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ABSTRACT

GANG WANG: Strategic Operational Decisions in a Supply Chain with Demand and
Recall Risks

(Under the direction of Lauren Xiaoyuan Lu and Jayashankar M. Swaminathan)

Among supply chain risks, both demand risk and recall risk have been recognized as

critical challenges firms have to face. Making proper operational decisions to mitigate

these two types of risks is of great importance to every firm. This dissertation “Strategic

Operational Decisions in a Supply Chain with Demand and Recall Risks” focus on capac-

ity related decisions, which tackles the demand risk, and quality related decisions, which

tackles the recall risk. Specifically, we conduct our research along three dimensions: (i)

optimizing capacity decisions or quality decisions; (ii) the interaction between capacity

and quality decisions; (iii) the impact of supply chain factors on these decisions. In Chap-

ter 2, we examine quality choice and capacity timing of start-ups and established firms.

In Chapter 3, we focus on procurement contracting under product recall risk to manage

product quality and mitigate the financial impact of product recalls. In Chapter 4, we

investigate strategies to improve product quality and to make proper recall decisions.
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CHAPTER 1 INTRODUCTION

In this dissertation, we study strategic operational decisions in a supply chain with

demand and recall risks.

1.1 Overview of Chapter 2

In Chapter 2, we examine quality choice and capacity timing of start-ups and estab-

lished firms. Many industries have experienced disruptive innovations that create new

products and markets displacing old ones. Some innovations are based on a transforma-

tive technology that provides novel product features or dimensions appealing to high-end

customers, while other innovations target at low-end customer segments initially. Al-

though many disruptive innovations have been led by start-ups, some established firms

have also led innovations and brought radical technologies to market. This variation of

innovation strategies inspires us to investigate whether start-ups and established firms

differ in their quality choice and investment timing of market entry when making inno-

vations.

To this end, we build a stylized duopoly model in which a start-up and an estab-

lished firm compete in a market with quality differentiation and demand uncertainty.

The firms may choose to make a high-quality product or a low-quality product. They

may also choose a capacity-leading strategy, i.e., invest before demand realization, or

a capacity-lagging strategy, i.e., invest after demand realization. We assume that the

start-up maximizes its survival probability whereas the established firm maximizes its

expected profit. Our analysis yields the following main insights: (1) When the market

size increases, the established firm is more likely to choose high quality. Moreover, the
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start-up is more likely to choose high quality when the threshold of the start-up’s survival

probability increases. (2) The presence of a start-up in the market tends to increase qual-

ity differentiation. (3) The firms’ quality choice and capacity timing are interdependent.

Specifically, we find that quality differentiation is more likely to arise when the two firms

choose different capacity timing. (4) We also identify an interesting equilibrium in which

the established firm with a low-quality product chooses a capacity-leading strategy when

the start-up with a high-quality chooses a capacity-lagging strategy. This equilibrium is

consistent with anecdotal evidence on established firms being disruptive innovators.

1.2 Overview of Chapter 3

In Chapter 3, we focus on procurement contracting under product recall risk. Product

recall is commonly observed in various industries with production outsourcing. Manag-

ing product quality and mitigating the financial impact of product recalls pose great

challenges to manufacturers due to demand uncertainty and non-contractibility of sup-

pliers’ quality effort. To understand the interdependence of supply chain quantity and

quality decisions, we develop a procurement contractual framework under both demand

and recall risks. We consider a model in which a manufacturer outsources to a supplier

the production of a component, which is subject to potential quality failure leading to

a product recall. The manufacturer acts as the Stackelberg leader offering a recall cost

sharing contract to the supplier. We analyze two settings: a pull system in which the

supplier makes the quantity decision and a push system in which the manufacturer makes

the quantity decision. We find that the manufacturer achieves a higher production quan-

tity and induces a higher quality effort of the supplier in the push system than in the

pull system. Therefore, the manufacturer can improve quality by taking on the demand

risk of the supply chain. Moreover, the presence of product recall risk decreases the pro-

duction quantity in the push system but does not affect the production quantity in the

pull system. Interestingly, the manufacturer can improve quality and profit by decreasing

2



her share of the total recall cost without affecting the production quantity of the supply

chain in both the push and pull systems.

1.3 Overview of Chapter 4

In Chapter 4, we investigate recall decisions under quality contracting framework.

When outsourcing production to suppliers, ensuring product quality is of great challenge

to a manufacturer because suppliers’ quality effort cannot be directly observed and it

is unrealistic to have a clear-cut assignment of fault to each firm involved in the prod-

uct development and manufacturing processes. Therefore we are interested in studying

strategies to improve product quality and to make proper recall decisions. Specifically,

we consider a recall cost sharing contract proposed by the manufacturer to align the

incentive of the supplier in ensuring the product quality, and also examine two types of

recall decisions: (1) voluntary recall, which is issued by the manufacturer voluntarily at a

relatvely early stage; (2) mandatory recall, which is forced by the government agency at

a relatively late stage. We characterize the firms’ decisions in equilibrium. Surprisingly,

we find that, as a Stackeberg leader, the manufacturer does not always push all the recall

cost to the supplier. His decision depends on whether he will issue a voluntary recall

or not. Furthermore, we find two cost sharing percentage thresholds that determines

the equilibrium solutions. Specifically, the lower cost sharing percentage is always as-

sociated with voluntary recall, while the higher one is always associated to mandatory

recall. We conduct comparative statics study to see how the equilibrium solutions evolve

with the change of parameters. To faciliate comparision, we study the first-best problem

where the supply chain is integrated, and find that the recall cost sharing contract cannot

coordinate the supply chain.
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CHAPTER 2 HIGH-END OR LOW-END INNOVATION?

QUALITY CHOICE AND CAPACITY TIMING OF START-UPS AND

ESTABLISHED FIRMS

2.1 Introduction

Many industries have experienced innovations that create new products and markets

displacing old ones. Some innovations are based on a transformative technology that

provides novel product features or dimensions appealing to high-end customers. One such

example is Tesla Motors, which is an American electric vehicle manufacturer. Founded

in 2003 by a team of entrepreneurs in Silicone Valley, Telsa was aimed to enter the

automotive market with expensive electric vehicles targeted at affluent buyers. It gained

widespread attention by introducing the first fully electric vehicle, Tesla Roadster. The

success of Telsa has inspired major automakers to enter the electric vehicle market with

lower-priced electric cars. Unlike Telsa’s strategy to enter a new market at the high

end, the disk drive industry has seen innovations that target at price-sensitive customer

segments initially. For example, in the early 80’s, Seagate, back then still a start-up,

introduced the first 5.25-inch disk drive to compete in the established and more expensive

8-inch disk drive market. In both examples, the start-ups led innovations to create new

products but differed in their quality positioning in the new market.

In the case of Seagate, the 5-inch disk drive market eventually replaced the 8-inch

disk drive market completely, which is a classic example of low-end disruptive innovation

(Schmidt and Van Mieghem 2005). Disruptive innovations may not always undertaken by

start-ups. In some cases, well-established firms also bring to market radical technologies

that create new markets (Yu and Hang 2010). Success stories include HP’s inkjet printers,
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Intel’s Centrino chip-sets, as well as Apple’s iPods and iPhones.

Whether being a high-end or a low-end innovation, a new product’s market potential

is often highly unpredictable because historical sales of existing products may not be

good predictors for new products due to their novel functionalities and characteristics.

Such demand uncertainty poses a great challenge to the capacity planning process of both

start-ups and established firms. Two capacity investment timing strategies are commonly

adopted by firms: (1) a capacity-leading strategy, i.e., to build capacity in anticipation

of demand; (2) a capacity-lagging strategy, i.e., to install capacity only after demand

has occurred. The capacity-leading strategy gives a firm the first-mover advantage of

commanding a favorable position in the marketplace. However, excess capacity may occur

should the prospect of a large market demand fail to materialize, or product shortages

may occur should market demand exceed the installed capacity. The strategic need for

market leadership and the operational need for matching supply with demand create an

apparent tradeoff between the two capacity timing strategies.

Academic research suggests that start-ups and established firms behave differently in

making capacity investment decisions (Swinney, Cachon and Netessine 2011). Because

start-ups are generally at the early stage of product and market development, they are

constrained by limited cash flows, and thus are faced with a vital challenge whether they

could earn enough money to sustain until the next round of funding becomes available.

Therefore, the ability to reach a sustainable level of profit seems to matter a great deal to

start-ups. In contrast, the financial objectives of established firms can be quite different

due to factors such as the ability to bear risk, access to credit, and cash availability, etc.

In general, established corporations are viewed as profit maximizers.

In light of the different financial objectives of start-ups and established firms, the

aforementioned innovation examples raise several interesting questions. First, when do

firms choose to target at the high-quality or the low-quality market segment when mak-
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ing innovations? Second, are firms’ quality choices and capacity timing strategies in-

terdependent? Third, does a start-up choose a quality level different from a competing

established firm? Moreover, does a start-up in the market increase or decrease product

differentiation? To answer these questions, we study firms’ innovation strategies along

two dimensions: quality choice and capacity timing. We build a stylized duopoly model

in which a start-up and an established firm compete in a market with quality differen-

tiation and demand uncertainty. The firms may choose to make a high-quality product

or a low-quality product. They may also choose to invest early, i.e., before demand re-

alization, or to invest late, i.e., after demand realization. We assume that a start-up

maximizes its survival probability, which is defined as the probability that the firm’s

profit is no smaller than the minimum profit needed for survival. By contrast, an estab-

lished firm maximizes its expected profit. To simplify analysis, we consider two games:

(1) a capacity timing game in which the firms with different quality levels make capacity

timing decisions; (2) a quality choice game in which the firms choose their quality levels

under different capacity timing scenarios.

Analyzing the capacity timing game allows us to find interesting innovation patterns.

For example, we find that the start-up with a low quality product always behaves aggres-

sively and takes a capacity-leading strategy as long as late capacity investment is more

expensive than early capacity investment. This pattern is consistent with the classical

examples of low-end disruptive innovation by start-ups, such as Seagate’s 5.25-inch disk

drives and Dell direct in the early 1980’s (Govindarajan and Kopalle 2006). However,

when the start-up produces a high quality product, the dynamics can be drastically

different—a surprising equilibrium may arise in which when the capacity cost increases

over time, the start-up with a high quality product invests late whereas the established

firm with a low quality product invests early. This observation is consistent with the

anecdotal evidence that disruptive innovations may not always be carried out by start-

ups, and established firms may also take the lead in innovation with low-end disruption,
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e.g., Sony’s Walkman and HP’s inkjet printers (Yu and Hang 2010). Interestingly, we

note that this equilibrium would never arise in the model of Swinney et al. (2011), in

which the start-up’s and the established firm’s products are homogenous. The emergence

of this equilibrium in our model stems from the fact that quality differentiation affects

not only the first-mover advantage of early capacity investment but also the resulting

variability of firm profits, thereby impacting start-ups’ survival probability.

The equilibrium analysis of the quality choice game also yields fruitful insights about

firms’ innovation strategies in the presence of demand uncertainty. We find that when the

market size increases, the established firm is more likely to choose high quality. Moreover,

the start-up is more likely to choose high quality when the threshold of the start-up’s

survival probability increases. Interestingly, we find that the presence of a start-up in

the market tends to increase quality differentiation.

The quality equilibrium patterns also suggest that quality differentiation is more likely

to arise when the start-up and the established firm choose different capacity timing, i.e.,

one invests early while the other invests late. In contrast, as long as the firms’ capacity

timing decisions are symmetric, investing early or investing late does not seem to make

a significant impact on the quality choices.

The rest of the paper is organized as follows. Section 2 conducts a brief literature

review on relevant works. We introduce the model in §3. We present the results for the

capacity timing game in §4 and the results for the quality choice game in §5. We conclude

in §6.

2.2 Literature Review

There are four streams of literatures related to our work. The first stream is the

operations literature on timing strategies of capacity investment under uncertainty. For

a comprehensive review on this subject, see Van Mieghem (2003). Some researchers
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investigate whether it is worthwhile to postpone capacity investment until after obtaining

accurate demand information (see, e.g., Van Mieghem and Dada 1999, Anand and Girotra

2007, Anupindi and Jiang 2008a). They study the effect of postponement strategies in

the context of monopoly or duopoly settings, and show that postponement makes the

optimal capacity decision more sensitive to uncertainty and mitigates the destructive

effect of competition, and the effect of postponement may be diminished by strategic

effects.

The second stream our work is related to is the literatures on quality differentiation.

The marketing literatures on this topic generally concentrates on the effects of quality

differentiation on product line design and market competition. For instance, Moorthy

(1984) considers a monopolist firm providing different quality levels to multiple consumer

segments with different valuations for quality. Kim and Chhajed (2002) examine a similar

problem but incorporate multiple quality-type attributes. Vandenbosch and Weinberg

(1995) consider product and price competition in the context of two competing firms with

products vertically differentiated in two dimensions. Desai (2001) investigates whether

the cannibalization problem affects firms’ price and quality decisions in both monopoly

and duopoly settings. Our work focuses on examining the effect of quality differentiation

on capacity investment decisions for competing firms, which has not been explored by the

marketing literatures. Different from these literatures that assume given quality levels,

there are also literatures that endogenize quality choices. Chan and Leland (1982) con-

sider the scenario where sellers select price and quality levels, while buyers can acquire

price/quality information about sellers at a cost. Wauthy (1996) provide complete de-

scription of quality choices in a duopoly model with vertical differentiation where firms

first choose the quality of products simultaneously and then compete in prices. This

paper also considers endogenized quality choices and examines it as an alternate setting.

Our setting is similar as in Wauthy (1996) but differs in that we capture demand un-

certainty in our model, and the start up and the established firm compete in capacity
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quantity instead of price.

Third, our work is related to the strategic management literature on disruptive in-

novation. Disruptive innovation refers to an improvement in the product or service that

radically refines the performance, related costs, or its target market in a new way. A

commonly held notion in this literature is that start-ups, instead of established firms,

tend to bring innovations to the market. Christensen and Bower (1996), Christensen

(1997), and Druehl and Schmidt (2008) construct a framework on disruptive innovation

and provide a thorough review of this topic.

Lastly, our work is related to the bankruptcy theory in the economics literature.

Radner and Shepp (1996) and Dutta and Radner (1999) both argue that a firm subject

to the risk of bankruptcy will fail with probability one if it purely maximizes its expected

profit over an infinite horizon. Greenwald and Stiglitz (1990) and Walls and Dyer (1996)

adopt a utility function that incorporates both the operating profit and the risk of failure.

Chod and Lyandres (2011) point out that private firms (e.g., start-ups) tend to be more

sensitive to risk and the chance of failure than public firms (e.g., established firms),

and hence it is reasonable for start-ups and established firms to have different objective

functions.

There are extensive literatures studying the impact of bankruptcy risk on operational

decisions such as inventory decisions, process development, capacity levels, financial sub-

sidies to suppliers, contracting and sourcing strategies. Some representatives of this liter-

ature are Archibald, Thomas, Betts and Johnston (2002), Babich, Burnetas and Ritchken

(2007), Babich (2008), Swinney et al. (2011), Boyabatli and Toktay (2011), and Tanri-

sever, Erzurumlu and Joglekar (2008). Our work is most closely related to Swinney et al.

(2011). They investigate the impact of bankruptcy risk on capacity investment timing

decisions under demand uncertainty. They find that when demand uncertainty is high

and capacity investment costs do not decline too severely over time, a start-up tends to

9



invest early while an established firm tends to invest late. The distinction of our work is

to incorporate quality differentiation and study the interdependence of a firm’s quality

choice and capacity timing. Our analysis yields a new capacity timing pattern in which

the established firm invest early while the start-up invests late. This pattern is consis-

tent with the anecdotal observation that disruptive innovation may also be carried out

by established firms (Yu and Hang 2010). A more important differentiation of our work

with respect to Swinney et al. (2011) is the fact that we endogenize quality differentiation

and derive insights about a disruptive innovator’s quality choice and its dependence on

capacity timing.

2.3 Model

We consider a start-up competing against an established firm. Both firms plan to

launch a new product. Their products may differ in quality. We denote the quality

levels of the start-up and established firm by Ss and Se, respectively. Assume Ss, Se ∈

{Sl, Sh}, where Sl denotes the low quality level and Sh denotes the high quality level,

thus Sh > Sl. The firms need to build capacities for making the products. The products’

market demands are uncertain, and the firms can follow two different capacity investment

strategies: (1) invest early, i.e., invest before demand realization; (2) invest late, i.e.,

invest after observing the demand. Depending on the capacity timing strategies, the

firms’ unit capacity costs may be different and are denoted by Cik, where i ∈ {1, 2}

represents investing early and late, respectively, while k ∈ {l, h} represents the firms’

quality levels. Let Kl and Kh denote the capacity quantity for the low quality product

and the high quality product, respectively. Any capacity investment is irreversible once

being made.

We assume that the firms’ capacity investment costs are linear in quantity. This is

a common assumption in the capacity management literature (see, e.g., Swinney et al.

2011, Van Mieghem 2003). We further assume that the marginal capacity cost of the

10



high quality product is larger than that of the low quality product, i.e., Cih
Sh
≥ Cjl

Sl
, where

i, j ∈ {1, 2}. This assumption ensures the potential existence of quality differentiation

in the market. Otherwise, the firm would find it profitable to only produce and sell the

high quality product.

2.3.1 Consumer Utility and Market Demand

We derive the inverse demand function from a consumer utility model. Consider a

market of consumers with different quality valuations. Let θ denote a consumer’s taste

parameter, which is heterogenous among the consumers. Assume that consumer tastes

are uniformly distributed over an interval [0, θ̂] with density one, hence the market size

is θ̂.1

Following the convention of the quality differentiation literature, we specify the con-

sumer utility function:

U =

{
θS − P, if he purchases a good with quality S and price P , (2.3.1)

0, if he does not purchase. (2.3.1′)

Given the two quality levels, Sh and Sl, the above utility function gives rise to the

following inverse demand functions:Pl = Slθ̂ − SlQl − SlQh, (2.3.2)

Ph = Shθ̂ − SlQl − ShQh, (2.3.2′)

where Ql and Qh denote the quantities of the low and high quality products released to

the market.

To capture demand uncertainty, we adopt the additive demand shock model, which is

commonly used in the operations and marketing literatures (see, e.g., Swinney et al. 2011,

1To ensure the existence of vertical differentiation in the market, we assume that the customer with the
highest taste value θ̂ achieves higher utility by purchasing high quality product at a price of its cost
than that from low quality product, i.e., Shθ̂ − Cih ≥ Slθ̂ − Cjl, where i, j ∈ {1, 2}. In other words,

θ̂ ≥ Cih−Cjl

(Sh−Sl)
, where i, j ∈ {1, 2}.
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Desai, Koenigsberg and Purohit 2007, Anupindi and Jiang 2008b). To do that, assume θ̂ is

a positive random variable defined on the support of
[
maxi,j∈{1,2}

{
Cih−Cjl
(Sh−Sl)

}
,+∞

)
, with

a continuous distribution function G(θ̂), whose mean µ = E(θ̂) and variance σ2 = V ar(θ̂).

We shall point out that this formulation of uncertainty leads to a demand function that

closely resembles Swinney et al. (2011)’s linear demand function with additive random

shocks. The similarity of the demand formulations makes it reasonable to compare our

equilibrium results with those of Swinney et al. (2011). 2

Naturally, the firms’ production decisions are subject to the capacity constraints.

To simplify analysis, we assume that the firms adopt a production clearance strategy,

i.e., they always produce up to their capacity limits and release all products to the

market. This is a common assumption adopted in the capacity-constrained competition

models in the operations management literature (see, e.g., Swinney et al. 2011, Goyal

and Netessine 2007).

2.3.2 Firm Objective Functions

Start-ups are generally at an early stage of development and tend to face cash-flow

constraints. Therefore, earning a sufficient amount of profit to survive is more important

than pursuing high expected profit. There are studies (see, e.g., Radner and Shepp 1996,

Dutta and Radner 1999) pointing out that a firm prone to bankruptcy will fail with

probability one if it simply aims at maximizing expected profit. This intuitively leads

to the idea of incorporating the risk of bankruptcy into a start-up’s financial objective.

In this paper, we borrow a utility structure from the bankruptcy literature (see, e.g.,

2An alternative approach to model demand uncertainty is the so-called multiplicative demand shock
model. In such a model, the taste distribution is fixed, while the market size is a random variable.
The economics literature suggests that the additive and the multiplicative approaches capture different
market characteristics, but conclusive empirical studies are rare while the theory literature on demand
uncertainty continues to use both types of demand shocks (see, e.g., Cowan 2004).
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Greenwald and Stiglitz 1990, Walls and Dyer 1996):

total utility = operating profit− cost of bankruptcy × probability of bankruptcy

For analytical simplicity, we examine two extreme forms of this general utility func-

tion. If a firm has a very small chance of bankruptcy, the first term in the utility

function, i.e., the profit term, dominates the second term, i.e., the bankruptcy cost term.

Then the firm may safely ignore the second term and focus on maximizing the expected

profit. This leads to profit maximization in the case of an established firm. If the cost of

bankruptcy is large compared to the assets of the firm, or the probability of bankruptcy

is high, the second term dominates the first term. Under a fixed cost of bankruptcy,

the firm should aim at minimizing the probability of bankruptcy. This leads to survival

probability maximization in the case of a start-up firm.

Specifically, we assume that a start-up will survive if its total profit is greater than

α, an exogenous parameter. The start-up’s objective is to maximize its survival proba-

bility, i.e., the probability that its total profit is above α. Denote the optimal survival

probability for early investment as

ψ∗ = max
K

Pr{profit ≥ α}. (2.3.3)

Similarly, the optimal survival probability for late investment is

ψ∗ = Pr{max
K

profit ≥ α}, (2.3.4)

which is equivalent to maximizing profit. For late investment, the maximum can be

moved into the parentheses because the start-up faces no demand uncertainty at the stage

of capacity investment, and hence maximizing profit leads to optimal ex-ante survival

probability. This formulation of survival probability as a start-up’s objective function is

identical to the one used in Swinney et al. (2011). Note that if the value of α is very

low, the star-up will survive whatever strategy it takes, which is not of our interest. To
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Figure 2.1: Sequence of Events: The Capacity Timing Game

avoid this case, we assume the value of α is reasonably large. Specifically, we assume

α ≥ (SlCih−ShCjl)2

4Sl(Sh−Sl)2 , where i, j ∈ {1, 2}.

2.3.3 Sequence of Events

Our goal is to study the interdependence between firms’ quality choices and their

capacity timing strategies. To do that, we first study a capacity timing game by fixing

the quality choices and then consider a quality choice game by fixing the capacity timing

decisions.

The Capacity Timing Game

In this setting, the firms’ quality choices, i.e., Ss and Se, are exogenous. The capacity

timing game proceeds in three stages, as shown in Figure 2.1. In stage 1, the firms decide

on capacity timing in terms of whether to invest early or late. In stage 2, the firm(s)

who have decided to invest early determine their capacity quantities. By the end of this

stage, demand uncertainty is resolved. In stage 3, the firm(s) who have decided to invest

late determine their capacity quantities.

Two scenarios will be analyzed: (1) the start-up produces a high quality product
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Figure 2.2: Sequence of Events: The Quality Choice Game

while the established firm produces a low quality product; (2) the start-up produces a

low quality product while the established firm produces a high quality product. We will

also consider the benchmark case where two established firms compete with different

quality levels.

The Quality Choice Game

In this setting, the firms’ capacity timing decisions are exogenous. The quality choice

game proceeds in three stages, as shown in Figure 2.2. In stage 1, both firms choose their

quality levels: Ss and Se, respectively. In stage 2, the firm(s) who invest early determine

their capacity quantities. By the end of this stage, demand uncertainty is resolved. In

stage 3, the firm(s) who invest late determine their capacity quantities. By the end of

stage 3, the firms produce and release the products to the market. We assume the unit

capacity cost is given by: Cik = βiS
2
k , where i ∈ {1, 2}, k ∈ {l, h}, and β1 is the coefficient

for early capacity investment while β2 is the coefficient for late capacity investment. To

make the problem feasible, we have made an assumption as specified in footnote 3, which

can now be transformed into Sh ≤ µ
2βi

, where i, j ∈ {1, 2}. We will consider four different

timing scenarios, which will be specified later.
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2.4 Equilibrium of the Capacity Timing Game

In this section, we analyze the capacity timing game. We also examine the benchmark

case wherein two established firms compete against each other. We solve the game by

backward induction: given each pair of timing decisions, we solve the capacity quantity

subgame first, and subsequently derive the capacity timing equilibrium.

In the following analysis, we use notation T fq to denote the capacity investment timing

strategy of a firm. T ∈ {E,L} represents the timing of capacity investment being early

(E) or late (L). f ∈ {e, s} denotes the attribute of the firm, where e or s refers to

established firm or start-up, respectively. Lastly q ∈ {l, h} stands for the quality level

with l and h denoting low and high quality, respectively. For instance, (Es
l , L

e
h) denotes

the equilibrium in which the low quality start-up invests early while the high quality

established firm invests late. We summarize the notations in Table 2.1.

High-quality Es.Firm Early High-quality Es.Firm Late
Low-quality Start-up Early (Es

l , E
e
h) (Es

l , L
e
h)

Low-quality Start-up Late (Lsl , E
e
h) (Lsl , L

e
h)

Low-quality Es.Firm Early Low-quality Es.Firm Late
High-quality Start-up Early (Es

h, E
e
l ) (Es

h, L
e
l )

High-quality Start-up Late (Lsh, E
e
l ) (Lsh, L

e
l )

High-quality Es.Firm Early High-quality Es.Firm Late
Low-quality Es.Firm Early (Ee

l , E
e
h) (Ee

l , L
e
h)

Low-quality Es.Firm Late (Lel , E
e
h) (Lel , L

e
h)

Table 2.1: Notations for the Capacity Timing Equilibria

2.4.1 High-quality Established Firm vs. Low-quality Start-up

We first examine the scenario in which the start-up produces a low quality product

while the established firm produces a high quality product. We focus on the situations

when both firms are able to make profits in this market, which requires an additional
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restriction on the distribution of θ̂.3

ψ∗ E(π∗)

(Es
l , E

e
h) 1−G

(
2
√

α
Sl

+ Shµ−
√
Slα−C1h

2Sh
+ C1l

Sl

)
(Shµ−

√
Slα−C1h)2

4Sh

(Es
l , L

e
h) 1−G

(
2
√

2(2Sh−Sl)
SlSh

α− C2h

Sh
+ 2C1l

Sl

) Sh
4

(µ2 + σ2)−
(√

SlShα
2(2Sh−Sl)

+ C2h

2

)
µ

+ Slα
2(2Sh−Sl)

+
C2

2h

4Sh
+
√

Slα
2Sh(2Sh−Sl)

C2h

(Lsl , E
e
h) 1−G

(
µ
2

+ C2l−2C1h

2(2Sh−Sl)
+ C2l

Sl
+ 2
√

α
Sl

)
2Sh−Sl

8
µ2 + (C2l−2C1h)µ

4
+ (C2l−2C1h)2

8(2Sh−Sl)

(Lsl , L
e
h) 1−G

(
2C2lSh−C2hSl+(4Sh−Sl)

√
Slα

SlSh

) Sh

(
1− 2Sh

4Sh−Sl

)2

(µ2 + σ2) +
(
C2l−2C2h

4Sh−Sl

)2

Sh

+2Sh

(
1− 2Sh

4Sh−Sl

)(
C2l−2C2h

4Sh−Sl

)
µ

Table 2.2: Optimal Survival Probability and Expected Profit When a Low-quality Start-
up Competes Against a High-quality Established Firm

In Table 2, we present the optimal survival probability for the start-up and the optimal

profit for the established firm in the capacity quantity subgame given each pair of timing

decisions. With these results, we are ready to derive the equilibria of the supergame.

Taking one case for instance, we find that when ψ∗(Es
l , L

e
h) ≥ ψ∗(Lsl , L

e
h) and E(π∗)(Es

l ,

Leh) ≥ E(π∗)(Es
l , E

e
h) are both satisfied, (Es

l , L
e
h) is an equilibrium. For brevity, we do

not list all the equilibria and the corresponding conditions. In the following proposition,

we present some important and interesting equilibria.

Proposition 2.4.1. Suppose that a start-up with a low quality product competes against

an established firm with a high quality product. If C1l < C2l,

i) There exists a threshold σ̄se such that for all σ > σ̄se, a unique equilibrium arises in

which the start-up invests early while the established firm invests late.

ii) Neither an equilibrium in which the start-up invests late while the established firm

invests early nor an equilibrium in which both firms invest late arises.

3To ensure that both firms would make nonnegative profits, we further assume θ̂ ≥ max{
√

2Slα
Sh(2Sh−Sl)

+

C2h

Sh
, 2C2lSh−C2hSl

SlSh
, µ2 + C2l−2C1h

2(2Sh−Sl)
+ C2l

Sl
,
√
Slα
Sh

+ C1h

Sh
,
√

2α
2Sh−Sl

+ C2l

Sl
, SlShµ+C2hSl−2C1lSh

2Sh(2Sh−Sl)
+

C2h

Sh
, 2C1lSh−C2hSl

SlSh
,
√

α
Sh

+ C1l

Sl
}.
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To explain the results of Proposition 2.4.1, we compute a numerical example in Figure

2.3(a). It shows that as the capacity cost for the low quality product increases over time,

neither (Lsl , L
e
h) nor (Lsl , E

e
h) would ever arise in equilibrium, which implies that the

low quality start-up always behaves aggressively and takes a capacity-leading strategy.

Furthermore, Figure 2.3(a) indicates that when the demand volatility exceeds some level,

(Es
l , L

e
h) becomes a unique equilibrium, which is consistent with the result in Proposition

2.4.1. In other words, when the demand is highly volatile, the established firm chooses a

capacity-lagging strategy. This shows that the established firm cares more about demand

uncertainty than the start-up.

(a) Low-quality Start-up and High-quality Es. Firm (b) High-quality Start-up and Low-quality Es. Firm

Figure 2.3: Capacity Investment Timing Equilibria, C1h < C2h, C1l < C2l, Sl = 5, C1h =

25, C1l = 10, α = 10, µ = 10

2.4.2 Low-quality Established Firm vs. High-quality Start-Up

In this scenario, we switch the product quality level of the start-up and the established

firm, i.e, the start-up now produces a high quality product while the established firm

produces a low quality product. We are curious whether this change would substantially

affect the investment dynamics we have observed previously. The results for the capacity

subgame are summarized in Table 2.3, and the equilibria are presented in Proposition

2.4.2.
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ψ∗ E(π∗)

(Es
h, E

e
l ) 1−G

(
2
√

α
Sh

+
Slµ−Sl

√
α/Sh−C1l

2Sh
+ C1h

Sh

)
(Slµ−Sl

√
α/Sh−C1l)

2

4Sl

(Es
h, L

e
l ) 1−G

(
2
√

2α
2Sh−Sl

+ 2C1h−C2l

2Sh−Sl

) Sl
4

(µ2 + σ2)−
(
Sl
√

α
2(2Sh−Sl)

+ C2l

2

)
µ

+ Slα
2(2Sh−Sl)

+
C2

2l

4Sl
+
√

α
2(2Sh−Sl)

C2l

(Lsh, E
e
l ) 1−G

(
SlShµ+SlC2h−2ShC1l

2Sh(2Sh−Sl)
+ C2h

Sh
+ 2
√

α
Sh

)
(SlShµ+SlC2h−2ShC1l)

2

8SlSh(2Sh−Sl)

(Lsh, L
e
l ) 1−G

(
−Sh(C2l−2C2h)+(4Sh−Sl)

√
Shα

Sh(2Sh−Sl)

) SlS
2
h

(4Sh−Sl)2 (µ2 + σ2)− 2Sh(2C2lSh−C2hSl)
(4Sh−Sl)2 µ

+ (2C2lSh−C2hSl)
2

Sl(4Sh−Sl)2

Table 2.3: Optimal Survival Probability and Expected Profit When a Low-quality Es-
tablished Firm Competes Against a High-quality Start-up

Proposition 2.4.2. Suppose that an established firm with a low quality product competes

against a start-up with a high quality product.

i) If C1l < C2l and C2h − C1h <
Slµ
4

, there exists a threshold σ̄es > 0 and a threshold

S̄h > 0 such that for σ < σ̄es and Sh > S̄h, is a unique equilibrium arises in which

the start-up invests late while the established firm invests early. If C2h − C1h >
Slµ
4

,

an equilibrium in which the start-up invests late while the established firm invests

early never arises.

ii) If C1h < C2h, an equilibrium in which both firms invest late never arises. Further-

more, there exists a threshold σ̃es(σ̃es ≥ σ̄es) such that for σ > σ̃es, a unique equi-

librium arises in which the start-up invests early while the established firm invests

late.

Proposition 2.4.2 deals with the case when a high quality start-up competes against

a low quality established firm. Again, we use a numerical example to illustrate the

findings and intuitions, which is displayed in Figure 2.3(b). When the capacity cost for

the high quality product increases over time, we can see from the figure that (Lsh, L
e
l )

is never an equilibrium. Among the equilibria displayed in Figure 2.3(b), (Lsh, E
e
l ) is

the most interesting one. As both indicated in the Proposition 2.4.2 and Figure 2.3(b),
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with increasing investment costs over time, (Lsh, E
e
l ) becomes a unique equilibrium when

the following conditions hold: the capacity cost for the start-up does not increase too

much over time, the quality differential is sufficiently large, and the demand volatility is

sufficiently low.

This observation contrasts sharply with the findings in Swinney et al. (2011). In their

setting, when a start-up competes against an established firm, and when the capacity

cost increases over time, the equilibrium with established firm investing early and start-

up investing late never exists. However, when quality differentiation is incorporated into

the model, this equilibrium emerges in the scenario described above. We shall emphasize

that the condition C2h −C1h <
Slµ
4

in Proposition 2.4.2 is critical in deriving the unique

equilibrium (Lsh, E
e
l ). We show this by presenting a numerical counterexample in Figure

3.4. We see that equilibrium (Lsh, E
e
l ) no longer exists when this condition is violated.

Equilibrium (Es
h, L

e
l ) is also worth noticing. As stated in Proposition 2.4.2, when demand

volatility is sufficiently high, this equilibrium becomes a unique equilibrium. This reflects

that the high quality start-up could also be aggressive and adopt a capacity-leading

strategy when the demand is highly volatile.

Last but not least, in Figures 2.3(a) and 2.3(b), when demand volatility is high, there

exist a unique equilibrium in which the start-up chooses the capacity-leading strategy

when facing a highly volatile demand, while the established firm acts as a follower. This

result is consistent with the results in Proposition 2.4.1(i) and Proposition 2.4.2(ii). This

equilibrium of start-up investing early and established firm investing late replicates the

result of Swinney et al. (2011), but in a setting of quality differentiation.

2.4.3 Two Established Firms

We now proceed to the benchmark case of two established firms competing against

each other. By comparing it to the start-up vs. established firm scenario, we can isolate
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Figure 2.4: A Special Case When a Low-quality Established Firm Competes Against a

High-quality Start-Up, C2h − C1h >
Slµ
4

the effect of bankruptcy risk on capacity investment timing strategies. The results for

the capacity subgame are summarized in Table 2.4, and the equilibria are presented in

Proposition 2.4.3.

E(π∗l ) E(π∗h)

(Ee
l , E

e
h) Sl
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Sh

4Sh−Sl
µ− 2C1lSh−C1hSl
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)2
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2

8SlSh(2Sh−Sl)
Sh
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2Sh
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4
σ2
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e
h) Sl
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2Sh−Sl
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e
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Sl
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Sh

4Sh−Sl
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Sl(4Sh−Sl)
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Sh
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2Sh−Sl
4Sh−Sl
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4Sh−Sl
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+
SlS

2
h

(4Sh−Sl)2σ
2 +Sh

(
2Sh−Sl
4Sh−Sl

)2

σ2

Table 2.4: Two Established Firms

Proposition 2.4.3. When two established firms, one with low quality and the other with

high quality, compete against each other, there exists a threshold σ̄ee such that for all

σ > σ̄ee, a unique equilibrium in which both firms invest late arises.

Figure 2.5 illustrates the results of Proposition 2.4.3. Notice that (Lel , L
e
h) arises as

an equilibrium in Figure 2.5, which does not appear in Figures 2.3(a) and 2.3(b). As

indicated in Proposition 2.4.3, this unique equilibrium occurs when demand volatility

exceeds a threshold value. In Figure 2.5, this equilibrium occurs in the upper right cor-

ner. The emergence of this unique equilibrium is caused by the change of competition
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Figure 2.5: Capacity Investment Timing Equilibria, C1h < C2h, C1l < C2l, Sl = 5, C1h =
25, C1l = 10, µ = 10. Two Established Firms

structure from a start-up vs. an established firm to two established firms. From Figures

2.3(a) and 2.3(b), we see that a start-up competing against an established firm always

chooses a capacity-leading strategy whenever the demand is highly volatile. But com-

peting established firms choose a capacity-lagging strategy when facing a highly volatile

demand.

2.5 Equilibrium of the Quality Choice Game

In this section, we analyze the equilibrium of the quality choice game. Given the

two-level quality choices, there are four possible quality equilibria. We use (Ssl , S
e
h) to

represent the equilibrium in which the start-up chooses the low quality level while the

established firm chooses the high quality level. The other three equilibria are similarly

specified in Table 2.5.

Es.Firm chooses Low-quality Es.Firm chooses High-quality
Start-up chooses Low-quality (Ssl , S

e
l ) (Ssl , S

e
h)

Start-up chooses High-quality (Ssh, S
e
l ) (Ssh, S

e
h)

Table 2.5: Notations for the Quality Equilibria

We solve the problem backwardly by solving the subgame first. That is, given the

quality choices of both firms, we solve the capacity quantity subgame and derive equilib-

ria. Note that when both firms choose different quality levels, the subgame is identical
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to what we have solved in the previous section. But we need to consider a new scenario

here, that is, when both firms choose the same quality level, i.e., Ss = Se. In this case,

the subgame is reduced to a Cournot game with no product differentiation(see Appendix

A.1).

There are four different capacity timing scenarios: (1) (Es, Ee), representing that

both the start-up and the established firm invest early; (2) (Ls, Le), representing that

both the start-up and the established firm invest late; (3) (Es, Le), representing that the

start-up invests early while the established firm invests late; (4) (Ls, Ee), representing

that the start-up invest late while the established firm invest early.

In this section we focus on the analysis for (Es, Ee), i.e., both the start-up and the

established firm invest early. This case is relatively more interesting than the other cases

because it keeps the firms symmetric in term of capacity timing and at the same time

preserves the effect of demand uncertainty, which helps us better understand the outcome

of the quality choice game. The subgame equilibrium analysis of the (Es, Ee) scenario

is given in Table 2.6. For brevity, we provide the subgame analysis of the other three

timing scenarios in the Appendix.

Quality Choices ψ∗ E(π∗)
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√
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4Sh

(Ssh, S
e
l ) 1−G

(
2
√

α
Sh

+
Slµ−Sl

√
α/Sh−β2S2

l

2Sh
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4Sl
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Table 2.6: The Start-Up’s Optimal Survival Probability and The Established Firm’s
Expected Profit When Both Firms Make Early Capacity Investment

2.5.1 Asymmetric and Symmetric Quality Equilibria

Next we characterize the equilibria of the quality choice game. Note that (Ssl , S
e
h) is

an equilibrium if and only if ψ∗(Ssl , S
e
h) ≥ ψ∗(Ssh, S

e
h) and E(π∗)(Ssl , S

e
h) ≥ E(π∗)(Ssl ,
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Sel ) are both satisfied. Similar arguments can be applied to the other three equilibria:

(Ssl , S
e
l ), (Ssh, S

e
l ) and (Ssh, S

e
h). An immediate observation is that if there exist multiple

equilibria, at most two equilibria are possible: either the symmetric multiple equilibria:

(Ssl , S
e
l ) and (Ssh, S

e
h), or the asymmetric multiple equilibria: (Ssl , S

e
h) and (Ssh, S

e
l ). The

next proposition characterizes conditions under which an asymmetric equilibrium arises.

Proposition 2.5.1. Suppose both firms invest early. When the following conditions are

satisfied, an asymmetric equilibrium arises. Specifically,

1. An equilibrium arises in which the start-up chooses the low quality level while the

established firm chooses the high quality level if Sl > (5
√
α

4β1
)2/3 and Sh < µ

3β1
.

Furthermore, this equilibrium is unique if Sl > Sl or Sh ∈ [Sh, S̄h] holds, where

Sl is the solution to µ(Sl)
−1 +

√
α(Sl)

− 3
2 = 3β1 and Sh, S̄h are the solutions to

Sh +
√
α√
Sh

1
3β1

= µ
3β1

.

2. A unique equilibrium arises in which the start-up chooses the high quality level, while

the established firm chooses the low quality level if Sl >
µ

3β1
and Sh < (3

√
α

4β1
)2/3.

Proposition 2.5.1 provides sufficient conditions for the existence of asymmetric equi-

libria. Comparing the conditions of part 1 and part 2 of Proposition 2.5.1 yields two

interesting observations. First, when µ, the market size, increases, the conditions of part

1 are more likely to be satisfied while the conditions of part 2 are less likely to be satisfied.

This implies that (Ssl , S
e
h), the equilibrium in which the start-up chooses low quality and

the established firm chooses high quality, is more likely to arise when the market size

increases. Second, when α, the threshold of the start-up’s survival probability, increases,

the the conditions of part 1 are less likely to be satisfied while the conditions of part 2

are more likely to be satisfied. This implies that (Ssh, S
e
l ), the equilibrium in which the

start-up chooses high quality and the established firm chooses low quality, is more likely

to arise when the threshold increases.
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Proposition 2.5.2. Suppose both firms invest early. When the following conditions are

satisfied, a symmetric equilibrium arises. Specifically,

1. An equilibrium arises in which both firms choose high quality if Sh < (5
√
α

4β1
)2/3 and

Sh ∈ [Sh, S̄h], where Sh and S̄h are the solutions to Sh+
√
α√
Sh

1
3β1

= µ
3β1

. Furthermore,

this equilibrium is unique if Sh < (3
√
α

4β1
)2/3 or Sh <

µ
3β1

holds.

2. A unique equilibrium arises in which both firms choose low quality if Sl >
µ

2β1
and

Sl > Sl, where Sl is the solution to µ(Sl)
−1 +

√
α(Sl)

− 3
2 = 3β1.

Proposition 2.5.2 provides sufficient conditions for the existence of symmetric equi-

libria. By comparing the conditions of part 1 and part 2 of Proposition 2.5.2, we observe

that when µ or α increases, the conditions of part 1 are more likely to be satisfied while

the conditions of part 2 are less likely to be satisfied. This implies that (Ssh, S
e
h), the equi-

librium in which both firm choose high quality, is more likely to arise when the market

size or the threshold of the start-up’s survival probability increases.

Taken together, Propositions 2.5.1 and 2.5.2 suggest that when the market size in-

creases, the established firm is more likely to choose high quality. Moreover, the start-up is

more likely to choose high quality when the threshold of the start-up’s survival probability

increases.

2.5.2 Comparative Statics of Quality Levels

So far we have assumed the two quality levels are given. Next, we conduct comparative

statics of quality levels. We use Figure 2.6 to help illustrate the results. The equilibria

are marked in the upper triangular region since Sh is assumed to be larger than Sl. As

indicated in the figure, when Sh is relatively small (note that relatively small Sh also

implies relatively small Sl), or when Sl is extremely small and Sh is relatively high,

a unique symmetric equilibrium occurs in which both firms choose high quality. As
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Sl and Sh increase, the equilibrium changes to the asymmetric case, in which quality

differentiation helps both firms improve profits. Interestingly, in part of this region, we

also observe two equilibria co-exist, both of which are asymmetric. Finally, in the right

upper corner of the triangular area, the unique symmetric equilibrium arises with both

firms choosing the low quality.

(a) Early Start-up and Early Es. Firm (b) Late Start-up and Late Es. Firm

(c) Early Start-up and Late Es. Firm (d) Late Start-up and Early Es. Firm

Figure 2.6: Quality Equilibria under the Four Capacity Timing Scenarios: Relatively

Small Demand, µ = 6, σ2 = 1, α = 10, β1 = 0.25

2.5.3 The Interdependence between Quality Choice and Capacity Timing

Next we study the interdependence between quality choice and capacity timing. To

this end, we carry out similar numerical analysis for the other three capacity timing
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scenarios. The results are presented in Figure 2.6 (b), (c) and (d).

Comparing Figure 2.6 (a) and (c) leads to an interesting observation: the (Ssh, S
e
h)

region in (a) mostly changes to (Ssh, S
e
l ) in (c). This implies when the start-up invests

early, the established firm’s low quality choice seems to be correlated with its late invest-

ment timing. In this situation, quality differentiation arises in the market. Interestingly

when the potential quality differentiation (i.e., when the difference between Sh and Sl

is large), the start-up tends to choose high quality while the established firm tends to

choose low quality. Moreover, we observe that symmetric quality equilibria do not exist

in (c), which suggests that asymmetric quality equilibria are correlated with asymmetric

capacity timing.

(a) Early Start-up and Early Es. Firm (b) Late Start-up and Late Es. Firm

(c) Early Start-up and Late Es. Firm (d) Early Start-up and Late Es. Firm
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Figure 2.7: Quality Equilibria under the Four Capacity Timing Scenarios: Relatively

High Demand, µ = 10, σ2 = 1, α = 10, β1 = 0.25

Comparing Figure 2.6 (a) and (b), we observe that the equilibrium patterns are

similar, except that the region with multiple equilibria shrinks. This implies that as long

as the firms’ capacity timing decisions are symmetric, investing early or investing late do

not seem to make a significant impact on the quality choices.

The asymmetric quality equilibria in Figure 2.6 (c) are particularly interesting because

the (Es, Le) capacity timing pattern resembles disruptive innovations in various indus-

tries. Empirical evidence suggests that start-ups may take either high-end or low-end

encroachment strategies. Our results suggest that two conditions may make start-ups

more likely to choose high-end encroachment strategies: (1) when the potential qual-

ity differentiation (i.e., when the difference between Sh and Sl) is large; (2) when the

potential quality differentiation is small and the absolute quality level is small.

Next we examine how quality choices of firms depend on the market size. The nu-

merical results are displayed in Figure 2.7. Comparing it with Figure 2.6 suggests that

(Ssh, S
e
h) and (Ssl , S

e
h) are more likely to arise when the market size increases. This ob-

servation is consistent with the results of Proposition 2.5.1 and Proposition 2.5.2. (see

the discussion after Proposition 2.5.1 and Proposition 2.5.2)4

2.5.4 Quality Choices of Two Established Firms

One of research questions asks whether the presence of a start-up in the market

increase or decrease product differentiation. To answer this question, we analyze the

benchmark of two established firms. The results are displayed in Figure 2.8. Comparing

the quality choice equilibria of this figure with Figure 2.7 yields the following observation:

4For Figure 2.7 (c), there are more than two equilibria displayed in the graph. If we continue to increase
µ, (Ssh, Seh) and (Ssl , Seh) will be the only two equilibria left.
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the presence of start-up increase product differentiation. For instance, Figure 2.7(a)

has the equilibrium in which the start-up chooses high quality and the established firm

chooses low quality (Ssl , S
e
h). This asymmetric equilibrium does not exists in Figure

2.8(a), which only has the symmetric equilibrium in which both firms choose high quality.

(a) Early Es. Firm 1 and Early Es. Firm 2 (b) Late Es. Firm 1 and Late Es. Firm 2

(c) Early Es. Firm 1 and Late Es. Firm 2 (d) Late Es. Firm 1 and Early Es. Firm 2

Figure 2.8: Two Established Firms, Quality Equilibria under the Four Capacity Timing

Scenarios: Relatively High Demand, µ = 10, σ2 = 1, α = 10, β1 = 0.25

2.6 Concluding Remarks

Inspired by various disruptive innovations observed in practice, we study the inno-

vation strategies of start-ups and established firms along two dimensions: quality choice

and capacity timing. We build a stylized duopoly model in which a start-up and an es-
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tablished firm compete in a market with quality differentiation and demand uncertainty.

Our analysis generate valuable insights that can be applied to understand the drivers

of high-end vs. low-end disruptive innovations taken by either start-ups or established

firms in the market. For instance, we find that when the market size increases, the

established firm is more likely to choose high quality. Moreover, the start-up is more

likely to choose high quality when the threshold of the start-up’s survival probability

increases. Second, we find that the presence of a start-up in the market tends to increase

quality differentiation. Third, our results suggest that the firms’ quality choice and

capacity timing are interdependent. Specifically, we find that quality differentiation is

more likely to arise when the two firms choose different capacity timing. Fourth, we

also identify an interesting equilibrium in which the established firm with a low-equality

product chooses a capacity-leading strategy when the start-up with a high-quality chooses

a capacity-lagging strategy. This equilibrium is consistent with anecdotal evidence on

established firms being disruptive innovators.

Limitations exist in our model. First, our model does not capture the setting when

both the quality choices and the capacity timing decisions are endogenous. Endogenizing

both decisions in our model with demand uncertainty inevitably leads to an intractable

model. To overcome this, we focus on the quality choice game and the capacity timing

game separately, but consider different timing and quality scenarios in the two games,

respectively. This simplification leads to interesting managerial insights about the in-

terdependence between quality choice and capacity timing. One issue may arise when

endogenizing both the quality choices and the timing decisions together in a model—it

is not clear whether the quality choices should be determined before or after the timing

decisions, or both should be determined concurrently. Relevant anecdotal evidence needs

to be collected to validate such an assumption on the sequence of events.

Second, we adopt a production clearance strategy. A more realistic assumption would
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be that the production quantity is bounded by the capacity level, and hence is not nec-

essarily equal to it. Thus, holdback may happen. Although we find it difficult to obtain

analytical results under such an assumption, further work in this area is worthwhile.

Third, the objective functions we adopt for start-ups and established firms only de-

scribe the extreme cases, i.e., start-ups only care about bankruptcy risk while established

firms only care about profit. Nevertheless, in reality, all firms would care about not only

profit but also bankruptcy risk. And they may differ in the relative weight of these two

factors.5

5Swinney et al. (2011) show that the main results still hold when using a combined form of objective
function.
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CHAPTER 3 PROCUREMENT CONTRACTING UNDER PRODUCT

RECALL RISK

3.1 Introduction

In today’s competitive global markets, product quality and consumer satisfaction

are raised to an unparalleled status. However, product recalls are commonly observed

in various industries. When a major product quality failure is detected, either due to

design flaws or production defects, the manufacturer may recall all the affected batches of

products that may potentially contain the defect. Leading manufacturers, renowned for

high quality, may still suffer from massive product recalls. As a legend in the automobile

industry, Toyota has long been recognized as a leader in manufacturing and quality

management. However, it ran into serious challenges in recent years: a series of recalls

were issued by Toyota between 2009 and 2010. The first recall, happened in September

2009, including eight models and 3.8 million vehicles, was due to gas pedals sticking on

floor mats that may cause dangerous sudden acceleration. Later that year, two additional

recalls followed and 4.2 million more vehicles were called back. At the beginning of 2010,

Toyota issued two additional recalls which amount to 3.39 million cars in the U.S., and

then decided to expand the recall to cover over 1.8 million cars across Europe and China.

Meanwhile, Toyota temporarily suspended US sales and production of all the eight models

involved in the recall. As a result, Toyota lost five percent market share in the US, which

may further rise as an aftershock of the crisis. To make the matter worse, a group of

law firms sued Toyota to compensate losses due to deaths and injuries related to the

quality issues. Product recalls are not unique to the automobile industry, they are also

observed in the food industry (e.g. (Thomsen and McKenzie 2001)) and the medical

32



device industry (e.g. (Thirumalai and Sinha 2011)). Even in the aerospace industry,

for example, Boeing announced in early 2013 that they were recalling all of their 50

manufactured 787 Dreamliner Aircraft due to a faulty Lithium Ion Battery outsourced

from a supplier. As a consequence, over 1900 flights were rescheduled. Product recalls

are not necessarily restricted to manufacturers, they can also happen to retailers. An

example is Lululemon Athletica, an athletic apparel retailer, which recalled its yoga

pants in the spring of 2013 1. An extensive review on product recalls can be found in

(Marucheck, Greis, Mena and Cai 2011).

Typically, the financial impact of product recalls is enormous in magnitude. Once a

recall is issued, the number of products involved could be numerous. There are direct

costs from repairs, recall logistics, and litigation fees, and indirect costs due to lost sales,

damaged reputation, and manufacturing downtime. (see also (Hendricks and Singhal

2003), (Rupp 2004) and (Jarrell and Peltzman 1985)). Product recalls are generally

caused by product quality failures. In many cases, the defects lie in the components or the

products outsourced from an external supplier. In the presence of outsourcing, ensuring

product quality become particularly challenging because quality failures could result from

the use of low-quality raw materials, design flaws, or manufacturing defects, which are

managed by different parties of a supply chain. As a result, information asymmetry and

moral hazard make it impossible for manufacturers to rely on supplier’s self-motivation to

achieve quality. There are different ways to induce suppliers to invest in quality. One way

is through quality inspection, but it can be costly and time consuming. An alternative

and complementary way is providing financial incentives to suppliers through structured

contracts on quality. The challenge of quality contracting is that in general the suppliers

quality effort cannot be directly observed and the quality output is uncertain. What

complicates quality contracting even further is the fact that it is often times unrealistic

1http://online.wsj.com/article/SB10001424127887323415304578369812787114262.html
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to have a clear-cut assignment of fault to each firm involved in the product development

and manufacturing processes. It is not uncommon for a manufacturer and a supplier

to point fingers at each other when product failures occur. Lululemons yoga pants were

recalled in 2013 because they became too thin when being stretched. The apparel retailer

blamed the defective batches of yoga pants on its Taiwanese supplier, Eclat Textile, who

manufactured the products. The supplier, however, refused to accept this blame and

argued that it followed Lululemons design specifications in choosing the fabrics, and the

products went through a certification process approved by the retailer. Such quality

disputes may also arise when product architecture is complex and ambiguity in fault

determination. A classical story was the one between Ford and its tire supplier Firestone

in a massive recall of Ford Explorer in 2000.2 Ford claimed that the tires were faulty

and could, under certain conditions, cause vehicles to roll over. Firestone claimed that

the problem was with the vehicle. Some suspected that the quality failure lied in the

interfacing area of the vehicle and the tires.

Due to the challenge of directly contracting on quality effort and output, some manu-

factures have used recall cost sharing contracts to incentivize suppliers quality effort. For

instance, in August 2013, General Motors announced that it would start sharing recall

costs with its suppliers even if their products initially passed GM’s quality inspection

but later were found to be defective.3 In this paper, we will focus on recall cost sharing

contracts and investigate their effectiveness in improving quality.

Naturally, the financial impact of product recalls also depends on the total sales,

creating an inherent dependence between quality and quantity decisions. As a result,

2http://www.people.vcu.edu/∼dbromley/firestoneLink.htm, http://en.wikipedia.org/wiki/Firestone and
Ford tire controversy

3http://www.autonews.com/article/20130805/OEM10/308059934/gm-presses-suppliers-for-future-
recall-costs
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demand uncertainty further complicates manufacturers effort in managing product recall

risks. With the demand risk, a careful quantity decision needs to be made, and who

decides the quantity makes a difference. In a push system, the manufacturer commits

to an order quantity before observing demand; while in a pull system, the manufacturer

places an order after demand uncertainty is resolved while the supplier commits to a

production quantity before demand realization.

Motivated by GM’s practice, we center our research questions on how to mitigate recall

risk under demand uncertainty. What is the interaction between quality and quantity

decisions in the supply chain? To address this problem, we consider a model in which a

manufacturer outsources to a supplier the production of a component, which is subject

to potential quality failure leading to a product recall. The manufacturer acts as the

Stackelberg leader offering a recall cost sharing contract to the supplier. We consider

two regimes: (1) a push system in which the manufacturer sets both the wholesale price

and the quantity before observing demand, leaving only the quality effort decision to

the supplier; (2) a pull system, in which the manufacturer only determines the wholesale

price while the supplier makes both the quantity decision and the quality effort decision

before demand realization. The essential difference between the two regimes lies in who

bears the demand risk. We find that the manufacturer achieves a higher production

quantity and induces a higher quality effort of the supplier in the push system than

in the pull system. Therefore, the manufacturer can improve quality by taking on the

demand risk of the supply chain. Moreover, the presence of product recall risk decreases

the production quantity in the push system but does not affect the production quantity

in the pull system. Interestingly, the manufacturer can improve quality and profit by

decreasing her share of the total recall cost without affecting the production quantity of

the supply chain in both the push and pull systems.

The rest of the paper is organized as follows. Section 2 provides a review of related
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literatures. Section 3 presents the model while Sections 4 and 5 present the analysis for

the model with and without the product recall risk, respectively. Section 6 concludes our

work.

3.2 Literature Review

By incorporating both the recall risk and the demand risk in a procurement contract-

ing setting, our work contributes to two streams of literatures in supply chain contracting:

quality contracting and newsvendor contracting. There exists a considerable amount of

related literature on newsvendor contracting literature in supply chains. This stream of

literature mainly focuses on demand risk. (Lariviere and Porteus 2001) consider a simple

wholesale price contract in which a manufacturer sells to a retailer facing a newsvendor

problem. (Cachon and Lariviere 2001) study a manufacturer-retailer outsourcing setting

in which the supplier need to construct capacity in advance of receiving order from the

manufacturer. They consider both forced compliance and voluntary compliance regimes

and study contracts that allow the supply chain to share demand forecasts credibly.

(Cachon 2004) investigate both push and pull systems based on wholesale price based

contracts and focus on how the allocation of inventory risk influences a supply chains

performance and its division of profit. There are a number of papers which study more

complicated supply chain coordinating contracts (buy-back contracts, revenue sharing

contracts et al.). The focus is on how to design a contract between downstream and up-

stream players to eliminate double marginalization and maximize supply chain efciency.

(Cachon 2003) provides an excellent review on the management of incentive conflicts

with contracts in various newsvendor settings. There is a growing literature on quality

contracting in supply chains. This stream of literature focuses on modeling the quality

improvement incentives of supply chain members. Quality could be improved either by

inspection or by investment from multiple players. (Reyniers and Tapiero 1995) consider

a model in which a supplier makes a unobservable quality-related choice while Producer
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independently decides on his inspection policy for both non-cooperative and cooperative

settings. (Lim 2001) also consider a product quality inspection problem. They investigate

the contract design of a producer when he purchases parts from a supplier, and there is in-

complete information regarding the quality of the parts. Similarly, (Baiman, Fischer and

Rajan 2000) and (Baiman, Fischer and Rajan 2001) consider a setting where a supplier,

who incurs quality improvement costs, sells an intermediate product to a buyer, who

incurs appraisal costs to identify defects, and examine the relationship between product

architecture, supply-chain performance metrics, and supply-chain efficiency. There are

papers modeling quality improvement investment by both the supplier and the buyer.

(Balachandran and Radhakrishnan 2005) examine a supply chain in which the nal prod-

uct consists of components made by a buyer and a supplier in a double moral hazard

situation. (Zhu, Zhang and Tsung 2007) focus on supply risk and consider a buyer who

designs a product and outsources the production to a supplier and both players have

options to invest in quality improvement. They also investigate the interaction between

quality-improvement decisions interact and operational quantity decisions such as the

buyer’s order quantity and the supplier’s production lot size using an EOQ model. In

addition, all papers listed out above examine the fixed sharing rate contracts covering

the external quality costs. As a more general case, (Chao, Iravani and Savaskan 2009) fo-

cus on recall instances, and discuss two external quality cost sharing contracts, in which

product recall costs can be shared between a manufacturer and a supplier to induce

effort from both sides to improve final product quality. They characterize the quality

improvement effort decisions which are subject to moral hazard and even when there is

information asymmetry regarding to the existing process capability. To summarize our

contribution to the existing literatures, we are the first paper to establish the linkage be-

tween the product recall risk and the demand risk. Secondly we derive novel managerial

insights into quality decisions in both push and pull systems.
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r = market selling price
c = unit quantity cost
u = unit recall cost
s = quality effort marginal cost
λ = exponential rate

exp{−λe} = recall probability
g = density distribution
G = demand distribution
Ḡ = complementary demand distribution
d = demand mean
l = demand lower bound
θ = recall cost sharing percentage
w = wholesale price
e = quality effort by the supplier
q = order quantity
q̃ = order quantity for the setting without product recall risk

S(q) = ED[min(q,D)] =
∫ q

0
Ḡ(x)dx = expected sales

Π = manufacturer’s profit
π = supplier’s profit
Σ = supply chain profit

Table 3.1: Notations

3.3 Model

We consider a single period, single sourcing setting where a downstream manufacturer

outsources to an upstream supplier the production of a customized component. After

receiving the components from the supplier, the manufacturer finishes assembling and

releases the finished products to the market at price r. The market demand is assumed

to be random with distribution function G(x) and density function g(x). Assume G(x)

to be continuous and differentiable. Let Ḡ(x) = 1−G(x) denote complementary demand

distribution.

The components produced by the supplier are subject to potential quality failure.

Once a quality failure occurs, the manufacturer need to issue a product recall. This

product recall risk is characterized by a recall probability in an exponential form of

exp{−λe}, where e denotes the supplier’s quality effort, and λ is a given constant. Note
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that the recall probability is decreasing and convex in e, which also resembles the realistic

case. By deciding how much to invest in the quality effort e, the supplier can affect the

possibility of product recall. Besides, we assume that e is not contractible, which implies

the manufacturer, as a Stackelberg leader, faces a moral hazard problem and need to

incentivize the supplier to invest more in quality effort.

A linear cost structure is adopted with unit quantity cost c, unit recall cost u, and

unit quality effort cost s. In terms of the contract that the manufacturer provides to

the supplier, we consider a simple recall cost sharing contract (wholesale price based

contract), which is commonly used in the literatures. There are two parameters in this

contract, the unit wholesale price w and the recall cost sharing percentage θ. In other

words, the manufacturer offers the supplier with a wholesale price and the percentage of

the total recall cost that he will share in case a recall happens.

In this paper we study and compare two schemes, namely the push system and the pull

system ((Cachon 2004)). The sequence of events are as follows (displayed in Figure 3.1).

We begin with the push system. At the beginning of the time horizon, as a Stackelberg

leader, the manufacturer offers a recall cost sharing contract to the supplier, including

the unit wholesale price w and the recall cost sharing percentage θ. We treat the cost

sharing percentage θ as an exogenous decision first and then investigate the impact of θ.

The reason lies in the observation that the cost sharing percentage is often a long-term

strategic decision, while both the quantity and quality decisions are short-term decisions

and need to be revised periodically.

In the pull system, the manufacturer determines both the wholesale price w and

the order quantity q, leaving only the quality effort decision to the supplier. After the

supplier chooses the quality effort level, the demand D is realized. Then min{D, q}

units of products are sold to the market and the manufacturer is subject to recall risk.

Once a recall occurs, both parties (manufacturer and supplier) share the total recall
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Figure 3.1: Sequence of Events

cost according to the sharing scheme specified in the contract. In the pull system, the

demand risk is transferred from the downstream manufacturer in the former setting to the

upstream supplier, who now decides the quantity decision q before demand realization,

while the manufacturer does not order until the demand uncertainty is resolved.

3.4 Analysis

In this section, we first analyze the first-best benchmark case and then examine the

push and pull systems separately. After that we study the impact of recall risk and cost

sharing percentage. We close the section with a discussion on the range of cost sharing

percentage.

Denote the Π and π as the profits for the downstream manufacturer and the upstream

supplier, respectively. Let Σ be the total profit for the supply chain, i.e. the sum of both

manufacturer’s and supplier’s profits. In the following analysis, we use superscript FB

to denote first-best variables, use superscript S to denote push system variables, and use
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superscript L to denote pull system variables.

3.4.1 First-Best Benchmark

To facilitate our understanding of the two schemes, we establish the first-best bench-

mark first, where the integrated supply chain maximizes the sum of both the manufac-

turer’s and supplier’s profits. The decision variables are the order quantity q and the

quality effort e, and the first-best optimization problem is given by

ΣFB = max
e,q

rS(q)− exp{−λe}uS(q)− cq − se,

where

S(q) = ED[min(q,D)] =

∫ q

0

Ḡ(x)dx.

In the following lemma, we provide the first-best optimal solution.

Lemma 3.4.1. If the demand distribution satisfies the IFR property and l ≥ s/uλ holds,

the optimal solution {eFB, qFB} for the first-best benchmark is given by

eFB =
1

λ
ln

(
S(qFB)uλ

s

)
,

and

rḠ(qFB)− s

λ

Ḡ(qFB)

S(qFB)
− c = 0.

The following corollary presents how the solution set {eFB, qFB} change when param-

eters alter.

Corollary 3.4.1. In the integrated supply chain, there are,

(i) qFB is increasing in r and λ, decreasing in c and s, and independent of u.

(ii) eFB is increasing in u and r, and decreasing in c and s.
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Corollary 3.4.1 provide the monotone properties of order quantity and quality effort

when the parameters change. The dependence on r and c accord with the results in

classic newsvendor problem. When unit quantity cost c increases, the overage cost for

the newsvendor is essentially higher, hence qFB decreases accordingly. With less order

quantity, the incentive for putting in quality effort is lowered, so eFB is reduced too.

Similarly, a higher selling price r means a higher underage cost, and therefore qFB and

eFB increases with r. The recall related parameters are λ, s and u. As the quality effort

marginal cost s increases, it costs more for the supplier to put in same amount of effort

than before. Therefore eFB decreases in s, resulting in higher recall probability. Similarly,

qFB decreases in s too. As λ increases, with same amount of effort as before, the recall

probability is lower, so the manufacturer has the incentive to release more product to

the market. With higher unit recall cost u, the potential penalty from recall is higher,

which incentivizes the supplier to put in more quality effort to reduce the possibility of

recall. Interestingly, we find that the unit recall cost u does not affect qFB. Intuitively,

higher unit recall cost should hinder from ordering more. However, the probability of

recall is reduced in the meantime, which contributes to reduce the expected recall cost

and encourage a higher product quantity. The effects of these two conflicting factors

cancel out.

3.4.2 Push System

With first-best benchmark established, we now move to examine the decentralized

settings. We start with the push system first, i.e., the manufacturer decides the order

quantity, which can be formulated as a stylized principle-agent problem, with individual

rationality (IR) and incentitive compatibility (IC) constraints:

ΠS = max
w,q

Π(w, e∗, q)

s.t. π(w, e∗, q) ≥ 0 (IR)

e∗ ∈ argmax
e

π(w, e, q) (IC),
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where

Π(w, e, q) = rS(q)− exp{−λe}θuS(q)− wq,

π(w, e, q) = wq − exp{−λe}(1− θ)uS(q)− cq − se.

We solve this problem backwardly by first solving the supplier’s problem given wholesale

price w and order quantity q provided by the manufacturer, and then substituting the

supplier’s reactive function into the manufacturer’s problem to determine the optimal

solutions. We characterize the optimal solutions in the following proposition.

Lemma 3.4.2. If the demand distribution satisfies the IFR property and θ < θ̄ = 1 −

s/(uλl) holds, then the unique optimal solution is given by the following equations:

rḠ(qS)− s

λ

Ḡ(qS)

S(qS)
− c = 0,

eS =
1

λ
ln

(
S(qS)(1− θ)uλ

s

)
,

and

wS = c+
s

λqS
+

s

λqS
ln

(
S(qS)(1− θ)uλ

s

)
.

Note that the first equation in Lemma 3.4.2 is the same as that in the first-best

benchmark, and the second equation in Lemma 3.4.2 is different by only a coefficient of

(1− θ) from that in the first-best benchmark. By comparing with the first-best solution

in previous section, we further obtain the following result:

Lemma 3.4.3. In the push system, we have

(i) qFB = qS, and eFB > eS, thus the recall cost sharing contract cannot attain the

first-best solution.

(ii) πS = 0, and ΣS = ΠS, i.e., the supplier’s profit is pushed to zero, and the manu-

facturer takes all the supply chain’s profit.
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Lemma 3.4.3 shows that, under the decentralized push system when the manufacturer

bears the demand risk, he or she choose to order the same quantity as in the first-best

case, but the supplier chooses a lower quality effort than in the first-best case. Note

that the equations for determining qS and eS have the same structures as those in the

first-best benchmark, therefore all the qualitative properties in Corollary 3.4.1 carry over

here. Apart from the solution, we are also interested in the profit allocation in the push

system. According to Lemma 3.4.3, the supplier ends up with zero profit under the

optimal solution. Therefore, under this setting, the maunfacuter’s objective is aligned

with the supply chain profit, and thus she, as a stackberlg leader, has the incentive to

push both quantity and quality decisions as close as possible to the first-best solution.

With both quantity q and wholesale price w as decision variables, the manufacturer has

more flexibility to incentivize the supplier compared with the pull system we are about to

examine later. To summarize, qS is chosen to equal qFB, however, the suppier’s decision

eS is smaller than eFB due to the effect of double marginization. As a consequence, recall

cost sharing contract cannot attain the first-best, or in other words, this contract is not

efficient. Next we aim to further study this gap. Define δS(L) = ΣFB − ΣS(L), which

represents the supply chain profit loss (compared with integrated system) for the push

(pull) system, and we have the following result:

Proposition 3.4.1. In the push system, the supply chain profit loss is given by

δS =
s

λ

(
ln(1− θ) +

θ

1− θ

)
.

Remark 3.4.1. Note that δS ≥ 0, dδS

dθ
≥ 0, and both inequalities are binding if and only

if θ = 0. Therefore, the supply chain profit loss is increasing in θ. In other words, the

larger percentage of recall costs the manufacturer is paying, the larger the supply chain

profit loss is. Ideally, the supply chain become most efficient if the manufacturer can to

the largest extent push recall risk upward the supply chain to the supplier.
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3.4.3 Pull System

Next we move to the pull system. Now the decision of q is up to the upstream supplier,

who takes the demand risk in the current setting. The problem becomes convoluted

since the agent now faces a two-dimensional decision problem, which is rarely seen in

most supply chain contracting literatures. Traditionally the agent is often faced with an

one-dimensional problem, which is easy to be solved with an explicit solution so that it

can be substituted back into the principle’s problem.

We formulate decentralized optimization problem as follows:

ΠL = max
w

Π(w, e∗, q∗)

s.t. π(w, e∗, q∗) ≥ 0 (IR)

(e∗, q∗) ∈ argmax
e,q

π(w, e, q) (IC),

where

Π(w, e, q) = rS(q)− exp{−λe}θuS(q)− wS(q), (3.4.1)

π(w, e, q) = wS(q)− exp{−λe}(1− θ)uS(q)− cq − se. (3.4.2)

Note that the agent’s objective in our case is challenging too, because it is not concave,

and not even unidomal except that in some cases its first derivative is unimodal. Nev-

ertheless, we are able to prove both the existence and the uniqueness for the optimal

solutions in this setting.

We follow the similar procedure as in the push system, and characterize the optimal

solution for the pull system first.

Lemma 3.4.4. If the demand distribution satisfies the IFR property and θ < θ̄ = 1 −
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s/(uλl) holds, then the unique optimal solution is given by

rḠ(qL)− cg(qL)S(qL)

Ḡ2(qL)
− c = 0, (3.4.3)

eL =
1

λ
ln

(
S(qL)(1− θ)uλ

s

)
, (3.4.4)

and

wL =
c

Ḡ(qL)
+

s

λS(qL)
. (3.4.5)

As before, we examine how the optimal solutions change as the parameters vary. The

results are presented in the following corollary.

Corollary 3.4.2. In the pull system, we have

(i) qL is decreasing in c, increasing in r, and is independent of u, s, and λ.

(ii) eL is increasing in u and r, and decreasing in c and s.

Compared with both the first-best benchmark and the push system, the changes are

the dependence of qL and eL on s and λ. As quality effort marginal cost s increase, the

supplier’s quality effort is likely to decrease, and hence lead to potentially higher recall

cost. Therefore the supplier has the incentive to reduce order quantity. However, as the

manufacuter’s profit is increasing in qL, he has the incentive to provide higher wholesale

price to compensate the supplier and obstruct him from lowering the order quantity. As a

result, qL appears to be independent of s. The argument for λ is similar. As λ decreases,

same amount of quality effort results in larger recall probability, so the supplier is more

conservative torwards ordering quantity and want to choose lower qL. But again, the

manufacturer has the incentive to stop him from lowering it, so qL also appears to be

independent of λ.

We further compare the solutions and profits in the pull system with those in the

first-best benchmark, and the results are summarized in the following lemma.
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Lemma 3.4.5. The pull system yields lower order quantity and quality effort than the

integrated supply chain, and the supplier could yield a nonzero profit under this setting:

(i) qFB > qL, and eFB > eL, thus the recall cost sharing contract cannot attain the

first-best solution.

(ii) πL > 0, and ΣL > ΠL.

Therefore we see that when the supplier bears the demand risk, both the quantity

and quality effort are lower than the first-best solution. Here in the pull system, we

obtain the similar conclusion that the contract cannot coordinate the supply chain. Both

product quantity and quality effort cannot attain first-best. By taking the demand risk,

the supplier in the pull system can leverage on its quantity decision and avoid being

pushed to zero profit. Essentially the supplier is better off in the pull system compared

with the push system.

Similar as in the push system, noting the contract cannot achieve first-best, we exam-

ine the supply chain profit loss again and find that the supply chain profit is even worse

off in the pull system. Hence the supply chain profit in the pull system is lower than that

in the push system. Recall that the supplier’s profit is zero in the push system, and that

Lemma 3.4.5 (ii) shows that the supplier ends with a positive profit, therefore we must

have, the manufacturer’s profit in the pull system is lower than that in the push system.

We present these results formally in the following Proposition.

Proposition 3.4.2. Compared with the push system, the pull system have larger supply

chain profit loss, lower supply chain’s profit, higher supplier’s profit, and lower manufac-

turer’s profit:

δL > δS,ΣS > ΣL, πS < πL, and ΠS > ΠL.

Next we compare the optimal solutions between the push system and the pull system,
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and we obtain the following proposition:

Proposition 3.4.3. The pull system yields both smaller order quantity and lower quality

effort: qS > qL and eS > eL.

By Proposition 3.4.3, it can be seen that the manufacturer achieves a higher output

(quantity) level and induces a higher quality effort from the supplier in the push system,

i.e., when the manufacturer makes the quantity decision. This result reveals that man-

ufacturers could take on demand risk in exchange for higher quality effort by suppliers.

Note that the manufacturer also achieves a higher profit and an output level closer to

first-best solution under the pull system.

Managerial Insights #1: The manufacturer achieves a higher production

quantity and induces a higher quality effort of the supplier in the push system

than in the pull system.

Risk aversion is commonly observed in reality, i.e., the supply chain players tend to

avoid taking risks. This also partially explains why pull system is more popular among

manufacturers, because it protects him from demand risk. However, our result shows

that, when product recall is incorported, the manufacturer may interestingly choose to

take on demand risk in order to alleviate the recall risk.

3.4.4 The Impact of Recall Risk on Quantity Decisions

To understand what the potential recall affect the quantity decision and the quality

decision in the supply chain, we further introduce the scenario without product recall risk.

Similar as previous analysis, we consider the push system and the pull system, as well

as the first-best benchmark. By comparing the results with those in previous sections,

we can isolate the effect of the feature of product recall in the model. Without potential

recall risk, the centralized first-best problem and decentralized principle-agent problem
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are both generic and we can establish the optimal solutions and related properties in

a similar procedure as we did before. The problems for the push system and the pull

system are given by

Π̃S = max
w,q

rS(q)− wq

s.t. (w − c)q ≥ 0,

and

Π̃L = max
c≤w≤r

(r − w)S(q∗)

s.t. q∗ = argmax
q

wS(q)− cq,

respectively.

Lemma 3.4.6. If the demand distribution satisfies the IFR property,

(i) for the push system, the unique optimal solution {w̃S, q̃S} for the no-recall bench-

mark is given by

q̃S = Ḡ−1
(c
r

)
,

w̃S = c.

(ii) For the pull system, the unique optimal solution {w̃L, q̃L} for the no-recall bench-

mark is given by

rḠ(q̃L)− cg(q̃L)S(q̃L)

Ḡ2(q̃L)
− c = 0,

w̃L =
c

Ḡ(q̃L)
.

We can also solve the integrated first-best benchmark when there is no product recall

risk. The problem is given by

Π̃FB = max
w,q

rS(q)− cq,
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the solution to which is denoted as q̃FB. It is easy to derive q̃FB = Ḡ−1
(
c
r

)
.

Now we are ready to compare the solutions of the systems under consideration. The

results are summarized in Proposition 3.4.4.

Proposition 3.4.4. q̃FB = q̃S > qFB = qS > qL = q̃L.

From Proposition 3.4.4, the first observation we find is that the first-best output level

without recall is higher than that with recall. The intuition behind it is that, with recall

incorporated into the model, the underage cost for the newsvendor is essentially lower

due to the potential recall cost, and hence by the classic newvendor factile solution, the

optimal output level becomes lower. Besides, it turns out that, the potential recall risk

affects the push and pull systems differently. In the push system, qS is less than q̃S, which

represents the output level in the push system without product recall risk. This suggests

that when the manufacturer bears the demand risk, the potential recall risk decreases the

optimal output level. This is rather intuitive since incoparating the recall risk decreases

the underage cost, which makes the newsvendor, who is the manufacturer in this setting,

become more conservative. In contrast, in the pull system, we show qL is larger or equal

to q̃L, which suggests when it is the supplier who bears the demand risk, the potential

recall risk either increase or does not affect the output level. Although by incorporating

recall, the underage cost for the newsvendor is also reduced, the newsvendor in the pull

system is the supplier, who is the stackelberg follower and cannot fully control the output

level by himself. The manufacturer want to keep the optimal output level at the same

level as in the case without recall, since at that output level, the manufacturer’s profit is

maximized. We summarize these interpretations as the following managerial insights.

Managerial Insights #2: The presence of product recall risk decreases the

production quantity in the push system but does not affect the production

quantity in the pull system.
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3.4.5 The Impact of Cost Sharing Percentage

In this subsection, we focus on studying the cost sharing percentage θ, which is the

key element in the contract we considered. For now we follow the previous analysis by

restricting θ to be no greater than an upperbound θ̄ and studying the impact of θ on the

profitability, quality and quantity decisions for the manufacturer, the supplier, and the

supply chain as a whole, respectively. Later we will discuss why we impose the restriction

and further demonstrate our results by analyzing the push system with θ ranging from

0 to 1.

Assume that θ continue to satisfy 0 ≤ θ ≤ θ̄, then we obtain the following qualitative

properties.

Proposition 3.4.5. Given that θ is within the region of [0, θ̄],

(i) qS and qL are indepedent of θ;

(ii) eS and eL are decresing in θ;

(iii) ΠS, ΠL, ΣS and ΣL are decresing in θ, and πS is zero, while πL is incresing in θ.

Next we use a numerical example to illustrate Proposition 3.4.5 (see Figures 3.2 and

3.3).

Figure 3.2(a) illustrates the impact of θ on quantity decisions for both settings. To

facilitate comparison, we also plot first-best benchmark. As the figure shows, the quantity

decision is constant in both settings, which accords with Proposition 3.4.5.

Figure 3.2(b) illustrates the impact of θ on quality decisions for both settings. The

quality effort levels in both settings decrease when theta is increasing, i.e., the supplier

shares less. This is rather intuitive, because the supplier has less incentitive to invest in

51



(a) q vs θ (b) e vs θ

Figure 3.2: The impact of θ on q and e

quality effort when he shares less risk. Note that the quality effort in the pull system is

consistently lower than that in the push system.

Figure 3.3 presents the impact of θ on profits for both settings and the first-best

benchmark is also included. As θ increases, i.e. when the manufacturer shares more of

the total recall cost, both the manufacturer and the whole supply chain are worse off in

terms of profits regardless of push or pull system, while in contrast the supplier’s profit is

always pushed to zero in the push system, but is positive as well as increasing in the pull

system. These observations are also consistent with Proposition 3.4.5. We summarize

them into the managerial insights below.

Managerial Insights #3: The manufacturer can improve her product qual-

ity and profit by decreasing her share of the total recall cost without affecting

the production quantity of the supply chain in both the push and pull systems.

3.4.6 The Range of Cost Sharing Percentage

We restrict our previous analysis to the scenario when θ is in the range of [0, θ̄] instead

of considering the general [0, 1] range. Because when θ is greater than θ̄, the objective

function could have two local maximizers: one corresponds to the boundary solution
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Figure 3.3: The impact of θ on profits

when the supplier chooses zero effort , and the other one corresponds to the interior

solution when the supplier chooses a positive effort level. To determine which one is

the global maximizer, we need to compare the objective function values at those two

points. Figure 3.4 displays an example for the pull system where the optimal solution

could either be an interior solution or a boundary solution depending on the parameter

values. This comparison could cause tractability issues in solving the problem. Besides,

we are more interested in the nontrivial case of interior solution, therefore we chose to

restrict θ to the range to ensure the optimal solution to be always an interior soluiton.

To demonstrate what we have argued, we conduct analysis for the push system al-

lowing θ to take values in full range of [0, 1]. Similar procedure also applies for the pull

system, except that more complex argument is required for that case. For clarity, we

demonstrate the analysis for the push system only.

To avoid repetition, we define two sets of equations that determine boundary solutions
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and interior solutions, respectively:

qS = Ḡ−1

(
c

r − u

)
,

eS = 0,

wS = c+
(1− θ)uS(qS)

qS
.

and

rḠ(qS)− s

λ

Ḡ(qS)

S(qS)
− c = 0,

eS =
1

λ
ln

(
S(qS)(1− θ)uλ

s

)
,

wS = c+
s

λqS
+

s

λqS
ln

(
S(qS)(1− θ)uλ

s

)
.

In the following we refer to these equations sets as ES1 and ES2, respectively.

The solutions for the push system allowing full range of cost sharing percentage are

summarized in Proposition 3.4.6.

Proposition 3.4.6. Suppose the demand distribution satisfies the IFR property. For the

push system, there always exists a unique optimal solution. Specifically,

(i) If

rS(qS2 )− s
(1−θ1)λ

− cqS2 − s
λ

ln
(
S(qS2 )(1−θ1)uλ

s

)
≤ (r − u)S(qS1 )− cqS1 ,

(i-i) further if θ ∈ [0, θ1], the solution is given by the solution to ES2,

(i-ii) further if θ ∈ [θ1, 1], the solution is given by the solution to ES1.

(ii) If

(r − u)S(qS1 )− cqS1 ≤ rS(qS2 )− s

(1− θ2)λ
− cqS2 −

s

λ
ln

(
S(qS2 )(1− θ2)uλ

s

)
,

(ii-i) further if θ ∈ [0, θ2], the solution is given by the solution to ES2.
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(ii-ii) further if θ ∈ [θ2, 1], the solution is given by the solution to ES1.

(iii) If

rS(qS2 )− s
(1−θ1)λ

− cqS2 − s
λ

ln
(
S(qS2 )(1−θ1)uλ

s

)
≥ (r − u)S(qS1 )− cqS1

≥ rS(qS2 )− s
(1−θ2)λ

− cqS2 − s
λ

ln
(
S(qS2 )(1−θ2)uλ

s

)
,

then there exists a θ3 ∈ [θ1, θ2], which satisfies

rS(qS2 )− s

(1− θ)λ
− cqS2 −

s

λ
ln

(
S(qS2 )(1− θ3)uλ

s

)
= (r − u)S(qS1 )− cqS1 .

(iii-i) further if θ ∈ [0, θ3], the solution is given by the solution to ES2,

(iii-ii) further if θ ∈ [θ3, 1], the solution is given by the solution to ES1,

where we define qS1 = Ḡ−1
(

c
r−u

)
, qS2 is the solution to rḠ(qS2 ) − s

λ

Ḡ(qS2 )

S(qS2 )
− c = 0, θ1 =

1− s
uλS(Ḡ−1(c/{r−u})) , and θ2 = 1− s

uλd
(Note that θ̄ < θ1 < θ3 < θ2).

Proposition 3.4.6 shows that θ plays a crucial role in determing the optimal solution

structure. When θ < θ1, the opitmal solution is always an interior solution with a

positive effort level. In contrast, when θ < θ2, the opitmal solution is always a boundary

solution with zero effort. Intuitively the manufacturer always prefers a lower cost sharing

percentage in order to push more potential recall risk to the upstream supplier, and

incentivize him to put in higher quality effort. The manufacter should be aware that if

this θ is high enough, the supplier has no incentive to put in any quality effort.

In the following we move our focus to an extreme scenario when the cost sharing

percentage is relatively high. We find that under such context, it always results in

boundary solutions. The results are presented in the following proposition.
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Figure 3.4: Profit Function

Corollary 3.4.3. Suppose θ ≥ θ2 = 1− s
uλd

, then we have,

(i) for the push system, there exists a unique optimal solution {wS, eS, qS}, which is

given by

qS = Ḡ−1

(
c

r − u

)
,

eS = 0,

wS = c+
(1− θ)uS(qS)

qS
.

(ii) for the pull system, there exists a unique optimal solution {wL, eL, qL}, which is

given by

(r − u)Ḡ(qL)− cg(qL)S(qL)

Ḡ2(qL)
− c = 0,

eL = 0,

wL =
c

Ḡ(qL)
+ (1− θ)u.

Corollary 3.4.3 demonstrates that when the cost sharing percentage is relatively high,

the supplier chooses not to put in any effort. This arises because when the cost sharing
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percentage is high, the supplier shares less of the product recall cost, and hence does not

have enough incentive to invest in the quality effort.

3.4.7 Extentions

In this section, we focus on the push system supply chain efficiency and consider

two main exntentions. In the first part we aim to design more complicated contracts

under which both the manufacturer and the supplier make decisions in an efficient way

compared with the centralized supply chain setting, and the second part we investigate

the impact of futher market share and competition between suppliers on the supply chain

efficiency. We first consider two more variations of the recall cost sharing contract: (i)

two-part recall cost sharing contract, which is characterized by w, θ and q same as in the

recall cost sharing contract plus a lump-sum recall cost T decided by the manufacturer

that the supplier need to pay him once a recall happens, and (ii) recall-contingent revenue

sharing contract, which is characterized by w, θ and q same as in the recall cost sharing

contract plus a percentage α decided by the manufacturer that this part of his revenue

will be awarded to the supplier if no recall happens. Here we relaxed the restriction

of the exponential form of the recall probability form and assume the recall probability

is F̄ (e) = 1 − F (e), where F (e) ranges on [0, 1] with derivative f(e). Assume F (e)

to be increasing concave, i.e., f(e) is decreasing and nonnegative. In addition, we use

superscript TP representing the two-part recall cost sharing contract and RS representing

the recall-contingent revenue sharing contract.

Two-part Recall Cost Sharing Contract

Under the two-part recall cost sharing contract, the stylized principle-agent problem

could be modeled as below:

ΠTP = max
q,w,T

(r − F̄ (e∗)θu)S(q)− wq + T F̄ (e∗)
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s.t. (w − c)q − F̄ (e∗)(1− θ)uS(q)− se∗ − T F̄ (e∗) ≥ 0 (IR)

e∗ ∈ argmax
e

(w − c)q − F̄ (e)(1− θ)uS(q)− se− T F̄ (e) (IC)

Note that there is a transferred payment T F̄ (e∗) which is the penalty collected by the

manufacturer from the supplier once product recall happens. By solving the suppler’s

problem, we could obtain the following result:

Lemma 3.4.7. The optimal solution satisfies the following equation:

f(eTP ) =
s

T + (1− θ)S(qTP )u
. (3.4.6)

By comparing with the first-best benchmark solution Lemma 3.4.1 analyzed previ-

ously, we have the following finding:

Proposition 3.4.7. Two-part Recall Cost Sharing Contract can achieve the first-best

solution by letting T = θuS(qFB), eTP = eFB and qTP = qFB.

Recall-contingent Revenue Sharing Contract

Under the recall-contingent revenue sharing contract, the stylized principle-agent

problem could be modeled as below:

ΠRS = max
q,w,α

(r − F̄ (e∗)θu)S(q)− wq − αrS(q)F (e∗)

s.t. (w − c)q − F̄ (e∗)(1− θ)uS(q)− se∗ + αrS(q)F (e∗) ≥ 0 (IR)

e∗ ∈ argmax
e

(w − c)q − F̄ (e)(1− θ)uS(q)− se+ αrS(q)F (e) (IC)

Note that the manufacturer will share the revenue of αrS(q)F (e∗) to the supplier if

there is product recall happen. By solving the suppler’s problem, we could obtain the

following result:
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Lemma 3.4.8. The optimal solution satisfies the following equation:

f(eRS) =
s

(1− θ)S(qRS)u+ αrS(qRS)
. (3.4.7)

Again compare Lemma 3.4.8 and Lemma 3.4.1, we could obtain the following propo-

sition.

Proposition 3.4.8. Recall-contingent Revenue Sharing Contract can achieve the first-

best solution by letting α = θu/r, eRS = eFB and qRS = qFB.

In summary, we find that both the two-part recall cost sharing contract and the

recall-contingent revenue sharing contract could help improve the supply chain efficiency.

Figure 3.5: Sequence of Event for Two-Period Model
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Single Sourcing: Two Periods

Next we investigate the impact of futher market share and competition between sup-

pliers on the supply chain efficiency. We start with the consideration of the future market

share. In reality, it is common that once a recall happens, the supplier will lose the future

market share from the manufacturer, which may prevent the supplier from making low

quality effort. To examine this effect on operational decisions, we consider a two period

extension of the basic model. If a recall happens by the end of the first period, there is

no market for the manufacturer in the second period, and no production is needed for

the second period. To isolate the effect of future market share from other factors, we

suppress the possibility of recall in the second period, i.e., no recall cost incurs in the

second period. If no recall happens by the end of the first period, the manufacturer and

the supplier involve in the second period contracting and production. And the supplier

no longer needs to make effort decision for the second period since there is no potential

product recalls in the second period. This also captures the reality in that supplier in-

vests quality effort in the first contracting term, and should be able to carry over the

skills or experiences to the following contracting term. For simplicity, the demand q̃ in

the second period is assumed to be fixed. Besides, we use superscript ST representing

this single souring two-period setting.

To facilitate the understanding of the supply chain efficiency, we need to establish

first-best benchmark for the two-period model. The first-best problem is defined as

below:

ΣFB = max
e,q

(r − F̄ (e)u)S(q)− cq − se+ F (e)(r − c)q̃

Immediately we could come up with the following result:
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Lemma 3.4.9. The optimal solution satisfies the following equation:

f(eFB) =
s

S(qFB)u+ (r − c)q̃
.

Now we could model the decentralized supply chain problem. Note we focus on the

simplest recall cost sharing contract.

ΠST = max
q,w

(r − F̄ (e∗)θu)S(q)− wq + F (e∗)(r − w)q̃

s.t. (w − c)q − F̄ (e∗)(1− θ)uS(q)− se∗ + F (e∗)(w − c)q̃ ≥ 0 (IR)

e∗ ∈ argmax
e

(w − c)q − F̄ (e)(1− θ)uS(q)− se+ F (e)(w − c)q̃ (IC)

Then we derive the following lemma:

Lemma 3.4.10. The optimal solution satisfies the following equation:

f(eST ) =
s

(1− θ)S(qST )u+ (wST − c)q̃
.

To compare Lemma 3.4.10 and Lemma 3.4.9, we could establish the following propo-

sition.

Proposition 3.4.9. In the single sourcing two-period setting, recall cost sharing contract

cannot achieve the first-best solution.

In the single-period problem, we find that the recall cost sharing contract cannot

coordinate the supply chain. Even we consider the effect of the futher market share

on the supplier’s quality effort and extend the single-period model to the two-period

model, the conclusion is unchanged. The recall cost sharing contract, although great to

implement, is not a supply chain coordinated contract.
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Dual Sourcing: Two Periods

Next we consider a dual sourcing strategy for the manufacturer and investigate the

competition effect on the supply chain efficiency. And it is realistic in the sense that a

manufacturer keeps on cooperation with reliable suppliers and stop ordering from less

reliable ones. Therefore we further extend the two period model from the single sourcing

setting into dual sourcing setting, i.e., adding a competitive supplier to the original single

sourcing model. Now the manufacturer have two choices to source from. Suppose the

two suppliers are identical, who share equally the order from the manufacturer. If no

recall happens by the end of the first period, the two suppliers keep on splitting the order

from the manufacturer equally as in period 1. If a recall happens due to the failure of

components from supplier 1 (2), while the components from supplier 2 (1) work well,

the manufacturer stops sourcing from supplier 1 (2) in the following period, and all of

the manufacturer’s order goes to supplier 2 (1). However, if the recall is due to quality

failures from both suppliers’ components in the first period, then the market is lost for

the manufacturer and he stops production in the second period. We use superscript

DT representing this dual souring two-period setting. Again a new first-best benchmark

needs to be established:

ΣFB = max
e1,e2,q

rS(q)− F̄ (e1)u
1

2
S(q)− F̄ (e2)u

1

2
S(q)− cq

−se1 − se2 + (r − c)q̃(1− F̄ (e1)F̄ (e2))

Similarly we need to derive the relationship between the first-best solution variables.

Lemma 3.4.11. The optimal solution satisfies the following equations:

S(qFB) =
s− (r − c)q̃f(eFB)F̄ (eFB)

f(eFB)u/2
.

Next we consider the decentralized model, note that the two suppliers are indentical,
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thus they face the symmetric optimization problem.

ΠDT = max
q,w

(r − F̄ (e∗1)θu)
1

2
S(q)− 1

2
wq

+(r − F̄ (e∗2)θu)
1

2
S(q)− 1

2
wq

+(r − w)q̃(1− F̄ (e∗1)F̄ (e2∗))

s.t. (w − c)q
2
− F̄ (e∗1)(1− θ)uS(q)

1

2
− se∗1 + F (e∗1)F̄ (e∗2)(w − c)q̃

+F (e∗1)F (e∗2)(w − c) q̃
2
≥ 0 (IR1)

e∗1 ∈ argmax
e1

(w − c)q
2
− F̄ (e1)(1− θ)uS(q)

1

2
− se1

+F (e1)F̄ (e∗2)(w − c)q̃ + F (e1)F (e∗2)(w − c) q̃
2

(IC1)

and (w − c)q
2
− F̄ (e∗2)(1− θ)uS(q)

1

2
− se2 + F (e∗2)F̄ (e∗1)(w − c)q̃

+F (e∗2)F (e∗1)(w − c) q̃
2
≥ 0 (IR2)

e∗2 ∈ argmax
e2

(w − c)q
2
− F̄ (e2)(1− θ)uS(q)

1

2
− se2

+F (e2)F̄ (e∗1)(w − c)q̃ + F (e2)F (e∗1)(w − c) q̃
2

(IC2)

Note that the two suppliers are symmetric, and we could obtain the following lemma.

We write eDT1 = eDT2 = eDT .

Lemma 3.4.12. The optimal solution satisfies the following equations:

S(qDT ) =
s− (wDT − c)q̃f(eDT )(1 + F̄ (eDT ))/2

f(eDT )(1− θ)u/2
.

By compare Lemma 3.4.11 and Lemma 3.4.12, we have the following interesting find-

ing:

Proposition 3.4.10. In the dual sourcing two-period setting, recall cost sharing contract

can achieve the first-best solution.

This result is interesting because we previously show that the effect of futher market

share is not enough to incentivize the supplier to make quality effort in a supply chain
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efficient way. However, if we add the competition into the model, then the combined effect

from both the futher market share and the competition will help the recall cost sharing

contract coordinate the supply chain. The intuition behind is that the manufacturer

could use dual scouring strategy to reduce the product recall risk.

3.5 Concluding Remarks

With increasing product recall issued in various industries, and with the aftermath

of product recall being recogonized, how to avoid the potential recall and how to assign

the fault after a recall takes place are questions that worth investigating. Noting the

challanges of demand uncertainty and non-contractability of suppliers’ quality effort, we

develop a procurement contractual framework in this paper to examine how a manufac-

turer contracts its supplier to mitigate recall risk under demand uncertainty, and how

quality and quantity decisions interact with each other in the supply chain. We focus

on examining a cost sharing contract, which is easy to implement and has industrial

applications. Two settings are analyzed here: a pull system where the supplier makes

the quantity decision and a push system where the manufacturer makes the quantity de-

cision. We also establish the centralized benchmark and no-recall benchmark, and prove

both the existence and the uniqueness for the equilibrium solutions of these two regimes.

Compared with the pull system, we find that the manufacturer achieves a higher

production quantity and induces a higher quality effort of the supplier in a push system,

where the manufacturer takes on demand risk and induces higher quality effort of the

supplier. Pull and push systems have been recogonized for a long time both by the

academia and industry. There are a couple of trade-offs in comparing these two systems

including demand uncertainty, difficulty of forecast, flexibility in adjusting inventory,

transportation lead times, etc. In recent years, it is more popular to implement a pull

system. Some successful industrial examples of introducing pull system in recent decades

include Dell and Toyota, which achieve lower inventory levels and hence reduce costs

64



through using pull system. Our results indicate that quality is another dimention to

investigate when comparing these two systems. When there exists the possiblity of recall,

push system could be favored due to the incentive it provides to the supplier in inducing

higher quality effort.

Moreover, the presence of product recall risk decreases the production quantity in the

push system but does not affect the production quantity in the pull system. The decrease

in the push system accords with the intuitive explanation that the presence of potential

recall decrease the underage cost for the newsvendor, who hereafter reduces the quantity.

On the other hand, the counterintuitve increase in the pull system demonstrates that the

quantity decision need to be made with more caution by taking whether the system is

push or pull into consideration.

In addition, We also examine the impact of cost sharing percentage on the profitability,

and quality and quantity decisions for the manufacturer, the supplier, and the supply

chain. We find that the manufacturer can improve her product quality and profit as

well as the supply chain’s profit by decreasing her share of the botal recall cost without

affecting the production quantity in both the pull and push systems. This result offers a

plausible explanation for why GM insisted on sharing recall costs with its supplier even

if their products passed GM’s quality inspection. Note that the supplier is worse off, but

since the whole supply chain is better off, there must exists a more complex mechanism

with cost sharing feature such that both the manufacturer’s and supplier’s profit are

improved, which is beyond the scope of this paper and hence left as a direction for future

research.
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CHAPTER 4 VOLUNTARY RECALL? INCENTIVES FOR QUALITY

EFFORT

4.1 Introduction

Product recall is commonly observed worldwide across various industries. Famous

examples include Toyota’s vehicle recalls during 2009-2012 in the automobile industry,

Boeing’s 787 Dreamliner aircraft recall in early 2013 in the aerospace industry, and

AngioScore’s balloon catheter recall in 2010 in the medical device industry. Moreover,

product recalls are not necessarily restricted to manufacturers, they can also happen

among retailers. For example, Lululemon Athletica, an athletic apparel retailer, recalled

its yoga pants in the spring of 2013.

The consequences of product recalls are known as serious because they are usually

associated with safety issues. In this case, the recalls are highly focused by customers

and social media. Once a recall is issued, many sorts of cost occur immediately due to

repairs, recall logistics and downtime of the manufacturing. On top of this, the recall

is very likely associated with potential law suits and litigation fees. High expenses,

damaged reputation and lost sales will come up as the result. If the safety issues are

involved, the close attention from social media is often inevitable, and hence it could

lead to the widespread social impact that has long term damage to brand image. (see

also (Hendricks and Singhal 2003), (Rupp 2004) and (Jarrell and Peltzman 1985)). Due

to the negative consequences above, firms are keen on developing strategies to prevent

and alleviate the severe crisis that recall might cause. To achieve the goal, there are two

critical time points: one is during the quality control before sales, and the other is by

the time of responsive product recall decisions when there are complaints and problem
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reports after sales.

For the former time point, the complexity typically stems from the outsourcing struc-

ture of supply chain. The manufacturers outsource the production of components to

suppliers. In this case, the effort suppliers put in to ensure the products’ quality is unob-

servable and uncontractible. As a result, the risk of information asymmetry and moral

hazard arises. In addition, once a recall happens, determining which party causes the

problem and allocating the responsibility for the recall are even more difficult questions.

Due to such issues, disputes between supply chain players are common. For example, the

debate between Lululemon and its yoga pants supplier Eclat Texitile in 2013, as well as

between Ford and its tire supplier Firestone in 2000. Previous literatures propose inspec-

tion to tackle the issue, which does help improve the quality level. However, once a recall

takes place, the inspection will no longer help the allocation of duty. Our work aims to

address this problem through contracting. Although quality effort is not contractible, we

consider a cost sharing contract that specifies the percentage of recall cost the supplier

needs to undertake once a recall is issued. In this way, the supplier has more incentive

to ensure the product quality because according the contract part of the recall cost will

be paid through the responsible suppliers.

For the latter time point, the problem is also nontrivial. When there are accumulating

certain amount of complaints and problem reports, it is challenge of manufacturer’s ethic

and capability to achieve the settlement. At this time, the problem is often not publicly

known. Therefore, it is a critical decision for the manufacturer whether or not issue

a recall and hence disclose the private information about products to the customers.

According to the complex issues related to recall listed above, the recall strategies to

deal with product quality problems are various.

An up-to-date example is General Motors, who is recently penalized by the U.S.

Transportation Department for failing to report defects of ignition switches in 2.6 million
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Figure 4.1: Recall Process

cars since 2001 before being forced to start a recall early this year. This is the largest

single penalty issued by the government under the Tread Act. So far GM has ordered

recalls affecting nearly 13 million vehicles. Back to 2005, despite hundreds of complaints

and evidences, GM officials decided not to recall the problematic vehicles and redesign

the switches. Because they evaluated the savings on warranty costs and found that they

could not offset the cost associated with recall. Different from General Motors who try to

defer the recall until the government forces it to do, what Toyota did is to issue the recall

voluntarily. Although during the series of recalls Toyota initiated in the past years, it

suffered great loss in terms of recall cost, Toyota has been regaining the trust of customers

and rebuilt its brand image by handling the recalls well and taking measures in making

the product quality information more transparent to public.

Noting the different product recall decisions observed in reality, we are interested to

see what is a typical recall process, which can be illustrated using the automobile industry

as an instance.

The Safety Act of 1966 requires a manufacturer to notify the National Highway and

Traffic Safety Administration (NHTSA) if he has the knowledge that the vehicle or equip-

ment fails to satisfy the federal safety standards. A typical process that involves recall is
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as follows. At first, the consumers’ complaints accumulate. The complaints could go to

either the manufacturer or NHSTA. The manufacturer can choose to recall voluntarily

based on his private information of the product’s quality. If the NHTSA receive certain

amount of complaints, the safety agency would initiate a preliminary investigation. If

there is no apparent violation of safety standard, the investigation is ended. Otherwise,

the investigation escalates into engineering analysis, which takes approximately one year

to complete. During this process, the manufacturer can choose either to recall voluntar-

ily, or wait for the result of the engineering analysis. If he chooses to wait and the result

indicates that there are indeed safety standards violated, the manufacturer is forced to

issue a recall, otherwise, he does not issue a recall at all. The manufacturer is not required

to issue a press release announcing the quality problem if he chooses to recall voluntarily.

Being forced to recall is often associated with bad social impact and extra penalty, such

as the example of General Motor we have addressed before. However, choosing to wait

could avoid any recall in the hope that the engineering analysis indicates that no recall

is needed, which prevents the manufacturer from the loss of recall cost.

Motivated by these industrial practices, we are interested in studying two types of

product recall decisions: voluntary recall and mandatory recall. Voluntary recall is issued

by the manufacturer voluntarily at an early stage when the problem is noticed but not

revealed to the public yet, while mandatory recall is forced by the government agency

at later stage when the problem becomes serious and widespread. Specifically, we are

interested in answering these four research questions:

• When the manufacturer has the opportunity to issue an early recall voluntarily,

will he take it or not?

• How does the supplier choose her quality effort when she knows the manufacturer

may issue an early voluntary recall?
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• How will the cost sharing percentage offered by the manufacturer be affected under

such configuration?

• What is the interdependence between designing the recall cost sharing contract and

making product recall decisions?

To address these questions, we consider a recall cost sharing contract proposed by

the manufacturer, as a Stackelberg leader facing a moral hazard problem, to align the

incentive of the supplier in ensuring the product quality, and also examine two types of

recall decisions by the manufacturer: (1) voluntary recall, which is issued by the manu-

facturer voluntarily at a relatively early stage; (2) mandatory recall, which is forced by

the government agency at a relatively late stage. The mandatory recall is characterized

by a recall probability which depends on the supplier’s quality effort. By solving the

model, we characterize the firms’ decisions in equilibrium. Surprisingly, we find that,

as a Stackeberg leader, the manufacturer does not always push all the recall cost to the

supplier. His decision depends on whether he will issue a voluntary recall or not. Fur-

thermore, we find two cost sharing percentage thresholds that determines the equilibrium

solutions. Specifically, the lower cost sharing percentage is always associated with volun-

tary recall, while the higher one is always associated to mandatory recall. However, we do

find that when it is more costly for the supplier to make quality effort, the manufacturer

will choose a cost sharing percentage level such that it induces a voluntary recall. We

conduct comparative statics study to see how the equilibrium solutions evolve with the

change of parameters. To facilitate comparison, we study the first-best problem where

the supply chain is integrated, and find that the recall cost sharing contract cannot co-

ordinate the supply chain. We also consider an extension model with an stochastic recall

probability and conduct numerical studies on equilibrium solutions.

The rest of the paper is organized as follows. Section 2 provides a review of related

literatures. Section 3 presents the model while Sections 4 present the analysis for the
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model. Section 5 concludes our work.

4.2 Literature Review

By considering both the quality incentives in reducing the product recall risk and

the product recall decisions, our work naturally contributes two streams of literatures:

supply chain contracting literature and the product recall literature. There is a growing

literature on quality contracting in supply chains. This stream of literature focuses on

modeling the quality improvement incentives of supply chain members. Quality could

be improved either by inspection or by investment from multiple players. (Reyniers

and Tapiero 1995) consider a model in which a supplier makes a unobservable quality-

related choice while a producer independently decides on his inspection policy for both

non-cooperative and cooperative settings. (Lim 2001) also consider a product quality

inspection problem. They investigate the contract design of a producer when he pur-

chases parts from a supplier, and there is incomplete information regarding the quality

of the parts. Similarly, (Baiman et al. 2000) and (Baiman et al. 2001) consider a setting

where a supplier, who incurs quality improvement costs, sells an intermediate product

to a buyer, who incurs appraisal costs to identify defects, and examine the relation-

ship between product architecture, supply-chain performance metrics, and supply-chain

efficiency. There are papers modeling quality improvement investment by both the sup-

plier and the buyer. (Balachandran and Radhakrishnan 2005) examine a supply chain

in which the final product consists of components made by a buyer and a supplier in

a double moral hazard situation. (Zhu et al. 2007) focus on supply risk and consider

a buyer who designs a product and outsources the production to a supplier and both

players have options to invest in quality improvement. They also investigate the interac-

tion between quality-improvement decisions interact and operational quantity decisions

such as the buyer’s order quantity and the supplier’s production lot size using an EOQ

model. In addition, all papers listed out above examine the fixed sharing rate contracts
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covering the external quality costs. As a more general case, (Chao et al. 2009) focus on

recall instances, and discuss two external quality cost sharing contracts, in which product

recall costs can be shared between a manufacturer and a supplier to induce effort from

both sides to improve final product quality. They characterize the quality improvement

effort decisions which are subject to moral hazard and even when there is information

asymmetry regarding to the existing process capability. There are some empirical papers

studying on the topic of product recall risk, although very limited analytical research.

This stream of literature help understand how product recall is conducted by various play-

ers and what is the impact of product recall on various operations performance. (Rupp

and Taylor 2002) provide an excellent overview of product recall process and introduce

different types of product recall strategies. (Hendricks and Singhal 2003), (Rupp 2004)

and (Jarrell and Peltzman 1985) focus on product recall costs and point out that once a

recall is issued, there are immediate costs due to repairs, recall logistics and lost sales as

well as the potential litigation fees and damaged reputation. (Kalaignanam, Kushwaha

and Eilert 2013) suggest that recall magnitude lead to decreases in future number of

injuries and recalls, and also summarize the findings of the impact of product recall on

firm’s performance, future recall rates, consumer responses, market accidents and prod-

uct reliability. (Marucheck et al. 2011) explore how the field of operations management

can provide fresh views and insights in addressing the problems of product safety in the

context of global supply chain.

4.3 Model

We consider a single period, single sourcing setting where a downstream manufacturer

outsources the production of a customized component to an upstream supplier. After

receiving the components from the supplier, the manufacturer finishes assembling and

releases the finished products to a market with fixed size. The components are subject to

potential quality failure, and the customers who incur such problem may issue complaints
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Cv(e) = unit voluntary recall cost
Cm(e) = unit mandatory recall cost

αv = unit voluntary recall cost parameter
αm = unit mandatory recall cost parameter
s = quality effort marginal cost
λ = mandatory recall probability parameter

exp{−λe} = recall probability
f = density distribution of λ
F = cumulative distribution of λ
d1 = demand before recall decision point
d2 = demand after recall decision point
C̄ = supplier’s reservation cost
θ = recall cost sharing percentage
e = quality effort by the supplier

Table 4.1: Notations

to the manufacturer. In the middle of the period when there are certain amount of com-

plaints and quality failure reports, the manufacturer may conduct a private investigation

with the supplier and obtain information about the component’s quality. Based on the

information he collects, the manufacturer has the option to issue a voluntary recall and

fix the problem. Otherwise, he may withhold the information and keep selling the prod-

uct, however, by the end of the period, the product may face mandatory recall enforced

by the government agency due to either too many complaints noticed by the public or

the spot test by the government agency. If the manufacturer chooses not to issue a vol-

untary recall, the mandatory recall takes place with a recall probability characterized by

an exponential form of exp{−λe}, where e denotes the supplier’s quality effort, and λ is a

given constant. Note that the recall probability is decreasing and convex in e, which also

resembles the realistic case. By deciding how much to invest in the quality effort e, the

supplier can affect the possibility of product recall. Besides, we assume that e is not con-

tractible, which implies the manufacturer, as a Stackelberg leader, faces a moral hazard

problem and need to incentivize the supplier to invest more in quality effort. Both types

of recall- voluntary and mandatory- are costly. However, the unit voluntary recall cost

is lower than that of mandatory recall because the problem often become more serious
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as time goes by, and the government could penalize the manufacturer additionally for

withholding the information and do not recall voluntarily. Denote Cv(e) and Cm(e) to be

the unit voluntary recall cost and unit mandatory recall cost, which are both functions of

supplier’s effort e. Assume Cv(e) < Cm(e), C ′v(e) < 0, C ′m(e) < 0, C ′′v (e) > 0, C ′′m(e) > 0,

which reveals that the unit recall costs are decreasing convex in the supplier’s effort. In

addition we assume Cv(e)/Cm(e) = αv/αm. The supplier incurs marginal quality cost

s for the quality effort she invests in. In terms of the contract that the manufacturer

provides to the supplier, we consider a simple recall cost sharing contract, which is com-

monly used in the literatures. There is only one parameter in the contract, the recall

cost sharing percentage θ, where 0 ≤ θ ≤ 1. In other words, the manufacturer offers

the supplier with a percentage of the total recall cost that he will share in case a recall

happens.

The sequence of events is as follows: The manufacturer, as a stackelberg Leader,

offers a cost sharing percentage θ, and then the supplier decides his quality effort e. In

the middle of the period when there are certain amount of complaints and quality failure

reports, the manufacturer makes the decision of whether or not to issue a voluntary recall

based on the evaluation of the voluntary recall cost and expected mandatory recall cost.

Once a voluntary recall is issued, assume the problem is completely fixed by the recall

process and no mandatory recall will take place later. Otherwise, by the end of the

period, the mandatory recall happens with the probability exp{−λe}.

4.4 Analysis

In this section, we first analyze the decentralized setting, where both the manufacturer

and the supplier make decisions separately with the objectives of minimizing their own

costs. The problem is a stylized principle-agent problem under such setting. To facilitate

comparison with this setting, we next consider the centralized supply chain setting, in

which all decisions are made by a central planner with the objective of minimizing supply
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Figure 4.2: Sequence of Events

chain’s cost. Finally, we will extend the previous model to allow λ to be random.

4.4.1 Decentralized Supply Chain

We solve the problem by backward induction. After the manufacturer identifies the

recall probability, he is faced with the decision of whether or not to issue a voluntary

recall. To make the decision he needs to compare the cost of voluntary recall and the

expected cost of mandatory recall. To issue a voluntary recall results in a cost of Cv(e)d1,

while if the manufacturer chooses to wait, he will face a expected cost of Cm(e)(d1 +

d2) exp{−λe} due to the potential mandatory recall later. Specifically, the problem can

be expressed as the following principle-agent problem:

min
θ

θH(e∗(θ))

s.t. se∗(θ) + (1− θ)H(e∗(θ)) ≤ C̄ (IR)

e∗(θ) = arg min
e

se+ (1− θ)H(e) (IC),

where H(e) is the expected recall cost:

H(e) =

 Cv(e)d1, if the manufacturer issues a voluntary recall;

Cm(e)(d1 + d2) exp{−λe}, if the manufacturer does not issue a voluntary recall.
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and C̄ is the reservation cost for the supplier.

Given θ and e, the manufacturer will compare the issue a voluntary recall if

θCv(e)d1 < [θCm(e)(d1 + d2)] exp{−λe}.

The above assumptions immediately yields that the manufacturer will place a voluntary

recall if

e ∈
[
0, ln

(
d1 + d2

d1

αm
αv

)/
λ

]
, (4.4.1)

and not place a voluntary recall if

e ∈
[
ln

(
d1 + d2

d1

αm
αv

)/
λ,+∞

]
. (4.4.2)

Denote

ẽ = ln

(
d1 + d2

d1

αm
αv

)/
λ,

then we have the following lemma.

Lemma 4.4.1. The manufacturer will place a voluntary recall if he identifies e < ẽ,

otherwise, he chooses to face mandatory recall risk.

Note that the manufacturer’s decision of whether to issue a voluntary recall or not

only depends on the supplier’s effort, and is independent of the cost sharing percentage

θ.

Next we move to the supplier’s decision of quality effort. Given a cost sharing percent-

age θ specified by the manufacturer, the supplier determines her optimal quality effort to

invest in by minimizing her cost, which could come from either the voluntary recall cost

or the mandatory recall cost, depending on the manufacturer’s decision based on the her

effort level. Then the optimization problem for the supplier becomes:

min
e
se+ (1− θ)H(e),
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where

se+ (1− θ)H(e) =

 se+ (1− θ)d1Cv(e), if e ∈ [0, ẽ],

se+ (1− θ)(d1 + d2)Cm(e) exp{−λe}, if e ∈ [ẽ,+∞).

Denote e∗1(θ) and e∗2(θ) satisfying the following equations:

s+ (1− θ)d1Cv
′(e∗1(θ)) = 0,

s+ (1− θ)(d1 + d2) exp{−λe∗2(θ)}(C ′m(e∗2(θ))− λCm(e∗2(θ))) = 0.

Then we can show that the optimal quality effort for the supplier exists and is unique,

which is presented in the following lemma.

Lemma 4.4.2. Given θ, the optimal solution e∗(θ) for the supplier exists and is unique.

Specifically,

(i) if s+ d1C
′
v(ẽ) < 0, there exists a threshold θ̄ such that

e∗(θ) =

 e∗1(θ), if θ ∈ [θ̄, 1],

e∗2(θ), if θ ∈ [0, θ̄],

where

s(e∗1(θ̄)− e∗2(θ̄)) + (1− θ̄)[d1Cv(e
∗
1(θ̄))− (d1 + d2)Cm(e∗2(θ̄)) exp{−λe∗2(θ̄)}] = 0;

(ii) if s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) > 0, for any θ ∈ [0, 1],

e∗(θ) = e∗1(θ);

(iii) if s + d1C
′
v(ẽ) > 0 and s + (d1 + d2) exp{−λẽ}(C ′m(ẽ) − λCm(ẽ)) < 0, there exists

a threshold min{θ̃, θ̄} such that

e∗(θ) =

 e∗1(θ), if θ ∈ [min{θ̃, θ̄}, 1],

e∗2(θ), if θ ∈ [0,min{θ̃, θ̄}],
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where

s(e∗1(θ̄)− e∗2(θ̄)) + (1− θ̄)[d1Cv(e
∗
1(θ̄))− (d1 + d2)Cm(e∗2(θ̄)) exp{−λe∗2(θ̄)}] = 0,

and

s+ (1− θ̃)(d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) = 0.

Lemma 4.4.2 indicates that the optimal solution e∗(θ)’s structure depends on the

parameters. Specifically, the parameter space is divided into three regions, each of which

corresponds to one type of optimal e∗(θ). The inequalities that describe the three regions

can be viewed as conditions of s, i.e., when s is small, moderate, and large. When

s is small or moderate, corresponding to (i) and (iii), there are two forms of e∗(θ)’s

expression depending on the θ’s value. When θ is small, e∗(θ) = e∗2(θ), which induces

the manufacturer to choose to wait; when θ is large, e∗(θ) = e∗1(θ), which induces the

manufacturer to recall voluntarily. When s is large, e∗(θ) always equals to e∗1(θ), i.e., the

manufacturer will always choose to recall voluntarily.

Next we want to discuss the relation between θ and e∗(θ), and we have the following

corollary.

Lemma 4.4.3. e∗(θ) is decreasing in θ.

Lemma 4.4.3 indicates that the supplier has less incentive to invest in quality effort

when she needs to share less of recall costs.

Now we focus on solving the manufacturer’s problem, which is

min
θ

θH(e∗(θ)).

Since e∗(θ) is decreasing in θ, thus there is one-on-one relationship between these two

decision variables. We could use e∗ represents θ, and it is equivalent for the manufacturer
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to decide on e∗ instead of θ. The feasible region of e is such that the corresponding θ lies

in the interval [0, 1]. The manufacturer’s problem could be written as below:

min
e∗

θ(e∗)H(e∗).

First, we have the following two lemmas on the monotonicity of the cost of manufac-

turer and supplier with respect to θ. For the manufacturer, we have

Lemma 4.4.4. Manufacturer’s cost is increasing in θ, respectively in the voluntary recall

and the mandatory recall settings. Namely, both θH(e∗1(θ)) and θH(e∗2(θ)) are increasing

in θ.

For the manufacturer, we have

Lemma 4.4.5. Supplier’s cost is decreasing in θ, respectively in the voluntary recall and

the mandatory recall settings. Namely, both se∗1(θ) + (1− θ)d1Cv(e
∗
1(θ)) and se∗2(θ) + (1−

θ)(d1 + d2)Cm(e∗2(θ)) exp{−λe∗2(θ)} are decreasing in θ.

Now we are ready to characterize the optimal solution structure for the decentralized

model, and the conclusion is presented by the following proposition.

Proposition 4.4.1. The optimal solution θ∗ for the manufacturer exists and is unique.

Specifically,

(i) if s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) < 0, when

(d1 + d2)Cm(e∗2(θ2)) exp{−λe∗2(θ2)} − sCm(e∗2(θ2))

λCm(e∗2(θ2))− C ′m(e∗2(θ2))

< d1Cv(e
∗
1(θ1)) +

sCv(e
∗
1(θ1))

C ′v(e
∗
1(θ1))

is satisfied, then θ∗ = θ2; otherwise, θ∗ = θ1.

where θ1 and θ2 are solutions to the following equations respectively:

se∗1(θ1) + (1− θ1)d1Cv(e
∗
1(θ1)) = C̄;
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se∗2(θ2) + (1− θ2)(d1 + d2)Cm(e∗2(θ2)) exp{−λe∗2(θ2)} = C̄.

(ii) if s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) > 0, θ∗ = θ1.

Immediately followed the proof of Proposition 4.4.1, we further have the following

corollary.

Corollary 4.4.1. The voluntary recall is always associated with θ1, while the mandatory

recall is always associated with θ2.

According to Proposition 4.4.1 and Corollary 4.4.1, there are two cost sharing per-

centage thresholds that determines the equilibrium solutions. Specifically, the lower cost

sharing percentage is always associated with voluntary recall, while the higher one is al-

ways associated to mandatory recall. However, we do find that when it is more costly for

the supplier to make quality effort, the manufacturer will choose a cost sharing percentage

level such that it induces a voluntary recall.

By adopting the specific form of unit voluntary recall cost and unit mandatory recall

cost, i.e., Cv(e) and Cm(e), we can further obtain a close-form expressions for θ1 and θ2.

Proposition 4.4.2. Assume Cv(e) = αv/e, Cm(e) = αm/e, we have the following ex-

pressions for the two optimal cost sharing percentages.

θ1 = 1− C̄2

4sd1αv
,

and

θ2 = 1− C̄2λ2 − (2s−
√

4s2 + C̄2λ2)2

4sλ2(d1 + d2)αm exp{− C̄λ−2s+
√

4s2+C̄2λ2

2s
}
.

Furthermore, we have

e∗1 =
C̄

2s
,

and

e∗2 =
C̄λ− 2s+

√
4s2 + C̄2λ2

2sλ
.
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By the closed-form expressions of the cost sharing percentage θ by the manufacturer

and quality effort e by the supplier, we are interesting how these optimal solutions change

with respect to operational parameters. The results are summarized by the following

proposition.

Proposition 4.4.3. In the decentralized supply chain model,

(i) e∗1 is decreasing in s, and irrelevant to λ, d1, d2 and αm;

(ii) e∗2 is increasing in λ, decreasing in s, and irrelevant to d1, d2 and αm;

(iii) θ1 is increasing in s, d1, and irrelevant to λ, d2 and αm;

(iv) θ2 is increasing in s, d1, d2, αm, decreasing in λ.

We leave the discussion of intuitions to the numerical part later in order to gain better

understanding with the aid of numerical graphs.

Comparative Statics

Next we examine how the equilibrium solutions change as the parameters change.

Specifically, we want to study how θ∗ and e∗ evolve with the parameters’ values. There

are five parameters we are interested in: mandatory recall probability parameter λ,

demand parameters d1 and d2, and cost parameters s and αm. We start with λ first and

the result is presented in Figure 4.3, where (a) and (b) show the change of e∗ and θ∗

with λ, respectively. The horizon axis represents the value of λ, and the vertical axis

refers to e∗ in (a) or θ∗ in (b). With larger λ, the resulting mandatory recall probability

with same amount of effort becomes lower. As is shown by Figure 4.3, both curve are

flat when λ is relatively small, implying both e∗ and θ∗ are independent of the value of

λ in such case. The reason is that, the mandatory recall probability is relatively high

when λ is small, and hence leads to a high expected mandatory recall cost. Therefore in

such case, the manufacturer and supplier choose the e∗ and θ∗ such that they induce a
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(a) e∗ and λ (b) θ∗ and λ

Figure 4.3: Equilibria Analysis with λ

voluntary recall, and hence are independent of the specific values of λ. However, when λ

is relatively large, e∗ is increasing in λ, while θ∗ is decreasing in λ. The intuition behind

this is similar as before. With larger λ, the mandatory recall probability is small, so

the manufacturer and the supplier choose e∗ and θ∗ in equilibrium such that mandatory

recall is induced. With smaller expected mandatory recall cost, the manufacturer can

push more percentage of recall cost to the supplier while not violating the individual

rationality condition. As a result, the supplier has the incentive to input higher quality

effort since his share of recall cost is higher.

Figure 4.4 (a) and (b) display how the equilibrium solutions evolve with the change

of quality marginal cost s. With higher quality marginal cost s, the supplier tends to

put in less quality effort, therefore the manufacturer has the incentive to increase θ to

counteract the supplier’s tendency to decrease quality effort. Note that there is jump

in the supplier’s effort level, which corresponds to the change from voluntary recall to

mandatory recall.

Figure 4.4 (c) and (d) present how the equilibrium solutions change as the unit manda-

tory recall cost parameter αm increase. When αm is small, the manufacturer and the sup-

plier will induce the mandatory recall instead of voluntary recall. In this region, as the
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(a) e∗ and s (b) θ∗ and s

(c) e∗ and αm (d) θ∗ and αm

Figure 4.4: Equilibria Analysis with Cost Parameters

unit mandatory recall cost αm increases, the the manufacturer need to increase his cost

share percentage θ so that the supplier’s individual rationality condition is not violated.

On the other hand, the supplier’s effort exibits to be constant due to two conflicting

factors: the decreasing cost share percentage induces a lower effort, while the increasing

unit mandatory recall cost promotes a higher effort. Therefore overall, it behaves as

a constant effort level. While as αm becomes large enough, the voluntary recall would

always be preferred to mandatory recall for the manufacturer and the supplier. There-

fore, they will choose e∗ and θ∗ so as to induce voluntary recall. Hence the equilibrium

solutions are independent of the specific value of αm in this region.

Figure 4.5 displays the comparative statics of equilibrium solutions as the demand

parameters d1 and d2 change. When d1 is small or d2 is large, i.e., the voluntary recall
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(a) e∗ and d1 (b) θ∗ and d1

(c) e∗ and d2 (d) θ∗ and d2

Figure 4.5: Equilibria Analysis with Demand Parameters

cost is low or the mandatory recall cost is high, the voluntary recall is preferred. In such

scenario, the supplier has no incentive to increase her quality effort level since it does not

affect the voluntary recall cost but increase her cost. Otherwise, when d1 is large or d2 is

small, the supplier will increase her effort level since now mandatory recall is preferred,

and hence her quality effort affects the recall cost she is going to share. In this region,

as d1 and d2 increase, the expected mandatory recall cost increase so the manufacturer

needs to increase his share of recall cost to guarantee the IR condition to continue to

hold. However within this region, the effort level is flat and the reason again comes

from two conflicting forces: the manufacturer increases his share of recall cost, i.e., the

cost percentage of supplier becomes smaller, while the expected mandatory recall cost

increases as d1 and d2 increase.
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Note that in all the figures we have discussed, the curves have a turning point which

divides the curve into two parts, which corresponds to voluntary recall and mandatory

recall, respectively. This is consistent with our findings in Propositions 4.4.1, 4.4.2 and

4.4.3.

4.4.2 Integrated Supply Chain

Next we move on to the integrated supply chain when a central planner takes care of

all decisions and he aims to minimize the supply chain’s total cost. Note that under this

setting, cost sharing percentage θ is no longer needed because the manufacturer and the

supplier do not consider their own cost separately.

Denote the integrated supply chain problem as below:

min
e

se+ min{Cv(e)d1, Cm(e)(d1 + d2)} exp{−λe}.

We first present the optimal solution of supplier’s quality effort in this integrated

setting.

Lemma 4.4.6. The optimal solution eFB for the central planner exists and is unique.

Specifically,

(i) if s+ d1C
′
v(ẽ) < 0, then eFB = eFB2 ,

where

s+ (d1 + d2) exp{−λeFB2 }(C ′m(eFB2 )− λCm(eFB2 )) = 0;

(ii) if s+ (d1 + d2) exp{−λe}(C ′m(e)− λCm(e)) > 0, then eFB = eFB1 ,

where

s+ d1C
′
v(e

FB
1 ) = 0;
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(iii) if s+ d1C
′
v(ẽ) > 0 and s+ (d1 + d2) exp{−λe}(C ′m(e)− λCm(e)) < 0, when

seFB1 + d1Cv(e
FB
1 ) < seFB2 + (d1 + d2)Cm(eFB2 exp{−λeFB2 }

is satisfied, then eFB = eFB1 ; otherwise, eFB = eFB2 .

Similarly as in Lemma 4.4.2, the parameter space is also divided into three regions

here, and the regions are exactly the same as before. In addition, eFB1 corresponds to

the effort level when the central planner would also choose to voluntary recall, and eFB2

corresponds to the one when he would wait and bear the potential mandatory recall.

Interestingly, we find that under the integrated setting, when s is relatively small, vol-

untary recall is never preferred, unlike the decentralized case where the decision depends

on the cost sharing percentage.

Next we establish the comparison between the decentralized supply chain setting and

the integrated supply chain setting and yield the following proposition,

Proposition 4.4.4. e∗1 < eFB1 and e∗2 < eFB2 , therefore in the decentralized supply chain

setting, the supplier’s optimal quality effort is lower than that in the integrated supply

chain setting, therefore the recall cost sharing contract cannot coordinate the supply chain.

This proposition shows that the quality effort made by the supplier in the decentral-

ized supply chain setting is always smaller than that made by the central planner, which

implies that the recall cost sharing contract cannot coordinate the supply chain.

4.4.3 Decentralized Supply Chain with Random λ

So far we have assumed λ to be deterministic for the sake of tractability. However,

we do notice the limitation that the supplier can fully anticipate the mandatory recall

probability based on the effort level she chooses. Therefore, in this section, we introduce

randomness to the recall probability by allowing λ to be random, and the randomness is
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Figure 4.6: Sequence of Events with Random λ

resolved by the time of the decision of whether to issue a voluntary recall or not. Now

the sequence of events is changed as follows:

The manufacturer, as a Stackelberg leader, offers a cost sharing percentage θ, and

then the supplier decides her quality effort e. At this point, λ for the mandatory recall

probability is random. By the time of the decision of voluntary recall or not, λ is realized

and the mandatory recall probability is observed. The manufacturer makes the decision

of whether or not to issue a voluntary recall based on the evaluation of the voluntary

recall cost and expected mandatory recall cost. Once a voluntary recall is issued, assume

the problem is completely fixed by the recall process and no mandatory recall will take

place later. Otherwise, by the end of the period, the mandatory recall happens with the

probability exp{−λe}.

We follow a similar backward induction procedure as before to solve this problem.

Given θ, e and realized λ, the manufacturer will issue a voluntary recall if

θCv(e)d1 < [θCm(e)(d1 + d2)] exp{−λe},

which is equivalent to

exp{−λe} > αvd1

αm(d1 + d2)
,
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or,

λ <
1

e
ln

(
αm(d1 + d2)

αvd1

)
.

Define

α(e) =
1

e
ln

(
αm(d1 + d2)

αvd1

)
,

note that α(e) is always positive, and the manufacturer chooses voluntary recall if λ ≤

α(e), and chooses to wait otherwise.

Now we are ready to analyze the supplier’s problem. For the supplier, given θ,

min
e
se+ (1− θ)H(e),

where H(e) = Cv(e)d1Fλ(α(e)) +

∫ ∞
α(e)

Cm(e)(d1 + d2) exp{−λe}f(λ)dλ.

Let e∗(θ) denote the optimal solution to the supplier’s cost minimization problem above.

Based on the above analysis, we now can move to the manufacturer’s decision of θ

and write out the whole principle-agent problem as follows:

min
θ

θH(e∗(θ))

s.t. se∗(θ) + (1− θ)H(e∗(θ)) ≤ C̄ (IR)

e∗(θ) = arg min
e

se+ (1− θ)H(e) (IC),

where H(e) is the expected recall cost:

H(e) = Cv(e)d1Fλ(α(e)) +

∫ ∞
α(e)

Cm(e)(d1 + d2) exp{−λe}f(λ)dλ,

and C̄ is the reservation cost for the supplier.

Next we conduct comparative statics analysis to help analyze this problem. Here we

assume λ is according to a uniform distribution, and the results are presented in Figures

4.7 and 4.8. Since λ is random now, a given set of θ and e could result in the choice of

voluntary recall or mandatory recall depending on the realization of λ by the time when

88



(a) e∗ and s (b) θ∗ and s

(c) e∗ and αm (d) θ∗ and αm

Figure 4.7: Equilibria Analysis with Cost Parameters under Random λ
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the manufacturer needs to make the decision. Therefore, we no longer have the turning

point in the curves as we did in the fixed λ case, where the regions divided by the turning

point corresponded to preference of voluntary recall and mandatory recall, respectively.

Figure 4.7 (a) and (b) presents the trend of equilibrium solutions as the change of

quality marginal cost s. As s increases, the supplier has the incentive to decrease his

effort level, and the manufacturer will increase his cost share percentage. Figure 4.7

(c) and (d) display the trend when the unit mandatory recall cost αm changes. As αm

increases, the expected mandatory recall cost increases. Since before the realization of

λ, mandatory recall could always be preferred with some probability, the manufacturer

needs to increase his cost share percentage to ensure the IR condition to hold. While

for the supplier, the effect of manufacturer’s decreasing θ and the effect of increased

mandatory recall cost cancel out, and therefore result in constant effort level.

Figure 4.8 shows the dependence of equilibrium solutions as the demand parameters

d1 and d2 change. The general trend accords with the case with fixed λ except for

there is no turning point in the curve, and the curves are strictly monotone when λ is

uncertain. As d1 increases, both voluntary recall cost and expected mandatory recall cost

increase. The manufacturer again increases θ to keep the supplier in the game, and the

supplier increases his effort level to counteract the increase of mandatory recall cost. The

argument for d2 is similar by noting that a higher d2 leads to higher expected mandatory

recall cost.

4.5 Conclusion

In this paper, we consider a recall cost sharing contract proposed by the manufacturer,

as a Stackelberg leader facing a moral hazard problem, to align the incentive of the

supplier in ensuring the product quality, and also examine two types of recall decisions by

the manufacturer, i.e., voluntary recall and mandatory recall. We consider two settings,
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(a) e∗ and d1 (b) θ∗ and d1

(c) e∗ and d2 (d) θ∗ and d2

Figure 4.8: Equilibria Analysis with Demand Parameters under Random λ
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both with realistic applications: we first consider the setting when the mandatory recall

probability solely depends on the supplier’s quality effort, and then consider the setting

when there is extra randomness involved in the mandatory recall probability. To facilitate

comparison, we also consider the first best problem where the supply chain is integrated.

By solving the model, we characterize the firms’ decisions in equilibrium. Surprisingly,

we find that, as a Stackelberg leader, the manufacturer does not always push all the recall

cost to the supplier. His decision depends on whether he will issue a voluntary recall or

not. Furthermore, we find two cost sharing percentage thresholds that determines the

equilibrium solutions. Specifically, the lower cost sharing percentage is always associated

with voluntary recall, while the higher one is always associated to mandatory recall. We

conduct comparative statics study to see how the equilibrium solutions evolve with the

change of parameters. In addition, we find that the recall cost sharing contract cannot

coordinate the supply chain.

There are certain limitations and possible extensions for future research with the

models considered in this paper. In our work we focus more on the decisions within

the supply chain and the interdependence between designing the product recall contract

and making product recall decisions. Actually, there are many other angles to study

the process of recall. For example, the games between the supply chain players and

the government agency are potentially interesting research questions for future study.

Besides, more analytical results for the decentralized supply chain with random λ would

be contributing.
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Appendix A SUPPLEMENTARY RESULTS AND PROOFS FOR

CHAPTER 2

Start-Up and Established Firm - No Vertical Differentiation

We first examine the new capacity subgame when both firms choose the same quality

level, either Sl or Sh, and then compete with each other in capacity quantity. It is similar

as the classic Cournot game, however, one key difference is that here two firms are not

symmetric (start up vs established firm) regarding to the objectives, besides, different

timing structures of the capacity investment are also considered. The demand function

is:

P = −SQs − SQe + Sθ̂,

where Qs and Qe denote the product quantities released to the market by the start-up

and the established firm. The production clearance strategy is carried over here, i.e.,

Qs = Ks, Qe = Ke, where Ks, Ke are the capacity quantities of start-up and established

firm. Following standard procedures, we obtain the following results1:

ψ∗ E(π∗)

(Es, Ee) 1−G
(

2
√

α
S + Sµ−

√
Sα−β2S

2

2S + β1S
)

(Sµ−S
√
α/S−β2S

2)2

4S

(Es, Le) 1−G
(

2
√

2α
S + (2β1 − β4)S

)
S
4 (µ2 + σ2)−

(√
Sα+ β4S

2

2

)
µ+ α

2 +
β2
4

4 S +
√

α
2Sβ4S

2

(Ls, Ee) 1−G
(
µ
2 + 3β3−2β2

2 S + 2
√

α
S

)
1
8Sµ

2 + β3−2β2

4 µS2 + (β3−2β2)
2

8 S3

(Ls, Le) 1−G
(
2β3S − β4S + 3

√
α
S

)
S
9 (µ2 + σ2) +

(
β3−2β4

3

)2
S3 + 2

9 (β3 − 2β4)S2µ

Table A.1: No Vertical Differentiation

Table A.1 presents the survival probability of the start-up and the expected profit

for the established firm in the capacity quantity subgame, respectively, for four different

timing structures. Note that in the table we use S which could be either Sl or Sh.
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ψ∗ E(π∗)

(Ssl , S
e
l ) 1−G

(
2β3Sl − β4Sl + 3

√
α
Sl

)
Sl
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3
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l µ
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2
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√
Slα
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√
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)
SlS

2
h
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2
l Sh−β3S

2
hSl)

(4Sh−Sl)2
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(2β4S
2
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2
hSl)

2

Sl(4Sh−Sl)2

(Ssh, S
e
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(
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√
α
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)
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Table A.2: The Start-Up’s Optimal Survival Probability and The Established Firm’s
Expected Profit When Both Firms Make Late Capacity Investment

ψ∗ E(π∗)
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Table A.3: The Start-Up’s Optimal Survival Probability and The Established Firm’s
Expected Profit When The Start-Up Invests Early and The Established Firm Invests
Late

Capacity Quantity Subgame Equilibria

Proof of Table 2.2

Proof. In case of (Es
l , L

e
h), i.e., the low quality start-up invests early while the high

quality established firm invests late. πes. = (Ph − C2h)Kh = (−SlKl − ShKh + Shθ̂ −

C2h)Kh = −ShK2
h + (Shθ̂ − SlKl − C2h)Kh. Derive the partial derivative with re-

spect to Kh, K
∗
h = Shθ̂−SlKl−C2h

2Sh
, and πes.(Kl) = (Shθ̂−SlKl−C2h)2

4Sh
. Note that πst.(Kl) =

(Pl − C1l)Kl = SlKl
2
θ̂ − SlK

2
l +

S2
l

2Sh
K2
l + SlC2h

2Sh
Kl − C1lKl, and Pr{πst.(Kl) ≥ α} =

1−G
(

2Kl − SlKl
Sh
− C2h

Sh
+ 2C1l

Sl
+ 2α

SlKl

)
. Maximizing Pr{πst.(Kl) ≥ α} over Kl generates

K∗l =
√

2Shα
Sl(2Sh−Sl)

, K∗h = θ̂
2
−
√

Slα
2Sh(2Sh−Sl)

. Then we get ψ∗ = 1−G
(

2
√

2(2Sh−Sl)
SlSh

α− C2h

Sh
+ 2C1l

Sl

)
,

1The demand model is essentially the same as the one in (Swinney et al. 2011) except for the scale
parameter S
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ψ∗ E(π∗)

(Ssl , S
e
l ) 1−G

(
µ
2

+ 3β3−2β2

2
Sl + 2

√
α
Sl

)
1
8
Slµ

2 + β3−2β2

4
µS2

l + (β3−2β2)2

8
S3
l

(Ssl , S
e
h) 1−G

(
µ
2

+
β3S2

l −2β2S2
h

2(2Sh−Sl)
+ β3Sl + 2

√
α
Sl

)
2Sh−Sl

8
µ2 +

(β3S2
l −2β2S2

h)µ

4
+

(β3S2
l −2β2S2

h)2

8(2Sh−Sl)

(Ssh, S
e
l ) 1−G

(
SlShµ+β3SlS

2
h−2β2S2

l Sh
2Sh(2Sh−Sl)

+ β3Sh + 2
√

α
Sh

)
ShSl(µ+β3Sh−2β2Sl)

2

8(2Sh−Sl)

(Ssh, S
e
h) 1−G

(
µ
2

+ 3β3−2β2

2
Sh + 2

√
α
Sh

)
1
8
Shµ

2 + β3−2β2

4
µS2

h + (β3−2β2)2

8
S3
h

Table A.4: The Start-Up’s Optimal Survival Probability and The Established Firm’s
Expected Profit When The Start-Up Invests Late and The Established Firm Invests
Early

π∗es. = Sh
4
θ̂2 −

(√
SlShα

2(2Sh−Sl)
+ C2h

2

)
θ̂ + Slα

2(2Sh−Sl)
+

C2
2h

4Sh
+
√

Slα
2Sh(2Sh−Sl)

C2h, thus E(π∗) =

Sh
4

(µ2 + σ2)−
(√

SlShα
2(2Sh−Sl)

+ C2h

2

)
µ+ Slα

2(2Sh−Sl)
+

C2
2h

4Sh
+
√

Slα
2Sh(2Sh−Sl)

C2h.

In case of (Lsl , L
e
h), i.e., both the start-up invests and the established firm invest

late. πes. = (Ph − C2h)Kh = (−SlKl − ShKh + Shθ̂ − C2h)Kh = −ShK2
h + (Shθ̂ −

SlKl − C2h)Kh, K
∗
h = Shθ̂−SlKl−C2h

2Sh
. πst. = (Pl − C2l)Kl = −SlK2

l + (Slθ̂ − SlKh −

C2l)Kl, K
∗
l = Slθ̂−SlKh−C2l

2Sl
. Combine these two first order conditions, and we get K∗h =(

1− 2Sh
4Sh−Sl

)
θ̂ + C2l−2C2h

4Sh−Sl
, K∗l =

(
Sh

4Sh−Sl

)
θ̂ − 2C2lSh−C2hSl

Sl(4Sh−Sl)
. π∗es. = Sh

(
1− 2Sh

4Sh−Sl

)2

θ̂2 +

2Sh

(
1− 2Sh

4Sh−Sl

)(
C2l−2C2h

4Sh−Sl

)
θ̂+
(
C2l−2C2h

4Sh−Sl

)2

Sh, thus E(π∗) = Sh

(
1− 2Sh

4Sh−Sl

)2

(µ2+σ2)+

2Sh

(
1− 2Sh

4Sh−Sl

)(
C2l−2C2h

4Sh−Sl

)
µ+

(
C2l−2C2h

4Sh−Sl

)2

Sh. ψ
∗ = 1−G

(
2C2lSh−C2hSl+(4Sh−Sl)

√
Slα

SlSh

)
.

In case of (Lsl , E
e
h), i.e., the start-up invests late while the established firm invests

early. πst. = (Pl − C2l)Kl = −SlK2
l + (Slθ̂ − SlKh − C2l)Kl, K

∗
l = Slθ̂−SlKh−C2l

2Sl
.

πes. = (Ph − C1h)Kh = −ShK2
h + (Shθ̂ − SlKl − C1h)Kh. Substituting K∗l into πes. gen-

erates πes. =
(
Sl
2
− Sh

)
K2
h +
(
Shθ̂ − Sl

2
θ̂ + C2l

2
− C1h

)
Kh, thus E(πes.) =

(
Sl
2
− Sh

)
K2
h +(

Shµ− Sl
2
µ+ C2l

2
− C1h

)
Kh. Since Sl

2
− Sh < 0, we get K∗h = µ

2
+ C2l−2C1h

2(2Sh−Sl)
, K∗l =

θ̂
2
− µ

4
− C2l−2C1h

4(2Sh−Sl)
− C2l

2Sl
.E(π∗) = 2Sh−Sl

8
µ2 + (C2l−2C1h)µ

4
+ (C2l−2C1h)2

8(2Sh−Sl)
, and ψ∗ = 1 −

G
(
µ
2

+ C2l−2C1h

2(2Sh−Sl)
+ C2l

Sl
+ 2
√

α
Sl

)
.

In case of (Es
l , E

e
h), i.e., both the start-up and the established firm invest early.

πst.(Kl, Kh) = (Pl − C1l)Kl = −SlK2
l + (Slθ̂ − SlKh − C1l)Kl, thus ψ = Pr{π∗s ≥ α} =
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1−G
(
Kl + α

SlKl
+ SlKh+C1l

Sl

)
. Denote K = Kl +

α
SlKl

+ SlKh+C1l

Sl
, then ∂K

∂Kl
= 0 generates

K∗l =
√

α
Sl

, and K∗ = 2
√

α
Sl

+ SlKh+C1l

Sl
. πes. = (Ph − C1h)Kh = −ShK2

h + (Shθ̂ −

SlKl − C1h)Kh, thus E(πes.) = (Ph − C1h)Kh = −ShK2
h + (Shµ − SlKl − C1h)Kh, and

∂E(πes.)
∂Kh

= 0 generates K∗h = Shµ−SlKl−C1h

2Sh
. Substituting K∗l into K∗h leads to K∗h =

Shµ−
√
αSl−C1h

2Sh
, K∗ = 2

√
α
Sl

+ Shµ−
√
αSl−C1h

2Sh
+ C1l

Sl
, E(π∗) = (Shµ−SlKl−C1h)2

4Sh
, and ψ∗ =

1−G
(

2
√

α
Sl

+ Shµ−
√
αSl−C1h

2Sh
+ C1l

Sl

)
Proof of Proposition 2.4.1

Proof. (1) We first show that (Es
l , L

e
h) is an equilibrium under specific conditions. ψ∗(Es

l , L
e
h) >

ψ∗(Lsl , L
e
h) could be written as 2

√
2(2Sh−Sl)
SlSh

α − C2h

Sh
+ 2C1l

Sl
< 2C2lSh−C2hSl+(4Sh−Sl)

√
Slα

SlSh
,

which could be further simplified as
(

2
√

2(2Sh−Sl)
Sh

− (4Sh−Sl)
Sh

)√
α
Sl

+ 2(C1l−C2l)
Sl

< 0. We

can check the 2
√

2(2Sh−Sl)
Sh

< (4Sh−Sl)
Sh

, thus if C1l < C2l, the inequality holds. Next

we derive the conditions under which E[π∗(Es
l , L

e
h)] > E[π∗(Es

l , E
e
h)] is satisfied, i.e.

Sh
4

(µ2 +σ2)−
(√

SlShα
2(2Sh−Sl)

+ C2h

2

)
µ+ Slα

2(2Sh−Sl)
+

C2
2h

4Sh
+
√

Slα
2Sh(2Sh−Sl)

C2h >
(Shµ−

√
Slα−C1h)2

4Sh
.

The above inequality is equivalent to Sh
4
σ2 −

(√
SlShα

2(2Sh−Sl)
+ C2h

2

)
µ + Slα

2(2Sh−Sl)
+

C2
2h

4Sh
+√

Slα
2Sh(2Sh−Sl)

C2h > −(
√
Slα+C1h

2
)µ + Slα

4Sh
+

C2
1h

4Sh
+
√
Slα

2Sh
C1h. Note that left hand side is

monotone increasing in σ (when σ > 0), thus there exists a threshold σ1 such that

for all σ > σ1, the inequality holds. Following the proof above it is clear that nei-

ther (Lsl , L
e
h) nor (Es

l , E
e
h) is a possible equilibrium. Next we need to show (Lsl , E

e
h)

is not possible equilibrium as well. Note that E[π∗(Lsl , L
e
h)] > E[π∗(Lsl , E

e
h)] is equiv-

alent to Sh

(
1− 2Sh

4Sh−Sl

)2

(µ2 + σ2) + 2Sh

(
1− 2Sh

4Sh−Sl

)(
C2l−2C2h

4Sh−Sl

)
µ +

(
C2l−2C2h

4Sh−Sl

)2

Sh >

2Sh−Sl
8

µ2 + (C2l−2C1h)µ
4

+ (C2l−2C1h)2

8(2Sh−Sl)
. Similarly left hand side is monotone increasing in σ

(when σ > 0), thus there exists another threshold σ2 such that for all σ > σ2, the inequal-

ity holds. Take σ̄se = max{σ1, σ2}, as we concluded, (Es
l , L

e
h) is an unique equilibrium

under specific conditions.

(2) For (Lsl , L
e
h) part, see proof above. For (Lsl , E

e
h), We will show ψ∗(Lsl , E

e
h) <
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ψ∗(Es
l , E

e
h) under specific conditions. It reduces to show that µ

2
+ C2l−2C1h

2(2Sh−Sl)
+ C2l

Sl
+2
√

α
Sl
>

2
√

α
Sl

+ Shµ−
√
Slα−C1h

2Sh
+ C1l

Sl
, i.e. C2l−2C1h

2(2Sh−Sl)
+ C1h

2Sh
+
√
Slα

2Sh
+ C2l−C1l

Sl
> 0. If C1l < C2l, write

C2l−2C1h

2(2Sh−Sl)
+ C1h

2Sh
+
√
Slα

2Sh
as C2lSh−C1hSl+(2Sh−Sl)

√
Slα

2(2Sh−Sl)Sh
. Since we have the assumption α >

(SlC1h−ShC1l)
2

4Sl(Sh−Sl)2 , thus C2lSh−C1hSl+(2Sh−Sl)
√
Slα > C2lSh−C1hSl+

(2Sh−Sl)(SlC1h−ShC1l)
2(Sh−Sl)

>

C2lSh − C1hSl + SlC1h − ShC1l > 0, thus the inequality holds.

Proof of Proposition 2.4.2

Proof. (1) We first show that (Lsh, E
e
l ) is an equilibrium under specific conditions. Con-

sider E[π∗(Lsh, E
e
l )] > E[π∗(Lsh, L

e
l )], i.e. (SlShµ+SlC2h−2ShC1l)

2

8SlSh(2Sh−Sl)
>

SlS
2
h

(4Sh−Sl)2 (µ2 + σ2) −
2Sh(2C2lSh−C2hSl)

(4Sh−Sl)2 µ+ (2C2lSh−C2hSl)
2

Sl(4Sh−Sl)2 . Note that the right hand side is monotone increasing

in σ (when σ > 0). As long as the inequality above with σ = 0 holds, there would

exist some threshold σ∗1 such that for all σ < σ∗1, the original inequality holds. Note

that (SlShµ+SlC2h−2ShC1l)
2

8SlSh(2Sh−Sl)
> (SlShµ+SlC2h−2ShC1l)

2

Sl(4Sh−Sl)2 , thus it is sufficient to check whether

(SlShµ+SlC2h−2ShC1l)
2

Sl(4Sh−Sl)2 >
SlS

2
h

(4Sh−Sl)2µ
2 − 2Sh(2C2lSh−C2hSl)

(4Sh−Sl)2 µ + (2C2lSh−C2hSl)
2

Sl(4Sh−Sl)2 is satisfied, which

could be further simplified as (C1l − C2l)
(
Sh
Sl

(C1l + C2l)− Shµ− C2h

)
> 0. Note that

we have the assumption 2C2l
Sh
Sl
− Shµ − C2h < 0. If C1l < C2l, the inequality would

be satisfied. Consider ψ∗(Lsh, E
e
l ) > ψ∗(Es

h, E
e
l ), i.e. SlShµ+SlC2h−2ShC1l

2Sh(2Sh−Sl)
+ C2h

Sh
+ 2
√

α
Sh
<

2
√

α
Sh

+
Slµ−Sl

√
α/Sh−C1l

2Sh
+ C1h

Sh
, which could be written as C2h − C1h <

Slµ
2
− Sl

2

√
α
Sh
−

C1l

2
− SlShµ

2(2Sh−Sl)
− SlC2h

2(2Sh−Sl)
+ C1lSh

2Sh−Sl
. Note that the right hand side in monotone increasing

in Sh, and it converges to Slµ
4

as Sh → +∞. As long as C2h − C1h <
Slµ
4

, there would

exist some threshold S̄h such that for all Sh > S̄h, the original inequality holds. Next

we establish conditions which ensure that (Lsh, E
e
l ) as a unique equilibrium. It is clear

that (Es
h, E

e
l ) or (Lsh, L

e
l ) cannot be possible equilibrium under conditions specified above.

Check whether E[π∗(Es
h, L

e
l )] < E[π∗(Es

h, E
e
l )], i.e., Sl

4
(µ2+σ2)−

(
Sl
√

α
2(2Sh−Sl)

+ C2l

2

)
µ+

Slα
2(2Sh−Sl)

+
C2

2l

4Sl
+
√

α
2(2Sh−Sl)

C2l <
(Slµ−Sl

√
α/Sh−C1l)

2

4Sl
, could be satisfied under specific con-

ditions. Note that the left hand side in monotone increasing in σ(when σ > 0). As

long as the inequality above with σ = 0 holds, there would exist some threshold σ∗2
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such that for all σ < σ∗2, the original inequality holds. Note that we have the assump-

tion µ >
√

2α
(2Sh−Sl)

+ C2l

Sl
, we only need to check (C2l − C1l)

(√
α

2(2Sh−Sl)
− 1

2

√
α
Sh

)
+

C2
2l+C

2
1l−2C1lC2l

4Sl
+ Slα

(
1

2(2Sh−Sl)
+ 1

4Sh
−
√

1
2Sh(2Sh−Sl)

)
≥ 0, and it is clear to be satisfied

if C2l > C1l. Take σ̄es = min{σ∗1, σ∗2}, then we can guarantee (Lsh, E
e
l ) as a unique

equilibrium under specific conditions stated.

(2) We first show that if C1h < C2h, ψ
∗(Lsh, L

e
l ) < ψ∗(Es

h, L
e
l ), thus (Lsh, L

e
l ) is not

an equilibrium. ψ∗(Lsh, L
e
l ) < ψ∗(Es

h, L
e
l ), i.e. −Sh(C2l−2C2h)+(4Sh−Sl)

√
Shα

Sh(2Sh−Sl)
> 2

√
2α

2Sh−Sl
+

2C1h−C2l

2Sh−Sl
, could be simplified to 0 > 2(C1h−C2h)

2Sh−Sl
+
√
Shα(2

√
Sh
√

4Sh−2Sl−4Sh+Sl)
(2Sh−Sl)Sh

. Since 2
√
Sh
√

4Sh − 2Sl <

4Sh − Sl, if C1h < C2h, the right hand side is negative, thus the inequality holds. For

the (Es
h, L

e
l ) part, it is clear that ψ∗(Es

h, L
e
l ) > ψ∗(Lsh, L

e
l ) according to proof above.

Next under specific conditions we need to show E[π∗(Es
h, L

e
l )] > E[π∗(Es

h, E
e
l )], i.e.

Sl
4

(µ2+σ2)−
(
Sl
√

α
2(2Sh−Sl)

+ C2l

2

)
µ+ Slα

2(2Sh−Sl)
+
C2

2l

4Sl
+
√

α
2(2Sh−Sl)

C2l >
(Slµ−Sl

√
α/Sh−C1l)

2

4Sl
.

Note the left hand side is monotone increasing in σ (when σ > 0), there exists some

threshold σ′ such that for all σ > σ′, the inequality holds. Take σ̃es = max{σ′, σ∗1} (σ∗1

from (1)), then (Es
h, L

e
l ) would be guaranteed as a unique equilibrium when σ > σ̃es.

Proof of Proposition 2.4.3

Proof. We first show that (Lel , L
e
h) is an equilibrium, i.e., E[π∗l (L

e
l , L

e
h)] > E[π∗l (E

e
l , L

e
h)]

and E[π∗h(L
e
l , L

e
h)] > E[π∗h(L

e
l , E

e
h)]. For the first inequality, the equivalent expression is

Sl

(
Sh

4Sh−Sl
µ− 2C2lSh−C2hSl

Sl(4Sh−Sl)

)2

+
SlS

2
h

(4Sh−Sl)2σ
2 > (SlShµ+SlC2h−2ShC1l)

2

8SlSh(2Sh−Sl)
. Since the left hand side

is monotone increasing in σ (when σ > 0), there exists some threshold σ∗1, such that for all

σ > σ∗1, the inequality holds. Then we consider the second inequality, which could be writ-

ten as Sh

(
2Sh−Sl
4Sh−Sl

µ+ C2l−2C2h

4Sh−Sl

)2

+ Sh

(
2Sh−Sl
4Sh−Sl

)2

σ2 >
(

2Sh−Sl
2

) (
µ
2

+ C2l−2C1h

2(2Sh−Sl)

)2

, similarly,

there exists some threshold σ∗2 such that for all σ > σ∗2, the inequality holds. It’s clearly

neither (Ee
l , L

e
h) nor (Lel , E

e
h) is an equilibrium. We next show that (Ee

l , E
e
h) is not a possi-

ble equilibrium by proving E[π∗1(Ee
l , E

e
h)] < E[π∗1(Lel , E

e
h)], i.e., Sl

(
Sh

4Sh−Sl
µ− 2C1lSh−C1hSl

Sl(4Sh−Sl)

)2

<

Sl

(
µ
4
− C2l−2C1h

4(2Sh−Sl)
− C2l

2Sl

)2

+ Sl
4
σ2. Similarly, there exists some threshold σ∗3 such that for all
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σ > σ∗3, the inequality holds. Take σ̄ee = max{σ∗1, σ∗2, σ∗3}, and our proof is complete.

Proof of Proposition 2.5.1

Proof of 2.5.1.1. When the following two inequalities hold

2

√
α

Sl
+
Shµ−

√
Slα− β1S

2
h

2Sh
+ β1Sl < 2

√
α

Sh
+
Shµ−

√
Shα− β1S

2
h

2Sh
+ β1Sh (A.0.1)

and

(Slµ−
√
Slα− β1S

2
l )

2

4Sl
<

(Shµ−
√
Slα− β1S

2
h)

2

4Sh
, (A.0.2)

we could have an equilibrium (Ssl , S
e
h), in which the start up chooses low quality while

the established firm chooses high quality.

For Inequality A.0.1, moving the right hand side to the left and then divided by
√
Sh −

√
Sl which is great than 0. It is equivalent to 2

√
α√

ShSL
+
√
α

Sh
− β1(

√
Sh +

√
Sl) < 0.

Further calculations yields
√
ShSL(

√
Sh +

√
Sl) >

5
√
α

4β1
. And Sl > (5

√
α

4β1
)2/3 is a sufficient

condition for this inequality to hold.

For Inequality A.0.2, it is equivalent to prove
√
Slµ−

√
α−β1S

3/2
l <

√
Shµ−

√
α Sl
Sh
−

β1S
3/2
h . And it will be sufficient to show

√
Slµ−β1S

3/2
l <

√
Shµ−

√
α−β1S

3/2
h . Consider

function f(x) = µ
√
x− β1x

3/2, which is increasing in (0, µ
3β1

] and decreasing in [ µ
3β1
,∞).

Thus a sufficient condition for Inequality A.0.2 to hold is Sh <
µ

3β1
. We proved the first

statement of Proposition 6.1.

Next, to show (Ssl , S
e
h) is the unique equilibrium, we need to find sufficient conditions

to the following two inequalities, violation of either of which will result in non-existence

of (Ssh, S
e
l ) equilibrium, which lead to the uniqueness of (Ssl , S

e
h).

2

√
α

Sh
+
Slµ− Sl

√
α/Sh − β1S

2
l

2Sh
+ β1Sh > 2

√
α

Sl
+
Slµ−

√
Slα− β1S

2
l

2Sl
+ β1Sl (A.0.3)

(Slµ− Sl
√
α/Sh − β1S

2
l )

2

4Sl
<

(Shµ− Sh
√
α/Sh − β1S

2
h)

2

4Sh
. (A.0.4)
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For Inequality A.0.3, it is sufficient to show that 2
√

α
Sh

+
Slµ−Sl

√
α/Sl−β1S2

l

2Sh
+ β1Sh >

2
√

α
Sl

+
Slµ−

√
Slα−β1S2

l

2Sl
+ β1Sl. It is equivalent to

Slµ−
√
αSl−β1S2

l

2ShSl
+ 2

√
α√

ShSL(
√
Sh+
√
Sl)

< β1.

One sufficient condition is to show
Slµ−

√
αSl−β1S2

l +2
√
αSl

2S2
l

< β1, which is equivalent to

µ(Sl)
−1 +
√
α(Sl)

− 3
2 < 3β1. Noticing the function of the left hand side of Sl is decreasing,

we have an sufficient condition for Inequality A.0.3 is Sl > Sl , where Sl is the solution

to µ(Sl)
−1 +

√
α(Sl)

− 3
2 = 3β1.

For Inequality A.0.4, it is equivalent to
√
Shµ−

√
α−β1S

3/2
h >

√
Slµ−

√
α Sl
Sh
−β1S

3/2
l .

Further calculations yields that the proceeding inequality is equivalent to β1(Sh + Sl +
√
ShSl) +

√
α/
√
Sh < µ. A sufficient condition will be 3β1Sh +

√
α/
√
Sh < µ. We study

the function f(x) = 3β1x +
√
α/
√
x, which is decreasing in (0, (

√
α

6β1
)3/2] and increasing

in [(
√
α

6β1
)3/2,∞), with its minimum achieved at (

√
α

6β1
)3/2. Thus a sufficient condition for

Inequality A.0.4 to hold is Sh ∈ [Sh, S̄h], where Sh, S̄h are the solutions to Sh +
√
α√
Sh

1
3β1

=

µ
3β1

.

Proof of 2.5.1.2. When the following two inequalities hold

2

√
α

Sh
+
Slµ− Sl

√
α/Sh − β1S

2
l

2Sh
+ β1Sh < 2

√
α

Sl
+
Slµ−

√
Slα− β1S

2
l

2Sl
+ β1Sl (A.0.5)

and

(Slµ− Sl
√
α/Sh − β1S

2
l )

2

4Sl
>

(Shµ− Sh
√
α/Sh − β1S

2
h)

2

4Sh
, (A.0.6)

we could have an equilibrium (Ssh, S
e
l ), in which the start up chooses high quality while

the established firm chooses low quality.

For Inequality A.0.5, it is sufficient to show that 2
√

α
Sh

+
Slµ−Sl

√
α/Sh−β1S2

l

2Sl
+ β1Sh <

2
√

α
Sl

+
Slµ−

√
Slα−β1S2

l

2Sl
+β1Sl, which is equivalent to 3

2

√
α
Sh

+β1Sh <
3
2

√
α
Sl

+β1Sl. Consider

function f(x) = 3
2

√
α
x

+ β1x which is decreasing in (0, (3
√
α

4β1
)2/3]. Thus Sh < (3

√
α

4β1
)2/3 is a

sufficient condition for Inequality A.0.5 to hold.

For Inequality A.0.6, it is equivalent to
√
Slµ−

√
α Sl
Sh
−β1S

3/2
l >

√
Shµ−

√
α−β1S

3/2
h .
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Thus it is enough to show that
√
Slµ−β1S

3/2
l >

√
Shµ−

√
α−β1S

3/2
h . Consider function

f(x) = µ
√
x − β1x

3/2, which is increasing in (0, µ
3β1

] and decreasing in [ µ
3β1
,∞). Thus a

sufficient condition for Inequality A.0.6 to hold is Sl >
µ

3β1
.

Next, to show (Ssh, S
e
l ) is the unique equilibrium, we need to find sufficient conditions

to the following two inequalities, violation of either of which will result in non-existence

of (Ssl , S
e
h) equilibrium, which leads to the uniqueness of (Ssh, S

e
l ).

2

√
α

Sl
+
Shµ−

√
Slα− β1S

2
h

2Sh
+ β1Sl > 2

√
α

Sh
+
Shµ−

√
Shα− β1S

2
h

2Sh
+ β1Sh (A.0.7)

(Slµ−
√
Slα− β1S

2
l )

2

4Sl
>

(Shµ−
√
Slα− β1S

2
h)

2

4Sh
. (A.0.8)

For Inequality A.0.7, it is equivalent to 2
√
α√

ShSl
+
√
α

2Sh
> β1(

√
Sh +

√
Sl). One sufficient

condition will be 2
√
α

Sh
+
√
α

2Sh
> 2β1

√
Sh, which is equivalent to Sh < (5

√
α

4β1
)2/3.

For Inequality A.0.8, it is sufficient to show
(Slµ−

√
Slα−β2S2

l )2

4Sh
>

(Shµ−
√
Slα−β2S2

h)2

4Sh
, which

is equivalent to Slµ− β1S
2
l > Shµ− β1S

2
h. One sufficient condition will be Sl >

µ
2β1

.

The sufficient condition for Inequality A.0.7 is automatically satisfied given the suf-

ficient condition for existence of (Ssh, S
e
l ), thus it is also unique under the sufficient

condition.

Proof of Proposition 2.5.2

Proof of 2.5.2.1. When Inequalities A.0.7 and A.0.4 hold, we could have an equilibrium

(Ssh, S
e
h), in which both the start up and established firms choose high quality. Refer

to the proof of Proposition 2.5.1, the sufficient condition will be Sh < (5
√
α

4β1
)2/3 and

Sh ∈ [Sh, S̄h], where Sh, S̄h are the solutions to Sh +
√
α√
Sh

1
3β1

= µ
3β1

.

Furthermore, if either A.0.5 or A.0.2 holds, then (Ssl , S
e
l ) will not be an equilibrium,
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which leads to the uniqueness of (Ssh, S
e
h). And according to the proof of Proposition

2.5.1, the condition corresponds to either Sh < (3
√
α

4β1
)2/3 or Sh <

µ
3β1

.

Proof of 2.5.2.2. When Inequalities A.0.3 and A.0.8 hold, we could have an equilibrium

(Ssl , S
e
l ), in which both the start up and established firms choose low quality. Refer to

the proof of Proposition 2.5.1, the sufficient condition will be Sl >
µ

2β1
and Sl > Sl, where

Sl is the solution to µ(Sl)
−1 +

√
α(Sl)

− 3
2 = 3β1.

Furthermore, if either A.0.1 or A.0.6 holds, then (Ssh, S
e
h) will not be an equilibrium,

which leads to the uniqueness of (Ssl , S
e
l ). And according to the proof of Proposition 2.5.1,

the condition corresponds to either Sl > (5
√
α

4β1
)2/3 or Sl >

µ
3β1

, and this is automatically

satisfied given the sufficient condition for existance of (Ssl , S
e
l ), thus it is also unique

under the sufficient condition.
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Appendix B PROOFS FOR CHAPTER 3

Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. The first-best optimization problem is given by

ΣFB = max
e,q

rS(q)− exp{−λe}uS(q)− cq − se.

Denote Σ(e, q) = rS(q)− exp{−λe}uS(q)− cq− se. Now consider the partial derivatives

with respect to e, and we have

∂Σ(e, q)

∂e
= uλ exp{−λe}S(q)− s,

∂2Σ(e, q)

∂e2
= −uλ2 exp{−λe}S(q) < 0,

Note Σ(e, q) is concave in e for every q, hence, we can first set q and then e to achieve the

optimization sequentially. Since for the demand there exists a lower bound l satisfying

S(l) ≥ s/uλ. For any order quantity q chosen, it is obvious that q ≥ l, which yields

S(q) ≥ s/uλ, then set

∂Σ(e, q)

∂e
= uλ exp{−λe}S(q)− s = 0,

we have

e∗(q) =
1

λ
ln

(
S(q)uλ

s

)
. (B.0.1)

Then,

Σ(q) = rS(q)− cq − s

λ
− s

λ
ln

(
S(q)uλ

s

)
. (B.0.2)

The first derivative is as follow:

dΣ(q)

dq
= rḠ(q)− s

λ

Ḡ(q)

S(q)
− c. (B.0.3)

Note the similarity between the function (B.0.3) and (B.0.9), thus if we have IFR as-

sumption, i.e. g(q)2 + g
′
(q)Ḡ(q) ≥ 0, there is a unique maximizer for q, which could be

obtained from

rḠ(qFB)− s

λ

Ḡ(qFB)

S(qFB)
− c = 0. (B.0.4)

103



Now we could conclude that the first-best optimal solution could be given by

eFB =
1

λ
ln

(
S(qFB)uλ

s

)
,

rḠ(qFB)− s

λ

Ḡ(qFB)

S(qFB)
− c = 0.

Proof of Corollary 3.4.1

Proof of Corollary 3.4.1. First consider qFB, it is obvious that qFB is independent of u

given the relation of (B.0.4). Let f(r, qFB) = rḠ(qFB)− s
λ
Ḡ(qFB)
S(qFB)

− c, then by the implicit

function theorem, we have

∂qFB

∂r
= −

(
∂f(r, q)

∂q

)−1
∂f(r, q)

∂r

∣∣∣∣
f(r,qFB)=0

.

From the arguments in the proof of Lemma 3.4.2, we know that ∂f(r,q)
∂r

∣∣∣
f(r,qFB)=0

< 0.

Along with the fact that ∂f(r,q)
∂r

∣∣∣
f(r,qFB)=0

= Ḡ(qFB) > 0, we have ∂qFB

∂r
> 0 which means

that qFB is increasing in r. Similar arguments will yield qFB is increasing in λ, and

decreasing in c and s.

Next consider eFB. Function (B.0.1) is increasing in q, u and decreasing in s. Com-

bining this with the monotonicity of qFB, we have that eFB is increasing in u, r, and

decreasing in c and s.

Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. We first consider the supplier’s problem. Since w and q are de-

termined by the manufacturer, the supplier’s problem could be written by

maxe π(e)

s.t. π(e) ≥ 0.
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Consider the first derivative

dπ

de
= (1− θ)uλ exp{−λe}S(q)− s.

Since for the demand there exists a lower bound l satisfying S(l) ≥ s/(1− θ)uλ. For

any order quantity q chosen by the manufacturer, it is obvious that q ≥ l, which yields

S(q) ≥ s/(1− θ)uλ, then set

dπ

de
= (1− θ)uλ exp{−λe}S(q)− s = 0,

we have

e∗(q) =
1

λ
ln

(
S(q)(1− θ)uλ

s

)
. (B.0.5)

Now the manufacturer’s problem would be considered as below:

Π(w, q) = rS(q)− θs

(1− θ)λ
− wq. (B.0.6)

Since the manufacturer’s profit is monotone decreasing in w for every q, thus w is chosen

by the manufacturer as lower as possible. Also note that we need to guarantee the

supplier’s profit should be non-negative, i.e.,

π(e∗) = (w − c)q − s

λ
− s

λ
ln

(
S(q)(1− θ)uλ

s

)
≥ 0, (B.0.7)

and the supplier’s profit is monotone increasing in w for every q, therefore w is chosen

as below:

c+
s

λq
+

s

λq
ln

(
S(q)(1− θ)uλ

s

)
.

In terms of profit, supplier’s objective function is binding. Substituting it into equation

(B.0.6), we could get

Π(q) = rS(q)− θs

(1− θ)λ
− cq − s

λ
− s

λ
ln

(
S(q)(1− θ)uλ

s

)
. (B.0.8)

The derivatives are as follows:

dΠ(q)

dq
= rḠ(q)− s

λ

Ḡ(q)

S(q)
− c, (B.0.9)

d2Π(q)

dq2
= −rg(q) +

s

λ

Ḡ2(q) + g(q)S(q)

S2(q)
, (B.0.10)

d3Π(q)

dq3
= −rg′(q̂) +

s

λ

−2Ḡ3(q)− 3g(q)Ḡ(q)S(q) + g
′
(q)S2(q)

S3(q)
. (B.0.11)
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Next we evaluate the third derivative at the points where d2Π(q)
dq2 = 0, we have

d3Π(q)

dq3

∣∣∣∣
d2Π(q)

dq2
=0

= −rg(q)
Ḡ(q)S(q)(g2(q) + g

′
(q)Ḡ(q)) + 2g2(q)Ḡ(q)S(q) + 2g(q)Ḡ3(q)

(g(q)S(q) + Ḡ2(q))S(q)
.

If we have weak IFR assumption, i.e. g2(q) + g
′
(q)Ḡ(q) ≥ 0, then d3Π(q)

dq3

∣∣∣
d2Π(q)

dq2
=0

< 0,

combined with dΠ(q)
dq

∣∣∣
q=∞

= −c < 0, which together imply dΠ(q)
dq

is either monotone or

unimodal (first increasing and then decreasing). If it is the monotone case, at most there

is a unique solution to dΠ(q)/dq = 0, which is a maximizer; and if it is the unimodal

case, there are at most two solutions to dΠ(q)/dq = 0, and the the larger one always

corresponds to the unique maximizer. We could obtain the unique maximizer qS from

rḠ(qS)− s

λ

Ḡ(qS)

S(qS)
− c = 0. (B.0.12)

Now we could conclude that the optimal solution set for this scenario could be given by

rḠ(qS)− s

λ

Ḡ(qS)

S(qS)
− c = 0, (B.0.13)

eS =
1

λ
ln

(
S(qS)(1− θ)uλ

s

)
, (B.0.14)

wS = c+
s

λqS
+

s

λqS
ln

(
S(qS)(1− θ)uλ

s

)
. (B.0.15)

Proof of Lemma 3.4.3

Proof of Lemma 3.4.3. (i)From Lemma 3.4.1 and 3.4.2, it is clearly qFB = qS, since they

satisfy the same equation. Given qFB = qS and 1− θ < 1, we have eFB > eS.

(ii)From the proof of Lemma 3.4.2, supplier’s profit objective function is binding, that

is πS = 0. Thus ΣS = ΠS.

Proof of Proposition 3.4.1. By definition, δS = ΣFB − ΣS, where ΣFB = rS(qFB)− s
λ
−

cqFB + s
λ

ln s
λuS(qFB)

and ΣS = rS(qS)− sθ
λ(1−θ) − cq

S − s
λ

+ s
λ

ln s
λu(1−θ)S(qS)

. From Lemma
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3.4.3, we have qFB = qS. Thus we have

δS =
sθ

λ(1− θ)
+
s

λ
(ln

s

λuS(qFB)
− ln

s

λu(1− θ)S(qS)
)

=
sθ

λ(1− θ)
+
s

λ
ln(1− θ)

=
s

λ

(
ln(1− θ) +

θ

1− θ

)
.

Proof of Lemma 3.4.4

Proof of Lemma 3.4.4. We first consider the supplier’s problem. Since w is determined

by the manufacturer, the supplier faces a two dimension optimization problem, which is

given by

maxe,q π(e, q)

subject to π(e, q) ≥ 0.

Clearly the objective function is concave in e for every q (may not jointly concave in both

e and q), hence, we can first set q and then e to achieve the optimization sequentially.

Consider the function

∂π

∂e
= exp{−λe}(1− θ)uλS(q)− s.

Since θ < θ̄ = 1 − s/(uλl), the demand has a lower bound l satisfying l ≥ s/(1− θ)uλ.

As long as the supplier chooses a order quantity q, it is obvious that q ≥ l, which yields

S(q) ≥ s/(1− θ)uλ, then set

∂π

∂e
= exp{−λe}(1− θ)uλS(q)− s = 0,

we have

e∗(q) =
1

λ
ln

(
S(q)(1− θ)uλ

s

)
. (B.0.16)

Taking (B.0.16) back into equation (3.4.2), we get

π(q) = (w − s

λS(q)
)S(q)− s

λ
ln

(
S(q)(1− θ)uλ

s

)
− cq. (B.0.17)
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The derivatives are as follows:

dπ(q)

dq
= wḠ(q)− s

λ

Ḡ(q)

S(q)
− c, (B.0.18)

d2π(q)

dq2
= −wg(q) +

s

λ

Ḡ2(q) + g(q)S(q)

S2(q)
, (B.0.19)

d3π(q)

dq3
= −wg′(q̂) +

s

λ

−2Ḡ3(q)− 3g(q)Ḡ(q)S(q) + g
′
(q)S2(q)

S3(q)
. (B.0.20)

Next we evaluate the third derivative at the points where d2π(q)
dq2 = 0, we have

d3π(q)

dq3

∣∣∣∣
d2π(q)

dq2
=0

= −wg(q)
Ḡ(q)S(q)(g2(q) + g

′
(q)Ḡ(q)) + 2g2(q)Ḡ(q)S(q) + 2g(q)Ḡ3(q)

(g(q)S(q) + Ḡ2(q))S(q)
.

If we have weak IFR assumption, i.e. g2(q) + g
′
(q)Ḡ(q) ≥ 0, then d3π(q)

dq3

∣∣∣
d2π(q)

dq2
=0

< 0,

combined with dπ(q)
dq

∣∣∣
q=∞

= −c < 0, which together imply dπ(q)
dq

is either monotone or

unimodal (first increasing and then decreasing). If it is the monotone case, at most there

is a unique solution to dπ(q)/dq = 0, which is a maximizer; and if it is the unimodal

case, there are at most two solutions to dπ(q)/dq = 0, and the the larger one always

corresponds to the unique maximizer. We could obtain the unique maximizer q∗ from

wḠ(q∗)− s

λ

Ḡ(q∗)

S(q∗)
− c = 0 (B.0.21)

Next we need to consider the manufacturer’s problem. Note that w and (e∗(q∗), q∗) are

one-to-one corresponded. As we did in the previous proof, we could substitute w by q∗

in the manufacturer’s objective function. Therefore, from equation (B.0.21) we have

w(q∗) =
c

Ḡ(q∗)
+

s

λS(q∗)
.

Note that w(q∗)|q∗=0 = ∞, w(q∗)|q∗=∞ = ∞ and d2w(q∗)
dq∗2

> 0 under IFR assumption,

which implies the function w(q∗) is convex in q∗, and there exists a unique minimizer

q∗min. Furthermore, q∗min could be obtained by setting dw(q∗)
dq∗

= 0, i.e.,

cg(q∗min)

Ḡ2(q∗min)
− sḠ(q∗min)

λS2(q∗min)
= 0. (B.0.22)

Since we have c ≤ w ≤ r, note that w(q∗min) > c, thus
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(a) if c ≤ w < w(q∗min), q∗ = 0;

(b) if w(q∗min) ≤ w ≤ r, the corresponding range for q∗ would be [q∗min, q
∗
max] ,and q∗max

could be obtained by the larger solution to

r =
c

Ḡ(q∗max)
+

s

λS(q∗max)
.

In addition, we can get

dw(q∗)

d(q∗)

∣∣∣∣
q∗∈[q∗min,q

∗
max]

=
cg(q∗)

Ḡ2(q∗)
− sḠ(q∗)

λS2(q∗)
> 0. (B.0.23)

Next substituting w(q∗) by the expression above into equation (3.4.1), we have

Π(w) = Π(q∗) = rS(q∗)− c S(q∗)

Ḡ(q∗)
− s

(1− θ)λ
. (B.0.24)

Next take the first and second derivatives of Π(q∗) with respect to q∗:

dΠ(q∗)

dq∗
= rḠ(q∗)− cg(q∗)S(q∗)

Ḡ2(q∗)
− c, (B.0.25)

d2Π(q∗)

dq∗2
= −rg(q∗)− c(g(q∗)Ḡ(q∗) + g′(q∗)S(q∗))Ḡ2(q∗) + 2g2(q∗)Ḡ(q∗)S(q∗)

Ḡ4(q∗)
.(B.0.26)

By similar induction as in the previous proof, we could find Π(q∗) is unimodal (first

increasing and then decreasing), and there exists a unique interior global maximizer qL

given by

rḠ(qL)− cg(qL)S(qL)

Ḡ2(qL)
− c = 0. (B.0.27)

By evaluating dΠ(q∗)
dq∗

∣∣∣
q∗=q∗min

> 0 and dΠ(q∗)
dq∗

∣∣∣
q∗=q∗max

< 0, we could find

q∗min < qL < q∗max.
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Proof of Corollary 3.4.2

Proof of Corollary. 3.4.2 Consider qL, which satisfies equation (B.0.27). It is obvious

that qL is independent of u, s and λ. Let f(r, q) = rḠ(q) − cg(q)S(q)

Ḡ2(q)
− c, then by the

implicit function theorem, we have

∂qL

∂r
= −

(
∂f(r, q)

∂q

)−1
∂f(r, q)

∂r

∣∣∣∣
f(r,qL)=0

.

From the arguments in the proof of Lemma 3.4.4, we know that ∂f(r,q)
∂r

∣∣∣
f(r,qL)=0

< 0.

Along with the fact that ∂f(r,q)
∂r

∣∣∣
f(r,qL)=0

= Ḡ(qL) > 0, we have ∂qL

∂r
> 0 which means that

qL is increasing in r. Similar arguments will yield qL is decreasing in c.

Next consider eL. Function (B.0.1) is increasing in q, u and decreasing in s. Combin-

ing this with the monotonicity of qL, we have that eL is increasing in u, r, and decreasing

in c and s.

Proof of Lemma 3.4.5

Proof of Lemma 3.4.5. (i) qL will satisfy equation (B.0.21), with a w less than r. From

the proof of Lemma 3.4.4, by the monotonicity of w and q, we have qFB > qL. Given

qFB > qL and 1− θ < 1, we have eFB > eL.

(ii)From the proof of Lemma 3.4.4, we have πL > 0, i.e. ΣL > ΠL.

Proof of Proposition 3.4.2

Proof of Proposition 3.4.2. By definition, δL = ΣFB − ΣL, where ΣFB = rS(qFB) −
s
λ
− cqFB + s

λ
ln s

λuS(qFB)
and ΣL = rS(qL) − s

λ(1−θ) − cqL + s
λ

ln s
λu(1−θ)S(qL)

. Define

function f(q) = rS(q)− s
λ(1−θ) − cq+ s

λ
ln s

λu(1−θ)S(q)
, then ΣL = f(qL). Taking derivative

of f with respect to q yields f ′(q) = rḠ(q) − c − sḠ(q)
λS(q)

. From the proof of Lemma

3.4.4, for q ∈ [qL, qFB], f ′(q) > 0. Thus we have ΣL = f(qL) < f(qFB). Notice that
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ΣFB − f(qFB) = δS, thus we have δL > δS. By definition of δ, we have ΣS > ΣL. Since

πS = 0, we further have πS < πL and ΠS > ΠL.

Proof of Proposition 3.4.3

Proof of Proposition 3.4.3. From Lemma 3.4.3 and 3.4.5, qFB = qS > qL. Thus eS >

eL

Proof of Lemma 3.4.6

Proof of Lemma 3.4.6. (i) w̃S and q̃S are obtained by solving the following problem.

max
w,q

rS(q)− wq

s.t. (w − c)q ≥ 0

The solution is w̃S = c, making the supplier’s profit equal to zero. Then maximize

rS(q)− cq yields q̃S = Ḡ−1( c
r
).

(ii)In the pull system, w̃L and q̃L are obtained by solving the following problem.

max
c≤w≤r

(r − w)S(q∗)

s.t. q∗ = argmax
q

wS(q)− cq

We can easily get the solution by a similar arguments along the proof of Lemma 4.

Proof of Proposition 3.4.4

Proof of Proposition 3.4.4. It is clearly that q̃FB = q̃S. Since Ḡ is a decreasing function,

and c + sḠ(qFB)
λS(qFB)

> c, we have q̃FB = q̃S > qFB = qS. From the proof of Lemma 4, we

know that q̃L = qL.

Proof of Proposition 3.4.5

Proof of Proposition 3.4.5. From the function (B.0.12) and function (B.0.27), it is clear

that both qS and qS are indepedent of θ. Futhermore, from the function (B.0.5) and
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the function (B.0.16), both qS and qS are decreasing in θ. For the push sytem, we have

shown δS is increasing in θ, which implies that ΣS is decreasing in θ. Besides, ΠS = ΣS,

so does ΠS. For the pull system, from the proof of Lemma 3.4.4, we could get

π(qL) = c

(
S(qL)

Ḡ(qL)
− qL

)
− s

λ
ln

(
S(qL)(1− θ)uλ

s

)
.

Since qL is indepedent of θ, πL is increasing in θ. Besides, ΠL is decreasing in θ by By

the function (B.0.24). Sum up ΠL and πL, we could get

ΣL = rS(qL)− cqL − s

λ

(
1

1− θ
+ ln

(
S(qL)(1− θ)uλ

s

))
.

Take the first deriative of θ, we find that dΣL

dθ
< 0, which implies ΣL is decreasing in

θ.

Proof of Corollary 3.4.3

Proof of Corollary 3.4.3. Following the proofs of Lemma 3.4.2 and Lemma 3.4.4, if θ ≥

θ2 = 1− s
uλd

, since S(q) ≤ d, then we have dπ
de
< 0 for all e, which means e∗(q) = 0.

(i) For the push sytem, next we need to consider the manufacturer’s problem. Consider

Π(w, q) = (r − θu)S(q)− wq. (B.0.28)

Since the manufacturer’s profit function is monotone decreasing in w for every q

(may not jointly concave in both w and q), hence, we can first set q and then w

to achieve the optimization sequentially and w is chosen by the manufacturer as

lower as possible. . In addition, we need to guarantee the supplier’s profit should

be non-negative, i.e.,

π(e∗ = 0) = (w − c)q − (1− θu)S(q) ≥ 0, (B.0.29)

and the supplier’s profit is monotone increasing in w for every q, therefore w is

chosen as below:

c+
(1− θu)S(q)

q
.
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In terms of profit, the supplier’s objective function is binding. Substituting it into

equation (B.0.28), we could get

Π(q) = (r − u)S(q)− cq. (B.0.30)

The derivatives are as follows:

dΠ(q)

dq
= (r − u)Ḡ(q)− c, (B.0.31)

d2Π(q)

dq2
= −(r − u)g(q). (B.0.32)

Since d2Π(q)
dq2 < 0, there is a unique optimal solution:

qS = Ḡ−1

(
c

r − u

)
(B.0.33)

(ii) For the pull sytem, the supplier’s profit function could be simplified as below:

π(q) = (w − (1− θ)u)S(q)− cq. (B.0.34)

The derivatives are as follows:

dπ(q)

dq
= (w − (1− θ)u)Ḡ(q)− c, (B.0.35)

d2π(q)

dq2
= −(w − (1− θ)u)g(q), (B.0.36)

Since we have the assumption c ≤ w ≤ r,

(a) if c ≤ w < (1− θ)u+ c, considering S(q) ≤ q, then q∗ = 0;

(b) if w(1 − θ)u + c ≤ w ≤ r, considering d2π(q)
dq2 ≤ 0, there is a unique optimal

solution:

q∗ = Ḡ−1

(
c

w − (1− θ)u

)
. (B.0.37)

Note that the corresponding range for q∗ is [0, Ḡ−1( c
r−(1−θ)u)]. Next we need to

consider the principal’s optimization problem. For part (a), Π(w) = 0. For part

(b), note that w and (e∗(q∗), q∗) are one-to-one corresponded. In order to find the
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explicit value for w, it is equivalent to substitute w by (e∗(q∗), q∗) in the manufac-

turer’s profit function. Therefore, from equation (B.0.37) we have

w =
c

Ḡ(q∗)
+ (1− θ)u.

Substituting w by the expression above into function (3.4.1), we have

Π(w) = Π(q∗) = (r − u)S(q∗)− c S(q∗)

Ḡ(q∗)
.

Then take the first and second derivatives of Π(q∗) with respect to q∗:

dΠ(q∗)

dq∗
= (r − u)Ḡ(q∗)− cg(q∗)S(q∗)

Ḡ2(q∗)
− c, (B.0.38)

d2Π(q∗)

dq∗2
= (u− r)g(q∗)− c(g(q∗)Ḡ(q∗) + g′(q∗)S(q∗))Ḡ2(q∗) + 2g2(q∗)Ḡ(q∗)S(q∗)

Ḡ4(q∗)
.

(B.0.39)

Next we evaluate the second derivative at the point where dΠ(q∗)
dq∗

= 0, we have

d2Π(q∗)

dq∗2

∣∣∣∣
dΠ(q∗)
dq∗ =0

= −c
(

2g(q∗)Ḡ2(q∗) + 2g2(q∗)S(q∗) + (g2(q∗) + g′(q∗)Ḡ(q∗))S(q∗)

Ḡ3(q∗)

)
.

If we have weak IFR assumption, i.e. g2(q) + g
′
(q)Ḡ(q) ≥ 0, then d2Π(q∗)

dq∗2

∣∣∣
dΠ(q∗)
dq∗ =0

<

0, combined with Π(q∗)|q∗=0 = 0, Π(q∗)|q∗=∞ = −∞ and dΠ(q∗)
dq∗

∣∣∣
q∗=0

= r−c−u > 0,

which together imply Π(q∗) is unimodal (first increasing and then decreasing), and

in the support of [0,∞) there exists a unique interior global maximizer qL given by

(r − u)Ḡ(qL)− cg(qL)S(qL)

Ḡ2(qL)
− c = 0.

Now we need to compare qL and the upper bound of the feasible region, i.e.

Ḡ−1( c
r−(1−θ)u). Note that dΠ(q∗)

dq∗

∣∣∣
q∗=Ḡ−1( c

r−(1−θ)u )
= −θuḠ(q∗)− cg(q∗)S(q∗)

Ḡ2(q∗)
< 0, which

implies qL < Ḡ−1( c
r−(1−θ)u). Furthermore, note that π(qL) > π(q∗)|q∗=0 = 0, which

has ruled out the consideration of part (a), thus now we could conclude that the
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optimal solution set for this scenario could be given by

(r − u)Ḡ(qL)− cg(qL)S(qL)

Ḡ2(qL)
− c = 0, (B.0.40)

eL = 0, (B.0.41)

wL =
c

Ḡ(qL)
+ (1− θ)u. (B.0.42)

Proof of Lemma 3.4.7

Proof of Lemma 3.4.7. Using the IC Condition, taking derivative with respect to e and

set it equal to zero, we have the result.

Proof of Proposition 3.4.7

Proof of Proposition 3.4.7. Comparing Lemma 3.4.7 with Lemma 3.4.1, we have the

proposition.

Proof of Lemma 3.4.8

Proof of Lemma 3.4.8. Using the IC Condition, taking derivative with respect to e and

set it equal to zero, we have the result.

Proof of Proposition 3.4.8

Proof of Proposition 3.4.8. Comparing Lemma 3.4.8 with Lemma 3.4.1, we have the

proposition.

Proof of Lemma 3.4.9

Proof of Lemma 3.4.9. Taking derivative of ΣFB with respect to e and set it equal to

zero, we have the result.
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Proof of Lemma 3.4.10

Proof of Lemma 3.4.10. Using the IC Condition, taking derivative with respect to e and

set it equal to zero, we have the result.

Proof of Proposition 3.4.9

Proof of Proposition 3.4.9. Comparing Lemma 3.4.10 with Lemma 3.4.9, we have the

proposition.

Proof of Lemma 3.4.11

Proof of Lemma 3.4.11. Taking derivative of ΣFB with respect to e1 and set it equal to

zero. We also set eFB1 = eFB2 = eFB, and the result follows.

Proof of Lemma 3.4.12

Proof of Lemma 3.4.12. Taking derivative of (IC1) with respect to e1 and set it equal

to zero. We also set eDT1 = eDT2 = eDT , and the result follows.

Proof of Proposition 3.4.10

Proof of Proposition 3.4.10. Comparing Lemma 3.4.12 with Lemma 3.4.11, we have the

proposition.
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Appendix C PROOFS FOR CHAPTER 4

Proof of Lemma 4.4.1

Proof of Lemma 4.4.1. See the decentralized supply chain analysis part.

Proof of Lemma 4.4.2

Proof of Lemma 4.4.2. (i) s+ d1C
′
v(ẽ) < 0.

Denote h1(e) = se+ (1− θ)d1Cv(e) and h2(e) = se+ (1− θ)(d1 +d2)Cm(e) exp{−λe}.

When e ∈ (0, ẽ],

h1
′(e) = s+ (1− θ)d1Cv

′(e), (C.0.1)

h1
′′(e) = (1− θ)d1Cv

′′(e). (C.0.2)

It shows that h1(e) is a strictly convex function. Now define e∗1 which satisfies

s+ (1− θ)d1Cv
′(e∗1) = 0.

Note that h1(e)→ +∞, when e→ 0. Therefore, when e ∈ [0, ẽ], the optimal solution

e∗ for supplier is given by min{e∗1, ẽ}.

Similarly, when e ∈ [ẽ,+∞),

h2
′(e) = s+ (1− θ)(d1 + d2) exp{−λe}(C ′m(e)− λCm(e)), (C.0.3)

h2
′′(e) = (1− θ)(d1 + d2) exp{−λe}[(Cm′(e)− λCm′′(e)) + (−λ)(Cm

′(e)− λCm(e)].(C.0.4)

It shows that h2(e) is a strictly convex function. Now define e∗2 which satisfies

s+ (1− θ)(d1 + d2) exp{−λe∗2}(C ′m(e∗2)− λCm(e∗2)) = 0.
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Note that h2(e) → +∞, when e → +∞. Therefore, when e ∈ [ẽ,+∞], the optimal

solution e∗ for supplier is given by max{e∗2, ẽ}.

First we note that

h1
′(ẽ)− h2

′(ẽ) = (1− θ)d1λCv(ẽ) ≥ 0.

When θ = 1, we have

h1
′(ẽ) = h2

′(ẽ) = s > 0.

Hence the unique optimal solution is obtained at e∗1.

When θ = 0, under the assumption that s+ d1Cv
′(ẽ) < 0, we have

h′2(ẽ) < h′1(ẽ) < 0.

Hence the unique optimal solution is obtained at e∗2.

Because of continuality, there exist two numbers which are denote by θ1 and θ2, such

that

when θ ∈ [θ2, 1], the unique optimal solution is reached at e∗1,

when θ ∈ [0, θ1], the unique optimal solution is reached at e∗2.

Next we need to compare the h1(e∗1) and h2(e∗2) in the interval [θ1, θ2]. Define

h̄(θ) = h1(e∗1(θ))− h2(e∗2(θ)),

= s(e∗1 − e∗2) + (1− θ)[d1Cv(e
∗
1)− (d1 + d2)Cm(e∗2) exp{−λe∗2}]. (C.0.5)

Therefore,

dh̄

dθ
= s

(
de∗1
dθ
− de∗2

dθ

)
− (d1Cv(e

∗
1)− (d1 + d2)Cm(e∗2) exp{−λe∗2})

+(1− θ)
{
d1Cv

′(e∗1)
de∗1
dθ
− (d1 + d2) [Cm

′(e∗2) + Cm(e∗2)(−λ)] exp{−λe∗2}
de∗2
dθ

}
.
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By the definition of e∗1 and e∗2, the above equation can be simplified as following:

dh̄

dθ
=

dh̄

dθ
= s

(
de∗1
dθ
− de∗2

dθ

)
−
[
d1Cv(e

∗
1)− sCm(e∗2)

(1− θ)(λCm(e∗2)− Cm′(e∗2))

]
+(1− θ)

(
s

θ − 1

de∗1
dθ
− s(Cm

′(e∗2)− λCm(e∗2))

(1− θ)(λCm(e∗2)− Cm′(e∗2))

de∗2
dθ

)
,

= −
[
d1Cv(e

∗
1)− sCm(e∗2)

(1− θ)(λCm(e∗2)− Cm′(e∗2))

]
,

= − [d1Cv(e
∗
1)− (d1 + d2)Cm(e∗2) exp{−λe∗2}] . (C.0.6)

Consider the equation C.0.5, if d1Cv(e
∗
1) − (d1 + d2)Cm(e∗2) exp{−λe∗2} < 0, we have

h̄ < 0. Hence θ̄ = θ1.

On the other hand, if d1Cv(e
∗
1) − (d1 + d2)Cm(e∗2) exp{−λe∗2} > 0, we have dh̄

dθ
< 0.

Let h̄(θ) = 0. Hence we obtain θ̄ by solving this equation.

The result follows.

(ii)s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) > 0.

In this setting, h′1(ẽ) > h′2(ẽ) > 0. Thus for all θ ∈ [0, 1], e∗1 is the unique minimizer.

(iii) s+ d1C
′
v(ẽ) > 0 and s+ (d1 + d2) exp{−λe}(C ′m(e)− λCm(e)) < 0.

In this setting, h′1(ẽ) > 0, h′2(ẽ) could be either positive or negative. Denote θ̃ which

satisfies s+ (1− θ̃)(d1 + d2) exp{−λe}(C ′m(e)− λCm(e)) = 0. And we have for θ ∈ [0, θ̃),

h2(ẽ) < 0, for θ ∈ [θ̃, 1], h2(ẽ) > 0.

In the case θ̃ < t̄heta, we have if θ ∈ [θ̃, 1], e∗1 is the minimizer and if θ ∈ [0, θ̃], e∗2 is

the minimizer.

In the case θ̃ > t̄heta, we have if θ ∈ [θ̃, 1], e∗1 is the minimizer. If θ ∈ [0, θ̄], e∗2 is the

minimizer. And if θ ∈ [θ̄, θ̃], e∗1 is the minimizer.

Summarizing the above results yield part (iii) of Lemma 4.4.2.
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Proof of Lemma 4.4.3

Proof of Lemma 4.4.3. When e < ẽ,

θ =
s

d1C ′v(e
∗
1)

+ 1.

Thus θ is decreasing in e∗1, which also means e∗1 is decreasing in θ.

When e > ẽ,

θ = 1− s

(d1 + d2) exp{−λe∗2}(λCm(e∗2)− C ′m(e∗2)
.

Thus θ is decreasing in e∗2, which also means e∗2 is decreasing in θ.

Combining the above two arguments and the fact that e∗2 > e∗1, we have e∗(θ) is

decreasing in θ.

Proof of Lemma 4.4.4

Proof of Lemma 4.4.4. For θH(e∗1(θ)), we have

θH(e∗1(θ)) =θd1Cv(e
∗
1)

=

(
1 +

s

d1C ′v(e
∗
1)

)
d1Cv(e

∗
1)

=d1Cv(e
∗
1) +

sCv(e
∗
1)

C ′v(e
∗
1)

≡W1

Taking derivatives of W1 with respect to e∗1, we have

dW1

de∗1
= d1C

′
v(e
∗
1) +

s[C ′2v (e∗1)− Cv(e∗1)C ′′v (e∗1)]

C ′2v (e∗1)
< 0.

With the conclusion of Lemma 4.4.3, we have dW1

dθ
> 0.
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For θH(e∗2(θ)), we have

θH(e∗2(θ)) =θ(d1 + d2)Cm(e∗2) exp{−λe∗2}

=

(
1− s

(d1 + d2) exp{−λe∗2}(λCm(e∗2)− C ′m(e∗2))

)
(d1 + d2)Cm(e∗2) exp{−λe∗2}

=(d1 + d2)Cm(e∗2) exp{−λe∗2} −
s

λ− C′m(e∗2)

Cm(e∗2)

≡W2

Taking derivitives of W2 with respect to e∗2, we have

dW2

de∗2
=(d1 + d2)(C ′m(e∗2) exp{−λe∗2}+ Cm(e∗2)(−λ) exp{−λe∗2})

+
s(

λ− C′m(e∗2)

Cm(e∗2)

)2 (−1)
C ′′m(e∗2)Cm(e∗2)− C ′2m(e∗2)

C2
m(e∗2)

Given Cm(e) = αm
e

, C ′m(e) = −αm
e2

, C ′′m(e) = 2αm
e3

and C ′′m(e)Cm(e) − C ′2m(e) > 0, we

have dW2

de∗2
< 0. Thus dW2

dθ
> 0.

Proof of Lemma 4.4.5

Proof of Lemma 4.4.5. First consider

dh1(e∗1(θ))

dθ
=
d

dθ
[se∗1 + (1− θ)d1Cv(e

∗
1)]

=s
de∗1(θ)

dθ
+ (−1)d1(Cv(e

∗
1) + (1− θ)d1C

′
v(e
∗
1)
de∗1(θ)

dθ

=s
de∗1(θ)

dθ
+ (−1)d1(Cv(e

∗
1)− sde

∗
1(θ)

dθ

=− d1(Cv(e
∗
1) < 0.

Thus h1(e∗1(θ)) is decreasing in θ.

Next,

dh2(e∗2(θ))

dθ
=
d

dθ
(se∗2 + (1− θ)(d1 + d2)Cm(e∗2) exp{−λe∗2})

=(−1)(d1 + d2)(Cm(e∗2) exp{−λe∗2} < 0.

Thus h2(e∗2(θ)) is also decreasing in θ.
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Proof of Proposition 4.4.1

Proof of Proposition 4.4.1. (i) When s + d1C
′
v(ẽ) < 0, consider θ from [0, θ̄] and [θ̄, 1]

separately. According to Lemma 4.4.4, the minimum of θH(e∗(θ)) will be achieved at

θ = 0 or θ = θ̄, depending on parameters. But we also need to take care of the IR

constraint.

From Lemma 4.4.5, h2(e∗2(θ)) is decreasing in θ, and there exists a θ2 in [0, θ̄] which

satisfies h2(e∗2(θ2)) = C̄. And for all θ ∈ [θ2, θ̄], h2(e∗2(θ)) ≤ C̄. Similarly, h1(e∗1(θ)) is

decreasing in θ, and there exists a θ1 in [θ̄, 1] which satisfies h1(e∗1(θ1)) = C̄. And for all

θ ∈ [θ1, 1], h1(e∗1(θ)) ≤ C̄.

Then we have the solution to the principle agent problem is θ = θ2, or θ1, depending

on parameters.

When s + d1C
′
v(ẽ) > 0 and s + (d1 + d2) exp{−λẽ}(C ′m(ẽ) − λCm(ẽ)) < 0. In this

setting, for θ ∈ [0,min{θ̃, θ̄}], e∗2 is the minimizer. And for θ ∈ [min{θ̃, θ̄}, 1], e∗1 is the

minimizer. Thus for the principle agent problem, the optimal solution will be θ2, or θ1,

depending on parameters.

Combining the above two scenarios, we have when s + (d1 + d2) exp{−λẽ}(C ′m(ẽ) −

λCm(ẽ)) < 0, the optimal solution will be θ2, or θ1.

(ii)s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) > 0.

In this setting, for all θ ∈ [0, 1], e∗1 is the unique minimizer. Thus for the principle

agent problem, the optimal solution will be θ1. And in this setting, the manufacture will

always voluntarily recall.
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Proof of Proposition 4.4.2

Proof of Proposition 4.4.2. First, consider e∗1(θ1). Given

se∗1(θ1) + (1− θ1)d1Cv(e
∗
1(θ1)) = C̄

and

s+ (1− θ1)d1Cv
′(e∗1(θ1)) = 0.

We could solve that

e∗1(θ1) =
C̄

2s
.

Next, consider e∗2(θ2). Given

se∗2(θ2) + (1− θ2)(d1 + d2)Cm(e∗2(θ2)) exp{−λe∗2(θ2)} = C̄

and

s+ (1− θ2)(d1 + d2) exp{−λe∗2(θ2)}(C ′m(e∗2(θ2))− λCm(e∗2(θ2))) = 0.

We have

se∗2(θ2) +
se∗2(θ2)

1 + λe∗2(θ2)
= C̄.

Further calculations yield

e∗2(θ2) =
C̄λ− 2s+

√
4s2 + C̄2λ2

2sλ
.

From

se∗1(θ1) + (1− θ1)d1Cv(e
∗
1(θ1)) = C̄

and plug in that e∗1(θ1) = C̄
2s

. We have

θ1 = 1− C̄2

4sd1αv
.

Next, from

se∗2(θ2) + (1− θ2)(d1 + d2)Cm(e∗2(θ2)) exp{−λe∗2(θ2)} = C̄
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and

e∗2(θ2) =
C̄λ− 2s+

√
4s2 + C̄2λ2

2sλ
.

Through calculations, we have

θ2 = 1− C̄2λ2 − (2s−
√

4s2 + C̄2λ2)2

4sλ2(d1 + d2)αm exp{− C̄λ−2s+
√

4s2+C̄2λ2

2s
}
.

Proof of Proposition4.4.3

Proof of Proposition4.4.3. This proposition follows immediately after Proposition 4.4.2.

Proof of Lemma4.4.6

Proof of Lemma 4.4.6. (i) s+ d1C
′
v(ẽ) < 0.

For the first best solutions, recall

ẽ = ln

(
d1 + d2

d1

Cm
Cv

)/
λ,

When e < ẽ,

min
e
l1(e) = min

e
d1Cv(e) + se.

We have

l′1(e) = s+ d1C
′
v(e),

l′′1(e) = d1C
′′
v (e) > 0.

Thus there exists a unique minimizer, denoted as eFB1 , which satisfies C ′v(e
FB
1 ) = − s

d1
.

When e > ẽ,

min
e
l2(e) = min

e
se+ (d1 + d2)Cm(e) exp{−λe}).
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We have

l′2(e) = s+ (d1 + d2) (C ′m(e) exp{−λe} − λCm(e) exp{−λe})

= s+ (d1 + d2) exp{−λe}(C ′m(e)− λCm(e))

l′′2(e) = (d1 + d2) [exp{−λe}(C ′′m(e)− λC ′m(e)) + exp{−λe}(−λ)(C ′m(e)− λCm(e))] > 0

Thus there exists a unique minimizer, denoted as eFB2 , which satisfies l′2(eFB2 ) = 0. Under

the assumption s + d1C
′
v(ẽ) < 0, we have l′1(ẽ) < 0 and l′2(ẽ) < 0. Thus there exists a

unique solution to the first best problem, which is eFB2 , which means the manufacture do

not voluntarily recall.

(ii) s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) > 0.

In this setting, l′1(ẽ) > l′2(ẽ) > 0. Thus for all θ ∈ [0, 1], eFB1 is the unique minimizer.

Note that eFB1 > e∗1 and eFB2 > e∗2

(iii)s+ d1C
′
v(ẽ) > 0 and s+ (d1 + d2) exp{−λẽ}(C ′m(ẽ)− λCm(ẽ)) < 0.

In this setting, l′1(ẽ) > 0, l′2(ẽ) < 0, the optimal solution depends on which of l1(eFB1 )

and l2(eFB2 ) is smaller.

Proof of Proposition4.4.4

Proof of Proposition4.4.4. This proposition could be obtained after Lemma 4.4.2 and

Lemma 4.4.6.
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