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ABSTRACT 

Yu Meng: Computational Cortical Surface Analysis for Study of 
Early Brain Development 

(Under the direction of Dinggang Shen) 

The study of morphological attributes of the cerebral cortex and their development is very 

important in understanding the dynamic and critical early brain development. Comparing with 

conventional studies in the image space, cortical surface-based analysis provides a better way to 

display, observe, and quantify the attributes of the cerebral cortex. The goal of this dissertation is 

to develop novel cortical surface-based methods for better studying the attributes of the cerebral 

cortex during early brain development. Specifically, this dissertation aims to develop methods for 

1) estimating the development of morphological attributes of the cerebral cortex and 2) discovering 

the major cortical folding patterns.  

Estimation of the Development of Cortical Attributes. The early development of 

cortical attributes is highly correlated to the brain cognitive functionality and some 

neurodevelopmental disorders. Hence, accurately modeling the early development of cortical 

attributes is crucial for better understanding the mysterious normal and abnormal brain 

development. This task is very challenging, because infant cortical attributes change dramatically, 

complicatedly and regionally-heterogeneously during the first year of life. To address these 

problems, this dissertation proposes a Dynamically-Assembled Regression Forest (DARF). DARF 

first trains a single decision tree at each vertex on the cortical surface, and then groups nearby 

decision trees around each vertex as a vertex-specific forest to predict the cortical attribute. Since
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 the vertex-specific forest can better capture regional details than the conventional regression forest 

trained for the whole brain, the prediction result is more precise. Moreover, because nearby forests 

share a large portion of decision trees, the prediction result is spatially smooth. On the other hand, 

missing cortical attribute maps in the longitudinal datasets often lead to insufficient data for 

unbiased analysis or training of accurate prediction models. To address this issue, a missing data 

estimation strategy based on DARF is further proposed. Experiments show that DARF 

outperforms the existing popular regression methods, and the proposed missing data estimation 

strategy based on DARF can effectively recover the missing cortical attribute maps. 

Discovery of Major Cortical Folding Patterns. The folding patterns of the cerebral 

cortex are highly variable across subjects. Exploring major cortical folding patterns in neonates is 

of great importance in neuroscience. Conventional geometric measurements of the cortex have 

limited capability in distinguishing major folding patterns. Although the recent sulcal pits-based 

analysis provides a better way for comparing sulcal patterns across individuals of adults or older 

children, whether and how sulcal pits are suitable for discovering major sulcal patterns in infants 

remain unknown. This dissertation adapts a sulcal pits extraction method from adults to infants, 

and validates the spatial consistency of sulcal pits in infants, so that they can be used as reliable 

landmarks for exploring major sulcal patterns. This dissertation further proposes a sulcal graph-

based method for discovering major sulcal patterns, which is then applied to studying three primary 

cortical regions in 677 neonatal cortical surfaces. The experiments show that the proposed method 

is able to identify the previously unreported major sulcal patterns. Finally, this dissertation 

investigates and verifies that the sulcal pattern information could be utilized to help DARF for 

better estimating cortical attribute maps. 
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1 INTRODUCTION 

1.1 Introduction 

The early postnatal period is a crucial time for brain development, because many basic 

brain structures and functions are established rapidly during this period. Understanding the brain 

development during this period is a fundamental problem in neuroscience. Cerebral cortex, as an 

important component of the human brain, plays a key role in receiving sensory inputs (e.g., vision 

and hearing), body movements, and complex intellectual activities (e.g., memory, language, 

judgement, and emotion), and grows dramatically during the early postnatal period. Therefore, 

studying the cerebral cortex and its early development is important for understanding early brain 

development.  

One of the challenges in studying cerebral cortex is that cerebral cortex is extremely thin 

(1~5mm) and highly folded, which makes it difficult to display, observe, measure, and model 

directly from MR images, as shown in Figure 1.1(a). Therefore, cortical surface-based analysis, 

in which a cerebral cortex is explicitly represented as a mesh surface, as shown in Figure 1.1(b), 

has been proposed and widely used in the study of cerebral cortex. By rendering the triangular 

mesh in 3D space, the cortical surface is clearly displayed and is easy to observe. An important 

advantage of cortical surface-based analysis is that it enables researchers to study the attributes of 

cerebral cortex vertex-by-vertex. There are many neuroscientifically and clinically important 

attributes of the cerebral cortex, such as cortical surface area, cortical thickness, sulcal depth, 

cortical gyrification, and cortical folding patterns, which may be correlated to the brain functions 
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and neurodevelopmental disorders, yet have not been well studied. The goal of this dissertation is 

to develop cortical surface-based methods for better studying the attributes of the cerebral cortex 

during early brain development. Specifically, this dissertation aims to develop methods for 1) 

estimating the development of morphological attribute maps of the cerebral cortex and 2) 

discovering the major cortical folding patterns.  

 
Figure 1.1. Representations of the cortical surface. (a) T1-weighted MR image of an infant brain. 
(b) The interface between white matter and gray matter is represented by a triangular mesh. 
 

To provide an overview of the above research topics and their related state-of-the-art 

techniques, the rest of this chapter is organized as follows. The topic of estimating the development 

of cortical morphological attributes is introduced in Section 1.2 and Section 1.3. Specifically, 

Section 1.2 introduces the prediction model of cortical attributes development. Section 1.3 

introduces how to recover the missing cortical attributes in incomplete longitudinal datasets, which 

is an important sub-problem for estimating the developmental cortical attributes. The topic of 

exploring the major cortical folding patterns is discussed in Section 1.4. 

 
1.2 Predicting the Development of Vertex-Wise Cortical Attributes 

1.2.1 Significance  
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Accurately modeling the development of cortical attributes (cortical area, cortical 

thickness, sulcal depth, gyrification index, etc.) is crucial for better understanding the mysterious 

and dynamic early brain development. First, the change of cortical attributes is highly correlated 

to the brain functional development. For example, it has been reported that the changes of both 

cortical area and cortical thickness over time are related to intelligence (Schnack, et al., 2015); it 

is also suggested that gyrification index is a symbol that is correlated with the brain capacity of 

information processing (Tallinen, et al., 2014). Second, the change of cortical attributes could be 

an important indicator for some neurodevelopmental disorders. For example, the delayed 

development of cortical thickness is observed in the brains with attention-deficit/hyperactivity 

disorder (Shaw, et al., 2007); cortical surface area could be used to predict the diagnosis of autism 

(Hazlett, et al., 2017); and locally increased gyrification index could be a predictor for 

schizophrenia (Budday, et al., 2014). Therefore, accurately modeling the changes of cortical 

attributes of infant brains can benefit the studies of early brain development, and is also potentially 

helpful for predicting the neurodevelopmental disorders in relatively early stage. 

1.2.2 Challenges  

First, the changes of cortical attributes in infants are dramatic during the first two years of 

life. For example, from birth to one year of age, the average cortical thickness increases 40%, and 

cortical surface area increases 80% (Li, et al., 2013; Lyall, et al., 2015). In order to precisely 

capture such rapid developments, both intensive data acquisition and sophisticated prediction 

models are required. 

Second, the development of cortical attributes is very complex, with different changing 

rates at different ages. For example, cortical thickness increases very fast from 3 to 6 months, but 

changes slowly from 9 to 12 months (Li, et al., 2014a).  Such a temporally varied developing rate 
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makes it very difficult to find an explicit mathematical expression that can accurately fit the 

developmental trajectory of cortical attributes.  

Third, the development of cortical attributes is highly regionally heterogeneous. As 

reported in (Li, et al., 2014a), the increase of cortical thickness in the central sulcus mostly happens 

from 6 to 9 months; and the increase of cortical thickness in the occipital cortex mostly happens 

from 0 to 9 months; but for the frontal, temporal, and parietal cortices, cortical thickness grows 

continuously during the first 18 months of life. Such regional differences make it difficult to build 

a single model to fully capture the development of cortical attributes for the entire cortex.  

Because of the above challenges, accurately modeling the development of cortical 

attributes vertex-by-vertex is a very difficult problem, where both temporal-varied changes and 

regional heterogeneity must be carefully encoded.  

1.2.3 Existing Methods  

The existing methods, which are related to the goal of predicting the vertex-wise 

development of morphological attributes of the cortical surface, fall into two categories.  

The first category is to use mathematical curves to fit the development trajectory of cortical 

attributes. Usually, such methods try to fit the development trajectory curve for each vertex on the 

cortical surface using multiple predefined mathematical models and then select the best-fit one. 

For example, in (Ducharme, et al., 2016), the linear mixed-effects, quadratic mixed-effects, and 

cubic mixed-effects models were all used to fit the development trajectory of cortical thickness 

vertex-by-vertex, for the subjects from 4.9 to 22.33 years of age. Then it was found that in most 

cortical regions the development trajectories of cortical thickness could be fitted using a 

monotonically decreasing linear model, while in a few cortical regions the trajectories were better 

fitted using quadratic or cubic models. The similar methods were also applied to modeling the 
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development of cortical surface area in the same age range (Ducharme, et al., 2015; Wierenga, et 

al., 2014). Another study used linear, quadratic, and logarithmic models to capture the 

development curves of cortical thickness and surface area from 1 to 6 year of ages, and found that 

generally the development followed logarithmic trajectories, while several exceptional regions 

followed linear and quadratic trajectories (Remer, et al., 2017). All of these modeling studies 

focused on the period of older children, adolescence, and young adults, when the development of 

cerebral cortex is much slower compared to that in the first postnatal year, and therefore even a 

simple linear model could fit the development trajectory well in their studies. However, from birth 

to one year of age, cerebral cortex grows dramatically, nonlinearly, and even not monotonically in 

some cortical regions, and thus the simple linear models (or quadratic, cubic, logarithmic, etc.) 

would fail to precisely represent the complex changes of the cortical attributes.  

The second category of methods, instead of directly modeling the development of cortical 

attributes, are to predict the shape development of the cortical surface, and thus the cortical 

attributes could be indirectly computed based on the predicted cortical surface. Computational 

growth model is one of the widely used models for capturing cortical development or simulating 

the mechanisms of cortical folding (Budday, et al., 2014; Nie, et al., 2010; Nie, et al., 2012). 

Usually, in a computational growth model, the deformation of the cortical surface is considered as 

a result of a series of driving forces (e.g., elastic forces and growth forces), and how these forces 

drive the cortical surface is solved numerically, e.g., using the finite element method. Another way 

to predict the cortical surface evolution is using the varifold-based/current-based shape morphing-

learning method (Rekik, et al., 2015; Rekik, et al., 2016). Specifically, in the training stage, a shape 

regression model is used to fit the trajectory of the geodesic cortical shape development for each 

training subject, and then a spatiotemporal surface atlas is built; in the testing stage, using the best 
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learned features, the cortical surface shape of a given subject is predicted based on the similarity 

between the given cortical surface and an age-corresponding surface atlas. Although these models 

are able to predict the shape development of the cortex, which can be used to further derive the 

development of cortical attributes, such an indirect way of cortical attributes prediction has two 

marked limitations. First, the cortical surface is a complex manifold and its mechanism of 

development from birth to 1 year of age has not yet been well understood, and thus predicting the 

early development of the cortical shape is quite challenging, and also the prediction accuracy of 

existing methods has not been widely accepted. In particular, the errors introduced from the shape 

prediction process would directly affect the accuracy of the measurement of cortical attributes. 

Second, some of the cortical surface attributes (e.g. cortical thickness) can only be measured when 

both an inner cortical surface (the interface between white matter and gray matter) and an outer 

cortical surface (the interface between gray matter and cerebrospinal fluid) are given. However, 

most of the existing methods are designed only for predicting the evolution of inner cortical 

surfaces, but have not been validated on outer cortical surfaces.  

On the other hand, there is an advanced machine learning method, namely random forest 

(Breiman, 2001) or random decision trees (Criminisi, et al., 2012), which has been widely used to 

do the nonparametric regression for the complicated data. It has advantages of seeking for the 

hidden complex nonlinear relationship between the input data and the regression target, which is 

difficult to describe using explicit mathematical expressions. Random forest is naturally 

convenient to parallelize and very easy to scale up, and thus quite suitable for handling massive 

amount of data. Random forest is also relatively easy to train, because it owns only few parameters 

and the algorithm itself is robust. Unfortunately, random forest has never been utilized for 

modeling the development of cortical attribute maps. To take these advantages of random forest, 
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in this dissertation, the conventional techniques of random forest have been specifically adapted 

for the application of predicting the development of cortical attribute maps. Since understanding 

random forests is very crucial for comprehending this dissertation, the basis of using random forest 

to do nonparametric regression will be detailed in the next chapter. 

1.3 Estimating the Missing Cortical Attributes 

1.3.1 Significance  

To accurately study the dynamic early brain development, many studies expect using 

subjects with complete longitudinal scans. However, in practice, missing data at certain time points 

is unavoidable in longitudinal studies due to various reasons, such as subject’s absence from the 

scheduled scan or poor imaging quality of the scan. On one hand, directly using the incomplete 

data would introduce biases and consequently reduce precision and power in statistical analysis. 

For example, when constructing spatial-temporal infant cortical surface atlases (Li, et al., 2015b), 

at each time point there are different number of subjects due to the missing data. As a result, 

different biases could be introduced to different time points, thus leading to low accuracy and also 

longitudinal inconsistency in the subsequent analysis, especially at the time points with limited 

number of scans. On the other hand, discarding subjects with missing time point(s) is a terrible 

waste of the useful information, which is acquired at a considerable cost, and may also lead to 

insufficient amount of data for launching the study. For example, to predict the development of 

cortical attributes using learning-based methods, the prediction model can be more effectively 

trained using a larger complete longitudinal dataset than using a smaller one. But, due to the 

missing data, even though the total number of subjects is large, the number of subjects with 

complete scans is much smaller, especially when more time points are involved in the training 

process. This induces the lack of training data, and consequentially leads to ineffective training 
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and limits the power of the obtained prediction model. If the missing data can be somewhat 

recovered, then more available data could be used to train the prediction model, and as a result the 

prediction precision could be improved. Because of these reasons, accurate estimation of the 

information at missing time points plays an important role in longitudinal analysis of early brain 

development. 

1.3.2 Challenges  

The first challenge is that the portion of missing data could be very large. For instance, in 

our longitudinal dataset, each subject is scheduled to have 11 MR scans from birth to age 6, with 

every 3 months during the first year after birth, every 6 months during the second year, and every 

12 months till to the sixth year. However, because of the absence from the scheduled scans or poor 

imaging quality, only 34% subjects have fully available data in the first year, 12% subjects have 

fully available data in the first two years, and 2% subjects have fully available data for all time.  

The second challenge is that the missing data are the cortical attribute maps for the entire 

brain. In longitudinal cortical attributes dataset, for each subject at each time point, there are 

several cortical attribute maps (e.g., cortical thickness map, sulcal depth map, gyrification index 

map, etc.), and in each cortical attribute map there are hundreds of thousands of measured values 

that are sampled across the whole brain. If a time point is missing for a subject, it means all cortical 

attribute maps with hundreds of thousands of values at this time point are totally lost. These 

characteristics of longitudinal cortical attributes datasets leave very few hints for inferring or 

recovering the missing data. 

1.3.3 Existing Methods  

An intuitive strategy to handle missing data is to replace the missing data by the weighted 

average over the most representative subset of existing data (e.g., K-nearest neighbors) (Ching, et 
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al., 2010; Troyanskaya, et al., 2001; Tsiporkova and Boeva, 2007). This strategy works well when 

the missing data is not too much and randomly distributed, but its efficiency decreases fast with 

the increase of missing data, and it has very limited ability to address the continuously distributed 

missing data (e.g., the entire neighbor is missing). One reason of such limitation is that this strategy 

only uses local information to estimate the missing data, but does not take the advantage of the 

global relationship between the missing data and the known data. To better utilize the global 

information to estimate the missing data, several methods based on low-rank matrix/tensor 

completion were proposed (Cai, et al., 2010; Candes and Recht, 2009; Candes and Tao, 2010; Liu, 

et al., 2013). Such methods assume that the data matrix/tensor is low-rank and the missing elements 

are distributed randomly or evenly, thus the missing elements could be filled with the values that 

minimize the rank of the matrix/tensor. These methods work well for the recovering the missing 

pixels in the images with repetitive patterns. As reported in (Liu, et al., 2013), although the portion 

of missing pixels can reach more than 80%, the methods are still able to reconstruct the original 

image. On the other hand, the low-rank assumption may not be rational for an image with rich 

information but no repetitive patterns. Another limitation is that if the missing data is not 

distributed randomly but concentrated into large blocks, these methods would no longer be 

applicable. Unfortunately, in neuroimaging studies, the missing data are usually distributed in 

blocks but not uniformly (Thung, et al., 2014; Yuan, et al., 2012). For example, the missing data 

could be an entire image (Li, et al., 2014d; Yuan, et al., 2012) or an entire cortical attribute map 

with hundreds of thousands of values. Recently, deep convolutional neural networks (Li, et al., 

2014d) were applied to estimating information of missing imaging modalities based on the 

available modalities for improving brain disease diagnosis. However, this image-based method 
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cannot be directly applied to our task of estimating missing vertex-wise cortical attribute maps on 

the dynamic developing cortical surfaces. 

1.4 Discovering Major Cortical Folding Patterns in Neonates 

1.4.1 Significance  

Cortical folding pattern is another important cortical morphological attribute. Although 

the cortical folding of the human brain exhibits highly variable forms in different brains, certain 

common folding patterns do exist in some specific cortical regions (Ono, et al., 1990). However, 

the number of common folding patterns has not been well summarized, and what each common 

folding pattern looks like has not been well studied. Furthermore, the biological meanings behind 

these common folding patterns is still not clear. Although several studies targeting adult brains 

have tried to explore the major folding patterns, to the best of my knowledge, there is no previous 

study on the cortical folding patterns in neonatal brains, which is of great importance both in 

neuroscience and methodology development for neuroimaging studies. First, the primary cortical 

folding is largely genetically determined and has been established at term birth (Li, et al., 2013), 

thus neonates with the minimal exposure to the complicated postnatal environmental influence are 

the better candidates for discovering the major cortical patterns than adults. Second, the general 

structural differences of folding patterns in the cerebral cortex may be related to the distinct 

cognitive functions (Cachia, et al., 2016; Sun and Hevner, 2014), and may also have some 

connections with neurodevelopmental disorders (Im, et al., 2013b; Im, et al., 2016). These 

hypotheses could not be fully tested without knowing the major categories of cortical folding 

patterns and their differences. Third, mining the major cortical folding patterns can benefit other 

neuroimaging analysis techniques that rely on the shape of the cortex, such as cortical surface 

registration and cortical surface atlas reconstruction. For example, in the current group-level 
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analysis (Li, et al., 2013), typically a single cortical atlas is used for a group of brains. Such an 

atlas may not be able to reflect some important patterns of cortical folding due to the averaging 

effect, and thus lead to poor registration accuracy for the subjects that cannot be well characterized 

by the folding patterns in the atlas. If major cortical folding patterns are well known, then multiple 

atlases, in which each of them represents one major pattern of cortical folding, could be used. This 

could boost the accuracy in cortical surface registration and subsequent analysis.  

1.4.2 Challenges  

First, discovering major cortical folding patterns requires a large-scale dataset, because 

small datasets may not be able to sufficiently cover all kinds of major cortical patterns and may 

lead to biased results. However, it may take many years to collect enough subjects to build a large-

scale dataset, especially for healthy neonates. Thanks for the years of efforts from UNC School of 

Medicine and UNC hospitals, the size of the dataset is sufficiently large when I conducted this 

research.  

Second, the structure of the cerebral cortex is so complex and variable across individuals 

that it is quite difficult to quantitatively characterize the folding patterns using a comprehensive 

mathematical measurement. Although some geometric metrics such as local mean curvature, local 

gyrification index (Schaer, et al., 2012), shape index (Koenderink and Vandoorn, 1992), or surface 

complexity index (Kim, et al., 2016) have been widely used to quantitatively measure the folding 

shapes and folding degree within a single cortex, they still have very limited abilities to accurately 

quantify the similarity of major patterns between individuals’ cortices. For example, for the two 

different folding patterns with very similar mean curvature values (or gyrification index, shape 

index, surface complexity index), the vertex-wise comparison of these geometric metrics is very 

sensitive to the minor folding variance, and cannot well abstract the differences only in the major 
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folding patterns. Therefore, such geometric metrics are not suitable for studying the major cortical 

folding patterns.  

Third, recent studies of sulcal pits, which are the locally deepest points on the cortical 

surface, provide a better way to measure the similarities and varieties of sulcal patterns across adult 

individuals (Im, et al., 2011b) or older children (Im, et al., 2016). However, this method cannot be 

directly applied to exploring sulcal patterns in infants, because several sulcal pits-related 

parameters are fixed for adults and older children and are not applicable for neonates. Moreover, 

whether sulcal pits are suitable for studying sulcal patterns in infants is still not clear, because the 

inter-subject consistency of sulcal pits within adults and older children has not be well examined 

for infants.  

1.4.3 Existing Methods  

The existence of common sulcal patterns in some specific cortical regions are first reported 

in (Ono, et al., 1990), which examined 25 autopsy specimen adult brains visually. The sulcal 

patterns were categorized based on their locations, shapes, sizes, and dimensions, measured on the 

real brains specimen, instead of using modern advanced MRI techniques. Despite the limited 

number of samples, this study opened a new window for the future exploration and research on 

the shape variability of the human cortical surface.  

Recently, owing to the successful application of MRI, cortical surface-based methods have 

been widely used for investigating the folding patterns, freeing researchers from doing body 

dissection. In a study of 150 adult brains (Sun, et al., 2007), 3D moment invariants were used to 

represent each sulcus, and major sulcal patterns were categorized using agglomerative clustering 

algorithm. The authors further found that the discrimination of 3D moment invariants was limited 

in distinguishing different patterns, and hence proposed a more representative method, which 
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integrates the Iterative Closest Point (ICP) algorithm (Besl and Mckay, 1992) and the Isomap 

algorithm (Tenenbaum, et al., 2000) in (Sun, et al., 2009). In this method, the corresponding sulci 

of two individuals were manually identified and aligned using an affine global normalization and 

then ICP, and their geometric distance was computed, producing a distance matrix. Then, Isomap 

algorithm was performed to reduce the dimension of the distance matrix. Finally, the major sulcal 

patterns were categorized using a dedicated hierarchical clustering algorithm. This method was 

applied to a dataset of 62 adult brains, and found three patterns in the left superior temporal sulcus, 

four patterns in the left cingulate region, and three patterns in the left inferior frontal gyrus. 

However, since this method highly relies on the affine registration, using the distance between two 

aligned cortical regions as a similarity metric is too sensitive to the shape of cortices. For example, 

if one cortical region is straight and the other is relatively bended, even though they share the same 

major folding pattern (e.g., both with two equal sized sulcal basins), such distance-based 

measurement would still report a relatively small similarity, and therefore they cannot be 

categorized into the same folding pattern.  

Later on, an atlas-based method was proposed to study the folding patterns in the left 

inferior frontal sulcus (Coulon, et al., 2012). Specifically, this method divided the template left 

inferior frontal sulcus into six pieces. For each piece, the centroid was computed, and the average 

orientation was estimated using a principal component analysis (PCA). Then, each individual’s 

left inferior frontal sulcus was nonlinearly aligned to the template, and the closest points to the six 

centroids of the template were identified. The distance between each closest point to its 

corresponding centroid was computed, as well as the dot product between the normal direction of 

the closest point and the orientation of the corresponding piece of the template. The six distance 

values and the six dot products were used as a feature vector for characterizing the individual left 
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inferior frontal sulcus. Finally, a clustering algorithm was performed to identify the major classes 

based on the feature vectors of all subjects. This method was applied to a dataset of 151 brains and 

detected five major sulcal patterns in the left inferior frontal sulcus. The advantage of this method 

is that the nonlinear registration onto the template (atlas) removes the non-interest variability 

among the subjects. However, the disadvantage is that the template may introduce biases, because 

the template may only reflect the most common patterns existing in the majority of the population. 

For a relatively smaller subset of population with a very different common pattern, the nonlinear 

registration could unpredictably align the individual local cortices, and thus the feature vectors 

referring to the template may lose the ability to represent this common pattern.  

Recently, sulcal graph-based methods were proposed to compare the sulcal pattern 

similarities between individual subjects (Im, et al., 2011b; Im, et al., 2013b; Im, et al., 2016) and 

achieved meaningful results. Sulcal graph is an abstract representation of the geometric structure 

of the cerebral sulci. It is built based on the sulcal pits and the neighboring relationships between 

the sulcal basin regions of sulcal pits. Specifically, sulcal pits are the locally deepest points on the 

cerebral cortex, and can be extracted using a watershed algorithm (Im, et al., 2010). Sulcal pits 

have been suggested to be genetically affected and closely related to functional areas (Im, et al., 

2010; Lohmann, et al., 2008; Regis, et al., 2005), and they are thought to be the first occurrences 

of cortical folds during the cortical folding development (Im, et al., 2011b). Although sulcal 

folding is highly variable across individuals, the spatial distribution of sulcal pits is relatively 

consistent, so sulcal pits are well suitable as reliable landmarks for characterizing sulcal folds. In 

these methods, a sulcal graph was constructed for a local cortical region of an individual brain. 

The nodes in the sulcal graph were the sulcal pits, and two nodes were linked by an edge if their 

corresponding sulcal basins were spatially connected. Then, for the pair of sulcal graphs that need 
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to be compared, a spectral matching technique (Leordeanu and Hebert, 2005) was performed to 

optimally matching the two sulcal graphs. Finally, the quantitative similarity of the matched parts 

in these two sulcal graphs was computed. This method was applied to a dataset of 48 young adult 

healthy twin pairs, and found significantly higher similar sulcal patterns in twin pairs than in 

unrelated pairs (Im, et al., 2011b). This method has also been used to quantitatively compare the 

sulcal patterns between the normal and abnormal brains, and successfully found significant 

differences (Im, et al., 2013b; Im, et al., 2016). All of these results suggest that sulcal graph would 

be a reliable tool to compare sulcal patterns. However, sulcal graph has not yet been applied to 

discovering the major common cortical folding patterns in a large dataset. 

1.5 Thesis 

Thesis: Dynamically-Assembled Regression Forest (DARF) is able to accurately estimate 

the early development of cortical attribute maps from birth to 1 year of age. Sulcal pits, which 

have relatively consistent spatial distributions across ages and individuals, can be utilized for 

discovering the major sulcal patterns. Sulcal pattern information can further improve the 

performance of DARF for estimating cortical attribute maps. 

This dissertation aims to develop methods to address the challenging and important 

problems in cortical attribute analysis in infant brains. In particular, the dissertation mainly focuses 

on solving two following problems.  

Aim 1: Estimating the Development of Cortical Attribute Maps. Dynamically-Assembled 

Regression Forest (DARF) is able to accurately estimate the early development of cortical 

attribute maps from birth to 1 year of age. The existing methods of modeling the development of 

cortex or cortical attributes of young adults, either use linear/nonlinear polynomial expression to 

fit the development curve or indirectly compute the cortical attributes based on the predicted 
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cortical shape, as introduced in Section 1.2.3. Such methods are not suitable for precisely 

estimating the vertex-wise cortical attribute development in infants, because cortical attributes 

change fast, nonlinearly, regionally heterogeneously during the first year of life. Random forest, 

as a parallel, scalable and flexible machine learning technique, has intrinsic advantages in 

nonparametric regression. But it cannot be directly applied to the prediction of cortical attribute 

development, due to the complexity of the development itself. Therefore, this dissertation adapts 

random forest for estimating the early development of cortical attribute maps. In order to achieve 

this aim, this dissertation makes the following detailed contributions. 

(1) A novel prediction model, Dynamically-Assembled Regression Forest (DARF), is 

proposed to accurately estimate the early development of cortical attribute maps from 

birth to 1 year of age. Conventional regression forests have limited ability in estimating 

the development of cortical attributes. Different from conventional regression forests, 

DARF trains a single decision tree at each vertex in the training stage, and locally 

groups decision trees around each vertex as a vertex-specific forest in the testing stage. 

Since a DARF handles only a local cortical region, the regression problem is simplified 

and thus can be solved effectively. Moreover, because one decision tree can be shared 

by many nearby DARFs, the estimation results would be spatially smooth, and the 

algorithm is computationally efficient. 

(2) A surface-based feature computation method is proposed for extracting Haar-like 

features from a spherical surface. Haar-like features provide rich neighboring 

information of local cortical attribute maps, and help DARF better utilize the 

correlation between the prediction target and the local input feature maps. Thus, Haar-

like features are very useful in training more accurate prediction models.  
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(3) A novel missing data estimation strategy is proposed for approximately recovering the 

missing cortical attribute maps in incomplete longitudinal datasets. The strategy 

consists of two stages. The first stage, namely pairwise estimation, performs estimation 

by utilizing the relationship between the missing time point and each of other available 

time points independently, so that as many subjects as possible can contribute to the 

estimation. Then the independent outputs are averaged as an initial estimation. 

Benefiting from this initial estimation, in the second stage, namely joint refinement, 

the relationship between the missing time point and all other available/initially 

estimated time points can be utilized together for the estimation. In this way, all 

available information in the dataset could make a contribution to the estimation, so that 

the missing data is recovered more precisely. 

(4) Quantitative evaluations and comparisons are performed. First, the results show that 

the proposed prediction model, DARF, outperforms many existing methods in 

estimating the development of cortical attributes. Second, experiments indicate that the 

proposed missing data completion strategy is able to make a better use of the available 

data and to effectively recover the missing cortical attribute maps.  

Aim 2: Discovering the Major Cortical Folding Patterns. Sulcal pits, which have relatively 

consistent spatial distributions across ages and individuals, can be utilized for discovering the 

major cortical sulcal patterns. Sulcal pattern information can further improve the performance of 

DARF for estimating cortical attribute maps. The sulcal pattern descriptors, used in the existing 

methods for major sulcal patterns discovery, have limited ability of distinguishing different 

patterns. Recent studies of sulcal pits have found that the sulcal graph, consisting of sulcal pits and 

their connections, is able to measure the similarity between sulcal patterns. Therefore, this 
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dissertation proposes to utilize sulcal graph as sulcal pattern representation to discover the major 

sulcal patterns from a large-scale dataset of neonatal brains. For this purpose, the detailed 

contributions are listed as follows.  

(1) A watershed algorithm is employed and adapted for extracting sulcal pits from cortical 

surfaces of infants at different ages. Since the parameter configurations in the 

watershed algorithm is sensitive to the brain size, and the brain sizes of infants are 

much smaller than those of adults and are growing rapidly, the original configuration 

tuned for the adult brains cannot be directly applied to the brains of infants at different 

ages. This dissertation proposes a general way to automatically set the parameters in 

extraction of sulcal pits. By using the correlation between the parameters and the brain 

size, the adapted algorithm is able to generate consistent results for the infant brains at 

any age. 

(2) The spatial distribution and longitudinal development of sulcal pits is studied using a 

longitudinal dataset of 73 infant brains from birth to 2 year of age. Consistent with 

previous studies of sulcal pits in adults, sulcal pits distribution is relatively spatially 

and temporally stable, and thus sulcal pits are suitable to be used as landmarks for 

cortical surface-based analysis. 

(3) A new method is proposed for discovering the major sulcal patterns from a large-scale 

dataset of 677 neonatal brains. The proposed method takes advantage of sulcal graphs, 

and evaluates the similarity between the local sulcal patterns of any two neonates in 

six different points of view. All six similarities are adaptively fused together, and fed 

into a hierarchical affinity propagation clustering algorithm. By averaging the most 

representative samples in each cluster, the proposed method successfully discovers 
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multiple major patterns in three important brain regions, including the central sulcus, 

superior temporal sulcus, and cingulate regions. 

(4) Whether sulcal pattern information could help better predict the development of 

cortical attribute maps is also investigated. To this end, five features maps, which 

encode descriptive information of sulcal patterns, are computed and fed into DARF for 

the prediction. The results show that the sulcal pattern related feature maps could 

improve the prediction accuracy in certain cortical regions. 

1.6 Overview of Chapters 

The rest of this dissertation is organized as follows.  

Chapter 2 introduces the necessary background of the related dataset, techniques, and 

concepts used in this dissertation. For the dataset, the basic information about data acquisition is 

provided, and then the procedure of data processing is detailed. For techniques, the basic idea of 

how to use random forest to do nonparametric regression is introduced; then the effects of 

parameters in random forest is discussed, followed by a summary of the advantages and 

disadvantages of random forest. Finally, the concept and important characteristics of sulcal pits 

are presented, and the recent studies of sulcal pits are introduced. 

Chapter 3 presents the methods for estimating the development of cortical attributes. First, 

Dynamically-Assembled Regression Forest (DARF) is proposed for accurately predicting the 

cortical attribute map at older ages based on the data at younger ages. Second, the method of 

extracting surface-based Haar-like features is presented. Third, a novel missing data estimation 

strategy based on DARF is proposed for approximately recovering the missing cortical attribute 

maps. This chapter also includes extensive experiments for evaluating the proposed methods and 

comparing with the existing techniques. 
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Chapter 4 presents the methods for discovering the major sulcal patterns. Specifically, it 

presents in detail the method of extracting sulcal pits from infant cortical surfaces. Next, it 

investigates the spatial distribution of sulcal pits and their temporal development. After that, the 

techniques used for discovering major cortical sulcal patterns are introduced. The discoveries and 

the results of evaluation experiments are reported. Finally, whether sulcal pattern information 

could help DARF better predict the development of cortical attribute map is investigated. 

Chapter 5 concludes the dissertation, summaries its contributions, and also points out 

future directions.   

1.7 Summary 

This chapter provided an overview of the works in this dissertation. This dissertation 

focuses on addressing two important and challenging problems in cortical surface-based analysis 

of infant brains. The first problem is to accurately estimate the rapid development of cortical 

attributes of infants, and it includes two sub-problems: development prediction and missing data 

estimation. The second problem is to effectively discover the major cortical sulcal folding patterns. 

For each problem or sub-problem, the significances, challenges, and existing methods were 

summarized. This chapter also announced the thesis and sketched the solutions proposed in this 

dissertation. Finally, this chapter presented the organization of the remaining chapters. Next, I will 

present some background information in Chapter 2. 
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2 BACKGROUND 

This chapter presents the necessary background for understanding the rest of this 

dissertation. Section 2.1 provides the basic information of the datasets used in this dissertation. 

Section 2.2 introduces the processing of raw data for producing the surface-based datasets that can 

be directly used in the experiments in this dissertation. Section 2.3 presents an advance regression 

technique, regression forest. Section 3.3 introduces sulcal pits and the related recent studies.  

2.1 Datasets 

Three datasets are used in this dissertation. The first dataset, which is used for estimating 

the development of cortical attributes (Chapter 3), is a longitudinal dataset of 47 infant brains. 

Each infant has a scheduled scan every three months from birth to 1 year of age. However, due to 

the missing data, only 36 out of the 47 brains are used in this dissertation. The second dataset, 

which is used for studying the spatial distribution and longitudinal development of sulcal pits 

(Section 3.1), is a brain dataset mixed with 73 infants and 64 young adults. Each infant in this 

dataset has three longitudinal scans obtained, respectively, at birth, 1 year of age, and 2 years of 

age, and each young adult has one scan acquired around 18.9±1.4 years of age. The third dataset, 

which is used for discovering the major sulcal patterns (Section 3.2), is a large-scale dataset with 

677 neonatal brains.  

All infant scans used in this dissertation were collected by the UNC hospital. Specifically, 

the UNC hospital recruited healthy pregnant mothers during their second trimesters of pregnancy. 

There was no abnormal fetal ultrasound, congenital anomaly, metabolic disease or focal lesion in 
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the infants in the study cohort. For each infant, informed consents were obtained from both parents. 

All infants were scanned during natural sleep without sedation used. During each scan, the heart 

rate and oxygen saturation of the infant were monitored by a physician or a nurse using a pulse 

oximeter.  

At each scheduled scan, T1-, T2-, and diffusion-weighted MR images were acquired by a 

Siemens 3T head-only MR scanner with a 32 channel head coil. T1-weighted images (144 sagittal 

slices) were acquired with the imaging parameters: TR = 1900 ms, TE = 4.38 ms, flip angle = 7, 

acquisition matrix = 256 × 192, and voxel resolution = 1 × 1 × 1 mm3. T2-weighted images (64 

axial slices) were acquired with the imaging parameters: TR/TE = 7380/119 ms, acquisition matrix 

= 256 × 128, and voxel resolution = 1.25 × 1.25 × 1.95 mm3. Diffusion-weighted images (DWI) 

(60 axial slices) were acquired with the parameters: TR/TE = 7680/82ms, acquisition matrix = 128 

× 96, voxel resolution = 2 × 2 × 2 mm3, 42 non-collinear diffusion gradients, and diffusion 

weighting b = 1000 s/mm2. 

The young adult data were obtained from a subset of the public pediatric MRI data 

repository (Release 4.0) created for the NIH MRI study of normal brain development (Evans and 

Brain Development Cooperative, 2006). Each participant was scanned using a 1.5T scanner with 

T1-weighted Spoiled Gradient Recalled (SPGR) echo sequence. Slice thickness of 1.5 mm was 

allowed for GE scanners due to their limit of 124 slices. Total acquisition time was about 25 min, 

and was often repeated when indicated by the scanner-side quality control process. More details 

on image acquisition can be found in (Evans and Brain Development Cooperative, 2006). 

2.2 Data Preprocessing 

All infant MR images were preprocessed using an infant-specific cortical surface pipeline, 

which has been validated on 2000+ infant brain MR images. As shown in Figure 2.1, the pipeline 
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includes three main steps: image processing, cortical surface reconstruction, and cortical surface 

registration. Each step is introduced briefly next. 

 
Figure 2.1. Data preprocessing pipeline. 

2.2.1 Image Processing  

All MR images were processed as follows. First, skull, cerebellum, and brainstem were 

automatically removed (Shi, et al., 2012). Second, intensity inhomogeneity was corrected using 

N3 method (Sled, et al., 1998). Third, each image was rigidly aligned to the age-matched brain 

atlas (Shi, et al., 2011) using FLIRT in FSL (Smith, et al., 2004). Fourth, tissue segmentation of 

MR images was performed by using a coupled level-sets method, to classify the voxels into white 

matter, gray matter, and cerebrospinal fluid (Wang, et al., 2014b). Note that, if one subject has 

multiple MR images that were scanned in different ages, a longitudinally-guided segmentation 

method is used (Wang, et al., 2013).  
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Figure 2.2. Examples of cortical surfaces and cortical thickness maps. (a) A reconstructed inner 
cortical surface. (b) A reconstructed outer cortical surface. (c)A cortical thickness map displayed 
on the corresponding inner cortical surface. (d) A cortical thickness map on the corresponding 
spherical surface. 

2.2.2 Cortical Surface Reconstruction 

The cortical surface reconstruction method took tissue segmentation results as inputs. 

Specifically, first, non-cortical structures were automatically masked and filled, and each brain 

was further separated into a left hemisphere and a right hemisphere (Li, et al., 2012). Second, for 

each hemisphere, the holes in the white matter segmentation mask, which were inevitable topology 

defects, were automatically filled using a 4D-level set algorithm (Han, et al., 2003). The other 

segmentation defects such as missing gyrus and incorrectly-connected handles were visually 

checked and manually removed, in order to get an anatomically precise and topologically correct 

white matter segmentation. The cerebrospinal fluid in deep sulcal regions was recovered by an 

anatomically consistent enhancement method (Han, et al., 2004). Third, the inner surface (the 

interface between white matter and gray matter) was reconstructed using a marching cube method 

(Lorensen and Cline, 1987) followed by a deformable surface algorithm for refinement. Fourth, 

the outer surface (the interface between gray matter and cerebrospinal fluid) was reconstructed by 

deforming the inner surface outwards while keeping its initial topology and spatially-adaptive 

smoothness. To prevent surface meshes from self-intersection, in each step of the surface 

deformation, a fast triangle-triangle intersection detection method was also performed at each 

vertex within a local region. Once any triangle-triangle intersection was detected, the deformation 
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was reduced to a location without such an intersection. For an infant with multiple scans at 

different ages, a longitudinal-consistent deformable model was used (Li, et al., 2014a; Li, et al., 

2015b) to reconstruct the inner and outer cortical surfaces. Finally, the cortical attributes were 

measured. For example, cortical thickness of each vertex was computed as the mean of the 

minimum distances from the inner surface to the outer surface and also from the outer surface to 

inner surface (Li, et al., 2015a) as in FreeSurfer (Fischl, 2012). The sulcal depth of each vertex 

was defined as the shortest distance from the vertex to the cerebral hull surface, and was computed 

using the method in (Li, et al., 2014b). Some illustrative examples of the reconstructed cortical 

surfaces and cortical thickness maps are shown in Figure 2.1. 

2.2.3 Cortical Surface Registration  

For facilitating surface registration and the following surface-based analysis, all cortical 

surfaces were mapped to a standard sphere using FreeSurfer (Dale, et al., 1999; Fischl, 2012). The 

spherical surfaces were registered together using a group-wise version of Spherical Demons (Yeo, 

et al., 2010). Each registered spherical surface was resampled using a standard mesh template with 

163842 vertices, thus a vertex-to-vertex correspondence was built between any two cortical 

surfaces. For longitudinal dataset, the registration and resampling were performed in two stages. 

In the first stage, an intra-subject registration was first carried out to align all cortical surfaces of 

the same infant at different ages. Then the aligned surfaces were resampled and averaged to 

construct a subject-specific mean surface. Since the cortical surfaces of the same infant at different 

ages are much more similar in cortical folding patterns comparing with the cortical surfaces of 

other subjects, the intra-subject registration is relatively easier than inter-subject registration, and 

the established vertex-wise correspondence across the surfaces are more accurate. In the second 
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stage, the average surfaces of all subjects were registered together and resampled, so the inter-

subject vertex-wise correspondence was also established.  

It is worth noting that, after the processing, all cortical attribute maps have also been 

mapped and resampled on the standard sphere. Figure 2.2(d) shows an example of a cortical 

thickness map on the resampled spherical surface. 

2.3 Basis of Regression Forest 

Random forest is a powerful machine learning tool, which has been widely used in the 

tasks of classification, regression, density estimation, and semi-supervised learning (Criminisi, et 

al., 2012). Since in this dissertation the random forest is used only for the regression, I will use the 

name “regression forest” instead of “random forest” in the rest of this dissertation. A regression 

forest consists of a number of binary decision trees that are trained independently. Each binary 

decision tree can recursively split the data into different subgroups according to predefined split 

functions, and at the end a regression value is computed for each subgroup. Each tree represents a 

“weak learner” with a limited ability of regression, but a linear combination of many “weak 

learners” as a forest yields an accurate regression result. It has also been discovered that grouping 

a set of randomly trained decision trees with slight differences could achieve higher accuracy on 

previously unseen data comparing than using a single over-trained decision tree, because of the 

generalization.  

The rest of this section is organized as follows. First, in Section 2.3.1, the training and 

testing process of a regression forest is introduced. Then, the effect of parameters is discussed in 

Section 2.3.2. Finally, the advantages and disadvantages of regression forest are summarized in 

Section 2.3.3. 

2.3.1 Training and Testing 
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In the training stage, each decision tree in the forest is trained independently. To prevent 

over-fitting and increase generalization, usually each tree is trained using a subset of the whole 

training dataset. Given a set of training samples , | ∈ , ∈ , where  and  are 

respectively the d-dimensional feature vector and the scalar target value of the i-th training sample, 

each binary decision tree is trained by recursively finding a series of optimal partitions of the 

training samples. Specifically, at the root node, the training samples are optimally partitioned into 

two subsets by maximizing the following objective function:  

argmax
,

| |

| |

| |

| |
                                             (2.1) 

where  is the set of training samples at the current node;  and  are respectively the subsets of 

 in the left child node and the right child node after the partition;  is a metric that estimates the 

consistency of training samples in terms of regression target. Mathematically,  is defined as: 

| |
∑ , ∈                                                  (2.2) 

where  is the mean regression target value of all the training samples in . The partition is 

determined by two factors  and	 . For the -th sample in the training set, if the -th feature  in 

the feature vector  is less than the threshold	 , the sample is dispatched to the left child node; 

otherwise, it is dispatched to the right child node. To maximize the objective function Equation 

2.1, all dimensions of the feature vector are tested one after another with a certain number of 

thresholds, which are selected randomly between the minimum and maximum feature values of 

training samples, and the pair (  and ) with the largest objective value is selected as the optimal 

parameters and stored in the root node. The partition continues recursively for the subset of training 

samples in the left and right child nodes, until reaching any of the following three terminal criteria: 

(1) the tree reaches a specified maximum depth, (2) the amount of training samples in a node falls 

below a specified minimum number, or (3) the maximum value given by objective function is 
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close to zero. For each leaf node, where the partition stops, a prediction model is used to compute 

the regression result based on all training samples falling into this leaf node. The prediction model 

could be in any form. The most popular prediction models includes (1) constant model, which 

averages the target values of training samples as the regression result, and (2) polynomial and 

linear model, such as ∑ . 

In the testing stage, for each individual decision tree, the testing sample goes from the root 

node to a leaf node according to the results of binary tests in the non-leaf nodes, and the output is 

the regression result stored in the leaf node. The final result of the regression forest is the average 

of outputs from all decision trees. 

2.3.2 Effects of Parameters  

The performance of regression forest is affected by many factors. Next, I will briefly 

discuss some major factors, including the forest size, tree depth, weak learner model, and 

prediction model.  

Forest Size. Forest size is the number of decision trees in a forest. Typically, increasing 

the number of trees would consequently make the prediction smoother and more stable. Such 

smoothness effect is stronger if the testing data moves away from the training data, which is a good 

thing for both interpolation and extrapolation. But larger number of trees also means more training 

and testing time. In practice, the forest size could be decided by gradually increasing the number 

of trees until the prediction errors stop changing. 

Tree Depth. The depth of the tree controls how well the tree fits the training data. If the 

depth is too small, the regression forest will be under-fitting. In the extreme case that the depth is 

equal to one, the tree will degenerate as a linear model (if linear model is used in the leaf node) or 

a single constant value (if constant model is used in the leaf node), which is unable to fit a complex 
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training dataset. Increasing the depth would improve the fitting ability of regression forests. But a 

forest with too deep trees could yield over-fitting. In practice, there is often no lower bound 

limitation of the tree depth. The depth will keep increasing until it reaches the upper bound 

limitation. The upper bound limitation of the tree depth can be explicitly decided by a user-defined 

threshold, or can be implicitly decided by restricting the minimum sample size/information gain 

in the leaf node, which is a data-driven way. 

Weak Learner Model. Weak learner model is the way of dispatching a training/testing 

sample into left or right child node. The dispatching method introduced in Section 2.3.1 is an axis-

aligned method, which partitions the feature space using an axis-aligned hyperplane. General 

oriented hyperplane is another usually-used weak learner model. While the advanced weak learner 

model could strengthen the learning ability, it would also increase the computation complexity 

leading to longer training and testing time. Generally speaking, it is not always good to choose an 

advanced weak learner model, because stronger learning ability may somewhat reduce the 

variability of different trees and make the regression forest lose generalization. In practice, simple 

weak learner models are more preferred. Advanced models should be chosen carefully based on 

the priori knowledge about the dataset.  

Prediction Model. Prediction model is used in the leaf node for computing the regression 

results. Constant model and linear model are the two most popular models. While constant model 

is computationally efficient and produces smooth interpolation predictions, it is unable to do the 

extrapolation, because all the regression values stored in the leaf node are the averages of the 

training data subsets. Linear model could do both interpolation and extrapolation, but the 

uncertainty increases when the testing data move far away from the training data. In practice, the 
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prediction model could be chosen based on the characteristics of the data distribution in the feature 

space. 

2.3.3 Advantages and Disadvantages 

Regression forest has many advantages over other regression methods, but also has some 

disadvantages. Both advantages and disadvantages will be briefly summarized in this section.   

Advantages  

A few advantages of the regression forest are listed below. 

1) Parallelization. Parallelization is an important factor to consider when selecting a 

machine learning algorithm. Because of the modern techniques of multi-core GPU and 

distributed computation system, a highly parallel algorithm always means higher 

computation ability and faster performance. As an ensemble model, each decision tree 

in a regression forest is trained independently, which makes regression forests easy to 

be parallelized.  

2) Scalability. In the field of voxel-wise medical image analysis or vertex-wise surface-

based analysis, the size of training data could easily reach millions, thus scalability is 

a very important factor when choosing a regression method. Due to the characteristics 

of binary decision tree, simply increasing the tree depth by one can double the capacity 

of a decision tree. In this way, regression forest can scale up efficiently. Moreover, the 

impact of such scaling up on the testing time is negligible, as only one layer is added 

in the tree. 

3) Flexibility. The flexibility of regression forest is two-fold. First, the relationship 

between the input features and the regression target could be in any form. No matter 

whether the relationship is linear, piecewise linear, sparse linear, quadratic, cubic, or 
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in other forms, a regression forest could always fit the data without being provided 

explicit mathematical expressions. Second, the choices of weak learner models and 

prediction models are open to the users. They can use their prior knowledge about the 

dataset to design more specific models, and thus improve the overall performance. 

Disadvantages  

There are two major limitations to keep aware of when using regression forest.  

1) Storage. When using a massive training dataset with a large-scale and complex 

distribution, it could take a lot of space to store the trained regression forest. So in the 

case of limited hardware memory resource, regression forest may not be applicable. 

2) Interpretability. Regression forests is not a descriptive tool. Though regression forest 

could learn the relationship between the input features and the output regression value, 

the learned relationship is quite difficult to interpret. So, if the learning target is to find 

a descriptive relationship in the data, regression forest is not a good option.  

2.4. Sulcal Pits  

This section presents some background of the study of sulcal pits. I will first introduce the 

concept of sulcal pit and its important characteristics in Section 2.4.1, and then give an overview 

of the current research on sulcal pits in Section 2.4.2. 

2.4.1 Sulcal Pit and Its Characteristics 

Sulcal pits are the locally deepest points along sulcal bottom lines in the cerebral cortex 

(Lohmann, et al., 2008), as shown in Figure 2.3. Such deepest points have many important 

biological characteristics. First, during the human brain development, the deepest parts of primary 

sulci are thought as the first places to develop in an embryo’s brain and then change the least as 

the cortex grows (Lohmann, et al., 2008). Second, the deepest parts of sulci are more genetically 
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controlled than the superficial parts (Le Goualher, et al., 1999; Le Guen, et al., 2017; Lohmann, et 

al., 1999; McKay, et al., 2013). Third, there are particular spatial relationships between the deepest 

parts of sulci and functional areas (Lohmann, et al., 2008; Piao, et al., 2004; Rakic, 1988; Smart 

and McSherry, 1986). Fourth, though the human cerebral cortex is highly variable across adult 

individuals, the spatial distribution of sulcal pits is relatively spatially consistent across human 

adult individuals (Im, et al., 2010; Lohmann, et al., 2008).  

Because of these characteristics, sulcal pits have drawn increasing attention in 

neuroimaging studies in the past few years. A short review of the existing researches on sulcal pits 

is given in the next section. 

 
Figure 2.3. Sulcal pits. Sulcal pits are displayed as small red balls. The cortical surface is color-
coded by the value of sulcal depth. 

2.4.2 Existing Research 

Lohmann et al. first examined sulcal pits in volumetric MR images and observed that the 

spatial distribution of sulcal pits in major sulci was strikingly regular across adult individuals, 

despite their highly variable cortex folds (Lohmann, et al., 2008). Then, Im et al. proposed a more 

reliable approach to extract sulcal pits from the adult cortical surfaces reconstructed from MR 

images (Im, et al., 2010; Im, et al., 2013a). In this approach, a watershed algorithm based on the 

sulcal depth was used to partition the cortical surface into many basins, and then the deepest point 

in each basin was identified as the sulcal pit, after pruning basins with shallow sulcal depths or 
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small sizes. The results in (Im, et al., 2010) confirmed the observations in (Lohmann, et al., 2008), 

and further revealed the hemispheric asymmetries of sulcal pits. According to these studies, sulcal 

pits in major cortical sulci were considered as reliable anatomical landmarks and some of them 

could be potentially helpful for the challenging problem of inter-subject brain MR image 

registration. Im et al. (Im, et al., 2011a) further investigated the relationships between the presence 

of sulcal pits and intelligence, and found that in the left posterior inferior frontal sulcus and the 

right posterior inferior temporal sulcus, the number of sulcal pits of young adults with high IQ was 

significantly different from that of young adults with average IQ. McKay et al. (McKay et al., 

2013) specifically studied the central sulcus in adults and found that most adult individuals had 

two peaks in the sulcal depth position profiles, close to the hand and mouth regions, where the 

peak genetic heritability of the sulcal depth occurred. By tracking the cortical surface development 

of four neonates between birth and four weeks of age (Lefevre et al., 2009), Lefèvre et al. found 

that the cortical surfaces grew in a radial manner from some “growth seeds”. Le Guen et al. 

quantified the degree of how sulcal pits are under genetic controls in various brain regions (Le 

Guen, et al., 2017). Recently, sulcal pits have been applied to the study of psychological and 

neurological diseases, such as autism (Brun, et al., 2016), polymicrogyria (Im, et al., 2013b), and 

dyslexia (Im, et al., 2016). 

2.5 Summary 

This chapter provides the necessary background for understanding the rest of this 

dissertation. Section 2.1 introduced the datasets used in the experiments. Section 2.2 introduced 

the data preprocessing pipeline. After the preprocessing, the cortical surfaces have been 

reconstructed; the cortical attributes at each vertex on the cortical surface have been measured; all 

cortical surface have been mapped and aligned to the standard spherical surface; and vertex-to-
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vertex inter-surface correspondence has been established. Section 2.3 introduced the basis of 

regression forests and discussed the effects of parameters as well as the advantages and 

disadvantages of regression forests. As a highly parallel, scalable, and flexible regression 

algorithm, regression forests will be used as a core technique in Chapter 3 for estimating the 

development of cortical attributes. Section 2.4 introduced the concept of sulcal pit, its important 

characteristics, and its current researches. Due to the spatial and longitudinal consistency, sulcal 

pits will be used as landmarks in Chapter 4 for studying the major cortical sulcal patterns.  
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3 ESTIMATION OF THE EARLY DEVELOPMENT OF CORTICAL ATTRIBUTES 

Accurately modeling the development of cortical morphological attributes (cortical 

thickness, sulcal depth, etc.) is crucial for better understanding the mysterious dynamic early brain 

development and is also potentially helpful for the early diagnosis of neurodevelopmental 

disorders. This chapter focuses on the technical methods for estimating the early development of 

cortical attributes. To this end, two sub-problems are addressed in the chapter. Section 3.1 presents 

the techniques for addressing the first sub-problem, predicting the cortical attribute maps of future 

time points based on the known cortical attribute maps of the early time points. Section 3.2 

presents the approach for addressing the second sub-problem, to approximately recover the 

missing cortical attribute maps in an incomplete dataset based on the available information. Finally, 

Section 3.3 summarizes the contributions in this chapter. 

3.1 Predicting the Development of Vertex-wise Cortical Attributes 

In this section, a novel learning-based approach is proposed for accurately predicting the 

subject-specific dynamic development of vertex-wise morphological attributes in the first 

postnatal year, solely based on the MRI features at birth. Of note, developing such a method is 

challenged by the extremely dynamic and regionally-heterogeneous growth of the infant cortex, 

as well as by the considerable inter-subject variability of cortical morphology and developmental 

patterns. Technically, a Dynamically-Assembled Regression Forest (DARF) is proposed as the 

core regression tool to estimate cortical morphological attribute(s) at each vertex of the cortical 

surface. 
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The rest of this subsection is organized as follows. First, some background and the 

motivation of DARF is introduced, and then the concept of DARF is introduced by illustrating the 

training and testing processes. Second, I will introduce how to extract surface-based Haar-like 

features from cortical attribute maps to support DARFs. Third, the proposed method is tested on 

an application of predicting the early development of cortical thickness maps, and the advantage 

of the proposed method is demonstrated by comparing with the existing popular techniques.  

3.1.1 Dynamically-Assembled Regression Forest 

Motivation  

Regression forest is a powerful regression tool, especially when it is difficult to find an 

explicit mathematical expression for modeling the complex relationship between the input values 

and output values. This intrinsic characteristic makes the regression forest quite suitable for 

predicting the rapid and nonlinear early development of cortical attributes. However, a single 

conventional regression forest (CRF) may not be sufficient for estimating vertex-wise cortical 

morphological attributes of the entire cortical surface. Because the cortical morphological 

attributes and their developments in infants are highly regionally heterogeneous, using a single 

CRF cannot make a precise estimation at the vertex level. An intuitive way to solve this problem 

is to partition the whole cortical surface into a set of small regions of interest (ROIs), and then 

train a local regression forest for each ROI. However, this strategy will lead to spatially unsmooth 

estimations around the boundaries of neighboring ROIs. This is because the cortical attributes of 

the vertices by the two sides of a ROI boundary are estimated using two different regression forests, 

which are trained independently with different training samples. Intuitively, increasing the 

overlapping area among ROIs could produce smoother estimation results, but it unexpectedly 

increases the computational cost. Based on my experiments, to make the estimation results as 
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smooth as the real data, more than 90% of the area of an ROI needs to be overlapped with its 

neighboring ROIs. Unfortunately, such a large portion of overlap requires quite a large number of 

ROIs in order to cover the whole cortex, and thus leads to a large computational workload, as a 

respective set of individual trees need to be trained for each ROI. Taking account of all these issues, 

I propose a Dynamically-Assembled Regression Forest (DARF). By first training a single decision 

tree for each vertex in the training stage and then locally grouping decision trees of neighboring 

vertices as forests in the testing stage, DARF is able to produce spatially smooth regression results 

and meanwhile also save a lot of computational cost.  

Training Stage  

In the training stage, one individual binary decision tree is trained at each vertex on the 

cortical surface. As shown in Figure 3.1, for the given vertex on the spherical cortical surface 

(mapped from the original cortical surface), one individual tree is trained using the nearby vertices 

within a training-neighborhood (i.e., the red region) as training samples. Each training sample can 

be denoted as a pair of a feature vector and a scalar regression target	 ∈ , ∈ . The 

feature vector	  consists of a set of features extracted from the local cortical attribute maps around 

the vertex	  at the input time point(s) (see Section 3.1.2), and the scalar target	  is the cortical 

attribute value of vertex	  at the target time point. 

Testing Stage  

In the testing stage, to predict the cortical attribute value of a given vertex at the target 

time point, as shown in Figure 3.1, all nearby individual trees within a testing-neighborhood (i.e., 

the blue region) are grouped together to form a vertex-specific forest. The feature vector of the 

given vertex is computed and then fed into each individual tree of the formed forest. The prediction 
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result is finally computed as the average of regression outputs from all trees of the formed forest. 

Of note, the optimal size of testing-neighborhood can be learned via a cross validation. 

 
Figure 3.1. Training and testing stages for DARF. (a) The red region is the training neighborhood, 
where all the vertices on the spherical space are used as training samples. (b) The blue region is 
the testing neighborhood, where all the individual trees are combined together to form a forest in 
the testing stage. Note that the red and blue regions in (a) and (b) could have different sizes. 
 

Different from the original way of using a regression forest, which trains a set of trees and 

makes them a fixed forest at the training stage, our method does not assign trees to any forest in 

the training stage. Instead, the forest is formed by group neighboring trees during the testing stage, 

and thus it is named “Dynamically-Assembled” Regression Forest. This novel way of forming 

forest has two advantages. 

 The first advantage is that, by using DARFs, the predicted cortical attribute map is smooth 

without any border-artifact near the boundary between ROIs as that in the ROI-based method. The 

reason is two-fold. First, as the neighboring DARFs share a large number of the same decision 

trees, they are very similar. Second, features of neighboring vertices, which are extracted from the 
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local cortical attribute maps, are also similar. By feeding the similar input features to the similar 

DARFs, the outputs at neighboring vertices generally have small differences, and thus the 

predicted cortical attribute map is smooth. 

The second advantage is that, since one single decision tree can be shared by many nearby 

forests, the computational cost for training forests is significantly reduced. For instance, if in each 

forest there are 100 trees, using DARF would save 99% computational cost compared to the case 

of using the original regression forests (i.e., training a forest at each vertex). Even compared to the 

ROI-based strategy, DARF still significantly saves the computational cost in the training stage. 

Based on my experiments, to achieve the smooth predicted cortical attribute maps, highly-

overlapped ROIs are needed, with the number of ROIs being nearly 20% of the number of vertices. 

If each forest owns 100 trees, using DARF would still save 19% computational cost. 

3.1.2 Input Features 

For each vertex	 , its feature vector  could include three types of features: demographic 

features, vertex-wise morphological features, and context features. Demographic features could be 

postnatal age, gestational age, birth weight, gender, or any other information that is believed to be 

correlated to the development of the target cortical attribute. Note that, the demographic feature is 

subject/time specified, which means all the training samples from the same subject/time point have 

the same demographic features. The vertex-wise morphological features are the values of cortical 

attribute maps at the vertex	 , such as cortical thickness value, sulcal depth, gyrification index, etc. 

The context features, also named Haar-like features, are the randomly-extracted mean values or 

regional differences of the local cortical attribute maps, as introduced next. 
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Figure 3.2. Computation of Haar-like features on a resampled spherical surface atlas. The blocks 
A and B are the two randomly selected regions. The value of Haar-like feature is defined as 1) the 
mean value of the cortical attributes in the block A, or 2) the mean value of the cortical attributes 
in the block A subtracting that in the block B. 
 

Figure 3.2 illustrates how to compute context features from a local cortical thickness map 

for a vertex  on the resampled sphere. Assuming now we are training a decision tree at the vertex	 , 

and without loss of generality (  could be equal to	 ), we assume vertex	  is a neighbor of vertex	 . 

The local cortical thickness map around the vertex	  is projected onto the tangential plane, where 

a local 2D coordinate system is built at the center of the vertex	 , and	 ′ is the projection of vertex	  

on the tangential plane. Two blocks  and  are randomly selected in the 

neighborhood	 , , with their sizes	  and	  chosen randomly within the interval	 , , 

where	 ,	 ,	 , and  are the user-defined parameters. Letting  denote the set of all vertices 

in block	  and  denote the set of all vertices in block	 , the context feature at vertex	  can be 

defined as: 

| |
∑ ,, ∈ | |

∑ ,, ∈                          (3.1) 
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where	 ,  is the value of cortical thickness at position	 , , and	  is a random coefficient 

that takes either 0 or 1. 

3.1.3 Quantitative Evaluation 

To quantitatively evaluate the estimation results, we employed three metrics: NMSE 

(normalized mean squared error) (Faramarzi, et al., 2013), MAE (mean absolute error), and MRE 

(mean relative error). These metrics are respectively computed as follows: 

∑

∑
                                                     (3.2) 

∑ | |                                                  (3.3) 

∑                                                     (3.4) 

where	  and	  are respectively the ground truth and the estimated result, and  is the number of 

vertices. 

3.1.4 Experiments and Results 

The proposed method was tested on a longitudinal MRI dataset of 15 infants, each with 5 

serial scans at around 1, 3, 6, 9 and 12 months of age during the first postnatal year. At each time 

point of each infant, the cortical thickness map and sulcal depth map were generated. The 

experiments were to use the cortical thickness map and sulcal depth map at early time points to 

predict the cortical thickness map at later time points. Specifically, the feature vector includes 1) 

the accurate postnatal age at MRI scan (in days), 2) the cortical thickness and sulcal depth values 

at early time points, and 3) the Haar-like features extracted from the local cortical thickness map 

and sulcal depth map at early time points. To evaluate the method, two nested cross-validation 
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loops were used. The inner cross-validation loop was used to tune the parameters of DARF, while 

the outer loop leave-one-out cross validation was used to evaluate the prediction results.  

Individual-level Inspection  

For each individual, the predicted cortical thickness map was compared with its ground 

truth, which was obtained using the method in Section 2.2.2, and the prediction error map was 

computed. Figure 3.3 provides an example of the predicted cortical thickness maps based on the 

data at 1 month of age for a randomly selected subject. It is clear that the predicted map is generally 

quite similar to the ground truth. 

 

Figure 3.3. Prediction of the cortical thickness maps for a randomly selected subject. 

Group-level Inspection  

For each individual at each time point, I computed the mean value of the predicted cortical 

thickness over the whole cortical surface, and then explored the longitudinal distribution of the 

predicted mean cortical thickness. Figure 3.4 shows a comparison between the longitudinal 

distribution of ground-truth mean cortical thickness and its corresponding prediction for 15 



43 
 

subjects. As shown in Figure 3.4, the distribution of the predicted cortical thickness is generally 

similar to the distribution of ground-truth cortical thickness. 

 
Figure 3.4. Predicted mean cortical thickness and ground truth. This figure plots the longitudinal 
distribution of ground-truth mean cortical thickness and its corresponding prediction (over the 
whole cortical surface) for 15 subjects. Different subjects are distinguished by different colors. For 
each time point, the average ground-truth mean cortical thickness over all 15 subjects and standard 
deviation are provided on the top of data distribution, and the values within each black rectangle 
denote the average and standard deviation of the corresponding prediction results. 
 

Furthermore, I examined whether adding more early time points could better predict the 

cortical thickness maps at future time points. To do this, I gradually included more time points in 

the training data, and compared the respective prediction results. Specifically, I first used the 

baseline data (i.e., at 1 month of age) as inputs to predict the cortical thickness maps at 3, 6, 9 and 

12 months of age, and then combined the data at 1 and 3 months of age and used them together as 

inputs to predict the cortical thickness maps at 6, 9, and 12 months of age. More time points were 

gradually added into the inputs, i.e., up to using the combination of data at 1, 3, 6, and 9 months 

of age to predict the cortical thickness map at 12 months of age. Figure 3.5 shows that using more 
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time points for prediction would generally achieve better results. Additionally, we can see that the 

error map at each time point is highly correlated with the corresponding standard deviation map 

of cortical thickness across individuals, with the averaged correlation coefficient of 0.8±0.05. 

Another observation based on Figure 3.5 is that the standard deviations at the 6th and 9th months 

are relatively larger than those at other time points, and accordingly the prediction errors at the 6th 

and 9th months are also larger compared with other time points. Of note, the large standard 

deviation of cortical thickness estimation errors at the 6th and 9th months might be caused by the 

extremely low tissue contrast of infant MRI at these ages, which makes both cortical surface 

reconstruction and measurement more challenging and less accurate. In Figure 3.5, we can also 

observe that the prediction accuracy peaks in the unimodal cortex, e.g., the precentral gyrus 

(primary sensory cortex), postcentral gyrus (primary motor cortex) and occipital cortex (visual 

cortex), while the prediction accuracy drops in the high-order association cortex, e.g., the 

prefrontal cortex, temporal cortex, insula cortex, and inferior parietal cortex. 

Table 3.1 and Table 3.2 report the quantitative evaluations of using the data at different 

available time points to predict cortical thickness maps at future time points. When predicting 

cortical thickness maps from a single time point at 1 month of age, the prediction error at 3 months 

of age was the smallest, followed by a second small error at 12 months of age, and the prediction 

errors at 6 and 9 months of age are relatively larger. This is consistent with the observations in 

Figure 3.5. From these tables, we can also conclude that integrating more time points into the 

prediction framework generally induces higher accuracy. 
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Figure 3.5. The prediction results from multiple available time points, averaged across 15 subjects. 
The 1st row and the 6th row show, respectively, the averaged cortical thickness maps (left half 
columns) and corresponding standard deviation maps (right half columns) at all 5 time points. The 
2nd–5th rows and the 7th–10th rows show the predicted cortical thickness maps (left half columns) 
and the corresponding error maps (right half columns). 
 
Table 3.1. Quantitative measures of cortical thickness prediction using mean absolute errors 
(MAE). 
MAE (mm) Target Time Point 
Used Time Point(s)  3rd month 6th month 9th month 12th month 
1st month 0.209±0.026 0.332±0.037 0.340±0.030 0.321±0.028 
1st, 3rd months - 0.313±0.036 0.321±0.025 0.301±0.025 
1st, 3rd, 6th months - - 0.026±0.023 0.247±0.022 
1st, 3rd, 6th, 9th months - - - 0.219±0.020 
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Table 3.2. Quantitative measures of cortical thickness prediction using mean relative errors (MRE). 
MRE (%) Target Time Point 
Used Time Point(s)  3rd month 6th month 9th month 12th month 
1st month 9.9±1.1 13.1±0.9 12.4±0.8 11.7±0.9 
1st, 3rd months - 12.3±0.8 11.7±0.7 11.0±0.7 
1st, 3rd, 6th months - - 9.5±0.8 9.0±0.7 
1st, 3rd, 6th, 9th months - - - 7.9±0.6 

Region-based Evaluation  

I parcellated each cortical surface into 35 regions using the method developed in (Li, et al., 

2014c), and then computed the average prediction error in each region. As shown in Figure 3.6, 

the regions with smaller errors generally included the unimodal cortex, such as the sensorimotor 

region (precentral gyrus and postcentral gyrus) and visual area (including cuneus cortex, 

pericalcarine cortex, lingual gyrus, and lateral occipital cortex), while the regions with larger 

prediction errors represented the high-order association cortex, such as the prefrontal, lateral 

temporal, cingulate, and insula cortices. 

 
Figure 3.6. The average prediction errors (mm) in 35 cortical ROIs for 15 infants. 
 
Comparison with Other Methods.  

To demonstrate the advantages of DARF, I compared it with other four representative 

methods, including the mixed effect model (MEM) in FreeSurfer (Bernal-Rusiel, et al., 2013), 

polynomial regression (PR), conventional regression forests (CRF), and sparse linear regression 
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(SLR). MEM, which explicitly models fixed effects and random effects, is a powerful method for 

analyzing longitudinal neuroimaging data. In our comparison experiments, MEM assumes that the 

development of cortical thickness increases with age (fixed effect) during the first year, while each 

subject has individual variations (random effect), such as genetic and environmental influences. 

PR method assumes that the development of cortical thickness at each vertex has a second-order 

polynomial relationship with age. CRF trains a single forest for the entire surface with the spherical 

location of each vertex as additional features (in addition to the Haar-like features). SLR is an 

effective method for high-dimensional data analysis (Tibshirani, 1996), which can extract the most 

“useful” features from a high-dimensional feature representation by setting zero coefficients for 

irrelevant features. Specifically, given a target vector	 , , … , ∈  and the feature 

matrix 	 , , … ∈ , SLR method finds the optimal coefficients 	

, , … ∈  by solving the equation below: 

arg min
∈

‖ ‖ ‖ ‖                                              (3.5) 

where	  and	  were optimally set to 12 and 0.001 respectively in our experiments based on a grid 

search, which was performed on a subset of the training data.  

Figure 3.7 provides a comparison among MEM, PR, CRF, SLR and DARF for predicting 

vertex-wise cortical thickness at 9 months of age for a representative subject. As we can see, DARF 

predicted the cortical thickness map more precisely than the other four methods. Figure 3.7 also 

shows that the error map of CRF is very spotty compared with the error maps of other methods, 

which indicates that the estimation result of CRF is not as smooth as the real cortical thickness 

map. A more comprehensive quantitative evaluation will be given in the Section 3.2.2.  
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Figure 3.7. Prediction of the vertex-wise cortical thickness map (mm) of a randomly selected 
infant at 9 months of age by five different methods. The first row shows the ground truth and the 
estimated thickness maps by five different methods. The second row shows the estimation error 
maps (mm), along with the zoomed-up ROIs. 
 

3.2 Estimating the Missing Cortical Attribute Maps 

This section presents the techniques of how to make a better use of the available data in 

an incomplete longitudinal dataset to estimate the missing data. Section 3.2.1 introduces the 

approach in detail. Section 3.2.2 describes all the evaluations and comparison experiments and 

reports the results.  

3.2.1 Missing Cortical Attribute Estimation Method 

Motivation  

As shown in Figure 3.8, in the longitudinal dataset for early brain development study, 

many time points are missing due to various reasons. Intuitively, to maximize the capability of 

estimating missing data, it is expected to use as much available information as possible to train the 

regression model (i.e., DARF). Specifically, by increasing the number of subjects for training, the 

regression model can better learn the diversity among individuals; and by engaging more time 

points in the training process, the regression model can better capture the longitudinal information 

of the cortex development. Unfortunately, due to the data incompleteness, increasing the number 
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of training subjects and engaging more time points are conflicting with each other. For example, 

as shown in Figure 3.8, to estimate the missing data at 6 months of age, I can use at most 28 

subjects to train the regression model, since 28 infants have real data at both 1 and 6 months of 

age. Consequently, only 1 time point (i.e., at 1 month of age) is taken account into the training 

process. In another way, I can engage at most 4 time points in the training process, but only 16 

infants have real data at all 5 time-points and can be used as training subjects. To eliminate this 

confliction and fully utilize the available information, a two-stage missing data estimation strategy 

is proposed. Figure 3.9 shows the overview of the proposed strategy, containing the stages of 1) 

pairwise estimation and 2) joint refinement. 

 
Figure 3.8. Illustration of the longitudinal infant dataset used in this study. Each block indicates 
the cortical morphological attributes of all vertices of the entire cortical surface for a specific 
subject (column) at a specific time point (row). The black blocks indicate the missing data at the 
respective time point. The blocks enclosed by the red rectangle indicate the dataset used in this 
dissertation. 
 

In Stage 1, to use as many subjects as possible for training, the data (i.e., cortical thickness, 

as computed in Section 2.2.2) of each subject at each missing time point is estimated based on the 

existing data at each of other time points independently, and then these independent estimations 

are averaged together to obtain an initial estimation.  For example, to obtain the initial estimations 

at 6 months, all the subjects with available data at both 1 month and 6 months of age are used as 
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training subjects to train a set of decision trees. During the training, the data at 6 months of age is 

the regression target and the data at 1 month of age are the inputs. After training, for the subjects 

with available data at 1 month of age but without data at 6 months of age, these decision trees are 

dynamically/locally assembled as the forest to estimate the missing data at 6 months of age. 

Similarly, the estimations of missing data at 6 months of age can be obtained, respectively, using 

the existing data at each of the 3, 9, and 12 months of age. In this way, the available data at all 

other time points can contribute to the estimation of the data at 6 months of age. Finally, all the 

estimations contributed from different time points are averaged together as the initial estimation. 

Similarly, for the missing data at each of 1, 3, 9, and 12 months of age, the same process can be 

performed to obtain their initial estimations. After performing Stage 1, the missing data of all 

subjects at all time points will be approximately recovered, thus providing a pseudo-complete 

longitudinal dataset.  

 
Figure 3.9. Overview of the missing data estimation method. The box with number stands for the 
data at the corresponding time point. The directed edges represent the processes of estimating the 
missing data at the target time points (as pointed by the arrowhead) based on the data at the 
available time points (at the tail side). In Stage 1, the edges are bidirectional, which means that the 
estimation is performed twice by exchanging between the input and the output time points. The 
circles in Stage 2 denote the use of multiple time points jointly. 
 

In Stage 2, to take advantage of the longitudinal information and also to make the 

estimation temporally consistent, the data at each missing time point is further refined based on 
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the data at all other time points jointly. For example, to obtain the final estimation of the missing 

data at 6 months of age, all subjects with real data at 6 months of age are used as the training 

subjects to train a set of decision trees. During the training, the data at 6 months of age is the 

regression target and the data at 1, 3, 9, and 12 months of age are the inputs. After training, for 

each subject with missing data at 6 months of age, the trained decision trees can be 

dynamically/locally assembled as the forest to estimate the missing data. Note that it is not required 

that each training/testing subject must have real data at 1, 3, 9, and 12 months of age, since the 

missing data have already been recovered in Stage 1. Similarly, for the missing data at other time 

points, the same process can be conducted to obtain their final estimations. It is worth noting that, 

using the above two stages (Stage 1 and Stage 2), the proposed strategy can effectively leverage 

the information from all time points of all available training subjects for the missing data 

estimation. 

3.2.2 Experiments and Results 

To evaluate the proposed missing data estimation method, the method was tested by 

recovering the data of cortical thickness at 5 missing time points. Specifically, from the incomplete 

dataset (Figure 3.8), I selected 16 subjects with complete data at all 5 time points as the reference 

subjects. Then, I manually selected one of the 16 subjects, deleted the data at one time point, and 

put it back to the dataset. The deleted data is then recovered using the missing data estimation 

method. After recovering the missing data, I compared the recovered result with the real data. This 

experiment was repeated for each of 16 subjects at each of 5 time points. 
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Figure 3.10. Estimations of the vertex-wise missing cortical thickness at 9 months of age for a 
randomly-selected infant. The first two columns show the maps of ground truth and the estimated 
cortical thickness at each step. The last two columns show the maps of estimation errors at each 
stage. 
 

Figure 3.10 shows the error map of our proposed method at each stage of estimating the 

missing cortical thickness map at 9 months of age on a randomly selected infant. Figure 3.11 
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further shows the averaged errors for all reference subjects in each step of estimation. From these 

two figures, we can see that using the data at 6 or 12 months of age as inputs to estimate the cortical 

thickness at 9 months of age is better than the case of using the data at 1 or 3 months of age. A 

possible explanation is that the cortical thickness at 9 months of age is more similar to cortical 

thickness at 6 and 12 months of age, compared to cortical thickness at 1 and 3 months of age. 

Figure 3.11 also shows that the result of joint refinement is generally better than all the results in 

the previous stage (Stage 1), indicating the effectiveness of joint refinement stage (Stage 2). Figure 

3.12 illustrates the average estimation errors of vertex-wise cortical thickness at all 5 time points. 

 
Figure 3.11. Average vertex-wise errors (mm) in estimating the missing cortical thickness at 9-
months of age for all subjects at each step of estimation. 
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Figure 3.12. Average vertex-wise errors (mm) in estimating the missing cortical thickness at 5 
time points for all subjects by using the proposed method. 
 

It is found that the estimation precision is region-specific, with high precision in the 

unimodal cortex while relatively low precision in the high-order association cortex. A possible 

explanation is that the unimodal cortex may have less variable cortical thickness patterns across 

individuals than the high-order association cortex during infancy. Hence, the proposed method can 

better capture patterns of the unimodal cortex than those of the high-order association cortex, thus 

leading to more accurate predictions in the unimodal cortex. All of the above observations are 

further confirmed by the quantitative evaluation given in Tables 3.3, 3.4, and 3.5. From these 

tables, I can further conclude that the proposed method is able to effectively recover the missing 

cortical thickness map, with the average absolute error of less than 0.23 mm and the average 

relative error of less than 9.24%. Moreover, I also performed paired t-test to statistically compare 

between results of pairwise estimation and the results of joint refinement. All p-values are much 

less than 0.01, indicating that the performance improvement by the joint refinement over the 

pairwise estimation (reported in Table 3.3, 3.4, and 3.5) is statistically significant. Considering 

that the MRI resolution is 1 mm and the average cortical thickness is around 2 mm in infants, the 

estimation error by the proposed method is 10% of cortical thickness and thus is around 0.2 mm, 

which is much less than the resolution of a half voxel. Meanwhile, around 96.5%, 95.2%, 85.3%, 
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91.4%, and 92.0% vertices on the cortical surface have the absolute errors less than 0.5mm (half 

voxel) for 1st, 3rd, 6th, 9th, and 12th month of age, respectively. All these indicate that the 

prediction is accurate. 

Table 3.3. Quantitative measures of estimation results for the missing cortical thickness by the 
normalized mean squared error (NMSE). PE and JR respectively stand for two stages of pairwise 
estimation and joint refinement. 

NMSE 
Baseline Time Points (months) 

PE JR p-value 
1 3 6 9 12 

Target 
Time 
Points 

(months) 

1 
- 0.0129 

±0.0022 
0.0153 
±0.0028 

0.0156 
±0.0024 

0.0147 
±0.0025 

0.0128 
±0.0022 

0.0117 
±0.0019 

9×10-4 

3 
0.0163 
±0.0032 

- 0.0187 
±0.0035 

0.0186 
±0.0039 

0.0175 
±0.0035 

0.0157 
±0.0035 

0.0140 
±0.0032 

6×10-6 

6 
0.0231 
±0.0037 

0.0221 
±0.0049 

- 0.0157 
±0.0049 

0.0158 
±0.0035 

0.0155 
±0.0040 

0.0139 
±0.0030 

1×10-3 

9 
0.0220 
±0.0023 

0.0211 
±0.0025 

0.0155 
±0.0025 

- 0.0133 
±0.0015 

0.0147 
±0.0019 

0.0121 
±0.0021 

2×10-3 

12 
0.0191 
±0.0024 

0.0182 
±0.0021 

0.0139 
±0.0021 

0.0124 
±0.0022 

- 0.0128 
±0.0018 

0.0107 
±0.0019 

7×10-8 

 
Table 3.4. Quantitative measures of estimation results for the missing cortical thickness by the 
mean absolute error (MAE). PE and JR respectively stand for two stages of pairwise estimation 
and joint refinement. 

MAE (mm) 
Input Time Points (months) 

PE JR p-value 
1 3 6 9 12 

Target 
Time 
Points 

(months) 

1 
- 0.176 

±0.015 
0.195 
±0.014 

0.198 
0.017 

0.192 
±0.016 

0.179 
±0.015 

0.168 
±0.013 

5×10-4 

3 
0.209 
±0.026 

- 0.230 
±0.027 

0.231 
±0.029 

0.222 
±0.026 

0.209 
±0.027 

0.193 
±0.025 

8×10-6 

6 
0.307 
±0.035 

0.306 
±0.046 

- 0.252 
±0.043 

0.252 
±0.040 

0.264 
±0.041 

0.233 
±0.034 

2×10-4 

9 
0.326 
±0.027 

0.317 
±0.025 

0.264 
±0.023 

- 0.241 
±0.016 

0.261 
±0.021 

0.224 
±0.016 

5×10-8 

12 
0.308 
±0.025 

0.301 
±0.021 

0.253 
±0.022 

0.232 
±0.017 

- 0.245 
±0.019 

0.215 
±0.016 

7×10-11 

 
Table 3.5. Quantitative measures of estimation results for the missing cortical thickness by the 
mean relative error (MRE). PE and JR respectively stand for two stages of pairwise estimation and 
joint refinement. 

MRE (%) 
Input Time Points (months) 

PE JR p-value 
1 3 6 9 12 

Target 
Time 
Points 

(months) 

1 
- 8.75 

±0.75 
9.71 
±0.84 

9.92 
±1.01 

9.65 
±1.01 

8.93 
±0.95 

8.32 
±0.69 

3×10-4 

3 
9.94 
±1.14 

- 11.05 
±1.49 

11.07 
±1.34 

10.90 
±1.39 

10.02 
±1.33 

9.23 
±1.25 

6×10-7 

6 
12.25 
±0.67 

11.99 
±0.82 

- 9.81 
±0.77 

9.83 
±0.70 

9.92 
±0.74 

9.08 
±0.79 

6×10-6 

9 
11.91 
±0.62 

11.64 
±0.69 

9.54 
±0.85 

- 8.72 
±0.33 

9.51 
±0.56 

8.14 
±0.51 

3×10-9 

12 
11.33 
±0.59 

11.08 
±0.52 

9.25 
±0.67 

8.43 
±0.52 

- 9.04 
±0.55 

7.81 
±0.52 

9×10-12 
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Figure 3.13. Error measures in 36 ROIs for estimation of missing cortical thickness at 9 months 
of age. ROIs 1 and 5 are excluded, as there is no definition of cortical thickness for these two 
regions. 
 

I further computed the estimation errors in each of 36 ROIs. Figure 3.13 shows both the 

mean absolute error and the mean relative error in each of 36 ROIs for estimation of the missing 

cortical thickness at 9 months of age. We can see that, in all ROIs, the use of joint refinement led 

to obvious improvements over the case of using only the pairwise estimation. Figure 3.14 shows 

error measures in each ROI for estimation the missing cortical thickness at all 5 time points. It can 

be seen that the joint refinement consistently improved the result of the pairwise estimation in 
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some challenging ROIs, such as caudal anterior-cingulate cortex (ROI 3), cuneus cortex (ROI 6), 

lateral orbitofrontal cortex (ROI 13), middle temporal gyrus (ROI 16), pars orbitalis (ROI 20), 

pericalcarine cortex (ROI 22), posterior-cingulate cortex (ROI 24), and superior frontal gyrus (ROI 

29). 

 
Figure 3.14. The group-average error maps of each step in estimating the missing cortical 
thickness at 1, 3, 6, 9 and 12 months of age in 36 ROIs. 



58 
 

Performance on Large Portion of Missing Data  

I randomly removed some existing data, and tested the proposed method with different 

portions of missing data. Of note, the original missing data in the dataset (enclosed by the red 

rectangle in Figure 3.8) is 13%. By randomly removing some existing data from the entire dataset, 

I created datasets with 13%, 20%, 40%, and 60% missing data, respectively. From Figure 3.15, 

we can see that the estimation errors increase with the increased portion of missing data. However, 

even the missing data reaches 40%, the proposed method is still able to produce an average 

estimation error of less than 0.23 mm. Note that, like most machine learning methods, the 

estimation precision of DARF depends on the quantity and quality of training data. As long as 

having enough quality training data, DARF is able to estimate the missing data precisely. Figure 

3.15 also shows that joint refinement consistently improves the results of pairwise estimation. 

 
Figure 3.15. The relationship between the estimation errors and the portions of missing data. 
 
More Quantitative Comparisons  

The proposed missing data estimation framework is not limited to using DARF. In fact, 

the framework is open to any regression method. Here I compared five different methods, 

including the mixed effect model (MEM), polynomial regression (PR), conventional regression 

forest (CRF), and sparse linear regression (SLR), for estimation of vertex-wise cortical thickness. 
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Table 3.6 reports complete quantitative evaluation for the five methods based on the leave-one-

out cross-validation. It shows that DARF outperforms all the other methods. An interesting 

observation is that PR performs much worse at the first and last time points, but does relatively 

better at the intermediate time points. That means, when using a quadratic curve to fit the 

development of cortical thickness, it is relatively difficult to precisely estimate the two ends of the 

curve. I further performed paired t-test between our method and all the other methods. With all 

obtained p-values being less than 0.001, the significant advantage of our method is demonstrated. 

Table 3.6. Quantitative evaluation of the performance of cortical thickness estimation by using 
MEM, PR, CRF, SLR and DARF.  

Metric Method 1 month 3 months 6 months 9 months 12 months 

NMSE 

MEM 0.0177±0.0023 0.0244±0.0175 0.0185±0.0033 0.0156±0.0012 0.0154±0.0010 
PR 0.2321±0.0506 0.0389±0.0100 0.0223±0.0053 0.0142±0.0027 0.0888±0.0171 

CRF 0.0165±0.0035 0.0188±0.0031 0.0285±0.0051 0.0189±0.0031 0.0163±0.0023 
SLR 0.0139±0.0037 0.0161±0.0039 0.0183±0.0044 0.0153±0.0034 0.0154±0.0042 

DARF 0.0117±0.0019 0.0140±0.0032 0.0139±0.0030 0.0121±0.0021 0.0107±0.0019 

MAE 
(mm) 

MEM 0.215±0.016 0.269±0.049 0.264±0.035 0.270±0.015 0.258±0.020 
PR 0.764±0.091 0.328±0.043 0.295±0.044 0.245±0.024 0.634±0.072 

CRF 0.181±0.023 0.224±0.028 0.330±0.041 0.306±0.024 0.204±0.027 
SLR 0.175±0.023 0.205±0.027 0.263±0.038 0.268±0.026 0.259±0.026 

DARF 0.168±0.013 0.193±0.025 0.233±0.034 0.224±0.016 0.215±0.016 

MRE 
(%) 

MEM 12.25±0.73 13.68±0.44 11.05±0.98 10.46±0.45 10.68±0.33 
PR 37.17±0.048 15.96±2.30 11.12±1.05 8.5±0.67 22.52±2.42 

CRF 9.23±0.91 11.51±1.73 12.63±1.25 11.65±0.95 11.42±0.76 
SLR 9.05±0.83 10.05±1.52 11.01±1.12 10.44±0.98 10.69±0.77 

DARF 8.32±0.69 9.23±1.25 9.08±0.79 8.14±0.51 7.81±0.52 

 

3.3 Summary 

This chapter presented the proposed techniques for estimating the cortical attribute maps. 

These techniques were used for addressing two sub-problems: (1) predicting the future 

development of cortical attributes, and (2) estimating the missing cortical attributes in incomplete 

longitudinal datasets. For the first sub-problem, a Dynamically-Assembled Regression Forest 

(DARF) was proposed in Section 3.1. By training a single decision tree at each sample point on 

the spherical cortical surface and grouping local decision trees as the forest, DARF is able to 
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achieve accurate and spatially smooth predictions of cortical attribute maps. Moreover, by sharing 

common decision trees for the neighboring DARFs, this method is also time-efficient. Section 3.1 

further introduced the extraction of surface-based Haar-like features. Since Haar-like features 

provide rich neighboring information of the local cortical attribute maps and enable DARF to 

encode the correlation between the prediction target and the local feature distribution, better 

prediction accuracy can be obtained. For the second sub-problem, Section 3.2 presented a novel 

missing data estimation strategy, which consists of two stages, i.e., pairwise estimation and joint 

refinement. In the pairwise estimation stage, missing data were estimated by utilizing the 

relationship between the missing time point and each of the other available time points 

independently, in order to use as many training subjects as possible. Then the independent outputs 

were averaged as initial estimations. In the joint refinement stage, the initial estimation was refined 

by utilizing the relationship between the missing time points and all other available or initially 

estimated time points together. In this way, the available information in the dataset can be 

effectively used, so that the missing cortical attributes can be estimated more precisely. The 

experiments and comparisons with existing approaches demonstrate the effectiveness of the 

proposed techniques.  

The work in this section also has some limitations. First, the proposed methods have been 

evaluated for estimating only the cortical thickness map, though the proposed methods are 

generally designed for all kinds of cortical attributes, such as sulcal depth, gyrification index, and 

myelin content. Second, due to the lack of data, the proposed model is trained only on normal brain 

datasets with healthy infants. However, in order to understand the development of cortical 

attributes of specific neurodevelopmental disorders or perform early diagnosis, DARF should be 

trained using a dataset of a certain disease or a general dataset with both normal and abnormal 
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brains. Third, since a regression forest is not a descriptive model, the learned relationships between 

the input cortical attribute maps and the output cortical attribute maps are hard to interpret. This 

problem might be partially solved by integrating parametric models with DARF. However, more 

experiments are required to fully validate this idea.   
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4 DISCOVERY OF THE MAJOR CORTICAL FOLDING PATTERNS IN INFANTS 

Cortical folding pattern is another important attribute of the cerebral cortex. This chapter 

presents a sulcal pits-based framework to study the folding patterns in sulcal regions. Specifically, 

Section 4.1 first introduces how to extract sulcal pits from an infant cortical surface, followed by 

an investigation of the spatial distribution and longitudinal development of sulcal pits in infants. 

Section 4.2 introduces how to use sulcal pits to discover the major cortical folding patterns in local 

sulcal regions. Finally, Section 4.3 investigates whether the sulcal pattern information can be 

encoded into DARF to better estimate the development of cortical thickness map.  

4.1 Sulcal Pits 

Sulcal pits, the locally deepest points in the sulci of the highly convoluted cerebral cortex, 

are found to be spatially consistent across human adult individuals. Researches also suggested that 

sulcal pits are genetically controlled and have close relationships with functional areas. Sulcal pits 

can be extracted from a cortical surface using a watershed algorithm (Im, et al., 2010). However, 

this method is controlled by several important parameters, which are sensitive to the brain size, 

and thus the watershed algorithm that is tuned on adult brains in previous studies cannot be directly 

applied to the dynamically developing infant brains. The first content of this section is to introduce 

the methods of how to adapt the watershed algorithm to extract sulcal pits from cortical surfaces 

in a variety of brain sizes.  

The distribution of sulcal pits is relatively consistent across adult brains. This is one of the 

important reasons why sulcal pits can be used as reliable landmarks for comparing cortical folding 
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patterns between adult individuals. However, whether such spatial consistency does still hold for 

the distribution of sulcal pits in fast growing infant brains is unknown. Therefore, the second 

content of this section is to investigate the spatial distribution and longitudinal development of 

sulcal pits in infants. 

4.1.1 Sulcal Pits Extraction  

If the sulcal depth of each vertex on the cortical surface is known, the sulcal pits can be 

extracted using a watershed algorithm. The algorithm can be performed as follows: 1) from a set 

of vertices that have not been processed yet, a vertex with the largest sulcal depth is picked out; 2) 

if none of its one-ring neighboring vertices has already been processed, this vertex is then selected 

as a sulcal pit and is assigned with a new label; if one of its one-ring neighboring vertices has been 

processed, this vertex is assigned with the same label as this neighboring vertex; if more than one 

of its one-ring neighboring vertices have been processed, this vertex is assigned with the label of 

the neighbor that owns the most similar sulcal depth to this vertex; 3) the steps 1 and 2 are repeated 

until the sulcal depth of the currently picked vertex is less than a predefined threshold , as only 

the deep sulcal pits are needed. 

Cortical surface is not a perfectly smooth sheet, even the regions that look flat are still 

slightly uneven. Since the watershed algorithm is very sensitive to the degree of smoothness, 

directly applying the above algorithm would extract many meaningless (false positive) sulcal pits, 

as shown in Figure 4.1. This phenomenon is called over extraction. To avoid over extraction, three 

threshold parameters (i.e., area threshold	 , distance threshold	  and ridge height threshold	 ) are 

introduced. Specifically, area threshold	  is used to exclude the sulcal pits in very small basins. 

Distance threshold	  is used to prevent two sulcal pits from being too close to each other. Ridge 

height threshold	  is used to check whether a candidate sulcal pit is significantly different from its 
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neighboring sulcal pit. Note that, a ridge point is the position where two sulcal basins first meet, 

and ridge height is the sulcal depth difference between a candidate sulcal pit and the ridge point of 

two neighboring basins, as explained in Figure 4.2. For a candidate sulcal pit, if it fails to pass the 

threshold	  (area) or	  (distance), and also fails to pass the threshold	  (ridge height), it would 

not be included as a sulcal pit. 

 
Figure 4.1. Sulcal pits in the case of (a) over extraction and (b) expected extraction/result. 
 

 
Figure 4.2. A 2D schematic illustration of the ridge height. The ridge height is defined as the sulcal 
depth difference between a ridge point (green point) and a candidate sulcal pit (red or blue point). 
 

For the adult brains with relatively similar brain sizes across individuals, these threshold 

parameters could be set as fixed values for all subjects as in (Im, et al., 2010). However, for infant 

brains, the brain size varies a lot across ages, thus using fixed values to set these threshold 

parameters is not suitable any more. Intuitively, these parameters might have relationships with 

some measurements of the cortex, such as volume, surface area, mean depth, maximum depth, etc. 
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In this dissertation, in order to find these relationships and set suitable parameters for infant brains, 

exhaustive searches were performed within a predefined range for each parameter based on the 10 

randomly-selected infants with manually-labeled “ground truth” of sulcal pits.  

Specifically, 10 infants were randomly selected. Each infant had three reconstructed 

cortical surfaces, respectively, at 0 year, 1 year, and 2 years of age. Then, watershed algorithm was 

applied to these subjects with very loose parameters, to make sure that sulcal pits were over 

extracted. In the implementation, more than 90 sulcal pits for each hemisphere were extracted. 

Next, the results were manually edited by removing “inappropriate” sulcal pits. The basic 

principles of manual edition were two-fold. First, the sulcal pits in major sulci were kept, but the 

sulcal pits in minor sulci were discarded. Second, in each sulcal basin, only one sulcal pit is kept. 

If two or more pits were extracted in a sulcal basin, the deepest one was kept. After manually 

removing the “inappropriate” sulcal pits, the results were used as “ground truth”. 

After having the “ground truth”, a grid search was performed to look for the optimal 

parameters, with which the sulcal pits extraction results were the closest to the “ground truth”. 

Since there are four parameters ( ,	 ,	 ,	 ) to determine, the grid search was executed in four-

layer loops. Each layer tested one parameter with a predefined searching range and incremental 

step. Let the searching ranges for	 ,	 ,	 , and  be respectively denoted as , , , , 

, , and 	 , . Specifically, for each cortical surface,  was set as the depth of the 

shallowest point on the cortical surface and  was set as the depth of the shallowest sulcal pits in 

the “ground truth” of the same age;  was set as 0 (mm2) and  was as 30 (mm2);  was set as 

5 (rings) and  was set as 20 (rings);  was set as 0 (mm) and  was set as 2.5 (mm). The 

incremental steps for searching the optimal	 , , , and  were respectively set as 0.2 (mm), 0.5 

(mm2), 1 (ring) and 0.5 (mm). For any combination of the four parameters, sulcal pits extraction 
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results were compared with the “ground truth”. If a sulcal pit in the ground truth did not appear in 

the result, it counted as a false negative. If a sulcal pit in the result was not extracted in the “ground 

truth”, it counted as a false positive. The optimal setting of parameters was obtained when the 

numbers of false positive and false negative were minimal.  

The results show that changing  from 8 (rings) to 12 (rings) achieves similar low errors. 

Thus, 10 (rings) is chosen as the distance threshold. Note that, since every cortical surface was 

resampled as a triangular mesh with the same number of vertices, the triangle size in the surface 

mesh was adaptive to the brain size. As a result, setting the distance threshold as a fixed ring 

number could adaptively fit infant cortical surfaces with any size. 

The results also indicate that increasing  from 0 mm to 2.0 mm leads to better results and 

further increasing  to 2.5 mm generates similar results. Therefore,  could be set as 2.5 mm, 

without depending on the brain size. 

 
Figure 4.3. Relationships between optimal parameters and cortical surface metrics. (a) The 
relationship between the maximum depth of the cortical surface and the optimal depth threshold	 . 
(b) The relationship between the cortical surface area and the optimal area threshold	 . 
 

The optimal parameters of depth threshold  and area threshold  are quite different 

across cortical surfaces. Intuitively, the correlation between  and the mean/maximum depth of 

the whole cortical surface was explored, so was the correlation between  and the total cortical 
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surface area. The experiment shows that the optimal depth threshold has an approximately linear 

relationship with the maximum depth, and the optimal area threshold has an approximately linear 

relationship with the total cortical surface area, as shown in Figure 4.3. For better illustrating the 

influences of these parameters, Figures 4.4, 4.5, 4.6, 4.7 provide examples of sulcal pits extraction 

using different settings of parameters. 

 
Figure 4.4. Sulcal pits extraction using different depth thresholds.	  denotes the “optimal” 
depth threshold. 

 
Figure 4.5. Sulcal pits extraction using different distance thresholds (rings). 

 

 
Figure 4.6. Sulcal pits extraction using different area thresholds.  denotes the optimal area 
threshold. 
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Figure 4.7. Sulcal pits extraction using different ridge height thresholds. 
 

4.1.2 Spatial Distribution and Longitudinal Development 

To investigate the spatial distribution and longitudinal development of sulcal pits in infant 

brains, the sulcal pits extraction method was applied to a longitudinal dataset of 73 infants. Each 

infant has three reconstructed cortical surfaces respectively at birth, 1 year and 2 years of age. 

Figure 4.8 shows the sulcal pits extraction results on the cortical surfaces of the left hemisphere 

of a representative infant. The sulcal pits are represented by white balls, and the cortical surfaces 

are color-coded by the sulcal depth. Due to the convoluted cortical folding, it is difficult to observe 

the sulcal pits in some deep sulci. For better inspection, as shown in the second, fourth and sixth 

rows of Figure 4.8, sulcal pits are mapped onto the partially inflated cortical surfaces. As we can 

see, the cortical surface grows dynamically while the sulcal depth increases considerably, 

especially in the first year of life; however, the spatial distribution of deep sulcal pits in major sulci 

is temporally relatively consistent. For example, as can be observed in the third and fourth rows, 

there consistently exist two sulcal pits in the central sulcus, and their relative positions were nearly 

unchanged in the first 2 years, although the central sulcus became much longer and deeper. 
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Figure 4.8. Sulcal pits extraction results on the left hemisphere of a representative infant at 0, 1 
and 2 years of age. In the first, third and fifth rows, the sulcal pits represented by white points are 
overlaid on the cortical surfaces that are color-coded by the sulcal depth (mm). For better visual 
inspection, in the second, fourth and sixth rows, the sulcal pits represented by red points are 
mapped onto the partially inflated cortical surfaces. 
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To examine the spatial distribution of sulcal pits across individuals at each age, all the 

sulcal pits from 73 infants were mapped onto the age-matched inflated surface atlas. Each subject 

may have some particular sulcal pits in the relatively minor sulcal regions, and such sulcal pits 

turn out to be the outliers after being mapped to the atlas. These outliers should be removed, 

because they are statistically meaningless. As most of major sulcal pits across subjects are spatially 

close on the surface atlas, whether a sulcal pit is a major one or an outlier can be identified by 

checking the number of sulcal pits around it. Specifically, an intuitive graph building algorithm 

was performed. Considering each sulcal pit as a node, for each sulcal pit, its two-ring neighborhood 

was checked. If there was another sulcal pit in the two-ring neighborhood, they were connected by 

an edge. After all sulcal pits had been checked, the spatially-close sulcal pits in different cortical 

regions were connected as different graphs. Then, the number of node in each graph was counted. 

If the node number was no more than 7 (≈10% of 73 subjects), all nodes in the graph were 

identified as outliers and then removed. Figure 4.9 shows the distribution of sulcal pits after 

removing outliers. 

 As shown in Figure 4.9, the sulcal pits of the infant population are consistently 

concentrated in some specified regions from 0 to 2 years of age. This pattern is particularly 

pronounced in major sulci, such as the central sulcus, precentral sulcus, postcentral sulcus, superior 

temporal sulcus, and parieto-occipital sulcus. For example, in the central sulcus, two distinct 

clusters of sulcal pits can be identified on both left and right hemispheres at birth. During the 

dynamic cortex development from 0 to 2 years of age, the relative positions of concentration 

regions almost keep unchanged. This result suggests the existence of spatially-consistent 

distributions of sulcal pits in major sulci across subjects at term birth, and also suggests that these 

spatial distribution patterns are relatively stable during the dynamic cortex development in the first 



71 
 

2 years of life. In addition, the number of sulcal pits is also relatively stable. The average changes 

of individual’s amount of sulcal pit are 3.67±0.13 in the first year and 1.30±0.67 in the second 

year. Such small changes are likely caused by the development of minor sulci, or even noises in 

the surface processing pipeline.  

 
Figure 4.9. Spatial distributions of sulcal pits on both left and right hemispheres from 73 infants 
at 0, 1, 2 years of age and 64 young adults. All the sulcal pits (red points) were mapped onto the 
age-matched, partially-inflated cortical surface atlases. 
 

To closely compare sulcal pits distributions in infants with those in adults, the sulcal pits 

extraction method was also applied to the cortical surfaces of 64 young adults. As shown in the 
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fourth column in Figure 4.9, the spatial distributions of sulcal pits in major sulci of adults were 

highly consistent with those of infants, although more sulcal pits in minor sulci existed in adults.  

So far, the experiment results have demonstrated that the spatial consistency of sulcal pits 

in adult brains does still hold for the rapid growing infant brains. Therefore, it is safe to utilize 

sulcal pits as landmarks to study the sulcal patterns of infants as the previous studies did for the 

adult brains (Im, et al., 2011b; Im, et al., 2013b). Much more detailed studies and analyses on the 

spatial distribution and longitudinal development of infant sulcal pits have also been carried out, 

but they are not included in this dissertation, as they are more neuroscience related. For anyone 

interested in that work, please refer to the paper (Meng, et al., 2014). 

4.2 Discovery of Major Sulcal Patterns in Neonates 

This section introduces how to use sulcal pits to discover the major sulcal patterns from a 

large-scale dataset of neonatal brains. It is worth noting that neonatal brains are more ideal 

candidates than adult brains for studying major sulcal patterns. That is because the primary sulcal 

patterns are genetically influenced and have been established at term birth, and also neonates have 

minimal exposure to the complicated postnatal environment, which may potentially influence the 

shape of the cortex. 

The overview of the proposed method for discovering major sulcal patterns is illustrated 

in Figure 4.10. First, sulcal pits are extracted using the method introduced in Section 4.1.1. Second, 

a graph-based shape representor, namely sulcal graph, is constructed for a certain region in each 

cortical surface. Third, the similarity between any pair of sulcal graphs is measured from six 

complementary aspects. Fourth, to capture both the common information and the complementary 

information, the six metrics are adaptively combined together. Finally, sulcal graphs are clustered 

into different groups based on the combined similarity matrix. To introduce the proposed method 
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in detail, the rest of this section is organized as follows. Section 4.2.1 provides the definition of 

sulcal graph and presents how to quantitatively measure the similarity between two sulcal graphs; 

Section 4.2.2 presents the adaptive fusion of the similarity metrics measured in multiple ways; 

Section 4.2.3 presents the clustering algorithm that discovers the major sulcal patterns. Finally, 

Section 4.2.4 shows the experiments and discusses the results.  

 
Figure 4.10. Overview of the proposed method for discovering major sulcal patterns. 

4.2.1 Sulcal Graph and Similarity Measurement 

Sulcal graph is used to characterize the sulcal folding patterns in each individual. A sulcal 

graph is built based on the sulcal pits and their spatial neighboring relationships. Specifically, each 

sulcal pit is defined as a node in the sulcal graph, and two nodes are linked by an edge if their 

corresponding sulcal basins are spatially connected on the cortical surface. 

To compare the similarity of two sulcal graphs, their differences are measured using 

multiple metrics from the spatial, geometrical and topological points of view. Specifically, six 

distinct metrics are computed according to the sulcal pit position, sulcal pit depth, sulcal basin area, 

sulcal basin boundary, sulcal pit local connection, and ridge point depth. Each of them is detailed 

as follows. 
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 (1) Sulcal Pit Position. Given each sulcal pit	  in sulcal graph	 , its corresponding sulcal 

pit is found in sulcal graph	 . Because all cortical surfaces have been aligned onto a spherical 

surface atlas, its closest sulcal pit in	  can be approximately treated as the corresponding sulcal 

pit of . The position difference between the sulcal pit	  in	  and its corresponding sulcal pit in	 , 

noted as	 , is measured using their geodesic distance on the spherical surface. Similarly, the 

position difference between a sulcal pit	 ∈  and its corresponding sulcal pit in	  is computed 

as	 . Then the difference between sulcal pit positions of  and	  is computed as: 

, ∑ ∈ ∑ ∈                                          (4.1) 

where	  and	  are respectively the numbers of sulcal pits in	  and	 . 

(2) Sulcal Pit Depth. For each subject, the sulcal depth map is normalized by dividing by 

the maximum depth value of the cortical surface, to reduce the effect of the brain size variation. 

The depth difference between each sulcal pit	 ∈  and its corresponding sulcal in	  is denoted 

as	 . Similarly, the depth difference between each sulcal pit ∈  and its corresponding sulcal pit 

in	  is denoted as	 . Then, the difference between	  and	  in terms of sulcal pit depth is defined 

as: 

, ∑ | |∈ ∑ ∈                                           (4.2) 

(3) Ridge Point Depth. Ridge points are the locations where two sulcal basins meet. As 

suggested by (Im, et al., 2011b), the depth of the ridge point is an important indicator for 

distinguishing sulcal patterns. The difference between the average ridge point depths of sulcal 

graphs	  and	  is computed as: 

, ∑ ∈ ∑ ∈                                          (4.3) 
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where	  and	  are respectively the numbers of edges in	  and	 ,	  is the edge connecting two 

sulcal pits, and  is the normalized sulcal depth of ridge point in the edge	 . 

(4) Sulcal Basin Area. To reduce the effect of surface size variation across subjects, the 

area of each basin is normalized by being divided by the area of the whole cortical surface. Let	  

denote the area difference between the basins of sulcal pit	 ∈  and its corresponding sulcal pit 

in	 , and	  denote the area difference between the basins of sulcal pit	 ∈  and its corresponding 

sulcal pit in	 . The area difference between sulcal basins of graphs	  and	  is defined as: 

, ∑ | |∈ ∑ ∈                                     (4.4) 

(5) Sulcal Basin Boundary. A vertex is treated as a boundary vertex of a sulcal basin if 

any of its neighboring vertices belongs to a different basin. Given two corresponding sulcal pits	 ∈

 and	 ∈ , the sets of their sulcal basin boundary vertices are respectively denoted as	  and	 . 

For any boundary vertex	 ∈ , its closest vertex	 ′ is found from	 ; and similarly for any 

boundary vertex	 ∈ , its closest vertex	  was found from	 . Then, the difference between the 

sulcal basin boundaries of sulcal pits	 ∈  and	 ∈  is defined as: 

, ∑ dis ,∈ , ∈ ∑ dis ′,∈ , ∈                  (4.5) 

where	  and	  are respectively the numbers of vertices in	  and	 ; and the function dis(,) 

computes the geodesic distance between two vertices on the spherical surface atlas. The difference 

between the sulcal basin boundaries of pit 	 ∈  and its corresponding pit 	 ∈  is defined 

similarly. Then, the difference between sulcal basin boundaries of graphs	  and	  is the average 

boundary difference over all corresponding sulcal pit pairs, which is formulated as: 

, ∑ ,∈ ∑ ,∈                                     (4.6) 
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(6) Sulcal Pit Local Connection. The difference of sulcal pit local connection measures 

how well the distance between two neighboring sulcal pits in a graph is preserved after mapping 

them to another graph. For a sulcal pit	 ∈ , assume	 ∈  is one of its spatially connected sulcal 

pits, and their corresponding sulcal pits in graph	  are respectively ′ and	 ′. The changes of local 

connection after mapping sulcal pit	 ∈  to graph	  are measured by: 

∑ |dis , dis , ′ |∈                                          (4.7) 

where	  is the set of all sulcal pits that connect to	 , and	  is the number of sulcal pits in . The 

change of local connection when mapping a pit	 ∈  to graph	  is measured similarly. Thus, the 

difference between local connections of two graphs	  and	  is defined as: 

, ∑ ∈ ∑ ∈                                           (4.8) 

4.2.2 Fusion of Sulcal Graph Similarities 

Given  sulcal graphs from all subjects, any two of them are compared using the above 

six metrics, so a  difference matrix is constructed for each metric. Each of the metric 

measures the inter-individual difference of sulcal graphs from different points of view and provides 

complementary information to each other. To leverage all these information, a similarity network 

fusion (SNF) method (Wang, et al., 2014a) is employed to adaptively integrate all six metrics 

together. SNF can both keep the shared information and capture the complementary information 

from different measurements. To perform SNF, each difference matrix is normalized by its 

maximum element, and then transformed into a similarity matrix as: 

, exp	 ,
,                                          (4.9) 
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where  is a scaling parameter;  could be anyone of the above six matrices; Φ  and Φ  are 

respectively the average values of the smallest  elements in the -th row and -th row of	 . 

Finally, six similarity matrices are nonlinearly fused together as a single similarity matrix by using 

SNF with  iterations. The parameters are set as 0.8, 30, and	 20 as suggested in 

(Wang, et al., 2014a). 

4.2.3 Sulcal Pattern Clustering 

To cluster sulcal graphs into different groups based on the fused similarity matrix, the 

Affinity Propagation Clustering (APC) algorithm (Frey and Dueck, 2007) is chosen to be used. 

There are some other clustering algorithms such as K-Means or Spectral Clustering algorithm (von 

Luxburg, 2007). These methods require users to explicitly choose a cluster number, but there is no 

prior knowledge about the number of sulcal patterns. Because APC could automatically determine 

the number of clusters based on the natural characteristics of data, it is more suitable here over the 

other clustering algorithms. However, since sulcal folding patterns are extremely variable across 

individuals, too many clusters would be identified after performing APC, making it difficult to 

observe the most important major patterns. Therefore, a hierarchical APC framework is proposed 

to further group the clusters. Specifically, after running APC, the exemplars of all clusters are 

treated as a new dataset to perform another APC. With the exemplars merging into new clusters, 

their corresponding old clusters are also merged. In this way, less clusters are generated. However, 

as the old clusters merge, the previous exemplars may be no longer representative for the new 

clusters. Thus, a new exemplar is selected for each new cluster by maximizing average similarity 

to all the other samples in the cluster. These steps can be repeated until the cluster number reduces 

to an expected level (<=5). 
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4.2.4 Experiments and Results 

Sulcal pits were extracted from 677 neonatal cortical surfaces. To demonstrate the validity 

of the proposed method, three representative cortical regions (i.e., central sulcus, superior temporal 

sulcus, and cingulate sulcus) were selected for exploring the major sulcal patterns. For each cortical 

region, a 677×677 similarity matrix was computed using SNF and all subjects were then clustered 

into different groups by the hierarchical APC. To visually inspect the major sulcal patterns, an 

average cortical surface was constructed for each cluster based on the top 10% representative 

cortical surfaces, which were most similar to the exemplar in each cluster. All sulcal pits in each 

cluster were further mapped onto the average surfaces.  

Results 

For the central sulcus, three distinct folding patterns were identified, as shown in Figure 

4.11. In the pattern (a), two sulcal pits concentration areas can be observed, indicating two sulcal 

basins in the central sulcus. This pattern is further confirmed by six representative examples of 

individual subjects (in the second to seventh columns). In the pattern (b), three distinct sulcal pits 

concentration areas can be observed, with one extra area (basin 3) located in the most inferior 

portion of the central sulcus, compared to the pattern (a). In the pattern (c), three distinct sulcal 

pits concentration areas can be observed as in the pattern (b), but they are more concentrated. This 

is also confirmed by six representative examples of (c). Moreover, compared to the pattern (b), the 

sulcal basin 2 is very short, while the sulcal basin 3 is very long in the pattern (c). Such 

phenomenon is likely related to the “hand knob shift” in a study of the central sulcus shape in 

adults (Sun, et al., 2012). Previously, different studies reported either two (Meng, et al., 2014) or 

three (Im, et al., 2010) sulcal basins in the central sulcus. Herein, we can see that both two-basin 

and three-basin patterns are the major patterns of sulcal folding. 
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Figure 4.11. Sulcal patterns in the central sulcus. The first column shows three discovered sulcal 
folding patterns, with all sulcal pits (red spheres) mapped onto the average surface of each cluster. 
For each pattern, the second to seventh columns show six representative examples of individual 
subjects. Different sulcal basins are marked with different colors. The percentage of each pattern 
is shown at the top-left corner.   
 

For the superior temporal sulcus (STS), three distinct folding patterns were identified, as 

shown in Figure 4.12. In the pattern (a), the distribution of sulcal pits in the posterior portion of 

STS is more diffused and bended, compared to the patterns (b) and (c), indicating the differences 

in the folding shape of STS. This is supported by a previous cortical folding study in adults, which 

reported a Y-shaped STS for some brains while a single long STS for other brains (Sun, et al., 

2009). In the pattern (b), compared to (a) and (c), an extra concentration region of sulcal pits is 

exhibited near the temporal pole, which is again confirmed by six representative examples from 

individual subjects, showing small sulcal basins near the temporal pole. In the pattern (c), the sulcal 

basin in the anterior portion of STS is very long and straight, extending to the temporal pole. 
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Figure 4.12. Sulcal patterns in the superior temporal sulcus. The first column shows three 
discovered sulcal folding patterns, with all sulcal pits (red spheres) mapped onto the average 
surface of each cluster. For each pattern, the second to seventh columns show six representative 
examples of individual subjects. Different sulcal basins are marked with different colors. 
 

For the cingulate sulcus, four distinct major folding patterns were identified, as shown in 

Figure. 4.13. In the pattern (a), a single long cingulate sulcus is clearly shown, while in the pattern 

(b) two long parallel sulci are observed. This is consistent with the previous cortical folding pattern 

study in adults (Sun, et al., 2009), which reported observation of two cingulate sulci in some brains. 

A study of autopsy specimen brains also reported that 24% left hemispheres had double parallel 

cingulate sulcus (Ono, et al., 1990). In the pattern (c), the cingulate sulcus is interrupted in the 

anterior region; in contrast, in the pattern (d), the cingulate sulcus is interrupted in the posterior 

region. This two types of interruption were also reported in (Ono, et al., 1990). In pattern (c) and 

pattern (d), some parallel sulci can also be observed, but they are much shorter than those in pattern 

(b). 
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Figure 4.13. Sulcal patterns in the cingulate sulcus. The first column shows four discovered 
folding patterns, with all sulcal pits (red spheres) mapped onto the average surface of each cluster. 
The second column shows the schematic drawing of the sulcal curves (blue dashes) on the average 
surface of each cluster. For each pattern, the third to seventh columns show five representative 
examples of individual subjects. The percentage of each pattern is shown at the top-left corner.   

Differences with Previous Studies  

The above discoveries of major patterns in the central sulcus, superior temporal sulcus, 

and cingulate sulcus in neonates exhibit a lot of consistencies with the previous studies of adults. 

But the proposed method also reveals new patterns.  

To the best of my knowledge, this is the first time to explicitly categorize the patterns of 

the central sulcus into three classes. One previous study of central sulcus patterns reports that the 

central sulcus morphology is handedness-related (Sun, et al., 2012), and one or double “hand-knob” 

may appear in different positions of the central sulcus. However, this study does not categorize the 

central sulcus folding patterns. Even in another study of building the dictionary of brain folding 

patterns (Sun, et al., 2009), the sulcal patterns are still not categorized for the central sulcus. Both 

of these studies use the same method to measure the similarity between sulcal patterns. In particular, 
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this method scales and rigidly aligns the local cortical surface of the central sulcus of different 

brains, and computes the distance between two aligned local surfaces as their similarity. If this 

similarity measurement is used to cluster the central sulcal patterns, the results would be quite 

different from the results reported above. For example, as shown in Figure 4.14, using the method 

in (Sun, et al., 2009), patterns in (a) and (b) will be grouped into the same cluster, and also pattern 

(c) and (d) will be grouped into another cluster. This is because the distance measurement treats 

every vertex in the central sulcus equally and reflects the similarity between the entire shapes of 

the central sulci. However, the proposed sulcal graph-based method will group patterns (c) and (d) 

into a cluster, because each of them has two sulcal basins (or sulcal pits); while patterns (a) and (d) 

will be separated, because each of them has three sulcal basins (or sulcal pits) and the boundary 

location between the pink and blue basins is quite different.  

 
Figure 4.14. Examples of different central sulcal patterns. By comparing the sulcal shapes, sulcus 

(a) and sulcus (b) are similar with their curved shapes, while sulcus (c) and sulcus (d) are similar 

with their relatively straight shapes. By comparing the sulcal patterns, sulcus (b) and sulcus (c) are 

similar as they both have 2 sulcal basins, while sulcus (a) and sulcus (d) are different in the sizes 

of the sulcal basins, though they both have 3 sulcal basins. 
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In the superior temporal sulcus, the proposed sulcal graph-based method reports a new 

discovered major pattern, which exhibits a sulcal basin at the temporal pole. On the contrary, the 

method in (Sun, et al., 2009) is not able to discover this pattern, because of the same reason as 

discussed above. 

Number of Clusters 

The hierarchical APC algorithm utilized in the proposed method automatically decides the 

number of patterns. In order to validate the clustering method and as well as the number of clusters, 

another advanced clustering algorithm, namely spectral clustering, is also applied to the 

comprehensive similarity matrix to group the sulcal graphs into different number of clusters. 

Figure 4.15 shows an example of comparison results in the cingulate sulcus. The experiments 

show that if the cluster number is set as same as the hierarchical APC reported, spectral clustering 

algorithm could produce very similar results. If the cluster number is set differently, some reported 

patterns are difficult to interpret or summarize. For example, in Figure 4.15, if the cluster number 

is set as 3, two major patterns in A-1 and A-2 can still be observed in B-1 and B-2, but the pattern 

in B-3 looks like a mixed combination of A-1 and A-3. If the cluster number is set as 5, all patterns 

from A-1 to A-4 can be observed in the results from D-1 to D-5. However, there is no significant 

difference between D-4 and D-5. The same phenomenon can also be seen from E-5 to E-6 if the 

cluster number is set as 6. This experiment suggests that the hierarchical clustering algorithm 

works well in exploring the major sulcal patterns. However, it should be pointed out the possible 

existence of other major patterns, which may be not discovered due to the possible limitations of 

the sulcal graph-based shape descriptor. 
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Figure 4.15. Different numbers of clusters in the cingulate sulcus. The first row is the results of 
the proposed method. The last four rows show the results using spectral clustering algorithm to 
generate 3, 4, 5, and 6 different patterns.  

Reliability 

To evaluate the reliability of the proposed method, the experiments were repeated 40 times 

with each time randomly excluding 5% ~ 10% subjects. For the most of the time, the proposed 

method reports the same number of major patterns as in Figures 4.11, 4.12, and 4.13, but 

sometimes one more or less pattern is reported. Table 4.1 provides the ratio of the proposed 

method reporting different number of patterns. From the table, we can have two important 

observations. First, the proposed method tends to discover 3, 3, and 4 major sulcal patterns 

respectively in the central sulcus, superior temporal sulcus, and cingulate sulcus. Second, the 

proposed method is more stable in the central sulcus, where the sulcal pattern is relatively simple, 

but is less stable in the superior temporal sulcus and cingulate sulcus, where the sulcal patterns are 
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more complex and variable. Note that, for experiments that report the same number of patterns, 

their corresponding major patterns, which are observed by averaging top 10% representative 

surfaces, are also very similar. Table 4.2 further provides the discovery rate of each reported 

pattern in Figures 4.11, 4.12, and 4.13. These results suggest that reported major patterns are the 

significant ones, as they can be repetitively discovered in cross validation. It also indicates that the 

proposed method is reliable for detecting these major sulcal patterns. It is worth noting that, if 

spectral clustering algorithm is used instead of hierarchical affinity propagation in the last step of 

the proposed method and also the certain number of clusters is given, the discovery rates for all 

major patterns could reach 100%. This may suggest that 1) the sulcal graph-based pattern similarity 

measurement is sufficiently stable; and 2) although hierarchical APC is able to automatically 

determine the number of patterns, it is not as stable as spectral clustering algorithm. Thus, in order 

to discover major sulcal patterns, the proposed method could be performed multiple times in a 

manner of cross validation, and then the majority of results can be selected as the final results. 

Table 4.1. Ratios of different reported number of patterns.  
Number of patterns 2 3 4 

Central Sulcus 5% 92.5% 2.5% 
Superior Temporal Sulcus 5% 82.5% 12.5% 

Cingulate Sulcus 2.5% 10% 87.5% 

 
Table 4.2. Pattern discovery rate. 

Pattern Index (a) (b) (c) (d) 
Central Sulcus 100% 95% 100% - 

Superior Temporal Sulcus 97.5% 100% 97.5% - 
Cingulate Sulcus 100% 100% 87.5% 87.5% 
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4.3 Utilization of Sulcal Patterns to Help Predict Cortical Attributes Development 

4.3.1 Motivation 

Many cortical morphological attributes are, to some degree, correlated to cortical folding 

patterns. Intuitively, if cortical folding patterns in a specific location of two cortical surfaces are 

similar, the corresponding local cortical attribute maps could be also similar. That is why the Haar-

like features computed based on the sulcal depth map are included as inputs in DARF for predicting 

the development of cortical thickness map. However, Haar-like features are the randomly selected 

mean values of neighborhoods or regional differences between two neighborhoods, which have 

limited ability to describe the local cortical folding patterns. Sulcal graph, which is used to discover 

major sulcal patterns, on the other hand, captures more meaningful and higher level information 

about the characteristics of cortical folding. Therefore, if the features of sulcal graph could be 

effectively integrated into DARF, the accuracy of predicting the development of cortical attribute 

maps could be boosted.  

4.3.2 Method 

In order to make use of sulcal graphs to help predict cortical attribute development, the 

following sulcal pattern related feature maps are computed and added into the feature vectors when 

using DARF: (1) basin area map, (2) local pit density map, (3) pit degree map, (4) pit depth map, 

and (5) pit distance map. Specifically, each vertex on the surface is associated with a “home sulcal 

basin” and a “home sulcal pit”. The “home sulcal basin” is the sulcal basin where the given vertex 

lies, and the “home sulcal pit” is the sulcal pit in the “home sulcal basin”. Each sulcal basin has 

one and only one sulcal pit. For a given vertex, its corresponding value in the basin area map is 

the area of its “home sulcal basin”; its corresponding value in the local pit density map is the 

number of sulcal pits in its neighborhood; its corresponding value in the pit degree map is the 
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degree of its “home sulcal pit” in the sulcal graph representation; its corresponding value in the pit 

depth map is the depth of its “home sulcal pit”, and its corresponding value in the distance map is 

the Euclidian distance from the given vertex to its “home sulcal pit”. Because sulcal basins have 

clear boundaries, the computed feature maps may have sharp value changes on the sulcal basin 

boundaries, namely the boundary effect. Such boundary effect is numerically sensitive and also 

varies largely in different surfaces, thus it brings a lot of “uncertainty” to the DARF model and 

consequently lowers the prediction accuracy. To reduce the boundary effect, the sulcal pattern 

related feature maps are smoothed. Figure 4.16 shows the smoothed feature maps of a randomly 

selected subject. 

 
Figure 4.16. Sulcal pattern related feature maps. The maps are displayed on the inflated cortical 
surface atlas. In (a), sulcal pits are drawn as white balls. 
 
4.3.3 Experiments and Results 

To test how the sulcal pattern related features can help DARF, the experiment of predicting 

cortical thickness map was carried out again as in Section 3.1.4. In the experiment, the prediction 

target was the 9-month-old cortical thickness map, and the inputs were the feature maps at birth, 
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including cortical thickness map, sulcal depth map, and all above sulcal pattern related feature 

maps. The experiments were repeated using leave-one-out cross validation with 23 subjects.  

The prediction result was compared with the previous one, which was predicted without 

using sulcal pattern related feature maps. Overall comparison shows that the improvement 

measured for the whole cortical thickness map is subtle, i.e., reducing MSE from 0.34 (mm) to 

0.33 (mm) and reducing MRE from 12.4% to 12.1%. However, ROI-based comparison reveals 

that the improvement is significant in many regions in the high-order association cortex with more 

variable folding patterns. Table 4.3 reports the quantitative error estimations in 7 ROIs, where the 

improvement is significant (with p<0.05 in a pairwise T-test). 

Table 4.3. Quantitative comparison of error estimations in 7 ROIs. 

ROI Name 
MSE (no pattern 

features) 
MSE (with 

pattern features) 
MRE (no 

pattern features) 
MRE (with 

pattern features) 

 

Supramarginal 
Gyrus 

0.382±0.045 0.344±0.041 13.7±1.8 12.3±1.7 

 
Pars Triangularis 0.412±0.07 0.383±0.11 13.6±3.1 12.8±3.3 

 

Inferior Temporal 
Gyrus 

0.376±0.054 0.356±0.049 13.3±2 12.7±1.9 

 

Superior Frontal 
Gyrus 

0.405±0.072 0.389±0.073 13.1±1.6 12.8±1.6 

 
Precuneus Cortex 0.352±0.053 0.341±0.057 13.5±2 13.2±2.1 

 

Rostral Anterior 
Cingulate Cortex 

0.507±0.272 0.483±0.244 14.1±5.1 13.4±4.9 

 

Caudal Anterior-
Cingulate Cortex 

0.386±0.148 0.365±0.142 13.7±4.1 13.1±4.0 

 

Moreover, the contribution of each of the five sulcal pattern related feature maps was 

investigated. In particular, the above experiment was repeated with each time including or 

excluding only one of the five feature maps. The experimental results show that including pit 

distance map alone could improve the prediction accuracy slightly, but the improvement is not as 
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significant as including all 5 feature maps. The experimental results also show that including each 

of the other four feature maps separately cannot achieve any noticeable improvement. This may 

suggest that such sulcal pattern related feature maps provide complementary information, and 

should be used together to help DARF predict the development of cortical thickness map. 

Additionally, the experimental results by excluding one of the five feature maps shows that 

discarding pit depth map didn’t reduce the prediction accuracy, which indicates that the pit depth 

map doesn’t help in predicting the development of cortical thickness map. One explanation might 

be that the smoothed pit depth map is very similar or correlated to the sulcal depth map, therefore 

the pit depth map doesn’t provide new valuable information if the sulcal depth map has already 

been used.   

4.4 Summary 

Cortical folding pattern is an important attribute of the cerebral cortex. It links to cognitive 

functions and neurological disorders. This chapter presented several studies and techniques for 

studying cortical folding patterns. Section 4.1 introduced the watershed algorithm for sulcal pits 

extraction. As the brain grows rapidly in early development stage, the original watershed algorithm 

developed for the adult brains cannot be directly applied to the infant cortical surfaces. Thus 

Section 4.1 introduced how the watershed algorithm could be adapted for extracting sulcal pits 

from the rapid growing infant cortical surfaces. Moreover, the spatial and temporal consistency of 

the distribution of sulcal pits was validated, thus sulcal pits could be utilized for comparing sulcal 

patterns in both infants and adults. Section 4.2 proposed the method for discovering major sulcal 

patterns in the specific cortical regions by using sulcal pits from a large-scale dataset of neonates. 

The proposed method first built a sulcal graph of a certain cortical region for each subject based 

on the local sulcal pits distribution, and then the similarity between any two sulcal graphs were 
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measured in six different ways, thus forming six similarity matrices. To capture both the common 

and complementary information in these six similarity matrices, they were further fused together 

using SNF. Finally, the fused similarity matrix was fed to the hierarchical APC, to categorize the 

cortical regions into different classes of major sulcal patterns. The proposed method was validated 

on a dataset with 677 neonatal brains, and meaningful major sulcal patterns were revealed from 

the central sulcus, superior temporal sulcus, and cingulate sulcus. Motivated by the relevance of 

cortical morphological attributes to the sulcal patterns, Section 4.3 further investigated whether 

sulcal pattern information could help better predict the development of cortical thickness map. In 

particular, five sulcal pattern related features maps were computed and fed into DARF for the 

prediction. The results indicated that the sulcal pattern information could improve the prediction 

accuracy in many cortical regions with highly variable folding patterns. 

The above proposed work also has some weaknesses. First, the hierarchical APC, which 

is used for grouping sulcal patterns, is not very stable. Repetitive experiments show that sometimes 

hierarchical APC reports different numbers of clusters. The instability is more serious for the 

cortical regions with more complex structures. This suggests that to use the proposed method to 

detect major sulcal patterns, multiple experiments with each time using a different subset of the 

whole dataset are needed, and the reliable conclusion can be obtained from the result with the 

highest repetitive rates. Second, the proposed method has been validated in only three primary 

cortical sulcal regions, and whether it also works well in other cortical regions is not clear. Future 

work may include testing the proposed method in more cortical regions, or even for the entire 

cortical surface. However, due to structural complexity of the entire cortical surface as well as 

huge diversity across subjects, categorizing sulcal patterns for the whole brain is a more 

challenging work. Third, only five sulcal pattern related feature maps have been investigated for 
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helping predict the development of cortical thickness map. However, the sulcal pattern can be 

measured and encoded in many other different ways, such as using ridge point depth or sulcal 

basin boundary. Hence, future work may also include computing more meaningful feature maps 

to better encode sulcal pattern information for the prediction of cortical attributes development. 
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5 SUMMARY AND FUTURE WORK 

5.1 Summary 

This section rephrases the contribution claims that are made in Chapter 1. After each 

contribution claim, how that claim is addressed is briefly summarized. Finally, the thesis statement 

is revisited.  

The contributions of this dissertation are as follows: 

(1) A novel prediction model, Dynamically-Assembled Regression Forest (DARF), is proposed for 

accurately estimating the early development of cortical attribute maps from birth to 1 year of age. 

By dynamically grouping and sharing local decision trees, DARF is able to produce accurate and 

spatially smooth prediction results and is also computationally efficient.  

The Dynamically-Assembled Regression Forest (DARF) was presented in Section 3.1.1. 

Different from the conventional regression forest model, in which a fix number of decision trees 

are specifically trained for a forest, in the implementation of DARF a single decision tree is trained 

at each vertex and then shared by many local forests. In particular, in the training stage a single 

decision tree is trained at each vertex using its neighboring vertices as training samples. In the 

testing stage, the cortical attribute value of each vertex is predicted using a vertex-specific forest, 

which is formed by grouping the nearby decision trees around a given vertex. The experiments in 

Section 3.1.4 show that DARF is able to accurately predict the normal development of cortical 

thickness map during the first year of life. 
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(2) A surface-based feature computation method is proposed for extracting Haar-like features 

from spherical surface. By encoding rich neighboring information of local cortical attribute maps, 

surface-based Haar-like features make important contributions in training accurate DARF models 

for the prediction of developmental cortical attributes.  

Surface-based Haar-like features were introduced in Section 3.1.2. Haar-like features are 

the randomly generated features, which could either be a mean value of a local cortical attribute 

map or a difference between the mean values of two local cortical attribute maps. The conventional 

way of computing Haar-like features in the 2D or 3D image space cannot be directly applied to 

the surface manifold, due to the lack of Cartesian coordinate system in the surface manifold. The 

proposed method projects each local cortical region to a corresponding tangential plane, and 

computes local Haar-like features in this tangential plane. In this way, the generated local Haar-

like features are comparable within each local cortical region. 

(3) A novel missing data estimation strategy, which consists of “pairwise estimation” and “joint 

refinement”, is proposed particularly for recovering the missing cortical attribute maps in 

incomplete longitudinal datasets.  

Section 3.2.1 presented this missing data estimation strategy in detail. In the missing data 

estimation, the core problem is how to effectively use the available data. Typically, there is a 

conflict between using more time points and using more training subjects. The proposed method 

solves this conflict. In particular, the stage of “pairwise estimation” focuses on using more training 

subjects to produce the initial estimations of missing data. This enables the stage of “joint 

refinement” to use as many training subjects and time points as possible. The experiments in 

Section 3.2.2 illustrate the effectiveness of the proposed strategy. Moreover, the experiments also 

show that the “pairwise estimation” stage prepares a good initialization for the “joint refinement” 



94 
 

stage, and the “joint refinement” stage significantly improves the initial estimation in the “pairwise 

estimation” stage. 

(4) Extensive experiments and comparisons show that the proposed methods can accurately 

estimate the development of cortical thickness map and missing data, and also show that DARF 

outperforms four existing regression methods in this task.  

The experiments and comparisons were presented in Section 3.1.4 and Section 3.2.2. The 

methods were tested on a longitudinal dataset of 31 infants × 5 time points, with some missing 

data. I first tested DARF with 15 subjects with complete data at all 5 time points for predicting the 

development of cortical thickness map, and then validated the missing data estimation strategy 

using the whole incomplete dataset. Moreover, I also compared DARF with four existing 

regression methods, including the mixed effect model (MEM), polynomial regression (PR), 

conventional regression forest (CRF), and sparse linear regression (SLR). The experiments show 

that 1) DARF is able to accurately predict the development of cortical thickness map; 2) DARF 

outperforms all other four regression methods in terms of accuracy and output smoothness; 3) The 

proposed missing data estimation strategy can make a better use of the existing data to recover the 

missing cortical thickness maps effectively.  

(5) A watershed algorithm, which is originally tuned for adult brains, is adapted for extracting 

sulcal pits from the cortical surfaces of infants at different ages.  

This work was presented in Section 4.1.1. The sulcal pits extraction algorithm is controlled 

by four parameters: depth threshold, area threshold, distance threshold, and ridge height threshold. 

These four parameters were previously tuned for the adult brains with similar brain sizes, and thus 

are not applicable to the developing infant brains with variable brain sizes. To find the appropriate 

parameters for the infants at any age, a grid searching is performed first, and then the factors that 
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influence parameter selections are explored. It is found that the ridge height threshold is 

independent of the brain size and can be set as 2.5mm. The distance threshold can be set as 10 

(rings). Since all cortical surfaces are resampled using a uniform triangular mesh, this parameter 

could automatically fit the infant cortical surfaces of different sizes. It is also found that the depth 

threshold can be set by following a linear relationship with the maximum sulcal depth, and the 

area threshold can be set by following a linear relationship with the total cortical surface area. 

(6) The spatial and temporal consistency of the distribution of sulcal pits in the rapid developing 

infant brains is validated.  

Section 4.1.2 presented the study of spatial distribution and longitudinal development of 

infant sulcal pits. For this study, the sulcal pits were extracted from the cortical surfaces of 73 

infants, respectively, at birth, 1-year-old, and 2-year-old, and also from the cortical surfaces of 64 

young adults. The spatial distributions of sulcal pits were compared across both subjects and ages. 

The experiments show that the spatial distribution of sulcal pits in infant brains is as consistent as 

that in adult brains. This suggests that the infant sulcal pits can be used as stable landmarks for the 

study of sulcal patterns. 

(7) A new framework is proposed for automatically discovering the major sulcal patterns in local 

cortical regions in neonatal cortical surfaces. 

The proposed framework was introduced in Section 4.2. In this framework, sulcal graphs 

are built for characterizing the sulcal patterns using the deep sulcal pits, due to their spatial 

consistency. In order to comprehensively compare the sulcal patterns, the similarity between two 

sulcal graphs are estimated from six different points of view and then adaptively fused together. 

The sulcal patterns are categorized using a hierarchical APC method, which could automatically 

determine the number of categories. For a better visual inspection of the major sulcal patterns of 
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each category, an average cortical surface is computed using the most representative subjects for 

each major pattern. The validation experiments were performed on a large-scale dataset of 677 

neonatal brains, and three primary cortical regions were selected for the tests, as introduced in 

Section 4.2.4. The experiments show that 1) the proposed framework is able to reveal both the 

major sulcal patterns reported in previous adult studies and the newly discovered major sulcal 

patterns; 2) to obtain reliable results, the proposed method would better be executed multiple times 

with different subsets, and then the majority of the results could be used as the reliable patterns. 

(8) Whether and how sulcal pattern information could help DARF for better predicting the 

development of cortical attribute maps are investigated.   

The investigation was presented in Section 4.3. In this investigation, five sulcal pattern 

related feature maps (basin area, local pit density, pit degree, pit depth, and pit distance) were 

computed and fed into the feature vectors used in DARF to predict the development of cortical 

thickness map. The experiment results indicate that, while the overall benefit from sulcal pattern 

related feature maps is subtle, these features could make apparent improvement in predicting the 

development of cortical thickness in some cortical regions with highly-variable folding patterns.   

Thesis: Dynamically-Assembled Regression Forest (DARF) is able to accurately estimate the 

early development of cortical attribute maps from birth to 1 year of age. Sulcal pits, which have 

relatively stable spatial distributions across ages and individuals, can be utilized for discovering 

the major sulcal patterns. Sulcal pattern information can further improve the performance of 

DARF for estimating cortical attribute maps. 

Estimating the rapid development of vertex-wise cortical attributes is a challenging task. 

To effectively address this task, this dissertation presented Dynamically-Assembled Regression 

Forest (DARF). Different from the conventional regression forests, DARF adopts a decision tree 
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sharing technique. In particular, a single decision tree is trained at each vertex using its neighboring 

vertices as training samples, and the local neighboring trees are grouped as a vertex-specific forest 

in the testing phase. This vertex-specific forest captures more regionally detailed information than 

the conventional regression forest trained for the whole brain, thus able to predict the cortical 

attributes more precisely. Moreover, since nearby forests share a large portion of same decision 

trees, the predicted cortical attribute map is spatially smooth, which is difficult to achieve using 

the ROI-based regression forests. By integrating surface-based Haar-like features into DARF, the 

relevance of the prediction target and the regional context can be explored and used to benefit the 

prediction. Additionally, DARF can also be used for estimating the missing cortical attributes in 

the incomplete longitudinal datasets. The experiments and comparisons show that DARF is an 

effective technique in the prediction/estimation of cortical attribute maps, and it also outperforms 

four popular existing methods.   

To discover the major sulcal patterns, this dissertation adapts the method of sulcal pits 

extraction for adult brains to infant brains, and validates the spatial and temporal consistency of 

sulcal pits in the infant cortical surfaces at different ages.  Then, the sulcal pits are used as 

landmarks to form local sulcal graphs, which are the abstract descriptors of sulcal patterns. To 

discover the major sulcal patterns, a sulcal graph-based clustering framework is applied to a large 

dataset with 677 neonatal cortical surfaces. The results show that multiple new and previously 

reported major sulcal patterns have been successfully found via the proposed method. Motivated 

by the observed correlation between the sulcal patterns and the cortical thickness map, this 

dissertation further encodes the sulcal pattern information into multiple feature maps, and uses 

them to help predict the development of cortical thickness map. Experiments confirm that the 

sulcal pattern information is helpful in improving the prediction accuracy in some cortical regions. 
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5.2 Future Work 

This dissertation focuses on developing methods for two purposes: 1) estimating the 

development of cortical attribute maps, and 2) discovering the major cortical folding patterns. For 

each of them, a few future directions that may be interesting to explore are briefly discussed below. 

For the estimation of cortical attribute maps, several potential future works are listed as 

follows.   

Abnormal Brains. The current research is focused on modeling the normal development 

of cortical thickness map of healthy infants; but, due to the lack of data, the proposed method has 

not been tested on the infants with neurodevelopmental disorders. Since it has been reported that 

cortical thickness is correlated to many diseases (e.g., williams syndrome, attention-

deficit/hyperactivity disorder, autism, and bipolar disorder), modeling the abnormal cortical 

thickness map development has important clinical meanings. On one hand, building a cortical 

thickness development model for a certain disease could help better understand the development 

and effects of that disease. On the other hand, a prediction model trained with a dataset that mixes 

both normal and abnormal subjects is likely to be useful for estimating the risk of a new subject 

having brain diseases, for the purpose of early diagnosis. 

Multiple Cortical Attributes. The methods proposed in this dissertation have been tested 

for estimating only the development of cortical thickness maps. However, these methods are 

generally designed for estimating the development of any cortical morphological attribute (e.g., 

sulcal depth, local gyrification index, and myelin content). Because the development of different 

cortical attributes may be correlated, the proposed method could be extended to estimate the 

development of multiple correlated cortical attribute maps jointly. Since the correlation in these 

maps could help each other in the joint estimation, the estimation accuracy might be improved 



99 
 

compared to the current case of independent estimation. Additionally, applying the proposed 

missing data estimation strategy to multiple cortical attributes could help establish a “complete” 

multimodal longitudinal dataset, which could further benefit other studies. 

Feature Learning. Currently, in our prediction model, the regional context information 

comes partially from Haar-like features and partially from the sulcal pattern related features. Haar-

like features are randomly generated, and thus, to capture real useful context information, a large 

number of Haar-like features are needed. This is not very efficient. Sulcal pattern related features 

are manually designed to encode the sulcal pattern information. This manual design process is 

heuristic, and thus is neither efficient. To better explore regional context information, the 

convolutional neural network, which is widely used to learn useful features in image analysis, 

might be adaptively modified to learn more useful regional context features for cortical surfaces-

based analysis. 

For the discovery of major folding patterns, several potential future works are listed as 

follows. 

Sulcal Pattern Descriptors. This dissertation adopts sulcal pits as landmarks and builds 

sulcal graphs for describing sulcal patterns, as the sulcal pits lying in the deep sulcal basins are not 

sensitive to inter-subject variance in shallower cortical regions. However, the current sulcal graph-

based measurements have two limitations in representing sulcal patterns. First, current 

measurements only capture the sulcal depth of the sulcal pits, and how the sulcal depth changes in 

each sulcal basin is not taken into account. To address this limitation, one possible solution might 

be comparing the local sulcal depth maps of the corresponding sulcal basins when computing the 

similarity between two sulcal graphs. However, one must be very careful of not involving the 

sulcal depth map in the shallower cortical regions; otherwise, due to the large inter-subject 



100 
 

variation in those shallower cortical regions, the similarity measurement will be too noisy to detect 

the actual major sulcal patterns. The second limitation is that sulcal graphs cannot effectively 

represent the sulcal pattern changes along the sulcal banks. To address this limitation, more 

sophisticated sulcal pattern descriptors are needed. 

Major Sulcal Patterns in More Cortical Regions. In this dissertation, major sulcal 

patterns are explored in three primary cortical regions, including the central sulcus, superior 

temporal sulcus, and cingulate sulcus. For establishing a complete dictionary of major sulcal 

patterns, the proposed method should be also applied to all other cortical regions. Moreover, for 

high-level abstraction, mining the major sulcal patterns of the entire cortical surface is also 

expected.  

Major Gyral Patterns. Sulcus and gyrus are the two important structures of the cerebral 

cortex. In this dissertation, only the major patterns of local sulci are explored. The major patterns 

of local gyri are also important but have not been explored yet. However, the proposed sulcal 

graph-based method is not applicable to the discovery of major gyral patterns, because sulcal pits 

exist only in deep sulcal basins. Fortunately, the framework proposed in this dissertation for 

clustering similar patterns can still be used. Therefore, the only problem that is need to solve in 

mining the major gyral patterns is to design an effective shape descriptor, which can not only 

capture major gyral patterns but also be robust to superficial gyral patterns. One possible solution 

could be first using spherical wavelet technique to decompose the gyral folding metrics into 

different levels and then to measure the similarities/differences between gyri only in the major 

levels. 
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