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ABSTRACT 
 

DOHYEONG KIM: Strategy for Determining Vaccination User Fees and Locations: 
A Case Study in Rural China 

(Under the direction of Professor Dale Whittington)  
 

Despite the enormous success of vaccinations in decreasing disease burden, there are 

still millions of deaths from vaccine-preventable diseases worldwide, especially in the 

developing world. The literature reports that people living in rural areas in China often fail to 

be immunized not only because of inability to pay user fee but also due to poor geographical 

accessibility to vaccination sites. However, the level of user fees and the locations of 

vaccination sites have not been systematically determined in vaccination planning practices, 

and little research effort has been dedicated to develop a scientific tool to design optimal 

vaccination strategies. This dissertation addresses important policy questions of how many 

vaccination sites are needed, where they should be located, and how much users should be 

charged, so as to maximize the outcomes of vaccination programs under budget constraints. 

This research develops a decision-analytic tool to address these policy questions 

based on optimization models integrated with various quantitative techniques. The data were 

collected from a case study conducted in a rural area of southern China in 2004 with 

contingent valuation (CV) surveys to assess households’ willingness to pay for typhoid 

vaccinations and using geographical information systems (GIS) to obtain location and road 

information. The data were used to estimate a household demand function for vaccinations 

which depends on user travel distance as well as the user fee. Using the demand information 
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in location models and simulations, this research demonstrates how the outcomes of 

vaccination programs change based upon the outpost locations and user fees, along with 

evidence of substantial private benefits brought about by locating outposts closer to users. It 

also estimates a cost function to show how much of the costs of delivering vaccinations are 

associated with the number of outposts and the range of vaccination coverage. All these 

results are integrated into an optimization tool to seek out the user fee and locations of 

vaccination outposts that meets specific policy objectives. Upon successful adoption and 

implementation in actual planning processes, this tool could play a critical role in 

determining user fees and locations for market-based public health vaccination services in 

developing countries. 
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Chapter 1 

Introduction1

Despite a century of prevention and control efforts, infectious diseases remain an 

important global problem in public health, causing over 16 million deaths each year 

(including HIV/AIDS). Infectious diseases are thought to account for nearly 25% of all 

deaths worldwide, occurring disproportionately in developing countries (World Health 

Organization, 2003). The costs borne by people with infectious diseases have strained private 

resources, diverting them from alternative investments that may improve standards of living. 

The negative impact of these diseases is exacerbated by the increasing prevalence of 

antibiotic resistant strains (Bahl et al., 2004). Some cases of these infectious diseases can be 

prevented by safe and effective vaccines, such as those against typhoid fever and cholera. 

The fact that other ways of intervention to reduce the diseases such as water and sanitation 

improvements are both expensive and unlikely to be used in the near future in the developing 

world underscores the importance of immunization. The size of the global market for 

vaccines for diseases in developing countries is growing rapidly at a rate of more than 20% 

per year. DeRoeck et al. (2005) discovered that there is significant interest in immunization 

for those diseases in developing countries among health decision-makers, although the lack 

 
1 This dissertation is part of the Diseases of the Most Impoverished (DOMI) Program, administered by the 
International Vaccine Institute (IVI) with support from the Bill and Melinda Gates Foundation. The DOMI 
program works to accelerate the development and introduction of new generation vaccines against cholera, 
typhoid fever and shigellosis. The Program involves a number of parallel activities including epidemiological 
studies, social science studies, and vaccine technology transfer. The results of the program will support public 
decision-makers as they make decisions regarding immunization programs for typhoid fever. 
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of public sector resources for immunization programs is expected to slow the introduction of 

national immunization programs.  

In spite of the enormous success of vaccinations in decreasing the burden of morbidity 

and mortality caused by a variety of pathogens, there are still millions of deaths from vaccine-

preventable diseases worldwide, especially in the developing world (Global Alliance for 

Vaccines and Information, 2005). For instance, typhoid fever remains a major public health 

problem in the developing world, causing an estimated 21-22 million cases and more than 

200,000 deaths annually (Acosta et al., 2005). This situation is largely caused by the failure to 

implement vaccine delivery programs in a number of developing countries. As advanced 

technologies allow for the development of new vaccines against diseases for which no 

vaccines currently exist and improved vaccines against diseases for which a vaccine currently 

does exist, it is imperative that a vigorous effort is mounted to assure the delivery of such 

vaccines for the populations at risk (Fauci, 2001). Since the link between people and 

immunization can only be forged and maintained by an effective system of delivery, a careful 

choice of strategies for this delivery system is vital. 

In recent years, numerous studies have attempted to identify the determinants of low 

vaccination coverage in developing countries. Xie and Dow (2005) examined the effects of 

child, household, and community health facility characteristics on child immunization rates 

in China, and found that the most important determinants were service price and maternal 

education. The education factor is one of the well-known determinants of vaccination rates 

(Streatfield et al., 1990; Rahman et al., 1995), but it is not directly associated with the design 

of delivery strategy and needs to be addressed within a broader policy framework to achieve 

vaccination objectives in the long run. Poore (1988) argues that two major problems have 
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confronted the delivery strategy of health services in developing countries: lack of funds and 

limited accessibility of susceptible populations to the services. Approaches to the lack of 

funds problem include user charge, taxation, better management of existing resources, 

reallocation of health resources, and increased funding from donor nations. Approaches to 

improve accessibility include frequent and convenient vaccination schedules, financial 

incentives, channeling by members of the community, and improved proximity to 

vaccination locations. Among these, much attention has been given to user fees in the 

literature.  

Although the Addis Ababa Consensus (1997)2 stated explicitly that immunization 

services should be provided free of charge to the consumer due to positive externalities3, user 

fees have been charged for most vaccines that were not added to the national immunization 

program in developing countries such as China (Jing, 2004). For such vaccines, setting the 

level of user fee is an extremely important decision for vaccination policy-makers because it 

affects the quantity of the vaccinations demanded by the households and ensures the financial 

sustainability of vaccination programs. Furthermore, it influences all relevant policy 

outcomes such as number of people vaccinated, revenue from and costs of vaccination 

programs, cases of disease avoided, and general cost savings incurred in situations where 

illness was prevented (i.e. cost of illness avoided). The existing literature presents much 

empirical evidence dealing with the effect of user fees on immunization rate (e.g. price 

elasticity of demand), program revenue and cost-recovery schemes, and health outcome. 
 
2 The Addis Ababa Consensus on principles of cost-sharing in education and health resulted from a forum 
convened under the auspices of the United Nations Economic Commission for Africa (UNECA), in 
collaboration with UNICEF (the United Nations Children's Fund) and the World Bank in Addis Ababa in June 
1997. The forum addressed cost-sharing in the social sectors of sub-Saharan Africa. 
 
3 Positive externalities arise because immunization can benefit not only the immunized individual but also the 
population in which he or she lives. At high levels of coverage, immunization against a disease may stop the 
spread of the disease in the community, which is known as herd immunity. 
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However, the literature has also shown that immunization coverage depends on how 

vaccinations are delivered (Zhang et al., 1999; Zeng et al., 1999; Xie and Dow, 2005). 

Among other factors, proximity to vaccination sites or time needed to travel to the sites has 

been often associated with immunization coverage in less developed countries, particularly in 

rural areas. In this case, locations of vaccination services play important roles in determining 

relevant outcomes in vaccination policy. Researchers have also found that the costs of 

vaccination differ based on vaccination locations (Linkins et al., 1995; Routh and Khuda, 

2000; Walker et al., 2004). These findings lead one to consider that a vaccination policy 

focusing only on user fees while ignoring the location factor is short-sighted and could 

produce distorted or undesirable outcomes, such as under-immunization in remote rural areas. 

If the number of vaccinations demanded depends on where vaccinations are offered and the 

cost of vaccine delivery is affected by the number and location of vaccination sites, important 

policy questions about vaccination delivery will be raised, such as4:

(1) How many vaccination sites in a region (e.g. state, county, township, etc.) should 

be used to offer vaccinations? 

(2) Where should these sites be located? 

(3) Given the spatial configuration of vaccination locations and other factors, how 

much should users be charged for vaccinations? 

 

These are the main questions that my dissertation research addresses. Answering 

these questions constitutes the goal of this research, which is to aid the development of 

 
4 Of course, the question “With what frequency should vaccinations be offered at the sites and clinics?” also 
would be important, but this question is not addressed in this research. 
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vaccination policy in developing countries by addressing two planning decision variables: 

user fees and distance to the vaccination delivery site. Of course, there are other factors that 

affect vaccination rates such as user’s or parental education and wealth (Gwatkin and 

Deveshwar-Bahl, 2001). However, these factors are not directly controllable by the 

government, and thus this dissertation limits its inquiry to the two planning decision 

variables, user fees and vaccination locations, which can be implemented in the design of 

vaccination planning once the best solutions are determined. 

The effect of vaccination location on vaccine uptake has not been systematically 

addressed in prior research. Although demand studies have reported the negative effect of 

vaccination user fee level on demand for vaccinations (Whittington et al., 2002, 2003; 

Cropper et al., 2004; Suraratdecha et al., 2005; Canh et al., 2006; Kim et al., 2007), the effect 

of vaccination locations on demand has not been examined. Previous studies did not pay 

sufficient attention to the potential effect of vaccination location and simply mentioned in the 

contingent valuation scenario that vaccinations are offered at convenient locations. However, 

in reality, vaccinations have been delivered at different locations in most countries, and thus 

travel distance to vaccination locations varies across households, in particular in rural and 

remote areas. Once vaccination locations have been determined, some households might 

have to spend substantial time and costs to travel to them. For some households, the cost of 

travel to the vaccination site, including the opportunity cost of travel as well as actual travel 

expenses, might be a bigger economic burden than the vaccination user fee itself. In other 

words, the vaccination policy could be flawed if only the effect of user fees on demand is 

considered. Without careful consideration of vaccination locations, the quantity of the 

vaccinations demanded might be overestimated in remote rural areas. Therefore, it is 
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worthwhile to examine how the demand for vaccination is affected by location and how the 

location effect should be taken into account in policy decisions. 

The five specific objectives (tasks) of this dissertation research are: 

 

(1) To assess whether or not user demand for vaccinations depends on the number 

and location of vaccination sites, and if it does, to what extent; 

(2) To determine where to locate vaccination sites in order to meet certain policy 

objectives, and examine how the number and locations of vaccination sites affect 

the potential outcomes of a vaccination program;  

(3) To estimate the cost function to investigate how delivery cost of vaccination is 

affected by the number of vaccination sites as well as vaccination coverage (the 

number of vaccinations);   

(4) To develop a methodology that can be used to find systematically the optimal user 

fee levels and locations of vaccination services in order to meet a specific policy 

objective; 

(5) To discuss how the optimization-based quantitative tool of this research can best 

be used in actual vaccination planning processes in developing countries such as 

China.  

 

To address these objectives, this dissertation uses a case study of typhoid vaccination 

in a rural area of southern China as part of the Diseases of the Most Impoverished (DOMI) 

research program, which is administered by the International Vaccine Institute (IVI) and 

funded by the Bill and Melinda Gates Foundation. Data were collected in 2004 from 
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collaborative fieldwork by the Center for Disease Control (CDC5) officials in Guangxi 

Province, Lingchuan County, and Daxu Township in China, and researchers from IVI and the 

University of North Carolina at Chapel Hill. 

The following chapters of this dissertation address the above five objectives. Chapter 

2 is a review of the literature concerning four major topics in this research: (1) stated 

preference methods for estimating household demand for vaccination, (2) the effect of travel 

distance on the demand for vaccinations, (3) location models that have been used to seek the 

optimal spatial distribution of health services, and (4) costs of vaccination due to the spatial 

configuration of vaccination sites. 

To deal with the first objective, Chapter 3 presents the findings from a contingent 

valuation study of household demands in Daxu Township, a rural township in southern China, 

focusing on the effects that user fees, distance to vaccination sites and household income 

have on the number of typhoid vaccinations demanded. The household demand survey data 

and geographic data collected in the fieldwork are integrated to estimate the demand function 

to assess the distance effect on household demand for vaccinations. The negative effects of 

user fee and distance, and the positive effects of income and household size on demand for 

vaccinations are highlighted in this private demand study since they underpin the entire 

research in this dissertation. 

Relating to the second objective, Chapter 4 applies location models from the 

operation research (OR) literature to the case study for Daxu Township. The number and 

locations of vaccination clinics (also called outposts) are identified using two different 

 
5 Throughout this dissertation, the term “CDC”, an abbreviation of Center for Disease Control or Center for 
Disease Control and Prevention, has two different meanings: (1) the governmental institution of the CDC, and 
(2) the actual physical location of CDC office/clinic. To avoid ambiguity, when referring to the governmental 
institution of the CDC, terms such as “CDC agency”, “CDC staff”, or “CDC officials” are used. When it is used 
without any clarification, “CDC” denotes the physical location of the CDC office/clinic. 
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location models, set covering and p-median. A simulation approach predicts vaccination 

outcomes for different solutions, including the number of vaccinations, number of cases of 

illness avoided, total revenues from user charges, distance users have to travel, and so on. It 

also shows how the outcomes would change for different levels of user fees and locations of 

vaccination outposts. 

Dealing with the third objective, Chapter 5 integrates data and information from the 

relevant literature to estimate a cost function for a mass vaccination campaign in Daxu 

Township. The function indicates how the cost of vaccination delivery changes with the 

number of vaccination locations and the number of people vaccinated. It also explores 

whether economies of scale or diseconomies of scale exist for the vaccination program in this 

township. 

For the fourth objective, Chapter 6 develops the optimization models to determine the 

optimal level of user fee and outpost locations for a vaccination program in Daxu Township 

by using demand and cost functions estimated in the previous chapters. These formal 

optimization models employ mixed integer programming to determine the optimal user fee 

and outpost locations for two different planning objectives: maximizing vaccination coverage 

and maximizing cases of illness avoided. Sensitivity and regression analyses are performed 

to examine how the “globally optimal” solution compares with alternative solutions and how 

the solutions change with additional constraints and requirements. 

Relating to the last objective, Chapter 7 deals with how the tool developed in the 

previous chapters for determining the optimal user fee and location of vaccination sites can 

best be applied in the vaccination planning processes in developing countries such as China.  

The chapter contains a review of the literature which examines how optimization tools have 
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been used in different planning practices in developing countries and identifies the obstacles 

standing in the way of adopting and implementing such tools.  Based on this literature review, 

the chapter then includes a proposal.  The proposal is a practical plan intended to encourage 

policy-makers to adopt the optimization-based tool of this research to their vaccination 

planning design.  The chapter also includes suggestions dealing with how to address some of 

the key issues pertaining to the implementation of this tool using examples from the case 

study in Daxu Township. 

The final chapter, Chapter 8, summarizes principal findings and major contributions 

of this dissertation research, and also mentions some key limitations. 

 



Chapter 2 

Literature review 

 

This chapter summarizes the literature for four main topics of this research. Section 

2.1 describes two stated preference methods that have been used to estimate private demand 

for vaccinations and compares them to each other. Section 2.2 gives an overview of demand 

studies for vaccinations that take into account location or travel distance, and then it 

summarizes studies of demand for other health services that take into account travel to the 

service locations. It focuses on the literature that shows the effects of accessibility on the 

quantity of health services demanded. Section 2.3 reviews the literature on the optimal 

location of vaccination and other service centers. Section 2.4 deals with the literature 

concerning how delivery costs of vaccination programs vary with the locations of vaccination 

clinics. It also reviews the literature that discusses how the costs of delivering other health 

services change with different spatial configurations for points of services. The last section, 

section 2.5, summarizes the entire chapter and highlights the gaps in this field of study that 

this dissertation addresses. 
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2.1.  Stated preference methods for vaccinations: contingent valuation (CV) vs. choice 

modeling (CM) 

 

Two different stated preference methods have been used to determine individual and 

household demand for vaccinations in developing countries: contingent valuation (CV) and 

choice modeling (CM). CV for vaccinations are frequently-used hypothetical approaches for 

eliciting information on private demand when vaccines are currently unavailable or not 

widely used (Whittington et al., 2002, 2003; Cropper et al., 2004; Suraratdecha et al., 2005; 

Canh et al., 2006; Kim et al., 2007). CV methods have been used to estimate vaccination 

demands not only for the respondent but also for entire households. Whittington et al. (2002) 

measured the private demand for a hypothetical vaccine against HIV/AIDS by using CV 

surveys with 234 adults in Guadalajara, Mexico, and found the mean willingness to pay 

(WTP) of the respondents to be about USD 670. Suraratdecha et al. (2005) also conducted a 

similar study for hypothetical AIDS vaccines with two different efficacies in Thailand, and 

revealed that the respondents’ demand for both high and low efficacy vaccines is substantial. 

Again Whittington et al. (2003) conducted a CV survey, this time in Marracuene, 

Mozambique, to estimate adults’ perceived economic benefits of avoiding malaria, and 

reported that the average respondent’s WTP to avoid the risk of contracting malaria for one 

year was about USD 14.  

In a different vein, Cropper et al. (2004) estimated a household demand function for a 

hypothetical malaria vaccine, and measured the household’s maximum WTP to provide 

vaccines for all family members, which turned out to be about USD 36 per household per 

year. Canh et al. (2006) estimated private demand for typhoid vaccines with different 
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characteristics (i.e. efficacy and duration) in Hue, Vietnam for both the respondent only and 

all members of the household. Mean respondent WTP for a single vaccine ranged from USD 

2.3 to 4.8, and mean household WTP ranged from USD 21 to 27. Kim et al. (2007) reported 

the results of a companion study for cholera vaccines in Hue, and found that mean 

respondent WTP for a 50% effective/3-year cholera vaccine was about USD 6 while mean 

household WTP was about USD 40 for the vaccine with the same attributes. 

These studies have provided vaccination planners with economic data regarding 

potential vaccination coverage through the private market, predicted revenue based on user 

fees, and the economic benefits of preventing a disease. This information can be included in 

cost benefit and cost effectiveness analyses (Poulos et al., 2004). CV is the simplest stated 

preference technique (Johnson et al., 1996). When the scenarios given to respondents differ 

in terms of attributes (e.g. price, effectiveness), CV relies on comparing responses between 

the subjects in order to infer the importance of these attributes.  

CM, however, has evolved in the context of market research and has been applied to 

non-market valuation as an alternative or complement to CV (Johnson et al., 2000). In 

general, a CM experiment asks respondents a series of questions to choose among multiple 

alternatives with different levels of attributes (including the status quo). CM can thus be used 

to estimate private household demand for vaccinations, and to explore the respondents’ 

choice dynamics among different sets of attributes of the vaccine (e.g. efficacy and duration) 

and vaccination program (e.g. price and delivery method). CM thus provides researchers with 

tradeoff information about the attributes which helps in understanding what dynamics 

actually drive the respondents’ choices, while CV typically offers more limited tradeoff 

information between a good or service in itself and its price (Stevens et al., 2000). Some 
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argue that the purchase decision exercise in CM is more realistic to the respondents and thus 

better simulates their purchasing behavior in the real market (Hall et al., 2004). However, 

most of the CM studies have estimated the demands only for an individual (e.g. respondent 

itself), not for an entire household. The development of CM methods in estimating household 

demands is still under development. 

Relatively few studies explicitly compare the results of CV and CM studies. Boxall et 

al. (1996) reported that the demand estimates for the improvements at a wildlife management 

unit in Alberta, Canada were over twenty times higher using CV than CM. They concluded 

that the difference arises from the respondents who seemed to ignore substitution possibilities 

when answering CV questions. However, Adamowicz et al. (1998) measured passive use 

values for preserving caribou in Alberta, Canada and found that the differences of welfare 

estimates between the two methods were not statistically significant. Foster and Mourato 

(2003) examined the differences between CV and CM estimates of the value of charitable 

services in the United Kingdom. Unlike other comparison studies, they used a split-sample 

experiment (i.e. one part of the sample completed a CV question, while the other sample 

completed a CM survey), and found a statistically significant difference between the CV and 

CM results. They found that economic values to save the housing sector alone estimated by 

CV are more than ten times larger than those from CM, while values to save all charitable 

sectors for CM was almost five times larger for CV. They suggest that this difference is 

mainly due to an “adding-up” problem. They also found from the scope test much stronger 

evidence for sensitivity to scope in the CM approach than the CV approach. 

Cook et al. (2007) compared the demand for cholera and typhoid vaccines using the 

CM approach with those from a companion CV study that was done concurrently in Hue, 
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Vietnam. They found the results are quite different. Overall, the CV welfare estimates are 

remarkably similar across different levels of attributes of vaccines (efficacy, duration), while 

the welfare estimates for the vaccines using the CM approach range more widely (i.e. much 

larger demand for the most effective and durable vaccine, but much lower demand for the 

least effective and durable vaccine). For instance, the estimated economic value of a 

currently available cholera vaccine (i.e. 50% effective for 3 years) from CM is much lower 

than that from CV, while the CM estimates are about two times higher than CV estimates for 

the most protective hypothetical vaccine (i.e. 99% effective for 20 years).  

In summary, in the literature there seems to be no consensus on how CV and CM 

results differ and no clear explanation as to why they are different. However, the literature 

comparing CV and CM indicates that the two methods can produce significantly different 

outputs, depending on the characteristics of the estimated goods or services as well as 

demand elicitation scenario design and context of the study. For application to the case of 

vaccines, the results from the two methods could be different in the event that respondents 

had some knowledge and information about the characteristics of the vaccines they have 

already received or about the availability of other substitute vaccines with different 

characteristics. 

 

2.2.  Effect of travel distance on demand 

 

This section investigates demand studies for vaccinations that have taken travel 

distance into account. Although a number of recent stated-preference studies have measured 

private demand for vaccinations, few private demand studies have explicitly considered 
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travel distance as a determinant of demand for vaccinations. Hall et al. (2002) used stated 

preference discrete choice modeling to examine how people in Sydney, Australia would 

demand the varicella (chicken pox) vaccination based on its attributes including the 

vaccination location. They found that provision of the vaccination at schools or early 

childhood clinics did not influence respondents’ choices. However, while their study did 

address people’s preferences about the types of vaccination locations, it did not deal with the 

direct effect of travel distance on vaccination demand. 

There are a few other demand studies that have addressed the issue of accessibility, 

but they do not explicitly discuss the geographic accessibility to vaccination sites. Zhang et 

al. (1999) conducted surveys among people in an area in southern China that had both high 

and low quality immunization service delivery to find out which major factors were 

associated with immunization coverage. Their study found that providing multiple sessions 

frequently was the most effective way of improving accessibility for vaccinations, but it did 

not address the issue of spatial accessibility. Xie and Dow (2005) used longitudinal survey 

data to explore the determinants of child immunization in China, and found that rural travel 

time to a regular clinic was negatively related to immunization (i.e. the farther they had to 

travel to the clinic, the less likely they were to be immunized). However, travel time was 

measured by asking the respondents how long they traveled to usual sources of access to care, 

not to the actual places where vaccinations were offered. Thus, in their analysis, the travel 

time factor was used as a proxy for measuring availability of local health facilities, not for 

estimating the direct effect of travel distance to vaccination sites on the demand for 

vaccination. 

Concerning health services other than vaccinations, a growing number of stated-
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preference demand studies have recently been dedicated to the examination of the effect of 

location and travel cost on private demand. Among others, McIntosh and Ryan (2002) used a 

discrete choice experiment to estimate the residents' marginal rates of substitution between 

location, waiting time and travel cost for the provision of elective surgery in the United 

Kingdom. They found that the respondents would prefer their treatment with low waiting 

time and travel cost, although they did not measure the effect of travel distance on the 

demand for the health service. Clarke (1998; 2002) developed a contingent valuation 

scenario with two free mammogram alternatives in rural Australia, New South Wales. The 

first alternative involved using a mobile screening van that came to the women's own town 

(funded by paying higher taxes) while the second alternative required women to travel to a 

different town to have a mammogram at any time of the year. Clarke also used the travel cost 

approach to construct a demand curve for mammogram screening by using access costs, 

including travel time and expenses. Although his models implicitly found that people were 

less willing to seek services that required higher travel cost, the main goal of his analysis was 

to estimate the economic benefits of the service by using hypothetical taxes or travel cost. 

Thus, he failed to assess the quantity of service demanded using an objective measure of 

travel distance. 

Although only a few stated-preference demand studies have focused on travel 

distance in estimating demand for health services, a number of studies analyzing service 

utilization data from health facilities have provided enormous evidence that the use of a 

health service depends on distance from a health facility. Since Acton (1975) initially 

emphasized the importance of non-monetary cost factors, such as travel time and distance, in 

determining the private demand for health services in the absence of user fees, numerous 
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studies have supported his argument by examining utilization patterns of public or private 

health facilities in developed or developing nations (Rahman et al., 1982; Muller et al., 1998; 

Noorali et al., 1999; Field et al., 2001). Among other things, Muller et al. (1998) presented a 

distance decay function for attendance at a rural health center in Papua New Guinea. Noorali 

et al. (1999) assessed whether use of government services for treatment of an acute childhood 

illness was influenced by the physical accessibility of the government primary health centers 

in a rural district of Pakistan. They found that children living near a governmental facility 

were less likely to use the facility than those living farther away. Yet this distance effect 

became insignificant after controlling for the effects of distance from a private facility and 

treatment cost. Field et al. (2001) showed the relationship between distance and utilization of 

the general practitioner surgery in the United Kingdom. They all highlighted the proximity 

factor as one of the primary determinants of use of health services, but their data were not 

based on an actual survey or experiment that was specifically designed to find out explicit 

distance effects. 

 

2.3.  Optimal location of vaccination sites 

 

If distance is a determinant of the demand for vaccinations, it would be important to 

find out how it affects the optimal location of vaccination sites. The existing literature reports 

that vaccinations have been usually offered at three types of locations: (1) health centers or 

clinics, (2) homes of those being vaccinated, and (3) schools. In most developing countries, 

vaccinations are usually offered at designated health facilities, either as part of mass 

vaccination campaigns or in routine programs, except for school-based vaccinations for 



18

school-aged children and occasional doorstep vaccination (i.e. house-to-house vaccination) 

(Zhang et al., 1999). However, there has been little evidence from research on which to base 

their decisions as to where to deliver vaccinations. 

Models from operations research (OR) have often been used in problems to determine 

where points of supply should be located to be matched with points of demand. They involve 

simultaneously selecting a set of locations for facilities and assigning spatially distributed 

sets of demands to these facilities to optimize some specified measurable criterion (Rahman 

and Smith, 2000). The location models can be classified into three different kinds based on 

objective: set covering models, p-center models, and p-median models (Jia et al., 2005). Set 

covering models aim to minimize the number of facilities while providing coverage to all 

demand points within a specified maximum distance (Toregas and ReVelle, 1973). P-center 

models have an objective to minimize the maximum distance (or travel time) between the 

demand points and the facilities (Chen and Handler, 1993), while p-median models help 

locate a specified number of facilities so that the total travel distance or time between the 

demand points and their nearest facilities weighted by population size is minimized (ReVelle 

and Swain, 1970). The p-median model is often attractive since the smaller the total 

population-weighted travel distance or time, the more convenient for the users to get to the 

nearest facility, but it allows the facilities to be located beyond some maximum travel 

distance. When enhancing coverage in hard-to-reach areas is a central concern in locating 

facilities, the set covering model may provide a better solution since it restricts all users from 

traveling more than a specified maximum distance. To sum up, location models could 

provide a framework for finding the optimal number of vaccination sites, evaluating the 

effectiveness of existing decisions about location of vaccination sites, and generating 
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alternative sets of locations that would improve outcomes of vaccinations. 

There is very little literature dealing with attempts to find out the optimal location of 

vaccination sites by using OR models. Only one article has been found which used OR 

models to optimize the locations of preventive health facilities. Verter and Lapierre (2002) 

developed a generic model to determine where to put health care facilities that provide 

preventive services such as childhood immunizations, flu shots, blood tests, and cancer 

screening exams. They let I (i ∈ I) denote the set of population centers and J denote the set of 

alternative facility sites. In general, the expected number of i residents who would seek 

services at facility j (cij) can be determined as: 

 

cij = f (d’ij/D)·P·hi = (P – (P/D)·d’ij)·hi eq. 2.1 

where D = maximum distance an individual would travel for preventive care 

d’ij = distance between population center i and facility sites j (D if it is beyond D) 

f(•) = function of participation probability with distance; f(0)=1, f(D)=0; assumed 

linear 

P = probability of participation when travel distance is negligible 

hi = number of residents in population center i. 

The decision variables are yi (1 if a facility is open at site j, 0 otherwise) and xij (1 if 

population center i is served by a facility at site j, 0 otherwise). Let Sij denote the set of 

alternative facility sites, indexed by l, that are closer to population center i than site j. Let 

Wmin denote the minimum required workload at a facility. The following is a mathematical 

formulation of the preventive health care facility location problem. 

Maximize: ∑∑
i j

ijij xc eq. 2.2 
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Subject to ∑
j

ijx ≤1, i ∈ I, eq. 2.3 

∑
i

ijij xc ≥ Wmin yj, j ∈ J, eq. 2.4 

xij ≤ yj, i ∈ I, j ∈ J, eq. 2.5 

xij ≤ 1- yl, l ∈ Sij, i ∈ I, j ∈ J, eq. 2.6 

xij = 0 or 1, i ∈ I, j ∈ J, eq. 2.7 

yj = 0 or 1, j ∈ J, eq. 2.8 

The objective of this model is to maximize the expected number of people who 

participate in preventive programs (eq. 2.2). The six constraints of the model are: (1) at most 

one facility can serve a population center (eq. 2.3)6, (2) the number of facilities is restricted 

to a level that produces an acceptable minimum workload at each facility (eq. 2.4), (3) a 

population center can only be served by an open facility (eq. 2.5), (4) each population center 

is assigned to the closest open facility (eq. 2.6), (5) the decision variable xij is binary (zero or 

one) (eq. 2.7), and (6) the decision variable yi is binary (zero or one) (eq. 2.8). This model 

shows that they regarded proximity to facilities as an important factor in the success or 

failure of a preventive health care program. Their efforts constitute a step towards the 

development of a comprehensive framework for designing a system of preventive health care 

facilities, along with a mathematical formulation and alternative solution approach.  

However, there are a few shortcomings of this model. As Verter and Lapierre (2002) 

remarked in the concluding section of their paper, more research is needed to better 

understand the factors that attract people to participate in preventive programs. The distance-

participation function assumed in this model, f(•), was not based on actual data, but instead 

 
6 Eq. 2.3 indicates some population centers could be left unassigned if there are no open facilities within a 
maximum distance D.
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they simply assumed its functional form and parameters. This limitation underscores an 

important role of the stated-preference demand study in location analysis for vaccinations as 

it improves the reliability of the location models by providing the demand function based on 

the actual survey data. Furthermore, their linearity assumption on the functional form of 

distance decay function in eq. 2.1 is not supported by other research in the field (Rahman et 

al., 1982; Farhan and Murray, 2006). Additionally, eq. 2.4 imposes an equity constraint of 

workloads among the open facilities, but it might be difficult to enforce it because some 

people may not want to be forced to receive services at a specific site assigned by 

government. 

Unlike the scarcity of research done regarding vaccinations as mentioned above, a 

great amount of literature deals with the development of location models to optimize the 

locations of health facilities in the private and public sector (Abernathy and Hershey, 1972; 

Parker and Srinivasan, 1976; McLafferty and Broe, 1990; Drezner, 1990; Gusein-Zade, 

1992). Recently, Revelle and Eiselt (2005) provided an in-depth review of the literature that 

uses location-allocation models in health service development planning in developing 

nations. Among other things, Oppong and Hodgson (1994) used location models to 

demonstrate that substantial improvement in accessibility can be achieved with better 

location choices and without additional facilities in Ghana. These models were upgraded by 

Moller-Jensen and Kofie (2001) by applying GIS-based data collection and analysis. They 

conducted location allocation analysis with two different objectives: to minimize total 

weighted distance and to maximize health coverage within 8 km. The distance-minimization 

model chose the locations that provide the lowest total weighted distance, while the 

coverage-maximization model found locations for new health centers in a way that ensures 
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that the fraction of people living within an 8 km distance limit is maximized. Their models 

were used to select optimal locations and provide statistics on average distance to health 

centers and percentage of population covered. 

Rahman and Smith (1999) used location-allocation models to find the optimal 

locations for health and family welfare centers and community clinics in one “thana” (i.e. 

county) in Bangladesh, which has a population of tens to hundreds of thousands, to ensure 

that as many people as possible are within a specified maximum service distance. They 

showed that the implementation of their solutions would make a health delivery system 35% 

less costly, and thus their model results can be used as a guideline as to how health facilities 

should be deployed to maximize physical accessibility and population coverage. They chose 

the maximal covering location problem rather than a p-median problem because they argued 

that the p-median model would consider the whole population including those who might be 

too far from a facility. However, the maximum covering location model would be suitable 

only for locating the facilities providing routine health services of which service distances are 

well known. Furthermore, their models simply assumed that all people living within a 

maximum service distance are users of the services provided by the health facilities. This 

assumption, however, is often not true. 

2.4.  Cost of vaccination programs 

In countries with decentralized health systems such as China, the introduction or 

expansion of vaccinations that are not part of the national immunization program into the 

public health sector is likely to be financed by local governments. If subsidies are not 
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available, the program costs must be covered by the revenue from user fees and the cost 

savings available to public health services by reductions in disease incidence. Therefore, 

estimates of vaccination costs are needed for determining user fees to ensure the financial 

sustainability of the vaccination program.  

Locating vaccination sites at optimal locations might increase vaccination coverage 

while using fewer vaccination sites, and thus save delivery costs incurred in the vaccination 

program. A number of cost or cost-effectiveness studies investigate how delivery costs are 

different by spatial arrangements of vaccination locations. Such information would be 

valuable to help in the determination of where to offer vaccinations. Compared to the limited 

amount of research dealing with how private demand for vaccinations is affected by location 

of vaccination clinics, there is a plethora of literature examining the costs and cost-

effectiveness of vaccination programs according to the location where the vaccinations are 

delivered. Yet a majority of cost-related studies focus on how the costs of immunization 

change by the type or volume of immunization (Walker et al., 2004; Robertson et al., 1984; 

Phonboon et al., 1989), or vaccination schedule (Jacobson et al., 1999). 

There are two studies that compare costs of vaccinations at home and at fixed sites. 

Linkins et al. (1995) compared the vaccination coverage and vaccination costs per child for 

house-to-house and fixed-site delivery in a mass campaign in Egypt. They found that the cost 

per child vaccinated was similar on average since house-to-house vaccination achieved high 

levels of vaccination coverage and reduced the amount of vaccine wastage in spite of higher 

personnel costs. However, for children at the highest risk of infection, vaccination cost was 

actually 25-50% less on a per-child basis using house-to-house vaccination since such 

children were less likely to visit fixed sites. They concluded that home delivery may prove to 
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be the most cost-effective eradication strategy by ensuring universal access to immunization. 

However, Routh and Khuda (2000) reported that unit cost per child care output, including 

child immunization, by doorstep provision (about USD 150) were found to be roughly twice 

as much as that by fixed-based provision at primary health care clinics (USD 50-80) in urban 

Dhaka, Bangladesh. But they remarked that the static-clinic based delivery of immunization 

services should be complemented with a scaled-down group of outreach workers with a 

redefined role of undertaking selective home visits to provide information and motivation to 

target segments. Although both of the two studies compare costs of vaccinations at fixed sites 

with those at home, the fixed sites defined in Linkins et al. (1995) were temporarily 

established for mass campaigns, while Routh and Khuda (2000) defined the fixed sites as 

primary health care clinics that are routinely available. 

There are a few studies that compare the costs of delivering vaccinations at 

permanent routine sites with those of a mass campaign (Creese, 1984; Shepard et al., 1989; 

Brenzel, 1994). Creese (1984) showed that mass campaigns for polio immunization required 

less salaries and capital costs but more publicity and transportation costs in Brazil. Shepard et 

al. (1989) compared the costs and effectiveness of routine vaccination efforts conducted in 

medical facilities versus mass immunization campaigns, and found that the costs for fully 

vaccinating a child were USD 4.39 for routine services compared with USD 8.60 for mass 

campaigns. Those two vaccination delivery strategies should correspond with different 

spatial configurations of vaccination sites, but they did not report how much spatial factors 

(i.e. locations or distance) affected the difference in supply costs.  

There are several studies that compare the immunization costs between fixed centers 

and mobile (or outreach, satellite) units (World Health Organization, 1979; Shepherd et al., 
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1982; Phonboon et al., 1989; Brenzel, 1994; Khan et al., 2004). According to Shepherd et al. 

(1982), salaries took 62% of total costs of fixed-center immunization, while supervision and 

transportation costs were much higher with mobile immunization than with fixed 

immunization. Phonboon et al. (1989) showed that average cost per immunized child turned 

out to be smaller for fixed services than for outreach services. Brenzel (1994) reviewed seven 

cost and cost-effectiveness studies on three different delivery strategies of the EPI (Expanded 

Program on Immunization)7, and found that the cost per child who was fully immunized by 

the six EPI vaccines was highest for the campaign (USD 23.08 on average), followed by the 

mobile team (USD 19.24 on average) and fixed-facility immunization (USD 13.87 on 

average). On the contrary, Khan et al. (2004) estimated the costs of providing child 

immunization services in Bangladesh, and found that the outreach facilities provided 

immunization services at a much lower cost than the permanent static facilities. Khan et al.’s 

finding implies that the cost of immunizing children can be reduced significantly through 

better targeting.  

Other than vaccination, a number of studies reported that the cost of delivering 

services changes according to the spatial configurations for points of services. Among others, 

Khan et al. (2001) provided a framework of incorporating a cost function into an OR location 

model. They showed that average facility-based costs tend to decline with increasing radius 

from emergency obstetric care facilities in Bangladesh. This supply-cost function was 

summed with the cost function incurred by households which tends to increase with the 

increasing radius of a facility’s service area, which generates a U-shaped cost curve. In so 

 
7 In most developing countries, the EPI program is run by the Ministry of Health in close cooperation with 
WHO, UNICEF and other partners, and implemented in each region by the regional health bureaus. The six 
initial target diseases of the EPI program include diphtheria, tetanus, pertussis (whooping cough), polio, measles, 
and tuberculosis (WHO, 1989). All vaccines included in the EPI program were provided for free. 
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doing, they defined the optimal radius of a health facility at the minimum point of the 

aggregated average cost curve (i.e. 6 to 12 km). Their approach is quite impressive in the 

sense that it incorporates costs incurred by both health service providers and households into 

the model. However, their model is contingent upon a series of assumptions. In particular, it 

estimated the need for the services in the locality based on assumptions about the number of 

high-risk patients and the probability that they will use the facility. This might have created 

bias in estimating costs for households and for the health centers. 

2.5.  Conclusions 

 

The purpose of the literature review in this chapter is to show both what has been 

done already and also to highlight what is left undone in the field of my dissertation research. 

I found that researchers have produced a great amount of evidence showing that accessibility 

or proximity is one of the most significant factors that determine the demand for health 

services. However, it turns out that only a limited amount of research has been done to 

explicitly measure the effect of travel distance on private demand for vaccinations. Recently, 

stated-preference methods have been used for estimating the private demand for 

vaccinations, but travel distance has not been incorporated into the methods to measure 

distance effect on vaccination demand. Furthermore, although there is a great deal of OR 

literature aimed at putting health facilities in optimal locations, relatively little research has 

been carried out on developing optimization models which can be applied appropriately to 

locating vaccination sites in developing countries. 

 



Chapter 3 

Stated preference demand study for typhoid vaccinations in Daxu Township 

 

This dissertation research aims, among other things, at providing a viable and 

practical way of determining the best number of and most suitable location for vaccination 

sites in a specified study area. If user demand were not affected by where vaccination sites 

are located and how far users travel to get to them, the location of vaccination sites would not 

be in need of research. This research, therefore, starts by assessing the extent to which the 

demand for vaccinations depends on the location of vaccination sites and the distance users 

have to travel to be vaccinated. 

To address this question, this research expanded on a case study in southern China 

undertaken by the University of North Carolina at Chapel Hill (UNC-CH) for the 

International Vaccine Institute (IVI) under the auspices of the Diseases of the Most 

Impoverished (DOMI) program. The major goal of that study was to assess the amounts of 

money households were willing to pay for typhoid fever vaccinations in Lingchuan County, 

China. My dissertation research focuses in on one of the most remote and mountainous areas 

in the county, Daxu Township, to investigate whether or not the demand for typhoid 

vaccinations depends on travel distance from the household’s dwelling to the vaccination site, 

and if so, to what extent. 
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3.1.  Background 

China has made noticeable progress in its immunization status, yet problems still 

exist due to imbalanced regional development and shortage of funds (Xinhua News Agency, 

2005). Vaccination status has regressed in some economically backward and remote areas 

and failed to reach national coverage targets. Many national and local reports in China have 

suggested that special attention should be given to immunization in rural and remote areas so 

as to make the vaccination projects beneficial to more people. Most researchers who have 

examined the reasons for the low immunization rate in China argue that vaccine price is a 

key determinant of low demand because users are charged fees in China for all vaccinations 

except in the Expanded Program of Immunization (EPI). However, the literature also shows 

that the location of vaccination sites is another important factor that affects vaccination 

coverage in rural China (see Chapter 2).  

This chapter examines how much user demand is affected by a series of determinants, 

such as price of vaccine, travel distance, household income, household size, and so on, using 

data from a case study for vaccinations against typhoid fever in a rural township in China. 

Typhoid fever is still endemic in this area, but the proportion of people covered by 

vaccination is small. This township is a remote and mountainous region where villagers 

spend considerable time traveling to central health facilities, such as the CDC, where 

vaccinations are routinely offered. Travel distance might thus be an important factor when 

people make decisions about getting vaccinated if such vaccinations are offered far from 

their homes. This section first presents background information about typhoid fever and 

vaccines against typhoid fever, and then describes typhoid vaccination practices and their 
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costs in southern China to discover where and how typhoid vaccinations have been offered in 

the area and what costs have been involved in delivering vaccinations to users. 

Typhoid fever is a systemic infection with the bacterium Salmonella typhi, and is 

usually transmitted by contaminated food or water (Parry, 2002). The incidence of typhoid 

fever has dramatically decreased in industrialized regions due to the provision of clean water 

and sanitary sewage systems, but the disease continues to be a major public health problem in 

many developing countries where sanitary conditions are still poor. The case fatality rate has 

been typically estimated at 1%, but sometimes reported up to 30% in some developing 

countries, even though they have access to antibiotics (Hessel et al., 1999; Crump et al., 

2004).  

There are two licensed vaccines available for typhoid fever immunization programs: 

Ty21a and the Vi polysaccharide vaccine (i.e. Vi vaccine). Ty21a is generally considered to 

be unsuitable for routine immunizations due to its widely varying effectiveness (53 to 95%), 

high price (USD 10-30 per series), and need for multiple doses (Ivanoff et al., 1994). The Vi 

vaccine is a new generation vaccine with a well-established safety profile and low incidence 

of mild side effects when administered alone or with other vaccines (Hessel et al., 1999). It is 

administered in one dose as an injection, with revaccination recommended after 3 years 

(Hessel et al., 1999). The price per dose is typically in the range of USD 1-5 in the public 

sector (USD 5-10 in the private sector) in Southeast Asia. Studies in endemic areas have 

found that the efficacy of the Vi vaccine ranges from 50 to 80% (Hessel et al., 1999; Yang et 

al., 2001). In most countries it is indicated for use in adults and children over 24 months of 

age, but its efficacy in very young children remains to be determined (Hessel et al., 1999). 

The Vi vaccine is widely held to be the best typhoid vaccine for use in public health 
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programs in developing countries (IVI, 2007). 

In the past when the Vi vaccine was exported to developing countries, high costs 

were incurred for delivery and storage. However, the technology for production of the Vi 

vaccine has recently been transferred to Vietnam and India where the vaccine has been 

locally produced at a lower cost than the Western version in these countries (DeRoeck et al., 

2005). Local production has an added benefit as it reduces delivery and maintenance costs. 

Once vaccines are produced, if a cold chain is not maintained from manufacture to the place 

of use, vaccine efficacy suffers greatly. While the Ty21a requires a strict cold chain (2ºC to 

8ºC), the Vi vaccine is relatively heat-stable and has less stringent requirements, which is one 

of its distinct advantages. Immunogenicity of the vaccine is maintained after storage at 37°C 

for 6 months and at 22°C for 3 years. However, it needs to be stored in a refrigerator to 

minimize degradation (WHO, 2000). 

In China, the Vi vaccine has been locally produced in six different vaccine production 

institutes, following a technology transfer from the United States National Institutes of 

Health (IVI, 2001). Some provincial and district governments in high-incidence areas have 

used the locally-produced vaccine in school-based campaigns financed by user fees (Acosta 

et al., 2005). In 1996, the Guangxi Zhuang autonomous region (i.e. Guangxi Province) in 

southern China, where Daxu Township is located, introduced the Vi vaccine for school-aged 

children and for use during typhoid outbreaks. However, since 2001, the Vi vaccine was no 

longer promoted or administered in school or routine immunization programs, and thus there 

have been very few Vi immunizations in the province. The vaccine is currently available 

only upon demand at major health facilities such as higher-level or township hospitals, 

municipal clinics and county/township CDC, which are mainly located in urban areas. Unlike 



31

EPI vaccines, the Vi vaccines are not available in village clinics, where most households 

receive primary health care including EPI and other optional vaccinations. Although typhoid 

cases have been decreasing in this area over the past decade, there is still a large risk of 

typhoid outbreaks unless progress is made in improving environmental health conditions, 

health infrastructure, sanitary personal behavior, and vaccinations (Lin et al., 2003). Public 

health officials are considering mass inoculations using the Vi vaccine for all age groups to 

help prevent typhoid fever in high-risk populations in China. Guangxi province now plans to 

expand Vi vaccinations beyond school-based programs (DeRoeck et al., 2005).  

To show the feasibility of mass immunization in controlling typhoid fever for both 

adults and children in areas with high incidence or potential of outbreaks, Yang et al. (2005) 

reported the logistics of Vi vaccination that targeted a population aged 5-60 years in Hechi 

City in Guangxi Province, China. Their campaign started with a pilot phase when a few 

clusters were initially vaccinated in order to test and fine-tune the system and for training. 

They reported that a large-scale vaccination program was then conducted at selected posts 

such as schools, health facilities, factories and town squares, although they did not provide 

the information on which criteria shaped their decisions as to how many posts to select and 

where to locate them. The Vi vaccination program yielded coverage of more than 70%. 

Those who were not vaccinated did not get vaccinated for various reasons, but and it turned 

out that they were more likely to be adults living in remote locations. This result suggests 

that one of the major impediments to vaccination coverage would be proximity (or travel 

costs) to vaccination sites. In spite of knowing that vaccinations would be offered for free, 

some people apparently decided not to participate, perhaps because the location of 

vaccination sites was not convenient to them (Yang et al., 2005). 
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Unfortunately, there is no published article that reports the actual costs or cost-

effectiveness of the Vi vaccination program in China. Instead of reporting actual cost data, 

Yang et al. (2005) argued that the Vi vaccinations through mass campaign were found to be 

affordable in China when the vaccine is locally produced. They provided information on the 

resources used and time required to vaccinate the target population. These data are helpful in 

estimating costs, at least approximately. During the campaign, each vaccination team 

consisted of a leader (physician), 1 to 2 vaccinators (nurses), a recorder (health workers), and 

2 to 3 community helpers. A set of vaccination teams (5-10 teams) were supported by a 

vaccine storage manager, data manager, field health worker for home visits in the case of 

serious adverse events, driver, and supervisor. Each team vaccinated about 200 persons per 

day on average and covered 3 or 4 village clusters in about 30 days. Each vaccination team 

was equipped with 1 or 2 cold boxes (for storing the vaccines), injection supplies such as 

syringes, emergency kits, and one safety disposal box. All supplies, including the vaccines, 

were stored at the logistic hub at a centralized vaccination center which was equipped with 

refrigerators and freezers. Transportation from the center to the vaccination posts required a 

variety of modes of transport: by foot, bicycles and motorized vehicles (motorcycles, cars, 

buses or ambulances). 

3.2.  Study site: Daxu Township, Lingchuan County, Guangxi Province, China 

 

Daxu Township is one of thirteen rural townships in Lingchuan County located in 

southern China. It is approximately 8 km wide and 16 km long, with 141 villages and 

approximately 54,000 inhabitants. Most of the villages are located in remote and 

mountainous areas, and are connected by major or minor roads. About 200-500 people live in 
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each village. The township CDC is located in the southern part of the township and village 

clinics are located in nearly half of the villages. Nineteen schools are located throughout the 

township. The map is shown in Figure 3.1. 

 

Figure 3.1. Map of Daxu Township, Lingchuan County, Guangxi Province, China 

The township CDC, where most vaccinations are available including the Vi vaccine, 

manages and controls all preventive health programs in the township. Most households 

�: Villages   �: Daxu Township CDC   �: Village clinics in sampled villages   
 Г: Schools     ~: Major roads  
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receive primary health care including EPI vaccinations at village clinics usually located at the 

center of the village. The typical village clinic is privately owned and located in its owner’s 

home. These home-based clinics are usually staffed by one practitioner who is the owner of 

the clinic. Each clinic consists of two rooms, one for reception and the other containing one 

or two beds for those requiring a short stay. Village doctors, generally self-employed, 

sometimes rent a village clinic for their private or group practice (Anson and Shifang, 2005). 

Lingchuan County is one of the high-risk counties for typhoid fever in China 

experiencing an outbreak almost every year (Chen et al., 2005). On top of that, Daxu 

Township has the highest incidence of typhoid fever in the county. From the years 2000-

2004, there were 245 cases of typhoid or paratyphoid fever annually per 100,000 inhabitants 

in the township. While there is no detailed data on the age distribution of cases of typhoid 

fever in Lingchuan County, officials report that the majority of typhoid fever cases in China 

are found in 5-30 year olds (IVI, 2001). The risk factors for typhoid fever which is primarily 

waterborne in China (IVI, 2001) are still present in Daxu Township. Furthermore, Lingchuan 

County has a high and growing rate of antibiotic resistant Salmonella typhi and paratyphi. In 

most cases in China, patients of typhoid fever have to pay for treatment costs in full on their 

own unless they are enrolled in the EPI insurance program by paying about USD 4.3 

annually (IVI, 2001). The government does not pay anything for treating cases of typhoid 

fever in China. 

Although the Vi immunization programs were successful in reducing typhoid fever 

rates between 1996 and 2000, school-based immunizations and promotion were discontinued 

in 2001 in Lingchuan County. Since then the Vi vaccines have been available only on 

demand at the township CDC and used in response to outbreaks. They are not available from 
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village clinics nor delivered to residents’ homes. People living anywhere in the township who 

want typhoid vaccinations have to travel to the township CDC. Due to the limited access to 

the Vi vaccines, the proportion of immunized persons has dropped off considerably in recent 

years (2001-2003) in this township. Since the Vi vaccine is only effective for three years, less 

than 10% of the population in this township was protected by the Vi vaccine in 2004, the 

year of our study. The Vi vaccine is sold for RMB5-6 (USD 0.6-0.7)8 with an additional 

service fee of RMB2.5 (USD 0.3) for both adults and children in Lingchuan County. The 

profits earned from the service fee are distributed to the provincial, county, and township 

health centers (i.e. CDC agencies), as well as to village doctors (IVI, 2001).  

The incidence data collected and managed by the Lingchuan County CDC staff do 

not separate typhoid fever and paratyphoid fever. However, Ochiai et al. (2005) reported that 

decreases in typhoid fever incidence rates in China coincided with an increase in the 

paratyphoid fever incidence rate. This trend of paratyphoid and typhoid incidences is also 

found in other areas of the world (Ochiai et al., 2005; Yang et al., 2001). The dramatic 

incidence shift from typhoid fever to paratyphoid fever from 1999 might be interpreted as an 

impressive success of vaccination since the Vi vaccine is effective only for typhoid fever, not 

paratyphoid fever. In fact, it is difficult to distinguish paratyphoid fever from typhoid fever 

without a blood culture test. In general, typhoid fever and paratyphoid fever are similar in 

presentation, and thus cases of paratyphoid fever and typhoid fever are indistinguishable, in 

most cases, to patients and even physicians without a medical test (Vollaard et al., 2004). 

However, they follow distinct routes of transmission. The risk factors for typhoid fever are 

mainly associated with the household (e.g. no soap for washing hands, no toilets), while 

 
8 The exchange rate in 2004 was USD1.0 = RMB8.2 
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those for paratyphoid fever are associated with things outside the household (e.g. food from 

street vendors, flooding). Incidence profiles are different between the two diseases: a 

majority of typhoid fever cases occur in school-aged children, while there does not seem to 

be a specific age group vulnerable to paratyphoid fever9. In spite of the differences, the 

patients of both diseases are treated about the same. 

3.3.  Research Design 

 

In July and August 2004, as a part of the DOMI studies, fieldwork was conducted in 

Lingchuan County, Guangxi Province, China. The field research team included Drs. 

Christine Poulos, Xun Wu, Christine Boyle and myself, along with Chinese collaborators, 

Drs. Dong Baiqing, Gong Jien, and Yang Jin. I was involved in the entire process of field 

research, including interviewing CDC staff, developing survey instruments, training 

enumerators, supervising data collection in the field, developing data entry programs, and 

managing data entry. There are four different sub-studies in the entire DOMI stated-

preference study in Lingchuan County, using different demand elicitation questions based on 

contingent valuation (CV) and choice modeling (CM) methods. These are included in two 

different kinds of questionnaires titled as “CV questionnaire” and “CM questionnaire”. Table 

3.1 shows the entire design of the DOMI stated-preference study in Lingchuan County and 

also shows how they are different from each other. 

 

9 The recent paratyphoid outbreak in Lingchuan County occurred mostly in those between the ages of 15-30 
years old. 
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Table 3.1. Design of the DOMI study in Lingchuan County, China 

Title of 
questionnaires “CV questionnaires” “CM questionnaires” 

Type of 
demand 

elicitation 
Individual CV Household CV Individual CM Household CV 

Sample size 951 638 300 160 

Target area 5 townships and urban districts 3 townships and 
urban districts Daxu Township 

Vaccination 
locations 

Nearest health facility vs. Home  
(Split sample) 

Home vs. 
Vaccination center Township CDC 

Reference Poulos et al. 
(2006a) 

Poulos et al. 
(2006b) Work in progress This dissertation 

The “CV questionnaires” included two types of demand elicitation questions: (1) 

asking a referendum question whether or not the respondent would be willing to buy a Vi 

vaccination for self or a child at a certain price (called individual CV), and (2) asking how 

many Vi vaccines the respondent would buy for the entire household at a certain price (called 

household CV). These surveys were administered in 5 rural townships (Daxu, Lingtian, 

Sanjie, Lingchuan, and Tanxia) and several other urban districts in Lingchuan County10. The 

respondents were told that vaccinations would be delivered at the nearest health facility, 

except for one sub-sample for which home vaccinations were offered. Split-sample design 

allowed the team to test whether or not the respondents prefer home vaccination to 

vaccination at the nearest health facility which on average was about 0.8 km away (see 

Appendix 1). However, it did not take into account the actual distance from the sample 

households to the nearest facility but just used a dummy variable indicating those who were 

offered the home vaccination option. The results from these studies are reported in Poulos et 

 
10 CV questionnaires were also used in six villages in Ziyuan County to address the issue of paratyphoid fever, 
but were not included here since they are beyond the scope of this dissertation research. See Poulos et al. 
(2006a) for details. 
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al. (2006a; 2006b). Poulos et al. (2006a) measured respondent’s demand for the vaccine for 

himself separately from his demand for a vaccine for a specific child in the household in 

Lingchuan County. They reported that average WTP for a vaccine for himself was USD 9, 

and that for his focal child was USD 11. These results indicate that there is significant private 

demand for a vaccine to prevent typhoid fever in the area, and the private demands for 

improvements in children’s health are higher than those for improvements in adult health. 

They also reported that delivery of the vaccines at the respondents’ homes instead of the 

nearest health facility increases the probability of the respondents’ willingness to purchase 

the vaccine for themselves by about 8%. 

The “CM questionnaires” were collected in three rural townships (Daxu, Tanxia, and 

Lingchuan) and other urban districts in Lingchuan County. The “CM questionnaires” 

comprised eight sections: (1) demographic characteristics of the respondent and the 

household; (2) the respondent’s health service utilization behavior; (3) perceptions and 

attitudes regarding typhoid fever; (4) perceptions and attitudes regarding vaccination; (5) 

choice experiments for individual demand, (6) “household CV” question; (7) socioeconomic 

information; and (8) the interviewer’s assessment of the quality of the interview. The choice 

experiment (the 5th section) asked the respondents to choose for themselves (called individual 

CM) between the two alternative hypothetical vaccines against typhoid fever with different 

levels of effectiveness, duration, vaccination location, and price. For example, one alternative 

location of vaccination was home, and the other was a vaccination center. They were allowed 

to opt out (i.e. choose nothing) as well. However, the data from this choice experiment were 

not used in my dissertation research. 
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For my dissertation research, I chose Daxu Township as a case study site to 

investigate the effect of travel distance on stated demand for vaccination, as shown in the last 

column in Table 3.1. To the “CM questionnaires” used in Daxu Township, I appended the 

household CV question (the 6th section in the questionnaire as shown above) which is the 

same as the one in “CV questionnaire”. However, this household CV question used for my 

dissertation was asked after informing the respondents that Vi vaccinations would be offered 

only at the township CDC. Table 3.2 shows the four different types of CV and CM questions 

asked in Lingchuan County. 

 

Table 3.2. Demand elicitation questions used in the DOMI surveys in Lingchuan County 

Title of 
questionnaires 

Type of 
demand 

elicitation 

Actual question asked 

Individual CV If a Vi vaccine cost X, would you be willing to buy for yourself? “CV 
questionnaires” Household  CV If a Vi vaccine cost X, how many vaccines would you buy for your 

household members? 
Individual CM Suppose typhoid vaccine A is X1% effective for Y1 years, and 

offered at home for price Z1, and typhoid vaccine B is X2%
effective for Y2 years, and offered at vaccination center for price 
Z2. Which one would you choose for yourself? A, B, or neither? 

“CM 
questionnaires”

Household CV If a Vi vaccine were offered at township CDC for price X, how 
many vaccines would you buy for your household members? 

Among 141 villages in Daxu Township, 16 villages were randomly selected to be 

surveyed using the “CM questionnaires”. In each selected village, about 30-50 households 

meet our sampling criteria: (1) at least one child younger than 18 years of age lives in the 

household, and (2) either the head of the household or his/her spouse is younger than 65 

years of age. Among the 30-50 candidate households in each selected village, ten households 

were chosen at random and either the head of the household or his/her spouse was randomly 

selected to be interviewed. As a result, 160 completed “CM questionnaires” were collected in 
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Daxu Township. Interviews took an average of 70 minutes. As explained above, this 

dissertation research uses the responses to the household CV question described in the last 

row in Table 3.2. The offer price (X) was randomly assigned to each respondent from four 

different prices, RMB 2, 10, 40, and 120 (USD 0.24, 1.2, 4.8, and 14.4 respectively), and 

thus 40 surveys were collected per price using split samples. For the households that would 

buy vaccines, they were asked to indicate for which family members they would buy them. 

Due to the survey design in which the choice experiment preceded the household 

demand question, there was a need to examine whether or not the responses to the household 

CV question were biased by the information given in the choice experiment. In the choice 

experiment, half of the respondents who were interviewed using the  “CM questionnaires” 

were informed of hypothetical typhoid vaccines that would theoretically perform much better 

(i.e. 99% effective for 20 years) than the currently available Vi vaccine which was asserted to 

be 70% effective for 3 years. The other half was not informed of the nearly-perfect 

hypothetical vaccines. This information was used to test whether their responses were 

affected by the choice experiment. 

Because the Vi vaccine is not effective for paratyphoid fever, the results of private 

demand study for Vi vaccination in Daxu Township where paratyphoid fever incidence rates 

are also high must be interpreted with caution. Thus, immediately after the household CV 

question, three debriefing questions were asked of all respondents to investigate whether or 

not their responses were influenced by their perception or knowledge of paratyphoid fever; 

(1) Have you heard about a disease called paratyphoid fever? (2) Is paratyphoid fever 

different than typhoid fever? and (3) If so, how is paratyphoid fever different than typhoid 

fever? Only 12% of respondents had heard about paratyphoid fever, but none of them was 
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able to distinguish between the two diseases, and thus all respondents were included in data 

analysis. This finding indicates that the respondents might have answered the demand 

questions based on their experiences with both diseases because they are very similar in 

symptoms. Poulos et al. (2006a) reported that the demand function in the area where 

paratyphoid fever rates are very high is similar to the demand function for vaccines in the 

area where there is almost no paratyphoid. This paratyphoid versus typhoid situation in 

Lingchuan County has little impact on the main thrust of this dissertation, which is the effect 

of vaccination location on demand for vaccination.  

Along with the household surveys, global positioning systems (GPS) were used to 

collect location data for all sample households in Daxu Township and the township CDC. 

Most of the households were located close to each other within a village, and thus it was 

assumed that all households in a village are located at the center of the village in all 

subsequent analyses. I also obtained an electronic map of Daxu Township that includes the 

point data for the locations of all 141 villages in the county and the line data for road 

networks. Using the data in the ArcGIS program, straight-line distances and the shortest road 

network distances from each village to the township CDC were calculated. The two types of 

distances were compared to each other to examine how they were dissimilar. In the 

econometric analysis, the shortest road network distances were used for the value of travel 

distance assuming that people travel to the township CDC to receive vaccinations by the 

shortest road. In so doing, unlike Poulos et al.’s study, this research measures the effect of 

actual travel distance to the CDC on stated household demand in the model.  

All together, the “CV questionnaires” were used in 14 villages and the “CM 

questionnaires” were used in 16 villages in Daxu Township, but never in the same village. 
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My dissertation research does not use data from the “CV questionnaires” with only one 

exception: household income data collected from 14 villages surveyed by the “CV 

questionnaire” were combined with those from 16 villages surveyed by the “CM 

questionnaires”. The combined income data from 30 surveyed villages were used to predict 

the household income for all 141 villages in Daxu Township, as described in Chapter 4. 

 

3.4.  Econometric models 

 

Assuming the respondent is the decision-maker for a household, household demand 

for typhoid vaccinations can be estimated from the respondent’s stated preference for 

vaccinations as it relates to maximizing household utility in preventing the disease (Cropper 

et al., 2004). Thus, the respondent makes a decision on how many typhoid vaccinations (q)

he or she would purchase for all household members to maximize the utility for the 

household. It is assumed that the respondent’s decision relates to his or her socioeconomic 

characteristics, such as household income and household size, and the characteristics of 

vaccination such as user fee and travel distance to vaccination site. Like Cropper et al. (2004) 

and Canh et al. (2006), econometric analysis was used to fit a Poisson model to explain the 

number of vaccinations each household i would purchase (Qi = q) at user fee (pi), travel 

distance to the CDC (di) (by road, not straight line distances), household income (Ii), and 

household size (Hi), which is as follows: 

 

!
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where    λi = exp(α + βp ⋅ pi + βd ⋅ di + βI ⋅ ln(Ii) + βH ⋅ Hi). eq. 3.2 
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Qi is a random variable for the number of vaccinations that a household i would 

purchase and λi is the expected number of vaccinations that will be purchased by household i

with income Ii and size Hi, if it were required to travel di and pay user fee of pi for 

vaccination. Note that the model in eq. 3.2 uses the natural log of household income Ii. The 

dependent variable of the Poisson demand model is the probability that the household i will 

buy q vaccinations depending on λi, and the probability is assumed to be a random draw from 

a Poisson distribution with mean and variance of λi.11 Note that λi is a continuous variable. 

Using the Poisson regression function, the private benefits of vaccination can be 

calculated by a measure of WTP (willingness-to-pay). When price is zero, the WTP for 

vaccinating all household members in household i (WTPi) is the area under the inverse 

household demand curve12 from the Poisson model in eq. 3.2. This area can be calculated by 

integrating the Poisson demand function over prices from zero to the choke price c less than 

infinity: 

 iWTP  = dpHIdp
c

iHiIidip∫ ⋅+⋅+⋅+⋅+
0

))ln(exp( ββββα eq. 3.3 

 = ])ln([exp(1
iHiIidp

p
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β
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p
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β

eq. 3.4 

 

11 The Poisson distribution has equal values of the mean and variance. 
 
12 This is a Marshallian demand function which assumes that the marginal utility of income is constant. 
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If price is not zero (p* > 0), the household WTP for the entire family is the sum of the 

expenditure on the vaccine and the remaining consumer’s surplus, which is calculated as 

follows: 

iWTP  = ))ln(exp( **
iHiIidp HIdpp ⋅+⋅+⋅+⋅+⋅ ββββα

])ln([exp(1
iHiIidp

p

HIdc ⋅+⋅+⋅+⋅++ ββββα
β

])ln([exp(1 *
iHiIidp

p

HIdp ⋅+⋅+⋅+⋅+− ββββα
β

eq. 3.5 

 

Both eq. 3.4 and eq. 3.5 include distance di, which indicates that the private benefits 

measured by the WTP would be different by locations of vaccinations (i.e. amount of travel 

to vaccination sites) as long as the coefficient of distance, dβ , is significantly different from 

zero in statistical analysis. The detailed mathematical derivations of the WTP are included in 

Appendix 2. 

 

3.5.  Results 

 

The results from the contingent valuation study in Daxu Township are shown below. 

 

3.5.1.  Characteristics of the sample 

 

Forty nine percent of respondents were male, and their average age was 42 years. The 

mean household size was 4.5 persons, including 3.0 adults and 1.5 children. Median 
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household size was 4 persons, and half of sample households had only one child. The 

average respondent completed about 6 years of education, 54% did not complete primary 

school, 25% completed primary school only, 20% completed secondary school, and only 1% 

completed university or postgraduate studies. Twenty four percent of respondents could not 

read a newspaper. The average annual household income was USD 1,163 (about USD 3.2 per 

calendar day) mostly from farming, and nearly all respondents (98%) were farmers. Fifty two 

percent of households owned color televisions, 42% had a telephone, and 11% had a 

refrigerator. Eighty six percent of households had a bicycle, and 16% had a motorbike. 

In this township, water and sanitation conditions were generally poor. Only 8% of 

households had a private water connection, and 74% drank water from private wells. Seventy 

seven percent used private or shared open pit latrines and 17% used a flush toilet. Sixty three 

percent of respondents reported that they normally boiled water before drinking, while 8% 

said that they never boiled drinking water. Eighteen percent of respondents said that they 

always washed their hands before eating. Sample households were on average 0.5 km from 

the nearest health facility, most of which were village clinics. They usually walked or rode a 

bicycle to travel to health facilities, but sometimes took a bus when they were located far 

from their homes. 

The straight-line distances from each village to the township CDC show an average 

(mean) of 4.6 km (median = 4.5 km). By straight-line distance, about 31% of the sample 

households were located more than 5 km from the township CDC. By road network distance, 

mean one-way travel distance to the township CDC was about 6.3 km (median was 6.1 km), 

and more than half (56%) of the sample households had to travel more than 5 km one-way to 

the township CDC. The straight-line and road network distances were highly correlated with 
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each other (correlation coefficient = 0.98); on average, road network distance was 1.36 times 

as long as straight-line distance.  

 

Figure 3.2. Cumulative distribution of one-way distance to CDC (km): straight-line vs. road 
distance13 

Figure 3.2 shows how the cumulative distributions of straight-line distances and road 

network distance to the CDC are different from each other. All the measurements presented 

in this dissertation are based on distances by the road network from the villages to the CDC. 

 

13 This cumulative distribution function is a step function because of the assumption that all sample household 
in a village are located at the center of the village. 
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3.5.2.  Knowledge and perceptions about typhoid and vaccination 

 

Ninety three percent of the respondents reported that they previously had heard about 

typhoid fever. Thirty one percent of the respondents reported that there had been an outbreak 

of typhoid fever in their villages. Although only about 9% of respondents believed typhoid 

was common in their villages, 64% reported knowing someone who has had typhoid fever, 

and 31% reported that a household member had actually contracted typhoid fever. Only 9% 

of respondents believed that it was likely they would get typhoid fever within the next three 

years, while 14% believed that it was likely their children would get typhoid fever within the 

next three years.  

Ninety-seven percent of respondents had heard about vaccines, and among them, 

about 54% reported that at least one of their family members had received Vi vaccines within 

the past five years. Seventy-four percent of the respondents reported they were satisfied with 

the immunization services available to their household members. Yet this result should be 

interpreted with care since only respondents who had been vaccinated in the past five years 

were asked questions about satisfaction. Little is known if the rest of the respondents were 

satisfied with the vaccination services, and it is likely that people who were not satisfied with 

the vaccination service decided not to take part in the service again. 

 

3.5.3.  Demand for Vi Vaccines 

 

Figure 3.3 illustrates that the average number of vaccinations that households would 

buy changes in proportion to the one-way road distance from each household to the CDC and 
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user fee. Although some data points behave abnormally due to small sample size, the 

“distance decay” effect appears in this raw data plot, i.e. people would buy fewer 

vaccinations on average if they had to travel greater distances to get them. This distance 

effect looks more pronounced for the lowest price (USD 0.24). 

 

Figure 3.3. Raw results: Average number of vaccinations per household by user fee and 
distance 
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The Poisson probability density function was fitted to the responses of 160 sample 

households. The number of vaccinations that would be purchased by the respondent was 

regressed against a series of potential explanatory variables of the demand for vaccinations. 

Table 3.3 presents the descriptions and statistics of the variables. 



49

Table 3.3. Variable definition and descriptive statistics 

Variable name Description Mean S. D. Range 
Distance Road distance to CDC (one-way; km) 6.3 3.8 0.6-14.5 
Income Annual household Income (continuous; USD) 1163 991 84-7483 
Ln(income) Natural log of annual household income (USD) 6.8 0.8 4.4-8.9 
Household size  Number of household members (continuous) 4.5 1.1 2-9 
Respondent’s education Years of school completed (continuous) 5.6 3.1 0-15 
Respondent’s sex 1=if respondent is male; 0=otherwise 0.49 0.5  
Respondent’s age Respondent’s age (continuous; years)  42.0 8.2 29-62 
Number of rooms Number of rooms in home (continuous) 4.3 2.9 1-17 
Refrigerator =1 if household owns a refrigerator; 0 otherwise 0.11 0.3  
Bicycle =1 if household owns a bicycle; 0 otherwise 0.86 0.3  
Phone =1 if household owns a phone; 0 otherwise 0.42 0.5  
Wash hands before eating =1 if respondent always washes hands; 0 otherwise 0.18 0.4  
Boil drinking water =1 if respondent normally boils water; 0 otherwise 0.63 0.5  
Risk perception for self =1 if respondent believes it is likely he/she will get 

typhoid in the next three years; 0 otherwise 
0.09 0.3  

Risk perception for children =1 if respondent believes it is likely his/her children 
will get typhoid in the next three years; 0 otherwise 

0.14 0.4  

Outbreak =1 if village had typhoid outbreak in last 3 years;  
0 otherwise 

0.31 0.5  

HH members had typhoid =1 if a household member has ever had typhoid;  
0 otherwise 

0.31 0.5  

Know someone with typhoid =1 if respondent knows someone who has had  
typhoid; 0 otherwise 

0.64 0.5  

Table 3.4 presents the results of the two final Poisson regression models: full vs. 

reduced models. The fit of the Poisson model is adequate because there is no evidence of 

overdispersion (mean number of vaccinations demanded =2.4; standard deviation = 1.8)14. In 

the full model including all potential predictors of the demand, only three variables are 

significant at the 5% level: user fee, road network distance to the CDC, and the number of 

people in the household. Note that the two risk perception variables (one for self, the other 

for their children) have opposite signs, but neither of those is significant at the 10% level. 

The T-tests also show that the demand for vaccinations is not statistically different between 

those who believe typhoid risk is high and those who do not, both for self and for their 
 
14 In the case of overdispersion, running the negative binomial regression instead of the Poisson regression is 
adequate. 
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children. Also note that neither of the two variables of risk-averse behavior (e.g. washing 

hands before eating, boiling drinking water) is significant. These results indicate that the 

respondents might be willing to buy vaccinations not based on their actual risk of contracting 

typhoid fever, but rather as a kind of insurance policy. 

 

Table 3.4. Results of Poisson regression: full and reduced models 

Full model (N=160) Reduced model (N=160) Variables 
Coef. Std. Err. P>z Coef. Std. Err. P>z 

User fee per vaccination (USD) -0.10 0.01 *** -0.10 0.01 *** 
Road distance to CDC (km; one-way) -0.04 0.02 ** -0.05 0.01 *** 
Ln of household income (USD) 0.11 0.07  0.13 0.04 * 
Household size (number of HH members) 0.19 0.05 *** 0.18 0.07 *** 
Years of education of respondent 0.02 0.02     
Male respondent -0.12 0.13     
Age of respondent -0.01 0.01     
Number of rooms 0.03 0.02     
Own refrigerator -0.03 0.19     
Own bicycle 0.03 0.15     
Own phone -0.08 0.13     
Washes hands before eating 0.17 0.13     
Boils drinking water -0.03 0.11     
Respondent believes typhoid risk is high for self 0.25 0.27     
Respondent believes child’s typhoid risk is high -0.22 0.22     
Village had an outbreak -0.10 0.15     
Any HH member had typhoid fever 0.05 0.13     
Know someone who had typhoid fever 0.00 0.12     
Constant -0.13 0.57  -0.20 0.49  
Log likelihood -255.04 -258.98 
Pseudo R2 0.21 0.20 

¶ ***: Significant at 1% level   **: Significant at 5% level   *: Significant at 10% level 

 

As shown in Table 3.4, the reduced model excludes all insignificant variables, except 

for the income variable since it is one of the typical predictors of private demand. Once a 

number of asset variables which are correlated with household income were excluded from 

the model, the variable of annual household income became significant at the 10% level 

(p=0.055). These results support the conclusion that the reduced model performs as sound as 
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the full model because the model fit is not so different (i.e. R-squared is almost the same), 

and the constant term is not significant in either model. Therefore, the results of the reduced 

model are used in all of the following analyses in this dissertation. 

The coefficients of all variables in the reduced model have expected signs. The price 

of the vaccine has a negative effect, and household income and household size have positive 

effects on vaccine demand. Road distance to the vaccination center (i.e. CDC) has a negative 

effect on household demand, and thus it needs to be taken into account in determining the 

number and locations of vaccination sites. The resulting demand function based on the 

reduced model is as follows: 

 

λ = exp[-0.2 - 0.1⋅ p - 0.05⋅ d + 0.13⋅ ln(I) + 0.18⋅ H] eq. 3.6 

 

where λ is the expected number of vaccinations that a household in Daxu Township would 

purchase if it were given the option to buy any number and had to pay a price of p (USD) per 

vaccination, travel d km one-way to the vaccination site, had average annual income of I

(USD), and had H persons in the household. For example, a five-person household with 

annual income of USD 800 would be expected to receive a total of 4.8 vaccinations if the 

price they had to pay were zero and if they did not have to travel to obtain them.  

In order to illustrate the price and distance effect more clearly, the proportion of 

vaccination by distance to vaccination site and by price was calculated using the results of 

the Poisson model, assuming average annual household income of USD 1,163 and average 

household size of 4.5. Figure 3.5 shows that approximately 77% of the people in Daxu 

Township would be vaccinated when the price is USD 1 and one-way travel distance is 3 km. 
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However, the proportion drops to 10% when they have to pay USD 15 and travel 15 km one-

way for vaccination.  

 

Figure 3.4. Predicted number of vaccinations per household by user fee and distance 
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This figure helps demonstrate that household demand decreases by both price and 

travel distance. This finding implies that, when respondents answered about their demands 

for vaccinations, they considered not only user fee which they would have to pay, but also 

burden to travel to CDC such as pecuniary travel cost and non-pecuniary travel cost 

measured as opportunity cost of travel time. Figure 3.5 presents a map showing the average 

number of vaccines demanded for a household in each of 16 sampled villages in Daxu 

Township, if the vaccine were only available in the CDC at a price of USD 1. This figure 

shows a spatial pattern of household demand by distance to the CDC, i.e. households living 
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near to the CDC would purchase more vaccinations than those living far from the CDC, on 

average. 

 

Figure 3.5. Average number of vaccines demanded for a household in each sampled village 

�: Villages   �: Daxu township CDC   �: Village health clinics (selected)  Г: Schools  ~: Main roads  

1km
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1.9 vacs per HH Village 08
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Village 12
3.5 vacs per HH 

Village 13
3.2 vacs per HH 

Village 14
3.2 vacs per HH 

Village 15
2.8 vacs per HH 

Village 16
2.6 vacs per HH 

Although the actual data of travel time and costs are not available, it can be inferred 

from this result that the size of travel cost may be substantial regardless of the mode of travel. 

Considering that walking or bicycling is associated with low pecuniary travel cost but high 

non-pecuniary travel cost due to longer travel time while taking a bus is associated with 

relatively high pecuniary travel costs, total travel costs might be similar for different modes 
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of travel. Assuming that total travel cost is USD 0.1 per km regardless of the mode of travel, 

a person in this township would save USD 1.3 on average by receiving vaccinations at home 

(or village) instead of traveling about 13 km roundtrip to the CDC. If user fee were less than 

USD 1 per vaccination, travel cost might be more burdensome than user fee to some of those 

who want vaccinations. This finding indicates that not only user fee but also the number and 

location of vaccination sites are important issues for further research.  

These results, based on stated preference, are consistent with recent findings from the 

revealed preference results about demand for vaccination. Jeuland et al. (2007) estimated 

travel cost models of the revealed household demand for cholera vaccines in the free 

vaccination trial in Beira, Mozambique. They found that the quantity of vaccines obtained by 

households and the likelihood of participation decreased with the increase of travel time and 

costs, which depends on travel distance from household to vaccination site. The per capita 

willingness to pay for cholera vaccination, which was revealed as travel costs incurred by 

households, is estimated at about USD 1 in this area, which turns out to be somewhat lower 

than that from the stated-preference willingness-to-pay method. They reported that average 

distance for those that received vaccination was 2.8 km, and thus per-kilometer travel cost 

can be calculated as more than USD 0.36 in this area (= 1/ 2.8). Assuming that the per-

kilometer travel cost in Daxu Township is similar to this estimate in Beira, households’ 

burden to travel costs would be even greater in Daxu Township in China.    

The dummy variable for indicating whether the respondent was informed of a 

hypothetical typhoid vaccine with 99% effectiveness for 20 years in the choice experiment 

was tested for its significance in the full and reduced models above, and it turns out to be 

insignificant in both models (p=0.6). This result helps confirm that the responses to the 
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household CV question were not biased by the information on the superior hypothetical 

vaccines given in the preceding choice experiment. 

 

3.5.4.  Private benefits of vaccination 

 

The fitted demand function in eq. 3.6 predicts the average number of vaccinations 

that will be purchased by a household as a function of four variables: the price (USD) it has 

to pay, the one-way travel distance (km) from the household to the vaccination outpost, the 

natural log of the household’s annual income (USD), and the number of members in the 

household. If vaccinations were available in or near households, the travel distance would be 

zero. In this case, using average household size of 4.5 persons and average natural log 

income of 6.8, eq. 3.6 can predict the number of vaccinations demanded by a typical 

household for a range of prices between USD 0 and 14. The result is shown in Figure 3.6 in 

the curve labeled ‘Village.’ On the other hand, the average one-way travel distance for “all” 

households in Daxu Township to the CDC is about 6.8 km, shown in Chapter 4 below (note 

that average distance for “sample” households in Daxu Township to the CDC is about 6.3 

km). Inserting this value for distance in eq. 3.6 results in the demand curve for a typical 

household in Figure 3.6 labeled ‘CDC.’ 
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Figure 3.6. Average per household demand for vaccinations at the CDC and at each village      
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Figure 3.6 shows that the demand curve shifts for different values of travel distance. 

If the price is USD 1 and vaccinations are available at each village so that no substantial 

travel is required, the quantity demanded for a typical household is about 4 vaccinations, or 

about 400 vaccinations for each 100 households, which implies per capita coverage of about 

89% (=400/450). If a household has to travel to the CDC for vaccinations, the expected 

quantity demanded is about 2.8, or about 280 vaccinations for each 100 households (62% per 

capita coverage). Currently, these vaccines are available only “on demand” at the CDC for 

about USD 1, but only about 10% of the people has been vaccinated because no public 

vaccination campaign or promotion has been conducted in this township since 2001. This gap 

between the estimated demand and actual coverage could be explained mostly by 
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implementation factors affecting actual vaccination coverage, such as publicity campaigns 

and social mobilization for vaccination promotion. 

As described in Section 3.4 (Econometric models), the area under the demand curves 

in Figure 3.6 is a measure of the private economic benefit derived by a “typical” household 

(not sample household) from purchasing vaccinations for all household members. Figure 3.6 

indicates that the choke price is less than infinity because vaccinations come in discrete 

numbers from zero to the number of household members. Less than one vaccine would be 

purchased at prices higher than about USD 15. It also demonstrates the choke price would be 

similar between the two different delivery strategies. Thus, the choke price is assumed to be 

USD 20, the same for both cases, because the primary goal of this analysis was to work 

toward a reasonable (approximate) estimate of private benefits and not a precise, finely-tuned 

number. Eq. 3.4 was used to calculate the private benefits for the entire household for free 

vaccination, and eq. 3.5 was used if price were not zero, based on the parameter values in eq. 

3.6. If vaccinations were free (p=0), the private benefits for the entire household would be 

USD 27 for vaccinations at the CDC, but USD 39 for vaccinations at each village. The 

private benefits from vaccinations at each village are significantly larger than those from 

mega-site vaccination, by about USD 12 per household (44%). For non-zero prices, these 

private benefits show little change. They change by only less than USD 1 even with the price 

of USD 2. 

These results help to show that the private benefits from vaccinations are different 

according to where vaccinations are delivered. In Figure 3.6, the area between the two 

demand curves represents additional benefits that result from receiving vaccinations at their 

own villages instead of traveling to the CDC for vaccinations, a benefit estimated at around 
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USD 12 on average. It indicates that the respondents factored in not only price but also the 

non-pecuniary travel cost and opportunity cost of lost work due to travel and queue time into 

their responses when they answered the questions about their demand for vaccinations. This 

finding implies that having more sites would bring a substantial amount of private benefits, 

and having a single or fewer sites might not be the best for society since it overlooks these 

private benefits. However, it does not necessarily indicate that the best alternative is always 

to deliver vaccinations at every village because it does not consider other important factors 

such as vaccination costs and budgetary constraints under which governments must function.  

 

3.5.5.  Comparison with the results of Poulos et al. (2006b)’s household CV study 

 

In order to make sure that the findings from the two household CV studies in 

Lingchuan County (3rd and 5th columns in Table 3.1) do not contradict each other, the 

household CV results for Daxu Township presented in my dissertation research are compared 

with those for Lingchuan County as reported in Poulos et al. (2006b). This comparison is 

significant since both studies estimated the household demand function for typhoid 

vaccination in southern China but using different research designs. As described in Table 3.5 

(2nd and 3rd columns), the two major differences in research designs between the two studies 

are: (1) samples of Poulos et al.’s study were collected from both urban and rural areas, while 

those of my dissertation research were collected only from rural areas, and (2) Poulos et al. 

performed a split sample study that offered vaccinations at home to one group and at the 

nearest health facility to the other, while my research informed all respondents that 

vaccinations would be offered only at the CDC. The detailed description of the variables and 
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results of the models in Poulos et al. are included in Appendix 1. Note that average annual 

household income in the Poulos et al.’s sample is substantially larger than that of my research 

in Daxu Township (USD 1,796 vs. 1,163), but average household size and other 

demographic variables are quite similar between the two studies. 

 

Table 3.5. Comparison of research designs and results: Poulos et al. (2006b) and this research 
Research Design Poisson model (coefficients)15 

Household 
demand studies Sample 

area 
Location of 
vaccination 

delivery 
Price 

Natural 
log of 

income 
Household 

size 
Distance to 
vaccination 

site 

Poulos et al. 
(2006b) 

Urban and 
rural areas

Home vs.  
nearest facility 
(Split sample) 

-0.09 0.07 0.14 N/A 

This dissertation 
research 

Rural areas 
(Daxu) Township CDC -0.10 0.13 0.18 -0.05 

The last four columns in Table 3.5 show how the two demand models differ in the 

coefficients of key variables. The effects of price and household size are similar for both 

studies, while income effect is greater in this research. Note that mean household income of 

the samples in Daxu Township is only 65% of the mean household income of the samples in 

Poulos et al.’s study. This implies that household income is a more important determinant of 

demand for vaccinations in rural areas with many low-income households than it is in urban 

areas. According to Poulos et al. (2006b), the dummy variable indicating whether home 

vaccination was offered to the respondent was not significant. This finding indicates that 

respondents in their study were indifferent between getting vaccinations at home and at the 

 
15 Poulos et al. (2006b) reported six different model specifications, as shown in Table A1.2 in Appendix 1. The 
results presented here are based on Model (4) which has the most similar model specification compared to the 
full model in my research. 
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nearest health facility which on average was about 0.8 km away. By comparison, the distance 

effect is significant in my dissertation research where vaccinations are offered only at the 

township CDC, which on average required a one-way travel distance of 6.3 km. 



Chapter 4 

Simulation analysis examining the effects of user fees and vaccination locations  

on the vaccination program 

 

Chapter 3 showed that the number of vaccinations demanded depends among other 

things on travel distance to the vaccination center. It showed that the quantity of Vi 

vaccinations demanded by household members in Daxu Township decreased as distance to 

the vaccination center increased. This finding leads to the next question of where vaccination 

sites should be located in an area like Daxu Township. One may consider two extreme 

alternatives: (1) in every village, and (2) only at the vaccination center in the township (the 

township CDC). However, vaccination policy-makers might consider a more reasonable 

alternative of having more than one site but something less than in each and every village16.

This raises the question of how many vaccination sites are needed and where they should be 

located. Should planners simply use their own professional judgment to determine locations 

for vaccination sites, or can their judgment be aided by analytic tools?  

This chapter takes a systematic approach to determining the optimal number and 

location of vaccination sites, using location models from operations research (OR) to screen 

candidate locations. These models cannot provide definitive answers about where to locate 

vaccination sites, but they are valuable aids in making this judgment. Using OR models, 

 
16 Yang et al. (2005) reported that the mass vaccination campaign of the Vi vaccine conducted at one outpost in 
each village cluster was found to be feasible in Hechi City, Guangxi province. 
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simulation analyses indicate the effects that different numbers and locations of vaccination 

sites have on the outcomes of a vaccination program.  

This chapter employs a cell-based framework in which households are clustered into 

villages and villages are clustered into a grid of cells that is superimposed onto the map of 

Daxu Township. This chapter describes the cell-based analysis, and it predicts the outcomes 

of a vaccination program for the two extreme cases described above (i.e. vaccination outposts 

in every cell or only at the central vaccination office). Then it employs two location models, 

the set covering model and the p-median model to obtain solutions under different 

assumptions. The results from repeated use of the two models are used in a simulation 

approach to investigate how the locations change with different assumptions and to map the 

effects of alternative locations, along with user fee levels, onto outcomes. The outcomes of 

the simulations are then compared to determine the best plan.  

 

4.1.  Cell-based analytic framework 

 

Although it is theoretically possible for all 141 villages in Daxu Township to be used 

as locations for vaccination sites, it is not particularly useful to do so, in consideration of not 

only computational complexity but also the fundamental role of mathematical models. 

Mathematical models often abstract and simplify the systems since they should be used as 

aids to judgment, not as tools to give absolutely correct and definite answers. All villages in 

Daxu Township were thus aggregated into 29 cells, each about 8 km2 (2.8 km by 2.8 km), an 

identification number was assigned to each cell, and the total population in each cell was 

assumed to be located at its center. Road distances were measured between all the pairs of 
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cells using the shortest path, assuming people take the shortest path to an outpost.17 In order 

to minimize the uncertainty due to different road conditions, only major roads were used to 

measure distances. The ArcGIS network analysis tool was used to calculate minimum 

distances between cells. Figure 4.1(a) is the map showing how the 29 cells containing 141 

villages are connected by the road network. Figure 4.1(b) shows the total population of each 

cell. 

 

Figure 4.1. Map of 29 cells and population size of each cell 

(a) Map of 29 cells connected by road network           (b) Population by cell 

• : Township CDC   ▲: 141 Villages    ▬ : Major roads 
 * Numbers in the cell are the cell IDs. 
 

17 This assumption might be too approximate because actual travel patterns are sometimes too complex to be 
simplified as such (i.e. various road conditions or atypical travel preference). 
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The straight-line distances between all pairs of cells were compared to the actual 

travel distances by road. Figure 4.2 shows the scatter plot of road versus straight-line 

distances. The correlation coefficient is 0.96, and on average, road distance is about 1.4 times 

greater than straight-line distance. For most of the dots in Figure 4.2, the difference between 

road and straight-line distances is less than 2 km. For some dots, however, road distance is 

longer than 20 km for straight-line distances of only 6-7 km. The road distances from cell i to 

cell j were calculated and stored into the matrix with 29 rows and 25 columns shown in Table 

4.1. Four cells located near the northeast side border (#22, #27, #28, and #29) were dropped 

out of the destination columns because they contain relatively small populations and are 

located so far from other cells. Travel distance within any cell is assumed to be zero although 

in fact, the distance from villages in the cell to the center of the cell is around 0.7 km on 

average. 

 

Figure 4.2. Scatter plot of straight-line vs. road distances 
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Table 4.1. Road distances (in km) between source and destination cells 

 

Household income data were obtained for 30 sample villages in Daxu Township from 

both the CV and CM questionnaires (see Section 3.3). In each of these villages, a random 

sample was drawn of 10-20 households18, and the income data of each household was 

obtained using a questionnaire. The average self-reported household income in each of the 

sampled villages was obtained from an arithmetic average of the sample households. Because 
 
18 On average, 10 households per village were sampled for the “CM questionnaire”, while 20 households per 
village were sampled for the “CV questionnaire” in Daxu Township. 

From / To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26

1 0 9 8 5 3 11 10 8 13 11 12 12 16 16 16 17 18 20 19 20 21 24 23 25 26
2 9 0 2 7 10 3 5 8 6 6 9 13 9 11 13 16 18 14 16 18 20 18 21 24 26
3 8 2 0 5 8 3 3 6 6 4 7 10 9 10 11 14 16 13 15 16 18 17 19 22 24
4 5 7 5 0 3 8 6 4 9 7 7 8 12 12 11 13 14 15 15 15 17 19 19 21 22
5 3 10 8 3 0 8 9 8 12 11 13 13 17 19 19 19 20 24 24 24 24 29 28 30 29
6 11 3 3 8 8 0 3 7 3 3 7 11 6 8 11 14 16 11 13 15 18 15 18 21 24
7 10 5 3 6 9 3 0 5 4 1 5 8 6 7 8 11 13 10 12 13 16 14 16 19 21
8 8 8 6 4 8 7 5 0 8 5 4 5 10 8 7 9 10 12 11 12 13 16 15 17 19
9 13 6 6 9 12 3 4 8 0 3 6 11 3 6 9 13 15 9 11 14 17 12 16 19 22
10 11 6 4 7 11 3 1 5 3 0 4 8 5 6 7 11 12 9 11 12 15 13 15 18 20
11 12 9 7 7 13 7 5 4 6 4 0 5 7 5 4 7 9 8 8 9 11 12 12 14 17
12 12 13 10 8 13 11 8 5 11 8 5 0 11 8 5 5 6 11 9 8 9 14 11 13 14
13 16 9 9 12 17 6 6 10 3 5 7 11 0 4 8 12 13 6 9 12 15 9 14 17 20
14 16 11 10 12 19 8 7 8 6 6 5 8 4 0 4 8 10 4 6 8 11 7 11 13 17
15 16 13 11 11 19 11 8 7 9 7 4 5 8 4 0 4 6 6 4 5 8 9 8 11 13
16 17 16 14 13 19 14 11 9 13 11 7 5 12 8 4 0 2 10 5 4 4 12 6 8 10
17 18 18 16 14 20 16 13 10 15 12 9 6 13 10 6 2 0 11 6 4 3 13 6 7 8
18 20 14 13 15 24 11 10 12 9 9 8 11 6 4 6 10 11 0 5 8 12 4 10 12 16
19 19 16 15 15 24 13 12 11 11 11 8 9 9 6 4 5 6 5 0 3 7 6 5 8 12
20 20 18 16 15 24 15 13 12 14 12 9 8 12 8 5 4 4 8 3 0 4 9 3 6 9
21 21 20 18 17 24 18 16 13 17 15 11 9 15 11 8 4 3 12 7 4 0 12 4 5 6
22 23 24 22 20 26 22 19 16 20 18 15 12 19 15 11 8 6 15 10 7 4 15 6 4 2
23 24 18 17 19 29 15 14 16 12 13 12 14 9 7 9 12 13 4 6 9 12 0 9 12 16
24 23 21 19 19 28 18 16 15 16 15 12 11 14 11 8 6 6 10 5 3 4 9 0 3 7
25 25 24 22 21 30 21 19 17 19 18 14 13 17 13 11 8 7 12 8 6 5 12 3 0 4
26 26 26 24 22 29 24 21 19 22 20 17 14 20 17 13 10 8 16 12 9 6 16 7 4 0
27 26 24 23 22 33 22 20 18 19 19 15 14 17 14 11 10 9 12 8 7 7 11 4 3 7

28 27 25 24 23 33 23 21 19 21 20 16 15 18 15 12 10 9 13 9 8 7 12 4 2 5

29 29 29 27 25 33 26 24 21 25 23 19 17 23 19 16 13 11 18 14 11 8 17 9 6 3
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household income is an important determinant of demand for vaccination, several techniques 

were used for estimating the household income for unsampled villages, such as synthesis 

(Birkin and Clarke, 1989) multiple imputation (Raghunathan et al., 2001), and spatial 

interpolation (Flowerdew et al., 1991). The Bayesian Maximum Entropy (BME) method was 

ultimately used to predict income in unsampled villages by using the spatial dependency 

pattern of the existing data from the 30 sampled villages. Spatial clustering or dependence of 

income data in a small area has been written about frequently (Flowerdew et al., 1991; 

Anselin, 2003; Longley and Tobon, 2004). The detailed description of spatial interpolation 

methods and the actual process and validation of the BME estimation of household income 

for unsampled villages in this research are found in Appendix 3. 

After average annual household income was estimated for all 141 villages using BME, 

the village values were aggregated to estimate average annual household income for each cell. 

Simple arithmetic averages of village data were used to calculate cell averages because more 

sophisticated approaches could not be justified on the basis of having only 10-20 household 

observations for each of the 30 sample villages. Figure 4.3 shows average annual household 

income for each cell. 
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Figure 4.3. Average annual household income for each cell (in USD) 

In order to assess the validity of the BME income prediction and aggregation of 

income data by cells, the cumulative distributions of observed incomes for 30 sample 

villages, predicted incomes for all 141 villages based on BME estimation, and aggregated 

incomes for 27 cells are compared as shown in Figure 4.4. As seen from both Figure 4.4 and 

Table 4.2, the mean values are quite similar among observed incomes for sampled villages, 

predicted incomes for all villages, and aggregated incomes for all cells, although variances 



68

are reduced by both prediction and aggregation. The BME income prediction reduces 

standard deviation by USD 185, and the cell-based aggregation reduces standard deviation by 

USD 108, which seems not too substantial. Furthermore, judging from the natural log of 

income, which was used in the econometric model in Chapter 3, the reduction in variance by 

prediction and aggregation is minimal. Additionally, as shown in Table 4.2, natural log 

income does not change much from one village (or cell) to another (standard deviation = 0.2-

0.4), which could explain why income effects were not so strong in the Poisson regression 

models in Chapter 3 and indicate that income effects would not be substantial in the 

following cell-based analyses. 

 

Figure 4.4. Cumulative distributions of average household incomes 
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Table 4.2. Mean and standard deviation of average income data 

30 sample villages All 141 villages All 27 cells 
Income 
(USD) Ln(income) Income 

(USD) Ln(income) Income 
(USD) Ln(income) 

Mean 1075 6.9 1171 7.0 1098 7.0 
Standard deviation 457 0.4 272 0.2 164 0.2 

In principle, estimates can be made of the quantities of vaccinations demanded by 

each cell and the revenues that would be generated by any selected vaccination fee for any 

assumed arrangement of vaccination outposts. The number of vaccinations can be estimated 

using the household demand function eq. 3.6, cell population data (in Figure 4.1(b)), average 

logs of annual household income by cells (in Figure 4.3), and travel distances by road (in 

Table 4.1). The revenue can be calculated by multiplying the estimated number of 

vaccinations by the selected fee for vaccination. Assume, for example, that it is decided to 

have a single vaccination center in cell #10 at the CDC. Assume further that the vaccination 

price is USD 1.0. Consider cell #1 that has 2,541 persons, or about 570 households using the 

average of 4.5 persons per household. The average income in the cell is USD 1,122 per 

household per year (from Figure 4.3). The road distance of households in cell #1 to the 

outpost in cell #10 is 11 km (from Table 4.1). Using the demand function in eq. 3.6, it is 

predicted that households on average will purchase about 2.3 vaccinations. Thus, for the case 

of a single outpost in cell #10, the total quantity demanded in cell #1 is about 1,313 

vaccinations, and the revenue generated is USD 1,313. Repeating this calculation for all other 

cells, the total demand and revenue can be obtained for the entire vaccination program. 

In addition, using the estimates of the number of typhoid vaccinations demanded by 

each cell and the incidence data for each cell, the number of typhoid cases avoided by 
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vaccinations during the period that the Vi vaccine remains effective can be obtained for each 

cell in Daxu Township. The number of cases avoided in each cell is calculated by subtracting 

the number of cases with a vaccination program in each cell from the number of cases 

without the program in each cell19. Lauria et al. (2005) showed that the number of cases 

avoided by a vaccination program can be calculated by multiplying the predicted number of 

vaccinations by efficacy of the Vi vaccine (70%), incidence rate (in each cell), and duration 

of vaccine efficacy (3 years). For the example above, the number of cases avoided by Vi 

vaccinations in cell #1 for 3 years is about 7 (= 1,313 vaccinations × 0.7 efficacy × 0.00245 

incidence rate × 3 years). Adding these values for all cells produces the total cases avoided 

by vaccinations in Daxu Township. 

Furthermore, using the estimates of the number of typhoid vaccinations demanded by 

each cell, the private benefits can be calculated. Chapter 3 (Section 3.5.4) showed how to 

estimate the private benefits of vaccinating the entire household for a “typical” household in 

the township, and reported that the private benefits per household is USD 27 when 

vaccinations are delivered at the CDC, and USD 39 when vaccinations are delivered in or 

near households so that they do not need to travel, regardless of price. Because these values 

are per household, the predicted number of “households with all household members being 

vaccinated”20 is calculated in each cell by dividing the predicted number of vaccinations in 

each cell by average household size in each cell (4.5). The total private benefits in each cell 

 
19 The number of cases that occur without a program in a 3-year period in each cell is a product of population in 
the cell, the incidence rate in the cell, and duration of vaccine efficacy (3 years). The number of cases that occur 
with a vaccination program in a 3-year period in each cell is the sum of (1) the number of people who contract 
typhoid fever in the cell because they are not vaccinated, and (2) the number of cases among people who have 
been vaccinated but the vaccinations were not effective in the cell. The detailed explanation of this calculation 
is found in Chapter 6 and in Lauria et al. (2005). 
 
20 Note that the private benefit per household estimated in Section 3.5.4 is the WTP for vaccinating “all” 
household members. 
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can be calculated by multiplying the predicted number of households with all household 

members being vaccinated by the private benefits per household estimated in Chapter 3.  

 

4.2.  Extreme cases: vaccination in each cell vs. a mega-site at CDC 

 

Two extreme cases are considered: vaccination in each cell versus vaccination only in 

cell #10 where the township CDC is located. Table 4.3 shows that users on average would 

need to travel nearly 7 km21 one-way (about 14 km roundtrip) if vaccinations were delivered 

only at the township CDC. Travel distance is zero if vaccinations are offered in each cell. If 

the price were zero, 69% of the people in Daxu Township would be immunized, and 179 

cases of typhoid would be avoided over 3 years. However, if vaccinations were offered at 

each cell for free, 98% of the people in Daxu Township would be vaccinated (an increase of 

more than 15,000 persons), and 243 cases would be avoided. Hence, provision of outposts in 

each cell has the marginal effect of increasing vaccination sales by many thousands but cases 

avoided by only 64 if the price is zero, decreasing to about 50 if the price is USD 2. Revenue 

would be zero with free vaccination, but if USD 2 were charged per vaccination, it would 

amount to about USD 62,000 when vaccinated at the township CDC and about USD 87,500 

when vaccinated in each cell. Moreover, the private benefits by offering vaccinations in each 

cell (about USD 400,000) are about twice as large as those by offering vaccinations only at 

the CDC (about USD 200,000). Since these values of private benefits are almost linearly 

 
21 This value (more accurately, 6.8km) is an average one-way distance between the center of each cell and the 
township CDC. Note that average one-way distance from each “sample” village to the township CDC was 
6.3km, as reported in Chapter 3. 
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associated with the number of vaccinations, the number of vaccinations can be a surrogate of 

the private benefits. 

 

Table 4.3. Outcomes of vaccination at CDC vs. in each cell 

Vaccination 
outposts 

Average one-way 
travel distance 

(km) 
Price 
(USD) 

Number of 
vaccinations 

Coverage 
(fraction) 

Cases 
avoided 

Revenue 
(USD) 

Private 
benefits 
(USD) 

0 37,438 0.69 179 0 224,628 
1 34,034 0.63 163 34,034 204,204 

At township 
CDC 6.8 

2 30,940 0.57 148 61,880 185,640 
0 52,944 0.98 243 0 458,848 
1 48,131 0.89 221 48,131 417,135 In each cell 0 

2 43,755 0.81 201 87,510 379,210 
¶ Total population in Daxu Township in 2004 = 54,000 

Figure 4.5 compares three outcomes of the two vaccination cases by price. About 

41% more people would be vaccinated if vaccines were offered in each cell instead of at the 

CDC, and about 9% fewer people would be vaccinated if price increased by USD 1 (see 

Figure 4.5(a)). As a result, about 36% more cases would be avoided if vaccines were offered 

in each cell instead of only at the CDC, and about 9% fewer cases would be avoided by a 

price increase of USD 1 (see Figure 4.5(b)). As long as a user fee is charged, about 41% 

higher revenue would be generated if vaccines were offered in each cell instead of the CDC 

(see Figure 4.5(c)).  
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Figure 4.5. Vaccination outcomes of two extreme cases by price  
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How can each of these indicators be used to address the research questions on how 

many outposts to have and where to locate them? From the standpoint of government that 

may focus primarily on health, the public health benefits, indicated by cases avoided, seem to 

increase very little by increasing the number of outposts from one to 29. It is likely that 

government argues that a single outpost at the CDC is entirely proper because the marginal 

health benefits from adding more outposts do not seem worthwhile to pursue. 

But from the standpoint of the users, who in fact are paying for the vaccination 

program, the pertinent indicators are the numbers of vaccinations sold, the revenue 

generated, the distance traveled, and the private benefits, all of which improve and argue for 

more rather than fewer outposts. Without this kind of study, it would not be possible to 

evaluate their vaccination strategy of employing only a single outpost because in many cases 

government lacks the information on how much users are willing to pay for vaccinations. 

However, in light of the findings about user demand from this study, it seems that the number 



74

of outposts should be more than one and that vaccinations should be brought closer to the 

users.  

Although a full benefit-cost analysis is not the purpose of this research, if it were 

made, it would be necessary to account for all the benefits and costs to whoever they accrue. 

Then, the small marginal increase in cases avoided by having more rather than fewer 

outposts could not make a convincing argument that vaccinations should only be provided at 

a single or fewer sites. Instead, the substantial increases in all other indicators, such as the 

number of vaccinations sold, revenues from vaccination sales, and private benefits, argue that 

a single outpost does not meet society’s demands. Hence, it seems clear that Daxu Township 

should have more than one outpost, but it is still unclear how many to provide, where to 

locate them, and how much to charge the users. 

 

4.3.  Set covering model 

 

Section 4.2 argues that something more than a single outpost but probably fewer than 

one in each cell is called for to best serve society if the objective is to achieve economic 

efficiency, i.e. to maximize net benefits. To help develop this idea, a series of set covering 

models was developed to obtain insight on how many vaccination sites would be needed in 

order to offer vaccinations within a certain maximum travel distance. The set covering model 

determines the minimum number of vaccination sites needed and their locations to ensure 

that no one in the township would have to travel more than some maximum distance that is 

selected by the planner. 
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Assume that a vaccination campaign in Daxu Township targets all people living in 29 

cells in the township (i = 1, 2, …, 29). Recall that 25 of them are candidates for the location 

of vaccination outposts (j = 1, 2, …, 25). The objective function of the set covering model is 

to minimize the total number of vaccination outposts. The decision variable is xj ∈ {0, 1}: 1 

if a vaccination outpost is located in cell j, 0 otherwise. The set covering model is formulated 

as follows: 
 

Minimize: ∑
=

25

1j
jx eq. 4.1 

 subject to∑
=

25

1j
jij xG ≥ 1, ∀i eq. 4.2 

 xj = 1, for  j = #10 where the CDC is located eq. 4.3 

where Gij equals 1 if villages in cell i are within the specified distance of a vaccination 

outpost that could be located in cell j; 0 otherwise.  

 The set covering model for the case of Daxu Township has two constraints: first, each 

of the 29 cells must be assigned to at least one vaccination outpost (eq. 4.2); and second, the 

township CDC should be included in the solution (eq. 4.3). The second constraint was added 

to the model since it appears that the township CDC should be the headquarters for typhoid 

vaccination in the township even though additional sites may likely be required. Due to the 

binary feature of the decision variable xj, this set covering problem is formulated as a 0-1 

integer programming problem which can be solved by the branch-and-bound method 

(Toregas and ReVelle, 1972). A series of set covering models was solved to determine the 

best outpost locations for 3 different maximum travel distances (4 km, 7 km, and 10 km) and 

3 different user prices (USD 0, 1, and 2). When the maximum distance is set at 3 km or less, 
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no feasible solution was found because two cells (#27 and #29) are not located within 3 km 

of any other cell, and could not be candidates for a vaccination outpost. The location set 

covering problem commonly has multiple alternate optima (Drezner, 1995), but in this case, 

a single optimal solution was found for each maximum distance. Table 4.4 shows the 

results22.

Table 4.4. Results of the set covering models with different maximum distances 
Maximum 

travel 
distance 

Number of 
outposts 
required 

Average one-way 
travel distance 

(km) 

Assumed 
price 

(USD) 

Number of 
people 

vaccinated 

Coverage 
rate 

(% of total) 
Cases 

avoided 
Revenue 

(USD) 

0 49,354 91 225 0 
1 44,867 83 204 44,867 4 km 10 2.0 
2 40,788 75 186 81,576 
0 45,866 85 208 0 
1 41,696 77 189 41,696 7 km 5 3.4 
2 37,905 70 172 75,810 
0 44,807 83 205 0 
1 40,734 75 186 40,734 10 km 3 3.8 
2 37,030 68 169 74,060 

When the maximum distance for one-way travel to vaccination sites was set at 4 km, 

the set covering model required ten locations (the existing mega-site plus nine additional 

sites). Note that users have to travel about 7 km one-way on average if vaccines are delivered 

only at the mega-site, but with these ten sites, the average one-way travel distance drops to 2 

km. As a result, vaccination coverage increases by around 20% for all price levels 

(approximately 10,000 additional vaccinations), but 9% of the people would still not be 

covered even if vaccinations were free. Cases avoided also increases compared to the 

outcomes with a single mega-site, but not as much as those of vaccination at every cell. 
 
22 The private benefits are not presented in this table because the number of vaccination is a surrogate, and there 
is not much difference in private benefits depending on travel distance. They are not presented in the next 
section concerning the p-median model either for the same reason. 
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Similarly, if the maximum distance was set to 7 km and 10 km, five and three sites would be 

needed, respectively. People on average would have to travel 3.4 km one-way with five sites 

and 3.8 km with three sites. By having 5 sites instead of 10 sites, vaccination coverage drops 

about 6% losing only 17 avoided cases. By having 3 sites instead of 5 sites, vaccination 

coverage drops only an additional 2% and cases avoided would be almost unchanged.  

These results provide important insights. Vaccination coverage increases with more 

sites, but only marginally for more than three sites. Average travel distance continues to 

decrease with from one to ten sites. However, the marginal returns of cases avoided by 

adding more sites seem not substantial even compared to the single mega-site vaccination 

with less than 50 additional cases avoided by having 10 outposts instead of only one. As 

discussed in the previous section, the cases avoided seems to favor government’s single 

mega-site vaccination plan at the CDC, while the other indicators, such as number of 

vaccinations, travel distance, revenue and benefits, favor more outposts for the users in need 

of vaccination. The ultimate decision would be dependent upon what benefits government 

focuses on (i.e. health benefits vs. private benefits) and how their planning process is 

structured (top-down vs. bottom-up). Economics and policy literature argue that all the 

benefits and costs to whomever they may accrue should be accounted for in benefit-cost 

analysis. If government aims at meeting private demands as well as maximizing public 

benefits, identifying and analyzing all benefit and cost information would be important to 

provide the best vaccination policy possible. 

Despite the absence of the actual cost information, these results disclose the level of 

average unit cost of vaccination that can result in the system breaking even. Because there is 

no cost savings to the public health system by reductions in disease incidence due to 
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vaccinations, revenue from private sales is the only source of financial benefit for the 

vaccination program. Thus, the level of user fee should be the same as the average cost to 

make the system break even financially. 

Figure 4.6 also shows how the locations of outposts selected by the set covering 

models change as the maximum distance increases, and how the set covering models allocate 

the cells to each of the selected outposts23. According to Figures 4.6(a) and 4.6(b), five cells 

remain selected as optimal as the maximum distance changes from 4 km to 7 km. However, 

four out of the five selected outposts in Figure 4.6(b) would have to cover more people 

including those who were covered by other cells in Figure 4.6(a). It indicates that lowering 

the number of outposts would require larger capacity from the outpost in the selected cells.  

 

Figure 4.6. Optimal locations from the set covering models (p=USD 1) 

(a) Maximum distance = 4 km            (b) Maximum distance = 7 km            (c) Maximum distance = 10 km 

*** The optimal cells are shaded. 
*** Numbers are the predicted number of vaccinations in the cell. 
*** Arrows show how cells assign to outposts. 

23 For some cells where multiple outposts are located within the specified distance, it is assumed that people 
travel to the nearest outpost among them. 



79

Furthermore, considering population size in each cell shown in Figure 4.1(b), some of 

the selected cells have a very small population, but a much larger number of people in the 

neighboring cells were assigned to the cells with small population by the set covering model. 

For instance, cell #5 has a population of only 348, but about 3,000 people in the neighboring 

cells were assigned to travel to the outpost located in cell #5. This observation raises 

concerns about (1) limited capacity in small-population cells, and (2) large burden of 

vaccinees’ travel. 

 

4.4.  p-median model 

 

While the set covering model provides insights on the optimal number and locations 

of vaccination sites to ensure that no one is beyond the selected maximum distance, the p-

median model suggests where to locate a pre-specified number (K) of vaccination sites so 

that total population-weighted travel distance is minimized (ReVelle, Church and Schilling, 

1975). The total population-weighted distance is obtained by summing the products of 

population of each demand point (e.g. village) and distance to the closest vaccination site. 

Assuming that those who want to receive vaccinations choose to travel to the closest 

vaccination site, the p-median model identifies the Pareto optimal solution so that no person 

can reduce his travel distance without making another person worse off. Unlike the set 

covering model, the p-median model may produce the solution which requires people in 

some areas to travel considerable distances to the vaccination outpost since it is not subject to 

any maximum distance requirement. 
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As in the set covering model scenario above, let us assume that a vaccination 

campaign in Daxu Township targets all people living in the 29 cells in the township (i = 1, 2, 

…, 29) and only 25 of them are candidates for the location of vaccination outposts (j = 1, 2, 

…, 25). The objective function of the p-median model is to minimize the total population-

weighted distance between each cell and the nearest cell with a vaccination outpost. In this 

model, decision variables are xij ∈ {0, 1}: 1 if households in cell i assign to a vaccination site 

in cell j, 0 otherwise. 

 

Minimize: ∑∑
= =

⋅⋅⋅
29

1

25

1

)},,,Pr({
i j

ijijiiiji xdHIdpA eq. 4.4 

 Subject to ∑
=

25

1j
ijx = 1, ∀i eq. 4.5 

 ∑
=

25

1j
jjx = K eq. 4.6 

xij ≤ xjj, ∀i, ∀j, i ≠ j eq. 4.7 

 xjj = 1, if j = #10 where the CDC is located eq. 4.8 

where Ai = Population in cell i

)Pr(• = Probability of being vaccinated based on the demand function in eq. 3.624 

dij = Road distance from cell i to cell j

p = User fee for typhoid vaccination 

 Ii = Average household income in cell i

Hi = Average household size in cell i

24 The p-median model developed in my dissertation is slightly different from a typical p-median model since it 
uses the predicted number of population vaccinated based on the demand function rather than the entire 
candidate population. 
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This p-median model has four constraints: first, each cell must be assigned to one 

vaccination site (eq. 4.5); second, the total number of vaccination sites is K (eq. 4.6)25; third, 

households in cell j must self-assign to the vaccination site in cell j if the vaccination site in 

cell j is assigned to households in cell i by computer (eq. 4.7); and fourth, the township CDC 

should be included in the solution set of vaccination sites (eq. 4.8). The demand function in 

eq. 3.6 depends on four variables, such as distance to vaccination site, user fee, average 

household income, and household size, all of which are exogenous in this model. The 

number of vaccination sites is specified by the modeler as “K”. The p-median problem is 

formulated as a 0-1 integer problem due to the binary feature of xij, but usually (not always) 

is solved by linear programming. To resolve unusual solutions with fractional assignments 

produced by linear programming, the branch-and-bound method can be used to find the 

optimal integer solutions to the p-median model (ReVelle and Swain, 1970). In general, the 

p-median model is thought to be easier to solve than the set covering model which requires a 

0-1 integer programming to solve in most cases. 

To begin with, the p-median model can be used to evaluate the current location of the 

CDC if it is run without the last constraint in eq. 4.8. The result shows that cell #10, where 

the CDC is currently located, was chosen as optimal if only one outpost is to be located in the 

township (K=1). This finding also ensures the appropriateness of the constraint in eq. 4.8. 

Suppose two additional sites are to be used for vaccination in addition to the CDC. 

Where should they be located to minimize the sum product of population and travel distances 

between each cell and its nearest vaccination outpost? What if we assign five or more sites? 

How far would people have to travel on average for each of the alternatives? How would the 

 
25 Since xjj = 1 means that villagers in cell i receive the vaccine at their own cell, the sum of xjj should be the 
same as the total number of open vaccination sites (K). 
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program outcomes change by the number of sites? Table 4.5 addresses these questions. The 

number of sites was chosen as 3, 5, and 10 to compare the results with those from the set 

covering models. 

 
Table 4.5. Results of the p-median models 

Number of 
sites 

assumed (K)

Average  
one-way travel 
distance (km) 

Assumed 
price 

(USD) 

Number of 
people 

vaccinated 

Coverage 
rate 

(% of total) 
Cases 

avoided 
Revenue 

(USD) 

0 51,326 95 232 0 
1 46,660 86 211 46,660 10 1.2 
2 42,418 78 192 84,836 
0 47,925 89 209 0 
1 43,568 80 190 43,568 5 2.5 
2 39,607 73 173 79,214 
0 45,733  84 202 0 
1 41,575 77 184 41,575 3 3.4 
2 37,795 70 167 75,590 

Compared to the single mega-site vaccination in Table 4.3, Table 4.5 shows that 

about 8,000 more people would be vaccinated by using two more sites in addition to the 

CDC. However, the number of vaccinations increases by only about 2,000 with two 

additional sites from K=3 to 5, and increases by only about 4,000 with five additional sites 

from K=5 to 10. This result clearly indicates diminishing marginal returns with more 

outposts. Just three sites capture most of the vaccinations and after that, additional sites do 

not contribute much. Similarly, marginal returns of cases avoided, revenue, and average 

travel distance also diminish with more outposts. For instance, average roundtrip travel 

distance drops in half by the first two additional outposts (from 6.8 km with the single mega-

site to 3.4 km with three sites), but decreases by only 1 km with the next two additional 

outposts (from 3.4 km with 3 sites to 2.5 km with 5 sites). Figure 4.7 shows the vaccination 

sites selected by the p-median models.  
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Figure 4.7. Optimal locations from the p-median models (p=USD 1) 

(a) K = 3 (b) K = 5 (c) K = 10    

* The optimal cells are shaded. 
* Numbers in the cells are the predicted number of vaccinations. 

4.5.  Comparison of set covering and p-median models  

 

Table 4.6 compares four vaccination outcomes of the solutions from the two models 

with 3 and 10 outposts given price is USD 1.0. On the basis of all criteria in consideration, it 

appears that the p-median solutions generally provide better outcomes than the set-covering 

solutions: (1) shorter travel distance, (2) more vaccinations, (3) more cases avoided (with one 

exception when K=3), and (4) higher private benefits. Furthermore, the p-median model is 

easier to solve by linear programming than the set covering model which requires 0-1 integer 

programming. Figure 4.8 illustrates how the number of vaccinations and average roundtrip 

travel distance are different between the two models. 
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Table 4.6. Comparison of set covering and p-median models (if p=USD 1.0)  

Number of 
outposts (K)

Outcomes Set covering model P-median model 

Average one-way travel distance (km) 3.8 3.4 
Number of vaccinations 40,734 41,575 

Cases avoided  186 184 

3

Private benefits (USD) 289,664 304,883 
Average one-way travel distance (km)  2.0 1.2 

Number of vaccinations 44,867 46,660 
Cases avoided  204 211 

10 

Private benefits (USD) 338,995 373,280 

Figure 4.8. Comparison of the results between set covering vs. p-median models 
Number of vaccination 

(p=USD1)

0

10000

20000

30000

40000

50000

0 2 4 6 8 10 12

Number of outposts

Set covering model
P-median model

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Number of outposts

Distance 
(km)

Set covering model
P-median model

(a) Number of vaccinations      (b) Average roundtrip travel distance 
 

Figure 4.9 shows which cells were selected as optimal outpost locations by each 

model for K = 3, 5, and 10. For K = 3, the cells selected for the two sites in addition to the 

CDC are different but close to each other. The similar pattern is found for K = 5 and K = 10. 

However, it is worth noting that the set covering models tend to locate outposts closer to the 

border while the p-median models locate outposts in the cells with high population (see 

Figure 4.1(b)). The difference in the solutions between the two models is due to the different 

objective of each model. The set covering model minimizes the number of sites while 

holding all cells within a certain distance, while the p-median model allocates a certain 
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number of sites to minimize the sum product of population and travel distances between each 

cell and the selected outpost.  

 
Figure 4.9. Comparison of optimal locations by set covering vs. p-median models 

 
(a) K = 3 (b) K = 5 (c) K = 10   

* S: cell selected by set covering model, P: cell selected by p-median model, Both: cell selected by both 
 

It is a disadvantage of the set covering model to ignore population size in cells. In this 

particular case in Daxu Township where population sizes do not vary much by cells, the 

impact seems small. However, if the model is used for an area with large variability in 

population size, it would be a big deficiency. Furthermore, as already argued before, the set 

covering model could locate an outpost in a cell with very small population, assigning a large 

population in the neighboring cells to travel to the outpost. However, in practice, it seems 

unlikely that an outpost would be located not in but adjacent to a cell with high population. In 

this regard, one may conclude that the p-median model performs better, at least for this case, 

since it takes account of not only inter-cell distance but also population size in the cells. One 

limitation of the p-median model would be to assign households to a specific outpost 
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assuming users should receive vaccinations at the nearest outpost, which may not be easily 

enforced in practice.  

 

4.6.  Conclusion 

 

This chapter highlights that the two location models presented here, the set covering 

and p-median models, are powerful tools to assist in planning decisions concerning the 

suitable number of vaccination sites and locations of multiple sites even in the absence of 

cost data. It also demonstrates that the p-median model seems preferable to the set covering 

model for the reasons given above. Decisions being made concerning the number and 

location of vaccination outposts without the aid of these kinds of analytic tools might be 

limited and quite possibly would be far from optimal.  

The results of these models, however, may not provide complete and absolute 

guidance on the optimal solutions without considering the cost side unless vaccination cost 

per person is trivial (e.g. a few pennies per vaccination). An approximate calculation for the 

model results presented in this chapter may indicate whether the cost of vaccinating a person 

is trivial or substantial. In Table 4.5, the p-median model predicts that approximately 40,000 

people would be vaccinated if five outposts were located and user fee were USD 2. 

Assuming that a team of five whose daily salary is USD 10 vaccinates 200 people per day, 

USD 10,000 would be spent for personnel costs. If all non-personnel operation costs (e.g. 

vaccine storage, publicity, supplies, transportation, etc.) come to a total of USD 50 per 

outpost per day, another USD 10,000 would be needed. By dividing the total program cost of 

USD 20,000 by the predicted number of people who would be vaccinated from the model 
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(40,000 people), the cost per person is calculated as USD 0.5 (=20,000/10,000). Such per-

person cost of vaccination would quite likely be judged as nontrivial in China, which would 

argue for the need for greater attention to be paid to estimate a cost function in a more 

sophisticated fashion and to examine optimization models that seek to improve efficiency in 

vaccination delivery. 

Economists suggest the “marginal approach” to identify the condition where marginal 

costs and benefits are equal because it maximizes net benefits (i.e. the maximization 

principle). For instance, if costs are simply assumed to be equal to revenues, the marginal 

benefits of vaccinations will always be greater than marginal costs with an increasing number 

of outposts. Then, the optimal solution would be to have an outpost in each cell because the 

net benefits would increase monotonically when more and more outposts are added. 

However, it is certainly possible that marginal costs of vaccinations might become larger 

than marginal benefits when only a few or several outposts are located in the township. 

Therefore, the optimal number of outposts may not be determined by these models until 

vaccination cost information is incorporated into the analysis. 

 



Chapter 5 

Estimation of vaccination delivery costs 

 

Although the location models presented in Chapter 4 showed substantial strengths in 

locating vaccination outposts, more comprehensive and definite determination of the best and 

most feasible vaccination delivery policy in this township would be possible only if 

vaccination delivery costs are considered along with the other policy indicators. However, in 

many cases, vaccination delivery cost data are either unavailable or hard to be obtained. 

Thus, in this chapter we estimate the cost function for a vaccination campaign in Daxu 

Township based on simulations. 

 

5.1.  Background 

 

The technical literature shows that the costs of vaccination programs are different 

depending on the delivery method used (Walker et al., 2004; Robertson et al., 1984; 

Phonboon et al., 1989; Linkins et al., 1995). The two main vaccination delivery methods are 

(1) fixed (routine) programs, and (2) mass vaccination campaigns. Fixed vaccination 

programs typically require permanent clinics (health centers) with permanent staff. Daxu 

Township has only a few permanent clinics and virtually no health staff besides the village 

doctor in the villages. Therefore, fixed programs are not feasible for Daxu Township, and 
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therefore this research assumes vaccinations will be delivered in Daxu Township through 

mass campaigns. 

Mass vaccination campaigns are usually offered periodically (once every few years), 

and they tend to operate from ‘borrowed’ facilities such as schools, workplaces, government 

buildings, homes, and, if available, village clinics, sometimes requiring rental fees and other 

times not. Special staff are needed for mass campaigns, and staff salaries are usually the 

largest portion of the total delivery cost of a vaccination program26. Promotion campaigns are 

needed to make people aware of where and when vaccinations are available. Mass campaigns 

are often run from an office that is centrally located to the outposts, and vaccination staff 

gather there each day to be transported to their assigned outposts with vaccines and supplies.  

The costs of a mass vaccination campaign falls into two categories: fixed and variable 

costs. The boundaries for the categories are not always clear, with some costs being classified 

as fixed which could as easily be considered variable, and vice versa. In this research, fixed 

costs are assumed to be associated with the number of vaccination outposts, and variable 

costs depend on the number of persons vaccinated. Hence, it is assumed that the cost of a 

mass vaccination campaign is a linear function of two explanatory variables as shown in eq. 

5.1: 

TC = a · Z + b ·Q eq. 5.1 

where TC = total cost, a = average fixed cost per outpost, Z = number of outposts, b =

average cost per dose, and Q = total number of people vaccinated during the campaign. 

 

26 In this chapter, only “delivery cost” is estimated, assuming that the vaccine dose costs zero. 
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If vaccinations were offered at one or just a few outposts, travel cost for the 

vaccination workers might be relatively small, and fixed cost might also be small due to 

economies of scale. However, vaccination demand with only a few outposts would probably 

be relatively low due to longer travel times and distances required of vaccinees to go to the 

vaccination outposts. Delivering vaccinations at a large number of outposts would probably 

incur a larger setup cost, but it would probably reach more people who would not have to 

travel so far to be vaccinated. The extreme alternatives are to offer vaccinations: (1) at a 

single mega-site or (2) in each home. Between these extremes presumably lies the optimal 

number and location of outposts, which this research aims at identifying.  

 

5.2.  Cost estimation approach 

 

Because little data and information are available on vaccine delivery cost in China, it 

is necessary to estimate vaccination program costs based on the simulation of different 

delivery systems. To the greatest possible extent, the characteristics of mass vaccination 

campaigns and unit cost values used in the simulations of this chapter were based on data 

from Daxu Township, but where lacking, they had to be supplemented by other sources. 

Yang et al. (2005) reported on a cluster-based Vi mass vaccination campaign against typhoid 

fever in Hechi, Guangxi province in China, where Daxu Township is located. Actual cost 

information, however, was not included in their report. Jian et al. (1998) and Cavailler et al. 

(2005) provide data on the unit costs incurred by mass vaccination campaigns in developing 

countries other than China, which are used in the simulations of this chapter. Based on Yang 

et al. (2005), it is assumed that each vaccination team that participates in a mass campaign 
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consists of 1 physician (the leader), 2 nurses (vaccinators), 1 health worker (support staff, 

record keeping, etc.), and 3 community helpers.  

A campaign is assumed to last 30 work days, and each team is assumed to vaccinate 

200 persons per day during an 8-hour work day, 2 hours of which are assumed to be spent 

traveling from the central office where team members assemble each day (called the CDC in 

China) to its outpost and returning to the CDC. Twenty-five of the 29 cells in Daxu 

Township (see Figure 5.1) are potential sites for outposts, which are represented by the 

columns in Table 4.1. Vaccine doses are stored in cold rooms at the CDC and transported 

daily to outposts by the vaccination teams. Each outpost has a vehicle that is dedicated to 

transporting a 7-person team plus vaccines and supplies from the CDC each morning and 

returning in the evening. The required number of teams assigned to an outpost depends on 

the expected number of vaccinees. The assumed vaccine wastage rate is 11%, as reported by 

Yang et al. (2005). 

According to Cavailler et al. (2005), the average salary for vaccination staff was 

about USD 7.7 per day in Mozambique. Considering the purchasing power parity of China 

and Mozambique, the average daily salary for Daxu staff is about USD 10, which seems to 

agree with the information for the mass campaign of Vi vaccinations in Hechi City, China in 

2003. The cost of vaccine storage per day is assumed to be USD 1.0 per 1,000 doses, 

following Cavailler et al. Based on private communication with the Guangxi provincial CDC 

staff who have been involved in mass vaccination campaigns in Hechi province, it costs 

about USD 30 for setup per outpost per day, USD 20 for car and driver rental per day, and 

USD 0.3 for local transportation per kilometer. Assumptions for the cost simulations 

performed herein are summarized in Table 5.1. 
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Table 5.1. Assumptions for cost estimation by simulation 
Items Value Sources 

Logistics 
Members in a vaccination team 7  Yang et al. (2005) 
Vaccinations per team per day 200  Yang et al. (2005) 
Length of campaign, days 30  Yang et al. (2005) 
Wastage rate, % of total doses 11 Yang et al. (2005) 

Unit costs, USD 
Average daily salary per worker 10  Cavailler et al. (2005)  
Vaccine storage, per 1000 doses per day 1.0  Cavailler et al. (2005) 
Publicity, per dose  0.06 Jian et al. (1998) 
Training,  per dose  0.02 Jian et al. (1998) 
Supplies, per dose  0.02 Jian et al. (1998) 
Outpost setup/rental, per outpost per day  30  Personal communication with Guangxi CDC staff 
Car & driver, per day  20  Personal communication with Guangxi CDC staff 
Mileage, per km  0.3 Personal communication with Guangxi CDC staff 

The first step in estimating the cost function in eq. 5.1 was to generate alternative 

vaccination program designs. This was done by selecting a different number of vaccination 

outposts for each design and then solving the p-median model described in Chapter 4, one 

solution for each specified number of outposts, to determine (1) the optimal locations of the 

outposts for each design and (2) the number of people who would seek vaccination at each 

outpost. For the simulations, the number of outposts was assigned values of 1, 2, 3, 4, 5, 8, 

and 12, which resulted in 7 different designs and 7 solutions of the p-median model. For each 

design, the user fee was assumed to be zero, and the vaccination demand function in eq. 3.6 

was used with the travel distances in Table 4.1 from source cells to candidate outpost 

locations and the average household income for each cell in Figure 4.3 to determine the 

number of vaccinees at each (optimally located) outpost. The average household size of 4.5 is 

also assumed. 

The next step was to estimate the cost of a mass vaccination campaign for each 

alternative design using the data in Table 5.1. With estimates of the number of vaccinees at 

each outpost from p-median model solutions, it was possible to determine the number of 
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vaccination teams required for each outpost, the number of cars and drivers, the total doses of 

vaccine, total number of personnel, and similar resources required to deliver the different 

program designs. Similarly, with the optimal locations of outposts, it was possible to estimate 

total travel distances and costs. Thus, an estimated cost was produced for each different 

design, seven in all. After making the simulations with a user fee of zero, the simulations 

were repeated with using a fee of USD 1.0 per dose to generate an additional seven designs.  

The final step was to regress the costs of the different designs against the two 

explanatory variables in eq. 5.1, the number of outposts and the number of doses, which 

enabled estimates of the parameters a and b. The data for fees of zero and USD 1.0 were 

pooled and a dummy variable was included in the regression analysis to determine the effect 

of fee on the cost parameters a and b.

5.3.  Illustrative example 

 

The example in this section illustrates the approach that was used for estimating costs 

by simulation. The assumed number of outposts was 5 and user fee was assumed to be zero. 

Recall that Table 4.1 shows the road distances in km between source cells (rows) where the 

people of Daxu Township live and the 25 candidate locations of outposts (columns), which 

defines dij in the demand function, distance that a person living in cell i would have to travel 

to be vaccinated if an outpost were located in cell j. Figure 5.1 shows the grid that was 

superimposed on Daxu Township to define the cells for this analysis.  

 



94

Figure 5.1. Map of 29 cells in Daxu Township 

• : Township CDC   ▲: 141 Villages   * Numbers in the cell are the cell IDs. 

According to Table 4.1, if there were only a single outpost in Daxu Township located 

in cell #10 at the CDC, then people from, for example, cell #1 would have to travel 11 km to 

be vaccinated, and people in cell #2 would have to travel 6 km. These distances were 

measured based on road networks and are not straight-line distances. 

Each travel distance dij in Table 4.1 was inserted into the vaccination demand 

function in eq. 3.6 with a price of zero, average household size of 4.5 persons, and the 

average household income for each cell, and the demand model was solved to predict Qij, the 
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average number of vaccinations that a household in cell i would purchase if the vaccination 

outpost were in cell j. Multiplying each Qij value by the number of households in cell i yields 

the predicted number of people in cell i who would be vaccinated if their outpost were in cell 

j. Table 5.2 shows the predicted number of vaccinations for all possible combinations of 

source and destination cells in Daxu Township (the units are hundreds of persons). For 

example, if residents in cell #1 had to travel to cell #10, about 1,500 of them would be 

vaccinated if no fee were charged. 

 
Table 5.2. Predicted vaccinations (in hundreds) at price=0 

From / To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 

1 26 16 17 20 22 15 16 17 13 15 14 14 11 11 12 11 11 9 10 10 9 8 8 7 7
2 4 6 5 4 4 5 5 4 4 4 4 3 4 3 3 3 2 3 3 2 2 2 2 2 2
3 3 5 5 4 4 5 4 4 4 4 4 3 3 3 3 3 2 3 2 2 2 2 2 2 2
4 10 8 9 12 10 8 9 10 8 9 8 8 7 7 7 6 6 6 6 6 5 5 5 4 4
5 3 2 2 3 4 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
6 19 28 28 22 22 32 28 23 28 27 23 19 24 21 19 16 15 18 16 15 13 15 13 11 10 
7 29 38 42 36 31 42 49 39 41 46 39 32 36 34 32 27 25 29 27 25 22 24 21 19 17 
8 31 31 35 39 31 33 37 47 31 37 39 37 29 31 32 30 28 26 27 26 24 21 22 20 18 
9 15 21 22 18 16 25 24 19 29 24 21 17 24 21 18 15 14 18 16 14 12 15 13 11 9
10 8 10 11 10 8 12 13 11 12 14 11 9 11 10 10 8 7 9 8 7 7 7 6 6 5
11 17 19 21 21 16 22 24 25 22 25 31 25 22 24 25 22 20 20 21 20 18 17 17 15 13 
12 7 6 7 8 6 7 8 10 7 8 10 12 7 8 9 10 9 7 8 8 8 6 7 6 6
13 6 8 9 7 6 10 10 8 11 10 10 8 14 11 9 7 7 10 9 7 6 9 7 6 5
14 11 14 15 14 10 16 17 16 18 19 20 16 21 25 20 16 15 21 19 16 14 17 14 13 11 
15 19 22 24 24 17 25 28 30 27 30 35 33 29 35 43 35 32 32 36 34 29 27 29 25 22 
16 7 7 7 8 6 8 9 10 8 9 11 12 8 10 12 15 14 9 12 13 12 8 11 10 9
17 5 5 5 6 4 5 6 7 6 6 8 9 6 7 9 11 12 7 8 10 10 6 9 8 8
18 7 9 10 9 6 11 11 10 12 12 12 11 14 16 14 12 11 19 15 13 10 16 12 10 8
19 2 2 2 2 1 2 3 3 3 3 3 3 3 3 4 3 3 4 5 4 3 3 4 3 3
20 17 19 21 21 14 22 24 26 24 25 30 31 26 31 37 39 38 31 40 47 39 30 40 35 30 
21 6 6 6 7 5 6 7 8 7 8 9 10 7 9 11 13 14 9 11 13 16 9 13 13 12 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
23 3 4 5 4 3 5 5 5 6 6 6 5 7 8 7 6 6 9 8 7 6 11 7 6 5
24 10 11 12 12 7 12 14 15 13 14 17 18 15 18 21 22 23 19 24 26 25 19 31 27 22 
25 6 6 7 7 5 7 8 9 8 9 10 11 9 11 13 14 15 11 14 16 17 12 18 21 17 
26 2 2 2 2 2 2 2 3 2 2 3 3 2 3 4 4 4 3 4 4 5 3 5 5 7
27 2 3 3 3 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 5 7 8 6
28 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
29 1 1 2 2 1 2 2 2 2 2 2 3 2 2 3 3 4 3 3 4 4 3 4 5 5
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For this illustrative example, the number of outposts was restricted to five. 

Accordingly, the p-median model was solved to determine (1) their optimal locations, and (2) 

the number of vaccinations that would be demanded at each one. The results are shown in the 

first and second columns of Table 5.3. 

 

Table 5.3. Predicted number of vaccinations and required resources for each outpost 

Outpost 
Cell ID 

Predicted 
vaccinations 

Required 
teams 

Required 
cars 

Roundtrip 
distance 

per day (km) 
Total distance 

(km) 
#10 15,602 3 0 0 0 
#1 2,875 1 1 22 654 
#8 6,625 2 2 19 282 

#15 6,307 2 2 29 438 
#20 16,363 3 3 73 2,178 
Sum 47,772 11 8 142 3,552 

Consider the row in which cell #20 is the optimal location for an outpost. The p-

median model predicted that about 16,000 people would get vaccinated there. Three 

vaccination teams would be needed to provide the vaccinations (200 per day per team for 30 

days). Three vehicles would be needed to transport the teams to the outpost, and their total 

roundtrip distance from the CDC would be about 73 km per day or about 2,200 km for the 

entire campaign. In total, 11 teams would vaccinate about 48,000 people (88% of Daxu 

population) traveling a total distance of about 3,500 km. The results are shown in Figure 5.2. 
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Figure 5.2. Locations of 5 outposts provided by p-median model 

�: Villages   �: Daxu township CDC   �: Village health clinics (selected)  Г: Schools  ~: Main roads  

1km

Site 15
7.3km from CDC 
6,307 vaccinations 
Cost: USD 7,376 

Site 20
12.1km from CDC 
16,363 vaccinations
Cost: USD 11,955 

Site 08
4.7km from CDC 
6,625 vaccinations 
Cost: USD 7,325 

Site 01
10.9km from CDD 
2,875 vaccinations 
Cost: USD 4,164 

Site 10
Mega site (CDC) 
15,602 vaccinations
Cost: USD 9,249 

 

Using the simulation results in Table 5.3 and the unit costs in Table 5.1, an estimate 

was made of total program cost for this program design. The result is shown in Table 5.4. 

 

Table 5.4. Estimated costs of vaccination program by category (5 outposts and free 
vaccination) 

Category Cost (USD) 
Personnel Cost (Salaries) 23,100 
Publicity Cost (Promotion) 2,866 
Training Cost 955 
Cost of Supplies 955 
Vaccine Storage (Cold room, refrigerator) 1,610 
Car / Driver Rental Cost 4,800 
Mileage Cost 1,282 
Outpost Setup / Rental Cost 4,500 
Total Cost 40,069 
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5.4  Cost summary 

 

The illustrative example was only one of fourteen separate simulations that were 

made in order to obtain a dataset for estimating eq. 5.1 by the ordinary least square (OLS) 

method. Half the simulations assumed the user fee was zero and the other half assumed it 

was USD 1.0. The resulting cost estimates and characteristics of the different vaccination 

program designs are shown in Table 5.5. 

 

Table 5.5. Simulated outcomes for different vaccination program designs 
Run Number of 

outposts 
(Z) 

Predicted 
vaccinations 

(Q) 

Vaccination 
coverage (%) 

Average 
Vaccinations 
per outpost 

Vaccination 
costs (USD) 

Average 
costs per 

dose (USD)

User fee 
(USD) 

1 1 37,438 69 37,438 20,606 0.55 0 
2 2 42,828 81 21,914 26,914 0.61 0 
3 3 45,435 84 15,145 31,591 0.70 0 
4 4 46,610 86 11,653 36,118 0.77 0 
5 5 47,772 88 9,554 40,069 0.84 0 
6 8 50,012 92 6,252 49,643 0.99 0 
7 12 51,850 96 4,321 56,232 1.08 0 
8 1 34,034 63 34,034 18,051 0.53 1 
9 2 39,843 74 19,922 26,381 0.66 1 

10 3 41,304 76 13,768 31,039 0.75 1 
11 4 42,371 78 10,593 33,451 0.79 1 
12 5 43,428 80 8,686 36,657 0.84 1 
13 8 45,465 84 5,683 49,035 1.08 1 
14 12 47,136 87 3,928 53,501 1.14 1 

Estimated costs in the sixth column of Table 5.5 were treated as the dependent 

variable in eq. 5.1 and the independent variables are in the second (Z) and third (Q) columns. 

In addition, a dummy variable with the values in the last column was included to determine 

whether the different user fees had a significant effect on program costs. Eq. 5.1 was fitted 

without an intercept (overall R-square = 0.97), and the model was significant at the 1% level 

(F= 126). The estimated coefficients for a, b, and the dummy variable were 2570, 0.53, and 
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166, respectively. The two explanatory variables are each significant at the 1% level, but the 

dummy was not significant (t = 0.15). Hence, the model for predicting the costs of alternative 

vaccination programs based on the number of outposts and total vaccination sales is shown in 

eq. 5.2: 

 

TC = 2570 · Z + 0.53 ·Q eq. 5.2 

 

Table 5.5 shows that the predicted number of vaccinations increases as the number of 

outposts increases, which raises the question of whether multicollinearity exists between 

these two variables. The partial correlation coefficient is close to 0.7, which, although high, 

probably is not subject to a serious multicollinearity problem (Kennedy, 1992). It seems 

obvious that more people would be vaccinated if more outposts are used, but it is also true 

that delivery costs are a function of not only the number of outposts (i.e. fixed cost) but also 

the numbers of persons who visit them to be vaccinated (i.e. variable cost). In fact, for the 

fourteen simulated data points, it is found that the “observed” costs match very well with the 

“predicted” costs based on eq. 5.2, which indicates that a multicollinearity problem 

associated with simulated cost data is less important than one might think. Recall that both 

explanatory variables are highly significant in the regression model for costs above. 

A recurring question about vaccination programs is whether they reflect economies of 

scale. The common belief is that there are economies in such programs, but the data in Table 

5.5 suggest otherwise. According to the first seven rows of Table 5.5 for a user fee of zero, 

the numbers of vaccinations in the third column are shown in increasing order, and the 

average cost per dose in the seventh column also increases. Hence, the data suggest 
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diseconomies of scale, not economies. The same is true of the last seven rows of Table 5.5 

for which the user fee is USD 1.0. In Daxu Township, the total population is fixed at about 

54,000. Because the quantity of vaccinations demanded decreases with increasing travel 

distance, the only way to vaccinate more people is by bringing outposts closer to them, which 

incurs additional setup and travel costs. If demand were entirely inelastic with respect to 

travel, the optimal solution would be to have a single mega-site. In the case of Daxu 

Township, it turns out that the marginal cost of adding more outposts exceeds the average 

cost, causing the average to increase. 

This can easily be seen from the log linear equation that was fitted to total cost (USD 

1000s) and total vaccination (1000s) data in Table 5.5. A graph of the cost data from Table 

5.5 is shown in Figure 5.3 together with the fitted equation, which is shown in eq. 5.3 (R-

square = 0.85); 

 

TC = 0.0009 · Q
2.8 eq. 5.3 

 
where TC is total delivery cost in thousands of USD and Q is number of vaccinations in 

thousands. It is easy to show that the exponent of a power function like the one in eq. 5.3 

represents the percentage change in cost per 1% change in the number of vaccinations, which 

is sometimes called the economy of scale factor. For economies to exist, the exponent would 

need to be between zero and one. In this case, there is nearly a 3% increase in cost for every 

1% increase in vaccinations, which implies quite large diseconomies of scale. 
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Figure 5.3. Vaccination delivery costs vs. number of vaccinations (free vaccination) 
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The analysis presented so far in this chapter has assumed that vaccinations are offered 

free of charge and users pay nothing, but users would have to pay a price that would cover 

delivery cost. Figure 5.4 compares delivery costs in which users pay nothing (the seventh 

column in Table 5.5) to delivery costs in this case where users are responsible for covering 

them. In both cases, vaccines are assumed to be available without charge. The differences 

between the two curves in Figure 5.4 do not appear to be large, yet this is not entirely 

accurate. First, we notice that the range of average delivery cost is a little larger when users 

pay than when then do not (USD 0.5 to 1.1 when they pay). However, note that the user-pay 

curve in Figure 5.4 ends at about 47,000 vaccinations, which is the maximum number that 

can be obtained when users are charged and which occurs when there are 14 outposts. It is 

not possible to vaccinate more than this if users must pay, unlike the case when users do not 

have to pay. Another important difference can be seen by comparing eq. 5.4 (R-square = 

0.84) that underlies the user-pay curve in Figure 5.4 with eq. 5.3 that underlies the no-pay 

curve: 
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TC = 0.00004 · Q 3.7  eq. 5.4 

 

where TC is total delivery cost in thousands of USD and Q is number of vaccinations in 

thousands. The larger exponent in eq. 5.4 than in eq. 5.3 indicates even larger diseconomies 

of scale in mass vaccination campaigns when users have to pay, which is also seen from the 

steeper slope of the user-pay curve in Figure 5.4. 

 

Figure 5.4. Average vaccination delivery costs vs. number of vaccinations 
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Chapter 6 

Models for determining optimal user fee and locations 

 

The previous chapters presented the key information for the design of a vaccination 

program in Daxu Township in China. Chapter 3 provided estimates of the private demand for 

vaccinations based on user fee, travel distance to the vaccination site, and household income. 

Chapter 4 presented two locations models, the set covering model and p-median model, for 

the initial understanding of how many vaccination outposts might be needed and where they 

should be located. Chapter 5 provided estimates of costs. 

This chapter pulls together all the pieces from the previous chapters and uses them to 

address the main policy questions concerning the number and locations of vaccination 

outposts and the price to charge for typhoid vaccinations in China. It first develops an 

optimization model in which the planning objective is to maximize vaccination coverage. 

Analyses are made to examine how sensitive the solutions are to different constraints and 

assumptions about the demand and cost functions. Next, an alternative model is formulated 

and solved in which the objective is to maximize the number of cases that can be avoided 

with a vaccination program. The results from this model are compared with those from the 

model in which coverage was maximized. 

 



104

6.1.  Optimization model for maximizing vaccination coverage 

 

The optimization model of this section assumes that the objective is to maximize the 

number of vaccinations (i.e. coverage) in Daxu Township, subject to the constraint that 

program costs should be entirely covered by revenue from user fees. Considering the private 

benefits associated with getting vaccinated, this objective implies primary concern with 

maximizing private benefits and not necessarily with maximizing health effects. Hence, this 

model takes no special account of variations in disease incidence in the target area, and thus 

does not prioritize the areas with high incidence27.

Assume that the vaccination campaign targets all people living in N cells in the 

township (i = 1, 2, …, N) and that M of the cells are candidate locations for vaccination 

outposts (j = 1, 2, …, M), where M ≤ N. The decision questions are: What price should be 

charged to the users, what is the optimal number of vaccination outposts, and where should 

they be located under the financial constraint that revenue covers cost? Let xij =1 if people in 

cell i are served by a vaccination outpost at cell j and 0 otherwise and ijQ = the number of 

people in cell i who would be vaccinated at the outpost in cell j. ijQ is a function of the price 

charged for a vaccination (p), the distance between cells i and j (dij), average household 

income in cell i (Ii), and average household size in cell i (Hi). ijQ is derived from lambda in 

eq. 3.6. xij, Qij and p are decision variables whose optimal values are to be determined by 

model solution, and dij, Ii and Hi are known parameters. It is assumed that people use the 

shortest distance to travel from their cell to an outpost for vaccination. Since the objective is 

 
27 In a sense that this coverage-maximization model does not prioritize the areas with high incidence without 
considering the incidence distribution, it seems similar to the set cover model in Chapter 4 because it does not 
prioritize the areas with large population without considering the population distribution in the region.  
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to maximize coverage, the model seeks to maximize the sum product of ijQ and xij (i.e. the 

total number of vaccinations) similar to the objective of the p-median model in Section 4.4:

 

Maximize: ∑∑
= =

⋅
N

i

M

j
ijij xQ

1 1

eq. 6.1 

where ijx = binary (0 or 1) and ),,,( iiijij HIdpfQ = .

This model requires four constraints plus an optional fifth. First, each cell must be 

served by only one vaccination outpost. That is, all the people in the region who choose to do 

so must go somewhere to be vaccinated. 

 

∑
=

M

j
ijx

1

= 1 for ∀i eq. 6.2 

 

Second, if people in cell i travel to the outpost in cell j for vaccination, people in cell j

must be served by the outpost in their own cell. This constraint is complicated and it derives 

from the p-median model presented in Chapter 4: 

 

xjj ≥ xij for ∀i, ∀j, i ≠ j eq. 6.3 

 

Third, the total cost of the mass vaccination program must be covered by revenue 

from vaccinations.  Total vaccination cost, as defined in Chapter 5, is the sum of fixed cost 

( Za ⋅ ) which depends on the number of outposts (Z =∑
=

M

j
jjx

1

), and variable cost (b·Q) which 
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depends on the number of vaccinations that are sold (Q = ∑∑
= =

⋅
N

i
ij

M

j
ij xQ

1 1

). This model does 

not include public sector cost savings from not having to treat cases of typhoid avoided 

because, in most cases, people in China have to pay for treatment cost on their own when 

they are sick. It is thus assumed that there is no public cost for treatment that is incurred by 

the government. Revenue from vaccinations is the product of the total number of 

vaccinations (which is the same expression in the objective function) and the price charged 

(p), which creates a quadratic function that is nonlinear in the decision variables: 

 

∑∑
= =

⋅⋅
N

i

M

j
ijij xQp

1 1

 ≥ ∑
=

⋅
M

j
jjxa

1

+ b ·∑∑
= =

⋅
N

i
ij

M

j
ij xQ

1 1

 eq. 6.4 

 

In the case of Daxu Township, the CDC is the headquarters for vaccinations, where 

the doctors and health staff work on a regular basis. Thus, for this case in China, it is 

reasonable to add a fourth constraint that the township CDC must be included in the solution 

set of vaccination sites28.

xcc = 1, if the CDC is located at cell c eq. 6.5 

 

Solution of the model in equations 6.1–6.5 would in principle produce the “globally 

optimal” solution. However, a fifth constraint can be added to this model which strictly 

speaking would result in suboptimal solutions. Nevertheless, in some cases it might be 

reasonable to specify the required number of vaccination outposts (Z) in advance. Thus we 
 
28 In Chapter 4, the current location of the township CDC was confirmed as optimal in Daxu Township. 
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have the fifth constraint in eq. 6.6, where K is a user-selected number between 2 and M, the 

solution for K=1 being the outpost at the CDC29.

Z =∑
=

M

j
jjx

1

= K eq. 6.6 

 

In the results below, the “globally optimal” solution will be obtained first without this 

constraint, and then a series of suboptimal solutions with the constraint will be obtained to 

see how they change with different values of K.

6.2.  Parameter values 

 

As described in Chapter 4, 141 villages in the township are aggregated into 29 cells 

(see Figure 4.1), 25 of which are assumed to be candidate locations for vaccination outposts 

(i.e. N=29, M=25). The decision problem for health officials in the township is to choose the 

optimal outpost locations among the 25 candidate sites, together with the optimal price to be 

charged to the users, given the vaccination campaign target of 54,000 inhabitants in the 

township. Thus, this model has 725 binary decision variables {xij} for inter-cell assignment 

(29 × 25) plus one decision variable for price. 

In spite of the assumption that the entire population knows about the campaign and is 

eligible to receive vaccinations, not all of the population will participate in the vaccination 

campaign. The number of people in cell i who would be vaccinated at the outpost located at 

 
29 Note that “Z” stands for the number of outposts and “K” stands for the specified number of “Z”, throughout 
this dissertation. 
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cell j ( ijQ ) is calculated by multiplying the total number of households at cell i (Si) by the 

expected number of vaccinations purchased by a household in cell i derived from the demand 

function in eq. 3.6 as follows: 

 

ijQ = Si · exp(-0.2 - 0.1⋅ p - 0.05⋅ dij + 0.13⋅ ln(Ii) + 0.18⋅ Hi) eq. 6.7 

 

where Si = number of households in cell i, p = price per vaccination, dij = road distance from 

cell i to cell j, ln(Ii) = natural log of average household income at cell i., and Hi = average 

household size at cell i. Average household size is assumed to be the same for all cells, which 

is about 4.5. The two parameters in the cost function in eq. 6.4 were estimated in Chapter 5: a

= 2,570 and b = 0.53, which, after rounding, yields the total cost (TC) of the vaccination 

program shown in eq. 6.8. 

 

TC = 2500 · ∑
=

M

j
jjx

1

+ 0.5 ·∑∑
= =

⋅
N

i
ij

M

j
ij xk

1 1

 eq. 6.8 

 

6.3.  Solutions 

 

Price is a continuous decision variable, and the location decision variables {xij} are 

binary integers. Moreover, the revenue constraint in eq 6.4 is quadratic in the decision 

variables. Hence, the mathematical form of the optimization model is 0-1 mixed integer 

quadratic, which is non-linear and requires the use of branching and bounding.  In total, 731 

constraints were generated to solve the programming in this model. 
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The optimization model was solved using the commercial software “What’s Best”. 

The optimal price was found to be USD 1.25 per vaccination, and the optimal number of 

locations was found to be 14. At the optimal solution, about 87% of people living in Daxu 

Township would be vaccinated (47,000), and total cost and revenue would be exactly the 

same (about USD 58,000). The locations of the 14 vaccination outposts are shown in Figure 

6.1, which also indicates how many people would be vaccinated at each outpost. 

 

Figure 6.1. Locations of 14 vaccination outposts in “globally optimal” solution 

�: Villages   �: Daxu township CDC   �: Village health clinics (selected)  Г: Schools  ~: Main roads  

1km

Site 15
3,819 vacs

Site 08
5,036 vacs

Site 01
2,553 vacs

Site 10
Mega site (CDC) 
1,228 vacs

Site 25
3,665 vacs

Site 06
3,721 vacs

Site 07
4,323 vacs

Site 09
4,277 vacs

Site 11
3,591 vacs

Site 17
3,489 vacs

Site 24
2,725 vacs

Site 18
2,473 vacs

Site 14
2,198 vacs

Site 20
4,491 vacs

Since only 14 cells are selected as outpost locations, people in the other 15 cells have 

to travel to an outpost to be vaccinated. Figure 6.2 shows which cells are served by each of 
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the 14 selected cells shaded. It shows that the outpost located in five cells (#7, #10, #14, #15, 

and #24) would serve only the people living within them, while the other 10 cells would 

serve people from neighboring cells as well as people living inside the cells with outposts. 

For instance, cell #6 serves people traveling from cells #2 and #3 as well as people in cell #6. 

Assuming that travel distance of people in cell #6 is negligible (we can assume it is zero), 

only people in cells #2 and #3 have to travel to be vaccinated.  

 

Figure 6.2. Travel pattern to 14 outposts in “globally optimal” solution 

* The optimal cells are shaded. 
*** Arrows show how cells assign to outposts. 
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Using this assumption, Table 6.1 breaks down the total number of vaccinations into 

(1) the number demanded by people living at the outpost cell and (2) the number demanded 

by people who have to travel to the outpost. It also presents average travel distance of all 

people vaccinated at each outpost plus the people who have to travel for vaccinations to the 

outpost. Overall, about 20% of the vaccinees (9,900 out of 47,000) travel about 6.6 km on 

average roundtrip (one-way distance is 3.3 km) to get vaccinated at the outpost in a 

neighboring cell. The other 80% would have an outpost in the cell where they live.  

 

Table 6.1. Number of vaccinations and travel distance to 14 outposts in “globally optimal” 
solution 
 

Outpost 
ID 

No of vaccinations 
demanded by 

people living at the 
outpost cell 

No of vaccinations 
demanded by 

people who travel 
to the outpost 

Average one-way 
distance of those who 

have to travel (km) 

Average one-way 
distance traveled by 

everyone to be 
vaccinated (km)  

1 2,285 268 3.1 0.3 
6 2,235 1,486 3.0 0.7 
7 4,323 0 - 0 
8 4,151 885 3.8 0.7 
9 2,538 1,016 3.3 0.9 

10 1,228 0 - 0 
11 2,737 854 4.5 1.1 
14 2,198 0 - 0 
15 3,819 0 - 0 
17 1,028 2,461 2.3 1.6 
18 1,664 809 3.7 1.2 
20 4,145 346 3.0 0.2 
24 2,725 0 - 0 
25 1,890 1,775 3.8 1.9 

Overall SUM= 36,967 SUM= 9,900 Average = 3.3 
Standard deviation = 0.7 

Average= 0.7 
Standard deviation = 0.6 

As noted in Chapter 4, while Table 6.1 is based on the assumption that people living 

in a cell with an outpost travel a distance of zero, in fact they have to travel about 0.7 km 

one-way on average (1.4 km roundtrip). There exists a certain variation in average travel 
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distance across the outposts. For instance, people traveling to cell #11, who live in the cell 

#12, have to travel about 4.5 km (9 km roundtrip), while those who travel to the cell #17, 

who live in the cells #16 and #21, have to travel only 2.3 km on average (4.6 km roundtrip). 

The total amount of roundtrip travel necessary to vaccinate all people in the township who 

are willing to pay for vaccinations was about 65,000 km, or about 1.4 km per vaccinee. 

 

6.4.  Sensitivity analysis 

 

6.4.1.  Number of outposts 

 

Is the “globally optimal” solution with 14 outposts truly best for Daxu Township? 

Planners may prefer fewer outposts because it may be difficult or even infeasible to employ 

14 vaccination outposts, perhaps due to limited labor or other resources. Furthermore, the set 

covering and p-median models in Chapter 4 showed that there are diminishing marginal 

vaccination sales when the number of outposts increases, which raises the question of 

whether it is truly worth employing as many as 14 outposts to maximize sales even if the 

budget constraint can be met. Also note that this model is deterministic without considering 

any uncertainty issue associated with the solution, and thus there is no guarantee that the 

predicted number of vaccinations from the model will materialize in practice. Considering all 

of these, it might be judicious to keep the number of outposts low so the price charged can be 

low. Thus, a sensitivity analysis is conducted to examine how much the model output would 

change if the specified number of outposts (K) were fewer than 14, by adding the fifth 



113

constraint in eq. 6.6. Table 6.2 summarizes the results for K = 1, 3, 6, 9, 12, 15, 18, 21, and 

24. Figure 6.3 shows three curves with key results from this analysis. 

 

Table 6.2. Vaccination program outputs vs. number of outposts 

Number of 
outposts 

specified (K)

Optimal 
price (p*) 

(USD) 

Number of 
vaccinations 

(Q*) 

Total 
Cost 

(USD) 

Total roundtrip 
travel distance 
(person-km) 

Percentage 
of 

vaccinees 
who travel 

Average one-
way distance 
by travelers 

(km) 
1 0.6 35,456 20,228 484,873 96 7.1 
3 0.7 42,883 28,942 286,243 77 4.4 
6 0.8 45,150 37,575 190,091 60 3.5 
9 1.0 46,296 45,648 125,233 44 3.1 

12 1.1 46,762 53,381 84,186 29 3.1 
14 1.25 46,867 58,433 65,538 21 3.3 
15 1.3 46,852 60,926 56,291 18 3.2 
18 1.5 46,714 68,357 31,398 12 2.9 
21 1.6 46,393 75,696 18,510 6 2.8 
24 1.8 45,798 82,899 8,383 3 2.7 

* “Globally optimal” solution is shaded. 

 

Figure 6.3. Results of sensitivity analysis 
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Several findings are interesting from this analysis. First, the total number of 

vaccinations does not change much for about 6 or more outposts. Substantial marginal 

increases in the number of vaccinations are found only when the number of outposts 

increases from 1 to 6 (the largest increase is from 1 to 3). In other words, there is very little 

payoff in terms of additional vaccinations by having more than about 6 outposts, which in 

turn implies that there is little gain in the private benefits, which is the implicit objective of 

this optimization model. Increasing the number of outposts from 6 to 14 would only increase 

the number of vaccinations by less than 2,000. This indicates that the optimization model can 

fully capture the maximum number of vaccinations only by having more and more outposts 

that make fewer and fewer sales. For example, Table 6.2 shows that the average number of 

sales per outpost with 6 outposts is about 7,500, but average sales with 14 outposts are only 

3,300, less than half as many. While the objective of maximizing the number of vaccinations 

is impressive and seems reasonable, planners may not do so at any cost since decreasing 

marginal returns cannot be ignored.  

Recall that the private benefits of vaccinations per household depend on travel 

distance; USD 39 if average travel distance were 0 km (i.e. at each village) while USD 27 if 

it were 6.8 km (i.e. at the CDC). Following the same logic of calculating the total private 

benefits presented in Chapter 4, the total private benefits were calculated for all other cases 

with different numbers of outposts associated with different average travel distances, using 

the number of households in Table 6.2. Figure 6.4 shows the total costs and benefits as a 

function of the number of outposts. It shows that the total private benefits due to vaccinations 

are maximized with around 18 outposts, but that is obviously not the optimal solution from 

an economic efficiency perspective. It is shown that marginal benefits are roughly equal to 
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marginal costs in the range of about 9 to 10 outposts. Considering the issue of uncertainty 

associated with these numbers, a judicious decision would be to locate a little less than 9-10 

outposts in this township to keep the number of outposts low so the price charged can be low 

(i.e. 6-8 outposts). More importantly, this marginal analysis strongly confirms that having a 

single or fewer sites in this township might not be the best for society, an argument which 

has already been made in the previous chapters of this dissertation. 

 

Figure 6.4. Total benefits and costs vs. number of outposts 
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Note also in Figure 6.3 that total cost increases almost linearly for more than about 5-

6 outposts, which indicates that the increase in cost is due mostly to fixed (USD 2,500 per 

outpost) rather than variable cost because the number of vaccinations does not change much 

for more than 5-6 outposts. The slope of the cost curve in Figure 6.3 is approximately USD 

2,500. 
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Table 6.2 shows that the price that would have to be charged increases with the 

number of outposts because cost increases but the number of vaccinees remains about the 

same. Price is about USD 0.8 for 6 outposts, but it increases to USD 1.3 for 15 outposts. 

Figure 6.5 shows the association between the required user price and the number of outposts. 

 

Figure 6.5. Association between the required price and the number of outposts 
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Figure 6.3 also shows that the total travel distance required to vaccination sites 

decreases sharply with more outposts, although the number of vaccinations changes little. 

The total roundtrip distance for mass vaccination would be almost 200,000 person-km with 6 

outposts, while it would be only 65,000 person-km with 14 outposts. This decrease in 

distance is not because the average roundtrip distance for travelers decreases but rather 

because the number of travelers decreases. The last two columns in Table 6.2 were used to 

analyze how villagers’ travel patterns change as the number of outposts increases. Figure 6.6 

shows that the percentage of travelers decreases constantly with increase in outposts, while 

average travel distance by travelers drops quickly with the increase of outposts from 1 to 5, 

and then stops decreasing when the number of outposts is greater than about 5. 
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Figure 6.6. Percentage of travelers and travel distance by travelers vs. the number of outposts 
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Most vaccinees would have to travel if there were only a single outpost (e.g. at the 

township CDC), while almost none would travel if the number of outposts were 25. If 6 

outposts were provided, 60% of the vaccinees would have to travel, but only 20% would 

have to travel with 14 outposts.30 However, the average roundtrip distance for those who 

would have to travel would remain the same at around 3 km one-way (6 km roundtrip) for 

any number of outposts greater than about 5. This analysis shows that the actual benefit of 

installing more than about five outposts does not reduce travel distance of those who have to 

travel, but rather it reduces the number of users who have to travel. 

The information in Table 6.2 can be used to impute a monetary value to the effort 

involved in traveling to get vaccinated. Suppose that the vaccination planners in Daxu 

Township, after reviewing the information in Table 6.2 and Figure 6.3, decide that having 5 

outposts is definitely worthwhile. However, after consideration, they think that maybe having 

 
30 A loglinear regression function (R-square = 0.97) was fitted to show the relationship between the percentage 
of travelers and the number of outposts: percentage of travelers = 139*exp(-0.14*Z). It indicates that there is a 
14% decrease in the percentage of travelers per additional outpost. 
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6 outposts would be even better. The marginal cost of adding one more outpost to the 5 

which they definitely want is about USD 2,500. Six outposts would reduce total roundtrip 

travel from about 220,000 km to about 200,000 km, but would increase the number of 

vaccinations only marginally. Hence, if it is decided to have 6 outposts instead of 5, the 

planners would implicitly assign a benefit of about USD 0.125 per km of travel 

(=2500/(220,000-200,000)). If the average roundtrip distance for travelers is about 6.5 km, 

then the implicit benefit assigned to the reduction in traveling is about USD 0.8 per 

vaccination. 

In order to observe which cells are given most priority, Table 6.3 summarizes which 

cell was dropped at each of the solutions as the number of outposts decreases from the 

“globally optimal” solution. For K=13, all the locations from the “globally optimal” solution 

remain except for the outpost in cell #7 which makes people in cell #7 now have to travel to 

the outpost in cell #10. However, average travel distance of travelers and the number of 

vaccinations remains about the same. For K=12, the outpost in cell #17 was dropped, and 

people in that cell are assigned to the outpost in cell #20, without any substantial change in 

the total number of vaccinations. Following such steps, Table 6.3 summarizes which cell was 

eliminated at each step. Note that all included outposts remain unchanged as K decreases 

stepwise. 

 

Table 6.3. Order of the outposts dropped out of “globally optimal” solution 
K 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

ID of the 
outposts 

dropped for 
each K

“Globally 
optimal” 
solution 

#7 #17 #9 #24 #18 #11 #6 #14 #25 #1 #15 #8 #20
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6.4.2.  Parameters in cost and demand functions 

 

How is the optimal solution sensitive to different parameters in the model? Sensitivity 

analyses were conducted to understand how much the optimal solutions change based on 

different assumptions in the model. The demand function in Chapter 3 and cost function in 

Chapter 5 play key roles in the optimization model, but the parameters in those functions are 

uncertain.  

 

Table 6.4. Sensitivity analysis by parameters in demand function 

Assumptions 
Price 

coefficient (βp)
Distance 

coefficient (βd)

Optimal 
price, USD 

(p*) 

Optimal 
number of 

outposts (Z*) 
Maximum Number 
of vaccination (Q*) 

Cost 
(=Revenue) 

(USD) 
-0.10 -0.02 0.86 7 48,248 41,624 
-0.10 -0.05 1.25 14 46,867 58,433 
-0.10 -0.10 1.59 20 45,698 72,849 
-0.05 -0.02 1.14 13 50,807 57,904 
-0.05 -0.05 1.50 20 50,208 75,104 
-0.05 -0.10 1.60 22 49,801 79,900 

Table 6.4 summarizes the results of sensitivity analysis for the demand function. The 

price coefficient in the demand function based on the contingent valuation survey was about  

-0.1, and the distance coefficient was -0.05 (shaded; baseline). If the distance coefficient is 

assumed to be -0.02 instead of -0.05, both the optimal price and the optimal number of 

outposts are lowered while more people would get vaccinated. If the distance coefficient is 

assumed to be the same as the price coefficient (-0.1), higher price and more outposts would 

be required to ensure the maximum number of vaccinations although the vaccination 

coverage is lower than the baseline case. If the price coefficient is cut in half (-0.05), the 

optimal price and number of outposts increase, but the size of change is larger if the distance 
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coefficient is small. Note that the optimal solutions do not change much in spite of the 

change in price coefficient when the distance coefficient is -0.1. 

Table 6.5 summarizes the results of sensitivity analysis for the two parameters of the 

cost function in eq. 5.1, which are approximately a = 2,500 and b = 0.5 (shaded; baseline 

case). First, if no cost is associated with the number of outposts (i.e. no setup cost) (a=0), 

vaccinations should be delivered at all candidate locations and the optimal price should be 

the same as cost per vaccination (b). The larger parameter a is, the higher the optimal price 

becomes while the optimal number of outposts decreases. However, a higher parameter b

(variable cost per vaccination) makes the optimal price higher but does not much affect the 

optimal number of outposts.  

 

Table 6.5. Sensitivity analysis by parameters in cost function 

Assumptions 
Cost per 

outpost, USD 
(a)

Cost per 
vaccination, 

USD (b)

Optimal 
price, USD 

(p*) 

Optimal 
number of 

outposts (Z*) 
Maximum Number 
of vaccination (Q*) 

Cost 
(=Revenue) 

(USD) 

0 0.5 0.50 25 51,938 25,969 
0 1.0 1.00 25 49,521 49,521 

1,500 0.5 1.12 20 48,638 54,319 
1,500 1.0 1.65 20 46,232 76,232 
2,500 0.5 1.25 14 46,867 58,433 
2,500 1.0 1.73 13 44,528 77,028 
3,500 0.5 1.42 12 45,526 64,763 
3,500 1.0 1.89 11 43,205 81,705 

To better understand the effect of the four parameters in cost and demand functions, 

the results in Table 6.4 and 6.5 are combined and analyzed by regression analysis. The 

regression function (F=25.4; R2=0.93) for the optimal price is:  
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p* = 0.03 + 0.0003*a + 1.0*b + 3.3*βp – 7.1*βd eq. 6.9 

 

All parameters are highly significant (at the 1% level) except for the price coefficient 

in the demand function, which is significant at the 10% level. Intercept is not statistically 

significant. The optimal price is more sensitive to cost and distance parameters than price 

coefficient. In other words, the optimal price increases linearly with cost of a vaccination, but 

has a weak association with price coefficient itself. If b increases by 1.0 (from 0.5 to 1.5), for 

instance, then the optimal price would increase by almost 1.0 to cover the extra cost due to 

larger b.

The next regression was for the optimal number of outposts using the same four 

parameters (F=21.7; R2=0.92): 

 

Z* = 24.6 – 0.004*a + 0.9*b + 66.9*βp – 127.6*βd eq. 6.10 

 

Both price and distance coefficients are statistically significant at the 5% level, but 

cost per vaccination (b) is no longer significant (p=0.7). It indicates that the optimal number 

of outposts does not depend on the variable cost, and thus the total cost increases almost 

linearly with the number of outposts regardless of the variable cost per vaccination. The 

stronger the price effect is, the fewer outposts would be optimal due to decrease in 

vaccination coverage. However, the stronger the distance effect is, the more outposts would 

be optimal in order to minimize the negative distance effect on vaccination coverage by 

bringing the outposts closer to cells. The intercept is highly significant and its size is about 

the same as the number of all candidate outposts (25). 
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Third, the number of vaccinations at the optimum (Q*) was regressed against the four 

parameters (F=134.8; R2=0.98) and the result is: 

 

Q* = 61755 – 1.8*a – 4801*b + 65724*βp + 21713*βd eq. 6.11 

 

All parameters including intercept are statistically significant. If the variable cost increases 

by USD 0.1, about 500 vaccinees would be dropped. The stronger effect price and distance 

has, the fewer people would be vaccinated. Note that price effect is about three times as 

strong as distance effect, given the units assumed for price (USD) and distance (km). For 

instance, if the price coefficient (βp) changes from -0.05 to -0.1, about 3,000 vaccinations 

would be dropped. If the distance coefficient (βd) changes from -0.05 to -0.1, about 1,000 

vaccinations would be dropped. 

Fourth, the total vaccination cost (TC) was regressed against the four parameters as 

follows (F=19.9; R2=0.91): 

 

TC = 20424 + 9.7*a + 42413*b + 257542*βp - 316895*βd eq. 6.12 

A positive sign for a and b implies that total costs would be higher with higher setup 

cost or variable cost. While total cost decreases when price effect becomes stronger, it 

increases when distance effect is stronger. For instance, if price coefficient changes from  

-0.05 to -0.1, total cost would decrease by approximately USD 13,000 because fewer number 

of people would be vaccinated due to the stronger price effect. If the distance coefficient 
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changes from -0.05 to -0.1, total cost would increase by approximately USD 16,000 in order 

to install more outposts to minimize the distance effect. 

 

6.4.3.  Non-zero vaccine purchase cost  

 

So far, all of the analyses are based on the assumption that vaccines would be 

obtained free of charge and thus only delivery cost is covered by user fee. However, it is 

possible that users have to pay not only for delivery but also for the vaccine. We assume that 

vaccine price is in the range of USD 0.5-2.0 per dose. If it were USD 1.0, then it simply 

changes the cost function: TC = 2500*Z + 1.5*Q. Without any constraint on the number of 

outposts (Z=K), the optimal price was USD 2.3 and the optimal number of outposts was 

found to be 13. Compared to the “globally optimal” solution with zero cost of vaccine 

purchase (see Section 6.3), the optimal locations of outposts are the same except that the 

outpost in #7 was excluded. This finding suggests that the optimal number and location of 

outposts is not affected much by the variable cost of vaccinations, which is consistent to the 

finding from the regression in eq. 6.10 that b is not significant. However, users would have to 

pay more in order to cover the larger costs, and the increase in user fee is almost as large as 

the amount of vaccine purchase cost (in this case, USD 1). The higher fee would reduce 

vaccination coverage about 10% (from 47,000 to 42,000) which in turn would increase the 

total cost by almost USD 40,000 (from USD 58,000 to 96,000), compared to the case of zero 

vaccine purchase cost. 

A series of optimization analyses were also run to solve the model with non-zero 

vaccine purchase cost for different numbers of outposts. Table 6.6 shows the results of the 
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models with the vaccine purchase cost of USD 1, in comparison with those of the models 

with zero cost of vaccine purchase.  

 

Table 6.6. Sensitivity analysis by number of outposts: zero vs. non-zero cost of vaccine 
purchase 

Assumptions 
Cost of vaccine 

(USD) 
Number of 
outposts 

User price (USD) Total Cost 
(USD) 

Number of 
vaccinations 

1 0.6 20,228 35,456 
2 0.6 25,846 41,692 
3 0.7 28,942 42,883 
4 0.7 31,932 43,864 
5 0.8 34,764 44,527 

0

6 0.8 37,575 45,150 
1 1.6 50,816 32,211 
2 1.6 61,786 37,857 
3 1.7 65,878 38,919 
4 1.8 69,681 39,787 
5 1.8 73,051 40,367 

1

6 1.9 76,366 40,910 

For the cases of 1 to 6 outposts, the models with non-zero vaccine purchase cost 

produce larger optimal price and cost but fewer vaccinations than the model with zero 

purchase cost. However, the same set of cells always turns up as optimal in each solution, 

regardless of vaccination purchase cost. No feasible solution was found in the model with the 

number of outposts greater than 6 if vaccine purchase cost were USD 1. 

Recall that, in Section 6.4.1, the implicit benefit assigned to the reduction in traveling 

was calculated as about USD 0.8 per vaccination when the vaccine purchase cost were zero. 

If the vaccine cost USD 1.0, the imputed benefit would decrease to USD 0.6 per 

vaccination.31 This indicates that the benefits from reduced travel become smaller because 

 
31 Calculations are as follows. Compared to 5 outposts, 6 outposts would reduce total roundtrip travel from 
about 199,000 km to about 172,000 km; in both cases the number of vaccinations is about the same. Hence, if it 
is decided to have 6 outposts instead of 5, planners are implicitly assigning a benefit of about USD 0.093 per 
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fewer people would be vaccinated due to price increase resulting from the non-zero vaccine 

cost. 

 

6.5.  Maximizing cases avoided 

The optimization models in the previous sections aim to maximize vaccination 

coverage or sales (“coverage-maximization model” hereafter). However, policy-makers 

might want to maximize the number of typhoid cases avoided due to a vaccination program, 

which would put stronger emphasis on health (“cases-avoided-maximization model” 

hereafter). Compared to the previous coverage-maximization model, the objective of this 

case-avoided-maximization model has a primary concern of maximizing not only private 

benefits but also health effects. Thus, this model takes account of spatial variation in disease 

incidences in the target area, and gives priority to where the disease is most intense and 

where people are most at risk. 

The number of cases avoided due to vaccination is calculated by subtracting the 

number of cases with a vaccination program from the number of cases without the program. 

The total number of cases that occur without a program in a 3-year period is (Lauria et al., 

2005): 

 

No. of cases without vaccination =∑
=

⋅⋅
N

i
ii TI

1
3 eq. 6.13 

where Ii is incidence, the probability of contracting typhoid per year in cell i and Ti is the 

total number of candidate vaccinees in the cell.  

 
km of travel (=2500/(199,000-172,000)). If the average roundtrip distance for travelers is about 6.5 km, then the 
implicit benefit assigned to traveling is about USD 0.6 per vaccination. 
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On the other hand, let Qi be the total number of people vaccinated in cell i. Recall that 

in the previous section ijQ was defined as the number of people in cell i who would be 

vaccinated at the outpost in cell j and xij =1 if people in cell i are served by a vaccination 

outpost at cell j and 0 otherwise, Qi can be expressed as ∑
=

⋅
M

j
ijij xQ

1

. Given the assumption 

that the vaccine is 70% effective for 3 years, the number of cases that occur with a 

vaccination program in a 3-year period is the sum of the number of people who contract 

typhoid fever because they are not vaccinated (∑
=

−⋅⋅
N

i
iii QTI

1
)(3 ) and the number of cases 

among people who have been vaccinated but the vaccinations were not effective 

(∑
=

⋅−⋅⋅
N

i
ii QI

1
)7.01(3 ): 

 

No. of cases with vaccination = ∑
=

−⋅⋅
N

i
iii QTI

1
)(3 + ∑

=

⋅−⋅⋅
N

i
ii QI

1
)7.01(3 eq. 6.14 

 

Subtracting eq.6.14 from eq.6.13, the total number of cases avoided in 3 years due to 

the vaccination program is expressed as follows: 

 

Maximize: 2.1·∑
=

⋅
N

i
ii QI

1

=2.1·∑∑
= =

⋅⋅
N

i
ij

M

j
iji xQI

1 1

 eq. 6.15 

 

This is the objective function of the alternative optimization model of maximizing 

cases avoided. Note that the coefficient (2.1) has no effect on the optimal solution of this 

model, although it does affect the optimal value of the objective function. This objective 

function contains the product of candidate population and incidence, which is the expected 
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number of disease cases per year. It seems counterintuitive to want to maximize this quantity, 

but this objective is in fact to maximize the number of vaccinations of candidate population 

weighted by incidence, which is exogenous in the model. By using incidence as a weighting 

factor, this model gives priority to the cells with higher incidence in locating outposts. The 

main constraints of this model remain unchanged from the previous coverage-maximization 

model. 

Unfortunately, it is not possible to have much confidence in these data because they 

are based on reported cases of illness compiled by the health authorities in Daxu Township 

during the period 2000 to 2004. However, they are the only data available, and I use them for 

illustrative purposes. These data are aggregated for adults and children because there is no 

significant difference in typhoid incidence between these two groups in this area. Figure 6.7 

shows typhoid incidences vary substantially from one cell to another.  

 
Figure 6.7. Typhoid incidence in Daxu Township 

* Numbers in the cells are cases per 100,000 inhabitants; annual average for years 2000-2004 
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While the model of this section uses the incidence of each cell, an alternative 

approach could be to divide the cells into two groups, one with high incidence, say more than 

100 cases per year per 100,000 persons, and the other with low incidences below this level. 

In Figure 6.6, the cells whose incidences are in yellow (gray for a black-and-white copy) are 

high, and the other cells have low incidence. By this measure, there are 13 cells with low 

incidence that are mostly clustered in the northeastern part of the township, and their average 

incidence is 48 cases per year per 100,000 persons, and the standard deviation is 31, which is 

obviously high. The other 16 cells with high incidence have an average of 370 cases per year 

per 100,000 persons and standard deviation of 354. 

In the previous section, I found that the expected number of vaccinations does not 

increase much for 6 or more outposts; there is little payoff by using more than 6. Thus, here 

the solutions from the coverage-maximization model are compared with those from the 

cases-avoided-maximization model of this section first when the number of outposts is set to 

be 6 (K=6) and then when K= 3. Table 6.7, which compares the results of the two models for 

K= 6, shows that the optimal price, number of vaccinations, and total cost differ only slightly. 

However, the solution from the alternative model would vaccinate slightly fewer people but 

avoid a few more typhoid cases and require slightly longer travel. 

Table 6.7. Output of two optimization models with different objectives (If K =6) 

Maximize 
coverage 

Maximize 
cases avoided 

Optimal price, USD 0.83 0.84 
Number of vaccinations at the optimal solution (Q*) 45,150 44,671 
Total costs (revenues), USD 37,575 37,335 
Cases avoided 202 210 
Average one-way travel distance, km 2.1 2.3 
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Although many of the outputs from the two models are similar, Figure 6.8 shows that 

the best locations for vaccination outposts are somewhat different. Since deciding where to 

locate outposts is a key element in the design of a vaccination program, this difference is an 

important finding. Three of the 6 cells are common to both models, but three cells (#15, #20 

and #25) in the coverage-maximization model were replaced by other three cells (#11, #14, 

and #24) in the cases-avoided-maximization model.  

 

Figure 6.8. Optimal locations from two optimization models 

(a) Maximize Coverage     (b) Maximize Cases Avoided 

* Numbers in the cells are cell identification numbers. 
* The optimal cells are shaded. 
 

The explanation for this change derives from two considerations. First, the cells that 

were replaced had lower incidences than the new cells that replaced them. Since incidence is 
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a weighting factor in the objective function of the model in this section, this change is not 

surprising. But the substitution depends not only on higher incidences but also on distance; 

the new cells that entered the solution are all in the neighborhoods of the old cells that were 

replaced. For example, cell #11 with incidence of 233 came into the solution, but cell #7 with 

higher incidence of 295 did not. Thus, the model of this section does not simply locate 

outposts in cells with higher incidences but in fact takes travel distance into account in order 

to maximize the number of cases avoided.  

Table 6.8 presents the outputs from two optimization models where only three 

outposts are allowed (two in addition to the township CDC). The required prices are similar, 

but vaccination coverage from the cases-avoided-maximization model decreases by more 

than 3,000 compared to the coverage-maximization model, and average travel distance 

increases. The decrease in vaccinations is undoubtedly due to the increase in average travel 

distance. Although the alternative model delivers fewer vaccinations, it avoids a few more 

cases, but the increase is insignificant. This implies that the ‘optimal solution’ is largely an 

artifact of arithmetic. Thus, in this case, it would be hard to argue that the case-avoided 

model is preferable to the coverage-maximization model, even if the objective is to avoid 

cases, mainly because the price that would have to be charged is higher, the number of 

vaccinated persons is lower, distance is longer, but cases avoided are about the same. It 

therefore follows that judgment must be exercised in the use of these models. They are aids 

to judgment and must be used judiciously. As shown in Figure 6.9, the locations for the two 

selected outposts are fairly different between the two models. 
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Table 6.8. Output of the two optimization models with different objectives (If K = 3) 

Maximizing 
coverage 

Maximizing 
cases avoided 

Optimal price (p*) 0.67 0.69 
Number of vaccinations at the optimal solution (Q*) 42,883 39,608 
Total costs/revenues 28,942 27,304 
Cases avoided 190 195 
Average one-way travel distance 3.4 4.7 

Figure 6.9. Optimal locations from two optimization models (If K = 3) 
 

(a) Maximize Coverage               (b) Maximize Cases Avoided 

* Numbers in the cells are cell identification numbers. 
* The optimal cells are shaded. 
 

To better understand why the optimal locations of outposts are different between the 

two models, the cells were ranked by population and also by the product of population and 

incidence, as plotted in Figure 6.10. Note that cells #14 and #1 rank about 10th by population 

but much higher (second and third) by population times incidence. This explains why those 
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two cells were not chosen by the coverage-maximization model with K=3 but appear in the 

cases-avoided-maximization model with K=3. On the other hand, cell #20 ranks second by 

population and thus was selected as optimal by the coverage-maximization model with K=3, 

but it ranks only 13th when weighted by incidence and thus was dropped from the cases-

avoided-maximization model with K=3. Cell #8 ranks high for both models, but was not 

chosen by the cases-avoided-maximization model with K=3 since its weighted population is 

not as large as other cells in its neighborhood.    

 

Figure 6.10. Ranks of cells by population size vs. population weighted by incidence 
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In summary, it is evident that weights using incidence can play an important role in 

determining where to locate outposts, but neither model automatically produces the best 

solution, at least for Daxu Township. They are aids to judgment. Nor is it possible to know 

without using the models how the best locations of outposts differ if different objectives are 

adopted for planning, e.g. either maximizing vaccinations or maximizing cases avoided. This 

chapter shows that higher incidence is a driving force for determining outpost locations if the 

objective is to avoid cases of illness, but it is not the only consideration. Travel distance also 

has a role to play, thus requiring use of these optimization models rather than a simpler 

approach based, for example, on heuristic rules. 

Figure 6.11(a) shows the population of each cell, and Figure 6.11(b) shows 

population multiplied by incidence in each cell. Comparing these figures suggests how the 

factors – population, distance, and incidence – influence the locations of outposts and gives a 

clue about why some cells are dropped out of the solution from the coverage-maximization 

model and new cells entered in the cases-avoided-maximization model. For instance, the 

cells with larger population are scattered around the center of the township (highlighted in 

green in Figure 6.11(a)), while the cells with higher incidence times population are clustered 

toward the west side of the township (highlighted in pink in Figure 6.11(b)). In other words, 

the green cells take priority if the objective is to vaccinate as many people as possible, but 

the pink cells have priority in order to avoid as many cases as possible. If minimizing total 

population-weighted travel distance is the main objective of the program, the outposts should 

be located as close as possible to the cells with large population. 
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Figure 6.11. Population size and population × incidence in each cell 

(a) Population size in each cell                            (b) Population times incidence in each cell 

 



Chapter 7 

Use of optimization tools in vaccination planning processes 

 

The previous chapters of this dissertation develop a decision-analytic tool for 

vaccination planning based on optimization models integrated with a variety of quantitative 

techniques such as the contingent valuation method, location models, cost estimation, 

simulation, and sensitivity analysis. This optimization-based tool is now available for health 

planners in developing countries to use for choosing the locations of vaccination outposts 

along with the level of user fee. However, it is widely reported that planners who have 

actually used optimization tools32 usually faced many obstacles to successful application 

which often overshadowed the benefits of the tools (Ravn and Vidal, 1986). Due to such 

obstacles, there has been no widespread adoption or implementation of optimization tools in 

the health planning process despite the increasing number of academic publications dealing 

with optimization research for health problems (Wilson, 1981; Fone et al., 2003; Brailsford, 

2005). As Carter et al. (1973) pointed out, the implementation problem is even more critical 

when applied to the contexts of developing countries. 

This concluding chapter discusses how the tool developed in this dissertation for 

determining the Optimal Price and Locations of Vaccination (“OPLV tool”, hereafter) can 

best be used in the actual vaccination planning processes in developing countries such as 

China. The first section of this chapter reviews the key literature in the field to examine how 

 
32 In this chapter, the term “optimization tools” is used in a broad sense which covers operational research (OR), 
OR-type mathematical tools, location models, and systems analysis (Rogers and Fiering, 1986). 
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optimization tools have been used in a variety of different planning practices in developing 

countries, such as economic development planning (Ackoff, 1977; Fisher and Rushton, 1979; 

Clayson, 1980), water resources planning (Yeh, 1985; Rogers and Fiering, 1986; Cai et al., 

2002), and health care planning (Wilson, 1981; Hassam et al., 1986; Durrheim et al., 2002; 

Harper and Pitt, 2004). This literature review summarizes the potential obstacles to adopting 

and implementing optimization tools and the recommendations for overcoming such 

obstacles. Based on the literature review, the second section discusses how to put the OPLV 

tool into practice in vaccination planning processes in China. In particular, it highlights how 

to present the potential contributions of the OPLV tool to vaccination policy-makers in 

China for the design of vaccination strategies which would be best for the entire society. It is 

hoped that these efforts help facilitate the successful adoption and utilization of this tool in 

the national vaccination planning process in China and in other developing countries. 

 

7.1.  Use of optimization tools in planning contexts: Obstacles and resolutions 

 

A number of studies argue that the systematic selection of locations for health 

services is one of the main keys to improving the results of such services in developing 

countries (Hassam et al., 1986; Rushton, 1988; Rahman and Smith, 1999). The literature has 

demonstrated that location decisions based upon optimization tools may provide better 

results than conventional decisions in the absence of any formal analysis (Rahman and Smith, 

2000). In spite of many academic authors praising the virtues of optimization tools, however, 

they have often gone neglected as locations for health services frequently have been 

determined politically or pragmatically without a systematic approach (Fisher and Rushton, 
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1979; Rahman and Smith, 1996; Nyonator and Kutzin 1999). 

Since the 1960s, optimization tools have been applied to a wide range of public 

problems. The potential contributions of optimization tools are now widely recognized 

among researchers, but the issue at hand is how to ensure their utilization (Lee and Olson, 

1980). While a majority of the academic literature has been dedicated to developing more 

sophisticated optimization models, few researchers discussed how they have been put into 

practice in the planning process. Furthermore, most of the literature reported significant 

problems in implementation. Among others, Ackoff (1960) examined a number of published 

reports dealing with optimization research, and found that only a few adopted or 

implemented the results from such findings in actual planning practices. Rogers (1980) 

reviewed 22 case studies of applications of optimization tools to water resources planning, 

and found only 7 of them reported that the tools were eventually adopted by decision-makers 

on water planning and management. Fone et al. (2003) in their review of the literature on 

computer simulation modeling in health care delivery from 1980 to 1999, found that the 

outcomes of the models were used in only a few cases. Brailsford (2005) discussed why the 

enormous success of optimization tools in industry is not the case in the health care field. He 

grouped potential barriers to implementation of optimization tools in the health field into five 

categories: unique culture of resistance to changes, cost of data cleaning and analysis, poor 

quality of data, different agenda between academic modelers and their clients, and the need 

for case-specific models.  

From the 1970s on, optimization tools have been transferred to developing countries. 

Similar to cases of transferring industrial technologies to developing countries, the lessons 

learned from using the optimization tools developed in industrialized nations were expected 



138

to provide assistance to developing countries by identifying pitfalls and sharing examples of 

success (Ravn and Vidal, 1986). Upon successful implementation, the impact of optimization 

research should be even more remarkable in developing countries since the problems 

peculiar to most developing nations reflect the fact they have insufficient human and 

financial resources which are also often misallocated (Sagasti, 1972; Lee and Olson, 1980; 

Rogers and Fiering, 1986).33 However, there are unique problems faced in adopting and 

implementing optimization tools in developing countries, which were reported by a number 

of researchers. Lee and Olson (1980) and Kemball-Cook and Wright (1981) reviewed the 

OR literature applied to developing countries and found that optimization tools were 

successfully adopted and implemented in developing countries only when optimization 

researchers effectively dealt with several unique factors affecting decision problems in 

developing nations, such as centralized planning systems, political factors, uncertainty in the 

planning environment, and shortage of skilled supervisors and management. Rogers and 

Fiering (1986) argued that decision-makers in developing countries are suspicious of the 

direct transfer of optimization tools developed in industrial nations to their own planning 

process since they do not perceive similarities in social and governmental situations. 

Interestingly, several barriers to implementation are found consistently in the 

literature over the past 30 years regardless of areas of planning. Below, I classify them into 

five major types of barriers; (1) unawareness or distrust of the benefits of optimization tools, 

(2) complexity of political aspects with competing objectives, (3) lack of adequate 

communication and interaction, (4) shortage of expertise and resources, and (5) uncertainty 

due to limited or unreliable data. These factors should be taken into account when the 

 
33 Two selected examples of successful implementation of optimization tools in developing countries are found 
in Hassam et al. (1986) and Durrheim et al. (2002).  
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optimization-based tool developed in this dissertation is adopted and implemented in 

developing countries such as China. Potential resolutions to each of the barriers suggested by 

the literature are also summarized in this section. 

 

7.1.1. Unawareness or distrust of the benefits of optimization tools 

 

First of all, optimization tools are unlikely to be adopted in the planning process 

when policy-makers do not fully appreciate the problems of the current approach and/or the 

potential contribution of the tools. They cannot justify the use of optimization tools when 

they do not see the value of the alternative approach. Even if they agree to change their 

current planning strategy, decision-makers often distrust the results from the tools since the 

optimization approach based on sophisticated mathematical models is unfamiliar to them 

(Roger and Fiering, 1986). According to the literature, the likelihood of optimization tools 

being adopted may be improved by (1) ensuring that clear and important problems are 

addressed, and (2) providing decision-makers with clear evidence of the benefits brought 

about by the tools. These are discussed below in more detail. 

Kemball-Cook and Wright (1981) argued that optimization tools tend to be hardly 

used in the planning process unless they are applied to the problems that are high priority and 

urgent on the national or local agenda and there is sufficient need of resolving problems of 

the current approach (Brailsford, 2005). Therefore, those who intend to apply an 

optimization tool to a planning problem should ensure that decision-makers are fully aware 

of the problems of the current strategy and have strong motivation to change based on the 

evidence provided by a systematic tool. Note that, however, the application in my 
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dissertation research did not ensure decision-makers’ full awareness of the current problems 

and motivation to change. 

Once an important problem is identified, decision-makers should be persuaded by 

clear evidence of the potential contribution of the proposed tool in the planning process 

(Harper and Pitt, 2004). The literature argues that the additional costs of applying 

optimization tools such as hiring professional expertise or purchasing computational 

resources can be justified only if the alternative approach suggested by the tools would bring 

larger benefits than their conventional approach (Clayson, 1980; Rogers and Fiering, 1986). 

However, when the potential contribution of optimization tools is presented to decision-

makers, they should not be misguided about the tools as a panacea that always guarantees the 

superior optimal solution to a problem. Rogers and Fiering (1986) proposed that 

optimization tools should be used only to identify the “negotiation frontier” in the vicinity of 

the optimal solution. 

 

7.1.2. Complexity of political aspects with competing objectives 

 

The second challenge to effective adoption of optimization tools in planning process 

is the political environment surrounding the planning process itself (Ackoff, 1971). The 

importance of taking into account political factors in the optimization process is highlighted 

in identifying the objective of the planning problems. Lee and Olson (1980) and Ravn and 

Vidal (1986) argued that the most difficult challenge for optimization planners is how to 

reach agreement on their ultimate objective which satisfies the competing agendas of those 

involved. Optimization tools tend to guarantee implicitly that the recommended solution 
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would be in the best interest of all stakeholders, but it is in fact very difficult to have all 

stakeholders agree on the model objectives and constraints (Rogers and Fiering, 1986). 

Multi-objective planning (Cohon and Marks, 1975; Harewood, 2002) is one of the potential 

approaches to address all the objectives considered not only by policy-makers but also those 

who are affected by the policy. 

The economics and public policy literature suggests that public programs should be 

evaluated in terms of the benefits and costs from a society’s perspective, including all parties 

affected by the program (Layard and Glaister, 1994). However, decision-makers in 

governments tend to see the benefits only from their perspective ignoring the full private 

benefits that accrue to all beneficiaries of the program. For instance, vaccination decision-

makers may simply consider maximizing coverage or cases avoided without fully 

understanding the benefits from the user’s perspective such as the peace of mind due to 

vaccinations or user’s convenience in receiving vaccinations. In such a case, the 

government’s conventional vaccination strategy may be improved by the optimization-based 

alternative producing larger private benefits. Therefore, a key task for successful adoption of 

optimization tools in the planning process is to present policy-makers with evidence that 

society might be substantially better off in terms of economic efficiency when optimization-

based planning is implemented. 

 

7.1.3. Lack of adequate communication and interaction 

 

The implementation of the results of optimization research often calls for some 

innovations within the affected organization, but decision-makers and their staff are often 
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culturally resistant to change their existing approach, particularly in the health field (Lee and 

Olson, 1980; Brailsford, 2005). They may tend to have psychological resistance to adopting 

solutions from computer-based methods and an inclination to trust their experience when 

making decisions on routine tasks. Furthermore, decision-makers tend to pay little attention 

to research-based tools for their decisions for their project unless they have had enough 

involvement with them to trust the results (Rogers and Fiering, 1986). In order to overcome 

any resistance or disinterest from the affected organization and facilitate the adoption of 

optimization tools, optimization researchers should maintain dynamic interaction and 

constant communication with decision-makers (Huysmans, 1970; Innvaer et al., 2002), 

which is often limited in developing countries.  

The optimization researchers should communicate closely with decision-makers at 

every stage of implementing an optimization tool. The optimization modeling process is 

often bounded by existing internal factors such as overall government policies and currently 

used or proposed strategies (Lee and Olson, 1980), most of which can be ascertained by 

communicating with high-ranking decision-making officials in developing countries 

(Rahman and Smith. 1999). Policy-makers also play a critical role in identifying problems 

and determining whether or not and to what extent the findings from optimization tools will 

be implemented in the planning process (Kemball-Cook and Wright, 1981). Active 

communication with decision-makers enables planners to understand the political context of 

the problems and prevent misuse of optimization tools by policy-makers. Besides, close 

interaction with decision-makers enhances the validity and credibility of optimization tools 

and promotes their confidence in the results of the tools (Harper and Pitt, 2004). 
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A well-structured organizational setting of engaging optimization staff in the 

planning process may facilitate communication and narrow the conceptual gap between 

decision-makers and optimization researchers (Rahman and Smith, 1999). As Lee and Olson 

(1980) pointed out, instead of being isolated in an organization, optimization reserachers 

should be spread throughout an organization so that they can help the needed parts more 

effectively. In this way, optimization researchers can interact with policy-makers and their 

subgroups and support them in a more functional way. 

 

7.1.4. Shortage of expertise and resources 

 

Another unique challenge to applying optimization tools in the planning process in 

developing countries is the overall weakness of planning and management systems in these 

nations (Garner et al., 2001). They often include a shortage of skilled manpower (McCarthy, 

1978; Lee and Olson, 1980), a lack of practical experience (Ravn and Vidal, 1986), a lack of 

access to research (Garner et al., 2001), and a shortage of financial resources (Brailsford, 

2005). Although the literature has long emphasized the importance of capacity building in 

developing countries, there is still great need to train, develop, and motivate personnel in 

optimization-based planning techniques. The use of optimization tools can provide good 

opportunities for transfer of advanced technology to local governments in developing 

countries because it requires a multidisciplinary approach including economics, operations 

research, computer science, mathematics, systems analysis, and management (McCarthy, 

1978). However, technology transfer cannot be the blind acquisition of ready-made technical 

tools from advanced countries. Without serious reflection on implementation and its impact 
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to the system in the unique context of developing countries, such transfer of technology 

might result in undesirable outcomes. In other words, technology should not only be 

transferred, but should also be adapted to the needs of the developing country considering 

the political, social and cultural context (Ravn and Vidal, 1986). 

A dearth of financial resources in developing countries might make building 

expertise more difficult. It might be costly to bring in outside experts or train in-house 

personnel, and to maintain high-quality data management staff and system (Brailsford, 2005), 

all of which may delay successful and expeditious implementation of optimization tools in 

the planning and problem-solving process. Lee and Olson (1980) suggested that cooperation 

with universities and professional organizations in developed countries could help lead to the 

collection of existing data and information on the optimization technique at a reasonable cost. 

They also emphasized the effectiveness of on-the-job training for indigenous optimization 

specialists in actual planning processes in developing countries. 

 The application of optimization tools based on simple models might be helpful to 

overcome the lack of expertise and resources in developing countries by building up capacity. 

In many cases, complex models developed by academic researchers might be unnecessary 

because the planning process often does not allow the time to do complex modeling 

(McCarthy, 1978; Rogers and Fiering, 1986). According to Lee and Olson (1980), in order to 

avoid the negative impact of overly complex models, optimization models should be simple 

and cost-effective in developing countries. Complex models have been preferred mostly by 

academic researchers who perceive little advantage in publishing the applications of a well-

known algorithm in a given project, but their publishing objectives tend to conflict with 

successful implementation (Rogers and Fiering, 1986). Therefore, when seeking the optimal 
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solution from complicated models is not practical, it is worth considering less sophisticated 

but still acceptable models which handle the implementation problems in developing 

countries. 

Simulation-based approaches might function well as a complement or even substitute 

for complex optimization models (Kemball-Cook and Wright, 1981; Fone et al., 2003). A 

simulation model incorporates the relationships among variables and estimates the planning 

outcomes based on numerous runs of the model under a given set of input parameters and 

conditions. The simulated output illustrates the responses of the model to variations of many 

input parameters, by which optimal or near-optimal solutions can be sought (Rogers and 

Fiering, 1986). Simulation models are usually more readily understood and more flexible to 

be used by decision-makers since they present the simulated results of alternative strategies 

along with different assumptions rather than one single solution. This approach may be 

simple enough for use by internal analysts within a local planning system in developing 

countries, thus helping to avoid the substantial implementation costs of hiring highly-trained 

analysts from outside. Such an approach will not only compensate for shortages of resources 

and skilled manpower but also facilitate capacity building in developing countries in the long 

run.  

 

7.1.5. Uncertainty due to limited or unreliable data 

 

Users of optimization tools often face greater uncertainties in the decision 

environments of developing countries than in developed countries (Lee and Olson, 1980). 

One of the major sources of uncertainty is that data used in the models are often limited or 
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unreliable. Although the technique is precise, if data are subject to substantial limitations 

such as missing values and erroneous information, optimization programming is rarely used 

(Rogers and Fiering, 1986). In particular, healthcare data are notoriously of poor quality 

because many health care systems still use old and incompatible computer systems at best or 

paper-based systems at worst, and their staff are relatively less computer-literate than those 

in other fields, and thus extreme care must be exercised when using health data (Harper and 

Pitt, 2004; Brailsford, 2005). In addition, Rogers and Fiering (1986) argued that social and 

economic data often have poor quality in the sense of duration, coverage, precision, and 

accuracy. 

However, Oppong and Hodgson (1994) insisted that data limitations should not 

preclude the use of optimization models to support decision-making in developing countries. 

A few suggestions are found in the literature to address data uncertainty. Wilson (1981) 

argued that a detailed description of data collection would be critical to ensure the reliability 

of the data. Kemball-Cook and Wright (1981) argued that the shortage of reliable data can be 

compensated for by the tools employed if the tools are developed enough to tackle many 

complex and uncertain problems facing developing countries. Stochastic programming 

techniques would be one useful approach to address uncertainty embedded in planning 

problems (Yeh, 1985), such as Monte Carlo simulation and sensitivity analysis of model 

solutions. Rogers and Fiering (1986) suggested that planners should develop optimization 

tools to improve decision-making in spite of poor-quality data, arguing that benefits from 

using optimization tools with less reliable data could be greater than those from using 

conventional approaches. Therefore, although reliable data might be unavailable, 
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optimization researchers should look for a range of alternatives that maximize the probability 

of achieving “satisfactory” outcomes, within their levels of uncertainty. 

 

7.2. Implementation guide for the optimization tool in vaccination planning in China 

 

This section discusses how the OPLV tool can be adopted and implemented 

successfully in the vaccination planning process in China. Most of the barriers discussed in 

the previous section are pertinent to the case of vaccination planning in China. This section 

proposes a plan to address the barriers reported in the literature using examples from the case 

study for Daxu Township. It is intended to serve as a potential guide for a consultant who 

intends to apply the OPLV tool to determine the optimal price and outpost locations of 

vaccinations in China (“the OPLV consultant” hereafter). Although the proposed 

implementation guide in this section uses examples from China, it should be useful for 

vaccination planning in other developing countries as well.  

Figure 7.1 shows a flowchart laying out the planning process to emphasize what 

kinds of tasks and decisions need to be made in each step of the adoption and 

implementation process. During this process, the OPLV consultant must interact closely with 

government health officials (i.e. CDC officials) to help them to make the best decisions on 

their vaccination program design. This flowchart provides a general framework that can be 

applied to any vaccination campaign in developing countries, with the understanding that 

modifications should be made to account for country-specific conditions of each vaccination 

program.
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7.2.1. Adoption process: Justification of the tool 

Before the OPLV tool can be adopted, government health officials must be convinced 

of the need to consider a new approach. The first section of the guide discusses this process 

using examples from the case study in Daxu Township, China. To initiate the process, the 

OPLV consultant should meet with decision-makers to identify whether their current strategy 

of determining price and locations of vaccinations can be improved, and if so, present health 

officials with clear evidence that the tool-based alternative strategy outperforms the current 

approach. This section first proposes a progressive approach when presenting the potential 

contribution of the OPLV tool to health officials, depending on their reaction, starting from 

simple analyses without any modeling and progressing to comprehensive modeling with 

benefit and cost data. It then discusses that the tool may be adopted differently depending on 

the nature of vaccination planning approach in the target area, such as supply-based or 

demand-based. 

 

Progressive approach 

 

The OPLV consultant should first identify the appropriate planning agency that 

makes decisions on price and locations of vaccinations for the target area. In China, since 

1985 the immunization system has been decentralized and local public health agencies are 

responsible for managing and financing vaccination programs and designing vaccination 

delivery strategies (IVI, 2001). Thus, the provincial-level or county-level CDC officials are 

the appropriate local counterparts with whom to discuss the adoption of the OPLV tool since 
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they direct planning for vaccination programs in the area. By communicating with them, the 

consultant would be able to obtain the information on their current vaccination strategy. In 

Daxu Township, the government provides typhoid vaccinations only at a single mega-site (i.e. 

the CDC), and the users must pay for them. There is no external funding to subsidize the 

typhoid vaccination campaign in the township.  

Given that the government maintains their current vaccination delivery strategy (i.e. 

mega-site vaccination at the CDC) for their vaccination campaign in the township, the 

consultant may first evaluate the appropriateness of the current location of the CDC. The 

consultant can run a simple p-median model to find out the optimal location for a vaccination 

outpost when only one is built in the township. As presented in Chapter 4, the p-median 

model reveals that the current location of the CDC is indeed the optimal location for Daxu 

Township, but this might not be the case for other townships. The consultant should then 

present outcomes of the current vaccination strategy and compare them with those of the 

other extreme alternative of delivering vaccinations at all villages. Outcomes include the 

number of vaccinations, the number of cases avoided, travel distance, revenue, and private 

benefits, all of which could be used as criteria for decision-making.  

In most cases, the government officials who are designing vaccination strategies care 

mostly about health-related payoffs such as maximizing cases avoided. Recollecting the case 

of Daxu Township described in Chapter 4, if the price users have to pay is USD 1, then the 

number of typhoid cases avoided with only one outpost at the CDC is 163 over 3 years; 

however, if the government provides vaccinations at outposts in each cell (about 25 outposts) 

in the township, the cases avoided would only increase by fewer than 60. However, having 

25 outposts instead of one would save people about 14 km (roundtrip) of travel time on 
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average for vaccinations, which would produce additional private benefits of about USD 

150,000 for all people who would be vaccinated, which seems quite substantial.  

The consultant could then make initial runs of the simplest models or work with 

health officials to make initial runs. A simple p-median model or set covering model might 

be suitable for the initial screening of the candidate locations. As shown in Chapter 4, these 

models provide some guidance on how many vaccination outposts there should be and where 

to locate them although they are simple and do not require demand and cost information. 

However, their suggestions from the models without demand and cost data are limited to be 

used for the optimal vaccination designs in terms of economic efficiency. The consultant 

could do these initial analyses for free of charge, hoping to get a future contract.  

If health officials agree to reconsider their current vaccination strategy and sign a 

contract with the consultant for further advice on how many outposts are needed and where 

they should be located based on actual demand and cost data, the consultant can now begin 

actual data collection and modeling tasks. The consultant may develop more comprehensive 

models, such as the coverage-maximization or case-avoided-maximization models developed 

in Chapter 6. If the data are not available or hard to collect, the consultant communicates 

with local health officials to obtain their best estimate of the parameters so as to incorporate 

the most reliable assumptions in the model. Using these models, the consultant can identify 

not only the “globally optimal” price and locations of outposts, but also how much the 

vaccination outcomes change with different number of outposts. These models may take 

account of cost and benefit from a society’s perspective (including private benefits), 

identifying the optimal solution in terms of economic efficiency. The consultant may conduct 
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sensitivity analyses to show how vaccination outcomes change with different assumptions 

and constraints. 

Since government health officials may not be able to understand these modeling 

techniques and analytic tools, the consultant should use as plain language as possible to 

describe the theoretical concepts and practical examples of the tools to them. A PowerPoint 

presentation may be an effective way of describing the tools, and the presentation should be 

easy and clear to decision-makers in a non-technical language. A prototype model interface 

presenting the sensitivity of the results to different assumptions may help the consultant to be 

more responsive to inquiries of health officials. Using this approach, the consultant would be 

able to change the models in response to health officials’ input on the objectives and 

constraints of vaccination program alternatives.  

 

Supply-based vs. demand-based vaccination planning 

 

The adoption process for the OPLV tool could differ depending on the nature of the 

vaccination planning system. Vaccination planning has long been conducted through a top-

down approach, especially in developing countries. Decisions about price and outpost 

locations of vaccinations tend to be dominated by supply side considerations, with little input 

or feedback from households themselves. In a top-down approach, running a simple p-

median or set covering model might be sufficient to seek out the optimal number and 

locations of the outposts given a certain price. Without full consideration of costs and private 

benefits of the vaccination program, the OPLV tool employing a simple model can assist 
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decision-makers who want to make decisions in terms of health payoff, such as maximizing 

cases avoided while also ensuring that the vaccination program is financially self-sufficient.  

According to the previous chapters in this dissertation, health payoff from 

vaccinations (e.g. cases avoided) in Daxu Township appears to be relatively modest 

compared to private benefits of vaccination which turn out to be substantial. However, 

private benefits count mainly in democracies, not necessarily in socialized economies such as 

China. In the case of China, which has long operated with a socialized, centrally planned-

and-directed, top-down system, most of vaccination policy decisions have been made by 

government health officials using a supply-based approach without fully considering the 

household preferences. Although immunization programs are financed by user fees in China, 

vaccination programs are not demand driven. Therefore, vaccination decision-makers in 

China might not be willing to spend money and efforts on employing more outposts for only 

a little marginal health payoff if substantial private benefits are not considered under a 

supply-based approach. 

However, lessons learned from water-sector planning may shed light on the 

importance of a demand-based approach in vaccination planning. One of the key lessons 

summarized by the U.S. Agency for International Development (USAID) is that participation 

of the users in managing water supply systems is critical to long-term sustainability and the 

government should provide the necessary environment for their participation (Hopkins et al., 

2004). Hopkins et al. (2004) thus proposed two tools for strengthening demand-based 

planning of rural water systems in developing countries: (1) contingent valuation (CV) 

surveys to measure the private demand for improved water supply, and (2) mathematical 

models built around CV survey results to identify policy alternatives to meet the demands of 
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the private sectors. “Participatory” water-supply planning based on household demand 

surveys is also suggested by Davis and Whittington (1998). This lesson can be directly 

applied to vaccination planning, at least for non-essential vaccines. Both water supply and 

vaccinations have long been treated as public goods and have been managed solely by the 

public sector in developing countries. However, recently there is an increasing need to charge 

consumers most or all of the costs of these services to make the programs sustainable. The 

previous chapters in this dissertation demonstrate that a CV-based optimization tool can be 

applied well to typhoid vaccination planning in developing countries. 

China is experiencing rapid transition toward a market-oriented economy and a 

democratic society. A change to a demand-based approach would require the Chinese 

government to design their planning systems so as to be more responsive to the private 

sector. Decision-makers in China may need to consider not only the health benefits of 

vaccinations but also private benefits in the design of vaccination strategies in order to 

improve economic efficiency and financial sustainability. If they agree to do so, the OPLV 

tool may be implemented by employing more comprehensive models considering the 

program costs and private benefit information. In such a case, the OPLV tool can play an 

even more important role in determining the optimal price and locations of vaccination so as 

to better serve society. 

 

7.2.2. Implementation process: Three issues 

 

Once the OPLV tool is adopted by decision-makers for setting price and locations of 

vaccinations in China, the OPLV consultant and decision-makers should design a detailed 
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implementation plan together. Among a number of important issues to be considered for 

successful implementation, this section focuses on three major implementation questions: (1) 

Who should take what roles?, (2) What model is appropriate?, and (3) Should the model be 

developed for every area? This section discusses how to address each of these issues by using 

examples from the case study in Daxu Township. 

Who should take what roles? – The optimization task force 

 

The first decision to be made is who should take the major roles in implementing the 

OPLV tool. Either outside experts should be hired or in-house personnel should be trained to 

build internal capacity for implementing the tool. The first option would be appropriate for 

the one-time or short-term project or for the local planning agency without sufficient human 

resources. With respect to the technical requirements of mathematical and statistical model 

building, and for small agencies with periodic needs, it might be more efficient for agencies 

to utilize external expertise. However, local staff training is usually critical to enhance local 

capabilities rather than relying solely on external consultants, especially for a project that 

requires continuous modeling. Because vaccination programs are conducted continuously in 

most cases, utilizing local permanent staff is generally advisable. Once the local staff are well 

trained for applying the tool to one vaccination program, they would be capable of 

determining price and locations for future vaccination programs on their own. 

 If the second option of using local staff is chosen, who should take the leading role of 

implementing the OPLV tool inside the organization? Understanding the multilevel 

hierarchical organizational structure of the CDC agencies in China provides some insight. As 

seen in Figure 7.2, multiple levels of CDC agencies are involved in vaccination planning in 
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China. The provincial and county level CDC officials usually take the role of making 

decisions that relate to overall planning of non-EPI vaccination programs, such as which non-

EPI and optional vaccinations to offer, what price to charge, and how to deliver vaccinations 

(IVI, 2001). They also manage the databases that are imperative in the use of the tool, 

including incidence data, demographic and socioeconomic data, and geographic information 

systems. The township CDC staff usually take the lead in implementing tasks directly related 

to vaccinations such as operating vaccination teams and administering vaccinations to the 

users. The township CDC staff are sometimes responsible for defining and developing local 

health care plans due to the recent health sector reforms in China, but the county CDC staff 

still pass along national and provincial guidelines to them and provide technical support 

(Tang and Bloom, 2000). 

 

Figure 7.2. Hierarchy of vaccination systems in China34 

34 Another mid-level CDC agency, called the municipal CDC, is excluded in this chart because it plays a similar 
role as the county CDC agency. 
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Lee and Olson (1980) suggested a team to coordinate the implementation process of 

optimization models involving different levels of agencies. To effectively coordinate 

multiple levels of vaccination planning systems in China, a task force team could be 

constructed including a key person from each level of the CDC agencies, along with external 

consultant(s). The task force team would take the leading roles in implementing the OPLV 

tool by communicating with all levels of CDC officials who are involved in the vaccination 

planning process. At each level, there should be a staff member who can help with the 

communication with the task force team. Figure 7.3 illustrates how the team interacts with 

higher-level and lower-level CDC staff in the implementation process.  

 

Figure 7.3. Interaction process between task force team and each level of the CDC agencies 

 

The task force team should build close contacts with higher-level CDC officials and 

inform them of the outcomes of vaccination planning based on the OPLV tool. The team can 
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also be informed of their program objectives and constraints by communicating with higher-

level CDC officials. On the other hand, the team should interact with lower-level CDC staff 

to request the data or supporting information on the target areas for the modeling. In case 

data are unavailable or uncertain, the team may want to conduct primary data collection or 

data quality management by co-working with lower-level staff to reduce data uncertainty. 

Once the optimal solutions are determined, the team should provide the lower-level CDC 

staff with the results and actual guidelines for their tasks. Such a coordinating framework 

keeps all levels of CDC officials involved in the planning process, which improves the 

likelihood of successful implementation of the tool. 

The well-designed training of team members is important when there is a lack of in-

house expertise for implementing the OPLV tool in local health departments in China. The 

goal of staff training is that they can formulate, use, and interpret the model on their own. 

The consultant needs to prepare a detailed user guide for the tool and arrange training 

workshops or seminars. The consultant should work closely with local staff until they are 

fully able to use the tool on their own. A ready-to-use prototype program should be 

developed and brought in by consultants and left in local staff’s hands for subsequent use. 

 

What model is appropriate? – The piecemeal approach 

Most of the literature suggests that optimization models need to be as simple as 

possible for successful implementation, in particular in developing countries. In cases where 

the objectives and constraints of the models become complex, the mathematical modeling 

also tends to be complex in order to incorporate all possible planning elements in model 
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formulation at once. For instance, the coverage-maximization model in Chapter 6 requires 

non-linear mixed integer programming to solve the optimal price and locations 

simultaneously for Daxu Township. This model is quite complex and requires many 

computational processes. One alternative in this case would be to use a “piecemeal” approach 

in order to avoid excessive complexity in the model and produce a simple version of the 

optimization model. Instead of seeking a simultaneous solution, a piecemeal approach 

employs a series of simple Linear Programming (LP) models stepwise to identify the optimal 

locations of vaccination outposts for a given price. Since these models treat price as an 

exogenous variable, they do not create any nonlinear variables. This approach is simple 

enough to be readily usable by local agencies, yet still provides valuable information. Figure 

7.4 summarizes the results of the piecemeal approach of running a series of simple LP 

models given assumed prices.  

 
Figure 7.4. Results of the piecemeal approach (LP models by assumed price (USD)) 
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Figure 7.4 shows that the number of vaccinations reaches the maximum at 

price=USD 1.2, which is very similar to the “globally-optimal” price determined by 

simultaneous solutions in Chapter 6, and declines afterwards. Additionally, this piecemeal 

approach provides much helpful information to guide the planner’s decision on vaccination 

strategies. For instance, this approach demonstrates that price must be at least USD 0.6 to 

meet the constraint that program costs be covered only by revenue from private sales. This 

finding provides insight if the decision-maker’s goal is simply to minimize the price level 

under the cost-recovery constraint. It is also found from this approach that more outposts are 

needed as price increases, which indicates that extra revenue from price increases should be 

fully used to set up more outposts in order to maximize the number of vaccinations. The 

reduced number of vaccinations due to higher price would be made up for by additional 

vaccinations due to shorter travel distance with more outposts. It is also found that it is 

optimal to deliver vaccinations at all 25 candidate locations if price is set over USD 1.9. This 

approach provides a full range of results of the combination of price and locations, providing 

planners with the information they would need to make the final decision among the 

desirable sets of price and locations based on their local conditions (e.g. availability of 

external subsidy).  

 

Should the model be developed for every area? – Heuristic rules 

 

The OPLV tool is developed for determining the optimal price and locations of 

vaccination using the data from one rural township in China. In most cases, vaccination 
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campaigns take place in multiple townships throughout the county or province. Should the 

model be developed for every township by collecting all pertinent or required data from each 

township? Or can the model results from a few townships serve as heuristic guides for 

determining price and locations of vaccination for similar areas? Considering that a 

substantial amount of time and money would be spent collecting data and information 

required for the tool, developing a set of heuristic rules that can be generally applied to other 

townships is very important for successful, widespread implementation of the tool. Therefore, 

the model should be developed using the data from the smallest number of townships which 

are sufficient for developing satisfactory heuristic rules. The townships to be selected for data 

collection should cover all recognized existing different local situations such as rural vs. 

urban, high vs. low incidence, concentrated vs. dispersed population, and so on. Once the 

models are developed for the selected townships, the task force team should discern the 

heuristic rules to identify desirable sets of locations and prices for each township in the target 

area. The heuristic rules should be documented clearly in the form of a ready-to-use user 

guide, and shared with local CDC staff at a training workshop in each township. Below, one 

example of the heuristic rules developed from the case study for Daxu Township is discussed 

focusing on how the price and locations of vaccinations should be determined for other 

townships in China. 

Figure 7.5 illustrates the underlying mechanism of the OPLV tool showing how the 

optimal price and number of outposts are determined in order to maximize the number of 

vaccinations given cost-recovery constraint. This diagram shows clearly two different routes 

of price effect on the number of vaccinations. Economic theory (i.e. the law of demand) 

suggests that price is negatively associated with the number of vaccinations (direct effect of 
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price), but at the same time, additional revenue by price increase covers costs of having 

additional outposts where more people would be vaccinated due to reduced travel distance 

(indirect effect of price; distance effect). If the direct effect of price is greater than the 

distance effect, price needs to be lowered to maximize the number of vaccinations. On the 

contrary, if the distance effect is larger than the direct price effect, more people would be 

vaccinated if vaccinations are delivered at more outposts in spite of increased price. Careful 

consideration of these effects would provide insight on how to determine price and locations 

heuristically for other areas. 

 

Figure 7.5. Underlying mechanism in optimization process 
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different alternatives to be considered for the campaign, with regard to combinations of price 

and number of outposts, as presented in Table 7.1. 

 

Table 7.1. Possible vaccination alternatives by price and number of outposts 

 Number of outposts 

Price 
Many outposts Few outposts 

Low price Alternative I Alternative II 

High price Alternative III Alternative IV 

Alternative I (low-price or free vaccinations at every village) would be the ideal 

alternative in most cases since it maximizes vaccination coverage in the case of no budget 

constraint. However, if costs are covered only by revenues from private vaccination sales, 

price would need to be increased to cover the costs of having more outposts in order to keep 

the program financially self-sufficient. Alternative IV appears to be the least preferable and 

should be used only in an exceptional case since it puts the burdens of both long travel 

distance and high price on households. Figure 7.4 indicates that, at the optimal condition, low 

price should be associated with few outposts (Alternative II) and high price be associated 

with many outposts (Alternative III). Therefore, the task force team would need to determine 

the most feasible and desirable strategy for each township between these two alternatives (II 

and III) based on the local situations. 

 Such decisions can be informed by careful consideration of three factors: (1) the cost 

of adding one more outpost (a in cost function; eq. 5.1), (2) the “direct” price effect on the 

number of vaccinations (βp in demand function; eq. 3.2), and (3) the distance effect on the 
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number of vaccinations (βd in demand function; eq. 3.2). The distance effect is also 

associated with the “indirect price effect,” as explained above. The first factor relates to the 

amount of setup costs35, while the second and third factors are associated with user’s demand 

for vaccination that depends on price and distance to the outpost. Table 7.2 presents the 

desirable alternatives for four different cases characterized by the three factors. 

 

Table 7.2. Desirable vaccination alternatives for different situations 

 Demand side

Cost side 
Price effect > Distance effect 

on demand 
Distance effect > Price effect 

on demand 

Large setup cost 
(large a)

Alternative II 
(Low price, Few outposts) 

Higher price and 
fewer outposts than 

Alternative III 

Small setup cost 
(small a)

Lower price and 
more outposts than 

Alternative II 
Alternative III 

(High price, Many outposts) 

When the private demand for vaccination is expected to be more sensitive to price 

rather than distance, the best policy alternative would be dependent upon the magnitude of 

outpost setup costs. If setup costs are high, it might be reasonable to deliver vaccinations 

centrally at a few sites for low price because delivery costs would decrease and the reduction 

in vaccination sales due to the increase in travel distance would be minimal (Alternative II). 

However, if setup costs are relatively small, building more outposts would be beneficial. On 

the contrary, if the distance effect on private demand is relatively larger than price effect, 

many outposts would be needed to minimize the distance effect in spite of charging higher 

price (Alternative III). However, if setup costs are reasonably large, the number of outposts 

 
35 Chapter 6 shows that the cost of vaccinating one more person (b in cost function; eq. 5.1) has minor effect on 
the optimal solutions. 
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should be judiciously determined in order to ensure that the price does not become 

prohibitive.  

These heuristic rules are mostly affected by different spatial distributions of 

population in the area. In rural and remote areas where population is widely distributed, 

distance effect tends to be larger than price effect. On the other hand, in urban areas where 

population is clustered, price effect might be more influential than distance effect.  Therefore, 

credibility of the heuristic rules relies on proper understanding of the local situation. It would 

be very important to communicate with local CDC staff that have better access to the local 

data and better insight on local conditions. Involving local staff in the discerning process 

would also enhance the likelihood of the heuristic rules actually being used for designing 

their vaccination strategy. As Brill (1979) pointed out, by this heuristic approach, the OPLV 

tool serves as a catalyst for human creativity, while it does not provide definite solutions to 

be followed blindly. Ultimately, decision-makers would obtain insight from the tool on how 

to determine user fee and locations of vaccination for all other target areas. 

 

7.3.  Optimization-based vaccination planning as social learning 

 

The preceding sections in this chapter argued that the successful adoption and 

implementation of optimization tools in an actual vaccination planning process require health 

officials to learn not only about a scientific technique, but also to experience both implicit 

and informal learning processes that causes various changes in their practical, daily activities. 

They would learn from a consultant or expert about how to use the tool and interpret the 

results, while learning from the communities about their demand and preference for 



166

vaccination services, which is vital information to be incorporated into model development. 

They also would learn from their actual experience in using the tool, by which they would be 

able to refine the tool and develop heuristic rules. As a result, they would ultimately need to 

change their vaccination activities, and even their overall perspective on vaccination policy 

(i.e. supply-driven versus demand-driven approach).  

In the regard  that the task of designing vaccination programs using optimization tools 

involves constant and complex learning processes which change the actions of users of the 

tool (i.e. health officials), optimization-based vaccination planning could be viewed as 

“social learning” (Schon, 1971; Friedmann, 1987). This aspect of planning is often contrasted 

with planning as policy analysis. Policy analysis is a form of the cognitive decision-making 

process that uses technical tools to explore and evaluate possible courses of action, while 

social learning is a complex, time-dependent process that involves action, political strategy, 

theories of reality, and the values that inspire and direct the action (Friedmann, 1987).  

As shown in Figure 7.6, in the social learning tradition, decisions are considered as a 

transitory moment in the course of continuing practices where actors (health officials, in this 

case) learn both cognitively and experientially from their own practice about all conflicting 

perspectives on the situation and their desirable changes (Schon, 1971). This figure also 

illustrates the double-loop learning process in planning (Friedmann, 1987). In vaccination 

planning, single-loop learning involves a simple change in the vaccination strategy to solve a 

given public health problem, while double-loop learning requires an adjustment of the norms 

governing the vaccination process and a change in the government’s cognitive restructuring 

of reality, values, and beliefs on vaccination. Such changes would affect the ultimate 

distribution of the costs and benefits of a vaccination program.  
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Figure 7.6. Planning as social learning 

Source: Friedmann (1987) 

 

This social learning process often involves a so-called “change agent” who 

encourages, guides, and assists actors in the process of changing reality. In optimization-

based vaccination planning, the OPLV Consultant can play the role of “change agent”. This 

agent brings certain kinds of formal knowledge and technology to the ongoing social practice 

of government health officials who are involved in the vaccination process. As a matter of 

fact, for more effective implementation of the tool, both change agents and health officials 

should maintain a close mutual relationship where they learn from each other. The more they 

learn about the information generated and kept by health officials, the larger the role change 

agents would have in implementing the optimization tool.  
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As Forester (1987) pointed out, information is a source of power and misinformation 

can be a major source of obstacles to planning practice. Planners’ actions could be 

manipulated by misinformation, and even planners themselves may produce misinformation 

since they work with limited data under time constraints (Forester, 1987). The impact of 

misinformation on planning practices would likely be even larger in the context of 

developing countries. Apparently, progressive planning practices based on a mutual learning 

process among all actors would minimize potential sources of misinformation, and as a 

result, would maximize the likelihood of successful adoption and implementation of the 

optimization tool in vaccination planning in developing countries.   

 



Chapter 8 

Conclusion 

 

This dissertation research made the first attempt to determine the effect of both travel 

distance and user fee on the demand for vaccinations in a developing country incorporating 

stated preference data. It is also the first study to use location models from operations 

research for determining the required number, locations, and capacities of vaccination 

outposts. The optimization models applied in this research are simple tools that can be used 

by ministries of health in developing countries to design mass vaccination campaigns that 

maximize coverage and are financially self-sufficient. 

This dissertation produced five primary findings that contribute to the growth of 

knowledge in this area of research. First, this research incorporated people’s travel distance 

into the contingent valuation method, which is a classic private demand estimation tool that 

has been used to estimate demand for vaccinations for different levels of user fee. The 

previous private demand studies focused on the effect of user fee on demand for vaccination, 

but paid little attention to the effect of people’s travel distance to vaccination site. This 

research is the first stated-preference private demand study showing that household demands 

are affected not only by user fee but also by travel distance, based on a case study in China. 

This implies that respondents considered not only the user fee that they would have to pay 

but also the burden of travel to the vaccination site, such as travel cost and opportunity cost 

of travel time, when they answered questions about their demand for vaccinations. This 
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research implies that the number and location of vaccination sites are equally important as 

the level of user fee in the design of a vaccination program.  

Second, it demonstrated that vaccination brings substantial private benefits as 

measured by willingness-to-pay (WTP). These private benefits would be even larger if 

vaccinations are offered near to their residence location since it would save their travel costs 

and efforts to receive vaccinations. This finding implies that supply-based vaccination 

planning overlooking demand-side benefits may not serve society well, and having many 

sites might be the best for society due to the increase in private benefits resulting from travel 

costs saved. 

Third, this research applied existing location models to vaccination program design, 

showing that the models have roles to play in locating vaccination sites. Furthermore, not 

only did it apply the existing models, but it also modified the models using the demand 

function estimated from data collected in a contingent valuation study. This modified 

location model based on household demands makes the solutions more reliable, and provides 

more valuable information on vaccination program design. This research illustrates that the 

existing location models are simple but powerful tools to assist planning decisions on how to 

locate vaccination sites, even without cost information. 

Fourth and most importantly, this research formulated optimization models that take 

account of both user fee and locations. Using both demand and cost information obtained 

from the study site, this research formulated optimization models to determine simultaneous 

solutions for user fee and locations, with a specific objective of a vaccination program. In 

this dissertation, two kinds of optimization models were developed for the case study in 

China, such as one for maximizing vaccination coverage and the other for maximizing cases 
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avoided. These models can be easily reformulated to meet other planning objectives. The 

level of the user fee was treated endogenously in these models, and its optimal level was 

solved by the model given revenue-neutrality constraint that vaccination costs must be 

covered by revenue from user fees. Furthermore, with additional constraint on the required 

number of outposts, this model would provide more valuable information to be used for 

vaccination program design. For instance, total private benefits and costs of vaccination 

could be estimated for different numbers of outposts, which provide information on what is 

the optimal number of outposts from an economic efficiency perspective. The results from 

the case study show that the solution from optimization models would not be the best for 

society, which suggests that optimization tools should be used only as an aid to judgment, not 

as the definite answer to the problem. This finding also implies that the value of optimization 

models is not based on automatic solution, but on the use of the model in a simulation mode.  

Lastly, this research developed an implementation guide for planning vaccination 

programs using an optimization-based tool based on the in-depth review of the literature 

concerning the obstacles to successful adoption and implementation of the tools in actual 

planning practices. Hopefully the implementation guide for the tool in this dissertation will 

make the tool more readily usable in vaccination planning processes in developing countries 

by overcoming many obstacles. In conclusion, all these models and tools developed in my 

dissertation research can provide important aids to planners’ judgment on (1) where to locate 

outposts and (2) how to set the user fee level in order to meet a specific planning objective. 

Without this research, planners might not be clear about how to allocate their limited 

resources effectively. 

Four major limitations of this dissertation deserve mention, along with direction of 
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further research. First, all models developed in this research assume a “hard” boundary of 

vaccination service within an administrative unit. The assumption that people in neighboring 

areas cannot receive vaccinations in the target area might be acceptable in China, but it is 

worthwhile to relax this assumption in further research to see how the results change with a 

“porous” boundary.  

Second, these models considered only one-time vaccination. Yet there are a number 

of  vaccinations including the typhoid vaccine that require booster doses or injections  to 

keep immunized, and thus the target population might  change in the follow-up vaccination. 

To account for such temporal factors, dynamic models would be necessary in further 

research.  

Third, all models in this research aggregated adults and children because there was 

not a significant difference observed in demand and incidence in the study area. In some 

areas where demand or disease incidence is quite different according to age group, 

disaggregated models would be more reliable in general. Finally, if there is any evidence of 

herd immunity, it could be incorporated into the model in further research as well. 
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APPENDIX 1: 
 

Variables and results of the household CV models in Poulos et al. (2006b) 
 
Table A1.1 Variable definition and descriptive statistics in Poulos et al. (2006b) 

Variable Name Description Mean S.D. 
Demographic and Socioeconomic 
Respondent’s sex 1=if respondent is male; 0=otherwise 0.48 0.50
Respondent’s age Respondent’s age (years)  39.7 7.6
Respondent’s 
education 

 

Years of school completed 
=1 if respondent completed primary school; 0 otherwise 
=1 if respondent completed middle school; 0 otherwise 
=1 if respondent completed high school; 0 otherwise 
=1 if respondent completed univ. and post-graduate; 0 otherwise 

7.0
0.3
0.4
0.2
0.1

3.7
0.5
0.5
0.4
0.3

Household size Number of household members (continuous) 4.2 1.2
Number of members 0-1 years 
Number of members 2-5 years 
Number of members 6-14 years 
Number of members 15-19 years 
Number of members 20+ years 

0.09
0.19
0.61
0.61
2.56

0.28
0.40
0.64
0.75
1.02

Annual household income (continuous, USD) 1796 1809Income  
Natural log of annual household income 9.2 1.0

Rooms Number of rooms in home 4.5 2.5
Phone =1 if household has a telephone; 0 otherwise 0.53 0.50
Refrigerator =1 if household owns a refrigerator; 0 otherwise 0.24 0.43
Television =1 if household owns a color television; 0 otherwise 0.69 0.46
Motorbike =1 if household owns a motorbike; 0 otherwise 0.24 0.42
AVERTING  AND MITIGATING BEHAVIOR 
Distance to health 
facility Distance to nearest health facility in meters 774 993

Health Insurance =1 if respondent has health insurance; 0 otherwise 0.14 0.35
Wash hands 
before eating =1 if Always; =2; =3 if Often if Sometimes; =4 if Never 3.0 0.8

Boil drinking water =1 if Never; =2 if Sometimes; =3 if Often; =4 if Always 2.1 1.2
RISK 
Increasing risk =1 typhoid is increasing in neighborhood; 0 otherwise 0.03 0.16
Outbreak =1 if village had typhoid fever outbreak in last 3 years; 0 otherwise 0.23 0.42
Typhoid Common? =1 if Never; =2 if Not Very Common; =3 if Common; =4 if Very Common 1.7 0.7
KNOWLEDGE AND EXPERIENCE 
Know typhoid =1 respondent has heard about typhoid; 0 otherwise 0.75 0.43
Respondent had Vi 
vaccine =1 if respondent had the Vi vaccine; 0 otherwise 0.07 0.25

Know someone 
having typhoid =1 if respondent knows someone who has had typhoid; 0 otherwise 0.35 0.48

Household 
members had 
typhoid 

=1 if a household member has ever had typhoid; 0 otherwise 
0.11 0.31
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Table A1.2 Poisson regression analysis of household demand for Vi vaccines in Poulos et al. 
(2006b) 

 Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) 
-0.088 -0.088 -0.089 -0.089 -0.088 -0.088 Vaccine Price (USD) 

(0.000)** (0.000)** (0.000)** (0.000)** (0.000)** (0.000)** 
0.065 0.048 0.078 0.065 0.087 0.086 Log of Household Income 

(0.025)* (0.104)++ (0.021)* (0.055)+ (0.011)* (0.011)* 
0.022 0.020 0.016 0.025 0.025 Home Vaccination Option 

 (0.767) (0.795) (0.838) (0.747) (0.739) 
0.026 0.069 -0.016 -0.033 -0.035 Lives in Lingchuan County 

 (0.728) (0.375) (0.847) (0.694) (0.671) 
-0.289 -0.275 -0.296 -0.274 -0.270 Typhoid WTP question follows 

cholera WTP question  (0.001)** (0.001)** (0.000)** (0.001)** (0.001)** 
-0.144 -0.092 -0.122 -0.125 Male respondent 

 (0.013)* (0.135)++ (0.049)* (0.043)* 
-0.009 -0.009 -0.006 -0.006 Age of the respondent 

 (0.028)* (0.024)* (0.203) (0.199) 
0.000 0.000 0.000 Distance from home to the 

nearest health facility  (0.064)+ (0.110)++ (0.107)++ 
0.126 0.140 0.143 Village had an outbreak 

 (0.076)+ (0.047)* (0.041)* 
0.001 -0.016 -0.017 Respondent knows someone 

who had typhoid  (0.986) (0.812) (0.804) 
-0.030 -0.037 -0.036 Boils drinking water 

 (0.293) (0.196) (0.186) 
0.100 0.080 0.080 Washes hands before eating 

 (0.011)* (0.042)* (0.037)* 
0.180 0.177 Respondent can read a 

newspaper  (0.037)* (0.039)* 
0.146 0.147 Number of children between 0 

and 1 years old  (0.209) (0.203) 
0.193 0.192 Number of children between 2 

and 5 years old  (0.032)* (0.033)* 
0.336 0.338 Number of children between 5 

and 14  (0.000)** (0.000)** 
0.284 0.285 Number of young adults between 

15 and 19  (0.000)** (0.000)** 
0.122 0.120 Number of adults above 20 years 

old  (0.000)** (0.000)** 
0.516 0.714 0.297 0.005 -0.492 -0.436 Constant 

(0.057)+ (0.011)* (0.375) (0.990) (0.228) (0.242) 
-0.002 -0.011  Has health insurance 

 (0.987) (0.909)  
0.000 -0.025  Respondent believes typhoid risk 

is high  (0.995) (0.712)  
0.039 0.044  Respondent believes child’s 

typhoid risk is high  (0.540) (0.484)  
-0.040 -0.007  Number of household members 

with poor or very poor health  (0.294) (0.860)  
0.064 0.036   Respondent Completed Middle 

School  (0.345) (0.604)   
-0.020 -0.048   Respondent Completed High 

School  (0.814) (0.582)   
0.053 -0.050   Respondent Completed 

University or postgraduate school  (0.679) (0.689)   
0.121 0.141   Number of household members 

 (0.000)** (0.000)**   
-0.191    Urban Area 

 (0.135)++    
p values in parentheses    ++ significant at 15%; + significant at 10%; * significant at 5%; ** significant at 1%  
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APPENDIX 2: 
 

Mathematical derivation of private benefits measured by household WTP 
 

When price is zero, the respondent’s total value in preventing typhoid fever for the 

entire family in household i (WTPi) is the area under the inverse household demand curve 

from the Poisson regression function. In general, this area can be calculated by integrating 

the Poisson demand function, λ(•), over prices from zero to infinity36:

iWTP  = dpHIdp iiii∫
∞

0

),,,(λ eq. A2.1 

= dpHIdp iHiIidip∫
∞

⋅+⋅+⋅+⋅+
0

))ln(exp( ββββα eq. A2.2 

 

Thus, if price were zero, the household WTP for the entire family is: 

 

iWTP  =  ])ln([exp(1
iHiIid

p

HId ⋅+⋅+⋅+− βββα
β

eq. A2.3 

 

However, when non-zero price p* is charged, the household WTP for the entire 

family is the sum of the expenditure on the vaccine and the remaining consumer’s surplus, 

which is calculated as follows: 

 

36 Truncation of the demand function by household size (Cropper et al., 2004) is not considered in my model 
because no over-prediction of the demand was found in any observation in our data. 



176

iWTP = ))ln(exp( **
iHiIidp HIdpp ⋅+⋅+⋅+⋅+⋅ ββββα

+ dpHIdp
p

iHiIidp∫
∞

⋅+⋅+⋅+⋅+
*

))ln(exp( * ββββα eq. A2.4 

= ))ln(exp( **
iHiIidp HIdpp ⋅+⋅+⋅+⋅+⋅ ββββα

])ln([exp(1 *
iHiIidp

p

HIdp ⋅+⋅+⋅+⋅+− ββββα
β

eq. A2.5 

 

Eq. A2.5 indicates that the household WTP for the entire family is a function of all 

four explanatory variables, such as price, travel distance, natural log of household income, 

and household size. 

Suppose the choke price is less than infinity c (<∞), the household WTP for the entire 

family in household i when price were p* is: 

 

iWTP = ))ln(exp( **
iHiIidp HIdpp ⋅+⋅+⋅+⋅+⋅ ββββα

+ dpHIdp
c

p
iHiIidp∫ ⋅+⋅+⋅+⋅+

*

))ln(exp( * ββββα eq. A2.6 

= ))ln(exp( **
iHiIidp HIdpp ⋅+⋅+⋅+⋅+⋅ ββββα

])ln([exp(1
iHiIidp

p

HIdc ⋅+⋅+⋅+⋅++ ββββα
β

])ln([exp(1 *
iHiIidp

p

HIdp ⋅+⋅+⋅+⋅+− ββββα
β

eq. A2.7 
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If price were zero, the household WTP for the entire family is: 

= ])ln([exp(1
iHiIidp

p

HIdc ⋅+⋅+⋅+⋅+ ββββα
β

])ln([exp(1
iHiIid

p

HId ⋅+⋅+⋅+− βββα
β

eq. A2.8 

 

The first term of eq. A2.8 makes modifications on the right tail of the demand 

function. If the choke price c is close to infinity, the term is close to be zero and thus eq. A2.8 

equals A2.3. However, if c becomes smaller, the household WTP will be substantially 

modified. 
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APPENDIX 3: 

Description of the BME method used to predict income for unsampled villages 

 

The Bayesian Maximum Entropy (BME) method was used to predict average 

household income in unsampled villages based on spatial dependency pattern of the existing 

data from sampled villages. Before presenting the results, the spatial interpolation technique 

is briefly described. 

 

A3.1. Bayesian Maximum Entropy (BME): Brief description 

 

A high degree of spatial dependence in household incomes in sampled areas may 

justify use of spatial interpolation procedures to predict those in unsampled areas. Unlike ad 

hoc and deterministic methods of interpolation or smoothing such as inverse distance 

methods, triangulation (Cressie, 1993), and simple moving average (Ali et al., 2002), the 

geostatistical tradition involves spatial interpolation using spatial “weights” based on the 

structure of spatial dependence determined in an initial exploratory data analysis.  

The data to be used for spatial interpolation are often scarce and thus indirect 

measurement or uncertain observation is frequently used to overcome this lack of 

information, providing generally fewer measurements of the target variables. Researchers 

have attempted to simply combine all these available data sources in order to satisfy the 

highest possible accuracy requirement. The BME approach appears to be a potential 

candidate for achieving this task. It is especially designed for simultaneously managing data 

of various natures and quality. In other words, the BME method of spatial analysis and 
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mapping provides definite rules for incorporating prior information, “hard” (exact 

observation) and “soft” (uncertain or probabilistic) data into the mapping process. It relies on 

a two-step procedure that first involves an objective way of obtaining a prior distribution in 

accordance with the general knowledge at hand, and then a Bayesian conditionalization step 

that updates this prior probability distribution function (pdf) with respect to the data 

collected in the target area. 

The BME method adopts a stochastic representation of the data distribution across 

space in terms of the random field model, X(s), where the spatial location vector s defines a 

point in the 2-dimensional spatial domain37. The uncertainty of the distribution appears as an 

ensemble of realizations {χ} of the possible X(s) values, and the spatial random field assigns 

a probability depending on s to each of these realizations (Serre et al., 2003). The mean 

function )(sxm of the spatial random field characterizes trends and systematic structures in 

space, and the covariance function ),( /ssxc expresses spatial correlations and dependencies 

(Choi et al., 2003); 

 

)()( ss Xmx = , )]()()][()([),( /// ssssss XXXXcx −−= eq. A3.1

 

where the over-bar denotes stochastic expectation. The realization vector 

),...,( 1 mdata χχ=χ denotes the data values available at points is (i = 1 ,…, m).  

The BME spatial estimation is generally concerned with the prediction of the values 

of the relevant fields at unmeasured (unsampled) locations ks (k≠i) given all knowledge bases 

 
37 The BME method can account for time dimension as well as spatial dimension, but time factor was not 
considered in the income interpolation in this research. 
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available. Socioeconomic data, such as household income, are often collected over sampling 

regions or administrative areas of fixed size and location and thus the observed values are 

available at arbitrary discrete locations instead of a continuous space domain. The BME 

method resolves this issue by generating interval “soft” data from uncertain measurements 

and secondary information, which are then used to construct spatial maps of income 

estimates for the entire target area. These maps provide a continuous posterior pdf ( κf ) in 

space of the field values obtained at the measurement scale by integrating general knowledge 

and site-specific knowledge. This posterior pdf offers a complete description of the field of 

relevant data (here, household income) at the prediction points such as predictors (mean, 

median or mode of κf ) or prediction error variance (variance of the density κf ) (Choi et al., 

2003). 

Kriging, one of the traditional spatial mapping techniques, is a special case of the 

BME approach, under restrictive assumptions regarding the prior information and the data 

available. The BME method combines “soft” data with “hard” data along with prior 

information to compensate for the limited amount of measurements available, while kriging 

considers only “hard” data (Christakos and Li, 1998). In that aspect, the BME method is an 

extension of kriging, which allows the spatial interpolation to consider additional knowledge 

bases such as “soft” data. Therefore, in the limited case when a general knowledge consisting 

of only the mean and covariance and site-specific knowledge consisting only of “hard” data 

are considered, then the BME method reduces to kriging. 
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A3.2. Estimating average household income for all villages in Daxu Township 

 

In my income estimation presented here, the income data were used only as “hard”, 

and therefore the BME method reduces to kriging. Estimating average household income for 

all unsampled villages by spatial interpolation using the BME technique (same as kriging, 

here) would be feasible only if there is significant evidence of any spatial dependence pattern 

among income data from the DOMI surveys at 30 villages in Daxu Township. According to 

the marker plot in Figure A3.1, it appears that there exists a significant spatial clustering in 

average household incomes aggregated by village. Covariance plot, shown in Figure A3.2, 

shows a clear evidence of spatial clustering of income data. 

 

Figure A3.1. Marker plot of average household income for sampled villages 
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Figure A3.2. Covariance c(r) for average household income as a function of spatial lag r

Using the findings from covariance analysis, the theoretical covariance model was 

constructed to account for village-level factors that make village incomes spatially correlated 

as follows: 

 

c(r)=c exp(-3 r/ar) eq. A3.2

 

where c=1448, ar=0.013 degrees (approximately 1.5 km). By applying the parameters of the 

covariance model to the entire surface of the township, the BME map of village income and 

its error variance map were created as follows: 
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Figure A3.3. BME map of the predicted household income in Daxu Township 

Figure A3.4. BME map of error variance associated with the predicted household income 
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Using the BME surface of the predicted household income in Figure A3.3, the BME 

estimates of average household income for all villages in Daxu Township were obtained as 

plotted in Figure A3.5, and were used as input data for the demand function to estimate the 

number of vaccinations at all villages and cells in the township. 

 

Figure A3.5. BME estimates of average household income in all 141 villages in Daxu 
Township 

A3.3. Validating the predicted income data 

 

As a matter of fact, the method used here to predict the household income for 

unsampled villages is subject to a few limitations. First, although the sampled villages are 

well scattered throughout the township (as shown in Figure A3.1), the data available only at 
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30 sampled villages might not be sufficient for the spatial interpolation to all 141 villages in 

Daxu Township. Such lack of data may increase the uncertainty level of the predicted 

incomes, especially in the border areas (see Figure A3.3). However, I have not found any 

better way to obtain the income data for all villages given the data available. Second, the 

estimates from the BME-based spatial interpolation without taking the size of village 

population into account might be biased if any association exists between average household 

income and village population for the sampled villages. Fortunately, no association was 

found between average income and village population, as shown in Figure A3.6. The 

regression coefficient is not statistically significant when average income was regressed 

against village population. 

 

Figure A3.6. Scatter plot of average household income in sampled villages vs. village 
population 
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Another limitation of this income prediction approach would be that the income data 

were considered as “hard” assuming no uncertainty, but there are various sources of 

uncertainty in the data. The BME framework would allow the interpolation to account for 

uncertainty in the data by considering it as “soft”. In the future, the BME approach 

considering the data as “soft” would be useful to account for sampling error in the data, as 

well as for the change of scale between individual household income and village aggregated 

household income. 

 One way of validating the use of income data based on the BME prediction would be 

to compare the distribution of observed income with that of predicted income, which is 

discussed in the main text (see Figure 4.4). Another way of validating the results of the 

models using the predicted income data from the BME method would be to conduct 

sensitivity analyses on the parameter of income variable. In Chapter 6, it is confirmed that 

the final results are not sensitive to the income parameter, which indicates that the potential 

bias or uncertainty in the predicted household income data at unsampled villages are 

minimal. 
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