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ABSTRACT

Pourab Roy: Non-parametric and Semi-parametric Estimation in Forward and
Backward Recurrence Time Data

(Under the direction of Michael R. Kosorok and Jason P. Fine)

In prevalent cohort survival studies where subjects are recruited at a cross-section

and followed prospectively in time, the observed event times are length-biased and

further follow a multiplicative censoring scheme. For such studies there is an associated

initiation time which may be unknown. In this case we only observe the time from

sampling to the event of interest. This is the forward recurrence time. Further in such

cases standard left-truncation survival analysis methods are not applicable. In other

scenarios like current duration studies, the time of the initiating event may be known

but there is no subsequent follow-up after sampling. Here we observe the backward

recurrence times. In presence of covariates, the proportional hazards model may not

be applicable to forward and backward recurrence time data. However, due to the

invariance of the accelerated failure time model under length bias and cross-sectional

sampling, it can serve as a useful alternative. In particular, existing estimators for the

regression parameter like the ordinary least squares and Tsiatis log rank estimators may

be valid. The problem however is that these estimators are based on the conditional

distribution of the time variable given the covariates. Under length bias sampling, the

covariate distribution is functionally dependent on the regression parameter. Thus a

“naive” analysis conditioning on the covariates may result in information loss. We

show that if the covariate distribution is left completely unspecified then there is no

loss of information under a conditional analysis. We also perform simulation studies

iii



to compare our method to the existing methods for forward and backward recurrence

time data analysis. Finally, we analyze time-to-pregnancy data comparing our method

to ordinary least squares regression.

Next, we show the connection between k-monotone densities and forward and back-

ward recurrence time data. We show that if we start with a k-monotone density, the

corresponding recurrence time density is (k+1)-monotone. So, to use k-monotone den-

sity estimation for forward recurrence time data, we develop an algorithm for consistent

estimation of a k-monotone density under right censoring. We determine the rate of

convergence and asymptotic distribution of the proposed estimator. We look at the

viability of the estimator under some simulation settings and also apply it to the ARIC

data.

Finally, we look at the effect of recurrence time on competing risks. We determine

the recurrence time subdistributions and also develop an algorithm for estimating the

original subdistributions. We show the consistency and determine the asymptotic dis-

tribution of the proposed estimator. We look at simulation results to determine the

efficacy of the estimator and also a data application for the ARIC data.
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CHAPTER 1: INTRODUCTION

A prevalent cohort consists of subjects who have experienced an initiating event,

like disease onset, prior to their entry to the study and who are followed forward in

time until another (terminating) event, like death or symptom development. Sampling

may be achieved in a small cross-section. In some prevalent cohort study the onset time

may be unobservable as in HIV sero-prevalence studies (Brookmeyer and Gail 1987)

where the time of infection to HIV is unknown and interest lies in the follow-up time

from enrollment to AIDS. Such prevalent cohorts do not provide information on the

time between the initiating event and the terminating event T , but only provide partial

information in terms of the forward recurrence time Tf , the time from sampling to the

terminating event time.

In other scenarios, the time of the initiating event may be known but there may

not be any subsequent follow-up after cross-sectional sampling. This is known as the

current duration study design, which is encountered, for example, in time to pregnancy

surveys. In Keiding et al. (2002), the authors show that the distribution of the times

from initiating attempt to cross-sectional sampling for couples that are currently at-

tempting to get pregnant, identifies the distribution of the realized time to pregnancy

or unsuccessful end of attempt. Another similar study based on current durations is

Yamaguchi’s mover-stayer study (Yamaguchi 2003). Such studies provide information

on the backward recurrence time Tb.

Thus, we find that the forward and backward recurrence time data are going to be

length-biased. This is because if the actual time to event (the distance between the
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Figure 1.1: Pictorial Representation of FRT and BRT

originating event and the terminating event) was shorter than the cross-section time,

then that data point would never be included in the study. Thus, longer times are

favored in the sample. Hence, it is length biased.

1.1 Estimation of the Regression Parameter in the AFT model

In both prevalent cohort and current duration study designs, only subjects who have

experienced the initiating event prior to sampling, but have not yet experienced the

terminating event can be sampled. Thus both the forward and the backward recurrence

times are length biased i.e. the sample is biased towards larger values of T . One way

to model this bias (Cox (1969), Vardi (1982)) is to sample proportionally to length,

i.e., if FT is the distribution of T then the length-biased version TLB has a distribution

given by

FLB(t) =

´ t
0
udFT (u)

µT
, t ≥ 0,
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where µT =
´∞

0
udFT (u).

Further, if it can be assumed that the incidence of the disease follows a stationary

Poisson process then the cross-sectional sampling time is distributed uniformly between

the onset time and the terminating time (Cox (1969), Van Es et al. (2000), Keiding

et al. (2002)). Thus Tf = TLBV , where V is uniform(0,1). It follows that if ST = 1−FT

is the survival function of T then for both Tf and Tb (commonly denoted as T̃ here),

the density gT̃ is given by

gT̃ (t) =
ST
µT
. (1.1)

Another interesting way to look at it is the sum of the forward and backward

recurrence time data. This sum yields the total length-biased time(TLB) which is known

as Stirling’s interval. Given the total length-biased data, the backward recurrence time

follows a Uniform(0, TLB) distribution. So, one can start with the length-biased data

and work backwards to estimate the recurrence time data. If both Tf and Tb are

observed then standard left-truncated techniques apply. For example, consider the

Canadian Health and Aging study of Dementia (Asgharian et al. 2002), where a cohort

of elderly subjects were followed from diagnosis until death or end of study. Ages at

onset were also ascertained from the subjects’ caregivers. There has been extensive work

towards estimating the length-biased distribution. Two common approaches found

in the literature for left-truncated data, are the conditional and the unconditional

likelihood approaches, where the conditioning is applied to the onset times. In the

unconditional approach it is assumed that the distribution of the left truncation times

are uniformly distributed, which holds under a certain stationarity condition discussed

below. In the conditional approach one simply assumes the truncation distribution

to be degenerate at the observed truncation times. In the unconditional approach,

Vardi (1982) derived the non parametric maximum likelihood estimator (NPMLE) for

the length-biased distribution arising out of prevalent cohorts. Asgharian and Wolfson
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(Asgharian et al. 2002), (Asgharian and Wolfson 2005) derived the NPMLE for the

unbiased incident-case survival function obtained from length-biased prevalent cohort

data. The conditional perspective has been investigated by Wang et. al. (Wang et al.

(1986), Wang (1991), Wang et al. (1993)). Wang et al. (1986) showed that when

the truncating distribution is left completely unspecified, then there is little loss of

information when the likelihood is conditioned on the truncation times.

In the presence of covariates, a popular semiparametric model is the proportional

hazards (PH) model (Cox 1972) given by

λT |Z(t) = eθ
′Zλ(t),

where, λT |Z is the hazard function of T given the covariate vector Z and λ is an unspec-

ified baseline hazard function. Here the density of T is given by eθ
′zλ(t)e−e

θ′zΛ(t), where,

Λ is the cumulative hazard satisfying Λ(0) = 0. For the uncensored case, estimates for

(θ, λ) can be derived using the partial likelihood based on risk sets (Cox 1972). For

right censored data Tsiatis (1981) derives consistency and asymptotic normality of the

maximum partial likelihood estimator for θ. Klaassen (1989) showed that the estima-

tor is also semiparametric efficient. Details can also be found in Bickel et al. (1993),

Murphy and Van der Vaart (2000) and Van der Vaart (1998).

For length-biased data arising out of left-truncation, Wang (1996) derives a con-

sistent and asymptotically normal estimator for θ based on a modification of the risk

set in order to adjust for the length-bias. Wang defines indicator variables ∆j(ti) for

ti ≤ tj, which equals 1 with probability ti/tj and 0 with probability 1−ti/tj and defines

the modified risk set as

R∗i = {j : ti ≤ tj,∆j(ti) = 1}.

This allows the individuals in the risk set R∗i to have the population risk set structure,
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i.e., the conditional probability of the ith subject to die at time ti given that there is a

death from the risk set R∗i is given by

eθ
′zi∑

j∈R∗i
eθ′zj

.

Thus estimation of θ can be carried out by maximizing the above (pseudo) partial

likelihood.

Under cross-sectional sampling of length-biased forward recurrence times, it is not

clear how to modify the risk set in order to adjust for the selection bias. Brookmeyer

and Gail (1987) discuss the different directions of the bias that might result from fitting

a naive proportional hazards model to this kind of data arising out of prevalent cohort

studies, where, the onset time of disease is unobservable.

The major difficulties in carrying out semiparametric inference for θ under the PH

model and using forward or backward recurrence time data are:

1. Since the Cox model specifies the covariate effect on the hazard function and not the

time variable itself, the effect of length-biased cross-sectional sampling on the covariate

distribution is intractable. We shall see below that for the accelerated failure time

model, this is not a problem.

2. Even if a naive analysis conditioned on Z is carried out, the derivation of the

efficient score and information seems difficult. Consider the simplest case of uncensored

backward recurrence times where we observe Y = (Tb, Z). The log-likelihood for the

naive analysis conditional on the covariates is given by

lθ,Λ(t, z) = −eθ′zΛ(t)− log
ˆ
e−e

θ′zΛ(t)dt.

5



The ordinary score for θ is

l̇θ,Λ(t, z) = −zeθ′z
{

Λ(t)−
´
e−e

θ′zΛ(t)Λ(t)dt´
e−eθ

′zΛ(t)dt

}
.

Consider the parametric path η 7→ Λη(t) =
´ t

0
(1 + ηh)dΛ(s), where h ∈ L2(Λ) and

|η| ≈ 0. Replacing Λ by Λη in the log-likelihood and differentiating at η = 0 we get the

score for the nuisance parameter Λ as:

Aθ,Λh = eθ
′z

{ˆ t

0

h(s)dΛ(s) +

´
e−e

θ′zΛ(t)
´ t

0
h(s)dΛ(s)dt´

e−eθ
′zΛ(t)dt

}
.

Deriving the adjoint operator A∗θ,Λ (Murphy and Van der Vaart 2000) here is not straight

forward as in the usual Cox model. As far as we know, a systematic study of forward

and backward recurrence times under the proportional hazards assumption for the core

time variable has yet to be undertaken.

A useful alternative to the PH model to model survival time T in the presence of

covariates Z is the Accelerated Failure Time (AFT) model. Under the AFT model

T = eθ
′ZU. (1.2)

Here T is the failure time measured from the time of some initiating event like birth

and disease onset, θ is a p × 1 regression parameter, Z is a p × 1 covariate vector

with density h and U a non-negative random variable independent of Z with density

g, survival function S and hazard λ(u) = g(u)/S(u).

The problem of estimating θ in presence of the nuisance parameters g and h have

been taken up by many authors. Two popular approaches are least-squares and rank

based procedures. Bickel et al. (1993) derived the semiparametric efficient score and

the efficient information for estimating θ when g and h are unspecified and given Z,
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log T − θ′Z is assumed independent of Z and the censoring variable C. Estimation of

θ based on the least squares approach has been studied by Miller (1976), James and

Buckley (1979) and Koul et al. (1981). Linear rank test based procedures using the

partial likelihood score have been developed by Tsiatis (1990), Ritov (1990), Wei et al.

(1990), Ying (1993), Fygenson and Ritov (1994) and Jin et al. (2003). For various

submodels, these estimators are efficient. For example, the Buckley-James estimator

is efficient when the true error density is standard normal while Tsiatis’ linear rank

test based estimator with unit weights is efficient for a class of extreme value error

distributions. The latter is fully efficient if the weight function adaptively estimates

λ′/λ, where λ is the hazard function corresponding to the error distribution.

Another important recent development in estimating θ in a tobit model and the one

that we will build upon in section 3 for the random right censored case is Cosslett’s

(Cosslett (2004)) asymptotically efficient estimator via a smoothed self-consistency

equation. Without covariates and right censoring, nonparametric estimation of the

monotone baseline density g can be achieved using the Grenander (1956) estimator for

a monotone density. For the right censoring case this is generalized by the Denby-Vardi

(Denbi and Vardi (1986)) NPMLE. In the uncensored case, Woodroofe and Sun (1993)

pointed out a technical difficulty in using the actual likelihood. They show that the

Denby-Vardi NPMLE is inconsistent near the origin in the sense that ĝ(0+) does con-

verge in probability but the limit is strictly greater than g(0+) almost surely. They

propose using a penalized likelihood

Lα(g) =
n∑
i=1

log g(ui)− nαg(0+),

where g varies over a class of decreasing left-continuous densities and α > 0 is a

smoothing parameter. Keiding et. al. (2002) discuss that another way to avoid this

inconsistency near zero is to estimate the survival function of T conditioned on T > t0

7



for some small t0 > 0 and then estimate S(t)/S(t0) by ĝ(t)/ĝ(t0).

1.2 2-monotone Density Estimation Under Censoring

The main motivation for this problem arises from the connection between recur-

rence times and k-monotone densities. A density is said to be k-monotone if (−1)jg(j)

is non-negative, non-increasing and convex for j = 1(1)k − 2. Estimation of functions

restricted by monotonicity or other inequality constraints has received much atten-

tion. Estimation of monotone regression and density functions goes has been done by

Grenander (1956). Asymptotic distribution theory for monotone regression estimators

was established by Brunk (1970), and for monotone density estimators by Prakasa Rao

(1969). The asymptotic theory for monotone regression function estimators was reex-

amined by Wright (1981), and the asymptotic theory for monotone density estimators

was reexamined by Groeneboom (1985). The “universal component” of the limit distri-

bution in these problems is the distribution of the location of the maximum of two-sided

Brownian motion minus a parabola. Groeneboom (1988) examined this distribution

and other aspects of the limiting Gaussian problem with canonical monotone function

f0(t) = 2t in great detail. Groeneboom (1985) provided an algorithm for computing

this distribution, and this algorithm has recently been implemented by Groeneboom

et al. (2001).

The first work on convex density function estimation has been done by Anevski

(1994), who was motivated by some problems involving the migration of birds discussed

by Hampel (1987). Jongbloed (2001) established lower bounds for minimax rates of

convergence, and established rates of convergence for a “sieved maximum likelihood

estimator”. Finally, a least squares estimator as well as a non-parametric maximum

likelihood estimator for 2-monotone densities were established by Groeneboom et al.

(2001) which were further modified by Balabdaoui and Wellner (2007) to correct for

8



the consistency near 0.

The least squares (LS) estimator f̃n of a convex decreasing density function f0 is

defined as a minimizer of the criterion function

Qn(f) =
1

2

ˆ
f(x)2dx−

ˆ
f(x)dFn(x),

over K, the class of convex and decreasing nonnegative functions on [0, ∞).

Our aim for this section is to adapt the existing methods for censored observa-

tions by utilizing the fact that the decreasing density assumption leads to well-behaved

properties of the estimator.

1.3 Recurrence Time Density Estimation for Competing Risks

In this section, our main goal is to study nonparametric estimation for forward

and backward recurrence time data with competing risks in the absence of covariates

and censoring. The set-up is as follows. We analyze a system that can fail from K

competing risks, where K ∈ N is fixed. The random variables of interest are (X, Y ),

where X ∈ R is the failure time of the system, and Y ∈ {1, . . . , K} is the corresponding

failure cause. We cannot observe (X, Y ) directly. Rather, we observe the corresponding

recurrence time failure T ∈ R. This means that at time T, we observe that the failure

occurred and we also observe the failure cause Y . Such data can arise naturally in

cross-sectional studies with several failure causes.

The Kaplan-Meier estimator can easily be generalized to include competing risks.

Let tj1 < tj2 < · · · < tjkj denote the kj distinct failure times for failures of type j. Let

nji denote the number of subjects at risk just before tji and let dji denote the number

of deaths due to cause j at time tji. Then the same arguments used to derive the usual
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K-M estimator lead to

Ŝj(t) =
∏
i:tji<t

(1− dji
nji

).

It is interesting to note that Ŝj(t) is exactly the same as the standard K-M estimator

that one would obtain if all failures of type other than j were treated as censored cases.

If there are no ties between different types of failure, then

Ŝ(t) =
K∏
j=1

Ŝj(t),

so the K-M estimator of the overall survival is the product of the K-M estimators of

the cause-specific survivor-like functions.

The Nelson-Aalen estimator of the cause-specific cumulative hazard is

Λ̂j(t) =
∑
i:tji<t

dji
nji

,

and corresponds to an estimate of the cause-specific hazard λj(t) that takes the value

dji/nji at tji and 0 elsewhere. One can also exponentiate the negative of the Nelson-

Aalen integrated hazard to obtain an alternative estimator of the cause-specific survivor-

like function Sj(t).

A non-parametric maximum likelihood estimator of Fj(t) was proposed by Aalen

(1976) and can be thought of as a special case of the Aalen-Johansen theory of es-

timation for time-inhomogenous Markov processes (Aalen and Johansen 1978). The

estimator, known as the Aalen-Johansen estimator is given by

Fj(t) =
∑
i:tji≤t

Ŝ(tj−1)

(
dji
nji

)
.

Our aim is to use this Aalen-Johansen estimator to find an estimate of Fj(t) under the
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added restriction that fj(t) is decreasing. For this, we also look at estimation under

shape restrictions. Without covariates and right censoring, nonparametric estimation

of the monotone baseline density g can be achieved using the Grenander (1956) estima-

tor for a monotone density. The estimate is arrived at by obtaining the least concave

majorant of the estimate without any shape restrictions. It can be shown that the con-

vergence rate of the Grenander estimator in the general case is n1/3 and its asymptotic

distribution is basically a Brownian motion with parabolic drift.

1.4 Overview of the dissertation

In Chapter 2 we look at regression parameter estimation in the AFT model for

recurrence time data. The problem however is that these estimators are based on the

conditional distribution of the time variable given the covariates. Under length bias

sampling, the covariate distribution is functionally dependent on the regression param-

eter. Thus a “naive” analysis conditioning on the covariates may result in information

loss. We show that if the covariate distribution is left completely unspecified then there

is no loss of information under a conditional analysis in section 2.5. We also derive a

semiparametric asymptotically efficient estimator for the regression parameter in sec-

tion 2.6 and show its efficacy under simulated data settings (Section 2.7) as well as

actual backward recurrence time data (Section 2.8).

Next, we look at k-monotone density estimation in Chapter 3 and prove the fact

that if the original density is k-monotone, the corresponding recurrence time density

is (k+1)-monotone. So, we develop an algorithm for the estimation of k-monotone

densities in the presence of right censoring (Section 3.3). We show the consistency

of the estimator and determine its asymptotic distribution in Sections 3.4 and 3.5

respectively.

Finally, we look at recurrence time density estimation in the presence of competing
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risks in Chapter 4. We develop an algorithm for the estimation of the subdistributions in

Section 4.3.2 using the Aalen-Johansen estimator and the Grenander Estimator. Next

we look at the consistency and asymptotic properties of the estimator in sections 4.4 and

4.5. Finally, we look at some simulation results and an analysis of the Atherosclerosis

Risk in Communities (ARIC) Study data in section 4.7. We finish the report with a

summary of the results and look at some future research topics in Section 5.
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CHAPTER 2: REGRESSION PARAMETER ESTIMATION IN THE
AFT MODEL

In prevalent cohort survival studies where subjects are recruited at a cross-section

and followed prospectively in time, the observed event times are length-biased and

further follow a multiplicative censoring scheme. For such studies there is an associated

initiation time which may be unknown. In this case we only observe the time from

sampling to the event of interest. This is the forward recurrence time. Further, in such

cases, standard left-truncation survival analysis methods are not applicable.In other

scenarios like current duration studies, the time of the initiating event may be known

but there is no subsequent follow-up after sampling. Here we observe the backward

recurrence times.

In the presence of covariates, the proportional hazards model may not be appli-

cable to forward and backward recurrence time data. However, due to the invariance

of the accelerated failure time model under length bias and cross-sectional sampling,

it can serve as an useful alternative. In particular, existing estimators for the regres-

sion parameter like the ordinary least square and Tsiatis’ log rank estimators may be

valid. The problem however is that these estimators are based on the conditional dis-

tribution of the time variable given the covariates. Under length bias sampling, the

covariate distribution is functionally dependent on the regression parameter. Thus a

“naive” analysis conditioning on the covariates may result in information loss. We show

that if the covariate distribution is left completely unspecified then there is no loss of
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information under a conditional analysis in section 2.5. We also derive a semiparamet-

ric asymptotically efficient estimator for the regression parameter in section 2.6 and

show its efficacy under simulated data settings (Section 2.7) as well as actual backward

recurrence time data (Section 2.8).

Next, we look at k-monotone density estimation and prove the fact that if the

original density is k-monotone, the corresponding recurrence time density is (k+1)-

monotone. So, we develop an algorithm for the estimation of k-monotone densities in

the presence of right censoring (Section 3.3). We show the consistency of the estimator

and determine its asymptotic distribution in Sections 3.4 and 3.5 respectively.

2.1 FRT and BRT

A prevalent cohort consists of subjects who have experienced an initiating event,

like disease onset, prior to their entry to the study and who are followed forward in

time until another (terminating) event, like death or symptom development. Sampling

may be achieved in a small cross-section. In some prevalent cohort study the onset time

may be unobservable as in HIV sero-prevalence studies (Brookmeyer and Gail 1987)

where the time of infection to HIV is unknown and interest lies in the follow-up time

from enrollment to AIDS. Such prevalent cohorts do not provide information on the

time between the initiating event and the terminating event T , but only provide partial

information in terms of the forward recurrence time Tf , the time from sampling to the

terminating event time.

In other scenarios, the time of the initiating event may be known but there may

not be any subsequent follow-up after cross-sectional sampling. This is known as the

current duration study design, which is encountered, for example, in time to pregnancy

surveys. In Keiding et al. (2002), the authors show that the distribution of the times
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from initiating attempt to cross-sectional sampling for couples that are currently at-

tempting to get pregnant, identifies the distribution of the realized time to pregnancy

or unsuccessful end of attempt. Another similar study based on current durations is

Yamaguchi’s mover-stayer study (Yamaguchi 2003). Such studies provide information

on the backward recurrence time Tb.

In both prevalent cohort and current duration study designs, only subjects who have

experienced the initiating event prior to sampling, but have not yet experienced the

terminating event can be sampled. Thus both the forward and the backward recurrence

times are length biased i.e. the sample is biased towards larger values of T . One way

to model this bias (Cox (1969), Vardi (1982)) is to sample proportionally to length,

i.e., if FT is the distribution of T then the length-biased version TLB has a distribution

given by

FLB(t) =

´ t
0
udFT (u)

µT
, t ≥ 0,

where µT =
´∞

0
udFT (u).

Further, if it can be assumed that the incidence of the disease follows a stationary

Poisson process then the cross-sectional sampling time is distributed uniformly between

the onset time and the terminating time (Cox (1969), Van Es et al. (2000), Keiding

et al. (2002)). Thus Tf = TLBV , where V is uniform(0,1). It follows that if ST = 1−FT

is the survival function of T then for both Tf and Tb (commonly denoted as T̃ here),

the density gT̃ is given by

gT̃ (t) =
ST
µT
. (2.1)

If both Tf and Tb are observed then standard left-truncated techniques apply. For

example, the Canadian Health and Aging study of Dementia (Asgharian et al. 2002),

where a cohort of elderly subjects were followed from diagnosis until death or end

of study. Ages at onset were also ascertained from the subjects’ caregivers. There
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has been extensive work towards estimating the length-biased distribution. Two com-

mon approaches found in the literature for left-truncated data, are the conditional and

the unconditional likelihood approaches, where the conditioning is applied to the on-

set times. In the unconditional approach it is assumed that the distribution of the

left truncation times are uniformly distributed, which holds under a certain station-

arity condition discussed below. In the conditional approach one simply assumes the

truncation distribution to be degenerate at the observed truncation times. In the un-

conditional approach, Vardi (1982) derived the non parametric maximum likelihood

estimator (NPMLE) for the length-biased distribution arising out of prevalent cohorts.

Asgharian and Wolfson (Asgharian et al. 2002), (Asgharian and Wolfson 2005) derived

the NPMLE for the unbiased incident-case survival function obtained from length-

biased prevalent cohort data. The conditional perspective has been investigated by

Wang et. al. (Wang et al. 1986), (Wang 1991), (Wang et al. 1993). Wang et al. (1986)

showed that when the truncating distribution is left completely unspecified, then there

is little loss of information when the likelihood is conditioned on the truncation times.

2.2 Cox Proportional Hazards Model

In the presence of covariates, a popular semiparametric model is the proportional

hazards (PH) model (Cox 1972) given by

λT |Z(t) = eθ
′Zλ(t),

where, λT |Z is the hazard function of T given the covariate vector Z and λ is an unspec-

ified baseline hazard function. Here the density of T is given by eθ
′zλ(t)e−e

θ′zΛ(t), where,

Λ is the cumulative hazard satisfying Λ(0) = 0. For the uncensored case, estimates for

(θ, λ) can be derived using the partial likelihood based on risk sets (Cox 1972). For
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right censored data Tsiatis (1981) derives consistency and asymptotic normality of the

maximum partial likelihood estimator for θ. Klaassen (1989) showed that the estima-

tor is also semiparametric efficient. Details can also be found in Bickel et al. (1993),

Murphy and Van der Vaart (2000) and Van der Vaart (1998).

If we assume a PH model for the core T , then by (2.1), under length-biased and cross-

sectional sampling, the conditional density of the forward or the backward recurrence

time T̃ , given Z, is given by

gT̃ |Z=z(t) =
e−e

θ′zΛ(t)´
e−eθ

′zΛ(t)

and the conditional hazard is given by

λT̃ |Z=z(t) =
e−e

θ′zΛ(t)´∞
t
e−eθ

′zΛ(u)du

Thus going from T to T̃ the proportional hazard structure is lost unless, either the

baseline hazard is constant or when T given Z follows a Pareto distribution (Van Es

et al. 2000). Note that the former case of an exponential distribution can be obtained as

a limiting case of the Pareto distribution. Thus usual techniques of estimating θ using

the PH model will not apply in general for forward and backward recurrence times.

Furthermore, a naive PH model based analysis on T̃ may produce biased estimates.

2.3 Length-Biased Data

For length-biased data arising out of left-truncation, Wang (1996) derives a con-

sistent and asymptotically normal estimator for θ based on a modification of the risk

set in order to adjust for the length-bias. Wang defines indicator variables ∆j(ti) for

ti ≤ tj, which equals 1 with probability ti/tj and 0 with probability 1−ti/tj and defines
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the modified risk set as

R∗i = {j : ti ≤ tj,∆j(ti) = 1}.

This allows the individuals in the risk set R∗i to have the population risk set structure,

i.e., the conditional probability of the ith subject to die at time ti given that there is a

death from the risk set R∗i is given by

eθ
′zi∑

j∈R∗i
eθ′zj

.

Thus estimation of θ can be carried out by maximizing the above (pseudo) partial

likelihood.

Under cross-sectional sampling of length-biased forward recurrence times, it is not

clear how to modify the risk set in order to adjust for the selection bias. Brookmeyer

and Gail (1987) discuss the different directions of the bias that might result from fitting

a naive proportional hazards model to this kind of data arising out of prevalent cohort

studies, where, the onset time of disease is unobservable.

The major difficulties in carrying out a semiparametric inference for θ under the

PH model and using forward or backward recurrence time data are:

1. Since the Cox model specifies the covariate effect on the hazard function and not the

time variable itself, the effect of length-biased cross-sectional sampling on the covariate

distribution is intractable. We shall see below that for the accelerated failure time

model, this is not a problem.

2. Even if a naive analysis conditioned on Z is carried out, the derivation of the

efficient score and information seems difficult. Consider the simplest case of uncensored

backward recurrence times where we observe Y = (Tb, Z). The log-likelihood for the
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naive analysis conditional on the covariates is given by

lθ,Λ(t, z) = −eθ′zΛ(t)− log
ˆ
e−e

θ′zΛ(t)dt.

The ordinary score for θ is

l̇θ,Λ(t, z) = −zeθ′z
{

Λ(t)−
´
e−e

θ′zΛ(t)Λ(t)dt´
e−eθ

′zΛ(t)dt

}
.

Consider the parametric path η 7→ Λη(t) =
´ t

0
(1 + ηh)dΛ(s), where h ∈ L2(Λ) and

|η| ≈ 0. Replacing Λ by Λη in the log-likelihood and differentiating at η = 0 we get the

score for the nuisance parameter Λ as:

Aθ,Λh = eθ
′z

{ˆ t

0

h(s)dΛ(s) +

´
e−e

θ′zΛ(t)
´ t

0
h(s)dΛ(s)dt´

e−eθ
′zΛ(t)dt

}
.

Deriving the adjoint operator A∗θ,Λ (Murphy and Van der Vaart 2000) here is not straight

forward as in the usual Cox model. As far as we know, a systematic study of forward

and backward recurrence times under the proportional hazards assumption for the core

time variable has yet to be undertaken.

2.4 Accelerated Failure Time Model

A useful alternative to the PH model to model survival time T in the presence of

covariates Z is the Accelerated Failure Time (AFT) model. Under the AFT model

T = eθ
′ZU. (2.2)

Here T is the failure time measured from the time of some initiating event like birth

and disease onset, θ is a p × 1 regression parameter, Z is a p × 1 covariate vector
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with density h and U a non-negative random variable independent of Z with density

g, survival function S and hazard λ(u) = g(u)/S(u).

The problem of estimating θ in presence of the nuisance parameters g and h have

been taken up by many authors. Two popular approaches are least-squares and rank

based procedures. Bickel et al. (1993) derived the semiparametric efficient score and

the efficient information for estimating θ when g and h are unspecified and given Z,

log T − θ′Z is assumed independent of Z and the censoring variable C. Estimation of

θ based on the least squares approach has been studied by Miller (1976), James and

Buckley (1979) and Koul et al. (1981). Linear rank test based procedures using the

partial likelihood score have been developed by Tsiatis (1990), Ritov (1990), Wei et al.

(1990), Ying (1993), Fygenson and Ritov (1994) and Jin et al. (2003). For various

submodels, these estimators are efficient. For example, the Buckley-James estimator

is efficient when the true error density is standard normal while Tsiatis’ linear rank

test based estimator with unit weights is efficient for a class of extreme value error

distributions. The latter is fully efficient if the weight function adaptively estimates

λ′/λ, where λ is the hazard function corresponding to the error distribution.

Another important recent development in estimating θ in a tobit model and the one

that we will build upon in section 3 for the random right censored case is Cosslett’s

(Cosslett (2004)) asymptotically efficient estimator via a smoothed self-consistency

equation.

Without covariates and right censoring, nonparametric estimation of the monotone

baseline density g can be achieved using the Grenander (1956) estimator for a monotone

density. For the right censoring case this is generalized by the Denby-Vardi (Denbi and

Vardi (1986)) NPMLE. In the uncensored case, Woodroofe and Sun (1993) pointed

out a technical difficulty in using the actual likelihood. They show that the Denby-

Vardi NPMLE is inconsistent near the origin in the sense that ĝ(0+) does converge in
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probability but the limit is strictly greater than g(0+) almost surely. They propose

using a penalized likelihood

Lα(g) =
n∑
i=1

log g(ui)− nαg(0+),

where g varies over a class of decreasing left-continuous densities and α > 0 is a

smoothing parameter. Keiding et. al. (2002) discuss that another way to avoid this

inconsistency near zero is to estimate the survival function of T conditioned on T > t0

for some small t0 > 0 and then estimate S(t)/S(t0) by ĝ(t)/ĝ(t0).

Under the above assumptions and an application of (2.1) we obtain the joint distri-

bution of (T̃, Z̃) as

fT̃,Z̃(t, z) =
e−θ

′zS(e−θ
′zt)

µg
× eθ

′zh(z)´
eθ′zh(z)dz

. (2.3)

Thus if T follows the AFT model in (2.2) then, T̃ follows a AFT model given by

T̃ = eθ
′Z̃Ũ, (2.4)

where Z̃ has a density of the form hZ̃,θ(z) = eθ
′zh(z)/

´
eθ
′zh(z)dz and Ũ has a monotone

density given by

gŨ(u) =
S(u)´∞

0
S(v)dv

.

Thus, the resulting AFT model for T̃ has the same covariate effect but a different

baseline distribution.

For uncensored backward recurrence times, Klaassen et al. (Klaasen et al. (2004))

derived the semiparametric efficient score and information and proved existence of an

efficient estimator for estimating θ in (2.4) when h, the core covariate distribution is

either known or known to have zero mean. Their results show that an unconditional (on
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Z̃) approach, under these restrictive assumptions, result in a gain in semiparametric

information for estimating θ in (2.4). In the next section, we generalize these results to a

completely unspecified core covariate distribution and to possibly right censored forward

recurrence times. We show that when the core covariate distribution h is completely

unspecified, there is no gain in information under an unconditional analysis.

Since the AFT model assumption is preserved under length-biased cross-sectional

sampling, a natural question is that whether estimators for θ based on observing

(T ∧ C,Z, I{T ≤ C}), where C is a censoring variable independent of T given Z

and δ = I{T ≤ C}, are also valid when based on observing (T̃ ∧ C̃, Z̃, δ). In particular,

whether an efficient estimator under (2.2) is also efficient under (2.4). Here C̃ is the

censoring variable corresponding to T̃ and δ = I{T̃ ≤ C̃}. We assume that T̃ and C̃

are independent given Z̃. The issue here is that length-biased cross-sectional sampling

results in the density Z̃ to be functionally dependent on θ and thus might contain

information about θ unlike the usual set-up where the covariates are ancillary for the

regression parameter θ.

In section 2.5 we derive the semiparametric efficient score and information for esti-

mating θ based on the data (T̃i ∧ C̃i, Z̃i, δ̃i), i = 1, · · · , n, while leaving the covariate

distribution h completely unspecified. In section 2.6 we derive an asymptotically semi-

parametric efficient estimator for θ. Results from numerical studies are presented in

section 2.7 and results from the data analysis are shown in section 2.8.

2.5 Efficient Score and Estimation

We first take up the calculation of the efficient score and information for the forward

recurrence time (Tf ), subject to right censoring. Let θ ∈ Θ, where Θ is a compact set

in <k. Let θ0 be the true value of the regression parameter and suppose that θ0 belongs

in the interior of Θ. For fixed but arbitrary θ, we define our semiparametric model
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in terms of the distribution of U(θ) = e−θ
′Z̃Tf = e−(θ−θ0)′Z̃Ũ and the corresponding

censored variable U c(θ) = e−θ
′Z̃C̃. The conditional distribution of U(θ) given Z̃ = z is

gU(θ)(u) =
e(θ−θ0)′zS(e(θ−θ0)′zu)´

S(v)dv
,

while the conditional hazard is given by

λU(θ)(u) =
S(e(θ−θ0)′zu)´∞

u
S(e(θ−θ0)′zw)dw

.

Note that given Z̃ the distribution of U(θ) is monotonic. We now make the following

assumptions:

A1: Tf and C̃ are independent given Z̃.

A2: µg =
´
S(v)dv <∞.

A3: EgU
2λ(U) =

´
u2g2S−1(u)du <∞.

Remark 1. The independent censoring assumption is valid here as C̃ is also measured

from the time of sampling. Assumption (A3) is needed to ensure that the density of

U(θ) has finite Fisher information for location.

Let G be the class of density functions on <+ and H be a class of density function

on <k. The semiparametric model for the core AFT model in (2.2) is given by

P∗ = {Pθ,g,h : θ ∈ Θ, g ∈ G, h ∈ H} ,

where, the distribution Pθ,g,h has a density with respect to an absolutely continuous

measure µ given by

dPθ,g,h
dµ

(t) = e(θ−θ0)′zg(e(θ−θ0)′zt)h(z).
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For the AFT model for forward recurrence times the semiparametric model is

P =
{
Pθ,Sg ,h : θ ∈ Θ, g ∈ G, h ∈ H′

}
, (2.5)

where Sg(u) =
´∞
u
g(v)dv for g ∈ G, and

H′ =
{
h : h ∈ H,

ˆ
eθ
′zh(z)d(z) <∞,

ˆ
z2eθ

′zh(z)dz <∞, θ ∈ Θ

}
.

We assume that Θ is a compact subset of Rk. Further, Pθ,Sg ,h is dominated by an

absolutely continuous measure µ with density

d

dµ
Pθ,Sg ,h =

e(θ−θ0)′zSg(e
(θ−θ0)′zu)´

Sg(v)dv
× eθ

′zh(z)´
eθ′zh(z)dz

.

Define S = {Sg : g ∈ G}. Let the true distribution be P0 = Pθ0,S0,h0 with S0 = Sg0 .

Define the submodels

Pθ = {Pθ,S0,h0 : θ ∈ Θ},

PS = {Pθ0,S,h0 : S ∈ S} and

Ph = {Pθ0,S0,h : h ∈ H′}.

Let Ṗθ, ṖS and Ṗh be the respective tangent spaces for Pθ,PS and Ph at P0 =

Pθ0,S0,h0 . Let l̇θ be the ordinary score for θ when S and h are fixed. Then the efficient

score function l̃θ ∈ (L0
2(P0))k for θ in the full model P at P0 is l̃θ = l̇θ−Π0(l̇θ|ṖS + Ṗh),

where Π0(l|Q) denotes the orthogonal projection of l onto the linear span of Q (Bickel

et al. (1993)).

The next lemma helps identify ṖS, i.e., the tangent space for the nuisance parameter

corresponding to the decreasing density function of the forward recurrence times, as a
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dense set in the maximal tangent space L0
2(S).

Lemma 2. Consider the semiparamatric model P = {Pg : g ∈ G}, where the distribu-

tion Pg has density pg(u) = Sg/
´
Sg and G is a collection of densities on R+. Let Ġg

and Ṗg be the tangent sets for the models G and P respectively at g. If Ag is the score

operator mapping tangents in Ġg to Ṗg then, AgĠg is dense in the maximal tangent set

L0
2(S) for P.

The proof of this lemma is given in Appendix A.

Theorem 3. Suppose that the covariate vector Z̃ is almost surely bounded. Then under

(A1)–(A3) and with φ(u) = 1− ug(u)/S(u) and

M(t) = I{U(θ) ≤ t} −
ˆ t

0

I{U(θ) > s}λU(θ)(s)ds, (2.6)

the ordinary score for θ at θ = θ0 is

l̇θ0 = z

ˆ Uc(θ0)

0

Rφ(s)dM(s)− (z − EZ̃), (2.7)

the tangent space ṖS for S is {l̇Sb : b ∈ L0
2(S)} where the score operator l̇S for S is

given by

l̇Sb =

ˆ Uc(θ0)

0

Rb(s)dM(s), (2.8)

the tangent space for h is {b : b ∈ L2(h),
´
b(z)eθ

′
0zh(z)dz = 0}, and the efficient score

for θ at θ = θ0 is

l̃θ,S =

ˆ Uc(θ0)

0

(z − E{Z̃|U c(θ0) ≥ s})Rφ(s)dM(s), (2.9)

where for a ∈ L0
2(S),

Ra(t) = a(t)−
´∞
t
a(u)S(u)du´∞
t
S(u)du

.
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The proof of this theorem is attached in Appendix A.

Remark 4. The efficient score is free of h. Thus for estimating θ efficiently we do not

need to estimate the covariate distribution. Thus we do not need a separate identifiabil-

ity condition for h like the mean-zero condition assumed in Klaasen et al. (2004) and

can be left completely unspecified.

Remark 5. The efficient information is given by

Ĩθ0 = E

ˆ Uc(θ0)

0

D(Z̃, C, θ0, s)D(Z̃, C, θ0, s)
′(Rφ)2(s)dFU(θ0)(s), (2.10)

where D(Z̃, C, θ0, s) = (Z̃ − E{Z̃| U c(θ0) ≥ s}) and a′ denotes the transpose of the

vector a.

The efficient score and the information here are similar to the ones in Bickel et al.

(1993) for the censored regression problem based on (T,C, Z) except that in the latter

case φ(u) = 1 +ug′(u)/g(u) while in our case φ = 1−ug(u)/S(u). The main similarity

is that in both situations, the efficient scores do not use information in the marginal

distribution of the covariates. The reason behind this is the fact that ṖS ⊥ Ṗh. Thus

we can assume that the covariates distribution is degenerate at the observed values and

carry out a conditional analysis. Moreover, a conditional analysis can also be carried

out for the FRT case without loss of information when the core covariate distribution

is completely unspecified. In this case, an efficient estimator based on the core incident

cases will also be efficient for the FRT case. However, the efficiency bounds may be

different. In general there is a loss of information going from the core to the FRT

model. The loss is minimal when the core density is also non-increasing. This is true

for example in the exponential case. For the uncensored Weibull density the relative

information for the BRT case to the core case is V (Z̃)/2V (Z). Here V (Z) and V (Z̃) are

the variances of the core and the observed covariates respectively. In the next chapter
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we construct an asymptotically efficient estimator for θ which could be applied to both

these problems.

Remark 6. In terms of the residuals ε(θ0) = logU(θ0) = log Tf − θ′0Z with density f ,

distribution F and hazard function λf = f/(1− F ), the efficient score at θ = θ0 is

l̃θ0,f =

ˆ εc(θ0)

−∞
(Z − E{Z|εc(θ0) ≥ s})Rφ(s)dM(s), (2.11)

where φ = f ′/f , M(t) = I{ε(θ0) ≤ t} −
´ t
−∞ I{ε(θ0) > s}λf (s)ds and Rφ(t) =

φ(t) − E{φ(ε(θ0))|ε(θ0) > t}. Note that f(ε) = eεg(eε) when observing T , while

f(ε) = eεS(eε)/
´
Sg(v)dv when observing Tf .

We obtain the efficient score for the backward recurrence time case as a cor:

Corollary 7. Let U(θ) = e−θ
′zTb and suppose that the covariate vector Z̃ is almost

surely bounded and fU(θ) has finite Fisher information for location. Then with λ(u) =

g(u)/S(u), the efficient score for estimating θ at θ = θ0 is

l̃θ0,λ = (Z̃ − EZ̃)[1− U(θ0)λ(U(θ0))] (2.12)

and the efficient information is given by

E[l̃θ0 l̃
′
θ0

] = E(Z̃ − EZ̃)(Z̃ − EZ̃)′E[1− U(θ0)λ(U(θ0))]2. (2.13)

Proof. The backward recurrence times are uncensored. Thus we take U c(θ) = ∞,

M(t) = I{U(θ) ≤ t} and Rφ = φ in (10) and (12) to get the desired results.

Remark 8. For the case when h is assumed known, Klaassen et. al. (Klaasen et al.

(2004)) derive the semiparametric efficient score and information. The efficient score
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is given by −(z − EZ̃)uλ(u), while the efficient information is V ar(Z̃)E[Uλ(U)]2.

Klaassen et. al. also derive the efficient information under the assumption that the

core covariate distribution has mean zero. In these cases there is a gain in informa-

tion. Such gains are possible by projecting the ordinary score to restricted nuisance

tangent spaces.

2.6 Asymptotically Efficient Estimator

In this section we derive a semiparametric asymptotically efficient estimator of the

regression parameter θ in the AFT model based on Severini and Wong’s (Severini and

Wong (1992)) profile likelihood approach used to estimate the euclidean parameter in

presence of a nuisance parameter. Here one identifies a parametric submodel belonging

to the nuisance space that passes through the true parameter point and is least-favorable

in the sense of having the least Fisher’s information among all parametric submodels

(Severini and Wong (1992), Stein (1956)). The idea of estimating the euclidean param-

eter is based on estimating a least-favorable curve and then maximizing the correspond-

ing likelihood to obtain M-estimators. For the tobit model, Cosslett(Cosslett (2004))

derives an estimator for the regression parameter based on a smoothed self consistent

estimate for the distribution of the errors. We adapt this estimator for the randomly

right censored linear regression model. The smoothed self-consistent equation for the

NPMLE of the survival function of the errors leads to a least favorable submodel for

the hazard function. The corresponding estimated log-likelihood is maximized to get a

semiparametric efficient estimator.

For arbitrarily fixed θ define the uncensored residuals by εθ = log T − θ′Z and the

censored residuals by εcθ = logC − θ′Z. Also define e ≡ eθ = εθ ∧ εcθ, where x ∧ y

denotes the minimum of x and y. The data consists of n independent realizations of
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Y = (e, δ, Z). The model is

P = {Pθ,λ : θ ∈ Θ, λ ∈ Λ}, (2.14)

where Θ ⊂ < and Λ = {λ : X 7→ <} with further specification made below. Under Pθ,λ,

εθ given Z = z has hazard function λ. Let (θ0, λ0) be the true value of the parameter

(θ, λ). Let f0 and S0 be the density and the survival functions corresponding to λ0.

Under Pθ,λ0 , εθ has density f0( ·+(θ−θ0)′z) and survival function S0( ·+(θ−θ0)′z). The

efficient score and information for estimating θ is given by Proposition 4.6.1 in BKRW

(Bickel et al. (1993)). For the forward and the backward recurrence time considered in

section 2, the efficient score and information is given in (2.11). Let ζθ,z be the survival

function of εcθ given Z = z. We make the following additional assumptions:

(C1) The covariate vector Z is bounded almost surely with density h.

(C2) θ0 belongs to the interior of an open and bounded set Θ ⊂ <k. Along with (C1)

this gives α ≡ ess. supθ∈Θ |(θ − θ0)′Z| <∞.

(C3) τ = supt{t : Pr[C > exp{t + α} | Z] > 0} exists and is finite and further

S0(τ + α) > 0.

Remark 9. While conditions (C1) and (C2) are standard, condition (C3) is related to

the standard end of study assumption made on the distribution of T and C in right-

censored data settings. The analysis is thus restricted to an interval e ∈ (−∞, τ ].

Let γθ,z(t) ≡ exp{−
´ t
−∞ λ0(s + (θ − θ0)′z)ds}ζθ,z(t) denote the at-risk probability

function given Z and under Pθ,λ0 . Note that under assumption (C1)–(C3), γθ,z(t) > 0

for all t ≤ τ and θ ∈ Θ.
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A standard approach for constructing asymptotically efficient estimators for eu-

clidean parameters in presence of a nuisance parameters is the profile likelihood ap-

proach of Severini and Wong (Severini and Wong (1992)) where the nuisance param-

eter is replaced by a suitable consistent estimate (like the NPMLE) in the efficient

estimating equation for the euclidean parameter.

The likelihood p(y; θ, λ) under Pθ,λ is given by

p(y; θ, λ) = {λ(eθ)}δ exp{−
ˆ eθ

−∞
λ(u)du}.

Define the Kulback-Lieber distance as,

κ(θ, λ) = −
ˆ

log p(y; θ, λ)p(y; θ0, λ0)dy.

After an application of Fubini’s theorem and integration by parts on the integral term

in p(y; θ, λ) we get

κ(θ, λ) = −
ˆ ˆ {

λ0

(
t+ (θ − θ′0z)

)
log λ(t)− λ(t)

}
γθ0,z(t)h(z)dzdt.

For Severini and Wong’s profile likelihood approach to work one needs to identify

a least-favorable parametric submodel which is essentially a smooth curve θ 7→ λθ

through (θ0, λ0), with λθ0 = λ0 such that for any other submodel λ1θ also satisfying

λ1θ0 = λ0, we have,

−E0
d2

dθ2
log p(Y1; θ, λθ)

∣∣∣
θ=θ0
≤ −E0

d2

dθ2
log p(Y1; θ, λ1θ)

∣∣∣
θ=θ0

,

where E0 is the expectation under Pθ0,λ0 . Under model identifiability, it is sufficient

to show that for arbitrarily fixed θ, κ(θ, λθ) < κ(θ, λ1θ) for any λ1θ 6= λθ satisfying

λ1θ0 = λ0.
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Let Ln(θ, λθ) ≡
∑

log p(yi; θ, λθ) be the log-likelihood obtained by replacing the

nuisance parameter λ by the least-favorable submodel λθ. Let λ̂θ be an estimator of

λθ which converges to λθ at a rate faster than n−1/4. Then under regularity conditions

the maximizer θ̂n of Ln(θ, λ̂θ) is consistent and asymptotic normal with the asymptotic

variance equal to the efficient information (Severini and Wong (1992)).

Cosslett (Cosslett (2004)) derives an efficient estimator for θ in the tobit model

by solving the score equation based on the smoothed self-consistent estimator for the

error density. Below we derive the smoothed self-consistent estimator λ̂θ for the right-

censored regression problem and show that it converges to a least-favorable submodel

denoted by λθ at a rate n−ν1 , where ν1 > 1/4. For consistency and asymptotic normality

we also need that λ̂′θ goes to λ′θ at a rate n−ν2 , where ν1 + ν2 ≥ 1/2. Here λ′θ ≡ dλθ/dθ

and λ̂′θ = dλ̂θ/dθ are the total derivatives taken with respect to θ.

Let Gn,θ(t) ≡ n−1
∑
I{ej(θ) ≤ t} and Fn,θ(t) ≡ n−1

∑
δjI{ej(θ) ≤ t} denote the

empirical distribution functions of the observed residuals and the observed uncensored

residuals respectively. Efron’s (Efron (1967)) self consistent equation for an estimator

S̄ for the survival function of the uncensored residuals for right censored is given by

S̄(t) =

ˆ ∞
t

dGn,θ(u) + S̄(t)

ˆ t

−∞

1

S̄(v)
d(Gn,θ − Fn,θ)(u).

It is well known that the Kaplan-Meier survival function satisfies the above equation.

In general, smoothing of a function f(vi) of an observation vi can be achieved by

replacing it with f̃(vi) = h−1
n

´
f(u)K (h−1

n (u− vi)) du, with a suitable kernel K and

bandwidth hn. Thus the self consistency equation after smoothing becomes

S̃(t) =

ˆ
K̄

(
t− v
hn

)
dGn,θ(v) +

S̃(t)

ˆ t

−∞

´
1
hn
K
(
u−v
hn

)
d(Gn,θ − Fn,θ)(v)

S̃(u)
du,
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where K̄(u) =
´∞
u
K(v)dv and S̃ is the smoothed version of S̄. The above integral

equation is linear in 1/S̃ with an explicit solution

Ŝ ≡ Ŝθ(e) = exp

{
−
ˆ e

−∞

ĝn,θ(v)

Ĝn,θ(v)
dv

}
, (2.15)

where

ĝn,θ(t) = h−1
n

ˆ
K
(
h−1
n (t− v)

)
dFn,θ(v)

and

Ĝn,θ(t) =

ˆ
K̄
(
h−1
n (t− v)

)
dGn,θ(v).

The integral in (2.15) always exists since by construction the right-hand tail of Ŝ

decreases at the same rate as the tail of the kernel function. The density estimator

corresponding to Ŝ in (2.15) is

f̂θ(t) =
ĝn,θ(t)

Ĝn,θ(t)
exp

{
−
ˆ t

−∞

ĝn,θ(v)

Ĝn,θ(v)
dv

}
. (2.16)

The next set of lemmas establish the convergence of ĝn and Ĝn. Define,

gθ(t) =

ˆ
f0 (t+ (θ − θ0)′z) ζθ,z(t)h(z)dz, (2.17)

Gθ(t) =

ˆ
S0 (t+ (θ − θ0)′z) ζθ,z(t)h(z)dz (2.18)

and

λθ(t) =
gθ(t)

Gθ(t)
=

´
λ0(t+ (θ − θ0)′z)γθ,z(t)h(z)dz´

γθ,z(t)h(z)dz
. (2.19)

While gθ(·) is the conditional density of the observed residuals eθ given δ = 1, times

P{δ = 1}, Gθ(·) is the unconditional survival function of eθ. Similar “estimable”

functions were considered towards establishing the asymptotic properties of the Buckley
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and James estimator in Ritov (1990).

Consider the submodel θ 7→ λθ given by (2.19). Note that λθ0 = λ0. Consider the

parametric submodel λν = λ(1 + νa), where a ∈ L2(f0). Then,

dκ(θ, λν)

dν

∣∣∣
ν=0

= −
ˆ ˆ

a(t) {λ0(t+ (θ − θ0)′z)− λ(t)} γθ0,z(t)h(z)dzdt.

Thus, for arbitrarily fixed θ ∈ Θ, κ(θ, λ) is minimized at λ = λθ. Thus λθ is least-

favorable. Also note that

κ(θ, λθ)− κ(θ0, λ0)

= −
ˆ ˆ {

log
λ0(t+ (θ − θ0)′z)

λ0(t)
+ 1− λ0(t+ (θ − θ0)′z)

λ0(t)

}
× λ0(t)γθ0,z(t)h(z)dzdt

≥ 0,

where the equality holds if and only if θ = θ0. Thus if we definem(θ) ≡ Eθ0,λ0 log(pθ,λθ/pθ0,λ0)

then m(θ) is maximized at θ = θ0. Let λ̂θ ≡ ĝn,θ/Ĝn,θ. For each n, the log-likelihood is

given by

Ln(θ, λθ) =
n∑
i=1

{
δi log λθ(ei)−

ˆ ei

−∞
λθ(u)du

}
.

Define θ̂ ≡ θ̂n to be an element of Θ satisfying

Ln(θ̂, λ̂θ̂) = sup
θ∈Θ

Ln(θ, λ̂θ). (2.20)

In order to prove consistency, asymptotic normality and efficiency of θ̂ we need

uniform convergence of λ̂θ to λθ and λ̂′θ to λ′θ at appropriate rates (Severini and Wong

(1992)). For the purpose of M-estimation, we only to need to establish this uniform

convergence on (−∞, τ ]. The following regularity conditions and conditions on the
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kernel are needed to establish the asymptotics:

(R1) f0, f ′0 and f ′′0 are bounded.

(R2) The functions gθ, g
′
θ, g

′′
θ , Gθ, G

′
θ, G

′′
θ are continuous and uniformly bounded in

θ ∈ Θ. Here, g′θ ≡ dgθ/dθ and the other derivatives are defined similarly.

(R3) Eθ0,λ0|εθ|p <∞, for some p > 4.

(R4) λθ and log λθ have two continuous derivatives. Further, these functions and their

derivatives are bounded by integrable functions for all θ ∈ Θ.

(K1) K is a bounded, differentiable and symmetric function satisfying
´
K = 1,

´
u2K(u)du <∞,

´
[K ′(u)]2du <∞ and

´
[K ′′(u)]2du <∞.

(K2) The bandwidth hn satisfies hn = n−β, where 1/8 ≤ β < 1/5.

Remark 10. While conditions (R1)–(R3) are standard, condition (R4) cannot be ex-

pressed in a more straightforward way in terms of the underlying true error hazard.

It is worthwhile to note that (R4) holds in case the error density is normal and with

bounded covariates.

Lemma 11. Under assumptions (C1) and (C2), the classes F = {δI[eθ ≤ t] : θ ∈

Θ, t ∈ R}, G = {ZI[eθ ≤ t] : θ ∈ Θ, t ∈ R} and H = {δZI[eθ ≤ t] : θ ∈ Θ, t ∈ R} are

P -Donsker.

Proof. {I[eθ ≤ t] : θ ∈ Θ, t ∈ R} is P -Donsker since a finite-dimensional vector space

of measurable functions is P -Donsker. Let G(y) be a uniformly bounded function then

by the preservation thm {G(y)I[eθ ≤ t]} is P -Donsker.

Lemma 12. Under (C1), (C2), (R1)–(R4) and (K1) we have,

(a) |ĝn,θ(t)− gθ(t)| = Op(n
−1/2)Op(h

−1
n ) +Op(h

2
n),
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(b) |Ĝn,θ(t)−Gθ(t)| = Op(h
2
n),

(c) |ĝ′n,θ(t)− g′θ(t)| = Op(n
−1/2)Op(h

−2
n ) and

(d) |Ĝ′n,θ(t)−G′θ(t)| = Op(h
2
n)

uniformly in t and θ ∈ Θ,

The proof of this lemma is given in Appendix A.

Lemma 13. Under (C3) and conditions (R1)–(R4) and (K1),

(a) supt |λ̂n,θ(t)− λθ(t)| = Op(n
−1/2)Op(h

−1
n ) +Op(h

2
n)

(b) supt |λ̂′n,θ(t)− λ′θ(t)| = Op(n
−1/2)Op(h

−2
n )

uniformly in t ∈ I and θ ∈ Θ.

Proof. Note that under (C3), (R2) and (K1),

sup
t∈I
|λ̂θ(t)− λθ(t)|

≤ sup
t∈I

(∣∣∣∣ ĝn,θ(t)− gθ(t)Gθ(t)

∣∣∣∣+ |ĝn,θ(t)|
∣∣∣∣Ĝn,θ(t)−Gθ(t)

Ĝn,θ(t)Gθ(t)

∣∣∣∣
)

≤ Gθ(τ)−1 sup
t
|ĝn,θ(t)− gθ(t)|

+

(
sup
t
|ĝn,θ(t)− gθ(t)|+ sup

t
|gθ(t)|

)
G(τ)−1

.

(
G(τ)− sup

t
|Ĝn,θ(t)−Gθ(t)|

)−1

sup
t
|Ĝn,θ(t)−Gθ(t)|.

By lemma 3, the dominating term in the preceding line is Op(|ĝθ − gθ|). Thus part (a)

follows. A similar inequality for |λ̂′θ−λ′θ| shows that the dominating term is Op(|ĝ′θ−g′θ|)

which proves part (b).
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Remark 14. Note that along with (K2), lem 4 gives the convergence rates of order

n−ν1 with ν1 ≥ 1/4, for λ̂θ → λθ and of order n−ν2 with ν1 + ν2 ≥ 1/2, for λ̂′θ → λ′θ,

uniformly in θ ∈ Θ and t < τ .

Define Ln(θ, λ̂θ) ≡
∑
{δ log λ̂θ(eθ) −

´ eθ
−∞ λ̂θ(u)du} then θ̂n be the maximizer of

θ 7→ Ln(θ, λ̂θ). In order to show that θ̂n is consistent for θ, we need to show that

n−1Ln(θ, λ̂θ) − n−1Ln(θ, λθ) converges to zero uniformly in θ. For isolated terms in

the left tail like an isolated e(1), λ̂θ(e(1)) is of order O(1/nhn), thus we need to use a

trimming factor to avoid any contribution of such terms to Ln(θ, λ̂θ) or to Ln(θ, λθ).

Consider the trimming function τ(·), given by

τ(u) =


1 for u ≥ 1

ψ(u) for 0 < u < 1

0 for d ≤ 0,

where, in order to make τ twice differentiable with continuous derivatives we choose a

smooth bridge function ψ(·) which is twice differentiable with ψ(0) = ψ′(0) = ψ′(1) =

ψ′′(0) = ψ′′(1) = 0 and ψ(1) = 1. Also we let bn ↓ 0 at a suitable rate and define

τ1(λ) ≡ τ(b−1
n (λ− bn)) and

L∗n(θ, λ̂θ) ≡ n−1
∑
{δ log λ̂θ(eθ)τ1(λ̂θ(eθ))−

ˆ eθ

−∞
λ̂θ(u)du}.

Similarly define L∗n(θ, λθ).

Lemma 15. Under assumptions (C1)–(C4) and conditions (R1)–(R4) and (K1) and

(K2), if the trimming rate bn = n−α with 0 < α < 1/4, then,
∣∣∣n−1L∗n(θ, λ̂θ) −

n−1Ln(θ, λθ)
∣∣∣ P→ 0, uniformly in θ ∈ Θ.
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Proof.

L∗n(θ, λ̂θ)− L∗n(θ, λθ)

= n−1
∑

δ

[
τ1(λθ(eθ)) log

λ̂θ(eθ)

λθ(eθ)
+ log λ̂θ(eθ){λ̂θ(eθ)− λθ(eθ)}τ ′1(γ̂)

]

− n−1
∑ ˆ eθ

−∞
{λ̂θ(u)− λθ(u)}du.

Now consider τ(λθ) log(λ̂θ/λθ) = τ(λθ) log[1+λ−1
θ (λ̂θ−λθ)]. This is zero when λθ ≤ bn.

Thus the worst possible case is when λθ = bn. Now τ(bn) log[1 + b−1
n Op(n

−1/4)]→ 0 as

n→∞ if bn = n−α with 0 < α < 1/4.

The second term τ ′(γ)(λ̂θ−λθ) log λ̂θ = 0 if γ < bn or γ > 2bn. In the worst possible

case we have γ = λ̂θ + δn = bn where δn = n−β with β ≥ 1/4. Then log λ̂θ = log bn +

log(1−δn/bn). Thus τ ′(γ)(λ̂θ−λθ) log λ̂θ = τ ′(bn)Op(n
−1/4)[log bn+log(1−δn/bn)]→ 0

as n→∞ since δn/bn → 0.

A similar Taylor’s expansion inside the integral term yields,

ˆ eθ

−∞
τ(λθ)(λ̂θ − λθ)(u)du ≤ Op(n

−1/4)[n−1
∑

eθ −mn],

where mn = sup{t : λθ(t) ≤ bn}. Note that for exponential and sub-exponential tails,

mn ↓ −∞ at a rate slower than bn. Also, since, E|eθ| < ∞, the integral term goes

to zero. Thus L∗n(θ, λ̂θ) − L∗n(θ, λθ) → 0. Also, since |L∗n(θ, λθ)| ≤ |Ln(θ, λθ)|, under

regularity condition (R4), the bounded convergence thm gives

L∗n(θ, λθ)− Ln(θ, λθ)→ E[L∗n(θ, λθ)− Ln(θ, λθ)].

Also, L∗n(θ, λθ) converges to Ln(θ, λθ) point-wise as n → ∞. Thus another use of

bounded convergence gives E[L∗n(θ, λθ)− Ln(θ, λθ)]→ 0.
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Theorem 16. If θ̂n is the maximizer of the log-likelihood as in (2.20) then under (C1)–

(C4), (R1)–(R4) and (K1) and (K2), θ̂n
P→ θ0 as n→∞.

Proof. Let m(θ) ≡ E0Ln(θ, λθ). In section 3.3, we saw that m(θ) is maximized at

θ0. Also by condition (R4) and assumption (A3) we have that Ln(θ, λθ) is a sum of

n bounded terms and thus by the weak law of large numbers n−1Ln(θ, λ) → m(θ)

for every θ ∈ Θ. Under condition (R3) and (R4) and the compactness of Θ and an

application of the argmax thm (cor 3.2.2 in van der Vaart and Wellner (1996)), we have

θ̂n
P→ θ0.

For asymptotic normality and efficiency, we use the profile likelihood theory in

Murphy and Van der Vaart (Murphy and Van der Vaart (2000)). thm 1 in Murphy and

Van der Vaart (2000) provide sufficient conditions under which the log profile likelihood

log pln(θ) admits the following asymptotic expansion:

log pln(θ0) + (θ̃n − θ0)′
n∑
i=1

l̃0(Yi)−
1

2
n(θ̃n − θ0)′Ĩ0(θ̃n − θ0)′

+ op(
√
n||θ̃n − θ0||+ 1)2,

for any consistent estimator θ̃n. Here Ĩ0 is the efficient information matrix assumed

to be non-singular and l̃0 is the efficient score function. The above expansion implies

that the maximum likelihood estimator is asymptotically linear to the efficient score

which implies that the maximum likelihood estimator is asymptotically normal with

covariance matrix Ĩ−1
0 (Murphy and Van der Vaart (2000)). The theory suggests that

the profile likelihood can be treated as an ordinary likelihood at least in the asymptotic

sense. Further the above expansion implies that the curvature of the log profile likeli-

hood can serve as an estimate for the efficient information matrix. Thus for asymptotic

normality and efficiency we only need to check the conditions listed in thm 1 in Murphy

and Van der Vaart (2000).
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Theorem 17.
√
n
(
θ̂n − θ0

)
D→ N(0, Ĩ−1

0 ), where Ĩ0 is the efficient information matrix.

Proof. Here we adapt to the notation in Murphy and Van der Vaart (Murphy and

Van der Vaart (2000)) and apply their main thm. For η in a neighborhood of θ0 define

the map η 7→ λη(θ, λ) by

λη(θ, λ)(t) =

´
λ(t+ (η − θ)′z)γη,z(t)h(z)dz´

γη,z(t)h(z)dz
,

where γη,z is defined in section 3.2. Also define the log-likelihood as

η 7→ l(η, θ, λ) = log p(y; η, λη(θ, λ))

Let l̇(η, θ, λ) denote the derivative of η 7→ l(η, θ, λ). Note that λθ(θ, λ) = λ for every

θ and λ in the parameter space and that l̇(θ0, θ0, λ0) = l̃θ0,λ0 , where l̃ is the efficient

score given in (2.11). Thus following (Murphy and Van der Vaart (2000)), the above

submodel is least favorable at (θ0, λ0). Under the regularity conditions it can be shown

that in a neighborhood V around (θ0, θ0, λ0), {l̇(η, θ, λ) : (η, θ, λ) ∈ V} is P0-Donsker

with square integrable envelope and {l̈(η, θ, λ) : (η, θ, λ) ∈ V} is P0-Glivenko-Cantelli.

In order to apply theorem 1 in Murphy and Van der Vaart (2000), we need to check

the “no-bias” condition given by

E0l̇(θ0, θ̂n, λ̂θ̂n) = op(|θ̂n − θ0|+ n−1/2).

Consider writing E0l̇(θ0, θ0, λ) as

E0

{
pθ0,λ0 − pθ0,λ

pθ0,λ0

(
l̇(θ0, θ0, λ)− l̇(θ0, θ0, λ0)

)}
− E0l̇(θ0, θ0, λ0)

{
pθ0,λ − pθ0,λ0

pθ0,λ0
− A0(λ− λ0)

}
, (2.21)
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where, A0 is the score operator for λ at (θ0, λ0) and is given by

A0h =

ˆ e(θ0)

−∞
Rh(s)dM(s),

and R and the martingale M are as in rem 5. Note that E0l̃0A0h = 0 for every

h ∈ L2(f0) by the orthogonality property of the efficient score. Since λ 7→ pθ0,λ is twice

differentiable and λ 7→ l̇(θ0, θ0, λ) is differentiable at λ0, taking a first order Taylor’s

expansion in the first term in (2.21) and a second order Taylor’s expansion in the second

term of (2.21) around λ0 we see that the expression in (2.21) is of order Op(||λ−λ0||2).

Thus following the discussion in Murphy and Van der Vaart (2000) it is sufficient to

have

||λ̂θ̂n − λ0|| = Op(|θ̂n − θ0|) + op(n
−1/4),

for the “no-bias” condition to hold.

Since θ̂n is consistent for θ0 and θ 7→ λ̂θ is differentiable, by lemma 4, we have the

desired result.

2.7 Simulation Studies

As our method is unconditional on the covariate distribution, it is a special case of

the model used in the paper by Zeng and Lin (2007) (since we assume that the covariates

are constant over time). So, we use their profile likelihood approach to estimate θ and

compare it with Klassen’s mean zero approach and also the known covariate structure

approach. We consider only 1 covariate Z ∼ Unif(−1, 1). So, Z̃ has density given by

θeθz

eθ−e−θ , where −1 ≤ z ≤ 1. We take different values of θ and assume that the error

distribution is standard normal ie U is lognormal. Then, we use all three methods

to estimate θ. For the profile-likelihood approach, we use the gaussian kernel and a

bandwith of hn = Qn−1/5 where Q is the interquartile range of the data. We consider
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1000 replicates and look at the mean bias and variance in estimating θ. We also look

at what happens when the covariate distribution is misspecified.For this, we consider

Z∼ (x, 1) for some choice of x. So, Z̃ has density given by θeθz

eθ−e−θx where x≤z≤1.

We take the values x = −0.9 and −0.8 and compare both the mean 0 and known

covariate distribution, assuming Z ∼ Unif(−1, 1).We take θ=1 for these simulations.

We consider 1000 replicates in this case as well. The results are given in Table 1.
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Table 2.1: Estimates for the Backward Recurrence Time Data

Parameters Sample Size Profile Likelihood Approach Vanishing Mean Known Covariance
Bias SE CP Bias SE Bias SE

θ = 1 100 −0.0325 0.258 0.944 −0.1100 0.230 −0.0513 0.201
200 0.0057 0.188 0.956 −0.0515 0.161 −0.0013 0.137
400 0.0096 0.133 0.951 0.0022 0.111 0.0005 0.099

θ = 0.5 100 0.0277 0.202 0.958 −0.1645 0.190 −0.0201 0.142
200 0.0156 0.188 0.951 −0.0333 0.134 0.0068 0.095
400 0.0099 0.117 0.955 0.0154 0.092 0.0044 0.067

θ = 2 100 0.0099 0.299 0.939 0.0266 0.553 0.0274 0.366
200 0.0028 0.203 0.957 0.0553 0.284 0.0043 0.216
400 −0.0045 0.169 0.945 0.0122 0.198 −0.0029 0.105

x = −0.9 100 −0.0287 0.254 0.952 −0.0548 0.250 0.0306 0.222
θ = 1 200 0.0094 0.181 0.941 0.1812 0.171 0.1154 0.138

400 0.0015 0.124 0.946 0.1545 0.114 0.2133 0.094
x = −0.8 100 0.0226 0.269 0.933 0.3351 0.270 0.1945 0.211
θ = 1 200 −0.0063 0.169 0.949 0.4895 0.184 0.2338 0.142

400 0.0034 0.108 0.944 0.3039 0.127 0.2781 0.099
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Thus, we find that the estimates obtained using our methods are quite comparable

to the special case where the covariance structure is known, though Klassen’ methods

have lesser variance. However, their estimates are very sensitive to model specification.

On the other hand, our naive analysis yields unbiased estimates in both cases. The

variance estimators accurately reflect the actual variance, while the confidence intervals

have correct coverage probabilities.

2.8 Data Analysis

For the data analysis, we use a subset of the data used by Keiding et al (2012). It

is a backward recurrence time data on the time to pregnancy obtained from a large

French telephone survey. Women were eligible if they were between 18-44 years old,

were living with a male partner and did not use any method to avoid pregnancy. We

consider only nulliparous women who had not initiated any fertility treatment. The

response variable was the current duration of unprotected intercourse, which is the time

elapsed from the start of unprotected intercourse and the interview.

The estimates obtained for the covariates along with the 95 % confidence intervals

are given in Table No 2. We note that the naive estimator can accurately determine the

effect of the covariates and is comparable with the ordinary least squares results. Thus,

we find that the “naive” estimator works really well and usually has better variance

than the least squares estimator. Hence, we can conclude that this method works really

well in estimating the regression parameter in the AFT model.
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Table 2.2: Estimates for time ratios and the CI for nulliparous women

Semiparametric AFT OLS
Covariate No Time Ratio Time Ratio
Tobacco Consumption at recruitment
Non-Smokers 159 1 1
Smokers 92 1.20(0.75,1.78) 1.04(0.70,1.53)
Age at recruitment
0-17 3 7.50(1.50,38.0) 7.32(1.29,41.4)
18-24 50 2.00(1.20,3.41) 2.08(1.24,3.49)
25-29 93 1 1
30-34 62 1.00(0.61,1.74) 1.01(0.63,1.64)
35-39 41 1.10(0.61,2.02) 0.93(0.54,1.62)
40-44 2 0.13(0.01,1.17) 0.13(0.02,1.10)
Frequency of Sexual Intercourse
<1 per month 0
1-3 per month 44 2.20(1.20,3.89) 2.18(1.27,3.71)
1-2 per week 109 1.20(0.78,1.92) 1.23(0.81,1.86)
≥3 per week 98 1 1
Menstrual Cycle Length
<27 days 53 1 1
27-29 days 110 0.90(0.52,1.55) 0.86(0.52,1.41)
≥30 days 88 1.10(0.62,1.81) 0.99(0.59,1.63)
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CHAPTER 3: TWO-MONOTONE DENSITY ESTIMATION IN THE
PRESENCE OF RIGHT CENSORING

3.1 Introduction

A density function g on R+ is monotone (or 1-monotone) if it is nonincreasing. It

is 2-monotone if it is nonincreasing and convex, and k-monotone for k ≥ 3 if and only

if (−1)jg(j) is nonnegative, nonincreasing and convex for j=1(1)k-2. Figure 3.3 shows

an estimate of a 2-monotone density for the standard exponential distribution for a

sample size of 100, under no censoring.

Estimation of functions restricted by monotonicity or other inequality constraints

has received much attention. Estimation of monotone regression and density functions

goes has been done by Grenander (1956). Asymptotic distribution theory for mono-

tone regression estimators was established by Brunk (1970), and for monotone density

estimators by Prakasa Rao (1969). The asymptotic theory for monotone regression

function estimators was reexamined by Wright (1981), and the asymptotic theory for

monotone density estimators was reexamined by Groeneboom (1985). The “universal

component” of the limiting distribution in these problems is the distribution of the lo-

cation of the maximum of two-sided Brownian motion minus a parabola. Groeneboom

(1988) examined this distribution and other aspects of the limit Gaussian problem with

canonical monotone function f0(t) = 2t in great detail. Groeneboom (1985) provided

an algorithm for computing this distribution, and this algorithm has recently been

implemented by Groeneboom et al. (2001).

The first work for convex density function estimation has been done by Anevski
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Figure 3.1: Example of a 2-Monotone Density Estimate

(1994), who was motivated by some problems involving the migration of birds dis-

cussed by Hampel (1987). Jongbloed established lower bounds for minimax rates of

convergence and established rates of convergence for a“sieved maximum likelihood es-

timator”. Finally, a least squares estimator as well as a non-parametric maximum

likelihood estimator for 2-monotone densities were established by Groeneboom et al.

(2001) which were further modified by Balabdaoui and Wellner (2007) to correct for

the consistency near 0.

The least squares (LS) estimator f̃n of a convex decreasing density function f0 is
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defined as a minimizer of the criterion function

Qn(f) =
1

2

ˆ
f(x)2dx−

ˆ
f(x)dFn(x),

over K, the class of convex and decreasing nonnegative functions on [0, ∞). Here Fn

is the empirical distribution function of the sample. The definition ofQn is motivated

by the fact that if Fn had density fn with respect to Lebesgue measure, then the least

squares criterion would be

1

2

ˆ
(f(x)− fn(x))2dx =

1

2

ˆ
f(x)2dx−

ˆ
f(x)fn(x)dx+

1

2
fn(x)2dx

=
1

2

ˆ
f(x)2dx−

ˆ
f(x)dFn(x) +

ˆ
fn(x)2dx,

(3.1)

where the last (really undefined) term does not depend on the unknown f with respect

to which we seek to minimize the criterion. Note that C, the class of convex and

decreasing density functions on [0,∞), is the subclass of K consisting of functions

with integral 1. The next two lemmas, taken from Groeneboom’s paper (Groeneboom

et al. 2001) with a slight change in notation, help characterize the LSE for 2-monotone

densities.

Lemma 18. There exists a unique f̃n ∈ K that minimizes Qn over K. This solution is

piecewise linear and has at most one change of slope between two successive observations

X(i) and X(i+1) and no changes of slope at observation points. The first change of slope

is to the right of the first order statistic and the last change of slope, which is also the

right endpoint of the support of f̃n, is to the right of the largest order statistic.

Lemma 19. Let Yn be defined by

Yn(x) =

ˆ x

0

Fn(t)dt, x ≥ 0.
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Then the piecewise linear function f̃n ∈ K minimizes Qn over K if and only if the

following conditions are satisfied for f̃n and its second integral H̃n =
´

0<t<u<x
f̃n(t)dtdu:

H̃n(x) ≥ Yn(x), ∀x ≥ 0,

and

H̃n(x) = Yn(x), if f̃
′

n(x+) > f̃
′

n(x−)

For g ∈ C, the convex subset of K corresponding to convex and decreasing densities

on [0,∞), define the minus loglikelihood function by

−
ˆ
log g(x)dFn(x), g ∈ C,

and the nonparametric maximum likelihood estimator as the minimizer of this function

over C. To relax the constraint
´
g(x)dx = 1 and get a criterion function to minimize

over all of K, we define

ψn(g) = −
ˆ
log g(x)dFn(x) +

ˆ
g(x)dx, g ∈ K.

The next lemma from Groeneboom et al. (2001) characterize the MLE estimators for

2-monotone densities.

Lemma 20. The MLE f, exists and is unique. It is a piecewise linear function and has

at most one change of slope in each interval between successive observations. It is also

the unique minimizer of ψn over K.

Thus, for n = 1, the MLE is a function on [0,∞) which only changes slope at

the endpoint of its support. Denoting this point by θ, the observation by x1, we

find that the maximum likelihood estimator corresponds to θ = 2x1, which differs

from the least squares estimator. However, it can be shown that asymptotically, the
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two estimators are equivalent. The maximum likelihood estimator is characterized as

follows: Let Gn(t, f) =
´ t

0
f(u)−1dFn(u) and let Hn(t, f) =

´ t
0
Gn(u, f) du. Then, the

MLE estimator Ĥn = Hn(t, f̂) satisfies

Ĥn(t) ≤ 1

2
t2, ∀ t ≥ 0,

and

Ĥn(t) =
1

2
t2, iff̂

′

n(t−) < f̂
′

n(t+).

This characterization also implies the fact that the estimator can have at most one

change of slope between successive observations. So, the MLE estimator can be treated

as a sort of “envelope” function whereas the LSE estimator can be treated as an “inve-

lope” function (a term coined by Groeneboom et al.). Both are a kind of “derivative”

of the empirical distribution function, just like the Grenander estimator of a decreas-

ing density. Also, the MLE f̂n solves a sort of a weighted least squares problem with

“self-induced” weights.

An example of an invelope function is shown in figure 3.2, and it is taken from

Groeneboom, Jongbloed and Wellner’s (2001) paper. The solid line Yn represents the

integral of F while the dashed line H̃n represents the estimate for a sample of size 20 for

the density f(x) = 3(1− x)2, 0 ≤ x ≤ 1. The LSE and MLE estimators are uniformly

consistent on closed intervals bounded away from 0. More formally, if X1, X2, . . . are

i.i.d. observations from f0 ∈ C, then for each c > 0,

supc≤x<∞|f̃n(x)− f0(x)| →as 0

and

supc≤x<∞|f̂n(x)− f0(x)| →as 0.
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Although the estimates are inconsistent at 0, Balabdaoui and Wellner (2007) later

showed that f̃n(n−α) →as f0(0), for any α ∈ (0, 1/3). The convergence rates of both

f̃n(t) and f̂n(t) are found to be n2/5 , while the convergence rate of f̃
′
n(t) and f̂

′
n(t) are

n1/5, for any time point t > 0.

3.2 k-monotonicity and Recurrence Times

The result connecting k-monotonicity and the recurrence time structure is given in

the following lemma.

Lemma 21. If a density is k-monotone, then the corresponding recurrence time density

is (k+1)-monotone for any value of k>1.

Proof. The proof of the lemma hinges on the fact that

gT̃ (t) =
ST (t)

µT
.

Thus, (−1)jg
(j)

T̃
(t) = (−1)(j−1) f

(j−1)
T (t)

µT
, which is convex and decreasing for j=1(1)k-1.

So, the recurrence time density is (k+1)-monotone.

Thus, for any given density, the corresponding forward and backward recurrence

time data becomes 2-monotone. So, we need a shape constraint for the recurrence time

data estimate. Although a lot of work has been done on k-monotone densities, no-one

has looked at it under right-censoring. In the next section, we propose two possible

estimators for right-censored 2-monotone density estimates based on the LSE and MLE

estimates in the censored case.
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3.3 Algorithm

We now make the following assumptions for our model:

A1: T̃ and C̃ are independent.

A2: µf =
´
S(v)dv <∞.

A3: Eg̃(T
2) <∞.

The first condition basically states that the censoring time is independent of the

recurrence time. The second and the third assumptions yield finite first and second

mon=ments for the recurrence time. These two conditions can be ensured by assuming

g0(0+) < τ <∞.

Let us assume that y1, . . . , yk are the uncensored observations and zk+1, . . . , zn are

the censored observations for some forward recurrence time data. Now, we assume that

we have censored forward recurrence time data from some decreasing density. Then,

to estimate the original density, we first estimate the corresponding two-monotone

density gT̃ . After estimating gT̃ , we look at the estimation of ST by using the fact that

ST (t) = gT̃ (t)/gT̃ (0+). Now, although the estimate at g0+ under shape restriction is

inconsistent, Balabdaoui and Wellner (2007) have shown that the estimate of gT̃ (n−α)

converges almost surely to g(0+) as n goes to infinity for 0 < α < 1/4.

We want to estimate the distribution of the data keeping in mind that it is 2-

monotone. Our algorithm is as follows:

1. Fit a parametric least squares model to the data.

2. Obtain estimates of the censored observations ( ˆzk+1, . . . ẑn) using conditional ex-

pectation.
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3. Obtain non-parametric least squares estimator of the 2-monotone density using

y1, . . . , yk, z̃k+1, . . . z̃n (using the least squares estimates characterized by Groene-

boom et al.).

4. Repeat steps 2-3 until the estimate converges.

5. Use ĝ(t)/ĝ(n−1/5) to estimate S(t), the survival function of the original density.

Instead of using the least squares based estimates, we can use MLE in Steps 1 and 3

to yield the following algorithm :

1. Fit a parametric maximum likelihood model to the data.

2. Obtain estimates of the censored observations ( ˆzk+1, . . . ẑn) using conditional ex-

pectation.

3. Obtain non-parametric maximum likelihood estimates of the 2-monotone density

using y1, . . . , yk, ẑk+1, . . . ẑn (using the least squares estimates characterized by

Groeneboom et al.).

4. Repeat steps 2-3 until the estimate converges.

5. Use ĝ(t)/ĝ(n−1/5) to estimate S(t), the survival function of the original density.

3.4 Consistency

Although we have two possible algorithms, we will prove the consistency and asymp-

totic results using the least squares based estimator (g̃n) only. The maximum likelihood

based estimator is asymptotically equivalent and its results will follow similarly. Let

us assume that g̃nk is the estimated density at the k-th iteration for a sample size of n.

Then, the consistency of g̃n is given by the following theorem:

52



Theorem 22. Suppose that y1, . . . , yk are the uncensored observations and zk+1, . . . , zn

are the censored observations from i.i.d. random variables with density f0 ∈ C. Then,

the least squares estimate is uniformly consistent on closed intervals bounded away from

0, i.e., for each c>0, we have w.p. 1, supc≤x<∞|g̃n(x)− f0(x)| → 0.

The outline of the proof of this theorem is given in Appendix 5.3. It is well known

that the Grenander estimator of a bounded decreasing density on [0,∞) is inconsistent

at zero. A similar result holds for g̃n. If we assume that both X(1) and X(2) are

uncensored, then from its characterization, we can see that

Lim inf P (g̃n(0) ≥ 2f0(0)) > 0.

However, using similar arguments as in Balabdaoui, we can show that g̃n(n−α) →as

gT̃ (0), for α ∈ (0, 1/3). We will use α = 1/5 for our calculations.

3.5 Convergence Rate and Asymptotic Distribution

We will use lemma 4.1 from Groeneboom to determine the convergence rate. The

lemma is stated below:

Lemma 23. Let x0 be a point where f0 is continuous and has a strictly positive second

derivative. Let ξn be a sequence of numbers converging to x0 and define τ−n = max{t <

ξn : g̃
′
n(t−) < g̃

′
n(t+)} and τ+

n = min{t > ξn : g̃
′
n(t−) < g̃

′
n(t+)}.

Then, τ+
n − τ−n = Op(n

−1/5).

Using this lemma, we can prove the following theorem,

Theorem 24. Under the setup of lemma 4.1 of Groeneboom, for each M > 0, we have

sup|t|≤M |g̃n(x0 + n−1/5t)− f0(x0)− n−1/5tf
′

0(x0)| = Op(n
−2/5)
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and

sup|t|≤M |g̃
′

n(x0 + n−1/5t)− f ′0(x0)| = Op(n
−1/5).

The proof of the theorem is exactly the same and hence is omitted. Finally, we

can determine the asymptotic distribution from of the estimates from the following

theorem:

Theorem 25. Under suitable conditions, the least squares estimates obtained asymp-

totically converge to the following distribution:

n2/5c1(f0, θ)(g̃n(x0)− f0(x0))→d H
′′
(0),

n1/5c2(f0, θ)(g̃
′

n(x0)− f ′0(x0))→d H
(3)(0),

where c1(f0, θ) = ( 24

v(θ)f20 (x0)f
′′
0 (x0)

)1/5 and c2(f0, θ) = ( 243

v1/2(θ)f0(x0)f
′′
0 (x0)3

)1/5, and where

H is same as the one defined in section 3.1.

The proof of this theorem is given in Appendix 5.3.

Remark 26. We are interested in the survival function of the original density ie ST .

Now, gT̃ = ST
µT

and

ST (t) =
gT̃ (t)

gT̃ (0)
.

But, the estimates we obtained are inconsistent at 0. However, it can be shown that

g̃n(n−α)→as gT̃ (0), for α ∈ (0, 1/3). We use α = 1/5 for our calculations.

Thus, we find that the algorithm yields a consistent estimator for a 2-monotone

density. The results can also easily be extended for a k-monotone density. So, this

method can be used to estimate the original density from recurrence time data in the

absence of covariates.
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3.6 Determination of Monotonicity

An important concern is the determination of the monotonicity of the data obtained

if we do not know that beforehand. For this, our idea is to obtain k-monotone density

estimates to the data for various choices of k. Then, we use some sort of distance criteria

(like maximum absolute deviance) to look at the difference between the consecutive

estimates. Finally, we aim to use some sort of change-point analysis to determine the

best possible value of k. For example, we have simulated data of sample size 100 from

a standard exponential distribution and then from a 5-monotone density. Then we

obtained the k-monotone least square density estimates for different choices of k. The

results are given in figures 3.3 and 3.4.

In figure 3.3, we are looking at the maximum absolute deviation from the actual

exponential density. Thus, we find that as the monotonicity increases, the maximum

absolute deviation decreases, i.e. we get a better estimator. This is expected, as the

exponential distribution is k-monotone for all k. In figure 3.4, we are looking at the

difference of the maximum absolute deviations. So, we find that the deviations decrease

at first, and then there is an increase at 5-6 and then it decreases again. So, basically

after 5, it starts estimating a different quantity and although the deviations decrease,

the estimation is biased.

3.7 Simulation Studies

Thus, we have shown that we can obtain consistent and asymptotically efficient

estimators for two-monotone densities in the presence of censoring. Also, we have shown

that the least squares based estimator and the maximum likelihood based estimator

yield the same asymptotic results. The logical next step is to look at the performance

of these estimators under both simulation settings as well as for data obtained from

various studies.
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For simulation studies, we generate data from the exponential distribution (for

various choices of the parameter θ) and then use a uniform density (Uniform(0, k) for

various choices of k) to right censor the data. In general, it is seen that as the sample

size increases, we have a better fit, i.e. there is a decrease in the maximum absolute

difference between the estimated density and the target density. Also, we have a better

fit as the censoring proportion decreases. The following figures (3.5 and 3.6) show a

special case of the estimation when the sample size is 100 and the censoring proportion

is 30%.

The figures show that the estimation is very similar to the 2-monotone density

estimation in the absence of censoring. Finally, we look at the maximum absolute

deviations for the estimation of an exponential distribution for various choices of n

and p. The maximum absolute deviation is calculated over (0.2, x(n)).This simulation

is repeated 1000 times and the mean value of the maximum deviations is reported in

table 3.1.

Table 3.1: Maximum Absolute Deviations for Various Choices of n and p

n 100 200 500
p=0.3 0.235 0.207 0.147
p=0.2 0.211 0.193 0.121
p=0.1 0.200 0.178 0.099

3.8 Data Analysis

We have also obtained permission to use data from the ARIC study. The data is on a

population-based cohort of people between ages 44 and 66 and has their age at visit 1 as

well as their time of death/censoring. The data comes from a cohort where participants

are entered as and when they come into the study. Also, the participants are followed till

December 31, 2012, unless lost to follow-up before that. The dataset provides us with a
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perfect opportunity to use our estimators for length-biased right-censored observations.

We have a total of 14,255 participants in the dataset, out of which around 9552 are

censored. So, the censoring percentage is around 67% and is quite high. We also have

some other covariates which we ignore for this study. The covariates are race (White

and African American), indicator of diabetes at baseline,indicator of hypertension at

baseline, HDL and LDL levels at baseline in mg/d: and education level. Diabetes is

defined as fasting glucose ≥ 126 mg/dL, non-fasting glucose ≥ 200 mg/dL, self report of

diagnosis of diabetes by a physician, or use of diabetic medication in the preceding two

weeks. Hypertension is defined as systolic blood pressure≥ 140, diastolic blood pressure

≥ 90, or use of anti-hypertensive medications in the previous two weeks. Education level

takes the following values :1 = Grade school or 0 years education, 2=High school, but

no degree, 3=High school graduate, 4=Vocational school, 5= College and 6= Graduate

school or Professional school. Before doing the actual analysis, we look at the summary

statistics with respect to the covariates, to see whether there is any difference in the

two groups. The results are summarized in table 3.2. This shows that the two groups

are quite homogenous with respect to these factors.The distribution of age at entry for

the two groups is shown in figure 3.7.

Thus, we find that the two groups are not symmetric with respect to age. Younger

people have a higher chance of being censored. Thus, age should be treated as an impor-

tant factor when we include covariates in the data. Finally, we provide a density esti-

mate in figure 3.8 and compare our method with the parametric approach, assuming the

Weibull distribution and the two-parameter gamma distribution for the original density.

The knots for the estimated density are (0.055, 0.190, 0.620, 15, 16, 35, 40, 51, 120) with

corresponding weights (0.0037, 0.02, 0.0089, 0.11, 0.13, 0.10, 0.11, 0.45, 0.04, 0.02). Now,

although the three estimates are close together, we notice that they are vastly different
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Table 3.2: Summary Statistics for the ARIC Data in the Presence of Censoring

Value Event (Death) Unobserved (Censored)
Frequency Percentage Frequency Percentage

Race
1 1510 32.10 2320 24.20
0 3190 67.90 7240 75.80
Hypertension
1 2530 54.10 6930 72.80
0 2150 45.90 2590 27.20
Diabetes
1 3760 80.50 8840 93.30
0 908 19.50 639 6.74
Education
1 680 14.50 593 6.22
2 856 18.20 1110 11.70
3 1440 30.70 3180 33.40
4 368 7.84 831 8.71
5 1000 21.40 2700 28.30
6 346 7.37 1120 11.80

from the empirical distribution of the uncensored observations. In fact, the distribu-

tion estimates are less than the empirical distribution of the uncensored observations.

The reason for this becomes apparent, when we look at the histogram of the observed

death times in figure 3.9. We started with the assumption that the original density

was decreasing, which made the forward recurrence time density decreasing and con-

vex. However, it is apparent from the histogram that this condition is not satisfied

by the observed data. Hence, even though the estimate obtained by our method is

quite close to the estimate obtained by the other two parametric methods, they fail to

properly identify the underlying structure of the data. Also, the fact that the censoring

percentage is so high, is another reason why the estimates may be a bit unstable.
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Figure 3.2: Invelope Function
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Figure 3.3: k-monotone Density Estimates for the Exponential Distribution.

Figure 3.4: Obtaining k-monotone Density Estimates for a 5-Monotone Density.
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Figure 3.5: Density Estimation, p = 0.3
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Figure 3.6: Distribution Estimation, p = 0.3
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Figure 3.7: Distribution of Age in the Two Groups.
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Figure 3.8: Density Estimates for the ARIC data in the Presence of Censoring.
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CHAPTER 4: ESTIMATION OF FRT AND BRT IN COMPETING
RISKS

4.1 Introduction

In prevalent cohort survival studies where subjects are recruited at a cross-section

and followed prospectively in time, the observed event times are length-biased and

further follow a multiplicative censoring scheme. For such studies there is an associated

initiation time which may be unknown. In this case we only observe the time from

sampling to the event of interest. This is the forward recurrence time. Further, in

such cases, standard left-truncation survival analysis methods are not applicable. In

other scenarios, such as current duration studies, the time of the initiating event may

be known but there is no subsequent follow-up after sampling. Here we observe the

backward recurrence times.

In this section, our main goal is to study nonparametric estimation for forward

and backward recurrence time data with competing risks in the absence of covariates

and censoring. The set-up is as follows. We analyze a system that can fail from K

competing risks, where K ∈ N and is fixed and finite. The random variables of interest

are (X, Y ), where X ∈ R is the failure time of the system, and Y ∈ {1, . . . , K} is the

corresponding failure cause. We cannot observe (X, Y ) directly. Rather, we observe the

corresponding recurrence time failure T ∈ R. This means that at time T , we observe

that the failure occurred and we also observe the failure cause Y . Such data can arise

naturally in cross-sectional studies with several failure causes. For example, if we look

at development of AIDS from the onset of HIV, any other disease arising from HIV
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may be treated as a competing risk.

The cause-specific hazard, hk(t), is the instantaneous risk of dying from a particular

cause k given that the subject is still alive at time t:

hk(t) = Limδt→0{
P (t ≤ T ≤ t+ δt,K = k|T ≥ t)

δt
}

and

Sk(t) = exp(−
ˆ t

0

hk(u) du).

Sk(t) may be treated as the survival when k is the only cause of failure present. The

overall survival is obtained by

S(t) =
K∏
i=1

Sk(t).

Cause specific hazards are modelled using the Cox PH model or fitting parametric

models taking into account various time-dependent effects.

Another novel approach is to use subdistribution functions (Fine and Gray 1999).

The subdistribution hazard, gk(t), is the instantaneous risk of dying from a particular

cause k given that the subject has not died from cause k. So,

gk(t) = Limδt→0{
P (t ≤ T ≤ t+ δt,K = k|T ≥ torT ≤ t,K 6= k)

δt
},

and the subsurvival function is given by

Qk(t) = exp(−
ˆ t

0

gk(u) du).

For example, suppose there are two causes of failure for a bulb. The first cause

X1 ∼ Exp(1) and the second cause X2 ∼ Exp(1.5). Then, the subdistributions of X1

and X2 are obtained by Fi(t) =
´ t

0
S(u)hi(u)du, for i = 1, 2. The subbdistributions are
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also shown in figure 4.1.
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Figure 4.1: Example of Subdistributions

We want to study the nonparametric estimation of the sub-distribution functions

G01, . . . , G0K , where G0k(s) = P (X ≤ s, Y = k), k = 1, . . . , K. We will show in Section

4.2 that this leads to estimation under a shape constraint. In section 4.3 we provide

an estimator for the density. We establish the consistency and convergence rate in 4.4

and the limiting distribution in section 4.5. Finally, we look at the performance of the

estimator under a simulation set-up as well as a data analysis in section 4.7.
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4.2 Density under Recurrence Times

The following notation will be used throughout this chapter. The observed data

is denoted by (T,∆), where T is the observation time and ∆ = j is the cause of

failure, j = 1 . . . K. Let (Ti,∆i), i = 1, . . . , n, be n i.i.d. observations of (T,∆). The

order statistics of T1, . . . , Tn are denoted by T(1), . . . , T(n). Furthermore, Fj are the

different subdistributions of T, Fnj are the empirical subdistributions of the observed

Ti, i = 1, . . . , n.

In both forward and backward recurrence time studies, only subjects who have

experienced the initiating event prior to sampling, but have not yet experienced the

terminating event, can be sampled. Thus, both the forward and the backward recur-

rence times are length biased i.e., the sample is biased towards larger values of T . One

way to model this bias (Cox (1969), Vardi (1982)) is to sample proportionally to length,

i.e., if FT is the distribution of T then the length-biased version TLB has a distribution

given by

FLB(t) =

´ t
0
udFT (u)

µT
, t ≥ 0,

where µT =
´∞

0
udFT (u).

Further, if it can be assumed that the incidence of the disease follows a stationary

Poisson process then the cross-sectional sampling time is distributed uniformly between

the onset time and the terminating time (Cox (1969), Van Es et al. (2000), Keiding

et al. (2002)). Thus Tf = TLBV , where V is uniform(0,1). It follows that if ST = 1−FT

is the survival function of T then for both Tf and Tb (commonly denoted as T̃ here),

the density gT̃ is given by

gT̃ (t) =
ST (t)

µT
. (4.1)
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So, in the presence of competing risks

gT̃ (t) =

∏
µi
µ

K∏
i=1

Si(t)

µi(t)
,

where µi is the mean of the cause specific failure distributions. For now, let us assume

that there are two underlying competing risks X1 and X2 with corresponding densities

l1 and l2 respectively. Hence, we observe T=min(X1, X2). Let us assume that the

corresponding subdensities are f1 and f2. Then, the corresponding density in the

length biased case is given by the following lemma.

Lemma 27. Under the setup given above, the recurrence time densities are given by

v1(x) = Q1(x)/µ and v2(x) = Q2(x)/µ, where Qi(x) =
´∞
x
fi(t)dt, for i=1,2 and µ is

the mean of the original distribution f = f1 + f2.

Proof. Let Yl and Zl denote the corresponding length-biased distributions for X1 and

X2. Then, we can adapt the proof in (Dauxois et al. 2014) for the uncensored case to

show that

G1(yl) = 1
µ

´ yl
0
xl1(x)L̄2(x)dx.

Hence, g1(yl) = 1
µ
ylf1(yl).

Similarly, g2(zl) = 1
µ
zlf2(zl).

Now, let X̃1 and X̃2 be the corresponding recurrence time densities.

Then, we have, X̃1 = YlU , where U ∼ Uniform(0, 1).

Hence, f(x̃ | yl) = 1/yl, 0 ≤ x̃ ≤ yl.

So, v1(x) =
´∞
x

1
yl

1
µ
f1(yl)dyl = 1

µ

´∞
x
f1(yl)dyl = Q1(x)/µ.

Similarly, we can obtain that v2(x) = Q2(x)/µ.

The previous result can be easily extended to multiple competing risks, by assum-

ing that the other competing risks together form a separate larger risk and using the

previous calculation. The result is summarized in the next corollary:
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Corollary 28. Under the previous setup if we have K competing risks with subdensities

g1, . . . , gK, the recurrence time densities are given by vi(x) = Qi(x)/µ, where Qi(x) =
´∞
x
fi(t)dt, for i=1,2 and µ is the mean of the original distribution i.e., µ =

´∞
0
S(u)du.

Thus, we find that there is an additional shape restriction on the observed sub-

densities. The recurrence time subdensities are all decreasing. We start by looking at

some parametric estimation under different scenarios in 4.6. Then, we formally define

an estimator in section 4.3.

4.3 Non-Parametric Estimation

4.3.1 Previous Work

The Kaplan-Meier estimator can easily be generalized to include competing risks.

Let tj1 < tj2 < · · · < tjkj denote the kj distinct failure times for failures of type j. Let

nji denote the number of subjects at risk just before tji and let dji denote the number

of deaths due to cause j at time tji. Then the same arguments used to derive the usual

K-M estimator lead to

Ŝj(t) =
∏
i:tji<t

(
1− dji

nji

)
.

It is interesting to note that Ŝj(t) is exactly the same as the standard K-M estimator

that one would obtain if all failures of type other than j were treated as censored cases.

If there are no ties between different types of failure, then

Ŝ(t) =
K∏
j=1

Ŝj(t),

so the K-M estimator of the overall survival is the product of the K-M estimators of

the cause-specific survivor-like functions.
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The Nelson-Aalen estimator of the cause-specific cumulative hazard is

Λ̂j(t) =
∑
i:tji<t

dji
nji

,

and corresponds to an estimate of the cause-specific hazard λj(t) that takes the value

dji/nji at tji and 0 elsewhere. One can also exponentiate the negative of the Nelson-

Aalen integrated hazard to obtain an alternative estimator of the cause-specific survivor-

like function Sj(t). A non-parametric maximum likelihood estimator of Fj(t) was pro-

posed by (Aalen 1976) and can be thought of as a special case of the Aalen-Johansen

theory of estimation for time-inhomogenous Markov processes (Aalen and Johansen

1978). The estimator, known as the Aalen-Johansen estimator is given by

Fj(t) =
∑
i:tji<t

Ŝ(tji−1)
dji
nji

.

Our aim is to use this Aalen-Johansen estimator to find an estimate of Fj(t) under the

added restriction that fj(t) is decreasing.

4.3.2 Methods

We now make the following assumptions for our model:

A1:
(
T̃,∆

)
and C̃ are independent.

A2: µf =
´
S(v)dv <∞.

A3: Eg̃(T
2) <∞.

The first condition basically states that the censoring time is independent of the

recurrence time. The second and the third assumptions yield finite first and second

moments for the recurrence time. These two conditions can be ensured by assuming
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g0(0+) < τ < ∞. Although we need finite moments for the subdistributions as well,

since f(t) = f1(t) + · · ·+ fK(t), the above conditions ensure that all the moments exist

for the subdistributions. The algorithm is as follows:

� We obtain the unrestricted NPMLE of the subdistriutions, i.e., the Aalen Jo-

hansen estimator.

� We use the LCM (least concave majorant of the estimated subdistributions) as

the estimate under the decreasing density assumption (F̃j).

� The derivative of the subdistributions gives us the decreasing subdensities (f̃j).

� We estimate the overall density by f =
∑K

i=1 f̃j.

� We use Q̂j = f̃j/f(n−α).

An important thing to note is that under no censoring, the Aalen-Johansen esti-

mator reduces to calculating the empirical subdistribution functions for the estimates,

i.e.,

Fj(t) =
1

n

n∑
i=1

I(Ti ≤ t,∆ = j).

This fact will be used in the following sections to prove consistency and determine the

rate of convergence and the asymptotic distributions.

4.4 Consistency and Convergence Rate

Let us denote the LCM obtained by the notation F̃j(t) We first prove that the

estimators F̃j based on the Aalen-Johansen estimator are consistent. The proof is

based on a minor modification of Marshall’s lemma. Let || . ||ba denote the supremum

norm over the interval [a, b]. For concave F , we have Marshall’s lemma.
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Lemma 29. If F is concave, then for any 0 < τ < τH ,

|| F̃jn − Fj ||τ0≤|| Fjn − Fj ||τn0 ,

where τn = inf {t : f̃jn(t+) < f̃jn(t)}.

Proof. We can see that

|| F̃jn − Fj ||τ0≤|| F̃jn − Fj ||τn0 ≤|| Fjn − Fj ||τn0 ,

where the second inequality follows from Marshall’s lemma.

Theorem 30. Under the given conditions, f̃jn(t) →as fj(t) for all j = 1, . . . , K and

for all t > 0.

Proof. Fix 0 < δ < t, and note that by definition of f̃jn,

F̃jn(t+ δ)− F̃jn(t)

δ
≤ f̃jn(t) ≤ F̃jn(t)− F̃jn(t− δ)

δ
.

By Marshall’s lemma, the upper and lower bounds converge almost surely to δ−1(fj(t)−

fj(t − δ)) and δ−1(fj(t + δ) − fj(t)), respectively. By the assumptions on fj and the

arbitrariness of δ, we obtain f̃jn →as fj(t).

The strong consistency of F̃jn follows directly from the above lemma. To determine

the rate of convergence, we need to perform an interesting inverse transformation of

the problem that will also be useful for obtaining the weak limiting distribution. Define

the stochastic process {ŝn(a) : a > 0} by ŝn(a) = argmaxs≥0{Fjn(s) − as}, where the

largest value is selected when multiple maximizers exist.
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Theorem 31. The rate of convergence of f̃jn to fj is n1/3, for j = 1, . . . , K.

The proof of this theorem is outlined in Appendix 5.3.

4.5 Asymptotic Distribution

The main theorem regarding the asymptotic distribution is given below:

Theorem 32. Suppose that fj is as described above and is also continuous. Then, we

can conclude that for any t bounded away from 0,

n1/3 | fj(t)f j(1)(t) | (f̃jn(t)− fj(t))→d 2C,

where C denotes the Chernoff distribution and f j(1) is the derivative of fj.

The main proof of this theorem is given in Appendix 5.3.

Remark 33. To determine the asymptotic covariance between f̃jn(t) and f̃kn, we note

that in the proof of the asymptotic distribution, we have a martingale Mn. The martin-

gales for the two processes are going to be dependent because Fjn and Fkn have asymptotic

covariance −FjFk. This can be simplified to yield the required covariance.

4.6 Simulations for Parametric Estimation

For parametric estimations, we look at the Weibull and 2-parameter Gamma den-

sities. We assume that there are two competing risks and no censoring. We follow

the approach given in Jeong and Fine (2006). The idea is to model the cause-specific

hazard instead of the whole survival function. For two competing risks, we can write

λ(t | Ψ) = λ1(t | Ψ1) + λ1(t | Ψ2). Then, the survival function becomes

S(t | Ψ) =

ˆ t

0

exp{−λ1(u | Ψ1)− λ1(| Ψ2)}du.
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Thus, S(t | Ψ) = S1(t | Ψ1)S2(t | Ψ2), where S1 and S2 may be thought of as two pseudo

survival functions. The idea is to model these pseudosurvival functions, so that we know

the cause specific hazard in each case. For our simulations, we assume that the original

density has pseudosurvival functions S1 and S2, which follow a Weibull distribution

with parameters (1,1) and (2,2) respectively. We simulate recurrence times for these

observations for a sample size of 100 and estimate the mean and the variance of the

parameters. The simulations are repeated 1000 times and the results are summarized

in table 4.1. The above simulation setup is repeated for a sample size of 500. Next,

we assume that the pseudosurvival functions follows Gamma densities with parameters

(1,1) and (2,2), under the same setup and perform the simulations in exactly the same

way. All the results are summarized in Table 4.1.

Table 4.1: Estimated Parameters for the Simulated Subsurvival Functions

Parameters n=100 n=500
Bias MSE CP Bias MSE CP

Weibull
α1 .0846 0.2827 0.944 0.0100 .0991 0.953
β1 .0727 0.3210 0.953 0.0002 0.1440 0.951
α2 .2419 0.7585 0.939 −0.2337 0.2727 0.942
β2 .0323 0.2743 0.955 0.0203 0.1149 0.952

Gamma
α1 0.0521 0.2341 0.951 0.0092 0.0995 0.954
β1 0.0326 0.2579 0.951 0.0018 0.0932 0.949
α2 0.2840 0.5386 0.943 0.1032 0.1763 0.947
β2 0.1064 0.2483 0.947 0.0102 0.0982 0.951

Thus, we find that the estimates obtained using our methods are quite close to the

actual parameter values, and that the mean bias decreases as the sample size increases.

The variance estimators accurately reflect the actual variance, while the confidence

intervals have correct coverage probabilities. This validates our calculations for the

recurrence time densities.
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4.7 Data Analysis

We will utilize data from the ARIC study. The data is on a population-based

cohort between ages 44 and 66 and has their age at visit 1 as well as their time of

death/censoring. The data comes from a cohort where participants are entered as and

when they come into the study. Also, the participants are followed till December 31,

2012, unless lost to follow-up before that. The dataset provides us with a perfect oppor-

tunity to use our estimators for competing risks data. We have a total of 14,255 people

in the dataset, out of which around 9552 are censored. So, the censoring percentage

is around 67% and is quite high. We also have some other covariates which we ignore

for the study at this time. The covariates are race (White and African American),

indicator of diabetes at baseline,indicator of hypertension at baseline, HDL and LDL

levels at baseline in mg/dL and education level. Diabetes is defined as fasting glucose

≥ 126 mg/dL, non-fasting glucose ≥ 200 mg/dL, self report of diagnosis of diabetes by

a physician, or use of diabetic medication in the preceding two weeks. Hypertension

is defined as systolic blood pressure ≥ 140, diastolic blood pressure ≥ 90, or use of

anti-hypertensive medications in the previous two weeks. Education level takes the

following values: 1 = Grade school or 0 years education, 2=High school, but no degree,

3=High school graduate, 4=Vocational school, 5= College and 6= Graduate school

or Professional school. The competing risks we are interested in are incident stroke,

heart failure, heart attack and death. The variable for heart attack actually looks at

incident myocardial infarction (MI, i.e., a heart attack), fatal CHD, silect MI detected

by ECG, or coronary revascularization procedure and is the most general heart attack

related variable in ARIC and used in most manuscripts. Since a large portion of the

data is actually censored, we are going to lump the death and censored observations

into one variable. So, our main inference is going to be about the other three variables.

Before doing the actual analysis, we look at the summary statistics with respect to the
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covariates, to see whether there is any difference between the different groups. The

results are summarized in 4.2. Thus, we find that the covariates are quite similar in

the different competing risks groups.
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Table 4.2: Summary Statistics for the ARIC Data in the presence of Competing Risks

Value Stroke Heart Failure Heart Attack Death/Cens
Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage

Race
1 352 40.50 618 35.30 288 25.10 2570 24.50
2 517 59.50 1140 64.70 861 74.90 7920 75.50
Hypertension
1 406 46.90 896 51.20 629 55.10 7530 72.10
2 459 53.10 855 48.80 512 44.90 2910 27.90
Diabetes
1 688 80.00 1320 76.30 930 81.70 9650 92.80
2 172 20.00 412 23.70 208 18.30 754 7.25
Education
1 134 15.40 259 14.80 136 11.80 744 7.11
2 157 18.10 356 20.40 188 16.40 1270 12.10
3 256 29.50 517 29.60 368 32.10 3490 33.30
4 74 8.52 112 6.40 89 7.75 924 8.83
5 175 20.10 383 21.90 279 24.30 2860 27.30
6 73 8.40 122 6.98 88 7.67 1190 11.30
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We estimate the subdistribution functions using our method, and the hazard spe-

cific cumulative incidence function approach from the Jeong and Fine (2006) paper. We

estimate the parametric models using Weibull and 2-parameter gamma as the pseudo-

survival functions. The results are given in figures 4.2, 4.3 and 4.4. We also look at the

subdensity estimates for our estimator in 4.5. Thus, we see that the three estimators

yield comparable subdistribution functions. Therefore, our method is comparable to

the parametric models and yield well-behaved nonparametric estimators.
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Figure 4.2: Estimates of the Subdistribution of Stroke for the ARIC Data.
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Figure 4.3: Estimates of the Subdistribution of Heart Failure for the ARIC Data.
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Figure 4.4: Estimates of the Subdistribution of MI for the ARIC Data.
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Figure 4.5: Subdensity Estimates for the three competing risks based on our method.

83



CHAPTER 5: DISCUSSIONS AND FUTURE PROJECTS

In this dissertation, we focused on three different nonparametric and semiparametric

methods used in recurrence time data estimation. The first focused on the estimation

of the AFT model. The second and third both looked at non-parametric estimation

in the absence of covariates. The second was focussed on estimation in the presence

of censoring, while the third looked at estimation in the presence of competing risks,

when there is no censoring.

5.1 AFT model for Recurrence Time

Accelerated failure time models have become an important alternative to the pop-

ularly used Cox Proportional Hazard model in the analysis of censored data. AFT

models are particularly useful when we are interested in studying the effects of covari-

ates on duration. Different approaches to estimating covariate effect on duration or its

logarithmic transform in the presence of censoring are the least squares type estimators,

the rank based estimators, minimum distance estimators and modified Buckley-James

estimators. In the study of length-biased duration data collected at a cross-section,

AFT models become particularly useful in light of the invariance property that they

are preserved with the same covariate effect, when shifting from the case of fully ob-

served durations (for example, disease onset to death) to the corresponding partially

observed backward or forward recurrence times arising out of prevalent cohort and

current durations study designs. This invariance is quite intuitive: linearity between

the time variable and the covariates is preserved under length-biased cross-sectional

84



sampling. Also, the correspondence between the underlying survival function and the

survival function for the forward or backward recurrence time under the stationarity

of the incidence process, allows for estimation of the former. In view of this, a semi-

parametric approach is necessary to enable estimation of the regression parameter as

well as the underlying survival function. For the purpose of efficiently estimating the

regression parameter, one needs to identify the corresponding semiparametric efficient

score. This is crucial since in backward and the forward recurrence time cases, the

covariate distribution is functionally dependent on the regression parameter and thus

bringing into question the validity and efficiency of a naive (based on not considering

the effect of length-biased cross-sectional sampling) analysis observed forward or back-

ward recurrence times. The efficient score function does not change if we assume that

the covariate distribution is degenerate at the observed values and thereby validating

the use of a naive estimator for the regression parameter based on conditioning on the

covariates. However, for the purpose of estimating the core survival function, a naive

analysis is not valid in general.

It is of both practical and theoretical interest to investigate such invariance prop-

erties for other known statistical models. In particular, we saw that the proportional

hazard model λ(t | z) = e−θ
′zλ0(t) is not preserved under length-biased cross-sectional

sampling, except when the core time variable has a Pareto density, which includes the

exponential distribution as a limiting case. For the special case of the exponential

distribution, the PH model coincides with the AFT model. A future research interest

is to investigate semiparametric linear transformation models given byT = g(θ
′
Z)U ,

where U has a known density but the transformation m is unknown and needs to be

estimated.

Another important topic to look at is time-dependent accelerated failure time model.

Here, we assume that we observe the failure time T and the covariate history Z̄(T ),
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i.e., the covariate history upto time T . In the time-dependent model, there is a latent

variable U , which is related to the observation (T, Z̄(T )) as

U =

ˆ T

0

exp{φ0Z̄(t)},

where φ0 is an unknown parameter (Robins 1992). The AFT structure may not

remain if we look at the corresponding recurrence time model for the time-dependent

data. So, this is an interesting area for future research.

5.2 Censored 2-Monotone Data

In Chapter 3, we have successfully developed an algorithm to determine the non-

parametric two-monotone density estimate. The main purpose behind doing this was

because recurrence time data for decreasing densities are going to be two-monotone.

We have also shown that if the original density is k-monotone, then the recurrence

time density is (k + 1)-monotone. So, it would seem that we should be able to extend

our results to general k-monotone density estimation using the results of Balabdaoui

and Wellner (2007). The main theory for uncensored data is to find the knots τn

(where the k − 1th derivative changes slope), and fit separate (k − 1)-degree splines

between two successive knots. It can be shown that the estimates thus obtained are

consistent and have a convergence rate of n(k−1)/(2k+1). A possible idea is to use the

same algorithm, altering the estimator for the 2-monotone part with the k-monotone

part. Hence, following the notation of Chapter 3, one possible algorithm may be as

follows:

1. Fit a parametric least squares model to the data.

2. Obtain the estimates of the censored observations ( ˆzk+1, . . . ẑn) using conditional

expectation.
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3. Obtain the non-parametric least squares estimator of the k-monotone density

using y1, . . . , yk, z̃k+1, . . . z̃n (using the least squares estimates characterized by

Balabdaoui and Wellner (2007)).

4. Repeat steps 2-3 until the estimate converges.

5. Use ĝ(t)/ĝ(n−1/5) to estimate S(t), the survival function of the original density.

However, the asymptotic properties of the estimator should be carefully explored, be-

cause the rates of convergence calculations require different techniques.

Another issue that we have avoided is inference for the two-monotone density es-

timator. There are a number of problems with using the Chernoff distribution (C)

for inference. The first problem is that the density of C does not have a closed form

(Groeneboom 1988). Also, the normalizing constant can be difficult to estimate. Also,

it has been shown by Kosorok (2008a), that the nonparametric bootstrap is inconsistent

for pointwise inference (i.e., inference for f(t) at a given value of t ∈ [0, 1]). Hence, it is

very difficult to obtain valid uniform confidence bands for the Grenander estimator. It

appears as if establishing the uniform rate,which seems to be n1/3(log n)−1/3, is not too

hard in comparison to establishing distributional convergence. Under some simplify-

ing assumptions, it can be shown that the extremal limiting distribution may yield an

extreme value distribution in the limit after standardization. Establishing this, how-

ever, seems to be difficult without results for convergence of empirical processes over

non-compact index sets.

Finally, we can also look at the estimation of two-monotone densities under cen-

soring in the presence of covariates. As far as we know, very little work has been

published on this topic. Some work on regression has been done by Balabdaoui and

Wellner (2007), but no one has looked at the results under censoring, which might be

an interesting topic.
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5.3 Competing Risks

Finally, we worked on recurrence time density estimation in the presence of com-

peting risks. We developed an algorithm for estimation and showed its consistency and

asymptotic properties.

Competing risks are said to be involved, if a patient may suffer from a number

of different mutually exclusive risk factors, such as death from different causes. For

competing risks, we obtain the cause specific hazard as follows:

We would like to extend the results that we obtained to include covariates in the

model. The cause-specific hazard, hk(t | Z), is the instantaneous risk of dying from a

particular cause k given that the subject is still alive at time t with covariates Z:

hk(t | Z) = Limδt→0{
P (t ≤ T ≤ t+ δt,K = k | T ≥ t, Z = z)

δt
},

and

Sk(t | Z) = exp(−
ˆ t

0

hk(u | Z) du).

Cause specific hazards are modelled using the Cox PH model or fitting parametric

models taking into account various time-dependent effects.

Another novel approach is to use subdistribution functions (Fine and Gray 1999).

The subdistribution hazard, gk(t | Z), is the instantaneous risk of dying from a partic-

ular cause k given that the subject has not died from the cause k. Thus,

hk(t | Z) = Limδt→0{
P (t ≤ T ≤ t+ δt,K = k|T ≥ t or T ≤ t,K 6= k and Z = z)

δt
},

and the subsurvival function is given by

Qk(t | Z) = exp(−
ˆ t

0

gk(u | Z) du).
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Our future aim will be to extend our current results to the Fine and Grey model for

recurrence time data.

The issue of inference also remains open for this particular problem, as this is

also based on the Chernoff distribution and the Grenander estimator. Under some

simplifying assumptions, it can be shown that the extremal limiting distribution may

yield an extreme value distribution in the limit after standardization. Establishing this,

however, seems to be very difficult, as mentioned previously. It is also important to

determine whether this can be accomplished without imposing assumptions so strong

that the primacy of the Grenander is lost.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

Here we give some results with their proofs for Chapter 2

Here is the proof of the first lemma. The satement of the lemma is :-

Consider the semiparamatric model P = {Pg : g ∈ G}, where the distribution Pg

has density pg(u) = Sg/
´
Sg and G is a collection of densities on R+. Let Ġg and Ṗg be

the tangent sets for the models G and P respectively at g. If Ag is the score operator

mapping tangents in Ġg to Ṗg then, AgĠg is dense in the maximal tangent set L0
2(S)

for P .

Proof. Let S be the survival function corresponding to g. Consider the following para-

metric path through g:

η 7→ gη =
ψ(ηa)g´
ψ(ηa)g

,

where ψ : R 7→ R+ is a bounded, continuously differentiable with bounded derivative

ψ′ satisfying ψ(0) = ψ′(0) = 1 and a ∈ L0
2(g). Note that L0

2(g) is the maximal

nonparametric tangent set for G while L0
2(S) is the maximal tangent set for P . The

corresponding parametric submodel for pg is

pgη(u) =

´∞
u
ψ(ηa)(v)g(v)dv´∞

0

´∞
u
ψ(ηa)(v)g(v)dvdu

.

Thus the tangent set Ṗg is given by the functions

Aga(u) =

´∞
u
a(v)g(v)dv

S(u)
−
ˆ ∞

0

´∞
u
a(v)g(v)dv´∞

0
S(u)du

du

≡ b(u).

Note that b ∈ L0
2(S), b(∞) = 0 and b(0) =

´∞
0
va(v)g(v)dv. Thus Ġg = {a : a ∈

L0
2(g),

´
va(v)g(v)dv < ∞} and Ṗg = {b : b ∈ L0

2(S), b(0) < ∞, b(∞) = 0}. Let A∗g
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be the adjoint (Bickel et al. (1993)) for Ag, then for b ∈ Ṗg and a ∈ Ġg we must have

〈Aga, b〉L0
2(S) = 〈a, A∗gb〉L0

2(g),

where 〈·, ·〉L denotes the inner product on the space L (Van der Vaart (1998), Bickel

et al. (1993)). This follows from considering Ġg and Ṗg as dual normed spaces. Now

for b ∈ L0
2(S),

〈Aga, b〉L0
2(S) =

ˆ ∞
0

ˆ ∞
u

a(v)g(v)b(u)dvdu

=

ˆ ∞
0

ˆ v

0

b(u)a(v)g(v)dudv.

Thus, A∗gb(v) =
´ v

0
b(u)du (∈ L0

2(g)). Note that A∗gb(v) = 0 gives b(v) = 0. This implies

that N(A∗g) = 0, where the kernel N(A∗g) = {b : A∗gb = 0}. N(A∗g) is also the ortho-

complement of the range set R(Ag) = AgĠg and thus AgĠg is dense in L0
2(S). Thus the

closure of AgĠg is equal to L0
2(S).

We also look at the proof of the main theorem, whose statement is :-

Suppose that the covariate vector Z̃ is almost surely bounded. Then under (A1)–

(A3) and with φ(u) = 1− ug(u)/S(u) and

M(t) = I{U(θ) ≤ t} −
ˆ t

0

I{U(θ) > s}λU(θ)(s)ds, (5.1)

the ordinary score for θ at θ = θ0 is

l̇θ0 = z

ˆ Uc(θ0)

0

Rφ(s)dM(s)− (z − EZ̃), (5.2)

the tangent space ṖS for S is {l̇Sb : b ∈ L0
2(S)} where the score operator l̇S for S is
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given by

l̇Sb =

ˆ Uc(θ0)

0

Rb(s)dM(s), (5.3)

the tangent space for h is {b : b ∈ L2(h),
´
b(z)eθ

′
0zh(z)dz = 0}, and the efficient score

for θ at θ = θ0 is

l̃θ,S =

ˆ Uc(θ0)

0

(z − E{Z̃|U c(θ0) ≥ s})Rφ(s)dM(s), (5.4)

where for a ∈ L0
2(S),

Ra(t) = a(t)−
´∞
t
a(u)S(u)du´∞
t
S(u)du

.

Proof. The likelihood for 1 observation (Ui ∧ U c
i , δi, Z̃i) is given by

l(θ) =
{
gU(θ)(Ui)

}δi {ˆ ∞
Uci

gU(θ)(u)du

}1−δi

hZ,θ(Z̃i).

Taking log and differentiating with respect to θ we get the ordinary score for θ

l̇θ = Z̃i
{
δiφ(e(θ−θ0)′Z̃iUi) + (1− δi)E

[
φ(e(θ−θ0)′Z̃U(θ))|U(θ) > U c

i

]}
−(Z̃i − EZ̃).

The desired expression in (5.2) for the ordinary score function for θ can be derived

by noting that the first term on the right hand side of the last equation is a Doob’s

martingale (Bickel et al. (1993)) and can be expressed in terms of the counting process

martingale in (5.1) using proposition A.3.6 in Bickel et al. (1993).

From lemma 1 we conclude that the tangent space ṖS for S can be taken to be

the maximal tangent space L0
2(S) and thus (5.3) follows from (5.2). In order to find

Π0(l̇θ0|ṖS) = l̇Sb
∗ we find b∗ ∈ L0

2(S) such that l̇θ0 − l̇Sb∗ ⊥ l̇Sb ∀ b ∈ L0
2(S). That is

E
{(
l̇θ0 − l̇Sb∗

)
l̇Sb
}

= 0. Note that l̇θ0− l̇Sb∗ =
´ Uc(θ0)

−∞ (Z̃Rφ−Rb∗)dM(s)− (Z̃−EZ̃).
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Conditioning on Z̃ and U c(θ0) and using the fact that U(θ0) is distributed independently

of Z̃ and U c(θ0) we get

E
{(
l̇θ0 − l̇Sb∗

)
l̇Sb
}

= EE
{

(l̇θ0 − l̇Sb∗)l̇Sb
∣∣∣Z̃, U c(θ0)

}
= EE

{ˆ Uc(θ0)

0

(Z̃Rφ(s)−Rb∗(s))Rb(s)I{U(θ0) ≥ s}λU(θ0)(s)ds
∣∣∣Z̃, U c(θ0)

}

= E

{ˆ Uc(θ0)

0

(Z̃Rφ(s)−Rb∗(s))Rb(s)dFU(θ0)(s)

}

=

ˆ {
E(Z̃I{U c(θ0) ≥ s})Rφ(s)− EI{U c(θ0) ≥ s}Rb∗(s)

}
Rb(s)dFU(θ0)(s).

The second equality above is obtained by using the result that if Yi =
´
fidM, i = 1, 2,

then

EY1Y2 = E

ˆ
f1f2d〈M,M〉 = E

ˆ
f1(s)f2(s)I{U(θ0) ≥ s}dΛ(s).

Thus E
{(
l̇θ0 − l̇Sb∗

)
l̇Sb
}

= 0 for all b ∈ L0
2(S) if

Rb∗(s) =
E(Z̃I{U c(θ0) ≥ s})
EI{U c(θ0) ≥ s}

Rφ(s) = E{Z̃| U c(θ0) ≥ s}Rφ(s).

Thus the projection of l̇θ on Ṗs is given by

Π0(l̇θ0 |ṖS) =

ˆ Uc(θ0)

0

E{Z̃| U c(θ0) ≥ s}Rφ(s)dM(s). (5.5)

Now for finding Ṗh for h ∈ H′, we consider the parametric path η 7→ hη = (1+ηa)h,

where a ∈ L0
2(h). The score operator for h is given by

l̇ha = a−
´
eθ
′
0za(z)h(z)dz´
eθ
′
0zh(z)dz

≡ b(z),
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for a ∈ L0
2(h). Note that b ∈

{
b :
´
b(z)eθ

′
0zh(z)dz = 0

}
. If h is unrestricted then

the tangent space can be taken to be the ortho-complement of the linear span of

eθ
′
0z, i.e., [eθ

′
0z]⊥ in L2(h). Since U(θ0) is distributed independently of Z and U c(θ0),

E0{b(Z̃)l̇Sb
′} = 0 for any b ∈ [eθ

′
0z]⊥ and l̇Sb

′ ∈ ṖS, i.e., ṖS ⊥ Ṗh. Since (z − EZ̃) ∈

[eθ
′
0z]⊥, we get

Π0(l̇θ0| [eθ
′
0z]⊥) = −(z − EZ̃). (5.6)

Now subtracting (5.5) and (5.6) from (5.2) we get from the efficient score (5.4).

Next we give an outline of the proof of 12. The satement of the lemma is

Under (C1), (C2), (R1)–(R4) and (K1) we have,

(a) |ĝn,θ(t)− gθ(t)| = Op(n
−1/2)Op(h

−1
n ) +Op(h

2
n)

(b) |Ĝn,θ(t)−Gθ(t)| = Op(h
2
n)

(c) |ĝ′n,θ(t)− g′θ(t)| = Op(n
−1/2)Op(h

−2
n )

(d) |Ĝ′n,θ(t)−G′θ(t)| = Op(h
2
n)

uniformly in t and θ ∈ Θ,

Proof. Note that Eθ,λĝn,θ(t) = 1
hn

´
K (h−1

n (t− u)) dG0,θ(t) for all t ∈ <, where, G0,θ(t) ≡´ t
−∞

´
f0(v + (θ − θ0)′z)ζθ,z(v)h(z)dzdv. Thus the error term is given by

∣∣∣ĝn,θ(t)− Eθ,λĝn,θ(t)∣∣∣ =
∣∣∣ˆ 1

hn
K

(
t− u
hn

)
{dGn,θ(t)− dG0,θ(t)}

∣∣∣
=

∣∣∣ˆ 1

h2
n

K ′
(
t− u
hn

)
{Gn,θ(t)−G0,θ(t)}dt

∣∣∣
≤

∥∥Gn,θ −G0,θ

∥∥
∞

∣∣∣ 1

hn

ˆ
K ′(v)dv

∣∣∣.
By lemma 2 the first term in the preceding line is Op(n

−1/2) and by condition (K1) the
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second term is O(h−1
n ). The bias term is given by

∣∣∣Eθ,λĝn,θ(t)− gθ(t)∣∣∣
=
∣∣∣ˆ 1

hn
K

(
t− u
hn

)
gθ(u)du− gθ(t)

∣∣∣
=
∣∣∣ˆ 1

hn
K

(
t− u
hn

)
{gθ(t) + (t− u)g′θ(t) +

1

2
(t− u)2g′′θ (tu)}du− gθ(t)

∣∣∣
≤ 1

2
‖g′′θ‖∞ h2

n

ˆ
v2K(v)dv.

By (R1) and (K1), the bias term is Op(h
2
n), thus proving (a).

Also,

ĝ′n,θ(t) = −z
ˆ

1

hn
K ′
(
t− u
hn

)
dGn,θ(u) +

ˆ
1

h2
n

K ′
(
t− u
hn

)
dHn,θ(u),

where Hn,θ(t) = n−1
∑
δZI{eθ ≤ t}. Let H0,θ(t) ≡ Eθ,λHn,θ(t) =

´ t
−∞

´
zf0(u + (θ −

θ0)′z)ζθ,z(t)h(z)dzdu. Then the error term for ĝ′n,θ is

∣∣∣ĝ′n,θ(t)− Eθ,λĝ′n,θ(t)∣∣∣ ≤ |z|
∣∣∣ˆ 1

h2
n

K ′
(
t− u
hn

)
{dGn,θ(t)− dG0,θ(t)}

∣∣∣
+
∣∣∣ˆ 1

h2
n

K ′
(
t− u
hn

)
{dHn,θ(t)− dH0,θ(t)}

∣∣∣.
Another use of Integration-by-parts, lemma 2 and condition (K1) in both the terms in

the preceding statement yield

∣∣∣ĝ′n,θ(t)− Eθ,λĝ′n,θ(t)∣∣∣ = Op(n
−1/2)Op(h

−2
n ).

The bias term for ĝ′n,θ after Integration-by-parts is

∣∣∣Eθ,λĝ′n,θ(t)− g′θ(t)∣∣∣ ≤ |z|
∣∣∣ˆ 1

hn
K

(
t− u
hn

)
g

(1)
θ (u)du− g(1)

θ (t)
∣∣∣
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+
∣∣∣ ˆ 1

hn
K

(
t− u
hn

)
h

(1)
θ (u)du− g(1)

θ (t)
∣∣∣,

where hθ(t) ≡
´
zf0(t + (θ − θ0)′z)ζθ,z(t)h(z)dz, g

(1)
θ (t) ≡ ∂θgθ(t)/∂t and h

(1)
θ (t) ≡

∂θhθ(t)/∂t. After another Taylor’s expansion, application of lemma 3.4.1, and by con-

ditions (R1) and (A1), we obtain

∣∣∣Eθ,λĝ′n,θ(t)− g′θ(t)∣∣∣ = Op(h
2
n),

which proves part (c). Parts (b) and (d) can be proved similarly.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

Here we give you some results along with their proofs for Chapter 3

The first theorem we look at is 22. The statement of the theorem is :-

Suppose that y1, . . . , yk are the uncensored observations and zk+1, . . . , zn are the

censored observations from iid random variables with density f0 ∈ C. Then, the least

squares estimate is uniformly consistent on closed intervals bounded away from 0 ie for

each c>0, we have wp 1,

supc≤x<∞|g̃n(x)− f0(x)| → 0.

Proof. The key step in the proof is showing that g̃n is uniformly bounded and then

follows from the proof by Groeneboom. We let τnk denote the set of locations of change

of slope of H
′′

nk as defined in Section 2.6. First assume that f0(0) <∞. Fix δ > 0, such

that [0, δ] is contained in the interior of the support of f0, and let τnk,1 e be the last

point of change of slope in (0, δ], or zero if there is no such point. Also, the last point of

change of slope is to the right of X(n), we may assume that there exists a point of change

of slope τnk,2 strictly to the right of δ. Now, using the fact that g̃n(τn) < g̃n(δ/2) < i/δ,

we will follow the proof in Groeneboom to show that g̃n(τn,1) is uniformly bounded.

So, we can use a Helley argument to show that it has a convergent subsequence and

hence by Theorem 3.1 of Groeneboom, the convergence is to f0.

Next, we look at 25. The statement of the theorem is :

Under suitable conditions, the least squares estimates obtained asymptotically con-

verge to the following distribution:

n2/5c1(f0, θ)(g̃n(x0)− f0(x0))→d H
′′
(0) and

n1/5c2(f0, θ)(g̃
′

n(x0)− f ′0(x0))→d H
(3)(0),
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where c1(f0, θ) = ( 24

v(θ)f20 (x0)f
′′
0 (x0)

)1/5 and c2(f0, θ) = ( 243

v1/2(θ)f0(x0)f
′′
0 (x0)3

)1/5

where H is same as the one defined in section 3.1.

Proof. Define the local Yn-process by

Ỹ loc
n (t) = n4/5

´ x0+n−1/5t

x0
{Gn(ν)−Gn(x0)−

´ ν
x0

(f0(x0 + (u− x0)f
′
0(x0))du}dν

= n4/5
´ x0+n−1/5t

x0
{Gn(ν)−Gn(x0)− (F0(ν)− F0(x0))}dν

+n4/5
´ x0+n−1/5t

x0

1
6
f
′′
0 (x0)(ν − x0)3dν + o(1)

=d n
3/10
´ x0+n−1/5t

x0
{Un(F0(ν))− Un(F0(x0))}dν + 1

24
f
′′
0 (x0)t4 + o(1)

⇒
√
v1/2(θ)f0(x0)

´ t
0
W (s) ds + 1

24
f
′′
0 (x0)t4

where v(θ) is the variance on Gn under censoring percentage θ. Plugging in this

value in theorem 6.1 of Groeneboom, we get the desired result.
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 4

Here we give some theorems along with their proofs for Chapter 4

We begin with the proof of Theorem 31:

The rate of convergence of f̃jn to f j is n1/3, for j = 1, . . . , K.

Proof. The function ŝn described above is a sort of inverse of the function f̃jn in the

sense that f̃jn ≤ a if and only if ŝn(a) ≤ t for every t ≥ 0 and a > 0. Hence,

P (n1/3(f̃jn(t)− f j(t)) ≤ x) = P (ŝn(f j(t) + xn−1/3 ≤ t),

and the desired rate and weak convergence result can be deduced from the argmax

values of x → ŝn(f j(t) + xn−1/3). Applying the change of variable s → t + g in the

definition of ŝn, we obtain

ŝn(f j(t) + xn−1/3)− t = argmaxg>−t{F̃jn(t+ g)− (f j(t) + xn−1/3)(t+ g)}.

Thus, the probability on the LHS is precisely P (ĝn ≤ 0), where ĝn is the argmax above.

Now, by the previous argmax expression combined with the fact that the location of

the maximum of a function does not change when the function is shifted vertically, we

have ĝn ≡ argmax{g > −t}{Mn(g) ≡ F̃jn(t+ g)− F̃jn(t)− f j(t)g − xgn−1/3}.

Now, ĝn = OP (1) and Mn(g) → M(g) ≡ F j(t + g) − F j(t) − f j(t)g uniformly on

compact sets. So, we have, ĝn = oP (1). We now utilize Theorem 14.4 of Kosorok

(2008b) to obtain the rate for ĝn, under the L1 norm. Since Mn(0) = M(0) = 0, we

obtain that M(g) ≤ −g2, and by using Theorem 11.2 of Kosorok (2008b), we obtain

E∗sup|g|<δ
√
n |Mn(g)−M(g) |≤ φn(δ) ≡ δ1/2 +

√
nδn−1/3.
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Clearly, φn(δ)/δα is decreasing in δ for α = 3/2. Since n2/3φn(n−1/3) = n1/2 +

n1/6n−1/3 = O(n1/2), Theorem 14.4 of Kosorok (2008b) yields n1/3ĝn = OP (1).

The next theorem we look at is theorem 32: Suppose that F j is as described above

and is also continuous. Then, we can conclude that for any t bounded away from 0,

n1/3 | f j(t)f j(1)(t) | (f̃jn(t)− f j(t)) = 2C,

where C denotes the Chernoff distribution and f j(1) is the derivative of f j.

Proof. Let ĥn = n1/3ĝn. Since the maximum of a function does not change when the

function is multiplied by a constant, we have that ĥn is the argmax of the process

h→ n2/3Mn(n−1/3h) = n2/3(Pn − P )(1{X ≤ t+ hn−1/3, cause = j}

−1{X ≤ t, cause = j}) + n2/3[F j(t+ hn−1/3)− F j(t)− f j(t)hn−1/3]− xh.
(5.7)

Let 0 < V <∞ and applying Theorem 11.20 of Kosorok (2008b) to the sequence of

classes F jn = {n1/61{X ≤ t+hn−1/3, cause = j}−1{X ≤ t, cause = j} : −V ≤ h ≤ V }

with envelope sequence F j
n = n1/61t− V n−1/3 ≤ X ≤ t+ V n−1/3, to obtain that the

process on the right side converges in l∞(−V, V ) to h → H(h) ≡
√
f j(t)Z(h) +

f j(1)(t)h2 − xh, where Z is a two-sided Brownian motion originating at zero (two in-

dependent Brownian motions starting at zero, one going to the right of zero and the

other going to the left). From the proof of 31, we obtain that ĥn = OP (1). Also,

since H is continuous with a unique maximum, the argmax theorem now yields by the

arbitrariness of V that ĥn → ĥ, where ĥ = argmax H. ĥ can be further simplified to

| 4f j(t)

f j(1)(t)2
|1/3 argmax{Z(h)− h2}+

x

f j(1)(t)
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Now,

P (| 4f j(t)

f j(1)(t)2
|1/3 argmax{Z(h)− h2}+

x

f j(1)(t)
≤ 0)

= P (4 | f j(t)f j(1)(t) |1/3 argmax{Z− h2} ≤ x)

which yields

n1/3 | f j(t)f j(1)(t) | (f̃jn(t)− f j(t)) = 2C.
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