where individual com-

puter systems share their resources in order to gain access to other resources. Besides

incentives, we are yet to study why (and how to make sure) systems would behave in a

contributive manner. There have been plenty of examples about free-riders in peer-to-

peer networks, who take advantage of existing resources but have very little willingness

to contribute. Others may offer contributions only to mislead and boost their own

popularity.

Mechanisms have to be built to ensure better behaviors. Methods must also be

implemented to detect harmful practices and guide beneficial interactions. Trust plays

an important role in all this. Implementation of a decentralized search infrastructure

will have to take into account issues of trust among uncooperative, untrustworthy, or
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malicious systems by drawing on findings and inspirations in distributed trust manage-

ment.

Finally, there is one crucial question concerning how much effort is needed for indi-

viduals and/or organizations to implement connections to a network when it is ready

for participation. Just as the power of the Web relies on its growing population, the

power of a decentralized search network is dependent on how well the technology can

be adopted quickly. Only with a good magnitude of information and computing power

can such a network be useful to people and continue to attract additional resources. To

achieve this, the cost of establishing connections should be close to the level of adding

hyperlinks to web pages, connecting to a peer-to-peer network, or simply joining an

online social network.
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Appendix A

Glossary

• network or graph: a data structure of a set of entities called nodes or vertices,

which connect to each other through a set of pairwise edges (undirected) or arcs

(directed), e.g., a network of web pages (nodes) connecting to each other through

hyperlinks (arcs).

• degree: the number of edges or arcs a node has, e.g., the number of unqiue

co-authors a scholar has in a co-authorship network.

• peer-to-peer (P2P) system: a distributed system consisting of interconnected

nodes able to self-organize into network topologies with the purpose of sharing re-

sources such as content, CPU cycles, storage and bandwidth, capable of adapting

to failures and accommodating transient populations of nodes while maintaining

acceptable connectivity and performance, without requiring the intermediation

or support of global centralized server or authority.

• peer: an entity, often an independent information system or computer, in a peer-

to-peer network, whose edges represent communication/interactions with other

peers.

• agent: a computer system situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives.

• multi-agent systems: a societal view of multiple agents in certain environment
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with an emphasis on the collective capability, as oppose to the individual agent

as the functional unit.

• neighbor: from a network or graph perspective, a node that the current node

directly connects to, e.g., a web page directly linked from the current page, a peer

that communicates with the current peer in a peer-to-peer network, or an agent

that interacts with the current agent in multi-agent systems.

The multi-agent paradigm is often used to model peer-to-peer systems, in which the

concepts agent and peer are equivalent.
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Appendix B

Research Frameworks in Literature

PROBLEMS

FRAMEWORKS Findability Scalability Robustness Relevance Recall

Complex Network

Boguna2009 • •

Hu2009 • •

Simsek2008 • • •

Kurumida2006 • •

Liben-Nowell2005 • •

Adamic2005 •

Dodds2003 •

Watts2002 • •

Kleinberg1999/2000/2006 • •

Watts1998 • •

Milgram1967/1969 •

Peer-to-Peer IR

Doulkeridis2008 • • • •

Raftopoulou2008 • • • •

Skobeltsyn2007 • • • •

Lu2003/2004/2006/2007 • • •

Wang2006 • •
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Amoretti2006 • •

Luu2006 • • • • •

Cooper2005 • •

Bender2005 • • •

Zeinalipour-Yazti2004 • • • •

Tsoumakos2003 • • •

Bawa2003 • • • •

Li2003 • •

Lv2002 • • • • •

Adamic2001 • •

Multi-Agent System IR

Zhang2004/2006/2007 • • • • •

Ke2007 •

Kim2006 •

ZhangJ2005/2006 • • •

Mukhopadhyay2005 • • •

Fu2005 • •

Yu2002/2003 • • • • •

Pereira2002 •

Singh2001 • • •

Menczer1998 • • • •

Foner1997 •

Distributed (Federated) Information Retrieval

•? • •

Link-based Ranking Methods
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• •

Collaborative Filtering

• •

Table B.1: Research Problems and Frameworks
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Appendix C

Research Results in Literature

Model Data N Nrel 〈k〉 〈l〉 C D NR τ Reference Spatial Degree

Abstract Models

2D Lattice Synthetic 4× 108 1 5 n/a 0 2 4× 108 120 Kleinberg2000 unif unif

2D Lattice Synthetic 4× 106 1 5 n/a 0 2 4× 106 70 Ke2009 unif unif

1× 106 1 1× 106 54

2.5× 105 1 3× 105 42

4× 104 1 4× 104 28

1× 104 1 1× 104 19

3D Lattice Synthetic 1× 106 1 7 n/a 0 3 1× 106 33 Ke2009 unif unif

Hierarchical Synthetic 102, 400 1 99 6 1-13 102, 400 7 Watts2002 n/a unif

204, 800 1 99 6 1-13 204, 800 7

409, 600 1 99 6 1-13 409, 600 7
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1× 108 1 99 6 1-13 1× 108 7

Hidden Space Synthetic 1× 105 1 2 1× 105 55 Boguna2009 unif power

1D Circle Synthetic 1× 103 10 n/a 3 n/a 1 100 12 Simsek2008 unif power

1D Circle Synthetic 1× 103 10 n/a 3 n/a 1 100 22 Simsek2008 unif Poiss

IR Experiments

Geograph Airports 500* 1 15 n/a n/a 2 100 6 Boguna2009 geo n/a

TFIDF+Cos Citation 833 10* 16 n/a n/a n/a 83 15 Simsek2008 n/a power

RefNet VSM Coauthor 5, 891 295 20 8 n/a n/a 20 10 Ke2009b n/a power

RefNet VSM Coauthor 181 9 20 8 n/a n/a 20 5 Ke2009b n/a power

Hierarch SON .GOV2sub 5, 000 200* 250 28 Doulkeridis08

Gradt+Rand TREC-6 2, 000 20 12 0.69 100 6 Raftopoulou08

Hierarchical .GOV2 25, 000 200 3 5 0 125 10 Lu2007

Hierarchical TREC WT10g 2, 500 50 3 5 0 50 3 Lu2007

Agent view TREC 123 100 n/a Zhang 2007

Agent view TREC VLC 921 n/a Zhang 2007

PursuitLearn Reuters 37 1 36 1 1 1 37 8 Ke 2007 unif

Hierarchical TREC WT10g 2, 500 50 3 5 0 50 4 Lu2006
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MINERVA .GOV 20 4 5 1 Bender2005

Org Hierarch HP email 490 1 13 3.1 490 5 Adamic2005 n/a power

BreakConnect 200 12* n/a Cooper2005

Hamming dist Enron 147 ≥ 1 10* 2.5 0.096 n/a 74 10 ZhangJ2005

ISM Reuters 104 2* 8 ≤ 4 n/a 52 5 Zeinalipour-

Yazti2004

Agent View TREC VLC 912 73 13 5 Zhang2004 n/a

SETS seg. CiteSeer 83, 946 500* 168* 8 Bawa2003

Hierarchical TREC WT10g 11, 485 Lu2003

MARS Ref Coauthor 4, 933 287 n/a n/a n/a n/a 17 10 Yu2003 n/a n/a

Best degree Gnutella n/a Adamic 2001

Table C.1: Research Results on Findability and Scalability. Symbols: 1) N : the number of nodes in the network; 2) Nrel: the number of
relevant nodes (search targets) in the network; 3) 〈k〉: average number of connections or neighbors a node has; 4)〈l〉: average path length
between any two nodes in the network; 5) C: clustering coefficient, or the probability of one’s neighbors directly connect to each other; 6)
D: dimensionality of the model; 7) NR: rarity, i.e., one target out of NR peers on average; 8) τ : traversal time, or the number of hops
traveled to find a target. ‘*’ denotes estimates, no such data reported in paper.
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Appendix D

Experimental Data Detail Plots

In Chapter 6 Experimental Results, plots are mainly based on aggregated data,

e.g., average search path lengths and effectiveness scores of multiple experimental runs.

Here we plot data from individual experiments to show how they vary at each X (α)

level.

D.1 Exact Match Searches
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Figure D.1: Performance on 100-System Network
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Figure D.2: Performance on 1,000-System Network

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clustering Exponent (ALPHA)

F
1

Network Size: 10000
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

0 1 2 3 4 5

20
0

25
0

30
0

35
0

40
0

45
0

Clustering Exponent (ALPHA)

S
ea

rc
h 

P
at

h 
Le

ng
th

 (
#h

op
s)

Network Size: 10000
Similarity Search
Similarity*Degree                    
Degree Search
Random Walk   

(a) Effectiveness: F1 (b) Efficiency: Search Path Length

Figure D.3: Performance on 10,000-System Network
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Figure D.4: Performance on 100,000-System Network
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D.2 Impact of Degree Distribution
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D.3 Relevance Searches
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Figure D.7: Relevance Search Performance on 1,000-System Network
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D.4 Authority Searches
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Figure D.8: Authority Search Performance on 10,000-System Network
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Appendix E

Additional Network Models

Experiments in this study mainly focused on the network model described in Section 5.2,

information/documents were distributed among interconnected IR systems. Here we

present additional network models that may worth investigation to better understand

the impact of various network factors.

Based on the TREC data collections, two types of networks can be constructed,

namely, document networks and agent networks. Document networks can be further

broken down into: 1) document network with global dimensions (DG) (Section E),

and 2) document network with local dimensions (DL) (Section E). The agent network

with local dimensions (AN) (Section E) is what we used in experiments, where each

agent/system hosted a collection of multiple documents and formed its neighborhood

by local network clustering.

DG: Document Network with Global Dimensions

In the DG model, we will construct a document network with the assumption of global

information. In other words, each document will be treated as an individual node that

can be unambiguously represented by global VSM dimensions. The global dimensions

can be derived by aggregating all documents and applying feature selection or LSI tech-

niques (Deerwester et al., 1990; Yang, 2002). After documents are represented using

the selected dimensions, connections between documents (single-document nodes) will

be established based on the network (re)wiring method described in Section 4.2.3. Var-

ious combinations of power-law degree distribution exponent γ and clustering exponent
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α will be studied. In this model, both queries and targets can be precisely defined.

For example, a query can be constructed to find a document with specific dimensional

values. This model is thus simplistic and similar to existing abstract models in complex

network research (e.g., Kleinberg, 2000b; Watts et al., 2002). Nonetheless, the model

will be examined based on real IR data rather than synthetic networks.

DL: Document Network with Local Dimensions

The DL model adds one layer of complexity to the DG model by removing the global

dimensionality assumption. In other words, every node/agent will self-represent its

(only one) document without common dimensions or any global information such as

network-wide document frequency (DF) values. The relevance of a document to a query

is measured using each agent’s local information. Agents follow the same principles in

Section 4.2.3 to connect to one other.

AN: Agent Network with Local Dimensions

The AN model, the main focus of the proposed research, is similar to the DL model.

However, the AN model allows each agent to have multiple documents, making agent

representation more challenging. Neither does the AN model assume global information

– agents have to represent themselves using local information they have and evaluate

relevance based on that. Using web data such as the ClueWeb09 collection, we can

simply treat a web site as an agent and use hyperlinks between sites to construct

the initial network. For a bibliographical dataset such as the TREC Genomics 2004,

we can treat a scholar/author as a site/agent holding articles they have published

while using collaboration data (e.g., co-authorship) to establish the initial network

topology. Network clustering will then be performed based on the method described in

Section 4.2.3.
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