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ABSTRACT

James Christopher Slaughter: Bayesian Latent Variable Methods for Longitudinal
Processes with Applications to Fetal Growth
(Under the direction of Dr. Amy H Herring)

We consider methods for joint models of exposure and response in epidemiologic stud-

ies. In particular, we show how latent variable methods provide a structure for obtaining

inference about multistate growth processes and multiple longitudinal and cross-sectional

outcomes. Each model utilizes underlying, subject-specific latent variables to account for

the correlation that arises from taking multiple observations on the same sampling unit.

We also consider latent variable mixture models in order to more flexibly model the latent

variable distributions and identify latent classes of subjects who are of particular scien-

tific importance. We apply our methods to applications in reproductive health, obtaining

interesting new insights while developing and applying statistical methodology.

We first consider the problem of estimating a multistate growth process with unknown

initiation time to determine individual early fetal growth. Using cross-sectional data, we

identify fetuses that have a latent tendency to grow relatively quickly and slowly and

show that slow growth early in pregnancy is associated with an increased risk of future

pregnancy loss. These results are important to researchers who use early ultrasounds to

date pregnancies under the assumption that there is no measurable variability in early

fetal growth.

Paper two is concerned with jointly modeling the unusual, asymmetric distributions
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of birth weight and gestational age. Using latent variable mixture models, we identify a

latent class of subjects who are more likely to deliver early and have low weight. We also

allow observed covariates to be associated with latent class membership. Our approach

provides researchers a new method for examining low birth weight and pre-term birth.

In paper three, we aggregate multiple ultrasound measurements on fetal size and

blood restriction using latent variables that follow mixture distributions to identify a

latent class of subjects who are growth restricted during pregnancy. We then consider a

joint model that examines the associations between covariates, early growth restriction,

and outcomes measured at birth. Our methods are able to identify a latent class of

subjects who have increased blood flow restriction and below average intrauterine size

during the second trimester who are more likely to be growth restricted at birth.
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1 Introduction

Longitudinal data, in which repeated measurements are taken on the same subject over

time, require special statistical methods because observations on the same subject tend to

be correlated. A variety of approaches have been considered to account for the correlation

(Diggle et al. 1994) with the random effects model being one of the most popular methods.

In random effects models, observations on the same subject are assumed to be correlated

due to the effect of some unobservable variables, called the random effects. The random

effects are a type of latent variable, and random effects models are a type of latent

variable method. We will consider several other types of models in which latent variables

are used to account for correlation in longitudinal processes.

Latent variables can be broadly classified into two concepts, latent predictor vari-

ables and latent response variables. Latent predictors (exogenous latent variables) are

determined outside of the model and can be related to mis-measured covariates. The

daily average of particulate matter measurement from several monitoring stations is an

example of error-prone realization of a latent true ambient particulate matter concen-

tration predictor variable. Latent responses, also known as endogenous latent variables,

are determined within the model. Latent responses include underlying variables that can

only be measured indirectly through multiple items and are often useful for reducing the

dimensionality of the data. For example, depression is a concept that cannot be mea-

sured directly, but can be indirectly estimated using a battery of questions. While an



isolated response on the survey may not be very useful, latent variable methods provide a

natural way of aggregating multiple responses to determine an individual’s latent relative

depression level. In our reproductive health examples, we quantify the latent tendency

of an individual fetus to grow relatively quickly or slowly using information from a first

and second trimester ultrasound and his or her age and weight at delivery.

Latent variables are commonly found in structural equation models (SEMs) used in

the social sciences as a means of quantifying an unobservable concept based on sev-

eral observed variables (Joreskog 1970). SEMs consist of a latent variable model and a

measurement model. The latent variable model describes the association between latent

predictor variables and latent response variables. The second part of the model, the

measurement model, gives the relationship of measured outcomes and predictors with

latent outcomes and latent predictors.

Structural equations models provide a general modeling framework that can be used

for modeling several types of correlated data (Sanchez et al. 2005). Most work in this

area considers SEMs as a model for multivariate normal data, but they can be thought of

in a broader context. Ordinal data are directly incorporated into normal-theory models

by using threshold models. Threshold models are based on the idea that, for example,

the binary observed variable y takes on value one if some underlying continuous variable,

y∗, is above a threshold value and zero otherwise. The latent y∗ then replaces y in the

SEM (Muthen 1983, 1984). Authors including Sammel et al. (1997) and Dunson (2000)

propose additional extensions that allow for observed outcomes to be in the exponential

family as in the generalized linear model.

Latent variables can also be used in the modeling of the incidence and progression of
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disease. Many diseases can be thought of as moving through several latent health states

with the exact transition times between states unknown. Dunson and Baird (2002)

describe the progression of a chronic condition, uterine fibroids, as progressing from (1)

no disease, (2) preclinical disease, to (3) clinical disease. Information on the current

state as well as several indicators of disease progress can be used to estimate a severity

latent variable. This type of model can provide useful inference on the incidence and

progression of disease using cross-sectional data.

1.1 Reproductive Health Applications

Reproductive and perinatal health spans a broad area of research in maternal and infant

health including infertility, miscarriage, pregnancy complications, birth weight, pre-term

delivery, birth defects, childhood cancer, and child development (Bracken 1984; Kiely

1991). It has been long recognized that events preceding and during pregnancy can

influence the health and well being of both the mother and her child. Researchers have a

dual responsibility to contribute to the practical knowledge that improves health as well

as developing methodology so that we are better equipped to understand future health

problems.

1.1.1 Fetal Growth

During pregnancy, fetal development is traditionally dated from the first day of a woman’s

last reported menstrual period (LMP). The literature intermittently refers to this method

of dating as menstrual age and obstetricians often use the term gestational age inter-

changeably with menstrual age. However, structures related to growth should more
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accurately begin growing at some later time point, which we will refer to as conception.

Conceptional age is also known as fetal age; for consistency, I will only use the terms

gestational age and conceptional age.

In clinical practice, the conceptional age is rarely known so it is estimated based on

the assumption of a midcycle ovulation (conceptional age = gestational age - 14 days).

Estimates of conceptional age are inaccurate due to variability in the follicular phase

distribution, which can vary both among women and within the same woman between

different cycles (Zhou 2006). This variability can be particularly troubling when studying

early fetal development because new structures appear every few days. Several studies,

such as the Early Pregnancy Study (Wilcox et al. 1988), have been conducted to precisely

date the time from LMP to clinical pregnancy. Using urinary biomarkers, Wilcox et al.

(2001) estimated that the probability of conception on a given day of the menstrual

cycle, conditional on reaching that day of the cycle was greatest on day 13 (Figure 1).

The probability is less than 2% for each day before day eight and each day after day 21

of the cycle. Furthermore, the probability of clinical pregnancy on a given day can be

significantly modified by covariates. Wilcox et al. (2001) found the distribution of the

probability of clinical pregnancy by cycle day was more variable with a larger mode for

women with irregular compared to regular cycles.

In our first paper, we are interested in modeling early fetal development as a growth

process with an unknown initiation time. Conception, the unknown initiation time, is

known to occur after the LMP so we estimate the time from LMP to conception. Individ-

ual growth rates are estimated using a latent growth variable that allows individuals to

move between developmental states relatively quickly and slowly. In paper two, we focus
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on growth measured at birth using birth weight and gestational age. In that analysis,

we attempt to identify factors that are related to an individual’s underlying intrauterine

growth rate and a tendency to be born earlier than average. In paper three, we identify

growth restriction using multiple measurements of fetal size and blood flow restriction

collected at two time points during the second trimester. We then examine the associa-

tion between early growth restriction and growth restriction measured at birth. Papers

one and two are motivated by the Right From the Start (RFTS) study of early pregnancy

(Promislow et al. 2004), and paper three uses information from the Pregnancy, Infection,

and Nutrition (PIN) study (Savitz et al. 1999).

1.1.2 Fetal Development during Pregnancy

Human pregnancies are divided into three trimesters, each normally lasting approxi-

mately 12-14 weeks. In paper one, we are concerned with development within the first

trimester, specifically in the embryonic period which begins with fertilization and lasts

for eight weeks. During the embryonic period, the embryo proceeds through several im-

portant developmental stages. These stages can be defined by the presence or absence

of key features including the gestational sac, yolk sac, fetal pole, and cardiac activity.

Each of these features may be observed by a first trimester ultrasound depending on the

developmental progress of the pregnancy.

The gestational sac is the first structure visualized by sonography and can usually

be seen by the fifth gestational week. The average internal diameter of the gestational

sac is calculated as the mean of the anteroposterior diameter, the transverse diameter,

and the longitudinal diameter. This measurement, known as the mean sac diameter
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(MSD), provides a useful early estimator of age in a normal pregnancy. According to

Filly and Hadlock (2000), the gestational sac can be observed when it reaches 2 to 3 mm

MSD which occurs around 5 gestational weeks. MSDs up to 14 mm are very precise for

predicating gestational age in normal pregnancies, but become less reliable as pregnancy

progresses. According to Filly and Hadlock (2000), the predicted gestational age when

the MSD is 14 mm is 6.5 weeks (95%CI: [6.0, 7.0]). The yolk sac is usually observed

inside the gestational sac during the fifth gestational week. However, the dimensions of

the yolk sac do not significantly improve the ability to predict gestational age, so we do

not consider it in our analysis (Filly and Hadlock 2000).

After the gestational sac and yolk sac, the fetal pole is the next important structure

able to be detected by ultrasound (Figure 2). At this time, the crown-rump length (CRL;

also known as the fetal pole length) becomes the measurement of choice for estimating

gestational age. The fetal pole, without normal cardiac activity, can be visualized when

the CRL is as small as 2 mm, which occurs at 5.7 gestational weeks (95% CI: [5.2, 6.2]).

Normal cardiac activity begins a few days later, by the sixth gestational week (Filly

and Hadlock 2000). Hadlock et al. (1992) evaluated the association between CRL and

gestational age in 416 women with good menstrual dating. They used a fourth order

linear regression model in which CRL was able to predict 98.6% of the variation in the

natural logarithm of gestational age. Their results are similar to predictions reported

by other authors who often used only linear or quadratic CRL effects. An advantage of

the Hadlock study is that it included a relatively large sample with a greater range of

CRL measurements (from 2 mm to 120 mm) than other studies. The additional small

crown-rump length measurements are particularly useful to our analysis.
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Researchers have conducted studies to determine if gestational sac diameters or crown

rump lengths measured by an early ultrasound are indicative of early pregnancy loss.

Nyberg et al. (1987) collected data on 83 women who had two sonograms performed

during the first trimester of pregnancy. The subjects were referred for a second ultrasound

due to bleeding or pelvic pain (64 cases) or to confirm the pregnancy (19 cases). They

found that gestational sac growth was significantly slower in women who eventually

had abnormal pregnancies compared to women with normal pregnancies. However, in

evaluating 254 viable singleton pregnancies, Brizot et al. (2001) were not able to confirm

this result. Mantoni and Pedersen (1982) examined 67 patients with threatened abortion

with regular, known menstrual cycles. They found that the crown rump length of these

fetuses was smaller than expected based on their gestational age. There was also some

evidence that the fetuses that eventually aborted had on average smaller crown rump

lengths. Again, Brizot et al. (2001) could not replicate this result. Rather than consider

gestational sac diameters and fetal pole lengths directly, we conceptualize that they are

indicators of underlying fetal growth. In paper one, we estimate an early fetal growth

latent variable and examine its association with the risk of pregnancy loss.

1.1.3 Birth Weight

Birth weight is an important predictor of perinatal, neonatal, and postnatal outcomes

(Shan and Ohlsson 2002). Poor growth during the intrauterine period is associated with

increased risk of perinatal and infant morbidity and mortality. Many epidemiological

studies have been conducted to elucidate some of the determinants of birth weight. Fac-

tors including, but not limited to, race/ethnicity, maternal age, parity, previous history

7



of low birth weight, and alcohol use are generally accepted as having a strong association.

Other studies have found various environmental and occupational exposures, caffeine use,

uterine fibroids, and stress may be associated with growth and require further research

(Shan and Ohlsson 2002).

Zhang and Bowes (1995) attempted to create a standard for identifying small for

gestational age (SGA) infants stratified on race, gender, and parity. Gestational age

was calculated using LMP data for more than 95% of all subjects, but in some cases a

clinician-based adjustment was needed to correct inaccurate LMPs. The authors do not

report statistical test results indicating if they found significantly different growth curves

by race, gender, or parity. However, they do provide graphs that indicate these covariates

may be associated with growth as measured by birth weight between 25 and 42 weeks

gestation. We will examine the association of race, gender, and parity with growth rate

during the first trimester.

Weight at birth is a function of both the amount of time from conception to birth and

the intrauterine growth rate of a fetus. Low birth weight can result from slow intrauterine

growth, early conceptual age, or a combination of the two. Figure 3 plots birth weight

versus gestational age to help describe the different type of outcomes that could be

observed in a population of newborns. Most newborns are normal age and weight, but

some will be born below the 10th percentile of weight for a given gestational age (small

for gestational age, SGA) and others may be born before the 37th week of gestation (pre-

term birth). Some newborns will be both pre-term and SGA. In papers two and three,

we capture the correlation between birth weight and gestational age using an immaturity

latent variable that follows a finite mixture distribution. Using the mixture distribution
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approach also allows us to identify a latent class of subjects with early gestational age

and low weight. In reproductive health, epidemiologists refer to these types of subjects

as belonging to the “residual” distribution (Wilcox et al. 2001), and they are of special

importance because they are at increased risk for mortality and other forms of morbidity

(Buekens et al. 2000). We attempt to find covariates that are associated with belonging

to the residual distribution.

1.2 Other Applications

Our research is motivated by an application in reproductive health, but the methods

we propose can be applied to other areas as well. We explain models using examples

from other disciplines throughout this dissertation, and provide a brief overview of the

most common applications here. SEMs are primarily found in the social sciences (Bollen

1989), and Sanchez et al. (2005) advocates their use in environmental epidemiology. In

the statistics literature, reproductive toxicology has been used to motivate both multi-

state growth models (Sternberg and Satten 1999) as well as mixed continuous and dis-

crete outcomes (Catalano and Ryan 1992). Other examples of multistate models come

from AIDS research (DeGruttola and Lagakos 1989), the development of uterine fibroids

(Dunson and Baird 2002), and breast cancer screening (Duffy et al. 1995).
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Figure 2: Early fetal pole visualization by ultrasound. The pole is indicated by the two

arrowheads.
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2 Latent Variable Methods for Longitudinal Data

Latent variable methods can capture many statistical concepts including random effects,

missing data, sources of variation in hierarchical data, finite mixtures, latent classes, and

clusters (Muthen 2002; Sanchez et al. 2005). In this section, we review several types of

latent variable methods for longitudinal data.

2.1 Random Effects Models

Random effects models are commonly used for longitudinal data in which repeated or

otherwise correlated measurements are taken on the same subject. The linear random

effects model as proposed by Laird and Ware (1982) is specified by

yi = X iβ + Z ibi + εi, i = 1, ..., n (2.1)

where yi is ni × 1, X i is an ni × p matrix of fixed predictors, β is a p × 1 vector of

fixed effects, Z i a ni × q vectors of covariates for the q × 1 vector of random effects bi,

and εi is an ni × 1 vector of random errors. It is standard to assume that εi and bi are

independent and both normally distributed

bi ∼ Nq (0,D) (2.2)

and

εi ∼ Nni
(0,Ri) (2.3)



so that, marginally,

yi|β,Ri,D ∼ Nni
(X iβ,Ri + Z ′

iDZi) (2.4)

Random effects models can also be specified for non-continuous outcomes. The gen-

eralized linear model (GLM) extends the methods of regression analysis to outcome vari-

ables that follow other distributions in the exponential family (McCullagh and Nelder

1989). For example, the binomial distribution is often used for binary outcomes and

the Poisson distribution for counts. The generalized linear mixed model (GLMM) is the

GLM generalization of the linear random effects model and is specified by Diggle et al.

(1994) as

• Given bi, the responses yi are mutually independent for each i and follow a GLM

with density f(yij|bi) = exp[{(yijθij − ψ(θij))}/φ + c(yij, φ)]. The conditional

moments µij = E(yij|bi) = ψ′(θij) and vij = Var(yij|bi) = ψ′′(θij)φ, satisfy

h(µij) = x′

ijβ + z′

ijbi and vij = v(µij)φ where h and v are known link and variance

functions, respectively, and zij is a subset of xij

• The random effects bi are mutually independent with a common underlying distri-

bution, F

Frequentist likelihood-based estimation of the GLMM can be computationally difficult

because high dimensional integrals are needed to evaluate the marginal likelihood (Bres-

low and Clayton 1993). In contrast, likelihood-based Bayesian methods are relatively

straightforward to carry out using the Gibbs sampler because we can sample parameters

conditionally on the random effects (Gelfand and Smith 1990).

In summary, the basic idea underlying a random effects model is that there is a natural
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heterogeneity across individuals that can be represented in their regression coefficients.

Observations on the same individual are correlated due to sharing some unobservable

variables, bi. A model of this type is sometimes referred to as a kind of latent variable

model (Diggle et al. 1994) with the unobserved random effects being considered latent

variables.

2.2 Latent Class Trajectory Models

Growth models, which model the changes in individuals over time, are one traditional

application for random effects models. A growth model that allows for a quadratic effect

of time for subject i measurement j at age tij could be specified using the notation of

Laird and Ware by

yij = (β0 + b0i) + (β1 + b1i) tij + (β2 + b2i) t
2
ij + εij (2.5)

where bi ∼ N(0,D) and εi ∼ i.i.d.Nni
(0, Ini

). An equivalent representation of this

model in terms of subject-specific latent variables η0i for the intercept, η1i for the linear

effect and η2i for the quadratic effect is

yij = η0i + tijη1i + t2ijη2i + εij (2.6)

where ηi ∼ N ([β0, β1, β2]
′,D) and εi ∼ i.i.d.Nni

(0, Ini
).

It may be of interest how the shape of an individual growth trajectory, as measured

by the latent variables, is related to some outcome measure. For example, Muthen

and Shedden (1999) are interested in the association between the shape of an alcohol use

trajectory from ages 18-25 and the risk of alcohol dependence at age 30. Directly relating

the η coefficients to alcohol dependence using a logistic regression model is problematic
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because the meaning of a given ηi coefficient depends on the values of the other ηi

coefficients. For example, a subject with a positive linear slope (η1i > 0) could have

decreasing dependence over time (if ηi2 < 0), a purely linear increase over time (if ηi2 = 0),

or increase very rapidly over time (if ηi2 > 0). A better option is a latent class trajectory

model.

A latent class model summarizes shared features of the η coefficients using an un-

derlying categorical variable. Specifically, the mi-dimensional ηi are related to the K-

dimensional latent categories ci and p-dimensional covariates xi using

ηi = Aci + Γηxi + ζ, ζi ∼ Nmi
(0,Σ) (2.7)

with conforming parameter matrices A(mi ×K) and Γη(mi × p). The latent categorical

variable, ci = (ci1, . . . , ciK) follows a multinomial distribution with cik = 1 if individual

i falls in class k and zero otherwise. A r-dimensional vector of observed dichotomous

outcome variables ui can then be related to the latent categories using a logistic regression

model

logit (Pr(uij = 1|ci)) = Λu,jci (2.8)

where each Λu,j is an 1×K parameter matrix, j = 1, . . . , K. To complete the specification

of the model, Muthen and Shedden (1999) allow the categorical latent variables c to be re-

lated to covariates x using a multinomial logit model for unordered polytomous responses.

Defining πik = Pr(cik = 1|xi) and the logit(πi) = (log [πi1/πiK] , . . . , log [πi,K−1/πiK]),

logit(πi) = αc + Γcxi (2.9)

with a (K − 1) vector of intercepts αc and (K − 1) × p parameter matrix Γc. With
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this specification, the conditional distributions of y and u given x are influenced by

parameters that vary across the categories of c.

Several recent articles have built on these results. Guo et al. (2006) extend the latent

class regression model so that it can include regression on latent predictors. Miglioretti

(2003) discusses additional challenges that arise when the longitudinal measurements are

mixtures of continuous, binary, and count data. Lin et al. (2000) use a latent class model

to uncover subpopulation structure for both biomarker trajectories and the probability

of disease outcome in highly unbalanced longitudinal data.

2.3 Structural Equation Models

SEMs are a flexible class of models originally proposed by Joreskog (1970) that allow

modeling of both multivariate data and multiple, closely related predictors. The SEMs

described in the book by Bollen (1989) incorporate a measurement model and a latent

variable model for multivariate normal data. Using the notation of Bollen, the latent

variable model is

η = Bη + Γξ + ζ, ζ ∼ Nm(0,Σ) (2.10)

where η is and m × 1 vector of latent responses, B an m ×m coefficient matrix, and ξ

are latent predictor variables (n× 1) with coefficient matrix Γ (m× n). The latent class

model given in (2.7) is a special case of (2.10) where B = 0, Γ = [A;Γη], and ξ = [ci; xi].

The measurement model is then given by

y = Λyη + ε, ε ∼ Np(0,Σy) (2.11)

x = Λxξ + δ, δ ∼ Nq(0,Σx) (2.12)
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The vectors y(p×1) and x(q×1) are observed variables with coefficient matrices, referred

to as “factor loadings” in SEMs, Λy(p×m) and Λx(q × n) and with errors ε(p× 1) and

δ(q× 1), respectively. Identifiability is an important consideration in SEMs, and is often

accomplished by constraining covariance matrices to be diagonal, factor loading matrices

to be equal to one, and/or the variance of the latent variables to be unity (Bollen 1989).

Some researchers have given particular attention to models that contain observed

variables that are multiple indicators and multiple causes of a single latent response

variable (MIMIC) as we have in the early pregnancy example (Joreskog and Goldberger

1975). In the MIMIC model, Λy = Iq and the latent predictor variables are observed

without error (x = ξ) so that η is a stochastic function of x with coefficients Γ and error

component ζ1:

η = Γx + ζ1, ζ1 ∼ N(0, σ2). (2.13)

We say that η is affected by one or more x variables and it is associated with one or more

y variables such that

y = Λyη + ε (2.14)

with errors ε and factor loadings Λy. This model will be identifiable if there are at least

two y variables, at least one x, and η is provided a scale by either fixing the variance of

ζ1 or a factor loading term (e.g. ζ1 ∼ N(0, 1) or λ1 = 1). Identifiability of these models

as well as more general models with multiple latent variables is often a concern and is

discussed by Stapelton (1977), Robinson (1974), and Bollen (1989) among others.

Mixed effects models are closely related to SEMs where the random effects are latent

response variables that capture the correlation among observations taken on the same
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sampling unit. While conceptually similar, there are some important differences in how

they specify the mean and covariance models. To clarify the differences, consider a p-

dimensional vector of responses yi = [yi1, yi2, . . . , yip]
′ that has a linear relationship with

dose. A linear random effects model as in (2.1) could be fit

yij = β0j + β1j ∗ dosei + bi1 + bi2 ∗ dosei + εij, εij ∼ N(0, σ2) (2.15)

The same data could be analyzed with the SEM

yij = µj + λj ∗ ηi + εij, εij ∼ N(0, σ2
j ) (2.16)

ηi = γ1 ∗ dosei + δi, δi ∼ N(0, 1) (2.17)

The SEM estimates additional factor loading terms λj(λj ≥ 0) that multiply the latent

variable to allow for a non-exchangeable correlation structure as well as differences in

scale between the measured outcomes (Dunson 2006b). The correlation structure for the

random effects model is allowed to vary by dose, but for the control group (dose = 0)

simplifies to a compound-symmetric structure. In the SEM, the correlation between yij

and yij′ is given by

corr(yij, yij′) =
λjλj′

√

λ2
j + σ2

j

√

λ2
j′ + σ2

j′

(2.18)

which can differ for different sets of outcomes j and j ′. A potentially important advantage

to the random effects model is that it allows heterogeneity in the regression coefficients

for dose across different responses. Models that combine the benefits of random effects

models and SEMs are an area of current research (Dunson 2006b). Lin et al. (2000)

and Roy et al. (2003) consider other approaches for allowing differences in scale when

modeling multiple continuous outcomes.
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While Bollen considers SEMs as models for multivariate normal data, they can be

considered in a wider context. Longitudinal data can be measured on binary scale, cat-

egorical (ordinal or nominal) scale, metric scale (discrete or continuous), or in various

combinations. Other researchers have considered latent variable models which allow

measured and latent variables to have a broader class of distributions. Dunson (2000),

Sammel et al. (1997), and Moustaki and Knott (2000) consider distributions in the expo-

nential family for modeling variables that are collected on a variety of scales. In papers

two and three, we relax the normality assumption and consider options including a latent

class model in which the latent variable follows a mixture distribution.

2.4 Bayesian Structural Equation Models

The majority of literature on SEMs using latent variables is frequentist in nature, but

Bayesian approaches have been proposed by several authors. There is a long history for

Bayesian analysis of factor models, which are a special case of SEMs, in the psychometrics

literature (Ansari and Jedidi 2000; Lee 1981; Martin and McDonald 1975). Early work

on more general SEMs was done by Lee (1992) and Bauwens (1984).

There are several important differences between a Bayesian and frequentist approach

to latent variable models. While frequentists usually assume normal distributions for

latent variables, Bayesians must specify prior distributions for all unknown parameters in

both the latent variable and measurement models. The priors allow for information from

previous studies or theory to inform about the nature of the structural relationships, or,

in the absence of such information, vague priors can be used. Computationally, Bayesian

methods typically rely on Markov chain Monte Carlo (MCMC methods), which can be
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computationally expensive but provide exact posterior distributions for functions of any

unknown parameters.

A Bayesian perspective allows us to estimate the posterior distribution of latent vari-

ables as well as parameters without making asymptotic assumptions. As pointed out by

Palomo et al. (2007), estimating the joint posterior of latent variables has several advan-

tages over a frequentist approach. For one, we can obtain point and interval estimate

of factor scores for each individual in the study. We can then compare different factor

scores among individuals (through posterior probabilities that, for example, one score is

higher than another) and if an individual’s factor score changes over time. We can also

identify outlying individuals who are at the tail of the distribution.

A downside of a Bayesian approach to SEMs is that high autocorrelations can lead

to slow convergence of the Gibbs sampler. It may take several hours of sampling until

the Monte Carlo error in sampling is negligible. Recent articles have focused on MCMC

methods to implement Bayesian analysis in complex cases including non-linear systems

(Arminger 1998; Lee and Song 2004) and multi-level data (Dunson 2000; Song and Lee

2004). We discuss computational issues in more detail in section 3.

2.5 Multistate Models

A multistate process is a stochastic process that can take on a finite number of states K

where each state describes the current condition (Jewell 2005; Kalbfleisch and Prentice

2002). In a general form where we allow time to be continuous, we define Y (t) to be the

state of the process at time t, Y (t) ∈ {1, 2, . . . , K} and t ≥ 0. A Markov process is the

simplest possible model that can be expressed for Y (t). For a homogeneous population
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with no covariates, the transition rate from state i to j for an individual who is in state

i at time t− is given by

dΛij(t) = P
[

Y (t− + dt) = j|Y (u), 0 ≤ u < t, Y (t−) = i
]

= P
[

Y (t− + dt) = j|Y (t−) = i
]

for all Y (u), 0 ≤ u < t, j 6= i. The Markov assumption is that the process is memoryless

in that only the current occupied state is need to specify the transition rates. Transition

rates are allowed to depend on t, the amount of time since the beginning of the study.

In a general multistate model, subjects are allowed to transition from any state k to

another state k′. Multistate growth models impose some restrictions on the multistate

model. For one, growth models are unidirectional. That is, state transitions occur in a

distinct order, only moving from state k to state k+1, k = 1, . . . , K−1. Also, all subjects

begin at the same initial state, k = 1. Traditional survival analysis, where subjects only

move from “at risk” to “failed” states is a simple example of a unidirectional multistate

process with K = 2.

In a regular Markov model, we are able to observe the states directly so that the state

transition probabilities are the only parameters of interest. In a hidden Markov model

the complete state history of a multistate process Y (t) is not available at every time point

t, but variables that are influenced by the state are observed. The influencing variables

can be linked to underlying latent progress variables that are indicative of the waiting

time spent in a state (Dunson and Baird 2002). In a longitudinal study, the state may be

observed at several time points for each subject but the exact transition times are only

known to occur within an interval. In a cross-sectional design, the state information is
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only available at one time point. We are concerned with the cross-sectional case where

state transition times are interval censored and developmental progress covariates are

measured once for each subject.

We consider multistate growth models where the moment the process begins, called

the initiation time, is not known. The earliest approaches for multistate models with

unknown initiation times relied on the restrictive Markov assumption (Kalbfleisch and

Lawless 1985), which is not appropriate in our application. Semi-Markov models for

fitting interval censored data with unknown initiation times (Satten and Sternberg 1999)

have been developed that allow transition rates to depend on the amount of time spent

in the state. In the fetal growth example, we consider the LMP date to be a known, pre-

initiation time and conception the unknown initiation time. With this fixed time scale,

it would also be possible to use the semi-Markov methods of DeGruttola and Lagakos

(1989) or Sternberg and Satten (1999) by considering the pre-initiation time to be the

first stage in the network. If the waiting times in different states are independent, then

the semi-Markov assumption will hold. We avoid the semi-Markov assumption and allow

individual transition rates between states to be influenced by a subject-specific latent

variable. Our approach is most similar to Dunson and Baird (2002).
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3 Computation

When proposing structural equation models, it is particularly important to consider

which parameters in the model are identifiable and which must be constrained. In many

cases, the marginal likelihood can be examined to determine how the data informs about

each parameter. In a Bayesian analysis, fitting MCMC models can be somewhat of an art

form so that alternative strategies may be needed to achieve dependable results (Gelfand

and Sahu 1999). For example, including parameters that are non-identifiable, with ap-

propriately vague priors, can help improve convergence. In this section, we first provide a

brief introduction to Bayesian methods. We then define identifiability and Bayesian iden-

tifiability and explain one way in which including non-identifiable parameters in a model

can improve computational performance while introducing a more general class of con-

ditionally conjugate priors. This section is concluded by describing a data augmentation

algorithm useful for fitting probit and multivariate probit models.

3.1 Bayesian Methods for Data Analysis

Bayesian methods are a useful tool for the applied statistician with applications in a

wide range of areas due to the development of MCMC methods and the corresponding

expansion of computing power. The details of a Bayesian approach to data analysis

(Carlin and Louis 2000; Gelman et al. 2004) are well beyond the scope of this dissertation.

Instead we will summarize a few important concepts that serve as the foundation for



following sections.

The flexibility of the Bayesian framework allows it to deal with very complex analyt-

ical problems while using relatively simple conceptual methods. Bayesian methods are

based on estimating the posterior distribution of p parameters θ given the data x and

hyperparameters η, f (θ|x,η). Using Bayes’ Theorem,

f (θ|x,η) ∝ L(θ)π(θ|η) (3.1)

where L(θ) = f(x, θ|η) represents the likelihood and π(θ|η) the prior distribution on θ.

Inference is then based on the posterior distribution of parameters θi.

It is often difficult to directly calculate the complete joint posterior distribution,

f (θ|x,η), when p is not small. Gibbs sampling (Gelfand and Smith 1990; Geman and

Geman 1984) is a commonly used MCMC method to draw elements of θ individually or in

small groups. The Gibbs sampler generates values from the joint posterior distribution by

iteratively drawing samples from the complete conditional distributions f(θi|θj,x,η, i 6=

j) for each i = 1, . . . , p′ ≤ p. After sufficient iterations, draws from the individual

complete conditionals will eventually converge to being draws from the desired posterior

distribution f (θ|x,η). When conjugate priors are chosen, it is often easy to sample from

the complete conditionals because they are of known forms. For complete conditionals

of unknown form, sampling can be done using the Metropolis-Hastings Algorithm (Chib

and Greenberg 1995; Hastings 1970) with proposal densities generated from adaptive

rejection samplings (ARS; Gilks and Wild 1992) or ARMS (ARS with a metropolis step;

Gilks et al. 1995. Iterations continue until the parameters are judged to converge by a

variety of diagnostic techniques.
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3.2 Identifiability

A parameter θ is (frequentist) identifiable by observations of a random vector y if dis-

tinct values for θ yield distinct distributions for y (Basu 1983). Bayesian identifiability

(Dawid 1979) focuses on the posterior distribution and is concerned with whether the

data and prior provide information about the parameters. Situations can arise where

parameters are not frequentist identifiable, but can identified in a Bayesian analysis that

uses informative priors. In these cases, parameters that are only Bayesian identifiable

need to be recognized and interpreted appropriately.

Specifying a proper prior ensures a proper posterior. However, improper priors are

often used to reflect ignorance of parameters or for mathematical convenience. Gelfand

and Sahu (1999) explore the use of improper priors for the generalized linear model and

developed the following theorem:

Consider the Gaussian linear model y = Xβ + ε with Xn×p, βp×1, with

rank(X) = r < p and ε ∼ N(0, σ2I). Suppose that the prior f(β, σ2) takes

the form f(β)f(σ2), where f(β) = f(γ), a proper prior on γ = Ωβ with Ωβ

estimable. Then f(β, σ2|y) is improper.

A proper prior will need to be specified on some non-estimable parameters for the

posterior to be proper. In the frequentist setting, this is usually accomplished by con-

straining certain parameters to be equal to some value (usually 0). Gelfand and Sahu

(1999) give a logistic growth curve example to illustrate that this is not an ideal solu-

tion when performing Gibbs sampling. They show that placing non-informative (but

not improper) proper priors on all parameters in a less than full rank model can signif-
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icantly decrease the autocorrelation of estimable parameters. The worst convergence of

the Markov chain is attained by imposing constraints. Gelman et al. (2003) also notes

for the generalized linear model more diffuse working prior densities improves mixing.

Recent papers on parameter expansion elaborate on these ideas.

3.3 Parameter Expansion

Parameter expansion adds new parameters that are not identifiable to a model. An

example is replacing a parameter θ by a product φψ so that inference can be obtained

only about the product and not the individual parameters. This technique has been

used to improve the convergence rate of the EM algorithm by Liu et al. (1998) in a non-

Bayesian setting. Gelman (Gelman 2004; Gelman et al. 2003) uses parameter expansion

as a computational aid within a Gibbs sampling framework, which we will find more

useful.

Gelman considers the following hierarchical model expressed as a regression with

coefficients in M batches.

y =

M
∑

m=1

X(m)β(m) + error

where X (m) is the mth submatrix of predictors and β(m) is the mth subvector of regression

coefficients. The Jm coefficients in each subvector β(m) have an exchangeable N(0, σ2
m)

prior distribution for j = 1, . . . , Jm. He uses this general notation to allow for several

different types of models. We are interested in a mixed effects model where, for the fixed

effects, σm = ∞ and, for the random effects, σm is estimated from the data.

This hierarchical model can become stuck when σm happens to be near 0. In the

updating stage of the Gibbs sampler, β(m) will be shrunk to 0, at the next update σm

27



will be near 0, and so on. Simulations show that it can take considerable time for the

Gibbs sampler to escape this situation (Gelman et al. 2003).

Gelman (2004) advocates using the following parameter-expanded model where each

component of the regression model is multiplied by a new parameter, α∗

m. Let the old

model be

y =

M
∑

m=1

X(m)β(m) + error

and the new, expanded model be

y =

M
∑

m=1

α∗

mX
(m)β∗(m) + error

The estimable function |α∗

m|σ
∗

m in the new model maps to σm in the old model and

α∗

mβ
∗(m)
j from the new model maps to β

(m)
j from the old model. The individual parameters

α∗

m, β
∗(m)
j , and σ∗

m are not frequentist identifiable, but if proper priors are specified, they

will be Bayesian identifiable.

Gelman (2006) examines different choices for prior distributions in the hierarchical

model. He expands the family of conditionally-conjugate prior distributions by applying

a redundant multiplicative reparameterization to the general hierarchical model:

yij ∼ N(µ+ ξηj, σ
2
y)

ηj ∼ N(0, σ2
η)

There is an implicitly conditionally conjugate prior distribution on the random effects

standard deviation, σα = |ξ|ση. Using the usual conjugate priors for ξ (normal) and σ2
η

(inverse-gamma), σα has the distribution of the absolute value of a noncentral-t vari-

ate. This is referred to as a folded noncentral t distribution. Gelman also discusses a
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special case of the folded non-central t, the half-t distribution. This half-t is appealing

because the distribution of ξ will be symmetric about 0, however the half-t family is not

conditionally conjugate.

In summary, Gelman’s findings and advice include:

• Start with a noninformative uniform prior density on the standard deviation σα

• For a non-informative but proper density, try a half-normal centered at 0, ξ ∼

N(0, 1002)

• Avoid the usual inv-gamma(ε, ε) priors on σ2
α especially when small values of σα

are possible. Inference is very sensitive to ε and the prior distribution is not non-

informative as desired.

• To restrict σα from large values, use a half-t family

We found these suggestions particularly helpful in the early fetal growth analysis. Con-

vergence rates were improved while using a less informative prior than the usual gamma

prior on precision parameters.

3.4 Data Augmentation

Data augmentation is a general scheme in which the observed data are enhanced so as

to make it easier to analyze. Dempster et al. (1977) popularized the method with their

paper on the EM algorithm for maximizing a likelihood function, but their approach

was not called “data augmentation” until Tanner and Wong (1987). From a Bayesian

perspective, latent data augments the observed data so we can use both the latent and
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observed data to calculate the posterior distribution of the parameters of interest (van

Dyk and Meng 2001). For observed binary data, data augmentation postulates the

existence of an underlying continuous variable such that the event is observed to occur if

the continuous variable is above some threshold value. Using this idea, we can use latent

variables to facilitate model computation for categorical outcomes.

The data augmentation algorithm outlined by Albert and Chib (1993) connects a pro-

bit regression model on an observed dichotomous outcome with a normal linear regression

model on a continuous latent outcome. Their algorithm involves sampling latent outcome

variables from the truncated normal distribution, with the truncation conditional on the

observed dichotomous outcome variable. Let y1, . . . , yn be the observed dichotomous out-

come on subject i and y∗i the underlying latent response, where y∗i are i.i.d. N(x′

iβ, 1).

Define yi = 1 if y∗i > 0 and yi = 0 otherwise so that the yi are independent Bernoulli

random variables with Pr(yi = 1) = Φ(x′

iβ) where Φ(·) is the standard normal cumula-

tive distribution function. The complete conditional distribution of the latent y∗i is then

given by

y∗i |yi,xi,β ∼















N1 (x′

iβ, 1) I(y∗i > 0) if yi = 1

N1 (x′

iβ, 1) I(y∗i < 0) if yi = 0

(3.2)

With a conjugate prior specification for β, Gibbs sampling can then be used to sample

from the posterior distribution of β using well known linear regression results. To sim-

plify subsequent notation, the general truncated normal distribution as given in (3.2) with

σ2 = 1 will be specified as TN (x′

iβ, σ
2, yi). The underlying latent normal approach can

naturally be extended to the multinomial probit model (McCulloch and Rossi 1994) for

univariate ordinal categorical data and the multivariate probit model (Chib and Green-
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berg 1998) for multivariate binary correlated outcomes.

3.5 Multivariate Probit Models

Chib and Greenberg (1998) detail an approach for modeling multivariate correlated bi-

nary data that is a natural extension of the univariate probit model framework. Let yij

be a binary response for the ith observation unit and jth variable, j = 1, . . . , p. Chib and

Greenberg (1998) postulates the existence of an underlying multivariate normal random

vector

y∗

i ∼ Np(Xβ,Σ) (3.3)

such that yij = I(y∗ij > 0) and Σ is a correlation matrix for identifiability. We can

then extend this representation for joint modeling of continuous and binary correlated

outcomes. Let zi1 be a p1-dimensional vector of observed normal continuous response

and zi2 a p2-dimensional vector of binary responses with underlying responses z∗

i2. The

joint distribution of zi1 and z∗

i2 is given by








zi1

z∗

i2









∼ Np1+p2









Xβ,









Σ11 Σ12

Σ21 Σ22

















(3.4)

where the diagonal elements of Σ22 are fixed at one for identifiability. The problem is

now reduced to modeling normally distributed correlated data using observed and latent

continuous random variables.

While the relatively direct probit model framework for analyzing mixed continuous

and discrete outcomes is conceptually appealing, it can be computationally demanding.

In a Bayesian analysis, high autocorrelations within parameters and cross correlations

between parameters can make convergence of the Gibbs sampler excruciatingly slow. A
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number of approaches have been suggested to improve mixing and the convergence rates

of longitudinal models and the multivariate probit model that we may be able to adapt

for modeling mixed continuous and discrete outcomes.

Gelfand et al. (1995) presents hierarchical centering reparamaterizations that often

have improved convergence for a broad class of normal linear mixed models. Hierarchical

centering can be explained by considering the simple random effects model yij = µ +

bi1 + εij, where bi1 ∼ N(0, σ2
b ) and εij ∼ N(0, σ2

e) i.i.d for each subject i and repeated

measure j. In order to create a better-behaved posterior surface, a second level hierarchy

is introduced by defining ηi = µ + bi1 such that ηi|µ ∼ N(µ, σ2
b ). The hierarchical

centering transformation can break the high posterior correlations among parameters

that commonly occur in random effects models and greatly improve convergence of the

Gibbs sampler.

The benefits of blocking, which involves updating parameters in groups, in hierarchi-

cal longitudinal models are advocated by Chib and Carlin (1999). They also specifically

consider longitudinal binary probit models of the form Pr (yij = 1|bi) = Φ(x′

ijβ + z′

ijbi)

where Φ is the standard normal CDF and bi ∼ Nq(0,D). Then the conditional distri-

bution of the latent outcome, yij = I(y∗ij > 0), is given by y∗ij|bi ∼ N(x′

ijβ + z′

ijbi, 1). A

simple algorithm for sampling from the joint posterior that updates parameters one at a

time will include sampling (1) β|y∗, b,D and (2) y∗ij|yij,β, b,D as well as (3) b|y∗,β, D

and (4) D|b. Chib and Carlin (1999) refine this algorithm by marginalizing the dis-

tribution of y∗

i over the random effects so that y∗

i ∼ Nni
(X iβ, Ini + ZiDZ ′

i). Steps

(1) and (2) of the simple algorithm are blocked so that we sample both β and y∗

i from

[β,y∗

i |y,D] by sampling (a) β|y,y∗,D and (b) y∗

i |yi,β,D. In example datasets, this
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approach and some similar variations significantly reduce autocorrelations for β, but are

less effective on improving convergence for the random effect variance, D.

Imai and Van Dyk (2005) and Nobile (1998) propose methods for improving the

convergence of the multinomial probit model. They realize that one of the reasons for

the poor convergence of probit models is the variance of the latent response variable is not

identifiable and is fixed at one by convention. Imai and Van Dyk (2005) introduce a new

latent variable ỹ∗i = αy∗i so that ỹ∗i |β, α, yi ∼ TN(αX iβ, α
2,y). An inverse gamma prior

is specified for α2 and it is included as part of the Gibbs sampling algorithm. Nobile

(1998) develops a hybrid Markov chain in which a Metropolis step is performed after

each cycle of the Gibbs sampler to change the scale of the current state. Both methods

improve the computational efficiency of simulated data, with the more recent paper of

Imai and Van Dyk (2005) having the best performance in most situations.
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4 Bayesian Modeling of Embryonic Growth using

Latent Variables

4.1 Abstract

In a growth model, individuals move progressively through a series of states where each

state is indicative of their developmental status. Interest lies in estimating the rate of

progression through each state while incorporating covariates that might affect the tran-

sition rates. We develop a Bayesian discrete time multistate growth model for inference

from cross-sectional data with unknown initiation times. For each subject, data are col-

lected at only one time point at which we observe the state as well as covariates that

measure developmental progress. We link the developmental progress variables to an

underlying latent growth variable that can affect the transition rates. We also examine

the association between latent growth and the probability of future events. We use a

Markov chain Monte Carlo algorithm for posterior computation and apply our methods

to a novel study of embryonic growth and pregnancy loss in which we were able to find

evidence in favor of a previously hypothesized but unproven association between slow

growth early in pregnancy and increased risk of future loss.



4.2 Introduction

Fetal growth is important both clinically and in epidemiologic studies relating growth

to later pregnancy and developmental outcomes. To date, large cohort studies have re-

lied on the last menstrual period (LMP) and onset of bleeding to determine the time

of miscarriage. This approach is centrally flawed because it ignores the developmental

state of the fetus prior to the loss. Development may stop days to weeks prior to the

onset of bleeding so that, for example, a loss classified as a miscarriage in the 10th week

of gestation may have been the loss of an appropriately-grown 10 week fetus, or a fetus

with development arrested at 7 weeks. Coupling cross-sectional ultrasound information

with the ability to estimate growth provides an opportunity to estimate probable devel-

opmental state prior to miscarriage. This can help researchers more accurately identify

which insults must have occurred prior to the pregnancy loss and rule out exposures that

occur after development arrest but before the onset of bleeding.

Another complication in determining the miscarriage date is uncertainty in pregnancy

dating. After the occurrence of a positive pregnancy test, time of conception is tradi-

tionally dated as two weeks after the LMP. Such dating is notoriously imprecise due to

variation in follicular phase length, the time between menses and ovulation, and, in rarer

cases, missed menses (Kramer et al. 1988; Savitz et al. 2002). However, the distribution

of the follicular phase length has been well characterized (Wilcox et al. 2001) and can

be used to obtain more realistic estimates of the conception time. With these difficulties

in mind, our goal in the early pregnancy example analysis is two-fold: (1) to determine

whether there exists variation in fetal growth before 20 weeks gestation, and (2) if varia-
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tion in growth exists, to determine if growth is associated with the probability of future

pregnancy loss. In particular, if (2) holds the current practice of using ultrasound dating

in early pregnancy loss studies may need to be re-evaluated.

This vexing problem can be posed statistically using a latent multistate growth process

with unknown initiation time. In a multistate model the current condition of a subject

is summarized by assignment to one of a finite number of K states (Jewell 2005). A

growth model assumes that all subjects begin at the same initial state and advance

unidirectionally through subsequent states. That is, all subjects progress in order from

state k to k + 1, k = 1, . . . , K − 1 without skipping any states or regressing to previous

states. This article focuses on the problem of estimating such models using cross-sectional

data in which transition times are not observed. For each subject, we have information

at one time point on the current state as well as measurements of developmental progress

that are surrogates of the amount of time spent in a state. Also, the moment the growth

process begins, referred to as the initiation time, is not known, though some time point

before initiation is known.

Multistate growth models with interval censored transition times appear in several

applications. Often the initiation time is also unknown but not considered in the analysis.

One example involves studying tumor growth in mice. Typically, a mouse is exposed to a

carcinogenic compound and a tumor may develop some time following the exposure. At a

later date, the mouse is sacrificed to determine how far the tumor has progressed (Albert

and Shih 2003; Dewanji and Kalbfleisch 1986; Ryan and Orav 1988). In these studies,

the investigators analyze time from exposure rather than time from tumor initiation. We

focus on measuring growth as a function of time since initiation and demonstrate that,
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in our application, failing to account for the unknown initiation time can have a large

impact on the analysis. Other examples of multistate models include AIDS progression

(DeGruttola and Lagakos 1989), breast cancer (Duffy et al. 1995), and the development

of uterine fibroids (Dunson and Baird 2002). Our research is motivated by the Right

from the Start (RFTS) study of embryonic development.

RFTS is a prospective cohort study that identified women who were planning to

conceive or in early pregnancy (Promislow et al. 2004). Investigators enrolled women

when they had a positive pregnancy test, and then promptly provided an early first

trimester ultrasound. At the time of the ultrasound, each fetus was assigned to one of

three states based on the presence or absence of important developmental features: (1)

only gestational sac present, (2) fetal pole present without regular cardiac activity, and

(3) fetal pole with normal cardiac activity. Lack of cardiac activity is a natural state of

development that every fetus experiences for hours to days while the heart forms, becomes

detectable by ultrasound, and before a heart rate is established. It is not necessarily

indicative of a problem pregnancy. The ultrasound also provides two measurements of

developmental progress, the mean gestational sac diameter and fetal pole length. Both of

these covariates have been studied extensively and found to be strongly associated with

time since LMP (Filly and Hadlock 2000; Hadlock et al. 1992).

We develop a latent variable method for incorporating development progress variables

using structural equations (Joreskog 1970) in a multistate growth model. Our approach

differs from previous analyses that used developmental progress covariates directly. For

example, Albert and Shih (2003) jointly model tumor onset and growth after onset using

a single tumor volume measurement. When multiple measures of developmental progress
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are available, previous direct approaches have attempted to categorize disease severity

into a set of levels (Craig et al. 1999). The number, volume and location of a tumor could

be used to assign subjects into severity levels ranging from high to low, although defining

the cut points for the levels may be unclear. Instead, we follow a latent variable approach

similar to Dunson and Baird (2002) that naturally combines multiple measurements of

developmental progress into the underlying latent growth concept. We allow the latent

variable to be continuous, which is more flexible than the direct approach in that it

does not pre-specify arbitrary severity boundaries in the classification procedure. We are

also able to consider associations between the latent variable and future outcomes. For

example, in our early pregnancy analysis we identify an important relationship between

latent growth and the risk of pregnancy loss by 20 weeks.

Bayesian methods are well-suited to the embryonic growth application because abun-

dant prior knowledge is available. We propose statistical models in a specific form that

allows prior information about the time from LMP to conception and time to state

transitions to be readily incorporated. Available methodology using Markov models

(Kalbfleish and Lawless 1985) would not be appropriate in our application because it

assumes that the transition rates are independent of the amount of time spent in state.

Semi-Markov models have also been developed for fitting interval censored data with

unknown initiation times. While Satten and Sternberg (1999) allow the transition rate

to depend on the time spent in the current state, they do not incorporate surrogates of

developmental progress that are functions of time since initiation in addition to state

membership. Bayesian methods that consider surrogates of developmental progress for

interval censored data have been proposed (Dunson and Baird 2002), but do not allow
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the developmental progress covariates to be functions of an unknown initiation time.

In addition, Dunson and Baird (2002) treat the multistate growth model as the primary

outcome of interest, while we additionally consider joint modeling of growth with a future

pregnancy outcome.

Section 4.3 describes the underlying data structure, the general stochastic and latent

variable models, and the specific models we used in the RFTS example analysis. In section

4.4 we provide a Bayesian approach to fitting such a model with the necessary conditional

distributions in Appendix A. Section 4.5 contains the application of our methods to a

study of early pregnancy and section 4.6 discusses the results.

4.3 Model Description

4.3.1 Data Structure

Suppose that a K state growth process has an unknown initiation time and some known

pre-initiation time as depicted in Figure 4 for a K = 3 state model. In our RFTS

example analysis, the date of the last menstrual period (pre-initiation) is known while

the subsequent time of conception (initiation) is unknown. Let tIi be the time interval

between pre-initiation and initiation for subject i, i = 1, . . . , n. We then standardize

the time axis so that the initiation time is zero for each subject and measure other time

points relative to this zero point. On this scale, the pre-initiation time is −tIi as indicated

in Figure 4. Let T
(k)
i be the unobserved transition time from state k to k + 1 with each

subject’s current state ascertained at time Wi. Wi is not known though the sum Wi + tIi

is observed.
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To obtain information on the amount of time since initiation (Wi) and state progres-

sion, let there be one or more measurements of development progress available at Wi for

each subject. For the measurements to be useful, we should expect the continuous mea-

surements will increase (or decrease) stochastically as a function of time since initiation

and possibly other covariates. Similarly, for dichotomous measurements, the probability

that they are present or absent should be a function of time since initiation. In the RFTS

embryonic growth example, two continuous variables are available, the fetal pole length

and gestational sac diameter. Both of these variables have been shown to increase with

time since LMP (Filly and Hadlock 2000; Hadlock et al. 1992), and it is reasonable to

assume that they are more accurately a function of time since conception.

4.3.2 Latent Variable Model

Regardless of state, let there be C measures of developmental progress, P1i, P2i, . . . PCi,

available at time Wi, i = 1, . . . , n. Similar to Dunson and Baird (2002), we link the n×1

vectors P c to an underlying latent growth variable Z∗(n × 1) and time since initiation

(W )

P c = gc(Z
∗,W ;Λc, σc), c = 1, . . . , C (4.1)

where gc(·) is a function involving parameters Λc with error component σc. For each

subject, we assume that the latent growth variable Z∗

i ∼ N(X iβ, σ
2
z∗) as in a Bollen

(1989) structural equation model. Z∗

i incorporates the concept of individual growth and

models the correlation between the developmental progress variables. We allow Z∗

i to

have an expected value that can be a function of covariates X i and parameters β. With

no covariates, Z∗

i can be thought of as a random intercept from a mixed effects model
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(cf. Laird and Ware 1982).

4.3.3 Stochastic Model

We next describe the model for the state transition rates, α(k), from state k to k+1. Using

a discrete time model, we partition the time axis into J disjoint intervals Ij = (tj−1, tj],

with 0 < t1 < · · · < tJ , tJ > (Wi + tIi ) ∀ i. In the RFTS example analysis, we use time

intervals of length one day because ultrasound and LMP information are collected as

dates. We then characterize the general transition rate for subject i in interval j from

state k to k + 1 to be

α
(k)
ij = Pr

(

T
(k)
i ∈ Ij|T

(k)
i > tj−1, T

(k−1)
i ≤ tj−1

)

(4.2)

for k = 1, . . . , K − 1. We assume that the time intervals are sufficiently small so that

there is zero probability of two transitions within the same interval. For individuals in

state 1, the transition times T
(1)
i , . . . , T

(K−1)
i are right censored. For individuals in state

s, s ∈ {2, . . . , K − 1}, entry times T
(1)
i , . . . , T

(s−1)
i are left censored while T

(s)
i , . . . , T

(K−1)
i

are right censored. Finally, for individuals in state K, all entry times T
(1)
i , . . . , T

(K−1)
i are

left censored. Since we do not directly observe T
(k)
i , we sample the unknown intervals of

entry as a step in the MCMC algorithm.

We also connect Z∗

i to the state transition model as defined in (4.2)

α
(k)
ij = hk(Z

∗

i ,Xki;ωjk,Γk), k = 1, . . . , K − 1 (4.3)

where hk(·) is some smooth, monotone function mapping from the real numbers to the

probability space. It involves baseline transition probability parameter ωjk, covariate

parameters Γk and possibly additional covariates Xki. We anticipate that subjects who
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develop quickly will have large values of Z∗

i while slow-growing subjects will have rela-

tively small values.

We consider the transition likelihood for a K state model where the initiation time

is fixed at zero for each subject and the transition times are complete. Let l
(k)
i =

{

l : T
(k)
i ∈ Il

}

and mi = {m : Wi ∈ Im} be the discrete time intervals in which T
(k)
i

and Wi, respectively, fall. For an individual in state 1 at Wi, their contribution to the

transition likelihood is
∏mi

j=1

(

1 − α
(1)
ij

)

. Letting l
(0)
i = 0, an individual in state s, s ∈

{2, . . . , K−1}, contributes

{

∏s−1
k=1

[

α
i,l

(k)
i

∏l
(k)
i −1

j=l
(k−1)
i

+1

(

1 − α
(k)
ij

)

]}

∏mi

j=l
(s−1)
i

+1

(

1 − α
(s)
ij

)

to the complete transition likelihood. Finally, a subject in state K with all T
(k)
i complete

contributes

∏K−1
k=1

[

α
i,l

(k)
i

∏l
(k)
i −1

j=l
(k−1)
i +1

(

1 − α
(k)
ij

)

]

.

4.3.4 Fetal Growth Model

In the RFTS analysis, we use the inverse probit function for hk(·) in a K = 3 state

model. The discrete time probit regression models describing the 1 → 2 and 2 → 3 state

transition rates for embryo i in interval Ij are

α
(1)
ij = Φ (M jω + γ1Z

∗

i ) (4.4)

α
(2)
ij = Φ (ν + γ2Z

∗

i ) (4.5)

where M j is the j-th row of a design matrix that provides regression splines for the

baseline transition probabilities ω. The most flexible model would fit one parameter

per time interval, but we use a spline function with four degree of freedom to decrease

the dimensionality. We also found that an intercept term, ν, is sufficient to model this
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baseline transition probability from state two to three.

For the latent growth model, we allow Z∗ to be a function of time since conception

(W ) and some dichotomous variable D. We use a log transformation of gestational sac

diameter (Z1) and crown rump length (Z2) and a quadratic time effect consistent with

previous approaches (Filly and Hadlock 2000)

Z∗ = β1D + ε

= Xβ + ε, ε ∼ Nn(0, Inτ
−1
z∗ ) (4.6)

Z1 = λ01 + λ11W + λ21W
2 + Z∗ + δ1

= X1Λ1 + Z∗ + δ1, δ1 ∼ Nn(0, Inτ
−1
z1

) (4.7)

Z2 = λ02 + λ12W + λ22W
2 + Z∗ + δ2

= X2Λ2 + Z∗ + δ2, δ2 ∼ Nn(0, Inτ
−1
z2

) (4.8)

In the RFTS analysis, Di is either an indicator variable for infant’s gender, mother’s

black ethnicity, or if the mother had any previous live births (parity). There is evidence

to indicate that these covariates are associated with growth between week 25 and 42

(Zhang and Bowes 1995), but no evidence that they are influential earlier in pregnancy.

The structural equations specified by (4.6) - (4.8) include constraints that are nec-

essary for frequentist identifiability. The factor loadings for Z∗ are fixed at one so we

are able to identify the precision parameters τz1 and τz2 . With two measurements of

developmental progress, we are also limited to one latent variable that models the co-

variance between fetal pole length and gestational sac diameter. General identifiability

conditions covered by Bollen (1989) among others can be difficult to derive, so we only

discuss identifiability in our example.
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Finally, we examine the association between Z∗

i and future events, Yi, that occur after

Wi. In RFTS, we looked for an association with the probability of a spontaneous abortion

(SAB) by week 20 using a probit regression model, Pr (Yi = 1|Z∗

i ) = Φ (µ0 + µ1Z
∗

i ). In

this analysis, we include all subjects who did not have a SAB as well as subjects who

had a SAB at some time point following their ultrasound. We exclude subjects who had

evidence of a SAB prior to their ultrasound because the date of the loss could not be

determined as accurately as the date of the ultrasound. In subjects with an early loss,

the developmental progress variables would be function of time from conception to loss

rather than time to ultrasound.

The path diagram in Figure 5 illustrates the dependencies in the early fetal growth

model. We use boxes to represent observed variables, both with (solid lines) and without

(dashed lines) distributional assumptions. Circles represent unobserved variables and

arrows indicate association so that lack of arrows signifies conditional independence.

Latent growth (Z∗) models the correlation between the gestational sac diameter and

fetal pole length and is allowed to influence both the state transition rates and the risk

of pregnancy loss by 20 weeks. We estimate the unknown time from conception to the

ultrasound (W ) by subtracting the estimated time from LMP to conception (tI) from

the observed total time from LMP to ultrasound (W + tI). The two measurements of

developmental progress obtained by the ultrasound are allowed to increase as a function

of time since conception so that latent growth is not a function of W . Finally time from

LMP to conception (tI) is associated with the state transitions, but not through the

transition rate like latent growth. Instead, time from LMP to conception indicates the

starting point of the growth process, from which we measure the number of days to the
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first and subsequent state transitions.

4.4 Bayesian Analysis

We use Bayesian methods, which estimate the joint posterior distribution of the param-

eters given the data, to conduct our analysis. The joint distribution of all parameters

can be written in general as

f(β, τz∗, Z
∗

i ,µ,ω, γ1, ν, γ2,Λ1, τ1,Λ2, τ2, t
I
i )

= f(β, τz∗)f(Z∗

i |β, τz∗)f(µ|Z∗

i ,β, τz∗)f(ω, γ1|µ, Z
∗

i ,β, τz∗)f(ν, γ2|ω, γ1,µ, Z
∗

i ,β, τz∗)

×f(Λ1, τ1|ν, γ2,ω, γ1,µ, Z
∗

i ,β, τz∗)f(Λ2, τ2|Λ1, τ1, ν, γ2,ω, γ1,µ, Z
∗

i ,β, τz∗)

×f(tIi |Λ2, τ2,Λ1, τ1, ν, γ2,ω, γ1,µ, Z
∗

i ,β, τz∗) (4.9)

where f(·|·) denotes a conditional distribution. It is natural to incorporate additional

conditional independencies so the joint distribution in (4.9) simplifies to the hierarchical

model

f(β, τz∗)f(Z∗

i |β, τz∗)f(µ|Z∗

i )f(ω, γ1|Z
∗

i )f(ν, γ2|Z
∗

i ) × . . .

×f(Λ1, τ1|Z
∗

i )f(Λ2, τ2|Z
∗

i )f(tIi |Λ1, τ1,Λ2, τ2, Z
∗

i )

To facilitate computation of probit models, we use data augmentation as outlined

by Albert and Chib (1993). Briefly, their algorithm involves sampling latent outcome

variables from the truncated Normal distribution, with the truncation conditional on

the observed dichotomous outcome variable. Details are provided in Appendix A. This

approach connects a probit regression model on an observed dichotomous outcome with

a normal linear regression model on the continuous latent outcome.
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We also utilize parameter expansion, a technique in which non-identifiable parameters

are added to a model, to improve computational performance while providing truly non-

informative priors (Gelman 2004). Specifically, we redundantly multiply the random

effects Z∗

i in models (4.7) - (4.8) by the parameter ξ. Simulations indicate (Gelfand

and Sahu 1999; Gelman et al. 2003) that placing a non-informative, proper prior on ξ

significantly decreases the autocorrelation of estimable parameters. Gelman (2006) also

shows that the using conjugate priors for ξ (Normal) and τz∗ (Gamma) is superior to the

usual choice of gamma(ε, ε) on τz∗ while fixing ξ = 1. In the later case, inference can be

very sensitive to the choice of ε and the prior distribution is often not vague as desired.

This expansion scheme is adapted from a similar approach used for the EM algorithm

by Liu et al. (1998).

We use a MCMC algorithm programmed in Matlab for posterior calculations. Gibbs

sampling (Gelfand and Smith 1990) proceeds by iterating the complete conditionals given

in Appendix A until convergence is established.

4.5 Application

4.5.1 Dataset

We apply our methods to 2029 women with singleton pregnancies enrolled in the RFTS

study mentioned in section 4.2. Ultrasonographers measured fetal pole lengths on 2005

subjects and gestational sac diameter diameters on 1007 subjects. All subjects had at

least one of these two readings so we could determine individual developmental progress

and report the date of their LMP. Twenty-one subjects had only a gestational sac present
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(state 1), 15 had a fetal pole (state 2), and the remaining 1993 subjects had a fetal pole

with normal cardiac activity (state 3) at the time of their ultrasound. Sixty-three women

who had viable pregnancies and were in state 3 went on to have a loss by week twenty.

Human pregnancies are divided into three trimesters, each normally lasting approx-

imately 12-14 weeks. During the embryonic period, which begins with fertilization and

lasts for eight weeks, the embryo may be particularly susceptible to chemical and envi-

ronmental insults (Kiely 1991). Almost every first trimester ultrasound in RFTS was

performed during this important period. From the early ultrasound, we specify states

based on the presence or absence of key developmental features including the gesta-

tional sac, fetal pole, and cardiac activity. We also use measurements obtained from

the ultrasound that have been shown to be excellent predictors of menstrual age. For

example, Hadlock and colleagues (1992) used a fourth order linear regression model in

which crown-rump length (CRL) was able to predict 98.6% of the variation in the natural

logarithm of gestational age. Their results are similar to predictions reported by other

authors who often used only linear or quadratic CRL effects. The gestational sac is also

believed to be very precise for predicting menstrual age in early pregnancies (Filly and

Hadlock 2000).

4.5.2 Bayesian Prior Specification

Bayesian methods are particularly suited to modeling embryonic development because

important prior information can be incorporated in the analysis. We use results from

the Early Pregnancy Study conducted by Wilcox et al. (1995), which analyzed urinary

biomarkers from a group of 221 women to precisely date the length of time from LMP
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to clinical pregnancy (Wilcox et al. 2001). Due to its high cost and participant burden,

it would very difficult to replicate these procedures in large exposure studies like RFTS.

The Wilcox study provides day-specific estimates of the probability of clinical pregnancy

on a given day of the menstrual cycle, conditional on reaching that day of the cycle (tI),

used in specifying the multinomial prior distribution depicted in Figure 6.

We do not have prior information that we can directly apply to the state transition

rates (α
(k)
ij ), but we do have information that allows us to specify informative priors

on functions of these parameters. Hadlock and others developed models that predict

menstrual age in early pregnancy using crown rump length and gestational sac diameter

measurements (Filly and Hadlock 2000; Hadlock et al. 1992). They show that the fetal

pole, without normal cardiac activity, can be visualized when the crown rump length

is 2mm, which occurs at 5.7 menstrual weeks (95% CI: +/- 3 days). Normal cardiac

activity begins a few days later, by the sixth menstrual week. Hadlock provides us with

prior information about the state progression probabilities for a fetus growing at a normal

rate, ω and ν. For each ωj, we used independent Normal priors with mean specified to

correspond with regression splines consistent with Hadlock’s results. The next transition

to a normal heart rate occurs quickly, so we used a N(1.5, 0.1) prior for ν. We also

explored models with weaker prior assumptions.

For all other parameters where we do not have prior information, we used proper but

appropriately vague priors. For each of the regression parameters Λ1, Λ2, β, γ1, γ2, ξ,

and µ we used independent N
(

µp, σ
2
p

)

prior distributions, with µp = 0, σ2
p = 100. For

precision parameters τz1, τz2 , and τz∗ we use Gamma(a, b) priors, with a = b = 0.5.
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4.5.3 Analysis

We performed our analysis by iterating the MCMC algorithm given in Appendix A. We

monitored parameter autocorrelations and used a variety of diagnostics from the CODA

package in the R statistical program (R Development Core Team 2004). All parameters

except γ1 converged quickly, so we used one million iterations to ensure that γ1 also

satisfied convergence diagnostics. Simulation work indicates that γ1 converges much

more quickly when there are more subjects observed in the early states than we had in

RFTS.

Figure 7 summarizes the posterior means by subject of the latent growth variable Z∗.

We did not find any association between the mean of latent growth and male gender,

black ethnicity of the mother, or being multiparous. Using (4.6) and the parameter

expanded version of (4.7) and (4.8), these associations are measured by examining the

estimable function θ = ξβ1. For the association with gender, we found Pr(θ > 0) = 0.21,

for ethnicity Pr(θ > 0) = 0.37 and in the parity model, Pr(θ > 0) = 0.25.

We did find an association between latent growth and both state transition rates.

Table 1 summarizes the posterior means and 95% credible intervals for γ1 and γ2 and in-

dicates that subjects with large values of Z∗

i make transitions more quickly than subjects

with relatively small values. To more easily interpret these results, we identify a slow-,

normal-, and fast-growing individual based on the 5th, 50th, and 95th percentiles of Z∗

and compared their estimated transition probabilities graphically. Figure 8a displays

the day-specific conditional probability of moving from state 1 → 2 for these subjects.

Our results are consistent with studies from Hadlock et al. (1992) which indicate that
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a normal fetus should develop a fetal pole around day 26 after conception. When the

transition rate is approximately 0.5, the slow and fast growing subject are separated by

three days. Figure 8b shows the cumulative probability of having made a transition from

state 2 → 3. Most subjects make this transition quickly, but the transition may take

longer in slow-developing subjects. Using an early ultrasound to date the pregnancy may

be inaccurate because this method assumes that subjects have the same early growth

rate.

Fetal development is traditionally dated starting from then LMP and then assumes

that conception occurs exactly two weeks later. However, there can be considerable vari-

ability among women in time from LMP to conception (tIi ). Figure 6 gives the prior

and posterior distributions of tIi for two noteworthy subjects and all subjects combined.

Overall, the prior and posterior distributions for all subjects are similar. Among individ-

ual subjects, there is significant variability in the shape of the posterior distributions of

tIi . For example, subject A has a clear peak around day 10 while subject B is relatively

flat from day 15 to 50. Ninety-nine percent of subjects have a within-subject variance of

tIi that is more similar to subject A than subject B, with 7% percent of subjects having

a posterior variance greater than 25 days2. For most subjects, like subject A, we are

confident in our estimate of tIi and, even for subject B, it is likely that tI is longer than

two weeks.

To evaluate the impact of not estimating tIi , we conducted a comparison analysis in

which we fixed the time from LMP to conception at two weeks for each subject. In this

simpler model, individual variability in the time from LMP to conception is now included

in the time to the first state transition. Failing to account for the unknown initiation time
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alters both the distribution of the latent growth variable, Z∗, and posterior distribution

of γ1. The posterior mean for γ1 is greatly increased while the posterior distribution

for γ2 changes little (Table 1). Second, some subjects change from having moderate

to extreme values of the latent growth variable, Z∗. A post-hoc comparison indicates

that, for subjects who would have unusually large tIi , fixing tIi at two weeks results in

large negative value of Z∗. Conversely, subjects who would have small values of tIi have

large positive values of Z∗ in the comparison analysis (corr
(

tI , Z∗
)

= −0.75). This

strong negative correlation is removed when we model the unknown conception time

(corr
(

tI , Z∗
)

= −0.04).

We also found an association between latent growth rate and the probability of having

a spontaneous abortion by the 20th week of pregnancy. Embryos that were relatively

slow growing were more likely to subsequently spontaneously abort. Specifically, we

found that a one standard deviation increase in latent growth is associated with a -2.11

unit change in the probit of the probability of having a SAB (95% credible interval [-2.42,

-1.90]). According to the model, approximately 1.7% (95% CI [0.8%, 2.9%]) of embryos

with an average value of Z∗

i will be lost before the 20th week while 3.8% (95% CI [2.4%,

5.4%]) of embryos with a value of Z∗

i one standard deviation below the mean will be lost.

We note that this analysis included only embryos that were viable at the time of the

ultrasound so that the pregnancy loss occurred after the ultrasound.

Because our primary inference is about a latent variable and we make a number of

distributional assumptions, it is important to evaluate the fit of our model. To do so,

we calculated the posterior predictive distributions for observed data and then compared

these distributions to our observed data following Lynch and Western (2004). Figure 9

51



shows the posterior distributions and observed data for fetal pole length by the observed

time from LMP to ultrasound. This plot represents 65 subjects, with one subject ran-

domly chosen for each unique value of time from LMP to ultrasound. We also include

the posterior predictive distribution that would be obtained using the simplified analysis

that assumes that time from LMP to conception is fixed at two weeks. Figure 9 clearly

indicates that our model fits observed fetal pole lengths well, and is superior to the sim-

pler analysis option. Model evaluation using gestational sac diameters yields the same

conclusions.

4.6 Discussion

In this article we describe a Bayesian approach for analyzing a multistate growth process

where the initiation time is not known. We use an example from human embryonic growth

and pregnancy loss both to motivate the methodology and serve as an example analysis.

Our analysis is complicated by only having cross-sectional data so that initiation and

transition times are not observed. An ideal study would have repeated measures on each

subject with a known time of initiation. However, factors including cost and participant

burden make such studies difficult to conduct. A similar study that determines state

and measures developmental progress variables at one time point could use our analysis

approach.

In our early embryonic growth example, most subjects are observed to be in state 3

while an optimal study would observe more subjects in early states. We expected few

subjects in states 1 and 2 due to difficulties in achieving very early ultrasound and the

short waiting time in state 2. Subjects in state 3 do provide censored transition times
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for both the state transitions as well as the developmental progress covariates which are

indicative of the waiting time spent in the state. Our Bayesian approach allows us readily

incorporate respected prior information on the baseline transition rates. For example, in

Figure 8a, the general S-shape of the curve is stabilized by prior information from Hadlock

et al. (1992) while differences among subjects are based on the data and a diffuse prior.

Our primary goal was to identify embryos that are developing relatively quickly and

relatively slowly using a latent growth model. The latent variable approach has advan-

tages over previous methods that use developmental progress variables directly. In the

direct approach, it is often not clear how different surrogates should be combined which

makes any final classification system somewhat arbitrary. Past research indicates that

that short gestational sac diameters (Nyberg et al. 1987) or fetal pole lengths (Mantoni

and Pedersen 1982) may be associated with increased risk of pregnancy loss. However,

a more recent study (Brizot et al. 2001) could not replicate either result. Rather than

consider these developmental progress variables directly, we conceptualize that they are

indicative of underlying embryonic growth. Our approach automatically differentiates

individuals using one overall, continuous measurement regardless of partial missingness,

measurements being taken at different times, or unknown initiation times. We can then

incorporate the latent variable in joint models for multistate growth processes and future

events.

Applying our methods to the RFTS study led to new insights about early pregnancy.

We were able to identify individual embryos with different growth rates while accounting

for the variable time to conception and time to ultrasound. Our comparison analysis

indicates that failing to model the unknown initiation time has a large impact on the
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model parameters. In many applications, the latent variable is a nuisance parameter, but

it is an important part of our analysis. Gender, ethnicity and parity have been shown

to be possible predictors of growth starting in the 25th week of pregnancy (Zhang and

Bowes 1995), but we were not able to confirm that latent growth is modified by these

covariates during the first trimester. We were able to find evidence in favor of a pre-

viously hypothesized but unproven association between slow growth early in pregnancy

and increased risk of future pregnancy loss.
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Model Parameter Mean Median Lower 2.5% Upper 97.5%

tI estimated γ1 0.63 0.60 0.32 1.13

γ2 1.00 1.03 0.28 1.37

tI fixed γ1 4.09 4.09 3.84 4.37

γ2 1.03 1.07 0.17 1.42

Table 1: Posterior summaries of the parameters characterizing the association between

Z∗ and state transition probabilities. The proposed model, tI estimated, is compared to

a simpler analysis that fixes tI at two weeks.
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Figure 4: Timeline for a subject who has a fetal pole with normal heart rate at time W .

W is not observed but W + tI is known.
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Figure 5: Path diagram illustrating the dependencies in the fetal growth model. Circles
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tion.
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and black lines represent posterior distributions for individual subjects, and the red line

all subjects combined. The vast majority (99%) of individual subjects had posterior

distributions with a variance more similar to subject A than subject B.
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5 A Mixture Model for Birth Weight and Gesta-

tional Age

5.1 Abstract

The distributions of birth weight and gestational age at delivery are heavily skewed and

can be described as arising from a predominant component and a residual component

that is indicative of immature birth (Wilcox et al. 2001). A baby from the residual

component will, on average, have lower birth weight, earlier gestational age, and greater

risk of mortality than a baby from the predominant component. We propose a Bayesian

latent variable mixture model to identify subjects in the residual component by jointly

modeling birth weight and gestational age at delivery. Our methods do not rely on pre-

defined cut points, like pre-term birth or low birth weight, and account for uncertainty

when classifying babies into the high risk group. Additionally, we use latent variable

models to summarize first trimester ultrasound growth measurements in order to esti-

mate individual early fetal growth restriction. In pregnancies that proceed to term, our

results indicate that growth restriction found in the first trimester is associated with both

lower birth weight and growth restriction at delivery. Furthermore, we found significant

associations between belonging to an immaturity latent group and smoking status, race,

and education level, but no associations with maternal age or parity. An analysis using

our approach may be more powerful than an analysis that uses pre-term birth and very



pre-term birth, respectively, as the outcomes of interest.

5.2 Introduction

In reproductive epidemiology, birth weight and gestational age at delivery have been

extensively studied due to their strong association with infant mortality and weaker as-

sociations with other morbidity events. Birth weight and gestational age are inherently

related in that early gestational age is strongly associated with lower birth weight. Sim-

ilarly, growth measurements obtained by an ultrasound on the same fetus, such as the

fetal pole length and gestational sac diameter, are positively correlated. In this paper, we

develop latent variable methods that use these correlated outcomes to jointly model: (1)

birth weight and gestational age, which allows us to classify babies born to a immaturity

latent class, and (2) first trimester ultrasound measurements, in order to address early

growth restriction.

Both gestational age and birth weight follow primarily normal distributions with

extended lower tails (the “residual” distribution) in the direction of early births and low

birth weights, respectively (e.g. Figure 10). The vast majority of births lie within the

predominant portion of the distributions while, for birth weight in particular, about 2% to

5% of births have been found to lie in the residual component of the distribution (Wilcox

et al. 2001). A population with a higher proportion of births in the residual component

will be at an increased risk for infant mortality and later morbidity outcomes such as

diabetes (Harder et al. 2007; Shan and Ohlsson 2002). Conversely, two populations may

differ in their predominant distributions without a corresponding change in outcome.

For example, the predominant birth weight distribution for Mexican-American babies is
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shifted to the left compared to US non-Hispanic white babies, but Mexican-American

babies have better overall survival (Buekens et al. 2000; David 1980).

Epidemiologists recognize the excess risk associated with belonging to the residual

component of the birth weight and gestational age distributions, and they have attempted

to classify subjects into the high risk group by defining specific cut points. In particular,

gestational age less than 37 weeks (pre-term birth) or less than 32 weeks (very pre-term

birth) have been commonly used as outcomes in reproductive epidemiology. Similarly,

birth weight thresholds at 1500 g (very low birth weight) and 2500 g (low birth weight) are

thought to be particularly indicative of postnatal complications. However, pre-defined

thresholds are somewhat arbitrary and prone to misclassify babies from the predominant

component as high risk while other babies from the residual component may be incorrectly

placed in the normal risk group (Wilcox et al. 2001). We consider an alternative approach

using mixture distributions to identify a latent class of subjects who belong to the residual

component. Our methods do not rely on pre-defined cut points but still allow us identify

a group of fetuses who are more likely to deliver early. We then propose a model for

examining the association of belonging to the immaturity class with several covariates.

Early identification of growth restriction is important in order to reduce the morbidity

and mortality associated with this problem. During pregnancy, a fetus is considered

growth restricted when ultrasound measurements deviate below a specific gestational age

threshold (Maulik 2006). Similarly, at birth, a baby is defined to be growth restricted

if his or her birth weight is below a specified percentile of weight for gestational age.

Although there is controversy as to how to calculate the percentiles, in general a baby is

identified as small for gestational age (SGA) when his or her weight falls below the 10th
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percentile of weight for a given gestational age at birth. Ultrasound measurements can be

used to provide an accurate and sensitive method for identifying fetuses that are growing

more slowly than expected and more likely to be SGA (Ott 2006). Rather than use the

ultrasound measurements directly, we propose a latent variable model that aggregates

multiple measurements to identify fetuses that have an underlying latent tendency to be

growth restricted. In particular, we use the fetal pole length and mean gestational sac

diameter obtained at exactly one time point early in the first trimester to estimate latent

early growth restriction. We then examine the association of the early growth restriction

latent variable with birth weight and growth restriction measured at birth.

5.3 Methods

5.3.1 Statistical Methods

Latent variables are commonly used in the social sciences as a means of quantifying an

unobservable concept based on many observed variables (Bollen 1989). In our fetal devel-

opment analysis, we observe four outcomes that we summarize with two latent variables.

The gestational sac diameter (yi1) and fetal pole length (yi2) are measured during a first

trimester ultrasound while birth weight (yi3) and gestational age at delivery (yi4) are

collected at birth. We model the correlation between the outcomes using latent vari-

ables representing early growth restriction (ηi1) and the tendency to be born immaturely

(ηi2). While latent variables can be difficult to interpret directly, in general subjects with

small values of the “immature” latent variable (ηi2) will have small birth weight and

early gestational ages. Similarly, subjects with a smaller than average fetal pole length
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and gestational sac diameter, controlling for the number of days since the last menstrual

period (LMP), will have small values of the “growth restriction” latent variable, ηi1.

The path diagram in Figure 11 displays the relationships among observed and la-

tent variables and modeling assumptions in our proposed model. We use the symbols of

Sanchez et al. (2005) in which ovals represent latent variables and rectangles represent ob-

served variables with (solid lines) and without (dashed lines) distributional assumptions.

Arrows are used to represent associations between variables so that the lack of an arrow

indicates conditional independence. Figure 11 shows that the latent growth restriction

variable models the correlation among the ultrasound measurements, and we also test

possible associations of early growth restriction with birth weight and gestational age at

delivery. The latent immaturity variable is a continuous variable that captures the cor-

relation between birth weight and gestational age. A subject in the residual component

of the latent immaturity distribution will have low weight, early age, and a small value

of the latent immaturity variable. We formalize the residual component concept using a

mixture distribution model that allows the mean and variance of latent immaturity to

change as a function of a categorical latent variable, immaturity class (T2). All subjects

in the residual component will be assigned to the same immaturity class, while subjects

in the predominant component will be placed in one of two classes indicative of normal

maturity. We then use categorical regression to estimate the association of black race,

current smoking status, maternal age, parity, and education level with belonging to the

residual group.

Mixture distributions can be useful for flexibly representing a wide variety of distri-

butions and are particularly appropriate when observations are believed to have arisen
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from one of many distinct groups (Diebolt and Robert 1994). Gestational age at deliv-

ery follows an asymmetric statistical distribution with a long tail to the left for early

births and a near truncation on the right due to labor being medically induced for very

long gestations. Birth weight also follows a heavily skewed distribution as some babies

are prone to be born with low weight. While a single normal distribution would not

adequately capture either of these unusual distributions, Gage (2002) found that birth

weight and gestational age could be modeled using two-component normal or log normal

mixtures. Wilcox et al. (2001) also suggests that birth weight arises from independent

predominant and residual components. A natural extension to our analysis is to use

a mixture of normal distributions to flexibly model the latent immaturity variable. In

particular, we use a three class mixture in which one class identifies babies belonging

to the residual component that is indicative of immaturity and two classes are used to

model the predominant distribution indicative of normal maturity.

All parameters are estimated simultaneously in a joint model to ensure proper sta-

tistical inference. Fokoue (2005) has proposed an EM algorithm for fitting normal latent

variable mixture models with covariates, but these methods are not readily available in

statistical software. We prefer a Bayesian approach that uses Gibbs sampling (Casella

and George 1992) to iterate the complete conditionals given in Appendix B until con-

vergence. Our approach for fitting finite mixture distributions is based on the work of

Diebolt and Robert (1994), but is complicated by needing to model latent rather than

observed variables. To model the association of latent group membership with covariates,

we utilize data augmentation. In this procedure, latent data augments the observed data

so we can use both the latent and observed data to calculate the posterior distribution

67



of the parameters of interest (van Dyk and Meng 2001). Model estimation details for

similar Bayesian latent variable models are given by Elliott et al. (2005) and in the third

paper in this dissertation.

5.4 Application

5.4.1 Background

We use a Bayesian procedure for fitting the proposed latent variable mixture model.

While a thorough treatment of a Bayesian approach to data analysis (c.f. Carlin and

Louis 2000; Gelman et al. 2004) is beyond the scope of this paper, we provide a brief

introduction here to aid the reader in interpreting our results. Bayesian methods are

based on determining the joint distribution of all parameters in the model given the

data, called the posterior distribution. We summarize the posterior distribution of a

parameter by quantities including the posterior mean, 95% credible interval (CI), and

posterior probability. Although different conceptually, under many circumstance these

posterior summaries are very similar numerically and analogous to the more commonly-

seen maximum likelihood parameter estimate, 95% confidence interval, and probability

(e.g. p-value) from a frequentist analysis.

5.4.2 Dataset

We apply our methods to 1707 subjects enrolled in the Right From the Start (RFTS)

study of early pregnancy (Promislow et al. 2004). As soon as possible after enrollment

(average of 66 days after LMP), each mother was brought into the clinic to receive an

early first trimester ultrasound. At the ultrasound, at least one of the fetal pole length
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or gestational sac diameter were measured. Fetal pole lengths were measured for 1693

subjects, and gestational sac diameters were available for 827 subjects. All subjects

also provided information on the birth weight and gestational age of the child as well as

maternal age, race, education level, parity, and smoking status covariates. The covariates

were dichotomized as maternal age being greater than or equal to 35 years, race being

black, education level being above high school, being multiparous, and being a current

smoker.

Table 2 provides the frequencies of categorical variables as well as means and standard

deviations for several continuous variables. We include all singleton, live-born infants

from the RFTS-I study in this analysis. As in the general population, the distributions

of birth weight and gestational age in the RFTS sample had extended lower tails, with a

nearly truncated upper tail for gestational age (Figures 13 and 14). Only 5.8% of babies

in this sample were classified as SGA when, by definition, 10% of the referent population

that defines the norm will have SGA babies.

5.4.3 Results

To perform the analysis, we used Gibbs sampling conducted in Matlab to iterating the

complete conditionals given in Appendix B (Casella and George 1992). We ran five chains

from disparate starting values and monitored convergence using the CODA package for R

(R Development Core Team 2004). After removing an initial burn in of 15,000 iterations,

all parameters were judged to have converged by a variety of diagnostic measures. For

example, all Gelman-Rubin statistics (R̂) were found to be less than 1.01, where R̂ = 1

at convergence and values less than 1.2 are generally considered sufficient for convergence
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(Gelman et al. 2004). We used the remaining 35,000 iterations for inference.

Our estimate of the distribution of the immaturity latent variable, including the pre-

dominant and residual components, is presented in Figure 10. The predominant compo-

nent is represented by two normal distributions, and the residual component is modeled

using one normal distribution. In our sample, 3.3% of subjects (95% CI = [1.5%, 5.8%])

belong to the residual component indicative of immature birth. To ease interpretation

of the latent immaturity variable, we specify necessary identifiability restrictions so that

latent immaturity has the same location and scale as gestational age at delivery. On this

scale, the residual component of the distribution has a posterior mean of 227 days and

standard deviation of 24 days. The predominant components, both of which are indica-

tive of normal-term pregnancies, are less variable than the residual component and have

posterior means of 264 and 279 days. A subject from the residual component also has a

noticeably smaller birth weight than a subject from the predominant component. On the

weight scale, a subject with a typical rate of early growth (ηi1 = 0) and in the residual

component has an expected weight of 1901 (95% CI = [1294, 2428]) grams. A subject in

the predominant distribution has an expected weights of 3061 (95% CI = [2866, 3241])

grams or 3546 (95% CI = [3506, 3587]) grams.

As shown in Figure 11, we use the early growth restriction latent variable to model

the correlation between the fetal pole length and gestational sac diameter as well as

allowing growth restriction to influence later birth outcomes. Table 3 displays the es-

timated change in outcome variables for a one standard deviation increase in growth

restriction. Subjects with smaller values of early growth latent variable (indicating more

growth restriction) will have shorter than average fetal poles lengths and gestational sac
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diameters, after controlling for time since LMP. Additionally, a one standard deviation

decrease in the early growth restriction latent variable is associated with a 164 (95% CI:

[136, 191]) gram decrease in birth weight, controlling for the latent immaturity variable.

We found no such association between early growth restriction and gestational age.

We also examined the association between various ranges of latent early growth re-

striction and probability of growth restriction measured at birth. Birth weight Z-scores

were calculated using birth weight for gestational age population standards provided by

Oken et al. (2003). Specific cut points for defining growth restriction are arbitrary, so

we present results using the 5th and 10th percentile of the Z-score and several cut points

for early growth restriction in Figure 12. Early growth restriction follows an approxi-

mately normal distribution with a mean of zero and variance of one, so cut points of

−2, −1, −1.5, and 0 roughly correspond to the second, seventh, sixteenth and fiftieth

percentiles, respectively. Using the 10th percentile of birth weight Z-score as the cut

point (i.e. SGA), subjects with a value of early growth restriction of −2 or lower have an

18% posterior probability of being SGA at birth while subjects with positive values have

only a 4.3% risk. In general, subjects with early growth restriction less than −1 are at

an increased risk for growth restriction at birth while subjects with positive values are at

decreased risk for later growth restriction. When early growth restriction is in the range

(−1, 0], a subject has a posterior probability of future growth restriction approximately

equal to the SGA percentile cut point used. For example, at the 5th and 10th percentile

cutoffs for birth weight Z-score, we would expect 5% and 10% of subjects to be growth

restricted, respectively. For these cutoffs, the model estimates that subjects with early

growth restriction in (−1, 0] have a 5.4% and 9.9% posterior probability of being growth
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restricted at birth.

Our latent variable mixture distribution approach fits the observed birth weight and

gestational age distributions well. Figure 13 depicts the observed and estimated cumula-

tive distribution functions (CDFs) for gestational age at delivery while Figure 14 displays

these CDFs for birth weight. Tail areas are magnified in the figures. Particularly interest

lies in identifying fetuses that have a latent tendency to be born the most early and with

the least weight, so we assigned these subjects to a specific latent class. To help under-

stand the type of subjects who belong to this immaturity class, we include conditional

probability plots in Figures 13 and 14. A priori, each subject had an equal probability of

belonging to the residual distribution, but the posterior distribution of class membership

is strongly related to birth weight and gestational age. For example, Figure 13 includes

the cumulative probability of being assigned to the immaturity class, conditional on ges-

tational age. All subjects born before 224 days (very pre-term) and approximately 30%

of subjects born before 259 days (pre-term) are assigned to the immaturity latent class.

Similarly, almost all subjects with very low birth weight (< 1500g) and 45% of subjects

with low birth weight (< 2500 g) belong to this latent class (Figure 14).

Finally, we found several associations between covariates and belonging to the residual

distribution. In unadjusted models, current smokers are 3.08 times (95% CI = [1.08,6.55])

more likely to belong to the residual distribution than former- or never-smokers. Black

race (OR = 2.63, 95% CI = [1.38,4.83]) and education (OR = 2.14, 95% CI = [1.13,3.82])

were also associated with belonging to the residual distribution while the posterior odds

ratio credible intervals for being multiparous (OR = 1.15, 95% CI = [0.66,2.22]) and

advanced maternal age (OR = 1.93, 95% CI = [0.82,3.83]) all contain one. In a multi-
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variate regression model that jointly includes all five covariates, the bivariate associations

for smoking and black race remained significant. The parameter estimates from the mul-

tivariate model are presented in Table 4.

Table 4 also contains a comparison of our latent variable mixture model analysis with

the parameter and standard error estimates from models using pre-term birth (PTB) or

very PTB as the outcome of interest. All models use the probit link function to facilitate

comparison. For covariates that are statistically significant, posterior means from the

latent class analysis are larger than from a PTB analysis with standard deviations that

are smaller than the very PTB analysis. In the multivariate latent variable model, there

is a borderline significant association between achieving a high school education and

belonging to the residual distribution, which does not appear in either the PTB or very

PTB analysis. Finally, for parity, there is a borderline negative association with PTB

and an insignificant positive association with very PTB, but little evidence in favor of

any previous live births being associated with belonging to the residual distribution.

5.5 Discussion

In this paper we propose a latent variable mixture model to identify babies that belong

to residual component of the distributions of birth weight and gestational age at deliv-

ery. We found that approximately 3.4% of babies in our population can be classified as

belonging to the residual component, which is in the 2% to 5% range for birth weight

reported by Wilcox et al. (2001). However, the RFTS study of early pregnancy is not

a random sample of pregnant women from the general population, so it is possible that

the residual component frequency in the general population could be different. Babies in
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the residual component were found to be born approximately five to seven weeks earlier

and weigh 1100 to 1600 grams less than babies in the predominant distribution. We

found that current smoking status and black race were associated with increased risk

of belonging to the residual component in both adjusted and unadjusted models, and a

possible association with education as well. Finally, growth restriction estimated using

a early first trimester ultrasound measurements is associated with growth restriction at

birth.

Our model is conceptually different from the traditional approach in that it allows

for subject-specific probabilities of being assigned to the residual component. Other

approaches assume that the high risk group membership is known by using pre-defined

cut points such as 37 weeks (PTB) or 32 weeks (very PTB). If the goal is to identify the

group of subjects in the residual component, using pre-defined cut points fails to recognize

that there is error in measuring the outcome. In our approach, lower birth weight and

lower gestational ages increase the probability of being in the residual component of the

distribution (Figures 13 and 14), but we do not assume group membership is known. We

model the subject-specific probability of belonging to the residual component while jointly

examining the association between covariates and belonging to the residual component

indicative of immaturity.

Birth weight and gestational age at delivery are routinely analyzed in reproductive

health due to their strong associations with many postnatal complications. Often re-

searchers attempt to find associations between exposures such as air pollution and part-

ner abuse and mean changes in birth weight or gestational age using linear regression

models (Curry et al. 1998; Glinianaia et al. 2004). Such models assume that shifts in
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the mean of birth weight or gestational age will correspond to an increase in the per-

centage of the population at particularly high risk for complications. However, from our

perspective, changes in the mean could be due to a shift in the predominant component

of the distribution, or a more concerning increase in the proportion of babies born in

the residual component, or a combination of the two. For example, Mexican-American

babies on average have lower birth weights compared to US non-Hispanic white babies,

but without a corresponding increase in mortality. Buekens et al. (2000) explains this

observation as being due to an unimportant shift in the predominant component toward

lower birth weights without an increased risk of being born in the residual component

of the distribution. Our model focuses on identifying variables that increase the risk of

falling in the residual component.

We found an association between the early fetal growth restriction and decreased

birth weight, but no association of early growth with gestational age. However, it can

be difficult to accurately measure gestational age at delivery, which might influence the

interpretation of early growth restriction. Variability in the time from LMP to conception

can arise from both misdating the LMP and natural variability in the follicular phase

distribution so that, for example, a subject developing at a normal rate but with an

abnormally long time from LMP to conception would have a smaller than expected

fetal pole or gestational sac. In the model, this type of error would lead to a small

value of latent growth restriction, and a longer than expected gestational age at delivery.

However, in another analysis of the RFTS dataset, we estimated an early fetal growth

rate variable while attempting to account for the unknown time from LMP to conception

(Slaughter et al. 2007). A post-hoc analysis indicates that the two early fetal growth

75



variables estimated in these analyses are highly correlated.
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Characteristic Percent Mean Std Dev Min Max

LMP to ultrasound (days) 66 13 32 105

Birth weight (grams) 3394 582 600 5229

Gestational age (days) 274 14 170 300

Small for gestational age 5.8%

Pre-term birth (< 37 weeks) 9.6%

Very pre-term birth (< 32 weeks) 1.2%

Low birth weight (< 2500 g) 5.2%

Very low birth weigh (< 1500 g) 1.1%

Black Race 27.7%

Education ≤ High School 25.5%

Maternal age ≥ 35 10.9%

Parity ≥ 1 52.8%

Current Smoker 5.3%

Table 2: Summary statistics for RFTS subjects (N = 1707)
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Outcome Mean Lower 2.5% Upper 97.5%

Gest. sac diameter 0.22 0.20 0.24

Fetal pole length 0.34 0.31 0.36

Birth weight 163.8 136.3 191.3

Gestational age 5.5E-6 -1.4E-3 1.4E-3

Table 3: Posterior summaries characterizing the association of a one standard deviation

increase in latent growth restriction with observed outcomes.
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Latent PTB Very PTB

Covariate Mean SD Mean SD Mean SD

Intercept -2.14 0.20 -1.43 0.07 -2.89 0.20

Black 0.37 0.14 0.23 0.09 0.61 0.18

Education 0.22 0.14 0.25 0.10 0.27 0.20

Maternal age ≥ 35 0.35 0.18 0.20 0.13 0.36 0.26

Parity > 0 -0.01 0.13 -0.15 0.08 0.22 0.20

Current Smoker 0.45 0.22 0.39 0.16 0.46 0.29

Table 4: Comparison of proposed latent class analysis with analyses that use pre-term and

very pre-term birth as the outcomes. Posterior means and standard errors for covariates

are presented for each outcome.

79



180 200 220 240 260 280 300

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

xseq

P
ro

ba
bi

lit
y

Gestational age at delivery (days)

180 200 220 240 260 280 300

0e
+

00
5e

−
04

Figure 10: Estimated probability density function for the predominant and residual com-

ponents of latent immaturity distribution (main plot). The lower plot magnifies the

residual component.
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Figure 11: Path diagram representing dependencies in fetal development model. Circles

represent unobserved variables and boxes observed variables both measured with error

(solid lines) and without distributional assumptions (dashed lines).
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Figure 13: The solid lines represent the empirical and estimated cumulative distribution

functions for gestational age at delivery. The fit of the residual distribution is magnified.

Points provide the cumulative probability of being assigned to the latent class indicative

of immature delivery (T2 = 1), conditional on gestational age. Vertical dashed lines

indicate the commonly-used very PTB and PTB cutoffs.
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Figure 14: The solid lines provide the empirical and estimated cumulative distribution

functions for birth weight. The fit of the residual distribution is magnified. Points

represent the cumulative probability of being assigned to the latent class indicative of

immature delivery (T2 = 1), conditional on birth weight. Vertical dashed lines indicated

the commonly-used very LBW and LBW cutoffs.
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6 A Bayesian Latent Variable Mixture Model with

Covariates for Fetal Growth

6.1 Abstract

Latent variables can be useful for aggregating multiple correlated outcomes that are

measured on the same subject into a fundamental, underlying concept. We propose a

Bayesian approach for jointly modeling several fetal outcomes, measured by ultrasound

during pregnancy, and growth measurements, made at birth, using latent variables. Our

procedure is more flexible than typical latent variable methods in that we allow the latent

variables to follow finite mixture distributions. Using mixture distributions also permits

us to identify and group individuals with similar characteristics. We apply our methods

to a study of fetal development in which we use latent variables to identify latent classes

of subjects who are more likely to be growth restricted during pregnancy and growth

restricted at birth. We then examine the association between measured covariates and

latent classes of growth restriction. Our methods are able to identify a latent class of

subjects who have increased blood flow restriction and below average intrauterine size

during the second trimester who are more likely to be growth restricted at birth than a

class of individuals with normal size and blood flow.



6.2 Introduction

In reproductive health, birth weight and gestational age at delivery have been extensively

studied because low birth weight and pre-term birth are both strongly associated with

infant mortality. Birth weight and gestational age are positively correlated and follow

unusual, skewed distributions with long tails in the direction of low weights and early

births, respectively. Wilcox et al. (2001) has described the birth weight distribution

as arising from a predominant and a residual component, with the residual component

containing most of the lower tail. A higher proportion of births in the residual component

is associated with an increased risk of poor pregnancy outcomes, but a shift in the mean

of the predominant distribution toward lower weight may not be associated with any

increased risk (Buekens et al. 2000). With this in mind, we focus on identifying a latent

class of subjects who belong to the residual distribution and on finding factors that are

associated with class membership.

Early identification of fetuses that are at increased risk for being growth restricted at

birth or being born before they are fully mature is important to reduce infant mortality

and other morbidity events. Babies are often determined to be growth restricted at birth

when their weight is substantially less than would be expected for their given gestational

age at delivery. For example, an individual is defined to be small for gestational age (SGA)

if his or her birth weight is below the 10th percentile of weight for a given gestational

age (Oken et al. 2003). To identify growth restriction during pregnancy, many different

ultrasound measurements of fetal size and blood flow may be useful. In particular, the

head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD)
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or femur length (FL) can be used individually to estimate fetal size during the first

and second trimester. A fetus will then be considered to be “growth restricted” when

one of these ultrasound measurements falls below a specific gestational age threshold

(Maulik 2006). Additionally, when a fetus does not receive enough oxygen or nutrients

during pregnancy, growth may be limited. Blood flow resistance can be measured using

multiple Doppler ultrasound measurements on different arteries (uterine and umbilical),

at different locations (left and right), and at multiple times during the pregnancy. Women

with high uterine and umbilical artery resistance have been shown to be at an increased

risk for delivering a growth-restricted baby (Dugoff et al. 2005; Hugo et al. 2007).

While many ultrasound measurements are available to diagnose growth restriction

during pregnancy, it is not clear how best to combine and use all of the measurements.

The most common approach compares the measurements of the HC, AC, BPD, and FL to

predicted sizes for a gestational age based on population studies to define second trimester

growth restriction (e.g. Filly and Hadlock 2000, Dugoff et al. 2005). These analyses focus

on identifying a best size measure, although there is often little to distinguish them, and

do not discuss situations where different measurements disagree. Other researchers have

suggested using a simple average of all of the fetal size measurements for prediction of

subsequent growth restriction (Ott 1994). Instead, we propose a latent variable approach,

which aggregates the multiple ultrasound measurements into underlying latent variables.

We allow the latent variables to follow finite mixture distributions so that we are able to

group individuals into latent classes and identify groups of subjects who, based on their

ultrasound measurements during pregnancy, are more likely to be growth restricted at

birth. For the outcomes measured at birth, the latent class approach also allows us to
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formalize Wilcox’s concept of “residual” and “predominant” distribution components, as

we identify a group of subjects who are more likely to have low birth weight and early

gestational age. Finally, we incorporate observed covariates including race, parity, and

body mass index (BMI) by allowing the covariates to predict latent class membership.

The remainder of this paper will be organized as follows. In section 6.3, we propose

our general model for latent variable mixture distributions and compare our method

to previous approaches. In section 6.4, we provide a Bayesian approach to fitting such

a model while focusing on our fetal development application. Section 6.5 contains the

results of our example analysis followed by a discussion in section 6.6.

6.3 Methods

Latent variable methods have been widely used in the social sciences, but the sensitivity

of parametric latent variable models to assumptions is one factor that limits their more

general use. The parametric assumptions are often difficult to evaluate, and there are

no simple methods for alleviating violations of model assumptions. Our reproductive

epidemiology data are further complicated by the unusual distribution of gestational age

at delivery, which has a long left tail for early ages and a near truncation on the right

due to medically-induced labor for longer gestations, due to risk of fetal demise among

post term deliveries. The assumption of normality is particularly unlikely to hold in our

example, so we propose an alternative method in which the latent variables are allowed to

follow mixture distributions. Other approaches that are robust to outliers (Lee and Xia

2006) are only appropriate for symmetrically heavy-tailed distributions. Early births are

particularly indicative of future problems so that cutoffs at 37 (pre-term) and 32 (very
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pre-term) weeks of gestation have been established in the reproductive health literature,

with gestational age at delivery being treated as a binary outcome. Our mixture model

approach will allow us to identify latent classes of subjects who are more likely to deliver

early, without relying on these pre-defined cut points. We then propose a model for

examining the association between latent classes and measured covariates.

Mixture distribution models are particularly appropriate when observations are be-

lieved to arise from one of several unobserved groups. Our Bayesian approach for fit-

ting finite mixture distributions is based on the work of Diebolt and Robert (1994) and

Richardson and Green (1997), but is complicated by needing to model latent rather than

observed variables. To model the association of latent group membership with covariates,

we utilize data augmentation. In this procedure, latent data augments the observed data

so we can use both the latent and observed data to calculate the posterior distribution

of the parameters of interest (van Dyk and Meng 2001). Alternatively, Fokoue (2005)

has proposed an EM algorithm for normal latent variable mixture model with covariates,

but does not model associations between the latent classes.

We assume that each of our observed outcomes measured during pregnancy, yij

(j = 1, . . . , p1), follows a normal distribution with a mean that is a function of observed

covariates W i(rj × 1) and latent variables ηi1(q1 × 1) with parameter vectors Γj(rj × 1)

and Λj(q1 × 1), respectively. Outcomes measured at birth, zig(g = 1, . . . , p2), such as

birth weight and gestational age, also follow a normal distribution with a mean that is a

function of latent immaturity (ηi2) with parameters θg(q2 × 1) and latent class Si with

covariates βg = [βg,1, . . . , βg,K]′. We allow ηi1(q1 ×1) and ηi2(q2 ×1) to follow finite mix-

ture distributions. It is often convenient to express mixture models using a missing data
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formulation in which each ηi1 and ηi2 is presumed to arise from a specific, but unknown,

underlying component (Dempster et al. 1977). Specifically, for ηi1 and ηi2, respectively,

we introduce latent class allocation variables Si ∈ {1, . . . , K} where Pr(Si = k) = πs,k

and Ti ∈ {1, . . . , L} where Pr(Ti = l) = πt,l. This specification is useful for computational

purposes and allows us to naturally group subjects with similar latent variable charac-

teristics. We can then jointly examine possible associations between measured covariates

xi and Si using parameters ω as well as associations between Ti and Si using parameters

α by following Bayesian techniques for probit regression models (Albert and Chib 1993).

To analyze fetal growth, we propose the following latent variable mixture model with

covariates

yij|ηi1 ∼ N
(

W ′

iΓj + η′

i1Λj, τ
−1
y,j

)

ηi1|Si = k ∼ Nq1 (µ1k,Σ1k)

zig|ηi2 ∼ N

(

η′

i2Θg +

K
∑

k=1

βg,kI(Si = k), τ−1
z,g

)

ηi2|Ti = l ∼ Nq2 (µ2l,Σ2l)

Si|xi ∼ Multi(1; h(ω1,xi), . . . , π(ωK,xi))

h(ωk,xi) = Φ (ω′

kxi)

Pr (Ti = 0|Si) ∼ Bin(p(αk, Si))

p(αk, Si) = Φ

(

K
∑

k=1

αkI(Si = k)

)

(6.1)

where Φ(·) is the normal cumulative distribution function and I(Si = k) is the indicator

function that takes a value of one if Si = k and zero otherwise.

Latent variable and mixture models require fixing some parameters so that others can

be identified and interpreted. One common approach sets the covariance matrices Σ1k
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and Σ2l to be equal to the identity matrix so that all of the elements Λj and Θg can be

identified and interpreted as factor loadings. Instead, we estimate an equivalent model

in which Σ1k has diagonal elements (τ1,1,k, . . . , τ1,q1,k) and Σ2l has diagonal elements

(τ2,1,l, . . . , τ2,q2,l) with all covariance terms fixed to zero. This specification requires fixing

q1 factor loadings in Λ (where Λ is a stacked matrix of the Λj) and q2 factor loadings

in Θ (a stacked matrix of the Θj) to one so that each of the q1 latent variables in

η1 and q2 latent variables in η2 will have a scale that is commensurate with a specific

outcome. Such a specification aids in specifying appropriate prior distributions as well as

easing interpretation of the latent variables. Elliott et al. (2005) pursues an alternative

approach in which Λ is assumed to follow a known polynomial function so that Σ1k can be

estimated. Their approach may be more appropriate when the longitudinal observations

are measured at more time points than in our application.

6.4 Application

6.4.1 Model Description

In our fetal development example analysis, we observe eighteen total ultrasound measure-

ments, which we summarize with three underlying latent variables, ηi1 = [ηi11, ηi12, ηi13]
′.

Four fetal size measurements are obtained at two time points. Specifically, the abdominal

circumference is measured at a 15-week ultrasound (yi,1) and 24-week ultrasound (yi,5).

Head circumference (yi,2 and yi,6), femur length (yi,3 and yi,7), and biparietal diameter

(yi,4 and yi,8) are also measured at these two time points. We model the correlation

between the fetal size outcomes using the latent early fetal growth variable (ηi11). Ad-
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ditionally, the pulsatility index (PI) and systolic-diastolic (S/D) ratio are measured in

the left and right uterine arteries at two time points (yi,9, . . . , yi,16), and we capture the

correlation between these measurements using a latent uterine blood flow variable, ηi12.

Finally, we consider the S/D ratio and resistance index (RI) measurements made in the

umbilical artery (yi,17, yi,18) at week 24 to be error-prone realizations of an underlying

latent variable ηi13. Umbilical artery measurements are not made earlier because they

are technically difficult to perform and thought to be biologically meaningless before 20

weeks.

The path diagram in Figure 15 displays the relationships among variables and model-

ing assumptions in our proposed model. Circles represent latent variables, and rectangles

represent observed variables that either have distributional assumptions (solid lines) or

are assumed to be measured without error (dashed lines). Arrows are used to represent

associations between variables so that the lack of an arrow indicates conditional indepen-

dence. For the outcomes measured at birth, we assume that birth weight and gestational

age are related to an underlying immaturity variable (η2). Immaturity class membership,

Ti, is a latent categorical variable used to identify individual subjects who belong to the

residual or predominant portion of the distribution of η2. For the ultrasound measure-

ments, we allow the measurements of fetal size and blood restriction to be stochastic

functions of the number of days since the last menstrual period (LMP) and model the

correlation among these variables using three latent variables (η1 = [η11, η12, η13]
′). We

assume that each of the ηi1 arise from a specific but unknown latent class, where class

membership is indicated by the categorical variable Si. We are then interested in deter-

mining if Si can be used to predict individuals who are more likely to be in the residual
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component of the birth weight or gestational age distribution, represented by the Ti latent

class. We also examine if growth or blood flow restriction during the second trimester is

related to growth restriction measured at birth, so we examine the association between

birth weight Z-scores and Si. The birth weight Z-score is a continuous measure of growth

restriction that is calculated using birth weight for gestational age population standards

(Oken et al. 2003). Finally, we model the association between Si and black race, being

multiparous, gender, height, and BMI.

6.4.2 Measurement Models

We formally express the relationship of outcomes with latent and observed variables using

the measurement model

yij = γ0j + λ1jηi11 + γ1jWi + γ2jW
2
i + εij, j = 1, . . . , 8 (6.2)

yij = γ0j + λ1jηi12 + εij, j = 9, . . . , 16 (6.3)

yij = γ0j + λ1jηi13 + εij, j = 17, 18 (6.4)

where εij ∼ N(0, τ−1
j ), j = 1, . . . , 18. The ultrasound size measurements (j = 1, . . . , 8)

increase with time, so we allow them to be a functions of Wi, the reported time from

the last menstrual period (LMP) to the ultrasound for subject i. The blood restriction

measurements (j = 9, . . . , 18) do not change as a function of time since LMP over the

range of times observed in our study, so we do not include any Γ parameters for time

covariates in (6.3) or (6.4). Additionally, in (6.2), we restrict λ1,j = λ1,j+4, γ0,j = γ0,j+4,

γ1,j = γ1,j+4, γ2,j = γ2,j+4, and τj = τj+4, j = 1, . . . , 4, which assumes separate growth

curves for the HC, FL, AC, and BPD size measurements. For identifiability, we fix
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λ0,4 = λ0,16 = λ0,18 = 0 and λ1,4 = λ1,16 = λ1,18 = 1 so that ηi11, ηi12, and ηi13 will have

location and scale that is commensurate with yi,4, yi,16, and yi,18, respectively.

For the outcomes measured at birth, we propose the following measurement model

for the continuous outcomes birth weight (zi1), gestational age at delivery (zi2), and birth

weight Z-score (zi3). The correlation among birth weight and gestational age is captured

using one latent immaturity variable, ηi2 = [ηi21]

zi1 = θ01 + θ11ηi21 + δi1, δi1 ∼ N(0, τz1) (6.5)

zi2 = θ02 + θ12ηi21 + δi2, δi2 ∼ N(0, τz2) (6.6)

zi3 =
K
∑

k=1

βjI(Si = k) + δi3, δi3 ∼ N(0, τz3) (6.7)

with θ02 = 0 and θ12 = 1 so that ηi21 has a location and scale that is commensurate

with gestational age at delivery. Birth weight Z-scores are calculated by comparing the

observed birth weight and gestational age to the expected weight for age from approx-

imately 6.7 million US births in 1999 and 2000 (Oken et al. 2003). With such a large

number of births, a nearly continuous measure of birth weight for gestational age quantile

can be calculated and then transformed to a corresponding Z-score. We use the Z-score

in our analysis rather than applying an arbitrary cutoff (such as -1.28) that creates a

binary outcome such as small for gestational age. By definition, birth weight Z-scores

are independent of gestational age, so we do not allow zi3 to be a function of ηi21; ηi21 is

thus a latent variable related to the timing of delivery.

94



6.4.3 Mixture Distribution with Covariates

We allow the latent variables to follow finite mixture distributions

f(ηi1) ∼
K
∑

k=1

π1kN3

(

[µ11k, µ12k, µ13k]
′, Dg(τ−1

11k, τ
−1
12k, τ

−1
13k)
)

(6.8)

f(ηi2) ∼

L
∑

l=1

π21lN
(

µ21l, τ
−1
21l

)

(6.9)

where Dg(τ−1
11k, τ

−1
12k, τ

−1
13k) is a diagonal covariance matrix with elements τ−1

1mk. In our

example analysis, we use a two-component mixture for early growth restriction (K = 2)

and a three-component mixture for latent immaturity (L = 3).

Latent class models are subject to additional identifiability complications due to the

fact that the likelihood is symmetric across the possible permutations of class member-

ship. Consequently, assignment to a particular class k during one iteration of the Gibbs

sampler may not have the same meaning in terms of model structure as assignment to

class k at another iteration of the Gibbs sampler. For the latent immaturity variable

η2, we impose the identifiability constraint that µ211 < µ212 < µ213 to deal with the

“label switching” problem and to ensure that subjects with the lower birth weights and

earlier gestational ages will be assigned to the first latent class. We can then examine the

association between class membership and observed covariates or latent variables. While

ordering the means is effective in many cases including our application, this approach is

not a general solution to the label switching problem (Stephens 1997). Stephens (2000)

provides a decision-theoretic approach that maximizes the posterior probability that the

labeling of classes is consistent across iterations of the Gibbs sampler. We utilize his

post-processing technique for the labeling of the early growth restriction classes (Si) be-

cause, unlike the classes for immaturity at birth (Ti), the ordering of the classes is not
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important and can be disentangled after the completion of the Gibbs sampling runs.

Gestational age at delivery follows an unusual, asymmetric distribution with a long

tail to the left for early births and a near truncation on the right due to labor being

medically induced for very long gestations. Using the restriction µ211 < µ212 < µ213

ensures that subjects who are more likely to be born early will be assigned to latent class

Ti = 1. We then propose a probit model for the probability of being in this early group

Pr (Ti = 1) = Φ

(

K
∑

k=1

I(Si = k)αk

)

, (6.10)

where Φ is the normal cumulative distribution function. We also use a probit model to

examine the association between observed covariates and Si,

Pr (Si = 1) = Φ (x′

iωk) , (6.11)

where xi(r × 1) includes covariates of interest with parameters ω (r × 1). In the fetal

development example, we consider the covariates maternal black race, parity, gender,

maternal body mass index (BMI), and maternal height. To fit these probit regression

models, we use the data augmentation algorithm given Albert and Chib (1993). While

we are only concerned with binary outcomes in our application, our models could be

extended to incorporate ordinal or multinomial outcomes if Si takes on more than two

levels (Holmes and Held 2006).

6.4.4 Model Selection

A complication in mixture distribution models with a finite number of components is the

method used to select the number of mixture components. A more general model could

treat the number of mixture components as parameters to be estimated (Richardson and
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Green 1997) or use a Dirichlet process in which the number of components is countably

infinite (Dunson 2006a), but neither of these approaches would be able to readily incor-

porate covariates that predict class membership. When possible, we prefer an approach

for selecting the number of mixture components that is guided by the application. For

example, in the reproductive epidemiology literature birth weight and gestational age

have been described as arising from a predominant and residual component that is in-

dicative of early gestational age and low birth weight (Buekens et al. 2000; Wilcox et al.

2001). We use a three component mixture for latent immaturity class (Ti) in order to

identify the residual distribution, and thus identify individuals who are at increased risk

for mortality and other forms of morbidity. A mixture with only two components did not

identify the residual group, and a model with more than three components only improves

the fit of the predominant distribution so it has a needlessly complex interpretation.

When the applied problem is not helpful in selecting the number of mixture compo-

nents, some statistical tools are available. Bayesian approaches for comparing complex

hierarchical models in which the number of parameters is not clearly defined include us-

ing the deviance information criterion (DIC; Spiegelhalter et al. 2002). The DIC is not

without problems, and, for mixture models in particular, the DIC is thought to favor

overly-complex models (Richardson, in discussion of Spiegelhalter et al. 2002). More

recently, Celeux et al. (2006) discuss and compare different constructs of the DIC in the

general context of missing data models, with mixture models explored in detail. Alter-

natively, posterior prediction intervals can help determine if too few classes are chosen,

leading to a model that under-fits the data (Lynch and Western 2004).
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6.4.5 Prior distributions

To complete a Bayesian specification of the model, prior distributions must be specified

for each parameter. In general, we use proper but appropriately vague priors for all

parameters to obtain complete conditionals that are of known form. We use condition-

ally conjugate priors p (Λj|τy,j) ∼ N
(

µ0,Λj
, τ−1

y,j Σ0,Λj

)

, p (Γj|τy,j) ∼ N
(

µ0,Γj
, τ−1

y,j Σ0,Γj

)

,

p (τy,j) ∼ Γ
(

cy,j

2
,

dy,j

2

)

, p (Θg|τz,g) ∼ N
(

µ0,Θg
, τ−1

z,g Σ0,Θg

)

, p (βk|τz,g) ∼ N
(

µ0,βk
, τ−1

z,g Σ0,βk

)

,

and p (τz,g) ∼ Γ
(

cz,g

2
, dz,g

2

)

. We then choose µ0,Λj
= µ0,Γj

= µ0,Θg
= µ0,βk

= 0,

Σ0,Λj
= Σ0,Γj

= Σ0,Θj
= Σ0,βk

= 10002I, and cy,j = dy,j = cz,g = dz,g = .01 for ev-

ery j where 0 is a conforming vector of zeros and I is a conforming identity matrix. We

also assume p(ω) ∼ N
(

µ0,ω,Σ0,ω

)

and p(α) ∼ N
(

µ0,α,Σ0,α

)

with µ0,ω = µ0,α = 0 and

Σ0,ω = Σ0,α = 1002I.

For the mixture distribution component of our model, we use a prior specification

that follows the suggestions of Richardson and Green (1997). For latent immaturity and

l = 1, 2, 3 we assume p (µ21l) ∼ N (ν21l, R
2) I (µ21,l−1 < µ21l < µ21,l+1) where µ210 = −∞

and µ214 = ∞. We choose ν211 = 245, ν212 = ν213 = 280, and R = 10 so that, a priori,

we expect that the residual distribution will have a mean of 245 ± 20 (days) and the

predominant distribution a mean of 280 ± 20 (Gage 2002). For the mixture component

means of η1, we use p (µ1mk) ∼ N (ν1mk, R
2
m) (m = 1, 2, 3 and k = 1, 2) with R1 = 10,

R2 = 2.17, and R3 = 0.32 being the observed ranges of y4 (after adjusting for time since

LMP), y16, and y18.

We use a hierarchical structure for specifying the prior distribution of each τ1mk and

τ21l. Specifically, we allow p (τ1mk|b0,m) ∼ Γ (a0,m, b0,m) and p (τ21l|b0) ∼ Γ (a0, b0) with
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b0,m ∼ Γ (g0,m, h0,m) and b0 ∼ Γ (g0, h0). We choose a0,m = a0 = 2, g0,m = g0 = 0.2,

h0,m = 10 ∗ R−2
m , and h0 = 10 ∗ R−2 where Γ(a, b) is the gamma distribution with

mean a ÷ b and variance a ÷ b2. By choosing a0,m > 1 > g0,m (and a0 > 1 > g0) we

express the general belief that, for each k (and l), the τ1mk (and τ21l) are similar, but

we have no information on their absolute size. Finally, we assume that πs = [πs1, πs2]
′

and πt = [πt1, πt2, πt3]
′ follow independent, symmetric Dirichlet distributions, p (πs) ∼

D(d1, . . . , d1) and p (πt) ∼ D(d2, . . . , d2) and choose d1 = d2 = 1 to be appropriately

vague.

6.5 Results

To perform the analysis, we used Gibbs sampling, conducted in Matlab, with the complete

conditionals given in Appendix C (Casella and George 1992). We ran five chains from

disparate starting values and monitored convergence using the CODA package for R (R

Development Core Team 2004). After removing an initial burn in of 15,000 iterations, all

parameters were judged to have converged by the Gelman-Rubin and Geweke diagnostic

measures (Gelman and Rubin 1992; Geweke 1991). For example, all Gelman-Rubin

statistics (R̂) were found to be less than 1.01, where R̂ = 1 at convergence and values

less than 1.2 are generally considered sufficient for convergence (Gelman et al. 2004).

We used the remaining 35,000 iterations for inference, and summarize our results using

posterior means and 95% credible intervals (CI) for parameters or functions of parameters

(e.g. odds ratios) that are of interest.

We applied our methods to 522 subject taken from the Pregnancy, Infection, and

Nutrition (PIN) cohort study of prenatal influences on pregnancy outcomes (Savitz et al.
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1999). We included all singleton, live-born infants who had complete ultrasound, birth

weight, gestational age, and covariate information in this analysis. Characteristics of the

study subjects are presented in Table 6.6. As expected, birth weight and gestational age

had skewed distributions toward early birth and low weight, respectively.

For each subject, fetal size measurements including the abdominal circumference,

biparietal diameter, femur length, and head circumference were made at approximately 15

and 24 weeks gestational age using an ultrasound. Additionally, multiple blood restriction

measurements were taken at week 15 and week 24 using a Doppler ultrasound. The

correlation among the Doppler ultrasound blood flow measures as well as their means

and standard deviations are presented in Table 6.6. The highest correlations (all ρ ≥ 0.90)

were observed among the S/D ratio and PI (or RI for umbilical artery) within a given

artery, location, and time. We observed the lowest correlation between the uterine and

umbilical artery measurements. In the uterine arteries, the mean resistance, as measured

by either the S/D ratio or PI, did not change meaningfully from the week 15 to week 24

ultrasound. Based on this descriptive analysis, we chose to model the correlation between

the uterine artery measurements using one latent variable (ηi12), and the correlation

among the umbilical artery S/D and RI using a second latent variable (ηi13).

Birth weight and gestational age were collected at birth, and using this information,

we calculated birth weight Z-scores using birth weight for gestational age population

standards provided by Oken et al. (2003). For any given gestational age, the birth weight

Z-scores follow a standard normal distribution relative to the reference population so that

individuals with negative values are believed to have some degree of growth restriction

at birth. In simple linear regression models, black race was associated with a 0.48 unit
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decrease in birth weight Z-score (95% CI: [-0.68, -0.28]) compared to all other races.

Birth weight Z-scores were 0.23 units lower in women who had no previous live births

(95% CI: [-0.38, -0.07]) compared with multiparous women and 0.13 units lower (95% CI:

[-0.24, -0.05]) in females compared to males. Additionally, a one inch increase in maternal

height (estimate = 0.06, 95%CI: [0.03, 0.09]) and a one kg/m2 increase in maternal BMI

(estimate = 0.017, 95%CI: [0.004, 0.029] were associated with increased birth weight

Z-scores. In our latent variable mixture model, we examined if any of these covariates

predict growth restriction latent class (Si), with the latent class then used to predict

birth weight Z-scores (Figure 15).

For early growth restriction, our latent variable mixture model identified two groups

of subjects based on their multiple ultrasound measurements of fetal size and blood

flow resistance. For ease of exposition, we refer to these groups as the “normal” and

“restricted” groups. On average, a majority of subject belong to the normal group

(posterior mean = 67%, 95% CI = [59%,74%]). Figure 16 displays a comparison of these

two groups for the four measures of fetal size, the PI at various times and locations, and

the RI obtained in the umbilical artery at week 24 by Doppler ultrasound. Controlling

for time since LMP, the restricted group had, on average, smaller fetal size measurements

and greater resistance to blood flow than the normal group. The restricted group also

had significantly larger S/D ratios, indicating greater blood flow resistance, at all times

and locations (results not shown). Furthermore, we found evidence of growth restriction

at birth in the restricted group. The average birth weight Z-score was −0.34 (95% CI:

[-0.51, -0.18]) in the restricted group and 0.11 (95% CI: [0.00, 0.22]) in the normal group.

We also examined the association of black race, parity, gender, height, and BMI with
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being classified into the restricted early growth group. We found a moderate associa-

tion with maternal height in that a one inch increase was associated with a 0.82 (95%

CI: [0.57,1.00]) fold decrease in the odds of belonging to the restricted group. Black

race (posterior odds = 1.33, 95% CI: [0.77,2.14]), being nullparous (posterior odds =

1.12, 95% CI: [0.74,1.65]), and being female (posterior odds = 1.412, 95% CI: [0.91,2.12])

were not significantly associated with belonging to the restricted group. We also found

no linear association between group membership and BMI, but also examined BMI by

previously established categories ranging from underweight to obese (WHO Expert Com-

mittee 1995). Underweight (BMI < 18.5 kg/m2) and obese women (BMI ≥ 30 kg/m2)

had a relatively high 0.36 (95% CI: [0.23,0.49]) and 0.38 (95% CI: [0.27,0.50]), respec-

tively, posterior probability of belonging to the restricted group. Women with a BMI in

the normal range (BMI ∈ [18.5, 25) kg/m2) or moderately obese women (BMI ∈ [25, 30)

kg/m2) had lower posterior probabilities of 0.31 (95% CI: [0.23,0.39]) and 0.31 (95% CI:

[0.18,0.45]), respectively.

Our latent variable mixture distribution approach fits the observed birth weight and

gestational age distributions well. Figure 17 depicts the observed and estimated cumula-

tive distribution functions (CDFs) for gestational age at delivery while Figure 18 contains

these CDFs for birth weight. Tail areas are magnified in the figures. Particular interest

lies in identifying fetuses that have a latent tendency to be born the very early and with

low weight, so we assigned these subjects to a specific latent class. To help understand

the type of subjects who belong to this immaturity class, we include conditional prob-

ability plots in Figures 17 and 18. A priori, each subject had an equal probability of

belonging to the residual distribution, but the posterior distribution of class membership
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is strongly related to birth weight and gestational age. For example, Figure 17 includes

the cumulative probability of being assigned to the immaturity class, conditional on ges-

tational age. All subjects born before 224 days (very pre-term) and approximately 30%

of subjects born before 259 days (pre-term) are assigned to the immaturity latent class.

This compares to a 3.7% (95% CI: [1.2%, 10.4%]) marginal probability of belonging to

the residual component. For birth weight, some subjects with very low weight (< 1500g)

had a low probability of being assigned to the residual distribution. Such a scenario is

possible when an individual has low birth weight due to slow growth during pregnancy

without early gestational age. Still, about 90% of subjects with very low birth weight (<

1500g) and 40% of subjects with low birth weight (< 2500 g) belong to the latent class

indicative of the residual distribution (Figure 18).

Finally, we examined the association between our two latent class variables. Using

a probit regression model, individuals in the restricted latent class during the second

trimester were 3.45 times (95% CI: [0.86,58.9]) more likely to belong to the residual

component of the distribution at birth. The large posterior odds ratio indicates that be-

longing to the restricted class is potentially an important predictor of future immaturity,

but the credible interval is too wide to make a definitive statement in this dataset.

In our analysis, our primary inference is about latent variables and latent classes, and

we make a number of distributional assumptions, so it is important to evaluate the fit

of our model. To do so, we calculated the posterior predictive distributions for observed

data and then compared these distributions to our observed data graphically following

Lynch and Western (2004). Figure 19 shows the posterior distributions and observed

data for the S/D ratio obtained in the right uterine artery at week 15 for 90 subjects.
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Our model appears to fit the observed data well. Posterior predictive plots for other

ultrasound measurements, birth outcomes, and subjects also do not indicate a lack of fit.

6.6 Discussion

We develop a Bayesian approach for analyzing multiple correlated pregnancy outcomes

measured during pregnancy by ultrasound and collected routinely at birth using latent

variable mixture models. We found evidence in favor of the existence of a latent class

of subjects who were more likely to have smaller fetal size measurements and restricted

blood flow during the second trimester. Subjects in the restricted group had increased

growth restricted at birth and may be at increased risk for belonging to the residual

distribution of birth weight and gestational age. Finally, we found that height, BMI,

black race, gender, and parity were directly related to birth weight Z-scores, but we did

not find an association between these covariates and the latent class of subjects who were

restricted during pregnancy in a mediation model.

Latent variables methods provide a natural way of aggregating multiple correlated

outcomes to describe underlying concepts. We collected a total of eighteen ultrasound

measurements on each subject, summarized them using three latent variables, and then

subsequently into two latent classes. Rather than use the ultrasound measurements

directly, we focus on making inference using the latent classes. A priori, the model

assumes that each subject has an equal probability of belonging to each of the latent

classes, but the posterior distribution is a mixture over all classes. Individuals with

smaller fetal size and larger blood restriction have an increased posterior probability of

belonging to a restricted latent class, which could be useful in early identification of
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individuals who are more likely to be growth restricted at birth for possible medical

intervention or closer monitoring.

Our mixture distribution approach is particularly appropriate for formalizing the

concept of predominant and residual components of the birth weight and gestational

age distributions developed by Wilcox et al. (2001). We estimated that approximately

3.7% of births lie in the residual distribution, which is in the 2% to 5% range previously

estimated for birth weight (Wilcox et al. 2001). A population with a higher propor-

tion of births in the residual component will be at an increased risk for infant mortality

and later morbidity outcomes such as diabetes (Harder et al. 2007; Shan and Ohlsson

2002). Conversely, two populations may differ in their predominant distributions with-

out a corresponding change in outcome. Often researchers attempt to find associations

between exposures such as air pollution or abuse and mean changes in birth weight or

gestational age using linear regression models (Curry et al. 1998; Glinianaia et al. 2004).

Such models assume that shifts in the mean of birth weight or gestational age will cor-

respond to an increase in the percentage of the population at particularly high risk for

complications. However, from our perspective, changes in the mean could be due to a

shift in the predominant component of the distribution, or a more concerning increase in

the proportion of babies born in the residual component, or a combination of the two.

For example, Mexican-American babies on average have lower birth weights compared to

US non-Hispanic white babies, but without a corresponding increase in mortality. This

observation could be due to an unimportant shift in the predominant component toward

lower birth weights without an increased risk of being born in the residual component of

the distribution (Buekens et al. 2000). Our model focuses on identifying a latent class of
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subjects who, based on many second trimester ultrasound measurements, are at increased

the risk of falling in the residual component.
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Characteristic Percent Mean Std Dev Min Max

Birth weight (grams) 3324 570 1118 5171

Gestational age (days) 274 13.5 203 298

Maternal height (in) 65 2.5 59 72

Maternal BMI (kg/m2) 25 6.2 16 53

Small for gestational age 8.7%

Pre-term birth (< 37 weeks) 10.7%

Very pre-term birth (< 32 weeks) 1.3%

Low birth weight (< 2500 g) 7.1%

Very low birth weight (< 1500 g) 1.1%

Maternal Black Race 17.5%

Parity ≥ 1 55.1%

Male gender 47.8%

Table 5: Descriptive statistics for the 522 PIN subjects studied
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Week 15 Ultrasound Week 24 Ultrasound

Left UA Right UA Left UA Right UA Umbilical

S/D PI S/D PI S/D PI S/D PI S/D RI

15LTSD 1.00

15LTPI 0.92 1.00

15RTSD 0.33 0.35 1.00

15RTPI 0.34 0.39 0.92 1.00

24LTSD 0.46 0.43 0.32 0.31 1.00

24LTPI 0.42 0.43 0.30 0.30 0.93 1.00

24RTSD 0.23 0.24 0.46 0.46 0.38 0.38 1.00

24RTPI 0.18 0.22 0.41 0.43 0.34 0.36 0.90 1.00

24UMSD 0.10 0.10 0.04 0.05 0.09 0.06 0.12 0.07 1.00

24UMPI 0.10 0.10 0.02 0.04 0.09 0.06 0.08 0.04 0.97 1.00

Mean 2.58 1.08 2.50 1.05 2.02 0.81 2.05 0.84 2.97 0.65

Std Dev 0.97 0.40 0.92 0.41 0.41 0.25 0.43 0.26 0.51 0.06

Table 6: Mean, standard deviation, and correlation among the blood restriction measure-

ments including the Systolic-Diastolic ratio (SD), Pulsatility Index (PI) and Resistance

Index (RI) made in the left (LT) or right (RT) uterine artery (UA) or umbilical (UM)

artery during the week 15 or week 24 ultrasound.
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Figure 15: Path diagram illustrating the dependencies in the proposed growth restriction

and latent immaturity model. Circles represent latent variables, squares indicate observed

variables, and arrows show association.
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Measures of Fetal Size, Blood Flow, and Growth Restriction
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Figure 16: Differences in ultrasound measurements of fetal size, blood restriction, and

birth weight Z-scores for the restricted and normal latent classes. Fetal size measurements

include the abdominal circumference (AC), biparietal diameter (BPD), femur length

(FL), and head circumference (HC). The pulsatility index in the left and right uterine

arteries at the week 15 and week 24 ultrasound as well as the resistance index in the

umbilical artery are shown to measure blood resistance.
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Figure 17: The solid lines represent the empirical and estimated cumulative distribution

functions for gestational age at delivery. The fit of the residual distribution is magnified.

Points provide the cumulative probability of being assigned to the latent class indicative

of immature delivery (T = 1), conditional on gestational age. Vertical dashed lines

indicate the commonly-used very PTB and PTB cutoffs.
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Figure 18: The solid lines provide the empirical and estimated cumulative distribution

functions for birth weight. The fit of the residual distribution is magnified. Points

represent the cumulative probability of being assigned to the latent class indicative of

immature delivery (T = 1), conditional on birth weight. Vertical dashed lines indicate

the commonly-used very LBW and LBW cutoffs.
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Figure 19: Posterior prediction intervals and observed S/D ratios for for ninety selected

subjects.
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7 Conclusions and Future Directions

Latent variable methods provide a flexible approach for complex modeling of correlation

in longitudinal studies. We have discussed methods for using latent variables to aggre-

gate multiple ultrasound measurements and model fetal growth and development during

the first and second trimesters. These results are particularly important to researchers

who use ultrasounds to date pregnancies while assuming that there is no measurable

variability in fetal growth early in pregnancy. There is a general need to make latent

variable methods more familiar to biostatisticians by applying them to research areas in

public health. Furthermore, by having a solid understanding of the subject matter, the

insights gained from an analysis using latent variable methods can be effectively com-

municated to researchers in epidemiology and clinical disciplines. To make our methods

more accessible, it is possible that, with some modification, the latent variable mixture

models describe in papers two and three could be estimated using commercial software

such as M-Plus. Using available software would be particularly useful for journal articles

intended for applied researchers in reproductive health.

In our first paper, we develop a Bayesian discrete time multistate growth model for

inference from cross-sectional data with unknown initiation times. Our methods were

able to identify subjects who have smaller than expected gestational sac diameters, have

shorter fetal pole lengths, and transition through growth states relatively slowly. We then

found evidence in favor of a previously hypothesized but unproven association between



slow fetal growth early in pregnancy and increased risk of subsequent pregnancy loss.

Other analysis options are also possible. In particular, we only included pregnancies that

appeared to be progressing normally at the time of the ultrasound so that any pregnancy

loss occurred after the ultrasound. Another model could consider losses at any time by

including an additional, absorbing “loss” state that could be reached from any of the

growth states considered in our analysis. Such an approach could focus on estimating

transition rates into the loss state as well as determining probable developmental state

prior to the loss.

The sensitivity of latent variable models to parametric assumptions are one factor

that limit their use beyond the social sciences. The parametric assumptions are often

difficult to evaluate and there are no simple methods for alleviating violations of model

assumptions. Semi-parametric methods for latent variable models are an area in need of

further development. While our first paper was based on more established methods that

assume the latent variable follows a normal distribution, our second and third papers

relaxed this assumption. In papers two and three, we used a latent variable mixture

model to approximate the unusual distributions of birth weight and gestational age at

delivery. Additionally, in paper three, we identified a latent class of subjects who had

small fetal size measurements and increased blood flow restriction who were more likely

to be growth restricted at birth.

Our latent variable mixture models attempted to formalize Wilcox’s (2001) idea of a

“residual” and “predominant” distribution and provide a new method of examining low

birth weight and pre-term birth. Low birth weight can be caused by slow intrauterine

growth, early gestational age, or a combination of these two factors. In estimating a
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latent immaturity variable and immaturity class, we characterized the residual group as

having early gestational age with corresponding low birth weight. However, in repro-

ductive health, interest also lies in identifying babies that have a relatively low weight

without early gestational age. Our latent variable methods could be altered to estimate

membership in this important latent class and identify covariates that are associated with

class membership.

While completing these three papers, we considered several additional research ar-

eas for our specific applications, but did not address these topics in a general manner.

Identifiability is a common concern in latent variable models and general rules or meth-

ods for evaluating identifiability need to be developed. For mixture distribution models,

methods for insuring proper labeling of the k mixture components across iterations of

the Gibbs sampler need to be developed. The currently favored approach (Stephens

2000) relies on post-processing the results at the end of the Gibbs sampling run. This

solution is not helpful when the classes need to be ordered at every iteration, such as

when we examining the association of covariates with class membership. We used order

restriction-based conditions (i.e. on the k class means) to identify the predominant and

residual components of the distribution, but restrictions are not a general solution and

were only effective in our analysis because the class means were sufficiently dispersed.

Model selection, including selecting the number of mixture components, is also an area

of current research. More generally, computational issues associated with slow conver-

gence of the Gibbs sampler are another concern and are particularly troublesome in large

datasets. Finally, in a Bayesian analysis, the choice of priors and the robustness of latent

variable models to different prior assumptions need to be evaluated.
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A Appendix for paper 1

We consider the complete conditionals for a three state model where Ri is the number

of time intervals between initiation and l
(1)
i and Si the number of intervals between l

(2)
i

and l
(1)
i . For notational convenience, let φp(x; µ,Σ) be the Normal probability density

function for the p dimensional random vector x with mean µ and variance-covariance

matrix Σ and let φp(x; µ,Σ|Y = y) be the Normal density evaluated at Y = y where

µ is a function of Y . Also, let ψ(x;α, β) ∝ xα−1e−xβ be the gamma probability density

function for random variable x. For matrix calculations, let A⊗2 = A′A, 1n be a n × 1

vector of ones, and In the identity matrix of rank n.

Step 1: Using conjugate priors, parameters Λk, τzk
, and ξ, k = 1, 2, follow Normal and

Gamma forms from linear regression results

[Λk|Xk,Zk, ξ,Z
∗, τzk

] ∝ φn

(

Zk; XkΛk + ξZ∗, τ−1
zk

In

)

φ
(

Λk; µ0,Λk
, τ−1

zk
Σ0,Λk

)

∼ N
(

A−1b, τ−1
z1

A−1
)

; A = X ′

kXk + Σ−1
0,Λk

, b = X ′

k (Zk − ξZ∗) + Σ−1
0,Λk

µ0,Λk

[τzk
|Λk,Xk, ξ,Z

∗,Zk] ∝ φn

(

Zk; XkΛk + ξZ∗, τ−1
zk

In

)

ψ

(

τzk
;
δ0,zk

2
,
λ0,zk

2

)

∼ G

(

n+ δ0,zk

2
,
1

2

[

(Zk − XkΛk − ξZ∗)⊗2 + λ0,zk

]

)

[ξ|Λ1,X1,Z1,Λ2,X2,Z2,Z
∗] ∝ φn

(

Z1; X1Λ1 + ξZ∗, τ−1
z1

In

)

×φn

(

Z2; X2Λ2 + ξZ∗, τ−1
z2

In

)

φ1 (ξ; 0, 1)

∼ N
(

A−1b,A−1
)

;A = 2Z∗
′

Z + 1, b = Z∗
′

(Z1 − X1Λ1) + Z∗
′

(Z2 − X2Λ2)

Step 2: For individuals in state 2 at Wi, sample the unknown interval of entry into state
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two

Pr
(

l
(1)
i = j|T

(1)
i ≤ Wi, T

(2)
i > Wi, α

(1), α(2)
)

∝ I (j ≤ mi)

j−1
∏

h=1

(

1 − α
(1)
ih

)

α
(1)
ij

mi
∏

h=j+1

(

1 − α
(2)
ih

)

For individuals in state three, sample both the interval of entry into state two and state

three.

Pr
(

l
(1)
i = j|l

(2)
i = s, α(1), α(2)

)

∝ I (j ≤ s− 1)

j−1
∏

h=1

(

1 − α
(1)
ih

)

α
(1)
ij

s−1
∏

h=j+1

(

1 − α
(2)
ih

)

α
(2)
is

Pr
(

l
(2)
i = j|l

(1)
i = r, α(1), α(2)

)

∝ I (r + 1 ≤ j ≤ mi)
r−1
∏

h=1

(

1 − α
(1)
ih

)

α
(1)
ir

j−1
∏

h=r+1

(

1 − α
(2)
ih

)

α
(2)
ij

Step 3: Generate latent outcome variables used for fitting probit regression models as

outlined by Albert and Chib (1993). For the state one to two transition, let T
(1)
ij = 1 if

the transition occurred in interval j and let T
(1)
ij = 0 if it did not yet occur. Similarly let

T
(2)
ij = 1 if the state two to three transition occurred in interval j and T

(2)
ij = 0 otherwise

and let SABi = 1 if subject i had a spontaneous abortion by week 20.

Uij|M j,ω, Z
∗

i , γ1 ∼















N1 (M jω + γ1Z
∗

i , 1) I(Uij > 0) if T
(1)
ij = 1

N1 (M jω + γ1Z
∗

i , 1) I(Uij < 0) if T
(1)
ij = 0

Vij|ν, Z
∗

i , γ2 ∼















N1 (ν + γ2Z
∗

i , 1) I(Vij > 0) if T
(2)
ij = 1

N1 (ν + γ2Z
∗

i , 1) I(Vij < 0) if T
(2)
ij = 0

Qi|µ, Z
∗

i ∼















N1 (µ0 + µ1Z
∗

i , 1) I(Qi > 0) if SABi = 1

N1 (µ0 + µ1Z
∗

i , 1) I(Qi < 0) if SABi = 0
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Step 4: Using the latent outcomes generated in the previous step, γ1, ω, γ2, ν, and µ

follow from linear regression results. Note that U i, V i, and Z∗ are Ri × 1, Si × 1 and

n× 1 vectors, respectively, while Z∗

i and Qi are scalars.

[γ1,ω|M ,Z∗,U ] ∝

n
∏

i=1

φRi
(U i; Mω + γ1Z

∗

i , IRi
)φ6

(

γ1,ω; µ0,γ1ω,Σ0,γ1ω

)

∼ N
(

A−1b,A−1
)

A =
n
∑

i=1

[M 1Ri
Z∗

i ]
⊗2 + Σ−1

0,γ1ω; b =
n
∑

i=1

[M 1Ri
Z∗

i ]′ U i + Σ−1
0,γ1ωµ0,γ1ω

[γ2, ν|Z
∗,V ] ∝

n
∏

i=1

φSi
(V i; ν1Si

+ γ2Z
∗

i 1Si
, ISi

)φ2

(

γ2, ν; µ0,γ2νΣ0,γ2ν

)

∼ N
(

A−1b,A−1
)

A =
n
∑

i=1

Si (ν + γ2Z
∗

i )2 + Σ−1
0,γ2ν; b =

n
∑

i=1

(ν + γ2Z
∗

i ) 1′

Si
V i + Σ−1

0,γ2νµ0,γ2ν

[µ|Z∗,Q, ] ∼ N
(

A−1b,A−1
)

A = [1n Z∗]⊗2 + Σ−1
0,γ1ω; b = [1n Z∗]′ Q + Σ−1

0,µµ0,µ

Step 5: We use day-specific conception prior probabilities taken from Table 1 of Wilcox

et al. (2001) to specify the same multinomial priors, π
(

tIi
)

, on each tIi . The complete

conditional for tIi will follow a multinomial distribution with probabilities proportional

to

Pr
(

tIi = k|Z1i, Z2i, τz1 , τz2 ,Λ1,Λ2, Z
∗

i ,X1,X2

)

, k = 1, . . . , 80

∝ π
(

tIi
)

φ1

(

Z1i; X1iΛ1, τ
−1
z1

|tIi = k
)

φ1

(

Z2i; X2iΛ2, τ
−1
z2

|tIi = k
)

where tIi appears in design matrices X1i and X2i for subject i.

Step 6: The complete conditional for Z∗

i is the product of Normal densities from the

latent outcomes variable generated in step 3 and Normal densities for Z1i and Z2i. Each

Z∗

i can be sampled from a Normal distribution with subject-specific means and variances.
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Letting k1i = Z1i − (λ01 + λ21Wi + λ31W
2
i ) and k2i = Z2i − (λ02 + λ22Wi + λ32W

2
i )

[Z∗

i |Z1i, Z2i, τz1, τz2 , τz∗,Λ1,Λ2,β,Wi,U i,V i, Qi,µ]

∝ φ1

(

Z∗

i ; Xiβ, τ
−1
z∗

)

φ1

(

Z1i; X1iΛ1, τ
−1
z1

)

φ1

(

Z2i; X2iΛ2, τ
−1
z2

)

×φRi
(U i; Mω + γ1Z

∗

i 1Ri
, IRi

)φSi
(V i; ν + γ2Z

∗

i 1Si
, ISi

)

×φ1 (Qi;µ0 + µ1Z
∗

i , τm)

∼ N1

(

bi
ai

,
1

ai

)

ai = τz∗ + τz1λ
2
11 + τz2λ

2
12 +Riγ

2
1 + Siγ

2
2 + µ2

1

bi = τz∗Xβ + τz1λ11k1i + τz2λ12k2i + 1′

Ri
(U i − Mω − 1Ri

γ1) γ1

+1′

Si
(V i − 1Si

ν − 1Si
γ2) γ2 + µ1 (Qi − µ0)

Step 7: Conditional on Z∗, sample β and τz∗ according to (4.6) using linear regression

results.

[β|X, τz∗] ∼ N
(

A−1b, τ−1
z1

A−1
)

A = X ′X + Σ−1
0,β; b = X ′Z∗ + Σ−1

0,βµ0,β

[τz∗|β,X] ∼ G

(

n + δ0,z∗

2
,
1

2

[

(Z∗ − Xβ)⊗2 + λ0,u

]

)
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B Appendix for paper 2

Measurement Model

We express the relationship between observed outcomes and latent variables in the

following measurement model

yi1 = λ01 + λ11ηi1 + γ11Wi + γ21W
2
i + εi1, εi1 ∼ N(0, τ−1

1 ) (B.1)

yi2 = λ02 + λ12ηi1 + γ12Wi + γ22W
2
i + εi2, εi2 ∼ N(0, τ−1

2 ) (B.2)

yi3 = λ03 + λ13ηi1 + λ23ηi2 + εi3, εi3 ∼ N(0, τ−1
3 ) (B.3)

yi4 = λ04 + λ14ηi1 + λ24ηi2 + εi4, εi4 ∼ N(0, τ−1
4 ) (B.4)

In our analysis, we allow for a quadratic effect for Wi, the reported time from the last

menstrual period (LMP) to the ultrasound for subject i (Hadlock et al. 1992).

Mixture Distribution Model

The mixture distributions are formally specified by

f(ηi1|µ1, τ 1) ∼ N(µ11, τ
−1
11 ) (B.5)

f(ηi2|µ2, τ 2,π2) ∼ π21N(µ21, τ
−1
21 ) + π22N(µ22, τ

−1
22 ) + π23N(µ23, τ

−1
23 ) (B.6)

where N(µ, τ−1) is the normal distribution with mean µ and variance τ−1 and, for ηi2,

the mixing proportions π2 = [π21, π22, π23]
′ are fixed to sum to one.

It is convenient to express mixture models using a missing data formulation in which

individual latent growth restriction is presumed to arise from a specific, but unknown,

underlying component (Dempster et al. 1977). Specifically, we introduce latent class

allocation variables Ti2 ∈ {1, 2, 3} where Pr(Ti2 = k2) = π2,k2 . This specification is useful

for computational purposes because, if we additionally condition on Ti2, (B.6) becomes
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f(ηi2|µ2, τ 2,π2, Ti2 = k2) ∼ N(µ2,k2 , τ
−1
2,k2

). The missing data formulation also allows

us to naturally group subjects with similar latent variable characteristics. We add the

restriction µ21 < µ22 < µ23 to ensure that subjects who are more likely to be born

early will be assigned to latent class Ti2 = 1. We then probit regression to estimate the

association of black race, current smoking status, maternal age being greater than or

equal to 35 years, parity, and education level with the probability of belonging to the

immaturity group. Our main interest is in modeling these associations.

Identifiability Restrictions

Latent variable models require fixing some parameters so that the model will be

identifiable (e.g. Bollen 1989). Different choices can be made regarding the parameters

to constrain, which will change the interpretations but will not impact the overall model

fit. In our analysis, with four observed outcomes (y1, . . . ,y4), we are limited to three or

fewer latent variables (η1,η2). We demonstrate two methods of placing restrictions to

insure model identifiability while providing readily interpretable results. For η1, we fix

the mean at zero (µ11 = 0) so that the intercepts λ0j, j = 1, . . . , 4 can be identified. Using

the additional restrictions λ11 > 0 and λ12 > 0 then implies that subjects with positive

values of ηi1 are developing relatively quickly while individuals with negative values are

slow growers. We fix the variance parameter for η1, τ
−1
11 = 1, to easily interpret the scale

of η1 and insure that the factor loadings λ1j are identifiable. For η2, we estimate the

mixture component means and variances while fixing λ04 = 0 and λ24 = 1. Using this

restriction, the latent η2 has location and scale commensurate with y4, which aids in

interpretation and specifying appropriate prior distributions for µ2k and τ2k, k = 1, 2, 3.

In the model for y3, we estimate the factor loading λ23 to allow η2 to change scale, and
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the intercept, λ03, is estimated for a shift in location.

Mixture distribution models are prone to their own identifiability problems, which

we will consider in the context of our pregnancy analysis. Let si be a 3-dimensional

vector indicating group membership for ηi2, such that sij ∈ 0, 1 and
∑3

j=1 sij = 1. The

complete data likelihood for ηi2 is
∏3

j=1 π
sij

2j f(ηi2;µj, τj)
sij so that it is not possible to

discriminate between the 3! possible permutations of group membership. Previously, we

specified the restriction µ21 < µ22 < µ23 to order class membership by the mean; this

restriction also removes the label switching problem. Additionally, with mixture models

there is probability (1 − π2j)
n that there are no observations from the jth component

which leads to both identifiability and computational problems. We contend with this

issue by assuming group membership is known for each of two subjects with the lowest,

median, and highest values of observed gestational age.

Prior Specification

To complete a Bayesian specification of the model, prior distributions must be speci-

fied for each parameter. In general, we use proper but appropriately vague priors for all

parameters. For notational simplicity, let α1 = [λ01, λ11, γ11, γ21]
′, α2 = [λ02, λ12, γ12, γ22]

′,

α3 = [λ03, λ13, λ23]
′, and α4 = [λ04, λ14, λ24]

′ be pj × 1 vectors (j = 1, . . . , 4) with n× pj

design matrices X1 = X2 =
[

1,η1,W ,W 2
]

, and X3 = X4 = [1,η1,η2]. The mea-

surement model equations given in (B.1) - (B.4) can then be expressed in vector form as

yj = Xjαj +εj. We use conditionally conjugate priors p (αj|τj) ∼ Npj

(

µ0,αj
, τ−1

j Σ0,αj

)

and p (τj) ∼ Γ
(

cj

2
,

dj

2

)

with µ0,αj
= 0, Σ0,αj

= 10002Ipj
, and cj = dj = 1 for every j

where 0 is a conforming vector of zeros and Ip is the identity matrix of rank p. Similarly,

we assume p(β) ∼ Nr

(

µ0,β,Σ0,β

)

with µ0,β = 0 and Σ0,β = 1002Ir.
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For the mixture distribution component of our model, we use a prior specification

that follows the suggestions of Richardson and Green (1997). For k = 1, 2, 3 we assume

p (µ2k) ∼ N (νk, R
2) I (µ2,k−1 < µ2k < µ2,k+1) where µ20 = −∞ and µ24 = ∞. We choose

ν1 = 245, ν2 = ν3 = 280, and R = 10 so that, a priori, we expect that the residual

distribution will have a mean of 245 ± 20 (days) and the predominant distribution a

mean of 280 ± 20. We use a hierarchical structure for specifying the prior distribution

of each τ2k. Specifically, we allow p (τ2k|b0) ∼ Γ (a0, b0) and b0 ∼ Γ (g0, h0) with a0 = 2,

g0 = 0.2, and h0 = 10∗R−2 where Γ(a, b) is the gamma distribution with mean a÷ b and

variance a ÷ b2. By choosing a0 > 1 > g0 we express the general belief that for each k,

the τ2k are similar, but we have no information on their absolute size. Finally, we assume

that π2 = [π21, π22, π23]
′ follows a symmetric Dirichlet distribution, p (π2) ∼ D(δ, . . . , δ)

and choose δ = 1 to be appropriately vague.

Complete Conditionals

We consider the complete conditionals for the fetal development model specified in

sections 3 and 4. For notational convenience, let φp(x; µ,Σ) be the normal probability

density function for the p dimensional random vector x with mean µ and variance-

covariance matrix Σ. Also, let ψ(x;α, β) ∝ xα−1e−xβ be the gamma probability density

function for random variable x. Gibbs sampling proceeds by iterating the following

complete conditionals until convergence. For matrix calculations, let A⊗2 = A′A, 1n be

a n× 1 vector of ones and In the identity matrix of rank n.

Step 1: Using conjugate priors, αj and τj have normal and Gamma posterior distribu-
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tions.

f
(

αj|Xj, τj,yj

)

∝ φn

(

yj; Xjαj, τ
−1
j In

)

φpj

(

αj; µ0,αj
,Σ0,αj

)

∼ Npj

(

A−1b, τ−1
j A−1

)

; A = X ′

jXj + Σ−1
0,αj

, b = X ′

jyj + Σ−1
0,αj

µ0,αj

f
(

τj|Xj,αj,yj

)

∝ φn

(

yj; Xjαj, τ
−1
j In

)

ψ

(

τj;
cj
2
,
dj

2

)

∼ G

(

n + cj
2

,
1

2

[

(

yj − Xjαj

)⊗2
+ dj

]

)

Step 2: A Dirichlet prior for the selection probabilities gives a Dirichelt posterior distri-

bution. Letting nk = #{i : Ti2 = k}, k = 1, 2, 3 and π2 = [π21, π22, π23]
′

f (π2|n1, n2, n3) ∝ πδ−1
21 πδ−1

22 πδ−1
23 × πn1

21π
n2
22π

n3
23 ∼ D(n1 + δ, n2 + δ, n3 + δ)

Step 3: Sample latent group membership, T 2 = [T12, T22, . . . , Tn2]
′ for each subject from

a multinomial distribution with probabilities

Pr (Ti2 = k|ηi2, µ2k, τ2k) ∝ π2kφ1

(

η2i;µ2k, τ
−1
2k

)

Step 4: Sample the mixture components means and variances, repeating for k = 1, 2, 3.

Also sample the hyperparameter b0 for a Gamma posterior.

f (µ2k|η2, τ2k,T 2) ∝ φ1

(

µ2k;µ0,k, R
2
)

∏

i:Ti2=k

φ1

(

ηi2;µ2k, τ
−1
2k

)

∼ N1

(

a−1b, a−1
)

; a = R−2 + τ2knk, b = µ0,kR
−2 + τ2k

∑

i:Ti2=k

ηi2

f (τ2k|η2, µ2k,T 2, b0) ∝ ψ (τ2k; a0, b0)
∏

i:Ti2=k

φ1

(

ηi2;µ2k, τ
−1
2k

)

∝ Γ

(

2a0 + nk

2
, b0 +

1

2

∑

i:Ti2=k

(ηi2 − µ2k)
2

)

f (b0|τ21, τ22, τ23) ∝ ψ (b0; g0, h0)ψ (τ21; a0, b0)ψ (τ22; a0, b0)ψ (τ23; a0, b0)

∼ Γ(3a0 + g0, h0 + τ21 + τ22 + τ23)
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Step 5: Generate latent outcome variables used for fitting probit regression models as

outlined by Albert and Chib. If any of yj are binary, this procedure could be used to

generate y. In our application, we generate the latent outcomes T ∗

2 = [T ∗

12, T
∗

22, . . . , T
∗

n2]
′

from a truncated normal distribution to then sample β using linear regression results.

f (T ∗

i2|X,β) ∼















N1 (Xβ, 1) I(T ∗

i2 > 0) if Ti2 > 1

N1 (Xβ, 1) I(T ∗

i2 < 0) if Ti2 = 1

[β|X,T ∗

2] ∝ φn (T ∗

2; Xβ, 1)φr

(

β; µ0,β,Σ0,β

)

∼ Nr

(

A−1b,A−1
)

; A = X ′X + Σ−1
0,β; b = X ′T ∗

2 + Σ−1
0,βµ0,β

Step 6: Letting kij = yij − αjXj + λ1jηi1, j = 1, . . . , 4 and using the constraints needed

for identifiability, generate the latent predictor variables for each i = 1, . . . , n.

f (ηi1|−) ∝ φ1 (ηi1; 0, 1)
∏4

j=1
φ1

(

yij; Xjαj, τ
−1
j

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = 1 +
∑4

j=1
λ2

1jτj, bi =
∑4

j=1
λ1jkijτj

f (ηi2|−, Ti = k) ∝ φ1

(

ηi2;µ2k, τ
−1
2k

)

φ1

(

yi3; X3α3, τ
−1
3

)

φ1

(

yi4; X4α4, τ
−1
4

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = τ2k + λ2
23τ3 + τ4

bi = µ2kτ2k + λ23τ3 (yi3 − λ03 − λ13ηi1) + τ4 (yi4 − λ14ηi1)
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C Appendix for paper 3

We consider the complete conditionals for the model specified in sections 2 and 3. For

notational convenience, let φp(x; µ,Σ) be the normal probability density function for the

p dimensional random vector x with mean µ and variance-covariance matrix Σ. Also, let

ψ(x;α, β) ∝ xα−1e−xβ be the gamma probability density function for random variable x.

Gibbs sampling proceeds by iterating the complete conditionals until convergence criteria

are met. For matrix calculations, let A⊗2 = A′A, 1n be a n × 1 vector of ones and In

the identity matrix of rank n.

Step 1: Let yj = [yi1, . . . , yin]
′

n×1, W j = [Wi1, . . . ,Win]′n×1, η1 = [η11, . . . ,ηn1]
′

n×3, and

Xj = [1n,W j,W
2
j ] for j = 1, . . . , 8 and Xj = 1n for j = 9, . . . , 18. Using conjugate

priors, Λj, Γj and τy,j have normal and gamma posterior distributions.

f
(

Λj|Γj,η1,Λj, τy,j ,yj

)

∝ φn

(

yj; XjΓj + η1Λj, τ
−1
y,j In

)

φ
(

Λj; µ0,Λj
, τ−1

y,j Σ0,Λj

)

∼ N
(

A−1b, τ−1
y,j A−1

)

; A = η′

1η1 + Σ−1
0,Λj

, b = η′

1(yj − XjΓj) + Σ−1
0,Λj

µ0,Λj

f
(

Γj|Γj,η1,Λj, τy,j ,yj

)

∝ φn

(

yj; XjΓj + η1Λj, τ
−1
y,j In

)

φ
(

Γj; µ0,Γj
, τ−1

y,j Σ0,Γj

)

∼ N
(

A−1b, τ−1
y,j A−1

)

; A = X ′

jXj + Σ−1
0,Γj

, b = X ′

j(yj − η1Λj) + Σ−1
0,αj

µ0,αj

f
(

τy,j|Γj,η1,Λj,yj

)

∝ φn

(

yj; XjΓj + η1Λj, τ
−1
y,j In

)

ψ

(

τj;
cy,j

2
,
dy,j

2

)

∼ G

(

n+ cy,j

2
,
1

2

[

(

yj − XjΓj − η1Λj

)⊗2
+ dy,j

]

)

Step 2: Let S = [S1, . . . , Sn]′n×1, zg = [z1g, . . . , zng]
′

n×1, η2 = [ηi21, . . . , ηn2]
′

n×1, and

Xz = [1n,η2]n×2. Also, let Xs = [I(S = 1), I(S = 2)]′n×2 where I(S = k) is a n × 1

indicator vector with row i equal to one if Si = k and zero otherwise. Using conjugate
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priors, Θg, β and τz,g have normal and gamma posterior distributions.

f (Θg|Xz, τz,g, zg) ∝ φn

(

zg; XzΘg, τ
−1
z,g In

)

φ
(

Θg; µ0,Θg
, τ−1

z,g Σ0,Θg

)

, g = 1, 2

∼ N
(

A−1b, τ−1
z,g A−1

)

; A = X ′

zXz + Σ−1
0,Θg

, b = X ′

zzg + Σ−1
0,Θg

µ0,Θg

f (τz,g|Xz,Θg, zg) ∝ φn

(

zg; XzΘg, τ
−1
z,g In

)

ψ

(

τz,g;
cz,g

2
,
dz,g

2

)

, g = 1, 2

∼ G

(

n+ cz,g

2
,
1

2

[

(zg − XzΘg)
⊗2 + dz,g

]

)

f (β|τz,3, z3,Xs) ∝ φn

(

z3; Xsβ, τ
−1
z,3 In

)

φ
(

β; µ0,β, τ
−1
z,g Σ0,β

)

∼ N
(

A−1b, τ−1
y,j A−1

)

; A = X ′

sXs + Σ−1
0,β, b = X ′

sz3 + Σ−1
0,βµ0,β

f (τz,3|Xs,β, z3) ∝ φn

(

z3; Xsβ, τ
−1
z,3 In

)

ψ

(

τz,3;
cz,3

2
,
dz,3

2

)

∼ G

(

n+ cz,3

2
,
1

2

[

(z3 − Xsβ)⊗2 + dz,3

]

)

Step 3: A Dirichlet prior for the selection probabilities gives a Dirichelt posterior distri-

bution. Letting nsk = #{i : Si = k}, k = 1, 2 and ntl = #{i : Ti = l}, l = 1, 2, 3 with

πs = [πs1, πs2, πs3]
′ and πt = [πt1, πt2, πt3]

′

f (πs|ns1, ns2) ∝ πd1−1
s1 πd1−1

s2 × πns1
t1 πns2

t2 ∼ D(ns1 + d1, ns2 + d1)

f (πt|nt1, nt2, nt3) ∝ πd2−1
t1 πd2−1

t2 πd2−1
t3 × πnt1

t1 πnt2
t2 π

nt3
t3 ∼ D(nt1 + d2, nt2 + d2, nt3 + d2)

Step 4: Letting µ1k = [µ11k, µ12k, µ13k] and τ 1k = [τ11k, τ12k, τ13k], sample latent group

membership, Si and Ti, for each subject from a multinomial distribution with probabilities

Pr (Si = k|ηi1,µ1k, τ 1k) ∝ πtkφ3

(

ηi1; µ1k, Dg
(

τ−1
1k

))

φ1 (T ∗

i ; Xsα, 1)φ1

(

zi3; Xsβ, τ
−1
z,3

)

Pr (Ti = l|ηi21, µ21l, τ21l) ∝ π21lφ1

(

ηi21;µ21l, τ
−1
21l

)

Step 4: Sample the mixture components means and variances, repeating for k = 1, 2

and l = 1, 2, 3. Also sample the hyperparameters b0,m(m = 1, 2, 3) and b0 from gamma
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posteriors.

f (µ1mk|η1, τ1mk,S) ∝ φ1

(

µ1mk;µ0,mk, R
2
m

)

∏

i:Si=l

φ1

(

ηi1m;µ1mk, τ
−1
1mk

)

∼ N1

(

a−1b, a−1
)

; a = R−2
m + τ1mknsk, b = µ0,mkR

−2
m + τ1mk

∑

i:Si=k

ηi1

f (τ1mk|η1, µ1mk,S, b0,m) ∝ ψ (τ1mk; a0,m, b0,m)
∏

i:Si=k

φ1

(

ηi1m;µ1mk, τ
−1
1mk

)

∝ Γ

(

2a0,m + nsk

2
, b0,m +

1

2

∑

i:Si=k

(ηijk − µ1mk)
2

)

f (b0,m|τ1m1, τ1m2) ∝ ψ (b0,m; g0,m, h0,m)ψ (τ1m1; a0,m, b0,m)ψ (τ1m2; a0,m, b0,m)

∼ Γ(2a0,m + g0,m, h0,m + τ1m1 + τ1m2)

f (µ21l|η2, τ21l,T ) ∝ φ1

(

µ21l;µ0,l, R
2
)

∏

i:Ti=l

φ1

(

ηi21;µ21l, τ
−1
21l

)

∼ N1

(

a−1b, a−1
)

; a = R−2 + τ21lntl, b = µ0,lR
−2 + τ21l

∑

i:Ti=l

ηi21

f (τ21l|η2, µ21l,T 2, b0) ∝ ψ (τ21l; a0, b0)
∏

i:Ti=l

φ1

(

ηi21;µ21l, τ
−1
21l

)

∝ Γ

(

2a0 + ntl

2
, b0 +

1

2

∑

i:Ti=l

(ηi21 − µ21l)
2

)

f (b0|τ211, τ212, τ213) ∝ ψ (b0; g0, h0)ψ (τ211; a0, b0)ψ (τ212; a0, b0)ψ (τ213; a0, b0)

∼ Γ(3a0 + g0, h0 + τ211 + τ212 + τ213)

Step 5: Generate latent outcome variables used for fitting probit regression models as

outlined by Albert and Chib. If any of yj are binary, this procedure could be used to

generate y. In our application, we generate the latent outcomes S∗ = [S∗

1 , S
∗

2 , . . . , S
∗

n]′n×1

and T ∗ = [T ∗

1 , T
∗

2 , . . . , T
∗

n ]′n×1 from a truncated normal distribution to then sample α and
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ω using linear regression results.

f (S∗

i |x,ω) ∼















N1 (xω, 1) I(S∗

i > 0) if Si = 2

N1 (xω, 1) I(S∗

i < 0) if Si = 1

[ω|x,S∗] ∝ φn (S∗; xω, 1)φr

(

ω; µ0,ω,Σ0,ω

)

∼ Nr

(

A−1b,A−1
)

; A = x′x + Σ−1
0,ω; b = x′S∗ + Σ−1

0,ωµ0,ω

f (T ∗

i |Xs,α) ∼















N1 (Xsα, 1) I(T ∗

i > 0) if Ti > 1

N1 (Xsα, 1) I(T ∗

i < 0) if Ti = 1

[α|Xs,T
∗] ∝ φn (T ∗; Xsα, 1)φ

(

α; µ0,α,Σ0,α

)

∼ N
(

A−1b,A−1
)

; A = X ′

sXs + Σ−1
0,α; b = X ′

sT
∗ + Σ−1

0,αµ0,α

Step 6: Letting kij = yij − X ijΓj and using the constraints needed for identifiability,

generate the latent predictor variables for each i = 1, . . . , n.

f (ηi11|−, Si = k) ∝ φ1 (ηi11;µ11k, τ11k)
8
∏

j=1

φ1

(

yij; XjΓj + λ1jηi11, τ
−1
y,j

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = τ11k +
8
∑

j=1

λ2
1jτy,j, bi =

8
∑

j=1

λ1jkijτy,j + τ11kµ11k

f (ηi12|−, Si = k) ∝ φ1 (ηi12;µ12k, τ12k)

16
∏

j=9

φ1

(

yij; XjΓj + λ1jηi12, τ
−1
y,j

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = τ12k +
16
∑

j=9

λ2
1jτy,j, bi =

16
∑

j=9

λ1jkijτy,j + τ12kµ12k

f (ηi13|−, Si = k) ∝ φ1 (ηi13;µ13k, τ13k)
18
∏

j=17

φ1

(

yij; XjΓj + λ1jηi13, τ
−1
y,j

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = τ13k +

18
∑

j=17

λ2
1jτy,j, bi =

18
∑

j=17

λ1jkijτy,j + τ13kµ13k

f (ηi21|−, Ti = l) ∝ φ1

(

ηi21;µ21l, τ
−1
21l

)

φ1

(

zi1; θ01 + θ11ηi21, τ
−1
z,1

)

φ1

(

zi2; θ02 + θ12ηi21, τ
−1
z,2

)

∼ N
(

a−1
i bi, a

−1
i

)

; ai = τ21l + θ2
11τz,1 + θ2

12τz,2

bi = µ21lτ21l + θ11τz,1 (zi1 − θ01) + θ12τz,2 (zi2 − θ02)
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