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ABSTRACT 

Dana Kristine Pasquale: Epidemiological Analysis of Sociosexual HIV Networks in Central North 
Carolina 

(Under the direction of William C. Miller) 
 
 Disparities in HIV incidence are seen by race and sexual orientation,3-5 although race 

and sexual orientation do not sufficiently explain differential risk within sexual networks.  Race 

and sexual orientation, however, influence partner selection,8 risk behavior,9 and access to 

care.10  Partner selection and risk behavior underlay differences in HIV acquisition and can be 

studied within the context of a sociosexual network.11  Marginalized or stigmatized persons are 

more likely to be diagnosed with HIV later in the course of infection12,13 and less likely to achieve 

viral suppression,14,15 which both increase the amount of time that a person remains infectious.  

 Infectious persons who are active in a sexual network risk onward transmission of HIV, 

becoming superinfected, or acquiring another sexually-transmitted infection (STI) such as 

syphilis, which has a synergistic effect with HIV.16-19  Knowing the HIV prevalence within high-

risk sexual networks, HIV and STI history of network members, and partnership patterns may 

provide sufficient information to guide targeted interventions to reduce the amount of time that 

HIV-positive persons remain infectious.  

 This study uses newly diagnosed HIV cases reported 2012-2013 to create a “baseline” 

sexual network.  We examined HIV transmission cluster involvement and followed new cases 

through 2016 for post-baseline partnerships investigated for public health HIV prevention efforts 

as a marker for transmission risk potential.  Network structure and partner selection behaviors 

were modeled to predict which cases were likely to be involved in a transmission event and 

were a candidate for enhanced linkage to care support.  
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PUBLIC HEALTH SIGNIFICANCE 

 Too few diagnosed HIV cases in the United States are in care and virally 

suppressed,10,20 thereby increasing the likelihood of onward transmission.  Identifying factors 

associated with HIV acquisition and transmission by following persons in the sexual network or 

assessing transmission cluster growth may help us understand how partnerships form and 

whether any baseline network structures predict remaining active in high-risk sexual networks.    
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I. CHAPTER ONE:  SPECIFIC AIMS 

Despite intervention, HIV continues to spread in NC, particularly among young Black 

men.21,22  HIV prevention requires timely identification of infected persons, intervening to stop 

onward transmission, identification of persons at high risk of acquiring the disease, and 

intervening to prevent acquisition.  Identifying persons at highest risk requires consideration of 

the people and the environment since assessing HIV risk based solely upon individual 

behaviors and attributes fails to place persons in context.   

HIV acquisition risk is a product of behavior and HIV prevalence in a person’s sexual 

network.23,24  HIV transmission in a population is a complex process, involving individual-level 

factors (personal risk behaviors, STI co-infection16); partnership-, or dyad-,level factors (sexual 

practices during the act, HIV serodiscordance, condom use), and network-level factors (HIV 

prevalence in the sexual network,24 behavior regarding partnership length, and concurrent 

partnerships25).  Thus, analysis of local sexual networks is crucial to reduce HIV transmission. 

However, this must include assessment of the data gaps and limitations. 

 In North Carolina (NC), persons newly diagnosed with HIV are interviewed to elicit 

partners, creating a robust source of individual, partner, and behavioral data.  Due to the 

comprehensive interviews conducted by Disease Intervention Specialists (DIS) at the time of 

diagnosis in NC, individual-level and partnership-level data are available for each person 

interviewed.  A sexual network can be constructed based upon the name-based partnership 

data elicited by DIS for partner tracing and testing.  Network-level covariates can be calculated 

for each person in the sexual network once the network is constructed.   

 For this study we constructed sexual networks from named partner ties and phylogenetic 

linkages.  All cases age 14 years or older at diagnosis in our area under study were used, 
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allowing us to make inter-group comparisons without excluding persons who may unexpectedly 

be involved in transmission.  Combining sexual network and phylogenetic analyses provided a 

more complete picture of transmission.  The aims are steps to support the stated purpose of 

intervening to disrupt transmission.   

 Knowing network structure, partner selection habits, and place-associated traits could 

provide a more accurate estimation of HIV acquisition risk to inform pre-exposure prophylaxis 

(PrEP) program targets. Combining partnership data with phylogenetic analysis from an 

epidemiological perspective is novel and has real-world application.  The study will improve use 

of surveillance data, particularly through its exploration of limitations, with the intention of 

translating this research into both clinical and public health practice. Specifically, we:  

Aim 1: Compare phylogenetic links and named partner ties in a small, defined geographic area.  

Overview:  We compared phylogenetic links and named partner ties in a small, defined 

geographic area.  The purpose was to identify the limitations of contact tracing, so that the gaps 

in the sexual network could be identified.  The sexual network is the basis for some public 

health HIV prevention efforts.  We constructed a sexual network from HIV cases diagnosed 

2012-2013 in Wake County, NC and their partners. Transmission clusters were constructed 

from HIV pol gene sequences. Available HIV sequences were analyzed to determine whether 

there was co-occurrence of named partner ties and phylogenetic ties. Generalized estimating 

equations (GEE) compared gene sequence linkages and sexual network ties to identify contact 

tracing gaps.  

Hypothesis 1.1:  Phylogenetic analysis will identify gaps in contact tracing, including 

characteristics of persons newly diagnosed whose risk is not well-represented by interview and 

partner elicitation.   

Hypothesis 1.2:  Behavioral or contextual factors are associated with not having well-

enumerated partners in the contact tracing network.   
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Aim 2: Determine which individual- and network-level traits predict future HIV outcomes for 

persons who are part of sexual networks with circulating HIV in central NC. 

Overview:  The primary purpose of this study is the Aim 2 analysis, which is to analyze whether 

certain individual-level characteristics or behaviors, partnership-level attributes, or network-level 

structures were associated with being named as a case or a partner in future transmission in 

our high-risk sexual network components.  We constructed a sexual network from HIV cases 

diagnosed 2012-2013 in central NC and their partners. We included partnership data from 2012-

2013 syphilis investigations involving these persons in the same geographic area to increase 

network completeness. HIV index cases were followed through 2016 to determine continued 

involvement in the sexual network, defined as being identified as a partner on future cases or 

being diagnosed with a STI 6 or more months after HIV diagnosis.  

 Predictors included individual- and dyad-level characteristics routinely collected during 

DIS interviews so that the derived risk score can easily be applied during DIS interview.  The 

predictive model was constructed so that DIS may note any factors elicited during the primary 

interview that may lead to the long-term (3-year) outcome.  Highlighting opportunities for DIS to 

identify patients who would benefit from enhanced support to link to care may lead to fewer 

cases of onward transmission if patients with higher transmission risk potential are engaged in 

care and achieve viral suppression.  This model has the potential to effectively disrupt 

transmission in NC if new cases are averted.  Unlike other areas of the United States (US) 

where HIV transmission can be disproportionately attributed to acutely-infected persons26 or 

those unaware of their infection,27 HIV transmission in NC tends to involve persons who are 

chronically infected and aware of their own status.28   

Hypothesis 2.1:  Behavioral and contextual factors, collected for public health purposes, will 

successfully predict which HIV-positive persons have highest transmission risk potential.   
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II. CHAPTER TWO:  BACKGROUND AND SIGNIFICANCE 

A. Background  

1. HIV Trends in the United States 

 HIV rates and acquisition risk differ by race, age, geographic region, and behavioral risk 

factor.  In 2014, 44% of new HIV infections were diagnosed among Black persons, despite only 

comprising 12% of the population.29  Though the rate of new diagnoses has declined in Black 

persons since 2010, the rate of new HIV diagnoses in 2015 was 2.7 times the rate of new 

diagnoses amongst Hispanics and Latinos, the racial/ethnic group with the next highest rate, 

and 8 times higher than the rate amongst Whites (per 100,000 population, rates were 44.3 for 

Black persons, 16.4 for Hispanic/Latino, and 5.5 for White).30  From 2006-2009, HIV incidence 

increased by 48% among young African American men in the US.5   

 Sexual transmission is responsible for most new cases of HIV in the US.30  In the US, 

men who have sex with men (MSM) are at a higher risk of acquiring HIV than men of the same 

race who have sex with women.4,29 Among MSM, most diagnoses are made in the younger age 

groups (20-29 years);5,31 women with heterosexually-acquired HIV tend to be diagnosed slightly 

later (25-34 years).30   

 Geographically, the rates of incident HIV diagnoses are much higher in the US Northeast 

and South than the West and the Midwest.  Further comparison of the higher rates US 

Northeast and the US South yields racial differences; in both places, 75% of people living with 

AIDS were either Black or Hispanic, although Hispanics accounted for a smaller percentage in 

the US South than in the Northeast.32 

 On a smaller scale, geographic core areas have been identified for several sexually 

transmitted infections.33  Risk of having primary or secondary syphilis was 4.6 times higher for 
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persons living in a certain area of San Francisco between 1985 and 2007.  The spatial analysis 

was able to separate core and outbreak areas.34  HIV-positive persons resided closer to their 

partners in Colorado Springs than at risk persons who are not HIV-positive and their partners.35  

During a syphilis outbreak in Baltimore, two areas were identified as core areas from which the 

outbreak spread and a new core area was created.  Even after the outbreak ended, density of 

cases remained higher in all 3 core areas.36   

2. HIV Transmission Dynamics in North Carolina 

a. Epidemiology 

 The South has the highest rate of new HIV infections in the US30 and the highest number 

of adult and adolescent persons living with HIV or AIDS (PLWHA).32,37  North Carolina (NC) had 

the 10th highest rate of new HIV infections in the U.S. in 2015.30  There were 1,345 new HIV 

diagnoses in NC in 2015, with the overwhelming majority due to sexual transmission.22  In NC, 

generally more than one-quarter of persons diagnosed with HIV are concurrently diagnosed with 

AIDS.38  NC has already met 90-90-90 goal for diagnosis; it is estimated that 10% of HIV-

infected individuals in NC are unaware of their status.39   

 Approximately 70-80% of non-pediatric HIV cases diagnosed in NC each year are 

among men.  Being MSM is the most significant HIV acquisition risk factor for men in NC.  In 

2015, 747 of the 1,078 (69%) non-pediatric HIV cases diagnosed among men had male sexual 

partners noted as a risk factor.22  Among all young men in NC, the major risk factor is being 

MSM.4,38   

 As is typical of other areas in the Southeastern US, the largest proportion of HIV cases 

diagnosed are in Black persons (2015 adult/adolescent diagnoses:  62% men and 71% women 

were Black).  Black persons also had the highest rates of new HIV diagnoses in NC in 2015, at 

80.3 and 18.7 per 100,000 adult/adolescent population among men and women, respectively.  

The rate among Black persons of both genders was 47.0 per 100,000 population, 2.5 times 
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higher than the rate among Hispanic/Latino persons (18.7 per 100,000 population) and 8.5 

times higher than the rate among White persons (5.5 per 100,000 population).22   

 The highest rates of AIDS diagnoses were also made among Black persons, including 

both concurrent diagnoses and progression from HIV.38  The rate of non-pediatric AIDS 

diagnoses was 40.3 per 100,000 population for Black men and 17.9 per 100,000 Black women 

in NC in 2012.  For comparison, the rates among White men and women were 4.2 and 2.7 per 

100,000 adult/adolescent population, respectively.22  

b. Social Factors 

 A previous study of HIV diagnoses in NC identified an epidemic among college students, 

particularly young Black men.40  The investigators reviewed HIV records for newly diagnosed 

men age 18-30 from 69 of 100 counties in NC in years 2000-2003 and found 735 new 

diagnoses, of which 84 (11.4%) were college students.  Only 3.6% of the college men reported 

having sex with women only in the 12 months prior to diagnosis, compared to 29.5% of the non-

college men.  33.3% of the college men reported having sex with both men and women, as did 

11.7% of the non-college men.40  When compared to men who were not enrolled in a college or 

university, college men were significantly more likely to go to bars and clubs, meet partners in 

bars and clubs, use ecstasy, and use the internet to meet partners.  However, the men in 

college were significantly less likely to have partners with known HIV infection, exchange sex for 

drugs or money, use crack-cocaine, or have a history of incarceration.  The men in college were 

significantly more likely to be African American and significantly less likely to be Latino.  The 

HIV incidence rate among African American college students increased dramatically during the 

study period, from 15 per 100,000 persons to 79 per 100,000 persons.40   

 Having college students as sexual partners, along with having anonymous or internet 

partners, is associated with being coinfected with HIV and syphilis in NC.41  Despite the 

significance of these trends, neither race nor college enrollment impart any biological risk of HIV 

or STI acquisition.  Instead, there are social and contextual factors at play and trends among 
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broad demographic categories do not adequately describe the epidemic.  Methods that discern 

trends on a smaller scale are necessary to understand where and why transmission continues 

to occur.   

 A second study of young men in NC increased the study period of the first study through 

2004 and added behavioral data collected by voluntary counseling and testing centers with the 

purpose of constructing the sexual network.  The network was based on a total of 1013 

available records of incident HIV diagnoses made among men age 18-30 that were deemed to 

have sufficient partner information for the 12 month period prior to diagnosis (279 records were 

unavailable and excluded).  MSM/W (n=161) were compared with MSM (n=573); being MSM/W 

was significantly associated with having more than 10 partners in the 12 month period prior to 

diagnosis and being enrolled in college.  MSM/W were also more likely to be central in the 

sexual network, although the investigators do not specify whether they are using betweenness 

or degree centrality, the latter of which is synonymous with number of partners.  They do report, 

however, that MSM/W bridged several network components,42 a finding that has been 

demonstrated elsewhere.43   

 Several outbreaks of HIV and sexually-transmitted infections (STIs) in NC have been 

investigated in different populations throughout the state, highlighting the importance of studying 

the sexual networks (see section II.5. for an explanation of sociosexual network analysis and 

structures).  Counties with fluctuating syphilis incidence or incidence only rising toward the end 

of the study period had visibly different network structures.44  All counties were found to be 

assortative with respect to race/ethnicity.  Non-outbreak counties were found to be more 

assortative with respect to number of partners (degree), largely because persons in non-

outbreak counties tended to form smaller monogamous dyads.45   

 Exchange sex and crack-cocaine use are important drivers of syphilis in NC; in one rural 

county, half of the people diagnosed with primary, secondary, or early latent syphilis during a 

14-month period reported either using crack-cocaine or having a partner that did.46  Syphilis is 
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endemic in NC with epidemic outbreaks that can be seen in the sexual networks.  Sexual 

networks in counties in rural southern/southeastern NC with epidemic syphilis were more 

densely connected than in counties with fluctuating incidence.  The counties with the highest 

incidence had distinct features of the sexual network, including more closed loops and larger, 

more connected components overall.   

 NC has one of the fastest-growing Latino populations in the US.47  US- and foreign-born 

Latinos in NC have distinct HIV risk factors.  US-born Latinos report more lifetime sexual 

partners and males are more likely to report engaging in sexual activity with another man.  

Foreign-born Latinos in NC are more likely to report exchange sex and are more likely to speak 

only Spanish or report low acculturation.48  This likely contributes to why foreign-born Latinos in 

NC are more likely than US-born Latinos to present to care with advanced disease;48 HIV-

infected Latinos in NC are predominantly immigrants and are more likely to present to HIV care 

later than Black or White patients.12  Males in each racial/ethnic group are more likely to present 

later to care than women in the same group, with a similar proportion of female Latinas 

presenting late as White men.12  Phylogenetic analysis of sequences collected from a clinical 

cohort showed that Latinos were more likely to be in linked pairs but less likely to be in clusters 

when compared to White and Black men.49  This may be due to foreign-born patients acquiring 

infection prior to arriving in NC; US-born Latinos were more likely to integrate in MSM clusters.  

c. Geography 

 Distinct geographic regions and populations make HIV initiatives in NC challenging, as 

interventions are often more successful when they are tailored to a population.  Syphilis was 

found to co-cluster with gonorrhea in NC; state-wide mapping of gonorrhea and syphilis over 

time identified 20 core areas for gonorrhea and 10 for syphilis.  All of the syphilis core areas 

were found to have at least some overlap with at least one gonorrhea core area.  All clusters, for 

gonorrhea and syphilis, were found to be associated with an urban area; some areas existed 

entirely in urban areas and some encompassed but urban and rural but none were entirely 
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rural.50  The rural-urban divide has been noted for other STIs in NC.  Drug susceptible HIV 

strains were significantly more genetically similar than drug resistant strains for rural-rural and 

rural-urban partnerships, but not for urban-urban partnerships.  Urbanicity of residence was not 

associated with TDRM v. drug susceptible virus among persons with acute HIV infection.51  

Geographically-associated network cores have been found to significantly contribute to STI 

spread,50,52 but it is unknown whether the same relationship is found with drug resistant HIV, 

particularly in rural areas.   

Geographic and spatial investigation of HIV and STI outbreaks in NC has yielded 

important information.  The CDC found that NC had the highest burden of HIV in non-urban 

areas in 2006.4  Figure 1, from the 2013 HIV/STD NC Epidemiologic Profile report, shows 

incident and prevalent HIV cases across the state.  The largest clusters are in the most urban 

areas, but the rural eastern part of the state has a high burden of HIV without having as many 

specialists and providers as the central part of the state. 

Figure 1.  Newly-diagnosed HIV cases by county of residence across North Carolina, 20137 
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 Spatiotemporal analysis was applied to identify core clusters of gonorrhea and syphilis in 

NC, with an additional assessment of rurality.  All of the syphilis and gonorrhea core areas 

included at least one urban area, and all of the syphilis core areas (N=10) overlapped with 

gonorrhea core areas (N=20).50  Similarly, in Wake County, a single urban county in central NC, 

chlamydia, gonorrhea, primary and secondary syphilis, and HIV were found to cluster with a 

single identifiable core area; all four core areas overlapped.53  These studies show that in NC, 

there is geographic overlap of several STIs.  Without added analysis of the sexual networks, it is 

unknown whether the STIs are circulating among different groups.   

 As HIV is more easily transmitted in the presence of certain STIs, future areas of 

research should include both network and geographic or spatial analysis.  Sexual transmission 

of HIV is likely to occur along racial and geographic lines, as partnerships tend to be assortative 

with respect to race.9,25,49,54  Examining partnership patterns and geographic differences, and 

variation between populations that tend to form discrete sexual network components with little 

overlap, may provide new avenues for intervention. 

3. Individual Characteristics and Differential Risk 

 Despite many targeted interventions, incidence continues to rise among young Black 

MSM.  There are many levels of reasons to account for this.  Higher level sexual network 

structure variables include HIV prevalence and network density.  A particularly high risk network 

comprised largely of Black MSM in NC was found to have a HIV prevalence of 29%,21 so people 

entering that network assume the risk of such a high prevalence.  Dyad-level variables are 

those surrounding each partnership, such as condom use.  Examples of individual-level 

characteristics include demographics and infection with ulcerative STIs.  In order to simplify, 

much of the research focuses on individual-level or dyad-level characteristics in aggregate, 

although often the dyad-level characteristics are aggregated at the individual-level:  for instance, 

instead of looking at each sexual act, condom use is often attributed as a category value to the 

individual.  One study found that Black MSM were less likely to know the HIV status of their 
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partners,9 which is an example of a compelling dyad-level factor that was measured at an 

individual-level.   

 To continue with the use of Black MSM as an example, some network-level factors are 

important in aggregate, such as network prevalence or proportion of anonymous partners 

because both cascade to the more focused levels.  However, it does not serve the individual 

people to look at consistency of condom use within a network if the individual consistently uses 

(or does not use) condoms, as his risk is mediated by his own behavior.  Number of partners is 

similarly most often attributed to a person, but is clearly modified by his extended network:  

someone with one partner is at great risk if his partner has many other partners.  The converse 

is true as well, where someone with many partners isn’t substantially increasing his own risk if 

each of his partners has no others.  In some way and barring an active infection with an 

ulcerative STI, number of partners should not be a separate variable from percent condom use 

if both variables are aggregated to an individual observation, as it is plausible that there would 

then be multiplicative modification within the individual-level observation. 

 HIV trends by group are invaluable to assess risk, but there is more nuance in risk as 

traits such as race or age do not perfectly correlate.  Agent-based approaches have long been 

eschewed because they are time- and resource-intensive, although recent adoption of 

electronic medical records and more flexible databases has made it easier to obtain partner 

information and the HIV sequences performed at entry into care.  Sociometric networks permit 

complete construction of a case, including his or her partners, and an iterative gathering of their 

partners.11  With the complete network, demographic data, and behavioral data, we can start 

with complete cases in order to assess risk by network-level, dyad-level, and individual-level 

characteristics, particularly if we categorize by HIV infection status (chronically, recently, or not).   

 Risk factors for acquiring drug resistance with HIV infection may differ somewhat from 

the risk factors for acquiring drug susceptible HIV.  Phylogenetic cluster analysis showed serial 

acute transmission among MSM.27  As there is a probabilistic element to certain regions of the 
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transmitted/founder strain,55 it stands to reason that someone who is acutely infected with drug 

resistant HIV would be more likely to then pass that strain along while the resistant strain is still 

predominant.  In support of this, MSM in Europe have significantly higher TDRM prevalence 

than other groups.56 

 Although Black MSM have disproportionately high risk of acquiring both drug susceptible 

and drug resistant HIV, we believe there is merit in using all cases in this geographic area.  

First, other groups are at risk, even if that risk is smaller.  Second, studying the similarities and 

differences between risk groups may provide insight to the cause of the higher risk, as there 

were comparison groups.  Third, we were able to see if there is overlap in or bridging among the 

network components by race and risk group.  Fourth and finally, networks are often incomplete 

due to the high number of anonymous partners and undiagnosed cases, both of which warrant 

as much investigation as possible.  Interview of other racial, ethnic, and gender groups may be 

able to describe inter-racial partnerships which would be unknown due to the inability to 

interview persons missing from the network, particularly since Black MSM are less likely to get 

diagnosed than other groups.   

4. Population Mixing Patterns and Examination of Person-to-Person Linkages 

 Several years ago, a rash of studies claimed that obesity and behaviors such as 

smoking are ‘contagious’.57-60  The idea of behavioral contagion is that people tend to cluster 

with others who practice similar behaviors and also influence the behaviors of their peers, which 

can be to the detriment of the entire group when the behavior is associated with greater risk of 

disease.61  Assortativity in risk behaviors such as substance use combined with sexual activity,62 

engaging in group sex, or engaging in unprotected sex could all be related to influence or 

homophily in the social network:  Black men who can identify an ‘enabler’, defined by the 

investigators as someone who engaged in risky behaviors, in their social (not sexual) network 

were more likely to engage in unprotected anal intercourse.61    
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 Modeling studies have found that the largest epidemics result from an assortative core 

group with high rates of partner change that links disassortatively to peripheral groups.63-65  The 

STI spreads rapidly within the core group that practices similar risky behaviors, such as rapid 

partner change.  Sexual mixing between core and peripheral groups that do not tend to practice 

the same risky behaviors then leads to a wider-spreading infection that becomes an 

epidemic.63,64,66  There is a tendency to select sexual partners of similar age, race, education 

level, and demographics,45,54,57,62,67 which could also lead to an increase in circulating infection 

within a core high-risk group.66,68  Such assortativity was observed in a syphilis epidemic in 

southeastern NC.  Non-outbreak counties were found to have high rates of assortativity with 

respect to number of partners, while outbreak counties were more likely to be disassortative.45  

Substantial disassortative partnerships have been observed in some cases, and linked to 

bridging populations for infection transmission.45,69,70  Dis-assortativity in number of partners was 

observed in central NC among women trading sex for crack-cocaine (unpublished, PI: Irene 

Doherty, PhD).  This sustained the local syphilis epidemic among heterosexuals, where a few 

females had many male partners.   

 Networks of people are unique because ties between individuals can form on the basis 

of extra-actor features of social processes.71  Actors can form ties with someone new because 

that person is already connected to someone with whom he or she is connected (transitivity).71-

73  Special classes of models are required to parse the effects of actor traits and extra-actor 

processes and study the linkages between persons in a social or sexual network.72,74,75  If all of 

the actors share a trait then the new connection could incorrectly be attributed to homophily 

rather than the underlying influence of the social network itself.76   

 Inherent difficulties in the study of sexual behavior and HIV include a difference in timing 

of infection and diagnosis, which can lag for years; more heavily affected hard-to-find 

marginalized populations; and difficulty in measuring societal and external forces, which exert 

pressure upon partner selection and sexual behavior.  In order to simplify, behavior following 
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diagnosis is often used as a measure of behavior at the time of infection77,78 and an individual’s 

behavior is often treated as fixed (until diagnosis or declining health).79 However, these 

simplifying assumptions may obscure vital information.  A prospective cohort study found that 

individual behavior does fluctuate, even within short periods of time.80  Several modeling studies 

have shown that variable individual behavior affects outbreak size81 and observed rates of 

transmission by HIV stage.81-84  Zhang, et al. (2013)85 modeled changing periods of high- and 

low-risk behavior.  They found that not only were individuals more likely to be infected during 

high-risk periods but that they were also more likely to transmit as the period of high risk did not 

end abruptly with infection.  Additionally, many studies simplify by using more broad 

demographic groups or geographic regions which may mask the specifics of the person-to-

person interactions leading to transmission – examination at a finer scale has the potential to 

reveal mixing patterns important to transmission; for instance, local TDRM trends are distinct 

even from regional trends.86   

 We used reportable disease data combined with surveillance data to examine the 

network of individual partnerships.  Sexually transmitted infections allow analysis of 

transmission and behaviors that is not possible with other types of diseases.  As opposed to 

other infectious diseases, which can infect anyone, sexually transmitted infections only infect 

the sexually active population87 and are not transmitted through casual contact.  Thus, with 

enough information about partnerships, one can construct transmission chains of the virus 

through the population.  Molecular techniques allow us to differentiate between acute/recent 

infections and chronic infections.  Categorizing based upon recency of infection permits analysis 

of behaviors prior to infection.  Comparing recently infected, uninfected, and chronically infected 

persons will demonstrate differences in behaviors and allow identification of practices 

associated with HIV acquisition.  This analysis has the potential to avoid issues in assessment 

related to the timing of diagnosis rather than the timing of infection.  Behavior in the time prior to 

diagnosis has not been well-studied, although there is some evidence of higher rates of risk-
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taking behavior immediately preceding infection.79  It is the time prior to infection which is 

related to risk of acquiring HIV, and it is unknown whether the behaviors and partnerships of 

individuals who are HIV-uninfected but at risk differ from those who are HIV-negative and not at 

risk or chronically infected persons.   

 Social network analysis (SNA) and phylogenetic analysis are two relatively new fields 

which permit post hoc study of person-to-person linkages.  SNA can quantify likeness among 

partner selection88 in terms of risk or demographic characteristics, which is an analytical 

approach to population mixing scaled down to the level of the individual.  Phylogenetic analysis 

shows likeness of infection and can identify clusters of acute transmission.  Both allow us to link 

individuals in the sexual transmission of HIV. 

5. Social and Sexual Network Analysis 

 Social network 

analysis (SNA) is a 

method that permits 

examination of 

relationships (dyad-level) and individual-level characteristics.23,89,90  A social network is 

comprised of all individuals participating in the social system under study.91  A pair of linked 

persons is a dyad.  The network is grouped into components, which are clusters of linked 

individuals.89,90  The “network” is the entire set of components (Table 1 includes network 

terminology used in this document).  A sexual network is a specific type of social network in 

which linked individuals are grouped into components based upon having self-reported sexual 

relationships during the time period under study.11  Network analysis includes a visual 

representation of the individuals (nodes) and their linkages (edges) to each other.  Network 

summary measures are often descriptive, and include various measures of a node’s centrality in 

the network, the number of edges per node (degree), and the proportion of possible connections 

that are made (density).89,90 

Object Being Described Network Analysis Term

Person in the network Node, actor, individual

Partnership between persons Edge, link, linkage, tie

Group of linked persons Component, Network component

Table 1.  Network terminology used in this paper. 
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 Once the network is drawn and components (a group of linked persons) are identified, 

the combination of characteristics of individuals in high-risk network components can be 

compared to individuals in other components to determine the self-sorting factors that influence 

risk in the local epidemic.  Disparities in risk of sexual acquisition of HIV continue to exist in part 

because social and sexual networks tend to be positively assortative, which means that 

connections are more frequently made between individuals of like age, race, educational status, 

and behaviors, including number of sexual partners.11,45,54,62,92  This encourages transmission 

within a like group of people.  While it is not unusual to see groups of demographically-similar 

persons linked together,93 racial mixing has increased in some areas.94  Additionally, some 

groups which may appear to be a homogeneous group are not:  a study of Latinos in NC found 

that foreign-born Latinos and US-born Latinos had different risk factors.48  These studies 

demonstrate that it is a mistake to oversimplify and focus on risk by demographic group alone. 

 The combination of factors contributing to HIV risk is complex and distinctions such as 

race, age, and sex are often too coarse to gain an understanding of the epidemic.49  

Interventions based upon coarse or crude distinctions are limited and may be missing individual-

level factors leading to transmission.  Sexual network analysis permits examination of local and 

individual-level characteristics.23  Examining network structure and the characteristics in a 

network component provides insight into the dynamics influencing risk at a much finer scale.44,95   

 Previous studies employing sexual networking methods in NC have found distinct sexual 

networks with limited interaction between the networks and different circulating STIs,40,42,44,96 

suggesting that HIV drug resistance mutations may also be distinct by network component.  The 

most-studied networks in NC are young, Black MSM; older individuals trading sex for crack-

cocaine; and rural, White individuals.  Partner selection tends to be assortative,11,45,92 and 

communities also tend to exhibit homophily over diversity.97   

 The structure of the sexual network may also provide clues to the processes including tie 

formation.98  Closed triangles in a social network indicate that existing relationships influence 
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the formation of other relationships.  This is an endogenous process, where the existing 

structure of the network supports the formation of another tie.  Assortativity of race or another 

attribute is an exogenous process, where people tend to form relationships based upon shared 

characteristics.  Closed triangles are often seen in MSM sexual networks, though not in 

heterosexual networks.  As noted above, assortativity does play a role in partner selection.  

Certain network structures, such as k-cores (a closed loop where each person in the loop has at 

least k edges) and closed triangles have been shown to influence disease transmission in 

modeling studies, particularly if concurrency is present.   

6. HIV Sequence Analysis 

 The plasma pol region of the HIV genome (Figure 2) is variable and encodes drug 

resistance mutations.99  Knowing the infection phenotype is valuable for clinical care decisions, 

as it conveys which combination of ARV drugs would be most effective for the patient.  Thus, 

obtaining this information is now standard care in most of the US.100  In NC, blood samples are 

routinely collected at entry into care for drug resistance testing to determine whether the 

patient’s virus has encoded drug resistance.   

  The pol gene sequences collected during drug resistance testing can also be used to 

identify transmission clusters of persons with genetically similar virus and assess transmission 

chains, which has public health utility.  The potential to link infections through phylogenetics 

may help link to101 or identify anonymous individuals in the network who aren’t identified by 

during partner notification.   

Figure 2.  HIV genome showing position of genes.6  The polymerase (pol) gene encodes drug resistance. 
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 Acute/recent infections are more likely to be identified in clusters defined by short 

genetic distances because less time has elapsed between transmission and sampling, so there 

is less genetic divergence.102  Coalescent models were used to demonstrate that some of the 

excess clustering of sequences obtained during acute infection is due to this and not solely 

excess transmission during acute infection.  A study of publicly available pol sequences 

(n=84,527) representing 141 countries was undertaken with the intent to build a “global 

transmission network” by looking for similarities worldwide.103  Interestingly, the investigators 

found an inverse relationship between the number of linked sequences and the amount of drug 

resistance mutations (DRM) encoded in the sequences, demonstrating that we do not have a 

clear picture yet of how drug resistance circulates in populations because it appears as though 

having a lot of transmission is associated with having less risk drug resistance.  An alternate 

explanation, however, not presented by the investigators is that groups with more DRM are 

those who have more access to ARV which explains both the lower transmission and the higher 

circulating DRM.  

a. HIV transmission cluster analysis applied to population-based research 

 A recent investigation of an increase in acute HIV diagnoses in the area around 

Charlotte, NC and in Western NC was unable to phylogenetically link all of the acute cases with 

the infections acquired from either chronically-infected individuals in a single cluster, or from 

anonymous partners who could not be located for testing.104  However, sexual networks were 

constructed, with two distinct groups noted.  Although both locations are nearby, they are 

geographically distinct and differ by rurality.  In the metropolitan area around Charlotte, young 

Black MSM accounted for most of the diagnoses while older white MSM accounted for most of 

the diagnoses in rural Western NC.  No significant overlap between the two groups was found 

using partner trace back or HIV sequence analysis, so the increase in acute diagnoses was 

likely due to better case finding and diagnosis rather than an outbreak of acute HIV.  

Importantly, the acute cases had on average fewer than one located HIV-positive partner, so 
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partner finding was not very successful for these cases as each case must have had at least 1 

recent HIV-positive partner to be acutely infected.   

 A study of 1671 HIV-positive persons enrolled at two spatially-near, university-based HIV 

clinical cohorts in NC was able to link 557 of the patients, the largest cluster including 36 

patients.49  Clustering was largely seen along racial lines, although not by ethnicity as Latinos 

were significantly less likely to cluster than non-Latinos.  There were MSM and heterosexual 

clusters, although there were mixed clusters as well. 49  Phylogenetic analysis is a powerful tool 

for examining transmission patterns and delineating trends, although the likelihood of finding 

clusters can be reduced if time has passed between samples102 or one of the patients has been 

exposed to ART.  The ability to construct a large network of individuals using partner data 

obtained via interview supplements the linkages identified using phylogenetic analysis. 

b. Limitations 

 Due to the limitations of HIV sequence analysis, phylogenetic data alone is not as 

powerful as the combination of phylogenetic and partnership data.  First, neither first-degree 

partnerships nor directionality can be inferred from HIV sequence analysis.  Second, observed 

cluster size may not represent actual transmission if there is a high proportion of missing data, 

which can occur at any of the first steps along the HIV care cascade.  Third, cluster size is 

affected by cluster definition; if percent difference is used then cluster size changes with the cut-

off selected.  Fourth, sequences obtained for clinical care are a consensus sequence, where the 

sequence returned represents the most frequent base pair observed at any position after 

sampling multiple viruses within the host.  Therefore, minor variants are not captured and 

intrahost variability is unknown.  A consensus sequence may also have ambiguous sites if a 

position has undergone mutations and is not clearly represented by any single base pair.  

Having many ambiguous sites may affect clustering.   
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7. Combining Sexual Network and HIV Sequence Analysis 

 Sexual network analysis and HIV sequence analysis examine the relationships between 

individuals which account for HIV acquisition risk.  The network constructed from DIS interviews 

can be compared to the phylogenetic tree.  In a previous study of sexual networks in NC, 50% 

of partners were anonymous, as defined by inability of the State to locate the individual for 

testing due to lack of identifying information,96 and the addition of gene sequences to the 

network may help identify that persons are directly or indirectly linked in a transmission chain 

even without having disclosed partner information.  The distribution of branching points for each 

terminal node in the phylogenetic tree can yield the underlying network structure, which may 

provide a clearer picture of transmission in NC, as the tree topology is not hindered by 

anonymous contacts or encumbered by contacts that do not result in virus transmission.105  

Additionally, adding phylogenetic data to network data may clarify temporal trends in 

transmission, which are not always clear with the network contact data alone.  The network data 

complements the phylogenetic data because it is not always clear in a tree how the 

transmission events occurred from partner to partner.106   

 Previous studies have only found little to moderate overlap between contact data and 

phylogenetic trees constructed from sequences,101,107 but the analysis described here is 

improved because it used all reported cases in a geographic area rather than a sample, 

interview questions about partner contact dates were targeted based upon the stage of 

infection, and sequences are now routinely collected at entry into care.  Using all cases provides 

a complete picture of sexual transmission of HIV in this geographic area, allows assessment of 

homophily and bridging in network component, and allows comparisons of risk between groups 

without confounding by spatial or geographic parameters.   

a. Sexual Network Analysis and Spatial or Geographic Analysis 

 Applying a combination of methods to infectious disease processes can often yield 

surprising or unexpected results.  Even though shigellosis is often transmitted from person to 
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person, shigellosis (and cholera) in Matlab, Bangladesh from 1983-2003 was found to cluster in 

space more so than among kinship networks.  This is particularly true for sexual networks, 

which form within a context that includes geography, place, and culture.11   Geographic 

locations can include bars or clubs where people meet partners11 and important partner-finding 

venues can be identified through network analysis.108  In NC, universities are known to play a 

central role in STI transmission networks.   

 Spatial analysis permits assessment of distance between partners which can be 

influenced by many factors.  People who meet partners on the internet may not have a strong 

association with any physical locations, in which case geographic place data would be less 

helpful.  The distances people travel to meet partners may also be influenced by societal or 

contextual factors.  NC is largely a rural state with a few urban centers.  Persons living in more 

rural areas may travel different distances than people living in urban areas.  People seeking 

anonymous encounters may travel greater distances to ensure anonymity.   

 Applying both SNA and geographic analysis to groups of people at-risk for HIV in 

Colorado Springs, Colorado demonstrated that spatial relationships varied by social 

relationship.  Examinations of the types of relationships showed that HIV-positive persons and 

their sexual partners had a significantly smaller distance between residences than prostitutes 

and their paying partners.  Amongst persons who were connected via sexual contact or injection 

drug use, injection drug users resided closer to their IDU partners (mean distance 4.0 km) than 

individuals who were only linked to each other through sexual activity (mean distance 6.0 km).  

However, persons who engaged in sexual activity and injection drug use together had an even 

smaller mean distance of 3.2 km.  Overall, the at-risk persons were more closely related by 

residence than would be expected compared to the entire population of Colorado Springs.35     

 Analysis of partnerships and sexual networks can enhance geospatial findings.  

Geographic data alone do not necessarily reflect sexual risk or transmission trends if two 

discrete networks are present in one geographic area.  Geographic information109 and spatial 
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data have the power to enrich sexual network analysis.  Spatial data may be a better fit with 

network data than geographic data, however.  In addition to being more suited for models and 

being interpretable on continuous scales, spatial data are a good fit with network data as both 

require functions to account for clustering.     

B. Preliminary Studies 

 A previous study by co-investigator Dr. Irene Doherty, “The nexus of drugs, sex 

networks, HIV, and syphilis in young African American MSM” (hereafter called ‘Nexus’) 

constructed a sexual network using new HIV and syphilis diagnoses made among Black men 

age 15-30 in the areas around Winston-Salem and Raleigh, NC.  Nexus abstracted both sexual 

partners and at-risk social contacts for the study.  We abstracted 1,100 cases and 3,438 

contacts (both social and sexual) from name-based reportable disease records and used to 

construct sexual networks.  Dr. Doherty and Ms. Pasquale successfully linked the 4,538 cases 

and contacts by name to create 508 network components, the largest of which comprises 1,403 

individuals (30.9% of the total population).  Overall, the network was primarily composed of 

disjoint components; 90.4% of the nodes could not reach each other.96   

 All 3,438 partners were used to construct the network; of the 3,438 partners, 2080 

(60.5%) were unknown because they could not be located for the interview or refused testing.96  

Despite the high proportion of anonymous partners, enough data were present to construct the 

network, which included several large components.  The largest component in Region 3 

centered on young Black MSM was comprised of 261 cases and contacts (Figure 3), many of 

whom were in college.  Positive assortativity was present; distinct and discrete network 

components were seen:  1) one network involved young, Black MSM infected with HIV and 

syphilis and 2) another network comprised older individuals engaging in transactional sex and 

mainly infected with syphilis.96  Nexus demonstrated that in a limited geographic area during a 

limited time period, Black men age 15-30 separated themselves by age, college status, sexual 

orientation, and drug use.  This present study added to the knowledge gained by Nexus by 
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abstracting all HIV diagnoses during the region under study from 2012-2013 to compare self-

sorted network components by factors such as age, race, education, and risk behavior.   

 A newer study (“Integrating HIV Phylogenetics and Sexual Networks to Inform HIV 

Prevention”:  co-PIs Dr. Ann Dennis and Dr. Irene Doherty; hereafter called 

‘Phylogenetics/Networks’), combined data for HIV cases diagnosed in Wake County, NC in 

2012 and 2013 with clinical cohort and phylogenetic data to identify HIV clusters and the study 

the overlap between reported partners and transmission clusters (TC).  Sexual network 

components included all persons linked together based upon named partner ties.  TC were 

defined as being phylogenetically linked based upon short branch lengths and high bootstrap 

values.  The sexual network was constructed using 280 index cases and 422 locatable sexual 

and social contacts; the final network included 663 unique persons as some of the partners 

were named by multiple index cases or were index cases themselves.  HIV-positive persons 

Figure 3.  Largest sociosexual network component from the Nexus study (N=261). Graph shows 
gender/sexual orientation, HIV and syphilis status at the time of network construction, and the types of 

relationships between persons (sexual or social). 
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(N=411) were probabilistically matched using date of birth and gender to a dataset of 15,247 

background pol gene sequences obtained from persons in care in NC; 230 (56.0%) of 411 

matched to a sequence.  The sexual network components only partially overlapped the 

phylogenetic clusters, demonstrating the utility of adding phylogenetic information to the network 

(see Chapter 5).  One hundred and seventy-one persons were in a TC with at least one other 

sequence in the background dataset.  Eighty-seven persons were in a TC with at least one 

other person in the study.  Overall, only 42 of 87 (48%) persons in the study were in a TC with 

at least one other person in the cluster.  This could possibly be due to poor recall, transmission 

prior to the DIS interview period of interest, or having anonymous partnerships with a person 

that could not be identified and located.  However, persons in named-tie heterosexual 

partnerships were always in the same study TC when both persons had a genetic sequence 

available; this was not the case for MSM partnerships.  Phylogenetics/Networks is the parent 

study for Aim 1 of this study and demonstrated the feasibility of the larger present study.  The 

co-PIs of the Phylogenetics/Networks project were collaborators for this study.   

C. Conceptual Framework 

 This is one of the first studies to link HIV behavioral and phylogenetic data to examine 

HIV trends by creating a comprehensive sexual network using all cases in a defined and diverse 

geographic area over a span of several years.  Using all cases reported in a geographic area 

during a defined time period permitted analysis of the complete observed network, thereby 

allowing a comparison of distinct network components and independent analysis of people as 

they sort themselves by demographic and risk category.  

Sexual network studies tend to simplify by focusing on a subset of patients and treating 

the connections between people in the network as if they have arisen from spontaneous or 

wholly exogenous processes, although in reality, partnership formation is not random.69,110  We 

used the structure of the sexual network to determine whether any factors related to the network 

itself were associated with continued involvement in the sexual network following HIV diagnosis.  
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Figure 4 depicts the levels of 

factors which we believe 

affect a person’s risk of HIV 

acquisition or transmission.  

Network structure indicators, 

such as density of ties or the 

clustering coefficient, affect 

how likely someone who enters the network is to become a part of a cluster.  Network-level 

characteristics also include HIV prevalence.  This is the top level of effects which we will study; 

network-level characteristics such as assortativity or prevalence influence partner-level 

characteristics via partner selection.45,54,62,69  Partner- (or dyad-) level characteristics include 

frequency and types of contact along with likeness of demographics and risk behaviors between 

nodes.  Partner-level characteristics influence individual-level characteristics,61 which include 

everything unique to the person, including his demographic traits and STI status.  The 

amalgamation of these levels affect each person’s HIV status.  

 We tested a new method to better identify persons at risk in this study.  First, we used all 

cases, allowing us to compare persons in the network.  Second, combining networks and the 

phylogenetic tree may have more utility in identifying clusters than the sexual network due alone 

to the high proportion of unknown individuals in the network.  Finally, using surveillance data to 

follow cases and partners forward in time allowed us to look specifically at our population to 

determine which factors increase potential for being involved in future disease transmission as 

an HIV-positive person continuing to engage in high-risk partnerships.  We identified a set of 

traits at diagnosis which are predictive of onward transmission at a later time point, providing 

valuable information in shaping how we follow persons who are first introduced into the network.   

 

 

Figure 4.  Theoretical framework for factors related to HIV acquisition. 
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D. Synopsis 

 Incident HIV ultimately results from interactions between discordant individuals.  This 

study combined sexual network analysis and phylogenetic analysis to examine the person-to-

person interactions that result in HIV transmission.  Variation in human behavior and its effect 

on HIV requires more complex models and a deeper understanding of human interaction.  HIV 

transmission risk, either acquired or onward, is associated with partner selection,8,9 

partnerships,111 the existing structure of the network.76,98   
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III. CHAPTER THREE: DATA 

A. Overview of Data Sources 

 HIV testing in NC is confidential and name-based, and HIV is a reportable disease by 

mandate in North Carolina.  The state has a well-defined network of disease intervention 

specialists (DIS), employed by the State or county, who conduct interviews, perform counseling, 

and attempt to trace the partners of all located cases when a positive diagnosis of HIV or 

syphilis disease is received by the state.  DIS interviews with new cases elicit testing history, 

prior history of STIs, risk factors, demographic information, employment and incarceration 

history, and information about partners in the 12 months prior to diagnosis.  As testing for HIV in 

North Carolina is name-based, sexual networks of cases and partners can be constructed from 

the DIS case reports.   

 Aim 1 used a network of Wake County residents with new diagnoses made in 2012-2013 

and their partners to compare the overlap of phylogenetic transmission clusters and sexual 

network ties based upon DIS interviews.   

 The network constructed for Aim 2 used all HIV cases, syphilis cases, and located 

partners of each diagnosed during 2012-2013 in NC HIV/STD Control Region 6 (R6) [Figure 7], 

which includes 11 contiguous counties.  A sociosexual network is a depiction of partnerships 

where people are connected to their disclosed sexual partners and high-risk social contacts.  As 

such, the network includes singletons (persons not connected to anyone else) and components 

(a set of persons who are connected through partnership ties).   

 This study used reportable disease data to create a sexual network that includes 

demographic data, partnership data, HIV viral gene sequences, and geospatial data.  The 

network constructed was a static representation of a dynamic network that changed over a two 
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year period (2012-2013); individuals linked in the network diagram only needed to be linked 

once during the period under study to appear together.  The network was constructed based 

upon DIS interview, so a person with a new HIV diagnosis will only be able to identify the 

partners that s/he had up until that point.  Any other linkages made required being named by a 

future partner who was diagnosed during the study period.  As such, the network was 

undirected, which means that a linkage was made if any actor identified any other actor as a 

contact during the study period.  Where available, temporal data including dates of contact, date 

of diagnosis, and date of infection were incorporated, but the data were still considered cross-

sectional for analysis.  All persons in the network were followed for 3 years (1,095 days) after 

the date of diagnosis for future linkages and changes in STI status.   

 The network structure itself was analyzed for density and clustering.  Actors in the 

network were described along with their network components so that key traits related to risk of 

ongoing HIV acquisition could be identified and assessed.  Sexual network components were 

categorized according to the prevalent demographic and risk characteristics of the actors in the 

component.  Actor involvement in network structures of interest, including triangles and k-cores 

were collected and used as model predictors.  

 Samples are collected for drug resistance testing during clinical care to evaluate for 

transmitted or acquired drug resistance.  Resistance mutations are reported back to the medical 

provider to guide clinical decisions, although the sequence can be used to construct putative 

transmission clusters based upon gene sequence similarity.  This study linked cases in the 

network with those phenotypic and phylogenetic clinical data.   

B. Data Collection and Management 

 There are two main data sources for this study.  First, the majority of data were 

abstracted from the electronic HIV database maintained by the State of North Carolina 

Department of Health and Human Services.  Second, HIV nucleotide sequences were obtained 

from LabCorp®, which is the largest reference laboratory in NC conducting genotyping.    
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 The State of NC keeps electronic records with patient interviews for all new diagnoses in 

the North Carolina Electronic Diseases Surveillance System (NC EDSS).  DIS employed by the 

State of NC interview all persons with HIV new diagnoses to collect risk information, elicit 

partners for tracing and testing, and initiate a relationship with a clinic where the person can 

receive care.  Partner information is name-based, and records for the index case and all 

locatable partners are entered in an electronic database.  Each record is unique to an individual, 

and all contacts are linked to his or her record.   

 A line listing generated by the State was used to identify cases newly diagnosed in R6 

during 2012-2013.  Data for identified cases and their partners were electronically abstracted for 

the present study.  Abstracted data included demographic information, diagnosis information 

including acute status, any lab results including syphilis titers or CD4 count and viral load, HIV 

testing history, STI history, incarceration history, college status, immigration history, how sexual 

partners are met, injection drug use, number and gender of partners in the last 12 months, and 

sexual risk factors including anonymous partners, such as types of sex, partners who were 

known to be HIV+ at the time of sexual contact, and engagement in transactional sex.  Partner 

information was abstracted using SAS v9.4112 from a copy of the surveillance system data.   

 All data used for network construction were abstracted from the DIS case reports, which 

were collected for the purpose of public health action.  No contact were made with patients for 

the purposes of this study.  An executed Data Use Agreement with the NC Communicable 

Disease Branch of the Division of Public Health indicating agreement to provide access to the 

study population was obtained.   

 HIV pol gene sequences were obtained from LabCorp for Aim 1 as collaborative 

research with Dr. Ann Dennis at the UNC School of Medicine supported by a NIH K08.  Most of 

these sequences were generated by GenoSureMG through mid-2014 from clinics throughout 

NC.  Some larger clinics started moving to Monogram Biosciences in 2012 because LabCorp 
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uses the GenoSure MG assay, which doesn’t sequence the portion of pol encoding for 

integrase, but Monogram Bioscience’s GenoSure PRIme assay does.113   

 Sequences in Aim 1 were probabilistically matched to patients by gender, date of birth, 

and specimen collection date.  Sequences that cannot be matched or sequences which aren’t 

uniquely identified by gender and date of birth may be able to be matched by more identifiable 

information, such as initials or name.  Through these methods, we matched available 

sequences against all HIV-positive cases and partners abstracted for this study. 

 This study required linking identified data collected for State surveillance with HIV 

sequences obtained once patients are linked into care.  Upon completion of abstraction, 

datasets were merged in a secured facility at the State prior to de-identification.  A unique 

person identifier assigned in NC EDSS was used to create the named-partner sexual network.  

All subjects, both cases and partners, were also issued a randomly-generated unique study ID 

number which was used in lieu of identifying information once the network linkages were 

established and all datasets were merged.  Datasets were merged programmatically using SAS 

software v9.4.112  

 All data were completely de-identified prior to leaving the secure facilities housing the 

State data.  The Principal Investigator had already developed a system for manually tracking 

linkages using de-identified data, while also ensuring that linkages are de-duplicated, which was 

successfully applied in the Nexus and Phylogenetics/Networks studies (section II.B).  Network 

visualization and analyses were performed using the igraph114 package in R.115  Unless 

otherwise specified, all other analyses were performed using Stata software v15.116  
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IV. CHAPTER FOUR:  METHODS 

A. Study Design 

 A cross-sectional study design was employed for Aims 1 and 2 where all index cases 

newly diagnosed during the study period in the geographic area of interest and their primary 

degree partners (Figure 5) were abstracted.  Demographic, behavioral, and county of residence 

of cases and partners were analyzed for the purpose of understanding which local social 

processes were associated with network structure and HIV prevalence.  A sociosexual network 

was constructed from 

named first-degree partner 

ties.  A phylogenetic tree 

was constructed from 

available pol sequences 

using a background 

dataset of over 15,246 

sequences collected from 

individual persons 

receiving care in NC.   

 For Aim 2, the 2012-2013 network served as the “baseline” period before the outcome 

accrual period (2014-2016).  There is significant overlap of syphilis and HIV sexual networks in 

NC, particularly among MSM,21,96 so the partnerships elicited during contemporaneous syphilis 

investigations in the same geographic region were used to increase the size of the network.  

Some of the syphilis cases or partners were already in the network, in which case only new 

syphilis partnership information was abstracted and added to the HIV network.  Components 

Figure 5.  Illustration of primary (1°) and secondary (2°) degree partners of 

an index case in a sexual network component. 
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that did not include at least one HIV index case were removed from the sexual network, and 

singletons could only be HIV index cases. All cases and partners abstracted for the 2012-2013 

HIV network and all 2012-2013 syphilis cases and partners added to create the baseline 

network were “followed” through 2016 for post-diagnosis partnerships, although persons were 

still retrospectively followed as all partnerships occurred by the time that data abstraction began.  

Outcomes included whether HIV index cases were diagnosed with a new STI or were named as 

partners on HIV or STI cases following their own their own HIV diagnoses. 

 Simulations along a sexual network showed that post diagnosis behavior change does 

occur,117,118 although analysis of acutely- and recently-infected diagnosed persons in NC 

showed that persons who are aware of their own seropositive status appear to be responsible 

for a higher proportion of onward infections28 than is typically understood to occur in the United 

States.119  Thus, the purpose of the predictive model was used to identify newly diagnosed with 

the highest risk of onward transmission in the years following diagnosis.10  Figure 6 shows the 

hypothesis.  Predictors inside boxes were abstracted.  “U” denotes unmeasured factors 

influencing sociosexual network contacts. 

Figure 6.  Hypothesis for predictive model.  Sexual behavior and partner-seeking characteristics at the time 
of diagnosis are hypothesized to be predictive of sexual behaviors and partner-seeking behaviors post-
diagnosis.   
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 For Hypothesis 2.1, index cases were traced to determine whether they were reported 

as partners for any HIV or STI case investigated by the State of NC through the end of 2016.  A 

binary outcome indicating presence of either outcome was calculated for all index cases.  Data 

were treated as cross-sectional for this analysis. 

B. Subject Identification / Sampling 

1. Source Population, Identification of Cases, and Identification of Controls 

A line listing including State case number, patient’s name, and date of diagnosis were 

generated by State personnel for chart abstraction.  The Aim 1 listing included all year 2012-

2013 HIV diagnoses made among residents of Wake County, NC along with their partners.  The 

Aim 2 listing included all year 2012-2013 HIV diagnoses among residents of HIV/STD Control 

Region 6 (Figure 7), which includes Wake County and 10 other contiguous counties.  HIV cases 

determined to be perinatally acquired or diagnosed in a minor less than 14 years of age were 

not included in the network analyses as the infection was likely perinatally acquired rather than 

due to activity in the sexual network.  All persons diagnosed with syphilis, regardless of stage, 

during 2012-2013 in the Region under study were also abstracted to increase the completeness 

of the sexual network.   

Figure 7.  Eleven NC Communicable Disease Branch HIV/STD Planning and Care Regions. Region 6 (green) 
comprises 11 contiguous counties and is the area under study. 
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 For Aim 2, the population of interest was newly-diagnosed HIV cases age 14 years or 

older at the time of diagnosis who were included on the line listing provided by the State of 

persons first diagnosed in Region 6 during 2012-2013.  Partners and contacts who were 

abstracted included those who were linked in the NC EDSS to the case’s electronic record AND 

who meet one of the following criteria:  

 Those who were in contact with the case during the critical period, defined below, OR 

o HIV:  12 months prior to diagnosis for chronically infected, or 3-6 months prior to 

diagnosis for acute and recently infected cases 

o Syphilis:  3 months prior to diagnosis for primary syphilis, 6 months prior to 

diagnosis for secondary syphilis, 12 months prior to diagnosis for latent syphilis 

 Those who were believed by the investigating DIS to be the source of infection for the 

case even if it was outside of the critical period. 

It is expected that some cases were contacts of other cases, in which case they were 

abstracted as such and de-duplicated in the network during analysis based upon study ID.   

2. Selection Criteria 

 Aim 1 included all HIV diagnoses made among Wake County, NC residents during 2012-

2013 and their named sexual partners and social contacts.  HIV pol gene sequences sampled 

from HIV-positive residents across the State of NC were used as background sequences for the 

construction of the phylogenetic trees.  

The NC Communicable Disease Branch divided the State into eleven regions for HIV 

and STD prevention and care (Figure 7).4,120  Each region has its own set of DIS.  Aim 2 of this 

study included all persons diagnosed with HIV in 2012-2013 in Region 6 and their contacts.  

The entire population of HIV diagnoses made in Region 6 from 2012-2013 were analyzed, 

which allowed between-group comparisons to be made.  There were 569 newly HIV diagnoses 

made among residents age 14 years or older during 2012-2013 in the 11 counties comprising 

Region 6 (Table 2).38 Twelve additional cases determined to be perinatally acquired or acquired 
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in a minor who was not part of the sexual network were discarded (representing 2% of 581 total 

diagnoses made in R6 during 2012-2013).   

3. Sample Size  

 Aims 1 and 2 

used the entire 

population of 

diagnoses made in 

the areas under study, 

so no sample size 

calculation is 

necessary.  Figure 8 

shows the number of 

persons per aim.   

a. Aim 1 

The starting population for this analysis was the 230 HIV-positive persons (cases and 

partners) with available sequences abstracted for the Phylogenetics/Networks study (section 

II.B.) as the starting population (Figure 8).  Eight-seven of those persons are in one of 34 

transmission clusters.   

b. Aim 2 

 Among residents of Region 6 during 

2012-2013, 569 new HIV diagnoses were 

first made among persons age 14 years or 

older at the time of diagnosis (Table 2 shows 

the county-by-county diagnoses reported to 

the CDC).  An additional 12 diagnoses were 

among pediatric patients age 13 years or 

Table 2.  HIV cases first diagnosed among residents of Region 6 age 14 years 
or older, by county, 2012-2013.  

County 2012 2013 2012 2013

Chatham <5 <5 3.0 6.0

Durham 67 72 23.7 24.3

Franklin 5 7 8.1 11.2

Granville 15 7 26.0 12.1

Johnston 11 15 6.3 9.0

Lee <5 <5 6.7 6.7

Orange 13 14 10.9 10.1

Person 6 7 15.3 17.8

Vance 11 7 24.4 15.7

Wake 137 161 14.4 16.9

Warren 0 <5 0.0 4.9

271 298

* number of cases age ≥14 years per data provided by NC Department of Health and Human Services

† per 100,000 total population, any age (to protect confidentiality)

HIV Cases* HIV Rate†

Figure 2.  NC Communicable Disease Branch HIV/STD Planning and Care Regions.

Figure 8.  Estimated population size by aim. 
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younger at the time of diagnosis.  These pediatric cases were excluded from analyses, as their 

infections were most likely acquired perinatally and not through the sexual network.   

C. Measurements and Assessments  

1. Aims 

a. Aim 1 

 In the first aim, I compared phylogenetic links and named partner ties in a small, defined 

geographic area by constructing the phylogenies and sexual networks from the Wake County, 

NC data.  We identified transmission clusters, defined as short branch lengths and high 

bootstrap support (≥90%), from the phylogenetic trees.  I identified sociosexual network 

components, defined as groups of persons directly or indirectly linked through name-based 

interview and partner elicitation.  Comparisons for this aim were made between the network 

components, instead of direct person-to-person links, and the phylogenetic trees since direct 

person-to-person transmission cannot be inferred from the phylogeny.121  I used the component 

as the unit instead of the dyad because it is possible for two persons to be in a phylogenetic tree 

with an intervening person who may or may not be identified.  Therefore, components are a 

more representative comparator for the clusters.   

 Sociosexual networks can be constructed and observed from contact tracing data, which 

is the public health “gold standard” for identifying partnerships for the purpose of intervening to 

halt some transmission.  However, the Phylogenetics/Networks study found that there was only 

partial overlap between the transmission clusters identifying infection passage and the networks 

identifying partnerships with the potential to transmit infection.  As not all partnerships lead to 

transmission, one would expect there to be partnerships in the network that are not represented 

in the phylogenies.  However, any partnerships or transmission clusters identified in the trees 

that was not seen amongst person in the same network component suggests that contact 

tracing is not capturing transmission pathways.   
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 The outcome for the model comparing the trees and the components was, therefore, 

whether or not any two persons in the same transmission cluster were in different network 

components.  Covariates included several dyadic characteristics, including homophily of 

demographics (i.e., race assortativity or men with male partners), homophily of risk (amount of 

time between partner diagnosis dates), and characteristics that affect DIS case-finding ability, 

such as interview refusal, having anonymous partners, or either partner being previously 

diagnosed and therefore not interviewed for the recent investigation.   

b. Aim 2  

 In Aim 2, I determined which individual- and network-level traits can predict future HIV 

outcomes for individuals who are part of sexual networks with circulating HIV and syphilis in NC.  

The post-diagnosis interview conducted by the DIS elicits partner information, which was used 

to construct a name-based sexual network.  A semi-dynamic network was constructed to test 

the hypothesis; new ties were allowed after 2013 through 2016, but 2012-2013 ties did not 

dissolve.  I built a predictive model with model terms that included individual-level exogenous 

characteristics collected by DIS and all network-level structures involving the persons being 

analyzed (endogenous effects) that were found when the sociosexual network was constructed.   

 Network configurations for assessing endogenous processes were collected, including 

involvement in ties (edges), k-cores, and closed triangles.  Network centrality scores were 

calculated for each non-singleton node.  Centrality scores were continuous, calculated from the 

observed network, and normalized for the model.  CD4 count and having more than 5 sexual 

partners in the 3 months prior to diagnosis has been found to be associated with being in a 

phylogenetic transmission cluster,101 so both variables were calculated and tested for 

association with the outcome. 

 Three different centrality scores, degree, adjusted degree, and betweenness, were 

calculated for each index case, as each centrality score represents infectious disease in a 

network differently.122-124  Degree is simply the number of connections (partners) that a node 
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possesses in the network.11,90  Although it is not representative of placement in an overall sexual 

network and therefore not well-representative of risk, degree is commonly used to assess 

sexual risk69,77,101,125 so we used it because it is easy to calculate and provides a comparator to 

other studies.  Degree is also considered very robust to missing data compared to other 

centrality measures.89  However, previous sexual network studies in NC have shown that 

degree varies significantly depending upon whether the network is constructed with all partners 

indicated or only partners located, and the difference is a form of missing data which is not 

random126 and it also impacts network structure. 

 I calculated a new centrality measure, which I called adjusted degree, based upon the 

principle of eigenvector centrality (EVC).  EVC, also called Bonacich centrality,127 is an adjusted 

form of degree centrality.  EVC adjusts a node’s degree based upon the degree or his or her 

partners.90,128,129  EVC uses eigenvectors to find popularity or exploitation of a valued relation 

within a social network by calculating the largest vector within an adjacency matrix;128,129 the 

eigenvector is the solution to the  matrix.130  Since the eigenvector is the solution to the network 

adjacency matrix, it is very sensitive to missing data131 and cannot be calculated in a 

disconnected network, which is a network in which not all nodes are reachable by walks – that 

is, a network with multiple discrete components as any sexual network is.   

 Instead of calculating a matrix score, I used the same principles to calculate an 

egocentric EVC for each index case where his number of partners (degree) was modified by the 

average number of partners had by his partners (his partners’ mean degrees).  My rationale was 

that risk is not well-captured by degree if a case only has one partner, but that partner happens 

to have many partners.  Weighting degree by partners’ degrees creates a second order 

measure,129 which I incorporated into our centrality measure equations.  I stopped at the second 

order values instead of calculating a single vector for the entire matrix since partner elicitation 

interviews do not interview all partners and we wanted a cohesive measure that could be 



39 

calculated for all index cases in our network; additionally, temporality was ignored in the network 

so including higher-order partners may not have truly represented the index case’s risk.   

Traditional EVC score is calculated as 

where n is the total number of nodes or vertices; aij is 1 if i and j are connected and 0 if they are 

not; and xj is the centrality score of node j.128   

 Instead, I used an adjusted degree formula where the index case’s degree increased if 

the average degree of all first degree partners exceeds the index’s degree.  I multiplied degree 

by the log of the difference in degrees between the index and his or her nearest neighbors, and 

added that number to the index case’s degree.  The adjustment formula is mine.  As far as I 

know, an adjustment of EVC is a novel approach and has not been previously used.  The 

benefit of using the log difference is that it allowed me to increase an index case’s degree if his 

or her partners had more partners on average, but not adjust the index case’s degree lower if 

the index case’s degree was higher than the mean degree of his partners.   

 The final centrality measure, betweenness centrality, is stochastic and more complex.  It 

is the count of all paths between all other pairs of nodes that must pass through a given node, 

so it is a good model for disease transmission in the true network.  However, it is difficult to 

calculate and cannot be applied without having much of the network constructed.   

 The majority of partnerships in Nexus and Phylogenetics/Networks (section II.B.) were 

dyads,96,132 so I set a score of 0 for all singletons and dyads so as not to lose them in this 

calculation.  As I had a largely disconnected network with smaller sized components, there were 

many betweenness values equal to 0.   

Equation 1.  Eigenvector centrality score calculation. 
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 I did not expect betweenness to approximate disease transmission well in the observed 

network; the manner of the DIS interviews is a severe limitation here.  DIS are instructed to ask 

about all partnerships that occurred during the period of interest for new diagnoses, but do not 

contact partners who are known to be previously positive.  This results in many isolated persons 

or artificially small components in the network.  If a new case has a single partner who was 

previously diagnosed then that partnership will appear to be a dyad that is disconnected from 

the rest of the network, when in fact the previously-diagnosed person could be an active part of 

it.   

 For Hypothesis 2.1, Region 6 residents newly diagnosed with HIV during 2012-2013 Aim 

2 network were included in the analysis, with one observation per new index case.  The 

outcome was a binary variable indicating whether the index case was 1) named on a HIV case 

investigated in NC during 2014-2016, where the partnership continued for at least 2 months 

after the index case’s diagnosis or began at any point after the index case’s diagnosis or 2) 

diagnosed with a new STI at least 6 months after the index case’s diagnosis.  Limited additional 

information about 2014-2016 partnership(s) was collected and persons not meeting either of the 

outcome criteria were assumed to not have been in a high-risk partnership.   

2. Constructing the Sexual Network 

 The name-based partnership data collecting during DIS interviews can be used to 

construct the sexual network.  Interview partnership data were used to construct a static 

undirected sexual network of all partners named during the 2-year study period.  A sociometric 

network11 was constructed for this study.  Cases and partners who met the entry criteria (section 

IV.B.1.) and were included on the line listing provided by the State were abstracted along with 

their sexual partners and social contacts for Aim 2.  Partners and contacts who were abstracted 

included those who were linked in NC EDSS to the case’s electronic record AND who met one 

of the following criteria:  
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 Those who were in contact with the case during the critical period (12 months prior to 

diagnosis for chronically infected and 3-6 months prior to diagnosis for acute and 

recently infected cases) or 

 Those who are believed by the investigating DIS to be the source of infection for the 

case even if it is outside of the critical period. 

Some cases were contacts of other cases, in which case they were abstracted as such and de-

duplicated in the network during analysis based upon State-assigned unique ID.   

 The agents’ individual-level characteristics including age, race, education level, location 

of residence, and sexual risk behaviors were assigned to the agents.  Between-agent 

characteristics (dyadic covariates), including homophily of race, age, and HIV status (i.e., same 

race/different race) and concurrency of partnerships were attributed to the ties between agents.  

All unique persons were represented once in the network as an agent with individual- and 

aggregate dyad-level attributes, whereas other attributes were characteristics of the partnership 

itself.   

 Accurate construction of the network relies upon the ability of the DIS to locate the case 

for interview, truthful interview with the DIS, accurate recording of the interview, and sufficient 

information to locate partners.  Less than 1% of the cases in Nexus could not be located or 

refused DIS interview, although 20% of cases in Phylogenetics/Networks (Aim 1 parent study) 

refused to be interviewed (section II.B.).  However, 40% of the partners in the Nexus study were 

anonymous and could not be located, resulting in “dead ends” in the network.96  While this does 

impact the accuracy of the network, all cases are accurately placed in the network with respect 

to their partnerships.   

 The final network included multiple “components”.  A component is a group of at least 2 

agents (persons) linked by name in the DIS interviews (a person without any network ties is a 

singleton and not a component).11,90  For example, Figure 9 contains a single network 
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component that comprises several 

persons who were interviewed and 

are linked together by their named 

partner ties.   

3. Constructing the Phylogenetic 

Trees 

a. Aim 1 

 More than half of HIV-

positive patients in NC attend a 

clinic that uses LabCorp for genotyping.  Sequences were available for approximately half of 

newly diagnosed cases (56%) in the parent study (Phylogenetics/Networks; section II.B.).132  

Sequence data was most likely to be unavailable for diagnoses made by smaller private 

physicians who do not use LabCorp.  The sequences in the statewide dataset were collected 

starting in 1997 for clinical care from patients across NC, although not routinely collected prior to 

starting ART until 2006.133  Indexes and HIV-positive partners were probabilistically matched to 

the sequence dataset using birth date, gender, and laboratory test dates.  The earliest 

sequence per person in the statewide dataset, including those who were not in the sexual 

network, was retained and used for cluster construction.  The final dataset included 15,246 

sequences.   

 Sequences were aligned and phylogenetic trees were constructed from available pol 

gene sequences.134,135  Maximum likelihood methods, which are less prone to overconfidence 

than Bayesian methods if the model is mis-specified,136 were used to construct the initial 

phylogenetic tree, refine the tree, and identify transmission clusters.49  Bootstrap percentages 

were assigned to each tree node.  For these analyses, a phylogenetic transmission cluster was 

defined as a group of at least 2 individuals with sequences less than 3.5% genetic distance 

Figure 9.  Illustration of a network component, which is a group 
of at least 2 persons linked together through defined ties.   
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apart across the entire cluster and a high branch support value defined as a bootstrap value 

greater than or equal to 95%.49  Pairwise genetic distance between sequences was calculated.   

 Adding phylogenetic data to the network may lead to identification of linkages between 

individuals thought to be unlinked due to an unknown individual between them or identification 

of anonymous individuals themselves if two nodes are phylogenetically linked and each have 

anonymous partners.  A study which inferred sexual network based upon phylogenetic linkages 

of ≤1.5% genetic distance between pol sequences found that transmission networks could be 

identified, although direct transmissions could not always be since directionality cannot be 

known and there may always be an unsampled third party.137   

There are several limitations inherent in this approach.  Not all HIV-positive persons will 

have a sequence available – 47% of index cases and 37% of partners in the 

Phylogenetics/Networks study could not be matched to a sequence.132  The majority of 

sequences on patients in care in Wake County and Region 6 overall are run at LabCorp and 

there is an agreement to obtain those sequences and agreements with other labs are in 

process.  A limitation of working with Sanger consensus sequences, however, is that, unlike 

deep pyrosequencing, the entire virus population in an individual is not sequenced and it must 

be assumed that the sequences associated with any given sample represent the dominant 

strain.  Finally, risk factor and demographic data are abstracted from DIS interview records, 

which are not standardized.  Risk factors must be explicitly stated in the interview, so anything 

implied or omitted from the written interview record will bias the result toward the null if the value 

in question appears to be an important predictor in the model but is not explicitly recorded for 

some.   

b. Aim 2 

Similar to Aim 1, indexes and HIV-positive partners were matched to a statewide dataset 

of HIV-1 pol gene sequences, though identifiers such as name, medical record number, date of 

birth, gender, and residence location were used for direct matching.  These sequences (full 
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length protease, partial reverse transcriptase, and integrase) were sequenced by LabCorp or 

Monogram Biosciences and collected 2010-2016 statewide.  Rachael Billock identified putative 

transmission clusters of these sequences using HIV-TRACE138 with the TN93 model.139  

Clusters were defined as clades with ≤1.5% pairwise genetic distance between sequences, one 

per person.  I matched the cases in these analyses to the defined clusters. 

D. Statistical Analyses 

1. Aim 1 

 The first aim of this study was to compare phylogenetic links and named partner ties in a 

small, defined geographic area.  Two identical, empty NxN matrices were constructed, where N 

was the total number of persons in the network.  One matrix represented the sexual network, 

where the value were filled in as 1 if two agents were in the same sexual network component 

and 0 otherwise.  The other matrix represented the phylogenetic trees; agents not matched to a 

sequence, and therefore not a part of the phylogeny, were removed from the matrix as they 

could not inform this analysis.  For all remaining agents, the value was filled in as 1 if the two 

agents were in the same transmission cluster and 0 otherwise.  All agents removed from the 

phylogeny matrix were removed from the network matrix.  Both matrix diagonals were set to 0, 

as self-loops were not allowed in this analysis.   

 The next step in the Hypotheses 1.2 analysis was to subtract the network matrix from 

the phylogenetic matrix.  There were 4 possible outcomes: 

 

Phylogeny Network Result Meaning

1 1 0 Both phylogenetically- and network- linked

1 0 1 In a transmission cluster without being in the same network component

0 1 -1 Not phylogenetically linked, but in the same network component

0 0 0 Neither a phylogenetic nor a network link

Initial Matrix Value

Table 3.  Comparison of phylogeny and network connection NxN matrices showing outcomes values for 
presence or absence of the type of tie represented in each matrix. 
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 All values of -1 in the resultant matrix were reset to 0.  The rationale for this was that we 

were not interested in persons who were in partnerships that did not result in transmission, as 

these people were already identified in the DIS investigation.  However, persons who were in 

the same transmission cluster, and were therefore highly likely to be involved in the same 

transmission chain, but who were not in the same set of name-linked partnerships indicated 

gaps in contact tracing and case finding.  This matrix was the outcome for a GEE model using 

an exchangeable correlation matrix, as we can infer transmission clusters but not direct person-

person transmission.   

 Future directions for this dataset include building a valued exponential random graph 

model (ERGM).  In a valued model, the outcome can vary by type of tie between persons, 

instead of a non-valued model where the outcome is simply presence or absence of a link 

between persons.  Here, our ties included being sexually linked, being phylogenetically linked, 

both, or neither.140     

2. Aim 2 

 The second aim of this study is to determine which individual- and network-level traits 

can predict future HIV outcomes for individuals who are part of sexual networks with circulating 

HIV and syphilis in central NC.  I constructed a predictive model based upon characteristics 

collected at HIV diagnosis (number of partners, proportion of anonymous partners, being a 

student) of persons who are later named as a partner on a new HIV case in NC, as the person 

may have been involved in virus transmission.  I selected the predictor variables for the 

Hypothesis 3.1 model using backwards elimination and summed the β coefficients of the final 

bootstrapped model, from 1,000 trials with replacement and robust standard errors, to obtain a 

risk score.  I calculated sensitivity and specificity scores at various levels of summed β. 

The outcome for Hypothesis 2.1 was being named as a partner on an HIV case in NC 

2014-2016 or being phylogenetically linked to a case diagnosed with HIV in NC 2014-2016.  I 

abstracted a dataset that included the 2012-2013 HIV index cases diagnosed in R6, with one 
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observation per case.  Any subsequent NC EDSS partnership records or STI diagnoses within 3 

years (1,095 days) after HIV diagnosis were abstracted per case.  I constructed a logistic 

regression model with robust standard errors to account for lack of independence of the 

outcome among network members.  The model was internally validated with 1,000 bootstrapped 

samples with replacement from the population of cases. 

 Predictors included individual-, dyad-, and network-level variables.  Concurrent 

diagnosis with HIV and AIDS (defined as diagnosis of AIDS within 6 months of diagnosis with 

HIV) was included in this model as a predictor, as behavior changes at this point and persons 

with AIDS may not represent the behavior of persons with HIV overall.79  Network structures 

identified in this analysis, such as involvement in closed triangles or k-cores (section II.A.5.), 

were the network-level predictors.  Degree was adjusted as previously described (section 

IV.C.1.b.) based upon the k-nearest neighbor algorithm in igraph.114   

 Missing data were an issue in this analysis and affected calculation of network 

measures.  The proportion of unknown partners is a limitation which had an effect on the model 

since missing nodes are “dead ends” in the network diagram and cannot be used to link cases 

in the network.  Nor could I use risk behavior data, which has been demonstrated to be 

predictive of future behavior, since it was not available for the 25% of index cases who refused 

interview.78,79   

 
.
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V. CHAPTER FIVE:  LEVERAGING PHYLOGENETICS TO UNDERSTAND HIV 
TRANSMISSION AND PARTNER NOTIFICATION NETWORKS1 

A. Overview 

1. Background  

 Partner notification is an important component of public health test and treat 

interventions.  To enhance this essential function, we assessed the potential for molecular 

methods to supplement routine partner notification and corroborate HIV networks.   

2. Methods  

 All persons diagnosed with HIV infection in Wake County, NC during 2012-2013 and 

their disclosed sexual partners were included in a sexual network.  A dataset containing HIV-1 

pol sequences collected in NC during 1997-2014 from 15,246 persons was matched to HIV-

positive persons in the network and used to identify putative transmission clusters.  Both 

networks were compared.   

3. Results 

 The partner notification network comprised 280 index cases and 383 sexual partners 

and high-risk social contacts (n=131 HIV-positive).  Of the 411 HIV-positive persons in the 

partner notification network, 181 (44%) did not match to a HIV sequence, 59 (14%) had 

sequences but were not identified in a transmission cluster, and 171 (42%) were identified in a 

transmission cluster.  More than half (59%) of transmission clusters bridged sexual network 

partnerships that were not recognized in the partner notification; most of these clusters were 

dominated by men who have sex with men. 

                                                
1This chapter has been accepted in JAIDS: Pasquale, DK, Doherty, IA, Sampson, LA, Hué, S, Leone, PA, 
Sebastian, J, Ledford, SL, Eron, JJ, Miller, WC, Dennis, AM. Leveraging Phylogenetics to Understand 
HIV Transmission and Partner Notification Networks. J Acquir Immune Defic Syndr, Accepted 2018. 
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4. Conclusions 

 Partner notification and HIV sequence analysis provide complementary representations 

of the existent partnerships underlying the HIV transmission network.  The partner notification 

network components were bridged by transmission clusters, particularly among components 

dominated by men who have sex with men.  Supplementing the partner notification network with 

phylogenetic data highlighted avenues for intervention. 

B. Introduction 

Across the Southern United States (US), including North Carolina (NC), the HIV 

epidemic has persisted in large connected sexual networks, particularly among men who have 

sex with men (MSM).21,49,108,141,142  The South is the epicenter of the US epidemic, accounting for 

a disproportionate number of HIV infections.141  HIV incidence continues to rise among Black 

and Hispanic/Latino MSM,3 despite widespread prevention efforts.  Entry into a sexual network 

composed largely of Black MSM increases the likelihood of contracting HIV,21 highlighting the 

importance of enumerating sexual networks.  An improved understanding of sexual networks 

will aid in the development of enhanced interventions to reach Black and Hispanic/Latino MSM.  

Time-intensive efforts to reach members of densely-connected sexual networks often result in 

analysis of incomplete networks, due in part to anonymous partners, persons who cannot be 

located, and interview refusal.143   

Phylogenetic analysis of HIV sequences is an excellent adjunct to enumerating networks 

and allows tracking of local transmission patterns.  HIV phylogenies based on sequence 

similarity and inference of common ancestors can identify putative transmission clusters.121,137  

While these methods are increasingly used to understand HIV transmission dynamics within 

sub-populations,93,144,145 use of sequence data to complement sexual networks as understood 

by contacts elicited during partner notification services (PNS) is understudied.146  Sequence 

data has potential to add structure to the sexual network through genetic linkage of network 

components that erroneously appear disjointed due to inability to locate network members.147-149  
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In San Diego, for example, HIV genetic clusters combined with PNS data from recently-infected 

MSM increased membership in putative transmission networks.148  In an investigation of 

spatiotemporally-clustered acute HIV infections in NC, phylogenetics revealed multiple 

transmission chains rather than a single outbreak.104  Such analyses demonstrate that 

sequence data can enhance our knowledge of sexual networks.  Analysis of phylogenetic 

transmission cluster growth can also point to groups in which HIV transmission continues to 

occur,106 signaling the need for immediate intervention.26,150 

We investigated the sexual network constructed from PNS data in Wake County, NC, 

and compared this with HIV transmission clusters using pol sequences routinely collected 

statewide.  Our objective was to assess the overlap between networks derived through PNS 

and sequence analysis to identify areas where interventions could be intensified.   

C. Methods 

1. Study Setting and Design 

Wake County is a metropolitan county in central NC that accounts for approximately 

10% of statewide annual new HIV diagnoses.38  In 2012, Wake County had a population of 

approximately 963,000 persons, including >2,800 persons living with HIV and an incidence of 

16.3 cases per 100,000 person-years.38   

We conducted a cross-sectional analysis of Wake County residents ≥18 years of age 

who were newly diagnosed with HIV-1 during 2012-2013 and their social and sexual contacts 

reported during routine PNS.  These data were compared with HIV genetic 15,246 sequences 

collected among HIV cases in NC 1997-2014.  The University of North Carolina Biomedical 

Institutional Review Board approved the study.   

2. Study Population 

Disease intervention specialists (DIS), employed by NC Department of Health and 

Human Services (DHHS) or Wake County DHHS, attempt to interview all newly diagnosed 

persons (referred to as index cases) and collect information about their partners for tracing and 
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testing.  In NC, high risk social contacts are elicited at the discretion of each DIS when 

perceived to increase case finding without overly burdening investigations.151,152  Using 

standardized data abstraction, we collected demographics, HIV testing history, and HIV-related 

laboratory results for index cases, and sexual and social contact data.   

Acute HIV infection (AHI) was identified through the NC Screening and Tracing Active 

Transmission (STAT) Program,153 and defined by a positive HIV RNA test and negative or 

indeterminate HIV antibody, or a positive HIV antibody within 30 days of confirmed negative 

testing.  Cases who did not meet the AHI definition but were reported to STAT with a positive 

antibody test with seronegative documentation and/or symptoms compatible with AHI within 3 

months of first positive HIV test were classified as recent HIV infection (RHI).  For persons 

diagnosed with AHI or RHI, DIS interviews focus on partnerships within 2 or 6 months prior to 

diagnosis, respectively.   

3. Sexual Network Construction 

We constructed the sexual network using name-based partnership data collected during 

PNS interviews with index cases.  All network members were de-identified after network 

construction to preserve patient confidentiality.  A socio-sexual network comprises discrete 

components (at least two people directly or indirectly connected) and singletons (isolated 

persons if no partners are disclosed or located).  The network was created using the igraph114 

package in R.115   

4. HIV-1 Sequences and Transmission Cluster Identification 

HIV-1 pol sequences (full length protease and partial reverse transcriptase) were 

extracted from genotypes performed by LabCorp®, the largest reference laboratory in NC, and 

sampled between 1997 and mid-2014 from patients accessing clinical care.  Demographic 

variables available included birth date, gender, and sampling site.  Geographic location of 

sampling site was categorized by NC-DHHS HIV Field Service Region (Figure 10).  
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Index and HIV-positive partners were probabilistically matched to the statewide 

sequence dataset by birth date, gender, and laboratory test dates.  We considered nonmatching 

sequences as background references for cluster construction.  All analyses used the earliest 

sequence per individual.  The final dataset included 15,246 sequences.  A random subset of 

100 sequences is available in GenBank, accession numbers KY579388-KY579812.   

Sequences were aligned using MUSCLE154 and edited manually in BioEdit,155 with a final 

sequence alignment length of 1,497 bases.  Maximum-likelihood (ML) phylogenies were 

constructed in FastTree156 with the generalized time-reversible model.157  Statistical support of 

clades was assessed with local support values using the Shimodaira-Hasegawa-like test (SH-

test).158  Putative transmission clusters were identified using ClusterPicker v1.3159 and defined 

as clades with 1) high branch support (≥0.90 SH-test), 2) maximum pairwise genetic distance 

<3.5% between all sequences, and 3) inclusion of a sequence from at least one index or partner 

case.   

Putative clusters were confirmed with the Bayesian Markov Chain Monte Carlo (MCMC) 

approach in BEAST v1.8.2.160  Analyses were conducted using the SRD06 nucleotide 

substitution model, a lognormal relaxed molecular clock model, and the Bayesian Skyline model 

as coalescent tree prior.  The MCMC chain was run for 50-100 million generations, sampling 

every 10,000 generations.  Convergence of the estimates was considered satisfactory when the 

effective sample size calculated in Tracer v1.6.0161 was >200 in all parameters; 10% of 

generations were discarded as burn-in.  The maximum clade credibility tree was summarized 

using TreeAnnotator v1.8.2,160 keeping the median height over the posterior distribution of trees.  

Clades with posterior probability ≥0.95 were considered highly supported and analyzed further.   

5. Statistical Analyses 

We compared membership in transmission clusters and sexual network components.  

Clusters involving ≥2 cases (index or partners) were characterized by demographic features and 

compared to case location within and across network components.  Time of most recent 
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common ancestor (MRCA) and cluster age were estimated based upon timing of branching in 

the phylogeny.   

D. Results 

1. Study Population 

In total, 280 persons newly diagnosed with HIV were reported in Wake County from 

2012-2013; 83% (n=232) were male, 65% (n=183) were Black, and 40% (n=112) were younger 

than 30 years.  Many (27%, n=75) were concurrently diagnosed with AIDS and 4% (n=11) were 

diagnosed during AHI.  Among 235 index cases with CD4 count data, the median first CD4 

count was 338 cells/mm3 (IQR 130-525 cells/mm3); 31% had CD4 count <200 cells/mm3.  

Among 147 cases with viral load results within 3 months of diagnosis, the median was 4.9 log 

copies/mL (IQR 4.3-5.3 log copies/mL) (Table 4).   

2. Partner Notification Network 

DIS interviewed 225/280 index cases (80%), who reported 854 sex partners and 34 

social contacts (average 4 contacts per person; number of sex partners ranged 0-50).  

Approximately half (50%; 446/888) of contacts (414 sexual and 32 social contacts) had enough 

locating information for DIS to begin investigation.  The 446 partnerships investigated (Table 2) 

resulted in 383 unique non-index case partners (Table 4):  36 were index cases themselves, 19 

were named by ≥2 index cases, and 3 were index cases who were also named as partners 

more than once.  Although 48/383 (13%) partners were not located during investigation, we 

included them in the network.  Of 383 partners, 39% were HIV-negative, 34% (n=131) were 

HIV-positive, and 27% HIV status was unknown.  Most HIV-positive non-index partners (81%; 

106/131) were diagnosed before 2012.  Thirty-six percent (138/383) of partners resided outside 

of Wake County, including 22 (6%) residing out of state and 6 (2%) with unknown location of 

residence.   

The PNS network included 663 persons (Table 4), with 280 index cases and 383 

partners.  Most network members were Black (63% vs. 29% White and 5% Hispanic/Latino), 
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MSM or men who have sex with transgender women (MST) (61%), and young (median age 30 

years, IQR 24-42).  Persons of color were more likely to be HIV-positive (74% Latino and 66% 

Black) compared to White persons (53%).  MSM index cases were more likely to have partners 

who could not be located than men only reporting female partners (37% vs. 29%).   

Overall, 176/280 index cases were connected to at least one other person in the 

network.  The remaining 104 singletons represented 37% of index cases; 55 (53%) reported 

zero partners and 49 provided information for 1-50 partners, though none could be located.  The 

sexual network was sparsely connected, comprising 104 singletons and 137 network 

components (≥2 persons).  Component sizes ranged from 2-65 persons; the three largest 

included 20, 26, and 65 people (Figure 11a).  Most (62%, n=85) components only included 

MSM and MST.   

We assessed characteristics of the 446 partnerships (93% sexual and 7% social), which 

included 559 persons across 137 network components (excluding 104 singletons) [Table 5].  

Most partnerships involved either MSM or MST (81%), were among people of the same race 

(82%), and included at least one Black person (71%).  Nearly 25% (n=106) of partnerships were 

between an index case and a person with unknown HIV status.  Among 340 partnerships where 

HIV status was documented for both people, 53% involved two HIV-infected persons (n=181).  

Most (80%) of the 131 HIV-infected partners received their diagnoses before the index cases 

(median 2.5 years, IQR 1 month-5.5 years).   

3. Transmission Clusters 

Over half of HIV-positive cases (56%; 230/411) matched to a pol sequence, including 

53% (148/280) index cases and 63% (82/131) HIV-positive partners.  Cases who had 

sequences were similar to those without sequences with respect to gender and age.  Among 

index cases, Whites were more likely than persons of color to have sequences (64% vs. 49%, 

p=0.04), as well as those diagnosed in 2012 compared to 2013 (63% vs. 44%, p=0.002).   
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We identified 116 clusters involving ≥1 person from the network, with a total of 800 

persons including 103 index cases (70% those with sequences), 66 partners (80% those with 

sequences), and 631 background sequences (Figure 12).  In the initial ML analysis, 117 clusters 

were identified but two sequences failed to cluster in the confirmatory BEAST analyses.  The 

116 confirmed clusters had median size two members (range 2-36 persons); only three clusters 

were non-B subtypes (A1, CRF02_AG, CRF06_cpx).   

Among 230 index cases (n=148) and partners (n=82) with sequences, we evaluated 

associations with cluster membership.  Cluster members were more likely to be male (77% vs. 

52% female, p=0.006), men reporting male contacts (83% vs. 67% heterosexual and 57% no 

partners reported, p<0.001), Black (80% vs. 69% White and 33% Latino, p=0.001), and younger 

(mean age 35 vs. 38 years, p=0.04), compared to cases with sequences who were not in a 

cluster.  Cluster members had more connections in the network than did cases with sequences 

who did not cluster (2 vs. 1 mean partners, p=0.001).   

Most clusters included only one index case or partner from the network; 34 (29%) 

including ≥2 index cases were denoted  “Wake” clusters for further analysis (Table 6 shows 

Wake clusters with ≥5 total cluster members).  Wake clusters included 287 persons (56 index 

cases, 31 partners, and 200 background sequences) [Figure 2]; two (6%) comprised only two 

partners with no index cases.  All Wake clusters were subtype B and most were male-

dominated; seven (21%) included ≥50% women.  More than half (59%; n=20) of Wake clusters 

only included persons sampled from the same eleven-county geographic region (Figure 2).  

Most (74%; 61/82) clusters with only one person from PNS were clusters with ≥50% members 

sampled in the same region, including 22 clusters with 100% members sampled in the same 

region.   

Wake cluster maximum genetic distance was 1.67% (IQR:  1.04-2.93%) statewide and 

0.95% (IQR:  0.32-1.28%) when restricted to network members (Table 6).  Median estimated 
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cluster age prior to the index case diagnosis was 8.5 years (IQR:  5.1-12.9 years) with median 

MRCA estimated to occur in 2005 (range 2000-2007). 

4. Partner Notification Network and Transmission Cluster Overlap  

The PNS network included 663 persons:  280 index cases and 383 contacts who formed 

104 singletons plus 559 persons in 446 partnerships (Figure 11a).  Among 230 network 

members with sequences, including 45 singletons, 169/230 (74%) were in one of 116 statewide 

transmission clusters that included at least one network member.  The 169 persons spanned 82 

network components and 23 singletons; the remaining 61 persons who were not in a cluster 

spanned 36 network components and 22 singletons.  Among the 23 singletons in a cluster (51% 

singletons with sequences), 8 (35%) did not name any partners and the remainder disclosed at 

least one partner, though none could be located.  The median cluster size among singletons 

was 4 persons (range 2-23).   

Among 446 partnerships, 70 (16%) included two HIV-positive persons with sequences; 

of these, 83% (58/70) were sexual connections.  All male-female pairs were in the same cluster, 

whereas only 34% of male-male pairs were in the same transmission cluster (χ2 p<0.001).  Of 

the 383 contacts, 27 (7%) were only identified as social contacts of an index case; 11 had a 

sequence, of which 9 were in a statewide cluster with no one else from the PNS network and 2 

were in a Wake cluster; one clustered with another PNS social contact (statewide cluster size 2) 

and the other clustered with the index case who disclosed the contact as a social connection 

(pairwise genetic distance 1.3%, statewide cluster size 14).  

Eighty-seven persons were in 34 Wake clusters (defined as ≥2 persons from PNS 

network), which included 2-6 network members and spanned 56 PNS network components plus 

12 singletons.  Overall, 41% (14/34) Wake clusters covered only one network component; 1 

included three network members and the rest included two.  The Wake clusters that covered 

only one component were more likely to include ≥50% women (36% [5/14] vs. 10% [2/20] 

spanning multiple components).   
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Among 19 Wake clusters with ≥5 persons statewide (Table 6), 6 (32%) covered only one 

component, where all network persons in the cluster were also linked by named partner ties.  

The remaining 13 spanned multiple components, where the phylogenetic relationships bridged 

located partnerships:  7 (37%) spanned two components, 5 (26%) spanned three, and 1 (5%) 

spanned four components.  For example, the three network members in Cluster J spanned two 

components and one singleton (Figure 11a, quadrants a, c, and d), although there were 12 

people in the cluster statewide (Figure 11b).  The maximum genetic distance between any pair 

of network members in Cluster J was 1.24%, despite each of the 3 network members being in 

different components (Table 6, Cluster J).  Of the 13 clusters with ≥5 members statewide (Table 

6) that spanned multiple components, 9 (69%) included only men. 

There was no significant difference by sampling year, cluster age, or statewide genetic 

distance between Wake clusters that covered single or spanned multiple components.  

However, the mean genetic distance among persons in the Wake cluster was significantly 

smaller when the cluster covered only one component (0.66% vs. 1.23%, p=0.03).   

E. Discussion 

This study sought to explore the benefits of combining molecular data with sociosexual 

network data obtained during routine partner notification services from persons newly diagnosed 

with HIV in a single large county in NC.  The study drew on a statewide dataset of over 15,000 

HIV-1 sequences from persons sampled between 1997 and mid-2014.  We overlaid the genetic 

data and sociosexual network constructed from partner notification records to obtain a more 

comprehensive picture of the epidemic and identify gaps in PNS, particularly among male-

dominated sexual network components. 

More than half of local transmission clusters bridged sexual network components that 

appeared disconnected, demonstrating that molecular data can detect unobserved links in the 

sexual network.  Furthermore, despite not having any partners identified in the network, over 

half of singletons with sequences were in a statewide cluster.  For each set of disconnected 
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network components or singletons in the same transmission cluster, at least one connection is 

not represented in the PNS network.  Some of the disagreement may be explained by differing 

collection periods, as sequence sampling time for the clusters was not limited by time period.  

Many index cases were likely infected for years, so partners reported at diagnosis may not 

reflect the network at the time of infection.  Additionally, some persons in the network were only 

social contacts, so their inclusion increased PNS network component size and may have 

increased the effect of bridging by the transmission clusters if they were in a different cluster 

than the index case.  However, they represented only 2 of 87 network members in a Wake 

cluster. 

Partner notification is limited by missing data due to persons not being diagnosed or 

located and partnerships not being disclosed or not occurring during the DIS interview time 

period.  Stigma and discrimination faced by MSM contribute to interview bias and may reduce 

willingness to disclose partners to health authorities.  Previous HIV sexual network studies in 

NC found that a high proportion of partners cannot be located21,28 and MSM tend to have more 

undisclosed partners,162 causing components to appear disjointed and impacting PNS network 

completeness.  However, this completeness is precisely what we wanted to investigate and 

adding sequences offered some correction to the observed network.     

   Accordingly, local transmission clusters, particularly those that spanned multiple 

components, were more likely to be male-dominated.  This reflects the current epidemic in NC, 

where the overall rate of new diagnoses remains elevated with ongoing transmission among 

young men22 and demonstrates the value of supplementing partner notification with another 

method that portrays transmission networks differently.  By overlaying phylogenetic data onto 

the sexual network, we were able to identify components with ongoing transmission.  Persons in 

either network may benefit from interventions such as offering pre-exposure prophylaxis to HIV-

negative partners or linkage to care support to HIV-positive persons who are not virally 

suppressed.163  A substantial proportion of incident HIV cases in NC are attributed to persons 
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who are diagnosed and aware of their status at the time of transmission;28 determining which 

network components have unidentified partners and which clusters have unsuppressed 

members may help guide intervention targets.  Additionally, the smaller genetic distance 

amongst persons in the sexual network compared to other cases in NC indicates that applying 

these interventions locally could have an immediate local benefit.     

We combined methodologies previously used to describe HIV transmission networks.  

While several studies have used sequence data to construct transmission networks,49,103,164-170 

few have compared these to PNS networks.149,150,171  To our knowledge, none compared PNS 

networks constructed from surveillance data using all known incident HIV diagnoses made in a 

large, defined administrative area.  We used all incident diagnoses in our area of interest and 

matched to all available sequences from one laboratory that serves most patients in this area.  

We included partnership and demographic data, allowing us to compare groups.  We found that 

male-male PNS pairs were less likely to be in the same transmission cluster, and that male-

dominated clusters are more likely to bridge PNS components.  The percentage of named 

partners with genetically similar virus in this largely-MSM population was similar to what was 

found among MSM in New York City (NYC).  Similar to NYC, heterosexual pairs in this 

population were more likely to cluster than MSM pairs.149 

Combining PNS and molecular data can lead to an improved representation above what 

is possible with either alone,144,145 as both methods have limitations.  Sequence analysis is 

limited by inability to infer directionality and missing data for persons who have not been 

diagnosed or who do not have sequences available.172  In NC, genotyping is routinely performed 

at entry to clinical care, so failure to receive a diagnosis or link to care will impact phylogenetic 

network completeness.  Black persons with HIV infection are less likely to link to care,173-175 

which is reflected in the lower proportion of Black persons in our study with sequences.  

Additionally, sequences stemmed from only one laboratory and some of the cases without 

sequences may seek care from providers who use other labs, affecting cluster 
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comprehensiveness.  Still, characteristics associated with cluster membership in our study, 

including younger age,49,176,177 Black race,176 being male,176 and being MSM,162,169,176 agree with 

previous studies in the US.   

While there is no accepted genetic distance criteria to define transmission clusters,121 

traditional cut-offs of <1.5% genetic distance difference allow a focus on only on recent 

transmissions.  We used a higher cluster threshold within the range of multiple other studies121 

to permit the characterization of transmission dynamics over longer time periods in the region.  

Our focus is not on source attribution or using the sequences to confirm transmissions between 

known partners, but to identify ongoing, local transmission networks using available sequence 

and routinely collected PNS data.  Additionally, most sequences were from chronically-infected 

persons, so genetic distances between connected persons are expected to be larger due to 

greater time since infection and we did not want to restrict our analysis to recent partnerships.   

Both HIV phylogenetic and PNS data portray networks differently and care must be 

taken not to misinterpret results.  Although the combination of these data provide new insights 

into network structure, potential ethical and privacy concerns must be considered.  HIV genetic 

clustering does not imply direct person-to-person transmission or direction of transmission;172 

thus these data should not be used for identification of first-degree partnerships or confirming 

transmission from one person to another. 

The HIV sequence analysis recognized ongoing transmission chains among high-risk 

persons, notably MSM, which was not detected through routine partner notification.  Persons 

who experience the most stigma and those at highest risk, MSM or not, such as those who 

engage in transactional sex or have anonymous partnerships, are more difficult to reach and 

may therefore be absent from the PNS network.  Molecular approaches provide clues to gaps in 

PNS and direction for case finding and partner elicitation efforts.178   
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By adding HIV sequences to the PNS network, we were able to successfully identify localized 

areas where infected persons were missing from the network, demonstrating the value of 

integrating molecular data into routine partner tracing and testing.   
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Table 4.  Index cases diagnosed 2012-2013 in Wake County, NC and their partners in the sociosexual  
network (N=663). 

 
Index (n=280) Partner (n=383) 

  n (%) n (%) 

Gender 
    

Male 232 (83) 327 (85) 

Female 44 (16) 53 (14) 

Transgender (M to F) 4 (1) 3 (1) 

Race/ethnicity 
    

non-Hispanic White 69 (25) 120 (31) 

non-Hispanic Black 183 (65) 238 (62) 

Hispanic or Latino 23 (8) 12 (3) 

Other 5 (2) 8 (2) 

unknown 0 
 

5 (1) 

Age at index case's HIV diagnosis (years)* 
    

≤ 19 5 (2) 28 (7) 

20-29 107 (38) 178 (46) 

30-39 54 (19) 87 (23) 

40-49 67 (24) 49 (13) 

≥ 50 47 (17) 26 (7) 

unknown 0 
 

15 (4) 

median (IQR) 34 (25-45) 28 (23-37) 

HIV status 
    

Positive, with HIV sequence 148 (53) 82 (21) 

Positive, no HIV sequence 132 (47) 49 (13) 

Negative --- 
 

148 (39) 

unknown --- 
 

104 (27) 

Year of HIV diagnosis 
  

n=131 

< 2006 --- 
 

31 (24) 

2006-2010 --- 
 

59 (45) 

2011 --- 
 

16 (12) 

2012 131 (47) 11 (8) 

2013 149 (53) 9 (7) 

2014 --- 
 

5 (4) 

HIV stage at diagnosis 
    

Acute / Recent 23 (8) --- 
 

Chronic, non-AIDS 182 (65) --- 
 

Chronic, AIDS 75 (27) --- 
 

CD4 count closest to diagnosis (cells/mm3) n=235 
  

< 200 74 (31) --- 
 

≥ 200 161 (69) --- 
 

Viral load (log copies/mL)† n=147 n=60 

≤ 3 8 (5) 29 (48) 

> 3-5 78 (53) 10 (17) 

> 5-5.7 44 (30) 1 (2) 

> 5.7 17 (12) 20 (33) 

median (IQR) 4.9 (4.3-5.3) 3.3 (2.9-7.7) 

Number of sexual and social partners reported‡ n=225 
  

0 15 (7) --- 
 

1 78 (35) --- 
 

2 42 (19) --- 
 

3-5 61 (27) --- 
 

≥ 6 29 (13) --- 
 

* Among partners, for earliest record associated with an index case 

† Within 3 months of diagnosis for index patients and within 12 months prior to index case diagnosis for partners 

‡ Among those reached for interview; includes located and anonymous partners 
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Table 5.  Partnerships reported by index cases with located members of the sociosexual network (N=446). 

 
Sociosexual Network 

Partnerships (N=446)* 

  n (%) 

Partnership type 
  

Sexual 414 (93) 

Social only 32 (7) 

Pair gender 
  

Male - Male 355 (80) 

Male - Transgender 5 (1) 

Male - Female 85 (19) 

Female - Female 1 (0.2) 

Index case 
  

Index - Index 42 (9) 

Index - Partner 404 (91) 

HIV serostatus 
  

Positive - Positive (concordant) 181 (41) 

Positive - Negative (discordant) 159 (36) 

Positive - unknown 106 (24) 

Pair race 
  

Black - Black 261 (59) 

White - White 98 (22) 

Hispanic - Hispanic 8 (2) 

Black - White 40 (9) 

White - Hispanic 17 (4) 

Black - Hispanic 7 (2) 

Other 15 (3) 

* 104 singletons in the network are not represented in this table 
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Table 6.  Transmission clusters that included 5 or more persons statewide and at least two members of the Wake County-based sexual network of 
adults diagnosed with HIV during 2012-2013 and their contacts (n=235). 

 
 Statewide  Wake Network 

Cluster 
ID 

Cluster 
Size 

Max 
Genetic 
Distance 

(%) 

Sampling Year 
(median (IQR)) 

Estimated 
Cluster 

Age 
(years) 

Most 
Recent 

Common 
Ancestor 

# Male: 
# 

Female 

  # of 
Network 
Persons 

# Index: 
# 

Partner 

Max 
Genetic 
Distance 

(%) 

# 
Components 

Spanned* 

A 5 0.95 2013 (2013-2013) 4.7 2009 4:1 
 

2 1:1 0.00 1 

B 5 1.65 2012 (2012-2013) 7.6 2005 5:0 
 

2 2:0 1.02 2 

C 5 2.58 2011 (2009-2012) 11.7 2002 4:0† 
 

3 1:2 2.58 2 

D 6 2.05 2012 (2008-2014) 8.1 2006 6:0 
 

2 1:1 0.96 2 

E 6 0.95 2012 (2010-2013) 6.5 2007 6:0 
 

3 2:1 0.68 1 

F 6 1.56 2012 (2012-2012) 5.5 2007 6:0 
 

6 3:3 1.56 3 

G 7 2.92 2010 (2005-2012) 18.5 1993 1:6 
 

2 2:0 1.40 1 

H 8 2.94 2007 (2003-2012) 18.6 1995 8:0 
 

2 2:0 0.61 1 

I 8 1.56 2013 (2012-2014) 7.6 2006 8:0 
 

4 3:1 1.15 2 

J 12 3.42 2011 (2009-2012) 12.2 2001 11:1 
 
3 2:1 1.24 3 

K 14 3.33 2007 (2007-2010) 18.3 1995 6:7† 
 

2 1:1 1.27 1 

L 14 3.22 2011 (2008-2013) 18.3 1995 14:0 
 
2 1:1 0.07 1 

M 15 3.59 2010 (2008-2011) 14.7 1999 15:0 
 
2 1:1 0.94 2 

N 16 2.33 2009 (2008-2013) 12.5 2001 16:0 
 
2 2:0 0.47 2 

O 16 2.11 2010 (2009-2012) 8.8 2004 15:1 
 
3 1:2 1.24 3 

P 20 3.26 2010 (2008-2012) 13.8 2000 20:0 
 
3 3:0 3.22 3 

Q 23 3.24 2008 (2007-2011) 17.3 1997 10:13 
 
2 2:0 0.07 2 

R 23 2.95 2012 (2012-2013) 12.0 2002 23:0 
 
5 4:1 1.83 4 

S 36 3.26 2012 (2011-2013) 12.4 2002 34:2   4 4:0 2.54 3 

* Includes number of network singletons and components that included at least one person from the Wake County sexual network 
† Gender unknown for one person in this cluster 
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Figure 10.  NC HIV Field Service Regions Prior to Office Redistribution. 

 

 
 
Figure legend: 

Map showing the previous North Carolina field service regions for HIV and STD control, as they were 

during the conception of this study.  Wake County, marked with a star, is one of eleven counties in 

Region 6.   
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Figure 11.  Sexual network showing phylogenetic cluster membership and gender (A), and selected sexual 
network components showing cluster members and genetic distance statewide (B)  
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Figure legend: 

1A)  Sexual and social network compiled from contract tracing depicting HIV status and 

phylogenetic transmission cluster, Wake County, NC during 2012-2013.  Graph shows gender 

(node shape), cluster membership with respect to gene sequence availability and cluster 

membership of other persons represented in this sexual network (node color), and partnerships 

disclosed by index cases (lines connecting nodes).  The graph is split into quadrants by number 

of persons in each component:  (a) singletons (n=104 persons), (b) dyads (n=75 components), 

(c) components size 3 (n=22), 4 (n=10), or 5 (n=12), and (d) components size 6 or larger (n=18 

components comprising 243 persons).     

1B)  Selected phylogenetic transmission clusters (F, I, and J) show sexual network components 

spanned and additional cluster members statewide who were not part of the Wake County-

based sexual network.  Graph shows gender (node shape), appearance in sexual network or 

only transmission cluster (diagonal cross in node shape), transmission cluster status (node 

color), and connections between nodes.  Having a named partner tie (i.e., connection in the 

sociosexual network) is represented by a solid line and being ≤1.5% pairwise genetic distance 

in the transmission cluster is represented by a dashed line.   
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Figure 12.  Phylogenetic tree of HIV pol gene sequences showing transmission clusters. 

 
 



 

68 

Figure legend: 

Maximum-likelihood tree constructed for display purposes using sequences (n=800) identified in 

confirmed phylogenetic transmission clusters among 15,246 HIV-1 positive persons sampled in 

North Carolina 1997-2014. Confirmed clusters had posterior probability >0.98 in the Bayesian 

analysis and include at least one index or partner case identified during partner notification of 

new HIV diagnoses in Wake County, 2012-2013. Index cases (new diagnoses in 2012-2013) 

are indicated by red circles and partner cases are indicated with blue circles at the tips of the 

tree. Clusters in grey boxes involve ≥2 cases from the partner notification network. Clusters with 

letters (A-S) are the Wake clusters that meet these criteria and also include ≥5 persons 

statewide. Branch support, using the Shimodaira-Hasegawa-like test values, is included for the 

Wake clusters.  
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VI. CHAPTER SIX:  MINING THE GAPS:  LEVERAGING GENERALIZED ESTIMATING 
EQUATIONS TO UNDERSTAND HOW PHYLOGENETICS CAN COMPLEMENT 

CONTACT TRACING2 

A. Overview 

1. Background 

 An estimated 13-15% of HIV-infected persons are unaware of their status.  Public health 

efforts directed at diagnosis improve community outcomes by increasing the proportion of 

persons who can be linked to HIV care and eventually virally suppressed. 

2. Methods 

 We combined contact tracing and gene sequence data for all persons diagnosed with 

HIV in urban Wake County, NC in 2012-2013.  We created a dataset of pairs of persons in the 

same phylogenetic transmission clusters and analyzed whether these persons in the same 

transmission cluster were in the same sexual network component.  We applied a set of 

generalized estimating equations to the differences amongst phylogenetic cluster and sexual 

network component membership. 

3. Results  

 Age homophily, race homophily, biological sex, partner number assortativity, the number 

of months between HIV diagnoses of the persons in the pair, and not having an interview for the 

person diagnosed second were all significantly associated in the multivariable model with 

phylogenetically clustered persons not being linked in the contact tracing.    

                                                
2Pasquale, DK, Doherty, IA, Miller, WC, Powers, KA, Sampson, LA, Leone, PA, Sebastian J, Ledford, SL, 
Eron, JJ, Dennis, AM. Mining the Gaps:  Leveraging Generalized Estimating Equations to Understand 
How Phylogenetics Can Complement Contact Tracing. 
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4. Conclusions 

 Interview refusal has a significant impact on disaggregating the network.  Encouraging 

partner elicitation during contact tracing interviews, especially of male cases, would lead to 

better partner finding and subsequent diagnoses in this network.  This novel approach can 

systematically identify where to direct efforts for improved case finding. 

B. Introduction 

 The Seek, Test, Treat, and Retain strategy put forth by the NIH and WHO aims to 

identify persons living with HIV infection who do not know their status and remove barriers to 

retaining them in care and on therapy.179,180  “Seeking” and “testing” rely on several actions by 

public health personnel, including contact tracing.  Once an HIV-infected person is diagnosed, 

contact tracing frequently leads to finding more HIV-infected persons.28,143  However, contact 

tracing is hindered by inability to locate some partners or interview refusal,143 which results in 

persons who cannot be tested and thereby diagnosed. These persons then contribute to losses 

along the continuum of HIV care.180,181 

 Analysis of partnership dynamics in North Carolina reveals high rates of anonymous 

exchange sex among heterosexuals during a syphilis outbreak44 and a substantial proportion of 

partners who could not be located.125,182 Consequently, the observable sociosexual network 

based upon the disclosed and located partners has many “missing” partnerships. As contact 

tracing is name-based, elicited partnerships can be used to construct a sexual network of index 

cases and their located partners. Identifying where and why partnerships are “missing” can 

provide clues to find persons who are active in the network but not identified during contact 

tracing. To assess the comprehensiveness of contact tracing efforts, another method of 

representing HIV transmission at a similar scale is needed for comparison.146 Like sexual 

network analysis, HIV phylogenetic analysis depicts groups of persons thought to be close 

together in the transmission chain. 
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 In a qualitative comparison of a contact tracing-based sexual network with transmission 

clusters inferred from HIV pol gene sequences, we found that many index cases had no located 

partners in the sexual network, despite being recently diagnosed, and more than half of the 

isolated persons who had an HIV gene sequence were still in a phylogenetic transmission 

cluster.183  The combination of these outcomes – recent diagnosis with an HIV gene sequence 

similar enough to cluster with at least one other person, yet having no locatable partners – 

indicates gaps in the contact tracing network.  Contact tracing could be improved by identifying 

factors contributing to the network gaps.  Here, we quantitatively compared the contact tracing 

sexual network and the gene sequence analysis network and tested associations where they 

showed different relationships amongst groups of persons.  Using transmission clusters inferred 

from HIV gene sequence analysis as the “gold standard”, we compared the clusters of like 

infections based upon HIV gene sequence analysis with a sexual network constructed from 

partnerships elicited during contact tracing.   

C. Methods 

1. Parent Study 

 The parent study for the subset of persons included in this multivariable analysis 

qualitatively compared a sexual network constructed from HIV surveillance data to phylogenetic 

trees constructed from HIV pol gene sequences collected for clinical care from persons in the 

same geographical area.  Methods for sexual network and phylogenetic tree construction for the 

parent study are previously described.183  Briefly, all 2012-2013 incident HIV cases residing in 

urban Wake County, North Carolina (NC) and their partners were abstracted from public health 

contact tracing records.  Disclosed partnerships elicited during contact tracing were used to 

construct a name-based sexual network.  The resultant sexual network, based upon named, 

located partners, most closely resembles exponential non-discriminative snowball sampling, as 

any number of partners can be named; an element of discrimination is introduced as only 

partners who are newly diagnosed with HIV are then asked to name partners.   
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 HIV-positive persons in the parent study sexual network were probabilistically matched 

to available HIV pol gene sequences. The pol gene sequences were used to construct 

phylogenetic trees, calculate pairwise genetic distance between persons, and infer transmission 

clusters where sequences in the cluster differed by no more than 3.5%. Genetic distance 

calculations were performed in FastTree156 using the generalized time-reversible model. 

Clusters were confirmed with a BEAST analysis.184   

2. Measures 

a. Study Population 

 We restricted to transmission clusters that had at least 2 persons in the parent study 

sociosexual network.  For the parent study, we created a phylogenetic tree using 15,246 HIV pol 

gene sequences collected (and reported) 1997-2014 in NC and confirmed the transmission 

clusters with a BEAST analysis.183  We also created a sociosexual network from Wake County 

HIV diagnoses made 2012-2013 and their located partners and high risk social contacts (N=663 

total persons, n=411 (62%) HIV-positive).  We probabilistically matched 56% (230/411) HIV-

positive persons in the sociosexual network to the set of 15,246 sequences.  Overall, 73% 

(169/230) of the parent study participants (index or HIV-positive partner with a linked pol gene 

sequence) who matched to a sequence were in a transmission cluster.  When using all 15,246 

persons with HIV pol sequences in the state of North Carolina to create a phylogenetic tree, we 

found 116 putative transmission clusters which included at least 1 person from the sociosexual 

network and 34 transmission clusters which included at least 2 persons from the parent study 

sociosexual network.  We noted the 34 “local” transmission clusters, which included 800 total 

persons, 87 of whom were from the Wake County sociosexual network.  Using the 87 persons, 

we created dyads with each possible pair of persons from the sociosexual network who were in 

the same transmission cluster (Figure 13).   

 This quantitative multivariable analysis was restricted to the 87 persons who were in one 

of 34 local clusters.  The purpose was to evaluate if HIV-infected network indexes and partners 
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identified in the same cluster were directly or indirectly connected within the same sexual 

network component.  The outcome was being in the same sociosexual network component, 

based upon being in a transmission cluster ‘dyad’.   

 Collected person-level traits were retained from the parent study.  Dyad-level traits 

including age difference, difference in race/ethnicity, gender and sexual preference, and time 

between HIV diagnoses were calculated for all possible pairs of persons within each local 

cluster.  Pairwise percent genetic distance between pol gene sequences was retained from the 

parent study. 

b. Study Design 

 We set cluster membership as the “gold standard” for relationship linkages and contact 

tracing network component membership as the comparator.  We set component membership as 

the comparator, rather than restricting only to first-degree partners, because there may be 

unsampled third persons in the cluster who are unknown, but the known first (or second) degree 

partners of the unsampled persons would still cluster; being in a cluster doesn’t necessarily 

indicate being first-degree partners.  For that reason, we instead used the contact tracing 

network component as the sexual network cluster since it captures kth-degree partners who are 

all linked together.   

 Additionally, we would expect many more links in the contact tracing network than what 

is represented in the cluster because not every sexual contact results in transmission.  

Therefore, it is expected that contact tracing network components could contain persons from 

many different clusters.  However, if all partnerships are elicited during contact tracing (in an 

ideal world) then a cluster should not contain more than one sexual network component since 

everyone with like infection should have all of their partnerships represented in the contact 

tracing, thereby linking those persons together.    

 The contact tracing sexual network components were considered “clusters” of linked 

persons for the purpose of comparison to the phylogenetic cluster.  Among persons in the same 
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phylogenetic cluster, membership in different contact tracing components suggests that persons 

or relationships between persons were missing thereby disaggregating the full network into 

multiple components (Figure 14).  This commonly occurs when not all of the links between 

persons in the transmission chain are discovered during contact tracing and partner elicitation.   

3. Statistical Analyses 

 Each possible pair of persons in the same local cluster (a “dyadic pair”) was set up as an 

observation in the dataset.  Each person in the pair retained his or her information (i.e., gender, 

race) and dyad-level variables (i.e., age difference) were calculated.  Each contact tracing-

based sexual network component was assigned a number and component membership was 

assigned as a person-level attribute.  Whether the persons in each dyadic pair were or were not 

in the same sexual network component, knowing that they were in the same cluster due to the 

way that the pairs were created, was our outcome variable.   

a. Generalized Estimating Equations to Compare Linkages 

 The analysis examined characteristics of dyadic pairs of persons in the same cluster that 

were associated with being in different network components using a set of generalized 

estimating equations (GEE) with a binomial distribution, logit link function, and robust variance.  

Robust standard errors accounted for the clustering of the outcome.  We selected an 

exchangeable correlation matrix to treat each person in the cluster as equally likely to have 

been the transmitting partner.  A priori-selected model covariates included whether persons in 

the dyadic pair shared the same race and whether persons in the pair were within 5 years of 

age, as these factors influence partner selection and network formation.45,49,54,88  Other 

covariates tested were related to risk factor assortativity, as both sexual network62 and 

transmission cluster162 analysis have found that partners tend to group by risk behavior.  The 

remaining covariates were selected on the basis of the bivariate relationship between the 

covariate and the outcome using the odds ratio and confidence interval, at an alpha level of 

0.20.  The quasilikelihood independence model criterion (QIC)185 was used to refine the GEE186 
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using the remaining covariates.  The final model was the one with the lowest QIC.  Covariates 

were considered significant in the final multivariable model if the p-value was ≤0.05.  Stata 12187 

was used for all modeling. 

D. Results 

1. Study Population 

 The 34 local clusters included 287 persons overall:  87 were part of the parent study and 

200 were part of the dataset containing HIV pol gene sequences collected in NC and only 

included to construct the clusters.  The 87 persons formed 83 dyadic pairs of persons who were 

in the same local cluster.  These 83 dyadic pairs comprise the observations included in this 

analysis.   

 These 87 persons were significantly more likely to be Black when compared to persons 

included in the parent study but who did not meet the criteria for this nested study (76% v. 62%, 

p=0.01).  Persons in the nested study were younger (mean 32 v. 36 years, p<0.01) when 

compared to HIV-positive persons from the parent study who were not included in this analysis 

(Table 7).  HIV-positive persons in the nested study were significantly less likely to be a sexual 

network isolate (8% v 30%, p=<0.01) than HIV-positive persons excluded from this analysis 

because they were not part of a local cluster.   

2. Transmission Cluster and Network Overlap 

 About half of persons in a local cluster (45/87, 52%) were linkable in the same contact 

tracing network component as at least one other person in his or her local cluster.  The other 

48% (n=42) were phylogenetically linked to at least one other person in the study but not 

identified as being in the same linked group as those persons via the network constructed from 

contact tracing interviews.  

 Two-thirds of the dyadic pairs (56/83, 67%) were not in the same network component.  

The mean genetic distance for the dyadic pairs was 0.9% (95%CI: 0.8-1.1%).  Amongst dyadic 

pairs in the same network component, genetic distance was skewed positively and was 
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significantly smaller in that group (0.5% v. 1.1%, P=0.0001).  Genetic distance amongst dyadic 

pairs in different network components appears to have a bimodal distribution (Figure 15).    

3. Generalized Estimating Equations 

 Age and race were selected a priori.  When both persons were age 30 years or younger 

at the index case’s diagnosis, they were twice as likely to be in the same transmission cluster 

but different sexual network components than pairs where at least one person was older than 

30 years, although the difference was not significant in the bivariable analysis (odds ratio 

(OR)=2.2, P=0.12; Table 8).  Pair members being of different race was not associated with 

sociosexual component membership.   

 Both persons in the dyad being male was statistically significantly correlated with being 

in different network components (OR=4.7, P=0.03).  The continuous number of months between 

HIV diagnoses (OR=1.0, P=0.12), the person diagnosed later not being interviewed (OR=2.8, 

P=0.12), and having less than 10 sex partners difference between both persons in the dyad 

(OR=2.5, P=0.18) were included in the first multivariable GEE iteration as they met the a priori 

cutoff in the bivariate comparisons.  Having anonymous partners was not associated with being 

in the same cluster without being linked in the contact tracing.   

 In addition to age, race, and the factors that met the criteria for being included in the 

multivariable GEE, neither person being acutely infected was also included in the model as it 

improved the QIC.  The number of months between HIV diagnoses was not significant in the 

multivariable GEE and its removal improved the QIC, so it was dropped from the equation.   

 The final model included age, race, pair gender, whether the person diagnosed later was 

interviewed, difference in number of located sex partners, and acute infection at diagnosis.  

Neither age (adjusted OR (AOR)=1.9, P=0.27) nor race (AOR=3.6, P=0.06) was significantly 

associated with being in the same cluster but not the same network component in the 

multivariate analysis (Table 8).  However, the remaining covariates were significantly associated 

with the outcome of being in a different sexual network component while being in the same 
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transmission cluster in the multivariable analysis.  Both partners being male was highly 

significant (AOR=25.7, P<0.01), as was the person diagnosed later not being interviewed 

(AOR=8.1, P<0.01).  The difference in the number of sex partners being less than 10 was an 

indicator (AOR=4.9, P=0.03) as was neither person being acutely infected at diagnosis 

(AOR=7.9, P=0.02).   

E. Discussion 

 Nearly half of the pairs in our analysis were part of the same transmission cluster without 

being represented as being connected in the contact tracing network.  We used a set of 

generalized estimating equations to identify factors associated with clusters of linked persons in 

the contact tracing network failing to approximate clusters estimated in the phylogenetic 

analysis, which is an indication that partnerships were not elicited during contact tracing.  

Specifically, we observed that contact tracing missed pairs where both partners were male, 

neither was diagnosed with acute HIV, and the person diagnosed later in time was not 

interviewed.  

 For each male-female pair, both persons were in the same network component.  

Therefore, being in a male-male pair was predictive of not being in the same network 

component.  This has potential public health implications, as it appears that men with male 

partners are not captured as well in the contact tracing.  This could be due to failure to disclose 

male partners to the disease intervention specialists (DIS) performing the interviews or to the 

inability of the DIS to locate partners.   

 There are several reasons why pairs which include someone acutely diagnosed are less 

likely to be missing.  First, DIS pursue persons diagnosed with acute HIV more thoroughly.  

Second, elicited partnerships would have occurred just prior to diagnosis, so recall bias may be 

less of an issue.  Third, persons with acute infection are more likely to cluster in the 

phylogeny,102 and partner testing tends to yield more new diagnoses than when the partners of 

a chronically-infected person are tested.188  Newly-diagnosed persons identified during contact 
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tracing are in turn interviewed to elicit partnerships, which can increase the size, density, and 

completeness of the sexual network component.  This leads to more opportunities for the 

transmitting partner of the acutely infected person to be included in the network and have an 

available sequence for the phylogeny. 

 Missing an interview for the person diagnosed later in an index case-index case pair 

could mean that we do not have an accounting of partnerships that occurred between the earlier 

index case diagnosis and the later index case diagnosis.  Since we do not have interview data 

on the later person, we are unable to verify this theory, but the larger genetic distance amongst 

persons in different network components supports several possibilities.  First, the earlier mode 

may represent partnerships which occurred between the earlier person’s diagnosis in the dyad 

and the later person’s diagnosis, so that the earlier person didn’t have the opportunity to 

disclose the partnership and the later person was then not interviewed.  Second, the larger 

genetic distance may represent a partnership that occurred longer ago and was not captured 

due to recall bias or having occurred prior to the partnership period of interest.  The third 

possibility is that it indicates that there are unsampled intervening persons in the transmission 

cluster due to the high number of untraced partners and we are seeing second-degree partners 

clustered together instead of first-degree partners.  If the last is true then having anonymous 

partnerships would be substantively significant even if not statistically significant in the GEE.  

Inferences must be made with caution from the phylogeny, however, as we used a consensus 

gene sequence instead of performing deep sequencing and we do not know ART history, which 

affects viral evolution and therefore clustering. 

 This analysis provides an initial examination into possible gaps in contact tracing.  The 

magnitude, direction, and statistical significance of the odds ratios suggest that this is worth 

exploring even if the estimates from the multivariable GEE presented are imprecise due to the 

small sample size.  Future studies should aim to increase the proportion of cases with available 

sequences or decrease the proportion of missing interviews and untraced partners.  A larger 
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sample size may also reveal more information about partnerships as they relate to HIV 

transmission.  We used GEE because there is certainly some amount of clustering in the data 

since we are looking at person-to-person transmission, but the exact nature of it is unknown.  

Despite these limitations, the value of this novel analysis is its quantitative approach to 

examining contact tracing comprehensiveness related to public health efforts aiming to curb the 

HIV epidemic in North Carolina.  

 Diagnosis is critical to ending the HIV epidemic, in the context of currently available 

interventions.  Diagnosis is the first step in the process of engaging patients in care, access to 

treatment, and viral suppression, which improves quality of life, increases duration of survival, 

and reduces the likelihood of onward transmission.180,181,189,190  However, an estimated 13-15% 

of HIV-infected persons in the United States are unaware of their status,174,189,191,192 which 

prevents these people from entering care, initiating antiretroviral therapy, and becoming virally 

suppressed.181  The culmination of losses to care along these of the HIV care continuum steps 

results in only approximately 30% of HIV-infected persons in the United States being virally 

suppressed.174,192  Despite the limitations of the depiction of the HIV care continuum,193-195 

diagnosis is the necessary first step to engagement and retention in care.  NC has already met 

the National HIV/AIDS Strategy 2020 program target of diagnosing at least 90% of HIV-infected 

persons residing in the state,39 which is excellent.  Efforts to identify persons who are missed 

during contact tracing can keep this proportion steady or help increase it among groups that 

tend to have lower rates of diagnosis, including persons of color173 and men who have sex with 

men (MSM).  In support of this, we found that MSM are more likely to be part of sexual network 

components that are more disjointed than the phylogenetic analysis suggests.  The GEE that 

we created underscores the importance of surveillance and diagnosis by examining which 

factors are most associated with two persons being in the same local cluster without being in 

the same contact tracing sexual network component, which is an indication of missing links or 

persons in the elicited sexual network.   
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 The incomplete contact tracing interviews substantively and significantly affect the 

structure of the sexual network.  They were a significant predictor of not seeing that persons 

who were in the same transmission cluster were in the same sexual network component, 

meaning that persons with phylogenetically similar HIV infections were not known to be partners 

or have partners in common.  Partners who are not traced due to incomplete interviews means 

that there are potentially infectious persons not traced for diagnosis or linkage to care.  Public 

health efforts directed at completing interviews among men who refuse will elicit more partners 

for testing, thereby filling in some of the gaps in the contact tracing network and keeping NC on 

track to reduce the burden of HIV.   

 This analysis allowed us to quantitatively identify traits associated with being part of a 

phylogenetic transmission cluster that does not approximate one’s contact tracing connections.  

Using GEE, we were able to identify factors that were significantly associated with losses in the 

sexual network, as measured by having transmission clusters that spanned several contact 

tracing-based sexual network components.  To our knowledge, this is the first time that a sexual 

network and a phylogenetic tree based upon reported HIV cases have been systematically, 

quantitatively compared.  This analysis provides a novel way to identify characteristics 

associated with HIV-positive persons whose partners would benefit from testing but are not 

being located during routine contact tracing.   
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Figure 13.  Flow chart of inclusion into the analysis dataset (N=87 in 83 dyadic pairs), starting from the parent 
study Wake County network (N=663, 62% HIV-positive (n=411)).   

“Local clusters” are transmission clusters which include at least 2 persons from the local 

sociosexual network. 

 
 

 

Figure 14.  Illustration of possible missing relationships (dotted lines) if the “gold standard” transmission 
cluster shows persons who are not linked in the sexual network.  The person, C, who is disconnected in the 
contact tracing-based sexual network could have (1) been a partner to A, (2) been a partner to B, or (3) been 
connected to an unsampled person who is in turn connected to A or B.   
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Figure 15.  Percent genetic distance by outcome. 
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Table 7.  Description of index cases diagnosed 2012-2013 in the Wake County, NC parent study and their partners in the sexual network (N=663) and a 
description of the substudy analysis set restricted on the basis of number of study participants within each transmission cluster (N=87).   

 

  

n (%) n (%) n (%) n (%)

Gender

Male 232 (83) 327 (85) 49 (88) 27 (87)

Female 44 (16) 53 (14) 6 (11) 4 (13)

Transgender (M to F) 4 (1) 3 (1) 1 (2) 0

Race/ethnicity

non-Hispanic White 69 (25) 120 (31) 13 (23) 7 (23)

non-Hispanic Black 183 (65) 238 (62) 42 (75) 24 (77)

Hispanic 23 (8) 12 (3) 1 (2) 0

Other 5 (2) 8 (2) 0 0

unknown 0 5 (1) 0 0

Age

mean (SD) 36 (12) 31 (11) 32 (12) 31 (11)

HIV status

Positive, with HIV sequence 148 (53) 82 (21)

Positive, no HIV sequence 132 (47) 49 (13)

Negative 0 148 (39)

unknown 0 104 (27)

Index (n=280) Partner (n=383) Index (n=56) Partner (n=31)

Sexual Network (N=663) Persons in Analysis Pairs (N=87)
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Table 8.  Bivariable and multivariable relationships in the GEE between explanatory variables and the outcome of being in the same transmission 
cluster but not in the same sexual network component, by odds ratio (OR) and confidence intervals (CI) (N=83 pairs unless otherwise indicated).   

  

Bivariable Multivariable

N (col %) N (row %) N (row%) OR 95%CI P-value OR 95%CI P-value

Different race persons in pair 20 (24) 15 (75) 5 (25) 1.6 0.5-5.0 0.40 3.6 1.0-13.1 0.06

     both persons in the pair identify as the same race 63 (76) 41 (65) 22 (35) 1.0 1.0

Neither person African-American race 17 (20) 13 (76) 4 (24) 1.8 0.5-6.8 0.37

     at least one person in the pair identifies as Black 66 (80) 43 (65) 23 (35) 1.0

Age difference > 5 years 37 (45) 26 (70) 11 (30) 1.2 0.5-3.0 0.71

     age difference <= 5 years of age 46 (55) 30 (65) 16 (35) 1.0

Both age 30 or younger at diagnosis 50 (60) 37 (74) 13 (26) 2.2 0.8-5.8 0.12* 1.9 0.6-5.7 0.27

    at least one person more than 30 years of age at diagnosis 33 (40) 19 (58) 14 (42) 1.0 1.0

Both reside in Wake County at diagnosis 55 (66) 38 (69) 17 (31) 1.5 0.5-4.1 0.46

     at least one person doesn't reside in Wake Co at dx 28 (34) 18 (64) 10 (36) 1.0

Less than 5 years between HIV diagnoses 68 (82) 48 (71) 20 (29) 2.0 0.6-6.3 0.26

     >= 5 years between HIV diagnoses 15 (18) 8 (53) 7 (47) 1.0

Both persons are index cases 34 (41) 28 (82) 6 (18) 3.4** 1.2-9.5 0.02* 16.2** 6.7-39.2 <0.01

     index/partner or partner/partner pair 49 (59) 28 (57) 21 (43) 1.0 1.0

Person diagnosed second not interviewed 18 (22) 15 (83) 3 (17) 2.8 0.8-10.0 0.12* 8.1** 2.0-33.2 <0.01

     Person in pair diagnosed second is interviewed 65 (78) 41 (63) 24 (37) 1.0 1.0

Total number of sex partners 1.0 0.9-1.1 0.83

Less than 10 partners difference 73 (88) 51 (70) 22 (30) 2.5 0.7-9.9 0.18* 4.9** 1.1-21.3 0.03

     more than 10 sex partners difference among pair 10 (12) 5 (50) 5 (50) 1.0 1.0

Number of anonymous partners [N=34] 0.9 0.7-1.1 0.32

Neither person has anonymous partner(s) [N=53] 18 (34) 14 (78) 4 (22) 1.1 0.3-3.9 0.88

     at least one person in pair has at least one anonymous ptn 35 (66) 27 (77) 8 (23) 1.0

Neither person acutely infected at diagnosis 71 (86) 49 (69) 22 (31) 1.6 0.5-5.8 0.46 7.9** 1.5-43.0 0.02

     at least one person in pair acutely infected at diagnosis 12 (14) 7 (58) 5 (42) 1.0 1.0

Male-male pair 72 (87) 52 (72) 20 (28) 4.7** 1.2-18.4 0.03* 25.7** 7.1-92.9 <0.01

     male/female or female/female pair 11 (13) 4 (36) 7 (64) 1.0 1.0
* Tested in the multivariable model based upon bivariate relationship with outcome

** Significant at alpha=0.05

Different component?

3.00 +/- 6.00 1.46 +/- 1.821.74 +/- 2.92

5.74 +/- 5.50 6.23 +/- 4.566.07 +/- 4.86

Yes (N=56) No (N=27)Total (N=83)
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VII. CHAPTER SEVEN:  PREDICTING INDICATORS OF ONGOING HIV TRANSMISSION 
RISK AFTER HIV DIAGNOSIS IN NORTH CAROLINA3 

 
A. Overview 

1. Background 

 Transmission potential of HIV can be reduced by providing antiretroviral drugs as 

therapy to infected persons or as pre-exposure prophylaxis to seronegative persons.  Engaging 

previously-diagnosed persons with indicators of onward transmission potential in care is an 

efficient way to reduce transmission potential. 

2. Methods 

 We used HIV surveillance data to create a retrospective cohort of all persons newly HIV-

diagnosed over a two-year period in the area around Raleigh, North Carolina.  We assessed 

two surveillance-based indicators of ongoing network involvement among these cohort 

members over the subsequent three years:  incident sexually transmitted infection (STI) or 

being named as a sexual contact of a newly diagnosed case of HIV or syphilis.  We used 

logistic regression to construct two predictive models, one using only simple information 

collected through routine surveillance and one that also used sociosexual network statistics, to 

identify cases with these indicators. 

3. Results 

 Of 569 newly HIV-diagnosed cases included in the cohort, one quarter (N=x) had one of 

the two outcomes indicating continued involvement in the network within the first three years of 

diagnosis. Combining demographic characteristics, HIV/STI testing history, and sociosexual 

                                                
3Pasquale, DK, Powers, KA, Doherty, IA, Dennis, AM, Samoff, E, Maxwell, J, Barnhart, J, Leone, PA, 
Miller, WC.  Predicting Indicators of Ongoing HIV Transmission Risk After HIV Diagnosis in North 
Carolina. 
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network data was predictive of future indicators of risk behavior.  A network model including 

demographics, HIV/STI testing history, and sociosexual network measures correctly classified 

80% of cases, and a simple model without network measures correctly classified 74% of cases.   

4. Conclusions 

 Our predictive models indicate that data collected at the time of HIV diagnosis may help 

identify persons who are likely to have future outcomes that are consistent with ongoing HIV 

transmission risk behavior.  Information gathered from the sociosexual network reduced the 

number of cases followed while increasing the percent of cases correctly classified.   

B. Introduction 

Most HIV infections in the United States (US) are acquired sexually.3  Sexual 

transmission of HIV is driven by uncontrolled HIV prevalence among active members of the 

sexual network,24,190 which can be reduced with antiretroviral therapy (ART).196,197  Immediate 

ART is the current recommendation, but only 60% newly diagnosed cases in the US link to and 

remain in care20 and fewer than half of diagnosed adults achieve sustained viral suppression.10  

For newly diagnosed persons who fail to link to care within one year of diagnosis,20,39 contact 

with medical or public health professionals occurs only at the time of diagnosis.   

Across the US, too few people receive or are retained in care following HIV diagnosis,20 

which is a barrier to achieving viral suppression and thereby increases the possibility of onward 

transmission.  In North Carolina (NC), the proportion of new sexually-transmitted HIV infections 

due to partners who were aware of their HIV-positive status at the time of transmission appears 

higher than in the US as a whole.28  NC has achieved significant increases since 2009 across 

the HIV care continuum,181 including meeting the 90-90-90 target goal180 for diagnosis in 2015.39  

But too few cases are engaged and retained in care to meet the viral suppression goal.39  While 

losses at any step of the HIV care continuum increase the likelihood of onward transmission,190 

engaging previously diagnosed persons is likely to be more efficient than identifying people who 

are undiagnosed, since diagnosed persons are already known to medical and public health 
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professionals.  Therefore, directing limited public health resources towards intensive linkage and 

retention services for diagnosed persons with a high potential for onward transmission may be 

more effective for reducing HIV incidence. 

Targeting high-risk persons might be further refined with epidemiological analysis of the 

socisexual network.11,23,198  Partnership patterns are associated with sexual risk and disease 

transmission in both observed8,9,45,199 and simulated networks.25,70,111,126  The structure of the 

network itself provides clues to the underlying processes driving relationship formation76,98 and 

certain features are typical across networks where infections are sexually transmitted, even with 

differences in partner selection behaviors.200  Reduction in risk behavior following diagnosis 

reduces HIV prevalence in the network,117 although risk behavior reduction is not constant.78,79  

Therefore, assessment of network position at diagnosis may provide clues to behavior and 

partnerships following diagnosis. 

 We sought to develop a risk score algorithm to be used at the time of diagnosis with the 

goal of identifying persons with the highest transmission risk potential, taking into account 

activity in the sexual network after HIV diagnosis.  Using demographic, sexually transmitted 

infection (STI) and HIV testing history, and sexual network characteristics collected at the time 

of HIV diagnosis, our model predicts who would benefit from enhanced efforts to link to and 

remain engaged in care throughout the course of this chronic infection.  

C. Methods 

1. Study Population, Setting, and Data 

NC is divided into 10 regions for HIV and sexually transmitted disease (STD) control 

activities.  Region 6 (R6) in north central NC (Figure 7) comprises 4 urban/suburban and 7 rural 

counties based upon 2012 USDA rural-urban continuum codes,201 with a total population in 

2012 of ~1.9 million persons202 including ~5,700 persons living with HIV or AIDS (PLWHA).38  

The rate of new diagnoses in R6 was 14.4 per 100,000 population in 2012, with ~300 new 

diagnoses each year.203  
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Disease intervention specialists (DIS) attempt to interview all persons newly diagnosed 

with HIV and syphilis to assist with care linkage and elicit sexual and needle-sharing partners for 

testing.  DIS elicit partners in the previous 12 months for established HIV cases; 6 months for 

persons thought to be recently infected based upon acute viral illness or recent negative HIV 

test; and 2 months for persons diagnosed during acute HIV infection per 4th generation antibody 

or RNA test results.  DIS also elicit and trace high risk social contacts at their discretion due to 

the overlap between social networks and sexual partners,150 particularly among Black men who 

have sex with men (MSM).8,61 

We identified R6 residents age ≥14 years and first diagnosed with HIV during 2012-2013 

from State of NC surveillance records.  For each of these index cases (“indexes”), we 

abstracted from the surveillance system demographic characteristics, risk factors (transactional 

sex, drug use, anonymous partners) immediately prior to diagnosis or lifetime, HIV-related 

laboratory results, STI and HIV testing history, and recent partnerships.  For each partner 

identified, we abstracted demographic characteristics, risk factors, and HIV and STI history if 

known.  The University of North Carolina Biomedical Institutional Review Board approved the 

study.   

2. Study Design 

 Continued involvement in the sociosexual network within 3 years (1,095 days) after HIV 

diagnosis date was inferred for each index based on surveillance system records (more 

information below).  We also abstracted HIV viral load results, which are reportable in NC, 

during this period to assess viral suppression overall and at each date where the index had an 

outcome.  Indexes were determined to be virally suppressed if viral load was <200 cells/mm3 or 

undetectable, with the index designated as durably suppressed during the outcome if the 

outcome was reported between two clinical visits occurring ≤200 days apart and the index was 

virally suppressed at each. 
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3. Sociosexual Network Construction 

A sociosexual network is composed of discrete components, groups of persons joined 

together by social or sexual relationships, and singletons, solitary persons who are not joined to 

anyone else.  Partner notification (PN) data collected by DIS during HIV and syphilis 

investigations for indexes age 14 or older at diagnosis were used to create an undirected 

sociosexual network using the igraph114 package in R.115  The network immediately surrounding 

the index was treated as a local ego network and network characteristics and structures were 

collected based upon index network position.  Partnerships elicited during syphilis investigations 

in R6 during 2012-2013 were included to better understand network position among high-risk 

persons.  As such, syphilis network components that did not include at least one person from 

the HIV investigation were discarded from the analysis network since they would not affect 

index network position.   

Network structures ascertained included size of index’s component, density of index’s 

component, and inclusion in triangles or k-cores (closed loops where each person in the loop 

has k partners).  Dyad (partnership)-level covariates, including race homophily (agreement of 

race between partners), age difference, and seroconcordance, were calculated for each 

partnership.  Multiple node-level measures of centrality were calculated after network 

construction, including simple degree (number of directly linked people in the network), degree 

weighted by partners’ average degree (“adjusted degree”), and betweenness.  Betweenness 

measures the number of times that a path between any two persons (nodes) in the network 

passes through the index.89  All network members were de-identified after network construction 

to preserve confidentiality.   

4. Statistical Analyses 

 We created a composite outcome that included the first time an index was reported in 

the surveillance system to be:  1) identified as a partner of a new HIV or syphilis case where the 

relationship began before index HIV diagnosis and continued for ≥2 months after, or started at 
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any point after index diagnosis, or 2) diagnosed with a new STI ≥6 months after HIV diagnosis; 

STIs included syphilis, gonorrhea, chlamydia, and non-gonococcal urethritis (Figure 16).  These 

composite measures were chosen to reflect continued sexual risk behavior with potential 

consequences after diagnosis.  A binary outcome measure was created to indicate the 

presence of either outcome within 3 years (1,095 days) of HIV diagnosis date.   

Model predictors were based on variables collected at the time of the index’s HIV 

diagnosis and partner notification interview.  To reflect the time at which the model would be 

applied in future public health practice, we used information as it was understood at the time of 

diagnosis, even if that information later changed.  Predictors abstracted from the surveillance 

system included demographics (gender, estimated transmission risk category, age, 

race/ethnicity, marital status), social environment (college student, job, prison), sexual risk 

factors, STI and HIV testing history.  Other predictors were calculated based upon the 

constructed network (dyadic factors such as race homophily, network structures).   

Predictors were categorized as demographic, STI testing history, and network structure; 

we were not able to use risk/behavior in the multivariable model due to the amount of missing 

data.  We calculated unadjusted odds ratio for the association between each predictor and the 

outcome.  Predictors in each category were tested against each other for collinearity; if 

meaningful collinearity was observed, one variable was selected for multivariable model 

candidacy based on predictive ability against the outcome and ease of calculation. 

Due to the high number of predictors associated with the outcome, we performed 

backwards elimination in two stages for model construction.  First, we created a multivariable 

logistic model containing all predictors with unadjusted odds ratio p<0.20 for each predictor 

category using backwards elimination within each predictor category model at α=0.05.  The 

variables selected for each category model were then added as a set sequentially in each 

possible order to the sets of variables in the other category models, with a second round of 
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backwards elimination at α=0.05 and refined by of Akaike’s information criteria204 to arrive at a 

final, combined model.   

We repeated this process twice to create two final models.  One included all information 

categories, including network terms, as predictors and the other only used standardly-collected 

demographic information and STI/HIV history as predictors.  For each model, 1,000 bootstrap 

samples of indexes were randomly selected with replacement to internally validate the model.  

We used robust standard errors to account for non-independence of the indexes with respect to 

the network predictors and outcome.  β-coefficients were evaluated in each bootstrap for 

consistency in relation to the outcome.  We report the variables retained in the final bootstrap 

multivariable models, with bias-corrected conference intervals (Table 2).  β-coefficients from the 

final “network” and “simple” bootstrap models were summed to estimate risk for each index.  

Modeling was performed using Stata 15.116   

We compared sensitivity and specificity of each model at various model score cut points.  

A priori, we decided to maximize sensitivity over specificity because the current protocol is to 

link all newly diagnosed persons to care, so the risk is greater for failing to identify cases at high 

risk of onward transmission than it is for identifying low-risk persons who would benefit from 

enhanced linkage to care support.  Per a discussion with public health officials regarding this 

population, we weighted false negatives by a factor of 2.5 and calculated total error rate (false 

positive + weighted false negative) based upon observed outcome prevalence.  We compared 

predictive capability and total weighted errors at various levels of sensitivity and specificity for 

the network and simple models to determine whether only routinely-collected predictors could 

be applied in the field with acceptable loss of capability. 

D. Results 

1. Study Population 

 A total of 569 new HIV diagnoses were reported among R6 residents age ≥14 years 

during 2012–2013.  Most newly-diagnosed persons were male (79%) and Black (66%).  Median 
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age at diagnosis was 33 years (IQR: 24–45) [Table 9].  Based upon laboratory results, 32 (6%) 

were acutely or recently infected with HIV and 144 (25%) were concurrently diagnosed with 

AIDS; there was imperfect agreement of cases when comparing HIV stage at diagnosis per 

laboratory results with stage estimated at interview.   

In the 3 years following diagnosis, 483 (85%) indexes had 2,746 viral load results 

reported (median=6 (IQR: 3–8)).  Nearly 2/3 (62%, n=1,695) of all viral load tests indicated viral 

suppression, with 51% (290/569) indexes having durable viral suppression at least once in the 3 

year period following diagnosis (length of time ranging from 7 months through censoring at 3 

years).  However, nearly half (43%) of indexes either had no viral loads reported (n=86), had 

tests reported but none indicated viral suppression (n=94), or had periods of viral rebound 

interspersed with periods of suppression (n=65).  Black persons were less likely to ever achieve 

durable viral suppression, while Whites, Hispanic/Latinos and people of other races were more 

likely (p=0.009).   

2. Elicited Contacts and Baseline Sociosexual Network  

Nearly all indexes (97%) were interviewed, although 26% indexes (n=146) declined to 

discuss contacts.  Those who disclosed contacts (n=423, 74%) reported a total of 1,850 sexual 

partners (median=2 (IQR: 1–4), range 0–60), 130 high-risk social contacts (range 0–19), and 5 

needle-sharing partners (range 0–3) in the 2, 6, or 12 months prior to diagnosis (depending on 

infection stage; see Methods).  Of the sexual partners reported, 521/1,850 (28%) did not have 

enough locating information to initiate partner notification.  DIS attempted to locate and notify 

the remaining 1,329 sexual partners, along with all social and needle-sharing contacts.   

Indexes and their located first-degree contacts formed 845 relationships:  749 sexual 

partners, 92 social contacts, and 4 needle-sharing partners, representing 40%, 71%, and 80% 

of total claimed, respectively.  These contacts formed the sociosexual network used for 

analyses.  Most sexual partnerships were among people of the same race (78%), included at 

least one person of Black race (77%), and were among two men (72%).  Half (51%) of sexual 
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partners were ≤5 years of age apart.  Among the 749 sexual and 4 needle-sharing partners, 

42% (319/753) were HIV-positive (diagnosis year range 1995–2017, 46% diagnosed ≥6 months 

prior to index), 30% were documented to be HIV-negative during the investigation, and 27% had 

unknown serostatus.  Among 425 (75%) indexes who were not concurrently diagnosed with 

AIDS, <1 HIV-positive sexual or needle-sharing partner on average was identified during the 

investigation (mean=0.64, SD=1.05; total=270). 

After de-duplication (106/845 contacts were indexes themselves and the other 39 were 

contacts of >1 index), 700 unique first-degree contacts were added to the network along with 

201 additional people from concurrent syphilis investigations who were linked to HIV indexes or 

contacts.  The total network size was 1,470 persons (Figure 17).  Excluding the 569 newly-

diagnosed indexes, 283 (31%) network members were HIV-positive (median diagnosis year 

2009 (IQR: 2006–2012) excluding 80 (28%) unknown diagnosis years), 272 (30%) were HIV 

negative based upon a test during the investigation period, and serostatus was unknown for the 

remaining 346 (38%).   

Nearly half of indexes (44%, n=248) were isolated in the network, with no located 

partners:  54% (n=134) isolates did not disclose partners, 17% (n=42) claimed zero sexual 

partnerships, and 29% (n=72) claimed 1-50 partners (median=2 (IQR: 1-4).  The remaining 321 

indexes formed 220 discrete components of ≥2 people (Figure 1), most of which contained two 

people (n=238 people across 119 dyads) or three people (n=144 people across 48 components) 

[Figure 17].  The largest component included 320 persons (22% total network, 8% (46/569) 

indexes).  Component size, dominant demographic characteristics, and member HIV status are 

shown in Table 10a and Table 10b.  Ten (4%) of 220 components contained second-degree 

partnerships from syphilis investigations.  Seven (1%) indexes were in at least one triangle and 

22 were in a k-core:  21 (4%) indexes were in a 2-core and 1 (0.2%) was in a 3-core.  Due to the 

high number of isolates and smaller-sized components in the network, transitivity and 

betweenness scores were uninformative.   
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3. Outcomes 

One-quarter of indexes (141/569) met the outcome definition within 3 years after HIV 

diagnosis.  Over three-fourths of those with the outcome (78%, n=110) were diagnosed with a 

new STI ≥6 months after HIV diagnosis.  The remaining 22% (n=31) were identified as a partner 

by someone who was diagnosed with HIV or syphilis after the index’s HIV diagnosis, with the 

dates of the relationship as described by the new case continuing for at least 2 months or 

starting any time after the index’s diagnosis.  Time to outcome following HIV diagnosis ranged 

from 9 days–2.9 years, where the smallest time was the start of a new relationship with 

someone who was later diagnosed with HIV.  The median time was 1.4 years (IQR: 8 months–

2.1 years). 

Among 141 outcomes, 33 (23%) occurred during a period of durable viral suppression:  

17/110 (15%) STI outcomes and 16/31 (52%) partnership outcomes.  Median length of durable 

viral suppression periods with an outcome was 1.7 years (IQR: 11 months–2.5 years), with the 

outcome occurring 8.5 months after the start of the period (median; IQR: 3 months–1.4 years).  

Cases who met the outcome definition were more likely to have been durably suppressed at 

least once during the follow-up period (p<0.05).   

4. Bivariable Analysis  

Demographic predictors were highly associated (p≤0.0001) with having the outcome, 

including being male (unadjusted odds ratio (uOR)=3.5, 95% confidence interval (CI): 1.8–6.7), 

younger than 30 years of age at HIV diagnosis (uOR=3.9, 95%CI: 2.6–5.9), and unmarried 

(uOR=9.9, 95%CI: 4.3–23.1); race/ethnicity was not associated (Table 2).   

Categorized degree (number of partners), categorized degree modified by mean number 

of partners’ partners, and component size were each highly predictive (uOR p<0.0001) [Table 

11].  Other network measures are sensitive to number of partnerships, so the network terms 

were not associated with the outcome due to the high proportion of cases who were singletons 

or in smaller sized components.  Being in a k-core was associated with the outcome, although 
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the confidence interval was wide (uOR=9.0, 95%CI: 3.4–23.5).  Indexes who had more sexual 

partners in the network than they disclosed were twice as likely to have the outcome (uOR=2.3, 

95%CI: 1.3–4.1). 

5. Development of Multivariable Models 

Not being married was the strongest predictor of the outcome in both models.  Younger 

age, non-rural county of residence, not being concurrently diagnosed with AIDS, and choosing 

to disclose partners were predictive in both models, although rurality was not significant in the 

bootstrapped simple model (Table 11).  The network model additionally included component 

size, categorized as isolated, 2–4 persons, and ≥5 persons in the component, where each 

categorical increase in component size increased likelihood of being an outcome.  However, 

being in a component size 2–4 persons was not significant compared to being a singleton in the 

bootstrapped model. 

6. Predictive Capabilities of Multivariable Model 

The simple model ROC area was 0.83 (Figure 18).  Based upon the observed outcome 

prevalence of 25%, among a hypothetical population of 1,000 newly-diagnosed persons, the 

lowest number of unweighted errors across all cut-points for the simple model was 207 (at 

sensitivity=47%, specificity=90%).  The lowest total weighted errors with the simple model was 

339 (sensitivity=80%, specificity=72%) [Table 12a].  At the weighted sensitivity and specificity 

levels, bridge counselors would intervene on 415 people, of whom 200 (48%) would actually be 

likely without intervention to later arise as STI cases or partners of newly diagnosed HIV/STI 

cases, while 50 such people would not be identified for enhanced public health support.   

The network model ROC area was 0.84, which was not significantly different than the 

simple model area under the curve.  The lowest number of unweighted (n=201) and weighted 

(n=321) errors occurred when sensitivity=68% and specificity=84% (Table 12b).  Bridge 

counselors would intervene on 292 people, of whom 170 (58%) would actually to have the 

outcome in the absence of intervention, while missing 80 higher-risk persons.  At the sensitivity 
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and specificity levels where each model had the lowest number of weighted errors, the simple 

and network models correctly classified 74% and 80% cases, respectively.  

E. Discussion 

We sought to identify who is likely to remain active in the sociosexual network following 

HIV diagnosis, with the goal of assisting these patients to remain in care and ultimately achieve 

viral suppression.  We developed two models with sufficient predictive ability to identify most 

new HIV cases with higher transmission risk potential.  Both models used information collected 

at the time of diagnosis, including demographics and STI and HIV testing history.  One model 

also included the number of people directly or indirectly linked to the case in the sociosexual 

network as a predictor, which increased the likelihood of correctly classifying cases by post-

diagnosis network involvement.   

Ours is not the first study to leverage information from the time of diagnosis to reduce 

onward transmission.  Similar to what we found by using network component size, number of 

partners expressed as a percentile was predictive of onward transmission risk among cases in a 

network constructed from gene sequences instead of partnerships.171  Several studies have 

recognized the importance of the time of diagnosis to encourage reduction in risk 

behaviors,205,206 though results are mixed.207,208   

Care engagement, however, appears to reduce risk behaviors,190 which highlights the 

importance of linkage to care support.  A reduction in risk behavior may prevent HIV and 

syphilis co-infection, which is a concern given the frequency of STI infections that occur after 

diagnosis, both in our study and elsewhere,21 and the overlap of HIV and syphilis networks,209,210 

as shown by the components which were bridged by second-degree partnerships captured 

during syphilis investigations.  

Even with the addition of syphilis cases, it is clear that partnerships are missing when 

fewer than one HIV-infected partner was found per new case who was not diagnosed with late-

stage infection.  Multiple network measures that we calculated are sensitive to missing data,211 
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notably degree and the centrality measures in sparse networks.212  It is possible that the 

network structures would have been associated with transmission potential had we observed 

more of the network, which may partially explain why our results did not agree with simulation 

studies showing the importance of network structures.98,213,214   

We may have had fewer prediction errors had we been able to use pre-diagnosis risk 

behavior, given its associated with post-diagnosis behavior.77,205  Some degree of outcome 

misclassification is possible, too.  Outcomes required reporting to the State within the 3 year 

follow-up period; partnerships or STIs not reported at all or reported after the follow-up period, 

even if the risk behavior occurred during the follow-up period, would not be known.  However, 

STI diagnosis was the more frequent outcome basis, which does not rely on partner disclosure.  

Additionally, the STI outcome may be the marker for higher-risk sex215 and indicates that 

condoms may not have been used.   

While this model was predictive in our population, it has not been validated in another 

population.  It may be challenging to validate elsewhere since the predictors may not be 

collected the same way.  However, a potential future analysis includes validating the model in 

another geographic area in NC or among cases diagnosed later than those in this sample.  

Even so, the method of using demographic, STI and HIV testing history, and network 

information to predict post-diagnosis network involvement could be applied in another 

population. 

This study is timely in that it coincides with changes to NC law decriminalizing sexual 

activity provided the PLWHA is in care and has been virally suppressed for at least 6 months.216  

Viral loads are reportable in NC, so bridge counselors could access current suppression status 

for any persons who meet the model criteria before offering additional support to establish or re-

establish care.  The racial disparities in durable viral suppression agree with recent 

findings,10,15,217 so although race and ethnicity were not predictive in our models, it is possible 

that enhanced support offered would still address racial disparities in HIV incidence since the 
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majority of partnerships included at least one Black person and/or were among people of the 

same race. 

Several of our findings support our belief that newly diagnosed cases would be valuable 

intervention targets to stop the spread of HIV.  We found fewer than one known HIV-positive 

sexual or needle-sharing partner per new case who was not diagnosed with late-stage disease, 

implying that many HIV-positive sexual network members cannot be located.  Therefore, regular 

contact with newly diagnosed cases may prevent them from becoming “lost”.  Among these 

newly diagnosed persons, one-fifth were diagnosed with a new STI 6 months–3 years after HIV 

diagnosis.  Inflammatory and ulcerative STIs can increase the likelihood of transmitting HIV,218 

and the time period during which this occurred in our population is beyond what is considered 

the most infectious period since all new cases would have passed out of the acute stage by that 

point; it is possible that this contributes to the high proportion of new infections from previously-

diagnosed persons in NC and is worth considering for future study.   

We used PNS data collected at the time of HIV diagnosis to predict continued sexual 

network involvement after diagnosis.  Using demographic and STI data, we developed a model 

to correctly categorize three-quarters of newly diagnosed HIV cases by risk of onward 

transmission.  The addition of sociosexual network data to a second model, while complicated, 

increased classification to 80%.  Sexual network position is associated with risk behavior, and 

changes in risk behavior following diagnosis78,219 are likely from the patient’s own baseline, so 

collecting these characteristics at the time of HIV diagnosis may inform patient needs post-

diagnosis.  This analysis has the potential to refine targets for bridge counseling and direct 

efforts towards patients who would benefit most from support to establish or re-establish HIV 

care. 
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Table 9. Index cases age 14 and older diagnosed 2012-2013 in NC HIV/STD Control Region 6 and their first-
degree contacts in the sociosexual network (N=1,269). 

 
Index (n=569) Contact (n=700) 

  n (%) n (%) 

Gender 
    

Male 451 (79) 581 (83) 

Female 114 (20) 98 (14) 

Transgender (M to F) 4 (0.7) 0 --- 

not indicated 0 --- 21 (3) 

Race / Ethnicity     

non-Hispanic White 114 (20) 164 (23) 

non-Hispanic Black 378 (66) 459 (66) 

Hispanic 58 (10) 33 (5) 

Other 19 (3) 31 (4) 

not indicated 0 --- 13 (2) 

Region of birth     

USA-50 states 530 (93) 344 (49) 

Latin / South America, Caribbean (incl. US Territories) 24 (4) 6 (0.9) 

Europe, Asia, Oceania 3 (0.5) 2 (0.3) 

Africa 12 (2) 0 --- 

not indicated 0 --- 348 (50) 

Marital status     

Currently married 39 (7) 44 (6) 

Divorced / separated / widowed 20 (4) 9 (1) 

Never married 413 (73) 413 (59) 

not indicated 97 (17) 234 (33) 

County of residence  
   

Urban 437 (77) --- 
 

Suburban 27 (5) --- 
 

Rural 105 (18) ---  

Age at index case's HIV diagnosis (years)* 
    

≤ 19 29 (5) 46 (7) 

20-29 214 (38) 316 (45) 

30-39 101 (18) 169 (24) 

40-49 136 (24) 88 (13) 

≥ 50 89 (16) 52 (7) 

not indicated 0 --- 29 (4) 

median (IQR) 33 (24-45) 28 (23-37) 

HIV status 
    

Positive 569 (100) 221 (35) 

Negative ---  243 (32) 

unknown ---  236 (34 

Year of HIV diagnosis 
  

n=221 

< 2006 --- 
 

50 (23) 

2006-2010 --- 
 

71 (32) 

2011 --- 
 

21 (10) 

2012 271 (48) 13 (6) 

2013 298 (52) 7 (3) 

≥ 2014 --- 
 

35 (16) 

not indicated --- 
 

24 (11) 

HIV stage at diagnosis†     

Acute / Recent 32 (6) --- 
 

Chronic, non-AIDS 393 (69) --- 
 

Chronic, AIDS 144 (25) --- 
 

* Among partners, for earliest record associated with any index case 

† Based upon laboratory results 

 
  



   

 

1
0
0
 

Table 10a.  Dominant characteristics of sociosexual network components size 7 and smaller (n=248 isolates and n=201 components size 2–7), 
comprising 794 persons (54% total network).   

Component 
size 

Components 
(N) 

People 
(N) 

Number of 
indexes 
(mean) 

Components 
at least half 

Black 
(n) 

Components 
at least half 

female 
(n) 

Components 
with 

transwomen 
(n) 

Number of 
residents of 

Region 6 
(mean) 

Number 
known HIV+ 

(mean) 

1 248 248 1.0 149 52 1 1.0 1.0 
2 119 238 1.1 88 64 1 1.8 1.3 
3 48 144 1.2 39 14 0 2.6 1.8 
4 20 80 1.1 15 6 0 3.1 1.8 
5 5 25 1.2 3 0 0 2.8 2.6 
6 4 24 1.3 3 0 0 3.8 2.8 
7 5 35 1.4 4 1 0 4.8 3.0 

 
 
Table 10b.  Demographic characteristics of 19 largest network components, comprising 676 persons (46% total network). 

ID People 
(N) 

Total 
network 

(%) 

Indexes 
(n) 

White* 
(%) 

Black 
(%) 

 

Hispanic 
(%) 

Other 
(%) 

Male* 
(%) 

Female 
(%) 

Trans-
women 

(%) 

R6 
residents 

(n) 

Known 
HIV+ 
(n) 

A 8 0.5 1 0 100 0 0 63 38 0 8 2 
B 8 0.5 2 0 100 0 0 100 0 0 6 5 
C 8 0.5 2 38 0 63 0 88 0 13 8 3 
D 9 0.6 1 22 56 0 0 100 0 0 8 4 
E 9 0.6 1 0 100 0 0 100 0 0 5 4 
F 9 0.6 1 11 89 0 22 78 22 0 9 2 
G 9 0.6 1 22 78 0 0 11 89 0 2 1 
H 9 0.6 2 0 100 0 0 100 0 0 4 7 
I 10 0.7 2 30 50 10 0 60 40 0 9 2 
J 10 0.7 3 50 40 10 10 100 0 0 10 6 
K 11 0.7 1 18 73 0 0 9 73 0 10 1 
L 13 0.9 4 0 100 0 0 77 15 0 8 9 
M 13 0.9 2 0 92 8 0 100 0 0 7 8 
N 15 1.0 2 100 0 0 0 100 0 0 15 5 
O 16 1.1 2 0 100 0 0 100 0 0 5 10 
P 26 1.8 1 62 31 4 0 100 0 0 19 5 
Q 81 5.5 9 1 90 0 2 94 5 0 39 28 
R 92 6.3 18 8 85 1 7 93 4 1 47 45 
S 320 21.8 46 38 51 5 5 97 0.1 0 164 136 

* Ethnicity / race and gender do not sum to 100% for some components due to missing information 
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Table 11. Bivariable and multivariable relationships between predictors and post-diagnosis continued involvement in the sexual network among 569 
persons first diagnosed with HIV during 2012-2013 in NC HIV/STD Control Region 6.  Confidence intervals for adjusted odds ratios (aOR) from the 
multivariable models are bias-corrected from 1,000 bootstrapped samples made with replacement. 

 

Predictor Total  Remain Involved Bivariable Analysis Network Multivariable Simple Multivariable 

  N (col %) n (row %) OR (95% CI) aOR (95% CI) aOR (95% CI) 

 569 (100) 141 (25)       

Demographic Characteristics           

Gender           

Woman or Transwoman 118 (21) 12 (10) 1.0      

Male 451 (79) 129 (29) 3.5 (1.8-6.7)‡     

Ethnicity / Race           

non-Hispanic White 114 (20) 28 (25) 1.0      

Person of color 455 (80) 113 (25) 1.0 (0.63-1.6)     

Country of birth           

USA 530 (93) 137 (26) 1.0      

Other 39 (7) 4 (10) 0.33 (0.11-0.94)‡     

Marital status*           

Married  137 (24) 6 (4) 1.0  1.0  1.0  

Unmarried 432 (76) 135 (31) 9.9 (4.3-23.1)‡ 6.5 (2.7-15.9)‡ 7.2 (3.0-17.6)‡ 

County of residence at diagnosis           

Rural 105 (18) 14 (13) 1.0  1.0  1.0  

Urban or suburban 464 (82) 127 (27) 2.4 (1.3-4.5)‡ 2.2 (1.1-5.1)‡ 2.0 (1.1-4.3) 

Age at diagnosis           

≥ 30 years 326 (57) 46 (14) 1.0  1.0  1.0  

< 30 years 243 (43) 95 (39) 3.9 (2.6-5.9)‡ 2.0 (1.2-3.3)‡ 2.5 (1.6-4.1)‡ 

HIV and STD History and Care           

HIV interview           

No interview or no partner disclosure 146 (26) 13 (9) 1.0  1.0  1.0  

Interviewed and disclosed partners 423 (74) 128 (30) 4.4 (2.4-8.1)‡ 2.5 (1.2-5.7)‡ 3.6 (2.0-8.5)‡ 

Estimated HIV stage at diagnosis†           

Concurrently diagnosed with AIDS 136 (24) 13 (10) 1.0  1.0  1.0  

Acute, recent, or chronic HIV 433 (76) 128 (30) 4.0 (2.2-7.3)‡ 2.1 (1.1-4.3)‡ 2.4 (1.3-5.1)‡ 
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Predictor Total Remain Involved Bivariable Analysis Network Multivariable Simple Multivariable 

  N (col %) n (row %) OR (95% CI) aOR (95% CI) aOR (95% CI) 

History of any STI           

No 385 (68) 67 (17) 1.0  1.0  1.0  

Yes 184 (32) 74 (40) 3.2 (2.1-4.7)‡ 1.5 (0.89-2.5) 1.9 (1.1-3.0)‡ 

History of syphilis, specifically           

No 510 (90) 112 (22) 1.0      

Yes 59 (10) 29 (49) 3.4 (2.0-6.0)‡     

Any STI infection at diagnosis           

No 432 (76) 75 (17) 1.0    1.0  

Yes 137 (24) 66 (48) 4.4 (2.9-6.7)‡   2.2 (1.2-3.5)‡ 

STI other than syphilis at diagnosis           

No 474 (83) 87 (18) 1.0  1.0    

Yes 95 (17) 54 (57) 5.9 (3.7-9.4)‡ 2.8 (1.4-4.8)‡   

Prior negative HIV test result           

No 415 (73) 80 (19) 1.0      

Yes 154 (27) 61 (40) 2.7 (1.8-4.1)‡     

Linked to care within 3 months           

No 357 (63) 76 (21) 1.0      

Yes 212 (37) 65 (31) 1.6 (1.1-2.4)‡     

HIV gene sequence available           

No 231 (41) 57 (25) 1.0      

Yes 338 (59) 84 (25) 1.0 (0.68-1.5)     

Network Structures           

Singleton           

No 321 (56) 111 (35) 1.0      

Yes 248 (44) 30 (12) 0.26 (0.17-0.40)‡     

Degree‖           

0 (singleton) 248 (44) 30 (12) 1.0      

1 159 (28) 33 (21) 1.9 (1.1-3.3)‡     

2 62 (11) 22 (35) 4.0 (2.1-7.6)‡     

3-5 67 (12) 35 (52) 7.9 (4.3-14.7)‡     

≥ 6 33 (6) 21 (64) 12.7 (5.7-28.5)‡     
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Predictor Total Remain Involved Bivariable Analysis Network Multivariable Simple Multivariable 

  N (col %) n (row %) OR (95% CI) aOR (95% CI) aOR (95% CI) 

Adjusted degree¶           

0 248 (44) 30 (12) 1.0      

> 0-1 140 (25) 25 (18) 1.6 (0.89-2.8)§     

> 1 to < 2.5 62 (11) 23 (37) 4.3 (2.3-8.1)‡     

2.5 to 5 79 (14) 38 (48) 6.7 (3.8-12.1)‡     

> 5 40 (7) 25 (63) 12.1 (5.7-25.5)‡     

Network sex partners > disclosed           

No 515 (91) 119 (23) 1.0      

Yes 54 (9) 22 (41) 2.3 (1.3-4.1)‡     

Component size           

1 (singleton) 248 (44) 30 (12) 1.0  1.0    

2-4 202 (36) 46 (23) 2.1 (1.3-3.5)‡ 1.4 (0.74-2.6)   

≥ 5 119 (21) 65 (55) 8.7 (5.2-14.8)‡ 3.0 (1.5-5.7)‡   

Closed triangle involvement           

No 562 (99) 137 (24) 1.0      

Yes 7 (1) 4 (57) 4.1 (0.91-18.7)§     

k-core involvement           

No 547 (96) 125 (23) 1.0      

Yes 22 (4) 16 (73) 9.0 (3.4-23.5)‡     

* Designated as ‘married’ only if noted as such in case record, otherwise classified as ‘unmarried’ 

† Based upon estimation of investigating DIS at diagnosis, not confirmed by labs 

‡ Significant at p<0.05 (bivariable analysis and multivariable analyses) 

§ Significant at p<0.20 (bivariable analysis only) 

‖ Degree is the number of connections in the sociosexual network   

¶ Adjusted degree is number of sociosexual network connections adjusted by partners’ average number of network connections   
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Table 12a. Sensitivity and specificity of simple model score to predict post-diagnosis involvement in the sexual network at selected risk score cut-offs, 
including false negative and false positive rates based upon observed 25% prevalence of continued involvement in the sexual network among a 
hypothetical population of 1,000 persons newly diagnosed with HIV. 

Risk 
score 

Sensitivity 
(%) 

Specificity 
(%) 

Patients 
correctly 
identified 
as at risk 

(True 
Positive) 

(n) 

Patients 
missed 
(False 

Negative) 
(n) 

Patients 
correctly 

identifed as 
not at risk 

(True 
Negative) 

(n) 

Patients 
unnecessarily 

followed 
(False 

Positive) 
(n) 

2.5 x False 
negative 

(n) 

Total 
correctly 
classified 

(n)* 

Total 
unweighted 

errors 
(n) 

Total 
weighted 

errors 
(n) † 

Patients 
followed 

(n) ‡ 

 
 

7.14 16 97 41 209 725 25 523 766 234 548 66 
5.85 47 90 117 133 676 74 333 793 207 407 191 
5.17 70 76 176 74 571 179 185 747 253 364 355 
4.88 80 72 200 50 536 214 125 736 264 339 415 
4.76 91 62 227 23 478 282 58 695 305 340 510 
4.14 95 50 238 12 375 375 30 613 387 405 613 
2.16 100 12 250 0 89 661 0 339 661 661 661 

* True positive + true negative 
† False positive + weighted false negative 
‡ True positive + false positive 

 
 
Table 12b.  Sensitivity and specificity of network model score to predict post-diagnosis involvement in the sexual network at selected risk score cut-
offs, including false negative and false positive rates based upon observed 25% prevalence of continued involvement in the sexual network among a 
hypothetical population of 1,000 persons newly diagnosed with HIV. 

Risk 
score 

Sensitivity 
(%) 

Specificity 
(%) 

Patients 
correctly 
identified 
as at risk 

(True 
Positive) 

(n) 

Patients 
missed 
(False 

Negative) 
(n) 

Patients 
correctly 

identifed as 
not at risk 

(True 
Negative) 

(n) 

Patients 
unnecessarily 

followed 
(False 

Positive) 
(n) 

2.5 x False 
negative 

(n) 

Total 
correctly 
classified 

(n)* 

Total 
unweighted 

errors 
(n) 

Total 
weighted 

errors 
(n) † 

Patients 
followed 

(n) ‡ 

 
 

7.51 11 100 27 223 746 4 558 773 227 562 32 
6.09 36 94 90 160 708 42 400 798 202 442 133 
5.31 68 84 170 80 629 121 200 799 201 321 292 
4.81 72 77 181 69 578 172 173 759 241 345 353 
4.13 94 59 234 16 442 308 40 676 324 348 543 
3.20 99 33 246 4 249 501 10 495 505 511 748 
2.00 100 11 250 0 86 664 0 336 664 664 915 

* True positive + true negative 
† False positive + weighted false negative 
‡ True positive + false positive 
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Figure 16.  Depiction of indicators of remaining active in the sociosexual network following HIV diagnosis 
used to calculate outcomes. 
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Figure 17. Sociosexual network showing 569 index cases newly diagnosed with HIV in the area around 
Raleigh, NC during 2012-2013.  Total graph includes 1,470 persons distributed in 468 network components. 

 
 
Figure legend: 

Graph shows gender (node shape), HIV status (node color), index case status (node size), type 

of contact (color of line connecting the nodes), and whether the contact was part of an HIV or 

syphilis investigation (thickness of line connecting the nodes).  Graph is loosely grouped by size 

of sociosexual network component:  a) isolates (n=248 persons), b) dyads (n=238 persons 

across 119 components), c) components size 3-4 (n=224 persons across 68 components), d) 

components size 5-16 (n=241 persons across 29 components), and e) components size 26, 81, 

92, and 320 (n=519 persons across 4 components).    
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Figure 18. Receiver operator characteristics (ROC) curves showing area under the curve for the network and 
simple predictive multivariable models among a population of 569 persons newly-diagnosed with HIV in the 
area around Raleigh, NC.  Cases prospectively followed for 3 years to determine continued activity in the 
sexual network. 
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VIII. CHAPTER EIGHT:  CONCLUSIONS 

A. Summary of Aims and Findings 

 Both aims constructed a sociosexual network based upon partners elicited during 

contact tracing, and in both aims, fewer than one HIV-positive partner was found per case in the 

sociosexual network.  Among 280 cases in the Aim 1 network based in Wake County, 131 HIV-

positive contacts were found (mean 0.47 HIV-positive contacts/case).  Among 569 cases in the 

Aim 2 network based across the Region that contains Wake County, contact tracing identified 

221 HIV-positive first-degree contacts (mean 0.39 HIV-positive contacts/case).  Since 

approximately one quarter of cases in both aims were concurrently diagnosed with AIDS, and 

late diagnosis is an issue across the South, we do not expect that a recent HIV-positive partner 

ought to be identified.  However, the low number of HIV-positive partners and high proportion of 

partners with unknown HIV status (27% and 38% in Aims 1 and 2, respectively) is alarming and 

is an indicator that case finding may not be capturing infection sources or possibly even cases 

of onward transmission since so few partners are located and tested.   

1. Aim 1  

 In Aim 1, I sought to identify some of the gaps in the observed contact tracing network.  

The descriptive and quantitative analyses in this aim both showed that contact tracing provides 

a better representation of heterosexual network components than components dominated by 

MSM.  Among all pairs of sexual partners in the Wake County-based sociosexual network 

where each partner had a sequence available, all male-female pairs were in the same 

transmission cluster, although only 34% of male-male pairs were in the same cluster.  

Transmission clusters dominated by MSM were more likely to span multiple components in the 

descriptive analysis and the quantitative analysis; being in a male-male transmission cluster-
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based dyad was significantly associated with spanning components in the multivariable model 

(Table 8 in Chapter VI).  The quantitative analysis also identified missing interviews as 

associated with having network components that do not approximate the transmission clusters.   

2. Aim 2 

 In the second aim, I used the network as it was observed, including missing information, 

and created a predictive model to identify persons who have the highest transmission risk 

potential, based upon continued activity in the sociosexual network that is documented in the 

HIV and STI surveillance system.  To assess the utility of the sociosexual network in predicting 

post-diagnosis behavior, I compared a logistic regression model which used network data as a 

predictor with a simpler model that used only routinely-collected demographic and HIV/STI 

testing history information.   

 I expected to use risk behavior information and multiple network predictors in the 

multivariable predictive model, but the amount of missing data made this impossible.  The high 

number of isolated cases in this sociosexual network (248/569; 44%) was unexpected and likely 

impacted the predictive ability of the model.  During case interview, DIS elicit number of needle-

sharing partners, social contacts, and sexual partners before asking for identifying information 

so that partner tracing can be initiated.  If there is enough identifying information then a partner 

record is created in the surveillance system and investigation begins.  Not all contacts with 

records are found in the course of the investigation, but the record exists in the system and 

those partners were included in the sexual network.  If a DIS judges that there is not enough 

information to begin investigation then the partner is deemed “marginal” and is present in 

partner count, but a record is not created.  Therefore, cases in this sociosexual network have 

partners if 1) he or she discloses at least one social contact, needle-sharing partner, or sexual 

partner who is not deemed marginal, or 2) he or she is successfully identified by another HIV or 

syphilis case investigation during 2012-2013 in Region 6.   
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 Of 569 cases, 18 (3%) were not interviewed, 128 (23%) were interviewed but did not 

disclose partners, and 423 (74%) were interviewed and chose to disclose partners.  Among the 

423 people who chose to disclose partners, 71 only had marginal partners and 56 had partners 

that DIS attempted to locate but could not.  However, some of the cases without any located 

partners were not isolated in the network because they were identified by another network 

member (Figure 19).  It is important to note, too, that most of these cases were not concurrently 

diagnosed with AIDS so the likelihood is higher that there was a recent HIV-positive partner who 

was not identified in the network.  In fact, among cases who were not identified by another 

network member, 2/118 who did not disclose partners, 2/65 who only had marginal partners, 

and 3/49 with no located contacts after investigation were diagnosed with acute or recent HIV 

infection.  

 

 

Figure 19.  Mechanisms for appearing as one of the 248 isolated cases in the sociosexual network. 
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  Though we could not use all of the information that we planned, the models still had 

good predictive ability (Chapter VII, Figure 18).  The AUC was >0.83 in both models.  The 

difference among the AUC for the simple and network predictive models was not statistically 

significant, but the shape of the curves led to fewer weighted errors overall with the network 

model (Chapter VII, Table 12).  Additionally, the model calibration curves (Figure 20) show that 

the network model has better performance when risk score indicates highest risk. 

 

 

 
 Histograms of the risk scores reveal that some covariate patterns are common among 

the cases, which is worth further study.  Of 569 cases, there were 77 different risk scores in the 

simple model (range 1-47 cases; 47/569 = 8%) and 115 different risk scores in the network 

model (range 1-29 cases; 29/569 = 5%).  The histogram for the network model is more normally 

distributed with fewer peaks than the simple model (Figure 21); the addition of the network 

predictor appears to normalize and smooth the covariate pattern frequencies which may 

indicate that the information gathered from the network adds another dimension to transmission 

risk potential that is not understood solely by demographic and STI information.   

  

Figure 20.  Calibration plots for Simple (top) and Network (bottom) models. 
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 In agreement with other studies, I found that Black MSM are less likely to be durably 

virally suppressed.10,15,217  This supports why I did not ignore outcomes where the case was 

virally suppressed.  Black MSM are at highest risk for acquiring HIV in NC.22  Black MSM are 

more likely to have partners who are of the same race, as demonstrated in this study and in 

others.9,25,54  A substantial proportion of new HIV cases in NC are attributed to people who were 

already diagnosed and aware of their status at the time of transmission.28  If Black MSM are 

also less likely to remain suppressed then it stands to reason that cases who are identified as 

having a high potential for onward transmission should be followed by bridge counselors or 

patient navigators to ensure that they remain engaged in care.   

B. Strengths 

 The study population for Aim 2 included all HIV and syphilis cases diagnosed in the 

entire control region and not a sample or a subset of the population, which allowed me to 

examine partnerships across the entire sociosexual network where there is risk of HIV or STI 

transmission.  Using all cases in the region also has the potential for direct application in local 

prevention efforts.  NC already has an infrastructure of DIS who interview cases and assist with 

linkage to care.  Cases are assigned bridge counselors and patient records containing both DIS 

and bridge counselor contact with the case is kept in NC EDSS.  Bridge counselors can access 

Figure 21.  Frequency of model scores for Simple (top) and Network (bottom) models. 
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this record.  The predictive model constructed in Aim 2 of this project identified predictors 

associated with HIV-positive persons being more likely to continue to engage in sexual 

partnerships after HIV diagnosis.  I was then able to calculate a risk score and assign sensitivity 

and specificity to assist bridge counselors with ensuring identified persons are engaged in care, 

with the goal of viral suppression.   

 The Aim 2 model used information as it is understood at the time of diagnosis, giving the 

model real-world applicability.  The simple model, which did not use any predictors from the 

network, still had good predictive capability and it may be judged that the increase in errors, 

largely false positives, is worth the ease of calculation.  Both models could be piloted relatively 

easily since there are already protocols to collect the information used when new cases are 

identified. 

 The addition of the syphilis investigation partnerships may have served to correct some 

of the missingness in the sociosexual network, since some of the cases had partnerships only 

as a result of the syphilis investigation.  The overlap between the HIV and syphilis networks, 

particularly among 

MSM, is in my opinion 

one of the more 

interesting findings in 

this aim.  One of the 

components included 

92 people; we would 

have observed 6 

smaller components 

had only the HIV 

investigations been 

used (Figure 22).  This 

Figure 22.  Sociosexual network component comprising 92 people, showing 
bridging of investigated HIV partnerships by investigated syphilis 
partnerships. 
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demonstrates that MSM who are being investigated for syphilis in NC would be good candidates 

for PrEP.     

C. Limitations  

 There are inherent limitations in any phylogenetic analysis.  Missing data is certainly an 

issue.  Specific to this study, approximately half of HIV-positive persons did not have a 

sequence available since not everyone who is diagnosed enters care and some patients enter 

care with providers who use labs that do not provide samples to UNC for research purposes.  

While NC does have DIS case reports on all new diagnoses, sequences are only available for 

individuals who had genotypes performed by LabCorp or Monogram Biosciences.  However, the 

majority of persons who are linked into care in NC, and would thus have a sequence available 

prior to beginning ART, have samples run at one of these labs.  New agreements to obtain 

sequences from other labs have been made and sequences are now reportable to the State, but 

the current study did not benefit from 

those changes.   

 The method itself has 

limitations:  1) acute and recent 

infections are more likely to cluster 

since there are shorter branch lengths 

between them which may affect the 

trees used to calculate genetic 

distance;102 2) directionality of 

transmission cannot be inferred; 3) 

unsampled third parties may be 

involved in transmission chains; and 

4) the genetic distance measurements will miss substitutions if multiple occurred and resulted in 

a substitution back to the original amino acid.   

Figure 23.  Depiction of artificial shrinking of components by 
administrative boundaries.  Index cases in other areas that 
are not investigated do not contribute partnership information 
to the network, even if they are network members.   
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 Incomplete networks and anonymous partners are an issue for studies of sexual 

networks,220 which pertains to both Aims.  We defined cases as residents of Wake County (Aim 

1) or Region 6 (Aim 2) and only abstracted first degree partners, potentially causing the 

components to appear artificially small (Figure 23 depicts this problem).  For each of the two 

index cases in the example component in Figure 23, we would abstract the index and his 

primary degree partners, resulting in two distinct observed components of sizes 2 and 4.  

However, a slight change of partnerships to also include recent second degree partners or index 

cases from an adjoining region would result in 10 people in a single component.   

 Partners who cannot be located would bias both the observed network and outcome 

collection for Aim 2.  Index cases who engage in anonymous partnerships after diagnosis may 

not be captured for Aim 2 outcomes, creating a source of bias, since cases are only counted as 

Aim 2 outcomes if they are identified as partners in the State HIV database 2014-2016.  This 

requires the DIS having enough information about the new partner to initiate partner trace back 

to the index case.  Therefore, index cases engaging in anonymous partnerships could appear to 

not be an Aim 2 outcome, despite engaging in potentially high risk partnerships.  

 The high proportion of cases who did not have risk behavior information was a limitation 

for the Aim 2 model, as noted in the manuscript discussion (section VII.E).  Several studies 

have shown that risk behavior appears to decrease after diagnosis, although the durability of 

that decrease is questionable.78,79,117  This decrease is meaningful as it is relative to baseline 

behavior, which we could not collect for one-quarter of the cases.  This information may then 

have been predictive of subsequent activity.  The high number of singletons in the Aim 2 

network (44% cases) also resulted in the ability to use only one network term per full model.  To 

keep the cases who were not isolated in the model, a category indicating singleton status 

needed to be used, and that category was then collinear across multiple predictors.      

 Finally, the results of this findings from either Aim may not be generalizable to other 

geographic areas.  I bootstrapped the predictive models in Aim 2 to validate the model 
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internally, but neither model is externally validated.  However, some of the findings in Aim 1 and 

Aim 2 agreed with previous findings.  Attempting to apply these methods in other areas would 

be an interesting and important next step.   

D. Future Directions 

1. Testable Interventions 

Aim 2 can be piloted in NC.  Upon identification, DIS and bridge counselors can be 

alerted to prioritize getting and keeping in care the persons who are diagnosed and at risk of 

onward transmission.  Any additional time that bridge counselors spend tracking persons who 

are identified by the predictive model to be most likely to be involved in onward transmission 

can be tracked.  The expense of resources can be offset by cases successfully re-engaged in 

care to calculate cost of cases averted.   

2. Proposed Future Analyses 

a. Expansion of Network to Increase Accuracy 

 The methods applied in these analyses can be applied to a larger area with the goal of 

correcting some of the bias in the observed network due to missing nodes.  Regions 3-6 and 

Charlotte TGA (Figure 7) comprise the central area of NC, which is geographically and 

contextually distinct from the western mountain and eastern coastal areas.  The Nexus study 

(section II.B.) found overlap in the sexual networks between adjoining regions; adding cases 

from Regions 3 and 4 to the Region 6 cases resulted in large sexual network components that 

appeared to be smaller, discreet components prior to the addition of the cases and their 

partners from other regions, without artificial reduction of the sexual network components due to 

the constraints of administrative boundaries (Figure 23).  

 I demonstrated this in our study by including syphilis cases and partners, which 

increased the size of the network, while resulting in a smaller number of components.  The 

component size 92 in this study (Figure 22) would have been 6 smaller components without the 

inclusion of the syphilis investigations.  Adding cases and partners, including both HIV and 
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syphilis, from a neighboring region would likely result in a better representation of the true 

underlying sexual network than what was observed.  This may have implications for the model, 

since I used only the observed Region 6 network to calculate network predictors that are 

sensitive to network size. 

b. Exponential Random Graph Models to Analyze Network Growth Drivers 

 Markov chain Monte Carlo (MCMC) estimation can be used to create a distribution of 

randomly-generated networks based upon selected attributes of the observed network, such as 

number of nodes or edges (see Appendix C section A).  Upon comparing the observed network 

to the distribution of random networks, important properties of the observed network, such as 

clustering or transitivity above or below what is expected, can be identified based upon 

divergence from the distribution of randomly-generated networks.  Inferences can then be 

drawn estimating which processes influence tie formation in NC, which may reveal avenues for 

intervention. 

c. Comparison of Centrality Scores and Network Structure Involvement by Infection Recency 

 Behavior changes following diagnosis,77-79 so chronically-infected persons aren’t well-

suited for an assessment of behavior and risk though they are frequently used in publications to 

describe risk behavior in local populations.  An analysis of HIV-positives nodes comparing the 

centrality scores and risk behaviors of persons estimated to be infected recently (less than 12 

months between infection and diagnosis) to persons estimated to be chronically-infected (12 

months or more) may provide clues to behaviors and partnership patterns associated with HIV 

acquisition, and help us determine whether network position differs during the period in which 

infected was acquired.  Comparing recently-infected, chronically-infected, and uninfected 

individuals may be less biased than networks that are egocentric with respect only to the 

infected individuals.11  Centrality score mean, across multiple centrality measures, can be 

calculated and compared to determine whether there is a significant difference between groups 

at alpha = 0.05.   
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d. Geographic or Spatial Analysis Combined with Social Network and Gene Sequence 
Analyses 

 The majority of location-based analyses in NC thus far have been geographic rather 

than spatial.  A spatial analysis based on residence would allow location data to be incorporated 

into models.  In addition to being more suited for models and be interpretable on continuous 

scales, spatial data are more suitable to combine with both network and gene sequence 

relatedness data; phylogenetic relatedness, spatial closeness, and network distance can all be 

defined as continuous measures.  A previous study of spatial distance and genetic distance 

used acutely infected individuals with pol gene sequences who were consented into a clinical 

cohort in NC.  The patients were assessed for transmitted drug resistant or drug susceptible 

virus.  Sequenced virus was found to differentiate less within rural areas than within urban 

areas.51  The application of the combination of these three methods to an entire population of 

geographically-defined incident diagnoses is novel and has the potential to significantly improve 

the understanding of the spread of HIV.   

e. Transmitted Drug Resistance 

 Prevalence of TDRM by sexual network component could be ascertained from a study, 

which could then be used to guide both clinical and public health practice at a more precise sub-

population level.  The ability to link drug resistance data extracted from sequences to defined 

sexual network components would allow assessment not only HIV risk, but also TDRM risk, for 

individuals within the component.49  Finding a similar mutation profile may result in network 

component linkages through an individual believed to be HIV-negative or thought to be 

anonymous.   

 Once the assortative factors of the network components were determined, HIV and 

TDRM risk by type of mutation could be assessed by those factors.  Linking the resistance 

profile to cases who are newly diagnosed or who are failing treatment would allow calculation of 

a crude prevalence of DRM to be established by drug class within each component – the 
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prevalence by type of TDRM for the unique set of demographic and risk characteristics which 

define each component.  In another state in the US South, Mississippi, ART-naïve young Black 

MSM clustered phylogenetically and had TDRM strains, while phylogenetic transmission 

clusters (TC) containing only older Black MSM did not have TDRM,93 indicating two discrete 

sexual networks separated by age and supporting the idea that discrete sexual network 

components may each have their own circulating drug resistant variants.   

 One limitation is that a consensus sequence is returned by LabCorp.  Minor variants 

have been shown to incorporate DRM, contributing to the risk of virologic failure and a 

resurgence in resistant strains,221-223 which may not be reflected using this sequencing method.  

If minority variants coding for DRM are significant in this population then prevalence estimates 

were underestimated.  However, one study that employed ultra-deep pyrosequencing found that 

half of patients with TDRM only had the mutations in <20% of their virus population.224   

f. Predictive Model to Identify HIV-Negative Persons Who Would Benefit Most from PrEP 

 The converse of the model presented in Chapter VII is a model to identify HIV-negative 

persons who would benefit most from PrEP.  A sexual network study that began with 2 acutely-

infected patients in NC resulted in a sexual network of 398 persons, nearly half of whom (47%) 

were of unknown serostatus due to inability to locate or testing refusal.  Ninety-two persons in 

the network were confirmed to be HIV-negative, but 24 of those persons (26%) seroconverted 

within 3 years.21  HIV-negative partners of new HIV cases and HIV-negative persons involved in 

syphilis investigations can be followed through the same 3-year period as the HIV-positive index 

cases to determine who becomes infected within 3 years.  There is significant overlap of syphilis 

and HIV sexual networks in NC, particularly among MSM,21,96 so the syphilis cases will serve as 

an additional HIV-negative population for the baseline period. A predictive model can then be 

constructed, using the same types of information as the predictive model already developed.   
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E. Public Health Implications 

HIV is an epidemic.  Prevention efforts must focus on disrupting sexual transmission.  

Previous studies have shown that identifying central persons in networks and “cutting” the 

network at those points has the potential to break it up into smaller components and disrupt 

disease transmission.11,90  In the Aim 1 quantitative analysis, we identified factors associated 

with being in an observed sexual network component that was not well-represented by inferred 

transmission chains (the phylogenetic clusters).  In Aim 2 of this study, we identified HIV-

positive persons who are most likely to engage in post-diagnosis partnerships and remain part 

of transmission chains.  Identification of these persons, with the purpose of engaging them in 

care and helping them to achieve viral suppression, leads to a sharp reduction of infectiousness 

and prevents onward transmission.  While these cases may not be removed from the network, 

nullifying the likelihood of infection is essentially disrupting the network at these nodes.  This is 

of particular importance in NC, where persons who are aware of their infection are responsible 

for a higher proportion of new infections than in other places in the US.28   

In both aims, we were able to show that partner tracing data can be leveraged to help 

guide interventions.  Understanding that the observed sexual network may not represent 

transmission well, as for Black MSM in Aim 1, demonstrates that interventions based upon 

partner tracing may need to be tailored differently to this high-risk group.  In Aim 2, I take that 

further by showing that despite the limitations in the data, those data can still help predict where 

transmission is likely to occur.    

F. Conclusions 

 Both aims of this analysis demonstrate that sociosexual network analysis can be 

harnessed to help guide interventions as long as the limitations of the observed sociosexual 

network are understood.  In conducting this dissertation research in North Carolina, it is my 

hope that these findings can be directly applied to improve the health of people here.  Black and 

Latino MSM in NC fail to see the reductions in number of cases seen by other races.22  This is 
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likely due to social factors affecting partner selection and risk behavior, including stigma, which 

appears to influence behavior.225    

 The higher rate of HIV incidence observed among Black MSM may also be exacerbated 

by biological factors such as higher prevalence of STIs circulating in network components 

dominated by Black MSM.226  Again, the sexual network can be studied as proposed in Future 

Analyses (VIII.D.2.).  A census of the components by demographic factor, STI co-infection, 

sexual behaviors, and drug resistant variants of HIV might provide valuable information to 

assess risk.  Further study of component density, size, and structure may reveal the generative 

behaviors driving partner selection among component members.  Knowing demographic 

information, risk, and partner selection traits might be the key needed to be able better identify 

candidates for PrEP and intervene early to prevent HIV acquisition.   

  I have not discussed needle-sharing as a mechanism for HIV transmission in this 

dissertation.  There were 4 needle-sharing partnerships among the 845 first-degree 

partnerships in the sociosexual network; 3 occurred in the largest component (n=320).  I 

understand that there is an increase in intravenous drug use in North Carolina, and it is 

concerning to see the overlap of partnership types in a single network component.  Intervening 

in the large component which comprised both sexual and needle-sharing to offer HIV testing 

and PrEP or linkage to care might have great benefit. 

  Sexual partner selection is not random.  Studying the sexual network may provide 

insight into forces guiding partner selection.  Understanding what drives partner selection may 

provide opportunities to identify people at risk earlier, with the goal of intervening to prevent HIV 

acquisition or transmission.       
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APPENDIX A:  ADDITIONAL RESULTS RELATED TO AIM 1 

A. Results 

The PNS network included 663 persons:  104 singletons plus 559 persons in 446 

partnerships (Figure 11a).  Among 446 partnerships, 70 (16%) included two HIV-positive 

persons with sequences; of these, 26 (37%) were in the same cluster.  A subset of the 70 

includes 12 network dyads with no other persons linked to the pair; 7 (58%) were in the same 

cluster, 1 (8%) pair was in different clusters, and 4 (33%) included one person in a cluster and 

one not in a cluster.  Among the 7 dyads where both persons were in the same cluster, 2 were 

in a cluster size two, where both the component and cluster contained only those persons, and 

the rest were larger (median 7 members, range 3-14).   
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APPENDIX B:  ADDITIONAL METHODS, RESULTS, AND DISCUSSION RELATED TO AIM 2 

A. Methods 

1. Statistical Analyses 

 One-quarter (n=146, 26%) of indexes chose not to be interviewed, which resulted in a 

loss of risk behavior and partnership information.  For the final models, we ultimately chose to 

exclude risk behavior variables because there was a high degree of data missing not at random.  

The data were missing across the entire set of risk behaviors, so add a “missing” category to the 

predictor would have overwhelmed the information in each predictor.  Performing a complete 

case analysis, and dropping the patients who were missing risk behavior, may have resulted in 

a sample that was not representative of newly-diagnosed cases locally.   

 Before deciding to proceed without using risk behavior data, we split the population of 

indexes into two sets by interview/disclosure status and constructed predictive models for each 

group.  The group who chose not to disclose had many candidate predictors with perfect 

separation in at least one category, so we used Firth logistic regression to construct the model 

for that group.  The models did not predict the outcome well for cases in the non-interview group 

(Figure 24), so we decided to test the predictive ability of the models on the entire group of 

cases using only demographics, HIV/STD testing history, and information gleaned from the 

sociosexual network. 

B. Results  

1. Sociosexual Network 

 Figure 25 is the k-nearest neighbor plot.  It shows that people with low degree in the 

network are typically connected to people with high degrees, which demonstrates degree 

disassortativity.  It is likely that this disassortativity is an artefact of the data, explained by DIS 

interviewing new cases and not interviewing previously-diagnosed cases, who would then only 

have a degree representing the number of new cases who identified the previously-diagnosed 

case, and not actually a true representation of their number of partners. 
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2. Transmission Cluster Involvement 

Over half (59%, n=338) indexes and 83/221 (38%) HIV-positive first-degree contacts had 

an available HIV gene sequence, of which 197 indexes and 61 partners (N=258) with 

sequences were in one of 137 putative statewide transmission clusters with ≥1 network 

member.  These clusters ranged in size from 2–53 people, including 1–17 network members, for 

a total of 870 people statewide.  Median year of diagnosis for contacts in a cluster was 2011 

(IQR: 2005–2012). 

Among the 845 first-degree contacts in the network, 72 (9%) included two people where 

each had a sequence.  Of these, 40/72 (56%) were in the same transmission cluster where 21 

contacts were diagnosed ≥6 months prior to the index, 18 were diagnosed within 6 months 

before or after the index, and 1 was diagnosed ≥6 months after the index.   

When assessing outcomes, we found 19 partnerships between indexes and future partners 

occurred where both had gene sequences available.  Both persons were identified in a 

transmission cluster 7 (37%) times; once in the same cluster (cluster size=3) and 6 times in two 

different transmission clusters.  

3. Bivariable Analyses 

We tested many forms of the variables before selecting predictors for inclusion into the 

final multivariable models.  Some of these are presented in Table 13.  Both estimated and 

laboratory-confirmed AIDS at diagnosis were associated with the outcome (24% (p<0.0001) and 

25% (p=0.001), respectively, with imperfect agreement of cases across both classifications), 

where DIS-estimated concurrent AIDS diagnosis was protective (OR for established, acute, or 

recent infection=4.0, 95%CI: 2.2–7.3).  Being acutely- or recently-infected based upon 

laboratory results was also associated with the outcome (p=0.0003).  Log viral load within 6 

months of diagnosis was not associated with the outcome.  Linkage to care within 3 months of 

diagnosis was associated with the outcome (p=0.01), although having an available HIV gene 

sequence, which is essentially a proxy for being in care, was not.  Having any prior negative HIV 
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test, any prior STI history, prior history of syphilis specifically, any STI at diagnosis, and co-

infection with syphilis at diagnosis were associated with the outcome (each p<0.0001).   

Linkage to care within 3 months of diagnosis was associated with the outcome (OR=1.6, 

95%CI: 1.1–2.4), although having an available HIV gene sequence, which is essentially a proxy 

for being in care, was not.  Several behavioral predictors were highly associated with the 

outcome (p≤0.01), including not always using a condom, meeting partners online, having a male 

sex partner known to be HIV-positive, number of recent sex partners (total of located and not), 

proportion of sex partners who could not be located, recent MSM activity, and multiple recent 

new sexual partners, although these predictors were missing for the 74% indexes who were not 

interviewed.   

4. Multivariable Analyses 

There were over 30 multivariable models with all predictors significant at p<0.05 prior to 

bootstrapping.  We selected our final two models based upon AIC and AUC.  Selected 

candidate models with significant predictors using different network terms are presented in 

Table 14.  Demographic characteristics were often retained in the multivariable models, 

particularly marital status, age at diagnosis, and urbanicity of residence.  Having any STI at 

diagnosis was associated with continued involvement in the sexual network.  Most HIV and STI 

history variables were retained in some of the candidate models, with general STI history and 

STI status at HIV diagnosis most often retained.  Partner disclosure was the only risk-related 

predictor that was tested in the multivariable models, and was retained in both.   

We used estimated HIV stage based upon DIS investigation, rather than lab-confirmed 

AIDS, in the multivariable models since we wanted the model to reflect the available information 

at diagnosis, and the predictor was retained in both.  Acute infection status was not retained in 

either model.  Having history of any STI was retained in both models, while the simple model 

also included having any concurrent STI and the network model included having an STI other 

than syphilis at diagnosis. 
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Most of the models that we tested before selecting the final network model retained at 

least one network predictor.  The final network model included component size, categorized as 

isolated, 2–4 persons, and ≥5 persons in the component.   

C. Discussion 

These findings support previous studies despite the data limitations noted in the 

manuscript.  Indexes concurrently diagnosed with AIDS were less likely to remain active in the 

sexual network.79  Similarly, in a network was constructed from gene sequences instead of 

partnerships, an increase in log viral load at baseline increased the likelihood of onward 

transmission.  That study also found that number of partners expressed as a percentile was 

predictive of onward transmission risk, while race was ultimately not in their multivariable 

model.171   

Future exploration of the reasons why cases do not remain engaged in care would be 

valuable.  Being engaged in care appears to reduce sexual risk behaviors regardless of 

suppression status,190 so this model has utility for high-risk patients who are new to care or 

choose not to take ART. 

However, this analysis raises ethical concerns.  If misinterpreted, it could be used to 

advocate for criminalizing behavior.  However, the purpose of this analysis is to recognize that 

most HIV patients in the US are still, unfortunately, diagnosed quite young;30 that HIV is a 

chronic, lifelong infection; and that committing to care at least twice per year (as is the 

recommendation for viral suppression) for the duration of life is particularly difficult, especially 

for younger patients who are less likely to access regular care.227  In attempting to support this 

population, bridge counselors need to assess the possibility of late reporting of viral loads,228 

then balance the privacy of the patient against risks and benefits of follow-up contact.229   
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Table 13.  Bivariable analyses for predictors not presented in the manuscript.  The outcome is whether any 
cases were identified as an active member of the sexual network in the 3 years following HIV diagnosis. 

Predictor Total  Remain Involved Bivariable Analysis 

  N (col %) n (row %) OR (95% CI) 

 569 (100) 141 (25)   

Demographics and History       

Gender       

Male 451 (79) 129 (29) 1.0  

Female 114 (20) 11 (10) 0.27 (0.14-0.51)‡ 

Transgender (M->F) 4 (0.7) 1 (25) 0.83 (0.09-8.1) 

Student*       

No 543 (95) 131 (24) 1.0  

Yes 26 (5) 10 (38) 2.0 (0.87-4.4)§ 

Ever incarcerated*       

No 533 (94) 133 (25) 1.0  

Yes 36 (6) 8 (22) 0.86 (0.38-1.9) 

HIV and STD History and Care       

Laboratory-confirmed HIV stage 
at diagnosis 

      

Established / chronic 393 (69) 103 (26) 1.0  

Acute or recent 32 (6) 17 (53) 3.2 (1.5-6.6)‡ 

Concurrent AIDS diagnosis 144 (25) 21 (15) 0.48 (0.29-0.80)‡ 

Log viral load within 6 months of 
diagnosis N=306  n=83 (27)   

≤ 2.3 42 (14) 8 (19) 1.0  

> 2.3 to < 2.7 8 (3) 2 (25) 1.4 (0.24-8.4) 

2.7 - 4.0 41 (13) 11 (27) 1.6 (0.55-4.4) 

> 4.0 - 6.0 200 (65) 56 (28) 1.7 (0.72-3.8) 

> 6.0 15 (5) 6 (40) 2.8 (0.78-10.3)§ 

Sexual Risk Behaviors†       

Condom use N=402  n=122 (30)   

Always 38 (9) 6 (16) 1.0  

Sometimes 263 (65) 97 (37) 3.1 (1.3-7.7)‡ 

Never 101 (25) 19 (19) 1.2 (0.45-3.4) 

Met partners online N=423  n=128 (30)   

No 301 (71) 69 (23) 1.0  

Yes 122 (29) 59 (48) 3.1 (2.0-4.9)‡ 

Met partners at bar N=423  n=128 (30)   

No 388 (92) 110 (28) 1.0  

Yes 35 (8) 18 (51) 2.7 (1.3-5.4)‡ 

Ever had anonymous partner N=423  n=128 (30)   

No 311 (74) 79 (25) 1.0  

Yes 112 (26) 49 (44) 2.3 (1.5-3.6)‡ 

Transactional sex, ever N=423  n=128 (30)   

No 402 (95) 121 (30) 1.0  

Yes 21 (5) 7 (33) 1.2 (0.46-3.0) 
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Predictor Total  Remain Involved Bivariable Analysis 

  N (col %) n (row %) OR (95% CI) 

Ever went to a sex party N=423  n=128 (30)   

No 405 (96) 116 (29) 1.0  

Yes 18 (4) 12 (67) 5.0 (1.8-13.6)‡ 

Ever used intravenous drugs N=423  n=128 (30)   

No 412 (97) 125 (30) 1.0  

Yes 11 (3) 3 (27) 0.86 (0.22-3.3) 

Ever had sex with an 
intravenous drug user N=423  n=128 (30) 

  

No 420 (99) 127 (30) 1.0  

Yes 3 (0.7) 1 (33) 1.2 (0.10-12.9) 

Ever had sex with known HIV+ N=423  n=128 (30)   

No 260 (61) 68 (26) 1.0  

Yes 163 (39) 60 (37) 1.6 (1.1-2.5)‡ 

Transgender woman or male 
who has ever had sex with male N=423  n=128 (30) 

  

No 168 (40) 24 (14) 1.0  

Yes 255 (60) 104 (41) 4.1 (2.5-6.8)‡ 

Ever had sex with male N=423  n=128 (30)   

No 96 (23) 15 (16) 1.0  

Yes 327 (77) 113 (35) 2.9 (1.6-5.2)‡ 

Ever had sex with female N=423  n=128 (30)   

No 292 (69) 99 (34) 1.0  

Yes 131 (31) 29 (22) 0.55 (0.34-0.89)‡ 

Sex partners during period of 
interest N=423  n=128 (30) 

  

0 56 (13) 8 (14) 1.0  

1-2 192 (45) 49 (26) 2.1 (0.91-4.7)§ 

3-4 71 (17) 28 (39) 3.9 (1.6-9.5)‡ 

5-60 104 (25) 43 (41) 4.2 (1.8-9.8)‡ 

> mean recent partner number N=423  n=128 (30)   

No 316 (74) 85 (27) 1.0  

Yes 107 (26) 43 (40) 1.8 (1.2-2.9)‡ 

Proportion recent partners 
anonymous N=423  n=128 (30) 

  

0 313 (74) 81 (26) 1.0  

1-25 11 (3) 7 (64) 5.0 (1.4-17.6)‡ 

26-50 43 (10) 19 (44) 2.3 (1.2-4.4)‡ 

51-75 13 (3) 4 (31) 1.3 (0.38-4.3) 

76-100 43 (10) 17 (40) 1.9 (0.97-3.6)§ 

Any new partners during period 
of interest N=423  n=128 (30) 

  

No 246 (58) 57 (23) 1.0  

Yes 177 (42) 71 (40) 2.2 (1.5-3.4)‡ 

Sex with male during period of 
interest N=423  n=128 (30) 

  

No 245 (58) 60 (24) 1.0  

Yes 178 (42) 68 (38) 1.9 (1.3-2.9)‡ 
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Predictor Total  Remain Involved Bivariable Analysis 

  N (col %) n (row %) OR (95% CI) 

Sex with female during period of 
interest N=423  n=128 (30) 

  

No 350 (83) 114 (33) 1.0  

Yes 73 (17) 14 (19) 0.49 (0.27-0.92)‡ 

 N=423  n=128 (30)   

Network Information        

Number of network sex partners       

0 (singleton) 275 (48) 38 (14) 1.0  

1 156 (27) 35 (22) 1.8 (1.1-3.0)‡ 

2 55 (10) 20 (36) 3.6 (1.9-6.8)‡ 

3-5 60 (11) 33 (55) 7.6 (4.1-14.1)‡ 

≥ 6 23 (4) 15 (65) 11.7 (4.6-29.5)‡ 

Didn’t disclose partners, but 
identified by others in network 

      

No 557 (98) 139 (25) 1.0  

Yes 12 (2) 2 (17) 0.60 (0.13-2.8) 

Disclosed contacts, none of 
whom could be located 

      

Did not disclose, or ≥1 contact 
located 

351 (62) 113 (32) 1.0  

Yes 218 (38) 28 (13) 0.31 (0.20-0.49)‡ 

Network social contacts greater 
than number disclosed 

      

No 560 (98) 137 (24) 1.0  

Yes 9 (2) 4 (44) 2.5 (0.65-9.3)§ 

Network needling sharing 
partners greater than number 
disclosed 

      

No 569 (100) 141 (25) ---  

Yes 0 ---     

Bonacich power score       

0 248 (44) 30 (12) 1.0  

> 0 to < 0.3 125 (22) 19 (15) 1.3 (0.70-2.4) 

0.3 - < 0.4 20 (4) 7 (35) 3.9 (1.4-10.6)‡ 

0.4-0.66 57 (10) 23 (40) 4.9 (2.6-9.4)‡ 

> 0.66 119 (21) 62 (52) 7.9 (4.7-13.4)‡ 

Betweenness score       

0 409 (72) 64 (16) 1.0  

> 0 160 (28) 77 (48) 5.0 (3.3-7.5)‡ 

* Yes only if documented as such in the interview record, else recorded as No 
† Per the number of cases who agreed to be interviewed and discuss the topic 
‡ Significant at p<0.05 

§ Significant at p<0.20  

 
.  
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Table 14.  Multivariable models not presented in the manuscript.  Relationship between predictors tested but not retained in the final models and the 
outcome of remaining active in the sociosexual network, showing odds ratio (OR), 95% confidence interval (CI) using robust standard errors, Akaike’s 
information criterion (AIC), and receiver operator characteristics area under the curve (AUC) calculated from the collected population.   

Predictor Total  Remain 
Involved 

Bivariable 
Analysis 

Network Multivariable 
1 

Network Multivariable 
2 

Network Multivariable 
3 

  N (col %) n (row %) OR (95% CI) aOR (95% CI) aOR (95% CI) aOR (95% CI) 

 569 (100) 141 (25)         

Model AIC       493.70 494.36 493.38 

Model AUC       0.8377 0.8393 0.8379 

Demographic Characteristics             

Gender             

Woman or Transwoman 118 (21) 12 (10) 1.0  1.0    1.0  

Male 451 (79) 129 (29) 3.5 (1.8-6.7)‡ 2.3 (1.1-5.1)‡   2.3 (1.1-4.9)‡ 

Marital status*             

Married  137 (24) 6 (4) 1.0  1.0  1.0  1.0  

Unmarried 432 (76) 135 (31) 9.9 (4.3-23.1)‡ 6.8 (2.8-16.3)‡ 6.9 (3.0-16.0)‡ 6.7 (2.8-16.0)‡ 

County of residence at 
diagnosis 

            

Rural 105 (18) 14 (13) 1.0        

Urban or suburban 464 (82) 127 (27) 2.4 (1.3-4.5)‡       

Age at diagnosis             

≥ 30 years 326 (57) 46 (14) 1.0  1.0  1.0  1.0  

< 30 years 243 (43) 95 (39) 3.9 (2.6-5.9)‡ 1.8 (1.1-3.0)‡ 2.0 (1.2-3.3)‡ 1.7 (1.1-2.8)‡ 

HIV and STD History and Care             

HIV interview             

No interview or no partner 
disclosure 

146 (26) 13 (9) 1.0  1.0  1.0  1.0  

Interviewed and disclosed 
partners 

423 (74) 128 (30) 4.4 (2.4-8.1)‡ 2.1 (1.0-4.3)‡ 2.2 (1.1-4.5)‡ 2.2 (1.1-4.5)‡ 

Estimated HIV stage at 
diagnosis† 

            

Concurrently diagnosed with 
AIDS 

136 (24) 13 (10) 1.0  1.0  1.0  1.0  

Acute, recent, or chronic HIV 433 (76) 128 (30) 4.0 (2.2-7.3)‡ 2.3 (1.2-4.4)‡ 2.1 (1.1-4.0)‡ 2.4 (1.2-4.4)‡ 

History of any STI             

No 385 (68) 67 (17) 1.0  1.0  1.0  1.0  

Yes 184 (32) 74 (40) 3.2 (2.1-4.7)‡ 1.7 (1.0-2.7)‡ 1.7 (1.0-2.7)‡ 1.7 (1.1-2.8)‡ 
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Predictor Total  Remain 
Involved 

Bivariable 
Analysis 

Network Multivariable 
1 

Network Multivariable 
2 

Network Multivariable 
3 

  N (col %) n (row %) OR (95% CI) aOR (95% CI) aOR (95% CI) aOR (95% CI) 

Any STI infection at diagnosis             

No 432 (76) 75 (17) 1.0  1.0  1.0  1.0  

Yes 137 (24) 66 (48) 4.4 (2.9-6.7)‡ 2.1 (1.2-3.5)‡ 2.1 (1.2-3.5)‡ 2.0 (1.2-3.4)‡ 

Network Structures             

Degree             

0 (singleton) 248 (44) 30 (12) 1.0  1.0      

1 159 (28) 33 (21) 1.9 (1.1-3.3)‡ 1.5 (0.83-2.8)     

2 62 (11) 22 (35) 4.0 (2.1-7.6)‡ 1.8 (0.81-4.1)     

3-5 67 (12) 35 (52) 7.9 (4.3-14.7)‡ 2.7 (1.3-5.7)‡     

≥ 6 33 (6) 21 (64) 12.7 (5.7-28.5)‡ 5.0 (1.9-12.9)‡     

Adjusted degree             

0 248 (44) 30 (12) 1.0        

> 0-1 140 (25) 25 (18) 1.6 (0.89-2.8)§   1.4 (0.74-2.8)   

> 1 to < 2.5 62 (11) 23 (37) 4.3 (2.3-8.1)‡   1.8 (0.82-4.0)   

2.5-5 79 (14) 38 (48) 6.7 (3.8-12.1)‡   2.5 (1.3-5.1)‡   

> 5 40 (7) 25 (63) 12.1 (5.7-25.5)‡   4.8 (1.9-11.8)‡   

Difference between index 
degree and partner average 
degree 

            

0 248 (44) 30 (12) 1.0      1.0  

> 0 to < 1 141 (25) 69 (49) 7.0 (4.2-11.5)‡     2.8 (1.5-5.3)‡ 

1 to < 2  138 (24) 24 (17) 1.5 (0.85-2.7)§     1.3 (0.65-2.5) 

2-32 42 (7) 18 (43) 5.5 (2.6-11.2)‡     2.2 (0.98-4.9) 

* Designated as ‘married’ only if noted as such in case record, otherwise classified as ‘unmarried’ 

† Based upon estimation of investigating DIS at diagnosis, not confirmed by labs 

‡ Significant at p<0.05 (bivariable analysis and multivariable analyses) 

§ Significant at p<0.20 (bivariable analysis only) 

 
 
  



 

132 

Figure 24.  ROC curves for predictive models constructed after splitting the group of 569 indexes by whether 
or not the index chose to be interviewed and disclose partners (n=423, 74%) or not (n=141, 26%).   

 

Figure legend: 

The rocL models represent the larger group who chose to disclose partners and the rocS 

models represent the smaller group who chose not to disclose partners.  All models depicted 

met the model evaluation criteria, including all predictors chosen through backwards elimination 

and significant at p<0.05. 
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Figure 25.  Log node degree of persons in network compared to the log average node degree of their first-
degree contacts. 
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APPENDIX C:  BACKROUND AND METHODS RELATED TO FUTURE ANALYSES 

A. Exponential Random Graph Models 

 Regression models applied to network data must adequately account for 

interdependence between actors.  Exponential random graph models (ERGMs) are “tie-based” 

models of social and sexual networks, which indicates that the presence or absence of a tie 

between two nodes is the most basic unit of data.  Data for the ERGM is adjacency matrix-

based, where the vertices are the nodes and each cell has a 1 if two nodes are connected and 0 

if not; this value is also the value of the regressand for each observation.72  ERGMs use the 

summary and more complex measures of a network as the regressors, which allows 

calculations of parameters which convey the importance of those measures in the form of the 

local network.  More complex measures of network structure include closed loops (called k-

cores) and attribute-based homophily, where it is noted whether two nodes share an attribute of 

interest or are discordant for that attribute.  Categorical and continuous regressors can be used, 

as in a standard regression equation.  The outcome is the probability of the observed network 

given the values of the network statistics in the model.  ERGMs use both endogenous and 

exogenous factors as regressors.  Endogenous effects arise from social processes, including 

the influence that the presence (or absence) of ties in the network have on the formation or 

dissolution of other ties.  Exogenous effects are actor attributes, such as age or gender, which 

affect tie formation.72,74   

 There are several advantages to using ERGMs for social network analysis.  ERGMs 

model the structure of social networks and also allow for randomness through stochasticity,72,74 

which is valuable because the complexities of social processes can’t (yet) be well-measured.  A 

new class of valued models can be applied to the analysis in the first aim, where ties between 

partners may include being sexually linked, being phylogenetically linked, both, or neither.140  

ERGMs can be applied to large datasets98 and allow for partial dependence between actors 

who aren’t directly connected, which is suitable for social networks.  Recent advances in model 
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specification better fit observed data75,98 and permit inference when applied to social networks 

regarding social processes that influence network ties.98   

B. Spatial Analysis of Sexually Transmitted Infections 

 Many studies have examined geographic or spatial heterogeneity of HIV or STI 

diagnoses.36,44,51,52,230  On a large scale, the rates of incident HIV diagnoses are much higher in 

the US Northeast and South than the West and the Midwest.  Further comparison of the higher 

rates US Northeast and the US South yields racial differences; in both places, 75% of people 

living with AIDS were either Black or Hispanic, although Hispanics accounted for a smaller 

percentage in the US South than in the Northeast.32 

 On a smaller scale, geographic core areas have been identified for several sexually 

transmitted infections.33  Risk of having primary or secondary syphilis was 4.6 times higher for 

persons living in a certain area of San Francisco between 1985 and 2007.  The spatial analysis 

was able to separate core and outbreak areas.34  HIV-positive persons resided closer to their 

partners in Colorado Springs than at risk persons who are not HIV-positive and their partners.35  

During a syphilis outbreak in Baltimore, two areas were identified as core areas from which the 

outbreak spread and a new core area was created.  Even after the outbreak ended, density of 

cases remained higher in all 3 core areas.36  Syphilis was found to co-cluster with gonorrhea in 

NC; state-wide mapping of gonorrhea and syphilis over time identified 20 core areas for 

gonorrhea and 10 for syphilis.  All of the syphilis core areas were found to have at least some 

overlap with at least one gonorrhea core area.  All clusters, for gonorrhea and syphilis, were 

found to be associated with an urban area; some areas existed entirely in urban areas and 

some encompassed but urban and rural but none were entirely rural.50  The rural-urban divide 

has been noted for other STIs in NC.  Drug susceptible HIV strains were significantly more 

genetically similar than drug resistant strains for rural-rural and rural-urban partnerships, but not 

for urban-urban partnerships.  Urbanicity of residence was not associated with TDRM v. drug 

susceptible virus among persons with acute HIV infection.51  Geographically-associated network 
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cores have been found to significantly contribute to STI spread,50,52 but it is unknown whether 

the same relationship is found with TDRM, particularly in rural areas.   

Geographic and spatial investigation of HIV and STI outbreaks in NC has yielded 

important information.  The CDC found that NC had the highest burden of HIV in non-urban 

areas in 2006.4  Figure 1 (section II.A.2.c.), from the 2013 HIV/STD NC Epidemiologic Profile 

report, shows incident and prevalent HIV cases across the state.  The largest clusters are in the 

most urban areas, but the rural eastern part of the state has a high burden of HIV without having 

as many specialists and providers as the central part of the state. 

 Spatiotemporal analysis was applied to identify core clusters of gonorrhea and syphilis in 

NC, with an additional assessment of rurality.  All of the syphilis and gonorrhea core areas 

included at least one urban area, and all of the syphilis core areas (N=10) overlapped with 

gonorrhea core areas (N=20).50  Similarly, in Wake County, a single urban county in central NC, 

chlamydia, gonorrhea, primary and secondary syphilis, and HIV were found to cluster with a 

single identifiable core area; all four core areas overlapped.53  These studies show that in NC, 

there is geographic overlap of several STIs.  Without added analysis of the sexual networks, it is 

unknown whether the STIs are circulating among different groups.  As HIV is more easily 

transmitted in the presence of certain STIs, future areas of research should include both 

network and geographic or spatial analysis.   

1. Phylogenetic Analysis Combined with Spatial or Geographic Analysis 

 Gene sequence analysis combined with spatial and geographic analyses have helped 

trace the spread of HIV around the world through history; looking at virus evolution in different 

places gives a sense of divergence.230-232  The F1 subtype is the second most common HIV-1 

type in Italy, although two distinct clades are seen and its origin was not known until recently.  

HIV-1 subtype F1 is believed to have arisen in West Africa before arriving in South America in 

the 1950s.  From South America, the F1 subtype spread to Angola.232  Subtype C is most 

common in Angola,233 but the F1 variant spread from Angola to Romania.232  The F1 subtype 
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arrived in Italy in the 1970s directly from South America and indirectly through Angola and 

Romania before being introduced, which account for the distinct clades seen today.232 

 Angola is a unique environment.  A war for independence from the Portuguese took 

place from 1961-1975, leading to mass migrations and mixing of groups, just after the time 

when the F1 variant was introduced from South America.  In 1975, the Portuguese conceded 

and in the same year, a war for independence began between the two most dominant ethnic 

groups.  The civil war lasted until 2002, with movement of troops and civilians throughout the 

country.  Due to lengthy deployments, it was not uncommon for men in the military to have 

wives in different parts of the country.  The civil war factions were split along ethnic lines and 

traditionally lived in different parts of the country; the creation of the colony of Angola by the 

Portuguese in the 1500s encompassed groups speaking 7 different Bantu languages.  The 

ethnic group originally granted power in 1975 and currently in power retained the northern and 

most of the central territory and the “rebel” group retained the southern part of the country. 

 Subtype F1 would have been introduced just prior to the 1961 start of the war for 

independence232 and its mass migration.  Subtype C appears to have been introduced multiple 

times from several different African countries, leading to distinct lineages.233  Pol gene subtype 

analysis somewhat follows ethnic lines as they were influenced by the war.  Subtype F1 is the 

predominant strain in the north (20% of sequences analyzed) and subtype C is the predominant 

strain in the south (46% of sequences analyzed).  The central part of the country is dominated 

by recombinants (42% of sequences analyzed).234  Combining geographic and phylogenetic 

data can indicate the presence of historical or contextual reasons why groups with similarities in 

a contained area don’t cluster.   

 US-born and foreign-born Latinos with acute HIV in NC did not cluster with each other 

and appeared to have distinct sexual networks; US-born Latinos were more likely to cluster with 

Black persons.49  Therefore, adding the genetic data to the geographic data showed that despite 

a common ethnicity, Latinos in NC should be treated as distinct groups for intervention.  This is 
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important to recognize for the present study, as 12.8% of persons living in Wake County from 

2009-2013 were foreign-born.235   

C. Sexual Transmission of HIV 

 In the US, HIV is primarily transmitted through sexual intercourse,30 which requires the 

virus to cross a mucous membrane.236-238  Intact vaginal mucosal epithelium has many defenses 

which reduce likelihood of HIV transmission.236,238,239  The size of the gaps in the deeper layers 

of the epithelium is smaller than the virus particles, neither the lining cells of the genital stratified 

squamous epithelium (male and female) nor the endocervical columnar epithelium (female) 

easily transcytose free HIV virions,240 and the surface stratified cells lack CD4 target 

receptors.236  However, conditions which increase the permeability of the mucosa, including 

lesion-causing STIs or thinning of the lining due to progesterone treatment, in turn increase the 

likelihood of HIV transmission.236-238  Rectal epithelium does not provide the same protection 

because it lacks many of the features of genital epithelium.  Rectal epithelial cells transcytose 

virions241,242 and express the CXCR4 coreceptor, the rectal epithelium is a single layer,243 and 

trauma which breaches the epithelium is more likely.236,242  Both genital and rectal epithelium are 

susceptible to physical breaches and both allow transmigration of the virus via HIV-susceptible 

cells in the epithelium.236,239,244  Vaginal epithelium will transcytose infected cells bound to its 

surface239 and dendritic and T cells in the deeper layers of the epithelium can become 

infected.245  Innate immune protection such as secretory leukocyte protease inhibitors secreted 

by endocervical cells may also be protective in receptive vaginal sex, but there is not a similar 

secretion from rectal cells to protect during receptive anal sex.236   

 Certain conditions increase the likelihood of transmission in both the genital and rectal 

tracts by diminishing the physical defenses.  Exposure to HIV-1 may increase inflammatory 

processes which increase gap size in both genital and rectal epithelium in vitro.246  Lesion-

causing STIs in the anogenital tract facilitate HIV transmission by providing direct contact with 

target cells and bypassing the physical defenses of the epithelium.236,247,248  Genital ulcer 
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disease (GUD) has been associated with HIV-1 infection, and many studies have advocated for 

treating GUD to reduce HIV transmission.248-252  HSV-2 infection has been associated with HIV-

1 infection in several populations,253-256 although HSV-2 has been shown to have no effect on 

HIV viral load or CD4 count257,258 so HSV-2 may facilitate HIV transmission without affecting the 

course of HIV infection.  Syphilis, however, has been shown to have a synergistic effect with 

HIV.  Being infected with syphilis increases the likelihood of both acquiring and transmitting 

HIV.16,17  Being infected with HIV was associated with larger chancres which took longer to heal 

among patients in a French cohort,18 which could facilitate transmission of both infections.  This 

is further compounded by the fact that monocytes in HSV-1, HSV-2, and syphilis lesions in the 

female genital tract were found to express higher levels of CCR5, as do monocytes elsewhere 

in the female genital tract during primary and secondary syphilis infection, which increases the 

likelihood of viral entry into the cell.19 

 The increase in CCR5-expressing white cells is important.  R5-tropic strains 

preferentially attach to monocytes, which are more likely to transmigrate across the 

endocervical epithelium than lymphocytes.259  This could indicate that without a significant 

breach in the epithelium, a single R5 strain is likely to establish infection, which is observed.  

The majority of heterosexually-acquired HIV cases are single-variant infections established by 

R5 strains,260 which appear to be preferentially transcytosed as macrophage-associated virus 

across the epithelium in the female reproductive tract, when compared to X4-tropic strains.259  

Intestinal epithelium also preferentially transcytoses R5 strains in both the upper261 and lower GI 

tract.262  As expected since R5 strains are able to navigate the epithelium more easily and 

therefore establish infection, the majority of virus in early infection is R5-tropic, whereas X4-

tropic strains are dominant in later infection.263  The higher proportion of R5 virus in early 

infection could compound the increased infectiousness during the acute stage of infection, as 

the R5 strains are more likely to establish a new infection.   
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 Acute transmission is thought to account for a disproportionately high number of new 

infections,26,83,264-267 although questions have been raised as to whether some of the infections 

attributed are due to incorrect measurement.102,268  However, most research supports the impact 

of the acute phase of infection on onward transmission.  People with acute HIV infection (AHI) 

are often co-infected with STIs,101 which in turn increases the likelihood of transmission.250  

Acutely infected persons have higher viral loads,269 are not ill enough yet to reduce sexual 

activity,79 and are more likely to be in a high risk group for HIV transmission101 or a high risk 

sexual network.21 

D.  Intra-Host Viral Dynamics 

 HIV’s short generation time and high mutation rate270,271 leads to more intra-host 

variability in resistance and susceptibility to ART than is present at the population level.270,272-274  

Due to its high mutation rate, HIV population variability changes within a host over time,274 so 

sequences obtained at the beginning of an infection will change without the presence of 

selective pressure from ARTs, although it will occur more quickly under those selective 

pressures.271  Recently-infected persons have less diversity in the HIV virus population than 

chronically-infected persons, although diversity increases much faster in acutely-infected 

persons.275  As such, algorithms can be applied to phylogenetic data to help determine whether 

infection was recently acquired or if it is chronic.276   

 The high mutation rate results in minority quasispecies which can remain in the latent 

reservoir.  The minority variants are generally less fit else they would become dominant 

variants, and some encode drug resistance.277  With selective pressure of ART, the minority 

variants can resurge and lead to early treatment failure.223  These minority variants can be 

transmitted to ART-naïve persons, potentially limiting future treatment options.278  Drug 

susceptible strains have higher fitness for establishing infection in an uninfected recipient.  

However, despite the lower fitness, resistance profiles of newly-infected ART-naïve persons 

show that drug resistant strains are transmitted.279-283   
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 The high mutation rate also plays a role in the long-term persistence of HIV as it relates 

to host co-receptors targeted.  Nearly all HIV infections are caused by a CCR5-tropic virus 

strain,284 which is more efficient at crossing the epithelial barrier.285  However, the population 

usually switches in some proportion to CXCR4-tropic strains over the course of the infection286-

288 as CD4+ cells are depleted.  X4 strains likely arise via mutation and sustain the virus 

population once the R5 strain target cells decline in numbers.263  However, X4 strains aren’t 

well-suited to establishing new infections.289 

1. Founder Strains 

 Evidence from strain diversity analysis supports a transmission bottleneck, where 

recently infected individuals have low strain diversity even when infected by chronically-infected 

persons who have high strain diversity.290,291  This is due to higher fitness in establishing 

infection, as there are many variants in the inoculum.  A single transmitted founder strain 

causes 76% of HIV infections.260  Heterosexually-acquired HIV is slightly higher at 81%.292  

However, this proportion is significantly reduced for MSM and IDU,293 where the inoculum can 

breach the mucosal barrier.  Approximately 62% of infections acquired by MSM are thought to 

be the result of a single variant,292 and it drops to 40% for IDU.294  Engaging in the high risk 

behaviors which put one at risk of acquiring multiple infecting variants is associated with the 

person’s sexual network component.11  IDU,294 MSM,292 and heterosexuals co-infected with 

ulcerative STIs295 are more likely to have infection resulting from multiple variants.  It is plausible 

that conditions which circumvent the mucosal barrier also increase the likelihood of transmission 

of drug resistant variants which have less replicative capacity; the mechanisms which 

circumvent the transmission bottleneck may also facilitate infection with less fit drug resistant 

strains.  ARV-naïve MSM are more likely than ARV-naïve heterosexuals to have drug resistant 

strains at diagnosis.56,296 

 Most new infections result from a single founder strain,243,290,291,297,298 although even in a 

mixed population, some infections are established by less fit299-301 strains which demonstrate 
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drug resistance.19,20,24-27,101  Drug resistant strains can be transmitted, although not as frequently 

or as easily as wild type.55  HIV clinic survey data showed that drug resistant virus strains have 

approximately 20% of the capacity of wild type strains to establish new infections.55  Drug 

resistance mutations (DRM) have different fitness costs; some conferred almost no fitness 

costs302 and as such persist after ARV is stopped.300  Certain mutations do confer fitness loss 

that would lead to being out-competed within a host, but not so much of a fitness loss that the 

resistant strains cannot establish new infections.55  Additionally, with fewer strains in early 

infection, a donor can only pass one of those strains on to a recipient.55  Therefore, transmission 

of drug resistant variants may be a compounding problem at the population level.  Viral diversity 

is lower after initial infection than it is in later infection, due to first a small number of infecting 

variants and then increasing in diversity due to escape mutations.293  If someone who is infected 

with a resistant strain transmits the infection to a new recipient during the acute phase of 

infection,55 as happens often, then onward transmission of the drug resistant variant might be 

more likely if there is somewhat of a probabilistic element to the successful transmission of the 

found strain, thus contributing to the epidemic of transmitted DRM (TDRM).   

2. Drug Resistance Mutations 

 Drug resistance occurs as a result of mutation during virus transcription then becomes 

encoded in the viral population due to selective pressure in the presence of ART.303  Mutations 

classified as drug resistance mutations (DRM) confer at least partial resistance to at least one 

first line ARV.272,304   

 HIV infection tends to revert to wild type virus once the selective pressure of ARVs is 

removed because some replicative capacity is lost with certain resistance mutations.272,305-307  

However, this only occurs as a result of a mutation that increases both drug sensitivity and 

reproductive fitness.272,304  Additionally, primary infection with a drug resistant strain does not 

revert to a completely susceptible virus population because resistant strains persist in the 

cellular reservoir. 272,305-307  Standard therapies may then be perpetually less effective for 
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individuals with acquired drug resistance due to a latent resistant population.272  Additionally, at 

least one reverse transcriptase mutation seems to revert only to an intermediate strain that 

quickly mutates into resistant virus if AZT is started.282  Time to viral suppression is slower with 

an acquired or transmitted DRM,308-311 there is less sensitivity to first-line drugs,312 and treatment 

options are limited in individuals who have a transmitted drug resistance mutation.309,313,314   

 Polymorphic drug resistance mutations occur spontaneously and do not require selective 

pressure from ART.  Non-polymorphic drug resistance mutations typically do not occur without 

the presence of ART.314  Non-polymorophic drug resistance mutations in a person who is ARV-

naïve indicate likely infection with a drug resistance strain rather than spontaneous (acquired) 

mutation; limiting study to nonpolymorphic mutations increases the specificity as a marker for 

transmitted DRM (TDRM).315   

Table 15 shows the individual mutations found with high prevalence among 

nonpolymorphic sites in HIV-1 diagnoses of ART-naïve persons made in 2006 in selected areas 

of the US,2 though the prevalence has changed with the standard use of integrase inhibitors.  

The table lists the drug class to 

which the mutation confers 

resistance (PI= protease 

inhibitors, NRTI=nucleoside 

reverse transcriptase inhibitors, 

NNRTI=non-nucleoside reverse 

transcriptase inhibitors, 

INI=integrase inhibitors), the 

amino acid position of the 

mutation, the consensus B 

amino acid (Cons-B AA), the 

substituted amino acid (Mut-AA), and the percent of sequences found to have the mutation at 

Table 15.  Most common HIV genetic mutations in untreated persons.1,2  

Class Pos Cons B-AA Mut-AA Prev (%) Hi Res

PI 46 Methionine Isoleucine 0.6 No

PI 90 Leucine Methionine 1.2 No

NRTI 41 Methionine Leucine 1.7 No

NRTI 70 Lysine Arginine 0.5 No

NRTI 184 Methionine Valine 1.0 Yes

NRTI 215 Threonine Cysteine 0.6 No

NRTI 215 Threonine Glutamic Acid 0.2 No

NRTI 215 Threonine Serine 0.5 No

NRTI 219 Lysine Arginine 0.1 Yes

NNRTI 101 Lysine Glutamic Acid 0.3 No

NNRTI 103 Lysine Asparagine 5.1 Yes
* adapted from Wheeler et al, 2010 and Stanford HIV Drug Resistance Database 2012. 

Class=class of ART; Pos=genome position; Cons B-AA=consensus B amino acid; Mut-

AA=amino acid after mutation; Prev (%)=prevalence of mutation; Hi Res=considered 

by Stanford Drug Resistance Database to contribute to a moderate or high level of ART 

resistance in most of the ARTs commonly prescribed in the US.
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that position.  The study from which Table 15 was adapted found an overall TDRM prevalence 

of 14.6% in 2030 ART-naïve individuals.  7.8% had at least one mutation conferring resistance 

to NNRTIs, 5.6% to NRTIs, and 4.5% to PIs.2  Certain NNRTI and PI mutations persist even 

after stopping ART, increasing the likelihood of onward transmission.300  Newer sequencing 

methods include INI mutations.  Although the genetic barrier to resistance is lower for INIs than 

NRTIs or PIs, it is believed that INI resistance is transmitted less often than NNRTI, NRTI, or PI 

resistance mutations.316  

a. Transmitted Drug Resistance and Associated Outcomes 

 DRM can be transmitted with infection.164  Persons infected with resistant virus may 

never achieve suppression, as they will always harbor resistant strains.317  Even minority 

variants detected prior to ART exposure have been associated with higher rates of treatment 

failure.221,309  Resurgence of minor drug resistant variants happens in less than half the time, on 

average, as reversion to wild type strains after stopping ART.318  Individuals who are ever 

infected with or who acquire drug resistance mutations are at lifetime risk of lower treatment 

efficacy because there may always be a resistant population of minor variants within the 

host.309,310,318,319  At the population level, efficacy of pre-exposure prophylaxis (PrEP) and post-

exposure prophylaxis (PEP) is reduced in the presence of certain drug resistance 

mutations.304,320  The potential for transmission of DRM therefore also has implications for at-risk 

persons:  dissemination of PrEP to high risk persons has been demonstrated to reduce the 

number of new cases, although the resistance profile of the local DRM should be known to 

achieve optimal results with PrEP (or PEP321) as some mutations decrease the efficacy the 

treatments.   

 The prevalence of transmissible DRM (TDRM) is largely unknown, but estimated to be 

10-20% for at least one major resistance mutation in most regions in the U.S.182,322-324  TDRM 

are more common in areas in which antiretroviral therapy is available;319 resistance is expected 

to increase as ARVs become more available worldwide.304  Risk of drug resistance mutations is 
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higher when adherence is suboptimal.325  Nonadherent persons are likely to engage in 

unprotected sex, which provides opportunity for onward transmission of drug resistant 

infections.326-329  

 Previous studies of TDRM have focused on broad groups, such as race, or used 

previously-defined cohorts, such as HIV clinic patients, to assess TDRM prevalence, which 

doesn’t reflect actual transmission patterns.  There are several benefits to assessing the local 

TDRM profile by sexual network component using all incident diagnoses.  A better estimation of 

the population at risk for HIV can be made, particularly when demographically compared to the 

local population.  Knowing the TDRM profile by component has the potential to inform 

interventions, including PrEP, that are tailored to individuals who have newly entered high-risk 

sexual networks, thereby decreasing the number of new HIV infections in NC.  It is estimated 

that approximately 10% of HIV-positive individuals in NC are unaware of their status.39  

Obtaining a better profile of HIV and TDRM acquisition risk by demographic and risk group 

would allow estimation of individuals with unknown status.  Resistance mutation prevalence has 

been associated with risk behavior,296 which further supports the utility of phylogenetic analysis 

by sexual network component.  The higher number of DRM in drug-naive MSM with resistance 

mutations could be due to either increased transmission during the acute infection phase or 

possibly a higher likelihood of multiclonal infection.292  This could be due to sexual practices 

which increase trauma and reduce the effectiveness of the mucosal barrier; intravenous drug 

users also tended to have multiplicity of infection.294  Analysis of timing of infection, risk 

behaviors, and number of partners may yield some information in support of one of those two 

hypotheses.     

 A Swiss study of 197 persons with acute or recent HIV infection found that the 

prevalence of DRM among persons infected through homosexual contact or intravenous drug 

use was approximately twice that of HIV acquired through heterosexual contact (11%, 13%, and 

6%, respectively).265  As drug resistant strains have lower replicative capacity than wild type 
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strains, there may be a biological mechanism allowing the drug resistant strains to bypass the 

infection bottleneck among MSM and IDU.  Receptive anal intercourse and injection into the 

circulatory system both breach the innate defenses of the epithelium.  This could plausibly allow 

the drug resistant strains to compete in establishing infection, leading to transmission of multiple 

variants or single drug resistant variants.   

 The local resistance profile in NC has not been studied in any amount of detail.  A 

previous study of clusters in NC found that individuals in clusters were more likely to have at 

least one DRM,276 which is similar to what was found among patients in the Swiss study.267  Two 

university hospitals in NC analyzed a cohort of acutely- and recently-infected patients and found 

that 17.8% had at least one TDRM,182 which has implications for public health given the 

infectiousness due to high viral loads early in infection.  In a different but geographically related 

clinical cohort that includes both acute and chronic infections, 9.3% of patients had transmitted 

drug resistance, with prevalence among acute infections being 2.4 times that of persons 

chronically infected.323  Without distinguishing between transmitted and acquired mutations, 

more than half of the patients in that cohort had at least one DRM, and many of the patients 

reported inconsistent condom use and suboptimal ART adherence.326  The spread of TDRM in 

NC has implications for disease mitigation, first-line treatment failure in new infections, pre-

exposure prophylaxis (PrEP), and post-exposure prophylaxis (PEP).304,330,331   
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