
USING CONTEXT TO IMPROVE NETWORK-BASED EXPLOIT KIT DETECTION

Teryl Taylor

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer

Science.

Chapel Hill
2016

Approved by:

Fabian Monrose

John McHugh

Jay Aikat

Alex Berg

Ting Wang

©2016
Teryl Taylor

ALL RIGHTS RESERVED

ii

ABSTRACT

TERYL TAYLOR: Using Context to Improve Network-based Exploit Kit Detection
(Under the direction of Fabian Monrose)

Today, our computers are routinely compromised while performing seemingly innocuous activities like

reading articles on trusted websites (e.g., the NY Times). These compromises are perpetrated via complex

interactions involving the advertising networks that monetize these sites. Web-based compromises such as

exploit kits are similar to any other scam — the attacker wants to lure an unsuspecting client into a trap

to steal private information, or resources – generating 10s of millions of dollars annually. Exploit kits are

web-based services specifically designed to capitalize on vulnerabilities in unsuspecting client computers in

order to install malware without a user’s knowledge. Sadly, it only takes a single successful infection to ruin

a user’s financial life, or lead to corporate breaches that result in millions of dollars of expense and loss of

customer trust.

Exploit kits use a myriad of techniques to obfuscate each attack instance, making current network-based

defenses such as signature-based network intrusion detection systems far less effective than in years past.

Dynamic analysis or honeyclient analysis on these exploits plays a key role in identifying new attacks for

signature generation, but provides no means of inspecting end-user traffic on the network to identify attacks in

real time. As a result, defenses designed to stop such malfeasance often arrive too late or not at all resulting in

high false positive and false negative (error) rates. In order to deal with these drawbacks, three new detection

approaches are presented.

To deal with the issue of a high number of errors, a new technique for detecting exploit kit interactions

on a network is proposed. The technique capitalizes on the fact that an exploit kit leads its potential victim

through a process of exploitation by forcing the browser to download multiple web resources from malicious

servers. This process has an inherent structure that can be captured in HTTP traffic and used to significantly

reduce error rates. The approach organizes HTTP traffic into tree-like data structures, and, using a scalable

index of exploit kit traces as samples, models the detection process as a subtree similarity search problem.

iii

The technique is evaluated on 3,800 hours of web traffic on a large enterprise network, and results show that

it reduces false positive rates by four orders of magnitude over current state-of-the-art approaches.

While utilizing structure can vastly improve detection rates over current approaches, it does not go far

enough in helping defenders detect new, previously unseen attacks. As a result, a new framework that applies

dynamic honeyclient analysis directly on network traffic at scale is proposed. The framework captures and

stores a configurable window of reassembled HTTP objects network wide, uses lightweight content rendering

to establish the chain of requests leading up to a suspicious event, then serves the initial response content

back to the honeyclient in an isolated network. The framework is evaluated on a diverse collection of exploit

kits as they evolve over a 1 year period. The empirical evaluation suggests that the approach offers significant

operational value, and a single honeyclient can support a campus deployment of thousands of users.

While the above approaches attempt to detect exploit kits before they have a chance to infect the

client, they cannot protect a client that has already been infected. The final technique detects signs of post

infection behavior by intrusions that abuses the domain name system (DNS) to make contact with an attacker.

Contemporary detection approaches utilize the structure of a domain name and require hundreds of DNS

messages to detect such malware. As a result, these detection mechanisms cannot detect malware in a timely

manner and are susceptible to high error rates. The final technique, based on sequential hypothesis testing,

uses the DNS message patterns of a subset of DNS traffic to detect malware in as little as four DNS messages,

and with orders of magnitude reduction in error rates.

The results of this work can make a significant operational impact on network security analysis, and open

several exciting future directions for network security research.

iv

To my friends and family.

v

ACKNOWLEDGEMENTS

I was supported by so many different people during my time at the University of North Carolina at

Chapel Hill. First, I would not be here if it was not for John McHugh who encouraged me to pursue a Ph.D,

and was there for many fruitful discussions. I also must express my gratitude to my advisor, Fabian Monrose,

for his mentorship through all steps of this program. He learned my weaknesses and used them to make me a

better researcher. He was there every step of the way to ensure that I was successful.

I also want to acknowledge my committee members, Ting Wang, Alex Berg, and Jay Aikat, for providing

excellent discussion, proof reading, and support. There were also many hours spent with my fellow doctoral

students, Srinivas Krishnan, Kevin Snow, and Andrew White, and collaborators, Xin Hu, Marc Ph. Stoecklin,

Jiyong Jang, Reiner Sailer, Douglas Schales, Jan Werner, Nathan Otterness, and Scott Coull. UNC Information

Technology staff members Murray Anderegg and Bil Hayes were always there when I had a technical

problem, and Stan Waddell, Alex Everett, Jim Gogan, and Danny Shue graciously provided data to make this

dissertation possible.

I could not have done this research without the financial support of the National Science and Engineering

Research Council of Canada (NSERC), the University of North Carolina at Chapel Hill, the National Science

Foundation (NSF), the Department of Homeland Security, IBM Research and Cisco Systems.

Finally, my friends and family helped me through this program with their support. I want to thank Victor

Heorhiadi, Christian F. Orellana, Edward Marlowe, Oluwafemi Alabi, Istvan Csapo, Kory Menke, Mike

Seman, and Jocelyn Friedman for always being there. I also need to thank my mom and dad, and sister Marlo

for their encouragement and patience, and Christina Rader for being my biggest cheerleader.

vi

PREFACE

This dissertation is original, unpublished, independent work by the author, Teryl Taylor, except where

due reference is made in the text of the dissertation.

vii

TABLE OF CONTENTS

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

LIST OF SYMBOLS . xvii

1 INTRODUCTION . 1

1.1 Detecting Exploit Kits via Subtree Similarity Search . 4

1.2 Detecting Exploit Kits via Context and Virtualization on the Wire . 4

1.3 Detecting Network Malfeasance via Sequential Hypothesis Testing . 5

1.4 Innovations . 5

2 BACKGROUND . 7

2.1 Exploit Kit Attack Model . 7

2.2 Detecting an Exploit Kit . 9

2.2.1 Characteristics of an Ideal Network-based Malfeasance Detector . 10

2.2.2 Operational Challenges in Network Defense . 11

2.3 Exploit Kits Evasion Techniques . 12

2.3.1 DNS and DGAs . 13

3 BACKGROUND . 18

3.1 Modelling HTTP Traffic as Trees . 18

3.2 Subtree Mining: A Comparison of Algorithms on Real World Datasets . 19

3.3 Subtree Mining Algorithms . 21

3.3.1 Background . 21

viii

3.3.2 Review of Selected Algorithms . 25

3.4 Methodology . 29

3.5 Real World Datasets . 30

3.6 Synthetic Datasets . 32

3.6.1 Synthetic Tree Generator in Literature . 32

3.6.2 Custom Synthetic Tree Generators. 33

3.7 Evaluation . 36

3.7.1 Output Verification . 36

3.7.2 Conventional Subtree Mining Algorithms . 38

3.7.3 Closed Subtree Mining Algorithms . 46

3.8 Tree Edit Distance: An Alternative to Subtree Mining . 51

3.9 Final Thoughts . 52

4 DETECTING EXPLOIT KIT TRAFFIC USING SUBTREE SIMILARITY SEARCH 54

4.1 Literature Review . 55

4.2 Approach . 57

4.2.1 On Building Trees . 59

4.2.2 On Building the Malware Index . 60

4.2.3 On Subtree Similarity Searches. 62

4.2.3.1 Node Level Similarity Search . 62

4.2.3.2 Structural Similarity Search . 64

4.3 Dataset and Training . 65

4.3.1 Implementation. 66

4.3.2 Building the Malware Index . 67

4.3.3 Establishing Ground Truth . 68

4.4 Finding the Needle in a Haystack . 68

4.4.1 Comparison with Snort . 69

4.4.2 Comparison with State of the Art . 71

ix

4.4.3 Findings and Discussion . 74

4.5 Operational Deployment . 76

4.6 Limitations . 78

4.7 Discussion and Lessons Learned . 80

5 DETECTING EXPLOIT KIT TRAFFIC USING REPLAY . 82

5.1 Literature Review . 84

5.2 Approach . 87

5.2.1 Step ¶: Semantic Content Caching . 88

5.2.2 Step ·: Filtering and Triggering . 89

5.2.3 Step ¸: Client and Server Impersonation . 91

5.2.4 Step ¹: Honeyclient-based Detection . 94

5.2.5 Prototype Implementation . 95

5.3 Evaluation . 96

5.3.1 On Detection Performance . 96

5.3.2 On Live Traffic Analysis . 101

5.4 Case Study. 107

5.5 Limitations . 109

5.6 Discussion and Lessons Learned . 111

6 DETECTING BOTS USING SEQUENTIAL HYPOTHESIS TESTING. 113

6.1 Literature Review . 115

6.2 Collection Infrastructure . 116

6.3 Data Summary for Measurement Period I . 117

6.4 Classification based on Features of a Domain Name. 119

6.4.1 Shortcomings of Existing Methods . 123

6.5 Approach . 124

6.6 Evaluation - Measurement Period I . 126

6.6.1 Offline Analysis . 128

x

6.6.2 Visualizing AGD Traffic . 134

6.6.3 Analysis of Live Traffic . 135

6.7 Data Summary and Evaluation for Measurement Period II . 137

6.7.1 Offline Analysis . 138

6.7.2 Online Analysis . 139

6.8 Limitations . 142

6.9 Discussion and Lessons Learned . 142

7 CONCLUSION AND FUTURE DIRECTIONS . 144

BIBLIOGRAPHY . 150

xi

LIST OF TABLES

3.1 8,000 trees sampled from real-world datasets. 30

3.2 Common configs used in Zaki’s tree generator (Zaki, 2005). 33

3.3 Characteristics of synthetic datasets. 36

4.1 Summary of datasets. 66

4.2 Testing and training sets. 67

4.3 Node-level thresholds computed by Algorithm 2. 67

4.4 Comparison (weighted) to Snort signatures. 72

4.5 Comparison (weighted) to binary URL classifier. 72

4.6 False positives when using different levels of structural and node similarity. 75

4.7 Live comparison to Snort signatures. 77

5.1 Number of instances of various file types seen on campus on a busy school day. 96

5.2 Detection results for honeyclient H1 on offline dataset. 97

5.3 Detection results for honeyclient H2 on offline dataset. 98

5.4 Chaining algorithm match rate. 105

5.5 List of exploits injected into the campus network and detected by the framework. 106

6.1 DNS traffic stats for three days in March 2012. 118

6.2 Summary of bot samples used in the compiled blacklist. 118

6.3 Results of the KL classifier for Mar.19, 2012. 122

6.4 Accuracy of k-fold cross-validation while varying window sizes. 130

6.5 AGDs that clustered by domain length. 135

6.6 DNS traffic stats for seven days in October 2015. 138

6.7 Example flagged NX domain names. 141

xii

LIST OF FIGURES

1.1 A typical process to exploit a victim’s machine. 2

2.1 The four phases of an exploit kit infection. 8

2.2 DNS resolution process. 14

2.3 Malware contacting an attacker’s command-and-control server using a DGA . 17

3.1 Website modeled as tree-like structure. 19

3.2 Types of subtrees. 22

3.3 Subtree blanket example. 27

3.4 CDF of the number of unique labels per tree depth for all datasets. 31

3.5 The number of frequent nodes per threshold (0.0001, 0.001, 0.01, 0.05). 32

3.6 Maximum fanout/depth characteristics of real and synthetic datasets. 34

3.7 A tree with duplicate labels. 39

3.8 Graphs for real datasets. 40

3.9 Graphs for real datasets continued. 41

3.10 Graphs for synthetic datasets. 42

3.11 Number of subtrees checked per tree size for PREFIXISPAN on Slabels . 43

3.12 Graphs for synthetic datasets. 44

3.13 Pruned and checked trees by size for closed algorithms. 48

3.14 Number of trees checked by size for closed algorithms. 49

4.1 High level overview of the search-based malware system. 58

4.2 Ordering HTTP flows for web session tree building. 59

4.3 The labeled tree generated from Figure 4.2. 60

4.4 The components of a URL for feature extraction. 61

4.5 Example similarity search on malware index. 62

4.6 CDF of node similarity scores between benign and malicious samples. 74

xiii

4.7 The CDF of tree similarity scores for malicious subtrees. 76

4.8 Runtime performance of tree-based malware search. 78

5.1 Overall workflow of enabling an on-the-wire honeyclient. 87

5.2 Analysis of the 177 exploits on VirusTotal. 100

5.3 Number of unique Flash files seen on the campus network. 102

5.4 CPU and memory statistics for the semantic cache and trigger module. 103

5.5 Two-level cache statistics. 104

5.6 Elapsed time between Flash to Flash file launches. 106

5.7 JavaScript snippet from Angler Exploit Kit. 109

6.1 DNS Monitoring Infrastructure . 117

6.2 CDF of domain name lengths for benign domains . 119

6.3 CDF of lengths for botnet-related domains . 120

6.4 ROC Curves for Jaccard Index, Edit Distance and KL Divergence. 122

6.5 High-level overview of the workflow. 124

6.6 NX zone counts for benign and malicious clients. 128

6.7 Error estimation for k-fold cross-validation of varying window sizes. 129

6.8 Classification time after first unique NX response. 131

6.9 Time between classification and rendezvous. 132

6.10 ROC curve for edit distance using NX responses. 133

6.11 AGD clusters generated via hierarchical clustering. 134

6.12 NX zone counts for benign and malicious clients for October 1-7, 2015. 138

6.13 Error estimation for 7-fold cross-validation for October 1-7, 2016. 139

xiv

LIST OF ABBREVIATIONS

AGD Algorithmically Generated Domain name

API Application Program Interface

CAS Compare And Swap

CDF Cumulative Distribution Function

CDN Content Distribution Network

CPU Central Processing Unit

DGA Domain-name Generation Algorithm

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DOM Document Object Model

EXE EXEcutable

FN False Negative

FP False Positive

FQDN Fully Qualified Domain Name

GB GigaByte

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IDS Intrusion Detection System

IP Internet Protocol

JI Jaccard Index

LRU Least Recently Used

MX Mail eXchange

NIDS Network Intrusion Detection System

NX Non-eXistent

P2P Peer-to-Peer

PEB Process Environment Block

PTR PoinTeR

ROC Receiver Operating Characteristic

xv

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLD Top Level Domain

TP True Positive

TRW Threshold Random Walk

TTL Time To Live

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Virtual Machine

WJ Weighted Jaccard index

xvi

LIST OF SYMBOLS

Bt A blanket of t — i.e., the set of all supertrees of t that have one more node than t

D A database of trees

E A set of edges nodes

L A labeling function mapping a tree node to its label

Σ An alphabet of tree labels

S A Subtree

T A labeled tree

vx Tree node x

V A set of tree nodes

↑ A backwards traversal from child to parent

xvii

CHAPTER 1: INTRODUCTION

Today, our computers are routinely compromised while performing seemingly innocuous activities like

reading articles on trusted websites (Zarras et al., 2014) (e.g., the NY Times). These compromises are

perpetrated via complex interactions involving the advertising networks that monetize these sites. Since crime

typically follows the money, it is not too surprising then that cyber criminals have turned their attention to

exploiting advertising networks as a way to reach wider audiences. In 2012 alone, web-based advertising

generated revenues of over $36 billion (PWC, 2013), and its wide-spread reach makes it an excellent target

for fraudsters. Furthermore, the players in the online advertising industry — publishers (who display ads),

advertising networks (who deliver ads), and advertisers (who create content) — offer a multitude of vantage

points for attackers to leverage, and these compromises can go unnoticed for extended periods. A well known

example is the widely publicized case involving advertising networks from Google and Microsoft that were

tricked into displaying malicious content by attackers posing as legitimate advertisers (Lemos, 2010). Such

abuses are not isolated incidents and so-called malvertising has plagued many popular websites (Raywood,

2012), exploited mobile devices (Schwartz, 2013), and has even been utilized as vessels for botnet activ-

ity (Clark, 2013). These exploits are delivered over HTTP, and detecting and defending against such attacks

require accurate and efficient analytical techniques to help network operators better understand the attacks

being perpetrated on their networks.

According to Grier et al. (2012); De Maio et al. (2014), approximately 40% of these web-based attacks

are launched by exploit kits, which are web services specifically designed to deliver malicious payloads

(e.g., bots) to unsuspecting client machines. Exploit kits, such as Fiesta and Blackhole represent an entire

software-as-a-service subindustry worth millions of dollars. For example, Cisco estimates that the popular

exploit kit Angler is responsible for over 90,000 infection attempts a day and generates revenues of $60

million annually from ransomware alone (Biasini et al., 2015).

The exploitation of a user’s system typically follows a four-step process as shown in Figure 1.1. In step

Ê, a user navigates to a website (e.g., CNN) that — unbeknownst to the user — contains an external link

1

(e.g., an advertising link) with an injected iframe that in turn directs (step Ë) the user’s browser to an

invisible exploit kit landing page. At that point, information about the victim’s system is passed along to

the attacker’s server (step Ì), which is then used to select a file such as Flash or JAVA, that can exploit the

system configuration. The downloaded file exploits a vulnerability on the system that allows the attacker to

install a malicious binary (step Í) or otherwise control the victim’s machine.

User visits website

www.news.com

Compromised website redirects
to exploit landing page

Target client
vulnerabilities

Install malicious
software

! "

#

$

Figure 1.1: A typical process to exploit a victim’s machine.

The malicious binary installed on the client’s computer is typically designed to steal sensitive data or

utilize system resources to perform some revenue generating tasks such as spamming, click fraud, ransoming

data, or mining bitcoins. These binaries may enroll the host machine (called a bot) in a larger pool of infected

machines to form a “botnet”. A botnet is controlled by one or more command-and-control servers that relay

commands and binary updates to members of the pool, allowing botnet owners to reap the financial rewards

of the combined efforts of the bots. In order to maintain contact with the command-and-control server, the

bot has some dynamic mechanism for learning the server’s IP address. One of the key ways in which this

is done is through abusing the domain name system (DNS) by using a domain name generation algorithm

(DGA) to generate thousands of random domain names. The bot queries each domain name looking for a

valid address for its command-and-control server. Only one of the domain names is registered and those

queries that do not elicit an IP address return a non-existent or NX response.

Security analysts typically defend enterprise networks from these attacks using network monitoring

devices (such as intrusion detection systems) that search network traffic as it passes through the network’s

2

edge for signature matches or known malicious domain names. Network-based detection approaches are

popular because network operators often do not have control over the devices that join their network, and

malware can disable critical client-side protections such as anti-virus, making detection difficult. Attackers

thwart these defenses by rapidly changing their environment through 1.) using polymorphic techniques on

exploit payloads, 2.) frequently moving exploit kits to new servers, 3.) constantly changing domain names,

and 4.) morphing traffic to bypass signatures in an effort look “normal” in the context of surrounding traffic.

Furthermore, current network-based detection research has ignored the operational impact proposed solutions

have on a security analyst’s ability to effectively do their job. Current approaches have high false positive and

false negative rates that place a heavy burden on the security analyst who must vet each false positive, and

clean up the potential mess of a missed detection. Indeed, even the signatures heavily used by commercial

products arrive too late to be effective.

This is not to say that current approaches are not useful. Signatures are a key cog in defending our

networks and will not be replaced any time soon; however, more research needs to be done to address their

limitations. In this work, I describe the characteristics of an ideal network-based exploit detector and explore

the key operational drawbacks of current state-of-the-art approaches that cause them to fall short of the ideal

case — i.e., high error rates, timeliness of discovery, lack of necessary and sufficient features, and inability

to detect new previously unseen attacks. I then propose new novel detections techniques to help reduce the

gap between the ideal case and current conditions. The techniques rely on utilizing structural interactions

inherent in both HTTP and DNS traffic in order to detect both exploit kits and their corresponding bots.

The web structure of HTTP traffic is an important feature for detecting exploit kits because the structure

encodes the inherent process outlined in Figure 1.1 that is not inherent in benign traffic, thus reducing

misclassification rates. Exploit kits are also out-of-the-box solutions with infrastructures of hundreds of

machines (Biasini et al., 2015). As a result, it is difficult for the attacker to change the structure for each

exploit kit instance, and structure stays relatively constant across instances. Finally, attackers actually enforce

a web structure by spreading an exploit across the multiple web files that are downloaded by the client during

infection. This is done so that the defender cannot simply analyze an exploitable file in isolation for detection,

but must analyze all web files at once.

I hypothesize that by modelling the HTTP traffic associated with the exploitation process as a tree

structure, one can provide enough context related to web-based attacks, in order to reduce the false positive

rates by orders of magnitude over current state-of-the-art approaches. Furthermore, by utilizing such

3

context and utilizing virtualization, one can reduce false positive rates and detect previously unseen attacks

as they occur. Finally, by leveraging the contextual patterns of NX DNS traffic, one can detect bots —

that abuse the domain name service by using domain generated algorithms — before they contact their

command-and-control server using a single computer on a large enterprise network.

To support this assertion, the dissertation first motivates the problem by discussing the exploit kit attack

model, and then proposes three novel network-based techniques to detect such exploits. In each case, I

demonstrate the effectiveness of the technique empirically using large-scale real-world network datasets, and

compare outcomes with existing approaches. The techniques are outlined below.

1.1 Detecting Exploit Kits via Subtree Similarity Search

One of the key problems with current network-based detection techniques is that they have high false

positive and false negative rates (i.e, error rates). In Chapter 4, I propose a new approach for detecting exploit

kits by leveraging the inherent structural patterns in HTTP traffic to classify exploit kit instances. The key

insight is that an exploit kit leads the browser to download payloads using multiple requests from malicious

servers. These interactions are captured in a “tree-like” form, and using a scalable index of malware samples,

the detection process is modeled as a subtree similarity search problem. The approach is evaluated on 3800

hours of real-world traffic including over 4 billion flows and reduces false positive rates by four orders

of magnitude over current state-of-the-art techniques with comparable true positive rates. I show that the

approach can operate in near real-time, and is able to handle peak traffic levels on a large enterprise network

— identifying 28 new exploit kit instances during the analysis period.

1.2 Detecting Exploit Kits via Context and Virtualization on the Wire

While utilizing structure can vastly improve detection rates over current techniques, it does not go far

enough in helping defenders detect new, previously unseen attacks. A dynamic analysis, or honeyclient

analysis, of these exploits plays a key role in initially identifying new attacks in order to generate content

signatures. While honeyclients can sweep the web for attacks, they provide no means of inspecting end-user

traffic on-the-wire to identify attacks in real time. This leaves network operators dependent on third-party

signatures that arrive too late, or not at all.

4

In Chapter 5, I introduce the design and implementation of a novel framework for adapting honeyclient-

based systems to operate on-the-wire at scale. The framework captures and stores a configurable window

of reassembled HTTP objects network-wide, uses lightweight content rendering to establish the chain of

requests leading up to a suspicious event, then serves the initial response content back to the honeyclient

system on an isolated network. The framework is evaluated by analyzing a diverse collection of web-based

exploit kits as they evolve over a one year period. Case studies provide interesting insights into the behavior

of these exploit kits. The empirical evaluations suggest that the approach offers significant operational value,

and a single honeyclient server can readily support a campus deployment of thousands of users.

1.3 Detecting Network Malfeasance via Sequential Hypothesis Testing

Once the attacker has successfully dropped a malicious binary on a client machine, there are relatively

few network-level clues available for the defender. However, the domain name system plays a vital role

in the dependability and security of modern network and can act as a bellweather to detect such activities.

Attackers have turned their attention to the use of algorithmically generated domain names (AGDs) in an

effort to circumvent network defenses; however, because such domain names are increasingly being used in

benign applications, this transition has significant implications for techniques that classify AGDs based solely

on the format of a domain name. To highlight the challenges they face, Chapter 6 examines contemporary

approaches and demonstrates their limitations. These shortcomings are addressed by proposing an online

form of sequential hypothesis testing that classifies clients based solely on the non-existent (NX) responses

they elicit. Evaluations on real-world data show that the technique outperforms existing approaches, and for

the vast majority of cases, it can detect malware before they are able to successfully rendezvous with their

command- and-control servers.

1.4 Innovations

In summary this dissertation makes the following contributions:

1. Chapter 3 presents the first large-scale comparison of subtree mining algorithms on a variety of real-life

datasets. In this dissertation, HTTP traffic is modeled as a tree structure. Current literature does not

provide insight into whether subtree mining algorithms are appropriate mining web traffic. As a result,

5

I run four state-of-the-art subtree mining algorithms on 10 real life datasets and provide insight into

their characteristics and bottlenecks.

2. Chapter 4 presents a new online technique for detecting exploit kits that uses the tree structure of HTTP

traffic to reduce (by orders of magnitude) the false positive rates over existing online approaches. The

approach also provides a novel solution to the subtree similarity search problem, whereby, each tree

node represents a high dimensional feature space. A version of this work appeared in:

• Taylor, T., Hu, X., Wang, T., Jang, J., Stoecklin, M., Monrose, F., and Sailer, R. (2016a). Detecting

malicious exploit kits using tree-based similarity searches. In ACM Conference on Data and

Application Security and Privacy

3. Chapter 5 proposes a novel model for analyzing HTTP traffic scalably on a network using a honeyclient,

as well as, a trigger and replay mechanism in a controlled environment. By utilizing a honeyclient, one

can execute traffic from potentially malicious websites and monitor system-level changes to improve

detection rates over the current state-of-the-art. A version of the work appeared in:

• Taylor, T., Snow, K. Z., Otterness, N., and Monrose, F. (2016b). Cache, trigger, impersonate:

Enabling context-sensitive honeyclient analysis on-the-wire. In Symposium on Network and

Distributed System Security

4. Chapter 6 presents a new algorithm for detecting client computers infected by bots that abuse DNS to

connect to their command-and-control servers. Unlike current approaches, the algorithm can detect

bots in near-realtime and, in 80% of cases, detect them before the bot contacts a command-and-control

server. A version of this work appeared in:

• Krishnan, S., Taylor, T., Monrose, F., and McHugh, J. (2013). Crossing the Threshold: Detecting

Network Malfeasance via Sequential Hypothesis Testing. In IEEE/IFIP International Conference

on Dependable Systems and Networks

6

CHAPTER 2: BACKGROUND

This chapter reviews the important concepts used throughout the remainder of this dissertation. It

covers the exploit kit attack model, as well as a high-level overview of current techniques for detecting

such web-based attacks both before and after infection. Finally, the chapter describes domain generation

algorithms and how malware uses them to compromise defenses.

2.1 Exploit Kit Attack Model

An exploit kit is a web-based service (website) designed to infect machines that visit the site — usually

without a client’s knowledge. Like any other service, an exploit kit generates money for its owner by acting as

a malware delivery system. Attackers pay a monthly subscription fee with a guaranteed number of infections,

and supply the malware payload to be installed on the infected machines. The malware, in turn, generates

revenue for the attacker through some activity such as spamming or click jacking (Grier et al., 2012).

A web-based exploit kit attack is similar to any other scam — the attacker wants to lure an unsuspecting

client into a trap to steal private information, or resources. Such attacks typically involve a four-step process

as shown in Figure 2.1.

In the bait phase, the attacker tries to lure the client to a malicious website without their knowledge

using a multitude of techniques. The most common technique is for the attacker to inject an iframe linking

to a malicious page into one of the advertising networks dotting the Internet. To do so, the attacker can

compromise an existing advertising server, or even purchase legitimate ad space. Another popular technique

is phishing whereby a criminal sends a legitimate looking email with a link to the malicious site. Finally,

a technique sometimes called “watering hole” sees an attacker compromise a popular website and infect

unsuspecting visitors. In most baiting scenarios, there is a small time window before a defender detects and

removes the compromised links, as such, the attacker must continuously be searching for new servers to

compromise.

7

Web server

Attacker

Client
Exploit kit server

Bait Phase

1. Request some website.

2. Website contains an injected <iframe>
pointing to a malicious exploit kit server.

3. Client browser requests page
referenced in <iframe>.

4a. Attacker returns a landing page from
the exploit kit server.

4b. Landing page checks client
system configuration.

Reconnaissance Phase

5a. Client configurations passed to attacker.

5b. Given the client configurations, attacker
chooses a suitable exploit.

6a. Return exploit to client.

Exploit Phase

6b. Exploit compromises vulnerability in system
through code injection or code reuse.

7. Infected client requests and downloads binary malware.

Persistence Phase

8. Malware maintains contact with attacker for updates and
data transfers.

Legend

Figure 2.1: The four phases of an exploit kit infection.

8

Once the user is lead to a malicious landing page, the page analyzes the client machine to determine

what operating system, software, and plugins are installed (i.e., web browser, Flash version, etc.) during the

reconnaissance phase. An attacker can determine what software is installed on a client using JavaScript APIs

that are already available in all commercial browsers.

With the list of installed software at hand, the exploit kit can choose from exploits that can capitalize on

vulnerabilities (bugs) on the victim’s machine (exploit phase). The attacker’s goal is to leverage an exploit in

order to download and run unrestricted arbitrary code on the client — effectively allowing the attacker free

reign on the device. Exploits result from memory bugs in web browsers and plugins such as buffer overflows

wherein application code allows for data to be written past the boundary of a memory buffer (Szekeres et al.,

2013). Attackers leverage these bugs by either overwriting the browser’s program stack with their own code

(called code injection (Aleph One, 1996)), or to redirect the logical program flow to instructions already in

memory in order to provide alternative program logic (called return oriented programming (Buchanan et al.,

2008)).

The attacker now has full control over the computer and seeks to maintain his foothold by downloading

a set of malicious binaries in the persistence phase that will persist across system reboots. The binaries

serve two purposes. They perform some task to generate revenue for the attacker including: spamming, key

logging, click fraud, browser hijacking, bitcoin mining, and ransomware (Grier et al., 2012). The binaries

also maintain contact with the attacker by communicating with a command-and-control server over some

protocol such as peer-to-peer, DNS, or IRC (Zeidanloo and Manaf, 2009). Such communication allows an

attacker to upgrade a host and rent infected clients to customers. The collective combination of infected client

machines and command-and-control servers is called a botnet with individual infected machines called bots.

The following section investigates the prevalent techniques used by network security analysts to detect that a

network client has interacted with an exploit kit.

2.2 Detecting an Exploit Kit

Security analysts have two vantage points at which they can defend their networks — directly on the

host or at network boundaries. Security analysts will use a combination of both vantage points to protect

their networks. This dissertation focuses on network-level defenses that result from monitoring traffic at the

edge of a network boundary because security analysts cannot trust the devices on the network that they do

9

not control. As such, users or attackers alike can add new devices to the network that do not have the proper

client-side defenses or disable defenses on existing machines. While the network vantage does not give the

analyst all the rich information available at the client, it does provide a global view and historical record of all

host communication enabling detection of malicious behaviors as they occur. Finding malicious behaviors,

such as a client’s interaction with an exploit kit, becomes a data mining problem of finding malicious patterns

in a sea of data. The following subsection investigates the characteristics of an ideal network-based malware

detector, and discusses at a high-level how current techniques fall short.

2.2.1 Characteristics of an Ideal Network-based Malfeasance Detector

There are four characteristics that are highly sought after in the design and implementation of network-

based malware detectors. The first characteristic is that the detector can identify malicious network behavior

as it is occurring in order to be able to stop or mitigate an infection before it can do more damage — called

the timeliness requirement. The detector should also choose characteristics (features) that are necessary and

sufficient to declare something as malicious. These types of features make it harder for the attacker to avoid

detection. Next, we want a detector that detects everything that is malicious and nothing that is benign, and,

finally, the detectors should be able to adapt to a changing adversary so that it can discover previously unseen

attacks. Unfortunately, current detectors face tradeoffs sacrificing certain characteristics in order to achieve

others.

The majority of network-based detector research focuses on satisfying the real-time characteristic. With

tens to hundreds of thousands of data points to be analyzed per minute, real-time performance is of the utmost

importance for any detector to be useful in an operational environment; however, maintaining detection speed

has serious implications for detection accuracy — i.e., no data point within the network traffic is examined

indepthly. This creates two problems. In order to meet the real-time requirement researchers will extract

“cheap” features from the traffic. These features are extracted quickly, but they are not necessary nor sufficient

for detecting malicious content. For example, Ma et al. (2011) found that URLs for malicious websites

have differing characteristics (e.g., more characters, embedded IP addresses) than URLs to benign websites,

Provos et al. (2007); Cova et al. (2010) found that malicious sites were more likely to use obfuscation to

prevent detection, while Cova et al. (2010) and Mekky et al. (2014) note that malicious websites often utilize

a number of redirections; however, because malicious websites are not required to have longer URL’s or

use obfuscation, and because some benign websites have these same characteristics, these approaches tend

10

to have high false negative and false positive rates (Taylor et al., 2016b,a). Similarly, Provos et al. (2008)

reported a 10% false negative rate and Canali et al. (2011) reported a false positive rate of between 5% and

25% when classifying websites as malicious or benign, while Provos et al. (2007) only disclose that using

obfuscated JavaScript as an indicator leads to a high number of false positives. Chapter 4 examines the

limitations of these types of approaches and investigates their poor detection performances.

Second, in order to maintain high speed analysis, researchers build fast traffic classifiers based on either

content-based signatures or machine learning. These approaches implicitly make the assumption that future

attacks will look similar to past attacks leaving detectors unable to identify so-called “zero-day” attacks that

are completely new. As a result, these approaches are unable to adapt to a changing adversary as will be

described further in Chapter 5.

One could improve false negative and false positive rates by running potential exploits associated with

websites in a virtual environment and extracting behavioral features based on changes to the web browser

and operating system (Provos et al., 2008). These approaches have been successful in identifying zero-day

attacks (Taylor et al., 2016a); however, virtualization is slow making it difficult to process the deluge of traffic

using such a technique. Consequently, achieving the timeliness requirement of the ideal detector has been

a research topic of great importance. Chapter 5 presents a new technique that adapts virtualization to the

network enabling more thorough analysis while examining a fraction of the overall data.

2.2.2 Operational Challenges in Network Defense

As described in Sommer and Paxson (2010), there are four major operational research challenges in

network defense. These operational challenges were described by Sommer and Paxson (2010) in the context

of anomaly detection, but can be extended to network defenses in general. First, there is a high cost of errors.

Errors, in this context, describe misclassifications of network traffic. When a network detector incorrectly

classifies some traffic as malicious, when the traffic is actually benign, (i.e., a false positive) a security analyst

must waste time examining the incident. As the number of false positives increase, the detector becomes

unusable (Axelsson, 1999). On the other hand, classifying malicious traffic as benign can have catastrophic

implications for an organization enabling an attacker free access to private corporate data.

Another operational challenge is transferring results from the network detector to actionable items for the

security analyst (Sommer and Paxson, 2010). Academic research focuses on a system’s capability to identify

11

potentially malicious behaviors, but tell us little about why the behavior is malicious. In order to assist the

analyst better, we must investigate ways to provide the necessary context to make analysis faster.

Network traffic is extremely diversified. There are hundreds of network protocols, each with their own

format, and some of those protocols such as HTTP and DNS have an infinite number of message content

possibilities, and high variability in bandwidth, burstiness, and connection duration (Sommer and Paxson,

2010) over short intervals. Further, in the case of HTTP and DNS, if one goes looking for a particular

behavior in the traffic, one can often find it. This makes defining “normal” traffic patterns incredibly difficult.

As a result, researchers must use large datasets over time in an effort to measure the impact of an approaches

effectiveness.

The latter challenge makes it particularly difficult to conduct sound evaluations on network detectors.

For one, there are few publicly available datasets to conduct security research, and those that are available are

out of date due to the constant evolution of network traffic. Even when private data sources are available,

such as a traffic collector at the edge of a network, restrictions are imposed such that researchers cannot store

full traffic traces to disk making dataset labeling challenging. Without large labeled datasets, it becomes

almost impossible to train machine learning models that can reliably detect malfeasance on the network.

In this dissertation, I investigate the operational impact of some of the prominent network-based detection

and then present new approaches to detecting exploit kits, and bots that help to deal with some of the key

operation challenges discussed in this section and push the research community closer to the ideal network-

based malfeasance detector. I propose techniques that significantly reduce false positives while improving or

maintaining false negatives over existing approaches. Furthermore, I present techniques that are evaluated

on large real-world datasets, and scale without the need for large cloud infrastructure. Each technique also

detects exploits as they happen and in certain cases before any malicious activity can take place. However,

before discussing these approaches, I first discuss some of the key ways in which exploit kits evade detection.

2.3 Exploit Kits Evasion Techniques

At each step in the exploit kit attack model, kit authors build in evasive mechanisms to go undetected by

network detectors. Since these kits are effectively websites or web services hosted on a server with a full

URL, they are constantly changing their locations with new domain names (called throw-away domains),

12

URLs, and IP addresses to avoid blacklisting. A blacklist is a list of domain names and IP addresses that are

known to serve malicious content and as such, are blocked at the network-level.

During the bait phase, an attacker will redirect a client to a benign website if the client is from a known

defender’s IP address space or if the client tries to load the exploit kit multiple times. For example, Google

has a large cloud infrastructure that loads thousands of websites to test if they are malicious by monitoring

operating system changes (Provos et al., 2008). If a request comes from a known Google IP address, the

attacker will redirect to a benign site.

In the reconnaissance phase, the kit checks for signs that the client is a virtualized environment, which

indicates that a defender is likely testing whether the site is malicious. To do the check, a kit will capitalize

on bugs in the browser or a plugin to check for the presence of registry keys, I/O ports, background process,

function hooks, or IP addresses that are specific to known virtual machine software (Kirat et al., 2014). If a

virtualized environment is found, the exploit kit will redirect the client to a benign site.

Often, the attacker tries to make things difficult for the defender during the exploit phase by spreading

the components of the exploit across a number web resources (i.e., Flash file, JavaScript, HTML file, images,

etc.). For example, a Flash exploit will only attempt to exploit a system if the proper parameters are passed in

by the loading website. This prevents a defender from running the Flash file in a virtualized environment

in isolation and observing any malicious behavior. Chapter 5 describes a new approach for network-based

detection of such web-based exploits by providing context to exploitable files. The chapter also presents case

studies with real life exploit kit examples.

Upon successfully infecting a host, the installed malware (bot) contacts its command-and-control server

to receive instructions and updates (persistence phase). The bot needs some dynamic process to accomplish

this goal without getting blacklisted by the defender. There are several dynamic approaches available to

the bot; however, this dissertation focuses on bots that abuse the domain name system (DNS) to contact a

command-and-control using a domain-name generation algorithms (DGAs) to bypass defenses which are

described in more detail below.

2.3.1 DNS and DGAs

The domain name system is one of the backbones of the Internet allowing users to surf to their favorite

websites by simply remembering descriptive domain names (e.g., www.facebook.com, www.cnn.com). More

specifically, the domain name system is a hierarchical distributed database that maps domain names to their

13

corresponding IP addresses (a process called a name resolution). A domain name consists of one or more

parts, called labels, that are concatenated and delimited by dots (e.g., www.facebook.com). The rightmost

label (e.g., com) represents the top-level domain, and the hierarchy of domains descends from right to left.

Labels on the left represent subdomains of the domain to the right (e.g., www.facebook.com is a subdomain

of facebook.com, which is a subdomain of com).

There are two main types of servers in the domain name system. An authoritative nameserver is a server

that stores the actual domain name-to-IP address mappings while a recursive resolver is a DNS server that

queries an authoritative nameserver to resolve a domain address. Domains are delegated to authoritative

servers hierarchically. At the top of the hierarchy is the root server, and below it is the authoritative servers

for each top-level domain, and below them are the authoritative servers for the sub domains, etc.

Figure 2.2 shows the process for resolving a DNS request for www.facebook.com. In the Figure, the

client queries a recursive resolver for the IP address associated with www.facebook.com. In turn, the resolver

will query a root server to find the location of the “com” server. Next, it will query the “com” server for the

address of the “facebook.com” server and so on until the IP address associated with www.facebook.com is

found and returned to the client. To speed up future queries, the DNS resolver will cache DNS responses for

a period of time (called a time to live or TTL) specified by the authoritative server.

Client DNS recursive
resolver

root name server

com. name server

facebook.com.
name server

Where's www.facebook.com?

!
"

#

$
%

69.171.239.12

Try 69.171.239.12

It's 31.13.69.228

198.41.0.4

It's 31.13.69.228

192.55.83.30

Try 192.55.83.30

Figure 2.2: The DNS resolution process is recursive in nature. The client queries its local DNS resolver for
the IP address associated with a domain name (e.g., www.facebook.com). In turn, the resolver recursively
makes queries down the DNS hierarchy until it finds the requested IP address and returns it to the client.

DNS is a request-response UDP-based protocol that uses query and reply messages to pass around

information. The query message contains the domain name being queried along with the type of response

14

requested. The most common type of response is an A record which designates that an IP version 4 address

should be returned for the query domain name. Other response types include PTR (reverse lookup), which

allows the client to lookup a domain name given an IP address, and MX, which contains the address of the

email exchange server for the corresponding domain name. Responses also contain status codes to indicate

whether a request was successfully fulfilled. If a client makes a request for a domain name that does not exist

in the database, an NX response or non-existent status is returned. An in depth discussion of DNS is beyond

the scope of this dissertation; however, Mockapetris and Dunlap (1988) provides an excellent overview of

how the system works.

DNS was not designed with security in mind, and as a result, any misuse of this service can have a

significant impact on a network’s operational health. While some of the attacks attempt to exploit flaws in the

resolution process (e.g., cache poisoning attacks (Kaminsky, 2008; Son and Shmatikov, 2010)), others are

more subtle and leverage an enterprise’s DNS infrastructure to facilitate their activities. In this dissertation, I

focus on the latter problem, highlighting a growing abuse of enterprise name servers whereby infected clients

use automated domain-name generation algorithms to bypass defenses.

The idea behind a DGA is that the attacker wants to discourage a defender from blacklisting his command-

and-control servers by making it extremely costly for the defender to do so. A DGA is designed to generate

thousands of random domain names using some global seed. The global seed could be the date and time, the

10 top trending words on twitter, or any publicly available piece of information. A bot (or malware) will then

systematically query each domain name while only one of the domain names is actually registered in the

DNS database as shown in Figure 2.3. The registered domain name corresponds to the command-and-control

server. A bot contacts its command-and-control server everyday generating a new set of domain names

each time. Examples of malware that exhibit such behavior are botnets such as conficker and kraken

and web-based malware and trojans such as RunForestRun (Unmask Parasites, 2012). Conficker is

a sophisticated computer worm that propagates while forming a botnet. Since its discovery in 2008, it has

remained surprisingly difficult to counter because of its combined use of advance malware techniques. To date,

it has infected millions of computers worldwide. The early variants would reach out to 250 pseudo-randomly

generated domain per day from eight Top Level Domains (TLDs) in an attempt to update itself with new

code or instructions.

A domain name generated by a DGA is called an algorithmically generated domain name (AGD)

and has been used in differing contexts in the existing literature. Antonakakis et al. (2012), for example,

15

describe an AGD as an “automatically generated pseudo-random domain name” created by a botnet using a

domain generation algorithm (DGA), whereas other authors (Bilge et al., 2011; Yadav et al., 2010; Born and

Gustafson, 2010; Stone-Gross et al., 2009) refer to the process of generating domains as “domain fluxing.”

In this dissertation, an algorithmically generated domain is described as a domain that is generated by an

automated process with the key objective of minimizing collisions within the DNS namespace. Consequently,

algorithmically generated domains tend to be relatively long pseudo-random strings derived from some global

seed. Google Chrome’s domain generator, for example, creates three alpha-character strings (each of length

ten) upon startup, and these strings are used to test whether the configured DNS server hijacks non-existent

(NX) responses. If so, Chrome does not perform prefetching (ISC, 2011) of search terms that are entered into

its location bar.

Even if the defender somehow gains access to the algorithm and the global key, she must register all

possible domain names daily in order to be sure she has blocked the botnet. In Chapter 6, I investigate current

approaches for detecting DGA related traffic and show that they do not satisfy the timeliness aspects of the

ideal detector and can be easily evaded. I also propose a new technique for detecting bots and malware that

use DGAs, which does satisfy the timeliness requirement of the ideal detector, and is much more difficult to

evade than current detection techniques.

16

Client

DNS authoritative server

Attacker

Bot

Daily, Attacker randomly chooses one of the domain
names to register with a DNS authority. The

registered domain name will map to the IP address of
the attacker's command-and-control server. The

registered domain name in this example is:
www.lkkhklklkjhkjlh.com

 Daily, both the client and attacker generate a set of
random domain names using the same global

timestamp as a global random seed.
 Generated domain names in this example are:

www.adfsfsfafsfsfs.com
www.wrewrwrwrwwre.com

www.zxcvxvvzvcvzvcxvxv.com
www.lkkhklklkjhkjlh.com!

"

Does www.adfsfsfafsfsfs.com exist?

No

Does www.wrewrwrwrwwre.com exist?

No

Does www.zxcvxvvzvcvzvcxvxv.com exist?

No

Does www.lkkhklklkjhkjlh.com exist?

Yes, IP Address = Attacker's IP

#

$

%

Malware contacts
attacker to upload

sensitive information.

&

'

c-and-c
server

Figure 2.3: Example of how malware uses a DGA to contact the attacker’s command-and-control server.

17

CHAPTER 3: BACKGROUND

In Chapter 4, I investigate how the structural patterns in HTTP traffic are used to identify exploit kit

related traffic while reducing false positives and false negatives over existing approaches. In this chapter, I

describe a typical tree structure, and perform an indepth analysis of one of the most popular techniques for

analyzing tree data — namely subtree mining. The analysis will help guide the approach chosen in Chapter

4 and inform the research community as to the limitations of subtree mining techniques on large real-life

datasets.

3.1 Modelling HTTP Traffic as Trees

When a user surfs to a website (e.g., http://www.cnn.com), the web browser retrieves the site’s

main page from the server, parses it, and begins retrieving all the embedded web objects that comprise the

page. These objects include other embedded pages, JavaScript objects, images, and videos. The embedded

pages, and JavaScript objects may, in turn, load even more web objects. From a network perspective, web

browsers and servers communicate in a text-based request/response protocol called HTTP whereby each

loaded web object corresponds to a new HTTP web request and response by the browser to/from the server(s).

Each HTTP request contains the URL (or location) of the file requested, and a list of headers that confer

information about the web client to the web server. The most important request header for this dissertation is

the Referer header which contains the URL of the web object that requested the current web object.

The web server responds with an HTTP response that contains the content requested as well as a set of

headers describing the content (e.g., content type, content length, etc.), and status code indicating whether the

request was successfully fulfilled. In some cases, the server may redirect the web browser to another server

responding with a redirection status code, and a Location header with the new location of the web object.

The astute reader will note that the relationships between the HTTP request/responses of web resources

for a single website form a tree-like structure, where each HTTP request/response pair becomes a node

in the tree and the node x loads node y relationship between two sets of pairs represents the branches of

18

http://www.cnn.com

the tree. Figure 3.1 shows an example of this tree-like structure for a website that has a root page called

index.html. In this dissertation, such trees are called web session trees.

index.html

Root Page

footer.jpg

banner.js

logo.html

counter.js

logo.jpg

address.html

main.html

picnic.jpg

product.swf

advertise.js razor.gif

Figure 3.1: A root page (index.html) can load several different web resources (e.g., JavaScript, HTML, JPG),
which, in turn, can load other web resources. This “loads” relationship forms a tree-like structure.

3.2 Subtree Mining: A Comparison of Algorithms on Real World Datasets

With the notion of a web session tree in place, we now need a way to extract the structural properties

of the tree for analysis. There are a few options including tree edit distance (discussed in Chapter 4), but

by far the most popular approach in the literature is that of subtree mining. Subtree mining is the practice

of breaking large, complicated structures into more manageable substructures (i.e., subtrees) and to study

their patterns. Among all substructures, frequent substructures, i.e., those occurring sufficiently often in the

database, are of particular importance, as they open the door for advanced analyses, such as search (Cohen,

2013), indexing (Zhao et al., 2007), and classification (Nguyen and Shimazu, 2011). Subtree mining has

been applied in areas such as phylogenetic analysis in biology (Deepak et al., 2013), text mining (Subercaze

et al., 2015), natural language processing (Nguyen and Shimazu, 2011), malware detection (Narouei et al.,

2015), and robot task recognition (Gemignani et al., 2015). Although subtree mining algorithm research is

19

relatively old, semi-structured datasets that represent trees and graphs are ubiquitous and new algorithms

based on graph and subtree mining are still being proposed (Bui et al., 2014; Hadzic et al., 2015; Narouei

et al., 2015). There are even approaches that reduce graph mining problems into subtree mining problems

in order to reduce the runtime complexity of mining (Gemignani et al., 2015). Subtree mining research is

still relevant because there are relatively few better alternatives to encode structure for solving problems on

semi-structured data. Indeed, mining frequent substructures represents non-trivial challenges. The process

often requires scanning the entire database over multiple iterations, which can be prohibitively expensive for

large-scale settings. To address numerous practical challenges and limitations, several approaches have been

recently proposed (Zaki, 2005; Jiménez et al., 2012; Zou et al., 2006b; Kutty et al., 2007; Xiao et al., 2003;

Tatikonda et al., 2006; Chehreghani et al., 2011; Asai et al., 2002; Chi et al., 2003; Hido and Kawano, 2005;

Wang et al., 2004) (see (da Jiménez et al., 2010) for an excellent survey); however, to date, most evaluations

of subtree mining algorithms are on synthetic or small scale real datasets leaving one to wonder how they

perform on a variety of real-world datasets. My interest in subtree mining is motivated by the problem of

discovering malicious subtree patterns in network traffic, but existing literature does not provide insight as to

whether subtree mining represents a viable solution for a real-world networking dataset.

In what follows, I examine a recent line of inquiry on the problem of mining frequent subtrees in

a database of rooted and labeled trees. Existing methods can be broadly classified into two categories:

candidate generation and pattern growth. A candidate generation algorithm enumerates all possible subtree

combinations and incrementally calculates the frequency count for each subtree using an indexing structure

that stores the occurrences of frequent nodes in the database. A pattern growth algorithm follows the

divide-and-conquer methodology and generates candidate subtrees by growing subtrees from the data itself.

Despite the substantial body of work, there is still a significant lack of understanding of the strengths

and limitations of these algorithms in realistic settings, resulting in a set of widely held, yet questionable,

conclusions. For example, it is believed that pattern growth techniques are superior (Zou et al., 2006b; Kutty

et al., 2007; Wang et al., 2004; Deepak et al., 2013); however, little evidence suggests a measurable advantage.

Second, while the performance of subtree mining algorithms is influenced profoundly by multiple factors

(e.g., tree size, degree, depth, label distribution), due to limitations of evaluation datasets, little is known

about the intricate interplay between these factors.

Motivated by this, I conduct the first large-scale comparative study on frequent subtree mining algorithms

using a variety of synthetic and real datasets. The goal is to assess the performance of existing algorithms in

20

realistic settings and ultimately inform better algorithm design by investigating their strengths and limitations.

This chapter begins by studying the characteristics of synthetic datasets (Zaki, 2005) used in the majority

of studies and demonstrate their shortcomings when compared to real datasets. The work then proposes

novel synthetic tree generators that provide great flexibility in setting multiple factors (e.g., tree size, depth,

fanout, label distribution) and produce trees closely mimicking the characteristics of real datasets. Leveraging

the generated synthetic datasets and seven large real datasets, I investigate the runtime performance of four

representative subtree mining algorithms from the two main categories (candidate generation and pattern

growth) under varying setting of profounders. The algorithms were chosen because they contain the core

concepts of the two categories, are popular in the literature, and represent the current state of the art. I provide

insights into the strengths and weaknesses of these algorithms, many of which challenge conventionally held

beliefs.

Besides regular frequent subtree mining, the chapter also considers closed frequent subtree mining. A

frequent subtree is closed if none of its supertrees have the same support. The concept of closed subtree is

attractive because special pruning techniques can be applied to speed up the mining performance and reduce

the number of subtrees generated. The performance impact gained by leveraging closeness is measured.

The remainder of the Chapter begins with the four subtree mining algorithms compared in this study.

Section 3.4 details the methodology, while sections 3.5 and 3.6 describe the real-world and synthetic datasets

utilized. Experimental results are provided in section 6.6 before discussion and lessons learned.

3.3 Subtree Mining Algorithms

For pedagogical purposes, I first introduce fundamental concepts and notations used throughout the

paper, then formalize the problem of frequent subtree mining. The four representative algorithms for mining

subtrees compared in this work are also described.

3.3.1 Background

A labeled tree is a connected acyclic graph defined as T = {V,E,Σ, L} where V is the set of tree nodes;

E ⊆ V × V is the set of edges; Σ is the alphabet for node labels; and L : V → Σ
⋃
ε is the labeling function

mapping each node to its label (ε denotes empty label). If all edges of T are directed and there exists a special

21

root node v0 which does not have incoming edges, then T is called a rooted tree. If there is an ordering

relationship defined between sibling nodes in a tree, then T is called an ordered tree.

Depending on whether a binary ordering relationship ≤ is defined over the tree nodes, rooted trees can

be classified into: ordered trees where ≤ is defined for every pair of siblings for every tree node; unordered

trees when there is no predefined order between sibling nodes; and partially-ordered trees where ≤ is defined

only on some sets of siblings. Most subtree mining algorithms, including those compared in this dissertation,

are applicable to ordered label trees.

All the tree mining algorithms in this study store trees in a preorder canonical string format. The pre-order

string is built by adding the label of each tree node in the order of pre-order tree traversal. A special symbol

↑ is used when the traversal backtracks from child to parent. For instance, the pre-order string of tree in

Figure 3.2 (a) is ABE ↑ F ↑ G ↑↑ C ↑ DH ↑ I . The same scheme can be adapted to the representation of

unordered or partially ordered tree — see Chi et al. (2005) for more details.

A subtree is a subset of nodes and edges extracted from a larger tree. The three main types of subtrees

are induced, bottom-up, and embedded.

A

B C D

E F G H I

B

E F G

B

E G

A

E F D

(a) (b) (c) (d)

Figure 3.2: Types of subtrees. (a) original tree, (b) bottom-up subtree, (c) induced subtree, (d) embedded
subtree

They are defined as follows:

• Bottom-up subtrees: For a rooted tree T with vertex set V and edge set E, a subtree T ′ is a bottom-up

subtree if and only if (1) V ′ ⊆ V ; (2) E′ ⊆ E; (3) all the labels of V ′ and E′ are preserved; (4) if

T is ordered or partially ordered, any ordering among the siblings in T must be preserved in T ′; (5)

for any v ∈ V , if v ∈ V ′, then all the descendants of v in T must be preserved in T ′. A bottom-up

subtree T ′ is obtained by taking one vertex v from T and all its descendant nodes and associated edges.

Figure 3.2 (b) shows an example of bottom-up subtree.

22

• Induced subtrees: An induced subtree T ′ can be defined as a bottom-up tree without the last constraint.

For any vertex v ∈ V ′, it can contains only a subset of all its descendant nodes in V ; however, if v1 is

the parent of v2 in T and both of them are present in T ′, then v1 must also be the parent of v2 in T ′.

Intuitively, an induced subtree T ′ can be obtained by repeatedly removing leaf nodes from a bottom-up

subtree of T . Figure 3.2 (c) shows an example of induced subtree.

• Embedded subtrees: An embedded subtree further relaxes the constraints of induced subtrees by

allowing breaking parent-child relationships; however, the ancestor-descendant relationships among

vertices of T must be preserved. A T ′ is an embedded subtree of T if and only if: (1) V ′ ⊆ V ; (2) the

labels of all the nodes of V ′ in T is preserved in T ′; (3) if v1 is the parent of v2 in T ′, then v1 must

be an ancestor of v2 in T ; (4) for all v1 and v2 in V ′, preorder(v1) < preorder(v2) in T ′ if and only if

preorder(v1) < preorder(v2) in T . Figure 3.2 (d) shows an example of induced subtree. Notice that

vertices E and F are not direct children of A in the original tree.

Most frequent subtree mining algorithms attempt to discover frequent induced subtrees in a database of

ordered, labeled trees, due to their wide-range applications. Therefore in the study I focus on the following

problem:

Given a database of ordered, labeled trees D, find all induced subtrees appearing in at least ∆ trees in

D, where ∆ is a user-specified threshold (called the minimum support). The support threshold is typically

presented as a fraction of the overall number of trees in the dataset.

Existing subtree mining algorithms can be classified into two categories: candidate generation and pattern

growth (da Jiménez et al., 2010), both built upon the a-priori principle: all subtrees of a frequent subtree

must also be frequent. Thus both candidate generation and pattern growth form candidate subtrees using

frequent nodes as basic building blocks, though different in their particular ways of constructing candidates.

A plethora of algorithms based on these basic concepts have been proposed (da Jiménez et al., 2010), which

provide a variety of enhancements to improve performance. To date a broad comparison of approaches has

not been done.

Candidate generation has attracted more intensive research in this space (da Jiménez et al., 2010). It

involves generating a set of subtrees based on frequent nodes and testing them against the datastore. Trees are

23

stored in a breadth-first or depth-first canonical form (Chi et al., 2005) and a special in-memory structure is

built to map frequent nodes to their positions in trees in the database. New candidates are built by continuously

adding frequent nodes on either the right-most or left-most path of current ones.

By comparison, pattern growth has been highly touted in the literature as much faster than candidate

generation, but has received little attention by the majority of subtree mining studies (da Jiménez et al.,

2010). Pattern growth grows subtree patterns from the data itself, by starting at frequent nodes in dataset and

visiting surrounding nodes to build subtrees (Kutty et al., 2007); therefore, it only generates candidates that

actually appear in the data eliminating the costly checking phase employed in traditional candidate generation

algorithms. The tree dataset is partitioned by frequent nodes and each time a potential frequent subpattern is

found, it is mined against all candidates in the partition.

Chi et al. (2003); Kutty et al. (2007) focus on closed and maximal subtree mining to reduce the number

of subtrees generated. Closed and maximal subtrees are a subset of all subtrees. A frequent subtree is closed

if none of its supertrees have the same support (count). It is maximal if none of its supertrees have a support

count higher than the minimum threshold.

This chapter explores the performance benefits of both candidate generation and pattern growth-based

induced subtree mining techniques as well as closed induced subtree mining techniques. The substantial

body of work on subtree mining precludes the possibility of evaluating all existing algorithms; therefore,

I choose four representative subtree mining algorithms. The first two algorithms are based on candidate

generation techniques: FREQT (Asai et al., 2002) and CMTREEMINER (Chi et al., 2004) (mines closed

subtrees); while the other two are based on pattern growth techniques: PREFIXISPAN (Zou et al., 2006b) and

PCITMINER (Kutty et al., 2007) (mines closed subtrees). I chose PREFIXISPAN and PCITMINER because

they are the only pattern growth algorithm designed for induced subtrees (that we know of) while others

focus on either embedded (Wang et al., 2004; Zou et al., 2006a) or maximal (Paik et al., 2008) subtrees.

FREQT and CMTREEMINER were chosen because they are by far the most popular candidate generation

algorithms in the literature, and they still represent the state of the art in the research area. Most other

methods follow paradigms similar to either FREQT or CMTREEMINER, but with limited extension and

marginal performance improvement (Tan et al., 2008; Chehreghani et al., 2011; Hido and Kawano, 2005) or

are built for specific datasets (Deepak et al., 2013; Termier et al., 2008). For example, Hido and Kawano

(2005) extended the rightmost expansion model of FREQT to support both right and left expansion while

Chehreghani et al. (2011) presents a new equivalent class extension. In understanding the strengths and

24

weaknesses of two major schools of subtree mining algorithms, I have no vested interest in any of these

specific extensions.

The analysis that follows is by no means an easy feat, requiring (in some cases) an implementation of

algorithms based off the description in there respective papers, a thorough understanding of each algorithm,

and an assurance that the outputs were the same across each dataset. All implementations of the algorithms

in our comparative study were written in C++, compiled with GCC 4.1.2, using optimization 3, with STL

vectors, and the densehashmap1 to ensure a fair comparison. The implementation of the algorithms and

correspondence with authors (in some cases) took several months to complete.

3.3.2 Review of Selected Algorithms

� FREQT (Asai et al., 2002) is a candidate generation subtree mining algorithm that incrementally constructs

sets of subtree candidates of a particular size. As with all algorithms studied, candidates are generated by

adding frequent nodes only on the rightmost branch of the tree.

In the first pass, a set of all single-node frequent candidates are mined and their occurrences (in the

dataset) are marked using a data structure called an occurrence list. An occurrence list is simply an index

which knows the location of all frequent subtree candidates in the dataset. In subsequent passes, the set of all

candidates of size k are computed by merging the candidates of size k − 1 computed earlier. All patterns of a

certain size and their occurrence lists are maintained in memory.

It is prudent to note that FREQT’s definition of a frequent subtree is slightly different than the typical

definition of frequency. That is, FREQT treats an entire dataset of trees as one big tree with a single root

node and defines the frequency of a subtree as the number of occurrences of the subtree in the larger tree. The

typical definition is to count the frequency as the number of trees in which a subtree appears. For example,

if subtree s appeared 5 times in a single tree, FREQT would have a frequency count of 5, while the other

algorithms would count it only once. The subtle difference does not have a significant impact on our findings.

Implementation The JAVA-based implementation released by Asai et al. (2002)2 was reimplemented in

C++ for a more fair comparison with the other algorithms. It was modified to read canonical formatted

trees (as first described in Zaki (2005)) instead of XML. The rewrite was done based off version 4 of the

source code (dated March 24th, 2004). Additionally, Asai et al. (2002) describe two feature additions to

1 https://github.com/sparsehash/sparsehash

2 http://research.nii.ac.jp/˜uno/codes.htm

25

https://github.com/sparsehash/sparsehash
http://research.nii.ac.jp/~uno/codes.htm

the base FREQT algorithm: 1) duplicate node detection and 2) node skip. Duplicate node detection detects

and minimizes the impact of duplicate nodes in the dataset while node skip prunes infrequent nodes when

growing subtrees during the candidate generation phase of the algorithm. I enable the node skip feature and

disable the duplicate detection feature so that there is an environment where FREQT and PREFIXISPAN are

compared fairly. Next, the experiments are run with duplicate detection enabled to show how the feature

improves performance.

� CMTREEMINER is a candidate generation algorithm suggested by Chi et al. (2004) and similar to

FREQT, except it only reports closed and maximal subtrees, and generates candidates one by one, instead of

all candidates for a fixed size k at once. Since it generates only closed and maximal trees, it leverages a set of

pruners to reduce the number of candidates generated. The core component of the CMTreeMining (Chi et al.,

2004) algorithm is called the blanket. The blanket Bt of a tree t is the set of all supertrees of t that have one

more node than t. A frequent subtree is maximal iff for every t′ ∈ Bt, support(t′) < ∆; t is closed iff for

every t′ ∈ Bt, support(t′) < support(t). t′ ∈ Bt and t are occurrence matched if for each occurrence of t

in the dataset, there is a corresponding occurrence of t′; t′ ∈ Bt and t are support matched if for each tree in

which t appears, there is a corresponding appearance of t′. If two trees are occurrence matched, they are also

support matched.

The approach of Chi et al. (2004) first finds all frequent nodes in the datastore and generates single node

candidate trees as well as their corresponding occurrence lists. For each candidate subtree, an occurrence-

matched “blanket” is created for all vertices that do not appear on the rightmost path of the candidate. For

example, Figure 3.3 shows a subtree s with nodes A − G with a sampling of the possible ways in which

the subtree could be extended by a node H . Each H node is a blanket of s by definition. However, only

node growth along the rightmost path of s is allowed (see the transparent H nodes). This is done to improve

efficiency and reduce duplicate subtree generation. If there are any nodes H , that are occurrence matched

with s (i.e., everywhere s appears H also appears), and do not appear along the rightmost path (shaded nodes

in Figure 3.3), s is pruned. To see why, take the shaded H node on the root as an example. If that node

appears everywhere s appears, s can be pruned, because s will be included in the set of subtrees that are

rooted by H . If s is occurrence matched with H , then it must be support matched as well; therefore, s cannot

be closed.

26

A

B

D E

C

F G

H

H H

H

H

H

Figure 3.3: s consists of nodes A−G. A blanket consists of adding a node H either along the rightmost path
of s (e.g., the transparent H nodes) or off the rightmost path (e.g., the shaded H nodes).

If the candidate tree is not pruned, it is checked for closure by calculating a support match blanket. The

same principle holds as with the occurrence matched blanket—if there is a support matched candidate in

the blanket whose node does not appear on the rightmost path, then the candidate is not closed. Next, the

candidate is extended by single nodes on the rightmost path and the algorithm is recursively called on the

new candidates.

Each time a candidate is generated along the rightmost path, it is checked for closure and maximality.

Finally, maximal trees are tested with a frequency blanket to verify they are maximal. If all trees t′ in the

frequency blanket of t have a support threshold less than ∆, than t is considered maximal. Note that the

frequency blanket is only checked after closure is confirmed on all paths, and maximality is confirmed on the

rightmost path. In doing so, the number of frequency blanket checks are substantially reduced.

Implementation I use the C++ implementation (dated April 4, 2008) for CMTREEMINER (Chi et al.,

2003)3. The implementation was modified to support hashes rather than arrays to improve performance for

high cardinality labels (the original implementation only supported 216 labels).

� PREFIXISPAN is a pattern growth technique suggested by Zou et al. (2006b). It generates subtree

candidates by traversing the datastore instead of enumerating the space of candidate trees. It is based off the

concept of a growth element which can be thought of as follows: Given a tree t of m nodes and another tree

t′ of (m+ 1) nodes, t is considered a prefix of t′ and the extra node in t′ is called the growth element of t.

The growth element consists of both the node label and attaching position in t.

The algorithm is also built on the concept of a projected instance. The idea is as follows. Suppose we

have a tree t and a subtree candidate s, and some occurrences of s in t. The postfix subtrees attached to s

3 http://www.yunchi.org/publication/software.html

27

http://www.yunchi.org/publication/software.html

form a projected instance of t. A postfix subtree is simply the remaining portion of the tree following the

occurrence of the subtree s. If we take the projected instances of all occurrences of s across all the trees in

D, we get a projection database of all potential growth elements of s. Given this projection database, we

can grow the subtree along the rightmost path and calculate its support as it grows. This process effectively

reduces the need to check a subtree with the database, resulting in improved performance. As s is grown,

the projection database is continually partitioned until there are no more entries at which point a new set of

subtrees is mined.

� PCITMINER incorporates two extensions to PREFIXISPAN in order to support closure(Kutty et al., 2007).

Kutty et al. (2007) propose that the subtree space be reduced by using a backward scan based on the following

observation: given two single-node frequent subtrees s and s′ in a dataset D, if s′ is the parent of s wherever

s appears in D, then the projection growth of s can be halted because s′ will contain all subtrees using the

prefix4 of s. Note that the backward scanning approach is similar to an occurrence match blanket idea, but

only prunes candidates with occurrence matched parents instead of all occurrence matched nodes not on the

rightmost path.

Kutty et al. (2007) also propose the use of a forward and backward extension event checking mechanism.

A backward extension event occurs when there is a node that is not on the rightmost path of the current

subtree, but is support matched with the subtree. A backward extension is similar to a support match blanket

and signals that a subtree is not closed.

A forward extension event occurs when the extra node n in s′p is along the rightmost path and again sp

would not be considered closed.

Implementation I was unable to procure an implementation of either PCITMINER or PREFIXISPAN from

the original authors after repeated attempts to contact; therefore, I built a C++ implementation based off the

papers5. I diverged from the approach of Kutty et al. (2007) in two ways. I found that the backward scanning

feature alone did not provide an adequate enough performance comparison with CMTREEMINER because

the feature was unable to prune the subtree space as well as an occurrence match blanket (see §3.7.3 for

4 Kutty et al. (2007) describes backward scanning incorrectly in Lemma 1. The Lemma says that s′ must be a parent of s in all trees
of D. However, s′ and s must be occurrence matched for backward scanning to work.

5 I did not use the pseudo-projection optimization described in Zou et al. (2006b), because the details were omitted, and I was unable
to devise a version that was significantly faster than the unoptimized case.

28

further discussion); therefore, I extended the backward scanning technique to include an occurrence matched

blanket. This change improved the performance of the original algorithms on real-world datasets.

The closure check in the PCITMINER paper involves checking for closure by storing a database of

“potentially” closed subtrees, upon which new subtrees are checked. I favored a simpler solution that checks

for support matched growth elements and eliminates storing potentially closed subtrees.

3.4 Methodology

The four algorithms (CMTREEMINER, PCITMINER, FREQT, and PREFIXISPAN) were tested against

a random sample of 8,000 trees from each of seven real and four synthetic datasets (described next). Eight

thousand was the chosen number because the Weather and Wikipedia only contained 8,000 trees and the

number was large enough to show bottlenecks during evaluation. Note that FREQT was run with both

duplicate detection disabled and then enabled.

All algorithms were tested against the same samples and the minimum support threshold was varied

between each run across four values: 0.05, 0.01, 0.001, and 0.0001. The thresholds were chosen because they

represent a wide spectrum of workloads for the algorithms. At the lowest threshold (0.0001), every node is

frequent while at the highest threshold (0.05), no dataset has more than 145 frequent nodes.

Metrics To study the performance of the aforementioned algorithms, I analyzed their behavior based on

(i) their candidate generation phase where a set of candidate subtrees are created to be mined and (ii) their

dataset iteration phase where subtrees are verified. I compute (1) the number of subtree candidates generated

and checked against the database, (2) the total number of tree nodes visited, (3) the size of occurrence lists in

terms of number of items, (4) wall time, and (5) the number and size (in terms of nodes) of each frequent and

closed subtree.

Machine and Operating Systems Specifications All experiments were divided across two machines run-

ning Linux CentOS 6. The first machine had four Intel Xeon X7560 @ 2.27GHz CPUs each with eight cores;

the second machine had eight Intel Xeon X7550 @ 2.00GHz CPUs each with eight cores. Each algorithm ran

on a single core and was allocated 20 GBs of memory (from an available 528 GB). Experiments that did not

complete after 24 hours were terminated. For consistency, the datasets were split across the two machines,

ensuring that all algorithms were run on the same dataset using the same hardware.

29

Table 3.1: 8,000 trees sampled from real-world datasets.

Datasets #
labels

Depth Fanout Size
Min Max Avg Min Max Avg Min Max Avg

Webtraffic 5,427 1 28 2.75 0 2,669 18.8 1 2,670 24
Securities 5,560 4 4 4 9 11 10.04 20 24 22.08
CSLOGS 7,408 2 86 4.79 1 148 4.63 2 428 14.56
Weather 34,964 4 5 4.49 10 40 21.52 32 86 52.95

DBLP 37,357 4 6 4.01 2 17 8.13 6 36 18.27
Wikipedia 67,234 5 6 6 8 10 9.34 26 33 30.2
Uniprot 87,489 6 7 6.02 13 981 71.92 49 4,451 251.22

3.5 Real World Datasets

For a comprehensive evaluation of the four algorithms, seven real-world tree datasets and four synthetic

datasets were collected. Statistics for each dataset are shown in Table 3.1. These datasets were chosen

because they represent a wide spectrum of characteristics including number of unique labels, depth, fanout,

and size. A small subset of these datasets have been used in the literature (Cohen, 2013; Zou et al., 2006b;

Kutty et al., 2007; Chehreghani et al., 2011).

Since ordered induced labeled trees are mined, each dataset is stored in an ordered depth-first canonical

form using the algorithm described in Chi et al. (2005). String labels are converted to integers for convenience.

1. CSLOGS consists of web log files for the websites at Rensselaer Polytechnic Institute. The dataset

has the widest variation in depth of any of the datasets tested.

2. DBLP consists of 632,000 bibliographic entries and is the largest in terms of the number of unique

labels.

3. Securities consists of 17,000 money market funds from January to October 2013 and is the smallest in

terms of unique labels and maximum tree depth.

4. Uniprot consists of annotated protein sequences and has the largest trees.

5. Weather contains the climate conditions for the US and has trees with consistent depth and fanout

parameters.

6. Webtraffic consists of network traces of HTTP traffic from about 3,000 clients on an enterprise network.

Trees are formed by grouping and building relationships between the HTTP connections. The dataset

is the most diverse in terms of varying fanout and depth.

30

7. Wikipedia includes 8,000 static wikipedia pages. This dataset has the most similar trees in terms of

depth, fanout, and size.

For the analysis that follows, label distribution is an important factor impacting the runtime performance

of subtree mining algorithms; therefore, to highlight pertinent issues, I first briefly discuss key characteristics

of the labels in the seven real-world datasets gathered for the experiments. Figure 3.4 shows the empirical

cumulative distribution function of the number of unique labels seen in a dataset at a particular tree depth.

The cardinality of the labels increases as the depth increases, with relatively few unique labels seen closer to

the root, meaning that the internal portions of the trees are relatively similar to other trees in the datasets.

Node labels appear in relatively few positions within a tree. For example, in five datasets (DBLP,

Securities, Weather, Uniprot, Wikipedia), approximately 99% of all labels appear at exactly one depth and

have the same number of children (i.e., degree) in all locations where they appear. Over 90% of all labels

appearing more than once have exactly one degree/depth combination — a characteristic that makes these

datasets ideal for closed subtree mining.

The Webtraffic and CSLOGS datasets are different from the rest in that only 20% of the labels have a

single depth and combination. That said, over 90% percent of the nodes appear in less than ten positions.

Shortly, attention is turned to how these characteristics affect the effectiveness of the closed subtree mining

algorithms.

100 101

Depth

10−5

10−4

10−3

10−2

10−1

100

C
D

F

CSLOGS
DBLP
Securities
Uniprot

Weather
Webtraffic
Wikipedia

Figure 3.4: CDF of the number of unique labels per tree depth for all datasets.

31

Figure 3.5 shows the number of frequent nodes per support threshold for three of the datasets — Uniprot,

CSLOGS, DBLP. The other datasets are omitted for clarity; however, the results are consistent. Note, that

for the largest dataset (Uniprot) there are only 145 frequent nodes for the highest threshold we tested (0.05),

and only 25 in DBLP. As seen later, even a small subset of frequent nodes can cause an algorithm to mine for

hours or exhaust memory.

10−4 10−3 10−2 10−1

Support Threshold

101

102

103

104

105

S
up

po
rt

C
ou

nt

CSLOGS
DBLP

Uniprot

Figure 3.5: The number of frequent nodes per threshold (0.0001, 0.001, 0.01, 0.05).

3.6 Synthetic Datasets

The fact that one has no control over the attributes of realistic datasets means that one cannot solely rely

on such datasets to gain a better understanding of the characteristics that affect the algorithms under study.

To gain the desired level of control, I explore several synthetic datasets.

3.6.1 Synthetic Tree Generator in Literature

One of the most popular synthetic tree generators (used in no less than eleven subtree mining studies (Zaki,

2005; Jiménez et al., 2012; Zou et al., 2006b; Kutty et al., 2007; Xiao et al., 2003; Tatikonda et al., 2006;

Chehreghani et al., 2011; Asai et al., 2002; Chi et al., 2003; Hido and Kawano, 2005; Wang et al., 2004)) was

examined. That generator is the one originally proposed by Zaki (2005), which takes a set of parameters (e.g.,

tree depth (D), fanout (F), number of unique labels (L), total number of nodes (M), and number of subtrees

(T)) as input. Based on the input parameters, the generator builds a single master tree with M nodes, and then

creates smaller trees by traversing the nodes of the master tree. The generator can be set to always start from

the root of the master tree, or to start from a randomly selected node when producing subtrees. Past work

32

Table 3.2: Common configs used in Zaki’s tree generator (Zaki, 2005).

Parameter F5 D10 T1M
Master Tree Size 10,000 10,000 10,000
No. of Unique Labels 100 100 100
No. of Trees 100,000 100,000 1,000,000
Fanout 5 10 10
Depth 10 10 10
No. of Unique Trees 2,042 3,099 3,046

has used Zaki’s generator to create three common datasets for evaluating subtree mining algorithms. These

prototypical configurations (called F5, D10, and T1M) are listed in Table 3.2.

The goal was to generate tree datasets with variations in fanout, depth, and label distribution using

Zaki’s approach; however, upon close inspection it was observed that the trees generated in these datasets

were noticeably different from what the input parameters suggested. For example, Figure 3.6a shows the

cumulative distribution functions of the max depth and fanout of the trees generated in datasets F5, D10, and

T1M. Notice that 98% of the trees are of fanout two or less, while over 75% of the trees are of depth of two

or less. Furthermore, 30–50% of the trees contain only a single node. With such small tree sizes and a limited

number of node labels, the generator only created approximately 3,000 unique structures (Table 3.2).

The problem is that Zaki’s generator was designed to create synthetic datasets to model the tree-like

structures inherent in client webpage accesses; yet it is being used as a generic tree generator to test the

performance of tree mining algorithms under a wide variety of application domains. That is unfortunate, since

many real-world datasets (see Figure 3.6b) have characteristics that are drastically different from webpage

access patterns in terms of fanout and depth. More troubling is the fact that the trees output by Zaki’s

generator are in stark contrast to that for real world websites, and so analysis of mining algorithms using only

this data can easily lead to incorrect conclusion. To that point, note that the CSLOGS dataset has no single

node trees and more than 91% of its trees are unique.

3.6.2 Custom Synthetic Tree Generators

For the experiments, there were two requirements for the synthetic generator: (1) providing fine-grain

control over tree characteristics such as fanout, depth, tree size, number of unique labels, label distributions

(both within a tree and across a dataset), and number of trees, (2) modeling different real-world datasets

(not just a single real-world dataset as in the case of Zaki’s generator). Such a generator would maintain

the structure of trees in real-world datasets, but also enable the alteration of characteristics such as labeling,

33

0 2 4 6 8 10

Depth/Fanout

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

D10 Fanout
D10 Depth

F5 Fanout
F5 Depth

(a) CDFs of the max depth/fanout of the datasets generated by Zaki’s tree
generator (Zaki, 2005).

0 2 4 6 8 10

Depth/Fanout

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CSLOGS Fanout
CSLOGS Depth
DBLP Fanout

DBLP Depth
Wikipedia Fanout
Wikipedia Depth

(b) CDFs of the max depth/fanout for real-world datasets.

Figure 3.6: Maximum fanout/depth characteristics of real and synthetic datasets.

number of trees, or create slight perturbations in depth, tree size and fanout. As a result, three tree generators

were built.

� K-ary Generator: The k-ary generator builds perfect k-ary trees. A perfect k-ary tree is a tree in which

each node contains either 0 or k children and where all leaf nodes are at the same level. The k-ary generator

takes fanout, depth, and a label distribution as input, and outputs a user-specified number of trees using the

label distribution. Labels are assigned to each node based on a transitional probability. The root node label is

assigned using a label distribution of the root nodes from a real dataset, and then each child node label is

assigned using a conditional probability based on its parent node label.

34

More formally, the transitional probability model PL for the label set is as follows: define an alphabet of

labels L = l1, ..., ln and a set of labels at a depth d Ld = ld1, ..., ldm for a dataset D, for 0 < d < q, where

q is the maximum depth found in D. |ldi| is defined as the number of occurrences of the label li in D at

depth d, and |Ld| as the total number of labels seen in the dataset at depth d. When building a k-ary tree, the

probability of selecting li as the root label is P (li) = P (li|d = 0) = |ldi|/|Ld|. The probability of selecting

a label at any other node in the tree is conditional on its parent label — i.e., P (li) = P (ldi|l(d−1)p) where

l(d−1)p is the parent label.

It is prudent to note that k-ary trees are not found in real-world datasets (at least in those studied here);

however, they are useful for creating datasets with consistent depth, tree size, and fanout parameters. These

controlled settings make it easier to analyze the strengths and weaknesses of the subtree mining algorithms.

To aid in the goal, this generator created the Sfanout and Sfanout:depth datasets.

Varying fanout (Sfanout) Fanout was measured by generating 8 different k-ary datasets of depth two and

varying k = 2, 3, 5, 10, 15, 20, 25, 30 using the Securities dataset for labeling. Note that in the real-world

datasets, the number of unique labels tends to increase as tree depth increases with the leaves of the tree

having the highest number of unique labels. As a result, labels from depth three and four of the Securities

dataset were used to model the labelling of depth one and two of these generated datasets. The characteristics

are summarized in Table 3.3.

Varying fanout and depth (Sfanout:depth) To measure the impact of fanout and depth, 12 k-ary datasets were

generated that varied in depth from 2, . . . , 4 with k = 2, . . . , 5.

� Trace-based Generator: The trace-based generator builds synthetic datasets designed to closely mimic

real datasets by utilizing probability distributions for fanout, depth, and labels. The generator takes a fanout,

depth, transitional label distribution, and tree size as input. Once the overall tree depth is determined, the

total fanout for each level of the tree is calculated based on depth and tree size, while individual node fanouts

are determined by a conditional probability based on the node’s depth. This maintains the structure and size

of a real dataset, all while exploring the full spectrum of the parameter space by fixing certain parameters and

altering others. The trace-based generator created the Strees dataset.

Varying number of trees (Strees) To measure the impact of the number of trees, the DBLP labeling, fanout

and depth distributions were applied and trees of depth 4, fanout 10, and size of 20 were created. Four

datasets were generated with 8,000, 16,000, 32,000 and 64,000 trees.

35

Table 3.3: Characteristics of synthetic datasets.

Vary fanout
(Sfanout)

Vary fanout
Vary depth
(Sfanout:depth)

Vary labels
(Slabels)

Vary # of trees
(Strees)

Depth 2 d = 2, . . . , 4
avg=4
max=5 4

Fanout k=2,3,5,10,
15,20,25,30 k = 2, . . . , 5

avg=10
max=28 10

Tree Size 3− 31 3− 781
avg=22
max=58 20

Label Securities DBLP DBLP DBLP
Generator k-ary k-ary label trace
Trees 8K 8K 8K 8,16,32,64K
Description Eight

datasets; each
with fanout k

Twelve
datasets; each
with depth d
and fanout k
combination.

Seven datasets;
each with a no.
of
distinct labels —
100,1K,2K,3K,4K,5K,10K.

Four datasets;
each with a
different no.
of trees.

� Label Generator: The label generator artificially reduces the number of distinct labels in a dataset to a

user-specified level. Such a task is challenging, as one must artificially change the number of distinct labels

in a dataset but still maintain the relative frequencies of the labels as well as their relative positions in the

tree. My approach takes a real dataset of trees D, and a desired number of labels m, and outputs n trees with

m labels and a label distribution of D. The generator first reads enough trees from D to build a transitional

probabilistic label model P with m labels, and then relabels n trees from D using P . Details are shown in

Algorithm 1. The label generator created the Slabels dataset.

Varying number of unique labels (Slabels) In order to measure the impact of label cardinality on the

algorithms, the DBLP dataset as the basis for the artificially created datasets. We then generated datasets that

contained 100, 1,000, 2,000, 3,000, 5,000, and 10,000 labels.

3.7 Evaluation

Now it is time to focus on the runtime performance of the conventional and closed subtree mining

algorithms as tested on the real and synthetic datasets.

3.7.1 Output Verification

Although the primary goal of this study is to compare the runtime performance of subtree mining

algorithms, to make fair comparison, it is necessary to ensure that these algorithms provide similar results.

36

Algorithm 1 Pseudo code for the label generator (§3.6.2)
Require: D: dataset of trees. n: desired number of trees. m: desired number of unique labels. L: total label set for D.
Lt: label set of tree t.

Ensure: A tree dataset Dn of N trees, containing m labels, and having the label distribution of D. Note: |D| > |n|,
|m| < |L|

1: Lm = ∅;
2:
3: Dn = ∅;
4:
5: i = 0;
6:
7: while |Lm| < m do
8: t = D[i];
9:

10: Lm = Lm ∪ Lt;
11:
12: calculate transitional probability model P ;
13:
14: i+ +;
15:
16: end while
17:
18: j = 0;
19:
20: i = 0;
21:
22: while j < n do
23: t = D[i];
24:
25: for l in preorder traversal of t do
26: if l not in Lm then
27: l = P (parent(l));
28:
29: end if
30:
31: end for
32:
33: Dn = Dn ∪ ti;
34:
35: j + +;
36:
37: i+ +;
38:
39: end while
40:

37

Across all the real datasets, the outputs of FREQT and CMTREEMINER were contrasted against that of

PREFIXISPAN and PCITMINER in terms of size and count statistics of (closed) frequent subtrees. While both

Asai et al. (2002) and Chi et al. (2004) have theoretically proved the correctness of their algorithms, there are

small discrepancies in the outputs of FREQT and PREFIXISPAN over certain datasets. The discrepancies are

within 100 subtrees and diminish as the support threshold increases. For example, at threshold 0.01, FREQT

generates 2,550 subtrees on the CSLOGS dataset while PREFIXISPAN generates 2,531; on the Securities

dataset FREQT generates 247,382 subtrees while PREFIXISPAN generates 247,380. Output was not affected

on the Wikipedia or DBLP datasets. Upon closer inspection, the difference can be attributed to their different

definitions of frequency (see Section 3.3.2) which affects subtrees of size three or less. Since the results were

so close, they did not impact the performance described in the following section.

3.7.2 Conventional Subtree Mining Algorithms

FREQT’s runtime is 1.5 to 2.0 times higher than PREFIXISPAN over the real datasets; however, neither

algorithm shows any runtime complexity advantage over the other. FREQT and PREFIXISPAN both generate

approximately the same number of subtree candidates to be checked for frequency; however, FREQT iterates

1.5 to 1.8 times more over the dataset than PREFIXISPAN primarily due to how infrequent trees are pruned.

That is, FREQT builds all possible subtrees of a particular size k in a single pass through the dataset, and

then prunes all infrequent trees in a secondary pass. By contrast, PREFIXISPAN grows a single rooted subtree

at a time, and prunes the infrequent nodes as it grows.

FREQT and PREFIXISPAN are only able to output results (within 24 hours) for the two smallest datasets

DBLP (Figure 3.8a) and Securities while they fail to finish for any threshold on the three largest datasets—

Weather (Figure 3.9b), Uniprot, and Webtraffic. Note as well that FREQT fails to complete at the lowest

threshold of any dataset. Due to the exponential growth in the total length of occurrence lists, it routinely

exhausts memory. This occurs because FREQT simultaneously constructs all subtree candidates of a given k

along with their occurrence lists and stores everything in memory. Initially, as k grows, there is typically an

exponential increase in the number of subtrees generated of size k along with a similar exponential growth in

the total length of all occurrence lists.

PREFIXISPAN utilizes one to two orders of magnitude less memory than FREQT due to its recursive

nature. The algorithm first finds all labels of frequent nodes in the dataset, denoted by l1, . . . , li, . . . and

constructs occurrence lists accordingly; at each iteration, an arbitrary frequent label li is picked and only

38

subtrees with root label as li using the occurrences of li are considered. In this way, PREFIXISPAN only

needs to load subtrees of size k and root label li, thereby making it more memory efficient at lower thresholds

and larger tree datasets (see for example Figure 3.8a). In the larger tree datasets, PREFIXISPAN does not

finish because of the exponential growth in the number of subtrees. For instance, for the Weather dataset at a

threshold of 0.05, PREFIXISPAN checks over 700 million growth elements and finds 350 million frequent

subtrees of size 10 to 30 at cutoff time, while for the CSLOGS dataset, PREFIXISPAN mines over 109

subtrees of size 50 or less before the process is terminated. Neither algorithm finishes mining the Uniprot,

Weather, and Webtraffic datasets because they are simply too large; however, the algorithms do finish at the

highest two thresholds for the Wikipedia and CSLOGS datasets (see Figures 3.8b and 3.9a). Shortly, we

will explore how the use of a closed filter approach can address this issue.

The duplicate detection feature of FREQT only affects its performance in the DBLP dataset (Figure 3.8a)

because this dataset is the only one that has duplicate labels (with the same parent node) that are frequent

across all thresholds. There are two labels in the DBLP dataset that are duplicated multiple times (some as

many as 11 times in a tree) across a thousand trees. Other datasets have duplicate labels across multiple trees

as well. For example, Wikipedia and CSLOGS, but these labels are only considered frequent at the two

lowest thresholds where FREQT runs out of memory.

A

B

D D

C

F G

Figure 3.7: A tree with duplicate labels. The subtree A-B-D, will be mined twice in this tree without duplicate
detection.

To see how duplicate labels can be a problem, take the example in Figure 3.7. This tree contains a subtree

A-B-D, which has two occurrences. As mentioned above, during the mining process, subtree A-B-D will

be grown along its rightmost path by a single node. In this case, two new subtrees will be formed, one with

another node D attached to node B and another with node C attached to node A (call this subtree s′). Subtree

s′ will actually be mined twice in the tree, once for each occurrence of subtree A-B-D, while conceptually it

only needs to be mined once. The number of extra iterations over the tree is determined by the number of

duplicate labels in the tree and the number of possible rightmost expansions of current subtree. The number

of possible growth elements increases exponentially with tree size.

39

10−4 10−3 10−2 10−1

Frequency Threshold

10−1

100

101

102

103

104

R
un

tim
e

(s
ec

on
ds

)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(a) DBLP dataset.

10−3 10−2 10−1

Frequency Threshold

10−2

10−1

100

101

102

R
un

tim
e

(s
ec

on
ds

)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(b) CSLOGS dataset.

Figure 3.8: Graphs for real datasets.

40

10−3 10−2 10−1

Frequency Threshold

100

101

102

103

R
un

tim
e

(s
ec

on
ds

)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(a) Wikipedia dataset.

10−4 10−3 10−2 10−1

Frequency Threshold

101

102

103

R
un

tim
e

(s
ec

on
ds

)

CMT PCIT

(b) Weather dataset.

Figure 3.9: Graphs for real datasets continued.

41

0 5 10 15 20 25 30

Fanout

10−2

10−1

100

101

102

103

104

105

R
un

tim
e

(s
ec

s)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(a) Sfanout (threshold 0.001).

0 5 10 15 20 25 30

Fanout

10−2

10−1

100

101

102

103

104

105

R
un

tim
e

(s
ec

s)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(b) Sfanout (threshold 0.05).

Figure 3.10: Graphs for synthetic datasets.

42

0 5 10 15 20 25

Tree Size (Number of Nodes)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
um

be
rS

ub
tre

es
C

he
ck

ed ×107

100
1000
10000
2000

3000
4000
5000

Figure 3.11: Number of subtrees checked per tree size for PREFIXISPAN on Slabels (threshold 0.001) (y-axis
x107).

On varying fanout – Sfanout As the fanout increases there is an exponential increase in the runtime of

algorithms (Figure 3.10a). FREQT outperforms PREFIXISPAN when the size of generated subtrees is less

than 10, while PREFIXISPAN performs better as the size of subtrees grows beyond 10. As the threshold

increases, the size of subtrees in the larger fanout datasets begin to shrink, and the runtime of FREQT and

PREFIXISPAN begins to converge (see Figure 3.10b). The performance improvement of PREFIXISPAN over

FREQT is attributed to memory usage as both algorithms have similar iteration and subtree checking metrics.

Indeed, at threshold 0.001 and fanout 25, FREQT accesses memory cache 10 times more than PREFIXISPAN

and 78% of all cache accesses are misses compared to only 1% for PREFIXISPAN. For smaller subtrees,

FREQT outperforms PREFIXISPAN because of its iterative nature.

Increasing the threshold does not significantly reduce the runtime as was seen in the real world datasets

(compare Figures 3.10a and 3.10b). For example, PREFIXISPAN’s runtime decreases from 4,400 seconds to

3,300 seconds as the threshold increases from 0.001 to 0.01. Digging deeper showed that duplicate labels

were again an issue in this dataset, as some nodes were being repeated as many as 11 times in a tree. Once

FREQT’s duplicate detection feature was activated, it was able to finish at higher fanout, and complete 100

times faster than PREFIXISPAN.

On varying fanout and depth – Sfanout:depth PREFIXISPAN and FREQT runtime performances are remark-

ably similar. As with the varying fanout case, FREQT has a slight performance advantage for datasets where

43

0 2000 4000 6000 8000 10000

Number of Distinct Labels

103

104

105

R
un

tim
e

(s
ec

s)

CMT PCIT

(a) Slabels (threshold 0.0001).

0 2000 4000 6000 8000 10000

Number of Distinct Labels

101

102

103

104

R
un

tim
e

(s
ec

s)

CMT
FREQT
FREQTDD

PCIT
PrefixISpan

(b) Slabels (threshold 0.001).

Figure 3.12: Graphs for synthetic datasets.

44

the subtrees generated are of size less than 10, while PREFIXISPAN has a performance advantage for larger

subtrees. FREQT with duplicate detection provides little, if any, advantage over the base algorithm, when

varying fanout and depth because there are few duplicate labels.

On varying the number of labels – Slabels The analysis shows that datasets with trees with few labels

(i.e., a shorter tail on the label distribution) tend to have worse runtimes than datasets with larger label sets

(Figure 3.12b). This happens because with a short tail on the label distribution, more labels are considered

frequent at lower thresholds. This has three negative effects on the algorithms. Since there are more frequent

nodes, subtrees are bigger and second, there are more of them (Figure 3.11). Finally, as the number of labels

is reduced, there are more duplicate labels in the dataset. FREQT with duplicate detection enabled (cf.

Figure 3.12b), performs better than PREFIXISPAN in almost every scenario because it iterates over the dataset

3 to 10 times less than PREFIXISPAN depending on the threshold. Furthermore, as the threshold increases,

FREQT runtime advantage over PREFIXISPAN increases by more than a factor of 3.

At the lowest threshold, neither algorithm completes because the maximal subtree size grew to 55. PRE-

FIXISPAN generates over 1010 subtrees before termination. At threshold 0.001, PREFIXISPAN outperforms

FREQT because subtree sizes are larger than 15, but as the threshold continues to increase, FREQT begins

to outperform PREFIXISPAN because subtree sizes reduce to 10.

On varying number of trees – Strees Doubling the number of trees—while keeping all other parameters

constant—doubles runtime performance, on average. This is not particularly surprising, and so for brevity

the results are omitted.

DISCUSSION OF FINDINGS/LESSONS LEARNED

The pattern growth technique was originally developed as an alternative solution to the much slower

candidate generation approaches for the sequential pattern mining domain (Pei et al., 2001). Pattern growth

reduced the expensive multi-pass scanning required by previous algorithms by partitioning the data into

smaller manageable subsets. That said, the analysis reveals that the advantages in applying pattern

growth in the subtree mining domain are not as significant as they may appear on first blush:

• While works (e.g., (Zou et al., 2006b; Kutty et al., 2007; Wang et al., 2004; Deepak et al., 2013))

tout pattern growth as superior to candidate generation, independent analysis found little advantage in

terms of performance. No major differences were found in how pattern growth techniques generated

45

subtrees nor how they iterate over the trees in the induced case. The projection database (as described

by Zou et al. (2006b)) and an occurrence list (as described by Asai et al. (2002)) are similar even

though they use different terminology and different implementations. Both are indexes that allow

the algorithms to quickly find subtree instances in the dataset without having to scan and reduce the

number of trees analyzed as a subtree is grown. Furthermore, both approaches use these indexes to

continuously grow their subtrees by using nodes that occur in the dataset along the rightmost path of

the subtree occurrence.

• Regarding runtime performance, neither algorithm completes in the presence of subtrees larger than

approximately 30 nodes. FREQT is a memory-bound algorithm, and performs best when generating

subtrees of less than 10 nodes. For larger subtrees, PREFIXISPAN is the better option because it is more

memory efficient. Maximal subtree size, label distribution, number of trees, and thresholds are the

biggest drivers of performance.

• One of the big concepts noted in subtree mining studies is that the number of subtrees explodes with

tree size (Chi et al., 2004). Although this is correct, it disregards the impact that labeling and threshold

play on the number of subtrees. Label distribution is all too often the forgotten variable in many

studies when it is likely the most important one. One can get different results by simply changing the

label of the dataset. In general, I find that decreasing the number of unique labels actually degrades

performance because it increases subtree size and the number of subtree occurrences in the dataset.

Furthermore, less labels can result in duplicate nodes which adversely affects the runtime performance

of all four algorithms. In response, some duplicate detection mechanisms should be used, or better yet,

duplicate nodes should be merged to reduce tree sizes in the dataset.

3.7.3 Closed Subtree Mining Algorithms

The idea behind a closed subtree mining algorithm is to mine a subset of all subtrees in order to improve

mining performance. In general introducing “closedness” into subtree mining indeed improves runtime

performance; however, in certain cases, the overhead of closedness filter can outweigh its benefits.

The main difference between conventional and closed algorithms is that a closed algorithm incorporates

a pruning mechanism that eliminates a subtree s if there is a node g that is not along the rightmost path and is

occurrence matched with s. Subtree s can be pruned because there is some subtree s′ that will be grown in

46

the candidate generation phase that will contain all the nodes of s and include g along the rightmost path (see

Section 3.3.2). The biggest drawback of the approach is that one must keep track of the occurrences of all

nodes in s throughout the dataset, rather than only the rightmost node of s as in conventional approaches,

meaning an increased memory footprint.

The original PCITMINER algorithm only utilizes a backward scanning mechanism for pruning. It is

similar to the mechanism described above, but it only searches for occurrence matched nodes that are parents

of s rather than all g not on rightmost path. Using backward scanning alone is an inadequate mechanism

for pruning subtrees in real-world datasets compared to the full pruning approach using the occurrence

matched blanket. For example, even with the backscan optimization PCITMINER was unable to return

results on the Weather dataset using a threshold setting of 0.05. For a more apples-to-apples comparison

with CMTREEMINER, both the backward scan, and the occurrence matched blanket optimizations are used.

Figures 3.8 and 3.9 show that both PCITMINER and CMTREEMINER finish for almost all datasets

except for the two largest (in terms of tree size): Uniprot and Webtraffic. For relatively small datasets

such as Securities and DBLP, the closed mining algorithms outperform the conventional techniques across

all thresholds (Figure 3.8a). The distinct elbow occurs because at the lowest threshold there is a long tail

of labels that appear only once, which are all considered frequent. The dramatic increase in labels causes

an exponential increase in subtrees generated, requiring more iterations over the data. The pruner (i.e.,

occurrence match blanket) employed by the closed algorithms reduces the number of candidates generated by

three orders of magnitude at the lowest threshold, thereby smoothing the run time curve.

Figure 3.13 shows the number of pruned and checked subtrees generated per tree size (i.e., number of

nodes) by the two closed-tree algorithms as compared to PREFIXISPAN. The close subtree algorithms mine

approximate 104 less subtrees than PREFIXISPAN, primarily because for every subtree checked a subtree is

pruned. More importantly, the majority of pruning occurs on subtrees of less than three nodes, stopping these

trees from unnecessarily growing larger, and generating an exponential number of subtrees as they grow.

Notice that the number of pruned and checked subtrees dips at a subtree size of three (Figure 3.13). Trees

in DBLP are of depth four, and the first two levels have few labels, while the bottom two levels have many

labels that appear relatively few times. Any subtree rooted by a node in the second level is automatically

occurrence matched with the root label while any node that appears once is occurrence matched by its parent.

As a result, only subtrees rooted with the root label grow beyond size two. As the threshold increases, the

47

pruner’s impact diminishes (Figure 3.8a). At threshold 0.0001, PREFIXISPAN produces 103 times more

subtrees than PCITMINER, but only 15 times more at 0.05.

100 101 102

Tree Size (number of Nodes)

100
101
102
103
104
105
106
107
108
109

N
um

be
rS

ub
tre

es

PrefixISpan checked
PCIT checked
PCIT pruned

CMT checked
CMT pruned

Figure 3.13: The number of pruned and checked subtrees generated per size by CMTREEMINER and
PCITMINER on the DBLP dataset (threshold = 0.0001) compared to the number of subtrees generated by
PREFIXISPAN.

For datasets with larger tree sizes, the subtree space increases exponentially and only the closed subtree

mining algorithms are able to complete the task at hand. For example, in the Weather dataset and the

highest threshold, PREFIXISPAN is hindered mining hundreds of millions of subtrees (of size 10–30) (see

Figure 3.14), while CMTREEMINER checks only 64,000 subtrees, pruning 51,000 and generating only 3,100

subtrees—of sizes 1 to 50. At the lowest threshold, CMTREEMINER checks 16 million subtrees, prunes 14

million, and flags 154,000 as closed.

The results on the CSLOGS dataset are completely different from those on the Weather dataset. The

reason for this difference can again be attributed to the presence of duplicate labels. To shed light on this

issue, a separate experiment was conducted where the nodes in the CSLOGS dataset were relabeled by

pre-pending a node’s pre-order position in the tree to the label, thereby ensuring there are no duplicate labels.

At the lowest threshold, both algorithms now mine 18,000 closed subtrees in just under six seconds.

The Uniprot and Webtraffic datasets are so large that none of the closed subtree mining algorithms

finish for any of the support thresholds6 tested because they all exhaust memory. Recall that PREFIXISPAN,

CMTREEMINER and PCITMINER recursively grow a subtree s to a subtree s′ by adding a single node. The

state information (including occurrence lists) for s is maintained in memory while s′ is mined. As a subtree

6 The Webtraffic dataset completes for threshold 0.05 because there are only 14 frequent nodes.

48

0 10 20 30 40 50 60 70 80 90

Tree Size (number of Nodes)

100
101
102
103
104
105
106
107
108
109

N
um

be
rS

ub
tre

es

CMT 0.0001
CMT 0.001
CMT 0.01

CMT 0.05
PrefixISpan 0.05

Figure 3.14: Number of trees checked by size for PREFIXISPAN at threshold 0.05 and for CMTREEMINER

across all thresholds on Weather dataset. Note that PREFIXISPAN did not finish.

is recursively grown, this memory usage accumulates, and the algorithm eventually utilizes all of its memory.

Note that the occurrence list for s′ can actually be larger than the occurrence list for s in datasets where there

are duplicate node labels in the same tree—as is the case in both the Webtraffic and Uniprot datasets.

Evaluations also show that memory exhaustion occurs much faster at higher thresholds primarily due to

the presence of a core set of frequent nodes. For example, at the highest threshold in the Uniprot dataset

there are 146 frequent nodes, 20 of which appear in 7000 or more of the trees. Furthermore, there are three

node labels that appear over 100,000 times and 22 that appear over 10,000 times. The massive duplication of

these nodes causes s′ to be multiplicatively larger than s.

Contrasting the performance of CMTREEMINER and PCITMINER, note that both algorithms have

similar candidate generation phases. The major difference lies at the dataset iteration phase. CMTREEMINER

is a basic candidate generation algorithm and given a subtree s, CMTREEMINER will grow s by a single

node n at a time along the rightmost path, and create the occurrence list for the new subtree s′ and then begin

recursively mining s′. The advantage of this approach is that it is extremely memory efficient for most tree

datasets because only one subtree is grown at a time. Indeed, memory remains constant across all thresholds

for DBLP, Securities, and Weather.

By contrast, PCITMINER grows s by all its possible growth elements (nodes) along the rightmost path,

creating build projections (akin to occurrence lists) for each. The technique maintains a list of projections

and selects a single growth element to form s′ and then recursively mines that subtree before moving on to

the other growth elements. Maintaining all the projections pushes PCITMINER’s memory usage upwards

49

with lower thresholds, but allows the algorithm to iterate over the dataset less because it only has to mine all

growth elements of s once.

On varying fanout – Sfanout As with the conventional mining algorithms, increasing the fanout causes a

sharp increase in runtime (Figures 3.10a and 3.10b). The closed algorithms only outperform the conventional

algorithms at the lowest threshold. For all other thresholds, the conventional algorithms have a runtime

advantage. At the lowest threshold, the closed algorithms generate 103 times less subtrees at fanout 20 than

the conventional algorithms, but only 10 times less at threshold 0.001. The overhead associated with the

pruning mechanism negates any benefit it provides due primarily to the label distribution of the fanout datasets.

The leaf labels are drawn from a pool of 5,600 creating a situation where sibling nodes are less likely to be

occurrence matched, and thereby reducing pruning opportunities. As in the real datasets, CMTREEMINER

outperforms PCITMINER under all thresholds.

On varying fanout and depth – Sfanout:depth The closed algorithms are best suited for the lowest threshold,

and the largest fanout/depth combinations where they are able to reduce the number of subtrees checked by 2

∼ 3 orders of magnitude over conventional approaches. As the threshold increased, runtime converges across

all algorithms.

On varying labels – Slabels In contrast to the conventional mining algorithms, the closed algorithms perform

better when there were less labels at the lowest threshold (Figure 3.12a), because there are more opportunities

for pruning through occurrence matching. As the threshold increases (Figure 3.12b) a different phenomenon

drives performance: with more labels, subtree sizes shrink because less nodes are considered frequent, and

the pruning effect of the closed algorithms is minimized. Notice as well that as the threshold increases,

FREQT with duplicate detection begins to outperform all other algorithms.

DISCUSSION OF FINDINGS/LESSONS LEARNED

The findings are consistent with common wisdom (Chi et al., 2004; Kutty et al., 2007) on the relative

improvement in runtime performance of closed subtree mining over conventional subtree mining. That said,

a better understanding of when conventional approaches are more suitable has been lacking. This

independent analysis shows that:

• Closed subtree algorithms have the most impact at low thresholds, where maximal subtree sizes are

larger. As the threshold increases, the overhead of the closed checking begins to outweigh its benefits

50

and conventional approaches become more appealing. Based on analysis, label distribution is the most

important factor driving when this crossover occurs.

• As with conventional approaches, closed algorithms are not immune to subtree size. Closed algorithms

are able to comfortably mine subtrees of approximately size 100, but succumb to the same issues as

conventional approaches as subtrees grow beyond much more. In experiments, for subtrees of size

1000, even the most memory efficient algorithms exhaust memory. One could help to avert issues

with large subtrees by merging duplicate nodes, partitioning trees based on some logical cut point, or

removing common nodes or those deemed irrelevant to the analysis at hand.

• Some of the findings in Kutty et al. (2007) have lead to widely held misconceptions. In their study,

Kutty et al. (2007) did not compare CMTREEMINER and PCITMINER implying that since pattern

growth techniques are faster than candidate generation algorithms, a comparison was unnecessary.

However, findings suggest that the underlying mining algorithm do not have as much impact on closed

mining performance as the pruning mechanism. In experiments, the backward scanning feature (used

in PCITMINER) does not provide comparable performance to CMTREEMINER’s occurrence matched

blanket for large subtrees. Furthermore, Kutty et al. (2007) suggests that PCITMINER performs better

than CMTREEMINER for datasets with high fanout; however, there is no evidence that this is the case.

3.8 Tree Edit Distance: An Alternative to Subtree Mining

As seen in the evaluation, subtree mining techniques are largely ineffective for tree datasets that have

large variations in both labelling, and tree size. Specifically, analysis on the Webtraffic dataset indicates that

subtree mining is not a good fit for the task of analyzing the structure of HTTP trees.

One of the main drawbacks of subtree mining is that it is a pre-processing step that must be done on

every tree in the dataset, which is unnecessary for the task in Chapter 4. An alternative approach that enables

one to encode structure into a tree analysis is to use tree edit distance. Tree edit distance is the minimum

cost-sequence of node adds, deletes and renames to change one tree into another (Pawlik and Augsten, 2011).

The lower the cost, the closer the two trees are in terms of structure.

Unlike subtree mining, tree edit distance does not require processing of every tree in the dataset; however,

the current state-of-the-art tree edit distance algorithm called RTED (Pawlik and Augsten, 2011) has at best

a O(n2) complexity with a O(n3) complexity in the worst case. The algorithm works using a dynamic

51

decomposition strategy that recursively decomposes the input trees into subforests by removing either the

left- or rightmost nodes at each recursive step based on some optimal choice (Pawlik and Augsten, 2011).

Due to the algorithm complexity, approaches that utilize tree edit distance must minimize the number of

distance calculations performed on a tree dataset.

Tree edit distance is often applied to the top k subtree similarity search problem, which finds the k best

matches of a small query tree within a large document tree using tree edit distance as a similarity measure

between subtrees (Augsten et al., 2011). Augsten et al. (2011) reduces the complexity of the subtree search

by estimating the upper bound on a subtree size required to perform the tree edit distance. This reduces the

number of tree edit distance calculations on a dataset, but the query time still increases linearly with the

number of trees in the dataset. (Cohen, 2013) combined the general structural commonalities of trees as well

as the uncommon elements to reduce the number of trees checked in a similarity search. The drawback of

that work is that the indices are 10x the size of the input data and only works with single-labeled nodes. In

Chapter 4, I propose a new approach to detecting exploit kits in network traffic, by modelling the problem as

a subtree similarity search problem. The approach utilizes indices in order to reduce subtree checks.

3.9 Final Thoughts

This chapter presented a systematic study over the runtime performance of four representative subtree

mining algorithms: pattern growth (PREFIXISPAN, PCITMINER) and candidate generation (FREQT, CM-

TREEMINER). In particular, PCITMINER and CMTREEMINER focus on mining closed subtrees, which

reduce the runtime and number of subtrees generated. These algorithms were evaluated on seven real-world

datasets and four synthetic datasets. Furthermore, limitations in an existing synthetic tree generator were

identified and, as a result, three more generators were developed that produce datasets that vary attributes

such as fanout, depth, label cardinality and size of dataset.

Key Take-Aways:

1. This chapter highlights the need for the community to be more open about datasets. Zaki (2005)’s

synthetic datasets have become the defacto benchmark for tree mining experiments, yet, these datasets

are treated as blackboxes by the research community. I hope that by showing the differences between

the parameters used to generate the trees, and the characteristics of the output, researchers will be more

conscience about describing the datasets they use.

52

2. In terms of the subtree mining algorithms analyzed and contrary to widely held beliefs (Kutty et al.,

2007; Zou et al., 2006b), there are no significant performance advantages of pattern growth over

generate and test techniques. Further, while introducing “closedness” into subtree mining improves

performance over a majority of real datasets under low support thresholds, the overhead associated with

closedness checking easily dwarfs this performance gain as the support threshold modestly increases.

Finally, the most impactful factors for subtree mining performance as label distribution, maximal

subtree size, and number of trees.

3. In this chapter, we studied two kinds of tree datasets. First, we studied trees that are structurally similar,

with low label cardinality near the root of the tree. These datasets are well suited for subtree mining

algorithms as long as subtree sizes remain small — 10’s of nodes for contemporary mining, and 100’s

of nodes for closed mining. Such approaches would work well on large datasets in a cloud using a

MapReduce style architecture; however, given that over 90% of the labels in these datasets only appear

in one depth/degree combination, the structural information gained from subtree mining may not be

that useful for many applications, and less costly approaches that disregard structure (such as frequent

itemset mining (Pei et al., 2001)) may be more suitable.

4. The other kind of dataset had large variations in both labeling and tree size, making subtree mining

largely ineffective. For these datasets, alternative approaches that take into consideration structural

variability may be better. The subtree mining algorithms performed poorly on the Webtraffic dataset

indicating that such algorithms cannot be used to model structure in HTTP traffic. Chapter 4 investigates

how modelling the structure of HTTP traffic can be used to significantly reduce the misclassification

rates of exploit kit instances. Given the deficiencies in subtree mining algorithms, structure must be

modelled using a different approach. I investigate an approach based on the subtree similarity search

problem providing a new technique for the problem where the nodes of the tree are not single labels,

but where each node is represented by a large number of features. Such an approach removes the

preprocessing step of subtree mining allowing it to scale to large streaming datasets.

53

CHAPTER 4: DETECTING EXPLOIT KIT TRAFFIC USING SUBTREE SIMILARITY
SEARCH

Network-based intrusion detectors have been plagued by several operational challenges since their

inception. Two of these challenges are 1.) dealing with the sheer number of errors (misclassifications) in

network traffic, and 2.) reducing the semantic gap between a reported infection, what it means, and how it

occurred (Sommer and Paxson, 2010).

This chapter proposes a novel detection technique to help deal with these two operational challenges

for the specific problem of detecting exploit kit instances in network traffic. The chapter investigates how to

leverage the structural patterns inherent in HTTP traffic to classify specific exploit kit instances. The key

insight is that to infect a client browser, a web-based exploit kit must lead the client browser to visit its landing

page (possibly through redirection across multiple compromised/malicious servers), download an exploit

file and download a malicious payload, necessitating multiple requests to malicious servers. This creates

an inherent exploitation process which is captured in a tree-like form, and uses the encoded information for

classification purposes.

To see how this can help, consider the example where a user visits a website, and that action in turn

sets off a chain of web requests that loads various web resources, including the main page, images, and

advertisements. The overall structure of these web requests forms a tree, where the nodes of the tree

represent the web resources, and the edges between two nodes represent the causal relationships between

these resources. For instance, loading an HTML page which contains a set of images might require one

request for the page (the root node) and a separate set of requests (the children) for the images. When a

resource on a website loads an exploit kit, the web requests associated with that kit form a subtree of the

main tree representing the entire page load.

Identifying the malicious subtree within a sea of network traffic can be modeled as a subtree similarity

problem. The approach can quickly identify the presence of similar subtrees given only a handful of examples

generated by an exploit kit. In order to do so, an index of malicious tree samples is built using information

retrieval techniques. The malware index is essentially a search engine seeded with a small set of known

54

malicious trees. A device monitoring network traffic can then query the index with subtrees built from the

observed client traffic. The traffic is flagged as suspicious if a similar subtree can be found in the index.

As shown in Chapter 3, subtree mining is not appropriate for this problem given the variability in size and

shape of HTTP trees; therefore, I propose a new solution to the subtree similarity problem based on tree edit

distance.

This chapter presents several contributions including a network-centric approach based on subtree

similarity searching for detecting HTTP traffic related to malicious exploit kits on enterprise networks. The

work shows that using the structural patterns of HTTP traffic can significantly reduce false positives with

comparable false negative rates to current approaches. Furthermore, a novel solution to the subtree similarity

problem, by modelling each node in the subtree as a point in a potentially high dimensional feature space, is

presented. Finally, the technique is evaluated on a large network deployment.

4.1 Literature Review

Over the past decade, the web has become a dominant communication channel, and its popularity has

fueled the rise of malicious websites (Xu et al., 2013a) and malvertising as a vector for infecting vulnerable

hosts. Provos et al. (2007) examined the ways in which web page components could be used to exploit

web browsers and infect clients through drive-by downloads. That study was later extended (Provos et al.,

2008) to include an understanding of large-scale infrastructures of malware delivery networks, and provided

overall statistics on the impact of these networks at a macro level. Their analysis found that ad syndication

significantly contributed to drive-by downloads. Similarly, Zarras et al. (2014) performed a large scale study

of the prevalence of malvertising in ad networks. They showed that certain ad networks are more prone to

serving malware than others. Grier et al. (2012) studied the emergence of the exploit-as-a-service model for

drive-by browser compromise and found that many of the most prominent families of malware are propagated

through drive-by downloads from a handful of exploit kit flavors.

Detecting malicious landing pages has been a hot topic of research. The most popular approach involves

crawling the web for malicious content using known malicious websites as a seed (Invernizzi et al., 2012; Li

et al., 2012, 2013; Eshete and Venkatakrishnan, 2014). The crawled websites are verified using statistical

analysis techniques (Li et al., 2012) or by deploying honeyclients in virtual machines to monitor OS and

browser changes (Provos et al., 2008). Other approaches include the use of a PageRank algorithm to rank the

55

maliciousness of crawled sites (Li et al., 2013) and the use of mutual information to detect similarities among

content-based features derived from malicious websites (Wang et al., 2013). Eshete and Venkatakrishnan

(2014) identified content and structural features using samples of 38 exploit kits to build a set of classifiers

that can analyze URLs by visiting them through a honey client. These approaches are complimentary to ours,

but require significant resources to comb the Internet at scale.

Other approaches involve analyzing the source code of exploit kits to understand their behavior. For

example, De Maio et al. (2014) studied 50 kits to understand the conditions which triggered redirections to

certain exploits. Such information can be leveraged for drive-by download detection. Stock et al. (2015)

clustered exploit kit samples to build host-based signatures for anti-virus engines and web browsers. Closer

to our work are approaches that try to detect malicious websites using HTTP traffic. Cova et al. (2010),

for example, designed a system to instrument JavaScript run-time environments to detect malicious code

execution while Rieck et al. (2010) described an online approach that extracts all code snippets from web

pages and loads them into a JavaScript sandbox for inspection. Unfortunately, these techniques do not scale

well, and require precise client environment conditions to be most effective.

Other approaches focus on using statistical machine learning techniques to detect malicious pages by

training a classifier with malicious samples and analyzing traffic in a network environment (Rieck et al., 2010;

Canali et al., 2011; Blum et al., 2010; Ma et al., 2009, 2011; Mekky et al., 2014; Nelms et al., 2015). More

comprehensive techniques focus on extracting javascript elements that are heavily obfuscated or iframes

that link to known malicious sites (Provos et al., 2007; Cova et al., 2010). Cova et al. (2010) and Mekky

et al. (2014) note that malicious websites often require a number of redirections, and build a set of features

around that fact. Canali et al. (2011) describes a static prefilter based on HTML, javascript, URL and host

features while Ma et al. (2009, 2011) use mainly URL characteristics to identify malicious sites. Some

of these approaches are used as pre-filter steps to eliminate likely benign websites from further dynamic

analysis (Provos et al., 2008, 2007; Canali et al., 2011). Unfortunately, these techniques take broad strokes in

terms of specifying suspicious activity, and as such, tend to have high false positive rates. They also require

large training sets that are often not available. By contrast, this chapter proposes a framework for detecting

flavors of exploit kits, and utilizing the interactions between HTTP flows to reduce false positives from a

small seed of examples.

Yegneswaran et al. (2005) describe a framework for building semantic signatures for client-side vulnera-

bilities packet traces collected from a honeypot. The work shares the similar observation that correlating

56

flows can help to reduce false positives; however, the work described in this chapter focuses on the specific

problem of detecting server-side exploit kits using the structure of HTTP traffic by modeling kits as trees,

and take advantage of structural similarity properties to reduce FPs. More recently, Stringhini et al. (2013)

proposed a learning approach to detect malicious redirection chains using a proprietary dataset. The technique

requires traffic from a large crowd of diverse users from different countries, using different browsers and

OSes to visit the same malicious websites in order to train a classifier. Unfortunately, as shown in the work,

the approach leads to high false positives and negatives with modest data labels and can only detect chains

whereby the last node is deemed malicious. By contrast, the work in this chapter does not model client usage

patterns and is not limited to the presence of redirection chains to identify exploit kits. The technique is

based on structural similarity; therefore, the last node in the structure does not need to be malicious. Finally,

the approach is designed to specifically reduce false positives and negatives in light of a small amount of

malicious training data.

Subtree Similarity Search Problem: Note that the subtree similarity-search problem on large datasets

remains an open research problem. Most proposals require scanning each tree in the dataset and then applying

tree edit distance techniques to prune the search space. Cohen (2013) combined the general structural

commonalities of trees as well as the uncommon elements to reduce the number of trees checked in a

similarity search. The drawback of that work is that the indices are 10x the size of the input data and only

works with single-labeled nodes. The work in this chapter is based on similar ideas to Cohen (2013) but

works on trees where the nodes themselves have a large number of features. To make the approach practical,

the work leverages the sparsity of the feature space in network traffic.

4.2 Approach

Today’s network-centric approaches for detecting HTTP-based malware use HTTP flows individually

when performing analytics, but doing so can lead to high false positive rates. This chapter focuses on the

interactions between flows to identify malicious cases in network traffic in order to reduce false positives

and identify exploit kits — hopefully before they have an opportunity to exploit a vulnerable client. The key

insight is that to infect a client, a web-based exploit kit will lead the client browser to download a malicious

57

payload by making multiple web requests to one or more malicious servers. Those multiple requests are used

to build a tree-like structure and model the problem as a subtree similarity search problem.

A high-level overview of the approach is shown in Figure 4.1. There are two main components: an

index of known exploit kits (Figure 4.1 (bottom)) and an online component that monitors HTTP traffic and

performs comparisons with the index to identify and label potentially malicious traffic (Figure 4.1 (top)).

Malware Index

Network Tap - HTTP Packets

Cluster Related HTTP
Flows by client IP

!

Reassemble and
Dissect HTTP

Packets

"

Build Relationship
Trees

#IP B

IP A

Malicious Seed
HTTP Traces

$

Extract and Weight
Features

% &

Node Matching

'

 Classify Subtree as
Malicious

≈

Searchable Index of Exploit Samples

Compare Structural
Similarities

(

Figure 4.1: High level overview of the search-based malware system.

Indexing stage: In step À, HTTP traffic samples, which represent client browser interactions with flavors of

exploit kits (e.g., Fiesta) are collected and converted into tree-like representations. Flow-level and structure

information are extracted from these trees (step Á) and then stored in a tree-based invertible index (step Â)

called a malware index as described in more detail in Section 4.2.2.

Classification stage: HTTP traffic is monitored at the edge of an enterprise network, and packets are

dissected and reassembled into bidirectional flows (see step Ê). The reassembled flows are grouped by client

IP addresses (step Ë) and assembled into tree-like structures (step Ì, § 4.2.1) called web session trees. The

nodes in the web session tree are then mapped to “similar” nodes of the trees in the malware index using

content features (step Í, § 4.2.3.1), and finally, the mapped nodes are structurally compared to the trees in the

index to classify subtrees as malicious (step Î, § 4.2.3.2). Given a web session tree and an index of malware

trees, the goal is to find all malicious subtrees in the tree that are similar to a tree in the index.

58

4.2.1 On Building Trees

In both components of the system (indexing and classification), HTTP traffic is grouped and converted

into tree-like structures called web session trees. A two-step process is used to build these session trees for

analysis. The first step in the process is to assemble HTTP packets into bidirectional TCP flows and then

group them based on their client IP addresses. Flows are ordered by time, and then associated by web session

as shown in Figure 4.2 using a technique similar to that used by Ihm and Pai (2011) and Provos et al. (2008).

A web session is defined as all HTTP web requests originating from a single root request over a rolling time

window of a tuneable parameter4tw (empirically set to five seconds in our implementation). For example, a

client surfing to Facebook creates a single root request for the Facebook main page, which would in turn

make further requests for images, videos, and JavaScript files. All related files form a client “web session”

and the relationships between these resources can form a tree-like structure as outlined below.

HTTP Flow Collection
Fields

SourceIP DestIP DestPortSourcePort URI Domain Referrer Redirector time

A E 806220 ad.html ads.com N/A malware.com t3

A D 806219 ad.php adclick.com example.com ads.com t2

A C 806218 / example.com N/A N/A t1

A D 806221 bad.js malware.com N/A N/A t4

A F 806222 banner.jpg ad2.com example.com N/A t5

Flow Reordering and Grouping
Domain

example.com

adclick.com

ads.com

malware.com

ad2.com

Pointed to By

N/A

example.com

adclick.com

ads.com

example.com

Figure 4.2: HTTP flows are reordered based on start time, and then grouped by IP and web session. This
figure shows a set of HTTP flows where a client visited a fictional website example.com that in turn
loaded ads from adclick.com and ad2.com. adclick.com redirects the browser to ads.com which
redirects to malware.com.

Each HTTP flow is compared with flow groups that have been active in the last 4tw window for the

associated client IP address. Flows are assigned to a particular group based on specific header and content-

based attributes that are checked in a priority order. The highest priority attributes are the HTTP Referer

and the Location fields. The Referer field identifies the URL of the webpage that linked the resource

requested. Valid Referer fields are used in approximately 80% of all HTTP requests (Ihm and Pai, 2011)

making them a useful attribute in grouping. The Location field is present during a 302 server redirect to

indicate where the client browser should query next.

59

After a time window expires, a web session tree is built from the associated flows. A node in the tree is

an HTTP flow representing some web resource (e.g., webpage, picture, executable, and so on) with all related

flow attributes including URL, IP, port, and HTTP header and payload information. An edge between nodes

represents the causal relationship between the nodes. Figure 4.3 shows the tree generated from Figure 4.2.

This tree building technique was chosen because the dataset lacked the full packet payloads required to

use more complex and exact approaches (Neasbitt et al., 2014). Even so, the tree building approach used has

been effectively applied in other studies (Ihm and Pai, 2011; Provos et al., 2008; Mekky et al., 2014) and

aptly demonstrates the utility of the similarity algorithm. Section 5.3 discusses how the algorithm can be

utilized to scalably build trees using more complex and time intensive techniques.

example.com

adclick.com

ads.com

malware.com

ad2.com (IMAGE)

(REFER)(REFER)

(HTML)

(SCRIPT)

(REDIRECT)

(REDIRECT)

(HTML)

(HTML)

Figure 4.3: The labeled tree generated from Figure 4.2.

4.2.2 On Building the Malware Index

The malware index is built using HTTP traces from samples of well-known exploit kits (e.g., Fiesta).

These samples are gathered by crawling malicious websites (Invernizzi et al., 2012; Li et al., 2012, 2013)

using a honeyclient. A honeyclient is a computer with a browser designed to detect changes in the browser

or operating system when visiting malicious sites. The first step in building the index is to compile a list of

URLs of known malicious exploit kits from websites such as threatglass.com, and urlquery.net.

Next, each page must be automatically accessed using the honeyclient and the corresponding HTTP traffic is

recorded. Each trace is transformed into a tree using the process in Section 4.2.1, and then content-based

(node-level) and structural features are extracted and indexed.

Content-based (Node-level) Indexing: An exploit kit tree is comprised of N nodes, where each node

represents a bidirectional HTTP request/response flow with packet header, HTTP header, and payload

60

threatglass.com
urlquery.net

http://www.maliciousdomain.com/12/blah/19FDE?id=ZWFzdXJlLg==&c=35;5;3

Domain Name Path

Query

Parameters

Figure 4.4: The components of a URL for feature extraction.

information available for extraction and storage in a document style inverted index. Each bidirectional flow

(or node in a tree) can be thought of as a document, and its features as the words of the document, which are

indexed. Each node is given a unique integer ID and three types of features are extracted: token features,

URL structural features, and content-based features.

Token features are mainly packet header and URL features. They are gathered from the URL by breaking it

down into its constituent parts: domain names, top level domain, path, query strings, query key/value pairs,

parameters, destination IP addresses, and destination subnets. All attributes are stored as bags of tokens. For

example, the token features for the URL shown in Figure 4.4 would be: www.maliciousdomain.com,

com, 12, blah, 19FDE, id=ZWFzdXJILg==, c=35, 5, and 3.

URL structural features abstract the components of the URL by categorizing them by their data types rather

than their actual data values (as in the token features). Six common data types are used in URLs: numeric,

hexadecimal, base64 encoding, alphanumeric, and words. These datatype encodings are used in conjunction

with the lengths or ranges of lengths of corresponding tokens to generate structural URL features. For

example, the URL structural features for the URL shown in Figure 4.4 12/blah/19FDE would be broken

into 3 features: path-num-2, path-word-4, path-hex-5.

Content-based features are extracted from the HTTP headers or payloads where possible. They include

binned content lengths, content types, and redirect response codes.

Structural Indexing: Each malware tree in the index is assigned a unique tree identifier, while each node

has a unique node identifier. The tree is stored as a string of node identifiers in a canonical form that encodes

the tree’s structure. The canonical string is built by visiting each node in the tree in a preorder traversal, and

appending node identifiers to the end of the string. Note that each indexed node contains the identifier for

its corresponding tree to allow for easy mapping from node to tree while each tree structure is labelled by

exploit kit type (e.g., FlashPack, Fiesta).

61

4.2.3 On Subtree Similarity Searches

With a malware index at hand, HTTP traffic is monitored at the edge of an enterprise network, and

converted into web session trees. The next task is to determine whether any of the trees contain a subtree that

is similar to a sample in the index. If so, the tree is flagged as malicious and labeled by its exploit flavor.

The subtree similarity search problem is approached using a two-step process: node level similarity

search and structural similarity search. First, it is determined whether any nodes in a web session tree T are

“similar” to any nodes in the malware index. If there are multiple nodes in T that are similar to a tree E in the

index, then the subtree S containing those nodes is extracted, and compared structurally with E using a tree

edit distance technique. Subtrees with sufficient node overlap and structural similarity with E are flagged as

malicious.

www.example.com

www.example.com/
intro.gif

http://adrycleaner.pw/aF0ee-d32-
b-2fN82-fa017_e92-.html

http://adrycleaner.pw/
22161/13899.htm

http://adrycleaner.pw/
22161/13899.jar

http://adrycleaner.pw/f/
13899/22161/5

Nuclear

Web Session Tree: T

Malware Index

A

B

C D
http://exconcept.biz/
226136/1389926.jar

http://exconcept.biz/
124592/138483.jnlp

http://exconcept.biz/WjSTr3.htm

http://wdefess.pw/
zds0u5x/?52402bf

http://wdefess.pw/
zds0u5x/?5

http://wdefess.pw/zds0u5x/
counter.php?id=5

Fiesta

http://wdefess.pw/
zds0u5x/?172464b33

01

02

03

04

05

06 07

Figure 4.5: A simplified similarity search on the index. Web session tree T contains nodes that are similar
to nodes of one of the Nuclear trees in the index. Those nodes in T are subsequently mapped to their
corresponding nodes in the index to form subtrees. For example, node B in T maps to node 02 and node
C maps to node 03 based on node similarity scores. These node mappings form subtrees that are then
structurally compared.

4.2.3.1 Node Level Similarity Search

To determine whether any nodes in T are sufficiently similar to nodes in the malware index, the set of

token, URL structure, and content-based features are extracted from each node x in T . These node features

are then used to query the index and return any nodes i that have a feature in common with node x. Node

similarity is measured by a score based on the overlapping features between nodes.

62

In this work, two node similarity approaches are compared: the Jaccard Index, and the weighted Jaccard

Index to determine how weighting affects the accuracy of the algorithm. The Jaccard Index (Hadjieleftheriou

and Srivastava, 2010) is a similarity metric that measures the similarity of two sets X = {x1,, xn} and

I = {i1,, in} by calculating

J(X, I) = |X∩I|
|X∪I| . This generates a score between 0 and 1, with higher scores meaning higher similarity.

More precisely, a variant of the Jaccard Index, called relevance is used to determine how relevant the set of

node features of x in T is to the set of node features of i in the index. To calculate the relevance of X to I ,

the Jaccard Index becomes: J(X, I) = |X∩I|
|I| .

Two flows x and i are considered similar if J(X, I) > ε, where X and I are feature sets of x and i

respectively, and ε is a user defined threshold. If a node in tree T is similar to a node in the index, the node in

T is assigned the ID from the node in the index. The node IDs are used to compare the structural similarities

of the subtrees of T with the matching trees in the index (Section 4.2.3.2).

A weighted Jaccard Index (Hadjieleftheriou and Srivastava, 2010) introduces weighting to the features of

the set. A higher weight value on a feature emphasizes those features that are most distinctive to a malicious

flow; thereby, increasing the similarity score of two nodes that are malicious. The weighted intersection of X

and I is defined as

W (X, I) =
∑

x∈X∩I

w(x)

, where w is the weight of each feature x.

Then, the weighted Jaccard Index becomes:

WJ(X, I) =
|X ∩ I|
|X ∪ I|

=
W (X, I)

C(X) + C(I)−W (X, I)
,

where C(X) = |X| =
∑

x∈X w(x). Again, a variant of the weighted Jaccard Index is used to calculate the

relevance of X to I:

WJ(X, I) =
|X ∩ I|
|I|

=
W (X, I)

C(I)
,

63

A probabilistic term weighting technique first introduced by Robertson and Jones (1976) is applied,

which gives an ideal weight to term t from query Q. The terms are used in a similarity-based scoring scheme

to find a subset of the most relevant documents to query Q. Here, term t is a feature extracted from node x.

To calculate a feature weight w(f), a dataset of N benign HTTP flows, and R tree instances from a

particular exploit kit flavor (e.g., Nuclear, Fiesta, etc.) are considered. Let some feature f index r of the

malicious trees in R and n of the benign flows in N . As such, p = r
R is the probability that feature f indexes

an exploit kit, while q = (n−r)
(N−R) is the probability that f indexes a benign flow. Therefore, the weight of

feature f becomes:

w(f) = log(
p(1− q)
(1− p)q

) = log(
r(N −R− n+ r)

(R− r)(n− r)
).

When r = 0, i.e. feature f does not index any of malicious trees, the formulation is not stable; therefore, the

following modification is applied as suggested by Robertson and Jones (1976):

w(f) = log(
(r + 1/2)(N −R− n+ r + 1/2)

(R− r + 1/2)(n− r + 1/2)
).

The technique requires a node-level similarity threshold for each exploit kit family stored in the malware

index in order to determine that a node in T is similar to nodes in the index. To compute the thresholds,

the node similarities scores of each tree in the malware index are compared against all the other trees in the

malware index that are in the same exploit kit family. An average node similarity score is calculated for each

node in each tree in an exploit kit family. The node-level threshold for the kit is calculated by finding the

node in the tree with the lowest average similarity score.

This process is presented in Algorithm 2. For pedagogical reasons, Fiesta tree samples from the malware

index are used to illustrate the approach. For each tree t in the set of Fiesta trees, all trees s that have a

tree edit distance similarity score above zero are found (lines 3-5). For any node in t that has a similarity

score above 0.1 with s, its score is recorded (lines 7-9). Finally, the minimum average score is stored as the

threshold for the kit. During the feature extraction stage, token and content-based features are ignored in

order to provide a conservative lower bound on the threshold.

4.2.3.2 Structural Similarity Search

After a node level similarity search between a tree T (built from the network) and the trees in the malware

index, there will be 0 or more nodes in T that are considered “similar” to nodes in the malware index. A node

64

Algorithm 2 Finding the node level similarity threshold for the Fiesta exploit kit using the set of all Fiesta
tree samples in the index
1: Tf ← set of all Fiesta Trees in Index
2: minval = 1.0
3: for all (do t← Tf)
4: for all (do s← Tf)
5: if TreeSimScore(s, t) > 0.0 then
6: for all (do ns ← Node(s);nt ← Node(t))
7: if score← NodeSimScore(ns, nt) ≥ 0.1 then
8: nt.totalScore+ = score
9: nt.numberScores+ = 1

10: end if
11: end for
12: end if
13: end for
14: for all (do nt ← Node(t))
15: avg = nt.totalScore/nt.numberScores
16: if avg ≤ minval then
17: minval← avg
18: end if
19: end for
20: end for
21: threshold = minval

in tree T may in fact be similar to multiple nodes in a single tree in the index or even in multiple trees. The

next step is to extract the subtrees S within T that map to the corresponding trees in the index. Figure 4.5

shows a simplified example of a structural similarity search. Node B in tree T maps to node 02 in a Nuclear

tree in the index. Similarly, node C in T maps to node 03. These node mappings are used to build subtrees of

T that can be compared to the corresponding trees in the malware index.

Subtrees from tree T are compared to the trees in the index using tree edit distance (Hu et al., 2009a).

Tree edit distance uses the number of deletions, insertions, and label renamings to transform one tree into

another. The ancestor-descendant relationships are enforced. For example, if a node was an ancestor of

another node in a tree in the index, the relationship must be maintained in the subtree S. As shown later,

this restriction helps to reduce false detections. The result of the tree edit distance calculation is a structural

similarity score between 0 and 1 that is then used to classify the subtree as either being benign or similar to a

specific exploit kit.

4.3 Dataset and Training

The efficacy of the approach is evaluated using logs collected from a commercial HTTP proxy server

(called BlueCoat1) that monitors all web traffic for a large enterprise network. The proxy server records all

1 See www.bluecoat.com for more information.

65

www.bluecoat.com

client-based bidirectional HTTP/HTTPS flows from eight sensors at edge routers around the network and

stores flow information in eight separate log files per hour. Furthermore, the proxy acts as a man-in-the-middle

for HTTPS sessions providing a view into encrypted traffic. Each flow contains both TCP and HTTP headers.

For the first set of experiments, 628 hours worth of labeled log data spanning different days during

November 2013 and July 2014 were analyzed. The log files were chosen because they contained known

instances of Nuclear, Fiesta, Fake, FlashPack, and Magnitude exploit kits along with instances of a clickjack-

ing (Huang et al., 2012) scheme refered to as ClickJack. Statistics for the dataset are summarized in Table

4.1 (labeled Dataset 1). A separate three-week long dataset from January 2014 which was unlabeled was

used to show the operational impact of our technique. Statistics for the dataset are also described in Table 4.1

(labeled Dataset 2) and are discussed in Section 4.5.

Dataset 1 Dataset 2
Network sensors 8 8
Hours analyzed 628 3264
Client IP addresses 345K > 300K
Bidirectional flows processed 800M 4B
HTTP tree structures processed 116M 572M

Table 4.1: Summary of datasets.

4.3.1 Implementation

The implementation is a multi-threaded application written in approximately 10,000 lines of Python

and C++ code. It processes archived bidirectional HTTP flows that are read and converted into web session

trees on the fly while node and tree features are stored in the Xapian2 search engine. The prototype uses

separate threads to read and parse each flow, to build HTTP web session trees, and to compare the most

recently built tree to the malware index.

System Environment: All experiments were conducted on a multi-core Intel Xeon 2.27 GHz CPU with

500 GBs of memory and a 1 TB local disk. Notice that the platform is chosen because it facilitates our

large-scale experiments by enabling multiple instances of the prototype to be run in parallel. The actual

memory allocated for each prototype instance is 20G.

2 See www.xapian.org for more information.

66

www.xapian.org

4.3.2 Building the Malware Index

As mentioned in Section 4.2.2, the malware index is essentially the “training data” used to detect

malicious subtrees in the dataset. As such, the index is populated with exploit kit samples from a completely

disjoint data source. The malware index was populated with exploit kit samples downloaded from a malware

analysis website (Duncan, 2014). The operator collected HTTP traces of exploit kits using a honeyclient

and stored them in a pcap format. A tool was built that transforms these traces into HTTP trees that are

in turn indexed. The 3rd column of Table 4.2 provides a count of how many instances of each kit were

downloaded and indexed. Note that none of the instances installed in the index appear in the proxy data logs.

The clickjacking sample was downloaded from another website (Nieto, 2013).

Instances in Instances in
Exploit Kit Dataset 1 Malware Index
Fiesta 29 26
Nuclear 7 10
Magnitude 47 12
ClickJack 130 1
FlashPack 2 7
Fake 575 12

Table 4.2: Testing and training sets. Exploit kits collected from www.malware-traffic-analysis.net used to
build the malware index.

The second aspect of building the malware index is to calculate feature weights for all node features in

the index when using the weighted Jaccard Index for node similarity. This requires malicious samples from

the malware index as well as samples of normal traffic in order to determine how prevalent a feature is in both

the malicious and benign dataset. In the experiment, 10 days worth of benign data from a single sensor in the

BlueCoat logs were used to calculate feature weights. The benign data included over 4.4 million bidirectional

flows.

Finally, the node similarity thresholds was calculated for each exploit using Algorithm 2 (§4.2.3.1). The

thresholds for the weighted and non-weighted node similarity scores are shown in Table 4.3.

Exploit Kit Threshold (Weighted JI) Threshold (JI)
Fiesta 0.25 0.25
Nuclear 0.23 0.25
Magnitude 0.25 0.25
ClickJack 0.25 0.25
FlashPack 0.23 0.2
Fake 0.23 0.25

Table 4.3: Node-level thresholds computed by Algorithm 2 for weighted and non-weighted Jaccard Index.

67

4.3.3 Establishing Ground Truth

In order to establish a ground truth as a test set for the experiments, a list of regular expressions from

various sources were compiled in order to identify exploit kit instances in Dataset 1. First, the Snort

Sourcefire exploit kit regular expression rules from the Vulnerability Report Team3 were run over the entire

dataset. The ruleset included signatures for detecting exploit kits, such as Nuclear, Styx, Redkit, Blackhole,

Magnitude, FlashPack, and Fiesta. These signatures were augmented with regular expressions gathered from

a malware signatures website (www.malwaresigs.com) that included regular expressions for Fiesta,

Angler, FlashPack, Styx, and Redkit. Through manual inspection of flows in Dataset 1 that match these

signatures/regexes, instances of the Fiesta, Nuclear, ClickJack, FlashPack, Fake, and Magnitude exploit

kits(see the middle column of Table 4.2) were identified. False positives were painstakingly removed by

grouping URLs by domain names, and by comparing them against publicly available blacklists and whitelists,

including online searches against API’s engines (e.g., VirusTotal, GoogleSafe Browsing, URLQuery.net,

Alexa, malwaredomainlist.com, and Google).

The analysis was conducted shortly after the author of the Blackhole and Cool exploit kits was arrested

in Russia (Trend Micro, 2014). Hence, these exploit kits, which were once credited with over 90% of new

infections (Trend Micro, 2014), collapsed leaving attackers scrambling to find an alternative. Although

there were no traces of the Blackhole or Cool exploit kits, there were many instances of the Fiesta and

Magnitude kits, which became prevalent after Blackhole’s demise (Symantec MSS Global Threat Response,

2014). Recent studies (Symantec MSS Global Threat Response, 2014; Grier et al., 2012) show that there are

approximately 6-8 exploit kit types dominating the Internet at any one time, accounting for the relatively

small number of different but popular kits found on the analyzed network.

4.4 Finding the Needle in a Haystack

In this section, the approach is evaluated and compared on Dataset 1 against the Snort Intrusion Detection

System as well as two recent machine-learning approaches to detect exploit kit instances.

3 See www.snort.org/vrt for more details; Date accessed: July 2014.

68

www.malwaresigs.com
www.snort.org/vrt

4.4.1 Comparison with Snort

In all cases, but FlashPack, the weighted and non-weighted node similarity approaches yielded the same

results; therefore indepth discussion of these approaches is left for Section 5.3.

� Fiesta: In evaluating Fiesta, the approach was compared against the Snort rule 29443, which detects Fiesta

outbound connections attempts. The rule focuses on the single flow related to the exploit payload and detects

Fiesta instance by searching a particular alpha numeric pattern in the URL. As a result, it also flags 597

benign flows that match the regex pattern. The structural similarity technique focuses on the structural path

of flows taken to arrive at the exploit payload. As such, in the structural similarity technique, not only were

these accidental matches that are unlikely to share similar structures with Fiesta instances eliminated, but also

the exploit was identified before the payload is reached. The results are summarized in Table 4.4.

Table 4.4 shows that using structure eliminated all 597 false positives flagged by the Snort rule and also

identified cases that Snort missed. In most cases, the structural similarity approach detected a Fiesta instance

in as little as two or three nodes. Furthermore, it detected three instances that were not originally flagged in

the ground truth, because our approach was able to detect the path of requests to the payload. In six cases, the

exploit kit never reached a payload, and in another two, the payload string did not match Snort’s regex. The

approach missed two instances of Fiesta that accessed the same landing page but at different times. These

instances were missed because there were no structures in the index similar enough to the instance to attain a

structural score. There was no overlap between the false negatives missed by both techniques.

� Nuclear: To track Nuclear, three Snort rules 28594, 28595, and 28596 were used. These rules search for

numeric jar and tpl file name of malicious payloads as well as specific directory structures in URLs. As

noted in Table 4.4, the Snort signatures performed reasonably well for detecting all five Nuclear instances;

because in all these cases, Nuclear was able to proceed to the payload-download stage; however, by looking

for specific file types, these regexes missed an instance of Nuclear that was downloading a malicious pdf

(which the similarity approach detected). Furthermore, the generality of the signatures (e.g., matching

numeric jar or tpl names) leads to 24 false alarms on legitimate websites that download benign jar files

with numeric names. The structural similarity approach, on the other hand, strikes a better balance between

specificity and generality. By leveraging structural properties of multi-stage exploit kits, it eliminates all false

positive cases (which do not share similar tree structures with Nuclear exploit kits) and is able to generalize

to new variation of exploit kits with previously unseen payloads. Although the approach failed to detect

69

two instances of Nuclear that were structurally the same, that failure arose because our index did not have a

similar example in the datastore.

The most interesting instance of Nuclear found in the data was downloaded through an advertisement

on a popular foreign news site. That exploit successfully downloaded both a Java exploit and a malicious

binary to the unsuspecting client machine.

� Magnitude: Magnitude was evaluated using Snort rules 29188 and 28108, which search for hex encoded

eot and swf files, respectively. Results for all techniques are shown in Table 4.4. The Snort rules generated

over 60,000 false positives and missed an instance that did not download a payload while the classifier

detected all exploit kit instances but with a high FP rate. By contrast, using the structure of correlated flows,

there were zero false positives and zero false negatives.

� FlashPack: The empirical analysis shows that FlashPack is one of the more difficult exploit kits to detect

because of its use of common php file names such as index.php, flash.php, and allow.php. Snort

uses rule 29163 to identify a subset of these files (i.e., those which have a specific query string to reduce

false positives). However, the query string can be easily manipulated by attackers to evade detection and it

often varies across different FlashPack variations. As a result, the Snort rule was unable to detect the two

instances of FlashPack variations in the data. Experimenting with a much looser regular expression identified

all instances; however, it generated over 43,000 false positives.

The structural similarity approach was able to identify both instances in the dataset, with only 68 false

positives (weighted node similarity) and 109 false positives (non-weighted) — four orders of magnitude

reduction over the loose regular expression. The added false positives in the non-weighted case are due to

the increased number of node-level false matches in the non-weighted Jaccard Index calculation. FlashPack

was the only exploit kit analyzed where setting a minimum structural threshold had a significant impact

on the false positive rate (as discussed later in §5.3). The two true instances had similarity scores of 0.75

and 0.85 respectively. With a conservative structural similarity score of 0.5, the number of FPs is reduced

to three (weighted) and 19 (non-weighted) (Table 4.4). Forensic analysis revealed that both instances of

FlashPack were loaded through banner ads when two separate clients visited entertainment websites. In one

of these cases, the exploit successfully downloaded both a malicious Flash file as well as a Java archive to

the vulnerable client.

70

� ClickJack: Clickjacking is a technique in which an attacker tries to fool a web user into clicking on a

malicious link by injecting code or script into a button on a webpage (Huang et al., 2012). To detect instances

of the ClickJack kit, a single instance of its structure was loaded into the index and then performed searches

on the entire dataset. There was no equivalent Snort rule for finding such an exploit and so a comparison to

Snort was not possible. The structural similarity approach identified 130 instances of the clickjacking scheme

with zero false positives and zero false negatives. Analysis found that the ClickJack subtree was the initial

entry point into various exploits including an instance of the Magnitude exploit kit, and several trojans. An

online version of the approach would have been able to detect the exploit before it was downloaded.

� Fake - Installer: The final case study focuses on the Fake Installer exploit kit, which is an exploit

that attempts to install a fake Adobe update for an unsuspecting client. This kit is identifiable by the

checker.php file it uses to check the system and attempt a download of a malicious payload. This

common file name can trigger an excessive number of false positives, so because of this, there was no

corresponding Snort rule. An analysis was conducted on the dataset specifically looking for the checker.php

file and 1,200 cases of this file were found in a three month period. Of those 1,200 cases were confirm 575 to

be the Fake Installer. The structural similarity approach successfully identify all such cases with zero false

positives and zero false negatives.

Summary: Table 4.4 summarizes the detection results of the structural similarity approach and Snort.

Regarding exploit kits for which Snort rules are available (i.e., Fiesta, Nuclear, Magnitude, and FlashPack),

the structure similarity approach achieved a 95% detection accuracy while outperforming Snort (at 84%).

Considering that false positives place undue burden on analysts to perform a deeper investigation on each

reported incident, reducing false positives by over three orders of magnitude is a non-trivial improvement. In

addition, the approach identified all instances of two exploit kits for which Snort rules were not available

(i.e., Clickjacking and Fake). The approach reduces false positives by utilizing both content and structure,

effectively creating a larger feature space.

4.4.2 Comparison with State of the Art

The structural similarity approach is compared with a statistical classifier proposed by Ma et al. (2011).

The classifier is based on logistic regression with stochastic gradient descent using features similar to those

described in Section 4.2.2. The classifier labels URLs as either malicious or benign and is trained with all

71

Exploit kits #
Structural Sim Snort
TPs FPs FNs TPs FPs FNs

Fiesta 29 25 0 4 19 597 10
Nuclear 7 5 0 2 5 24 2

Magnitude 47 47 0 0 46 60000+ 1
FlashPack 2 2 3 0 0 9 2

Total 85
79

(95%) 3 4
70

(84%) 60630+ 13

ClickJack 130 130 0 0 - - -
Fake 575 575 0 0 - - -

Total 705
705

(100%) 0 0 - - -

Table 4.4: Comparison (weighted) to Snort signatures.

1,000 URLs used to build the malware index, as well as 10,000 benign URLs collected from BlueCoat logs

with a 10x class weight applied to the “malicious” class. Parameters for the algorithm are tuned using a grid

search and five fold cross validation on the would be training set. Results are shown in Table 4.5 indicating

that the classifier performed well at detecting exploit kit instances. The classifier was able to detect two more

instances of Fiesta than the structural similarity approach because both clients visited a landing page for an

exploit kit, but did not reach a payload, exposing no web structure for the structural technique to detect. In the

case of Nuclear, the classifier was unable to identify the instances that only used .tpl and .pdf file types.

The classifier flagged over 500,000 URLs as malicious in Dataset 1. Through a painstaking analysis of

the URLs using malware reports, blacklists, and google searches, 4,000 of the URLs were confirmed to be

malicious — 2,500 of the URLs were associated with the exploits kits found as ground truth in Dataset 1

(Table 4.2), which were also detected by the structural similarity approach. Note that Table 4.2 represents

numbers of trees, with each tree containing multiple URLs. The other 1,500 URLS were comprised of web

requests to algorithmically generated domain names used by botnets (Yadav et al., 2010), phishing sites, and

malware download sites and were unrelated to exploit kit traffic. False positives were attributed to many

different websites including content distribution networks, URL shorteners, and advertising networks. Due to

the high false positive rate, the approach of Ma et al. (2011) is infeasible in an operational environment.

Exploit kits Ins-
tances

Structural Sim Classifier
TPs FPs FNs TPs FPs FNs

Fiesta 29 25 0 4 27 - 2
Nuclear 7 5 0 2 5 - 2

Magnitude 47 47 0 0 47 - 0
FlashPack 2 2 3 0 2 - 0
ClickJack 130 130 0 0 130 - 0

Fake 575 575 0 0 575 - 0

Total 790
784

(99%) 3 6
786

(99%)
500,000+
(URLs) 4

Table 4.5: Comparison (weighted) to binary URL classifier.

72

Stringhini et al. (2013); Mekky et al. (2014); Cova et al. (2010); Eshete and Venkatakrishnan (2014)

proposed detecting malicious websites by counting the number of HTTP redirects (i.e., 302, javascript, or

HTML) to hop from a compromised website to the malicious exploit. The key insight is that attackers utilize

statistically more intermediate HTTP redirects than benign traffic in order to avoid detection. In this chapter,

the intention was to provide a comparative analysis to Stringhini et al. (2013), but, the approach of Stringhini

et al. (2013) requires modeling a diverse set of redirect chains of users visiting the same malicious websites

with different environments (e.g., OSes and browsers) at geographically dispersed locations. Given that such

widely heterogenous environments are not available in most enterprises, this chapter evaluates the utility of

using redirects as a main feature to detect exploit kits in traffic by exploring the full packet payload HTTP

traces associated with 110 exploit kit instances. The instances included 14 distinct exploit kits: Angler,

Blackhole, Dotka Chef, Fake, Fiesta, FlashPack, Goon, Hello, Magnitude, Neutrino, Nuclear, Styx, Sweet

Orange, and Zuponic.

Redirection chains were built from each trace by extracting server and HTML (meta tag) redirects.

Additionally, a subset of 50 traces were manually analyzed using an instrumented HTML parser, javascript

engine(Rhino) and DOM (envjs) in order to build chains that included javascript redirections. An evaluation

found that the traces had relatively short redirection chains, and the length the chain was dictated by the type

of exploit kit. Exploit kits such as Blackhole, Nuclear, Fiesta, Goon DotkaChef, Fake, and Sweet Orange

consistently had a single indirection to the exploit kit server. Indeed, server and meta redirections were rare

with the main form of redirection being an iframe injection into the compromised site, or a javascript

injection that built an iframe. Magnitude, Angler, FlashPack, Zuponic and Neutrino saw anywhere from 1

to 3 redirects with a combination of server, meta and javascript redirects. In fact, Styx was the only instance

that had more than 4 redirects. These results are in stark contrast to the results of Mekky et al. (2014) that

show that over 80% of all malicious chains have 4 or more server redirects or that the average number of

exploit kit server redirects are five (Eshete and Venkatakrishnan, 2014).

Not only were there not large redirect chains for exploit kits, but there are comparable length redirect

chains in benign traffic due primarily to advertising networks. Server and meta redirection chains were built

using 24 hours worth of data from a large enterprise network consisting of 12 million bidirectional HTTP

flows. In that time period, 400,000 redirection chains were generated including 35,000 chains of length 2 to

5, making the redirection feature prone to false positives. By contrast, the structural similarity approach can

73

utilize redirection chains, but focuses on the process by which an exploit kit attempts to compromise a host

and models that into a tree-like structure in order to reduce false positives.

4.4.3 Findings and Discussion

Let us take a closer look at why the use of structural information (especially, the ancestor-descendant

relationship) is important in reducing false positives. We begin our analysis by focusing on the node-level

similarity scores using the weighted and non-weighted Jaccard Index calculated between the HTTP flows

in the archival logs (i.e., Dataset 1 in Table 4.2) and those in the malware index. The results are shown

as a cumulative distribution function in Figure 4.6. Notice that over 98% of the flows in the dataset had a

similarity score below the conservative lower bound thresholds (of 0.23/0.2) derived from Algorithm 2 while

all nodes associated with malicious trees had a node similarity score of 0.22 or higher.

Figure 4.6: The CDF of node similarity scores between our test dataset and the malware index. “All”
represents similarity scores between all nodes in the dataset and the malware index, while “Malicious”
represents the node scores for trees in the dataset that were flagged as malicious(W = weighted).

The similarity scores for both node similarity metrics followed the same distribution; however, the non-

weighted Jaccard Index generated on average lower similarity scores than the weighted approach (weighted

mean = 0.10, non-weighted = 0.09) with similar standard deviations. As can be seen from Figure 4.6, the

similarity gap between the malicious and benign nodes is smaller in the non-weighted case than in the

weighted case. This leads to more node-level false positives, and, as a result, structural false positives as seen

in the case of FlashPack. Because the weighted Jaccard Index is weighted according to the importance of the

74

feature, an unweighted version will be more likely to have false positives due to common features that are

prevalent both in benign and malicious nodes. Even though the weighted version provides marginally better

accuracy, the non-weighted Jaccard Index may be more desirable from an operational perspective because it

does not require any feature training.

As shown in Table 4.6, there were a large number of false positives if only node-level similarity (like

Snort signatures that focus only on individual flows) was considered for both weighted and non-weighted

similarities. The false positive rate started to decrease when considering multiple nodes in a tree (without

considering structure), as the probability of a benign website having two or more nodes in the same tree that

match malicious patterns was an order of magnitude smaller. The false positive rate decreased further by

another order of magnitude once a structural score was established using tree edit distance. After imposing

the ancestor-descendant requirement on the tree structure, the false positives were reduced to 68 for the total

of over 800 million flows. The results show that tree structure is the primary determining factor in reducing

false positives.

Threshold
(Alg 1)
non-weighted

Threshold
(Alg 1)
weighted

Tight
Threshold
weighted

Single Node 2,141,493 360,150 141,130
Multi-node (no structure) 79,321 32,130 5,878
Structural 5,967 3,800 420
Structural (w/ restriction) 109 68 68

Table 4.6: FPs from the approach when considering single node matching, multi-node matching without
considering structure, structure similarity, and structural similarity with ancestor-descendant requirement for
weighted and non-weighted similarity.

As shown in Table 4.6 there is a several orders of magnitude reduction in the number of nodes (flows)

that are similar to nodes in the index, w.r.t the total number of nodes (flows) in a given dataset (Table 4.1).

This result can be leveraged, by only building trees for flow clusters that have multiple similar nodes in

common with a tree in the malware index, allowing the scalable application of much more computationally

expensive (and correct) tree building techniques to the wire (i.e., (Neasbitt et al., 2014)) when full payloads

are available. Table 4.6 also shows the detection rates under the optimal tight node-level similarity thresholds

using weighted similarity. This bound is the maximum node similarity threshold allowed to still detect all

true positives, and was calculated using the ground truth dataset. Even with the optimal bound, structural

information was still needed to reduce the false positives.

75

Empirical analysis also showed that in the majority of cases, a relatively low minimum structural

threshold (less than 0.05) for the tree-similarity score was sufficient because the flagged tree was malicious in

almost every case. The structural similarity threshold is specific to the similarity metric chosen and was set

conservatively low to maximize true positives with few false positives, creating a clear separation between

benign and malicious cases. Figure 4.7 shows the cumulative distribution of the tree edit distance scores for

the malicious subtrees analyzed. The scores ranged anywhere from 0.2 to a perfect 1.0 due to a few factors. In

some cases there may be multiple nodes added or missing from the subtree as compared to the malware index,

causing an imperfect score. The second reason was that, especially in the case of ClickJack, the exploit may

lead into other exploits or websites causing the subtree in the dataset to look different from any of the ones in

the malware index. Taken together, these findings underscore the power of using structural information and

subtree mining, particularly when there may be subtrees that are incomplete or contain previously unseen

nodes compared to those encoded in the index. The combination allows for maximum flexibility and reduced

false negatives and false positives over contemporary approaches.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tree Similarity Scores

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
ct

io
n

Figure 4.7: The CDF of tree similarity scores for malicious subtrees.

4.5 Operational Deployment

To further demonstrate the utility of the structural similarity approach in a large enterprise environment,

three consecutive weeks of BlueCoat logs were analyzed from January 6-31, 2014 (Dataset 2 in Table 4.1)

using the weighted version of the approach. During the time period, over 4 billion bidirectional flows and

76

572 million HTTP trees were generated and analyzed using a malware index consisting of the Fiesta, Nuclear,

Fake, ClickJack, and Magnitude exploit kits.

During the deployment 28 exploit kit instances were identified with no false positives, compared with

Snort signatures that generated over 22,000 false positives and missed most of the Fiesta instances, as shown

in Table 4.7. Two of the Fiesta instances downloaded malicious Java files, while two others downloaded

spyware. The Nuclear instance successfully downloaded a malicious PDF file followed by a malicious binary.

Furthermore, two of the Clickjacking instances downloaded Popup Trojans. The URL classifier of Ma et al.

(2011) generated an average of 143,000 alerts per day for a total of 3.6 million alerts in the month and the

sheer volume of alerts made it infeasible to vet each flagged URL.

Exploit kits Structural Similarity Snort
TPs FPs TPs FPs FNs

Fiesta 20 0 2 340 ≥ 18
Nuclear 1 0 1 0 -

Magnitude 1 0 1 22,224 -
Clickjacking 6 0 N/A N/A -

Fake 0 0 N/A N/A -

Table 4.7: Live comparison to Snort signatures.

The fact that the structural similarity approach successfully detect these abuses on a large enterprise

network underscores its operational utility. One of the main motivating factors for pursuing this line of

research and subsequently building our prototype was the fact that the high false positives induced by existing

approaches made them impractical to network operators at our enterprise — who inevitably disabled the

corresponding signatures or ignored the flood of false alerts altogether.

From an operational perspective, speed is as equally important as accuracy in order to keep up with the

live traffic in a large enterprise network; therefore, to assess runtime performance, the processing speed was

evaluated for the various components when processing one days worth of traffic across all eight sensors.

Note that eight prototype instances were run — one for each sensor. The experiment shows that a single

instance of the current prototype is able to process an entire day of traffic in 8 hours. Figure 4.8 illustrates the

performance breakdown of different components of the prototype, indicating that on average, the prototype

can parse 3.5K flows per second (302M flows per day), build trees at a rate of approximately 350 per second

and conduct the similarity search at a rate of 170 trees per second. Profiling the similarity search module

showed that over half the runtime was spent performing feature extraction and memory allocation, while only

77

5% of the time was spent searching the index. Sensors 5, 6, and 8 were slower than the other sensors because

they received a larger portion of the traffic.

Note that although the prototype was able to keep up with the average volume of traffic in the target

enterprise, the same was not true at peak load. Statistics collected from one day of traffic across all eight

sensors showed that at its peak, the network generated 6,250 flows and 550 trees per second. While the

current prototype falls short of processing at that speed, note that by design, all the components (e.g., flow

parsing, tree building and feature extraction) are parallelizable; as such, with modest hardware provisions the

prototype could efficiently handle the peak loads.

Figure 4.8: The performance of bidirectional flow parsing, tree building, and malware searching for one day
of data across 8 sensors.

4.6 Limitations

As with any security solution, attackers will inevitably seek ways to bypass it. An obvious evasive

strategy would be to hinder the ability to build subtrees from HTTP flows by using JavaScript and other

obfuscation techniques that hide the relationship (e.g., redirection, reference) between HTTP flows. As

mentioned previously, the two step similarity algorithm can significantly reduce the overall number of trees

that need to built, allowing more computationally expensive and correct techniques to be used such as

dynamic analysis (Neasbitt et al., 2014), JavaScript de-obfuscation (Lu and Debray, 2012; Xu et al., 2013b),

and statistical means (Hu et al., 2009b; Nelms et al., 2015) — all of which could be easily adopted in this

78

setting to thwart evasive techniques. In many enterprise environments, there is strict control over the software

configuration of client devices in the network, and as such, a mandatory browser plugin could be enforced

to make building web session trees easier than the current network-centric approach. Nevertheless, the

main focus of this work is not in building better HTTP trees, but rather to demonstrate the benefits of a tree

structure-based detection approach in reducing false negatives and false positives.

In addition, because the structural similarity approach relies on node-level and structure-level similarity

to detect exploit kits, a skilled adversary might attempt to circumvent similarity matching by obfuscating

flow features and dramatically modifying tree structures. Although the approach suggested herein is no silver

bullet, it raises the bar for attackers and makes evasion more difficult. For instance, by using an edit-distance

based subtree mining algorithm to compare observed session trees, the approach offers resilience to common

obfuscation and variation techniques (e.g., adding redirection nodes or changing malicious payloads). More

importantly, a structural similarity based approach provides security analysts with flexibilities in tuning the

thresholds such that changes to a few nodes in the web session trees are unlikely to significantly influence the

matching results. On the other hand, generating functionally equivalent but structurally distinct exploit paths

would be a non-trivial task for attackers.

From an operational perspective, the fact that the structural similarity approach involves some manual

effort on the part of the analyst (e.g., to find and install representative examples of exploits kits into the

malware index) might appear as a limitation. Like most tasks in network security, performing this particular

step requires some expertise and domain knowledge. That said, the burden on the operator could be lessened

with automated techniques for building these indices, for example, from data made available through websites

like threatglass.com. Furthermore, techniques applied in automated signature generation (Yegneswaran

et al., 2005) may be useful.

Finally, like all network-based detection techniques that require packet inspection, the approach herein

cannot operate on encrypted traffic. For many enterprises, however, the ability to inspect encrypted traffic is

enforced at the border by using proxy servers specifically designed to decrypt and monitor encrypted traffic.

This was precisely the case for the enterprise evaluated in this chapter.

79

threatglass.com

4.7 Discussion and Lessons Learned

In closing, this chapter presents a novel network-centric approach that uses structural similarity to

accurately and scalably detect web-based exploit kits in enterprise network environments. The prototype

implementation, which was evaluated on real world data collected from a large-scale enterprise network,

worked remarkably well. In particular, empirical results show significant improvement over the state-of-the-

art methods in terms of false positive and false negative rates across a variety of exploit kits. A preliminary

analysis in an operational deployment demonstrates that the technique can easily scale to handle massive

HTTP traffic volumes with only modest hardware requirements.

Key Take-Aways:

1. While the attacker could make drastic changes to the exploitation process, it is unlikely because the

multi-step process actually helps to prevent kit detection by the defender. The attacker first checks

the versions of the software installed on the client, and tests whether the client is a honeyclient so

that he does not reveal his exploit unless he is absolutely sure the client is legitimate and vulnerable.

The attacker also spreads components of the exploit across multiple web files in order to prevent

the defender from analyzing single files in isolation. By utilizing the entire exploitation process for

detection, the defender forces the attacker to make a choice between leaving the inherent structure in

the exploitation process or reveal the exploit sooner — a win for the defender because it makes it easier

to adapt virtualization approaches to network defense. As a result, utilizing kit structure should be a

valid detection approach for years to come.

2. The proposed subtree similarity search approach provides a fast and scalable technique for classifying

structural data with high dimensional feature spaces. The approach does not require subtree mining,

which can be a processing bottleneck, making it attractive for solving classification problems in other

research areas including biology, text mining, and natural language processing.

3. Modeling the structure of web-based traffic not only drastically reduces false negative rates over current

approaches, but also, the structure provides context for the security analyst. As a result, the analyst can

determine the origin of the exploit and take appropriate action to mitigate future attacks. One of the

important challenges for the research community moving forward will be to provide these contextual

80

linkages over much larger time windows in order to more efficiently retrace the steps of an exploited

computer pre and post infection.

4. As demonstrated in the evaluation, one of the most expensive procedures in network-based intrusion

detection is feature extraction. This forces current detection techniques to choose “cheap” features

in order to keep up with the fire hose of traffic on large networks. Unfortunately, this leads to feature

selections that are not necessary and sufficient for detection. Chapter 5 addresses the issue by providing

a different model for network-based detection with a behavioral feature set. Behavioral features are

better because there is a clear distinction between benign and malicious behaviors.

5. Establishing ground truth is one of the most difficult and time consuming tasks related to network

security research. The process is counterintuitive as ground truth is established using some of the very

tools a researcher is comparing against. One must analyze the dataset with as many automated tools

available, and then manually investigate the results in order to fine tune the process. Chapters 5 and 6

will discuss other strategies for establishing ground truth.

81

CHAPTER 5: DETECTING EXPLOIT KIT TRAFFIC USING REPLAY

Chapter 4 demonstrated that utilizing context in network-based malfeasance detectors can have real

operational benefits for the security analyst. Unfortunately, the presented approach has two key limitations

that needs to be addressed. Like any other signature or statistical approach, the technique must make

assumptions about what are “malicious features”, based on the characteristics of previously seen malicious

samples. As such, the technique is unable to detect previously unseen exploit kits. Furthermore, to keep up

with the deluge of traffic, the features chosen are characteristic of previously seen malfeasance, but are not

necessary and sufficient to be malicious.

In order to the address these issues, one can look to extract behavioral features that describe what an

exploit is actually doing. To do so, one can use honeyclient analysis. The idea is to use a secure virtualized

machine (VM) to navigate, render and execute potentially malicious web pages. Honeyclients dynamically

track system state change caused by a specific application or website. System state change (e.g., files written,

processes created, etc.) has been shown to be an effective metric in classifying malicious applications (Bailey

et al., 2007). Security vendors routinely crawl the Internet with large clusters of VMs in an attempt to identify

malicious websites (Thomas et al., 2015; Grier et al., 2012). The result of these analyses are typically used to

generate blacklists or other information deemed useful for improving a network’s security posture.

The model of honeyclient analysis is not without drawbacks. Crawlers heavily depend on the quality

of the URL seeding used to initially discover potentially malicious web pages, and there is no guarantee

that crawlers will discover the same exploit kits that are visited by third-parties using a NIDS. Deploying

any generated signatures can take days or weeks, often too late to be of use. Additionally, attackers use

so-called cloaking techniques that redirect known crawlers to benign websites. Honeyclients also suffer from

a number of other debilitating problems (as discussed later in more detail). For example, honeyclients are

less effective if their system configuration does not match that of the targeted victim (e.g., an exploit targeting

Internet Explorer 11 will not be detected if the honeyclient is configured with Internet Explorer 10). Finally,

honeyclients are notorious for requiring non-trivial amounts of time to complete a single analysis — easily

82

on the order of minutes. For network-based exploit kit detection, such prohibitively long processing times

make them poorly suited for live operational deployments. Adobe Flash vulnerabilities have dominated other

attack vectors in the last two years, but remain difficult to analyze dynamically due to the sheer volume of

Flash files, exceeding hundreds of files per minute on the UNC campus network, for example.

Motivated by a real operational need to tackle the threats posed by the significant rise in Flash-based

attacks, this chapter presents a framework that enables one to adapt an arbitrary honeyclient system to

function on-the-wire by minimizing the impact of the aforementioned drawbacks. The approach described

in this chapter detects exploits by temporarily caching web traffic, triggering an analysis on a previously

unseen exploitable file, impersonating the client and server that fulfilled the request, and replaying the

traffic in a honeyclient to detect any malicious behavior. One major operational challenge faced is that the

analysis performed must be done without any human intervention and without storing personal information

on non-volatile storage. These privacy restrictions are not unique to a single environment, and it means

that security researchers are left with no option but to process the fire hose of network data judiciously and

expeditiously. The approach described in this chapter leverages a few minutes of recently seen network traffic

stored in an in-memory cache. A second major operational challenge is that many web-based exploit files

(e.g., Flash) will only elicit malicious behavior if the proper parameters are passed in by the loading website.

As a result, the same contextual requirements afforded in the last chapter must be considered here in order to

detect these files.

In designing, deploying and evaluating this framework, several obstacles were overcome and the following

contributions made:

• A network-based exploit kit detector that uses behavioral analysis to detect malicious exploits in the

context of the websites that load them.

• A new fuzzy-hash based technique for filtering redundant exploitable trigger files, allowing for a

scalable and online honeyclient behavioral analysis.

• A two-level semantic cache for storing and compressing HTTP network traffic based on URLs

requested.

83

• A novel chaining algorithm that traces web exploit requests back to their origin by storing minutes

worth of network traffic, replaying URL request paths, and impersonating both the client and server in

order to coax the exploit into behaving maliciously.

• A set of recommendations for an improved honeyclient system based in part on the identification of

code injection and code reuse payloads used in an exploit as well as a set of behavioral features.

• A case study that highlights recent trends in deployed exploit kits.

The remainder of the chapter is organized as follows. A literature review is presented in §5.1. The

framework for enabling the use of honeyclients on-the-wire is presented in §5.2. A performance evaluation,

as well as a case study of real-world attacks is provided in §5.3. Limitations and future work are discussed in

§5.5. Key take-aways and lessons learned are described in §5.6.

5.1 Literature Review

Over the past decade, the web has become a dominant communication channel, and its popularity has

fueled the rise of web-based infections. Provos et al. (2007) examined the ways in which different web page

components are used to exploit web browsers and infect clients through drive-by downloads. That study was

later extended (Provos et al., 2008) to include an understanding of large-scale infrastructures of malware

delivery networks and showed that ad syndication significantly contributed to the distribution of drive-by

downloads. Grier et al. (2012) studied the emergence of the exploit-as-a-service model for drive-by browser

compromise and found that many of the most prominent families of malware are propagated from a handful

of exploit kit flavors. Thomas et al. (2015) provide a more thorough analysis of prevalence of ad injection

and highlight several techniques being deployed by ad injectors.

By far the most popular approach to detecting malicious websites involves crawling the web for malicious

content starting from a set of known malicious websites (Invernizzi et al., 2012; Li et al., 2012, 2013; Eshete

and Venkatakrishnan, 2014; Thomas et al., 2015). The crawled websites are verified using statistical analysis

techniques (Li et al., 2012) or by deploying honeyclients in VMs to monitor environment changes (Provos

et al., 2008). Other approaches include the use of a PageRank algorithm to rank the “maliciousness” of

crawled sites (Li et al., 2013) and the use of mutual information to detect similarities among content-based

features derived from malicious websites (Wang et al., 2013). Eshete and Venkatakrishnan (2014) identified

84

content and structural features using samples of 38 exploit kits to build a set of classifiers that analyze URLs

by visiting them through a honeyclient. These approaches require massive cloud infrastructure to comb the

Internet at scale, and are susceptible to cloaking and versioning issues (Wang et al., 2011).

Gassen and Chapman (2014) examine Java JARs directly by running applets in a virtualized environment

using an instrumented Java virtual machine looking for specific API calls and behaviors such as file system

accesses. Since the approach analyzes JAR files in isolation, it is unable to detect malfeasance when

parameters are passed into the applet. Other approaches involve analyzing the source code of exploit kits to

understand their behavior. For example, De Maio et al. (2014) studied 50 kits to understand the conditions

which triggered redirections to certain exploits. Such information can be leveraged for drive-by download

detection. Stock et al. (2015) clustered exploit kit samples to build host-based signatures for anti-virus

engines and web browsers.

More germane to the work described in this chapter are approaches that try to detect malicious websites

using HTTP traffic. For example, Cova et al. (2010) designed a system to instrument JavaScript run-time

environments to detect malicious code execution, while Rieck et al. (2010) described an online approach

that extracts all code snippets from web pages and loads them into a JavaScript sandbox for inspection.

Parsing and executing all JavaScript that crosses the boundary of a large network is not scalable without some

mechanism for pre-filtering all the noise produced by benign scripts. Further, simply executing JavaScript

without interfacing with the surrounding context, such as relevant HTML and other intertwined contents,

makes evading such systems trivial. The approach described herein addresses both of these issues.

Several approaches utilize statistical machine learning techniques to detect malicious pages by training

a classifier with malicious samples and analyzing traffic in a network environment (Rieck et al., 2010;

Canali et al., 2011; Blum et al., 2010; Ma et al., 2009, 2011; Mekky et al., 2014; Nelms et al., 2015). More

comprehensive techniques focus on extracting JavaScript elements that are heavily obfuscated or iframes

that link to known malicious sites (Provos et al., 2007; Cova et al., 2010). Cova et al. (2010), Stringhini et al.

(2013), and Mekky et al. (2014) note that malicious websites often require a number of redirections, and build

a set of features around that fact. Nelms et al. (2015) studies the webpaths users take to malware downloads

and builds a classifier to label them in the wild. Canali et al. (2011) describes a static prefilter based on HTML,

JavaScript, URL and host features while Ma et al. (2009, 2011) use mainly URL characteristics to identify

malicious sites. Some of these approaches are used as pre-filter steps to eliminate likely benign websites from

further dynamic analysis (Provos et al., 2008, 2007; Canali et al., 2011). These techniques take broad strokes

85

in terms of specifying suspicious activity. For example, Provos et al. (2008) reported a 10% false negative

rate and Canali et al. (2011) reported a false positive rate of between 5% and 25%, while Provos et al. (2007)

only disclose that using obfuscated JavaScript as an indicator leads to a high number of false positives. These

works also require large training sets that are not generally available. By contrast, the approach described

herein focuses on behavioral aspects of malware to help reduce false positives and false negatives.

Schlumberger et al. (2012) extracts features related to code obfuscation and the use of Java API calls

known to be vulnerable, then detects malicious applets using machine learning. Likewise, Van Overveldt et al.

(2012) instruments an open source Flash player and extracts similar features to detect malicious ActionScript.

While these techniques are dynamically adaptable due to their use of machine learning, they still require a

priori notions of how malicious code is constructed. For example, Van Overveldt et al. (2012) implements

features that are meant to determine whether code or data obfuscation has been used, and whether known

vulnerable functions have been used. A previously unknown vulnerability, i.e., a zero-day attack, present

in an unobfuscated Flash file will not be detected. Additionally, highly obfuscated Flash exploits wherein

the obfuscation itself is the only available feature cannot be reliably detected with this approach without

false positives (2% in (Van Overveldt et al., 2012)) since obfuscation is commonly used by benign files. The

approach described in this chapter does not use obfuscation or known vulnerable functions to make a final

decision, thus there is a lower false positive rate.

By far the most popular means of network protection are NIDS, such as Bro (Paxson, 1999) or

Snort (Roesch et al., 1999), that passively monitor networks and apply content-based signatures to packets

and sessions in order to detect malfeasance. These signatures are lightweight, but are evaded through the use

of obfuscation and morphing techniques commonly utilized by attackers. They also are not effective against

zero-day attacks. To help with forensic analysis, Maier et al. (2008) extended Bro with time machine, a

lightweight data store for packets, so that Bro could retrospectively query packets by their headers to perform

further analysis on interesting events. Time machine has similar goals to our caching and replay mechanism;

however, they attempt to achieve this goal at the network layer, storing up to N bytes per connection tuple in

a packet trace. In contrast, the described approach operates at the application layer by storing reconstructed

web objects. For HTTP, this application layer approach achieves much greater compression, as a small

number of unique web objects are frequently fetched by users (e.g., Facebook, Google).

86

The framework described in this chapter provides the best of both worlds between statistical approaches

and honeyclients by bringing the honeyclient to the network. As a result, it can identify new exploits on-the-fly

and mitigate threats more swiftly than the current state of the art.

5.2 Approach

The goals are to combine on-the-wire monitoring of network with the use of honeyclients in an attempt

to address real-world challenges faced on a large network. The hypothesis is that such a combination

significantly outperforms content-based signature approaches in terms of detection rates, and moreover,

can be designed and implemented in a scalable manner. Working at scale, however, comes with several

pragmatic challenges that must be addressed. For one, honeyclients are notoriously slow in analysis; therefore,

there must be a mechanism to drastically reduce the amount of traffic analyzed, but without basing these

mechanisms on preconceived notions as to the innocuity of the traffic in question. Other practical concerns

involve finding robust ways to decide what contextual environment should be used for analyzing a potentially

malicious event triggered by the framework. The high-level depiction of our workflow is given in Figure 5.1.

 Semantic Caching

TCP
Reassembly

HTTP
Parsing

Cache
In-Memory

Trigger

Flash Java

PDFFiltering Office
Document

Impersonate
Establish
Request

Chain

Seed
Honeyclient

URL

Serve Cached
Content

Deduce
Unknown
Requests

! " #

Client Honeypot

ShellOS
(H1) Capture-HPC

Cuckoo
(H2) Other

$

URL to Analyze

Isolated Network Requests

Filtering

Protected Users Alerts

Network Tap
(Passive)

Figure 5.1: Overall workflow of enabling an on-the-wire honeyclient.

HTTP traffic is monitored at the network border or within an HTTP Proxy. In step ¶, a collector

reassembles TCP sessions into bidirectional HTTP requests and corresponding responses. HTTP objects are

87

extracted and cached in a two-level semantic cache. In step ·, those objects that represent attack vectors

(e.g., Flash, PDF, Java, Silverlight) trigger additional analysis. In step ¸, a chaining algorithm selects the

initial URL to be loaded by the honeyclient. Finally, in step ¹, the honeyclient transparently queries the

two-level cache and monitors various system events to provide detection. In what follows, the challenges and

solutions provided for each component in the design are discussed.

5.2.1 Step ¶: Semantic Content Caching

The state-of-the-art application of honeyclient analysis requires that operators provide a seed list of

URLs to the honeyclient, which in turn fetches each live URL within the analysis environment. Operating

on-the-wire, however, one cannot afford this luxury. For privacy reasons, we cannot simply log URLs

observed on the network and use these URLs as the seed list; such URLs may contain end-user information

embedded with parameters that instruct remote servers to perform some action such as purchasing items,

posting written content, or verifying some event or action. There is no option but to perform in-memory

processing of the fire hose of request content that enters the network, without human intervention or saving

of information to non-volatile storage. We can, however, rely on a short window of time (e.g., on the order of

minutes) where recent browsing activity is retained in caches that can be queried.

In the approach, caching observed content at the application layer is used rather than at the network

layer as proposed by Maier et al. (2008). As packets cross the network border, they are reassembled first

at the TCP-level into matching {request, response} data streams. Duplicate or malformed TCP packets are

discarded as specified by the TCP protocol. Then the data streams are reassembled at the HTTP-level, making

each request header and associated response content transparent to the framework. As with TCP packets,

malformed HTTP content is discarded in accordance with the protocol specification, and content for other

application-layer services is filtered and ignored. Web objects (e.g., HTML, JavaScript, Images, Flash, Java,

etc.) are then extracted from the reassembled streams. Object types are determined by using a combination

of the HTTP Content-Type header, the file extension specified in the URL, and the first 512 bytes of

the payload (i.e., the “file magic”). These objects are then placed in a two-level semantic cache to later be

(potentially) queried by the chaining and honeyclient phases of the process (step ¹).

The key observation in designing the application-layer, two-level, semantic cache is that a significant

percentage of network traffic is, in fact, identical content served from a few popular web sites (e.g., Google,

Facebook, YouTube). Thus, such a cache is capable of compressing data much more efficiently than at

88

the network layer where each packet of data is more likely to be unique with client address information

and different patterns of TCP and HTTP chunking. The first level of the cache is for web objects that are

cacheable network wide – i.e., objects that do not change frequently between client web requests. This cache

works similar to a web proxy cache and caches objects using the Expires and Max-Age HTTP response

headers and is implemented based on the web caching RFC 7234. A least recently used (LRU) caching data

structure holds these objects until they either expire, or are evicted because the cache is full. Globally cached

web objects are stored on disk in order maintain the cache between application runs.

There are many objects that are not cacheable network wide because they provide dynamic content

such as a personalized landing page on a social networking web site. As a result, these objects are stored in

individual client-level caches keyed by IP address in volatile memory. This second level is an LRU cache

composed of LRU caches, where client IP addresses are evicted after a tunable period of inactivity. The cache

holds a tunable maximum of N client IPs by M objects to manage memory consumption.

Later, the chapter discusses how this cache is utilized for honeyclients in §5.2.3, but for now, the next

section investigates how one can use this information to hone in on potentially malicious web traffic in an

overwhelmingly benign sea of traffic flows.

5.2.2 Step ·: Filtering and Triggering

One significant challenge in the design of the framework lies in the ability to scale to provide a timely

analysis of each observed request. Honeyclient analyses typically require on the order of minutes to complete

depending on the specific techniques employed. Furthermore, large networks may observe on the order

of thousands of requests per second. The framework addresses this problem by selectively analyzing only

specific types of requests — those that eventually lead to the download of a commonly exploited file format —

and then they are additionally filtered using a file format specific mechanism.

To guide the efforts in designing file format specific filters, the observed downloads are measured on

the UNC campus network over the course of a single school day (see section §5.3). Only JavaScript, Flash

and Portable Document Format (pdf) exceeded an average of one observation per minute. Executable, Java

and Silverlight file formats proved to be relatively rare and hence do not require filters, as it is unnecessary.

There are an average of 7.4 pdf files a minute. Filtering based on unique file content hashes alone drops the

number of pdf files requiring analysis to less than one per minute, which can be easily handled by a stock

version of ShellOS (Snow et al., 2011).

89

The same cannot be said for JavaScript files. There were a staggering 3,628 JavaScript files (on average)

per minute with peak rates of over 8,000 per minute. Parsing the content of all these scripts in an effort to

design an appropriate filter results in packet loss in the HTTP parsing phase of semantic caching. Hence,

a potential route to filtering JavaScipt is to leverage meta-data for each script, such as the source IP and

domain combined with a reputation-based approach (Antonakakis et al., 2010). Given the current challenges

in analyzing Flash, JavaScript filtering is left as future work.

As noted earlier, there were hundreds of Flash objects per minute; large enough to require filtering, but

not so large that the mere act of parsing them all causes packet loss. An additional filtering mechanism was

required to reduce the overall number of Flash files analyzed. The academic literature offers a few options

that we considered. For instance, Ma et al. (2009) use URL features to classify requests as malicious, while

Cova et al. (2010) uses code obfuscation, specific API calls, and number of iframes as features. These

features are effective, but fall short when a new zero-day exploit surfaces that is not in line with the predefined

feature set. Existing approaches for filtering Flash files take a blacklisting approach, that unfortunately, are

evaded during the period of time when attackers exploit a new vulnerability without giving those systems

other hints of their malicious intent (e.g., such as multiple layers of obfuscation). More discussion on this

later in §5.3.

Instead, the framework was designed with a whitelisting approach in line with the goal of using honey-

clients to detect previously unseen, or zero day, attacks. The approach, which is based on file popularity,

does not make the same assumptions about feature sets as in prior work. The key insight is that the vast

majority of Flash files seen on a network are from advertising networks that utilize a relatively few number of

unique Flash files to display ads. These ads also flow along the network in a bursty pattern as a web page will

typically load multiple advertisements.

Given these insights, two filters are designed. The first filter takes a 16-byte hash of each Flash file

and checks a key-value store of known popular Flash hashes. If the hash appears in the data store it is not

analyzed. This basic check eliminates the need to analyze ads wherein the Flash files themselves are identical,

but they serve different ad content through the use of different parameters supplied to those files. On the

other hand, some ads have their content directly built into the Flash file itself. The approach to handling this

second type of ad is more involved. More specifically, with the second there is a simplifying assumption that

a small number of libraries are in use and that some subset of that code is used in each Flash file. Given that

assumption, Flash files observed are parsed on the network and extract individual function byte-code. The

90

byte-code is hashed at the function level to create a piecewise or fuzzy hash (Kornblum, 2006). Then, for

each new Flash file analysis is only triggered if it has at least one function that is not in the function-level

hash store. If an attacker attempts to masquerade their Flash exploit as a benign ad, it still triggers an analysis

based on the fact that some new code must be added to exploit a vulnerability.

Using these filters, the average number of Flash files analyzed per minute drops to less than 10 (from over

100 observed per minute). Even so, Flash offers some interesting challenges, and so to focus the presentation,

the evaluation centers on an in-depth analysis of Flash exploits in §5.3. At this point there is a cache of web

objects and a desire to perform a honeyclient analysis based on the observation of a potentially malicious

Flash file. It is time to investigate the details of how all the information collected up to this point comes

together to “replay” content for honeyclient analysis without ever contacting live exploit kit servers.

5.2.3 Step ¸: Client and Server Impersonation

Given some recently observed network traffic containing the interaction of a client and server, the

immediate goal at this stage in the overall architecture is to provide an environment in which one can observe

client system state changes, e.g., to enable honeyclient analysis. The central challenge is to do so without

further interaction with either the client or the server. The observant reader would note, however, that one can

rarely analyze a web-based exploit file like Flash in isolation. This is due to the fact that the surrounding

context of HTML and JavaScript provide requisite input parameters that enable the exploit to successfully

operate. To overcome this obstacle, context is recreated and client and server configuration is replicated based

on the previously observed information in the interaction between the client and server.

Client Impersonation: On the client-side there are two primary challenges: (1) replicating client system

configuration and (2) determining the originating HTTP request that resulted in the chain of requests leading

up to exploit file. To tackle the former challenge, the framework implements an independent network oracle

that collects browser and plugin information about every client on the network. Collecting client browser

information is a popular activity for attackers (Acar et al., 2013), which is turned into a valuable resource for

the framework’s purpose. Due to data collection limitations on the campus network, collection of browser

information is limited to the User-Agent and X-Flash-Version fields of HTTP requests, which

provides browser, OS and Flash versioning information. In corporate enterprise networks, one can use more

sophisticated collection techniques using JavaScript (Acar et al., 2013). Empirical results show that even

91

such limited information provides enough detail to assist with the dynamic configuration of honeyclients to

allow them to be successfully exploited.

Tackling the latter client-side challenge turned out to be far more involved. One reason is because a client

may have multiple web browser tabs open loading multiple web pages, or a single page loading several other

web pages that do not lead to the observed exploit file. To resolve the originating web page of an exploit

file a new algorithm is introduced, dubbed the chaining algorithm (Algorithm 3), that operates as follows.

During the two-level caching step of the workflow (step ¶ §5.2.1), the URL from each cached object is

timestamped and stored in a list keyed by the corresponding client’s IP address. Only URLs that represent

HTML documents are added to the list. When a web object (e.g., Flash file) triggers an analysis, the URL list

for the corresponding client IP address is traversed, and request URLs that are within a tunable time threshold

are sent to the next step.

Algorithm 3 The chaining algorithm searches for the root web page that loads the trigger to be analyzed in
the honeyclient.

1: URLList← List of URLs within timing threshold of trigger.
2: TriggerURL← URL of target trigger object.
3: ProxyAddr ← URL of web cache.
4: ClientConfig ← Client’s browser information.
5: browser ← HeadlessBrowser(ClientConfig, ProxyAddr)
6: CurrentBestMatch← ⊥
7: BestMatchURL← ⊥
8: for all (do Url← URLList)
9: ObjectTags← browser.SearchForObjectTags(Url)

10: Match← FindTriggerInTags(TriggerURL,ObjectTags)
11: if Match == EXACT MATCH then
12: CurrentBestMatch←Match
13: BestMatchURL← Url
14: BREAK
15: end if
16: if Match > CurrentBestMatch then
17: BestMatchURL← Url
18: CurrentBestMatch←Match
19: end if
20: end for
21: if CurrentBestMatch 6= ⊥ then
22: SubmitToHoneyClient(ClientConfig,BestMatchURL)
23: end if

Next, Algorithm 3 iterates through each request URL in the list, and loads them one-by-one into an

instrumented headless browser (lines 8–20) given the client’s browser and IP address information. A headless

browser is a web browser without any graphical user interface that allows rapid HTML parsing and JavaScript

execution without the overhead of an entire virtual environment. The headless browser uses the two-level

92

semantic cache as a proxy to request corresponding web resources. It parses web content and executes any

JavaScript searching for object, applet, and embedded HTML tags (line 9) that are used to load Flash,

Java, and Silverlight files. These tags are scanned for absolute and relative references to the exploit file URL

(line 10). If the exploit file reference is found in these tags, the request URL is selected as the originating

request (lines 10-15). Where available, the triggering web object’s referrer can be used to prioritize URL

selections for the algorithm.

If no URL leads to an exact match, then the best near-match or potentially malicious match is selected as

the originator. One determines near matches through domain, or by domain and path. A potentially malicious

match is determined through observed JavaScript behavior, including checks for anti-virus plugins, accesses

to known exploitable APIs, or attempts to load files on the local hard drive (see §5.4, for example).

One of the major challenges in the approach is that client browser caches can store highly cacheable web

objects, such as JavaScript, for days or months. As a result, the network monitor may not see all requested

web objects during the course of analysis. In order to deal with this situation, the web cache acts as a proxy,

retrieving web objects known to be JavaScript and caching them. All proxy requests are sanitized of any

client personal information.

It is prudent to note that there are cases where a single chain of HTML resources can lead to multiple

Flash files. Thus, before sending a URL list to the chaining algorithm for analysis, the network monitor waits

several seconds to allow other Flash files to be cached. Each Flash file is then sent with its corresponding

URL list to the chaining algorithm for analysis. A request URL is only scanned once, and if it is found to lead

to multiple Flash files the remaining chains associated with those files are not re-executed. The honeyclient

uses the request URL to load all Flash files and analyzes them all at once (line 22).

Server Impersonation: The most significant challenge with respect to impersonating the server-side of the

connection is that it is the headless browser and honeyclient—not the original network client—that makes the

web requests to the web cache. As a result, the client IP is passed to the web cache along with the URL. This

is done by encoding the client IP into the URL of the initial web request before passing it to the honeyclient.

The web cache decodes the URL, extracts the client IP, and maps the address to the honeyclient’s IP to handle

subsequent related web requests. The web cache uses the URL to check the network-wide cache. If the URL

is not present, the client-level cache is checked. If no web object is found, a 204 status code is returned.

93

Web objects are cached with their original HTTP headers; however, since objects are reassembled and

decompressed in the cache, some header information (e.g., Transfer-Encoding) is deleted or altered

(e.g., Content-Length) before being served to the client.

5.2.4 Step ¹: Honeyclient-based Detection

Once a URL is selected for analysis in step ¸, the associated client IP is encoded into the URL and the

new URL is sent to a honeyclient. In this context, a honeyclient is defined as any software posing as a client

that interacts with a server with the goal of determining whether that server is malicious. The framework is

designed to be modular allowing for any honeyclient that supports interacting with a proxy server.

The experiments in §5.3 make use of unmodified versions of Cuckoo Sandbox1 and ShellOS (Snow et al.,

2011; Stancill et al., 2013). These two approaches were chosen due to the fact that they collect very different

metrics and have different runtime requirements. Specifically, ShellOS analyzes a virtualized environment

for evidence of injected code (or shellcode) by executing potential instruction sequences from an application

memory snapshot directly on the CPU. ShellOS monitors the programmatic behaviors of a malicious payload.

ShellOS labels a sample as malicious if any of the following are true:

• The process memory contains a code injection or code reuse payload.

• The process memory exceeds a tunable threshold (500MB in the current analysis), e.g., a heap spray is

likely to have occurred.

• The process terminates or crashes.

Cuckoo monitors changes to a virtualized environment primarily by API hooking. API hooking is the

process of intercepting function calls, messages, and events in order to understand application behaviors.

Cuckoo Sandbox is used to label a sample as malicious if any of the following is true:

• The process uses known anti-detection techniques.

• The process spawns a another process.

• The process downloads an exe or dll file.

1 http://www.cuckoosandbox.org/

94

http://www.cuckoosandbox.org/

• The process accesses registry or system files.

• Network traffic contacts non-application related hosts.

• The process accesses potentially sensitive information in the browser process.

• The process modifies system security settings.

In order to separate the honeyclient approaches from their specific implementations, ShellOS is referred

to as as H1 and Cuckoo as H2 in §5.3. Evaluations show that monitoring system state with either of these

approaches significantly improves detection performance over content-based signatures.

5.2.5 Prototype Implementation

The prototype implementation consists of 8192 lines of custom C/C++, Java and Golang code. The

libnids library provides TCP reassembly. A Go IO reader interface was implemented for libnids to adapt

Go’s in-built HTTP request and response parsing to captured network traffic. The resulting HTTP objects

are stored using a multi-tiered hash map keyed by client IP address and the URL requested, as described in

§5.2.1. The global web cache and Flash filters are stored in the rocksdb key-value store, while triggers are

implemented with a combination of both response MIME-type and the “file magic” indicating a file type of

interest.

The sheer volume of Flash requests observed on the campus network necessitated filtering for Flash

file triggers, as described in §5.2.2. Flash parsing and fuzzy hashing is all custom code written in Go,

as is the implementation that impersonates the attack server. For the headless browser, HTMLUnit2, an

open source implementation was chosen and is written in Java while incorporating the Rhino JavaScript

Engine. HTMLUnit can mimic Internet Explorer, Firefox and Chrome and is controllable programmatically.

Furthermore, the browser is extensible allowing for the addition of customized plugins and ActiveX objects

to simulate various versions of Java, Flash, and Silverlight. Framework modules communicate with one

another using a web-based REST messaging service in addition to Redis, a key-value cache and store.

2 Available for download at http://htmlunit.sourceforge.net/

95

http://htmlunit.sourceforge.net/

5.3 Evaluation

To demonstrate the efficacy of the framework both an offline evaluation with known exploit kit traces and

an online analysis on a large network were conducted. In short, findings suggest that on-the-wire honeyclients

consistently out-perform signature-based systems by discovering exploited clients days and weeks ahead of

those systems. Furthermore, a single on-the-wire honeyclient server is capable of keeping pace with a large

campus network at its boundary.

The evaluation focuses on Flash files as triggers due to the sheer volume of Flash on the network (see

Table 5.1). File types such PDF and EXE are typically self contained and can be analyzed directly within a

sandbox without loading a full website (Snow et al., 2011). Like Flash, Silverlight and JAR files both require

the context of the loading website. With all the recent Java security vulnerabilities, Java is disabled in all

browsers requiring the user to directly allow a class or JAR file to run — the framework does not support user

interaction. Finally, as shown in Table 5.1, both Java and Silverlight are seen in such low numbers that they

do not pose the same operational challenges as Flash and are thus not considered further.

JavaScript is one of the most (Table 5.1) prevalent web objects on a network, and as such, presents

significant scalability challenges. While JavaScript-only drive-by-download attacks are not addressed in

this work, malicious JavaScript that is used to load a trigger file (e.g., Flash) is detectable. Furthermore, the

lessons learned from analyzing Flash will be invaluable in future work on full scale JavaScript analysis.

Silverlight 108
JAR 322
EXE 871
PDF 10,637
Flash 97,576
JavaScript 5,224,412

Table 5.1: Number of instances of various file types seen on campus on a busy school day.

5.3.1 On Detection Performance

Experiments in this section are conducted on a Dell Optiplex desktop with a 4 core i7-2600 CPU at

3.40GHz and 16GB RAM. Two different honeyclients are used for each sample –H1 andH2 – as described in

the previous section, with their default installations using Qemu and Virtual Box virtual machines, respectively,

on Ubuntu Linux 14.04 64-bit. The analysis time for H1 is set to 30 seconds, while H2’s timeout is 5 minutes.

Each honeyclient uses the same VM configuration – Windows 7 32-bit, either Internet Explorer (IE) 8 or

96

IE 10, and one of 8 different versions of Adobe Flash Player configured dynamically based on information

retrieved from the network oracle (see section §5.2.3). Honeyclient results are then contrasted to the results

of 50 antivirus engines3.

A total of 177 HTTP publicly available packet trace samples of exploit kits4 were inspected. Each trace

represents a packet recording of all HTTP traffic between a Windows 7 virtual machine and a real-world

website known to be injected with an exploit kit landing page, typically through an injected iframe. Over a

year of traces were collected between April 2014 and June 2015 representing successful exploits from 10

unique exploit kit flavors that evolved over this one year period. The dataset is representative of the diversity

of real-world attacks that would be encountered if the framework were to be deployed on any large network.

Exploit Kit Uses Payload Crashes Heapsprays Terminates Misses Total Detections Total Instances
Nuclear 24 0 1 1 3 25 28
Angler 32 1 0 0 0 33 33
Magnitude 4 2 1 0 1 6 7
Sweet Orange 21 0 0 0 0 21 21
RIG 16 8 0 2 0 18 18
Neutrino 9 1 2 0 0 9 9
Fiesta 28 1 0 0 9 29 38
Null Hole 1 1 0 0 0 1 1
Flashpack 7 8 1 1 1 12 13
Infinity 5 0 0 4 0 9 9

147 22 5 8 14 163 177

Table 5.2: Detection results for the framework when using honeyclient H1 on the 10 exploit kits by detection
type.

On-the-wire Performance of Honeyclient H1 Table 5.2 shows the evaluation results for the framework

using H1 with a breakdown of how each exploit kit is detected. In all cases, the exploit file and originating

request URL are identified (step ·) and forwarded to the honeyclient for inspection (step ¹). This configura-

tion has a 92% true positive rate. The vast majority of detections are from code injection payloads in process

memory, suggesting that the use of code injection payloads is still a prominent means of exploitation, despite

a multitude of commonly deployed endpoint defenses. The missed detections result from exploits that do not

make use of traditional code injection. Rather, they use a memory disclosure vulnerability to leak system API

addresses and then dynamically construct the injected code using this information. As a result, the so-called

PEB heuristic (Polychronakis et al., 2010) used by H1, which identifies the API address lookups of injected

code, is never triggered. H2, on the other hand, uses a disjoint set of features such as monitoring file drops,

process launches, and registry and file accesses through function-level hooking.

3 Using analysis available at http://www.virustotal.com
4 Samples available at http://www.malware-traffic-analysis.net

97

http://www.virustotal.com
http://www.malware-traffic- analysis.net

Exploit Kit Process
Launched File Drop Browser Crash File Access Misses Total Detections Total Instances

Nuclear 3 1 5 5 14 14 28
Angler 0 0 4 20 9 24 33
Magnitude 2 0 0 0 5 2 7
Sweet Orange 2 0 0 1 18 3 21
RIG 3 0 7 0 8 10 18
Neutrino 2 0 0 0 7 2 9
Fiesta 26 26 0 0 12 26 38
Null Hole 0 0 1 0 0 1 1
Flashpack 5 0 5 0 3 10 13
Infinity 2 1 5 0 1 8 9

45 28 27 26 77 100 177

Table 5.3: Detection results for the framework when using honeyclient H2 on the 10 exploit kits by detection
type.

On-the-wire Performance of H2 The results when using H2 with the framework are shown in Table 5.3.

This configuration only resulted in a 56% true positive rate. One reason for this lower detection rate is that

browser-based analysis is a relatively new feature in H2 and IE 10 is not fully supported at the time of writing

this paper. Digging deeper into the remaining missed detections, showed that the exploits are unhooking

four Windows API calls that are used by attackers to determine whether they are operating in a virtualized

environment.The exploits use injected code to first remove H2’s hooks, then call those APIs to determine

if the system is virtualized. Attacks immediately cease when a virtualized environment is detected in these

samples. Nevertheless, H2’s heuristics are still useful for exploit detection. For example, H2 is able to

detect the 14 exploit kits that H1 misses by observing accesses to the filesystem, process launches and file

downloads.

The results of the evaluation indicate that injected code detection is a robust feature for determining

maliciousness. It is used by 83% of exploits, and does not require successful exploitation for detection.

For example, exploits using injected code to detect virtualization are detected by H1 even if they decide

not to compromise the system. However, H1 cannot handle virtualization checks that are done through

JavaScript-based filesystem checks (§5.4) prior to constructing or unpacking the injected code. Indeed,

Angler would have been undetectable by H1 had it checked for files related to QEMU prior to unpacking the

code injection payload. As a result, H2’s file and registry access hooks, as well as environmental change

detection, are equally important. Using all features from both honeyclients enables the framework to achieve

a 100% true positive rate. Even so, it may be possible for attacks to evade these honeyclients by combining

unique methods of unhooking functions with injected code that does not perform API lookups.

98

Note that the design and implementation of specific honeyclient technologies is an ongoing research

topic, but the primary goal of the work is to provide a framework that effectively leverages such advancements

on-the-wire. To that end, these experiments confirm the efficacy of the approach by providing honeyclients

H1 and H2 with all relevant information needed to replay and reproduce the attacks. The framework achieves

a 100% success rate in this context.

Content-based Signature Comparison The performance of honeyclients using the framework is compared

with that of content-based signatures, e.g., antivirus engines. Each exploit file associated with all 177 HTTP

traces is checked against 50 signature engines and found that on average 50% of these engines labeled the

exploit file as malicious5. One could argue that perhaps some of these engines perform better than others and,

indeed, three of the engines detect all of the given exploit files, e.g., 100% true positive rate; however, such a

comparison against a honeyclient is biased and incorrect in practice – The honeyclients operate with only the

general knowledge of the behaviors they observe as they occur while content-based signature engines update

their knowledge base per each newly observed malicious file. There is little value in a system that does not

detect a malicious file at the time it is used to attack one’s network. The signature engine performance is

significantly worse than our on-the-wire honeyclient when comparing it to a signature engine using only

those signatures available at the time of the attack.

The experiments confirm the aforementioned hypothesis. The results of this analysis are depicted in

Figure 5.2. Figure 5.2a shows that at initial attack time, 69 of the exploits go completely undetected by all

engines. In other words, the best engine has no more than a 61% true positive rate. Another 70 are only

detected by a single engine, meaning that 98% of engines have no better than a 21% true positive rate. More

unsettling is that two different instances of the same exploit kit found a year apart still leads to at most 3

signature-engine detections. Finding a single instance of an exploit file does not appear useful for these

engines in finding newer exploit files from the same exploit kit, unless the files are exactly the same.

Another concerning revelation is how long it takes for signature-based engines to detect exploits after

initial observation. Six exploit kit instances from the sample set were randomly selected and analyzed to see

how many engines detected the instance over time starting from the initial observation to the last, as seen in

Figure 5.2b. In the case of Angler, Flashpack, Nuclear and Sweet Orange, 3 to 10 days passed before only 5

engines are able to detect the exploit. For Infinity, a month elapsed before signatures were distributed for

5 Note that some of these engines also incorporate a heuristic approach in their determination.

99

(a) Each exploit kit instance is represented by a point on the x-axis. The y-axis indicates how many signature-based
engines detected an instance for the first and most recent submissions.

(b) Comparing detection rates of 6 Flash exploit instances over time.

Figure 5.2: Analysis of the 177 exploits on VirusTotal.

100

each exploit instance. With the rapidly moving and morphing nature of these kits, the instances are no longer

active on the Internet by the time content-based signature engines have a rules to detect them. Honeyclients

have no pre-conceived notions about what is malicious, but rather execute new files in a dynamic environment

and monitor system state change and the factors described in section §5.2.4. The framework detects attacks

on-the-wire when it matters – as they happen.

In summary, the use of H1 and H2 with the framework detects 100% of attacks in our diverse sample set,

while the combination of 50 signature-based engines achieves 61% detection. Next, the results of live-testing

on-the-wire are presented with a report on false positives.

5.3.2 On Live Traffic Analysis

The next experiment focuses on detection in the face of significant background traffic. That is, experi-

ments in this section demonstrate that the framework can successfully detect exploits from the larger haystack

of benign traffic while maintaining a negligible false positive rate. The framework was run on a network for

a 5 day period in November 2015. During the evaluation period, the campus network was going through

infrastructure upgrades and the tap was susceptible to TCP reassembly errors due to asynchronous packet

routing and the fact that we did not have collection coverage on one of the network borders. As a result, our

evaluation focuses on the traffic loads that we were successfully able to reassemble and tcp reassembly errors

are discussed throughout the evaluation. We saw peak traffic loads of 2 Gbps during the analysis.

The tap utilizes an EndaceDAG data capture card on a Dell R410 rack-mounted server with 128 GB

RAM and three 8-core Xeon 2100 CPUs. Furthermore, the framework used the H1 honeyclient running with

five VMs, enabling five concurrent analyses supporting Chrome, Internet Explorer and Firefox browsers. The

online analysis focuses on H1 because the platform was developed internally and could easily be modified to

support multiple browsers and Flash plugins, while debugging any load related issues. While not using H2

will affect the overall detection rates, the setup sufficiently demonstrates the utility of the approach in a live

environment. Integrating the feature sets of H1 and H2 is left for future work.

On Flash Filters Before running the online test, one must establish the Flash filters. To do so, the Flash file

download patterns of the university network were investigated by monitoring the network for a three day

period in July 2015. Flash file hashes, piecewise hashes (described in section 5.2.2), and requested URLs

were collected.

101

Figure 5.3: The number of unique 2nd-level domain names, Flash files, and Piecewise hashes seen on the
network.

Over 270,000 Flash files were downloaded by network clients, as shown in Figure 5.3. The ad-related

domains serving the most total Flash files actually serve relatively few unique Flash files, suggesting that

ad sites reuse identical Flash files, but pass different parameters in order to render different ad content. For

example, adap.tv generates 21% of all Flash traffic on the network, but does so with only 13 unique files.

As depicted in Figure 5.3, only 19,000 unique Flash files are served during the test period. Further, only 6,000

of those unique Flash files contain distinctive function-level opcodes, as captured by piecewise hashing.

Over the course of the experiment, the network starts to reach a steady state where fewer and fewer new

Flash instances are observed. In 98% of the minutes analyzed, four or fewer new files are seen, while in 57%

of the minutes no new files appear at all.

On Packet Drops, CPU and Memory Usage The hashes gathered during the July experiment were aug-

mented with 745 file and 722 piecewise hashes of popular ads for a 5-day test in November — in total, the

Flash filter contains 38,904 file and 11,091 piecewise hashes. During the test an average of 23,000 unique IP

addresses were observed per day with up to 1,000 concurrent users. Throughput averaged 14,128 TCP flows

per minute with peak periods of 35,000 flows. The implementation reassembled TCP streams, parsed HTTP

flows, and cached all web objects (step ¶) without dropping a single packet, but did observe 4.25% HTTP

parsing errors.

102

Figures 5.4a and 5.4b show the average CPU and memory usage per minute for the network semantic

caching and triggering module. The module works by using a single packet collection and reassembly thread,

which launches a thread to parse and decompress each new TCP session. Parsed web objects are then passed

to a different thread for caching. As shown in Figure 5.4a, the collector averages a modest CPU utilization of

about 1.7 (170%), but can peak to 14 (1400%) for small time periods. CPU utilization refers to the percentage

of CPU cycles used by the process; therefore, the collector uses on average the equivalent of 1.7 processor

cores. Given the threading model, a system with many cores is recommended to best support the semantic

caching and triggering module. Memory usage (Figure 5.4b) averages 22 GBs but can reach peaks of 40

GBs, suggesting that the caching model significantly reduces memory requirements over time.

0

2

4

6

8

10

12

14

16

C
P
U

 U
ti

liz
a
ti

o
n

(a) Average CPU usage per minute.

5

10

15

20

25

30

35

40

M
e
m

o
ry

 U
sa

g
e
 i
n
 G

B

(b) Average memory usage per minute.

Figure 5.4: CPU and memory statistics for the semantic cache and trigger module.

On Cache Hit Rates and Chaining Algorithm Performance Over the five day period, the collector

reassembled 576,871 Flash objects of which 5,488 objects were analyzed using the chaining algorithm after

filtering. Figure 5.5a shows the average cache hits per minute of the headless browser for all web requests to

103

the two-level semantic web cache. The chaining algorithm had an average cache hit rate of 73% per minute

with the majority of cache misses due to three main reasons. It is estimated that most of these cache misses

are due to the TCP reassembly errors created from the collection infrastructure issues. Another issue is that

Flash can be loaded by other Flash files over intervals longer than the window set by the client cache meaning

the corresponding webpages are no longer present in the cache (more on this in the following paragraph).

Finally, a user may periodically visit a popular website that contains highly cacheable web objects such as

images, JavaScript files. These files are cached by the user’s web browser and thus might not be requested

along with the Flash file. These cache misses are mitigated by retrieving missing JavaScript files from their

source as discussed previously. On average there are 1,253 clients in the client cache with peak rates of 2,670

(see Figure 5.5b), while 90% of clients have less than 1,000 web objects in their cache at eviction. As a result,

setting the client LRU cache to size N=5,000 per client maintains a reasonable memory footprint.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc

e
n
t

C
a
ch

e
 H

it
 R

a
te

(a) Average cache hit rate per minute.

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

C
lie

n
ts

 i
n
 C

a
ch

e

(b) Average number of clients in the client cache.

Figure 5.5: Two-level cache statistics.

104

Table 5.4 shows that the chaining algorithm triggered a full sandbox analysis for 76% of all Flash files.

Although this might seem low, the remaining Flash came from three distinct categories. First were those

Flash files that require user interaction to load. For example, many Flash-based news sites will load an

image for a news report video, and will not load the actual Flash video until the user clicks on the image.

Another example is those pages that require user login credentials. Since we opt not to make use of any user

credentials, Flash objects requiring credentials cannot be analyzed.

Triggered Full Sandbox Analysis 76%
Interactive 8 %
Flash in Flash 11 %
Errors 5 %

Table 5.4: Chaining algorithm match rate.

The second category is what we call “Flash within Flash” that occur over a time window larger than what

is set by the client cache. For example, it is not uncommon that when a user watches a TV show using a Flash

player, the player will load ads at various times throughout the show. As a result, the context web objects that

loaded the Flash will no longer exist in the cache. In other cases, a page of ads may have been left undisturbed

(e.g., in another tab) for hours at a time while the ads cycle through various Flash files. Figure 5.6 shows an

estimate for the amount of time elapsed between “Flash within Flash” file references for those Flash files that

did not trigger a full sandbox analysis. Indeed, 90% of these flash files were loaded at least 8 minutes after

their root Flash file. While one could increase the time windows to help identify the corresponding roots,

note that, as shown in the public dataset, attackers want to load exploits as quickly as possible, in order to

increase the likelihood that the user will not navigate away from the site before infection. The decision to not

increase the window size is also tied to memory consumption. The approach is susceptible to low-and-slow

attacks, but that limitation is not unique to this work.

Finally, 5% of the Flash files do not trigger a sandbox analysis due mainly to TCP reassembly errors

that cause root webpages to be disregarded by the reassembler rather than cached. Note that trigger files that

are not properly reassembled are also disregarded from analysis meaning that one could miss a potentially

malicious file; however, the errors in the proof-of-concept prototype originate from from the infrastructure

issues and can be mitigated with a full network view.

105

Figure 5.6: Estimate of the amount of time elapsed between Flash to Flash file launches for those files not
subjected to a full honeyclient analysis.

In 0.05% of the errors, an important JavaScript file is encrypted with SSL, which is not currently

supported. Enterprises have the ability to inspect encrypted traffic at the border by using proxy servers

specifically designed to decrypt and monitor encrypted traffic.

Metasploit Exploit CVE Numbers Flash Version Used
adobe Flash pixel bender bof CVE-2014-0515 11.5.502.136
adobe Flash avm2 CVE-2014-0497 11.5.502.136
adobe Flash regex value CVE-2013-0634 11.5.502.136
adobe Flash uncompress zlib uaf CVE-2015-0311 16.0.0.235
adobe Flash net connection confusion CVE-2015-0336 16.0.0.235
adobe Flash worker byte array uaf CVE-2015-0313 16.0.0.235
adobe Flash pcre CVE-2015-0318 16.0.0.235
adobe Flash nellymoser bof CVE-2015-3043, CVE-2015-3113 17.0.0.134
adobe Flash shader job overflow CVE-2015-3090 17.0.0.134
adobe Flash shader drawing fill CVE-2015-03105 17.0.0.134
adobe Flash domain memory uaf CVE-2015-0359 17.0.0.134

Table 5.5: List of exploits injected into the campus network and detected by the framework.

On Detecting Malicious Flash As part of the online evaluation, a malicious landing page was hosted on

an external network6. The exploit server automatically detects the victim’s software configuration before

serving one or more appropriate Flash exploits. In total, 11 unique Flash exploits are hosted (see Table 5.5).

6 Specifically, Metasploit’s browser pwn2 module on an Amazon EC2 instance.

106

The “victim” system runs IE10 and Firefox on a Windows 7 VM within the campus network. The victim

was instrumented to repeatedly visit the landing page with different versions of Flash, triggering each of the

different exploits.

Since no packets are dropped in step ¶, it is not surprising that the framework detected all of these

exploit instances in face of all the noise produced by the benign traffic. At the same time, no false positives

were generated by the framework over the course of this 5 day period.

Aside from the injected metasploit malware, the approach flagged 6 malicious events, i.e. 1 to 2 per

day. These events were missed by the campus’ Information Technology Service Office (ITS), which makes

use of several commercial products to detect and block known malicious content on the network. The first

event barred striking resemblance to the Magnitude samples examined in this chapter. Two other instances

were similar to Angler in that they checked for the installation of anti-viral and monitoring applications such

as Norton and Fiddler. The final three instances were all heapspray incidents, with one emanating from an

online TV site, while the others were site banners. Since the majority of redundant Flash ads are filtered, the

main sources of benign flash included online games, tutorials, news websites, online TV, online textbooks,

website tracking, and adult content.

5.4 Case Study

This section describes a more in-depth analysis of the inner workings of the exploit kits in the empirical

evaluation. Although it was originally surmised that the landing pages would likely look like advertisements,

it was quickly noticed that the majority of pages were either composed of randomized English words or

encoded character sets (or both). Indeed, these pages are never meant to be seen by the user, but rather hidden

in a small iframe. Furthermore, buried in these pages are nuggets of data that the kit uses to help ensure it

is not being run in isolation. For example, embedded JavaScript might only fully execute if the color of the

third paragraph on the landing page is “red”.

JavaScript is often the language of choice for would be attackers as it can be used to check browser

configurations, and administer exploits either through browser or plugin vulnerabilities. The language is also

ideal for obfuscation because objects and their functions are represented as hash tables making obfuscated

code almost impossible to decipher without a debugger.

107

As mentioned above, almost all exploit kits conduct a reconnaissance phase to collect information about

the browser and to determine whether it is operating in a legitimate environment. Browser configurations are

determined using either the navigator.plugins API (Chrome, Firefox, and IE (11+)), or the proprietary

ActiveXObject in older versions of IE. A kit will use browser vulnerabilities to determine whether it is

operating in a virtualized environment, and will drop one or more exploit payloads onto the client system if

the coast is clear. Below some of the key characteristics of popular exploit kit families are described.

Fiesta The Fiesta landing page is known for checking for a number of vulnerabilities in the browser

and serving multiple exploits at once. The kit communicates with its server by encoding browser plugin

information directly into the URL that is sent to exploit server similar to a command-and-control channel for

a botnet. Fiesta’s attack of choice is to abuse weaponized PDF documents to drop one or more malicious

binaries onto the system. Indeed, one instance of the kit that dropped 12 binaries onto the system, while other

instances launched ping or a command shell.

SweetOrange SweetOrange likes to use JavaScript heapspray attacks, particularly by exploiting the rarely

used VML API in Internet Explorer7 to infect its victims. In three cases, the exploit kit launched the Windows

Control Panel (control.exe) presumably to turn off key services.

Angler and Nuclear Angler and Nuclear appear to be popular vectors for dropping so-called Ransomware.

Recent versions (circa June 2015) of the kits are known to check for Kaspersky and Norton browser plugins

and to use vulnerabilities in the IE browser to detect virtualization. For example, Figure 5.7 shows a snippet

of JavaScript code from an instance of the Angler exploit kit (June 2015). The code uses the HTML script

with an invalid language to check for commonly installed files related to VMWare, VirtualBox, Parallels,

Kaspersky, and Fiddler. If any of the aforementioned applications exist, Angler will not exploit the system.

Instances of Angler from April of 2015 do similar checking using JavaScript’s Image object as a medium to

gain disk access.

These exploit kits also like to embed JavaScript directly into the HTML of the landing page. Indeed,

entire JavaScript libraries (like the script in Figure 5.7) are embedded inside HTML tags such as p. The

JavaScript is decoded by a number of obfuscated method calls, and the resulting code is executed using an

7 Described in the whitepaper at http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_
Windows8_Pwn2Own_2013.php

108

http://www.vupen.com/blog/2 0130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/2 0130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php

1 f u n c t i o n xTrue (rp1 , r r) {
2 var r s 1 = ’ r e ’ ,
3 ac = [’QUPFE ’ , ’ PTKytUJ ’ , se tQuery ,
4 s e t D a t a b a s e] ;
5 i f (window [ac [r r]]) re turn ;
6 var e l = document . c r e a t e E l e m e n t (’ s c r i p t ’) ;
7 i f (! window [’ MSInputMethodContext ’])
8 e l [’ l a n g u a g e ’] = ’ some ’ ;
9 e l . o n lo ad = f u n c t i o n () {

10 ac [r r + 2] () ;
11 } ;
12 e l . s r c = r s 1 + ’ s : / / ’ + rp1 + ’ / # 1 6 / # 1 ’ ;
13 e l [’ o n r e a d y s t a t e c h a n g e ’] = f u n c t i o n () {
14 var s r = ’ r e a ’ + ’ d y S t a t e ’ ,
15 r = t h i s [s r] ;
16 i f (r == ’ c o m p l e t e ’ | | r == ’ l o a d e d ’) {
17 ac [r r + 2] () ;
18 }
19 } ;
20 document . body . appendCh i ld (e l) ;
21 }
22
23

24 var p a t h s y s 3 2 = ”\\Windows\\System32\\ d r i v e r s \\ ” ,
25 vm s = [”vm3dmp” , ” vmusbmouse ” , ”vmmouse” ,
26 ” vmhgfs ” , ” VBoxGuest ” ,
27 ”VBoxMouse” , ”VBoxSF” , ” VBoxVideo ” ,
28 ” p r l t i m e ”] ;
29

30 f o r (var i = 0 ; i < vm s . l e n g t h ; i ++) {
31 xTrue (p a t h s y s 3 2 + vm s [i] + ’ . s y s ’ , 0) ;
32 }

Figure 5.7: JavaScript snippet from Angler Exploit Kit that checks to see if files exist locally.

eval function call. As a result, current generation exploits must be analyzed within the larger context of the

website.

5.5 Limitations

Many of the evasion techniques used against the framework are inherent to honeyclients in general and

are being actively researched in the security community. For example, as shown in the use case, exploits will

often check for evidence that the environment is a virtual machine. In the short term, one can help combat

this check by installing VM libraries in non-standard locations or by attempting to detect and flag potentially

evasive behavior. In the long term, however, a better solution would be to adopt ideas from Kirat et al. (2011,

109

2014) to build sandboxes on “bare-metal” that are able to revert system changes without relying on hardware

virtualization.

An obvious attack against sandbox-based approaches is for the attacker to inject delays into the exploit

kit code in the hopes that the sandbox execution will timeout before the exploit is executed. Such timeouts

can be risky for the attacker because the user of the targeted machine could surf to a new page before the

delay has transpired. One way to combat such delays is by instrumenting the headless browser to record

sleep times and ensuring that the sandbox runs for at least that time period. Sandboxes in general can also

attempt to patch out sleep functionality or adjust the time value it presents to the software, but either of these

techniques can still be defeated if malware uses external sources of time information, such as the Internet, to

verify that the embedded delays have completed as expected8. Thwarting such attacks remains an active area

of research and this limitation is not specific to the approach (Lindorfer et al., 2011).

Attackers can also force a user to interact with the system in some way before triggering an exploit.

Such an attack would be difficult to detect in the framework, which is designed to work without manual

intervention. Extensions to the framework could simulate user interaction, such as automated button clicks,

but this is left as future work. Also, if an attacker is willing to require user interaction in order to carry out

an attack, many other non-exploit attack vectors exist, such as simply tricking a user into downloading and

running an executable file.

Alternatively, an exploit could also alter URLs using some randomized token based on local settings.

One approach to thwarting such attacks is to perform URL similarity matching (as done extensively in the

literature (Stringhini et al., 2013)) while instrumenting the headless browser to pass file types to the web

cache in order to improve the matching process.

An attacker could try to overwhelm the framework by loading several Flash files at once with only one of

the files being malicious. The chaining algorithm tries to mitigate this attack by analyzing URLs that lead to

multiple exploitable files only once. This is by no means foolproof, but large spikes in Flash files could also

be recorded and presented to the security analyst for further analysis.

As discussed in §5.3, the framework does not directly support Flash loaded within other Flash files

because the time window between file loads can be larger than the time window over which HTTP traffic is

8 See Sleeping Your Way Out Of The Sandbox, SANS Institute Reading Room, accessed August 16 2015

110

cached. In such a scenario, the attacker is relying on the user staying on a web page for a protracted period of

time in a low-and-slow style attack.

5.6 Discussion and Lessons Learned

In this chapter, a network-centric approach to accurately and scalably detect malicious exploit kit traffic

by bringing a honeyclient to-the-wire was presented. By caching, filtering and replaying traffic associated

with exploitable files, the approach uses knowledge of the clients in the network to dynamically run exploits

in a safe and controlled environment. The framework was evaluated on network traces associated with

177 real-world exploit kits and demonstrated that one could detect zero-day exploits as they occur on the

wire, weeks before conventional approaches. These analysis was supplemented with case studies discussing

interesting aspects of the detected behaviors in the studied exploit kits. Lastly, a preliminary analysis in an

operational deployment shows that our techniques can handle massive HTTP traffic volumes with modest

hardware.

Key Take-Aways

1. Current machine learning and signatured-based approaches to detecting drive-by downloads make the

implicit assumption that new malicious sites seen on the Internet will look similar to something we have

already seen. Unfortunately, given that a motivated human is the adversary, such an assumption is not

valid, especially in targeted attacks where the attacker only needs to break into a single network and can

use a one-off attack to do so. Signatures are still highly valuable for protecting or networks; however,

we need to fix the signature generation model. Currently, large companies with clouds of honeyclients

generate signatures and blacklists in an offline approach. We need approaches that generate signatures

at the network edge while intrusions are occurring so that signatures can be sent to other networks to

protect them. If we continue to treat intrusion detection as a purely data mining or machine learning

problem, we will always remain several steps behind the attacker.

2. One of the ways the defender can be less reactive to the attacker is to utilize behavioral techniques for

determining maliciousness such as the honeyclient-on-the-wire presented in this Chapter. Behavioral-

based features describe how a website behaves when interacting with a client. These features are

more powerful because they are more distinctive, and harder to change than appearance based features

such as those presented in Chapter 4. Given that a smart attacker creates malicious websites, we must

111

continually be challenging our assumptions in what constitutes malicious behavior and propose new

ways to break our own detectors.

3. In bringing honeyclients to the wire, the three key challenges are scalability, conducting a full scale

analysis with context, and client/server impersonation. We can improve scalability using a combination

of filtering and computing resources. It is pertinent to note that any biases placed in the filter will affect

the utility of the honeyclient as a whole. For example, filters based on machine learning (Provos et al.,

2008, 2007; Canali et al., 2011) bias the honeyclient to only analyze websites that “look” malicious.

Given that such filters have high false negative rates due to the assumption that new malicious sites

look similar to ones already seen, whitelisting approaches are a better option.

112

CHAPTER 6: DETECTING BOTS USING SEQUENTIAL HYPOTHESIS TESTING

The Ponemon Institute reported that the average time taken for a company to identify an attack was

256 days after initial infection (Ponemon Institute, 2015). Indeed, there is no foolproof solution to block all

attacks and the reality is that networks will be infected. Worse yet, there are few telltale signs that a machine

is infected from a network vantage point. One such sign is the type of DNS traffic emanating from a machine.

DNS can act as a bell-weather to the health of the network and by monitoring DNS traffic, one can uncover

attacks. For example, Paxson et al. (2013) created a technique to identify DNS-based data exfiltration attacks

using lossless compression. The Internet Engineering Task Force proposed DNSSEC (Arends et al., 2005)

in order to digitally sign DNS messages and identify DNS cache poisoning attacks (Kaminsky, 2008; Son

and Shmatikov, 2010), whereby the attacker makes a DNS cache resolver cache the wrong IP address for a

domain name entry. Finally, Antonakakis et al. (2010) describes a machine learning approach to identify

infected machines that use DNS to locate the remote attacker machine (called a command-and-control server)

to setup the covert channel without being IP blocked by a blacklist.

This chapter focuses on the latter problem, highlighting a growing abuse of enterprise name servers

whereby infected clients use automated domain-name generation algorithms to bypass defenses. The chapter

investigates how to use the contextual information from per client DNS data to detect bots that use automated

domain-name generation algorithms to locate their contact command-and-control infrastructure for updates

and relaying information. As described in Chapter 2, an automated domain-name generation algorithm is

designed to generate thousands of random domain-names given a globally accessible key. Only a few of the

domain names will actually be registered, and contain IP addresses of command-and-control servers. The

defender does not know which domain names will be registered, and therefore cannot block the bot without a

high cost.

Even more problematic for defenders, algorithmically generated domain names (AGD) are now also used

for legitimate purposes. For instance, content distribution networks (CDNs) use such techniques to provide

identifiers for short-lived objects within their networks, or to perform latency experiments (Dilley et al.,

113

2002). Additionally, services like Spamhaus and Senderbase regularly use algorithmically generated domain

names to query DNS blacklist information. The security community has largely dismissed the prevalence of

these legitimate uses of such domain names, and in doing so, overlooked their effect on the ability to detect

malfeasance based solely on information gleaned from a domain name. Given that most methods to detect

malicious algorithmically generated domain names leverage techniques that compare distributions of domain

name features extracted from benign and malicious domains, algorithmically generated domain names used

in benign applications can have a large impact on the accuracy of these techniques.

More specifically, this chapter explores techniques for identifying infected clients on an enterprise

network and focus on their operational impact in terms of accuracy, timeliness of detection, and scalability to

large networks. First, the efficacy of existing botnet detection techniques that rely solely on the structure of the

domain name as a distinguishing feature in malware identification are explored. The techniques suggested in

recently proposed detection mechanisms (e.g., (Yadav et al., 2010; Yadav and Reddy, 2011)) are implemented

and evaluated on traces collected at a large campus network. The impact of the rise of benign applications

(e.g., for performance testing in Web browsers and for location-based services prevalent in CDNs) has on

these detection techniques is also evaluated. The application of state-of-the-art detection techniques lead to

high false positive rates, even when classifiers are enhanced with a combination of smoothing and whitelisting

strategies. Moreover, successful classification only occurs after extended observation periods—which directly

impacts the practical utility of these approaches.

To address these shortcomings, the chapter proposes an approach that exploits the fact that botnets

tend to generate DNS queries that elicit non-existent (NX) responses. The work leverages the fact that a

noticeable side-effect of a bot’s attempts to evade blacklisting is its tendency to have a wider dispersion of NX

responses across DNS zones (compared to benign hosts). The technique is based on sequential hypothesis

testing (popularized by Jung et al. (2004) for detecting external scanners) to classify internal client machines

as benign or infected. In doing so, some key challenges are addressed, including the need to differentiate

between benign and malicious DNS queries originating from the same client, and the ability to scale to

high traffic loads — the proposed approach meets both of these challenges. Furthermore, one of the unique

characteristics of the approach is that by focusing solely on NX traffic (and using novel filtering and domain

collapsing techniques), it can achieve high accuracy on a fraction of the overall DNS traffic (e.g., 4%) which

scales to larger networks. By contrast, existing approaches use all DNS traffic during analysis. In an effort

114

to reduce the cognitive load on a security analyst (performing a forensic analysis on the hosts flagged as

suspicious), an approach to cluster the output of the detector is provided.

The rest of the chapter is organized as follows. In §6.1 explores the background of algorithmically

generated domain names and discuss pertinent related work. §6.2 covers our data collection infrastructure

and summarizes the data used in the evaluation. In §6.4 a detailed evaluation of existing techniques using

domain name features and their shortcomings is provided. A new detection approach is proposed in §6.5,

followed by a detailed evaluation on archived data in §6.6. Operational insights on the deployment of the

technique are described in §6.6.3, with key take aways in §6.9.

6.1 Literature Review

A recent method for identifying malicious traffic is to take advantage of historical information about the

domain name being requested. As DNS-based reputation systems have been more widely deployed, attackers

have turned to algorithmically generated domains (with short lifetimes) to circumvent these blacklists. As

this cat and mouse game has continued, more timely blacklist and reputation-based systems have emerged

(e.g., (Felegyhazi et al., 2010; Bilge et al., 2011; Antonakakis et al., 2010, 2011)). Most of these proposals use

features that are time-based, answer-based, or TTL-based to detect and model domains involved in malicious

activity. Additionally, network-, zone-, and evidence-based features of DNS data are also used. For instance,

both Antonakakis et al. (2011) and Yadav et al. (2010) take advantage of the fact that for high availability,

botnets tend to map several domains to an IP address (or vice-versa). Defenders can therefore use the web of

domains and IPs to uncover the underlying network infrastructure used by the botnet. Thomas and Mohaisen

(2014) found that AGDs could be clustered globally by comparing the list of recursive name servers that

requested the domains within a time window while Tu et al. (2015) found that bots had similar periodicity

in DNS queries. Grill et al. (2015) notes that bots try to resolve more domains during a small time interval

without a corresponding amount of newly visited IPs and build a statistical approach around that fact.

Other auxiliary information can also be used. Hao et al. (2011), for example, use the fact that domains

are registered “just in time” before an attack. More recent work (Yadav et al., 2010; Yadav and Reddy, 2011;

Antonakakis et al., 2012; Villamarn-Salomn and Brustoloni, 2008; Jiang et al., 2010; Mowbray and Hagen,

2014) focuses on the fact that bots tend to generate lookups to hundreds or thousands of random domain

names when locating their command and control server. Yadav and Reddy (2011) rely on the burstiness of NX

115

responses as well as the entropy of domain name character distributions to classify bot clients. Antonakakis

et al. (2012) use a five-step clustering approach that clusters NX domains based on client-level structural

information, and then incorporates network-level information to better classify AGDs. Jiang et al. (2010)

cluster failed DNS queries and attempt to identify subclusters with specific, presumably malicious, patterns.

(Mowbray and Hagen, 2014) relies solely on domain name length to cluster AGDs.

Unlike the aforementioned works, the proposed approach does not rely on domain structure or clustering

techniques to identify bots. Rather, this work focuses entirely on the NX traffic patterns of individual hosts.

As a result, the approach is lightweight, and can accurately identify bots upon seeing far fewer unique domain

names than prior work. NX traffic is used exclusively, thereby enabling realtime analysis by using only a

fraction of all DNS traffic observed.

The application of sequential hypothesis tests (Wald, 1947) in security context is by no means new.

Jung et al. (2004), for example, proposed a threshold random walk (TRW) algorithm to detect scanners on a

network. The insight behind their approach is that external scanners are more likely to contact inactive IP

addresses than benign hosts, and so a sequential hypothesis test can be used to observe success and failure

events in such an environment. Each success or failure event moves a score towards one of two thresholds:

one confirming the null hypothesis and another confirming the alternative hypothesis. After a number of

events that are largely dictated by the TRW parameters, the score usually crosses a threshold, confirming

one of the hypotheses. Similar ideas have been used to detect the propagation of worms (Jung et al., 2008;

Schechter et al., 2004; Weaver et al., 2007), to identify opaque traffic (White et al., 2013), and to find node

replication attacks in wireless networks (Ho et al., 2011).

6.2 Collection Infrastructure

To aid in the pursuit of understanding AGD-based bot communication and develop an algorithm to detect

bots, DNS traffic was collected and analyzed from several name servers at UNC’s campus for a week in

March 2012 as well as an 8 month period from September 2015 to April 2016. The monitored name servers

served as the primary name servers for the entire wireless network as well as student residences and several

academic departments around campus. In 2012 the servers served approximately 76,000 internal clients on a

weekday and 50,000 clients on the weekends. The analysis in 2015 was done on a subset of the campus DNS

traffic that included the campus wireless networks, and a subset of the campus academic units which served

116

approximately 26,000 internal clients (and 170,000 external clients) on a weekday, and 21,400 clients (and

111,000 external clients) on a weekend.

Upstream ISP

Anonymized
Data

Storage, Indexing Engine

Data Collector

Data Storage
encrypted

DNS Server DNS Server

DNS Tap

Campus NetworkCampus Backbone

DNS Traffic

DNS Monitor

Processors

DNS TapDNS Tap

Anonymized
Traces

Figure 6.1: DNS Monitoring Infrastructure

6.3 Data Summary for Measurement Period I

The collection infrastructure (see Figure 6.1) consists of a DNS trace collector and dissector. The DNS

servers monitored sits behind a load balancer, and all wireless clients using the campus network are assigned

to one of these name servers during their DHCP registration. DHCP leases on this network are bound to the

client’s MAC address, and remain in effect for at least a few weeks. The DNS traffic from these servers is

processed using a custom DNS engine. The packets in the trace are anonymized and encrypted while resident

on disk.

117

Three consecutive days (March 18-20) were chosen for analysis for analysis. Table 6.1 summarizes

some of the key statistics. The increase in traffic on March 19th corresponds to the start of the work week.

Table 6.1 also shows that approximately 3% of all DNS queries result in non-existent or NX responses. A

DNS server sends an NX response to a client when an entry for the domain queried by the client does not

appear in the global DNS database. A mistyped domain name, for example, will lead to an NX response.

Algorithmically generated domains comprise a surprisingly small amount of overall NX traffic, but they can

have a large impact on the overall health of an enterprise network.

Apart from the DNS data collected on campus, a list of 2,500 known botnet AGDs was collected

from publicly available blacklists. In particular, the list contains bots that are known to use DGAs for

communication. Table 6.2 provides a summary of the bot families and their distribution within the blacklist.

Besides the five well-known bot families represented in Table 6.2, the list was supplemented with a set of

newly discovered domains. The discovered domains were found by grouping DNS responses that originated

from name servers that were used by the five well-known bot families. The domains in the list are used to

study features used by existing techniques to detect DGAs, as well as compare the effectiveness of these

techniques to approach described in this chapter.

March 18 March 19 March 20
of Internal DNS Clients 49.7K 75.4K 77.1K
of DNS Queries 37.3M 61.2M 60.3M
of NX response 1.3M 1.8M 1.7M
of distinct domains 1.5M 1.8M 1.8M
of distinct zones 373.4K 528.2K 566.4K
of distinct NX domains 190.4K 216.2K 220.4K
of distinct NX zones 15.3K 22.1K 24.2K

Table 6.1: DNS traffic stats for three days in March 2012.

Bot Family # Samples Sample of generated domain name
Bobax 1079 nghhezqyrfy.dynserv.com
Conficker 728 rxldjmqogsw.info
Cridex 389 frevyb-ikav.ru
Zeus 300 pzpuisexhqc69g33mzpwlyauirdqg43mvdt.biz
Flashback 100 fhnqskxxwloxl.info
Discovered 314 brmyxjyju.org

Table 6.2: Summary of bot samples used in the compiled blacklist.

118

0 10 20 30 40 50 60 70
Domain Length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

google
cloudfront
fbcdn
benign

Figure 6.2: CDF of domain name lengths for benign domains

6.4 Classification based on Features of a Domain Name

Existing techniques focus on properties of the name in order to identify and cluster algorithmically

generated domain names. For instance, Antonakakis et al. (2012) and Yadav et al. (2010) used the length of a

domain name as a feature to distinguish malicious domains from benign domains. Figures 6.2 and 6.3 show

the distribution of the lengths of domain names for a set of benign and malicious domains.

The benign domains shown in Figure 6.2 include domains for known CDNs and other benign domains

from alexa.com. Notice that domain names from alexa.com exhibit uniformly distributed lengths

between 5 and 20 characters, while CDNs exhibits longer lengths clustered around a few discrete points. The

lengths of domain names used by botnet (in Figure 6.3) also cluster around a few discrete points; likely as a

result of the generation processes they use. This similarity between the lengths of botnet domain names and

benign CDN domain names suggests that the length of a domain name might not be a strong distinguishing

feature.

119

0 5 10 15 20 25 30 35 40 45
Domain Length

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

conficker
cridex
bobax
zeus

Figure 6.3: CDF of lengths for botnet-related domains

Other proposals incorporate the use of similarity metrics for detecting malicious AGDs. In what follows,

three similarity metrics used in current proposals are revisited — namely Kullback-Leibler (KL) divergence,

Jaccard Index (JI), and Levenshtein distance.

KL Divergence One approach for detecting algorithmically generated domain names is to use the Kullback-

Liebler (KL) divergence to compare character frequency distributions. Kullback-Liebler divergence (Kullback

and Leibler, 1951) measures the relative entropy between two probability distributions. Yadav et al. (2010),

for example, use a maximum-likelihood classifier (R.O. Duda and Stork, 2007)—with KL as its distance

metric—for detecting malicious AGDs. The intuition is that malicious algorithmically generated domain

names have character and n-gram frequency distributions that are significantly different from character

distributions derived from benign domains.

Jaccard Index The Jaccard Index is a similarity metric that counts the bigram occurrences in two strings and

measures the amount of overlap between them. The idea is that randomized strings (or supposedly-malicious

domain names) should have a set of bigrams that is different than bigrams in a normal (non-malicious)

English-based string.

120

Levenshtein Distance Edit distance is a measure between two strings, which counts the number of insertions,

deletions, and substitutions to transform one string to another (R.O. Duda and Stork, 2007). In the case of

algorithmically generated domains, the assumption is that because a group of malicious domain names are

randomly generated, their average edit distance should be higher than a group of non-malicious names.

Each of the similarity metrics operate on a group of domain names in order to achieve detection accuracy.

Yadav et al. (Yadav et al., 2010; Yadav and Reddy, 2011), for example, recommend 200 to 500 domain names

for best results. To create the necessary clusters for evaluation, the method suggested in (Yadav et al., 2010)

is applied wherein clusters are created by mapping domain names to their corresponding server IP addresses

over a specific time window. This is done because botmasters tend to register multiple domains to the same

server IP address.

In order to evaluate these approaches, 42,870 domain name clusters from March 19, 2012 were analyzed

and contained 13 sink-holed instances (or clusters) of the conficker bot. A sinkhole is a name server that

redirects malicious traffic to some address under control of the defender, in order to contain the malware.

Each cluster was manually inspected to ensure no other bot instances were found. The ground truth was

supplemented with four clusters (each containing 300 entries) of AGDs sampled from the list of known

botnets (see §6.3). Additionally, since the Kullback-Liebler and Jaccard Index based classifiers require both

benign and malicious training models, the benign training model was built using the top 10,000 domains

from alexa.com and the malicious training model using the list of 2,500 domains from the blacklist.

Findings Table 6.3 shows the results of using a Kullback-Leibler-based classifier, which achieved the highest

accuracy in the evaluation. The classifier is able to identify the presence of all of the malicious samples, but

even then, it has an exceedingly high false positive rate of 28%. A large fraction of CDN traffic is incorrectly

classified as malicious, which is one factor contributing to the high false positive rate. A natural way to

improve the performance of the classifier would be to whitelist popular CDNs (Yadav and Reddy, 2011).

Figure 6.4 shows the result of using the different classifiers with varying domain cluster sizes and whitelisted

CDNs. It was found that, even with filtering, the KL classifier achieves a 12.5% false positive rate with a

cluster size of at least 200 domain names. As shown later in Section 6.4.1, such large cluster sizes have

implication on detection rates, processing speeds, and accuracy.

The classifier using Jaccard’s Index achieved the second highest accuracy amongst the techniques

evaluated; however, as Figure 6.4 suggests, the accuracy came at a high cost—a true positive rate of 92%

121

Domain Source Daily
True Positives False Positives

Bot Traffic 1.0 0.28
Facebook (CDN) 0.65 0.35
Cloudfront (CDN) 0.36 0.64
Amazon (CDN) 0.72 0.28
Google IPv6 (CDN) 0.18 0.82

Table 6.3: Results of the KL classifier for Mar.19, 2012.

with corresponding false positive rate of 14%. Furthermore, the Jaccard-based classifier is the slowest of all

techniques tested, which limits its ability to be used in an online fashion.

Figure 6.4 also shows the classification results using an edit distance approach. The plot shows the

true and false positive rates when varying the edit distance threshold. In that evaluation, the edit distance

values were generated for groups of botnet and benign domain names within the training sets and used

that to determine a threshold value that would separate normal traffic from malicious AGDs. Interestingly,

70% of the benign groups had an average edit distance score of eight or below. Of the malicious groups,

conficker averaged a score of eight, while bobax and cridex score between nine and eleven. Zeus

was a consistent outlier with scores above 35.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Jaccard
Edit-Distance
KL

Figure 6.4: ROC Curves for Jaccard Index, Edit Distance and KL Divergence using the daily dataset and
CDN filtering.

122

6.4.1 Shortcomings of Existing Methods

Overall, the application of a KL-based classifier performed reasonably well, providing classification

decisions for all the domain clusters within a few minutes. The problem, however, is that it required on

the order of a few hundred domain names in each cluster to provide accurate results. To see why this is

problematic, note that it may take several hours before a cluster meets the minimum threshold required

to achieve the classification results given in Table 6.3; in particular, during a one week period there were

eight conficker instances, one cridex and one spambot. Two of the conficker instances queried

less than 200 randomly generated domain names, while the other six instances took almost three hours to

query 100 domain names, and 3.5 days to query 500 domain names. The cridex and spambot instances

generated less than 10 domain name lookups during 3.5 days. This rate of activity requires many days of

monitoring before classification can occur, rendering the technique unusable for detecting and blocking

malicious activity from these sources.

From an operational perspective, the Jaccard Index approach is appealing because of its ease of imple-

mentation and reasonable performance. The simplicity, however, comes at the cost of computation time:

it took several hours to classify all the domain clusters in just one day’s worth of DNS traffic. Another

disadvantage is the fact that the approach is highly sensitive to the training dataset and the number of domain

names in the cluster being evaluated.

Methods based on edit distance, on the other hand, have the advantage of not requiring training data

and can operate on small clusters of names. That said, the edit distance approach was the least effective of

the techniques evaluated. Its high false positive rates are tightly coupled with the difficulty of selecting an

appropriate threshold value. For real-world deployments, the need to constantly monitor and fine tune these

thresholds significantly diminishes its practical utility. This technique was also extremely slow, taking several

hours to process the dataset.

The analyses indicate that the examined approaches are not robust enough to be used in production

environments. This is particularly true if additional auxiliary information (e.g., realtime reputation information

from various network vantage points in the DNS hierarchy (Antonakakis et al., 2012)) is not being used

to help address real-world issues that arise when dealing with the complexities of network traffic—where

friend or foe can be easily confused. These techniques all make the fallacious assumption that anomalous

123

behavior equates to malicious activity and so the use of algorithmically generated names for benign purposes

undermines this assumption.

6.5 Approach

To address the accuracy and performance issues inherent in the aforementioned approaches, a lightweight

algorithm is presented and based on sequential hypothesis testing, which examines traffic patterns rather

than properties of a domain name in order to classify clients. The intuition behind the approach is that a

compromised host tends to “scan” the DNS namespace looking for a valid command and control server. In

doing so, it generates a relatively high number of unique second-level domains that elicit more NX responses

than a benign host. As a result, the problem lends itself to using sequential hypothesis testing (Wald, 1947) to

classify clients as bots based on online observations of unique NX responses.

The general idea is illustrated in Figure 6.5. In Step Ê, the amount of data analyze is reduced by over

90%, retaining only NX response packets. Next, the client IP address and zone of the domain name are

extracted from each packet (Step Ë) and then NX responses filtered for well-known (benign) domain names

(Step Ì). The zone information of the remaining domain names are used to adjust the client’s score. The

score is adjusted up or down based on whether the client has seen the zone before (Step Í). Finally, the new

score is compared to both a benign threshold and a bot threshold. If either threshold is crossed, then the client

is classified; otherwise, the client remains in the pending state waiting for another NX response (Step Î).

DNS Packets

Hypothesis Test

Update Client Score

15.0

!

Classify Host

Benign, Bot,

Pending

Client

Bot

Benign

Pending

"

Extract Client IPs and

DNS Zones

#
IP DNS

Zone

NXNX

Capture NX

Responses

$

NX

NX

Filter Benign NX

Packets

%

NX

NX

NX
NX

Figure 6.5: High-level overview of the workflow.

The goal is to accurately classify a host as a bot or benign while observing as few outcomes as possible.

To that end, the problem is approached by considering two competing hypotheses, defined as follows:

124

Null hypothesis H0 = the local client l is benign.

Alternative hypothesis H1 = the local client l is a bot.

A sequential hypothesis test observes success and failure outcomes (Yi, i = 1, ...n) in sequence and

updates a test score after each outcome. A success pushes the score for client l towards a benign threshold

while a failure pushes the score towards a bot threshold. In the current context, a success and failure outcome

are described as follows:

Success Yi = 0 Client l receives an NX response for a DNS zone it has already seen.

Failure Yi = 1 Client l receives an NX response for a unique DNS zone.

For simplicity, a DNS zone is considered as any portion of the DNS namespace that is administered by a

single entity (e.g., the google.com zone is administered by Google).

The size of the step taken towards the thresholds is decided by the values θ0 and θ1. The value of θ0 is

defined as the probability that a benign host generates a successful event while θ1 is the probability that a

malicious host generates a successful event. More formally, θ0 and θ1 are defined as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1
(6.1)

Using the distribution of the Bernoulli random variable, the sequential hypothesis score (or likelihood

ratio) is calculated as follows:

Λ(Y) =
Pr[Y |H1]

Pr[Y |H0]
=

n∏
i=1

Pr[Yi|H1]

Pr[Yi|H0]
(6.2)

where Y is the vector of events observed and Pr[Y |Hi] represents the probability mass function of event

stream Y given Hi is true. The score is then compared to an upper threshold (η1) and a lower threshold,

(η0). If Λ(Y) ≤ η0 then accept H0 (i.e., the host is benign) , and if Λ(Y) ≥ η1 accept H1 (i.e., the host is

malicious). If η0 < Λ(Y) < η1 then no decision is made (i.e., pending state) and one must wait for another

observation.

125

The thresholds are calculated based on user selected values α and β which represent the desired false

positive and true positive rates respectively. The parameters are typically set to α = 0.01 and β = 0.99. The

upper bound threshold is calculated as:

η1 =
β

α
(6.3)

while the lower bound is computed as:

η0 =
1− β
1− α

(6.4)

A key challenge in this setting is that because internal hosts are monitored, all client-side DNS traffic is

visible, including the benign queries (e.g., from web browsing sessions) as well as the malicious queries of

the bot. However, since the benign activities mostly result in successful DNS responses, one can safely filter

such traffic and focus on NX responses (where the bot has more of an impact). This strategy has the side

effect of discarding the vast majority of DNS packets, thereby allowing operation at higher network speeds.

The traffic is further filtered by only processing second level DNS zones, rather than fully qualified domain

names (FQDNs). One can focus on second-level domains since most bots generate randomized second-level

domains in order make it more difficult to blacklist them and to hamper take-down efforts.

One can also take advantage of the fact that NX traffic access patterns for benign hosts follows a Zipf’s

distribution. Indeed, over 90% of NX responses in the data are to 100 unique zones. The bot DNS queries

lie in the tail of the Zipf curve, hidden by the vast amounts of benign traffic. To quickly sift through this

mountain of data, a Zipf filter is applied comprising the most popular zones1 and matches are removed using a

perfect hash. Finally, each time a client is declared benign its state is reset, forcing it to continuously re-prove

itself.

6.6 Evaluation - Measurement Period I

Unlike the approaches (Yadav et al., 2010; Yadav and Reddy, 2011; Antonakakis et al., 2012) discussed

earlier, the current approach classifies client IPs based on NX traffic patterns. As such, ground truth in this

case is a list of clients exhibiting botnet-like behavior. To attain ground truth for the analyses that follow,

1 In the empirical evaluations, the top 100 zones are used

126

any hosts that did not receive NX responses were excluded, and then any connections that received NX

responses from white-listed NX zones (e.g., senderbase.org) were discarded. The white-list was created by

manually inspecting the top 100 zones of domain names that elicit NX responses2. The domain names were

then cross-referenced from the remaining clients against well-known blacklists. While this approach was

helpful in identifying known bots, it clearly is of little help in identifying new bots that were yet discovered

in the wild on the date of the analysis. To address this possibility, two techniques were applied. First, lookups

were performed on domains that received NX responses in March to see if any of those domains were now

sink-holed. And second, the remaining clients were hand-labeled on whether they had similar name structure

as existing AGDs, generated a sequence of at least two or more domains names that followed a similar

structural convention (e.g., character set and length of the domain name), and received NX responses. In the

end, a total of 255 clients were found: 66 clients on March 18th, 101 on the 19th and 88 on the 20th.

On Parameter Selection Both θ0 (the probability that a benign host sees a success event) and θ1 (the

probability that a malicious host sees a success event) are parameters that must be set appropriately in any

real-world deployment. Therefore, they must be calculated for each deployment of the sequential hypothesis

framework. These parameters can be robustly computed from a relatively small amount of traffic. Recall

that in §6.5, a successful outcome was defined as one where a host receives NX responses for a zone it has

already contacted at least once in the past, and a failure outcome every time a NX response is generated for a

zone not seen previously. To estimate these parameters, one can simply track NX responses on a per-client

basis for a set window of time, counting successes and failures.

From the empirical analyses, the majority of DNS traffic is in fact benign, and the AGD traffic comprises

less than 2% of the overall traffic. This should be true within most enterprise networks, and, as a result, θ0

is calculated by simply computing the percent of successful connections for all NX traffic observed in that

window of time. In our analysis, θ0 = 0.9.

Estimating θ1, on the other hand, is more difficult. If an operator is fortunate enough to have an oracle by

which she could separate benign from malicious hosts and build ground truth for her network, then she could

infer θ1 by computing the percent of successes generated by malicious hosts; however, in the real world,

access to such an oracle is difficult, if not impossible; hence, θ1 must be estimated by other means. In this

work, it was found that by discarding all clients that generate less than δ failure events, one can achieve a

2 The stability of the white-list was confirmed using historical NX traffic from within the network spanning several months.

127

100 101 102 103 104 105

NX Record Count

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
 c

lie
nt

s)

Benign (All NX)
Benign (Unique NX)
Malicious (All NX)
Malicious (Unique NX)

Figure 6.6: NX zone counts for benign and malicious clients.

reasonable approximation of θ1 from the remaining traffic. This is based on the fact that bots tend to generate

far more failure events than benign hosts.

Figure 6.6 offers insight into why the application of sequential hypothesis testing makes sense. Notice

that ninety-five percent of benign hosts receive NX responses for four or less unique zones, while 98% of

bots receive NX responses for four or more hosts over a day. By monitoring only NX traffic, there is a clear

delineation between benign and infected hosts. Based on this observation, δ = 4 for the approximation of θ1

within the network, and θ1 = 0.6 for our analysis.

6.6.1 Offline Analysis

In order to evaluate the accuracy of the classifier, a k-fold cross-validation was used. Cross-validation is

a method typically used to assess the performance of a classifier by partitioning data into k-subsets. One

subset is used for training, while the others are used for testing. This process is repeated k − 1 times until

128

6 Hours 12 Hours 24 Hours
Window

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ro
ot

 M
ea

n
Sq

ua
re

 E
rr

or

Figure 6.7: Box-and-whisker plot of the error estimation for k-fold cross-validation for varying training
window sizes

each of the k subsets has served as a training set. In the results that follow, we estimated θ0 and θ1 based on

the designated training set, then fixed these values on the testing data.

A set of experiments were performed to estimate an appropriate training window size. ∆ = 6, 12, and

24-hour intervals were chosen as window-size candidates, dividing the dataset by each. The ground-truth was

split data based on the clients observed within those time windows. Similarly, θ0 and θ1 were estimated for

each of the time windows using the technique discussed earlier. A k-fold cross-validation was run for each of

the intervals (where k = 10, 5, 3) and the prediction errors between them were compared.

Figure 6.7 shows the results of each experiment. The prediction errors are computed as the root mean

square error over two repeated runs and plotted as a Box-and-Whisker plot to show the mean and variance

within each experiment. Experiments indicate that a training window of ∆ = 24 hours yields the best results

with an average root mean square error of 0.034. The accuracy of the classifier is given in Table 6.4.

129

k-fold validation Window Size (∆) TP FP
k = 3 24 hours .94 .002
k = 5 12 hours .86 .031
k = 10 6 hours .81 .048

Table 6.4: Accuracy for k-fold cross validation experiments for varying training window sizes (∆).

A window size of 24 hours provides the best results, because it takes into consideration the diurnal

patterns in network traffic; therefore, the remainder of the experiments use 3-fold cross-validation.

On Classification Speed One of the major drawbacks of existing approaches is the amount of time that

elapses before a host can be classified (see §6.4). Although there is no definitive information on exactly

when a client is infected, infection time is approximated as the moment of the first unique NX response for a

particular client. It was found that, on average, the sequential hypothesis technique detects bots within three

to four unique NX responses (with a maximum of nine).

Figure 6.8 shows the time (in seconds) taken to classify a client as a bot. The majority of bots are

correctly classified within a few seconds of seeing the first unique NX response—primarily because they

perform tens of queries at once. Some bots, however, take a more delayed approach, making singular queries

at uniform time intervals. In this case, it can take several hours to detect them.

That said, since bots must receive instructions from a command-and-control server, a more appropriate

measure might be to compute the time elapsed before the bot successfully connects with its command center

— called the “rendezvous point.” One desires the ability to detect the bot before it makes that connection.

To perform such analyses, a random sample of 20 prominent bots was chosen from each of the three days

and located their rendezvous point by hand. Figure 6.9 shows the difference between the rendezvous time

and classification time. In 10 [of 60] cases, the rendezvous takes place before the bot is detected.In 16 cases,

the approach detected the bot at the same time as the rendezvous point, while in the remaining cases, the host

was declared as a bot seconds before the actual contact with the command-and-control server was made. In

83% of the cases, bots are detected either shortly before or during the liaison with their command-and-control

servers. The differences in detection time from the 19th to the 20th are due to a large AGD-based compromise

that occurred on campus on the 20th. The event was detected by the approach and the results were shared

with campus network operators. Unfortunately, operators have not provided feedback on the operational

value of the supplied results.

130

March 18 March 19 March 20
Date

0
100

101

102

103

104

105

Ti
m

e
(s

ec
s)

 s
in

ce
 fi

rs
t u

ni
qu

e
NX

 re
sp

on
se

Figure 6.8: Classification time after first unique NX response.

On Hosts Pending Classification The fraction of clients remaining in the pending state at the end of a given

time window is analyzed. At the end of each day (i.e., k = 3), 10% of the hosts were in the pending state. Of

those clients, 70% had a response from one (unique) NX zone, 90% two or less, and 99% four or less. All but

one of the 18 bots (from the ground truth) that had not been classified by the sequential hypothesis test (6

[of 66] on the 18th, 10 [of 101] on the 19th, and 2 [of 88] on the 20th), were in the pending state. These 18

clients had generated, on average, two or less unique NX responses in the allocated time window.

Upon closer inspection it was found that 95% of the pending hosts were in that state for at least 2 1/2

hours and some for almost the entire 24-hour period. This implies that as the pending hosts age, strategies are

required for removing these hosts from the pending list in order to reduce the memory footprint. One strategy

is to use an approach similar to our Zipf Filter, and generate a filter based on the top n unique zones in the

pending host list. With a cursory analysis using the top 100 pending zones, 30% of the hosts in the pending

131

March 18 March 19 March 20
Date

-104

-103

-102

-101

-1000100

101

102

103

104

105

Ti
m

e
(s

ec
s)

 d
iff

er
en

ce
 b

et
w

ee
n

re
nd

ez
vo

us
 a

nd
 d

et
ec

tio
n

Figure 6.9: Time between classification and rendezvous.

state were removed. Another option is to randomly prune a certain percentage of the pending hosts based on

their age or their unique NX response count. Such extensions are left as future work.

Comparison to Existing Work: To perform a direct comparison to approaches that make use of NX traffic,

an approximation of the time binning algorithm of Yadav and Reddy (2011) was implemented. The work

extends the Edit-Distance technique (see §6.4) to individual clients by exploiting the fact that bots tend to

make queries in bursts. Their assumption is that by incorporating NX responses, domain samples can be

gathered quicker than with successful DNS queries alone.

The prerequisite clusters were created by collecting all queries that elicited an NX response within 64

seconds (before and after) of a successful rendezvous query for each client (Yadav and Reddy, 2011). The

edit distance measure is then applied to the clusters, and the average edit distance value for each cluster

is compared with a threshold to determine whether the cluster is malicious or not. Clusters were built for

132

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
False Positive

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ue

 P
os

iti
ve

Edit Distance w NX

Figure 6.10: ROC curve for edit distance using NX responses.

each potential rendezvous point in the March 19th dataset. Clusters that contacted well-known white-listed

domains (e.g., facebook.com) were filtered using the 100,000 most popular domain names (41,758

zones) from the March dataset. This left 455,500 domain name clusters spanning 10,758 unique client IP

addresses.

Figure 6.10 shows the true and false positive rates when adjusting the edit distance threshold value. As

with the other edit distance approaches (see §6.4), this extension also resulted in a high false positive rate (of

over 14%). Even with the extra domains collected from the NX traffic, at most 80 AGDs per cluster were

collected—far below the 200 domain names required for accuracy (Yadav and Reddy, 2011). Only 17 of

the clients had clusters with more than 50 domain names. An additional limitation is that Yadav and Reddy

(2011)’s approach requires storage of both successful and NX domain names, which adversely affects its

runtime performance. By contrast, the hypothesis testing approach stores only the DNS zones for each client,

and only require updating a hypothesis test score for each observed event.

133

30 19

6

4 Cridex

Figure 6.11: AGDs found with hierarchical clustering technique. Size of domain name indicates its prevalence
in the cluster. Count indicates number of clients found in cluster.

6.6.2 Visualizing AGD Traffic

In an enterprise setting, a security analyst usually must investigate the list of hosts declared as bots by

any of the aforementioned techniques. After the detection process has completed, and to help reduce the

cognitive load on the analyst, a technique for grouping clients based on their AGD traffic is provided. The

technique capitalizes on observations made while investigating the output of the algorithm, namely that (1)

multiple clients tend to be infected with the same type of bot, and (2) the infected hosts generate the same

domain lookups because of the use of a global seed.

These observations lend themselves to a natural grouping procedure for a set S, where S denotes the

clients declared as bots during some time window:

• ∀i ∈ S, let Si be the tuple 〈l, n0, n1...nm〉 where l is the client’s IP, and n0, ...nm the list of NX zones

queried.

• Let G = ∪ n0, . . . nN ∈ S.

• For each client l, let bl be a bitmap of length N representing the zones in G and set the bits to 1 for the

domains that the client has queried.

134

• Let the distance between two clients l1 and l2 be distance(l1, l2) = 1
Bl1,l2

, where Bl1,l2 is the sum of

the number of bits set of the resulting ANDed bitmaps.

• Set S is clustered using hierarchical clustering (Everitt et al., 2011).

Using this approach, the data for March 20th was clustered. The 747 clients were grouped creating 23

clusters of two or more clients. Of those clusters, four contain 59 of the 88 bots found in the ground truth.

Figure 6.11 shows a sampling of the AGDs generated by the clients in each cluster. AGDs in the largest fonts

are ones that appear in all clients in the cluster. The smaller the font, the less appearances the domain made.

To attain more information about the botnet families for these clusters, publicly available blacklists and

anti-virus websites were searched for information on the domains. Lookups on the domains were performed

(e.g., using dig) to see if they were sink-holed. Three of the four clusters were sink-holed, and the fourth

had known cridex AGDs (e.g., aecgrgbjgaofrilwyg.ru).

The remaining 29 bots (in the ground truth) did not cluster. 18 of those hosts generated similarly

structured domains, but no two hosts generated the exact domains (see Table 6.5). Little information was

found on the origins of these domains. Another 3 clients contain multiple domains that are sink-holed to an

address linked to the TDSS botnet (Golovanov and Soumenkov, 2011).

IPs Example AGDs
IP 1 kt2syggf436dtag458.com
IP 2 kt2syggf436dtag182.com
IP 1 jhbvyvuyvuyvuvujvuvrf6r66.com
IP 2 bbgyujh6uh7i5y67567y5b7.com
IP 3 csfsdfvdbdbbfbnmcnq8858.com
IP 1 27613082671222563732.com
IP 2 79735931367645588627.com
IP 3 13348318318656728693.com
IP 1 e7722746d7c642c2a6793cb8935c45da.com
IP 2 80b8024c08484f029d1c229f5030c741.com
IP 3 c62fb768db0c4d179bfb200fcc415c9f.com

Table 6.5: AGDs that clustered by domain length.

6.6.3 Analysis of Live Traffic

To further demonstrate the utility of the technique, an online version was implemented and deployed it

on the campus network. For the live test, an Endace 9.2X2 Data Acquisition and Generation (DAG) card

connected to a host machine was used. This setup was used to monitor DNS traffic at the border of the

135

aecgrgbjgaofrilwyg.ru
kt2syggf436dtag458.com
kt2syggf436dtag182.com
jhbvyvuyvuyvuvujvuvrf6r66.com
bbgyujh6uh7i5y67567y5b7.com
csfsdfvdbdbbfbnmcnq8858.com
27613082671222563732.com
79735931367645588627.com
13348318318656728693.com
e7722746d7c642c2a6793cb8935c45da.com
80b8024c08484f029d1c229f5030c741.com
c62fb768db0c4d179bfb200fcc415c9f.com

campus network. The DAG captures DNS packets at line rates and places them in a shared memory buffer

without relying on the host. As a result, one can take full advantage of the host (a 2.53 Ghz Intel Xeon core

processor with 16GB memory) for packet inspection. As DNS packets are placed into the shared memory

buffer by the DAG card, they are assigned to an available core to perform the initial dissection. If the packet

requires further processing, it is passed from core to core in a pipeline, where each core is assigned a specific

task. This design easily scales by dynamically assigning packets and tasks across multiple cores.

As Sommer et al. (2009) note, utilizing multi-core architectures to provide parallelism is important in

order to be able to provide online network analysis at line speeds. To that end, the network capture and analysis

engine supports multi-threaded processing and uses two basic thread models: a staged pipeline to stitch

together processing stages (dissection, signature matching, statistics etc), and a pool model to parallelize

processing within each stage. Each stage is run on a different core and we implement lock-free ring

buffers (Valois, 1994) to ensure high throughput across the pipeline buffer and ensure data synchronization.

The lock-free data structure was built using Compare-and-Swap (CAS) primitives provided by the underlying

x86 architecture. The packet dissection is performed by protocol specific finite state machines (FSMs).

Layers within a network packet are modelled as states and transitions between states are modelled as events.

Using FSMs allows one to add and remove protocol dissectors easily and provides one with the ability to

dynamically assign “processing depth” for an individual packet. For example, the DNS FSM allows the

programmer to decide how far into the packet to dissect.

The online evaluation spans a period of 24 hours in November, 2012. The traffic reflects well-known

diurnal patterns, with a large mid-day peak of approximately 80,000 DNS connections per minute. However,

NX traffic accounts for less than 10% of the overall traffic, which highlights one of the benefits of using such

data for botnet detection. Throughput analysis shows that the prototype can operate on live traffic with zero

packet loss and < 15% CPU utilization. Note that by using NX traffic, DNS zones (rather than fully qualified

domain names), domain name caching, and Zipf filters, one is able to store state information on the order of

megabytes versus gigabytes. In larger deployments, one could use space efficient data structures (e.g., bloom

filters) to keep track of state for several million IP addresses. This is left as an exercise for future work.

Analysis of our results show 63 cases of suspected or known malicious traffic. Included in the findings

were the TDSS and Z bots, numerous spambots, an OSX.FlashFake trojan and a FakeAV trojan. Further-

more, the prototype detected traffic of RunForestRun (Unmask Parasites, 2012) and BlackHole (Sophos

Inc., 2012). One noteworthy discovery was that of the so-called Italian typo-squatting trojan (Eckelberry,

136

2007) that uses domains that are misspellings of existing domains (e.g. gbazzetta.it,gazzxetta.it).

Interestingly, the domain names used by this trojan would have relatively low edit distance scores making it

difficult to detect them using the similarity-based techniques in §6.4.

6.7 Data Summary and Evaluation for Measurement Period II

In order to assess the longterm utility of the approach, a prototype monitored the campus network for 8

months from September 2015 to April 2016 and monitored on average 25,000 internal network clients per

day. The prototype used a NX zipf filter that contained 256 NX domains; furthermore, the prototype was

restarted on a daily basis to reset the state. IP addresses flagged malicious were logged to daily files along

with the domain names that caused the flagging. Before discussing the results, the next section shows why

the parameters used in the 2012 study are still valid today.

On Parameter Selection To assess the proper parameter selection for the updated study, we conducted

an analysis similar to that in 2012 using one week of data from October 1-7, 2015. Table 6.6 shows the

breakdown of the 7 day dataset. Note that even though the 2015 analysis was done on a subset of the UNC

network, DNS traffic levels have increased over 2012 with the number of DNS requests increasing by an

average of 19 million per day. The dataset was broken into individual days, and an offline analysis of the

data identified 18 known bot instances over the week. Bots were labelled using three different approaches as

done in the original study: 1.) client domains were cross-referenced against a publicly available AGD list of

popular botnets3, 2.) client domains were checked to see whether they were sink-holed, and 3.) the remaining

client domains were hand-labeled based on whether they had similar name structure as existing AGDs,

generated a sequence of at least two or more domains names that followed a similar structural convention

(e.g., character set and length of the domain name), and received NX responses. Given the labeled clients, we

generated the updated graph version of Figure 6.6 for October 2015 as shown in Figure 6.12. The Figure

shows that 98% of benign hosts receive NX responses for four or less unique zones, while 100% of bots

receive NX responses for at least four unique zones. As in 2012, there is a strong delineation between benign

and infected hosts at 4 failure events (i.e., δ = 4). Using δ as a guide, θ0 and θ1 are calculated as described in

Section 6.6 leading to similar values (θ0 = 0.9 and θ1 = 0.65) as those calculated in 2012 (θ0 = 0.9 and

θ1 = 0.6). These parameters are conservatively set to detect bots in as little as 4 DNS samples and on average

3 https://dgarchive.caad.fkie.fraunhofer.de/

137

https://dgarchive.caad.fkie.fraunhofer.de/

Figure 6.12: NX zone counts for benign and malicious clients for October 1-7, 2015.

5.6 samples, while providing a reasonable false positive rate (see below). The parameters could be adjusted

to increase the number of detection samples required, and further reduce the number of false positives given

that over 86% of bots analyzed in this period generate 9 or more unique NX responses; however, by leaving

the number of samples required low, the approach can detect other malicious behavior that is not bot related

as discussed below.

Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 ∆ vs. 2012
Internal DNS Clients 25.8K 25.2K 21.4K 21.4K 25.7K 26K 25.9K -42.8K
DNS Queries 71.8M 69.7M 67.6M 68.9M 72.6M 75.7M 77.5M +19.1M
NX response 495K 478.2K 347.2K 350.8K 437.4K 449.8K 424.9K -1.1M
unique domains 682.8K 690.4K 540.9K 593.1K 698K 676.8K 644.3K -1.0M
unique zones 159.5K 152.4K 127.7K 138K 162.3K 162.1K 156.1K -338.2K
unique NX domains 58.7K 56.6K 42.3K 40.3K 58.4K 53.2K 50.5K -157.4K
unique NX zones 3.1K 3.1K 2.4K 2.3K 3.2K 3.1K 3.1K -17.6K

Table 6.6: DNS traffic stats for seven days in October 2015.

6.7.1 Offline Analysis

The accuracy of the classifier was assessed with a 7-fold cross-validation on the dataset using a training

window size of ∆ = 24 hours. Figure 6.13 shows the prediction errors computed using the root mean square

error. Experiments provide an average prediction error of 0.063 or twice that of the 0.034 prediction error

138

found in 2012. The true positive and false positive rates were calculated as 0.95 and 0.0039, which are

comparative to the 0.94 and 0.002 rates calculated in 2012.

0.058

0.060

0.062

0.064

0.066

0.068

0.070

0.072

0.074

R
o
o
t

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Figure 6.13: Box-and-whisker plot of the error estimation for 7-fold cross-validation for October 1-7, 2015.

6.7.2 Online Analysis

In the following subsection we discuss some of the key findings over the 8 month study. This includes an

analysis of the behaviors of detected bots, and other potential malicious network behaviors detected by the

approach.

DGAs: Overall, the prototype flagged 560 client exhibiting domain generation behavior. The vast majority

of the traffic did not come from bot traffic, but rather as URLs for potentially malicious websites. An analysis

of domain names using Google’s search engine shows that attackers are embedding multiple AGDs in website

forums leading to exploit kits or websites (see Table 6.7 for example AGDs). We found 177 different IP

addresses querying such domains.

The second most prominent type of AGD in the data was generated by 140 different IP addresses and

was seen on 281 days over the 8 month analysis period (see Unknown in Table 6.7). Unfortunately, little is

139

known about what application is generating this activity currently, because web searches and comparisons

with a publicly available AGD list of popular botnets4 have not lead to information about the source.

There were AGDs from three known botnets found in the data including 3 Bedep instances, 2 Tempedreve

instances, and 15 Suppobox instances. The Bedep malware family is known for perpetrating click fraud and

acting as a downloader for other malware. It was the malware payload for the Angler exploit kit in early

2015, and is known for using information from a European foreign exchange rate website as a global seed

value to generate domain names (Schwarz, 2015). Bedep generates random domain names between 12 and

18 characters (excluding top level domain) as seen in Table 6.7. Bedep’s AGD traffic appeared on 3 different

days (October 1 and 26 2015, March 26 2016) by 3 different IP addresses. Temperdreve is a trojan that

focuses on information from the victim’s computer by gathering system information, taking screenshots, and

performing a man in the middle browser attack (Pereira, 2015). The trojan generates AGD using a hardcoded

seed (see sample domains in Table 6.7) and appeared on the network for one day on October 20, 2015.

The Suppobox Trojan was by far the most popular botnet found on the network with 15 instances found

over the analysis period. Suppobox uses concatenated word lists, rather than random characters, to generate

domain names based on a date and time. All known instances of the trojan generate domain names in the

.net top-level domain name (Geffner, 2014). Different flavors of the Trojan use different word lists. For

example, Suppobox Christabelle (see Table 6.7) concatenates formal names together, while Suppobox Milk

uses dictionary words. The Trojan’s DNS activity was flagged everyday between September 21st and October

26th, 2015 with 10 instances appearing over that time. The other five instances appeared sporadically over

the month of February 2016.

Reverse DNS Lookup Scanning? Not all malicious traffic detected by the approach is DGA related. We

observed a new type of NX traffic that was not present in the first study in 2012. Specifically, there are a set

of internal clients (130 clients were flagged over the 8 month period) on the network that conduct reverse

DNS lookups on external IP addresses and then try to contact those hosts using the domain names returned in

the DNS lookup. The external IP addresses are associated with Internet Service Provider (ISP) customers, as

is evident by the types of domain names queried by the internal clients (see examples in Table 6.7). Queries

on the domain names result in NX responses, which are flagged by the prototype. An analysis of three of

the flagged internal clients that conducted the reversed DNS lookups suggests that they are likely email

4 https://dgarchive.caad.fkie.fraunhofer.de/

140

https://dgarchive.caad.fkie.fraunhofer.de/

Category Example AGDs

Malicious Websites
www.56cfghsdfghd3fhfghdfgs.com

www.gs78hgfds3gs3f4g3sdfgsdfgsdgf.com

Unknown
oozahynbq77v-3x6vdrda.0n1qwz0ql.com

4vv6nf0tv9bhmyfx.1dgfipjf5se5lmpldrkfs.com

Bedep
lmqzavjmwigzxmn9.com,
vrhaljaogjboy.com,

dhdfblfaoevumoyqu.com

Temperdreve
whuzujat.org,
gownvjwm.info
kpgrape.com

Suppobox Christabelle
charlottebenjaminson.net
charlottecartwright.net
stephaniebenjaminson.net

Suppobox Milk
deadhear.net
rockhear.net
rockrule.net

Reverse Scanning traffic
207-201-236-45.static.twtelecom.net

fixed-190-247-92.iusacell.net
host-169-217.static.telecet.ru

Table 6.7: Example flagged NX domain names.

servers. At various intervals during the day, external computers attempt to contact the internal clients on

email ports, and remain connected for minutes at a time. Of the 130 internal client IPs flagged, 22 of them

were flagged on 50 or more days, while 14 IPs were flagged between 100 and 225 days over the 8 month

period, suggesting that the internal clients are highly active on the campus network. Furthermore, the external

IP addresses originate from Brazil, Taiwan, Thailand, China, Indonesia, and Russia and many are reported on

public blacklists for various abuses including spam, denial of service, and brute force ssh attacks.

Throw-away Domains: Attackers will register domain names for malicious websites knowing that they will

eventually be blocked by the defender. The attacker’s goal is to infect as many victims before their website is

discovered. Some of the only remnants of a website after it has been taken down, are the existing hyperlinks

to the to the website, and the DNS NX responses corresponding to such requests. The prototype was able

to identify 132 IP addresses that made requests to malicious and now defunct websites. This flagging is

useful for a few reasons. First, infected machines may continually make DNS requests for external sites that

no longer exist. For example, there were two hosts on the network that made requests to the domain name

sy3knom99.no-ip.biz. Such requests are indicative of the Generic.dx!f0238dad1b trojan. The trojan

was active daily over the months of February, March and April in 2016.

As mentioned earlier, it is almost impossible to detect all attacks as they occur. NX traffic provides

analysts with clues of what websites and servers potentially existed on the Internet in the past. Combining the

141

www.56cfghsdfghd3fhfghdfgs.com
www.gs78hgfds3gs3f4g3sdfgsdfgsdgf.com
oozahynbq77v-3x6vdrda.0n1qwz0ql.com
4vv6nf0tv9bhmyfx.1dgfipjf5se5lmpldrkfs.com
lmqzavjmwigzxmn9.com
vrhaljaogjboy.com
dhdfblfaoevumoyqu.com
whuzujat.org
gownvjwm.info
kpgrape.com
charlottebenjaminson.net
charlottecartwright.net
stephaniebenjaminson.net
deadhear.net
rockhear.net
rockrule.net
207-201-236-45.static. twtelecom.net
fixed-190-247-92.iusacell.net
host-169-217.static.telecet.ru
sy3knom99.no-ip.biz

sequential hypothesis detection approach along with a historical network traffic storage framework (Taylor

et al., 2012) would allow analysts to verify whether network clients had successfully accessed such sites in

the past, and potentially conduct a larger scale retroactive analysis of the client to see whether it is infected.

Although retroactive analysis is not ideal, it may help to reduce the gap between the time it takes to launch a

successful attack, and the time it takes to detect the attack.

In summary, AGDs are still prevalent on the campus network and the prototype was able to detect 20

new bot instances as well as 2 instances of the Generic.dx!f0238dad1b trojan. The prototype also flagged

hundreds of clients that made requests to domains of malicious websites.

6.8 Limitations

A straightforward evasive strategy is for a bot to spread its DNS queries across a large time window,

essentially implementing a low and slow approach. While this is a viable strategy, doing so drastically slows

a bot’s ability to communicate with its command-and-control server — resulting in a clear win for defenders.

Another strategy is to attempt to increase state tracking overhead by making DNS requests from spoofed

IPs. That said, in modern networks practical IP spoofing is readily detectable, especially when media access

control (MAC) address registration is enforced. Alternatively, if IP spoofing is a significant concern, one

could enforce DNS over TCP for local hosts connecting to internal resolvers.

6.9 Discussion and Lessons Learned

In this chapter, currently available techniques for detecting malicious, algorithmically generated, domain

names were examined with a focus high accuracy and timeliness — key operational requirements. While

contemporary techniques can detect the presence of malicious domain names, they incur high false positive

rates, and require long observation periods before classification can occur making them infeasible as detectors

in an operational environment. To address these shortcomings of contemporary approaches, a lightweight

technique based on sequential hypothesis testing is presented. The approach takes advantage of the fact that

bots generate a relatively high number of unique NX responses when searching for a command-and-control

server. Extensive empirical evaluations show that hosts can be classified in as little as three to four NX

responses, on average. Moreover, the lightweight nature of the approach makes it well-suited for real-world

deployment.

142

Key Take-Aways

1. Using the character distribution and structure of the domain name are not good mechanisms for

detecting bots that use AGDs because these features can be easily changed. Attackers are adapting and

are now generating domain names based on random words, or names, and can easily make them look

like benign domain names. By contrast, the use of NX traffic is inherent to the attacker’s algorithm

for connecting to a command-and-control server. Utilizing the contextual patterns inherent in the NX

patterns affords a much more robust, necessary, and sufficient feature set for identifying such malware,

and forces the attacker to investigate new approaches for communication, thus increasing the bar for

the attacker.

2. The sequential hypothesis testing approach described in this chapter can classify a bot after viewing

a few DNS NX responses. In doing so, the approach can detect bots much faster than contemporary

approaches and with low false positive rates. The approach also stands the test of time as it is still

detecting new bot instances 3 years after the initial study indicating that attackers are still abusing DNS

to set up command-and-control channels.

3. In this chapter, NX traffic was used to identify bots, but I believe NX traffic may also provide clues in

detecting other potentially malicious behaviors on a network. Attackers are constantly relocating their

malicious websites in order to avoid detection and must use temporary (or throw-away) domain names

to do so. The remnants of these domain names are seen in NX traffic, and more research is needed to

determine how we can best capitalize on NX traffic to better protect our networks. One thought is to

combine network forensics along with NX traffic to allow for analysis of past events. Doing so would

allow an analyst to see if anyone on the network accessed a domain when it was active, potentially

identifying infected clients that would have gone unnoticed otherwise.

143

CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS

This dissertation highlighted the large performance gap between the ideal network-based malfeasance

detector and the current state of the art for web-based exploit kits. Indeed, there are several operational

challenges — e.g., the high cost of errors, diversity of traffic, semantic gap of interpreting results — that must

be dealt with in order to provide more robust and usable network-based detectors. In order to reduce that gap,

three new techniques that utilize the contextual information supplied by web and DNS traffic for detecting

web-based exploit kits, and their corresponding bots were proposed. Chapter 4 showed that by utilizing the

structural relationships in HTTP traffic, one could significantly reduce the high cost of errors over current

state-of-the-art approaches, and provide an analyst with contextual information about which website loaded

the exploit thus reducing the semantic gap. The key limitation of the approach is that any exploit must have

already been seen in order to be detected. In order to address that limitation, a new approach was proposed

in Chapter 5 that provides the same contextual benefits from utilizing the structural relationships in HTTP

traffic, but can detect new exploits using behavioral features by caching and replaying possible web-based

exploits in a honeyclient. Behavioral features describe what the exploit is doing rather than what it looks

like, and can provide much more useful semantic information to a security analyst in an operational setting,

while significantly improving false positive and false negative rates over current state-of-the-art approaches.

However, extracting behavioral features is challenging because there is a significant time investment involved

in running an exploit, meaning any approach will not be able to keep pace with the sheer number of possible

exploit files seen by a network monitor. As a result, Chapter 5 proposes novel filtering techniques based on

white-listing that allows a honeyclient to keep pace with the deluge of HTTP traffic on the network.

While Chapters 4 and 5 focus on the operational challenges faced with detecting exploit kits pre-infection,

Chapter 6 focuses on the operational challenges post-infection for bots that abuse the domain name system

to randomly generate domain names and by-pass defenders. Chapter 6 showed that current state-of-the-art

detection approaches require hundreds of domain name samples and use domain name structure to detect

bot-related traffic. Unfortunately, these approaches can take hours or even days to collect enough domain

144

name samples to accurately detect such nefarious activity, making them unusable for timely bot detection

in enterprise network. In response, Chapter 6 proposes a new approach that uses the contextual patterns of

DNS NX (non-existent) responses to detect bots in approximately three samples enabling security analysts to

identify bots before they can contact the attacker. Furthermore, the approach can detect bots using a small

fraction of the overall DNS traffic. As hypothesized, using the contextual patterns in HTTP and DNS traffic

has significant impact on the detection performance of network-based malfeasance detectors, and thus the

ideas proposed in this dissertation will help security analysts be more efficient and effective in their jobs.

There are many challenges ahead, and the rest of this section discusses possible directions for future research.

Intelligence Sharing One of the tasks that I repeatedly did during the creation of this dissertation was to

read blogs, and search the Internet for information about recent attacks as well the IP addresses, URLs and

domain names for dataset labeling. This necessary task took hundreds of manual hours in front of a web

browser. In this future work, I want to explore techniques that automatically extract network security related

information from web resources such as security blogs, social media, bulletins and news reports to be then

transformed into rules or signatures that can be directly applied to protect our networks, or label datasets

for analysis. There are many challenges in this task, but the most significant challenge is that the current

information extraction techniques from unstructured text require large training sets for good performance.

Such data may not be available in a security context. There is also the challenge of how to turn the extracted

information into meaningful rulesets that can be applied to dataset labeling or network defense.

Intelligence gathering is by no means new. Searchable web-based platforms such as National Vulnerability

Database and IBM’s X-Force Exchange1 allow security analysts to access terabytes of information about

URLs, IPs, applications, and vulnerabilities while also participating in security communities for discussion.

Since these systems are proprietary, there is little information about how such knowledge bases are gathered.

Closer in nature to my proposal are works by Joshi et al. (2013), Jones et al. (2015) and Ritter et al. (2015) that

automatically extract information from semi-structured databases, security bulletins and tweets. Joshi et al.

(2013) extracts information from the National Vulnerability Database and security bulletins to automatically

publishes a RDF linked data representation of cybersecurity concepts and vulnerability descriptions. This

work does not address how extracted information can be used for network-based signatures and has relatively

high false positive rates. Jones et al. (2015) present a new bootstrapping algorithm for extracting security

1 https://exchange.xforce.ibmcloud.com/

145

https://exchange.xforce.ibmcloud.com/

entities and their relationships from text that incorporates the security analyst in order to improve classification

performance. Unfortunately, the work is preliminary and there is no indication it will scale. Ritter et al.

(2015) use a weakly supervised classification model to categorize security events such as denial of service,

data breaches and account hijacking from twitter feeds, but does not extract semantic information from the

tweets that could be used to automatically defend networks. By contrast, Bridges et al. (2014) solve the

inverse problem of annotating unstructured text on security topics using a structured vulnerability database.

Such an approach could be useful in generating unstructured training sets for information extraction. Overall,

this area of research has recently emerged providing opportunities to make real-world operational impact for

security analysts.

Extending the Model for Network-based Honeyclient analysis Chapter 5 demonstrated that honeyclients

can be effectively applied to network-based malfeasance detection using behavioral feature sets; however,

there are still challenges ahead. Cisco reports that 72% of all exploit kit attacks are launched through

Flash (Biasini et al., 2015) because Flash plugins are vulnerable and predominant on client machines. Due to

these vulnerabilities, companies are slowly turning away from Flash towards HTML5, and JavaScript. As

Flash usage declines, attackers will increasingly look for vulnerabilities in JavaScript leaving defenders unpre-

pared. JavaScript provides the same challenges for defenders as Flash except there are millions of JavaScript

files downloaded on networks per day, and JavaScript can be embedded in HTML. As described in Chapter

5, current detection approaches for JavaScript are broadly placed in offline honeyclient analysis (Invernizzi

et al., 2012; Li et al., 2012, 2013; Eshete and Venkatakrishnan, 2014; Thomas et al., 2015) or online machine

learning approaches (Rieck et al., 2010; Canali et al., 2011; Blum et al., 2010; Ma et al., 2009, 2011; Mekky

et al., 2014; Nelms et al., 2015). I want to investigate how one could extend the honeyclient model from

Chapter 5 to scale for JavaScript. As a first step, I would like to conduct a longitudinal study on client usage

patterns of JavaScript to gain a better understanding of how many unique JavaScript files are downloaded on

a daily basis, where they come from, and how often they change. Such a study will provide clues on how to

build JavaScript filters that would enable the honeyclient technique to scale to large networks. One relevant

study is that of Soni et al. (2015) who studied JavaScript files from the top 500 Alexa websites. They found

that only 7% of JavaScript files change overtime, and use that fact to build JavaScript white lists to protect a

client browser from malicious scripts. It is unclear how such results hold for the diverse set of JavaScript

seen on a large enterprise network. Even with JavaScript filters, the honeyclient model will likely still not

146

scale to the quantity of JavaScript. As a result, another interesting project would be to investigate how the

honeyclient model could be adapted to the cloud (Sherry et al., 2012).

Network Forensics Defenders are a long way from creating the ideal network-based intrusion detector

that can detect all intrusions as they occur. Recent examples of successful attacks on companies include

Sony (Kroft, 2015) and Anthem (Newcomb, 2015) and future incidents are an assurity as Ponemon Institute

(2015) reports that it takes companies on average 256 days to identify a malicious attack. As a result,

defenders are left to recreate the breach and decipher the true impact of the attack. This requires the collection,

storage and rapid querying of network traffic. Attackers have two big advantages that make tracking them

difficult. They have the advantage of time — attackers only need to exploit a single machine in a network to

gain access, and they can conduct surveillance for months, slowly compromising more computers until they

find their target data to exfiltrate. Attackers also have the advantage because they can bury their footprints in

mountains of traffic making uncovering an attack akin to finding a needle-in-a-haystack.

Academic research into network forensics focuses on improving the collection and query speeds of

netflow. Netflow records contain a summary of the packets from a unidirectional or bidirectional connection

between two computers and has fields like source/destination IP addresses, source/destination ports, protocol,

and packet counts. Storage systems for netflow range from scan and filter (Shimeall et al., 2010) to fully

indexed datastores (Bethel et al., 2006; Deri et al., 2010; Reiss et al., 2007; Giura and Memon, 2010; Fusco

et al., 2011). With the increasing sophistication of attacks, researchers have looked beyond netflow to storing

payload attributes, and modelling those payloads as documents to allow search engine style queries (Taylor

et al., 2012) or by extracting payload features and correlating them as keys in a key-value store (Schales et al.,

2015). While these approaches represent a step in the right direction, more research is needed to help shorten

the time it takes an analyst to identify a malicious attack.

One significant research challenge is how to store, and manage the millions of records a network generates

per day over many sources — network traffic, intrusion detection logs and network logins. Given that attacks

can take months to uncover, we must be able to store at least a years worth of data; however, most of that

data only serves to help camouflage the attacker’s presence in a network. I want to investigate smart data

compression and reduction techniques for reducing the overall data footprint to enable better data management

and archiving. Data compression and reduction have received little attention in the research community.

Cooke et al. (2006) store traffic in different granularities (i.e., full packets, netflow, aggregates, and events)

147

depending on time and space requirements. Similarly, Papadogiannakis et al. (2010) propose RDDtrace, a

tool that stores raw packets. As traffic ages, packets are removed to make them more space efficient. Maier

et al. (2008) also store packet data, but only store the first N bytes, noting that a relatively few network

connections comprise approximately 80% of all network traffic at any one time. Gugelmann et al. (2013)

explore ways to compress HTTP traffic based on the “trustworthiness” of the websites involved. Although

interesting, the approach only scratches the surface for building smarter network forensic storage frameworks,

that provide a small data footprint, but allow for rich querying capabilities. I want to investigate behavioral

or semantic lossy compression approaches to reduce data footprints based on client usage patterns and data

uniqueness properties rather than temporal considerations. By doing so, we can make it easier to uncover

potentially malicious events. There are relatively few works on semantic compression with most coming from

the area of graph compression. Gilbert and Levchenko (2004) investigate semantic compression of network

graphs for visualization, by ranking vertices based on degree, shortest path, or importance. They also explore

similarity-based compression schemes such as redundant vertices, geographic clustering, and shared medium.

Navlakha et al. (2008) compress graphs by creating a “graph summary” which is an aggregate graph in which

each node corresponds to a set of nodes in G, and each edge represents the edges between all pair of nodes in

the two sets while Borici and Thomo (2014) compress graphs by modelling their semantic structural features

as hypergraphs. While these approaches are applicable to the task at hand, I believe more domain specific

analysis and compression is needed.

The other important research area for network forensics is how to provide a security analyst with fast

and powerful query capabilities across many different data sources (e.g., HTTP, DNS, netflow, login info,

system logs) and over a time dimension that can span several months. I am interested in data organization

techniques and indexing structures to improve query performance over heterogeneous datasets while enabling

correlations across time and space. During targeted attacks on companies such as Anthem, the attacker will

compromise one or more hosts to gain access to the network, and then slowly compromise other hosts over

time, pivoting from one machine to the next. Security analysts need to recreate these attacks, and track the

attacker’s movements, meaning that network forensic frameworks need the ability to link data sources over

time, and make connections between network entities (e.g., computers, MAC addresses, logins).

One potentially useful data structure that has remained unexplored in network forensics is a heterogeneous

time-series graph. In time-series graphs, nodes represent internal devices or external servers, and edges are

represented as a timestamped set of events between these nodes. Time-series graph research is relatively new.

148

Most current research focuses on “temporal” (Simmhan et al., 2015) graphs, and how to load and run a large

scale analysis on a full graph across a cluster of machines. A temporal graph is an in-memory graph (Han

et al., 2014; Cheng et al., 2012; Riedy et al., 2012; Macko et al., 2015), where timestamps are used to create

graph snapshots. Analysis is typically vertex or sub-graph centric (Simmhan et al., 2015). Graphs are stored

using a multitude of structures. For example, Riedy et al. (2012) present Stinger, an in-memory graph analysis

tool that stores a graph using a vertex array, and edge blocks while Macko et al. (2015) stores multiple

graph revisions using a compressed sparse row representation. Cheng et al. (2012) describe a streaming

based graphing system that takes graph snapshots at pre-determined intervals and Prabhakaran et al. (2012)

investigate graph layout and partitioning to support optimized graph processing and querying. Han et al.

(2014) describe Chronos, an in-memory data structure for temporal graphs. Chronos focuses on the memory

layout of temporal graphs and found that using a temporal locality scheme for vertices rather than a structural

locality scheme improved in-memory performance. None of these works explore the challenges of storing

and querying time-series graphs on disk. There is surprisingly little work on the topic. GoFS (Simmhan et al.,

2014) is a graph-oriented files system for distributed storage of time-series graphs on commodity clusters.

It is designed to load subgraphs in the local host’s graph partition for analysis but was not designed for

dynamically changing graph nodes and subgraph querying. Future research should explore how to organize

time-series graphs on disk to support queries that help the analyst reduce the time spent identifying attacks.

149

BIBLIOGRAPHY

Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., and Preneel, B. (2013). Fpdetective:
Dusting the web for fingerprinters. In ACM Conference on Computer and Communications Security.

Aleph One (1996). Smashing the stack for fun and profit. Phrack Magazine, 49.

Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., and Feamster, N. (2010). Building a Dynamic Reputation
System for DNS. In USENIX Security Symposium.

Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., and Dagon, D. (2011). Detecting Malware Domains
at the Upper DNS Hierarchy. In USENIX Security Symposium.

Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., , and Dagon, D. (2012).
From Throw-Away Traffic to Bots: Detecting the Rise of DGA-based Malware. In USENIX Security
Symposium.

Arends, R., Austein, R., Larson, M., Massey, D., and Rose, S. (2005). DNS Security Introduction and
Requirements. RFC 4033, The Internet Society.

Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., and Arikawa, S. (2002). Efficient substructure
discovery from large semi-structured data. In IEEE International Conference on Data Mining.

Augsten, N., Barbosa, D., Bohlen, M., and Palpanas, T. (2011). Efficient top-k approximate subtree matching
in small memory. IEEE Transactions on Knowledge and Data Engineering, 23(8).

Axelsson, S. (1999). The base-rate fallacy and its implications for the difficulty of intrusion detection. In
ACM Conference on Computer and Communications Security.

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., and Nazario, J. (2007). Automated
classification and analysis of internet malware. In Symposium on Recent Advances in Intrusion Detection.

Bethel, E., Campbell, S., Dart, E., Stockinger, K., and Wu, K. (2006). Accelerating Network Traffic Analytics
Using Query-Driven Visualization. In IEEE Symposium on Visual Analytics Science And Technology.

Biasini, N., Esler, J., Mercer, W., Olney, M., Taylor, M., and Williams, C. (2015). Threat spotlight: Cisco
talos thwarts access to massive international exploit kit generating $60m annually from ransomware
alone. http://blogs.cisco.com/security/talos/angler-exposed.

Bilge, L., Kirda, E., Kruegel, C., and Balduzzi, M. (2011). EXPOSURE: Finding Malicious Domains using
Passive DNS Analysis. In Symposium on Network and Distributed System Security.

Blum, A., Wardman, B., Solorio, T., and Warner, G. (2010). Lexical feature based phishing url detection
using online learning. In ACM Workshop on Artificial Intelligence and Security.

Borici, A. and Thomo, A. (2014). Semantic graph compression with hypergraphs. In IEEE International
Conference on Advanced Information Networking and Applications.

Born, K. and Gustafson, D. (2010). Detecting DNS Tunnels Using Character Frequency Analysis. In Annual
Computer Security Applications Conference.

Bridges, R. A., Jones, C. L., Iannacone, M. D., Testa, K. M., and Goodall, J. R. (2014). Automatic labeling
for entity extraction in cyber security. In ASE International Conference on Cyber Security.

150

http://blogs.cisco.com/security/talos/angler-exposed

Buchanan, E., Roemer, R., Shacham, H., and Savage, S. (2008). When good instructions go bad: Generalizing
return-oriented programming to risc. In ACM Conference on Computer and Communications Security.

Bui, D. B., Hadzic, F., Tagarelli, A., and Hecker, M. (2014). Evaluation of an associative classifier based on
position-constrained frequent/closed subtree mining. Journal of Intelligent Information Systems, 45(3).

Canali, D., Cova, M., Vigna, G., and Kruegel, C. (2011). Prophiler: a fast filter for the large-scale detection
of malicious web pages. In World Wide Web Conference.

Chehreghani, M., Lucas, C., and Rahgozar, M. (2011). Oinduced: An efficient algorithm for mining induced
patterns from rooted ordered trees. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 41(5).

Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L., Zhao, F., and Chen, E.
(2012). Kineograph: Taking the pulse of a fast-changing and connected world. In ACM European
Conference on Computer Systems.

Chi, Y., Yang, Y., and Muntz, R. R. (2004). Hybridtreeminer: an efficient algorithm for mining frequent rooted
trees and free trees using canonical forms. In International Conference on Scientific and Statistical
Database Management.

Chi, Y., Yang, Y., and Muntz, R. R. (2005). Canonical forms for labelled trees and their applications in
frequent subtree mining. Knowledge Information Systems, 8(2).

Chi, Y., Yang, Y., Xia, Y., and Muntz, R. R. (2003). Cmtreeminer: Mining both closed and maximal frequent
subtrees. In Pacific Asia Conference on Knowledge Discovery and Data Mining.

Clark, J. (2013). Malicious javascript flips ad network into rentable botnet. http://goo.gl/8mFLvQ.

Cohen, S. (2013). Indexing for subtree similarity-search using edit distance. In ACM Conference on
Management of Data.

Cooke, E., Myrick, A., Rusek, D., and Jahanian, F. (2006). Resource-aware multi-format network security
data storage. In SIGCOMM Workshop on Large-scale attack defense.

Cova, M., Kruegel, C., and Vigna, G. (2010). Detection and analysis of drive-by-download attacks and
malicious javascript code. In World Wide Web Conference.

da Jiménez, A., Berzal, F., and Cubero, J.-C. (2010). Frequent tree pattern mining: A survey. Intelligent Data
Analysis, 14(6):603–622.

De Maio, G., Kapravelos, A., Shoshitaishvili, Y., Kruegel, C., and Vigna, G. (2014). PExy: The Other Side
of Exploit Kits. In Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.

Deepak, A., Fernández-Baca, D., Tirthapura, S., Sanderson, M., and McMahon, M. (2013). Evominer:
frequent subtree mining in phylogenetic databases. Knowledge and Information Systems.

Deri, L., Lorenzetti, V., and Mortimer, S. (2010). Collection and exploration of large data monitoring sets
using bitmap databases. In International Conference on Traffic Monitoring and Analysis.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. (2002). Globally distributed content
delivery. IEEE Internet Computing, 6(5).

Duncan, B. (2014). Malware-traffic-analysis.net blog. http://goo.gl/fXdSZz.

151

http://goo.gl/8mFLvQ
http://goo.gl/fXdSZz

Eckelberry, A. (2007). Massive italian typosquatting ring foists malware on users. http://goo.gl/
4ZzMI.

Eshete, B. and Venkatakrishnan, V. N. (2014). Webwinnow: Leveraging exploit kit workflows to detect
malicious urls. In ACM Conference on Data and Application Security and Privacy.

Everitt, B., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis. Wiley Series in Probability and
Statistics. Wiley.

Felegyhazi, M., Kreibich, C., and Paxson, V. (2010). On the potential of proactive domain blacklisting. In
USENIX Workshop on Large-Scale Exploits and Emergent Threats.

Fusco, F., Vlachos, M., and Stoecklin, M. (2011). Real-time creation of bitmap indexes on streaming network
data. The VLDB Journal.

Gassen, J. and Chapman, J. (2014). Honeyagent: Detecting malicious java applets by using dynamic analysis.
In International Conference on Malicious and Unwanted Software: The Americas.

Geffner, J. (2014). End-to-end analysis of a domain generating algorithm malware family. RSA Conference
2014.

Gemignani, G., Klee, S. D., Veloso, M., and Nardi, D. (2015). On task recognition and generalization in
long-term robot teaching. In International Conference on Autonomous Agents and Multiagent Systems.

Gilbert, A. C. and Levchenko, K. (2004). Compressing network graphs. In Knowledge Discovery and Data
Mining.

Giura, P. and Memon, N. (2010). NetStore: An Efficient Storage Infrastructure for Network Forensics and
Monitoring. In Symposium on Recent Advances in Intrusion Detection.

Golovanov, S. and Soumenkov, I. (2011). TDL4 Top Bot. See http://goo.gl/23BaA.

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C. J., Levchenko, K., Mavrommatis, P., McCoy,
D., Nappa, A., Pitsillidis, A., Provos, N., Rafique, M. Z., Rajab, M. A., Rossow, C., Thomas, K.,
Paxson, V., Savage, S., and Voelker, G. M. (2012). Manufacturing compromise: the emergence of
exploit-as-a-service. In ACM Conference on Computer and Communications Security.

Grill, M., Nikolaev, I., Valeros, V., and Rehak, M. (2015). Detecting dga malware using netflow. In IFIP/IEEE
International Symposium on Integrated Network Management.

Gugelmann, D., Schatzmann, D., and Lenders, V. (2013). Horizon extender: Long-term preservation of data
leakage evidence in web traffic. In ACM Symposium on Information, Computer and Communications
Security.

Hadjieleftheriou, M. and Srivastava, D. (2010). Weighted set-based string similarity. IEEE Data Engineering.,
33(1).

Hadzic, F., Hecker, M., and Tagarelli, A. (2015). Ordered subtree mining via transactional mapping using a
structure-preserving tree database schema. Journal of Information Sciences, 310.

Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen, W., and Chen, E. (2014).
Chronos: A graph engine for temporal graph analysis. In ACM European Conference on Computer
Systems.

152

http://goo.gl/4ZzMI
http://goo.gl/4ZzMI
http://goo.gl/23BaA

Hao, S., Feamster, N., and Pandrangi, R. (2011). Monitoring the Initial DNS Behavior of Malicious Domains.
In ACM Internet Measurement Conference.

Hido, S. and Kawano, H. (2005). Amiot: induced ordered tree mining in tree-structured databases. In IEEE
International Conference on Data Mining.

Ho, J.-W., Wright, M., and Das, S. (2011). Fast detection of mobile replica node attacks in wireless sensor
networks using sequential hypothesis testing. IEEE Transactions on Mobile Computing, 10(6).

Hu, X., Chiueh, T.-c., and Shin, K. G. (2009a). Large-scale malware indexing using function-call graphs. In
ACM Conference on Computer and Communications Security.

Hu, X., Knysz, M., and Shin, K. G. (2009b). Rb-seeker: Auto-detection of redirection botnets. In Symposium
on Network and Distributed System Security.

Huang, L.-S., Moshchuk, A., Wang, H. J., Schechter, S., and Jackson, C. (2012). Clickjacking: attacks and
defenses. In USENIX Security Symposium.

Ihm, S. and Pai, V. S. (2011). Towards understanding modern web traffic. In ACM Internet Measurement
Conference.

Invernizzi, L., Benvenuti, S., Comparetti, P. M., Cova, M., Kruegel, C., and Vigna, G. (2012). Evilseed: A
guided approach to finding malicious web pages. In IEEE Symposium on Security and Privacy.

ISC (2011). Google Chrome and (weird) DNS Requests. http://goo.gl/j48CA.

Jiang, N., Cao, J., Jin, Y., Li, L. E., and Zhang, Z.-L. (2010). Identifying suspicious activities through dns
failure graph analysis. In International Conference on Network Protocols, pages 144–153.

Jiménez, A., Galiano, F. B., and Talavera, J. C. C. (2012). Mining frequent patterns from xml data: Efficient
algorithms and design trade-offs. Expert Systems with Applications, 39(1).

Jones, C. L., Bridges, R. A., Huffer, K. M. T., and Goodall, J. R. (2015). Towards a relation extraction
framework for cyber-security concepts. In ACM Cyber and Information Security Research Conference.

Joshi, A., Lal, R., Finin, T., and Joshi, A. (2013). Extracting cybersecurity related linked data from text. In
IEEE International Conference on Semantic Computing.

Jung, J., Milito, R., and Paxson, V. (2008). On the adaptive real-time detection of fast-propagating network
worms. Journal of Computer Virology, 4.

Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. (2004). Fast Portscan Detection Using Sequential
Hypothesis Testing. In IEEE Symposium on Security and Privacy.

Kaminsky, D. (2008). Black ops 2008–its the end of the cache as we know it. Black Hat USA.

Kirat, D., Vigna, G., and Kruegel, C. (2011). Barebox: Efficient malware analysis on bare-metal. In Annual
Computer Security Applications Conference.

Kirat, D., Vigna, G., and Kruegel, C. (2014). Barecloud: Bare-metal analysis-based evasive malware detection.
In USENIX Security Symposium.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise hashing. Digital
Investigation, 3, Supplement.

153

http://goo.gl/j48CA

Krishnan, S., Taylor, T., Monrose, F., and McHugh, J. (2013). Crossing the Threshold: Detecting Network
Malfeasance via Sequential Hypothesis Testing. In IEEE/IFIP International Conference on Dependable
Systems and Networks.

Kroft, S. (2015). The attack on sony. http://www.cbsnews.com/news/
north-korean-cyberattack-on-sony-60-minutes/.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. The Annals of Mathematical Statistics,
22(1):79–86.

Kutty, S., Nayak, R., and Li, Y. (2007). Pcitminer: prefix-based closed induced tree miner for finding closed
induced frequent subtrees. In Australasian Conference on Data Mining and Analytics.

Lemos, R. (2010). The doubleclick attack and the rise of malvertising. http://goo.gl/1HzmLF.

Li, Z., Alrwais, S., Xie, Y., Yu, F., and Wang, X. (2013). Finding the linchpins of the dark web: a study on
topologically dedicated hosts on malicious web infrastructures. In IEEE Symposium on Security and
Privacy.

Li, Z., Zhang, K., Xie, Y., Yu, F., and Wang, X. (2012). Knowing your enemy: understanding and detecting
malicious web advertising. In ACM Conference on Computer and Communications Security.

Lindorfer, M., Kolbitsch, C., and Milani Comparetti, P. (2011). Detecting environment-sensitive malware. In
Symposium on Recent Advances in Intrusion Detection.

Lu, G. and Debray, S. (2012). Automatic simplification of obfuscated javascript code: A semantics-based
approach. In Conference on Software Security and Reliability.

Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. (2009). Beyond blacklists: learning to detect malicious
web sites from suspicious urls. In Knowledge Discovery and Data Mining.

Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. (2011). Learning to detect malicious urls. ACM
Transactions on Intelligent Systems Technology, 2(3).

Macko, P., Marathe, V., Margo, D., and Seltzer, M. (2015). Llama: Efficient graph analytics using large
multiversioned arrays. In IEEE International Conference on Data Engineering.

Maier, G., Sommer, R., Dreger, H., Feldmann, A., Paxson, V., and Schneider, F. (2008). Enriching network
security analysis with time travel. In ACM SIGCOMM Conference on Data Communication.

Mekky, H., Torres, R., Zhang, Z.-L., Saha, S., and Nucci, A. (2014). Detecting malicious http redirections
using trees of user browsing activity. In IEEE Conference on Computer Communications.

Mockapetris, P. and Dunlap, K. J. (1988). Development of the domain name system. In SIGCOMM
Symposium on Communications Architectures and Protocols.

Mowbray, M. and Hagen, J. (2014). Finding domain-generation algorithms by looking at length distribution.
In IEEE International Symposium on Software Reliability Engineering Workshops.

Narouei, M., Ahmadi, M., Giacinto, G., Takabi, H., and Sami, A. (2015). Dllminer: structural mining for
malware detection. Journal of Security and Communication Networks, 8(18).

Navlakha, S., Rastogi, R., and Shrivastava, N. (2008). Graph summarization with bounded error. In ACM
SIGMOD International Conference on Management of Data.

154

http://www.cbsnews.com/news/north-korean-cyberattack-on-sony-60-minutes/
http://www.cbsnews.com/news/north-korean-cyberattack-on-sony-60-minutes/
http://goo.gl/1HzmLF

Neasbitt, C., Perdisci, R., Li, K., and Nelms, T. (2014). Clickminer: Towards forensic reconstruction of
user-browser interactions from network traces. In ACM Conference on Computer and Communications
Security.

Nelms, T., Perdisci, R., Antonakakis, M., and Ahamad, M. (2015). Webwitness: Investigating, categorizing,
and mitigating malware download paths. In USENIX Security Symposium.

Newcomb, A. (2015). Anthem hack may have impacted millions of non-customers as well. http:
//abcnews.go.com/Technology/anthem-hack-impacted-millions-customers/
story?id=29212840.

Nguyen, L. and Shimazu, A. (2011). Improving subtree-based question classification classifiers with word-
cluster models. In Natural Language Processing and Information Systems, volume 6716. Springer
Berlin Heidelberg.

Nieto, J. (2013). Zeroaccess trojan - network analysis part ii. http://goo.gl/LYssOV.

Paik, J., Choi, W., Lee, E., and Kim, U.-M. (2008). Extraction of frequent tree patterns without subtrees
maintenance. In Future Generation Communication and Networking Symposia, volume 2.

Papadogiannakis, A., Polychronakis, M., and Markatos, E. P. (2010). Rrdtrace: Long-term raw network
traffic recording using fixed-size storage. In IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems.

Pawlik, M. and Augsten, N. (2011). Rted: A robust algorithm for the tree edit distance. In International
Conference on Very Large Databases.

Paxson, V. (1999). Bro: A system for detecting network intruders in real-time. Computer Networks,
31(23-24).

Paxson, V., Christodorescu, M., Javed, M., Rao, J., Sailer, R., Schales, D. L., Stoecklin, M., Thomas, K.,
Venema, W., and Weaver, N. (2013). Practical comprehensive bounds on surreptitious communication
over dns. In USENIX Security Symposium.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.-C. (2001). Prefixspan: mining
sequential patterns efficiently by prefix-projected pattern growth. In IEEE International Conference on
Data Engineering.

Pereira, T. (2015). Tempedreve botnet overview and malware analysis. Technical report, AnubisNetworks.

Polychronakis, M., Anagnostakis, K. G., and Markatos, E. P. (2010). Comprehensive shellcode detection
using runtime heuristics. In Annual Computer Security Applications Conference.

Ponemon Institute (2015). 2015 cost of data breach study: Global analysis. Technical report, Ponemon
Institute LLC.

Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., and Haridasan, M. (2012). Managing large
graphs on multi-cores with graph awareness. In USENIX Annual Technical Conference.

Provos, N., Mavrommatis, P., Rajab, M. A., and Monrose, F. (2008). All your iframes point to us. In USENIX
Security Symposium.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., and Modadugu, N. (2007). The ghost in the browser
analysis of web-based malware. In USENIX Workshop on Hot Topics in Understanding Botnet.

155

http://abcnews.go.com/Technology/anthem-hack-impacted-millions-customers/story?id=29212840
http://abcnews.go.com/Technology/anthem-hack-impacted-millions-customers/story?id=29212840
http://abcnews.go.com/Technology/anthem-hack-impacted-millions-customers/story?id=29212840
http://goo.gl/LYssOV

PWC (2013). IAB internet advertising revenue report: 2012 full year results. Technical report, Pricewater-
houseCoopers, Interactive Advertising Bureau.

Raywood, D. (2012). Major league baseball website hit by malvertising that may potentially impact 300,000
users. http://goo.gl/upKVXe.

Reiss, F., Stockinger, K., Wu, K., Shoshani, A., and Hellerstein, J. M. (2007). Enabling Real-Time Querying
of Live and Historical Stream Data. In International Conference on Scientific and Statistical Database
Management.

Rieck, K., Krueger, T., and Dewald, A. (2010). Cujo: efficient detection and prevention of drive-by-download
attacks. In Annual Computer Security Applications Conference.

Riedy, J., Meyerhenke, H., Bader, D., Ediger, D., and Mattson, T. (2012). Analysis of streaming social
networks and graphs on multicore architectures. In IEEE International Conference on Acoustics, Speech
and Signal Processing.

Ritter, A., Wright, E., Casey, W., and Mitchell, T. (2015). Weakly supervised extraction of computer security
events from twitter. In World Wide Web Conference.

R.O. Duda, P. H. and Stork, D. (2007). Pattern Classification. Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Robertson, S. E. and Jones, K. S. (1976). Relevance weighting of search terms. Journal of the American
Society for Information Science, 27(3).

Roesch, M. et al. (1999). Snort: Lightweight intrusion detection for networks. In USENIX Conference on
System Administration.

Schales, D. L., Hu, X., Jang, J., Sailer, R., Stoecklin, M. P., and Wang, T. (2015). FCCE: highly scalable
distributed feature collection and correlation engine for low latency big data analytics. In IEEE
International Conference on Data Engineering.

Schechter, S. E., Jung, J., and Berger, A. W. (2004). Fast detection of scanning worm infections. In Symposium
on Recent Advances in Intrusion Detection.

Schlumberger, J., Kruegel, C., and Vigna, G. (2012). Jarhead analysis and detection of malicious java applets.
In Annual Computer Security Applications Conference.

Schwartz, M. J. (2013). Android malware being delivered via ad networks. http://goo.gl/CrfKzo.

Schwarz, D. (2015). Bedeps dga: Trading foreign exchange for mal-
ware domains. https://www.arbornetworks.com/blog/asert/
bedeps-dga-trading-foreign-exchange-for-malware-domains/.

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., and Sekar, V. (2012). Making middleboxes
someone else’s problem: Network processing as a cloud service. In ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication.

Shimeall, T., Faber, S., DeShon, M., and Kompanek, A. (2010). Analysts’ Handbook: Using SiLK for
Network Traffic Analysis. CERT Network Situational Awareness Group.

156

http://goo.gl/upKVXe
http://goo.gl/CrfKzo
https://www.arbornetworks.com/blog/asert/bedeps-dga-trading-foreign-exchange-for-malware-domains/
https://www.arbornetworks.com/blog/asert/bedeps-dga-trading-foreign-exchange-for-malware-domains/

Simmhan, Y., Choudhury, N., Wickramaarachchi, C., Kumbhare, A., Frincu, M., Raghavendra, C., and
Prasanna, V. (2015). Distributed programming over time-series graphs. In Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing.

Simmhan, Y., Kumbhare, A., Wickramaarachchi, C., Nagarkar, S., Ravi, S., Raghavendra, C., and Prasanna,
V. (2014). Goffish: A sub-graph centric framework for large-scale graph analytics. In International
Conference on Euro-Par Parallel Processing.

Snow, K. Z., Krishnan, S., Monrose, F., and Provos, N. (2011). Shellos: enabling fast detection and forensic
analysis of code injection attacks. In USENIX Security Symposium.

Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine learning for network
intrusion detection. In IEEE Symposium on Security and Privacy.

Sommer, R., Paxson, V., and Weaver, N. (2009). An architecture for exploiting multi-core processors to
parallelize network intrusion prevention. Concurrency and Computation: Practice & Experience,
21(10).

Son, S. and Shmatikov, V. (2010). The Hitchhiker’s Guide to DNS Cache Poisoning. In International
Conference on Security and Privacy in Communication Networks.

Soni, P., Budianto, E., and Saxena, P. (2015). The sicilian defense: Signature-based whitelisting of web
javascript. In ACM Conference on Computer and Communications Security.

Sophos Inc. (2012). Exploring the blackhole exploit kit. http://goo.gl/ZhLvp.

Stancill, B., Snow, K. Z., Otterness, N., Monrose, F., Davi, L., and Sadeghi, A.-R. (2013). Check My Profile:
Leveraging Static Analysis for Fast and Accurate Detection of ROP Gadgets. Symposium on Recent
Advances in Attacks and Defenses.

Stock, B., Livshits, B., and Zorn, B. (2015). Kizzle: A signature compiler for exploit kits. Technical Report
MSR-TR-2015-12, Microsoft Research.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., Kruegel, C., and Vigna,
G. (2009). Your botnet is my botnet: Analysis of a botnet takeover. In ACM Conference on Computer
and Communications Security, pages 635–647.

Stringhini, G., Kruegel, C., and Vigna, G. (2013). Shady paths: leveraging surfing crowds to detect malicious
web pages. In ACM Conference on Computer and Communications Security.

Subercaze, J., Gravier, C., and Laforest, F. (2015). Mining user-generated comments. In IEEE/WIC/ACM
International Conference on Web Intelligence.

Symantec MSS Global Threat Response (2014). Six months after blackhole: Passing the exploit kit torch.
http://goo.gl/nAsxj0.

Szekeres, L., Payer, M., Wei, T., and Song, D. (2013). Sok: Eternal war in memory. In IEEE Symposium on
Security and Privacy.

Tan, H., Hadzic, F., Dillon, T. S., Chang, E., and Feng, L. (2008). Tree model guided candidate generation
for mining frequent subtrees from xml documents. ACM Transactions on Knowledge Discovery from
Data, 2(2).

157

http://goo.gl/ZhLvp
http://goo.gl/nAsxj0

Tatikonda, S., Parthasarathy, S., and Kurc, T. (2006). Trips and tides: New algorithms for tree mining. In
ACM International Conference on Information and Knowledge Management.

Taylor, T., Coull, S., Monrose, F., and McHugh, J. (2012). Toward efficient querying of compressed network
payloads. In USENIX Annual Technical Conference.

Taylor, T., Hu, X., Wang, T., Jang, J., Stoecklin, M., Monrose, F., and Sailer, R. (2016a). Detecting malicious
exploit kits using tree-based similarity searches. In ACM Conference on Data and Application Security
and Privacy.

Taylor, T., Snow, K. Z., Otterness, N., and Monrose, F. (2016b). Cache, trigger, impersonate: Enabling
context-sensitive honeyclient analysis on-the-wire. In Symposium on Network and Distributed System
Security.

Termier, A., Rousset, M.-C., Sebag, M., Ohara, K., Washio, T., and Motoda, H. (2008). Dryadeparent, an
efficient and robust closed attribute tree mining algorithm. IEEE Transactions on Knowledge and Data
Engineering, 20(3).

Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N., Kapravelos, A., McCoy, D., Nappa, A., Paxson, V.,
Pearce, P., Provos, N., and Rajab, M. A. (2015). Ad injection at scale: Assessing deceptive advertisement
modifications. In IEEE Symposium on Security and Privacy.

Thomas, M. and Mohaisen, A. (2014). Kindred domains: Detecting and clustering botnet domains using dns
traffic. In World Wide Web Conference.

Trend Micro (2014). The aftermath of the blackhole exploit kits demise. http://goo.gl/DsjYUp.

Tu, T. D., Guang, C., and Xin, L. Y. (2015). Detecting bot-infected machines based on analyzing the
similar periodic dns queries. In International Conference on Communications, Management and
Telecommunications.

Unmask Parasites (2012). Runforestrun and pseudo random domains. http://goo.gl/xRWtw.

Valois, J. (1994). Implementing lock-free queues. In International Conference on Parallel and Distributed
Computing Systems, pages 64–69.

Van Overveldt, T., Kruegel, C., and Vigna, G. (2012). Flashdetect: Actionscript 3 malware detection. In
Symposium on Recent Advances in Intrusion Detection.

Villamarn-Salomn, R. and Brustoloni, J. (2008). Identifying botnets using anomaly detection techniques
applied to dns traffic. In IEEE Consumer Communications & Networking Conference.

Wald, A. (1947). Sequential Analysis. John Wiley and Sons, Inc.

Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., and Shi, B. (2004). Efficient pattern-growth methods for
frequent tree pattern mining. In Advances in Knowledge Discovery and Data Mining. Springer.

Wang, D. Y., Savage, S., and Voelker, G. M. (2011). Cloak and dagger: Dynamics of web search cloaking. In
ACM Conference on Computer and Communications Security.

Wang, G., Stokes, J. W., Herley, C., and Felstead, D. (2013). Detecting malicious landing pages in malware
distribution networks. In IEEE/IFIP International Conference on Dependable Systems and Networks.

158

http://goo.gl/DsjYUp
http://goo.gl/xRWtw

Weaver, N., Staniford, S., and paxson, V. (2007). Very fast containment of scanning worms, revisited. In
Malware Detection, volume 27. Springer.

White, A., Krishnan, S., Bailey, M., Monrose, F., and Parros, P. (2013). Clear and Present Data: Opaque
Traffic and its Security Implications for the Future. In Symposium on Network and Distributed System
Security.

Xiao, Y., Yao, J.-F., Li, Z., and Dunham, M. H. (2003). Efficient data mining for maximal frequent subtrees.
In IEEE International Conference on Data Mining.

Xu, L., Zhan, Z., Xu, S., and Ye, K. (2013a). Cross-layer detection of malicious websites. In ACM Conference
on Data and Application Security and Privacy.

Xu, W., Zhang, F., and Zhu, S. (2013b). Jstill: Mostly static detection of obfuscated malicious javascript
code. In ACM Conference on Data and Application Security and Privacy.

Yadav, S., Reddy, A. K. K., Reddy, A. N., and Ranjan, S. (2010). Detecting algorithmically generated
malicious domain names. In ACM Internet Measurement Conference.

Yadav, S. and Reddy, A. N. (2011). Winning with dns failures: Strategies for faster botnet detection. In
International Conference on Security and Privacy in Communication Networks.

Yegneswaran, V., Giffin, J. T., Barford, P., and Jha, S. (2005). An architecture for generating semantics-aware
signatures. In USENIX Security Symposium.

Zaki, M. J. (2005). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE
Transactions on Knowledge and Data Engineering, 17(8).

Zarras, A., Kapravelos, A., Stringhini, G., Holz, T., Kruegel, C., and Vigna, G. (2014). The dark alleys of
madison avenue: Understanding malicious advertisements. In ACM Internet Measurement Conference.

Zeidanloo, H. and Manaf, A. (2009). Botnet command and control mechanisms. In International Conference
on Computer and Electrical Engineering.

Zhao, P., Yu, J. X., and Yu, P. S. (2007). Graph indexing: tree + delta graph. In International Conference on
Very Large Databases.

Zou, L., Lu, Y., Zhang, H., and Hu, R. (2006a). Prefixtreeespan: A pattern growth algorithm for mining
embedded subtrees. In Web Information Systems, volume 4255. Springer Berlin Heidelberg.

Zou, L., Lu, Y., Zhang, H., Hu, R., and Zhou, C. (2006b). Mining frequent induced subtrees by prefix-
tree-projected pattern growth. In International Conference on Web-Age Information Management
Workshops.

159

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	Detecting Exploit Kits via Subtree Similarity Search
	Detecting Exploit Kits via Context and Virtualization on the Wire
	Detecting Network Malfeasance via Sequential Hypothesis Testing
	Innovations

	BACKGROUND
	Exploit Kit Attack Model
	Detecting an Exploit Kit
	Characteristics of an Ideal Network-based Malfeasance Detector
	Operational Challenges in Network Defense

	Exploit Kits Evasion Techniques
	DNS and DGAs

	BACKGROUND
	Modelling HTTP Traffic as Trees
	Subtree Mining: A Comparison of Algorithms on Real World Datasets
	Subtree Mining Algorithms
	Background
	Review of Selected Algorithms

	Methodology
	Real World Datasets
	Synthetic Datasets
	Synthetic Tree Generator in Literature
	Custom Synthetic Tree Generators

	Evaluation
	Output Verification
	Conventional Subtree Mining Algorithms
	Closed Subtree Mining Algorithms

	Tree Edit Distance: An Alternative to Subtree Mining
	Final Thoughts

	DETECTING EXPLOIT KIT TRAFFIC USING SUBTREE SIMILARITY SEARCH
	Literature Review
	Approach
	On Building Trees
	On Building the Malware Index
	On Subtree Similarity Searches
	Node Level Similarity Search
	Structural Similarity Search

	Dataset and Training
	Implementation
	Building the Malware Index
	Establishing Ground Truth

	Finding the Needle in a Haystack
	Comparison with Snort
	Comparison with State of the Art
	Findings and Discussion

	Operational Deployment
	Limitations
	Discussion and Lessons Learned

	DETECTING EXPLOIT KIT TRAFFIC USING REPLAY
	Literature Review
	Approach
	Step .: Semantic Content Caching
	Step .: Filtering and Triggering
	Step .: Client and Server Impersonation
	Step .: Honeyclient-based Detection
	Prototype Implementation

	Evaluation
	On Detection Performance
	On Live Traffic Analysis

	Case Study
	Limitations
	Discussion and Lessons Learned

	DETECTING BOTS USING SEQUENTIAL HYPOTHESIS TESTING
	Literature Review
	Collection Infrastructure
	Data Summary for Measurement Period I
	Classification based on Features of a Domain Name
	Shortcomings of Existing Methods

	Approach
	Evaluation - Measurement Period I
	Offline Analysis
	Visualizing AGD Traffic
	Analysis of Live Traffic

	Data Summary and Evaluation for Measurement Period II
	Offline Analysis
	Online Analysis

	Limitations
	Discussion and Lessons Learned

	CONCLUSION AND FUTURE DIRECTIONS
	BIBLIOGRAPHY

