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ABSTRACT 
 

Jennifer Rebeles:  Influenza-Specific T Cell Memory:  Influenza of Obesity, Weight Loss,  
Weight Gain 

(Under the direction of Melinda A. Beck) 
 

 

    

Obesity is a global epidemic, with 10% of men and 14% of women obese worldwide.  

Obesity is a known risk factor for increased complications and death from infection with influenza 

virus, and impairs the T cell response to both influenza infection and vaccination.  As obesity is 

primarily a metabolic disorder, and immune cell function is dictated by metabolism of the immune 

cell, the effect of obesity on memory T cell metabolism following a secondary influenza infection 

was investigated. This dissertation addressed whether the metabolic environment at the time of 

memory T cell generation or at the time of re-challenge would influence T cell metabolism and 

function.  

C57BL/6J high fat diet-induced obese mice were infected with X-31 influenza virus to 

generate memory T cells, then switched to a low-fat diet to induce weight loss. Following weight 

loss and normalized fasting glucose levels, mice were re-infected with influenza Puerto Rico/8/34 

(PR8) to activate the memory T cells in a newly generated lean state. Conversely, lean mice were 

infected with X-31 to generate memory T cells followed by a diet switch to a high fat diet to induce 

obesity. Following weight gain and elevated fasting glucose levels, mice were re-exposed to PR8.  

Compared with mice that were always lean, mice that were obese for both primary and secondary 

influenza infections had impaired T cell metabolism and function.  Mice that lost weight 

maintained a metabolic phenotype that paralleled the always obese metabolic phenotype along 

with dysregulated frequencies of central memory, effector memory, and tissue resident memory T 

cell populations and decreased function of influenza-specific memory T cell subsets. Mice that 
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had gained weight, and were previously lean, maintained a metabolic profile similar to the mice 

that were always lean, although also had T cell subset alterations and diminished function.  

Altogether, this data demonstrates that metabolic environment present at the time of 

memory T cell generation and at time of secondary immune challenge both impact T cell function.  

For the first time, obesity has been shown to alter T cell metabolism, and we demonstrate that 

weight loss will not restore T cell metabolism or function.  
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CHAPTER I:  OVERVIEW AND SPECIFIC AIMS 

 

Overview 

Over the past few decades, obesity has emerged as a worldwide epidemic and presents 

an increased risk for a constellation of other diseases including metabolic syndrome. Of particular 

note, obesity is recognized as an independent risk factor for increased morbidity and mortality 

from infection with influenza virus. Each year, 3,000 to 50,000 people in the US die from infection 

with influenza, and the approximate 500 million individuals worldwide who are obese are at an 

increased risk. It is imperative that we understand how obesity contributes to a poor outcome 

following influenza infection in order to devise strategies to limit morbidity and mortality in this 

expanding at-risk population. 

Using a well-defined mouse model of both obesity and influenza infection, we have 

shown that obesity drives a dysfunctional immune response to influenza challenge. Our lab has 

demonstrated that following infection with influenza, diet induced obese mice have increased 

morbidity and mortality, decreased lung effector memory CD8+ T cells, and impaired activation 

and function of memory T cells to a secondary challenge with influenza virus. Previously, all of 

our infection studies have been carried out in obese mice. What is missing is whether or not 

weight loss can restore immune function or if weight gain, after memory T cells have been 

generated, inhibits their function. Can weight loss restore the function of memory T cells that were 

generated during the obese state?  Do memory T cells, generated in a lean state, fail to function 

in an obese state? 

The memory T cell response is critical for protection against subsequent infection and if 

infection occurs, to rapidly clear the pathogen.  Memory T cells can more rapidly initiate effector 

functions to kill infected cells, secrete inflammatory cytokines, or provide help to other immune 
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cells for pathogen clearance. Effector T cells give rise to the memory T cell phenotype, but the 

differentiation pathways of these cells are not clearly defined, and even less is known about 

obesity and its role in the differentiation and maintenance of memory T cells. While effector T 

cells can live for days or weeks, memory T cells can last for months, years, or a lifetime. The 

reprogramming of a naïve T cell to become an effector cell and then a memory cell involves 

changes in chromatin structure and transcription factors to drive the cell to a specific fate. What 

has not been thoroughly investigated is whether obesity, at the time of reprogramming, 

determines the memory T cell fate indefinitely.  

Nutrient conditions can influence the fate of T cell immune responses. Naïve CD4+ and 

CD8+ T cells utilize oxidation of glucose and fatty acids through beta-oxidation and the oxidative 

phosphorylation pathways. Upon exposure to antigen to activate these cells to an effector T cell 

phenotype, the metabolic demands increase in order to support rapid proliferation and effector 

function to clear the pathogen. Activation of CD4+ and CD8+ T cells results in a metabolic switch 

to utilize more glycolysis and glutaminolysis, and less oxidative phosphorylation. After the 

pathogen has been cleared and during the T cell contraction phase, the metabolic needs change 

to differentiate the effector cell to a long-lasting memory cell, which utilizes the oxidative 

phosphorylation pathway. Nutrient conditions in the obese state favor high serum glucose and 

fatty acids. Normal physiologic conditions utilize these metabolic fuels to differentiate T cell fate, 

but abnormal levels present in obesity may affect the ability of T cells to differentiate into the 

appropriate phenotype when activated. Furthermore, insulin resistance contributes to impaired 

glucose uptake in T cells. It is essential to understand if metabolic dysfunction in obesity 

contributes to the altered T cell metabolism and immune response during infection, and if these 

processes are reversed upon weight loss.  The overarching hypothesis of this proposal is that the 

obese environment reprograms T cell metabolism, leading to impaired function, which can be 

revered with weight loss. 
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Specific AIMS 

 

AIM 1: Determine if obesity impairs the metabolism of resting and activated memory T 

cells following a secondary influenza infection?  

 

Hypothesis: Compared to lean mice, the metabolism of memory T cells from obese mice will be 

more active at rest, thereby limiting their metabolic potential when activated.   

 

AIM 2: Determine if weight loss restores T cell metabolism and function to secondary 

influenza infection.  

 

Hypothesis: Weight loss will restore T cell metabolism to a “lean” metabolism and improve 

function of memory T cells, impairing the response to a secondary influenza infection. 

 

AIM 3: Determine if weight gain will induce metabolic dysfunction and impair the function 

of memory T cells generated in a lean state.  

 

Hypothesis: The obese environment will alter the metabolism and function of the formally lean T 

cells.  
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CHAPTER II:  BACKGROUND AND SIGNIFICANCE 

 

Obesity introduction 

Over the past 25 years, obesity, defined as a body mass index (BMI) over 30 (weight in 

kilograms divided by the square of height in meters) [1] has emerged as a worldwide growing 

public health concern, and continues to remain a contributing factor for chronic disease [2, 3]. The 

United States is ranked 18th in the world with the highest percentage of obesity in the adult 

population [4]. Within the United States alone, the rise of obesity has increased dramatically over 

[5]several decades. In 1985, no state had obesity rates higher than 15%.  Currently, there are no 

states that remain under 20% with the majority of states above 25% [6].  The prevalence of 

obesity in the adult population from 2011-2014 was 36.5% [1], and childhood obesity at 17% [7] is 

paralleling the adult trends and continuing to rise as well. Obesity as a chronic condition can 

manifest into more serious, costly, and disabling conditions. However, obesity is also one of the 

top modifiable and preventable disease conditions.  

Obesity is caused by excess calories consumed and not expended through activity, 

resulting in lipid storage of the excess calories.  Several factors such as energy imbalance, 

genetics, endocrine, and medical conditions may be contributing co-morbidities including obesity 

[8]. Obesity in itself can be a debilitating disease, and is also a risk factor for several diseases 

such as cardiovascular disease, diabetes, musculoskeletal disease, hypertension, asthma, 

osteoarthritis, chronic obstructive pulmonary disease and some cancers [1, 9, 10].  In addition to 

contributing to chronic disease, obesity may overtake tobacco as the leading preventable cause 

of cancer risk [11].  Overweight (BMI 25-29.9) and obese are correlated with increased cancer 

incidence in men and women, with 28,000 and 72,000 reported in 2012, respectively [12].  While 

obesity has been associated with increasing risk for chronic diseases, it has also been noted as 
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an independent risk factor for increased risk of respiratory hospitalizations during influenza 

season [13], along with increased morbidity and mortality to the 2009 pandemic influenza A H1N1 

infection [14].     

 

Metabolic syndrome 

Obesity often leads to the development of metabolic syndrome, a combination of risk 

factors that contribute to cardiovascular disease or the onset of type II diabetes.  These risk 

factors include glucose intolerance, central adiposity, dyslipidemia, decreased high density 

lipoprotein and hypertension [15].  There have been many suggestions for defining metabolic 

syndrome, which has led to confusion and inconsistencies in collecting data [16], therefore the 

International Diabetes Federation proposed a world-wide definition to classify metabolic 

syndrome as having central obesity and 2 or more of the following factors:  raised triglycerides, 

reduced high density lipoprotein (HDL)-cholesterol, raised blood pressure, and raised fasting 

plasma glucose [16-18].             

There has been some debate as to whether all obesity overlaps with metabolic 

syndrome, as there are metabolically healthy obese individuals that have normal insulin  and 

glucose levels [19], which deviates from the metabolically unhealthy obese phenotype.  To date, 

there is no consensus on a definition of a metabolically healthy phenotype, however, most studies 

suggest that the absence of insulin resistance, lipid disorders and hypertension would constitute 

this phenotype [15]. While the term metabolically “healthy” obese is emerging in the literature, 

epidemiological studies suggest the need for stricter parameters and guidelines assessed to 

make such a definition.  A systematic review on 20 studies in the literature and the association 

with cardiovascular disease (CVD) were assessed.  They found a slight increase in 

cardiovascular risk of metabolically healthy obese adults compared to healthy weight adults, but it 

was difficult to assess whether this was a true risk or due to differences in methodology from the 

studies evaluated [20].  It is not currently known whether metabolically healthy adults have 

decreased risk of CVD compared to metabolically unhealthy adults, so more studies are needed.        
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Conversely, other studies suggest that the metabolically unhealthy obese phenotype can 

be reversed through lifestyle modifications or surgical means [21-23].  Lifestyle modifications with 

weight loss have decreased insulin resistance [24], prevented the onset of type II diabetes with 

impaired glucose tolerance [25, 26] and improved hypertension [27] and lipid values [28, 29].  

Therefore, inducing weight loss by physical means improves metabolic health parameters.  

Bariatric surgery has been used as an intervention tool to induce weight loss, decreasing long-

term morbidity and mortality compared to obese participants that did not undergo surgery [30-33], 

and decreased the development of new obese related conditions [30, 34].  Thus, weight loss 

through lifestyle modifications or surgical means improves metabolic health in previously obese 

adults.         

 

Obesity and inflammation 

The complications of obesity do not arise from a single tissue, but an orchestrated 

crosstalk among various tissues that results in a state of low-grade, chronic inflammation.  While 

the mechanisms are not fully understood, it is suggested that liver, adipose, muscle, pancreas, 

brain, and gut [35-37] all contribute to obesity-induced chronic inflammation through various 

mechanisms [38].  This type of chronic inflammation differs from the normal physiological 

response of acute inflammation that is initiated by responding to an invading pathogen, or to an 

injury that requires the immune system to repair and restore the body to homeostasis.  Acute 

inflammation is characterized by redness, increased heat, swelling, pain, and loss of function [39], 

whereas obesity-induced chronic inflammation results in dysregulated cytokine production, acute 

phase reactants, and increased activation of inflammatory signaling cascades [40, 41].  

 Adipose tissue is an active, metabolic, endocrine organ with a central role in in regulating 

energy homeostasis.  Pre-adipocytes, adipocytes, endothelial cells, fibroblasts, stem cells, and 

many immune cell subsets such as CD4+, CD8+, and regulatory T cells (Tregs), B cells, 

macrophages, mast cells, eosinophils, and neutrophils make up the cellular environment of 

adipose tissue [42].  While adipocytes can expand and increase the volume of adipose tissue, 
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adipose tissue primarily consists of stromal vascular cells in which ~65% are leukocytes [43].  As 

adipocytes increase in volume (hypertrophy), they accumulate in subcutaneous (depots under the 

skin) or visceral locations (depots surrounding the organs).  The accumulation of adipocytes in 

visceral depots increases risk for developing type 2 diabetes and cardiovascular disease [44-46]. 

Adipocytes secrete leptin, adiponectin, resistin, other adipokines which regulate energy 

homeostasis and pro-inflammatory cytokines such as IL-6 and TNF-a [47].  Leptin is an adipokine 

that is secreted in proportion to adiposity, and primarily regulates appetite and body weight 

regulation through the hypothalamus.  However, leptin has various other roles related to 

immunity, reproduction, insulin sensitivity and growth [48-50].  Levels of adiponectin are higher in 

leaner individuals, and act on many tissues to improve insulin sensitivity [51] by inducing fatty 

oxidation in the liver, decreasing glucose production from the liver, and improving beta cell 

function [42].   

Adipocytes are insulin sensitive tissues, and obesity contributes to the development of 

insulin resistance.  Insulin resistance can be defined as the contributions of decreased effects of 

insulin on glucose uptake, metabolism and storage [52].  Manifestations of insulin contribute to 

the decreased uptake of glucose by tissues, and impaired suppression of hepatic glucose [52].   

Under normal physiological conditions, free fatty acids are stored as triglycerides in 

adipocytes, and are mobilized by lipolysis to free fatty acids that can be released into the 

circulation and travel to tissues, such as muscle, to be used for mitochondrial beta oxidation in 

order to produce ATP.  With obesity, the chronic consumption of excess calories results in 

increased adipocyte size and accumulation of triglycerides that metabolically overload the cell. 

This often induces hypertrophy, resulting in the secretion of cytokines to recruit immune cells 

such as macrophages [53].  These recruited macrophages secrete pro-inflammatory cytokines 

thereby creating a pro-inflammatory environment [53].  The pro-inflammatory environment inhibits 

additional lipid disposition, increasing the mobilization of fatty acids into the circulation.  The 

accumulation of lipids in other tissues decreases the expression of genes that regulate 
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mitochondrial function, activating kinases that inhibit signaling of the insulin receptor to decrease 

glucose mediated transport into the cell, leading to insulin resistance [53].  

Free fatty acids released from visceral adipose are taken up by the liver and may 

contribute to increased synthesis of triglyercides and released as very low-density lipoproteins 

which may contribute to hyperlipidemia.  Conversely, the free fatty acids released from 

subcutaneous adipose tissue can be oxidized by muscle, and do not contribute as much to the 

synthesis of triglycerides compared to visceral adipose tissue.  Additionally, the release of excess 

fatty acids can activate components of the innate system and activate toll like receptor 4 (TLR4), 

stimulating macrophages to secrete inflammatory cytokines further creating a more pro-

inflammatory environment [54].   

  The role of adipocytes and the immune cells that reside within the adipose tissue have 

greatly contributed to understanding the contributions of chronic inflammation and insulin 

resistance in obesity [55].  Tumor necrosis factor alpha (TNF-a) was one of the first cytokines 

found to be secreted by the adipose tissue that induced local and systemic effects and promoted 

insulin resistance [56].  Additional cytokines such as leptin, macrophage chemoattractant protein-

1 (MCP-1), resistin, angiotensinogen, IL-6, serum amyloid A, plasminogen activator inhibitor-1 

and many others have since been discovered to be secreted by adipocytes and contribute to low-

grade inflammation [41, 57-61]. T cells have been implicated in regulating the pro-inflammatory 

state and insulin sensitivity through a variety of potential mechanisms [55, 62-65]. T cell secretion 

of IFNg polarizes macrophages to an M1 phenotype, inducing the secretion of pro-inflammatory 

cytokines IL-6 and TNF-a, whereas T cells that secrete IL4, IL-13, and IL-10 polarize 

macrophages to an anti-inflammatory M2 phenotype, which secretes high levels of IL-10 [54].  

Increasing this pro-inflammatory M1 macrophage phenotype can negatively affect insulin 

sensitivity [66, 67], and the secretion of the inflammatory cytokines from these cells contributes to 

the chronic, unresolved inflammation [40].  Increased adiposity additionally results in decreased 

invariant Natural Killer T (iNKT) cell populations [55], decreased regulatory T cell populations 

(Treg) [65, 68], and a disproportionate ratio of CD8+ to CD4+ T cells [64], contributing to an 
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increase in an activated immune population that is favorable to maintain obesity induced 

inflammation.   

Inflammatory cytokines, lipids, endoplasmic reticulum stress, and reactive oxygen 

species activate intracellular signaling cascades by different mechanisms, resulting in the 

activation of the IKKb/NF-kB and JNK pathways [40, 41, 54, 69, 70] in metabolic cells such as 

adipocytes, hepatocytes and macrophage subtypes [54].  Excess nutrient intake can dysregulate 

the innate immune response via pattern recognition receptors (PRR)[71].  Toll like receptors 

(TLRs) are a type of PRRs that are normally activated by pathogens and initiate the appropriate 

immune response to clear the pathogen, however, in obesity, adipocyte TLRs can be activated by 

lipids [19, 72].  Activation of TLRs by lipids can lead to increased expression of TNF-a, IL-6, and 

other inflammatory mediators [19].  IKKb/NF-kB activation leads to the translocation of NF-kB to 

the nucleus, whereas JNK activates the transcription factor activator protein-1 (AP-1), and both of 

these transcription factors increase expression of inflammatory genes [40].  Kinases IKK and JNK 

also contribute to inhibition of insulin signaling by serine phosphorylation of the insulin receptor 

substrate 1 (IRS-1), resulting in ubiquitination and degradation, and inhibiting downstream 

signaling [73].  The continued production of these inflammatory mediators maintains a feed 

forward loop, with no complete resolution of inflammation.     

 

Obesity and vaccination 

Immunization is the best method of protection from many infectious diseases. To date, 

there are limited studies reporting vaccine effectiveness in obesity.  The response to hepatitis B 

vaccine has been the most studied.  Several groups have consistently reported decreased 

response of protective levels of antibodies to hepatitis B surface antigen in obese adults [74-76], 

and poor hepatitis B antibody response in obese pre-adolescents [77].   

Obesity in humans and in mouse models has shown impaired immune response to 

influenza vaccination [78-80].  A prospective, observational study enrolled adult participants with 
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various BMI’s to acquire serum and peripheral blood mononuclear cells (PBMCs) pre and 30 

days post influenza vaccination.  In addition, as this study was conducted over multiple years, 

some participants also had a 1 year blood sample.  Influenza antibody titers measured by ELISA 

at 30 days post vaccination did not yield any significant differences between healthy weight, 

overweight, and obese groups, however, at 1-year post vaccination there was a decline in 

antibody titers in obese participants measured by ELISA and hemagglutination inhibition assays 

(HAI), the standard measure of influenza antibody titers [79].  Compared with CD4+ and CD8+ T 

cells from healthy weight individuals, PBMCs from obese adults stimulated with vaccine strains of 

influenza showed decreased activation markers and functional markers IFNg and Granzyme B 

[81] .   

Together these data demonstrate that compared to healthy weight adults, both humoral 

and cellular vaccine-induced immune responses are altered in obese adults.  To circumvent the 

decreased effectiveness of influenza vaccination in obesity, the use of adjuvants has been 

explored.  Lean and obese mouse models were administered H7N9 vaccine alone, or vaccine 

with alum or squalene adjuvant and then challenged with A/Anhui/1/2013 H7N9 virus.  Obese 

mice were able to mount an immune response producing neutralizing and nonneutralizing 

antibodies, however, compared with lean mice, viral clearance was still impaired increasing 

morbidity and mortality [78]. 

The literature is even more scarce in the effectiveness of vaccination in obese children.  

Compared to healthy weight children, antibody titers to tetanus toxoid were significantly reduced 

in overweight children, ages 8-17 [82].  Inflammatory cytokine IL-6 was found be significantly 

increased in the overweight group, contributing to low-grade inflammation, corroborating other 

studies that suggest that low grade inflammation is present in overweight children [83].  
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Animal models of obesity 

There are many types of animal models used to study obesity, including rodents, pigs, 

canines, and non-human primates [84].  Rodents are the most commonly used models in 

studying obesity, but the choice of model depends on the scope and goals of the study.  Two of 

the primary rodent models used in obesity studies are the monogenic and diet-induced mouse 

models.  

The monogenic mouse models have spontaneous, single gene mutations or genetically 

engineered mutations that results in obesity.  The more commonly used monogenic models are 

the ob/ob and db/db mouse models [85]. The ob/ob mouse model contains a spontaneous, single 

base pair deletion in the leptin gene that inserts a premature stop codon [84, 86, 87], resulting in 

a loss of function mutation [85, 88].  It is important to note, however, that the genetic background 

of these mice will dictate the obesity phenotype.  For example, ob/ob on the C57BL/6J 

background will show a phenotype with extreme obesity, hyperinsulinemia, insulin resistance and 

hyperglycemia, whereas, on a C57BL/KS background, ob/ob mice will develop hyperglycemia 

and diabetes, reach maximum weight at 3-4 months of age, followed by gradual weight loss then 

death by 6 months of age [89].   

All genetic backgrounds of ob/ob mice will result in a leptin deficiency that induces 

hyperphagia and reduced energy expenditure, resulting in obesity [85].  The db/db mouse model, 

or “diabetes mouse” contains a spontaneous mutation of a G to T point mutation in the leptin 

receptor gene that results in leptin receptor deficiency [86, 89].  These mice have very similar 

phenotype to that of the ob/ob, however, with high levels of leptin proportional to adiposity [89].  

Monogenic models offer great value in testing potential therapeutics due to the distinct phenotype 

[85, 88], yet polygenic models are more similar to the human obese phenotype as the most 

common forms of human obesity are the result of the effects of multiple genes.   

The most commonly used polygenic model is the C57BL/6J mouse strain, in which 

feeding a high caloric diet (typically high fat) induces obesity, hyperinsulinemia, and insulin 

resistance [86, 88, 90].  There are different diet strategies to induce obesity, but the 45% and 
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60% kcal fat content of soybean oil and lard are more commonly chosen depending on the 

experimental design and desired phenotype outcome.                

 

Influenza virus epidemiology 

Influenza virus is a highly contagious respiratory virus. Symptoms include fever, chills, 

cough, sore throat, runny or stuffy nose, muscle or body aches, headache, fatigue, and possibly 

vomiting and diarrhea [91].  It can take up to a couple of weeks to recover from the illness, and 

can lead to pneumonia and exacerbations of preexisting conditions such as asthma or chronic 

heart disease [91].  Most healthy people that contract influenza will recover within two weeks, 

however, certain populations are at higher risk for developing flu complications that can lead to 

severe outcomes including death.  Populations at higher risk include pregnant women, children 6-

59 months, adults over 65 years old, and immunocompromised individuals [92].  

Outbreaks and pandemics of the influenza virus have been observed for the past three 

hundred years [93].  In 1918-1919 the worst pandemic of influenza infection emerged, with an 

estimated one-third of the world’s population infected [94], and estimates of 50-100 million deaths 

[95, 96].  From 1979-1994, the crude percent overall death rate caused by influenza and 

pneumonia increased 59% [97], and flu continues to remain one of the top ten leading causes of 

death in the United States [98].  In order to understand the methods of transmission and 

contribution to epidemics and pandemics, it is necessary to understand the structure of the 

influenza virus. 
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Influenza virus structure 

 

 

 

 

 

 

 

 

 

 

 

Influenza virus is an enveloped, negative stranded, segmented RNA virus that belongs to 

the Orthomyxoviridae family.  There are four types of influenza viruses: A, B, C and D [99].  In 

humans, influenza viruses A and B are typically responsible for seasonal infections with strain A 

associated with more serious illness.  Influenza C strains result in mild illness and D strains are 

isolated to cattle and not known to currently be transmitted to humans [99].  Influenza strains A 

and B contain 8 RNA segments, whereas influenza C contains 7 segments[100].   

Influenza A viral proteins include hemagglutinin (HA), neuraminidase (NA), matrix protein 

(M1), RNA polymerase B1 subunit (PB1), RNA polymerase B2 (PB2), RNA polymerase A (PA), 

nucleoprotein (NP), and non-structural protein (NS) [100]. The outer structure of the virus consists 

of a lipid bilayer, which is obtained from the host during virus budding from an infected host cell.  

The lipid membrane contains viral encoded glycoproteins HA and NA [99].  HA is the most 

abundant protein in the lipid bilayer and forms trimeric spikes that bind to sialic acid receptors on 

Figure 1.  Structure of influenza virus.   

Taken from CDC public health image library.  Photo credit, illustrator Dan Higgins.  
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host cells[101].  The HA also contains neutralizing antibody binding sites.  The binding of the HA 

to host sialic acid receptors facilitates entry of the virus into the cell.  Cells of the upper respiratory 

tract of humans primarily contain a2,6-linked sialic acids, with cells of the lower respiratory tract 

consisting of a2,3-linked sialic acids.  This receptor specificity is one of the factors that 

contributes to zoonotic transmission of the virus, as avian influenza viruses preferentially bind to 

a2,3-linked sialic acids, which can be found in ducks, chickens, and migrating birds, but can still 

infect humans by infecting the lower respiratory tract [102, 103].   

NA forms tetrameric structures that span the lipid bilayer and function as enzymes that 

cleave the sialic acids from the HA proteins to allow budding and release of the virion to infect 

neighboring cells [102]. Selected point mutations in these two proteins contribute to antigenic drift 

that can create influenza epidemics every 1-2 years [100].  However, when a cell is infected with 

more than one influenza strain and combines different HA and NA proteins to create a new 

subtype, a pandemic can occur [104].  The NA protein is the target of oseltamivir (Tamiflu) and 

zanamavir (Relenza), antiviral medications used to treat influenza infection [100].    

The M1 protein is present in Influenza A viruses, and constitutes the matrix layer of the 

virus, that protects the viral RNAs. To release the viral RNAs upon entry into the host cells, the 

M2 ion channel protein pumps ions from the endosome to the interior of the virion, decreasing the 

pH, initiating the fusion of the inner layer of the endosome to release the viral RNAs.  The release 

of the bound viral RNAs can then enter the nucleus and begin replication.  The M2 channel is the 

target of adamantine family of antiviral drugs to inhibit viral replication, however, mutations in the 

virus result in resistance to this class of drugs [105].   

Once the negative stranded viral RNAs enter the nucleus, the RNA dependent RNA 

polymerase complex made up of PA, PB1, and PB2 produces positive strand mRNA, to serve as 

templates for the transcription of viral proteins in the cytoplasm.  These newly synthesized viral 

proteins are transported back to the nucleus and associate with NP to form viral 

ribonucleoproteins [102].  Other glycosylated proteins modified by the golgi apparatus and 
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endoplasmic reticulum are transported to the cell membrane, and when enough proteins 

aggregate at the plasma membrane, they bud off and form new virions.   

 

Innate Immune response to influenza 

The immune system is composed of innate and adaptive immune system of cells, tissues 

and organs that form a complex network to initiate an immune response to any invading 

pathogens, or injury.  Upon infection, the innate system is activated immediately to provide the 

first line of host defense.  The innate immune system is composed of chemical and physical 

barriers such as mucosal epithelium; innate immune cells such as macrophages, neutrophils, 

dendritic cells and natural killer cells (NK); and circulating proteins and cytokines that coordinate 

the interactions with immune cells and the environment to provide a constant layer of immunity 

[106].  The coordinated actions of innate immunity also provides support for the activation of the 

adaptive immune system, which is specific for the invading pathogen. 

Influenza infection initiates the innate network upon initial infection.  Influenza is more 

commonly spread in droplets when infected people cough, sneeze, or talk, but can also be 

transmitted when a person touches infected objects such as door knobs and then touch their 

nose or mouth [107].  Influenza virus is exposed to a series of physical barriers before it can 

infect the host cellular machinery.  Tears from the eye contain surfactant proteins which can 

prevent influenza virus from infecting the eye [108-110]. The oral cavity is another source of entry 

for influenza virus, but the saliva provides another physical barrier with scavenger receptor 

cysteine rich glycoproteins, mucins, immunoglobulin A, and surfactant proteins that inhibit 

influenza infectivity [109, 111, 112].  The virus has to bypass the mucus coating the respiratory 

epithelium to continue to attach and infect the respiratory epithelial cells.  The mucus layer 

contains highly glycosylated mucins containing sialic acid receptors [113], however, “mimic” 

sialyted structures that resemble these receptors bind influenza virus and trap them within the 

mucus layer to eliminate the virus and prevent infection [114-117].  When influenza virus binds to 

sialic acid receptors, neuraminidase sialidase activity cleaves these bound interactions to release 
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the virus from the mucus layer to gain entry into the respiratory epithelium [118].  Upon entry into 

the respiratory epithelium, innate cells such as neutrophils, dendritic cells, monocytes, 

macrophages and NK cells coordinate actions to limit infection and damage [101].   

The innate system recognizes conserved regions of microbial agents, or pathogen 

associated molecular patterns (PAMPS) that are recognized by pattern recognition receptors 

(PRRs) on the infected cell.  Influenza virus is recognized by specific PRRs:  Toll-like receptors 

(TLRs), retinoic acid inducible gene I (RIG-I), and NOD-like receptors (NLRP3) [101].  Several 

innate immune cells work together to kill and clear the virus and any infected or dead host cells 

by PAMP activated signaling mechanisms.  TLR3 which recognizes double stranded RNA 

(dsRNA) is expressed in many innate cells such as macrophages, and dendritic cells in humans 

and mice [119-123].  For example, when infected cells are phagocytosed by macrophages, TLR3 

present in the phagosome will recognize viral dsRNA, viruses produce dsRNA during part of the 

infection cycle [124].  This activation induces a signaling cascade, culminating in the activation of 

nuclear factor kB (NF-kB) and IFN-regulatory factor 3 (IRF3), transcription factors that produce 

pro-IL-1b, pro-IL-18, TNF-a, IL-6, and IL-1 and other pro-inflammatory cytokines [125, 126].    

TLRs 7 and 8 recognize ssRNA, and both are closely related proteins that can recognize 

the same ligand [127]. TLR7 is primarily expressed in innate plasmacytoid dendritic cells (pDCs) 

and IFN stimulated B cells [74], whereas TLR8 is expressed in macrophages and myeloid 

dendritic cells [128] and present in the endosomes from these innate cell types.  The activation of 

TLR7/8 induces signaling that activates IRF7 and NF-kB pathway also producing type I 

interferons and pro-inflammatory cytokines [129].   

RIG-I is expressed in most cells, and detects viral 5’ tri-phosphate RNA to activate IRF3 

and NF-kB pathways, resulting in production of type I interferons and pro-inflammatory cytokines 

[101].  NLRP3 is mainly expressed on neutrophils, macrophages, monocytes and conventional 

dendritic cells, with negligible expression on lymphocytes, eosinophils, and pDCs [130].  Infected 

cells such as macrophages, or cells of myeloid lineage express NLRP3 [125] .  Proton flux of the 

viral protein M2 channel in the trans golgi network of infected cells activates the formation of a 



	

	
	

17	

complex of proteins making up the NLRP3 inflammasome.  The formation of this complex 

activates caspase-1 which cleaves pro-IL-1b, pro-IL-18 into their bioactive forms [101, 125].  

The end result of initiating these signaling cascades are the production of pro-

inflammatory cytokines, chemokines, and secretion of type I interferons (IFNs) [125].  Type I IFNs 

induce expression of hundreds of IFN stimulated genes that function as anti-viral genes to protect 

uninfected cells, and limit infection of infected cells [101].  IL-1b is crucial to recruit innate immune 

cells to the site of infection [131], while IL-18 enhances production of IFNg from NK and T cells to 

enhance cytotoxic activity [132, 133].   

 

Adaptive immune response to influenza 

The adaptive immune system consists of the humoral and cellular immune response that 

correlates with B and T cell driven immunity, respectively.  In the context of influenza infection, 

vaccination strategies more commonly target the humoral response, to initiate the production of 

antibodies from antibody secreting B cells knows as plasma cells. Antibodies can bind to surface 

proteins of the virus to prevent the virus from infecting host cells (neutralization) and can bind to 

proteins of the complement system to activate opsonization and phagocytosis.  Antibodies can 

also bind to infected cells to target the cell for antibody dependent cellular cytotoxicity carried out 

by innate cells [106, 134].  Dimeric, secretory immunoglobulin A (IgA) is the dominant mucosal 

antibody produced locally in the upper respiratory tract that offers protection by immune 

exclusion, intracellular neutralization, and antigen excretion [135].  Immunoglobulin G (IgG) is the 

most abundant circulating antibody in the serum, but is also found in the lower respiratory tract 

and facilitates cytotoxicity from NK cells and aids in opsonization of infected cells for clearance by 

alveolar macrophages [101, 134].      

As mentioned previously, the innate system provides the first line of defense to influenza 

infection.  The innate immune cells coordinate efforts to minimize damage to the host, and work 

with the adaptive immune system to initiate the most effective and efficient response to resolve 
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the infection.  Alveolar macrophages reside in the alveolar lumen while dendritic cells reside in 

the airway epithelium and together these cells function to provide immune surveillance in the 

lung.  Alveolar macrophages phagocytose infected cells [136], or secrete nitric oxide synthase 2 

(NOS2) and TNF-a [137, 138] to limit the spread of infection.   Antigen presenting cells (APC) 

such as dendritic cells endocytose viral components and migrate to the draining lymph nodes to 

present viral peptides through specialized cell surface receptors called major histocompatibility 

complexes (MHC), to be recognized by specific T cells.  It is these interactions that bridge the 

coordination of the innate and adaptive immune arms to enhance a more specific and targeted 

immune response to influenza infection.   

There are two classes of MHCs that bind to different subsets of T cells.  The uptake of an 

extracellular virus or proteins in lysosome/endosomal vesicles are degraded by proteases, bound 

to MHC class II receptors, transported to the cell surface and presented to CD4+ T cells to 

proliferate and initiate helper functions [106].  Cytosolic viral proteins are degraded by 

proteasomes and transported to the endoplasmic reticulum where they bind to MHC class I 

receptors to be exported to the cell surface and presented to CD8+ T cells to activate them to 

proliferate and initiate cytotoxic functions [106].  T cells can only recognize specific amino acid 

sequences along with portions of the MHC molecule.  In contrast, B cells can recognize peptides, 

proteins, nucleic acids, carbohydrates, lipids and small chemicals [106].  The presentation of viral 

peptides by APCs to T cells in secondary lymphoid organs initiates B and T cell signaling 

cascades.  When there has been no previous exposure to the virus, the primary immune 

response is initiated that relies heavily on the innate immune response before the adaptive 

immune response can be activated, however, immunological memory to the infection is 

generated following a primary infection, allowing for a more rapid and efficient response following 

re-exposure. 
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Memory cell generation 

Immunological memory is the process of the adaptive immune system that produces a 

more efficient and faster immune response to a previously encountered antigen. The premise for 

effective vaccination relies on the ability of the immune response to maintain immunological 

memory. Vaccination or a primary influenza infection initiates the adaptive immune system to 

respond in three phases: expansion, contraction, and memory cell generation and maintenance.   

Naïve T cells recirculate in the blood and lymphoid tissues until recognition of cognate antigen 

presented by APCs in the lymph node. Naïve T cells initially enter the lymph nodes through high 

endothelial venules (HEV) via their homing cell surface receptors CD62L and CCR7, which bind 

to epithelial PNAD and SLC, respectively [139]. Upon sufficient antigen presentation and co-

stimulation by APCs, CD8+ T cells proliferate and expand, acquiring antiviral effector functions 

such as producing IFNg, TNFa, and upregulating expression of perforin and granzymes [140]. 

CD8+ T cell activation and expansion is dependent on adequate T cell receptor (TCR) and co-

stimulatory signals, but also requires IL-12 and IFN-a to generate effector and memory CD8 T 

cells [141].  

CD4+ T cell activation and expansion is dependent on the cytokine environment. 

Following influenza infection, Th1 subset of CD4+ T cells produces IFNg, TNFa, and IL-2 along 

with T follicular helper cells (Tfh) and Th2 helper subsets that promote antibody production 

through B cell interactions [142]. Effector T cells clonally expand and proliferate to generate 

sufficient cell numbers to fight infection. Within the naïve CD8+ T cell pool in the mouse, it is 

estimated that there are about 1 out of 105 T cells for a given peptide/MHA complex, and once 

activated, these can expand 104 to 105 fold [143]. The CD8+ population is usually much lower 

than the CD4+ T cell population in the mouse, but it can expand disproportionately, at least 5-fold 

when exposed to certain viruses, such as lymphocytic choriomeningitis virus (LCMV)  [144]. 

Other murine studies have reported an estimated 15 to 1000 antigen specific CD8+ T cells [145-

148], and 10 to 200 CD4+ antigen specific cells for a given MHC/peptide epitope combination, 

with the ability to respond to 106-107 peptides[141].    
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Activation and expansion induced by antigen stimulation differentiates naïve T cells into 

effector CD4+ or CD8+ T cells. Effector cell expansion peaks at about 7 days post infection, 

followed by T cell contraction (90% of effector cells removed by apoptosis) and resolution of the 

viral infection. The cells that do not undergo apoptosis differentiate into long-lived antigen-specific 

memory T cells. As naïve T cells differentiate into effector cells, changes in chromatin structure 

and expression of transcription factors occurs in addition to changes in the expression of cell 

surface receptors [149].   

The memory pool created in response to initial primary exposure to a specific pathogen 

consists of a heterogenous population of effector memory T cells (TEM ), central memory T cells 

(TCM) [150], and tissue resident memory T cells (TRM) [151].  TEM  and TCM have been identified 

based on the expression of CD62L and CCR7 cell surface receptors. TEM are primarily found in 

peripheral tissues coinciding with effector functional properties of cytotoxicity and inflammatory 

reactions where TCM are primarily found in lymphoid tissues and display more helper functions to 

stimulate dendritic cells, help B cells and rapidly proliferate into effector cells following antigen 

stimulation [150]. Additionally, the high expression of IL-7Ra chain (CD127) identifies memory T 

cells [152, 153]. 

            TEM and TCM are circulating T cell populations throughout peripheral and secondary 

lymphoid tissues, but another memory population, the tissue resident memory T cells (TRM) are a 

non-circulating memory population residing in peripheral tissues with different cell surface 

markers than TEM and TCM. In mouse models of influenza infection, TRM can be found in the lungs, 

with CD4+ TRM expressing CD69 and CD11a [151, 154], and CD8+ TRM expressing CD69 and 

CD103 cell surface molecules [155]. These cells display specific homing and retention properties: 

polyclonal influenza specific CD4+ TRM derived from lung and placed in another recipient will 

migrate back to the lung [151].   
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Memory cell metabolism 

T cell metabolism is a dynamic process, with metabolic needs changing with the 

environment and stress signals. Before an encounter with antigen, naïve T cells are smaller in 

size, and maintain survival and homeostasis through T cell receptor (TCR) and IL-7 receptor 

signaling, which regulate expression of the glucose transporter, Slc2a1 [156]. Glut1 is the 

dominant glucose transporter expressed in T cells [157], with increased Glut1 expression leading 

to increased glucose uptake. Changing metabolic needs in response to pathogen exposure are 

indicative of function. Naïve T cells circulate in secondary lymphoid tissues maintaining low levels 

of glycolysis, obtaining energy needs through fatty acid oxidation (FAO) and oxidation of pyruvate 

and glutamine through oxidative phosphorylation (OXPHOS) [73, 157]. These energy needs 

change during recognition of cognate antigen for the transition from naïve T cell to an activated 

effector T cell that proliferates and acquires effector functions to clear the pathogen.  

Effector T cells utilize anabolic metabolism to produce lipids, nucleic acids, and proteins 

to support rapid proliferation of daughter cells and acquire effector functions to clear out the 

infection switching from a preference for OXPHOS to aerobic glycolysis and glutaminolysis [73]. 

Aerobic glycolysis was initially proposed by Otto Warburg to describe the unique metabolic needs 

of cancer cells and their metabolism of glucose metabolized to lactate despite presence of 

sufficient oxygen [158].  This Warburg effect has also been used to describe the metabolism of 

activated T cells [159]. After the pathogen has been cleared, the majority of effector T cells 

undergo apoptosis to yield a small population of long-lived memory T cells.  

Memory T cells have their own distinct metabolic profile. While they have similar 

metabolic needs to naïve T cells, memory T cells rely on FAO and OXPHOS [160], requiring 

tumor necrosis factor receptor-associated factor 6 (TRAF6 ) [161], and IL-15 [162] to maintain 

long lived memory CD8+ T cells. Mice with a T cell specific deletion of TRAF6 were found to have 

impaired CD8+ T cell memory generation to antigen stimulation, however, metformin restored 

AMPK (5’ adenosine monophosphate-activated protein kinase) activation to promote FAO and 

memory T cell generation [161]. Rapamycin, the inhibitor of the intracellular kinase mammalian 
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target of rapamycin (mTOR) which regulates cell growth and metabolism, also regulates CD8+ T 

cell memory generation [163].  

Unlike naïve T cells, memory T cells need to be metabolically primed to initiate a faster 

immune response upon re-encounter with antigen. IL-15 promotes mitochondrial biogenesis and 

increases the expression of carnitine palmitoyltransferase 1a (CPT1a) which transports long-

chain fatty acids into the mitochondria to be used for FAO [162]. Enhanced mitochondrial 

biogenesis and increased CPT1a expression contribute to the spare respiratory capacity (SRC) of 

memory T cells [164], where SRC is the difference of the ATP produced at the basal level by 

oxidative phosphorylation compared to maximal potential [165]. Van der Windt, et al., proposed a 

model how SRC regulates memory T cell survival in infection, where increased mitochondrial 

mass increased use of fatty acids for OXPHOS, inducing memory cells to quickly switch their 

metabolism for pathogen clearance [162]. In contrast to effector T cells, memory T cells do not 

use stored extracellular fatty acids nor do they contain lipid droplets, but rather to fuel FAO, rely 

on extracellular glucose to synthesize triacylglycerol (TAG), utilizing lysosomal acid lipase (LAL) 

to release fatty acids to fuel FAO [166]. 

In sum, naïve, effector, and memory T cells have very different metabolic needs. Memory 

T cells rely on extracellular glucose for TAG synthesis and cell intrinsic lipolysis generate fatty 

acids to fuel FAO for OXPHOS [166]. Likewise, mitochondrial function and biogenesis are 

important for memory T cell development, with memory T cells having more mitochondrial mass 

than naïve cells [167]. Increased mitochondrial mass enables memory cells to have faster recall 

when re-stimulated with antigen. It is also speculated that this increase in mitochondrial mass 

driven by IL-15 is key to memory T cell survival and longevity [162]. In contrast, CD8+ T cells and 

CD4+ Th1 effector T cells express high surface levels of Glut1 and are highly glycolytic, while 

inducible Tregs favor fatty acid oxidation like that of memory T cells [168]. The development and 

metabolism of long-lived memory T cell generation and maintenance is still not fully understood. 

Because FAO and OXPHOS are the driving metabolism of memory T cell generation and 



	

	
	

23	

maintenance, it is important to investigate whether nutrient conditions of high serum glucose and 

fatty acids present with obesity dysregulate memory T cell metabolism. 

 

Obesity effects on the immune response to influenza infection  

Studies in obese mice infected with influenza virus demonstrate impaired innate and 

adaptive immune defenses resulting in increased morbidity and mortality [78, 169-173].  

Impairments in the primary immune response were first demonstrated by Smith, et al., by 

inducing obesity in C57BL/6J mice with diet and infecting them with a mouse adapted strain of 

influenza virus A/Puerto Rico/8/34 (PR8).  The mortality rate of obese mice to PR8 was 6.6 fold 

greater than the lean mice, and was associated with reduced NK cytotoxicity. At day 3 post 

infection, obese mice had reduced mRNA expression of anti-viral cytokines IFNa and IFNb in the 

infected lung [169].  Lung cytokines TNF-a, IL-6, and IL-1b, normally produced during the 

inflammatory response to influenza, were decreased in obese mice compared to lean mice at day 

3, along with chemokines MCP-1 and RANTES, which function in immune cell recruitment. In 

addition, obese PR8 infected mice have delayed mononuclear infiltration in the lung and 

decreased dendritic cell numbers [173].  Dendritic cells from infected obese mice displayed 

impaired function, as they were not able to properly stimulate CD8+ T cells to produce IFNg [173].   

Together these data suggest that obesity results in decreased immune response to a primary 

infection with PR8 influenza virus, resulting in increased mortality.   

  Based on the findings that obesity impairs the primary immune response, Karlsson and 

colleagues utilized DIO mouse models to investigate whether the memory T cell response to 

secondary influenza infection was impaired [170].  Lean and diet induced-obese mice were 

infected with X-31, a mouse adapted H3N2 influenza strain, and 4 weeks later infected with PR8.  

Although lean mice were fully protected from the secondary infection, obese mice had a 25% 

mortality rate.  Lungs from influenza infected obese mice had low expression of antiviral cytokines 

IFNa and IFNb [170].  In addition, obese mice had dysregulated lung cytokine and chemokine 
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expression and reduced influenza specific CD8+ T cells expressing IFNg.  Memory T cells had 

decreased IFNg response to antigen presentation by DCs [170].  This set of experiments provided 

evidence that the memory response to secondary influenza infections was also impaired. 

 DIO also affects the maintenance of TEM and TCM populations. TCM were maintained and 

remained constant with a slight increase in the obese group 84 days post infection in the lungs 

and spleen.  However, compared to lean mice, TEM cell number and percent in the lungs 

decreased in the obese mice at 84 days post infection [171].  Cytokines specific to memory 

homeostasis and survival had dysregulated expression in obese mice compared to lean mice, 

and inflammatory cytokines TNF-a and IL-6 were significantly increased in the lungs of obese 

mice 84 days post infection, despite the clearance of virus from the lungs [171].  The inability of 

obese mice to maintain influenza specific memory T cells suggest that impairments contribute to 

ineffective immune responses to subsequent exposures of influenza virus.           

 These findings of impaired memory T cell responses and maintenance of memory T cell 

populations led to further studies to determine the mechanisms contributing to these results.  The 

2009 influenza pandemic revealed one caveat that shed light on potential mechanisms of 

influenza immunity. Prior exposure to influenza virus can generate cross protective immunity 

where T cells recognize the internal conserved regions of the influenza A virus and can recognize 

and aid in recovery and decrease morbidity to influenza A strains with differing external cell 

surface proteins [174-178].  

    DIO mice were infected with PR8 influenza virus, and then 5 weeks later re-challenged 

with pH1N1 influenza virus.  All lean mice had a 100% survival rate, whereas 95% of the obese 

mice survived secondary infection to pH1N1 [172].  Hemagluttination inhibition (HAI) and 

microneutralization assays were used to determine correlates of protection to influenza A virus 

[179-182], and are a standard measure to determine levels of cross reactive antibodies to 

influenza strains.  Prior to rechallenge with pH1N1, PR8 infected lean mice had high HAI titers to 

PR8, where HAI titers were not detectable in obese mice, and as expected, neither group had no 

HAI titers to pH1N1 [172].  Microneutralization assays demonstrated similar results, with lean 
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mice having significantly higher microneutralization titers [172].  Furthermore, obese mice present 

a delayed response of antibody titer, at day 7 were significantly decreased compared to lean 

mice, but at 35 days post infection obese mice had no detectable levels demonstrating the 

inability to maintain antibody titers [172].  Nucleoprotein specific antibody titers were measured to 

determine cross reactive neutralization to pH1N1 infection, and obese mice has significantly 

lower levels at 5 weeks post infection, increased viral titer, and increased lung pathology [172].  

Lungs of obese mice also had increased immune cell infiltration, and increased levels of albumin 

from bronchoalveolar lavage fluid (BAL), indicating damage to the lung epithelium.  Evaluation of 

regulatory T cell populations (CD25+Foxp3+) demonstrated that obese mice had increased 

numbers in the lung, but these populations were less suppressive, indicating impaired Treg 

function [172].  Overall, these data suggest that obesity alters the cross protective response to 

pH1N1 influenza infection in mice which had not previously been demonstrated.   

 These experiments established that obesity impairs the humoral and cell mediated 

immune response to influenza infection.  Diet-induced obese mouse models were used, but it 

was unclear whether obesity was driving altered immune responses, or whether it was diet 

related factors associated with feeding a high fat diet.  Further experiments investigated 

mechanisms to provide evidence that obesity, and not diet, is driving the altered immune 

responses to influenza infection.   

  Chow diet (CD), 10% low fat diet (LFD), and 60% high fat diet (HFD) fed mice were 

maintained on respective diets for 14-16 weeks, and infected with influenza A/California/04/2009 

virus (pH1N1). While the CD group did not have any deaths to infection, LFD and HFD had 

greater mortality to infection [183].  This was of particular importance as LFD had not been 

previously demonstrated to have increased mortality to pH1N1 infection compared to CD.  There 

were no differences between the three groups in viral titer, or infiltrating immune cells to the lung, 

but HFD did have increased lung epithelial damage compared to CD and LFD.  HFD decreased 

regulatory T cells (Treg) and macrophages in the bronchoalveolar lavage fluid compared to CD 

diet.  Lung tissue was harvested and metabolically profiled to determine metabolite differences 
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between the three groups prior to and after pH1N1 influenza infection.  CD and HFD had 

significantly different lung metabolic profiles, with HFD having altered lipid metabolites prior to 

infection and post infection.  This suggests that influenza infection alters the lung metabolome in 

obesity.  LFD consistently had intermediate results between CD and HFD, so to confirm that 

obesity is driving these differences and not diet, a genetic model of obesity was used to compare 

findings with HFD. 

  As previously described, the leptin receptor knock out mouse, db/db, is severely obese 

due to hyperphagia.  However, because leptin receptors are present on immune cells, this model 

is not appropriate for obese immune studies.  Therefore, a mouse model of leptin receptor 

deficiency only in the hypothalamus was used.  Heterozygous breeding between LepRH fl/fl and 

LepRH+/- mice resulted in homozygous LepRH-/- that lack leptin receptor signaling in the 

hypothalamic neurons, leading to hyperphagia induced obesity [184].  These mice were fed CD, 

so their obesity was not induced by a high fat diet, but rather the same diet fed to lean, control 

mice.  LepRH-/- mice gained significantly more weight than the LepRH fl/fl and LepRH+/- mice, and 

were more susceptible to pH1N1 influenza infection by increased mortality [183].  Viral titers 

between the three groups did not differ, however, LepRH-/- mice had significantly fewer 

inflammatory cells in the BAL, but increased total protein indicating epithelial damage 8 days post 

infection [183].  Lung immune cell populations were enumerated with LepRH-/ mice having 

significantly decreased CD4+, CD8+, Tregs, activated Tregs, and macrophages at 8 days post 

infection [183].  Lung tissue at day 0 and 8 post pH1N1 infection was harvested and metabolically 

profiled for LepRH fl/f and LepRH-/ mice by global liquid chromatography-mass spectrometry.  

Metabolic data demonstrated that metabolites were different in LepRH-/ mice between day 0 and 

day 8 post infection suggesting that infection results in metabolic changes distinct from obesity 

alone.  In addition, there were differences in metabolic profiles between LepRH fl/f and LepRH-/  in 

nucleotide, fatty acid, and amino acid metabolism [183].  Urine from these mice at day 2 post 

pH1N1 infection was also metabolically profiled to determine pathways that are affected by 

influenza infection in the obese state.  Similar to the lung metabolic profiling, differences in 

nucleotide, fatty acid, and amino acid pathways were altered.  Thus, all of the results indicate that 
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obesity, not diet, impairs the immune response to influenza infection.  Furthermore, the lung and 

urine metabolome of obese and lean influenza infected mice was different, suggesting that 

obesity and infection together alter the metabolism of the infected animals.                     

 Taken together, it’s clear that obesity is a global public health problem that contributes to 

a constellation of metabolic diseases that result in a decline in health.  Obesity often results in 

metabolic syndrome and is an independent risk factor for increased morbidity and mortality from 

influenza infection. As fundamentally a metabolic disease, it  is possible that obesity can alter 

immune cell metabolism, resulting in dysfunction. Furthermore, although a number of studies 

have documented impaired immunity to influenza infection and vaccination, what is lacking is a 

mechanistic explanation for these findings, and whether or not weight loss can restore immune 

cell metabolism and function. 
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CHAPTER	III:		OBESITY	IMPAIRS	T	CELL	METABOLISM	AND	FUNCTION,	WHICH	IS	NOT	
CORRECTED	BY	WEIGHT	LOSS 

 

INTRODUCTION 

 

The 2009 H1N1 influenza pandemic shed light on obese adults as a vulnerable 

population at risk for complications from infection with influenza.  For the first time, obesity was 

recognized as an independent risk factor for increased morbidity and mortality to influenza 

infection [14].  This is concerning, as the rates of obesity have risen dramatically over the last 

several decades [1] and for many years, seasonal influenza infection and pneumonia have 

remained in the top ten leading causes of death in the United States [97, 98].  Currently, 36% of 

adults in the US and 10% of men and 14% of women worldwide are obese [2].    

Diet-induced obese mouse models and human studies provided evidence that both the  

innate and adaptive immune responses were impaired following infection with influenza [79, 81, 

169-173, 183, 185, 186].  Dendritic cells from obese mice fail to present antigen to CD8+ T cells 

in a primary influenza infection [173], and natural killer cells from obese mice display impaired 

cytotoxicity [169]. Obese mice have increased mortality to primary [169] and secondary [170] 

influenza infections, impaired maintenance of influenza-specific memory T cells [171], and 

decreased memory T cell function [170].  Compared with healthy weight adults, influenza 

stimulated-peripheral blood mononuclear cells (PBMCs) from both overweight and obese adults 

vaccinated with influenza trivalent inactivated influenza vaccine (TIV) have decreased CD4+ and 

CD8+ activation and functional markers [79, 81].  Together, these data demonstrate that obesity 

impairs the immune response to influenza infection and vaccination.     
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T cell metabolism is a dynamic process that changes to meet the energetic demands of 

the cell.  As T cells become activated, metabolic demands switch from resting, naïve or memory 

T cells to effector T cells to fight infection [157].  Naïve T cells at rest utilize oxidative 

phosphorylation for metabolic needs to maintain homeostasis and immune surveillance, but upon 

activation, switch to glycolysis and glutaminolysis for rapid biosynthetic precursors for growth, 

proliferation and effector functions [73].  The conversion of effector T cells to long lived memory T 

cells requires fatty acid oxidation to sustain function [161, 162].  Although we and others have 

demonstrated impaired T cell function in the context of obesity, we do not know if obesity will 

impair T cell metabolism, thereby altering T cell function. 

Obesity results in systemic alterations in metabolism, including insulin resistance, 

elevated glucose levels, and altered adipokines (e.g. increased leptin, decreased adiponectin), 

leading to what has classically been termed “metabolic syndrome” [15, 187]. At the cellular level, 

metabolic syndrome has traditionally been associated with adipocyte, hepatocyte, muscle and 

pancreatic beta cell impairments, particularly with respect to glucose usage and fatty acid 

oxidation and storage. However, the effect of obesity on T cell metabolism has not been 

addressed. Because it is well-understood that T cell metabolism drives T cell function, we 

hypothesized that the altered metabolic environment of obesity would impair T cell metabolism, 

leading to memory T cell dysfunction.    

Although we and others have shown that obesity impairs memory T cell function, would weight 

lose restore their metabolism and therefore their function? Furthermore, if memory T cells were 

generated in a lean state, would these memory T cells now fail to function following weight gain? 

Our study addresses this question by infecting diet-induced lean and obese mice with influenza 

virus to generate memory T cells, followed by diet switching to induce either weight loss or weight 

gain. Once weight change was established (lean becoming obese and obese becoming lean), 

mice were reinfected with influenza.  
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Our results demonstrated that compared to always lean mice, always obese mice had 

impaired T cell memory subset generation, function and metabolism. Furthermore, we found that 

despite weight loss, memory T cell populations were decreased at re-infection, and effector CD8+ 

T cell functions were impaired at 3 days post infection.  Of note, the timing of memory T cell 

generation appears to program the T cell metabolism with regard to the obese state. We found 

that the T cell metabolism of the weight loss group (formally obese) closely mirrored the 

metabolism of the always obese group, and conversely, the T cell metabolism of the weight gain 

group (formally lean), closely paralleled the always lean group. These results suggest that 

memory T cell metabolism is “set” by the metabolic conditions present during their generation, 

and that changing their current environment (lean to obese or obese to lean) could not overcome 

this reprogramming.     

Taken together, our findings suggest that T cell metabolism and function are impacted by 

the metabolic environment, both at the time of generation and at the time the memory cells are 

activated. 

 

RESULTS 

 

Development of a model to study the effects of weight loss and weight gain on memory T 

cells 

A number of studies, including our own, have documented the finding that obesity impairs 

both the primary and memory T cell response to infection with influenza virus [79-81, 170-173, 

183, 185]. However, all of these studies were carried out in the obese state. The generation of the 

memory response and the functional response of the memory T cells occurred in mice that were 

always obese or always lean during both the primary and secondary infection.  What we don’t 

know is whether weight loss will restore memory T cell function, and conversely, whether obesity 

will impair T cell memory generated in a lean state. To address these questions, we utilized a 
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well-established mouse model for both influenza infection and obesity studies [84, 86, 188]. Male 

6-week old C57BL/6J mice were randomly assigned to 2 groups: lean and obese (Figure 1A).  

The lean group was placed on a standard chow diet (n=60) and the obese group was placed on 

60% high fat diet (HFD; n=60) for 18 weeks.  As expected, mice fed the 60% HFD gained 

significantly more weight than chow fed mice (Figure 1B).   

Following 18 weeks on their respective diets, mice were infected with influenza X-31,an 

H3N2 influenza virus containing the external surface proteins of A/Aichi/2/68 and the internal 

proteins of H1N1 A/Puerto Rico/8/34 (PR8) [189].  Following the primary infection, mice were kept 

on their respective diets for 4 weeks, allowing T cell memory to develop while mice were either 

lean or obese. Following the 4 week period of memory development, half of the mice from each 

diet group were switched to the opposing diet. Thus, 30 lean mice were switched to HFD, and 30 

lean mice remained on the chow diet. Similarly, for obese mice, half (30 mice) were switched to 

chow diet and half remained on the HFD. This created four groups of mice: 1) always lean; 2) 

weight gain; 3) always obese and 4) weight loss (Figure 1A). Mice were maintained on the 

indicated diets for 18 weeks. As shown in Figure 1B, obese mice switched to the chow diet 

(weight loss group) lost significant amounts of weight, and, compared with the always obese 

group, were now significantly separated by weight. Conversely, the lean mice switched to HFD 

gained significant amounts of weight, and were now significantly separated from the always lean 

group. Thus, the diet switch protocol induced both weight loss and weight gain in the mice.  

In addition to body weight, obesity is often associated with hyperglycemia. As shown in 

Figure 1C, fasting serum glucose levels of always lean and weight loss groups were statistically 

lower than the always obese and weight gain groups.    Thus, mice that lost weight developed a 

metabolic phenotype similar to the always lean mice, and mice that gained weight developed a 

metabolic phenotype similar to the always obese mice in terms of glycemia. 

Following 15 weeks post diet switch, mice were infected with PR8. All groups lost weight 

following PR8 infection (Fig 1D and E).  At 0 (uninfected control), 3 and 7 days post infection, 

lung inflammation (Fig S1A), lung viral titers (S1B) and total protein levels of bronchoalveolar 
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lavage (BAL) fluid (Fig S1C) did not differ among the diet groups. Weight gain, obese, and weight 

loss statistically decreased titers from day 3 to day 7 post infection, while the lean group did not 

decrease.  This was not surprising, as we purposely chose the secondary PR8 dose to induce a 

milder secondary infection. Previous studies in our lab have induced a significant difference in 

lung pathology between lean and obese mice by increasing the viral load, but this also resulted in 

significant mortality in obese mice [170-172, 183]. 

 

Memory T cell populations were impaired despite weight loss.  

Resolution of primary influenza infection results in ~90-95% of effector T cell death, with 

the remaining T cells acquiring a long-lived memory phenotype [190].  These long-lived memory 

T cells are a heterogeneous population, consisting of central memory T cells (TCM), effector 

memory T cells (TEM) [150, 191, 192], and tissue resident memory T cells (TRM) [193, 194].  All of 

these populations are important for prevention and recovery from infection.  Circulating TCM and 

TEM differ by anatomical location: TCM are abundant in secondary lymphoid organs, whereas TEM  

are primarily found in peripheral tissues [150, 195, 196].  Following influenza infection, TRM reside 

for extended periods of time within the lung parenchyma and are critical for protection from 

influenza re-infection [151, 154, 197]. 

Using flow cytometry, we identified CD4+ and CD8+ T cell subsets in the lungs of mice at 

0, 3 and 7 days post infection in always lean, always obese and weight loss groups.  Although the 

weight loss group generated memory T cell populations in an obese state, they were challenged 

with re-infection following weight loss and a return to the lean state. Although we found no 

differences in CD4+ TEM comparing all groups at day 3, and at day 7 post infection (data not 

shown), mice from the always lean group increased percentage of CD4+ TEM from day 3 to day 7 

(Figure 2A). No such increases were seen in the always obese group nor in the weight loss 

group.  We found no differences with CD4+ TCM , either among groups or between days post 

infection (data not shown).  
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For CD4+ TRM cells, we found that, compared to always lean mice, always obese mice 

had significantly fewer CD4+ TRM in the lungs at day 3 post infection (Figure 2B,2C). Although the 

weight loss groups also had decreased numbers of TRM in the lung compared with the always 

lean group, this group was not significantly different from either always lean or always obese 

group. Influenza-specific CD4+ T cells were measured using a Class II influenza tetramer, and 

found day 3 post infection, compared with always lean mice, obese and weight loss groups had 

significantly fewer influenza-specific CD4+ T cells in their lungs (Figure 2D,E). 

T regulatory cells (Tregs) are also important to reduce the inflammatory response once 

the infection has been cleared [198]. We found that, compared with always lean mice, at days 0 

prior to infection, CD4+ Treg populations in weight gain, obese and weight loss were significantly 

reduced (Figure 2F).  At day 3 post infection obese and weight loss remained significantly 

reduced compared to the always lean mice (Figure 3G).  However, at day 7, compared with lean 

mice, Treg populations were significantly increased in the always obese group (Figure 1H, 1I). 

Next, we examined CD8+ T cells subsets as they have different functions that CD4+ 

helper T cells.  Although no differences were seen in CD8+ TEM populations among groups at any 

time, the weight loss group was the only group which did not have a significant increase in this 

population between day 3 and day 7 post infection (Figure 2J). For CD8+ TCM cells, at day 3 post 

infection, compared with always lean mice, the always obese mice had a significant decrease 

(Figure 2K,L).  At day 3 post infection, CD8+ TRM cells, compared with always lean, were 

significantly lower in the always obese group (Figure 2M). At day 7 post infection, the always lean 

mice had a significantly higher increase in CD8+ TRM populations compared with always obese 

and weight loss groups. (Figure 2N).  When we examined expression of IFNγ and granzyme B as 

functional markers of T cell activation and function, at day 3 post infection, compared with always 

lean mice, CD8+ T cells expressing IFNγ and Granzyme B were significantly decreased in both 

weight loss and always obese groups (Figure 2P,Q).  Next, we investigated whether weight gain, 

after generation of the memory T cell populations, would also affect these T cell populations. 
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Memory T cell populations generated in a lean state were impaired following weight gain. 

Memory T cell populations were also impaired in the weight gain group. Although, 

compared with lean mice, numbers of CD4+ and CD8+ central and TEM cells from the weight gain 

mice did not differ at any time point, at day 3 post infection, there were fewer CD8+ T cells 

expressing IFNγ and granzyme B (Fig 2P). At day 7 post infection, compared with lean mice, 

there were fewer CD8 TRM in the lungs of the weight gain mice (Fig 2N). CD4+ Tregs, compared 

with lean mice, were also decreased in weight gain mice prior to infection (Fig 2F), but increased 

at day 7 (Fig 2H). 

 

Metabolic phenotype at time of primary infection sets CD4+ and CD8+ T cell metabolism 

for subsequent infection, despite weight gain or weight loss. 

Using extracellular flux analysis, the metabolism of CD4+ and CD8+ T cells isolated from 

spleens at day 0 (uninfected) (n=5) and day 7 post infection (n=5) was measured in all groups 

(n=40).  For CD4+ T cells, prior to secondary infection (day 0), compared with always lean and 

weight gain mice, always obese mice had a higher oxygen consumption rate (OCR), a measure 

of oxidative phosphorylation (Fig 3A).  This suggests that the basal OCR rate was set for the 

memory T cells at the time of primary infection, as there were no differences between the always 

lean and weight gain mice, which were lean when the memory T cells were generated. 

This finding was even more pronounced following a secondary infection. At 7 days post 

infection, OCR was significantly lower in the always lean and weight gain mice compared with the 

always obese and weight loss mice (Fig 3B).  The increase in OCR from day 0 to day 7 was 

highest in the weight loss group, which was obese at the time of primary infection, and in the 

always obese group (Fig 3C). The extracellular acidification rate (ECAR) was also determined, as 

a measurement of glycolytic activity (Supplementary 3A,B), and was used to calculate the 

OCR:ECAR ratio, which determines the preference for oxidative phosphorylation vs glycolysis 

(Fig 3D).  Although the ratios among groups were not different at day 0 (Supplementary 3D), we 
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found that 7 days post secondary infection, compared to always lean and weight gain mice, the 

always obese and weight loss mice had significantly higher OCR:ECAR ratios. Thus, the 

metabolism of the CD4+ T cells was set during the metabolic state of the primary infection, which 

was not corrected by weight loss.  Furthermore, the memory CD4 T cells generated in the lean 

state maintained a lean, metabolic phenotype, despite the secondary infection occurring in the 

obese state (weight gain mice). 

Similar impairments in metabolism were found for CD8+ T cells. Prior to secondary 

infection, OCR was not different among the groups (Fig 3E). However, following secondary 

infection, compared with the always lean mice, CD8+ T cells from the always obese mice and 

weight loss mice had significantly elevated OCR (Fig 3F).  As for CD4+ T cells, this finding 

suggests that the metabolism of CD8+ T cells was set at the time the primary infection occurred, 

resulting in similar OCR levels between always lean and weight gain mice (formally lean) and 

between always obese and weight loss (formally obese) mice.  Again, similar to the CD4+ T cells, 

the highest increases in OCR from day 0 to day 7 occurred in the always obese and weight loss 

mice (Fig 3G). OCR:ECAR ratio was also significantly higher in the always obese and weight loss 

mice compared with the always lean and weight gain mice (Fig 3H).   

 

Spare respiratory capacity impaired by obesity 

The ability of the T cell to produce energy under activation conditions is a function of the 

mitochondrial capacity available for the increased workload. This is considered to be the spare 

respiratory capacity (or “extra” capacity) available to the mitochondria under stressed conditions. 

Although there were some differences in CD4+ and CD8+ T cells prior to the secondary infection 

(FigS3I and S3J), at seven days post infection, CD4+ T cells from the lean mice had higher SRC 

compared with weight loss mice. In addition, the weight gain mice had higher SRC compared with 

the weight loss mice (Fig 3I). For CD8+ T cells, the findings were even more striking, with always 

lean and weight gain mice demonstrating significantly higher SRC compared with obese and 

weight loss mice (Fig 3J). Thus, the always lean and weight gain (formerly lean) mice tracked 
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together and the always obese and weight loss (formerly obese) also tracked together, 

suggesting that the metabolic environment at the time of primary infection sets the metabolism 

that remains during the secondary infection.   

 

Glut1 expression on CD4+ and CD8+ effector memory T cells is altered in mice that were 

obese at any time 

Glut1 is the dominant glucose transporter in T cells that traffics to the cell surface upon 

activation to increase glucose influx and glycolytic activity [199]. When naïve or memory cells are 

activated and transition to effector T cells, increased glycolysis occurs, which is supported by the 

upregulation of Glut1.  At day 0 and day 7 post secondary infection, we measured Glut1 

expression in spleen CD4+ and CD8+ effector T cells by flow cytometry.  Prior to secondary 

infection (day 0), compared with always lean and always obese mice, Glut1 expression on CD4+ 

cells in the weight loss group were significantly decreased (Fig 4A).  After infection, compared 

with always lean mice, Glut1 expression was decreased in always obese, weight gain and weight 

loss groups (Fig 4B). When comparing day 0 to day 7 post infection, there were no differences 

among groups (Fig 4C).  

For CD8+ T cells, although there were no differences among groups at day 0 (Fig 4D), 

we found that, following infection, compared with always lean mice, both weight gain and weight 

loss groups had decreased Glut1 expression (Fig 4E). Interestingly, a significant reduction in 

Glut1 expression at day 7 compared with day 0 occurred in the always lean, always obese and 

weight gain groups. The weight loss group was not significantly different between these two time 

points.  

Together these data suggests that obesity at any time alters expression of Glut1 on both 

CD4+  and CD8+ effector T cells.          
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Cytochrome C expression in CD4+ and CD8+ effector T cells is altered in mice that were 

obese at any time 

Cytochrome c is an indicator of mitochondrial electron transport and therefore 

mitochondrial function.  Although we did not detect any differences in CD4+ cytochrome c 

expression among groups prior to infection (Figure 4G), at day 7 post infection, compared with all 

other weight groups (always obese, weight gain and weight loss) always lean mice have 

significantly increased CD4+ cytochrome c expression (Figure 4H).  Along with weight gain and 

weight loss mice, always lean mice had significant increase in cytochrome c expression from day 

0 to day 7 (Figure 4I).  For CD8+ T effector cells, similar to the CD4+ T cells, there were no 

differences in cytochrome c expression in any of the groups at day 0 (Figure 4J). However, at day 

7 post secondary infection always lean was significantly increased compared to weight gain, 

always obese, and weight loss mice (Figure 4K).  This finding was the result of significantly 

decreased CD8+ expression of cytochrome c in weight gain, weight loss and always obese 

groups, whereas the cytochrome c expression in always lean mice did not vary from day 0 to day 

7 (Fig 4L).             

   

DISCUSSION 

 

Obesity continues to remain a global public health problem, contributing to an impaired 

immune response to influenza infection and vaccination [79-81, 170-173, 183, 200, 201].  Our lab 

has reported that, despite vaccination, obese adults are twice as likely to contract influenza or 

influenza like illness [200], likely due to impaired memory T cell function.  In addition, mouse 

models of obesity, from our lab and others, have demonstrated a dysfunctional T cell response to 

both primary and secondary influenza infections. The human studies and animal models all point 

to impaired memory T cell generation and function as the primary explanation for the increased 

morbidity in mortality from influenza infection in obese humans and obese mice.  
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Although these studies have established immune impairment in an obese state [79-81, 

170-173, 183, 200, 201], they have failed to determine if weight loss can restore the immune 

response to influenza infection.  Understanding these mechanisms is key to developing strategies 

to restore immunity.  Several studies have shown that weight loss through intervention or surgical 

means restores metabolic health, decreasing insulin resistance, onset of type II diabetes and 

impaired glucose intolerance, and decreased hypertension in adults [21-27].  Because these 

studies reported metabolic improvements with weight loss, we hypothesized that weight loss 

would also improve memory T cell metabolism and function. Surprisingly, however, we found that 

weight loss does not fully restore the memory T cell response nor metabolism upon re-infection.  

In addition to weight loss, we also investigated the effect of weight gain on memory T 

cells generated in a lean state. We hypothesized that lean memory T cells would be able to 

function in an obese environment. However, we found that obesity at the time of re-challenge 

negatively impacted the generation and function of both CD4 and CD8+ memory T cells. 

Together, these findings indicate that obesity at any time during a primary or secondary influenza 

infection significantly impairs memory T cells. 

For a memory T cell to be effective in participation against reinfection, it must be present 

at the site of the secondary infection. Following influenza infection, long-lived influenza-specific 

CD4+ and CD8+ memory cells can be found in the lung airways, spleen, lymphatic system, liver 

and circulation [202]. In addition to anatomical location, subsets of memory T cells can be 

distinguished by phenotype and function. Central memory T cells (TCM) are found in secondary 

lymphoid organs and express CD62L and CCR7. Effector memory T cells (TEM) lack the expression 

of CD62L and CCR7 and have a wider distribution in the peripheral organs and tissues [150, 203, 

204]. 

In addition to TCM and TEM populations, primary influenza infection generates a unique 

population of resident memory (TRM) T cells that persist in both the airways and parenchyma of the 

lungs following the resolution of  the infection [205-207] Unlike TCM and TEM, TRM do not recirculate 

throughout the body and they provide a high degree high degree of heterosubtypic immunity [177].  
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Specific to the lung airway environment, CD8+ TRM cells in the airway downregulate the T cell 

migration factor LFA-1 (CD11a) which is thought to trap them in the lung and prevent them from 

reentering circulation[208, 209]. TRM cells help to keep influenza reinfection from spreading to the 

lower airways and production of IFNγ by these cells promotes lung cell antiviral mechanisms and 

induces production of chemokines to recruit other immune cells. Lung TRM , which are generally 

marked by high CD103 expression, have been shown to be an important for greatly increasing the 

protective capacity of influenza vaccination in mice given live attenuated influenza vaccine 

(LAIV)[210]. Indeed, they have been proposed to be responsible for viral clearance and protection 

from morbidity from influenza infection following vaccination.  

When examining memory T cell subsets in the lungs of mice reinfected with influenza 

virus, we found that obesity at any time could reduce both their numbers and their function. 

Although, compared with always lean mice, weight loss and weight gain mice did not significantly 

differ in CD4+ or CD8+ TCM and TEM populations, always obese mice did have significantly lower 

CD8 TCM.  This was interesting, as the formation of CD8+ TCM cell populations can be driven by 

decreased activation of the metabolic pathway mTOR in acute viral infections [161, 163].  It is 

possible that the impaired metabolism of the obese phenotype failed to properly decrease 

activation of the mTORC1 pathway, leading to reduced generation of CD8+ TCM.    

In addition to TCM and TEM populations, we also identified TRM populations in the lungs 

from mice following a secondary influenza infection. We did not detect any significant differences 

in this population in our four weight groups at day 0 (uninfected), but at day 3 post PR8 infection, 

we found that numbers of CD4+ TRM  from always lean mice were significantly higher than the 

always obese group.  Numbers of CD4+ TRM   in the weight loss and weight gain groups were 

intermediate between always lean and always obese mice.  Our previous studies have 

demonstrated significantly increased morbidity and mortality in obese mice following a secondary 

influenza infection, and decreased lung CD4+ TRM in obese mice have contributed to this 

outcome.  
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Larger numbers of CD8+ TRM were found in the always lean group compared with the 

always obese group at days 0 and 3 post re-infection. By day 7 post infection, CD8+ TRM cells 

were significantly higher in the lungs of the always lean mice compared with weight loss, weight 

gain and always obese mice. These results suggest that obesity at any time impairs the either the 

generation of CD8+ TRM memory T cells in the lung.  

  In addition to finding decreased populations of memory T cells in the lungs of mice obese 

at any time, we also examined the expression of the functional markers INFγ and granzyme B.  

Compared with always lean mice, at day 3 post infection, weight loss (formerly obese) and 

always obese mice had significantly lower IFNγ and granzyme B expressing T cells. Thus, weight 

loss did not restore function in CD8+ memory T cells to re-infection with influenza infection, 

suggesting that memory T cells generated in an obese state retained an obese phenotype, 

despite weight loss.  These results suggest that the epigenome of the memory T cells generated 

in an obese environment was altered and carried into the lean environment. 

  Although the exact requirements to establish and maintain memory T cells is not 

completely understood, it is becoming increasingly clear that chromatin remodeling programs 

immune response genes toward a primed state, prior to terminal differentiation, and is associated 

with histone acetylation and DNA methylation[211, 212].  Komori et al. [213] demonstrated that a 

lower level of DNA methylation in memory T cells was associated with a higher level of induction 

upon stimulation, attributed to loss of repressor binding. Thus, changes in methylation status would 

be expected to affect memory T cell generation and function. Mitchell et al. [214] compared 

methylation patterns of naïve CD4+ T cells with memory CD4+ T cells and identified specific 

molecular changes in methylation involved in the transition from naïve to resting memory CD4 T 

cells. This finding has also been observed by others[215]. Recently, Rodriquez et al., [216] used 

whole genome methylation profiling on CD8+ T cell subsets (naïve, resting effector memory (EM) 

and terminally differentiated EM (TEMRA) cells isolated from healthy adults. Based on methylation 

patterns by using principal component analysis, they found distinct populations between naïve cells 
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and EM and TEMRA, which clustered together. Furthermore, they were able to correlate DNA 

methylation and gene-expression changes during CD8+ T cell differentiation.  

With particular relevance to our findings that CD8+ T cells from obese mice have 

significantly lower levels of IFNγ, several studies have found that the methylation status of the 

IFNγ promoter is related to its function and its transition from naïve to memory to effector cell 

[217].  We suggest that the obese environment can influence the methylation pattern of T cells, 

altering their metabolism and thereby affecting the ability of memory T cells to function. For 

example, cellular metabolism and metabolite availability is an important determinant of epigenetic 

enzyme activity and has been shown to influence the epigenetic mechanisms that control 

macrophage activity [218-220]. It is also well-recognized that epigenetic modifications can 

contribute to disease (56). For example, epigenetic changes can occur in diabetic patients which 

result in micro and macrovascular complications that occur despite normalization of blood sugar. 

Of particular importance to our study, Leung et al. [221] reported that epigenetic changes in the 

livers of formerly obese mice persisted well after weight loss. 

In addition to the weight loss mice, mice that gained weight and became obese also had  

impaired memory T cell generation and function, even though they were generated in a lean 

state.  These results suggest a metabolically unhealthy environment at the time of secondary 

infection can also impair T cell function. Together, these data demonstrate that the metabolic 

environment at the time of memory T cell generation and at the time of re-infection both impact 

the function of T memory cells.    

In addition to the activation of memory and naïve cells to functional effective cells upon 

reinfection with influenza virus, Treg populations are also induced to prevent an excessive 

immune response that could result in increased lung pathology [222].  Additionally, memory Tregs 

can regulate influenza specific CD8+ T cell numbers and IFNg production to reinfection, 

controlling pulmonary inflammation [222].  Previous studies in our lab have demonstrated that 

lung Treg numbers peak at day 5 post secondary infection in obese mice, with lean mice 

maintaining consistent numbers from day 5 to 8 post infection [172].  Consistent with these 
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results, we found that lean mice have significantly greater Treg populations before infection, and 

then maintain these populations throughout the course of infection.  However, weight loss and 

always obese groups have significantly decreased Tregs at day 0 and 3 post infection, and 

increased numbers of Tregs at 7 days post infection. Again, mice obese at any time have 

dysregulated T cell subsets. Obesity delayed Treg infiltration, suggesting that these cells are not 

available to regulate the CD8+ T cell recall response.   

As mentioned previously, obesity is primarily a metabolic disease, and T cell function is 

tied unquestionably to T cell metabolism. Reports that metabolic fuels such as glucose and fatty 

acids elicit distinct metabolic profiles depending on the cell state (naïve, effector or memory) has 

led to a revolution in the understanding of T cell driven immunity. Research in immunometabolism 

highlights the plasticity of T cells to respond to the energetic and biosynthetic demands required 

to fight influenza infection. Obesity is associated with hyperglycemia, insulin resistance and 

elevated leptin and triglycerides. Therefore, it was important to determine the metabolic state of 

memory T cells under conditions of obesity. Although T cells respond to antigenic challenge by 

altering their metabolic state, how might the metabolic condition of obesity impair the metabolic 

programming of the T cell during infection? In addition, could weight loss (formally obese) or 

weight gain (formally lean) re-program T cell metabolism? 

T cell metabolism is a dynamic process, with metabolic needs changing with the 

environment and stress signals. The function of T cells is completely dependent on their cellular 

metabolic state. Activation of T cells from a resting, quiescent state to an active effector state 

requires metabolic reprogramming from fatty acid oxidation (FAO) and oxidative phosphorylation 

(OXPHOS) to aerobic glycolysis [223].  This metabolic switch from fatty acids to glucose reflects 

the fuel and substrate needs for both proliferation and effector functions, e.g. the production of 

interferon gamma (IFNγ). The high glucose demand of activated T cells is met by increasing 

glucose transporter proteins and their location on the plasma membrane [168].. Activating the T cell 

receptor with the co-receptor CD28 leads to the phosphorylation of Akt and upregulation of Glut1 

mRNA and protein [199].  Glut1-deficient CD4 T effector cells have reduced production of IFNγ 
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[224].  Although activated T cells use glycolysis and oxidative phosphorylation of glutamine to 

support cell proliferation and function, inhibition of glycolysis limits effector function and cytokine 

production decreases  [225].  Compared to always lean mice, we found that Glut1 expression in 

both CD4+ and CD8+ T effector T cells was decreased in weight loss, weight gain and always 

obese mice. This finding suggest that the metabolic state of the infected animal is critical for 

metabolic reprogramming of T cells. Reduced Glut1 expression would likely lead to reduced 

glucose uptake, thereby altering T cell metabolism and consequently function. 

In addition to Glut1 expression, we also measured cytochrome C expression in lung CD8+ 

and CD4+ T cells as a measure of mitochondrial activity.  We found that, at day 7 post reinfection, 

cytochrome C expression was significantly higher in the always lean mice compared with weight 

loss, weight gain and always obese mice. Again, these results suggest that obesity at any time 

alters the metabolism of the T cell. 

 After an infection resolves, most (>90-95%) T effector cells are removed through apoptosis 

and the remaining T cells transition into memory T cells, capable of rapidly responding to 

reinfection. For the effective transition from active glycolytic effector cells into a resting, memory 

population, glucose uptake and glycolysis must be reduced [226]. Memory CD8+ T cells require 

FAO to function and rather than taking up free fatty acids (FFA) to fuel their basal functions while 

quiescent, work from Pearce’s group suggests that these cells synthesize fatty acids from glucose, 

which they then feed into the mitochondrial beta oxidation pathway to generate ATP[166].  Although 

this appears to be a futile cycle (cells use ATP in order to synthesize fatty acids that they then use 

to generate ATP), this cycle keeps the memory cell metabolism in a state that prevents 

mitochondria loss during prolonged (possibly years) quiescence. Fatty acids are also important for 

memory CD4+ T cells as well, because they are a key regulator of de novo fatty acid synthesis by 

inhibiting acetyl-CoA carboxylase 1 (ACC1). 

In addition to utilizing FAO and OXPHOS for their metabolic needs, tumor necrosis factor 

receptor-associated factor 6 (TRAF6)[160] and IL-15[162, 164] are needed for long-term 

maintenance of memory CD8+ T cells. Unlike naïve T cells, memory T cells need to be 
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metabolically primed to initiate a faster immune response to re-encounter with antigen. IL-15 

promotes mitochondrial biogenesis and increases the expression of CPT1a which transports long-

chain fatty acids into the mitochondria to be used for FAO[162]. Enhanced mitochondrial biogenesis 

and increased CPT1a expression contribute to the spare respiratory capacity (SRC) of memory T 

cells, where SRC is the difference of the ATP produced at the basal level by oxidative 

phosphorylation compared to maximal potential [165]. 

Van der Windt, et al. proposed a model of how SRC regulates memory T cell survival to 

infection, where increased mitochondrial mass allows increased use of fatty acids for OXPHOS, 

allowing memory cells to quickly switch their metabolism for pathogen clearance. We found that 

SRC was higher in CD8+ T cells at 7 days post infection in the lean and weight gain (formally 

lean) mice compared with the obese and weight loss (formally obese) mice. Thus, the metabolism 

of the T cells was set at the time of the primary infection, and did not reprogram following 

reinfection. In other words, the SRC of the weight gain mice tracked with the always lean mice, 

and the SRC of the weight loss mice tracked with the always obese mice.  

To further characterize T cell metabolism in each of our groups, we analyzed respiration 

through oxygen consumption (OCR) and glycolysis via extracellular acidification rate (ECAR).  

We found that CD8+ T cells did not differ in OCR, an indicator of OXPHOS, in any of the groups 

at day 0.  However, at day 7 post infection, we found significantly lower OCR in always lean mice 

compared to always obese and weight loss mice.  Lower OCR in always lean mice suggests 

lower respiration at day 7 while the always obese and weight loss (formally obese) are 

significantly more metabolically active.  Again, the always lean and weight gain mice tracked 

together with similar OCR metabolic profiles, while always obese and weight loss mice tracked 

together.  This again recapitulates our other findings that the time of memory T cell generation 

locks in the metabolic profile and drives function, as demonstrated in the differences induced with 

infection.    

Altogether, our data demonstrate that memory T cell metabolism is set at the time of 

primary infection and T cell subsets and function are influenced by both the metabolic 
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environment at the initial generation, and at the time of immune challenge.  We found that weight 

loss in obese mice did not restore immune function to reinfection, likely linked to the metabolic 

reprogramming of the T cells in the obese state, which was still present in the weight loss state.   

Although weight loss alone is not sufficient to restore function, metabolic drugs such as metformin 

may be therapeutic by improving the dysfunctional metabolism of the T cells, thereby restoring 

their ability to respond to infection.  Metformin inhibits complex I of the electron transport chain, 

thereby decreasing energy output [227].  As increased metabolic activity and reduced SRC was 

found in the always obese mice and weight loss mice (formally obese) compared to always lean 

mice, metformin use may provide a method to decrease the excessive metabolic activity, 

increase SRC and restore immune function.     

The findings from this data have significant public health importance and impact.  

Compared with lean adults, influenza vaccination of obese adults is less protective against 

influenza and influenza-like illness and our data suggest that weight loss alone may not be 

sufficient to restore vaccine efficacy.  Further interventions and revisions of vaccine strategies 

need to be considered.  More studies are needed to determine if giving additional booster 

vaccinations while on a regime of metabolic restoring drugs might provide an effective strategy for 

obese individuals and those who have lost weight to restore immune health.  

 

Experimental Model and Subject Detail 

 

Mice and Diet 

Experiments were approved by the Institutional Animal Care and Use Committee at the 

University of North Carolina at Chapel Hill. C57BL/6J six week old, male mice were obtained from 

The Jackson Laboratory and allowed one week of acclimation. Thirty mice were placed on a 

chow diet (Harlan Laboratories, 2920X) and the remaining 30 were placed on a 60% high fat diet 

(Research Diets, D12492), for 22 weeks. Fifteen mice from the chow diet were then placed on the 
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60% high fat diet designated as weight gain experimental group, and 15 mice from the 60% high 

fat fed diet were then placed on a chow diet and designated at the weight loss group. Mice were 

maintained on the weight switched diets for 15 weeks. Mice were provided with food and water ad 

libitum and housed 3-5 per cage.    

 

Method Details 

 

Influenza Infection 

For primary influenza infection, mice were lightly anesthetized with isoflurane and 

infected intranasally with 400 egg infectious dose 50% (EID50) in 30ul of sterile PBS of live X-31 

mouse-adapted recombinant influenza virus strain that consists of external hemagglutinin and 

neuraminidase proteins of A/Aichi/2/68 (H3N2) at 18 weeks on the diet. Mice were weighed every 

day for 14 days to monitor weight loss. For secondary infection, mice were lightly anesthetized 

and infected intranasally with 0.5 hemagglutination units (HAU) in 30ul sterile PBS of A/Puerto 

Rico/8/34 (PR8, American Type Culture Collection, Manassas, VA), a H1N1 influenza virus. Mice 

were then sacrificed at day 0, 3 and 7 post secondary infection with PR8.  

 

Quantitation of viral titers 

Lung viral titers were determined using a modified TCID50 protocol using hemagluttination 

as an endpoint.  Half of the lung was removed at harvest, and immediately frozen in liquid 

nitrogen.  Madin Darby canine kidney (MDCK) tissue culture cells were cultured in MEM 

supplemented with 10% fetal bovine serum (FBS) and 1% glutamine and penicillin/streptomycin 

overnight in a 96 well plate in 37°C at 5% CO2.  Lung tissue was weighed, and homogenized in 

0.2 ml minimal essential medium (MEM) and centrifuged at 9000 x g for 20 minutes.  Supernatant 

was serially diluted starting at 1:10 dilution in MEM containing 20 mg/l trypsin.  Media was 
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removed from the MDCK cultured plate, and serial dilutions (0.1ml) were added to the 80% 

confluent MDCK plate in replicates of six in the 96-well plate and cultured for 5 days at 37°C at 

5% CO2.  A suspension of 0.5% of turkey red blood cells was added to each well and incubated 

at room temperature.  TCID50 was determined by the Reed and Muench calculations [228].  

Values were normalized to the weight of the lung tissue.            

 

Bronchoalveolar lavage total protein measurements 

Tracheas of sacrificed mice were exposed and cannulated with a 22-guage angiocath, 

and the lungs were lavaged four times with HBSS and 3.75 ml was collected (first wash was 0.75 

ml, other washes 1 ml).  Washes were centrifuged, and the cell pellet was combined with lung 

cells for flow cytometry.  The supernatant was used for the measurement of total protein.  The 

first wash was diluted 1:10 and total protein was measured using bicinchoninic acid kit (Sigma-

Aldrich, St. Louis, MO).   

 

Histopathology 

Lungs were removed and inflated with 4% paraformaldehyde fixative in 0.1M sodium 

phosphate buffer pH 7.2, for 72 hours, and then placed in 70% ethanol and submitted to the UNC 

Lineberger Comprehensive Cancer Center Animal Histopathology Core lab for lung tissue 

paraffin embedding and H&E staining. The presence of mononuclear infiltrate was scored blindly 

based on a numerical scale from 0 to 4: 0 with no presence of inflammation; 1 with mild influx of 

inflammatory cells; 2, inflammation of ~25-50% of the total lung; 3, inflammation of 50-75% of the 

total lung; and 4 with the majority of the lung consisting of inflammatory cells. 
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Antibodies and Flow Cytometry 

Lungs were placed in collagenase II solution (Worthington) at 7mg/5mL of HBSS with 

Calcium and Magnesium and homogenized with Stomacher (Seward) until single cell suspension. 

Cells were filtered with Falcon 40 um cell strainer (BD Biosciences), and centrifuged for 5 minutes 

at 1500 RPM, pellet was treated with Ack lysis buffer at room temperature. Cells were washed 

with HBSS without Calcium and Magnesium and resuspended in PBS with 2% FBS. For the 

identification of TRM and Treg the following antibodies were used:  Alexa Fluor 700 anti-mouse 

CD3 (17A2, eBioscience), APC-Cy7 rat anti-mouse CD4 (GK1.5, BD Pharmingen), PacBlue rat 

anti-mouse CD8a (53-6.7, BD Pharmingen), PerCP-Cy5.5 rat anti-mouse CD11a (2D7, BD 

Pharmingen), FITC rat anti-mouse CD25 (3C7, BD Pharmingen), APC anti-mouse Foxp3 (FJK-

16s, eBioscience), BUV395 hamster anti-mouse CD69 (H1.2F3, BD Biosciences), BV480 rat anti-

mouse CD103 (M290, BD Biosciences) and Zombie Yellow Fixable Viable dye (BioLegend). For 

the identification of effector T cells and function the following antibodies were used:  Alexa Fluor 

700 anti-mouse CD3 (17A2, Biolegend), Alexa Fluor anti-mouse 594 CD4 (GK1.5, Biolegend), 

BUV395 rat anti-mouse CD8 (53-6.7, BD Biosciences), FITC rat anti-mouse CD62L (MEL-14, BD 

Biosciences), APC anti-mouse Granzyme B (GzA-3G8.5, eBioscience), PE-Cy7 anti-mouse 

Interferon gamma (XMG 1.2, eBioscience), BV421 hamster anti-mouse PD-1 (J43, BD 

Biosciences), and Zombie NIR (Biolegend). The following antibodies were used for TEM and 

TCM flow staining panel:  Alexa Fluor 700 anti-mouse CD3 (17A2, Biolegend), BUV395 Rat anti-

mouse CD4 (GK1.5, BD Biosciences), BV650 rat anti-mouse CD8a (53-6.7, BD Biosciences), 

PerCP-Cy5.5 Rat anti-mouse CD62L (MEL-14, BD Biosciences), PE-Cy7 anti-mouse CCR7 

(4B12, eBioscience), PE-CF594 hamster anti-mouse KLRG1 (1F1, BD Biosciences), BV421 rat 

anti-mouse CD127 (SB/199, BD Biosciences), BB515 rat anti-mouse CD44 (IM7, BD 

Biosciences), APC hamster anti-mouse (J43, BD Biosciences) and Zombie Yellow Fixable Viable 

dye (BioLegend).  One million cells were plated in a 96 well plate in PBS without added protein 

and stained at room temperature in the dark with Zombie viability dye according to manufacturer’s 

protocol.  Cells were stained at room temperature in the dark with class II tetramer I-A(b) 

Influenza A NP 311-325 (QVYSLIRPNENPAHK, courtesy of NIH Tetramer Core Facility) in PBS 
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with 2% FBS for one hour. Cells were then incubated with rat anti-mouse CD16/32 (BD 

Biosciences) for 5 minutes on ice, and then the remaining cell surface antibody master mix was 

added and incubated for 30 minutes on ice and kept dark. Cells stained for the effector and 

function panel were incubated with Golgi Plug (BD Biosciences) and permeabilized and fixed with 

Cytofix/Cytoperm kit (BD Biosciences) according to the manufacturer’s protocol.  Cells stained for 

TRM and Treg panel were stained for cell surface markers and then fixed and permeabilized 

using the Foxp3 Transcription Factor Staining Buffer kit (eBioscience) for intracellular 

transcription factor Foxp3.  Cells stained for the TEM and TCM were incubated with Zombie 

viability dye, tetramer, and rat anti-mouse CD16/32 as described above, then with antibody 

master mix for cell surface markers and then fixed with fixation bugger (life technologies).  All 

samples were acquired on a BD LSR II flow cytometer, and data was analyzed using FlowJo 

(Treestar).   

 

Extracellular Acidification Rate and Oxygen Consumption Rate 

T cells were isolated from mouse splenocytes following euthanasia on day 0 and day 7 of 

influenza virus infection. Cells were isolated using magnetic bead negative selection (Miltenyi) for 

CD4+ (Cat# 130-104-454) and CD8+ (Cat# 130-104-075) T cells in MACS buffer (PBS + 0.5% 

FBS + 2mM EDTA). Isolated T cells were counted using Bio-Rad TC20 with trypan blue exclusion 

for viability. XF96 cell culture microplates were treated with Cell-TakTM (Corning, Cat#354240) in 

0.1M sodium bicarbonate to allow for cell adherence and washed twice with sterile water. CD4+ 

and CD8+ T cells were plated in non-buffered RPMI-1640 with freshly added 10mM glucose and 

2mM glutamine at 150,000 cells per well. Extracellular acidification (ECAR) and oxygen 

consumption rates (OCR) were determined using the Seahorse XFe96 Flux analyzer (Agilent) at 

37oC in response to the mitochondrial stress test with injections of 1.0µM oligomycin (Sigma, 

Cat#O4876), 1.5µM FCCP (Sigma, Cat#C2920), antimycin-A (Sigma, Cat#A8674) and rotenone 

(Sigma, Cat# R8875).  
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Values for oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

from technical replicates were averaged and reported for each well.  Values  ≤ 0 were excluded.  

Basal respiration rate was determined as the last OCR value before the administration of the first 

injection of oligomycin.  Basal ECAR was taken as the last value of ECAR before the injection of 

oligomycin.  OCR to ECAR ratios were calculated by taking the basal respiration rate divided by 

the basal ECAR.  Maximal respiration was used for the calculation of spare respiratory capacity 

(SRC) and determined as the peak OCR (pmoles/min) following injection of FCCP.  SRC was 

calculated by subtracting basal respiration (pmoles/min) from the maximal respiration 

(pmoles/min).           

 

Statistical analysis 

All statistical analysis was performed using Prism 7 for Mac OSX, version 7.0c 

(GraphPad Software, Inc., La Jolla, CA).  Data comparing values for glucose, T cell populations 

by flow cytometry, and metabolic data of the four weight loss groups was tested for differences by 

one way ANOVA, follow by Tukey’s multiple comparison’s test. Data comparing metabolic data 

and flow cytometry data day 0 to day 7 in each weight loss group was tested for significance by 

Student’s t test.  All data was determined as significant by p<0.05.           
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Figure 1.  Development of a model to study the effects of weight loss and weight gain on 

memory T cells. (A)  Male, 6 week old C57BL/6J mice were randomly assigned to two groups, 

chow (n=60) or high fat diet (n=60).  Mice were fed their respective diets for 18 weeks.  Mice were 

infected with X-31 influenza virus, after generation of memory T cells (4 weeks), diets were 

switched and half of the mice receiving chow diet (n=30) were then placed on high fat diet, half of 

the mice being fed high fat diet were placed on chow diet (n=30) and the remaining mice 

maintained their original diet of chow diet (n=30), or high fat diet (n=30).   Mice were then 

maintained on switched diet for 15 weeks and then infected with PR8. (B) High fat diet fed mice 

gained significantly more weight than chow diet, and when switched diets, obese mice lost weight 

(weight loss) and lean mice gained weight to obese weight (weight gain).  Mice that did not switch 

diets maintained lean (always lean) or obese (always obese) weights.  (C) Fasting glucose for 

mice 1 week prior to secondary infection (n=60). (D) Percent weight loss to PR8 infection 

(n=120). (E)  Total weight loss to PR8 infection (n=120).   

 

 

 

	

 

 

 

 

 

 

 

 



	

	
	

52	

 

	A. 

E. D. 

C. B. 

alw
ay

s l
ea

n

weig
ht g

ain

alw
ay

s o
bes

e

weig
ht l

oss
0

50

100

150

200

250

Glucose values

Weight groups

G
lu

co
se

 (m
g/

dL
)

*
* * *

0 1 2 3 4 5 6 7 8
75

80

85

90

95

100

105

days post infection

%
 o

ri
gi

na
l w

ei
gh

t

Weight Loss PR8 infection

always lean

weight gain

always obese

weight loss

0 1 2 3 4 5 6 7

30

40

50

60

days post infection

w
ei

gh
t (

gr
am

s)

Total weight mice 0-120

always lean

weight gain

always obese

weight loss

0 1 2 3 4 5 6 7

30

40

50

60

days post infection

w
ei

gh
t (

gr
am

s)

Total weight PR8 infection

always lean

weight gain

always obese

weight loss

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

15

20

25

30

35

40

45

50

55

60

65

Weeks on diet

w
ei

gh
t (

gr
am

s)

always lean

weight gain

always obese

weight loss

1°
2°

Diet 
switch

*

*

*
*

*

18	weeks	on	diet

1. Chow only n=60
2. HFD only n=60

chow or 60% HFD 1° influenza infection X-31

Diet switch

15	weeks	on	diet

2 ° influenza infection PR8 

1. Chow    chow (always lean) n=30 
2. Chow    HFD (weight gain) n=30 
3. HFD     HFD  (always obese) n=30
4. HFD     chow (weight loss) n=30

4 weeks



	

	
	

53	

Figure 2.  Obesity at any time results in dysregulated generation of memory T cell 

populations and function to influenza infection.  Lungs were harvested, digested with 

collagenase, and homogenized into single cell suspensions and 1x106 cells were stained for 

memory T cell populations and function by flow cytometry.  (A) Percent of CD4+ T cell effector 

memory populations at day 3 and day 7 post infection to PR8 (n=4-5). (B) Percent of CD4+ tissue 

resident memory T cells at day 3 post PR8 infection (n=4-5).  (C) Percent of CD4+ tissue resident 

memory T cells at days 0, 3, and 7 post PR8 infection. (D)  Percent of Class II tetramer I-A(b) 

Influenza A NP 311-325 day 3 post PR8 infection (n=4-5). (E) Percent of Class II tetramer I-A(b) 

Influenza A NP 311-325 at days 3 and 7 post PR8 infection (n=4-5). Percent of CD4+ CD25+ 

Foxp3+ Tregs at day 0 (F), day 3 (G) and day 7 (H) post PR8 infection (n=4-5).  (I) Percent of 

CD4+ CD25+ Foxp3+ Tregs at days 0, 3 and 7 post infection for lean, weight gain, obese and 

weight loss groups (n=4-5).  (J) Percent of CD8+ T cell effector memory populations at day 3 and 

day 7 post infection to PR8 (n=4-5). (K) Percent of CD8+ central memory T cells at day 3 post 

PR8 infection (n=4-5).  (L)  Percent of CD8+ central memory T cells comparing day 3 and 7 post 

PR8 infection (n=4-5).  (M)  Percent of CD8+ tissue resident memory T cell populations at day 3 

(M) and day 7 (N) post infection to PR8 (n=4-5). (O) Percent of CD8+ tissue resident memory T 

cell populations at comparing days 0, 3 and 7 post PR8 infection (n=4-5).  (P) Measurement of 

intracellular functional markers granzyme B and IFNg at day 3 post PR8 infection (n=4-5).  (Q)  

Comparison of functional markers intracellular functional markers granzyme B and IFNg at days 

0,3 and 7 post PR8 infection (n=4-5). Each bar represents the mean ± SEM.  Data was defined 

as significant p<0.05.                              
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Figure 3.  Metabolic profile is programmed at time of memory T cell generation.  Spleens 

were harvested from mice, and CD4+ and CD8+ T cells were isolated by negative magnetic bead 

separation.  Cells were plated at 150,000 cells per well, and extracellular flux analysis was 

performed using the Seahorse XFe96 Flux analyzer at 37oC in response to the mitochondrial 

stress test with injections of 1.0µM oligomycin, 1.5µM FCCP, antimycin-A and rotenone.  (A)  

Basal respiration rate was measured in CD4+ isolated T cells as the last measurement of OCR 

before the injection of oligomycin at day 0 (A) and day 7 (B) and the comparison of both days (C) 

post PR8 infection (n=4-5).  (D)  OCR:ECAR ratio was calculated as the last measurement of 

OCR before oligomycin divided by the last measurement of ECAR before oligomycin (n=4-5).  

CD8+ T cell basal respiration was measured as the last measurement of OCR before oligomycin 

at day 0 (E), day 7 (F), and the comparison of days 0 and 7 (G) post PR8 infection (n=4-5).  (H)  

OCR:ECAR ratio was calculated as described above for CD8+ isolated T cells (n=4-5).   
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Figure 4.  Obese mice at any point have impaired Glut1 and cytochrome c expression.  

Cells were stained for intracellular proteins Glut1 and cytochrome c and measured by flow 

cytometry.  Glut1 and cytochrome c expression were measured as the median fluorescence 

intensity (MFI).  CD4+ IFNg+ cells were measured for Glut1 expression at day 0 (A) day 7 (B) and 

the comparison of both days (C) post PR8 infection (n=5).  CD8+ T cells were measured for Glut 

1 expression at day 0 (D) day 7 (E) and the comparison of both days (F) post PR8 infection (n=5).  

Cytochrome c expression was measured in CD4+ IFNg+ T cells at day 0 (G), day 7 (H) and the 

comparison of both days (I) post PR8 infection.  CD8+ T cells were measured for cytochrome c 

expression day 0 (J), day 7 (K) and the comparison of both days (L) post PR8 infection (n=5).   
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Supplementary Figure 1.  Lung infection titers, total protein, and pathology. No differences 

in lung pathology (A) viral titers (B) or albumin protein (C) between any of the diet groups to 

secondary influenza infection to PR8 (n=60).      
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Supplementary Figure 2.  Representative diagram of flow cytometry analysis for memory T 

cell populations and functional markers.  Cells were acquired on a BD LSRII instrument and 

150,000-200,000 cells were collected.  Cells were gated with a primary gate to exclude debris, 

then gated on negative population of the viability dye for viable cells.  Using area verses height to 

exclude doublet cells, then cells were gated off CD3, and then CD4 or CD8.  Cells were then 

analyzed for populations of interest from the CD3+CD4+ or CD3+CD8+ populations.   
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Supplementary Figure 3.  Metabolic profile is programmed at time of memory T cell 

generation.  Spleens were harvested from mice, and CD4+ and CD8+ T cells were isolated by 

negative magnetic bead separation.  Cells were plated at 150,000 cells per well, and extracellular 

flux analysis was performed using the Seahorse XFe96 Flux analyzer at 37oC in response to the 

mitochondrial stress test with injections of 1.0µM oligomycin, 1.5µM FCCP, antimycin-A and 

rotenone.  (A)  Basal glycolytic rate was measured in CD4+ isolated T cells as the last 

measurement of ECAR before the injection of oligomycin at day 0 (A) and day 7 (B) and the 

comparison of both days (C) post PR8 infection (n=4-5).  (D)  OCR:ECAR ratio for day 0 was 

calculated for CD4+ T cells as the last measurement of OCR before oligomycin divided by the 

last measurement of ECAR before oligomycin (n=4-5).  CD8+ T cell glycolytic rate was measured 

as the last measurement of ECAR before oligomycin at day 0 (E), day 7 (F), and the comparison 

of days 0 and 7 (G) post PR8 infection (n=4-5).  (H)  OCR:ECAR ratio was calculated as 

described above for CD8+ isolated T cells (n=4-5).      
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CHAPTER	IV:		CORRELATION	OF	METABOLIC	PROFILE	TO	T	CELL	FUNCTION	IN	ADULTS	
VACCINATED	WITH	INFLUENZA	QUADRAVALENT	INACTIVATED	VACCINE	

 

Introduction 

Seasonal influenza infects millions of people worldwide, causing up to half a million 

deaths in a non-pandemic year. Influenza virus is a highly transmissible virus that infects infection 

nose, throat and lungs. It can cause mild or severe illness, or can result in life threatening 

complications and death. In 2009, a novel swine-origin H1N1 reassorted virus emerged resulting 

in the first human influenza pandemic of the twenty-first century [229].  Notably, for the first time, 

obesity was found to be a risk factor for increased severity from influenza infection. The most 

effective protection to decrease the incidence or severity of influenza infection is vaccination, 

however, our lab has shown that despite vaccination, obese adults are twice as likely to develop 

influenza or an influenza like illness [200].  Furthermore, we have reported that CD4+ and CD8+ 

T cells from vaccinated obese adults express decreased activation and functional markers to 

pandemic H1N1(pH1N1) influenza virus [81]. We reported impaired humoral immunity, as obese 

individuals have impaired antibody maintenance to influenza vaccination over time [79].  

Additionally, overweight children have decreased antibody response to tetanus vaccination [82], 

and obese individuals have impaired seroprotection after hepatitis vaccination [230].  It is evident 

that obesity impairs the immune response to various infections and decreases vaccine 

immunogenicity, but it is also critical to understand these mechanisms to develop better public 

health strategies and vaccines for this population. 

Recent studies have shown that immune cell function is tied to their metabolism.  Resting 

T cells primarily utilize oxidative phosphorylation with low levels of glycolysis to meet metabolic 

needs.  When naïve T cells are activated by immune challenge, they increase glycolysis and 

glutamine metabolism to support effector functions.  The ability to metabolically switch will dictate 
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a functional immune response to influenza challenge.  This study was designed to determine if 

the metabolic status of T cells from vaccinated obese adults was responsible for their impaired 

response to influenza antigen.   

 

Materials and Methods 

 

Study population 

 Subjects were enrolled between March 2016 to March 2017 from the University of North 

Carolina at Chapel Hill Family Medicine Center as part of an ongoing, observational study to 

investigate the effects of obesity on the immune response to influenza infection conducted by the 

Beck lab.  The study population consisted of adult white females ages 35 to 65 that were 

vaccinated with either the 2015-2016 or 2016-2017 quadravalent influenza vaccine.  The 

influenza vaccine for the 2015-2016 influenza season consisted of A/California/07/2009, 

A/Switzerland/9715293/2013, B/Phuket/3073/2013, and B/Brisbane/60/2008, while the 2017-

2017 vaccine consisted of A/Christchurch/16/2010 (H1N1) NIB-74XP (A/California/7/2009 (H1N1) 

pdm09-like virus), A/Hong Kong/4801/2014 (H3N2) NYMC X-263B, and B/Phuket/3073/2013 

inactivated influenza strains. At time of enrollment, height and weight measurements were taken 

to calculate body mass index, and fasting serum and blood samples were obtained. Exclusion 

criteria for enrollment of subjects were immunosuppression, use of immunolodulator or 

immunosuppressive drugs, acute febrile illness, hypersensitivity to vaccine components, Guillian-

Barre syndrome, use of theophylline preparations or warfarin, or immunotherapy for cancer.  

Protocols and written consent procedures were approved by the University of North Carolina 

Biomedical Institutional review board.        
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Cell isolations and metabolic assays 

               Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples for each 

subject by Ficoll gradient centrifugation as per the manufacturers protocol for Sigma Aldrich Ficoll 

histopaque 1077.  CD4+ and CD8+ T cell populations were isolated from PBMCs by magnetic 

negative selection using StemCell technologies (StemCell Technologies, Vancouver, Canada) 

exclusion beads and magnet.  CD4+ and CD8+ T cells were measured for metabolic parameters 

freshly isolated, and with stimulation beads to activate and expand T cell populations to test 

function.  CD4+ and CD8+ isolated T cells were stimulated with anti-CD3/anti-CD28 magnetic 

beads with added 30 IU IL-2 (ThermoFisher Scientific, Waltham, MA) in RPMI-1640 with 

supplemented 10mM glucose, 2mM glutamine, 1% penicillin/streptomycin, and 5% autologous 

plasma for 72 hours at 37°C with 5% CO2.  CD4+ and CD8+ purified populations were plated for 

extracellular flux analysis at 2x105 cells per well in non-buffered RPMI-1640 with 10mM glucose, 

2mM glutamine and 1 mM pyruvate for unstimulated conditions.   

             Extracellular flux analysis was performed using an Agilent XFe96 flux analyzer using the 

mitochondrial stress test kit.  The mitochondrial stress test kit consists of the sequential 

administration of three inhibitors oligomycin, carbonyl cyanide-4 trigluoromethoxy 

phenylhydrazone (FCCP), and combination of retenone and antimycin A, to inhibit ATP synthase 

(Sigma-Aldrich, St. Louis, MO), uncouples the proton gradient, and complex I and III, 

respectively.  Inhibitor concentrations are as follows:  1uM oligomycin, 1.5uM FCCP, 0.1 uM 

retenone and 1.0 uM antimycin A.  Basal respiration rate measurement was determined as the 

third OCR measurement before oligomycin, and basal glycolytic rate was determined as the third 

ECAR measurement before oligomycin injection.  The OCR to ECAR ratio was determined by 

dividing the basal respiration rate by the basal glycolytic rate.           
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Flow cytometry  

PBMC’s were cultured in a 96 well tissue culture plate at 1.0x106 cells per well in RPMI-

1640 with added 1% penicillin/streptomycin, 10% fetal bovine serum at 37°C in 5% CO2.  Cells 

were stimulated with pandemic H1N1 (pH1N1) multiplicity of infection ~1 for 72 hours.  At 66 

hours, culture media was removed and fresh media was replaced in the presence of GolgiPlug to 

inhibit intracellular cytokine export for staining for flow cytometry intracellular antibodies.  Cells 

were stained with the following antibodies:  CD3 AmCyan, CD4 V450, CD8 APC-Cy7, CD28 

BUV395, CD40L Per-CP Cy5.5, CD69 BV605, IL-12R APC, PD-1 PE-Cy7, IFNg FITC, granzyme 

B PE, and Zombie Yellow viability dye.  Cells were stained with Zombie Yellow viability dye in 1X 

PBS at room temperature for 15 minutes protected from light.  Cells were washed, and incubated 

with Human BD Fc Block for 10 minutes at room temperature protected from light in PBS with 2% 

FBS.  Extracellular antibody master mix was added and incubated for 30 minutes at 4°C, 

protected from light.  Cells were washed, and Cytofix/Cytoperm (BD Biosciences) was added 

according to manufacturer’s protocol.  Cells were washed with permeabilization buffer, and 

intracellular antibody master mix was added in permeabilization buffer and incubated for 20 

minutes at 4°C, protected from light.  Cells were washed, and resuspended in 400ul of PBS with 

2% FBS.  Cells were acquired on the BD LSR II flow cytometer equipped with FACS Diva 

acquisition software (BD Biosciences) and data analysis was conducted with FlowJo software 

(FLowJo, LLC).  Cells were acquired by exclusion of debris, gated on negative selection by 

viability staining, doublet exclusion, and then the selection of populations of interest.   

 

Results 

 

Subject demographics for flow cytometry and metabolic assays.   

Three groups of participants were recruited from a subgroup of white woman ages 35 to 

65:  healthy weight non-diabetics (BMI 21.5 to 23.8; fasting glucose < 100mg/dL), obese non-
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diabetic (BMI ≥ 30.0; fasting glucose < 100mg/dL) and obese metformin treated diabetics (BMI > 

30.0; fasting glucose > 125mg/dL).  PBMC’s isolated from participants for flow cytometry assays 

are found in Table 1.  The mean age for the healthy weight women was 49±5.2, 50±8.5 for the 

obese non-diabetic, and 49±6.3 for the obese metformin-treated diabetic adults.  Patients were 

monitored on a weekly basis for confirmed influenza, or influenza like illness.  Confirmed 

influenza was defined as laboratory reported positive test, and influenza like illness was defined 

as fever over 100oF, and a cough in the absence of any other medically reported illness. Healthy 

weight, and obese non-diabetic adults did not report any illness, while there was one obese 

metformin-treated diabetic adult who reported confirmed influenza or influenza like illness.    

 Subject demographics for the cells used for metabolic assays can be found in Table 2.  

Healthy weight non-diabetics (BMI 20.4 to 24.1 fasting glucose < 100mg/dL), obese non-diabetic 

(BMI ≥ 30.0; fasting glucose < 100mg/dL) and obese metformin treated diabetics (BMI > 30.0; 

fasting glucose > 125mg/dL) were recruited as part of the subgroup of women.  There was one 

confirmed influenza or influenza like illness in the healthy weight group, none in the obese non-

diabetic group, and one in the obese metformin-treated diabetic group.    

 

No significant differences in percent of populations of CD4+ or CD8+ T cells in 

unstimulated and pH1N1 stimulated PBMCs isolated from healthy weight, obese non-

diabetic, and obese metformin-treated diabetic adults 

There were no statistical differences of unstimulated or pH1N1 stimulated conditions in 

CD4+ or CD8+ T cell populations isolated from PBMC’s from healthy weight, obese non-diabetic, 

and obese metformin-treated diabetic adults (Figure 1A, D).  CD4+ and CD8+ T cells did not 

statistically differ between groups at unstimulated conditions (Figure 1B, E) and at pH1N1 

stimulated conditions (Figure 1C,F).     
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No significant differences in CD28 or CD69+ expression in unstimulated and pH1N1 

stimulated CD4+ and CD8+ T cells from healthy weight, obese non-diabetic, and obese 

metformin-treated diabetic adults 

 CD4+ T cells from healthy weight, obese healthy, and obese metformin treated diabetic 

women within each group increased CD28 signaling marker and early activation marker CD69 

from unstimulated to pH1N1 stimulation conditions (Figure 2A).  While each group increased 

expression, these were not significant.  Additionally, comparing the groups to each other at 

unstimulated and stimulated, there were no significant differences (Figure 2B,C).  CD8+ T cells 

from healthy weight had increased expression from unstimulated to pH1N1 stimulated (Figure 

2D) compared to obese healthy and obese diabetic, but this was not significant.  Each group 

increased CD28 and CD69 markers to pH1N1 stimulation, but these increases were not 

significant.  Comparisons with the three groups at unstimulated and stimulated did not provide 

any significant results (Figure 2E,F).    

  

No significant differences in expression of functional markers granzyme B and IFNg in 

influenza stimulated PBMC’s from healthy weight, obese non-diabetic, and obese 

metformin-treated diabetic adults 

CD4+ T cells from healthy weight and obese healthy PBMC’s had higher functional 

markers granzyme B and IFNg from unstimulated to pH1N1 influenza stimulated conditions, 

however, the obese diabetic population did not increase (Figure 3A), and these differences were 

not significant.  At unstimulated conditions, there were no differences between the three groups 

(Figure 3B), and no differences at stimulated conditions (Figure 3C).  CD8+ T cells isolated from 

PBMC’s from the healthy weight group slightly increased from unstimulated to pH1N1 stimulated 

conditions, where the obese healthy did not increase, however these differences were not 

significant (Figure 3D).  CD8+ T cells from obese diabetic PBMC’s were lower, and did not 

increase functional markers from unstimulated to stimulated conditions, however, these 

differences were not significant (Figure 3D).  There were no statistical differences comparing the 
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three groups expressing functional markers at unstimulated conditions (Figure 3E), and pH1N1 

stimulated conditions (Figure 3F).   

  

No significant differences in expression of PD-1 in unstimulated and pH1N1 stimulated 

CD4+ and CD8+ T cells from healthy weight, obese non-diabetic, and obese metformin-

treated diabetic adults 

PD-1 expression was measured as a cell surface inhibitory marker associated with T cell 

exhaustion [231].  Within each group in healthy weight, obese healthy and obese metformin 

treated diabetic subjects there were no significant differences in expression between 

unstimulated and pH1N1 stimulated CD4+ and CD8+ T cells (Figure 4A,D).  Additionally, there 

were no differences comparing the groups of CD4+ and CD8+ T cells at unstimulated (Figure 

4B,E) and pH1N1 stimulated (Figure 4C,F) conditions.          

 

No significant differences in metabolic profile of resting, quiescent CD4+ T cells in healthy 

weight, obese non-diabetic, and obese metformin-treated diabetic adults   

There were no statistical differences in OCR and ECAR values between healthy weight, 

obese non-diabetic, or obese metformin-treated diabetic CD4+ T cells at rest (Figure 5C, D).  

Additionally, there were no statistical difference in CD4+ T cell OCR to ECAR ratios between 

healthy weight, obese non-diabetic, or obese metformin-treated diabetic groups, nor showed any 

trends (Figure 5E).  

 

No significant differences in metabolic profile of activated CD4+ T cells in healthy weight, 

obese non-diabetic, and obese metformin-treated diabetic adults   

CD4+ T cells stimulated with anti-CD3/anti-CD28 beads from obese healthy adults had 

slightly increased OCR (Figure 5C) and ECAR (Figure 5D) compared to healthy weight and 
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metformin-treated diabetic adults.  Stimulated CD4+ T cells from obese metformin-treated 

displayed slightly lower OCR and ECAR compared to stimulated CD4+ T cells from healthy 

weight adults (Figure 5C,D).  Stimulated healthy weight CD4+ T cells had slightly lower OCR to 

ECAR ratio compared to obese healthy and metformin-treated diabetic adults, however, these 

were not statistically different (Figure 5E). 

 

No significant differences in metabolic profile of resting, quiescent CD8+ T cells in healthy 

weight, obese non-diabetic, and obese metformin-treated diabetic adults   

Obese healthy, resting CD8+ T cells have slightly increased OCR (Figure 7C) and 

decreased ECAR compared to healthy weight CD8+ T cells (Figure 7D).  Obese metformin-

treated diabetic adults have slightly increased OCR compared to CD8+ T cells from healthy 

weight adults, but decreased OCR compared to obese healthy adults (Figure 7C).  CD8+ T cells 

from obese metformin-treated adults had decreased ECAR compared to the other two groups, 

however, these results were not statistically significant (Figure 7D).  Resting CD8+ T cells from 

healthy weight and obese healthy adults had decreased OCR to ECAR ratios compared to obese 

diabetic which was higher (Figure 7E), yet these were not statistically different.         

 

No significant differences in activated CD8+ T cells in healthy weight, obese non-diabetic, 

and obese metformin-treated diabetic adults   

Stimulated CD8+ T cells from obese healthy adults and obese metformin-treated obese 

adults displayed increased OCR compared to healthy weight adults (Figure 8A).  ECAR from 

stimulated CD8+ T cells from obese metformin-treated adults was slightly higher than healthy 

weight and obese healthy adults (Figure 8D), however these results were not statistically 

different.  There was no statistical differences in stimulated CD8+ T cells from healthy weight, 

obese healthy, and metformin-treated diabetic adults in the OCR to ECAR ratios (Figure 8E).      
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Discussion 

 

 Although this study was underpowered in order to achieve statistical significance, we can 

gleam some insights for future studies.  Our results suggest these differences are also cell type 

specific, and the function of CD4+ vs. CD8+ in adults is differentially affected with obese adults 

taking metformin.  With flow cytometry we did not detect any differences in percent population of 

CD4+ or CD8+ T cells from the three groups suggesting that impairments in the immune 

response are function driven, and not a result of decreased cell populations.  Studies in other 

groups showed mice administered metformin improved CD8+ memory T cell function by a TRAF 

dependent mechanism [161].  This suggests that the diabetic drug metformin taken by obese 

adults may have cell type specific effects on T cells that may improve response to influenza 

vaccination and infection. We used anti-CD3/anti-CD8 bead stimulation as a method to 

polyclonally activate and expand T cell populations for metabolism studies, but also used antigen-

specific activation by stimulating with the pandemic H1N1, for the flow studies.  

 We did not detect any statistically significant results in our studies due to small sample 

size, but did observe slight trends between the obese healthy and metformin-treated obese adults 

compared to healthy weight adults.  Overall, the metformin-treated obese adults had similar 

trends to the healthy weight adults.  T cells at rest primarily utilize oxidative phosphorylation with 

low levels of glycolysis, but upon activation upregulate glycolytic activity while decreasing 

oxidative phosphorylation.  CD4+ T cells at rest from metformin-treated obese adults displayed 

levels of OCR and ECAR that were closer to the healthy weight adults than the obese healthy 

adults.  Upon activation, metformin-treated obese adults did have higher OCR and lower ECAR 

values than both groups, but the overall OCR to ECAR ratio was more similar to healthy weight, 

suggesting that metformin-treated obese adults may have improved metabolic health driving 

better CD4+ T cell functional response compared to the non-treated obese adults.     CD8+ T 

cells from metformin-treated obese adults did display improved metabolism compared to the 

obese healthy adults.  At rest we see increased OCR and decreased ECAR which is expected 
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metabolism for resting cells.  With bead stimulated activation, we see higher ECAR in the 

metformin-treated obese adult group, which activation should upregulate glycolytic activity and 

effector function.   

Functional data measuring markers granzyme B and IFNg had lower expression 

compared to healthy weight and obese healthy adults, yet these differences were not statistically 

different.  We did not detect differences in the activation markers CD28+ and CD69+ in CD4+ or 

CD8+ T cells, but the healthy weight adults showed increased expression from rest to influenza 

stimulation conditions.  In our previous studies we have seen differences between healthy and 

obese adults, so adding more sample may help to detect differences between all three 

populations.  With such a small sample size, and the nature of variability of humans it is difficult to 

determine if these are true differences.  It is interesting to note that metformin-treated adults did 

have increased PD-1 expression, which is typically associated with cell exhaustion [232].  

Increased expression of PD-1 would affect the function and signaling mechanisms of T cell to 

provide an efficient effector response to infection. 

 Further experiments are needed to determine if these preliminary results hold true with a 

bigger sample size.  Additionally, experiments in mice are needed to determine the specific 

mechanisms and pathways that are being altered in obesity and metformin treated obesity.  As 

mentioned before, studies in mice have shown improved CD8+ T cell memory response to 

infection, however, these studies were not performed in the context of obesity.  As metformin was 

administered to already healthy mice, it is possible that metformin enhanced the already 

functioning memory T cell response.  Using metformin treated mice to examine the mTOR 

pathway, which regulates effector activation and memory T cell differentiation in CD4+ and CD8+ 

T cells, would shed light on metformin effect on immune cells.  Additionally, CD4+ T cells should 

be metabolically phenotyped by subsets Th1, Th2, Th17 and regulatory T cell populations as 

these subsets have different metabolism profiles which we may not be detecting differences by 

looking at overall CD4+ T cells.    
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 Overall, trends in metabolic profiling and flow cytometry data demonstrated that 

metabolic-treated obese adults may have different immune responses to influenza infection which 

has not been previously established.  Furthermore, determining the mechanisms of impairment is 

needed to see if metabolism altering drugs may improve immune response in other contexts of 

disease or infection in obese populations.   

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	
	

74	

 

 

 

 

 



	

	
	

75	

Figure 1.  Frequency of CD4+ and CD8+ T cell populations from healthy weight, obese non-diabetic 
and obese metformin-treated diabetic adults.  PBMC’s were isolated from blood, and cells were 
characterized by flow cytometry.  1.0x106 freshly isolated cells were stained for CD4+ and CD8+ T cell 
populations in healthy weight (n=3), non-diabetic obese (n=2), and metformin-treated obese diabetic adults 
(n=3).  Stimulated cells were plated at 1.0x106 cells per well in a 96 well plate, and stimulated with pH1N1 
for 72 hours and analyzed by flow cytometry.  There were no differences in CD4+ T cell populations 
comparing unstimulated to stimulated CD4+ T cells in healthy weight, non-diabetic obese, or metformin-
treated obese diabetic adults (A).  No significant differences of CD4+ T cell populations between the three 
groups at rest (B) and pH1N1 stimulation (C).  No significant differences in CD8+ T cell populations 
comparing unstimulated to stimulated conditions in healthy weight, non-diabetic obese, and metformin-
treated obese adults (D).  No significant differences in CD8+ T cell populations at rest (E) and to stimulation 
(F) between the three groups. Results are displayed as the mean ± SEM.            
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Figure 2.  Frequency of CD4+ and CD8+ T activation markers CD28 and CD69 from healthy weight, 
obese non-diabetic and obese metformin-treated diabetic adults.  PBMC’s were isolated from blood, 
and cells were characterized by flow cytometry.  1.0x106 freshly isolated cells were stained for CD28 and 
CD69 activation markers in CD4+ and CD8+ T cell populations in healthy weight (n=3), non-diabetic obese 
(n=2), and metformin-treated obese diabetic adults (n=3).  Stimulated cells were plated at 1.0x106 cells per 
well in a 96 well plate, and stimulated with pH1N1 for 72 hours and analyzed by flow cytometry.  There were 
no differences in CD4+ CD28+CD69+ T cell populations comparing unstimulated to stimulated 
CD28+CD69+ T cells in healthy weight, non-diabetic obese, or metformin-treated obese diabetic adults (A).  
No significant differences of CD28+CD69+ T cell populations between the three groups at rest (B) and 
pH1N1 stimulation (C).  No significant differences in CD8+CD28+CD69+ T cell populations comparing 
unstimulated to stimulated conditions in healthy weight, non-diabetic obese, and metformin-treated obese 
adults (D).  No significant differences in CD8+CD28+CD69+ T cell populations at rest (E) and to stimulation 
(F) between the three groups. Results are displayed as the mean ± SEM.     
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Figure 3.  Frequency of CD4+ and CD8+ T functional markers granzyme B (GrB) and IFNg from 
healthy weight, obese non-diabetic and obese metformin-treated diabetic adults.  PBMC’s were 
isolated from blood, and cells were characterized by flow cytometry.  1.0x106 freshly isolated cells were 
stained for GrB and IFNg functional markers in CD4+ and CD8+ T cell populations in healthy weight (n=3), 
non-diabetic obese (n=2), and metformin-treated obese diabetic adults (n=3).  Stimulated cells were plated 
at 1.0x106 cells per well in a 96 well plate, and stimulated with pH1N1 for 72 hours and analyzed by flow 
cytometry.  There were no differences in CD4+GrB+IFNg+ T cell populations comparing unstimulated to 
stimulated CD4+GrB+IFNg+ T cells in healthy weight, non-diabetic obese, or metformin-treated obese 
diabetic adults (A).  No significant differences of CD4+GrB+IFNg+ T cell populations between the three 
groups at rest (B) and pH1N1 stimulation (C).  No significant differences in CD8+ GrB+IFNg+ T cell 
populations comparing unstimulated to stimulated conditions in healthy weight, non-diabetic obese, and 
metformin-treated obese adults (D).  No significant differences in CD8+GrB+IFNg+ T cell populations at rest 
(E) and to stimulation (F) between the three groups. Results are displayed as the mean ± SEM.         
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Figure 4.  Frequency of PD-1 expression on CD4+ and CD8+ T cells from healthy weight, obese non-
diabetic and obese metformin-treated diabetic adults.  PBMC’s were isolated from blood, and cells were 
characterized by flow cytometry.  1.0x106 freshly isolated cells were stained for PD-1 cell surface marker in 
CD4+ and CD8+ T cell populations in healthy weight (n=3), non-diabetic obese (n=2), and metformin-treated 
obese diabetic adults (n=3).  Stimulated cells were plated at 1.0x106 cells per well in a 96 well plate, and 
stimulated with pH1N1 for 72 hours and analyzed by flow cytometry.  There were no differences in CD4+PD-
1+ T cell populations comparing unstimulated to stimulated CD4+PD-1+ T cells in healthy weight, non-
diabetic obese, or metformin-treated obese diabetic adults (A).  No significant differences of CD4+PD-1+ T 
cell populations between the three groups at rest (B) and pH1N1 stimulation (C).  No significant differences 
in CD8+ PD-1+ T cell populations comparing unstimulated to stimulated conditions in healthy weight, non-
diabetic obese, and metformin-treated obese adults (D).  No significant differences in CD8+ PD-1+ T cell 
populations at rest (E) and to stimulation (F) between the three groups. Results are displayed as the mean ± 
SEM.           
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Figure 5. Metabolic profile of quiescent CD4+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of freshly isolated CD4+ T cells 
from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-treated diabetic (n=3) subjects 
exhibits changes in OCR and ECAR in response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA 
and 0.1µM rotenone (A-B) in non-buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM 
pyruvate. Obese non-diabetics had higher trends in basal OCR (C), basal ECAR (D).  No differences in 
trends were seen for OCR:ECAR (E). Data are median ± SE. No significance, one-way ANOVA with 
Tukey’s multiple comparisons. Individual comparisons were made using Mann-Whitney sum rank test, 
no significance found. 
	

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Time (minutes)

O
C

R
 (p

m
ol

es
/m

in
) Healthy Weight

Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

0 10 20 30 40 50 60 70 80
0

2

4

6

8

Time (minutes)

EC
A

R
 (m

pH
/m

in
)

Healthy Weight
Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

Healthy Weight Obese Non-diabetic Obese Diabetic
0

5

10

15

20

25

O
C

R
 (p

m
ol

es
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0.0

0.5

1.0

1.5

EC
A

R
 (m

pH
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

20

40

60

80

SR
C

 (M
ax

 O
C

R
 - 

B
as

al
 O

C
R

)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

5

10

15

20

O
C

R
/E

C
A

R
 (p

M
ol

es
/m

pH
)

A B 

C D 

E F 

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Time (minutes)

O
C

R
 (p

m
ol

es
/m

in
) Healthy Weight

Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

0 10 20 30 40 50 60 70 80
0

2

4

6

8

Time (minutes)

EC
A

R
 (m

pH
/m

in
)

Healthy Weight
Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

Healthy Weight Obese Non-diabetic Obese Diabetic
0

5

10

15

20

25

O
C

R
 (p

m
ol

es
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0.0

0.5

1.0

1.5

EC
A

R
 (m

pH
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

20

40

60

80

SR
C

 (M
ax

 O
C

R
 - 

B
as

al
 O

C
R

)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

5

10

15

20

O
C

R
/E

C
A

R
 (p

M
ol

es
/m

pH
)

A B 

C D 

E F 

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Time (minutes)

O
C

R
 (p

m
ol

es
/m

in
) Healthy Weight

Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

0 10 20 30 40 50 60 70 80
0

20

40

60

80

Time (minutes)

EC
A

R
 (m

pH
/m

in
)

Healthy Weight
Obese Non-diabetic
Obese Diabetic

Olgiomycin FCCP Rotenone + AntimycinA

Healthy Weight Obese Non-diabetic Obese Diabetic
0

20

40

60

80

100

O
C

R
 (p

m
ol

es
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

20

40

60

EC
A

R
 (m

pH
/m

in
)

Healthy Weight Obese Non-diabetic Obese Diabetic
0

10

20

30

40

SR
C

 (M
ax

 O
C

R
 - 

B
as

al
 O

C
R

)

Healthy Weight Obese Non-diabetic Obese Diabetic
0.0

0.5

1.0

1.5

2.0

2.5

O
C

R
/E

C
A

R
 (p

M
ol

es
/m

pH
)

A B 

C D 

E F 



	

	
	

80	

 

 

 

 

 

 

	
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Metabolic profile of activated CD4+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of anti-CD3/anti-CD28 + IL-2 
stimulated CD4+ T cells from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-
treated diabetic (n=3) subjects cultured in 5% autologous plasma exhibits changes in OCR and ECAR in 
response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 0.1µM rotenone (A-B) in non-
buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM pyruvate. No differences in trends 
were seen for basal OCR (C), basal ECAR (D) or OCR:ECAR (E). Data are median ± SE. No 
significance, one-way ANOVA with Tukey’s multiple comparisons. Individual comparisons were made 
using Mann-Whitney sum rank test, no significance found.  Figure taken from William Green Master 
Thesis. 
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Figure 7. Metabolic profile of quiescent CD8+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of fresh CD8+ T cells from healthy 
weight (n=3), obese non-diabetic (n=3) and obese metformin-treated diabetic (n=3) subjects exhibit 
changes in OCR and ECAR in response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 
0.1µM rotenone (A-B) in non-buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM 
pyruvate. Higher trends in basal OCR were seen in obese non-diabetic and obese diabetic CD8+ T cells 
compared to healthy weight (C). A decreasing trend was seen in basal ECAR  (D) between groups. Obese 
metformin-treated diabetic CD8+ T cells had nearly two-fold higher OCR:ECAR than healthy weight and 
obese non-diabetic resting CD8+ T cells. Data are median ± SE. No significance, one-way ANOVA with 
Tukey’s multiple comparisons. Individual comparisons were made using Mann-Whitney sum rank test, 
no significance found.  Figure taken from William Green’s Master’s Thesis.  
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Figure 8. Metabolic profile of activated CD8+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of anti-CD3/anti-CD28 + IL-2 
stimulated CD8+ T cells from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-
treated diabetic (n=3) subjects cultured in 5% autologous plasma exhibits changes in OCR and ECAR in 
response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 0.1µM rotenone (A-B) in non-
buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM pyruvate. No differences in trends 
were seen for basal OCR (C), basal ECAR (D) or OCR:ECAR (E).  Data are median ± SE. No 
significance, one-way ANOVA with Tukey’s multiple comparisons. Individual comparisons were made 
using Mann-Whitney sum rank test, no significance found. Figure taken from William Green Master 
Thesis. 
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INTRODUCTION 

Influenza is a serious worldwide public health problem. Seasonally, 5-10% of adults and 

20-30% of children contract influenza virus, resulting in up to 500,000 deaths [233] and influenza 

pandemics greatly increase the number of infections and deaths. Indeed, the 1918 influenza 

																																																													
1 This chapter previous appeared as an article in the Journal of Obesity.  The original citation is as follows:  Neidich SD, 
Green WD, Rebeles J, Karlsson EA, Schultz-Cherry S, Noah TL, Chakladar S, Hudgens MG, Weir SS, Beck MA.  
“Increased risk of influenza among vaccinated adults who are obese,”  International Journal of Obesity, no. 10 (June 
2012):1038.   
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pandemic was estimated to have infected 20-40% of the world’s population, causing 

approximately 50 million deaths [234]. Historically, the highest risk groups for increased morbidity 

and mortality from influenza infection include the elderly [235], the very young  [236], individuals 

with chronic diseases such as diabetes [237] or congestive heart failure [238], and pregnant 

women [239].  During the 2009 H1N1 pandemic, obesity was recognized as an independent risk 

factor for complications from influenza [240] and continues to be a risk factor for seasonal 

influenza strains  [241] as well as for emerging influenza virus strains such as A(H7N9) [242]. 

Obesity is not only a concern in the US, with 37% of adults obese [243], but also affects 14% of 

the worldwide adult population [5].  Therefore, with a growing obesity epidemic, complications 

from influenza infection would be expected to increase.  

Influenza vaccine remains the primary method currently available for prevention of 

influenza infection. Each year, vaccines are formulated based on evaluations of previously 

circulating influenza strains. Typically, the vaccine contains two influenza A strains and one, or 

more recently two, influenza B strains. Vaccine-generated antibodies against the viral surface 

protein hemagglutinin (HA) are considered to be protective, therefore vaccines are standardized 

to the quantity of HA, generally 15 µg of HA per strain [244]. A serum hemagglutination inhibition 

(HAI) titer of 40 or greater has historically been considered an immunological correlate of 

protection from influenza infection, corresponding to 50% protection [245].  Protection against 

influenza infection increases up to an HAI titer of 160, beyond which further protective capacity is 

minimal [180].  High risk groups for influenza infection, including the elderly and children under 6 

years of age, may need to reach titers greater than 40 to achieve protection [246].  To determine 

if obesity altered the risk of developing influenza or ILI in a vaccinated adult population, we report 

the incidence of influenza infection and influenza-like illness (ILI) in vaccinated obese and healthy 

weight adults as well as the extent to which participants with influenza infection and ILI produced 

influenza specific antibodies.  
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SUBJECTS AND METHODS 

	

Study Design  

Participants were recruited as a part of a prospective observational study carried out at 

the University of North Carolina at Chapel Hill Family Medicine Center, an academic outpatient 

primary care facility in Chapel Hill, North Carolina. All procedures were approved by the 

Biomedical Institutional Review Board at the University of North Carolina. At enrollment, informed 

written consent was received.  

 

Participants 

Recruitment criteria for this study were adults 18 years of age and older receiving the 

seasonal trivalent inactivated influenza vaccine (IIV3) for the years 2013-2014 and 2014-2015. 

Exclusion criteria were immunosuppressive diseases including HIV, use of immunomodulatory or 

immunosuppressive drugs, acute febrile illness, history of hypersensitivity to any influenza 

vaccine components, history of Guillain-Barre syndrome, use of theophylline preparations, or use 

of warfarin.  Height and weight were measured and a baseline serum sample drawn. BMI for 

each participant was calculated as weight (kg)/height(m) [234].  Healthy weight was defined as a 

BMI of 18.5-24.9, overweight as a BMI of 25-29.9 and obese as a BMI of ≥30. 

 

Vaccines and Sample Collection 

One dose of 2013-2014 trivalent inactivated influenza vaccine (0.5 mL Fluzone; Sanofi 

Pasteur, Swiftwater PA, USA) containing A/California/07/2009 H1N1, A/Texas/50/2012 H3N2, 

and B/Massachusetts/02/2012 or 2014-2015 trivalent inactivated influenza vaccine (0.5 mL 

Fluvirin; Novartis Vaccines and Diagnostics Limited, Basel, Switzerland) containing 

A/California/07/2009 H1N1, A/Texas/50/2012 H3N2, and B/Massachusetts/02/2012 was 

administered in the deltoid muscle, using an inch and half needle, at baseline. Participants 
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returned 26-35 days later for a post-vaccination blood draw. In the 2013-2014 vaccine year, 

vaccination of participants started on September 16, 2013 and the last vaccination was given on 

November 4, 2013. Influenza was first detected in NC on November 30, 2013, and cases peaked 

on January 11, 2014, with influenza levels back to baseline on May 17, 2014.  In the 2014-2015 

vaccine year, vaccination of participants started on September 15, 2014 and were completed on 

October 28, 2014. Influenza was first detected in NC on November 29, 2014 and cases peaked 

on December 27, 2014. Influenza levels were back to baseline on April 25, 2015.  Serum samples 

were stored at -80o C until analyzed.  During the 2013-2014 season in North Carolina, influenza 

2009 A/H1/N1 was the predominate circulating strain, and during the 2014-2015 season, 

influenza A/H3N2/Switzerland was the predominate circulating strain. 

 

Surveillance and diagnosis of influenza and/or influenza-like illness (ILI) 

Participants were contacted weekly beginning with the first report of influenza activity in 

the community and contact was discontinued when influenza was no longer active. Participants 

were contacted by phone or email and asked to report any symptoms of fever, cough, runny 

nose, sore throat, muscle aches, headaches and fatigue to assess for influenza symptoms. 

Medical records of all study participants, whether they reported ILI or not, were reviewed at the 

end of each season for medically reported influenza-like illness or laboratory confirmed influenza. 

Participants were also instructed to contact the study nurse if they developed ILI. Laboratory 

confirmed influenza infection was determined from the medical records which reported a positive 

influenza specimen using the FDA cleared Cepheid Xpert Flu assay (Cepheid, Sunnyvale, CA).  

This assay distinguishes between influenza A and influenza B strains, but does not subtype the 

strains. All participants who tested positive for influenza were diagnosed with influenza A. ILI was 

defined using the CDC guidelines [247] as fever greater than 100o F with a cough and in the 

absence of any other medical diagnosis. All subjects with laboratory confirmed influenza also met 

our criteria for ILI.  
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Immunogenicity 

Hemaglutination Inhibition (HAI) Assay 

The HAI titer was blindly determined in accordance with World Health Organization 

guidelines [248] for all patients reporting laboratory confirmed influenza or ILI, as well as matched 

non-illness reporting participants. 

Microneutralization (MN) Assay 

Standard microneutralization (MN) were blindly performed according to WHO guidelines 

[248].  Luminescent MN assays were blindly performed as previously described using a reverse 

genetics A/California/04/2009 virus or A/Texas/50/2012 containing an NLuc on its polymerase 

segment [78].  MN were conducted for participants with laboratory confirmed influenza and 

matched controls who did not report any ILI during influenza season. 

 

Matched non-illness reporting participants 

For every participant who either had laboratory confirmed influenza or reported ILI, we 

matched them with a non-illness reporting participant. Matching of the non-illness reporting 

participants was done on a one-to-one basis with the 74 participants with either confirmed 

influenza or reporting ILI based on the following criteria in the order provided: 1) same vaccine 

year; 2) sex; 3) Race; 4) weight category; 5) diabetes status; 6) statin use; 7) smoking status; 8) 

age (within 10 years). All samples were uniquely matched.  

 

Statistics 

Individuals were categorized as underweight (BMI < 18.5), healthy weight (BMI 18.5 - 

24.9), overweight (BMI 25.0 - 29.9), or obese (BMI ≥ 30). The Jonckheere–Terpstra test was 

employed to assess associations between baseline covariates and the ordinal weight category. 

Risk ratios for laboratory confirmed influenza and influenza-like Illness (ILI) were estimated by 
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fitting a log-binomial model using generalized estimating equations (GEE) with an exchangeable 

working correlation structure to account for repeated observations per individual. Logistic 

regression models fit using GEE were utilized to examine associations of diabetes and statin use 

with obesity and risk of influenza/ILI.  Microneutralization and HAI results were analyzed via 2-

way repeated measures analysis of variance (ANOVA). The Wilcoxon signed-rank test was used 

for comparisons between matched pairs. Seroconversion and seroprotection were analyzed by 

the chi-square test of independence. P-values less than 0.05 were considered statistically 

significant. All analyses were conducted in Graphpad Prism, Stata, and/or R. 

 

RESULTS 

 

Demographics of Participants 

During the 2013-2014 vaccine year, we enrolled 587 participants and 575 (98.0%) 

completed the study. During the 2014-2015 vaccine year, we enrolled 455 participants and 447 

(98.2%) completed the study. As shown in Table 1, overall, our participants were 27% healthy 

weight, 28% overweight and 44% obese. In both years of the study, approximately 60% of the 

participants were Caucasian and 30% African-American. Female participants represented 

approximately 63% of the total participants.  As has been reported for other studies, African-

Americans [187, 249] and diabetics [250] were more likely to be obese, and statin use was 

associated with higher BMIs.  However, statin use and diabetes was not independently 

associated with influenza or influenza-like illness. Most of the participants were either non-

smokers, or had never smoked, with approximately 17% current smokers. There were 184 study 

subjects who participated in both years of the study, fifteen of which reported ILI in one or both 

years of the study. 
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Relative Risk for Influenza and ILI 

In the total vaccinated adult participants for both vaccine years, there were 10 laboratory 

confirmed cases of influenza A and 64 cases of ILI (Table 2). Of the 74 participants with either 

confirmed influenza or ILI, 19% were healthy weight, 22% were overweight and 59% were obese. 

Relative to influenza incidence in vaccinated healthy weight adults, vaccinated obese adults had 

double the risk for laboratory confirmed influenza considered together with ILI (estimated risk ratio 

2.06 with 95% confidence interval 1.14, 3.71).   Risk ratio estimates were similar when adjusting 

for age, sex, and smoking status using log-binomial regression (results not shown). Diabetes and 

statin use were not associated with influenza or influenza-like illness, however, as expected, BMI 

category was a significant predictor of diabetes and statin use.  

 

Seroprotection and Seroconversion 

Among the 74 cases of confirmed influenza or ILI during 2013-2014 and 2014-2015, 30 

(41%) seroconverted (four-fold increase from pre- to post-vaccination HAI titer) to vaccine strain 

A/H1N1/California/pdm2009 and 34 (46%) seroconverted to vaccine strain 

A/H3N2/Texas/50/2012. For these same 74 participants, 70% reached a seroprotective titer (26-

35 day post vaccination HAI titer > 40) for A/H1N1/California/pdm2009 and 80% reached a 

seroprotective titer for A/H3N2/Texas/50/2012. However, no differences were observed in 

seroprotective or seroconversion rates based on BMI (Table 3 and Figures 1a-b). 

During the 2014-2015 influenza season, the H3N2 vaccine strain was a poor match for 

the circulating strain [187].  Therefore, for the 43 cases of laboratory confirmed influenza or ILI 

during 2014-2015, we measured HAI titers pre and post vaccination against the circulating 

influenza A/H3N2/Switzerland/9715293/2013 strain. Seroconversion for this strain occurred in 19 

(44%) participants, and seroprotection was present in 30 (70%) participants. Again, no 

differences were observed based on BMI (Table 3 and Figures 1c). Higher, alternative cutoffs for 

seroprotection levels of HAIs at 80, 160 and 320 were also determined, and no differences were 

observed based on BMI (Table 3). 
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Laboratory confirmed Influenza and ILI compared to non-illness reporting matched 

controls 

All 74 participants with either laboratory confirmed or ILI were matched with non-illness 

reporting participants and their demographics are shown in Supplemental Table 1. There were no 

differences in pre or post HAI titers for the vaccine strains A/California/H1N1/pdm2009 (Figure 

1d) and A/Texas/H3N2/50/2012 (Figure 1e) or for the circulating 2015 influenza strain 

A/H3N2/Switzerland/9715293/2013 (Figure 1f) between participants reporting ILI and their non-

reporting matched controls. Similarly, there was no difference in HAI (Figures 1g-h) or MN 

influenza titers (Figures 1 j-k) between participants with laboratory confirmed influenza and their 

matched, uninfected controls.  

 

DISCUSSION 

 

The first influenza pandemic of the 21st century resulted in identifying obesity as an 

independent risk factor for increased severity from infection with Influenza A/pH1H1/20098.  Since 

that time, obesity has also been identified as a risk factor for seasonal and emerging influenza 

strains. This is highly significant, in that obesity levels in the US population are at epidemic 

proportions, with 37% of adults overall obese [243] and even higher rates in non-Hispanic blacks 

(48%) [249].  Obesity rates worldwide have doubled since 1980 and currently 13% of the world’s 

adult population is obese [5] leaving a large number of obese adults in the US and worldwide at 

significant risk for infection with influenza virus.  

Influenza vaccination represents the best method of protection from infection with 

influenza virus.  Several studies have suggested that overweight and obesity impairs vaccine 

response to several pathogens. For example, non-responders to hepatitis B vaccination are 

overrepresented in obese adults [76] while tetanus toxoid response in overweight children is 
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similarly impaired [251].  A recent review on the association of obesity with vaccine responses 

points to a number of studies that demonstrate diminished vaccine-induced immune responses in 

both obese adults and children [252].  We have also documented impaired vaccine-specific T cell 

responses in influenza vaccinated obese adults [81] and a waning serological response one year 

post vaccination [79]. Despite the growing number of studies implicating obesity in poor 

responses to vaccination, and specifically influenza vaccination, a key question remains 

unanswered: in obesity and healthy weight, does vaccination offer the same protection from 

influenza and ILI? 

Here, for the first time, we demonstrate that obese adult recipients of IIV3 have two times 

greater incidence of influenza and/or ILI despite being vaccinated. One obvious hypothesis for the 

increase in influenza and ILI in obese adult participants is a failure to seroconvert or reach 

seroprotective levels of antibody.  Serological responses to influenza vaccination are typically 

assessed as seroprotection, defined as an HAI titer of 40 or greater post vaccination, or 

seroconversion, defined as a 4 fold or greater increase in HAI from prevaccination titer to post 

vaccination titer.  However, we found that the increased susceptibility to influenza and ILI in the 

obese adults was not associated with a failure to reach a seroprotective titer or to seroconvert. 

Indeed, we found no statistical differences in serological responses to vaccine between healthy 

weight and obese vaccinated adults. For the H1N1 strain, 36% of healthy weight adults 

seroconverted compared with 43% of obese adults. Similarly, seroconversion rates to the H3N2 

vaccine strain were 43% of healthy weight adults and 50% of obese adults. When using the 

commonly defined seroprotective HAI titer of ≥40, more than 70% of the healthy weight and 

obese participants reached this HAI level. 

The presence of a “seroprotective” level of antibody against influenza A strains 

demonstrates that, despite the vaccine inducing this this correlate of protection, the obese adults 

were still 2X more likely to develop influenza and ILI. This lack of protection, even with a 

seroprotective antibody titer, has also been observed in elderly and children [246], where a higher 

HAI definition as a correlate of protection has been proposed. Our data, however, do not suggest 
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an elevated definition is protective for obese adults. Raising the seroprotective cutoff level to 80, 

160 and 320 still failed to differentiate healthy weight adults from obese adults.  

The 2014-2015 influenza vaccine effectiveness overall was reduced (13% vs 61% in 

2013-2014) due to the circulating Influenza A H3N2 strain having drifted from the H3N2 vaccine 

strain [76]. Therefore, for all participants who had influenza or ILI during the 2014-2015 vaccine 

season, we measured HAI antibody titer against the circulating A/Switzerland/9715293/2013 

strain. Despite the mismatch with the vaccine strain, IIV3 induced seroconversion among 67% of 

the healthy weight and 32% of the obese participants. For a seroprotective level of ≥40 HAI, 67% 

of healthy weight and 60% of obese participants achieved this level. There were no statistical 

differences in seroprotection or seroconversion rates between healthy weight and obese adults. 

We found no differences in HAI titers between non-illness reporting participants and 

participants reporting ILI. In addition to HAI, virus microneutralization (MN) titers are a highly 

sensitive and specific method for detecting antibodies that inhibit viral entry or exit out of the cell. 

Cheng et al. [253] reported that, compared to HAI titers, MN titers demonstrated a greater 

seroconversion rate and fold increase and suggested that neutralizing antibody titers may be a 

better correlate of protection for understanding influenza vaccine effectiveness.  However, as was 

found for HAI titers, there were no differences in MN titers between uninfected controls and 

infected participants. 

Our study has several limitations. Although we used the CDC’s stringent definition for ILI 

and ILI is widely used for influenza surveillance reporting, we do not have nasal swabs from 

subjects with ILI. Therefore, we could be over-reporting, as some of the ILI subjects may be 

positive for a respiratory virus other than influenza, or under-reporting, as the more stringent CDC 

criteria may miss some milder ILI symptoms that are influenza positive.  By only collecting ILI 

data during times of influenza circulating in the community, this helps to reduce over-reporting, 

but it doesn’t eliminate this possibility.  In addition, our study does not address the possibility that 

obese adults may be more exposed to influenza compared with healthy weight adults. Under this 

possibility, the influenza vaccine may equally protect healthy weight and obese adults, however 
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an increased rate of infection exposure in obese adults could lead to an increased rate of 

infection in vaccinated obese adults compared with healthy weight adults. However, Murphy et al. 

[254] used data from the 2010 Health Survey for England, which asked in a survey question 

administered during the year following the 2009 H1N1 influenza pandemic whether participants 

had experienced “flu-like illness where [respondents] felt feverish and had a cough or sore 

throat,” and considered cases between May and December 2009 to be flu-like illness in that 

study. The investigators found no relationship between ILI (including laboratory confirmed 

influenza) and obesity.  This finding may suggest that influenza infection rates in healthy weight 

and obese adults are similar, and therefore our findings are related to a failure of the vaccine to 

protect obese adults to the same extent as healthy weight adults. Indeed, in an animal model, 

Karlsson et al. [78] reported that although lean mice were protected from influenza infection 

following vaccination, diet-induced obese mice were still susceptible to influenza infection despite 

vaccination. This contrasts with school aged children, where live attenuated influenza vaccination 

was shown to reduce risk for laboratory confirmed influenza similarly for healthy weight and 

obese [255].  These contrasting findings may be driven by differences in vaccine preparation (live 

versus inactivated), or by differences between obese adults and children.  

The findings reported here demonstrate that, compared to vaccinated healthy weight 

adults, vaccinated obese adults were 2X more likely to develop influenza infection and ILI.  

Notably, HAI antibody titers, widely viewed as correlates of protection against influenza, were 

unreliable as predictive of disease protection in obese adults.  Previously, we [79] and others 

[256-258] have reported that HAI antibody titers 30 days post vaccination in obese adults or 

children are either slightly higher or no different from vaccinated healthy weight individuals. The 

present study confirmed these earlier reports on vaccine-induced antibody titers. However, here 

we found that an HAI antibody titer of 40 or higher was not a serological correlate for vaccine-

induced protection and did not prevent laboratory confirmed influenza and ILI in obese adults.  

Additionally, MN titers in obese adults were also inadequate predictors of protection and these 

studies directly correlate with studies conducted in obese mice [78].  Although our study does not 

compare vaccinated obese adults with unvaccinated obese adults, it is clear that vaccinated 
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obese adults are at a higher risk for influenza and ILI compared to vaccinated healthy weight 

adults.  

The mechanism for increased risk of influenza and ILI in the obese population may be 

due to poor T cell function.  As we have reported previously, compared with T cells from 

vaccinated healthy weight adults, T cells from influenza vaccinated obese adults are less 

activated and less functional when stimulated with vaccine strains of influenza [79, 81].  As T cells 

are necessary for protection and recovery from influenza, impaired T cell function, despite a 

robust serological response, may render vaccinated obese adults more susceptible to influenza 

infection.  Indeed, vaccinated elderly adults are also less protected from influenza infection 

despite having an adequate serological response, which was attributed to poor T cell responses 

[259]. 

Taken together, these results suggest that the effectiveness of influenza vaccines, and 

perhaps other vaccines as well, should be fully assessed in obese adults. Alternative approaches 

may be needed to protect obese adults.  For example, use of adjuvanted influenza vaccines such 

as MF59 (FLUAD, Seqirus) or high-dose vaccine preparations recommended for vaccinating 

adults over 65 may be warranted for use in an obese population. 
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Table	4:	Seroconversion	and	Seroprotection	rates	in	participants	who	presented	with	Influenza-like	illness.	Data	are	shown	as	

percentage	of	data	points.		Only	participants	from	2014-2015	were	assessed	for	A/Switzerland/H3N2.	Data	from	10	subjects	were	

not	analyzed	for	pH1N1	and	a/Texas/50/H3N2,	including	one	eligible	for	A/Switzerland/H3N2	analysis.	a:	Seroconversion	is	defined	

as	4-fold	or	greater	increase	in	HAI.	b:	Seroprotection	is	defined	as	HAI>40	at	30	days	post	vaccination.	c:	Seroconversion	was	

insignificantly	lower	in	obese	subjects	compared	with	healthy	weight,	p=0.0525.	
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Figure 5.1.  Weight does not impact Influenza HAI antibody generation. HAI for all subjects 

with flu/flu like illness displayed by weight status. HAI shown against vaccine-included strains 

A/California/H1N1pdm09 (A) and A/Texas/50/H3N2 (B), and major circulating strain 

A/Switzerland/9715293 (C). Comparison between weight and time post vaccination was 

assessed by ANOVA, p<0.05 is indicated.  

 

 

 

 

 

 

 

 

 

 

Pre 
Vac

cin
ati

on

30
 D

ay
s P

ost 
Vac

cin
ati

on

5

20

80

320

1280

H
A

I
A. A/California/H1N1/pdm09

p=0.0130

Healthy Weight influenza-like illness
Overweight influenza-like illness
Obese influenza-like illness

Pre 
Vac

cin
ati

on

30
 D

ay
s P

ost 
Vac

cin
ati

on

5

20

80

320

1280

H
A

I

A/Texas/50/H3N2/2012
p=0.0002

Pre 
Vac

cin
ati

on

30
 D

ay
s P

ost 
Vac

cin
ati

on

5

20

80

320

1280

H
A

I

C. Switzerland/H3N2/9715293 
p=0.0001



	

	
	

101	

 

 

Figure 5.2. Confirmed Influenza was not predicted by HAI. Hemaglutination Inhibition against 

A/California/H1N1/pdm09 (A) and A/Texas/50/(H3N2) (B) broken down by influenza outcome. 

Data shown reflects sera from participants with laboratory-confirmed influenza infection (Yellow, 

n=10) with matched controls (black, n=10), and influenza-like-illness excluding confirmed 

influenza (purple, n=54). Statistical values reflect 2-way ANOVA  pwith a statistical cutoff of 

p=0.05. 
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Figure 5.3. Confirmed Influenza was not predicted by Microneutralizing Antibodies. 

Microneutralization against A/California/H1N1/pdm09 (A) and A/Texas/50/H3N2 (B). Data shown 

reflects sera from participants with laboratory clinically influenza infection (red, n=10) with matched 

controls (black, n=10). Both subject groups responded to vaccination (indicated in A, C), but no 

differences or interaction between infected and uninfected were observed. Statistical values reflect 

2-way ANOVA with a statistical cutoff of p=0.05. 
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Figure 5.4. Subjects who later became infected had unimpaired HAI against Influenza 

Vaccine and Circulating Strains. Subsequent Influenza outcome and Hemaglutination inhibition 

against vaccine-included viruses A/California/H1N1pdm09 (A), vaccine-included virus 

A/Texas/50/H3N2(C), and circulating strain A/H3N2/Switzerland. Statistical values reflect 2-way 

ANOVA with a cutoff of p=0.05. 
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CHAPTER VI:  SYNTHESIS 

 

Overview of Research Findings 

The data presented in this dissertation addresses the three aims proposed in this 

doctoral dissertation.  The first aim of this dissertation was to determine if obesity impairs the 

metabolism of resting and activated memory T cells following a secondary influenza infection.   

I hypothesized that compared to lean mice, the metabolism of obese mice would be more active 

at rest, limiting the metabolic potential to immune challenge.  My hypothesis was found to be true.  

Memory CD4+ T cells from obese mice had substantially higher oxidative phosphorylation and 

glycolytic activity at rest, and at 7 days post infection increased oxidative phosphorylation 

significantly, but decreased glycolysis. CD8+ T cells from obese mice at rest, were highly 

glycolytic, and with infection significantly decreased glycolytic activity, and increased oxidative 

phosphorylation. The spare respiratory capacity (ability to produce energy in response to 

challenge or stress) of T cells from obese mice was significantly decreased with infection 

compared to lean mice, suggesting that the dysfunctional metabolism limits the capacity of T cells 

to respond to immune challenge.  Overall, memory T cells from obesity display dysfunctional 

metabolic profiles in CD4+ and CD8+ T cells.     

  The second aim of this dissertation was to determine if weight loss restores T cell 

metabolism and function to a secondary influenza infection.  I hypothesized that weight loss 

would restore T cell metabolism to a lean phenotype and improve the function of memory T cells.  

My hypothesis was incorrect, as our data shows continued impairments in the immune response 

to re-infection.  We found that while weight loss in DIO mice after memory T cell generation 

restored glucose values similar to always lean mice, the metabolic profile of weight loss mice 

tracked with obese mice.  Compared to always lean mice, weight loss had significantly higher 
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CD4+ and CD8+ T cell basal respiration rates at infection, in addition to significantly increased 

OCR to ECAR ratios.  The expression of Glut1 and cytochrome c was significantly decreased 

compared to lean mice, further demonstrating altered T cell metabolism.  The metabolic profile of 

weight loss mice paralleled the obese metabolic phenotype suggesting that time of memory T cell 

generations programs the metabolic profile which drives impaired function following reinfection. 

Weight loss mice had significantly fewer CD8+ TRM populations in the lung, along with impaired 

effector function in CD8+ T cells. We found fewer influenza specific CD4+ T cells in the lung, and 

delayed infiltration of Tregs compared to always lean mice.   

  Lastly, aim three was to determine if weight gain would induce metabolic dysfunction 

and impair the function of memory T cells generated in a lean state.  My hypothesis was that the 

obesogenic environment would alter the metabolism and function of the formally lean T cells.  My 

hypothesis was partially correct, their metabolic profile that tracked with lean mice.  Mice gained 

significant weight gain to induce obesity, and glucose values were significantly higher compared 

to always lean mice, establishing an obese phenotype.  Weight gain mice mice had similar OCR 

and ECAR in CD4+ and CD8+ memory T cells compared to lean mice, demonstrating similar 

metabolic profiles at rest and to infection.  However, at reinfection significantly fewer CD8+ TRM 

populations in the lung 7 days post infection, impaired effector CD8+ T cells at day 3 post 

infection, and also delayed infiltration of Tregs.  

 

Potential mechanisms and future directions 

Our studies demonstrated that weight loss or weight gain following memory T cell 

generation can impact metabolic phenotypes and memory T cell subsets and function.  These 

data suggest a combination of potential mechanisms that are metabolism and microenvironment 

driven.  Weight loss did not restore metabolic function, even though at time of re-infection glucose 

levels were similar to always lean, but the T cell metabolic profile was similar to the always obese 

group.  It is possible that the environmental conditions present at time of memory T cell 

generation induce epigenetic modifications that maintain an impaired metabolic phenotype at the 
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time of re-infection.  Several studies have reported obesity altered epigenetic profiles in 

circulating PBMCs and lymphocytes [260-262].  Obese animals have increased global DNA 

methylation in lymphocytes, but not monocytes, indicating this may be cell type specific [260].  

Some of the differences we see between CD4+ and CD8+ T cell metabolic profiles are cell type 

specific, and will have different epigenetic profiles that may be altered with obesity at the time of 

memory T cell generation.  Epigenetic modifications such as DNA methylation, histone 

modifications, and non-coding RNA’s have all been implicated in affecting immune function [263].   

T cell differentiation following the interaction with an antigen presenting cell is driven by 

epigenetic regulation that initiates signaling cascades [264].  Previous experiments have 

demonstrated that Th1 or Th2 differentiated cells (after at least 4 cycles of cell division) will not 

revert to the opposing subset (Th1 to a Th2, and vice versa) if subjected to cytokines typically 

used to polarize to the opposing subset [265].  Many studies have characterized the epigenetic 

mechanisms that regulate T cell differentiation.  For example, to silence the IFNg gene in the Th2 

subset, transcription factors GATA3 and STAT6 bind to the promoter region which initiates 

binding of specific DNA methyltransferases regions of the IFNg gene, repressing IFNg expression 

[266].  Our study found that weight loss did not restore IFNg effector production following 

secondary infection, therefore it is possible that obesity is inducing dysregulated epigenetic 

modifications at time of differentiation to memory T cells.  

Obesity is characterized as a state of low-grade inflammation, so it may be possible that 

memory T cell populations present in this environment may be subject to constant stimulation.  

Chronically activated lymphocytes in autoimmune disorders such as systemic lupus 

erythematosus (SLE), present altered metabolic phenotypes that upregulate oxidative metabolism 

rather than glycolytic activity for ATP synthesis [267] as opposed to aerobic glycolysis as seen in 

normal functioning lymphocytes.  Additionally, T cells from SLE patients have increased 

mitochondrial mass and transmembrane potential, decreased intracellular ATP stores, and 

dysregulated cell death [268]. Constant stimulation and chronic activation of T cell signaling may 

be dysregulating mitochondrial function and altering cell metabolism.  Our studies demonstrated 
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decreased expression of cytochrome c, a marker of mitochondrial health, in weight loss, weight 

gain and obese groups which may suggest impaired mitochondrial function and metabolism.       

 

 

 

The PI3K/Akt pathway in T cell signaling has downstream effects that control many T cell 

functions, including the activation from effector to memory T cell differentiation in T cells (Figure 

1) [163].  Recent in vivo mouse studies and human studies have looked at the effects of high fat 

diet or obesity on effector CD4+ T cell differentiation by the PI3K/Akt pathway [269].  In both 

mouse and human studies they found increased Akt phosphorylation at serine 473 and no 

differences at threonine 308, indicating that mTORC2, as opposed to mTORC1, has increased 

activation with obesity [269].   

Figure 5.1. Proposed mechanism of Th2 skewing. Created by Jennifer Rebeles, 
illustration by Christopher Brothers Design.  
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In steady state conditions, mTOR is usually activated by a combination of factors that 

involve TCR and CD28 engagement and cytokines, environmental stimuli and nutrient availability 

[270].  The combination of these factors determines the fate of differentiation of T cells into 

specific subsets.  CD4+ Th1 cells are differentiated by the activation of mTORC1 and mTORC2, 

while CD4+ Th2 cells are driven by increased expression of mTORC2.  It is possible that obesity 

is driving this increased expression of mTORC2, skewing to Th2 cells rather than Th1 response.   

Viral infections such as influenza infection differentiate CD4+ T cells predominantly to 

Th1 to promote activation of cytotoxic CD8+ T cells, macrophage activation and B cell activation 

[195].  If obesity increases CD4+ T cell differentiation to maintain a predominant Th2 subset, and 

not properly differentiate into Th1 to infection, this may contribute to impaired T cell function we 

see with obesity.  Indeed, our previous human study showed an increased Th2 skewing in 

PBMC’s from flu vaccinated obese adults stimulated with influenza [81].  Th2 T cells are not 

effective in viral clearance to influenza infection and recovery [271] and may contribute to 

influenza infection increases in morbidity and mortality with obesity.   

Our studies addressed altered metabolic profiles in weight loss and weight gain mice at 

day 0 and 7 post infection, however, further time points need to be incorporated to help further 

determine a more comprehensive metabolic profile.  As effector T cells become activated to 

stimulus, they should increase glycolytic activity and decrease oxidative phosphorylation.  

Incorporation of more timepoints such as day 3, and day 5 post infection may provide a better 

snapshot of when metabolic alterations in obesity is most affected.  By limiting metabolic profiling 

to only 2 time points, we failed to see where the increase in glycolytic activity occurs in response 

to effector activity.  

Additionally, we metabolically characterized CD4+ T cells and found statistical 

differences with OCR and ECAR between the diet switched groups, however we did not delineate 

the specific CD4+ T cell populations.  Th1, Th2, Th17 and Tregs have very specific and different 

functions with varying metabolic profiles.  Further characterizing the metabolic profiles of these 

cells will determine if all CD4+ T cells subsets are impaired, or if it is selective populations that 
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are impaired.  As helper T cells have very different functions than Tregs we may be missing 

important metabolic differences between these populations.  Our previous studies have 

established that compared with lean mice, Tregs from DIO obese mice have less suppressive 

activity, which may be driven by impaired metabolic profiles.    

While few studies have addressed altered epigenetic profiles in immune cells in obesity, it 

is important to determine if epigenetic modifications are resulting in memory T cell impairment 

and if this altered immunity can be restored.  Changes in global DNA methylation have been 

observed in autoimmune diseases of rheumatoid arthritis and SLE where CD4+ T cells are 

hypomethylated compared to healthy adults [272].  Weight loss can normalize DNA methylation 

patterns in genes associated with metabolism and mitochondrial function in obese people that 

have undergone gastric bypass surgery to levels similar to healthy weight controls in skeletal 

muscle [273].  Looking at global methylation in the different T cell populations between obese and 

lean conditions may suggest methylation inhibitors or other relevant pharmacological agents that 

could restore T cell effector function to influenza infection in obese individuals.          

  

Conclusions
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Figure	5.2.	Conclusions	model.	
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The data presented in this dissertation demonstrates that the metabolic environment 

programs the metabolism of memory T cells at time of generation, and dictates functional 

response to secondary infection.  To summarize, weight loss mice maintained a metabolic 

phenotype compared to obese mice, but despite weight loss, had impaired function to secondary 

infection.  Obese mice demonstrated dysregulated, higher metabolically active metabolism at 

memory T cell generation, and impaired function to secondary infection.  Weight gain mice had 

similar metabolic profile to lean mice, but impaired function to secondary infection.      

While there are many studies addressing restoration of health by behavioral and physical 

interventions in weight loss, what was lacking was whether this was improving immunity.  Mouse 

models of weight loss and weight gain at time of memory T cell generation to influenza infection 

had not been previously characterized.  The role of weight loss in obesity and weight gain at time 

of memory T cell generation was characterized by metabolic profiling, and functional 

measurements through flow cytometry.  Additionally, TCM, TEM, TRM, and effector functions of 

memory T cells were characterized in mice that lost weight and gained weight after the 

generation of memory T cells.  Critical lung resident memory T cells were decreased in mice that 

were obese at any time, and effector function was impaired. To summarize, weight loss did not 

restore function to re-infection, and while weight gain maintained a metabolic profile similar to 

always lean mice, function was also impaired to re-infection.  Although these findings suggest 

obesity at any time sets the stage for life-long T cell impairment, despite weight loss, there may 

be strategies to improve immune health.  For example, treatment with the previous mentioned 

metformin may improve response.  Revaccination once weight loss has occurred may also be 

successful.   

These data have significant public health importance, as conventional thought of weight 

loss in obesity is assumed to restore metabolic health in public health interventions.  While weight 

loss did restore glucose levels comparable to lean mice, it is important to recognize that there are 

other metabolic perturbations that are effecting immunity.  We found that at time of memory T cell 

generation and the environment at time of re-infection BOTH affect the immunity to infection.  



	

	
	

111	

Future public health interventions need to stress the importance of obesity prevention to preserve 

immunity.  Although we have characterized these results to influenza infection, it reasonable to 

speculate that these immunity impairments may affect the immunity to other infections or disease 

states.  Furthermore, future studies investigating metabolic altering drugs may be needed to 

restore T cell metabolic health to improve effector function to influenza infection.  Additionally, 

changes to vaccine strategies may provide additional considerations to boost the immune 

response of obese individuals to improve protection.     
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