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ABSTRACT

KIMBERLY A. PORTER: Challenges to the Treatment of Malaria
(Under the direction of Steven Meshnick)

Malaria remains a significant cause of morbidity and mortality. Suaedessf
treatment of malaria is threatened by widespread drug resistance-enfiglctions
with HIV.

This dissertation explored two challenges to malaria treatment. Thairirs
addressed outcome misclassification in antimalarial treatment tiléthout
accurate classification of patients’ outcomes, estimates of drug®ffaze flawed.
We identified factors related to outcome misclassification: transmnigsiensity, the
distribution of genetic variants in parasite populations, multiplicity of irdectand
PCR-insensitivity to minority variants; then used our findings to develop a Monte
Carlo uncertainty analysis.

Using the uncertainty analysis, we found that misclassification of new
infections as treatment failures was common and underestimated treetficant in
the high transmission area. The initial estimate of the cure rate in the high
transmission area was 63.8%; after adjustment for uncertainty related¢ameut
misclassification, the 95% simulation interval of the cure rate was 74.6 to 83.3%.

The initial estimate of the cure rate in the low transmission area was %&ft@¥the



uncertainty adjustment the 95% simulation interval of the cure rate was 93.5 to
96.5%.

The second aim was to assess the effect of a co-formulation of HIV groteas
inhibitors (PI) on incidence of clinical malaria among HIV-infected adults
Laboratory evidence has demonstrated that HIV Pls inhibit growhasmodium
falciparum, a malaria-causing parasite. We conducted an ancillary analysis of data
collected by the Adult AIDS Clinical Trials Group in two trials comparitndp&sed
against non-nucleoside reverse transcriptase inhibitor (NNRTI)-baseetrawinal
therapy on the incidence of clinical malaria in study participants ngsidiareas
with endemic malaria.

We used pooled logistic regression to calculate hazard ratios (HR) and 95%
confidence intervals (Cl). There was no effect of Pl-based therapy on ireioienc
clinical malaria (HR = 1.03, 95% CI (0.74 - 1.44)), nor was there modification of the
HR by seasonality and use of concomitant medications.

Successful treatment of malaria is a global health priority. Thisrtlitsa
provides a novel way to estimate treatment efficacy and proposes that HhaYIs

not have antimalarial action in HIV-infected patients at risk of co-irdacti
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Malaria, a major cause of morbidity and mortality, is a mosquito-borne disease
caused bylasmodium parasites. In 2008, there were an estimated 243 million cases of
malaria resulting in 863,000 deaths worldwide.f&laria can be controlled through
environmental modification and prevention strategies; it has been successghitated
from several regions of the world including the United States. In parts of thepiegel
world, however, particularly Sub-Saharan Africa and Southeast Asia, the burden of
malaria remains immense.

P. falciparumis the most pathogenic of the five human disease-causing
Plasmodium species and is the focus of this work; from this point forward, malaria will
refer exclusively to infection witR. falciparum. P. falciparum, which is transmitted by
the Anopheles mosquito, is highly prevalent in Sub-Saharan Africa and is the most
commonPlasmodium species in tropical and subtropical regions.(2)

The life-cycle ofPlasmodiumis complex and requires both a mosquito and
vertebrate host. Differeflasmodium species have slightly different life-cycles; the
following refers toP. falciparum. In the mosquito, gametocyte-stage parasites ingested
from the vertebrate host undergo sexual reproduction developing first into zyhetes, t

ookinetes, which eventually rupture releasing sporozoites. This is known as the



sporogonic cycle and lasts roughly two to three weeks. The sporozoites infect the
vertebrate host through the salivary gland of the mosquito when it takes a blood meal
Once inside the vertebrate host, sporozoites infect liver cells where they dewelop i
tissue schizonts. Each tissue schizont undergoes asexual replication generating
merozoites; this is known the exo-erythrocytic cycle. Finally, the messgtage
parasites rupture the liver cell and infect red blood cells. There they undergalasex
reproduction and develop into immature trophozoites (referred to as ring-stagjeepara
At that time, the parasites develop into either gametocytes or mature traphaoich
then develop into erythrocytic schizonts. The gametocytes are taken up by g feedin
mosquito; the erythrocytic schizonts rupture and release merozoites whithestart

erythrocytic cycle again. (Figure 1)
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Figure 1. The life-cycle ofPlasmodium.(3)
Malaria transmission intensity varies regionally and often seligona
Transmission intensity is commonly measured by the entomological inoculai@on r

(EIR) and multiplicity of infection (MOI). The EIR estimates the number of
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infectious bites per person-year and can differ greatly among locatiamsgEhe
rainy season in Uganda’s Tororo District, the EIR is estimated to be 5Bil{d);
semi-urban area in Burkina Faso, the EIR is believed to be under five.(5) M@l is t
patient’s number of infections (identified by the number of genotypes in a blood
sample) and is positively correlated with transmission intensity. kasiaversely
associated with the host’s level of acquired immunity.(6) Acquired immunity
provides protection against malaria in individuals with regular exposure, i.e. those
living in areas of stable or high transmission. In such areas, clinical dis¢ase
more common in children who do yet possess sufficient immunity, and pregnant
women, as pregnancy reduces immunity to malarign(lw transmission areas, less
immunity develops and clinical disease is more likely to occur at an{Bage

Host defenses associated with acquired immunity help protect against
infection, control levels of parasitemia and reduce incidence of clineahsk.(9) It
is believed that this is in large part due to humoral responses with antibodies
appearing to target different parasite stages.(2)

In addition to the specificity of antibodies to different parasite stages,
evidence suggests that acquired immunity may be strain-specifidgddired
immunity takes years to develop and is dependent upon transmission intensity; it does
not alleviate the need for effective antimalarial treatments.

Antimalarial drugs act against different parasite stages. Mamypalatials target
blood stage parasites. These drugs include quinine, chloroquine, and the artemisinin

derivatives (Arteether, Artesunate, Artemether). Others target otfasitpastages;



primaquine has anti-gametocyte action. Some drugs appear to target more thagene s
For example, primaquine also acts against tissue schizonts.(2)

Antimalarials also have different half-lives and each may be paricuiseful in
certain circumstancesreatments with long half-lives, such as mefloquine, may confer
longer lasting protection and be especially important in areas of high traismas they
may be better able to decrease reinfection.(11) Drugs that are higb&ceffis against
primary blood stage infection or have shorter half-lives, such as chlorproguanil/dapsone
(LapDap) and the artemisinin derivatives, may play a particularly immgadée in
reducing the clinical illness that occurs during primary infections.(11)

Current malaria treatment strategies employ combinations of drugkptsldw
development of drug resistance. Artemisinin-based combination therapy (A€T) ha
demonstrated high efficacy; it consists of a short-lived, fast-actingiarten derivative
partnered with a drug with a longer half-life to kill remaining parasites@ag$ must be
taken to select partner drugs to which parasites in the region remainveensiti

Determining which treatments remain effective can be done through klinica
trials, public health surveillance and observational epidemiologic studies. Much of thi
work is carried out in areas with high EIR; therefore to accurately absedaug’s
effect, these approaches require the ability to distinguish between reinfacd
recrudescence. Resistance can also be detected thnoudtyb testing.(13)

Antimalarial resistance threatens the success of malaria &efgpmograms.
Effective treatment of malaria is also complicated by the biologiealgraphic, and
therapeutic interactions between malaria and Human Immunodeficiency (YilV)

which will discussed in greater detail in following sections.



This dissertation examined factors relevant to malaria treatmémbidistinct
frameworks. The first aim was to explore the impact of misclassdicatn cure
rates in antimalarial efficacy studies using simulations and to develomtz [@arlo
uncertainty analysis. The second aim was to quantify the effect of a coldtion
of two HIV-1 protease inhibitors (PIs), lopinavir (LPV) and ritonavir (RTV), on

malaria incidence using a discrete-time survival analysis.

A. Factors influencing PCR-corrected cure rates in antimalarial #icacy trials

The World Health Organization (WHO) recommends that first-line antmabla
treatment policies be changed when a drug’s cure rate falls below 90%hELd)rE rate
is the proportion of patients who recover and become aparasitemic after receiving
treatment. To estimate that proportion, differentiating between reinfection and
recrudescent infection is essential. Polymerase chain reaction @€egtion of cure
rates, that is, genotyping paired samples from patients before and aftaetrietat
classify whether recurrent parasitemia is a new infection or tefiesatment failure, has
been in use for more than 20 years. However, PCR-correction may produce erroneous
results dependent upon the diversity of genetic markers in the local parasiteipopulat
the allelic frequency of those markers, and transmission intensity. Tinsiingey of

PCR to minority variants may also lead to misclassification.

1. Classification of recurrent parasitemia

a. PCR-correction



PCR involves the use of primers (sequences of DNA that are complementary to
regions of the genetic marker of interest), nucleotides and a DNA polymerasglify
segments of DNA to observable quantities; it allows researchers tondetavhich
genetic variants are present in a biological sample. PCR-correctionetbé us
genotyping to distinguish between reinfection and recrudescent infectiongiguse
adjust cure rates (“cure rate” is commonly used in the literature and isithmatge we
use here for consistency, however it is actually the proportion of patients winecdeel
successfully) in antimalarial efficacy studies. By comparing fiareariants present in
the patient before and after treatment, researchers can decide if éme¢ glatired the
initial infection and has become reinfected, or if she has not cleared hermféciion
(recrudescence).

In a recent review, it was reported that the first use of PCR-correctiom 1897
and it has become increasingly common.(15) One of the earlier assessmeries of PC
correction declared that to be successful in differentiating betweenctenfand
recrudescence, “the theoretical requirements would be: (1) ensured protextion f
additional mosquito bites; (2) coadministration of drugs effective againsstages,
such as primaquine; and (3) analysis of a sufficient number of consecutivesi(hf)
In the absence of such an ideal setting, the authors suggested that adegjiadikdy
results can be achieved with sufficient sampling, PCR efficiency, andisaffi
resolution to identify different alleles.(16)

The importance of PCR-correction is well-documented and understood. In a
review of antimalarial studies conducted from 1995 to 2005, 175 treatment arms were

identified in which PCR-correction had been used. In 41 treatment arms (26%), new



infections were responsible for 50-74% of recurrent infections. In 36 treaamest

(23%), new infections were responsible for at least 75% of recurrent infe(tBnsn
another evaluation of data from multiple studies, the authors concluded, “Without PCR
genotyping, 36% of the recurrent parasitemias after day 14 (260/696 recurreogles)
have been wrongly classified as failures. This would have lead to 1,048 cases being
considered failures by day 28 (352 by or before day 14 plus 696 between days 14 and
28), thus overestimating the risk of failure by about one-third.”(17) Differdmetsgeen
crude and PCR-corrected failure rates greater than 10% have been reported
elsewhere.(18)Not all studies have found that many episodes of recurrent parasitemia
were the result of reinfection; one study found that all recurrent parasit@rare the

result of recrudescence though in that study all 12 participants carriedssekistant to
both treatments. (19)

PCR-correction is not without limitation and misclassification of both reiiofest
and recrudescent infections can occur. It is possible that a new infection wilihse of
same variant as the first and the recurrent parasitemia will errondeuslgssified as a
recrudescent infection. Conversely, PCR may fail to identify all the gee®ig the pre-
treatment sample and the recurrent parasitemia may be falselfiedicas a new
infection. Factors that play a role in these types of misclassificatibhendiscussed in
greater detail below.

b. Definitions of recrudescence

Different definitions of recrudescence appear in the literature; thigeban
analytical approaches with regard to how and which patients are considered whe

calculating the cure rate or other endpoint. The WHO recommends that nsudkeng)



even a single band indicate recrudescence but if any of the markers genotyped do not
share a band, indicating a new infection, then that is the patient’s clagsifi&i) Other
definitions attempt a more nuanced approach. Kwiiek considered recurrent
parasitemias that shared a single, highly prevalent band (appeared in more than 10% of
samples) indeterminate, not recrudescent.2ds) indeterminate parasitemias, they used
the frequency of the shared allele and the number of variants in recurrergsé&mpl
calculate an estimated probability of a chance-match.(21) Cattanghathwho had
genotypednspl (the gene encoding merozoite surface proteimip2 (the gene

encoding merozoite surface protein 2), ghap (the gene encoding glutamate rich
protein), explored different ways of addressing “indeterminate” recoes, those in

which the patient had both shared and new alleles.(22) They considered three schemes:
(2) all recurrences classified as recrudescent, (2) recurrentameciassified as

reinfections if at least 50% of the post-treatment bands were new, or&juallences
classified as reinfections. They found that using the second scheme e ihezdrd

ratios most similar to their reference group (patients who had only shavetyarew

bands) and concluded, “Our analysis showed that the episodes initially classified as
indeterminate were much more likely to be caused by reinfection than by
recrudescence.”(22)

Additionally, which samples are even subject to genotyping varies. In a review
by Collinset al. they found that, “Most trials only genotyped samples from episodes of
recurrent parasitemia that occurred after a defined number of days following
therapy.”(15)It is not uncommon for patients who fail within the first seven or even 14

days after treatment to automatically be considered recrudescent.(12) T8j2may be



unwise as unexpectedly high numbers of new infections among recurrent pasasitem
have been identified as early as Day 7 (19%) and Day 14 (47.1%Df23)urse, these
high numbers may also be the result of PCR-related misclassificatiomadaescent
infections.

c. WHO and Medicines for Malaria Venture (MMV) recommendations

The WHO recommends that antimalarial efficacy trials follow patimtno
fewer than 28 days and that PCR-correction be used to differentiate reinfeation f
recrudescence.(2@) 2007, recommendations for standardizing PCR-correction were
issued by a collaboration of the WHO and MMV/(20); they included:

1. Definition of anew infection: Recurrent parasitemia “in which all alleles in the
post-treatment sample...are completely different from those in the admission
sample,” for at least one loci (Figure 2).

2. Definition of arecrudescent infection At each locus, one or more alleles are

shared in pre- and post-treatment samples (Figure 2).

Example for ong marker gene:
Day 0 DayX
m all alleles identical on day 0 and day X =~ === === = recrudescence
PR [
m some allele(s) missing on day X B = - [gofudescence
m additional, new allele(s) on day X B = = [eorudescence
I
m all alleles different on day O and day X =, === = new infection
I
|
I

Figure 2. WHO/MMYV definitions of recrudescence and reinfection.Used with

permission.(20)



3. Only two samples are required (no consecutive sampling), one pre-treatment and
one at the time of recurrent parasitemia.

4. Use of commercial blood collection cards as opposed to untreated filter paper
(this helps to ensure the success of genotyping).

5. Use of capillary electrophoresis when possible (this increases thg bili
distinguish between different alleles).

6. Stepwise (stopping when a new infection is detected) nested PCR genotyping of
all recurrent parasitemias fowspl, msp2, andglurp (Figure 3).

7. Accreditation of laboratories to provide quality assurance.

8. When the PCR-corrected cure rate falls below 90%, they recommend collecting
and reporting additional information: existence of gametocytes at theftime o
recurrent parasitemia, the average multiplicity of infection and the distibaoti
alleles in the parasite population. They state that these values can thed be us
calculate chance-matches but do not make a specific recommendation for how to
do this.

These recommendations are useful with regard to standardization, an important
next step when considering the wide variety of genotyping techniques andalesiof
recurrence, a shortcoming highlighted by Colkhal.(15) However, the
recommendations do not address all of the technical and biological factors ttiat affe

PCR-correction. These factors are discussed below.

10



Genotyping results
with marker #1
I i }
| Mo result | | Recrudescence | | New infection |
| Continue with marker #2 | Mo further genotyping
Final result = new infection
v 1 )
| Mo result | | Recrudescence | | New infection |
| Continue with marker #3 | Mo further genotyping
Final result = new infection
| | i
| Mo result | | Recrudescence | | New infection |
' v '
If no result with any marker, | Final result = recrudescence | | Firal result = new infection
parform species POR
and recheck blood slids
Final result = failure, excludad
or censored according
to study protocal®

Figure 3. Stepwise genotyping with three markers. Used with permiss. (20)

2. Technical considerations of PCR-correction

a. Selection of genetic markers

Frequently used markers for PCR-correction inclodgl, msp2 andglurp. They
are considered useful because they: (A) contain variable regions that redtdtrenti
sizes of PCR products, (B) tend to have high diversity within parasite populations, (C)
and are single-copy genes on different chromosomes.

Microsatellites, non-coding repeated sequences of nucleotides, have been
suggested as alternatives to traditional markers. The argument farshéncludes the
possibility that msp-coding genes agidrp may be under immune selective pressure.(10)
In a study of microsatellite use, researchers compared analysisgfeapolymorphic

microsatellite to analyses ofspl andmsp2. They found that the detection threshold was
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similar to that oimspl and an order of magnitude lower thagp2. From a total of 69
samples, 46 (67%) had been classified as recrudescent by using a comgatiand
msp2; when the samples were then evaluated for the microsatellite, 23 of those 46
samples (50%) appeared to be new infecti®@esven of 30 samples (23%) identified as
recrudescent by microsatellite analysis were new infections angdalanalysis by the
msp genes.(10)

In addition to which markers are used, the number of markers must be decided
upon. Though an analysis of multiple studies found that, “use of at least three genotyping
markers was not found to increase the odds of classification as new infectid®)..”,
many have argued for the use of multiple markers. This is primarily due to tbased
allelic diversity afforded by multiple markers which may be espgdiaportant in low
transmission areas where parasite diversity is thought to be low {#2benefits of
multiple markers need to be balanced against cost and the likelihood of results that ar
difficult to interpret.(22) Additionally, the use of multiple markers increases the
probability that at one locus PCR will fail to detect all pre-treatmembtygpes possibly
leading to misclassification of a true recrudescent infectiorA(S)epwise approach to
genotyping in which no additional markers are evaluated after one identifies a new
infection has been used and is recommended by the WHO and MMV.(20)

b. Consecutive-day sampling

Using a single pre-treatment and single post-treatment samplessudtyin an
incomplete description of a patient’s infection resulting in outcome migaassen if

within-host parasite population dynamics are highly changeable asréhey a
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asymptomatic patients.(24)hether population dynamics are similar in symptomatic
patients has been the subject of some debate.

In a study of 13 cases of malaria who returned to Sweden after travehimamal
endemic areas and had blood samples taken at 12 hour intervals for a minimum of three
days during and after treatment, 12 (92%) had the same genotypes in all sampleg (in s
patients, the post-treatment samples had only a subset of the pre-treatment
genotypes).(25) This indicated that multiple samples may be lessargaess
symptomatic patients when determining their parasite populations. Howevariltbesa
did allow that, “follow-up analysis in drug trials distinguishing recrudetSoarasites
from new infections may still be favored by analysis of additional samplese .&mnc
asymptomatic parasitemia may confer dynamics other than the infectionaicutiee
phase and a single sample may then only partly reflect the infection parasite
population.”(25)Iin another study in which samples were drawn on Day 0 - 3, 7, 14, 21,
28, 35, 42 and any day of recurring illness, standard single sample analysis krforme
similarly well to repeated sampling, identifying 27 of 33 recrudesceB@és)(when
genotypingmsp2 and 17 of 21 (81%) when genotyping botspl andmsp2.(26)

However these authors also chose to recommend more than one pre- and post-treatment
sample, suggesting instead that samples be taken on two consecutive days at the
beginning of follow-up and on two consecutive days at the time of recurrent
parasitemia.(26%tronger support for the use of multiple samples came from a study that
used a quantitative fragment-analysis, as opposed to standard PCR methods. They found

that parasite populations within symptomatic patients were highly chaegédbif 20
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patients (70%) had clones that “showed major fluctuations,” with some clones
disappearing and reappearing within two hours.(27)

c. Sensitivity and resolution

Differentiating between two alleles is a requirement of distinguishitvgeles
reinfection and recrudescence. The WHO/MMV genotyping recommendations provide
guidance on the extraction of DNA and storage of samples (20); these issaiesycer
play an important role in the efficiency and sensitivity of PCR-correction.thié
purposes of this project, other factors affecting the identification of distiletes,
namely PCR sensitivity and resolution of amplification products, are of gretaeest.

Nested PCR (nPCR) which uses two rounds of amplification, thereby reducing
non-specific amplification, is recommended by the WHO/MMYV for genotypimd)is a
technique found frequently in the literature. However it has at least two important
limitations. First, it only can detect differences in allelic size, not segueSecond,
amplification products are frequently run on agarose gels; it is widely uooeéttat it is
impossible to resolve small differences in the position of bands on such a gel. In
appreciation of this, researchers have to decide how to “bin” the results wHich wil
determine how close two bands must be in size to be considered a match. Gregnhouse
al. chose a bin width of 20 base pairs (bp) for the results ofrtigplr andmsp2 analysis
(this means that bands within a 20bp range were considered matches)(5); Breicidima
used 40bp bins fanspl andmsp2 and 60bp bins foglurp.(28)

Heteroduplex tracking assays (HTAs), which use radiolabeled probes to bind to
host amplicons, are more sensitive to size differences than PCR and are algletto de

insertions, deletions, and clustered base-pair mismatches.(2Ad@&€¢épnally, PCR
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appears unable to detect minority populations of parasites, those that maketigness
10 to 20% of the total within-host population.(30, 313ing HTAS, one study found that
five of six new infections (83%) identified by PCR-correction were acttialy
recrudescences.(29)his was likely the result of PCR insensitivity to minority
variants.(29) Because HTAs use radioactive probes they are not aviaitakde in

much of the developing world, however a new HTA that uses a non-radioactive,
chemiluminescent probe appears effective.(BBg insensitivity of PCR to minority
variants is troubling; when minority variants in the pre-treatment sangleadetected
it can lead to misclassification of recrudescent infections which aatificnflates

estimates of drug efficacy.

3. Biological factors that complicate PCR-correction

a. Gametocytes

Gametocytes are the sexual stage of malaria parasites and do not replicate
cause disease within a human host. They circulate in the peripheral blood and are
ingested by mosquitoes during feeding resulting in parasite transmissioretdggtes
are not susceptible to many antimalarial drugs and have a longer life theatages of
the parasite, living up to 22 days.(d)his is concerning in the context of PCR-correction
because they may remain circulating after successful treatmremeeusly reflecting
recrudescent parasitemia. Traditional PCR can detect all patagis;sgametocytes can
only be identified differentially using reverse transcriptase-PCR &rtdetessenger
RNA of genes only expressed during this stage. This technique is not widely @vailabl

and misclassification may occur as a result. Some reassuring evidenpeowided by a
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study from Uganda that found orlg of 371 paired samples (4%) had gametocytes,
however the methodology they used to identify gametocytes was not reported.(22)

b. Sequestration and synchronicity

Sequestration of parasites and synchronicity may also affect which parasit
variants are circulating at detectable levels in the peripheral blood, ireturdtimg in
incorrect interpretation of genotyping results.synchronous infections where
erythrocytes burst, releasing thousands of merozoite-stage paratiesaine time,
parasite densities potentially fluctuate enough to fall below detectabls.[@6)
Conversely, asynchronous infections also complicate the interpretation of findings
Snounou and Beck drew attention to this, “m&nfal ciparum infections are relatively
asynchronous: the paroxysms can occur at any time, and two or more can belnacorde
quick succession, reflecting an intricate dynamic pattern for the growthferfei
parasite broods.”(18nounouet al. also discuss the potentially misleading role of
sequestration of parasites stating that, “late erythrocytic pasdaes are sequestered in
the deep vasculature and therefore might not be present in a peripheral sa6)ple.”(
Appreciating the potential role of these factors is important although agsdssr true
impact or adjusting for them in the analysis is beyond the scope of this project.

c. Distribution of alleles in the parasite population

The distribution of alleles in the parasite population impacts the likelihood of
observing matching bands in pre- and post-treatment samples. Numerous authors have
emphasized that allelic diversity must be high enough to sufficiently reduce the
probability that a new infection matches the initial infection by chance.(5, 16, 17, 21, 28,

33) Greenhouset al. used frequency distributions to calculate the probability of a
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chance-match (homozygosity) and found values ranging from On@h2)(to 0.18

(TA81, a microsatellite); an increase in allelic diversity reduces hogasay.(5)

4. Adjustment of PCR-correction through the use of probability theory
PCR-correction is a useful and important tool, though clearly not without
limitation. Though impossible to simultaneously address each factor poteatiatiting
the accuracy of PCR-correction, generating one perfect estimateuthafutantifies drug
efficacy, adjustments made based on the allelic distributions of the locategaras
population seem an appropriate first step; “In order to optimize the use of PCR
genotyping, it is important to calculate the pretest probability of the samotyge
occurring in the same individual pre- and posttreatment.”(17) These adjustments use
probability theory to calculate the probability of a chance-match, i.e. tHéadkd of a
reinfection matching the pre-treatment sample genotype simply bgidence.(5, 21, 28,
33) It has been emphasized that patients with multiple infections have a higher
probability of a chance-match.(9)he techniques discussed below are a means to adjust
for misclassification of new infections; it should be noted that they cannot address
misclassification in the other direction (erroneously classifyirgceudescent infection
as a new infection because of PCR insensitivity).
Greenhouset al. used a probability-based approach to help answer two
guestions, (1) how many markers are needed to accurately classifymemfaetions,
and (2) how does transmission intensity affect genotyping results?(5) @hetypged
600 pre-treatment and post-treatment samples asp? mspl, and four microsatellites;

they also used the pre-treatment samples to generate allele frequeritoytaiss for
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each marker. Treating the frequency distributions as probability distributieys, t
calculated the probability that a pre- and post-treatment allele matclobdibse (Ratch
for each study participant in an area of low to moderate transmission and in a high
transmission site. They then adjusted the number of recrudescent infectiorts in eac
treatment arm separately, as determined by PCR-correction, by thga®..(a
thorough description of their approach and their formulas are in Appendix B).alHwey
evaluated the effect of using multiple markers by multiplying the avdtagafor each
marker together to calculate an “overall;R,and adjusted the PCR-corrected results
using that value. Their findings confirmed anticipated results: highecalleersity
conferred a lower Rycnand higher multiplicity of infection increaseg &, The site
with lower transmission intensity reached a very low overall.){0.02) within three
markers, whereas the higher transmission site never reached a paytiould®},ach
value even with all six markers (0.16). The authors concluded that in the lower
transmission area, “treatment estimates adjusted by genotypingtestioecame similar
to those adjusted by both genotyping and chance matches... In [the high trasmissi
site], however, the risk estimates remained dissimilar even after gemgtypph all six
markers... This suggests that even genotyping with the six markers ddactiis
report may substantially overestimate the true risk of treatmeuntdait very high
transmission sites.”(5) Overestimating drug failure could resultéctiepn of a
potentially useful compound during drug development.

Kwiek et al. evaluated all patients with recurrent parasitemias and calculated how
closely they matched (the number of shared bands) and how prevalent the matching

alleles were in the parasite population.(21) They considered recurrentgraiasit
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sharing a single band that appeared in more than 10% of samples indetermirtee gneit
new infection or recrudescence). For indeterminate parasitemias, thaysttethe
prevalence of the shared allele and the number of variants in the recurrem tampl
calculate an estimated probability of a chance-match. They multipliedetie m
probability of treatment failure (1 — the mean of the chance-match probapbiyiése
number of indeterminate infections and adjusted the proportion of treatment failures
accordingly (Formula in Appendix C). Like Greenhosatsal., they concluded that
probability-based adjustments of genotype-corrected rates (they used HTRE Riot
may be useful in high transmission areas.(21)

Not all researchers agree that chance-matches play an importad8;d8)
However, the findings of studies that used probability-based adjustments of genotype

results(5, 21, 28, 33trongly indicate that this is incorrect.

5. Uncertainty analyses

Traditional estimation of confidence intervals accounts only for random error.
Bayesian methods can be used to incorporate prior information on biases and other
methods have also been developed.(34-37) An analysis presented bst durek
corrected for outcome misclassification using a Monte Carlo analyseathef a
Bayesian analysis. They argued this was sufficient because they@especifying a
prior distribution of the parameter of interest itself, only prior distributiolase to the
misclassification.(36) Though their subject area was not infectious disease
modifications to their approach would make it relevant to outcome misclassifiaat

antimalarial efficacy trials.
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In conclusion, PCR-correction is a useful first step in estimating treatme
efficacy, but without the incorporation of additional information, such as the digtnbut
of genetic variants in the parasite population and multiplicity of infection, itesatnn
misclassification of a patient’s outcome. The ability of PCR-correction teattyr
classify a patient’s outcome is also limited by the insensitivity & RCminority
variants. The use of probability-based adjustments, can take these factaoint,
could potentially play an important role in generating more reliable essnoftture

rates.

B. The effect of HIV-1 protease inhibitors on incidence of malaria

Protease inhibitors are not currently recommended for use as first-liiegnAR
Sub-Saharan Africa.(38) However, the recent advent of a heat stable cdatovmof
two PIs, lopinavir and ritonavir (LPV/r), coupled with the demonstrated resestanc
first-line non-nucleoside reverse transcriptase inhibitor (NNRTI)b#ssrapy(39)
makes it likely the use of Pls will increase. Furthermore, laboratory ed@des shown
that LPV/r and other HIV Pls inhibit the growth Bffalciparum; if this is found to also
be true in humans, the use of HIV Pls in malaria-endemic parts of the world would be
even more valuable.

The Adult AIDS Clinical Trials Group (AACTG) conducted a study
comprising two phase Il randomized clinical trials (RCT): one for HIV-&atéd,

treatment-naive women and one for HIV-1-infected women who have been exposed
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to single-dose nevirapine (NVP) to prevent mother-to-child transmissiorvel HI
In each RCT there were two treatment arms; one in which patients receiv&H-NN
based therapy, the other in which patients received protease inhibitor LP&dr-bas
therapy.(40) We conducted an ancillary study using data collected by th€@A

trials to look at the effect of LPV/r d falciparum infection in adults.

1. Malaria and HIV-1

The geographical overlap of malaria and HIV is striking. It is estinitzt
almost one million people die of malaria every year; most of whom live in Suba®ahar
Africa.(1) The Joint United Nations Programme on HIV/AIDS reported that rgughl
22.5 million people were living with HIV/AIDS in Sub-Saharan Africa in 2007; a far
greater number than any other region of the world.(41)

The biological interaction between HIV-1 and malaria is well documented (al
references to HIV for the remainder of the document refer to HIV-1). Tiwoeal
nature of the interaction — HIV increases malaria incidence and worsenalclini
manifestations, malaria elevates HIV viral load — makes it crucial to stadelrits
repercussions in an effort to improve prevention and treatment strategies. Using a
mathematical model, Abu-Raddeidal. estimated that in an adult population of
approximately 200,000, and in an area in which both HIV and malaria are highly
prevalent and malaria interventions not used, between 1980 and 2006 the interaction may
have led to more than 8,000 excess cases of HIV and almost one million excess cases of

malaria.(42)
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a. The effect of HIV on malaria

HIV is associated with increased parasitemia, clinical malariaearedes malaria.
In 2000, Whitworthet al. described the role of HIV on parasitemia and episodes of
clinical malaria.(43) Based in a malaria-endemic region of Ugandatuithe fellowed a
cohort of 484 adults from 1990-1998 and conducted both scheduled and interim visits
when participants felt ill. HIV was associated with increased odds of bothtparias
and clinical malaria (Table 1). Among HIV-infected individuals, those with @4

counts tended to have higher parasite burdens.(43)

Table 1. Malaria status among study participants at routinely scheduled visits

HIV status Parasitemia Odds ratio Clinical Malaria | Odds ratio
N/total (%) (95% CI)* N/total (%) (95% CI)*
Negative 231/3688 (6.3) - 26/3688 (0.7) -

Positive | 328/2788 (11.8)| 1.81(1.43,2.20) 55/2788 (2.0) 2.56 (1.53, 4.29)

Data taken from Whitworthkt al.(43) *Odds ratios adjusted for age, sex and pregnancy

Patnaiket al. evaluated the effect of HIV serostatus, viral load, and CD4 counts
on parasitemia. They calculated hazard ratios (HR) and found that firstlepsecond-
episode and overall incidence of parasitemia were all greater in H¥¢tad adult study
participants who were followed for a single rainy seasdviatawi, a malaria-endemic
country.(44)They found an increased rate of first-episode parasitemia associdted wit

increased HIV RNA concentration (Adjusted HR (95% CI) per 1-log increds24=
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(2.02, 1.51)) and of second-episode parasitemia (Adjusted HR (95% CI) per 1-log
increase = 2.12 (1.14, 3.92)he direction of this association was the same when
considering overall incidence of parasitemia though not statisticallyfisagti (Adjusted
HR (95% CI) per 1-log increase = 1.24 (1.02, 1.51))s of note that when assessing the
effect of HIV RNA concentration they did not adjust for CD4 count.) The hazard of a
first-episode of malaria was lowest among individuals w00 CD4 cellgil.(44)

Clinical malaria is also associated with HIV and its resulting immunosagion.
Evidence suggests that there is an increased relative risk of cliniealareahong
individuals with fewer CD4 cells and more advanced HIV diseasel@®8&)cohort of
HIV-infected adults in Uganda, the rate of malarial febrile episodes amodngluals
with fewer than 200 CD4 cells/was more than twice that of the rate among individuals
with > 500 CD4 cellsdl (139.8/1000 person-years compared to 57.3/1000 person-
years).(45)

Grimwadeet al. conducted a study in an area of unstable malaria transmission to
observe the effect of co-infection among a population with lower levels of thalparti
immunity one would expect to find in endemic regions.{@®y reported a significant
association between HIV and severe malaria disease among adults with abnfirme
malaria [Adjusted Odds Ratio (OR) (95% CI) 2.3(1.4, 3.9)].(46)

In summary, HIV has been linked to increased parasitemia, clinical mafatia, a
the severity of malaria disease among adults. This association is found in boticendem

areas and areas of unstable transmission.

b. The effect of malaria on HIV
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Malaria also exacerbates HIV infection. Kubdiral. conducted a prospective
cohort study that followed HIV-infected patients at regularly scheduled agrthntisits
when participants experienced illness.(#ipy measured the amount of HIV RNA at
baseline, at the time a patient was found to be parasitemic and, on average, 8-9 weeks
post-malaria. They found that concentration of viral RNA, for patients withibasel
CD4 >300/ul, nearly doubled during the episode of malaria; this effect was svegest
among patients with high levels of parasitermi2000/u1) and feverThey observed no
significant difference in HIV RNA levels over time for participants wdnb not
experience an episode of parasitemia.(#vanother cohort of HIV-infected individuals,
patients with clinical malaria had a median viral load almost seven tiraesftnon-
parasitemic controls.(48Jhough the effect of high viral load may in fact have made the
patient more susceptible to malaria (thereby confusing this effeag,\itas a
progressive decline of median viral load after treatment for malaria andcafteveeks
there was no significant difference in median viral load between individuageeng
from malaria and the control group.(48)e mechanism by which malaria increases viral
load is still under study; some evidence suggests it may be related toedgpeaduction
of TNF-u.(49, 50)

Malaria is also associated with a decline in CD4 cells A&y adjusting for
baseline variables, including baseline CD4 count, Mestnah. reported that the average
decline in CD4 cells was, per episode of malaria, 40.5/pl. When compared to HIV-
infected individuals who experienced no episodes of malaria, people who had at least
three episodes experienced an annual decrease in CD4 cells of more than 140/ul.(51)

2. The treatment of HIV-1 in Sub-Saharan Africa
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In the 2006 antiretroviral treatment (ART) guidelines for resource-poor aesintr
issued by the WHO, a combination of three drugs was recommended: two nucleoside
reverse transcriptase inhibitors (NRTI) and a single NNRTI (eitheirefe (EFV) or
NVP).(52) NVP is less expensive than EFV and is widely used, however its use carr
with it risk of severe rash and rarely hepatotoxicity.(52)

The 2009 revisions to the WHO guidelines do not recommend Pl-based therapy as
a first-line treatment, only a second-line treatment.({@8yever the new availability of
heat stable LPV/r in combination with observation that resistance to the teripks of
NNRTI therapies can result from a single nucleotide polymorphism in HIV-1(&8Rgsn
reassessment of Pl-based therapy important. One aim of the AACTG sttty wa
investigate the possibility that NNRTI-based ART is less effectivaiiempts with
previous NNRTI exposure (in the form of single-dose NVP) due to the selection of
resistant virus resulting from that exposure. This possibility makes the optiongf us
Pl-based therapy as a first-line treatment attractive and wortlwtbéf consideration.
Second line therapy use in the developing world is also increasing over time and is

almost exclusively Pl-based.

3. Diagnosis and treatment of co-infected individuals

There are risks associated with concurrent use of antimalarials and
antiretrovirals.(53, 54) Brentlinget al. reviewed the diagnostic and treatment
challenges resulting from the overlap of the two infections, highlighting &gt foe
medications effective against both diseases.([B#y proposed five reasons why “the

HIV-infected patient residing where malaria is endemic or epidemidoaay risk of
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misdiagnosis and mismanagementin’summary they are: 1) symptoms of both
conditions can be varied “[making] clinical decision making...difficult”; 2) malaray
occur simulatneously with other infections or even adverse reactions to ARIhgcaus
difficulties for patient management; 3) a possible increase in unneeded rirakenaent
in patients with fever, or alternatively failing to diagnosis malaria irtiergavith
symptoms associated with HIV or adverse reactions to ART; 4) insufficikemimation
available for evidence-based concomitant treatment of both infections; and, 5) lack of
clinical facilities to correctly diagnose malaridhe “overlapping adverse effect profiles”
of certain antiretroviral and antimalarial drugs, and the known deliterious drug
interactions between the two types of treatments(53), make the possalality of
medication that can treat both diseases highly desirable.

There are drugs used as chemoprophylaxis in HIV-infected patients obadtt
them from malaria. For example, co-trimoxazole use in HIV-infectadmatreduces
incidence of malaria.(55). Thoughb-trimoxazole reduces morbidity and mortality

among those infected with HIV, it is does not treat or cure HIV.

4. Antimalarial action of protease inhibitors

The antimalarial properties of Pls were first demonstrated in kvgrstudies
more than a decade ago. In Rosenthal’s 1995 artiéleperimental Parasitology, he
reported the deleterious effect of Pls on the malaria parasit®lgdéjia parasites
construct proteins by hydrolyzing the host erythrocyte’s hemoglobin andthsing
resulting amino acids.(5Rosenthal cultured parasites with different chemical agents

and found that cysteine Pls caused morphological changes in the food vacuole of the
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parasite.(56Aspartic Pls did not cause such an abnormality but were also toxic to the
parasite.(56Yhisin vitro evidence warrented further investigation into the antimalarial
nature of PIs.

Experimental approaches to quantifying antimalarial effects relévahis
dissertation have primarily involved incubating cultured parasites, of vambinsagarial
drug sensitivities, with HIV Pls and measuring growth inhibition. Skinner-Acthiads
published the “first report that antiretroviral Pls can directly inhibiitro growth of
both drug-sensitive and drug-resistBnfalciparum parasites.”(58) The observed
efficacy against drug-resistant parasites is particularly impartahe context of
growing antimalarial drug-resistance. Several agents wereuartycharmful to the
growth of the parasite including RTV, a component of LPV/r, whereas NVP had no
effect.(58) Growth inhibition resulting from exposure to concentrations of LPV (0.9
2.1uM) which are lower than those found in the plasma of a patient on LPV/r ART have
also been described.(5%)is of note, however, that LPV/r is 98-99% protein bound(60);
this may indicate that the vitro concentrations resulting in parasite growth inhibition
may be higher than those freely available in a patient. Parasites expasddalone,

RTV alone, or LPV/r experienced growth inhibition and exposure to RTV alone resulted
in morphological changes of the parasites.(61) laxamvo experiment, parasites

exposed to sera taken from HIV-infected patients taking LPV/r had a 50€2i#ttion

in growth when compared to serum from controls.(62)

Andrewset al. provided the first evidence of amvivo effect of LPV/r.(61) They
compared the efficacy of multiple chemotherapeutic agents against thetimanmnurine

model of malariaP. chabaudi. LPV/r decreased the median peak parasitemia and
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delayed onset of parasitemia by two days (compared to the controbyi@&nce from a
different murine modeP. yodlii suggested that HIV Pls, including LPV, also
demonstrate action against pre-erythrocytic stage parasites.(63)

The mechanism for the observed antimalarial effect of HIV Pls isiatithown;
initially it was believed that the agents interfered with plasmepdigfbur of the ten
P. falciparum aspartyl proteases) which function within the food vacuole.(58)
Additional evidence bolstered this hypothesis: structural similaritiegele® plasmepsin
Il and the HIV protease,(64)ocking studies that suggested bonding interactions between
HIV Pls and plasmepsins Il and IV are possible,@1iJ by measuring the inhibition of a
“hemoglobin-based peptide substrate by recombinant plasmepsin Il,” ibwad that
plasmepsin Il was inhibited by LPV and RTivvitro.(59)

New evidence, however, suggests that the antimalarial effect of HIiM&i0t
be related to food vacuole plasmepsins. In both drug interaction studies and experiments
with knockout parasites, Parildhal. concluded that HIV Pls do not act in the same way
as pepstatin, an aspartic protease inhibitor known to have antimalarial action.(65)
Experiments that measure the interaction of HIV Pls and chloroquine also suppo+t a
food vacuole mechanism of action. The antimalarial action of chloroquine is not fully
understood but it is believed to act on heme, the iron-containing prosthetic group of
hemoglobin, after it is cleaved from the hemoglobin molecule by the food vacuole
plasmepsins.(66) Synergism between HIV Pls and chloroquine would therefore be
unexpected if HIV Pls inhibit food vacuole plasmepsins. However, synergism does
occur.(67, 68)Additionally, RTV and saquinavir (another HIV PI), suppress growth of

P. vivax.(69) P. vivax has only a single ortholog tdRPafalciparum food vacuole
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plasmepsin(70), and that ortholog is not transcribed during the ring stage, sugesting
the food vacuole plasmepsins are not the target of HIV PIs.(69) Recent experiments
that explored antimalarial activity throughout the parasite’s within-inuifeacycle,
found that HIV Pls were responsible for the strongest growth inhibition during the
trophozoite and schizont stages and also acted on gametocytes, leadinggitob ees to
cautiously conclude, “that the primary target of the Pls is likely to be ssgulen both
gametocytes and intra-erythrocytic parasites...plasmepsins V, IX, apdeémato be the
best candidate targets of these drugs.”(71)

Nathooet al. proposed that HIV PIs may have a beneficial consequence for
patients with malaria independent of antiparasitic effectsl@jro, they found a
marked reduction in the expression of CD36, a human surface receptor associated with
the binding of malaria parasites, after exposure to several ART compounds, including
RTV. They observed that the “induced CD36 deficiency [results] in decreased CD36-
mediated cytoadherence...of parasitised erythrocyt€s€ authors did, however,
caution that decreased expression of CD36 could also potentially harm the patient,
postulating that parasites may then simply bind to another surface recepté-1CA
which is implicated in cerebral malaria. Additionally, the decrease ir6GIx® reduced
phagocytosis of parasitized erythrocytes which may reduce the pasibilitys to fight
the infection.(72)

In conclusion, though laboratory evidence supports the antimalarial effect of HIV
Pls on malaria parasites, the mechanism for that action remains unknown. Adgitiona
HIV PlIs may reduce the parasite’s ability to bind to host cells though theuspmns of

this effect are not understood. Currently there is nothing known about an antimalarial
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effect of HIV Pls in humans. Data from the AACTG trials provide the first oppoytunit

to examine incidence of malaria among HIV-infected individuals on Pl-baseghyhe
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CHAPTER 2

RESEARCH DESIGN AND METHODS

A. Factors influencing PCR-corrected cure rates in antimalarial ficacy trials

This aim had two objectives. First, to demonstrate the effect of the distribution of
allelic variants, transmission intensity and MOI on the probability of essdication of
recurrent infections. Second, to develop a practical approach for adjusting PCR-
corrected results for misclassification of both reinfections and recruses;emd
provide a worked example using data from areas of both high and low transmission

intensity.

1. Characteristics affecting the probability of false positives

We used simulations of the infection, cure, and re-infection process to
demonstrate the effect of allelic diversity, transmission intensity antavi the
probability of a false positive. In this context, a false positive refers iofacton that
is misclassified as a recrudescence because allelic variantsdayt®eand day R
samples match by chance. We used MATLAB R2008a (Natick, MA) software to
simulate infections (and re-infections) of individual patients after spagityie

population-wide distribution of allelic variants. The parameters of thes@digins



were based on values in the literature on releRafa ciparum genetic markers. For

each of 100,000 simulated patients, we assigned a specified number of day 0 variants
drawn randomly from the distribution. We set treatment success at 100% anddaasigne
specified number of day R variants the same way. We tested all patientt¢bmg

day 0 and day R variants, and calculated the probability of a false positive as the numbe
of patients with a match divided by 100,000, the number of simulated patients.

We first assessed the effect of allelic diversity in the parasite paputat the
probability of a false positive. As in routine PCR-correction, allelic var\aate
distinguished by the number of base pairs (bp); due to the insensitivity of nP@RIko s
variations in the number of bp, variants that were different by no more than 20bp were
considered to be the same to replicate the degree of precision routinelydalMigeused
allelic distributions appearing in the literature to inform a plausible mean, 350bp, and a
wide range of variances, from 1575 to 6475, to generate ten negative binomial
distributions. The negative binomial distribution is believed to most accuratedgespr
allelic distributions within parasite populations.(73) For each distributiorsjimwelated
the infection and reinfection of 100,000 patients by assigning each a single dean®d vari
and a single day R variant drawn randomly from the distribution.

We assessed the effect of transmission intensity on the probability eéa fal
positive by assigning each patient one day 0 variant and one, two, three or four day R
variants, each reflecting an infectious bite (for simplicity, weiaesl each infectious
bite transmitted a single variant). We simulated the effect of MOlasipilassigning

each patient one through four day 0 variants and the same number of day R variants.
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2. Monte Carlo uncertainty analysis

a. Theory

To accurately measure treatment success, estimates of the cuneechte be
adjusted for two types of misclassification: false positives (reiofesincorrectly being
classified as recrudescent) and false negatives (true recrudedeetndns misclassified
as reinfections because a minority variant in the day 0 sample was noedié&tect
nPCR). To adjust for this misclassification, we developed an uncertainty arlaatsis
requires two sources of external, or prior, information: the distributions of falgx@®s
and false negatives. These distributions can be estimated using data froafeaialim
efficacy studies.

We developed a method for estimating the distribution of false positives that
reflects our understanding of the factors that influence the probabilityh@ireee match
and exploits characteristics of the study data themselves, allowing th&iptplod a
false positive to appropriately be tailored to the study setting. Falsespgsibbabilities
were calculated using the same simulation procedure described above, leadciyat t
number of allelic variants observed in each patient at day 0 and day R, and the
population-wide distribution of allelic variants were set to match study ddeaused
MATLAB R2008a (Natick, MA) to simulate the infection and reinfection of N patjents
where N was the number of patients who participated in the study. Each patient was
assigned X day 0 variants and Y day R variants from the day 0 and day R distributions of
allelic variants generated by genotyping parasites present nwsduotples (the X for
each patient was randomly selected from the observed distribution of the number of day O

infections, the Y randomly selected from the distribution of the number of day R
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infections) and tested for matches. The false positive probability for tmidesed study
was then calculated as the number of chance matches divided by N. We repeated this
process 10,000 times (generating 10,000 false positive probabilities) to create the
distribution of the proportion of recrudescent infections that were false positives.

To estimate the distribution of false negatives, we made use of the observation
that nPCR has limited sensitivity to variants comprising less than 20% otatjsati
parasite population.(30, 3Wlisclassification of a recrudescence as a reinfection, a false
negative, requires that each day R variant be undetected in the day 0 variantgglas a si
shared variant will result in the classification of the recurreneerasrudescence
according to the MMV/WHO guidelines.(20)o our knowledge, the only published
information on the role of false negatives comes from Jukaab who used
heteroduplex tracking assays (HTAs), a molecular method more sersitivedrity
variants and genetic variation than nPCR, and found that five of six new infections (83%)
identified by PCR-correction were truly recrudescent infections.t2®yever, their
study population was at negligible risk of reinfection, likely making theulte an
overestimate in the context of an average antimalarial trial. Thereda@stitate the
proportion of reinfections that were false negatives we used the median number of
variants observed in the day R samples, assumed each variant carri¢c \2@Proi
chance of being missed in the day 0 sample, and calculated the probabilityeaeall
missed at day O resulting in a false negative using this formula: proportioneof fals
negatives equals (0:2where v is the median number of variants. The 20% chance was
based on existing literature and expert opinion. We also conducted a sensitiyisysanal

varying the probability of a band being missed in the day 0 sample from 0 to 80%.
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We conducted a Monte Carlo uncertainty analysis to adjust the observed number
of recrudescent infections as determined by PCR-correction after gemotygpl by the
estimated distributions of false positives and false negatives. Using aaepgimilar
to that described by Jurekal.,(36)we calculate the adjusted cure rate using this

formula:

Adjusted cure rate = [IN- (Nrecru— (NrecruX FP) + (Mew X FN))] / N @

Where Nis the total number of patients,M, is the number of recrudescent infections
identified by PCR-correction, FP is the proportion of recrudescent infectionsdreat
false positives, Nwis the number of reinfections identified by PCR-correction, and FN
is the proportion of reinfections that were false negatives.

We used Oracle Crystal Ball, Fusion Edition (Redwood Shores, CA) software to
run 100,000 trials in which the number of recrudescent infections as determined by PCR-
correction after genotypingsp2 in each study area was adjusted and the cure rate
calculated using formula 1 (above). As the last step in each trial, we id@unt@tstrap
step to allow for sampling error by generating a random value from a binomial
distribution in which the number of trials was equal to the number of patients in the study
and the probability of success was the uncertainty-adjusted probability af¢rdat
failure. This approach is appropriate for estimating the sampling eraor @dtimated
proportion.(74) These random values were then used as the number of recrudescences to
calculate the final cure rate, adjusted for both uncertainty and sampling \&feoalso

ran 100,000 trials without the bootstrap step to explore the effect of uncertainty in the
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absence of sampling error, and finally, also calculated traditional 95% aacdide
intervals around the PCR-corrected cure rate with no adjustment for outcome
misclassification to demonstrate the effect of sampling error in the aestnncertainty
about the outcome.

b. Example data

To provide an example of our proposed uncertainty analysis, we used genotyping
data from two randomized antimalarial efficacy trials conducted in arehSefng
transmission intensity. The data from the high transmission area came fiuahy ans
Tororo, Uganda (N=401); the researchers were comparing the efficacymbdraguine
plus artesunate regimen compared to an atemether-lumefantrine reg)nidre(data
from the low transmission area were generated by a study conducted iiDBoibasso,
Burkina Faso (N=827); the researchers were comparing the efficacydfaaine,
sulfadoxine-pyrimethamine and amodiaquine plus sulfadoxine-pyrimethamindn(75)
both studies, the different therapies did demonstrate different levels otgffic@5);
however, because we are not interested in a particular treatmengsgfénd instead
are simply providing an example of the uncertainty analysis, we did notystnati
treatment arm. The data for each patient included the number and identityiof alle
variants. Greenhoustal. used two sets of primers for amplification to capture two
allelic families ofmsp2, IC3D7 and FC27.(5) To prevent artificial chance-matches (a
variant amplified with one set of primers that was 300bp is not the same as aofariant
300bp amplified with the other set of primers), we added 1000bp to each variant
identified by the FC27 primers to create a single distributionsp® variants that

included both allelic families.
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B. The effect of HIV-1 protease inhibitors on incidence of malaria

The AACTG conducted two phase Ill randomized clinical trials (ACTG5208) to
measure HIV outcomes for HIV-infected women with and without previous NVP
exposure when randomized to either LPV/r-based therapy or NNRTI-basapiyth&ve
conducted an ancillary study using the AACTG data to measure the associatiearbe

LPV/r and clinical malaria in humans.

1. ACTG5208 and selection of participants for ancillary study

The AACTG screened and recruited HIV-infected, treatment-naiveswdan
participation in one of the two trials of which the parent-study was comprised{®)
trial enrolled women with no history of NVP exposure (N=502); the other trial edirolle
women who had received single-dose NVP to prevent mother-to-child transmission of
HIV(N=243).(40) Once it was determined in which trial a participant was fidoed,
she was randomly assigned (1:1) to a treatment arm.R&}icipants were followed
until 48 after weeks after the final participant was randomized.(40)

In both trials, women were randomized to receive either LPV/r-based th@rapy
NNRTI-based therapy. As a part of their therapy, all participantsvestéio
nucleoside reverse transcriptase inhibitors (NRTI) consistent with We#Ortent
guidelines.(52)The parent-study recommended emtricitabine and tenofovir; however
clinicians at sites were encouraged to select the NRTIs used as hefistesl sdeost

appropriate.(40)
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The AACTG enrolled women at least 13 years of age (or older as dictaiesl by
study site IRB) with a CD4+ cell count < 200 cells/frwbtained within 90 days prior to
study entry. Additional biological parameters required for enrollment imgudi

- Absolute neutrophil count 750/mmnt

- Hemoglobin> 7.0 g/dL

- Platelet count 50,000/mm

- Total bilirubin< 2.5 x upper limits of normal

- Aspartate aminotransferase, Alanine aminotransferase, and

alkaline phosphatase2.5 x upper limits of normal

- Negative pregnancy test within 45 days prior to study entry
The study population was also subject to the following conditions:

- All women who could potentially become pregnant must have agreed to use

birth control for the duration of the study and for six weeks following the

discontinuation of study medication.

- All participants must have had a Karnofsky performance sc@tewithin 45

days prior to study entry. (A Karnofsky performance score charaageriz

functional impairment.)

- Ability/willingness of participant (or legal guardian/representativegive

informed consent.

- Intent to remain in current geographical area of residence and attendisttsly

as required.
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The study population did not include women confined in a correctional facility for
legal reasons or in a medical facility for treatment of either a psyichoa physical
illness.

We used data from participants in both trials from all of the malaria-endemic
study sites: Eldoret and Kericho, Kenya, Lilongwe, Malawi; Kampalantdagal usaka,

Zambia; and Harare, Zimbabwe.

2. Study measures

a. Main exposure

The main exposure was the therapeutic regimen to which the participant was
randomized: LPV/r-based therapy or NNRTI-based therapy. Particigaeising
LPV/r were considered exposed; participants receiving an NNRTI werefdrent
group. LPV/ris a co-formulation of two aspartic protease inhibitors usedtad pa
antiretroviral regimens. When used in combination, the RTV increases auilaibil
LPV in the patient (the efficacy and tolerability of this combination ofelueags is
reviewed in (76).Aspartic protease inhibitors have exhibited antimalarial properties
in multiple studies.(58, 59, 61-63, 7The NNRTI used in the study was NVP. NVP
is a widely used therapeutic agent, used in both NNRTI-based ART and as a single-
dose treatment to prevent mother-to-child transmission. NVP has not demonstrated
antimalarial action.(58, 62)

b. Outcomes

We used two definitions of malaria: confirmed malaria and probable malaria

(Table 2). These definitions were developed by the trial staff. Confirmkdiana
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required both identification d?lasmodium sp. on a peripheral blood smear and
“compatible clinical syndrome.” (ACTG materials) Probable malagaired both a
“compatible clinical syndrome” and antimalarial treatment employedcammended.
(ACTG material) We also included patients who were prescribed antiaisla
(amodiaquine, artemether/lumefantrine, artesunate, chloroquine phosphate,
dihydroartemisinin/piperaquine, mefloquine HCI, pyrimethamine/sulfadoxineingui
dihydrochloride, quinine sulfate or sulphalene/pyrimethamine) without a recorded
diagnosis as probable cases.

Peripheral blood smears are used to identify parasites with microscofsy and
considered the gold standard in malaria diagnosis. Limitations to the approach
include: low parasite densities may go undetected, variability in how saamgle
processed may lead to misdiagnosis and the microscopist must be highly trained.(77)
An additional limitation in the context of this study was that the parent-stddyodli
regularly collect blood smears as part of the protocol; instead they coltbeta
when testing for malaria was appropriate based on the trial site’s staridare
guidelines. Data describing the magnitude of participants’ parasitenea wer
unavailable.

c. Covariates: The use of an intent-to-treat analysis simplifies our analysis as
theoretically it controls for both measured and unmeasured confounders. We
stratified by trial and study site.

Use of concomitant medications with antimalarial activity, such as
cotrimoxaole, could potentially modify the effect of the main exposure on the

incidence of malaria. Seasonal variation in malaria transmission inteasltyalso
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modify that relationship. We used product terms in the models to evaluate the impact
of these two possible effect measure modifiers. Using climate data frdvatioaal
Oceanic and Atmospheric Administration and evidence from the literature(7&8€32),
created a dichotomous time-varying variable denoting rainy season (ingiaati

higher risk of malaria transmission). We also created a time-varyingtdrobus

variable indicating current use of concomitant medications with antimaatieity
(azithromycin, clindamycin, diaminodiphenylsulfone, doxycycline hydrochloride,

doxycycline monohydrate or trimethoprim/sulfamethoxazole).

3. Statistical analysis

We conducted a discrete-time survival analyses (DTSA). This required that
the dataset be formatted so that each participant has multiple records, @whfor e
period under observation until she either experienced the event (malaria) or
completed follow-up (Appendix E). We ran two final models: one in which both
probable and confirmed cases were considered events and, as a sensilygaty, ana
one in which only confirmed cases were considered events. All analyses weire inte
to-treat.

a. Rationale and interpretation

DTSA uses hazard functions to quantify the effect of predictors on event
occurrence. Hazard is the proportion of individuals at risk at the beginning of a time
period experiencing the event (malaria), conditioned on having not experiencedrthe eve
in an earlier time period. DTSA affords several advantages. By modeling p@avemnit

occurrence but also event timing, we were able to estimate the hazard of a@ltzs&ga
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different time periods, describing any patterns that exist and any ddéenemazards
between treatment arms over time. Hazards may also be used to caloviatd s
probabilities, the proportion of the original study population that does not experience the
event though successive time periods. Survival analysis is a widely acceptethppr

with easily interpretable results.

The parameters estimated by DTSA hazard models are simple to infsegret
Appendix F for the formula of the DTSA model); the alpha coefficients correspond t
time period-specific baseline hazards (the hazards of the reference gnouihe deta
coefficients, when exponentiated, are the hazard ratio associated with a omargé c
in the predictor in any time period. (We used a pooled logistic regression modetin whi
the exponentiated beta is a good estimate of the hazard ratio as long as the event
proportion in all discrete time periods is less than 10%.) In addition to presenting our
estimated parameters and hazard ratios, we plotted logit hazards and survival
probabilities to visualize the effect of therapeutic regiment on the hazaerdlafia.

b. Assumptions

Survival analyses include information from both censored and non-censored
participants; this assumes that censoring is independent of event occurrerreear@he
three key assumptions underlying the use of the discrete-time hazard model:

1. Proportionality. As in continuous-time survival analyses, the assumption of
proportionality requires that the effect of a predictor does not vary acrasdrithe
discrete-time survival analysis, this means that all of the logitrtigarafiles resulting
from stratification by a predictor will have the same shape and be equidistass all

time periods. It should be noted, however, that an interaction between time and another
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predictor has been described as “the rule, rather than the exceptiorF§88hately, a
violation of this nature can be identified (and resolved) by including product terms
(predictors*time) in the model and evaluating model fit.
2. Linear additivity. The discrete-time hazard model requires that one unit
changes in the value of a predictor all have the same effect on the logit. n@rer way
this assumption can easily be tested is stratifying by predictor yakieslating the
logit-hazard at each level of the predictor and plotting the values. lesinglchanges
in the predictor generate equal displacements of the logit hazard, theoasausimet.
Transformation or categorization of predictors that violate this assumpagmachieve
linearity. On the logit scale, the combined effect of predictors is assonbedadditive
(i.e. no statistical interaction). This assumption will be explored by plottiatyfistd
sample hazard functions and changes in model fit when interaction terms are included.
3. No unmeasured heterogeneity. “All variation in hazard profiles across
individuals is hypothesized to depend solely on observed variation in the predictors.”(83)
Unlike the other assumptions, violations of this assumption are not easily identified or
rectified and the inclusion of an error term appears to be problematic. Howezrsbe
our data come from RCTs we do not anticipate that our models violated this assumption.
c. Model-building
The same model-building strategy was employed for both models (one in
which either definition of malaria was considered an event, and when only confirmed
cases were considered events). The independent variable is the everdrimalicat
dichotomous variable that appears in each record of all participants. Wesatstccr

a model to assess the effect of time only. We had weekly data with follow-ug time
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up to 144 weeks; creating indicator variables for each week, as is frequentip done
DTSA, was inappropriate. We explored multiple representations of time including:
linear, quadratic, cubic, higher order polynomials, logarithmic transformatimhs
restricted cubic splines using Harrell’'s DASPLINE SAS macro.(84) Wd us
goodness of fit statistics to determine which representation of time intbnoveel
fit sufficiently to justify the reduction in parsimony. Using product termesaiso
explored whether the effect of therapy varied over time (if so, it would violate the
proportionality assumption and the terms would be required in the model).

Next we added our dichotomous exposure to the model (LPV/r-based therapy or
NNRTI-based therapy). We then added trial, study site, and other variablesrestint
into the model, one at a time. Traditional model diagnostics such as deviantiesstatis
and information criteria were employed to evaluate the benefit of addiregtdrass to
the model. We assessed effect measure modification through the inclusion of product

terms and quantified their effect on the overall fit of the model using deviatisticgta
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CHAPTER 3
ADJUSTING FOR MISCLASSIFICATION IN ANTIMLALARIAL EFFICACY

STUDIES

A. Summary

Evaluation of antimalarial efficacy is difficult because recurreragtemia
can be due to recrudescence (drug failure) or reinfection. PCR is used tndéfer
between recrudescences and reinfections by comparing parasitevaltelints before
and after treatment. However, PCR-corrected results are susceptible to
misclassification: false recrudescences, due to reinfection by thevaaiarg present
in the patient before treatment; and false reinfections, due to variants the¢saet
but too infrequent to be detected in the pre-treatment PCR, but are then detectable
post-treatment. We explored factors affecting the probability of falsedestences
and proposed a Monte Carlo uncertainty analysis to adjust for both types of
misclassification. Higher levels of transmission intensity, increasgibiicity of
infection, and limited allelic variation resulted in more false recrusesse The
uncertainty analysis exploits characteristics of study data to mmibmz in the

estimate of efficacy and can be applied to areas of different transmistnsity.



B. Introduction

The World Health Organization (WHO) recommends that first-line
antimalarial treatment policies be changed when a drug’s cure ratediaNg 90%,
and that new treatments not be recommended unless they have a cure et¢hgreat
95%.(14)However, defining the antimalarial cure rate is difficult in falcipar
malaria clinical trials because recurrent parasitemias can fesuleither
recrudescence (drug failure) or reinfection during follow-up.

One tool used to distinguish between reinfection and recrudescence is PCR-
correction (or PCR-adjustment). PCR-correction most often uses nested RCH (nP
to categorize recurrences by comparing size polymorphisms in genetiersnar
[merozoite surface proteins 1 andnal, msp2) and glutamate rich prote{glurp)]
before and after treatment. PCR-correction of cure rates has been inmsedo
than 20 years and there is an extensive literature on the substantial ircpadtatve
on estimates of treatment efficacy, as previously reviewed.(15yaations in
PCR-correction techniques exist, especially with regard to the interpnedé
results. In response to this variability, the Medicines for Malaria Ve(ulikéV)
collaborated with the WHO to generate guidelines for PCR-correction including a
definition of a recrudescent infection, namely a recurrence in which one or more
allelic variants are shared in the pre-treatment (day 0) sample and threme(iay
R) parasitemia.(20)

PCR-correction is fallible. Incorrect identification of a reinfectioma as
recrudescence occurs when the patient is infected with same variaet dredaafter

treatment; this is more likely to occur in an area with limited allelierdity or high
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transmission intensity.(5, 21) This type of misclassification results inrestii@ation
of the cure rate. Additionally, there are often multiple genetically distitedic
variants present within a single host and nPCR is not capable of detectingyminorit
variants representing <20% of the population.(85) Thus, PCR-correction could
misclassify a recrudescence as a reinfection because an apparewlyariant
which appears in the day R sample was present, but not detected, in the day O
sample.(29)This may be particularly important if drug resistant variants areelsle
below detection initially but become more prevalent in the patient as othertsaria
are cleared by the treatment. This type of misclassification resultsrestia@ation
of the cure rate.

This present work has two aims. First, to demonstrate the effect of the
distribution of allelic variants, transmission intensity and multiplicity oéatibn
(MOI) on the probability of misclassification of recurrent infections. Segctm
develop a practical approach for adjusting PCR-corrected results fdagsification
of both reinfections and recrudescences. A worked example using data fronfareas o

both high and low transmission intensity is provided.

C. Methods
1. Characteristics affecting the probability of false positives

We used simulations of the infection, cure, and re-infection process to
demonstrate the effect of allelic diversity, transmission intensity &btdvi the
probability of a false positive. In this context, a false positive refers iofacton

that is misclassified as a recrudescence because allelic sandhé day 0 and day R
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samples match by chance. We used MATLAB R2008a (Natick, MA) software to
simulate infections (and re-infections) of individual patients after spegityie
population-wide distribution of allelic variants. For each of 100,000 simulated
patients, we assigned a specified number of day 0 variants drawn randomly from the
distribution. We set treatment success at 100% and assigned a specifiedafumber
day R variants the same way. We tested all patients for matching day 0 and day R
variants, and calculated the probability of a false positive as the number ofgpatient
with a match divided by 100,000, the number of simulated patients.

We first assessed the effect of allelic diversity in the parasite papulati
the probability of a false positive. As in routine PCR-correction, alleliaver were
distinguished by the number of base pairs (bp); due to the insensitivity of nPCR to
small variations in the number of bp, variants that were different by no more than
20bp were considered to be the same to replicate the degree of precision routinely
allowed. We used allelic distributions appearing in the literature to infornusilple
mean, 350bp, and a wide range of variances, from 1575 to 6475, to generate ten
negative binomial distributions, shown in Figure 4. The negative binomial
distribution is believed to most accurately represent allelic distoibsitivithin
parasite populations.(73) For each distribution, we simulated the infection and
reinfection of 100,000 patients by assigning each a single day 0 variant and a single
day R variant drawn randomly from the distribution.

We assessed the effect of transmission intensity on the probability eéa fal
positive by assigning each patient one day 0 variant and one, two, three or four day R

variants, each reflecting an infectious bite (for simplicity, we asslueach infectious
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bite transmitted a single variant). We simulated the effect of MOl agilpil
assigning each patient one through four day 0 variants and the same number of day R

variants.

2. Monte Carlo uncertainty analysis

To accurately measure treatment success, estimates of the cuneechte be
adjusted for two types of misclassification: false positives (reiofesincorrectly
being classified as recrudescent) and false negatives (trueescent infections
misclassified as reinfections because a minority variant in the day Oesaaphot
detected by nPCR). To adjust for this misclassification, we developed an untgerta
analysis that requires two sources of external, or prior, information: thidwlisins
of false positives and false negatives. These distributions can be estinagedates
from antimalarial efficacy studies.

We developed a method for estimating the distribution of false positives that
reflects our understanding of the factors that influence the probabilitynairee
match and exploits characteristics of the study data themselves, allbeing t
probability of a false positive to appropriately be tailored to the study settalge
positive probabilities were calculated using the same simulation procedarbees
above, except that the number of allelic variants observed in each patient ahday O a
day R, and the population-wide distribution of allelic variants were set to matbh st
data. We used MATLAB R2008a (Natick, MA) to simulate the infection and
reinfection of N patients, where N was the number of patients who participated in the

study. Each patient was assigned X day 0 and Y day R infections from the observed
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day 0 and day R distributions of allelic variants (the X for each patientandsmly
selected from the observed distribution of the number of day 0 infections, the Y
randomly selected from the distribution of the number of day R infections) and tested
for matches. The false positive probability for this simulated study was the

calculated as the number of chance matches divided by N. We repeated this process
100,00 times (generating 10,000 false positive probabilities) to create tiieutish

of the proportion of recrudescent infections that were false positives.

To estimate the distribution of false negatives, we made use of the observation
that nPCR has limited sensitivity to variants comprising less than 20% otatzati
parasite population.(30, 31) Misclassification of a recrudescence iaegtien, a
false negative, requires that each day R variant be undetected in the day 8,\asiant
a single shared variant will result in the classification of the reclerana
recrudescence according to the MMV/WHO guidelines.T20pur knowledge, the
only published information on the role of false negatives comes from Jetiaho
who used heteroduplex tracking assays (HTAs), a molecular method morevsdasiti
minority variants and genetic variation than nPCR, and found that five of six new
infections (83%) identified by PCR-correction were truly recrudescentiohsy29)
However, their study population was at negligible risk of reinfection, likelking
their results an overestimate in the context of an average antimalalialltrerefore,
to estimate the proportion of reinfections that were false negatives wehased t
median number of variants observed in the day R samples, assumed each variant
carried with it a 20% chance of being missed in the day 0 sample, and calculated the

probability that all were missed at day O resulting in a false negativetagng
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formula: proportion of false negatives equals (Q.&pere v is the median number of
variants. The 20% chance was based on existing literature and expert opinion.
Figure 5 shows our estimate of the effect of the number of variants in the day R
sample on the probability that a recrudescence was misclassified as eiceir(e
false negative). We also conducted a sensitivity analysis varying the pityletial
band being missed in the day 0 sample from 0 to 80%.

We conducted a Monte Carlo uncertainty analysis to adjust the observed
number of recrudescent infections as determined by PCR-correctioneafteygng
msp2 by the estimated distributions of false positives and false negativasy &ssi
approach similar to that described by Juseld.,(36) we calculate the adjusted cure

rate using this formula:

Adjusted cure rate = [N- (Niecru— (NrecruX FP) + (MewX FN))] / N; )

Where Nis the total number of patients,cM\, is the number of recrudescent
infections identified by PCR-correction, FP is the proportion of recrudescent
infections that were false positives,lis the number of reinfections identified by
PCR-correction, and FN is the proportion of reinfections that were falsavesgat

We used Oracle Crystal Ball, Fusion Edition (Redwood Shores, CA) software
to run 100,000 trials in which the number of recrudescent infections as determined by
PCR-correction after genotypimgsp2 in each study area was adjusted and the cure
rate calculated using formula 1 (above). As the last step in each tria¢hvedd a

bootstrap step to allow for sampling error by generating a random value from a
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binomial distribution in which the number of trials was equal to the number of
patients in the study and the probability of success was the uncertaintyddjust
probability of treatment failure. This approach is appropriate for estightite

sampling error of an estimated proportion.(74) These random values were then used
as the number of recrudescences to calculate the final cure rate,chthusiath
uncertainty and sampling error. We also ran 100,000 trials without the bootstrap step
to explore the effect of uncertainty in the absence of sampling error, ary, fahsb
calculated traditional 95% confidence intervals around the PCR-correctecture

with no adjustment for outcome misclassification to demonstrate the effect of

sampling error in the absence of uncertainty about the outcome.

3. Example data

To provide an example of our proposed uncertainty analysis, we used
genotyping data from two randomized antimalarial efficacy trials conductaeas
of differing transmission intensity. The data from the high transmissiancarme
from a study in Tororo, Uganda (N=401); the researchers were comparing the
efficacy of an amodiaquine plus artesunate regimen compared to an atemether-
lumefantrine regimen.(4Yhe data from the low transmission area were generated by
a study conducted in Bobo-Dioulasso, Burkina Faso (N=827); the researchers wer
comparing the efficacy of amodiaquine, sulfadoxine-pyrimethamine and amadiaqui
plus sulfadoxine-pyrimethamine.(73) both studies, the different therapies did
demonstrate different levels of efficacy(4, 75); however, because wetare n

interested in a particular treatment’s efficacy, and instead are singvigling an
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example of the uncertainty analysis, we did not stratify by treatment Bnedata

for each patient included the number and identity of allelic variants. Greergiouse
al. used two sets of primers for amplification to capture two allelic fasrliensp2,
IC3D7 and FC27.(5) Alleles were considered different if they were froierelift

allelic families or if they were not the same length.

D. Results
1. Characteristics affecting the probability of false positives

The simulations compared the effect of transmission intensity and MOI on the
probability of a false positive across ten negative binomial distributions cangpri
alleles with the same mean size (350bp) but different variances (Figimerédgsed
variance signified higher levels of allelic (genetic) diversity in the @djmud under
study. We drew 100,000 samples of allelic variants from each distribution, assumed
100% treatment success, and drew a second variant to allow us to calculate the
probability of a false positive. We calculated these probabilities at difflEreels of
transmission intensity and different MOI.

At any level of allelic variance, the greater the number of post-treattes,
or the more variants a patient had at day 0 and day R, the more likely a false positive.
Conversely, higher levels of allelic diversity had lower probabilitieslséfpositives

regardless of transmission intensity or MOI (Figure 6).

2. Example of Monte Carlo uncertainty analysis
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We used two data sets to provide examples of our Monte Carlo uncertainty
analysis, which adjusted the number of recrudescent infections identified/by PC
correction by false positives (the proportion of nPCR identified recrudescent
infections misclassified due to a variant in the day 0 and day R sample matghing b
chance) and false negatives (the proportion of NPCR reinfections miscthdsidi¢o
NPCR insensitivity).

Patients from Tororo, the high transmission area, had one to eight day 0
variants (median of four) and one to eight day R variants (median of three). There
were 40 variants in the day 0 sample when divided into 20 base pair bins with
variants ranging in size from 181 to 1611bp (we had added 1000bp to variants
amplified by primers specific to the FC27 allelic family to differatgithem from
variants amplified by primers specific to the IC3D7 allelic familyheie were 38
variants in the day R sample with sizes ranging from 212 to 1663bp.

Patients from Bobo-Dioulasso, the low transmission area, had one to eight day
0 variants (median of two) and one to six day R variants (median of two). There were
39 variants in the day 0 sample with sizes ranging from 195 to 1637bp. There were
25 variants in the day R sample with sizes ranging from 232 to 1565bp.

a. False positives

There was slightly less allelic diversity in Bobo-Dioulasso, however
individuals with single pre-treatment and post-treatment variants had velgrsimi
probabilities of a false positive (in Tororo the probability was 0.050 vs. 0.045 in
Bobo-Dioulasso). In patients with the sites’ median numbers of pre-treatment and

post-treatment variants (four and three respectively in Tororo; two and twibor B
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Dioulasso), the probability of a false positive was considerably higher in Tororo
(0.327) when compared to Bobo-Dioulasso (0.163).

We used the probability of a day 0 and day R variant matching by chance to
inform our distribution of false positives. We did this by running 10,000 simulations,
each with the number of participants in the study. Each participant was assigned X
day 0 and Y day R variants from the observed day 0 and day R distributions of allelic
variants (the X for each patient was randomly selected from the observdalitiatri
of the number of day 0 variants, the Y randomly selected from the distribution of the
number of day R variants) and tested for matches. We created a distributiore of thes
10000 probabilities and determined its mean and standard error. The mean
proportion of recrudescent infections that were false positives was 0.423 in Tororo
(standard error = 0.0007) and 0.193 in Bobo-Dioulasso (standard error = 0.0004).

b. False negatives

False negatives occur when a minority variant is undetected by the nPCR and
results in misclassification of a recrudescent infection as a reinfecttosn. T
proportion of variants likely to be false negatives was equal to’' (@2re 0.2 is the
probability that a variant was missed in day 0 and v is the median number of variants
in the site’s day R samples (Figure 5). The proportion of reinfections thafalsae
negatives was 0.008 in Tororo and 0.04 in Bobo-Dioulasso.

c. Adjusted number of recrudescent infections

There were 232 recurrent parasitemias among the 401 study participants from
Tororo. After genotypingnsp2, 145 were classified as recrudescent and 87 as

reinfection, corresponding to a cure rate of 63.8%. After conducting our untertai
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analysis, we determined that the 95% simulation interval of likely cure ratgsda
from 74.6 to 83.3% (Table 1).

Among the 827 study participants from Bobo-Dioulasso, there were 75
recurrent parasitemias. After genotypmgp2, 50 were classified as recrudescent
and 25 as reinfection, corresponding to a cure rate of 94.0%. After conducting our
uncertainty analysis, we determined that the 95% simulation interval of dket
rates ranged from 93.5 to 96.5% (Table 1).

We evaluated the effect of uncertainty due to outcome misclassification and
sampling error independently. The adjustment for uncertainty regarding outcome
misclassification was responsible for the upward shift of the cure rateg(imdy
greater efficacy) and sampling error increased the width of the siomulaterval

(Table 1).

E. Discussion

Our simulations demonstrated the effect of allelic diversity, transmnissi
intensity and MOI on the probability of a chance match between a day 0 and day R
variant. False positives were more common in areas with less diverséeparasi
populations and high transmission levels which would lead to underestimation of cure
rates in those areas. The most dramatic increase in the probability s pdaitive
was associated with increased MOI (Figure 6B).

The results of the proposed uncertainty analysis indicated false positives
(reinfections misclassified as recrudescences) were responsitile fogjority of

misclassification in both examples. Selecting variants at random from thevedbs
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distributions in Tororo resulted in false positives in more than one-third of the
recrudescent infections, while in Bobo-Dioulasso the probability that adesrence
was a false positive was less than 20%. The discrepancy is primarily theféisalt
lower median day 0 and day R MOI in Bobo-Dioulasso, as both areas had similar
levels of allelic diversity. In Tororo, false positives resulted in an uncgrtaterval
of the cure rate that indicated greater efficacy than the original [sbimate
calculated after genotypimgsp2.
False negatives (recrudescences misclassified as reinfectiangdas only
a small amount of misclassification for two reasons. First, multiple variartie
day R sample (observed in both study sites) decreased the probability of tlng type
misclassification exponentially (Figure 5). Our sensitivity analysiicated that
even with a 30% chance that a day 0 variant was not detected, the impact of the
observed number of variants in the day R samples resulted in a negligible effect of
false negatives (data not shown). As the chance a day O variant was not detected
increased past 40%, the impact began to increase more rapidly, however values
greater or equal to 30% are highly unlikely. Second, using PCR-correction there
were very few recurrences identified as reinfections; regardlese pfdbability that
a reinfection was truly a recrudescence, the contribution of this type of
misclassification to overall uncertainty would be low. However, in areas of low
transmission, such as Southeast Asia, where few variants are
present a day 0, false negatives may be an important source of misckamsi{e®)
The uncertainty analysis was based on PCR-correction of a single marker.

Though the use of multiple markers to perform PCR-correction (a common practice)
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may reduce the probability of false positives, it increases the probabilaisef f
negatives because the MMV/WHO guidelines state that a single markéresdless a
reinfection results in the recurrence being classified as such, regardiess of
classification of other markers genotyped. As additional information isajede
regarding the probability of false negatives and how it changes with the use of
multiple markers, it will be possible to refine this uncertainty analgsis t
accommodate multiple markers.

The impact of misclassification with regard to WHO efficacy thresholds
varied between the two sites. Although ultimately the range of likelyrates in
Tororo did not cross a WHO cut-point, it did demonstrate that misclassification plays
an important role. In Bobo-Dioulasso, the area of low transmission, a WHO cut-point
was included in the interval of likely cure rates (i.e. 93.5 to 96.5%). The relatively
few patients who had recurrent parasitemia in Bobo-Dioulasso resulted imowa nar
interval of cure rates with values similar to the PCR-corrected point éstima
however a drug whose cure rate calculated the traditional way would haveisteen |
below the level of efficacy required for new drugs and may in turn have been
rejected, when it should be eligible for consideration. Misclassificationghoul
always be considered when policy decisions are made based on estimdteaayf. ef

Our approach to generating the distribution of false positives is probably not
practical for use in all antimalarial efficacy studies. However, we@ptimistic that
it is possible to generate three reasonable “stock” distributions of fals$eg@msone
for high, medium, and low transmission areas. The uncertainty analysissitpeife

straightforward and can easily be carried out in Crystal Ball, avellainexpensive
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addition to Microsoft Excel, and perhaps eventually in a free web-based toobutlt is
hope that future molecular research will allow us to provide researchers with
distributions of false positives and false negatives, making this uncertaihgiana
available for wide use.

Misclassification of recurrent parasitemias resulting from PCRecbon has
been previously described. Adjustments of PCR-corrected trial results have been
made using the distribution of allelic variants to calculate the probabiliaise f
positives leading to incorrect classification of the recurrence as a recemde when
it is a reinfection.(5, 21, 28, 33) HTAs, which use radiolabeled probes to bind to host
amplicons, are more sensitive to minority variants and genetic variation than
nPCR(21, 30, 86, 87) and have been used to demonstrate that nPCR insensitivity can
result in recrudescent infections being misclassified as reinfecB8sI(o our
knowledge, simultaneous adjustment for both types of misclassification has not been
undertaken previously.

Traditional confidence intervals summarize only the effect of random error
and do not capture or reveal any uncertainty resulting from bias, including
misclassification or measurement error, in the study. Adjusting results f
misclassification was illustrated in previous work(a6y is grounded in methods
proposed to estimate intervals that are an extension of traditional confidesrgalgt
through use of simulations.(34) Some researchers are uncomfortable witplitie ex
assumptions about misclassification that are required for uncertaintgasaly

However, this approach is far preferable to assuming misclassificatiomréyent
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absent, an implicit assumption in the traditional estimation of a PCR-correced ¢
rate.

A point estimate of the cure rate, the traditional outcome measure in
antimalarial efficacy studies, is insufficient given the limitations @RFcorrection.
This insufficiency is even more important given the policy implications afaeffi
estimates. A 95% simulation interval for the cure rate, instead of an teshikedy to
be biased by outcome misclassification, may encourage more carekgrassit of a
treatment’s utility before policy decisions are made. This work providaspldte
for adjusting for outcome misclassification in antimalarial efficaagies that
addresses both types of misclassification and can be applied to any studhatdata t

include information on the variants present in the patient population.
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Figure 4. The ten negative binomial distributions of base pairs usedifo

simulations. These distributions all have the same mean (350 bp); the variance
increases from top to bottom. Each plot represents 100000 randomly assigned
number of base pairs selected from the distributieaxis: number of base pairs; y-

axis: frequency
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Table 2. Results from the uncertainty analysis: estimates of cure raté®om

studies in Bobo-Dioulasso, Burkina Faso, and Tororo, Uganda.

Tororo Bobo-
N =401 Dioulasso
N = 827

Number of recurrent infections 232 75
Number of recrudescent infections identified by

145 50
PCR-correction based on genotypingrep2
Cure rate (95% C) calculated by PCR-correction63.8 94.0
based on genotyping aisp2 (%) (59.0-68.4) (92.1-95.4)

95% S of likely cure rates adjusted for only for
77.4-80.5 94.9-95.1
uncertainty (%)

95% SI of likely cure rates generated by Monte
74.6 — 83.3 93.5-96.5
Carlo uncertainty analysis (%)

a. Cl = confidence interval; b. SI = simulationeintal; c. This interval does not take sampling ierro

into account.
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CHAPTER 4
HIV-1 PROTEASE INHIBITORS AND INCIDENT MALARIA: AN ANCILLARY

STUDY TO ACTG5208

A. Summary

HIV-1 protease inhibitors (HIV Pls) have antimalarial aciiomitro and in
murine models. The effect of HIV Pls on malaria has never been studied in humans.

We used data from ACTG5208 to compare incidence of clinical malaria in
HIV-infected adult women randomized to Pl-based antiretroviral therapy YART
women randomized to non-nucleoside reverse transcriptase inhibitor (NNR&t)-bas
ART. We used pooled logistic regression to calculate hazard ratios and 95%
confidence intervals. We conducted a stratified analysis and explored effesine
modification by seasonality and concomitant medication use.

ART assignment was not associated with the hazard of malaria (HR =
1.03; 95% CI: 0.73 - 1.44). This finding was similar in analyses stratified by tria
[Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44); Trial 2, HR = 0.94 (95% CI = 0.62-
1.43)]. There was no modification of the HR by seasonality or use of concomitant
medications.

Clinical malaria among HIV-infected individuals was not reduced by Rdebas

ART. This study is the first step in understanding whether HIV Pls will reduce



malaria and additional work focused on incidence of sub-clinical malaria andamala

in children may be warranted.

B. Introduction

HIV and malaria are highly co-prevalent in some regions of the world,
including Sub-Saharan Africa. These infectious agents interact biolggoah that
each may increase incidence of the atdgy A treatment efficacious against both
diseases or an antiretroviral that provided prophylaxis for malaria would offer a
tremendous advantage to the millions of HIV-infected people in areas where co-
infection is common.

The biological interaction between the two diseases is well documented
though incompletely understood. HIV infection increases incidence and worsens
clinical manifestations of malaria(43-4®5)alaria elevates HIV viral load(47, 48) and
decreases CD4 cour(&l) The data on drug interactions between antiretroviral
therapies (ART) and antimalarials are incomplete. However, theraarpkes of
harmful effects for the patient and alterations in the pharmacokinetics of the
treatments, reviewed in (54) The biological and pharmacological intaractiake a
treatment effective against both diseases highly desirable. Therdes&withat HIV
protease inhibitors (PIs) may fill that role.(58, 59, 61-63, 71)

Evidence that aspartic Pls (the group of PIs used in HIV ART) have
antimalarial effects oRlasmodium falciparum, the most virulent of the human
malaria-causing parasites, was first generated more than two degad88)More

recentin vitro studies have demonstrated that HIV PIs inhibit the growkh of
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falciparum, regardless of the parasites’ sensitivity to antimalarials(58a6€)

parasites exposed to sera taken from HIV-infected patients being tnetitédP\/r

had a 50 to 95% reduction in grow@2) In vivo evidence from murine models also
supports the antimalarial effect of HIV R&il, 63) Nathooet al. proposed that HIV

Pls may have an impact on patients with malaria independent of antiparésdis ef
after observingn vitro that treating cells with HIV Pls resulted in a marked reduction
in the expression of CD36, a human cell receptor associated with the binding of
malaria parasites.(72)

Protease inhibitors are not currently recommended for first-line ARThuse i
resource limited setting88) However the recent advent of heat stable LPV/r,
coupled with observed resistance to first-line non-nucleoside reverse ptaseri
inhibitor (NNRTI)-based ART (39nd resistance to nevirapine (NVP) associated
with use of single dose NVP for prevention of mother-to-child transmission of
HIV(89), makes it likely the use of Pls in the developing world will increase. If the
antimalarial effect of HIV Pls is also found to be present in humans, theim use i
regions with endemic malaria would be even more valuable.

The Adult AIDS Clinical Trials Group (AACTG) recently completed two
phase Il randomized clinical trials (ACTG5208) to compare the antiiedt@ctivity
of LPV/r-based ART to NNRTI-based ART in HIV-infected women who eithdr ha
been exposed to single dose NVP (Trial 1) or were treatment-naive)l rile
conducted an ancillary study using the AACTG data to measure the association

between LPV/r and clinical malaria in humans
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C. Methods
1. ACTG5208

The study consisted of two trials that followed participants for 48 weeks after
the final participant was randomized.(40) Trial 1 enrolled women who had received
single-dose NVP to prevent mother-to-child transmission of HIV (N=243)| Zri
enrolled women with no history of NVP exposure (N=500).(#0Oboth trials,
women were randomized 1:1 to receive either LPV/r-based ART or NNR&tdbas
ART. All participants received tenofovir DF and emtricitabine consistéht\World
Health Organization (WHO) guidelines.(52) Participants had regularlylsige
study visits (at weeks 2, 4, 8, 12, 16, 24 and then every 12 weeks) and could also

report to the study site for medical care as needed.

2. Study population
ACTG5208 enrolled women greater than 13 years of age (or older as dictated
by the study site IRB) with a CD4+ cell count < 200 cellsfroistained within 90
days prior to study entry. Enroliment criteria are described in dé&teWwberg40)
We used data from participants in both trials from all of the study sites wiadaigan
is endemic: Eldoret and Kericho, Kenya; Lilongwe, Malawi; Kampala, Ugjand

Lusaka, Zambia; and Harare, Zimbabwe.

3. Exposure and outcome

The main exposure was the therapeutic regimen to which the participant was

randomized (i.e., LPV/r-based ART or NNRTI-based ART). The primary outcome
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was clinical malaria. The trial staff classified this diagnosigrabable or confirmed.
Probable malaria required both a “compatible clinical syndrome” and use or
recommendation of antimalarial treatment.(4DYnfirmed malaria required both
“compatible clinical syndrome” and identification fasmodium sp. on a peripheral
blood smear.(40) We also included patients who were prescribed antimalarials
(amodiaquine, artemether/lumefantrine, artesunate, chloroquine phosphate,
dihydroartemisinin/piperaquine, mefloquine HCI, pyrimethamine/sulfadoxine,
qguinine dihydrochloride, quinine sulfate or sulphalene/pyrimethamine) without a

recorded diagnosis of malaria as probable cases.

4. Statistical analysis

We counted person-time at risk from treatment initiation until the date of
malaria, death, drop-out, or study completion. We used the hazard ratio (HR) as a
measure of association and the 95% confidence interval (Cl) as a measure of
precision. To obtain the hazard ratio we fit pooled logistic regression models,
which approximate Cox proportional hazards models(90) as long as the event
proportion in all discrete time periods is less than 10%.; in our study the largest
event proportion was 5.6%. Time-on-treatment was modeled using a 5-knot
restricted cubic spline (Harrel’'s DASPLINE(84)) to allow a flexibtlinear
association between time and malaria and all models included trial and s¢udy si
Because few patients had greater than 165 weeks of follow-up and there were no
incidences of malaria after that time, we administratively censorpdréicipants

still at risk at 165 weeks.
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We examined seasonality and concomitant medication use as possible
effect measure modifiers by the addition of product terms with exposure. Using
climate data from the National Oceanic and Atmospheric Administration and
evidence from the literature(78-82), we created a time-varying diclooi®m
variable denoting rainy season (indicating a higher risk of malaria tissiemn).

We also created a time-varying dichotomous variable indicating current use of
concomitant medications with antimalarial activity (azithromycin, clngean,
diaminodiphenylsulfone, doxycycline hydrochloride, doxycycline monohydrate or
trimethoprim/sulfamethoxazole). We examined the proportional hazards
assumption by a plot of the log cumulative hazard by time as well as the addition
of terms for the products of exposure and time (including spline coefficients). We
conducted a stratified analysis in which we explored the effect of LPVhiahIl

and Trial 2 separately. As a sensitivity analysis, we fit a model in whigh onl
confirmed malaria cases were considered to have experienced a ewEisotde.
Finally, we generated plots of survival by time for each exposure grllup.
analyses were conducted using SAS statistical software (version 9.2; SAS

Institute, Cary, NC).

D. Results

There were 145 women enrolled in Trial 1 from the relevant sites. They
were split almost evenly between treatment arms, were similarty agd had
comparable baseline CD4 counts and HIV viral loads (Table 3). Participants in

Trial 1 were followed for up to 144 weeks; the average duration of follow-up was
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63 weeks. In Trial 1, 48 participants (33%) were identified as having probable or
confirmed malaria at least once during follow-up (Table 4). Of those, 20 (42%)
participants had more than one episode of malaria.

There were 301 women enrolled in Trial 2 from the relevant sites (Table
3). There were seven more women randomized into the LPV/r-based ART arm
compared to the NNRTI-based ART arm. The average age in Trial 2 walyslight
higher than in Trial 1 but similar across treatment arms within Trial 2eliBas
CD4 counts and viral loads were similar although there was a slightly higher
proportion of patients with a baseline CD4 count < 50 celffinrthe LPV/r arm
(Table 1). Participants in Trial 2 were followed for up to 185 weeks; 23 were
administratively censored at 165 weeks. The average duration of follow-up was
88 weeks. In Trial 2, 89 participants (30%) were identified as having probable or
confirmed malaria at least once during follow-up (Table 4). Of those, 41 (46%)
participants had more than one episode of malaria.

The proportional hazards assumption was met. Neither seasonality nor
concomitant use of medications with antimalarial effect modified theteffec
treatment assignment on the hazard of malaria (results not shown). When we
adjusted for trial and site, treatment assignment was not associated with the
hazard of malaria (HR = 1.03; 95% CI: 0.73 - 1.44). A survival curve in which
trial and site are collapsed is presented in Figure 7. Trial and sitéespanies
are available in Appendix H.

When we considered only laboratory confirmed cases of malaria, the

results were very similar; there was no effect of treatment assigron the
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hazard of malaria (HR = 1.28; 95% CI: 0.58 - 2.82). This finding was similar in
analyses stratified by trial [Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44); Trial 2, HR

=0.94 (95% CI = 0.62-1.43)]. Trial-specific curves are presented in Figure 8.

E. Discussion

Laboratory evidence supports the antimalarial effect of HIV Pls. Theteff
has been shown in cultured parasites, both drug sensitive and drug resistant, and in
mice using two murine specieskifismodium. Skinner-Adamst al. reported that
ritonavir (RTV), one of the Pls used in ACTG5208, and another HIV PI inhibited
growth in parasiteB vitro whereas the antiretroviral NVP had no effect.(38ese
findings have been replicated and additional HIV Pls have demonstratedlanéima
effects at clinically relevant concentrations.(59, 62)

Studies of murine models of malaria also have demonstrated the antimalarial
effect of HIV Pls. After infection withP. chabaudi, mice exposed to LPV/r had
delayed onset of parasitemia by two days and a decrease in median padsi@mi
20% to 4%.(61) Evidence from a different murine moBejjodlii, suggested that
HIV Pls, including LVP, the other ACTG5208 PlI, inhibit growth of preerythrocytic-
stage parasites.(63)

Unlike these laboratory studies, we saw no evidence of an antimalarial effec
Patients randomized to LPV/r-based ART were as likely to develop madahase
randomized to receive NNRTI-based ART.

We propose two potential reasons that may help to explain why no effect was
observed. One possibility is that any antiparasitic action of the LPV/roccu

simultaneously with a reduction in the innate immune response to malaria resulting
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from exposure to LPV/r, resulting in a null net benefit. Natttad. proposed that
although the decrease in CD36 expression may be beneficial to the patient bécause
decreased cytoadherence of parasitized erythrocytes, it could alsct make i

difficult for a patient’s innate immune system to fightal ciparum infections

because of reduced phagocytosis which also resulted from the diminished erpressi
of CD36.(72)

Another possibility is that the antimalarial effects of Pls are highly
concentration-dependent. Timevitro studies of HIV PIs on malaria parasites strove
to explore the effect using clinically relevant concentrations, includinghroug
concentrations.(58, 59, 61, 62) However it is unknown if the parasites’ exposures to
drugs in the laboratory studies are truly equivalent to the fluctuating serum drug
concentrations one would anticipate in a patient on ART. Carefully controlled
laboratory experiments, isolated from the complex biological interactions among
drugs, host acquired and innate immunity, andvo parasite growth dynamics, may
simply not approximate the experience of HIV-infected patients on PIl-bd€&d A

Women assigned to NNRTI-based ART in Trial 1 were more likely to
experience virologic failure when compared to the women randomized to LPV/r-
based ART.(CROI 2009 abstract) This reduced control of HIV disease could have an
impact on our findings as increased incidence of clinical malaria has beeratess
with low CD4 counts in HIV-infected individuals.(43, 45)ad we observed a
protective effect of LPV/r, it would have been important to consider that it may
simply have resulted from the superior virologic response to that theragyof hhote

that in Trial 2, LPV/r-based ART and NNRTI-based ART had comparable vioologi
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efficacy (CROI 2010 abstract) and in our stratified analyses there wéfeciood
LPV/r on incidence of malaria in either trial.

Women who experienced virologic failure, as well as those with adverse
reactions to their assigned medications, were eligible to switch amtiratrtherapies
and receive the treatment available in the other study arm. Among the 346 women
included in this ancillary analysis, 50 (14%) did so; almost all moved from NNRTI-
based ART to LPV/r-based ART. Because it is a relatively small pegeeata
patients who switched treatments and because fewer than 10% of the malarissepisode
occurred after the participant had switched, we do not anticipate that this had a
considerable effect on our findings.

This work has several limitations primarily related to the outcome. The
sensitivity and specificity of clinical syndrome when used to diagnose malari
notoriously limited (Steve Taylor, personal communication, (91)). When an exposure
is dichotomous, nondifferential misclassification (we do not anticipate theigiypsit
and specificity would vary across treatment arm) usually drives ef$¢éiohates
towards the null. Itis possible that this partially explains our null results.
Additionally, the ACTG5208 study staff did not regularly collect blood smears s par
of the protocol; instead they collected them when testing for malaria waspappe
based on the site’s standard of care guidelines. The lack of systemabdaltyed
blood smears and the absence of information with regard to blood smears that were
negative, made slide-positivity an unacceptable primary outcome.

This work is only the first step in understanding the antimalarial effects of

HIV Pls in humans.“Probable” malaria without laboratory confirmation is an
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imperfect outcome. However, the comparable effect estimates generatedddg m
that included both probable and confirmed cases, and the sensitivity analysis in which
only confirmed cases were considered to have malaria strengthen our findings.
The use of biological markers will allow future investigations into the impact
of HIV PIs on sub-clinical malaria. Further research is also warrantdeeaifects
of these drugs in children, who are at greater risk of clinical maladditionally,
laboratory evidence suggests that co-administering HIV Pls with chloroquine or
mefloquine may enhance the antimalarial activity of the drugs even itargsis
parasites; perhaps the utility of HIV Pls as antimalarials wsllilterom co-
administration with existing therapeutics. The optimism about HIV Pls having an
antimalarial effect in HIV-infected individuals may need to be temperedhéré ts

still much to be learned.
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Table 3. Participants in ACTG5208 by trial and treatment group from sites

with endemic malaria.

Age, years

Site, n
Eldoret, Kenya
Kericho, Kenya
Lilongwe, Malawi
Kampala, Uganda
Lusaka, Zambia
Harare, Zimbabwe

Baseline CD4,

mean cells/mit SO
Baseline CD4 <50, n(%)
Baseline HIV-1 RNA,

median copies/nfL

Trial 1 Trial 2
(n = 145) (n=301)
LPV/F® NPV® LPV/r NPV®
(n=72) (n=73) (n=154) (n=147)
30.5 30.7 35.8 34.8
9 8 25 22
14 13 23 23
10 14 22 22
9 8 21 22
12 12 21 19
18 18 42 39
126 + 57 134 + 62 123 +78 127 + 81
7(9.7) 10 (13.7) 27 (17.5) 20 (13.6)
157,453 161,630 131,175 112,401

®Lopinavir boosted with ritonavir-based antiretroviral therapy.

®Nevirapine—based antiretroviral therapy.

°CD4-positive cells per min “Log HIV-1 viral load.



Table 4. Clinical malaria among participants of ACTG5208.

Trial 1 Trial 2
n =145 n =301
LPV/r (n) NVP (n) LPV/r (n) NVP (n)
All malaria, n
Eldoret, Kenya 5 5 5 8
Kericho, Kenya 8 6 12 10
Lilongwe, Malawi 7 5 7 8
Kampala, Uganda 3 0 6 9
Lusaka, Zambia 3 6 12 8
Harare, Zimbabwe 0 0 2 2
Total 26 22 44 45
Confirmed malaria, n 4 3 10 8
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CHAPTER 5

DISCUSSION

A. Factors influencing PCR-corrected cure rates in antimalarial #icacy trials
1. Summary of findings
We identified factors that influence outcome misclassification and used them
to develop a Monte Carlo uncertainty analysis; our findings suggested that false
positives (incorrectly identified treatment failures) are common in alatirah
efficacy studies and result in underestimates of treatment efficacycoldeicted an
intuition-building exercise which relied exclusively on simulated data. As
anticipated, holding transmission intensity and multiplicity of infection cahsta
increased allelic diversity reduced the probability of the same variants bleserved
before and after treatment by chance (a false positive). Conversely ghalldirc
diversity constant, increased transmission intensity and multiplicity aftiafe
increased that probability. From our simulations, it was clear that we would need to
consider these factors in the development of our Monte Carlo uncertainty sinalysi
During the development of the Monte Carlo uncertainty analysis, we relied
heavily on statistical methods employed by Juated.(36) and probability-based
corrections of molecular data used by malariologists(5, 21, 28, 33). Having identifie
important factors associated with outcome misclassification in our sionlat

exercises and used the literature to estimate the likely role of PCRHivsgite



minority variants, we worked to design a practical approach that could be useful to
clinicians and others associated with antimalarial treatment trials.

The model we created used a straight-forward approach, with some technical
details: (1) remove the proportion of infections believed to be false positiveshieom t
pool of study participants classified as treatment failures by PCR&tjuges a
distribution of the probability of false positives); (2) move the proportion of
infections believed to be false negatives from the pool of patients classified as
reinfections into the pool of treatment failures (this requires an estimtte of
probability of false negatives); (3) use the adjusted pool of treatment fadures t
calculate a new cure rate; (4) use a nonparametric bootstrap stepredeyesnedom
error around the cure rate; (5) repeat this process 100,000 times and generate a 95%
simulation interval of likely cure rates.

When we conducted the uncertainty analysis using data from two separate
trials conducted in low and high transmission areas, we discovered that the
probability of false positives was quite high in the high transmission site (38%0) a
lower but still unexpectedly high in the low transmission site (16%). In both thiees
likely impact of false negatives appeared negligible. The initial agtiof the cure
rate in the high transmission area was 63.8%; after we used our uncertainsisanaly
to adjust the estimate for outcome misclassification, the 95% simulatiovaindé
the cure rate was 74.6 to 83.3%. The initial estimate of the cure rate in the low
transmission area was 94.0%; after the uncertainty adjustment the 95%isimulat

interval of the cure rate was 93.5 to 96.5%.
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2. Findings in the context of current literature

It is not uncommon in the literature to find mention of the possibility of
outcome misclassification, especially the erroneous classification ahfestions as
treatment failures, but it is almost always dismissed as unimportant. dialscthat
used data on the distribution of allelic variants in the parasite population to adjust
estimates of treatment efficacy beyond those generated by PCR-cortente
shown that using this additional source of information to assess the probability of
false positives likely improves estimates of the cure rate.(5, 21, 28, 33)

This project builds on those studies by incorporating not only information
related to the probability of false positives but also uses data on PCR-ingg (8B,
31) to estimate the impact of false negatives. To our knowledge, there is only one
paper that has addressed the impact of false negatives and they estiatated th
majority of “reinfections” were truly treatment failures.(29) Thiguste different
then our findings, in which only a small percentage (1 to 4%) of patients were likely
misclassified in that way. However, their study population was not at risk for
reinfection due to hospitalization throughout follow-up or very low local transonissi

intensity; this makes their results not generalizable to the majorityadirteat trials.

3. Strengths and limitations

a. Strengths

The uncertainty analysis we developed is straight-forward and, if stedy sit
appropriate distributions of false positives and negatives are provided, can be

executed with little statistical expertise or knowledege of statistodaware.
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The ability to exploit characteristics of the study data themselves alsesm
this analysis a desirable option. This allows for the inclusion of information we know
to be important to misclassification, namely the distribution of geneticntargand
the MOI. Additionally, explicit assumptions regarding the degree of nssiilzation
is unappealing to some researchers. By tailoring these assumptions tmlyhstst
and incorporating data that have been shown to be relevant to outcome
misclassification, we demonstrate that these estimates of miScktgsn are not
solely the results of “stastistical hand-waving.”

b. Limitations

Malaria biology is complex. Human host immunity, genetic diversity of
parasites within a single infectious bite, and sequestration and synchrohicity
parasites, are only a few of the factors at work in the complicated dynasfmics
malaria infection. Our analysis cannot address many of those factors andsequir
number of assumptions.

One particular component of the analysis which we believe could be improved
upon as additional data are generated is the role of false negatives. There is no
relevant evidence to demonstrate their impact on study populations at risk for
reinfection. Using information on the insensitivity of nPCR to minority variants and
relying on the WHO/MMYV guidelines on classifying a recurrent infecismew, we
were able to estimate what we hope is a reasonable approximation, but asadditi
molecular data become available that are generated using very semsitprecise
techniques to identify all variants present in a host it is likely an updated

approximation would be closer to the truth.
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Our objective was to develop a tool that would be useful for clinicians and
clinical trial specialists and would not require a great deal of statistpaistication.
Once the distributions of false positives and negatives have been developed, the
actual adjustments we made are uncomplicated. However, the generation of the
distributions of false positives required a significant amount of programming in
MATLAB R2008a (Natick, MA). The programming would not be difficult to anyone
accustomed to statistical software but it may be a disincentive to thibseiinthe

inclination.

4. Implications

This project demonstrated that false positives may indeed have a large effect
on estimates of the cure rate and that as currently calculated, PCRembo@e rates
may underestimate drug efficacy.

If reliable estimates of the distributions of false positives and negatweke
generated for a range of transmission areas, this project lays the grokifoivibe
development of a web-based tool to be used by antimalarial efficacyctessar
Members of our laboratory are in the process of developing highly sensitive
molecular techniques to determine which variants are in a patient’s samaatleey
can then compare those findings with the variants identified by PCR. Thesealdata w
allow us to generate transmission intensity-specific probabilitiess# fedgatives
and we are also considering developing additional transmission intensitffespec
distributions of false positives. We would then collaborate with programmers to

generate a web-based tool that would allow researchers to enter thenestults/
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based on PCR-correction and estimates of transmission intensity for thgisis¢éud
and have the uncertainty analysis run for them.

Whether use of this analysis is adopted will rely on whether trialists and other
researchers believe that it makes sense to incorporate this type ofi@officc
outcome misclassification.

If nothing else, this work demonstrates that ignoring outcome
misclassification, as is so commonly done in this area of study, results in erroneous
findings. This makes the approach of using stringent cutpoints based on PCR-
corrected cure rates to determine what is a suitable antimalartaiérggolicy

undesirable.

B. The effect of HIV-1 protease inhibitors on incidence of malaria
1. Summary of findings.

There was no association between receipt of Pl-based ART and incidence of
malaria in this study. We used pooled logitic regression to conduct a survival
analysis comparing the incidence of clinical malaria between Hi\¢tefiewomen
assigned to LPV/r-based ART and women assigned to NNRTI-based ART. We saw
no evidence of an effect when we considered both confirmed and probable cases (HR
=1.03; 95% CI: 0.73 - 1.44), nor in our sensitivity analysis in which only confirmed
cases were considered to have malaria (HR = 1.28; 95% CI: 0.58 - 2.82). In analyses
stratified by trial, we also saw no effect [Trial 1, HR = 1.37 (95% CI = 0.76 - 2.44);

Trial 2, HR = 0.94 (95% CI = 0.62-1.43)].
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We assessed possible modification of the hazard ratio by seasonality and use

of concomitant medications but did not observe such modification.

2. Findings in the context of current literature

This is the first time the effect of HIV Pls on incidence of malaria in humans
has been studied. Our finding of no effect is inconsistent with laboratory refsults
cultured parasites, both drug sensitive and drug resistant, and in mice using two
murine species d?lasmodium, HIV Pls inhibit parasite growth.(58, 59, 61-63)
Skinner-Adamst al. first reported that RTV, one of the Pls used in ACTG5208, as
well as another HIV Pl inhibited growth in parasites(58); these findings hame bee
replicated and additional HIV PlIs have demonstrated antimalarials#ectinically
relevant concentrations.(59, 62)

Animal studies have also demonstrated the antimalarial effect of HIV Pls
After infection withP. chabaudi, mice exposed to LPV/r had delayed onset of
parasitemia by two days and a decrease in median parasitemia from 20%6tb) 4%.(
Evidence from a different murine model,yoedlii, suggested that HIV Pls, including
LPV, the other ACTG5208 PI, inhibit growth of preerythrocytic-stage pasa&&)

There is, however, one article to our knowledge that may be consistent with
our findings. Nathoet al. proposed that although the decrease in CD36 expression
associated with exposure to LPWrvitro may be beneficial to the patient because of
decreased cytoadherence of parasitized erythrocytes, it could alsct make i
difficult for a patient’s innate immune system to fightal ciparum infections

because of reduced phagocytosis which also resulted from the diminished erpressi
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(72) Perhaps antiparasitic action of the LPV/r occurs simultaneouslywaithuction

in the innate immune response to malaria, resulting in a null net benefit.

3. Strengths and limitations

a. Strengths

This was the first time the effect of HIV Pls on malaria in humans has been
studied. We had the benefit of longitudenal data from two randomized controlled
trials conducted by the Adult AIDS Clinical Trials Group with follow-up times
exceeding two years. The use of intent-to-treat analysis allowed ssetgsahe
impact of LPV/r therapy without confounding by other factors; randomized
experiments are generally regarded as the gold standard fortexjimnaausal effect.
Additionally, the drug used in the comparison group (NVP) has previously
demonstrated no antimalarial action (Tina 2004 JID, Redmond AIDS 2007) easing
interpretation of our results.

b. Limitations

Clinical malaria is not an ideal outcome. The sensitivity and specificity of
clinical syndrome when used to diagnose malaria are notoriously li(aitg¢bSteve
Taylor, personal communication) The ACTG5208 study staff did not regularly
collect blood smears as part of the protocol; instead they collected them wiireg te
for malaria was appropriate based on the site’s standard of care guid@lneekack
of systematically collected blood smears and the absence of informatioregatrd

to negative blood smears, made slide-positivity an unacceptable primary outcome.
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As a part of our future research plan, we hope to explore sub-clinical malaria
in the cohort of patients we used in this ancillary analysis. This will reguire
serological definition of malaria. Initially, antigen testing (speaify testing for
HRP2) was considered, though we now believe the serum samples that are available
to us from the ACTG5208 will not be appropriate. Our laboratory collaborators are
currently working on looking at antibody titers over time to identify acutamaal
infections and using rapid diagnostic test kits; in the future PCR may also be
considered. In addition to providing information on sub-clinical disease, these types
of data likely have greater sensitivity and specificity than clinical ynd and may
improve the reliability of our findings.

An additional limitation stems from a potential causal intermediate. The
degree to which an individual is immunocompromized due to HIV, which is
associated with ART, may affect the risk of clinical malaria.(43, 45). \Wome
assigned to NNRTI-based therapy in Trial 1 were more likely to expenemdegic
failure when compared to women randomized to LPV/r-based therapy.(CROI 2009
abstract) This reduced control of HIV disease could have an impact on our findings
as immune status could be in intermediate on the hypothesized causal pathway
between Pl-based ART and incidence of malaria.

Finally, our study used a valid intent-to-treat analysis; though this iotte g
standard statistically, information from an appropriately executed paveoi
analysis may have provided some additional information. Among the 346 women
included in this ancillary analysis, 50 (14%) switched treatments due to virologic

failure or toxicity associated with the regimen to which she was randomized.
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Because a relatively small percentage of patients switched treatamehbecause
fewer then 10% of the malaria episodes occurred after the participant ibatesyv
we anticipate that in this study, the difference between findings fromt-ttereat

and per-protocol analyses may have been modest.

4. Implications

This work is only the first step in understanding what, if any, the effect of PI-
based therapy has on incidence of malaria in people infected with HIV. We feel
confidant in our findings which were generated from longitudenal, clinieds wata.
Our finding of no effect was similar across trials and was the same when we
conducted a sensitivity analysis in which only laboratory-confirmed cases w
considered to have experienced malaria.

Even given our confidence in our results, we know that there are still many
unanswered questions and do not conclude that looking at the effect of HIV Pls on
malaria in humans is not still worthwhile. Information on subclinical diseasaghr
the use of biomarkers will provide additional insight, as will looking at the clincal
effect in children, who are at greater risk for malaria.

One important implication is that our findings suggest that there may be an
insufficient overlap between results obtained in the laboratory and thosetgdnera

vivo to warrant additional laboratory studies that employ the same techniques.

C. Conclusions
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Malaria remains a significant cause of morbidity and mortality. This
dissertation explored two specific challenges to the successful érgtadfrmalaria,
two small attempts to address what remains a complex and important problem. We
developed a novel way to estimate treatment efficacy and discoveredVhatH|

may not have antimalarial action in HIV-infected patients at risk of c=tioh.
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APPENDIX A: Human Subjects
The proposed research uses only simulated and de-identified data and is
exempt from Institutional Review Board (IRB) review. A decision to tHescefor

Aim 2 was issued by the UNC-Chapel Hill School of Public Health (Public kealt

IRB # 09-0221, 2/6/2009).
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APPENDIX B: Greenhouset al.’s calculation of Raichand their true recrudescence
formulas(5)

[Text and formulas adapted or taken directly from Greenhetteg5)]

Pmatcn(the estimated probabilitf a match occurring by chance) was calculated as
follows: Therelative probability of all possible combinations of the number of alleles
in the post-treatment sampias estimated by multiplying together the frequesfcy
each of the component alleles in the combination. Each possiblanation was

then comparetb the alleles present in the pre-treatment satopdetermine if there
was at least one allelic matdPyaicnWas calculated by takirtge sum of the
probabilities of combinations that matched phetreatment sample and dividing by
the sum of the probabilitied all combinations.

They estimated the number of true recrudescent infections by comthiaing
following two equations.

B 1)

Ner=Nrecru T Mnew M match

wheren,, is the number of observed recrudescent infectipgsg,is the estimated
number of true recrudescent infectioasdn,ey is the estimated number of true new
infections, and

Mrp =M new TMrecru (2)

wheren,, is the number of recurrent-parasitesaanples. By solving equati@for

Nhews SUDStituting this intequationl, and solving fonec, We arrive at equatios

'”r.\:'_Pmafch'”rp
1 _Pnjarch

Mrecru
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APPENDIX C: Formulas from Kwielet al.(21)

Participant-specific probability of a chance-match in indeterminaseeégs with a

single pre- and post-treatment shared badd-=(1 — y}J where,

Y is the prevalence of the shared band and X is the number of variants in the

recurrent parasitemia sample

Mean of participant-specific probabilities = Reinf
Number of indeterminate infections = Ind
Number of infections classified as recrudescent by genotyping = Recru

Estimated failure rate = [((1-Reinf) x Ind) + Recru]/Total number digpants
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APPENDIX D: MATLAB ® code adapted from code provided by Dr. Christina
Burch, UNC — Chapel Hill.

param=[];

false_pos_rate=[];

fori=1:10

reps = 10000;

argh = (i)*ones(reps,1);

pea = (argh/10);

init_infectl = nbinrnd(argh,pea);
re_infectl = nbinrnd(argh,pea);
param(i)=i;

testl = init_infectl == re_infectl,

false_pos_single(i) = sum(testl)/reps;
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APPENDIX E: Format of the person-period dataset for discrete-time survival
analysis

Study ID | Treatment Time Period gD | Djy; D2y Dye Malaria
1 1 8 1 0 0 0 0
1 1 12 0 1 0 0 0
1 1 24 0 0 1 0 1
2 0 8 1 0 0 0 1
3 1 8 1 0 0 0 0
3 1 12 0 1 0 0 1
4 0 8 1 0 0 0 0
4 0 12 0 1 0 0 0
4 0 24 0 0 1 0 0
4 0 48 0 0 0 1 0

Treatment: LPV/r-based therapy = 1; NNRTI-based therapy = 0
Time period: number of weeks on study
D;: Time period indicator variables

Malaria: Occurrence = 1; Non-occurrence =0
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APPENDIX F: Discrete-time survival analysis: Modeling the relationship between
the population discrete-time hazard function and study treatment

logit hazarg = [0gDg + 012D12 + 024D24 + 04gDag] + B1(Treatment)
agDg = baseline logit hazard function at week 8

a12D12=Dbaseline logit hazard function at week 12

az4D24=Dbaseline logit hazard function at week 24

a4gD4g = baseline logit hazard function at week 48

B1 = slope parameter reflecting the effect of LPV/r-based therappaeu to
NNRTI-based therapy on malaria
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APPENDIX G. Numerical example of the adjustment of recrudescent infections

Subjects in trial, N = 100

Number of subjects with recrudescent infections as classified by PCéttoanr= 15
Number of subjects with reinfections as classified by PCR-correction = 30

Y = Value sampled from distribution of the probabilities of false positives (in this
example, Y =0.17)

Z = Value sampled from distribution of the probabilities of false negativeki¢in t

example, Z = 0.25)

Adjusted number of recrudescent infections = 15 — (15 x 0.17) + (30 x .25)
=15-255+7.5=19.95
PCR-corrected cure rate = 1 — (15/100) = 0.85 or 85%

Cure rate adjusted for outcome misclassification = 1 — (19.95/100) = .8005 or 80.05%

APPENDIX H. Site and trial-specific survival curves for ACTG5208.
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Figure 1. Survival curves for ACTG5208 participants in Eldoret, Kenya.

(A) Trial 1. (B) Trial 2.
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Figure 2. Survival curves for ACTG5208 participants in Kericho, Kenya.

(A) Trial 1. (B) Trial 2.

98




180

A 109 . B 109 .
Nevirapine (NVP) Nevirapine (NVP)
¢ e e | opinavir/ritonavir (LPV/r) 4 ¢ e e | opinavir/ritonavir (LPV/r)
091 - 094"
£ £ .
§ 084 § 0.8 - :
o o .
[a o
S o074 - S 071 ’
c b .
3 3
»n »n
064 - 0.6
0'5-||||||||||||| 0'5-|||||||||||||
0O 30 60 90 10 150 180 0O 30 60 90 10 150
Weeks since start of treatment Weeks since start of treatment

Figure 3. Survival curves for ACTG5208 participants in Lilongwe, Malawi.

(A) Trial 1. (B) Trial 2.
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Figure 4. Survival curves for ACTG5208 participants in Kampala, Uganda.
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Figure 5. Survival curves for ACTG5208 participants in Lusaka, Zambia.

(A) Trial 1. (B) Trial 2
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Figure 6. Survival curves for ACTG5208 participants in Harare, Zimbabwe.

(A) Trial 2. No participants experienced malaria in trial 1.
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