
 

 

R4 and R12 subfamily RGS proteins – 

Structures, functions, and emerging chemical biology 
 

Adam Jordan Kimple 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of 

Medicine (Pharmacology) 

Chapel Hill 

2010 

Approved by:  

 

Advisor: Dr. David P. Siderovski 

 

Reader: Dr. Marion E. Couch 

 

Reader: Dr. Henrik G. Dohlman 

 

Reader: Dr. T. Kendall Harden 

 

Reader: Dr. Franck Polleux 



 

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!2010 

Adam Jordan Kimple 

ALL RIGHTS RESERVED 



 iii 

 

 

 

 

 

ABSTRACT 

 

ADAM JORDAN KIMPLE:  

R4 and R12 subfamily RGS proteins – 

Structures, functions, and emerging chemical biology 

(Under the direction of Dr. David Peter Siderovski) 

 

 It is essential that cells respond to their extracellular environment with appropriate 

intracellular changes.  Many environmental cues are received at the cell membrane, by a 

family of G-protein coupled receptors (GPCRs) and their heterotrimeric G-proteins, 

composed of G!, G" and G# subunits.  Upon binding of a hormone, neurotransmitter, 

tastant, or small molecule agonist at the membrane-bound GPCR, the receptor catalyzes the 

exchange of GDP for GTP on the heterotrimeric G! subunit.  This change results in the 

release of G"# from the G! subunit.  The dissociated G! and G"# dimer can each signal to 

downstream effectors until the G! hydrolyzes GTP, resulting in the reassociation of the 

G!"# heterotrimer.  The duration of effector activation is therefore controlled by the duration 

of the G! subunit in its GTP-bound state. The state of G! as a GTP-bound protein is short-

lived, however, given that the protein has an intrinsic ability to hydrolyze GTP to GDP and 

inorganic phosphate – an activity that can be greatly accelerated by Regulator of G-protein 

Signaling (RGS) proteins, which are known to act as GTPase-accelerating proteins (GAPs) 

for G! subunits.  The work described herein represents series of studies aimed at furthering 

our understanding of the molecular determinants of RGS protein/G! interaction specificity, 

facilitating the identification of small molecule modulators of RGS protein activity, and 

understanding the biochemical function and physiological roles of RGS21.   



 iv 

 Toward the first aim, I performed mutagenesis on residues predicted to change the 

G! specificity of RGS2 and extensively characterized these mutants using GTP hydrolysis 

assays and G! interaction assays employing surface plasmon resonance and in vitro FRET.  

To comprehensively understand the role that each mutation was playing in allowing RGS2 to 

bind to a non-native G! binding partner, I solved a crystal structure of a mutant RGS2 in 

complex with G!i.   

 Toward the second aim, facilitating the identification of small molecule modulators of 

RGS protein function, I used a variety of biophysical tools to determine the mechanism of 

action of the first commercially available RGS protein inhibitor – which was ultimately 

determined to be a non-specific, thiol-reactive compound.  In order to identify new small 

molecule modulators of RGS protein function, I developed and validated a high-throughput 

screen for the RGS12/G!i1 interaction.  This screen was run against several compound 

libraries, both locally and at the NIH Chemical Genomics Center (NCGC); however, no hits 

were subsequently validated as in vivo inhibitors of the RGS12/G!i1 interaction.  Given these 

setbacks, we rethought how we were screening for RGS protein inhibitors and developed a 

completely novel, enzymatic-based assay that can be used for high-throughput screening.   

 Toward the final aim, we confirmed the disputed report by von Buchholtz et al. that 

RGS21 is expressed only in chemosensory cells; however, we were also able to identify 

RGS21 transcripts in sensory digestive and pulmonary epithelia.  Using biochemical 

methods, we demonstrated that RGS21 exhibits high affinity binding toward a variety of G! 

substrates and that it can accelerate their GTP hydrolysis in vitro.  We also present data that 

endogenous RGS21 expression serves to negatively regulate tastant receptor signal 

transduction in a cellular model of gustation.   
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1.1 PHARMACEUTICAL AND BIOLOGICAL IMPORTANCE OF G-PROTEIN 

COUPLED RECEPTOR SIGNALING 

 

In order for a cell to adapt to its environment, it must be able to receive extracellular cues and 

then elicit an intracellular response.  While there are multiple receptor families (i.e., receptor 

tyrosine kinases, ion channels, nuclear receptors), G-protein coupled receptors (GPCRs) 

represent the largest and most pharmacologically important family. Approximately 1% of the 

human genome is dedicated to these receptors [1, 2] and over 50% of the pharmaceuticals 

prescribed annually target one or more of these receptors [3, 4]. In addition to being the 

largest component of the druggable proteome, GPCRs are also responsible for our ability to 

perceive the visual, olfactory, and gustatory cues in our environment. Missense and 

truncation mutations in individual codons in genes encoding GPCRs results in a myriad of 

pathologies including color blindness, retinitis pigmentosa, pseudohermaphrotidism, and 

Hirschsprung’s disease [5]. Because of the importance of GPCRs in both pathology and 

treatment of disease, it is critical we comprehensively understand these receptors and their 

downstream components.   

 At the most basic level, GPCRs consist of seven !-helical transmembrane stretches 

with an extracellular N-terminus and an intracellular C-terminus. These diverse receptors can 

be further divided into subfamilies named by their hallmark member: glutamate-, rhodopsin-, 

adhesion-, frizzled-, and secretin-like [1, 6].  While the precise mechanism of activation of 

the heterotrimeric G-protein varies from family to family and remains elusive, in simplest 

terms upon binding of a hormone, neurotransmitter, ion, or other stimuli, the GPCR 

undergoes conformation changes that allow the activation of the G!(GDP)/G"# complex.  
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Upon ligand binding, the GPCR catalyzes the release of GDP and subsequent binding of 

GTP on the G! subunit [7-9].  

 

1.2  THE CLASSIC GUANINE NUCLEOTIDE CYCLE  

 
Heterotrimeric G-proteins act as molecular switches that are in the off state when bound to 

GDP and are activated when GTP bound.  In the basal state, the GDP bound G!-subunit is 

bound to the G"# subunit (Figure 1.1).  The G!/G"# interaction serves to enhance 

localization to the membrane, to enhance coupling, and to slow the spontaneous dissociation 

of GDP (reducing constitutive activity) [10-13]. Upon an agonist-induced conformational 

change, the receptor acts as a guanine nucleotide exchange factor resulting in the 

displacement of GDP and subsequent binding of GTP.  The nucleotide pocket of the 

heterotrimeric G-protein alpha subunit is surrounded by three flexible switch regions that 

undergo dramatic conformational changes depending on nucleotide state [14, 15]. The 

binding of GTP and subsequent change in the switch regions results in the dissociation of the 

GTP-bound G! from G"#.  At this point, the activated G! subunit and the G"# obligate 

heterodimer are able to interact with effectors such as adenylyl cyclase, phospholipase C 

isoforms, RhoGEFs, and ion channels [7, 16-21].   

 

1.3  G-PROTEIN SUBUNITS 

 

1.3.1 G!  

 
The G! subunit, in its inactive state, binds GDP within a nucleotide-binding pocket 

circumscribed by residues derived from both of its constituent domains: a Ras-like domain 

(resembling the structural fold of small G-proteins) and an all !-helical domain unique to the 
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large G! family, comprising a structurally distinct six-helix bundle (Figure 1.2A). An 

extended N-terminal !-helix is modified by covalent attachment of the fatty acids myristate 

and/or palmitate, which facilitates membrane targeting as well as assembly with G"# 

subunits [22]. Exchange of GDP for GTP is catalyzed in a poorly understood process by an 

activated GPCR which acts as a guanine nucleotide exchange factor for the G!·GDP/G"# 

heterotrimer [8, 9] and causes a structural rearrangement within three switch regions (I-III) of 

G! (Figure 1.2B) that results from nucleotide-pocket residues interacting with the #-

phosphate of the newly-bound GTP [23, 24]. The particular conformations of these three 

switch regions are critical to the protein/protein interactions that G! makes with its 

nucleotide-selective binding partners such as G"#, effectors, RGS proteins, and GoLoco 

motifs [14, 15, 25, 26].  

  

1.3.2 G"#  

 

G" and G# subunits form tightly associated heterodimers (Figure 1.3). G" begins with an 

extended N-terminal !-helix and is composed mainly of a "-propeller fold formed by seven 

individual segments of a !40-amino acid sequence known as the WD-40 repeat. G# is an 

extended stretch of two !-helices joined by an intervening loop. Assuming no significant 

tertiary structure on its own, the N-terminus of G# participates in a coiled-coil interaction 

with the N-terminal !-helix of G" (Figure 1.3); much of the remainder of G# binds along the 

outer edge of the G" toroid [27, 28]. G# is prenylated posttranslationally on a cysteine 

residue that is four amino acids from the C-terminus: Most G# subunits receive a 20-carbon 

geranylgeranyl group at this position (Fig 1.3), whereas G#1, G#8, and G#11 alternatively 

receive a 15-carbon farnesyl group [22]. This lipid modification aids in the resultant 
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membrane localization of the G"# heterodimer that is important to receptor coupling. G"# 

and GDP-bound G! form the G-protein heterotrimer via two principal sites of interaction:  

1) extensive burial of the "3/!2 loop and !2 helix (switch II) of G! within six of the seven 

WD repeats of G", and 2) contact between the side of the first "-propeller blade of G" and 

the extended N-terminal helix of G! [14, 15]. These extensive interactions form the basis for 

competition for G"# binding between G!·GDP and "#-effectors. Structures of G"# bound to 

the "#-effector GRK2, the regulatory protein phosducin, and SIGK (a peptide capable of 

disrupting effector activation) have shown that the effector-binding site on G"# overlaps 

significantly with the region responsible for binding switch II of G! near the central pore of 

the G" toroid [29-31].  

 

1.4  GTP HYDROLYSIS 

 
The mechanism of GTP hydrolysis by G! has been discerned from x-ray diffraction 

crystallographic structures of the G! transition state-mimetic form (G! bound to GDP and 

AlF4
$) [32], as well as hydrolysis reaction intermediates including G! bound to guanosine 5'-

("#-imido)triphosphate (GppNHp) or GDP plus inorganic phosphate [33, 34]. The GTP 

hydrolysis reaction is mediated by three conserved G! amino acids (Figure 1.4; residues 

numbered as found in G!i1). Glutamine-204 in switch II coordinates the critical nucleophilic 

water molecule responsible for hydrolysis of the #-phosphate, whereas arginine-178 and 

threonine-181 (both from switch I) help to stabilize the leaving group (as mimicked by the 

planar anion AlF4
-), with the latter coordinating a bound Mg2+ ion [32].  

 



 6 

1.5  GTPase ACCELERATING PROTEINS 

 

Intrinsic GTP hydrolysis was initially thought to control the lifetime of G-protein alpha 

subunits in their GTP bound state and the in vitro kinetics of GTP hydrolysis by G!s 

supported this hypothesis [35]; however, intrinsic rates of GTP hydrolysis measured in vitro 

could not account for the fast deactivation kinetics seen with other G-proteins in the cellular 

context.  For instance, purified transducin, which is the heterotrimeric G-protein that couples 

to the photoreceptor rhodopsin, hydrolyzes GTP with a t% of ~15 seconds; however, the rate 

of retinal deactivation is <1 sec [36].  Additionally, G-protein coupled inwardly-rectifying 

potassium channels (GIRKs), which are activated by G"# freed from G!i subunits, are 

deactivated 100 times faster than would be predicted based on the intrinsic GTP hydrolysis 

rate exhibited by G!i subunits in vitro [37, 38].  The first evidence that the cycle of 

nucleotide binding and hydrolysis could be modulated by binding partners other than G"# 

came from the report of Berstein et al. demonstrating that the G!q/11 effector PLC-"1 could 

also increase the rate of GTP hydrolysis by G!q/11 [39]. While PLC-"1 seemed to have 

paradoxical roles being both an effector and a GTPase Accelerating Protein (GAP) for G!q/11, 

this report provided the first demonstration of a GAP for heterotrimeric G-proteins, although 

GAPs had been known for Ras-family GTPases for at least five years previously [40].  The 

first evidence of non-effector GAPs for heterotrimeric G-proteins came from a yeast-based 

genetic screen for mutants that increased sensitivity of Saccharomyces cerevisiae to !-factor 

pheromone.  These screens identified two primary factors that made yeast supersensitive to 

!-factor, supersensitive 1 (Sst1) and supersensitive 2 (Sst2) [41, 42]. In these initial studies, 

Sst1 acted as a “barrier” inhibiting the diffusion of !-factor in solution [42]. Consistent with 

this initial description, Sst1 (also known as Bar1) is now known to encode an extracellular 
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protease that degrades !-factor in the environment [43].  While the molecular details of 

Sst2’s function remained enigmatic for seven more years, unlike Sst1 it was speculated to 

inhibit the pheromone response in the intracellular compartment [42]. Once the components 

of the pheromone pathway had been rigorously elucidated [44-47], work by Dr. Henrik 

Dohlman and colleagues demonstrated that the overexpression of the yeast G! subunit 

(GPA1) suppressed the supersensitivity of Sst2 mutant yeast but overexpression of G" 

subunit (Ste4) was not able to suppress the phenotype [48].  While these experiments were 

not able to demonstrate conclusively a binary interaction between Sst2 and GPA1, it helped 

establish the groundwork for the discovery of a novel family of negative regulators of G-

protein coupled receptor signaling by multiple groups [49-55].  

 This newly identified family of proteins, the Regulators of G-protein Signaling (RGS 

proteins), is characterized by the presence of a nine !-helical bundle that binds selectively to 

the G! transition state for GTP hydrolysis [25, 56].  The nine helices can be subdivided into 

two subdomains, the first of which is composed of helices !I, II, III, VIII and IX while the 

remaining subdomain is comprised of helices !IV, V, VI, and VII, with each subdomain 

arranged in antiparallel helical bundles (Figure 1.5A).  Unlike the GAPs for small G-proteins 

[57], RGS proteins do not contribute any single residue to the nucleotide binding pocket that 

is necessary for the catalytic mechanism. Their catalytic activity has been established by 

x-ray diffraction crystallography and NMR structures of isolated RGS proteins, as well as 

RGS protein/G! protein complexes [25, 56, 58-61]. RGS proteins are selective for binding 

most avidly to the transition state of G!(GTP!GDP) which can be mimicked by G!(GDP) 

bound with the planar ion aluminium tetrafluoride (AlF4
-) [49, 62, 63].  Three critical 

contacts are formed between RGS proteins and their G! partners [25, 60, 61].  The amide of 
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Asn 122 (residue numbered as in human RGS8) forms a hydrogen bond with the critical 

glutamine of G! responsible for GTP hydrolysis, e.g., Gln 204 of G!i3.  This helps orient the 

glutamine residue to stabilize the terminal phosphate that is being hydrolyzed from GTP (as 

mimicked by the AlF4
-
 ion).  A second Asn (e.g. Asn of RGS8) contacts the side chain 

hydroxyl of a Switch I threonine (Thr 182 in G!i3) allowing the side chain hydroxyl to 

contact the Switch II Lys (Lys 210 in G!i3). This locks Switch I and Switch II into their 

transition state conformations. Additionally an aspartate residue in the C terminus of the RGS 

domain (Asp 157 in RGS8), which is conserved in all RGS proteins except RGS2, serves to 

stabilize the backbone amine of the G! Switch I Thr 182 (allowing the neighboring Thr 181 

side chain hydroxyl group to stabilize the Mg
2+ 

cation (Figure 1.6).  The numerous contacts 

made by Thr 182 highlight the importance of this switch I region in G! in stabilizing the 

RGS domain/G! interaction and, in addition, explain the profound loss of binding and GAP 

activity that occurs when the neighboring glycine (Gly 183 in G!i3) is subtly changed to 

serine. This “RGS-insensitivity” point mutation (Gly 183 to serine) was originally identified 

by Dohlman and colleagues in Gpa1, the G! subunit of the yeast Saccharomyces cerevisiae 

[64], functions equivalently in mammalian G! subunits such as G!i1, G!o, and G!q [65, 66], 

and additionally has been shown to leave all other functions of G! intact, including intrinsic 

nucleotide binding and hydrolysis activities, as well as coupling to G"#, receptor, and 

effectors [65, 67-70]. 

 Thirty-seven RGS proteins are encoded by gene loci in the human genome – a 

collection of related proteins which can be divided into 10 different subfamilies (Figure 1.7). 

The largest is known as the R4 family and contains 10 members: RGS1, -2, -3, -4, -5, -8, -13, 

-16, -18, and -21. R4 family members are the smallest and simplest of the RGS proteins and, 
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with the exception of RGS3, consist of a single RGS domain with minimal additional amino 

acids at their N- and C-termini.  With the exception of RGS2 [59, 71], members of this 

family accelerate the hydrolysis of GTP by both Gi and Gq family G! subunits (Figure 1.8) 

[56, 72].  With little biochemical selectivity between G!i1, G!i2, G!i3, G!o, and G!q 

substrates, and no additional regions containing obvious domain structures, members of this 

subfamily would be predicted to act promiscuously as negative regulators of Gi- and Gq-

coupled GPCRs; however, early work of Wilkie and Muallem demonstrated that the N-

termini of R4 family members, outside of the canonical RGS domain, can provide specificity 

to the in vivo potency of R4 protein GAP activity on specific receptors [73, 74].  While it is 

not entirely clear how these terminal extensions on R4 family RGS domains enhance 

specificity, it has been suggested that selectivity towards particular GPCR signaling 

pathways is mediated by the binding of adaptor proteins such as spinophilin [75] or through 

direct interactions with receptors [74, 76, 77]. In addition to receptor specificity that is 

dependent on the N-terminus, point mutations have been identified that affect the overall in 

vivo stability of RGS protein in overexpression studies [78]. The physiological relevance of 

the N-terminus in regulating degradation of RGS proteins is supported by the identification 

of a hypertensive cohort who had a single nucleotide polymorphism in the gene loci of RGS2 

that results in a Gln-2-Leu mutation resulting in destabilization of RGS2 and subsequent 

hypertension [79].  

While the biochemical role of RGS proteins as GTPase-accelerating proteins has been 

well characterized [49, 56, 80, 81], and the cellular role of RGS proteins in attenuating 

GPCR-mediated signaling is also established [82-85], it has remained a more arduous task to 

characterize the specific roles of RGS proteins in animal models.  Of the R4 family members, 
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five mouse knockout models have been published to date.  Using a RGS1-deficient mouse 

strain, the Kehrl laboratory reported on the observed importance of RGS1 in negatively 

regulating CXCR4 and CXCR5 chemokine receptor signaling in B-lymphocytes and the 

necessity of RGS1 expression for the proper maturation of germinal centers [86]. A different 

immune system phenotype was identified by the Druey lab in RGS13-deficient mice.  Their 

research demonstrated that loss of RGS13 resulted in increased mast cell degranulation and 

anaphylaxis.  Classically, deregulation occurs when the antigen-bound immunoglobulin E 

(IgE) interacts with the IgE receptor (Fc$RI) which is not a G-protein coupled receptor [87-

90]; however, Druey and colleagues showed that RGS13 acts in a GAP-independent manner 

to negatively regulate IgE-mediated degranulation. They determined the amino-terminal 51 

amino acids (outside of the RGS domain) bind the p85! regulatory subunit of 

phosphatidylinositol-3-OH kinase preventing the activation of antigen-induced, PI(3)K-

mediated, degranulation [91].  In addition to their role in B-cells and mast cells, RGS 

proteins have been shown to be important in response to immune system function. RGS2 was 

originally identified as a gene upregulated upon activation of blood mononuclear cells by the 

plant lectin ConA or treated with cycloheximide [92-94]. In studies of RGS2-deficient mice, 

the Siderovski and Penninger labs were able to show that, unlike RGS1-deficient mice, 

RGS2-deficient mice have normal B cell quantities and differentiation; however, 

RGS2-deficient mice were unable to mount a robust T-cell mediated immune response.  

RGS2-deficient T-cells, when compared to wildtype T-cells, were impaired in their ability to 

proliferate in response to T-cell receptor engagement, to treatment with phorbol myristate 

acetate (PMA) and Ca2+-ionophores, or to anti-CD3$ cross-linking, with or without CD28 co-

receptor engagement [95]. Additionally, T-cells had an impaired ability to secrete 



 11 

interleukin-2 (IL-2) in response to an immune challenge. While the diminished IL-2 secretion 

could account for the decreased proliferation [96], supplementation of IL-2 was unable to 

stimulate T-cell proliferation to levels seen in wildtype T-cells, suggesting that the observed 

phenotype was not the result of decreased IL-2 production [95].    

In addition to their roles in modulating immune responses, R4 family RGS proteins 

have been shown to regulate vascular development and physiology [97]. Maintenance of 

vascular perfusion of the entire body is a delicate balance. On one hand, if arterial pressure is 

significantly decreased, regional hypoxia and coagulative necrosis will destroy tissue; 

however, if arterial pressure is elevated, the risk of heart failure, stroke, and kidney disease 

are dramatically increased [98]. One crucial component to maintaining normotension is 

vascular resistance, which is dynamically modulated by the vascular smooth muscle that 

lines blood vessels. Given that vessel resistance (R) is inversely proportional to vessel radius 

(r) to the fourth power (R % 1/r4), small changes in the lumen of a vessel can have dramatic 

change in the resistance and thus the vascular pressure [99].  GPCRs are crucial mediators of 

vasodilation and vasoconstriction [100]; for example, angiotensin II, norepinephrine, 

vasopressin, and acetylcholine cause vasocontriction by activating GPCRs coupled to G!q/11 

which subsequently activate phospholipase C (PLC) [100] 

The in vitro specificity of RGS2 toward G!q [59, 71] and the multitude of G!q 

coupled GPCRs that control vasoconstriction suggest that RGS2 might be an important 

negative regulator in inhibiting vascular smooth muscle constriction. The first demonstration 

of the importance of RGS2 in regulating blood pressure came from studies of RGS2-deficient 

mice [95] that characterized RGS2-deficient animals as having constitutive hypertension 

[101-103]. Further evidence supporting the role of RGS2 in maintaining normo-static blood 
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pressure has come from human population-based studies of hypertensive cohorts. These 

studies have identified single nucleotide polymorphisms within the coding region of RGS2 

that results in a decrease of proper localization of RGS2 to the plasma membrane and a 

resultant decrease of its inhibitory influence on G!q-mediated vasoconstrictive hormone 

signal transduction [79, 101]. While the loss of RGS2 results in constitutive hypertension, 

mice deficient in RGS5, which is highly expressed in pericytes, exhibit constitutive 

hypotension, suggesting that RGS5 might be a critical negative regulator of vasodilatory 

signaling or vascular development [104].  While the mechanism by which RGS5 assists in 

the maintenance of normal blood pressure remains to be established, RGS5 has been 

observed to be highly expressed in vascular smooth muscle and pericytes [105, 106].  The 

high expression of RGS5 in pericytes of angiogenic tumor vessels [107] led Hamzah and 

colleagues to cross RGS5-deficient mice with a tumorgenic mouse strain which rapidly 

develops insulinomas [108].  The tortuosity and dilated nature of the vessels characteristic of 

insulinomas derived from wild–type mice were lost in the RGS5-deficient line.  Instead, the 

blood supply in RGS5-deficient insulinomas had a regular appearance with normal branching 

reminiscent of normal developmental angiogenesis in organs [108, 109]. While the precise 

role that RGS5 is playing in the neovascularization of tumors is unclear, it is apparent that 

RGS5 is a critical component of maintaining normal blood pressure and proper angiogenesis. 

 An additional RGS-deficient mouse model identified to have a cardiovascular phenotype 

is the RGS4-deficient mouse [110]. In this mouse, the RGS4 promoter was used to drive the 

expression of beta-galactosidase allowing expression of the Rgs4 gene to be characterized by 

histochemical staining. The authors reported high levels of expression of the Rgs4 gene locus 

in the sinoatrial node [111], an anatomical region of the heart which serves to initiate and 
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control the timing of cardiac contractions [112].  In the absence of RGS4 expression, basal 

heart rates were identical to wildtype; however, upon activation of the parasympathetic 

system by the administration of carbachol, RGS4-deficient mice had an exaggerated decrease 

in heart rate as compared to wildtype controls [111]. In examining isolated sinoatrial 

myocytes from RGS4-deficient and control animals, Cifelli and colleagues also observed a 

decreased frequency of action potential initiation in response to activation of the 

parasympathetic nervous system by carbachol administration [111].  

While R4-family members have been implicated in the modulation of cardiovascular 

function through these mouse knockout studies [110, 111], it was also expected that RGS4-

deficient mice would also have altered pre-pulse inhibition of acoustic startle (an animal 

model of schizophrenia), based on human population studies of gene transcripts found 

decreased in schizophrenia [113]; however, the Rgs4 knockout mouse strain has not yet 

produced a significant phenotype relating to experimental tests of schizophrenia [110].  

While it is possible that RGS4 is not involved in the pathogenesis of schizophrenia, it is 

equally possible that developmental compensation by other R4 family members has masked 

phenotypes that could otherwise have been observed in the absence of RGS4 expression.  To 

overcome the limitations of knocking out individual RGS proteins and looking for 

phenotypes in the presence of developmental compensation, Wyeth Laboratories produced 

two transgenic rat strains that overexpressed either wild-type G!q or RGS-insensitive G!q 

using a pan-neuron Thy1.2 promoter [106-110]. Inhibition of the G!q coupled serotonin 

receptor 5-HT2C is associated with weight gain associated with atypical anti-psychotic 

medications [114-116], which antagonize a wide range of dopamine and serotonin receptors 

[117-119].  RGS-insensitive G!q transgenic rats exhibited lower basal weight as well as a 



 14 

greater decrease in food intake upon the administration of the 5-HT2C agonist Ro 60-175 

[120]. While these results are suggestive that an unidentified RGS protein negatively 

regulates activation of the 5-HT2C, additional studies are required to identify the specific RGS 

protein involved in regulating this system.  Additionally, these studies should be verified in 

an animal model that expresses RGS-insensitive G!q at endogenous levels.  Systemic 

administration of (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-HT2A specific agonist, 

leads to increased secretion of oxytocin, corticosterone, ACTH, and prolactin by the 

hypothalamus [121].  Using the same rat RGS-insensitive G!q transgenic model, Shi and 

colleagues reported a role of endogenous RGS proteins in regulating serotonin-induced 

oxytocin release yet having no effect on serotonin-induced ACTH release [122].    

Such transgenic studies are not ideal because one has to deconvolute the changes in 

phenotypes induced by overexpression of additional G! from the expression of RGS-

insensitive G!. To overcome these difficulties, Neubig and colleagues have made knock-in 

mice expressing RGS-insensitive G!o or G!i2 [123], thereby providing endogenous levels of 

G! subunit expression. Goldstein et al. demonstrated that the loss of RGS-mediated GAP 

activity on G!o results in greater therapeutic effects of epinephrine and norepinephine in 

inhibiting epileptiform activity in hippocampal slices [123]. Huang et al. showed that RGS-

insensitive G!i2 mice are resistant to weight gain when provided a high fat diet and are 

additionally protected from developing insulin resistance [124].  While these studies are 

powerful in that they can identify RGS protein GAP activity-mediated phenotypes specific to 

a particular G! subunit (e.g., G!i2 or G!o), these results will require extensive follow-up 

studies with single RGS protein knockouts (or other strategies) to identify the particular RGS 

protein(s) functional in these physiological signaling pathways.   
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 While the cellular effects of R4 family members can generally be attributed to their 

ability to accelerate G! GTP hydrolysis [85], in recent years it has become apparent that 

RGS domain-containing proteins can also serve as complex scaffolds for assembling 

signaling nodes [125-127].  In contrast to the numerous membership of the R4 family with 

substrate promiscuity across G!i and G!q subunits, the R12 subfamily consists only of three 

members (RGS10, -12, and -14), each of which has a central RGS domain that interacts with 

G!i and not G!q subunits [56]. RGS12 and RGS14, both originally cloned by the Siderovski 

lab [128], also have additional protein domains known to interact with Ras-superfamily small 

GTPases, receptor tyrosine kinases, and classical components of the mitogen-activated 

protein kinase (MAPK) cascade [126]. Relating more directly to heterotrimeric G-protein 

signaling, the R12 family members RGS12 and RGS14 also contain a unique 19 amino acid 

motif, distinct from the RGS domain, that interacts with G!i1,2,3 subunits in the ground state 

(GDP bound) and inhibits their spontaneous dissociation of GDP (i.e., guanine nucleotide 

dissociation inhibitor or “GDI” activity).   

 

1.6  GUANINE NUCLEOTIDE DISSOCIATION INHIBITORS 

 
Before the discovery of GDI activity within R12-family RGS proteins, the original guanine 

nucleotide dissociation inhibitor described for heterotrimeric G-proteins was the G"# subunit 

which, when bound to G!, prevents the release of GDP [10, 12]. In a gene-trap experiment 

for glial cell-specific genes, Granderath and colleagues identified Loco, the Drosophila 

homologue of RGS12.  Loss of this gene results in a significant reduction of offspring 

viability and, in viable offspring, a severe impairment of locomotor activity [129]. 
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Granderath and colleagues were surprised when subsequent experiments revealed Loco could 

interact with Drosophila G!i in the absence of the RGS domain. Our lab used this puzzling 

finding to identify a highly conserved 19 amino acid motif present in the Drosophila gene 

Loco protein, its mammalian paralogues RGS12 and RGS14, as well as in the G!-interacting 

protein LGN [130, 131]. Ponting simultaneously discovered the same motif in this collection 

of proteins using similar bioinformatic arguments [132]. Given its initial discovery in the 

Loco protein and the ability of this motif to interact with G!i/o-family G! subunits, the 

Siderovski lab named this 19 amino acid motif the “GoLoco” motif [131]. In addition to its 

presence in RGS12 and RGS14, single GoLoco motifs have also been identified in 

Rap1GAP, a negative regulator of Ras-family GTPases [133], and in the C. elegans proteins 

GPR-1/-2 [134]. Additionally several proteins have been identified that contain multiple 

tandem repeats of GoLoco motifs such as AGS3, LGN, Pcp-2, and AGS4/G18 (a.k.a. 

GPSM3) (reviewed in [26]) (Figure 1.9).   

 The structure of RGS14 bound to the GoLoco motif (amino acids 496-531) revealed 

that the first 13 amino acids adopt an !-helical secondary structure and bind between the !3-

helix and switch II of the Ras-like domain of G!i1 [135, 136] (Figure 1.9). The binding of the 

RGS14 GoLoco motif results in a distortion of the G"#-binding interface; in agreement with 

this structural distortion, it has been demonstrated biochemically that G!(GDP) subunits can 

bind to either G"# or a GoLoco motif but not both [137-139]. The C-terminus of the GoLoco 

motif invariantly consists of an acidic-glutamine-arginine triad (Figure 1.9), the terminal 

arginine of which extends into the nucleotide binding pocket (in a similar manner to the 

catalytic Arg finger essential to Ras-family GAPs [140, 141]) and makes contact with the !- 

and "-phosphates of the bound guanine nucleotide. Arg-178 within Switch I of G!i1 is 
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usually in contact with the !- and "-phosphate oxygens [142]; however, upon binding the 

GoLoco motif, Arg-178 is displaced by the arginine of the GoLoco terminal triad, causing it 

to form a new contact with the hydroxyl of the ribose sugar and a salt bridge with Glu-43 of 

G!i1.  Substitution of the terminal Arg of the GoLoco triad with phenylalanine results in 

complete loss of G! binding [143-145].  

 While it is clear that GoLoco motifs bind G!i subunits in vitro in a nucleotide 

dependent manner [135, 143, 144] and that these motifs are crucial in determining the 

subcellular localization of the proteins which have them [125, 126, 146-148], their precise 

role in normal physiology remains obscure and there is little evidence supporting their role in 

modulating GPCR signaling.   

 Work by the Knoblich and Chia laboratories provided the first evidence that the 

GoLoco motifs within the protein Partner of Inscuteable (Pins) were critical in establishing 

asymmetric cell division in Drosophilia neuroblasts [149, 150]. The Drosophila G!i, Pins, 

and Inscuteable proteins form an apical complex that is necessary for apical/basal asymmetry 

[151] and the loss of any of these components results in the loss of appropriate spindle 

orientation and a reduction in the asymmetry of neuroblast division that is normally critical 

for establishing different daughter cell fates [149, 150, 152].  Consistent with the nucleotide 

dependent binding of the GoLoco motifs, overexpression of wildtype G!, but not 

constitutively active G!, results in the loss of the apical/basal patterning of cell fate 

determinants that is dependent on GoLoco/G!(GDP) interactions [153].   

 Corroborating the importance of GoLoco motif proteins to asymmetric cell division in 

Drosophila, extensive work has also been done in the nematode worm. In C. elegans, the 

Pins homologues GPR-1 and GPR-2 segregate to the posterior cortex of the zygote and are 
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necessary for the asymmetric positioning of the mitotic spindle that is required for the proper 

first division of the embryo [134].  Studies by Colombo et al. demonstrated that, upon 

severing the spindle, the posterior spindle pole’s velocity is ~40% greater than the anterior 

spindle pole, and that RNAi-mediated depletion of GPR-1 and GPR-2 or of the G! subunits 

GOA-1 and GPA-16 results in an equalization of spindle velocity and symmetric division 

[134]. These studies have supported the idea that GoLoco motif proteins, by forming a 

complex with G! subunits at the cell cortex in an asymmetrically distributed fashion, control 

spindle orientation and pulling forces that lead to asymmetric cell division. 

 

1.7  SMALL MOLECULE MODULATORS OF RGS FUNCTION 

 
GPCRs are the single largest target of currently prescribed pharmaceuticals and RGS proteins 

are potent negative regulators of GPCR-mediated signaling.  RGS proteins thus provide an 

attractive target to either modulate the action of currently prescribed pharmaceuticals or 

modulate tonic signaling in a pathway-dependent manner [154-157]. While a small molecule 

that binds to the surface of an RGS protein and blocks its interaction with G! would be an 

invaluable proof-of-principle for this concept, it is would be equally useful to have a small 

molecule that could allosterically enhance the GAP function of endogenous RGS proteins.   

Bioinformatic methods [158] and mutagenesis [159] have implicated a region 

between helix IV-V (Figure 1.10) as the allosteric site on the RGS domain responsible for the 

influences of phosphatidylinositol-3,4,5-trisphosphate (PIP3) and Ca2+/calmodulin on GAP 

activity. This allosteric site (B-site) is distinct from the G!-interacting “A-site” (Figure 1.10) 

and, upon binding of PIP3, decreases GAP activity in vitro.  In a Ca2+ dependent manner, 

calmodulin (CaM) can competitively inhibit PIP3-mediated GAP inhibition [159-161]. 
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Modulation of GAP activity via PIP3 and Ca2+/CaM is also seen in cellular assays using 

cardiac myocytes in electrophysiological recordings of GPCR signaling to ion channel gating 

[161-163].  Based on sequence conservation in the B-site, it is possible that the allosteric 

modulation of RGS1, -2, -10, and -19 also occurs; however, this remains to be 

experimentally validated.  This site could potentially be exploited by small molecules to 

either mimic the effect of PIP3 in inhibiting GAP activity, or mimic the effect of Ca2+/CaM in 

preventing the allosteric inhibition of GAP activity.  

Currently the only way to disrupt the RGS domain/G! interaction is via point 

mutations on either protein’s interaction surface.  Single amino acid substitutions on either 

side of the interface can completely abolish binding and the catalytic activity of RGS proteins 

[59, 64, 164]. The ability to disrupt this large protein/protein interface (1290 Å2 [25]) with 

single point mutations suggests that the small perturbations in the topology of the surface by 

virtue of a bound small molecule could have dramatic results in inhibiting RGS domain GAP 

activity.  The current dearth of small molecule modulators of RGS proteins only makes 

discovering the first in vivo-acting RGS protein modulator more exciting. 

Measuring RGS domain-mediated acceleration of GTP hydrolysis in vitro, for 

example as part of a compound library screening campaign, is difficult because GDP release 

by G! (not GTP hydrolysis) is the rate-limiting step [12, 165].  Thus, to quantify the effects 

of RGS domain GAP activity, one typically preloads radiolabelled GTP and measures the 

one round of hydrolysis in a so-called “single-turnover” assay [49]. This experimental design 

requires one to establish a pool of G!([#-32P]GTP), initiate the assay at time zero with the 

addition of Mg2+, sample aliquots over time, precipitate all unhydrolyzed GTP with charcoal, 

separate the charcoal, and then quantify the inorganic phosphate that was produced (and 
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resides in the supernatant) using liquid scintillation.  This cumbersome assay design is not 

suitable to automation, so our group and others have developed alternative assays that are 

more suitable for high throughput screening of compound libraries (see Chapters 4 and 5).   

Wyeth Laboratory published yeast two-hybrid based screening method for identifying 

RGS4 or RGS20 inhibitors [166, 167]. While their screen was reported to have identified 

small molecule inhibitors, these compounds were never made public and the screening 

program has been disbanded (Dr. David Siderovski, personal communications).   

In a functional screen to identify novel treatments for urinary incontinence using ex 

vivo rat bladder smooth muscle cultures, a Bristol-Myers Squibb group identified two 

compounds (BMS-192364 and BMS-195270) that had no known molecular target yet 

resulted in relaxation of bladder [168].  Using a nematode genetics approach to identifying 

the target of these two drugs, this group concluded that these two compounds targeted the 

G!/RGS domain interaction and specifically locked the pair in an unproductive complex 

[168]. While they did not provide direct biochemical evidence for this proposed mechanism 

of action, there is precedence that brefeldin A, a naturally-occurring antibiotic, can trap the 

Ras-family GTPase ARF1 in an unproductive complex with the ARF1 GEF, Sec7 [169]. 

Currently, no one has yet reported being able to confirm that these two BMS compounds 

target the RGS/G! interaction; the Siderovski lab obtained both of these compounds but was 

unable to test them in single-turnover assays owing to compound solubility problems (Dr. 

Francis Willard; personal communication). In addition to the efforts that are ongoing by the 

pharmaceutical industry, our laboratory as well as the Neubig lab at the University of 

Michigan have been developing novel high throughput screening assays for the RGS 

domain/G! interaction target and searching for small molecule modulators of RGS protein 

GAP activity.  
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Neubig and colleagues have described a high-throughput flow cytometry method to 

screen for small molecules that can disrupt the binding of RGS proteins to G! subunits. 

Their assay design uses fluorescently-labeled G! protein and a LumAvidin® microsphere-

coupled RGS protein to look for compounds that disrupted their interaction.  The advantage 

of this assay is the ability to multiplex different biotinylated RGS proteins to different 

LumAvidin® microspheres [170, 171].  The results of an initial “in house” screening of a 

~3,000 compound collection from ChemBridge were published by Roman et al. [171]; 

ultimately, they only identified one reactive compound that non-specifically modifies 

cysteines, including a critical surface-exposed cysteine in the RGS4 A-site [172] (Chapter 3).  

Both the Wyeth yeast two-hybrid screen and the flow cytometry-based screen were unable to 

measure the actual catalytic activity of RGS proteins in vitro. Instead, it has been common 

practice in RGS protein assays and screens to use binding of G! to the RGS domain as an 

indirect indicator of GAP activity.  Based on the mechanism by which RGS proteins stabilize 

the switch regions in their transition state conformation, this is a valid assumption; however, 

using binding as a surrogate for GAP activity has two potential pitfalls.  The first deficit is 

that a compound such as brefeldin A that traps the G-protein in an unproductive complex 

with its regulatory partner would be missed.  It is possible that, for the RGS/G! target, a 

small molecule might inhibit RGS domain-mediated stabilization of the switch regions in a 

conformation that facilitates hydrolysis or otherwise traps the RGS/G! complex.  

Additionally, it is possible that, relying on binding rather than enzymatic activity in a 

compound library screen, one may have false negatives given weak binding of an inhibitor 

that would be lost to the noise of the assay. Instead, if one were able to read out successive 

rounds of GTP hydrolysis by G!, and acceleration of that hydrolysis by the RGS protein, the 
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effects of such weak inhibitors may become apparent.  The current efforts of our laboratory 

in developing high throughput screening assays for RGS/G! targets will be further discussed 

in Chapters 4 and 5 and both use fluorescence polarization as the primary readout.   

 

1.8  FLUORESCENCE POLARIZATION 

 
Fluorescence occurs when the absorption of light causes a molecule’s electronic 

configuration to enter an excited state and the spontaneous return to the ground state results 

in the emission of a photon of lower energy (higher wavelength) than the incident photon 

[173]. The ability to label proteins with fluorescent dyes or naturally-fluorescent proteins has 

allowed scientists to track changes in location of proteins in real time, to measure the 

subcellular compartments where proteins are activated in vivo, and to monitor protein-protein 

interactions in real time [174, 175]. Generally when a dye is excited with a excitation beam 

from a non-laser excitation source, the dye is excited by a random orientation of incident 

photons. It was noted in 1926 by Francis Perrin that, if an immobilized fluorophore is excited 

with plane-polarized light, the emission is polarized in the same plane; however, if the 

fluorophore is in solution, the emission becomes random [176]. This phenomenon has been 

extremely useful in the biological sciences to track single nucleotide polymorphisms, 

peptide/protein interactions, DNA/protein interactions, phosphorylation events and photolytic 

cleavages [177-181]. Two different, but interchangeable, methods are commonly used to 

quantify this phenomenon: anisotropy (r) or polarization (P). In general, biophysicists prefer 

to use anisotropy because the loss of light due to the polarizer is corrected by the factor of 2 

in the denominator of the equation, while polarization (P) has become the standard in the 

biological sciences [182]. Both anisotropy and polarization measurements are made by 
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quantifying the intensity of the fluorescence emission perpendicular (I&) and parallel (I||) to 

the plane of excitation (Equation 1.1; Figure 1.11); the value of anisotropy and polarization 

can be easily interconverted (Equation 1.2). The remainder of the text will refer to 

polarization in terms of (P) which, while technically unitless, is commonly expressed in the 

literature as milliP (mP). 
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Given that excitation, relaxation, and subsequent emission do not occur instantaneously, if a 

fluorescent dye is undergoing rotational motion, a polarized excitation source will be 

depolarized if the rotational motion of the dye is faster than its fluorescence lifetime. 

Polarization measurements provide an index of the average angular displacement of a 

fluorophore that occurs between absorption and emission of a photon. The angular 

displacement and, thus, the polarization is dependent on the rotational velocity of the 

molecule (rotational correlation time; '), the delay of the fluorophore from excitation to 

emission (fluorescence lifetime; (), and the fundamental polarization for a particular dye 

(physical constant for a particular dye; P0), as set forth by the classic Perrin equation 

(Equation 1.3) [176, 182].  
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The rotational correlation time (') is dependent on the viscosity (!) of the environment and 

the apparent molecular weight of the fluorescent dye or dye-conjugate (M). For a globular 
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protein, the rotational correlation time (") is directly related to the molecular weight of the 

protein by the formula: 

(1.4)     

! 

" =
#M

RT
(v + h)  

Typically in the biological sciences, fluorescence polarization is used for measuring binding 

reactions in which viscosity of the solution remains unchanged. Therefore, the only variable 

that is commonly changing the rotational correlation time (") is the apparent molecular 

weight of the dye. The most widely used dye for fluorescence polarization is fluorescein 

isothicyanate (FITC) and its derivatives which have a fluorescence lifetime (() of ~4 ns.  This 

fundamental property of the dye limits the types of molecular interactions that can be 

monitored using fluorescence polarization (Figure 1.12) [182].  For instance, a FITC-labelled 

molecular probe in general must have a molecular weight below 5,000 Da and bind to an 

interactor of greater than 10,000 Da in order to obtain a sufficient signal by fluorescence 

polarization (Figure 1.12). While there are no commercial fluorophores available with 

fluorescence lifetimes that allow the detection of interactions between two large 

macromolecules, several publications exist describing novel dyes capable of monitoring 

binding interactions between albumin and antibodies [183-185].  

 While fluorescence polarization assays require that the molecular weight of the probe 

must be much less than the molecular weight of the bound complex, this limitation is offset 

by several advantages that fluorescence polarization offers compared to traditional methods 

for monitoring protein/ligand and protein/protein interactions. First, no radioactive waste is 

generated while the probe concentration can remain low, typically in the picomolar to 

nanomolar range.  Second, fluorescence polarization assays are homogeneous and do not 

require additional steps after the reaction is established for separating the tracer from the 
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reaction mixture.  In addition to equilibrium binding analyses, fluorescence polarization 

allows the experimenter to set up experiments so that kinetic data can be obtained from 

multiple samples (including 96 well, 384 well, and 1536 well formats).  Given that the 

polarization signal is not dependent on the absolute intensity of the fluorophore, these 

fluorescence polarization assays are able to accommodate day-to-day variations in probe 

concentration, as well as loss of probe due to decay, and are generally robust to instrument 

changes such as drift, gain settings, and lamp changes [186]. In Chapters 4 and 5, I describe 

my use of fluorescence polarization in developing two different assays, namely the binding 

of G!i1(GDP) to the GoLoco motif of RGS12, and the production of GDP by RGS4-

accelerated G!i1(GTP) in multiple rounds of GTP hydrolysis. 

 



 26 

1.9  REFERENCES 

 

1. Fredriksson, R., M.C. Lagerstrom, L.G. Lundin, and H.B. Schioth, The G-protein-
coupled receptors in the human genome form five main families. Phylogenetic 
analysis, paralogon groups, and fingerprints. Mol Pharmacol, 2003. 63(6): p. 1256-
72. 

2. Takeda, S., S. Kadowaki, T. Haga, H. Takaesu, and S. Mitaku, Identification of G 
protein-coupled receptor genes from the human genome sequence. FEBS Lett, 2002. 
520(1-3): p. 97-101. 

3. Jacoby, E., R. Bouhelal, M. Gerspacher, and K. Seuwen, The 7 TM G-protein-
coupled receptor target family. ChemMedChem, 2006. 1(8): p. 761-82. 

4. Lundstrom, K., Latest development in drug discovery on G protein-coupled receptors. 
Curr Protein Pept Sci, 2006. 7(5): p. 465-70. 

5. Spiegel, A.M. and L.S. Weinstein, Inherited diseases involving g proteins and g 
protein-coupled receptors. Annu Rev Med, 2004. 55: p. 27-39. 

6. Perez, D.M., The evolutionarily triumphant G-protein-coupled receptor. Mol 
Pharmacol, 2003. 63(6): p. 1202-5. 

7. Gilman, A.G., G proteins: transducers of receptor-generated signals. Annu Rev 
Biochem, 1987. 56: p. 615-49. 

8. Johnston, C.A. and D.P. Siderovski, Receptor-mediated activation of heterotrimeric 
G-proteins: current structural insights. Mol Pharmacol, 2007. 72(2): p. 219-30. 

9. Oldham, W.M. and H.E. Hamm, Heterotrimeric G protein activation by G-protein-
coupled receptors. Nat Rev Mol Cell Biol, 2008. 9(1): p. 60-71. 

10. Brandt, D.R. and E.M. Ross, GTPase activity of the stimulatory GTP-binding 
regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-
nucleotide intermediates. J Biol Chem, 1985. 260(1): p. 266-72. 

11. Evanko, D.S., M.M. Thiyagarajan, D.P. Siderovski, and P.B. Wedegaertner, Gbeta 
gamma isoforms selectively rescue plasma membrane localization and palmitoylation 
of mutant Galphas and Galphaq. J Biol Chem, 2001. 276(26): p. 23945-53. 

12. Higashijima, T., K.M. Ferguson, P.C. Sternweis, M.D. Smigel, and A.G. Gilman, 
Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine 
nucleotides with G proteins. J Biol Chem, 1987. 262(2): p. 762-6. 



 27 

13. Robillard, L., N. Ethier, M. Lachance, and T.E. Hebert, Gbetagamma subunit 
combinations differentially modulate receptor and effector coupling in vivo. Cell 
Signal, 2000. 12(9-10): p. 673-82. 

14. Wall, M.A., B.A. Posner, and S.R. Sprang, Structural basis of activity and subunit 
recognition in G protein heterotrimers. Structure, 1998. 6(9): p. 1169-83. 

15. Bohm, A., R. Gaudet, and P.B. Sigler, Structural aspects of heterotrimeric G-protein 
signaling. Curr Opin Biotechnol, 1997. 8(4): p. 480-7. 

16. Exton, J.H., Regulation of phosphoinositide phospholipases by hormones, 
neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol 
Toxicol, 1996. 36: p. 481-509. 

17. Kammermeier, P.J., V. Ruiz-Velasco, and S.R. Ikeda, A voltage-independent calcium 
current inhibitory pathway activated by muscarinic agonists in rat sympathetic 
neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci, 2000. 20(15): p. 
5623-9. 

18. Kozasa, T., X. Jiang, M.J. Hart, P.M. Sternweis, W.D. Singer, A.G. Gilman, G. 
Bollag, and P.C. Sternweis, p115 RhoGEF, a GTPase activating protein for 
Galpha12 and Galpha13. Science, 1998. 280(5372): p. 2109-11. 

19. Pitcher, J.A., N.J. Freedman, and R.J. Lefkowitz, G protein-coupled receptor kinases. 
Annu Rev Biochem, 1998. 67: p. 653-92. 

20. Rhee, S.G., Regulation of phosphoinositide-specific phospholipase C. Annu Rev 
Biochem, 2001. 70: p. 281-312. 

21. Simonds, W.F., G protein regulation of adenylate cyclase. Trends Pharmacol Sci, 
1999. 20(2): p. 66-73. 

22. Wedegaertner, P.B., P.T. Wilson, and H.R. Bourne, Lipid modifications of trimeric G 
proteins. J Biol Chem, 1995. 270(2): p. 503-6. 

23. Lambright, D.G., J.P. Noel, H.E. Hamm, and P.B. Sigler, Structural determinants for 
activation of the alpha-subunit of a heterotrimeric G protein. Nature, 1994. 
369(6482): p. 621-8. 

24. Posner, B.A., M.B. Mixon, M.A. Wall, S.R. Sprang, and A.G. Gilman, The A326S 
mutant of Gialpha1 as an approximation of the receptor-bound state. J Biol Chem, 
1998. 273(34): p. 21752-8. 

25. Tesmer, J.J., D.M. Berman, A.G. Gilman, and S.R. Sprang, Structure of RGS4 bound 
to AlF4--activated G(i alpha1): stabilization of the transition state for GTP 
hydrolysis. Cell, 1997. 89(2): p. 251-61. 



 28 

26. Willard, F.S., R.J. Kimple, and D.P. Siderovski, Return of the GDI: the GoLoco motif 
in cell division. Annu Rev Biochem, 2004. 73: p. 925-51. 

27. Sondek, J., A. Bohm, D.G. Lambright, H.E. Hamm, and P.B. Sigler, Crystal structure 
of a G-protein beta gamma dimer at 2.1A resolution. Nature, 1996. 379(6563): p. 
369-74. 

28. Wall, M.A., D.E. Coleman, E. Lee, J.A. Iniguez-Lluhi, B.A. Posner, A.G. Gilman, 
and S.R. Sprang, The structure of the G protein heterotrimer Gi alpha 1 beta 1 
gamma 2. Cell, 1995. 83(6): p. 1047-58. 

29. Bonacci, T.M., J.L. Mathews, C. Yuan, D.M. Lehmann, S. Malik, D. Wu, J.L. Font, 
J.M. Bidlack, and A.V. Smrcka, Differential targeting of Gbetagamma-subunit 
signaling with small molecules. Science, 2006. 312(5772): p. 443-6. 

30. Gaudet, R., A. Bohm, and P.B. Sigler, Crystal structure at 2.4 angstroms resolution 
of the complex of transducin betagamma and its regulator, phosducin. Cell, 1996. 
87(3): p. 577-88. 

31. Lodowski, D.T., J.A. Pitcher, W.D. Capel, R.J. Lefkowitz, and J.J. Tesmer, Keeping 
G proteins at bay: a complex between G protein-coupled receptor kinase 2 and 
Gbetagamma. Science, 2003. 300(5623): p. 1256-62. 

32. Coleman, D.E., A.M. Berghuis, E. Lee, M.E. Linder, A.G. Gilman, and S.R. Sprang, 
Structures of active conformations of Gi alpha 1 and the mechanism of GTP 
hydrolysis. Science, 1994. 265(5177): p. 1405-12. 

33. Coleman, D.E. and S.R. Sprang, Structure of Gialpha1.GppNHp, autoinhibition in a 
galpha protein-substrate complex. J Biol Chem, 1999. 274(24): p. 16669-72. 

34. Raw, A.S., D.E. Coleman, A.G. Gilman, and S.R. Sprang, Structural and biochemical 
characterization of the GTPgammaS-, GDP.Pi-, and GDP-bound forms of a GTPase-
deficient Gly42 --> Val mutant of Gialpha1. Biochemistry, 1997. 36(50): p. 15660-9. 

35. Cassel, D., F. Eckstein, M. Lowe, and Z. Selinger, Determination of the turn-off 
reaction for the hormone-activated adenylate cyclase. J Biol Chem, 1979. 254(19): p. 
9835-8. 

36. Vuong, T.M. and M. Chabre, Deactivation kinetics of the transduction cascade of 
vision. Proc Natl Acad Sci U S A, 1991. 88(21): p. 9813-7. 

37. Breitwieser, G.E. and G. Szabo, Mechanism of muscarinic receptor-induced K+ 
channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol, 
1988. 91(4): p. 469-93. 

38. Yatani, A., R. Mattera, J. Codina, R. Graf, K. Okabe, E. Padrell, R. Iyengar, A.M. 
Brown, and L. Birnbaumer, The G protein-gated atrial K+ channel is stimulated by 
three distinct Gi alpha-subunits. Nature, 1988. 336(6200): p. 680-2. 



 29 

39. Berstein, G., J.L. Blank, D.Y. Jhon, J.H. Exton, S.G. Rhee, and E.M. Ross, 
Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic 
regulator. Cell, 1992. 70(3): p. 411-8. 

40. Trahey, M. and F. McCormick, A cytoplasmic protein stimulates normal N-ras p21 
GTPase, but does not affect oncogenic mutants. Science, 1987. 238(4826): p. 542-5. 

41. Chan, R.K. and C.A. Otte, Isolation and genetic analysis of Saccharomyces 
cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor 
pheromones. Mol Cell Biol, 1982. 2(1): p. 11-20. 

42. Chan, R.K. and C.A. Otte, Physiological characterization of Saccharomyces 
cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor 
pheromones. Mol Cell Biol, 1982. 2(1): p. 21-9. 

43. MacKay, V.L., S.K. Welch, M.Y. Insley, T.R. Manney, J. Holly, G.C. Saari, and 
M.L. Parker, The Saccharomyces cerevisiae BAR1 gene encodes an exported protein 
with homology to pepsin. Proc Natl Acad Sci U S A, 1988. 85(1): p. 55-9. 

44. Dietzel, C. and J. Kurjan, The yeast SCG1 gene: a G alpha-like protein implicated in 
the a- and alpha-factor response pathway. Cell, 1987. 50(7): p. 1001-10. 

45. Hartwell, L.H., Mutants of Saccharomyces cerevisiae unresponsive to cell division 
control by polypeptide mating hormone. J Cell Biol, 1980. 85(3): p. 811-22. 

46. Miyajima, I., M. Nakafuku, N. Nakayama, C. Brenner, A. Miyajima, K. Kaibuchi, K. 
Arai, Y. Kaziro, and K. Matsumoto, GPA1, a haploid-specific essential gene, encodes 
a yeast homolog of mammalian G protein which may be involved in mating factor 
signal transduction. Cell, 1987. 50(7): p. 1011-9. 

47. Nakayama, N., Y. Kaziro, K. Arai, and K. Matsumoto, Role of STE genes in the 
mating factor signaling pathway mediated by GPA1 in Saccharomyces cerevisiae. 
Mol Cell Biol, 1988. 8(9): p. 3777-83. 

48. Dohlman, H.G., D. Apaniesk, Y. Chen, J. Song, and D. Nusskern, Inhibition of G-
protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone 
desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol, 1995. 15(7): p. 
3635-43. 

49. Berman, D.M., T.M. Wilkie, and A.G. Gilman, GAIP and RGS4 are GTPase-
activating proteins for the Gi subfamily of G protein alpha subunits. Cell, 1996. 
86(3): p. 445-52. 

50. De Vries, L., M. Mousli, A. Wurmser, and M.G. Farquhar, GAIP, a protein that 
specifically interacts with the trimeric G protein G alpha i3, is a member of a protein 
family with a highly conserved core domain. Proc Natl Acad Sci U S A, 1995. 92(25): 
p. 11916-20. 



 30 

51. Druey, K.M., K.J. Blumer, V.H. Kang, and J.H. Kehrl, Inhibition of G-protein-
mediated MAP kinase activation by a new mammalian gene family. Nature, 1996. 
379(6567): p. 742-6. 

52. Hunt, T.W., T.A. Fields, P.J. Casey, and E.G. Peralta, RGS10 is a selective activator 
of G alpha i GTPase activity. Nature, 1996. 383(6596): p. 175-7. 

53. Koelle, M.R. and H.R. Horvitz, EGL-10 regulates G protein signaling in the C. 
elegans nervous system and shares a conserved domain with many mammalian 
proteins. Cell, 1996. 84(1): p. 115-25. 

54. Siderovski, D.P., A. Hessel, S. Chung, T.W. Mak, and M. Tyers, A new family of 
regulators of G-protein-coupled receptors? Curr Biol, 1996. 6(2): p. 211-2. 

55. Watson, N., M.E. Linder, K.M. Druey, J.H. Kehrl, and K.J. Blumer, RGS family 
members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. 
Nature, 1996. 383(6596): p. 172-5. 

56. Soundararajan, M., F.S. Willard, A.J. Kimple, A.P. Turnbull, L.J. Ball, G.A. Schoch, 
C. Gileadi, O.Y. Fedorov, E.F. Dowler, V.A. Higman, S.Q. Hutsell, M. Sundstrom, 
D.A. Doyle, and D.P. Siderovski, Structural diversity in the RGS domain and its 
interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci U S A, 
2008. 105(17): p. 6457-62. 

57. Vetter, I.R. and A. Wittinghofer, The guanine nucleotide-binding switch in three 
dimensions. Science, 2001. 294(5545): p. 1299-304. 

58. Moy, F.J., P.K. Chanda, M.I. Cockett, W. Edris, P.G. Jones, K. Mason, S. Semus, and 
R. Powers, NMR structure of free RGS4 reveals an induced conformational change 
upon binding Galpha. Biochemistry, 2000. 39(24): p. 7063-73. 

59. Kimple, A.J., M. Soundararajan, S.Q. Hutsell, A.K. Roos, D.J. Urban, V. Setola, B.R. 
Temple, B.L. Roth, S. Knapp, F.S. Willard, and D.P. Siderovski, Structural 
determinants of G-protein alpha subunit selectivity by regulator of G-protein 
signaling 2 (RGS2). J Biol Chem, 2009. 284(29): p. 19402-11. 

60. Slep, K.C., M.A. Kercher, W. He, C.W. Cowan, T.G. Wensel, and P.B. Sigler, 
Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. 
Nature, 2001. 409(6823): p. 1071-7. 

61. Slep, K.C., M.A. Kercher, T. Wieland, C.K. Chen, M.I. Simon, and P.B. Sigler, 
Molecular architecture of Galphao and the structural basis for RGS16-mediated 
deactivation. Proc Natl Acad Sci U S A, 2008. 105(17): p. 6243-8. 

62. Popov, S., K. Yu, T. Kozasa, and T.M. Wilkie, The regulators of G protein signaling 
(RGS) domains of RGS4, RGS10, and GAIP retain GTPase activating protein activity 
in vitro. Proc Natl Acad Sci U S A, 1997. 94(14): p. 7216-20. 



 31 

63. Sondek, J., D.G. Lambright, J.P. Noel, H.E. Hamm, and P.B. Sigler, GTPase 
mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-
AIF-4. Nature, 1994. 372(6503): p. 276-9. 

64. DiBello, P.R., T.R. Garrison, D.M. Apanovitch, G. Hoffman, D.J. Shuey, K. Mason, 
M.I. Cockett, and H.G. Dohlman, Selective uncoupling of RGS action by a single 
point mutation in the G protein alpha-subunit. J Biol Chem, 1998. 273(10): p. 5780-
4. 

65. Lan, K.L., N.A. Sarvazyan, R. Taussig, R.G. Mackenzie, P.R. DiBello, H.G. 
Dohlman, and R.R. Neubig, A point mutation in Galphao and Galphai1 blocks 
interaction with regulator of G protein signaling proteins. J Biol Chem, 1998. 
273(21): p. 12794-7. 

66. Clark, M.J. and J.R. Traynor, Assays for G-protein-coupled receptor signaling using 
RGS-insensitive Galpha subunits. Methods Enzymol, 2004. 389: p. 155-69. 

67. Fu, Y., H. Zhong, M. Nanamori, R.M. Mortensen, X. Huang, K. Lan, and R.R. 
Neubig, RGS-insensitive G-protein mutations to study the role of endogenous RGS 
proteins. Methods Enzymol, 2004. 389: p. 229-43. 

68. Day, P.W., J.J. Tesmer, R. Sterne-Marr, L.C. Freeman, J.L. Benovic, and P.B. 
Wedegaertner, Characterization of the GRK2 binding site of Galphaq. J Biol Chem, 
2004. 279(51): p. 53643-52. 

69. Ikeda, S.R. and S.W. Jeong, Use of RGS-insensitive Galpha subunits to study 
endogenous RGS protein action on G-protein modulation of N-type calcium channels 
in sympathetic neurons. Methods Enzymol, 2004. 389: p. 170-89. 

70. Chen, H., M.A. Clark, and N.A. Lambert, Endogenous RGS proteins regulate 
presynaptic and postsynaptic function: functional expression of RGS-insensitive 
Galpha subunits in central nervous system neurons. Methods Enzymol, 2004. 389: p. 
190-204. 

71. Heximer, S.P., N. Watson, M.E. Linder, K.J. Blumer, and J.R. Hepler, RGS2/G0S8 is 
a selective inhibitor of Gqalpha function. Proc Natl Acad Sci U S A, 1997. 94(26): p. 
14389-93. 

72. Arshavsky, V.Y., T.D. Lamb, and E.N. Pugh, Jr., G proteins and phototransduction. 
Annu Rev Physiol, 2002. 64: p. 153-87. 

73. Zeng, W., X. Xu, S. Popov, S. Mukhopadhyay, P. Chidiac, J. Swistok, W. Danho, 
K.A. Yagaloff, S.L. Fisher, E.M. Ross, S. Muallem, and T.M. Wilkie, The N-terminal 
domain of RGS4 confers receptor-selective inhibition of G protein signaling. J Biol 
Chem, 1998. 273(52): p. 34687-90. 



 32 

74. Xu, X., W. Zeng, S. Popov, D.M. Berman, I. Davignon, K. Yu, D. Yowe, S. 
Offermanns, S. Muallem, and T.M. Wilkie, RGS proteins determine signaling 
specificity of Gq-coupled receptors. J Biol Chem, 1999. 274(6): p. 3549-56. 

75. Wang, X., W. Zeng, A.A. Soyombo, W. Tang, E.M. Ross, A.P. Barnes, S.L. 
Milgram, J.M. Penninger, P.B. Allen, P. Greengard, and S. Muallem, Spinophilin 
regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third 
intracellular loop of G-protein-coupled receptors. Nat Cell Biol, 2005. 7(4): p. 405-
11. 

76. Bernstein, L.S., S. Ramineni, C. Hague, W. Cladman, P. Chidiac, A.I. Levey, and J.R. 
Hepler, RGS2 binds directly and selectively to the M1 muscarinic acetylcholine 
receptor third intracellular loop to modulate Gq/11alpha signaling. J Biol Chem, 
2004. 279(20): p. 21248-56. 

77. Wang, Q., L.Y. Liu-Chen, and J.R. Traynor, Differential modulation of mu- and 
delta-opioid receptor agonists by endogenous RGS4 protein in SH-SY5Y cells. J Biol 
Chem, 2009. 284(27): p. 18357-67. 

78. Bodenstein, J., R.K. Sunahara, and R.R. Neubig, N-terminal residues control 
proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 
cells. Mol Pharmacol, 2007. 71(4): p. 1040-50. 

79. Yang, J., K. Kamide, Y. Kokubo, S. Takiuchi, C. Tanaka, M. Banno, Y. Miwa, M. 
Yoshii, T. Horio, A. Okayama, H. Tomoike, Y. Kawano, and T. Miyata, Genetic 
variations of regulator of G-protein signaling 2 in hypertensive patients and in the 
general population. J Hypertens, 2005. 23(8): p. 1497-505. 

80. Snow, B.E., R.A. Hall, A.M. Krumins, G.M. Brothers, D. Bouchard, C.A. Brothers, 
S. Chung, J. Mangion, A.G. Gilman, R.J. Lefkowitz, and D.P. Siderovski, GTPase 
activating specificity of RGS12 and binding specificity of an alternatively spliced 
PDZ (PSD-95/Dlg/ZO-1) domain. J Biol Chem, 1998. 273(28): p. 17749-55. 

81. Apanovitch, D.M., K.C. Slep, P.B. Sigler, and H.G. Dohlman, Sst2 is a GTPase-
activating protein for Gpa1: purification and characterization of a cognate RGS-
Galpha protein pair in yeast. Biochemistry, 1998. 37(14): p. 4815-22. 

82. Doupnik, C.A., N. Davidson, H.A. Lester, and P. Kofuji, RGS proteins reconstitute 
the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. 
Proc Natl Acad Sci U S A, 1997. 94(19): p. 10461-6. 

83. Saitoh, O., Y. Kubo, Y. Miyatani, T. Asano, and H. Nakata, RGS8 accelerates G-
protein-mediated modulation of K+ currents. Nature, 1997. 390(6659): p. 525-9. 

84. He, W., C.W. Cowan, and T.G. Wensel, RGS9, a GTPase accelerator for 
phototransduction. Neuron, 1998. 20(1): p. 95-102. 



 33 

85. Lambert, N.A., C.A. Johnston, S.D. Cappell, S. Kuravi, A.J. Kimple, F.S. Willard, 
and D.P. Siderovski, Regulators of G-protein Signaling accelerate GPCR signaling 
kinetics and govern sensitivity solely by accelerating GTPase activity. Proc Natl Acad 
Sci U S A. 

86. Moratz, C., J.R. Hayman, H. Gu, and J.H. Kehrl, Abnormal B-cell responses to 
chemokines, disturbed plasma cell localization, and distorted immune tissue 
architecture in Rgs1-/- mice. Mol Cell Biol, 2004. 24(13): p. 5767-75. 

87. Gilfillan, A.M. and J. Rivera, The tyrosine kinase network regulating mast cell 
activation. Immunol Rev, 2009. 228(1): p. 149-69. 

88. Kinet, J.P., The high-affinity IgE receptor (Fc epsilon RI): from physiology to 
pathology. Annu Rev Immunol, 1999. 17: p. 931-72. 

89. Metz, M. and M. Maurer, Mast cells--key effector cells in immune responses. Trends 
Immunol, 2007. 28(5): p. 234-41. 

90. Rivera, J. and A.M. Gilfillan, Molecular regulation of mast cell activation. J Allergy 
Clin Immunol, 2006. 117(6): p. 1214-25; quiz 1226. 

91. Bansal, G., Z. Xie, S. Rao, K.H. Nocka, and K.M. Druey, Suppression of 
immunoglobulin E-mediated allergic responses by regulator of G protein signaling 
13. Nat Immunol, 2008. 9(1): p. 73-80. 

92. Siderovski, D.P., S. Blum, R.E. Forsdyke, and D.R. Forsdyke, A set of human 
putative lymphocyte G0/G1 switch genes includes genes homologous to rodent 
cytokine and zinc finger protein-encoding genes. DNA Cell Biol, 1990. 9(8): p. 579-
87. 

93. Siderovski, D.P., S.P. Heximer, and D.R. Forsdyke, A human gene encoding a 
putative basic helix-loop-helix phosphoprotein whose mRNA increases rapidly in 
cycloheximide-treated blood mononuclear cells. DNA Cell Biol, 1994. 13(2): p. 125-
47. 

94. Heximer, S.P., A.D. Cristillo, and D.R. Forsdyke, Comparison of mRNA expression 
of two regulators of G-protein signaling, RGS1/BL34/1R20 and RGS2/G0S8, in 
cultured human blood mononuclear cells. DNA Cell Biol, 1997. 16(5): p. 589-98. 

95. Oliveira-Dos-Santos, A.J., G. Matsumoto, B.E. Snow, D. Bai, F.P. Houston, I.Q. 
Whishaw, S. Mariathasan, T. Sasaki, A. Wakeham, P.S. Ohashi, J.C. Roder, C.A. 
Barnes, D.P. Siderovski, and J.M. Penninger, Regulation of T cell activation, anxiety, 
and male aggression by RGS2. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12272-7. 

96. Cantrell, D.A. and K.A. Smith, The interleukin-2 T-cell system: a new cell growth 
model. Science, 1984. 224(4655): p. 1312-6. 



 34 

97. Manzur, M. and R. Ganss, Regulator of G protein signaling 5: a new player in 
vascular remodeling. Trends Cardiovasc Med, 2009. 19(1): p. 26-30. 

98. Harris, D.M., H.I. Cohn, S. Pesant, and A.D. Eckhart, GPCR signalling in 
hypertension: role of GRKs. Clin Sci (Lond), 2008. 115(3): p. 79-89. 

99. Levy, M.N., A.J. Pappano, and R.M. Berne, Cardiovascular physiology. 9th ed. 
Mosby physiology monograph series. 2007, Philadelphia, PA: Mosby Elsevier. xiv, 
269 p. 

100. Brinks, H.L. and A.D. Eckhart, Regulation of GPCR signaling in Hypertension. 
Biochim Biophys Acta. 

101. Gu, S., S. Tirgari, and S.P. Heximer, The RGS2 gene product from a candidate 
hypertension allele shows decreased plasma membrane association and inhibition of 
Gq. Mol Pharmacol, 2008. 73(4): p. 1037-43. 

102. Heximer, S.P., R.H. Knutsen, X. Sun, K.M. Kaltenbronn, M.H. Rhee, N. Peng, A. 
Oliveira-dos-Santos, J.M. Penninger, A.J. Muslin, T.H. Steinberg, J.M. Wyss, R.P. 
Mecham, and K.J. Blumer, Hypertension and prolonged vasoconstrictor signaling in 
RGS2-deficient mice. J Clin Invest, 2003. 111(4): p. 445-52. 

103. Tang, K.M., G.R. Wang, P. Lu, R.H. Karas, M. Aronovitz, S.P. Heximer, K.M. 
Kaltenbronn, K.J. Blumer, D.P. Siderovski, Y. Zhu, and M.E. Mendelsohn, Regulator 
of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood 
pressure. Nat Med, 2003. 9(12): p. 1506-12. 

104. Cho, H., C. Park, I.Y. Hwang, S.B. Han, D. Schimel, D. Despres, and J.H. Kehrl, 
Rgs5 targeting leads to chronic low blood pressure and a lean body habitus. Mol Cell 
Biol, 2008. 28(8): p. 2590-7. 

105. Bondjers, C., M. Kalen, M. Hellstrom, S.J. Scheidl, A. Abramsson, O. Renner, P. 
Lindahl, H. Cho, J. Kehrl, and C. Betsholtz, Transcription profiling of platelet-
derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker 
for pericytes and vascular smooth muscle cells. Am J Pathol, 2003. 162(3): p. 721-9. 

106. Cho, H., T. Kozasa, C. Bondjers, C. Betsholtz, and J.H. Kehrl, Pericyte-specific 
expression of Rgs5: implications for PDGF and EDG receptor signaling during 
vascular maturation. FASEB J, 2003. 17(3): p. 440-2. 

107. Berger, M., G. Bergers, B. Arnold, G.J. Hammerling, and R. Ganss, Regulator of G-
protein signaling-5 induction in pericytes coincides with active vessel remodeling 
during neovascularization. Blood, 2005. 105(3): p. 1094-101. 

108. Hamzah, J., M. Jugold, F. Kiessling, P. Rigby, M. Manzur, H.H. Marti, T. Rabie, S. 
Kaden, H.J. Grone, G.J. Hammerling, B. Arnold, and R. Ganss, Vascular 
normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 2008. 
453(7193): p. 410-4. 



 35 

109. Ryschich, E., J. Schmidt, G.J. Hammerling, E. Klar, and R. Ganss, Transformation of 
the microvascular system during multistage tumorigenesis. Int J Cancer, 2002. 97(6): 
p. 719-25. 

110. Grillet, N., A. Pattyn, C. Contet, B.L. Kieffer, C. Goridis, and J.F. Brunet, Generation 
and characterization of Rgs4 mutant mice. Mol Cell Biol, 2005. 25(10): p. 4221-8. 

111. Cifelli, C., R.A. Rose, H. Zhang, J. Voigtlaender-Bolz, S.S. Bolz, P.H. Backx, and 
S.P. Heximer, RGS4 regulates parasympathetic signaling and heart rate control in 
the sinoatrial node. Circ Res, 2008. 103(5): p. 527-35. 

112. Lilly, L.S. and Harvard Medical School., Pathophysiology of heart disease : a 
collaborative project of medical students and faculty. 3rd ed. 2003, Philadelphia: 
Lippincott Williams & Wilkins. xiii, 445 p. 

113. Mirnics, K., F.A. Middleton, G.D. Stanwood, D.A. Lewis, and P. Levitt, Disease-
specific changes in regulator of G-protein signaling 4 (RGS4) expression in 
schizophrenia. Mol Psychiatry, 2001. 6(3): p. 293-301. 

114. Kirk, S.L., J. Glazebrook, B. Grayson, J.C. Neill, and G.P. Reynolds, Olanzapine-
induced weight gain in the rat: role of 5-HT2C and histamine H1 receptors. 
Psychopharmacology (Berl), 2009. 207(1): p. 119-25. 

115. Reynolds, G.P., M.J. Hill, and S.L. Kirk, The 5-HT2C receptor and 
antipsychoticinduced weight gain - mechanisms and genetics. J Psychopharmacol, 
2006. 20(4 Suppl): p. 15-8. 

116. Reynolds, G.P., Z.J. Zhang, and X.B. Zhang, Association of antipsychotic drug-
induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet, 2002. 
359(9323): p. 2086-7. 

117. Meltzer, H.Y., S. Matsubara, and J.C. Lee, Classification of typical and atypical 
antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J 
Pharmacol Exp Ther, 1989. 251(1): p. 238-46. 

118. Roth, B.L., R.D. Ciaranello, and H.Y. Meltzer, Binding of typical and atypical 
antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp 
Ther, 1992. 260(3): p. 1361-5. 

119. Meltzer, H.Y., Role of serotonin in the action of atypical antipsychotic drugs. Clin 
Neurosci, 1995. 3(2): p. 64-75. 

120. Rosenzweig-Lipson, S., M. Brandt, K. Williams, E. Shukhina, D. Howland, K. 
Young, and K. Marquis, Potentiation of 5-HT2C and 5-HT2A mediated effects in 
transgenic RGS-insensitive Gq (G188S) mutant rats., in Society for Neuroscience. 
2000: New Orleans. 



 36 

121. Van de Kar, L.D., A. Javed, Y. Zhang, F. Serres, D.K. Raap, and T.S. Gray, 5-HT2A 
receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and 
activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci, 2001. 21(10): 
p. 3572-9. 

122. Shi, J., K.J. Damjanoska, B. Zemaitaitis, F. Garcia, G. Carrasco, N.R. Sullivan, Y. 
She, K.H. Young, G. Battaglia, L.D. Van De kar, D.S. Howland, and N.A. Muma, 
Alterations in 5-HT2A receptor signaling in male and female transgenic rats over-
expressing either Gq or RGS-insensitive Gq protein. Neuropharmacology, 2006. 
51(3): p. 524-35. 

123. Goldenstein, B.L., B.W. Nelson, K. Xu, E.J. Luger, J.A. Pribula, J.M. Wald, L.A. 
O'Shea, D. Weinshenker, R.A. Charbeneau, X. Huang, R.R. Neubig, and V.A. Doze, 
Regulator of G protein signaling protein suppression of Galphao protein-mediated 
alpha2A adrenergic receptor inhibition of mouse hippocampal CA3 epileptiform 
activity. Mol Pharmacol, 2009. 75(5): p. 1222-30. 

124. Huang, X., R.A. Charbeneau, Y. Fu, K. Kaur, I. Gerin, O.A. MacDougald, and R.R. 
Neubig, Resistance to diet-induced obesity and improved insulin sensitivity in mice 
with a regulator of G protein signaling-insensitive G184S Gnai2 allele. Diabetes, 
2008. 57(1): p. 77-85. 

125. Willard, F.S., M.D. Willard, A.J. Kimple, M. Soundararajan, E.A. Oestreich, X. Li, 
N.A. Sowa, R.J. Kimple, D.A. Doyle, C.J. Der, M.J. Zylka, W.D. Snider, and D.P. 
Siderovski, Regulator of G-protein signaling 14 (RGS14) is a selective H-Ras 
effector. PLoS One, 2009. 4(3): p. e4884. 

126. Willard, M.D., F.S. Willard, X. Li, S.D. Cappell, W.D. Snider, and D.P. Siderovski, 
Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated 
differentiation. EMBO J, 2007. 26(8): p. 2029-40. 

127. Shu, F.J., S. Ramineni, and J.R. Hepler, RGS14 is a multifunctional scaffold that 
integrates G protein and Ras/Raf MAPkinase signalling pathways. Cell Signal. 22(3): 
p. 366-76. 

128. Snow, B.E., L. Antonio, S. Suggs, H.B. Gutstein, and D.P. Siderovski, Molecular 
cloning and expression analysis of rat Rgs12 and Rgs14. Biochem Biophys Res 
Commun, 1997. 233(3): p. 770-7. 

129. Granderath, S., A. Stollewerk, S. Greig, C.S. Goodman, C.J. O'Kane, and C. Klambt, 
loco encodes an RGS protein required for Drosophila glial differentiation. 
Development, 1999. 126(8): p. 1781-91. 

130. Mochizuki, N., G. Cho, B. Wen, and P.A. Insel, Identification and cDNA cloning of a 
novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene, 1996. 
181(1-2): p. 39-43. 



 37 

131. Siderovski, D.P., M. Diverse-Pierluissi, and L. De Vries, The GoLoco motif: a 
Galphai/o binding motif and potential guanine-nucleotide exchange factor. Trends 
Biochem Sci, 1999. 24(9): p. 340-1. 

132. Ponting, C.P., Raf-like Ras/Rap-binding domains in RGS12- and still-life-like 
signalling proteins. J Mol Med, 1999. 77(10): p. 695-8. 

133. Willard, F.S., A.B. Low, C.R. McCudden, and D.P. Siderovski, Differential G-alpha 
interaction capacities of the GoLoco motifs in Rap GTPase activating proteins. Cell 
Signal, 2007. 19(2): p. 428-38. 

134. Colombo, K., S.W. Grill, R.J. Kimple, F.S. Willard, D.P. Siderovski, and P. Gonczy, 
Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis 
elegans embryos. Science, 2003. 300(5627): p. 1957-61. 

135. Kimple, R.J., M.E. Kimple, L. Betts, J. Sondek, and D.P. Siderovski, Structural 
determinants for GoLoco-induced inhibition of nucleotide release by Galpha 
subunits. Nature, 2002. 416(6883): p. 878-81. 

136. Sammond, D.W., Z.M. Eletr, C. Purbeck, R.J. Kimple, D.P. Siderovski, and B. 
Kuhlman, Structure-based protocol for identifying mutations that enhance protein-
protein binding affinities. J Mol Biol, 2007. 371(5): p. 1392-404. 

137. Bernard, M.L., Y.K. Peterson, P. Chung, J. Jourdan, and S.M. Lanier, Selective 
interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state 
of G-proteins. J Biol Chem, 2001. 276(2): p. 1585-93. 

138. Natochin, M., K.G. Gasimov, and N.O. Artemyev, Inhibition of GDP/GTP exchange 
on G alpha subunits by proteins containing G-protein regulatory motifs. 
Biochemistry, 2001. 40(17): p. 5322-8. 

139. Webb, C.K., C.R. McCudden, F.S. Willard, R.J. Kimple, D.P. Siderovski, and G.S. 
Oxford, D2 dopamine receptor activation of potassium channels is selectively 
decoupled by Galpha-specific GoLoco motif peptides. J Neurochem, 2005. 92(6): p. 
1408-18. 

140. Rittinger, K., P.A. Walker, J.F. Eccleston, K. Nurmahomed, D. Owen, E. Laue, S.J. 
Gamblin, and S.J. Smerdon, Crystal structure of a small G protein in complex with 
the GTPase-activating protein rhoGAP. Nature, 1997. 388(6643): p. 693-7. 

141. Scheffzek, K., M.R. Ahmadian, W. Kabsch, L. Wiesmuller, A. Lautwein, F. Schmitz, 
and A. Wittinghofer, The Ras-RasGAP complex: structural basis for GTPase 
activation and its loss in oncogenic Ras mutants. Science, 1997. 277(5324): p. 333-8. 

142. Mixon, M.B., E. Lee, D.E. Coleman, A.M. Berghuis, A.G. Gilman, and S.R. Sprang, 
Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis. 
Science, 1995. 270(5238): p. 954-60. 



 38 

143. Kimple, A.J., A. Yasgar, M. Hughes, A. Jadhav, F.S. Willard, R.E. Muller, C.P. 
Austin, J. Inglese, G.C. Ibeanu, D.P. Siderovski, and A. Simeonov, A high throughput 
fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha 
interaction. Comb Chem High Throughput Screen, 2008. 11(5): p. 396-409. 

144. Kimple, R.J., L. De Vries, H. Tronchere, C.I. Behe, R.A. Morris, M. Gist Farquhar, 
and D.P. Siderovski, RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction 
sites with guanine nucleotide dissociation inhibitor Activity. J Biol Chem, 2001. 
276(31): p. 29275-81. 

145. Peterson, Y.K., M.L. Bernard, H. Ma, S. Hazard, 3rd, S.G. Graber, and S.M. Lanier, 
Stabilization of the GDP-bound conformation of Gialpha by a peptide derived from 
the G-protein regulatory motif of AGS3. J Biol Chem, 2000. 275(43): p. 33193-6. 

146. Willard, F.S., Z. Zheng, J. Guo, G.J. Digby, A.J. Kimple, J.M. Conley, C.A. 
Johnston, D. Bosch, M.D. Willard, V.J. Watts, N.A. Lambert, S.R. Ikeda, Q. Du, and 
D.P. Siderovski, A point mutation to Galphai selectively blocks GoLoco motif 
binding: direct evidence for Galpha.GoLoco complexes in mitotic spindle dynamics. J 
Biol Chem, 2008. 283(52): p. 36698-710. 

147. Du, Q. and I.G. Macara, Mammalian Pins is a conformational switch that links NuMA 
to heterotrimeric G proteins. Cell, 2004. 119(4): p. 503-16. 

148. Yu, F., Y. Cai, R. Kaushik, X. Yang, and W. Chia, Distinct roles of Galphai and 
Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of 
Drosophila neuroblast asymmetric divisions. J Cell Biol, 2003. 162(4): p. 623-33. 

149. Schaefer, M., A. Shevchenko, and J.A. Knoblich, A protein complex containing 
Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in 
Drosophila. Curr Biol, 2000. 10(7): p. 353-62. 

150. Yu, F., X. Morin, Y. Cai, X. Yang, and W. Chia, Analysis of partner of inscuteable, a 
novel player of Drosophila asymmetric divisions, reveals two distinct steps in 
inscuteable apical localization. Cell, 2000. 100(4): p. 399-409. 

151. Kraut, R., W. Chia, L.Y. Jan, Y.N. Jan, and J.A. Knoblich, Role of inscuteable in 
orienting asymmetric cell divisions in Drosophila. Nature, 1996. 383(6595): p. 50-5. 

152. Parmentier, M.L., D. Woods, S. Greig, P.G. Phan, A. Radovic, P. Bryant, and C.J. 
O'Kane, Rapsynoid/partner of inscuteable controls asymmetric division of larval 
neuroblasts in Drosophila. J Neurosci, 2000. 20(14): p. RC84. 

153. Schaefer, M., M. Petronczki, D. Dorner, M. Forte, and J.A. Knoblich, Heterotrimeric 
G proteins direct two modes of asymmetric cell division in the Drosophila nervous 
system. Cell, 2001. 107(2): p. 183-94. 



 39 

154. Cho, H., K. Harrison, and J.H. Kehrl, Regulators of G protein signaling: potential 
drug targets for controlling cardiovascular and immune function. Curr Drug Targets 
Immune Endocr Metabol Disord, 2004. 4(2): p. 107-18. 

155. Liebmann, C., G protein-coupled receptors and their signaling pathways: classical 
therapeutical targets susceptible to novel therapeutic concepts. Curr Pharm Des, 
2004. 10(16): p. 1937-58. 

156. Riddle, E.L., R.A. Schwartzman, M. Bond, and P.A. Insel, Multi-tasking RGS 
proteins in the heart: the next therapeutic target? Circ Res, 2005. 96(4): p. 401-11. 

157. Neubig, R. and D. Siderovski, Regulators of G-protein signalling as new central 
nervous system drug targets. Nat Rev Drug Discov, 2002. 1(3): p. 187-97. 

158. Sowa, M.E., W. He, T.G. Wensel, and O. Lichtarge, A regulator of G protein 
signaling interaction surface linked to effector specificity. Proc Natl Acad Sci U S A, 
2000. 97(4): p. 1483-8. 

159. Popov, S.G., U.M. Krishna, J.R. Falck, and T.M. Wilkie, Ca2+/Calmodulin reverses 
phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G 
protein-signaling GTPase-activating protein activity. J Biol Chem, 2000. 275(25): p. 
18962-8. 

160. Ishii, M., A. Inanobe, S. Fujita, Y. Makino, Y. Hosoya, and Y. Kurachi, Ca(2+) 
elevation evoked by membrane depolarization regulates G protein cycle via RGS 
proteins in the heart. Circ Res, 2001. 89(11): p. 1045-50. 

161. Ishii, M., A. Inanobe, and Y. Kurachi, PIP3 inhibition of RGS protein and its reversal 
by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a 
cardiac K+ channel. Proc Natl Acad Sci U S A, 2002. 99(7): p. 4325-30. 

162. Ishii, M., S. Fujita, M. Yamada, Y. Hosaka, and Y. Kurachi, Phosphatidylinositol 
3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-
protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. 
Biochem J, 2005. 385(Pt 1): p. 65-73. 

163. Ishii, M. and Y. Kurachi, Assays of RGS Protein Modulation by 
Phosphatidylinositides and Calmodulin. Methods Enzymol, 2004. 389: p. 105-118. 

164. Willard, F.S., A.J. Kimple, C.A. Johnston, and D.P. Siderovski, A direct 
fluorescence-based assay for RGS domain GTPase accelerating activity. Anal 
Biochem, 2005. 340(2): p. 341-51. 

165. Ross, E.M., Quantitative assays for GTPase-activating proteins. Methods Enzymol, 
2002. 344: p. 601-17. 



 40 

166. Nieuwenhuijsen, B.W., Y. Huang, Y. Wang, F. Ramirez, G. Kalgaonkar, and K.H. 
Young, A dual luciferase multiplexed high-throughput screening platform for protein-
protein interactions. J Biomol Screen, 2003. 8(6): p. 676-84. 

167. Wang, Y. and K.H. Young, Analysis of RGSZ1 protein interaction with Galphai 
subunits. Methods Enzymol, 2004. 390: p. 31-52. 

168. Fitzgerald, K., S. Tertyshnikova, L. Moore, L. Bjerke, B. Burley, J. Cao, P. Carroll, 
R. Choy, S. Doberstein, Y. Dubaquie, Y. Franke, J. Kopczynski, H. Korswagen, S.R. 
Krystek, N.J. Lodge, R. Plasterk, J. Starrett, T. Stouch, G. Thalody, H. Wayne, A. van 
der Linden, Y. Zhang, S.G. Walker, M. Cockett, J. Wardwell-Swanson, P. Ross-
Macdonald, and R.M. Kindt, Chemical genetics reveals an RGS/G-protein role in the 
action of a compound. PLoS Genet, 2006. 2(4): p. e57. 

169. Mossessova, E., R.A. Corpina, and J. Goldberg, Crystal structure of ARF1*Sec7 
complexed with Brefeldin A and its implications for the guanine nucleotide exchange 
mechanism. Mol Cell, 2003. 12(6): p. 1403-11. 

170. Roman, D.L., S. Ota, and R.R. Neubig, Polyplexed flow cytometry protein interaction 
assay: a novel high-throughput screening paradigm for RGS protein inhibitors. J 
Biomol Screen, 2009. 14(6): p. 610-9. 

171. Roman, D.L., J.N. Talbot, R.A. Roof, R.K. Sunahara, J.R. Traynor, and R.R. Neubig, 
Identification of small-molecule inhibitors of RGS4 using a high-throughput flow 
cytometry protein interaction assay. Mol Pharmacol, 2007. 71(1): p. 169-75. 

172. Kimple, A.J., F.S. Willard, P.M. Giguere, C.A. Johnston, V. Mocanu, and D.P. 
Siderovski, The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 
Galpha-interaction face. Biochim Biophys Acta, 2007. 1774(9): p. 1213-20. 

173. Stokes, G.G., On the Change of Refrangibility of Light. Philosophical Transactions of 
the Royal Society of London, 1852. 142: p. 463-562. 

174. Giepmans, B.N., S.R. Adams, M.H. Ellisman, and R.Y. Tsien, The fluorescent 
toolbox for assessing protein location and function. Science, 2006. 312(5771): p. 
217-24. 

175. Hahn, K. and A. Toutchkine, Live-cell fluorescent biosensors for activated signaling 
proteins. Curr Opin Cell Biol, 2002. 14(2): p. 167-72. 

176. Perrin, F., Polarisation de la lumiËre de fluorescence. Vie moyenne des molÈcules 
dans l'etat excitÈ. J. Phys. Radium, 1926. 7(12): p. 390-401. 

177. Akula, N., Y.S. Chen, K. Hennessy, T.G. Schulze, G. Singh, and F.J. McMahon, 
Utility and accuracy of template-directed dye-terminator incorporation with 
fluorescence-polarization detection for genotyping single nucleotide polymorphisms. 
Biotechniques, 2002. 32(5): p. 1072-6, 1078. 



 41 

178. Bonin, P.D. and L.A. Erickson, Development of a fluorescence polarization assay for 
peptidyl-tRNA hydrolase. Anal Biochem, 2002. 306(1): p. 8-16. 

179. Duan, W., L. Sun, J. Liu, X. Wu, L. Zhang, and M. Yan, Establishment and 
application of a high throughput model for Rho kinase inhibitors screening based on 
fluorescence polarization. Biol Pharm Bull, 2006. 29(6): p. 1138-42. 

180. Hsu, T.M., X. Chen, S. Duan, R.D. Miller, and P.Y. Kwok, Universal SNP 
genotyping assay with fluorescence polarization detection. Biotechniques, 2001. 
31(3): p. 560, 562, 564-8, passim. 

181. Zhang, T.T., Z.T. Huang, Y. Dai, X.P. Chen, P. Zhu, and G.H. Du, High-throughput 
fluorescence polarization method for identifying ligands of LOX-1. Acta Pharmacol 
Sin, 2006. 27(4): p. 447-52. 

182. Lakowicz, J.R., Principles of fluorescence spectroscopy. 2nd ed. 1999, New York: 
Kluwer Academic/Plenum. xxiii, 698 p. 

183. Guo, X.Q., F.N. Castellano, L. Li, and J.R. Lakowicz, Use of a long-lifetime Re(I) 
complex in fluorescence polarization immunoassays of high-molecular-weight 
analytes. Anal Chem, 1998. 70(3): p. 632-7. 

184. Szmacinski, H., F.N. Castellano, E. Terpetschnig, J.D. Dattelbaum, J.R. Lakowicz, 
and G.J. Meyer, Long-lifetime Ru(II) complexes for the measurement of high 
molecular weight protein hydrodynamics. Biochim Biophys Acta, 1998. 1383(1): p. 
151-9. 

185. Terpetschnig, E., H. Szmacinski, and J.R. Lakowicz, Fluorescence polarization 
immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand 
complex. Anal Biochem, 1995. 227(1): p. 140-7. 

186. Resch-Genger, U. and M. Ameloot, Standardization and quality assurance in 
fluorescence measurements I : techniques. 2008, New York: Springer. xvi, 496 p. 

 
 



 42 

 

 
 
Figure 1.1 – Standard model of guanine nucleotide cycle of G-protein coupled 

receptors. When the seven-transmembrane receptor is unliganded the heterotrimeric G-

protein consists of a GDP-bound G! subunit associated with the G"# heterodimer.  The G"# 

serves as a guanine nucleotide dissociation inhibitor (GDI) preventing the release of GDP.  

Upon binding of an agonist at the receptor, conformation changes result in the GPCR acting 

as a guanine nucleotide exchange factor (GEF) causing the release of GDP and subsequent 

binding of GTP.  This exchange of bound nucleotide results in the dissociation of G"# and 

both G!-GTP and G"# are free to signal to downstream effectors.  Downstream effectors are 

activated until the GTP is hydrolyzed by the intrinsic GTP hydrolysis activity of the G! 

subunit.  Upon hydrolysis of GTP, G!-GDP rebinds G"# and the system returns to the 

inactive state. The rate of GTP hydrolysis can be catalyzed by the “regulators of G-protein 

signaling” (RGS proteins) which serve as GTPase-accelerating proteins (GAPs).    
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Figure 1.2 Overall structural fold of the heterotrimeric G-protein G!  subunit in its 

inactive, GDP-bound form (panel A) and details of structural differences between GDP- 

and GTP-bound states (panel B). A, The G! subunit is composed of a Ras-like domain 

(blue) and an all alpha-helical domain (green), between which is found the guanine 

nucleotide binding pocket (GDP in purple). The three conformationally-flexible switch 

regions (SI, SII, and SIII) are highlighted in cyan. Coordinates are from PDB record 1GP2. 

B, The additional (third) phosphate (orange and red) of bound GTP establishes contacts with 

residues threonine-181 and glycine-203 of switches I and II, respectively, thereby leading to 

changes in all three switch regions (green) versus their conformation in the GDP-bound state 

(cyan). Magnesium ion is highlighted in yellow. Coordinates are from PDB records 1GP2 

and 1GIA.   
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Figure 1.3. Overall structural fold of the G"#  heterodimer. The G"# subunit is colored to 

highlight the seven WD40 repeats that comprise the beta-propeller (or “torus”) fold. The 

cysteine residue within G"# (red) that is subjected to post-translational geranylgeranylation is 

highlighted in sticks configuration. The relative positioning of the N-terminal alpha-helix of 

the G"# subunit (when in the G!·GDP/G"# heterotrimeric complex) is also highlighted. 

Coordinates are from PDB record 1OMW.  
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Figure 1.4. Structural basis of GTP hydrolysis. Residues within G! that are critical to the 

GTP hydrolysis mechanism include arginine-178 and threonine-181 from switch I and 

glutamine-204 from switch II (colored as in Figure 1.2 and numbered as in G!i1; coordinates 

are from PDB record 1GFI). Magnesium ion is highlighted in yellow. The planar anion 

aluminum tetrafluoride, which mimics the #-phosphate leaving group in the hydrolysis 

reaction, is depicted in metallic red.  
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Figure 1.5  Overall structure of the canonical RGS domain. Structure of RGS8 from the 

RGS8/G!i3 structure (PDB id 2ODE) as rendered using PyMOL.  Nine !-helices (!I-!IX; 

Roman numerals) form into two subdomains, the first subdomain comprised of !I, !II, !III, 

!VIII, and !IX while the remaining helixes are arranged into an anti-parallel four helix 

bundle.  
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Figure 1.6  RGS proteins stabilize the transition state of G!  subunits. Cartoon 

representation of the RGS8/G!i3 structure (PDB id 2ODE) is rendered using PyMOL.  The 

all-helical subdomain of G!i3 is shown in green, while the Ras-like nucleotide binding 

domain in shown in dark blue. The three flexible switch regions (SI, SII and SIII) are 



 48 

highlighted in cyan.  The guanine nucleotide, AlF4
-
, and Mg

2+
 are highlighted in magenta, 

red and yellow respectively while RGS8 is illustrated in orange.  A The RGS8/G!i3 interface 

consists primarily of the SI and SII regions.  B The Asn 122 amide forms a hydrogen bond 

with Gln 204 of G!i3, orienting it to help stabilize the planar leaving group while the Asn 82 

of RGS8 forms contacts with side chain carbonyl of Thr 182 allowing the side chain carbonyl 

to make a contact with Lys 210 of SII, stabilizing SI and SII in their transition state 

orientations.  Additionally Asp 157 of RGS8 stabilizes the backbone amine of Thr 183 

allowing the Thr 181 side chain hydroxyl group to stabilize the Mg
2+

 ion. 
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Figure 1.7  Phylogenetic relationship of the 37 RGS containing proteins identified in 

humans and their domain architecture.  An unrooted dendogram was generated using 

ClustalW and visualized using TreeView. Domain boundaries were predicted using SMART.   
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Figure 1.8. G!i vs G!q selectivity of fourteen RGS proteins as determined by surface 

plasmon resonance. Surface plasmon resonance (SPR) spectroscopic analyses of the binding 

of indicated RGS proteins (at 1 µM final concentration) to immobilized G!i1-biotin (left side; 

pink border) or His6-G!q (right side; cyan border). Proteins were injected over biosensor-

immobilized G! subunits for 600 seconds (injections start at time = 0). Experiments were 

conducted with G! subunits both in the inactive, GDP-bound conformation (red curves) and 

in the transition state for nucleotide hydrolysis (GDP·AlF4
-
-bound; blue curves). All RGS 

domains bound to G! in the transition state for GTP hydrolysis (i.e., bound to GDP and 

aluminum tetrafluoride), consistent with their known biochemistry. Reprinted from 

Soundarajaran, Kimple, et al. 2008 Proceedings of the National Academy of Sciences USA, 

vol. 105, pgs. 6457-6462.  
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Figure 1.9. The GoLoco motif is a G! i)GDP -interacting polypeptide found singly or in 

arrays in various proteins. (A) Domain architecture of representative GoLoco motif 

proteins and a sequence alignment of the conserved core of the RGS12 and RGS14 GoLoco 

motifs. Domain abbreviations: GPSM, G-protein signaling modulator; PDZ, PSD-95/Discs 

large/ZO-1 homology; PTB, phosphotyrosine-binding domain; RGS, regulator of G-protein 

signaling box; RBD, Ras-binding domain; RapGAP, Rap-specific GTPase-activating protein 

domain. (B) The crystal structure of G!i1 (Ras-like domain in blue, all !-helical domain in 

green, switch regions in cyan) bound to the GoLoco motif of RGS14 (PDB ID 2OM2). The 

GoLoco motif peptide (tan) binds across the Ras-like and all-helical domains of G!i1, 

trapping GDP (magenta, with !- and "-phosphates in orange) within its binding site. The 

bound magnesium ion is illustrated in lime green. Reprinted from Kimple, et al. 2008 

Combinatorial Chemistry & High Throughput Screening, vol. 11, pgs. 396-409.  
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Figure 1.10. Visualization of functional sites within the RGS domain of RGS4.  Orange 

regions depict lysines necessary for PIP3 binding, while solid cyan areas depict the G! 

binding side (A-site) and the PIP3/Calmodulin binding site. Alpha-helical secondary structure 

that comprises the conserved RGS domain fold is displayed in red.  Rotation about the 

vertical axis by 90º and 180º are shown in panels B, and C, respectively.  
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Figure 1.11. Schematic of detection of fluorescence polarization. (A) An appropriate 

source generates unpolarized light that is then passed through a polarizer.  The polarized light 

enters the sample and excites a subset of the fluorescent molecules that are aligned with the 

incident excitation.  If the sample is rapidly rotating, the incident light is depolarized.  The 

emission is passed through a beam splitter before being passed through a polarizer that is 

aligned with the excitation plane in either a parallel or a perpendicular fashion.  Independent 

photomultiplier tubes are then use to quantify the amount of emission that reaches each 

detector.  (B) Free fluorescein (FITC) in solution completely depolarizes the excitation 

emission. (C) Upon conjugation to albumin, fluorescein’s rotational correlation is 

dramatically increased and thus the emitted light remains in the same plane as the light of 

excitation.   
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Figure 1.12 Fluorescence polarization depends on the molecular weight of the probe 

and its fluorescence lifetime. Curves are simulated using equation (3) and equation (4) 

assuming that P0  = 35,

! 

v + h =1.9 .  The dotted line shows the expected polarization of a 

molecule of 5,000 Da with the indicated fluorescence lifetimes (color coded in the legend).  

The green line, representing a fluorescence lifetime of 4 ns, represents Fluorescein, a widely 

used dye for fluorescence polarization experiments.    
 



 
 
 
 
 

CHAPTER 2 

 

STRUCTURAL DETERMINANTS OF G-PROTEIN ALPHA SUBUNIT 

SELECTIVITY BY REGULATOR OF G-PROTEIN SIGNALING 2 (RGS2)* 

 

 

Elements of this work referenced in this chapter have been published in:  

Kimple, A. J., Soundararajan, M., Hutsell, S. Q., Roos, A. K., Urban, D. J., Setola, V., 
Temple, B. R., Roth, B. L., Knapp, S., Willard, F. S. and Siderovski, D. P. (2009) 
Structural determinants of G-protein {alpha} subunit selectivity by regulator of G-
protein signaling 2 (RGS2). J Biol Chem. 284: 19402-19411. 
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2.1  ABSTRACT 
 
“Regulator of G-protein Signaling” (RGS) proteins facilitate the termination of G-protein 

coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis 

rate of G! subunits (known as GTPase-accelerating protein or “GAP” activity). RGS2 is 

unique in its in vitro potency and selectivity as a GAP for G!q subunits. As many 

vasoconstrictive hormones signal via Gq-heterotrimer coupled receptors, it is perhaps not 

surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the 

particular structural features within RGS2 determining its selectivity for G!q over G!i/o 

substrates have not been completely characterized. Here, we examine a trio of point 

mutations to RGS2 that elicit G!i-directed binding and GAP activities without perturbing its 

association with G!q. Using X-ray crystallography, we determined a model of the triple-

mutant RGS2 in complex with a transition state-mimetic form of G!i at 2.8 Å resolution. 

Structural comparison with unliganded, wildtype RGS2 and of other RGS domain/G! 

complexes highlighted the roles of these residues in wildtype RGS2 that weaken G!i subunit 

association. Moreover, these three amino acids are seen to be evolutionarily-conserved 

among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the 

R4-subfamily of RGS proteins to have specialized activity as a potent and selective G!q 

GAP that modulates cardiovascular function.  

 

2.2  INTRODUCTION 
 
G-protein coupled receptors (GPCRs) form an interface between extracellular and 

intracellular physiology, as they convert hormonal signals into changes in intracellular 
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metabolism and ultimately cell phenotype and function [1-3]. GPCRs are coupled to their 

underlying second messenger systems by heterotrimeric guanine nucleotide binding protein 

(“G-proteins”) composed of three subunits: G!, G", and G#. Four general classes of G! 

subunits have been defined based on functional couplings (in the GTP-bound state) to 

various effector proteins. Gs-subfamily G! subunits are stimulatory to membrane-bound 

adenylyl cyclases that generate the second messenger 3’-5’-cyclic adenosine monophosphate 

(cAMP); conversely, Gi-subfamily G! subunits are generally inhibitory to adenylyl cyclases 

[4]. G12/13-subfamily G! subunits activate the small G-protein RhoA through stimulation of 

the GEF-subfamily of RGS proteins, namely p115-RhoGEF, LARG, and PDZ-RhoGEF [5]. 

Gq-subfamily G! subunits are potent activators of phospholipase-C" enzymes that generate 

the second messengers diacylglycerol and inositol triphosphate [6]; more recently, two 

additional G!q effector proteins have been described: the receptor kinase GRK2 and the 

RhoA nucleotide exchange factor p63RhoGEF [7, 8].  

The duration of GPCR signaling is controlled by the time G! remains bound to GTP 

before its hydrolysis to GDP. RGS proteins are key modulators of GPCR signaling by virtue 

of their ability to accelerate the intrinsic GTP hydrolysis activity of G! subunits (reviewed in 

[9, 10]). RGS2/G0S8, one of the first mammalian RGS proteins identified [11] and member 

of the R4 subfamily [10], has a critical role in the maintenance of normostatic blood pressure 

both in mouse models [12, 13] and in humans [14, 15]; additionally, Rgs2-deficient mice 

exhibit impaired aggression and increased anxiety [16, 17], behavioral phenotypes with 

potential human clinical correlates [18, 19].  

While many RGS proteins are promiscuous and thus act on multiple G! substrates in 

vitro (e.g., ref. [20]), RGS2 exhibits exquisite specificity for G!q in biochemical binding 
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assays and single turnover GTPase acceleration assays [20, 21]. Consistent with this in vitro 

selectivity1, mice deficient in RGS2 uniquely exhibit constitutive hypertension and prolonged 

responses to vasoconstrictors, as would be expected upon loss of a potent negative regulator 

of G!q which mediates signaling from various vasoconstrictive hormones such as 

angiotensin II, endothelin, thrombin, norepinephrine, and vasopressin [22]. In addition, 

RGS2-deficient mice respond to sustained pressure overload with an accelerated time-course 

of maladaptive cardiac remodeling [23] – a pathophysiological response which evokes 

myocardial hypertrophy known to be critically dependent on G!q signaling [24, 25]. 

To gain insight into the structural basis of the unique G! substrate selectivity 

exhibited by RGS2, a series of point mutants in RGS2 were evaluated that enable this protein 

to bind and accelerate GTP hydrolysis by G!i; we subsequently delineated the structural 

determinants of the G!i/mutant RGS2 interaction using X-ray crystallography. Three key 

positions, first identified by Heximer and colleagues [21] and highlighted in our structural 

studies as key determinants of RGS2 substrate selection, were also found to be conserved 

throughout the evolution of the RGS2 protein in a manner suggestive of specialization 

towards cardiovascular signaling modulation.  

 

2.3  EXPERIMENTAL PROCEDURES 
 

2.3.1 Chemicals and Assay Materials 
 
Unless otherwise noted, all chemicals were the highest grade available from Sigma Aldrich 

(St. Louis, MO) or Fisher Scientific (Pittsburgh, PA).  
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2.3.2 Protein Expression and Purification 
 
Using ligation-independent cloning, DNA encoding human RGS2 (Lys71-His209), fused to 

either hexahistidine alone (His6) or to His6-tagged enhanced yellow fluorescent protein 

(YFP), was hybridized into a Novagen (San Diego, CA) pET vector-based prokaryotic 

expression construct as previously described [26, 27]. Point mutations corresponding to 

Cys106-to-serine (C106S), Asn184-to-aspartate (N184D), Arg188-to-glutamate (R188E), 

and Glu191-to-lysine (E191K) were made using QuikChange site-directed mutagenesis 

(Stratagene, La Jolla, CA). For expression of hexahistidine- and His6-YFP-fusion RGS2 

constructs, BL21(DE3) E. coli were grown to an OD600nm of 0.7-0.8 at 37°C before induction 

with 0.5 mM of isopropyl-"-D-thiogalactopyranoside. After culturing for 14-16 hours at 

20°C, cells were pelleted by centrifugation and frozen at -80°C. Bacterial pellets were then 

resuspended in N1 buffer (50 mM HEPES pH 8.0, 400 mM NaCl, 30 mM imidazole, 5% 

(w/v) glycerol) and lysis of bacterial slurry was performed using an Emulsiflex (Avestin; 

Ottawa, Canada) according to manufacturer’s instructions. Cellular lysates were clarified by 

centrifugation at 100,000 x g for 30 minutes at 4°C. The supernatant was applied to a Ni2+ 

chelating FPLC column (FF HisTrap; GE Healthcare, Piscataway, NJ), washed with 7 

column volumes of N1 buffer then 3 column volumes of N1 buffer containing an additional 

30 mM imidazole before elution of recombinant RGS2 protein with N1 buffer containing 300 

mM imidazole. His6-tagged RGS2 protein was cleaved with tobacco etch virus (TEV) 

protease overnight at 4°C and dialyzed into N1 buffer containing 5 mM DTT. To separate 

residual His6-RGS2 from untagged, cleaved RGS2, the protein was passed over a second 

Ni2+-chelating FPLC column.  The flow-through was pooled, concentrated to final volume of 

~5 ml, and resolved using a calibrated 150 ml size-exclusion column (Sephacryl S200; GE 
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Healthcare) using S200 buffer (10 mM HEPES pH 8.0, 300 mM NaCl, DTT 5 mM, 5% (w/v) 

glycerol). Fractions containing monodisperse protein were then pooled and concentrated to 

approximately 500 µM, as determined by A280nm measurements upon denaturation in 8 M 

guanidine hydrochloride. Concentration was calculated based on predicted extinction 

coefficient (http://us.expasy.org/tools/protparam.html). Additional details regarding protein 

purification for crystallography can be found at 

http://www.sgc.ox.ac.uk/structures/MM/XX03GNAI3A_2v4z_MM.html. Human RGS16 

constructs, C-terminally biotinylated G!i1, N-terminally deleted ($N30) G!i1, CFP-G!i1, and 

G!i3 were purified exactly as previously described [20, 28, 29].   

 

2.3.3 Single Turnover GTPase Assays 
 
Single turnover [#-32P]GTP hydrolysis assays were conducted using recombinant G!i1 and 

various concentrations of RGS proteins as previously described [20]. Briefly, 100 nM G!i1 in 

reaction buffer (50 mM Tris pH 7.5, 0.05% C12E10, 1 mM DTT, 10 mM EDTA, 100 mM 

NaCl, and 5 µg/ml BSA) was incubated for 10 minutes at 30 oC with 1 x 106 cpm (2 nM) of 

[#-32P]GTP (specific activity of 6500 dpm/Ci). The reaction was then chilled on ice for 5 

minutes prior to the addition of 10 mM MgCl2 and 100 µM unlabeled GTP#S (final 

concentration) with or without added RGS protein. Reactions were kept on ice and 100 µl 

aliquots were taken at indicated time points, quenched in 900 µl of charcoal slurry, and 

centrifuged before 600 µl aliquots of supernatant were counted via liquid scintillation.  

 

2.3.4 Surface Plasmon Resonance 
 



  62 

Optical detection of protein-protein interactions by surface plasmon resonance (SPR) was 

performed using a Biacore 3000 (GE Healthcare; Piscataway, NJ) exactly as previously 

described [20, 29, 30]. 

 

2.3.5 Förster resonance energy transfer (FRET)-based Binding Assays 
 
Förster resonance energy transfer was used to measure binding between G!i1 and triple 

point-mutant RGS2 (C106S+N184D+E191K) as previously described [26, 28]. In brief, 

FRET between recombinant G!i1-CFP and YFP-RGS2(C106S+N184D+E191K) proteins 

was measured using a SpectraMax Gemini fluorescence reader (Molecular Devices; 

Sunnyvale, CA) using an excitation wavelength of 433 nm (455 nm cutoff) and emission 

scans from 470-535 nm at 2 nm intervals.  

 

2.3.6 Structure Determination 
 
Purified G! and RGS2(C106S+N184D+E191K) proteins were mixed at a molar ratio of 

1:1.5 and incubated at 4°C for 20 minutes. The sample was passed through an S200 gel 

filtration column pre-equilibrated with 25 mM Hepes pH 7.5, 150 mM NaCl, 5 % glycerol, 2 

mM DTT, 100 !M AlCl3, 20 mM NaF and 100 !M GDP. Protein fractions that eluted as a 

complex were identified using SDS-PAGE and the fractions were pooled and concentrated to 

23 mg/ml prior to crystallization condition screens using 150 nl drop volume with an TTP 

Labtech Mosquito nanoliter liquid-handling system. The crystal of the 

RGS2(C106S+N184D+E191K) / G!i3 complex used for data collection was crystallized by 

vapour diffusion in sitting drops of 400 nL protein and 200 nL reservoir solution containing 

0.1 M Hepes pH 7.5 and 2 M ammonium sulphate (TTP Labtech Mosquito).  
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 After cryoprotection in a solution of 2 M ammonium sulphate, 0.1 M Hepes pH 7.5 

and 20% (w/v) D-glucose, crystals were flash cooled in liquid nitrogen. A complete data set 

was collected at 100 K on a Rigaku/MSC FR-E rotating anode x-ray generator equipped with 

an R-AXIS HTC image plate detector. Diffraction images were evaluated with MOSFLM 

[31], and data were scaled using SCALA [32]. The crystal belonged to the space group P3221 

with unit cell dimensions a = 114.54 Å, b = 114.54 Å and c = 99.33 Å. A molecular 

replacement solution was found in this space group using PHASER [33] with the 

RGS10/G!i3 complex (PDB id 2IHB) as the search model. The RGS2 coordinates from PDB 

id 2AF0 were superimposed onto the RGS10 coordinates of the RGS10/G!i3 positioned 

complex and rigid body refinement into the electron density was performed using REFMAC5 

[34]. Difference density in the GDP binding site was modeled using the higher resolution 

structure of G!i3 in the RGS8/G!i3 complex (PDB id 2ODE) with one molecule of GDP, a 

tetrafluoroaluminate ion, and a magnesium ion coordinated by two additional water 

molecules. Several rounds of manual rebuilding in COOT [35] and restrained refinement 

with REFMAC5 [34], using Translation/Libration/Screw (TLS) groups calculated with 

TLSMD [36], resulted in the final structural model described in Table 2.1. Coordinates of the 

RGS2 (C106S+N184D+E191K)/G!i3 complex were deposited in the Protein Data Bank with 

the entry code of 2V4Z. 

 

2.3.7 Cellular cAMP Signaling Assays 
 
HEK293T cells were transfected using Lipofectamine 2000 (Invitrogen) in 6-well dishes 

with 4 µg of total DNA including pGloSensor™-20F cAMP biosensor plasmid (Promega 

Corp., Madison WI), dopamine D2 receptor (D2R; www.cdna.org), and either empty vector, 
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HA-RGS2(wt) or HA-RGS2(C106S+N184D+E191K). The RGS2 expression vectors 

encoded solely the RGS domain (aa Lys71-His209; with an N-terminal HA-epitope tag) to 

avoid the influence of non-RGS-domain regions on adenylyl cyclase function (e.g., ref. [37]). 

Twenty-four hours post–transfection, cells were re-plated on poly-D-lysine-treated, clear–

bottom, white 96-well plates at a density of 60,000 cells/well. Forty-eight hours post–

transfection, culture medium was aspirated and cells were washed once with assay medium 

(DMEM with 10% FBS (without phenol), 15 mM HEPES pH 7.4) before being incubated for 

2 hours with 40 µl/well of equilibration medium (assay medium with 4% GloSensor™ 

substrate). After two hours, 6.6 µl of 6x final concentration quinpirole (diluted in 10 µM 

forskolin-containing assay medium) was added to each well and allowed to incubate for 10 

minutes before GloSensor emission was read on a MicroBeta Plate Counter (PerkinElmer). 

Before plotting, luminescence counts were normalized to 100% maximal response for each 

condition to account for variability in GloSensor expression, transfection efficiency, and the 

exact number of cells per well.  

 

2.4  RESULTS AND DISCUSSION 
 

2.4.1 Evaluating point mutations to RGS2 that facilitate interaction with G! i1 

 
RGS2 is the only member of the R4 subfamily known to bind specifically to G!q and not to 

G!i/o heterotrimeric G-protein subunits in vitro [20, 21]. Three amino-acids within RGS2 

were identified by Heximer and colleagues as potential selectivity determinants in studies of 

G!o-directed GAP activity by RGS domain chimera derived from RGS2 and RGS4 

sequences [21]: namely, cysteine-106, asparagine-184, and glutamate-191. In the present 

study, we mutated these three amino acids to the highly-conserved corresponding amino 
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acids in R4 subfamily members (C106 to serine, N184 to aspartate, and E191 to lysine; 

Figure 2.1) to identify their respective contributions to G! substrate specificity.  

 RGS2 proteins containing these point mutations, either singly, in tandem, or all three 

together, were expressed in E. coli and purified to homogeneity (Figure 2.2). Surface 

plasmon resonance (SPR) spectroscopy was used (e.g., Figure 2.3) to assess if any individual 

mutation, or combination of point mutations, was capable of changing the selectivity of 

RGS2. All mutants retained wild type binding towards G!q (e.g., Figure 2.3B). Single 

mutations to RGS2 (C106S, N184D, or E191K) did not enhance binding to G!i1 and only 

minimal enhancements to binding were observed with the C106S+N184D, C106S+N191D, 

and E191K+N184D double mutants (e.g., Figure 2.3A); in contrast, the triple mutant RGS2 

exhibited a dramatic increase in G!i1 binding vs wild type RGS2. Although the magnitude of 

binding of the RGS2 double mutants was significantly less than that observed with the triple 

mutant, binding isotherms were nonetheless generated for all double mutants along with the 

triple mutant by injecting increasing concentrations of RGS2 protein over the 

G!i1·GDP·AlF4
- surface. Using equilibrium binding analyses (Figure 2.4), dissociation 

constants (KD values) for the RGS2/G!i1·GDP·AlF4
- interaction were estimated to be "5.3 

µM, "8.6 µM, and "21.1 µM, for C106S+N184D, E191K+N184D, and C106S+E191K, 

respectively, while the KD value was determined to be 1.25 µM for the 

RGS2(C106S+N184D+E191K) triple mutant. Dissociation constants derived for the RGS2 

double mutants are likely underestimated given an inability to attain saturating 

concentrations of these particular RGS2 analytes and thereby attain maximal binding (Bmax).  

 To determine if the enhanced affinity of the RGS2 triple mutant was the result of 

improvements to a canonical RGS domain/G! interaction interface, a highly-conserved, 
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surface-exposed arginine within this canonical interface (Arg188 in the !VIII helix; Figure 

2.1) was mutated to glutamic acid. As has been shown for other RGS proteins [3], this single 

charge-reversal point mutation (R188E) on the G!-binding surface of the RGS2 triple mutant 

abolished binding to G!i1·GDP·AlF4
- (Figure 2.4B, bottom panel).  

 To quantify any difference in the ability of the RGS2(C106S+N184D+E191K) triple 

mutant to bind G!q, increasing concentrations of wildtype RGS2 and RGS2 triple mutant 

proteins were separately injected over an immobilized G!q·GDP·AlF4
- surface (Figure 2.5). 

Dissociation constants were determined to be 55 nM (95% confidence interval [C.I.] of 23 - 

87 nM) and 17 nM (95% C.I. 9 - 27 nM) for wildtype RGS2- and 

RGS2(C106S+N184D+E191K)-bound G!q, respectively. 

To confirm these SPR-derived results with an orthogonal technique of assessing the 

RGS domain/G! interaction, FRET measurements were performed using a YFP-RGS2 

(C106S+N184D+E191K) / G!i1-CFP pair, similar to the RGS4/G!i1 interaction FRET assay 

we have previously described [28]. In the presence of GDP, aluminum tetrafluoride, and 

Mg2+ (“AMF”), binding between RGS protein and G! subunit is observed as an increase in 

YFP emission and decrease in CFP emission; in the presence of GDP alone, no binding is 

observed as expected [28, 38] and so the ratio of YFP-to-CFP emission remains low. The 

relative affinities of wildtype RGS2, RGS16, and RGS2 triple mutant were assessed by using 

this FRET binding assay in a competitive manner:  unlabeled RGS protein was added in 

increasing amounts to a fixed concentration of YFP-RGS2(C106S+N184D+E191K) and 

G!i1-CFP proteins. As expected, only unlabeled RGS2(C106S+N184D+E191K) and RGS16 

proteins were able to inhibit the binding of the RGS2(C106S+N184D+E191K)/G!i1 FRET 

pair (Figure 2.6), with observed IC50 values of 526 nM (95% C.I. 236-1171 nM) and 115 nM 
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(78-168 nM), respectively.  At no concentration tested was wildtype RGS2 able to inhibit 

binding of the RGS2(C106S+N184D+E191K)/G!i1 FRET pair (Figure 2.6B), consistent with 

the lack of affinity between wildtype RGS2 and G!i subunits seen in our present SPR 

analyses and previously published studies [20, 21].   

2.4.2 Determinants of RGS2 GAP activity on G! i1 in vitro 

 
Using SPR and FRET, we demonstrated that all three point mutations were required to 

facilitate high affinity binding of RGS2 to G!i1. To determine if this enhanced binding 

affected the ability of RGS2 to accelerate GTP hydrolysis by G!i1, we performed single 

turnover GTPase assays with both wildtype and triple mutant RGS2 proteins (Figure 2.7). At 

no concentration tested was wildtype RGS2 capable of increasing GTP hydrolysis over the 

intrinsic GTP hydrolysis rate of G!i1 (Figure 2.7A). In contrast, a substoichiometric amount 

of RGS16 (a known G!i1 GAP; ref. [39]) was able to accelerate G!i1 GTPase activity; 

complete hydrolysis of bound GTP was observed in less than 15 seconds at 0°C. Unlike 

wildtype RGS2, the RGS2 (C106S+N184D+E191K) triple mutant was able to increase the 

rate of G!i1 GTP hydrolysis in a dose-dependent manner (Figure 2.7B); however, adding the 

R188E mutation to the triple mutant resulted in a complete loss in GAP activity, consistent 

with the loss of G!i1 binding observed in SPR and FRET assays. To further confirm that the 

mechanism of action of the RGS2(C106S+N184D+E191K) triple mutant in increasing GTP 

hydrolysis by G!i1 was related to a canonical RGS domain/G! interaction and not the 

inadvertant addition of a contaminating GTPase, we assessed the effects of both 

RGS2(C106S+N184D+E191K) and RGS16 proteins on an RGS-insensitive G!i1 point 

mutant: specifically, G183S in the G! switch I region [40]. Neither RGS2 
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(C106S+N184D+E191K) nor RGS16 proteins were able to increase the intrinsic rate of GTP 

hydrolysis exhibited by this RGS-insensitive G!i1 (Figure 2.7C,D). 

2.4.3 Determinants of RGS2 activity on Gi-coupled GPCR signaling in cells 
 
To validate in a cellular context the change in G! specificity exhibited in vitro by the 

RGS2(C106S+N184D+E191K) triple mutant, we used an intracellular cAMP biosensor to 

measure Gi-heterotrimer-mediated inhibition of forskolin-stimulated cAMP production in 

HEK293T expressing the Gi-coupled D2 dopamine receptor along with either wildtype RGS2 

or the RGS2(C106S+N184D+E191K) mutant. Upon treatment of transfected cells with 

forskolin, a robust increase in luminescence was observed from the cAMP sensor, reflecting 

direct activation of adenylyl cyclase by forskolin [4]; upon administration of the dopamine 

D2/D3-receptor selective agonist, quinpirole, dose-dependent inhibition of this cAMP 

production was observed. Wildtype RGS2 had no effect on the IC50 of quinpirole (Figure 

2.8). However, cellular expression of the RGS2(C106S+N184D+E191K) triple mutant 

resulted in a significantly higher IC50 for quinpirole (762 nM versus 18 nM for empty vector; 

Figure 2.8), indicating that the gain of G!i-directed activity is readily apparent in a cellular 

context as well as in vitro for the RGS2 triple mutant. 

2.4.4 Structural determinants of RGS2 interaction with G!  subunits 
 
 To determine the structural basis for the G! selectivity of RGS2, we used X-ray 

crystallography to obtain a structural model of the RGS2 triple mutant bound to a G!i 

subunit. A diffraction pattern data set was collected on a single crystal containing a complex 

between the RGS2(C106S+N184D+E191K) triple mutant and G!i3·GDP·AlF4
- and was 

refined to 2.8 Å resolution (Table 2.1). The resultant structural model revealed canonical 
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RGS domain/G! interactions [20, 41] – specifically, contacts between the flexible switch 

regions of G!i3 and the nine alpha-helical bundle formed by the RGS2 triple mutant (Figure 

2.9).  

 One of the three mutation sites within the RGS2 triple mutant, aspartate-184, is 

observed to form a double salt bridge (Figure 2.10A and Figure 2.11) with the neighboring 

arginine-188 – the latter being an !VIII residue completely conserved among all other R4-

subfamily RGS domains (Figure 2.1). Asparagine-184 of wildtype RGS2, located between 

helix !VII and !VIII, is an aspartic acid in all other R4-subfamily RGS domains (Figure 

2.1). The additional terminal oxygen present in the aspartate side-chain (and missing in 

asparagine) normally allows two salt bridges to be formed (Figure 2.10A) with the conserved 

!VIII helix arginine residue (e.g., Arg-170 of RGS16, Arg-188 of RGS2). These salt bridges 

are not consistently observed in all unliganded RGS domain structures [20]; however, this 

double salt bridge is present in all R4-subfamily RGS domains complexed with G!i/o 

subunits (Table 2.2), suggesting that their formation is important for making the RGS domain 

competent to bind G!i/o subunits. The importance of this Arg-Asn side-chain interaction is 

supported by the loss of G!i binding and G!i-directed GAP activity when this !VIII helix 

arginine is mutated to glutamate (Figures 2.4 & 2.7). The significance of this intramolecular 

interaction is further supported by observations that mutating the analogous !VIII helix 

arginine in RGS4 (Arg-167) and RGS12 (Arg-821) results in loss of G!i/o binding and G!i/o-

directed GAP activity [3, 42, 43]. While Arg-188 of RGS2 does not make any critical 

contacts with G!i3 per se, it has a critical role in orienting Asp-184 (Figure 2.10B) to form a 

conserved hydrogen bond with the main chain amide of a threonine residue in the G! switch 

I region (Thr-182 of G!i [20, 41]; Thr-183 of G!o [44]). In the structure of wildtype, 



  70 

uncomplexed RGS2 (PDB id 2AF0; ref. [20]), asparagine at this position (Asn-184) forms 

only a single hydrogen bond with terminal amine of Arg-188 and, rotated in this manner, the 

side-chain cannot at the same time form a hydrogen bond the the Thr-182 backbone (Figure 

2.10A and Table 2.2). 

 The aspartate substitution at position Asn-184 is critical to allow binding of RGS2 to 

G!i; however, this single substitution alone is not sufficient to engender robust G!i binding 

(Figure 2.3). Ser-106 is completely conserved among all R4-subfamily RGS domains except 

RGS2, in which this position is a cysteine residue (Figure 2.1). Mutating Cys-106 to serine 

was also necessary to obtain high affinity binding to G!i subunits (Figures 2.3 & 2.4); while 

the Ser-106 side chain was not observed in the structural model to make any critical contacts 

with G!i3, this residue is tightly packed amongst other residues (Figure 2.10B). The structure 

of the RGS2(C106S+N184D+E191K)/G!i3 complex reveals that the "-carbon of Ser-106 is 

closely juxtaposed with the backbone carbonyl and #-hydroxyl of Thr-182 within switch I of 

G!i3; additionally, the !-carbon of Ser-106 is 3.8 Å from the terminal amine of Lys-210 

within switch II of G!i3. In conjunction with the SPR binding data, the observed tight 

packing of Ser-106 within the RGS2(C106S+N184D+E191K)/G!i3 complex suggests that 

the Cys-106 residue of wildtype RGS2 prevents high affinity binding to G!i subunits by 

steric blockade of interactions with switch I and switch II of the G! subunit.  

While amino-acid positions 106 and 184 are completely conserved among all R4-

subfamily RGS domains except RGS2, the specific amino acid at position 191 is conserved 

only in its basic character, being either a lysine or an arginine in all R4-subfamily RGS 

domains (Figure 2.1). In wildtype RGS2, this position is instead an acidic residue (glutamate-

191). In the structural data derived from the RGS2(C106S+N184D+E191K)/G!i3 complex, 
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electron density was present only for the !-, "-, and #-carbons of the mutated position Lys-

191; however, the final ordered carbon atom was found to be only 5.1 Å from the hydroxyl 

oxygen of Glu-65 in the !A helix of the G!i3 all-helical domain. Electron density was 

present to fit the C!, C", C#, and C% atoms of the Lys-191 residue (Figure 2.11). The C& and 

terminal amine were modeled by superimposing a Lys over those parts of the carbon atom-

chain that could be placed with electron density, revealing that this basic side-chain would be 

less than 3.0 Å from the hydroxyl oxygen of G!i3 Glu-65 and thus within hydrogen bonding 

distance. It is possible that the high salt concentration necessary for crystallization screened 

the electrostatic contribution of this interaction away, resulting in a partially disordered side 

chain. In wildtype RGS2, this salt bridge would be lacking and this position instead would 

create electrostatic repulsion between RGS2 Glu-191 and the all-helical domain of G!i3. The 

importance of all-helical domain contacts to RGS protein selectivity for G! substrates has 

been previously speculated for the retinal-specific proteins RGS9-1 and G!-transducin [45]; 

our present finding with RGS2 provides one of the first structural insights into these 

interactions. These RGS domain/all-helical domain interactions, while typically 

underappreciated when considering the structural determinants of the RGS protein/G! 

interaction interface (e.g., ref. [41]; cf. ref. [20]), may provide a unique point of interdiction 

to exploit with selective RGS protein inhibitors.  

2.4.5 Unique determinants of RGS2 G!q selectivity are conserved among species with 
cardiovascular systems 
 
Current knowledge of G! selectivity suggests that R4-subfamily members, as well as 

proteins from the more ancestral RZ-subfamily (e.g., RGS17, -19, -20), can act as GAPs for 

both G!i and G!q subunits [20, 46], with the R4-protein RGS2 particularly attuned to G!q 
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over G!i. Given its unique G! selectivity and its specialized role in cardiovascular signal 

transduction, RGS2 is likely to have arisen from the R4-subfamily in response to the 

development of cardiovascular structures and function.  

In evolutionary terms, G!q emerged as the harbinger of a distinct and recognizable 

G! subfamily in fungi, and G!q subunits are present in all metazoans including sponges [47, 

48]. While RZ-subfamily RGS proteins are represented within the genomes of nematodes 

and arthropods [49], a distinct R4-subfamily does not appear until the evolution of 

urochordates. The genome of the urochordate C. intestinalis (sea squirt) encodes at least two 

RGS proteins (Figure 2.12), an ortholog of the ancestral RZ-subfamily progenitor found in 

nematodes and arthropods, as well as a newly-divergent R4-subfamily member (but not an 

RGS2 ortholog per se). With specialized tissues such as a notochord, digestive tract, single 

chamber heart, and gonads, C. intestinalis is commonly considered an excellent modern 

representative of the precursor to higher vertebrates [50, 51]. Agnatha (jawless fish) such as 

the sea lamprey Petromyzon marinus are considered the most primitive extant members of 

early vertebrates [52] and represent the first vertebrate to exhibit cardiac innervation [53]. 

While the P. marinus cardiovascular system is more advanced than the open system of C. 

intestinalis, it is still considered primitive in that it lacks an elastin-reinforced vasculature 

[54], coronary circulation, and a pericardial-contained fourth chamber (conus or bulbus 

arteriosus) to dampen systolic oscillations in blood pressure [53]. Similar to C. intestinalis, 

the genome of P. marinus encodes at least two RGS proteins, the ancestral RZ member and a 

single R4 member (Figure 2.12); however, no RGS2-like protein has yet been identified in 

this species. 
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As chordates evolved into the Gnathostomata (jawed vertebrates), the cardiovascular 

system rapidly developed coronary vessels, inhibitory vagal innervation, excitatory 

adrenergic innervation, and responses to prostaglandins, nitric oxide, and endothelin [55]. 

This advance is marked in D. rerio by the addition of multiple R4 proteins, specifically 

including a G!q-specific RGS2 protein (Figure 2.12). This unique member of the R4-

subfamily, with cysteine, asparagine, and aspartate at the three key specificity positions, is 

highly conserved in the extant representatives of all subsequent evolutionary steps: 

amphibians (e.g., X. laevis and X. tropicalis), avians (e.g., G. gallus) and mammals (Figure 

2.12); the three defining residues are seen to be unique amongst all R4-subfamily members 

within a given species (e.g., human R4 paralogs aligned in Figure 2.1). Only amphibians (X. 

laevis and X. tropicalis) do not contain all three RGS2-defining amino acids (Figure 2.12): 

while the RGS2 signature residue asparagine is present at position 184, serine (not cysteine) 

is present at position 106 and a neutral glutamine (not glutamate) is present at position 191. 

(Note that the latter glutamine is not seen in RGS2, RGS4, nor RGS20 paralogs). Even 

though the conservation is not absolute in the amphibians, we have shown that asparagine in 

position 184 is sufficient on its own to significantly reduce G!i affinity (i.e., ~20-fold; 

compare KD of >21 µM for the C106S/E191K RGS2 double mutant vs KD of 1.25 µM for the 

C106S/N184D/E191K triple mutant in Figure 2.4). In conclusion, the conservation of these 

three key residue positions suggests that RGS2 has indeed evolved from the R4-subfamily to 

be a specialized G!q GAP for the modern cardiovascular system by acquiring particular 

residues at one or more of three key positions that have been highlighted in our 

mutagenesis/crystallography studies. 
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2.6  FOOTNOTES 
 
* Coordinates for the triple point-mutant RGS2/G!i3·GDP·AlF4

- complex are available in the 
Protein Data Bank (id 2V4Z). This work was supported by funding from the U.S. National 
Institutes of Health (R01 GM082892 to D.P.S., T32 GM008570 to S.Q.H., T32 GM008719 and 
F30 MH074266 to A.J.K.), and the American Heart Association Mid-Atlantic Affiliate 
(0815239E to D.J.U.). The Structural Genomics Consortium is a registered charity (number 
1097737) that receives funds from the Canadian Institutes for Health Research, the Canadian 
Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, 
GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario 
Innovation Trust, the Ontario Ministry for Research and Innovation, Merck & Co., Inc., the 
Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish 
Foundation for Strategic Research and the Wellcome Trust. Current address for F.S.W.: Lilly 
Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285. 
 
 
1 Independent reports (e.g., refs. [40, 56, 57]) have demonstrated that, in membrane-
reconstitution systems containing GPCRs and G-protein heterotrimers, RGS2 can affect the 
agonist-dependent GTPase activity of Gi-coupled signaling systems. The basis for this 
discrepancy between RGS2 selectivity for G!q in binary, solution-based assays and apparent 
RGS2 activity on G!i in reconstituted systems has not yet been resolved, but it is important to 
note that RGS2 (like other RGS proteins) is known to interact with other components of GPCR 
signal transduction beyond G! subunits [58], including isoforms of the G!i effector target, 
adenylyl cyclase [37]. 
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Figure 2.1 - Multiple sequence alignment of the conserved core of R4-subfamily RGS 
domains. Sequence alignment of the indicated Homo sapiens RGS protein RGS domains was 
made using ClustalW (http://www.ebi.ac.uk/Tools/clustalw/index.html) and BoxShade Server 
http://www.ch.embnet.org/software/BOX_form.html).  Regions of secondary structure, as 
denoted above the sequence of RGS2, are based on the X-ray crystallographic structure of 
unliganded wildtype RGS2 (PDB id 2AF0). Open stars highlight the three amino acid positions 
described in this study.  



  81 

 
 
 
Figure 2.2 - Equivalent purification of wild-type and point-mutant RGS2 proteins used in 
biochemical analyses is highlighted by Coomassie blue staining of SDS-PAGE resolved 
proteins. Abbreviations: WT, wild-type sequence; EK, glutamate-191 to lysine; CS, cysteine-
106 to serine; ND, asparagine-184 to aspartate. 
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Figure 2.3. G! i1 and G!q selectivity of wildtype RGS2 versus RGS2 point mutants profiled 
by surface plasmon resonance (SPR). G!i1-biotin (left) or His6-G!q (right) was immobilized 
on sensor surfaces for binding analyses of indicated RGS2 protein analytes (3 µM final 
concentration). Analyte injections were performed at a flow rate of 20 µl/min for 600 seconds 
(start time = 0 s) over surfaces of G! subunits in the inactive state (GDP-bound; dashed lines) or 
in the transition-state for GTP hydrolysis (i.e., GDP·AlF4

--bound; solid lines).  Legend in panel 
A also applies to sensorgrams of panel B. 
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Figure 2.4. Quantitation of RGS2 binding to G! i1.  SPR was performed as described in Figure 
2.3, with the concentration of the RGS2 analyte titrated from 1 nM to 50 µM. Sensorgrams were 
subsequently used in equilibrium saturation binding analyses to determine RGS2/G!i1 
interaction binding affinities.  Dissociation constants (KD values) were estimated to be "21.1 
(95% confidence interval [C.I.] 11.6 - 30.7) µM, "5.3 (95% C.I. 3.1 - 7.5) µM, and "8.6 (95% 
C.I. 5.4 - 11.9) µM for the double mutants RGS2(C106S+E191K), RGS2(C106S+N184D), 
RGS2(N184D+E191K), respectively, and determined to be 1.25 (95% C.I. 1.0 - 1.6) µM for the 
triple mutant RGS2(C106S+N184D+E191K). A KD value for the wildtype RGS2/G!i1 
interaction could not be estimated because saturation was not obtained at concentrations tested.   
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Figure 2.5. Quantification of RGS2 binding to G!q. SPR was performed as described in 
Figure 2.3, using an immobilized His6-G!q·GDP·AlF4

- surface and RGS2 analyte concentrations 
from 0.5 - 1000 nM. Using equilibrium saturation binding analyses, RGS2/G!q dissociation 
constants were determined to be 55 nM (95% C.I. 23.4 – 86.9 nM) for wildtype RGS2 and 17 
nM (95% C.I. 8.7 - 27.0 nM) for the RGS2(C106S+N184D+E191K) triple mutant.  
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Figure 2.6. Competition FRET Assays of the G! i1-CFP/YFP-RGS2(triple) interaction. (A) 
The fusion proteins YFP-RGS2(C106S+N184D+E191K) and G!i1-CFP interact in the presence 
of GDP and AlF4

-·Mg2+ (“AMF”) but not in the presence of GDP alone. This interaction can be 
inhibited by the addition of unlabeled RGS2(C106S+N184D+E191K) “triple” mutant protein 
(IC50 value of 526 nM; 95% C.I. 236-1171 nM), but not by the addition of buffer alone. (B) The 
addition of unlabeled wildtype RGS2 to the G!i1-CFP/YFP-RGS2(triple mutant) FRET pair does 
not result in a decrease in FRET; however, the addition of RGS16 (known to have affinity for 
G!i1; ref. (20)) competitively inhibits binding (IC50 value of 115 nM; 95% C.I. 78-168 nM). 
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Figure 2.7. The triple mutant RGS2(C106S+N184D+E191K), but not wildtype RGS2, 
accelerates the GTP hydrolysis rate of G! i1. (A) Increasing concentrations of wildtype RGS2 
(as indicated) are unable to accelerate the GTP hydrolysis of 200 nM G!i1. Intrinsic GTP 
hydrolysis by isolated G!i1 (kobs) was measured at 0.0075 sec-1 (95% C.I. 0.0055-0.010 sec-1), 
while kobs values of 0.0076 (0.0055-0.0097) sec-1, 0.0066 (0.0054-0.0078) sec-1 and 0.0086 
(0.0069-0.010) sec-1 were observed upon the addition of 50 nM, 2500 nM, or 5000 nM wildtype 
RGS2, respectively. RGS16 is a potent GAP for G!i subunits (e.g., ref. (20)) and, at 
substoichiometic concentrations (50 nM), was found to accelerate GTP hydrolysis by G!i1:  kobs 
of at least 0.18 sec-1 (an underestimate as the measurement is limited by sampling-time 
constraints). (B) The triple mutant RGS2(C106S+N184D+E191K) was observed to accelerate 
GTP hydrolysis by 200 nM G!i1 in a dose-dependent manner:  kobs values of 0.0075 (0.0055-
0.0095) sec-1, 0.0079 (0.0068-0.0089) sec-1, and 0.028 sec-1 (0.023-0.032 sec-1) were observed 
upon the addition of 0 nM, 10 nM, and 50 nM of RGS2(triple) protein, respectively. Higher 
concentrations of RGS2(triple) protein (200 nM, 500 nM, 1000 nM, and 5000 nM) led to 
GTPase rates of at least 0.1 - 0.2 sec-1 (again underestimated due to sampling-time constraints). 
The triple mutant also containing a fourth, loss-of-function point mutation (namely, 
RGS2(C106S+N184D+E191K;R188E)) was unable to accelerate GTP hydrolysis by G!i1: kobs 

value of 0.0076 (0.0066-0.0086) sec-1. (C) The single point mutation to G!i1 (glycine-183-to-
serine, “G183S”; ref. (41)) renders G!i1 insensitive to the GAP activity of RGS proteins. The 
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intrinsic hydrolysis rate of the G!i1(G183S) mutant was determined to be 0.0053 (0.0037-
0.0069) sec-1. Upon addition of 200 nM, 3000 nM, or 5000 nM of the 
RGS2(C106S+N184D+E191K) triple mutant, the kobs was found to be 0.0036 (0.0026-0.0046) 
sec-1, 0.0042 (0.0060-0.0078) sec-1 and 0.0025 (0.00017-0.0048) sec-1, respectively; the kobs for 
GTP hydrolysis after addition of 200 nM RGS16 was observed to be 0.0064 (0.0052-0.0076) 
sec-1. (D) The kobs values are plotted versus concentration of RGS protein to demonstrate the 
dose-dependent increase in GAP activity upon the addition of RGS2(C106S+N184D+E191K) 
protein to wildtype G!i1, but not the RGS-insensitive G!i1(G183S) mutant.  
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Figure 2.8. The triple mutant RGS2(C106S+N184D+E191K), but not wildtype RGS2, 
inhibits dopamine D2-receptor influence on forskolin-stimulated cAMP production. 
HEK293T cells were transiently co-transfected with expression vectors for the GloSensor™ 
cAMP biosensor and the Gi-coupled dopamine D2-receptor with either empty vector, wildtype 
RGS2, or the RGS2(triple) mutant. Inhibition of forskolin-stimulated cAMP production was 
determined after activation of the D2 receptor with various concentrations of quinpirole as 
indicated. The IC50 (95% C.I.) for quinpirole was determined to be 18 (12 – 26) nM,  14 (9 - 22) 
nM, and 762 (498 - 1170) nM in the presence of empty vector, wildtype RGS2, and the triple 
mutant, respectively. Inset, Post-transfection cell lysates were immunoblotted with anti-HA 
epitope tag antibody to confirm the equivalent overexpression of HA-RGS2 and HA-
RGS2(C106S+N184D+E191K) proteins.  
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Figure 2.9. Overall structural features of the 
RGS2(C106S+N184D+E191K)/G! i3!GDP!AlF4

- complex. (A) The tertiary structure of G!i3 is 
composed of a Ras-like domain (red) and an all !-helical domain (blue) and is present in a 
transition-state mimetic form bound to a molecule of GDP (magenta) and  tetrafluoroaluminate 
(AlF4

-) ion (gray/blue sticks). The three critical switch regions of G! (numbered Sw I to Sw III) 
are colored cyan. All three switch regions are engaged by the RGS2 RGS domain (yellow-green). 
Panel (B) represents the same structural model as in panel (A), but rotated to highlight contacts 
made by residues serine-106, aspartate-184, and lysine-191 of the 
RGS2(C106S+N184D+E191K) triple mutant. This same orientation of the complex is presented 
in the zoomed-in view in Figure 2.9B. 
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Figure 2.10. Particular G!  selectivity determinants inferred from the structural model of 
the triple mutant RGS2(C106S+N184D+E191K) bound to G! i3. 
(A) Illustration of the !VII-!VIII region of the RGS domain to highlight the intramolecular 
interaction between the highly conserved !VIII helix arginine (Arg-188 of RGS2) and position 
184 (asparagine in wildtype RGS2 and aspartate in the triple mutant). 
RGS2(C106S+N184D+E191K) triple mutant (yellow-green; PDB id 2V4Z), unliganded 
wildtype RGS2 (grey; PDB id 2AF0), and the G!i1-bound RGS16 (dark green; PDB id 2IK8) 
were aligned by sequence and then structure (C! atoms) using the Align command with default 
align settings of MacPyMOL (DeLano Scientific, Palo Alto, CA), resulting in RMSDs of 0.92 Å 
and 0.80 Å, respectively. The conserved Arg-188 makes salt bridges with the terminal oxygens 
of the Asp-184 side-chain in the RGS2(C106S+N184D+E191K) mutant and the analogous 
asparate side-chain in RGS16; however, only one contact can be made between Arg-188 and the 
Asn-184 side-chain of wildtype RGS2.  Loss of the second salt bridge creates a torsion in the 
wildtype RGS2 Asp-184 residue, resulting of the loss of the stabilizing hydrogen bond to Thr-
182 in switch I of the G! subunit. (B) Critical contacts between the three mutated positions of 
RGS2(C106S+N184D+E191K) (yellow-green) and its G! binding partner (Ras-like domain in 
red; all-helical domain in blue; switch regions in cyan; bound GDP in magenta). The modeled 
terminal atoms of the Lys-191 side-chain (spheres) within RGS2(C106S+N184D+E191K) are in 
close enough proximity to make a hydrogen bond with Glu-65 of the G! all-helical domain. 
Asp-184 makes two hydrogen bonds with Arg-188 and an additional bond with the backbone 
amine of the peptide bond connecting Thr-181 and Thr-182, both located within switch I of G!. 
Ser-106 of the RGS2 triple mutant is tightly packed with the backbone carbonyl and #-hydroxyl 
of G! Thr-182, both being less than 3.9 Å from "-carbon of Ser-106. Additionally, the G! 
switch II residue Lys-210 is 3.8 Å from the Ser-106 !-carbon.  
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Figure 2.11. Electron density representation of the 
RGS2(C106S+N184D+E191K)/G! i3!GDP!AlF4

- highlighting RGS2 residues Asp184, 
Arg188, and Lys191. The final refined 2'Fo'-'Fc' electron density map contoured at 1 sigma 
(0.2 e-/Å3) is shown in blue mesh over the !VIII helix of RGS2(C106S+N184D+E191K). The 
residues of the deposited structure (PDB id 2V4Z) are seen in a ball and stick representation with 
carbon atoms in yellow-green. The two modeled atoms of Lys191 are depicted as larger spheres 
(magenta). The density in the figure is a representative portion of the map of the B molecule and, 
apart from Lys191, also shows the salt bridge interaction of Asp184 and Arg188. The placement 
of the !A helix with Glu65 of the G!i3 binding partner is included to emphasize the possible 
hydrogen bond to Lys191. 
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Figure 2.12. Emergence of the specialized R4-subfamily member RGS2 and evolutionary 
conservation of its three G!q-selectivity residues. Full-length, protein open-reading frame 
sequences for RGS2, RGS4, and RGS20 orthologs were obtained from the genomes of indicated 
multi-cellular organisms and aligned using T-Coffee v1.37 (61). Sequence alignments were 
manually adjusted using SEAVIEW v3.2 (ref. (62)) prior to the generation of a Markov-chain 
Monte Carlo-based phylogeny using MrBayes v3.1.2 (refs. (63,64)); dendrogram was visualized 
using Njplot v2.3 (ref. (65)). 
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Table 2.1: Data collection and refinement statistics for the 
RGS2(C106S+N184D+E191K)/G! i3!GDP!AlF4

- complex (PDB id 2V4Z).  
 

Data collection (highest resolution shell) 
Space group 
Number of protomers in asymmetric unit 
Unit cell dimensions: 
         a, b, c   (Å) 
        !, ", #    (degrees) 
Wavelength   (Å) 
Resolution     (Å) 
Total observations 
Unique observations 
Rmeas 

a 

(I/)(I)*  
Completeness (%) 
Redundancy 
Wilson B value (Å2) 
Solvent content (%) 

 
P3221 
1 
 
114.54, 114.54, 99.33 
90, 90, 120 
1.54 
35.09-2.8 (2.95-2.8) 
136716 (19702) 
18916 (2722) 
0.128 (0.931)  
16.2 (2.3) 
99.9 (100.0) 
7.2 (7.2) 
67.5 
64.6 (VM

 = 3.47) b 

Refinement 
Resolution  (Å) 
Reflections (working/test) 
Rwork/Rfree   (%) c 
Non-hydrogen atoms/Average B-factor (Å2) d 
         Protein - G!i3 
                      - RGS2 
         Ligand  - GDP, AlF4

-, Mg2+ 
         Water 
R.m.s. deviations: 
         Bond lengths (Å) e 

         Angles (°) 
Ramachandran plot  (%): 
         Most-favored regions 
         Allowed regions 
         Disallowed regions 

 

33.4-2.8 
17941/956 
20.7/25.4 
 
2513/53.8 
883/90.4 
34/35.2 
18/38.8 
 
0.007 
0.97 
 
96.8 
3.0 
0.2 

a Multiplicity weighted merging R-factor,  Rmeas = +h (nh / (nh -1))1/2 +i, Ih,i - (Ih*,/ +h+i ,Ih,i,,  
where (Ih* is the mean intensity for reflection h and nh is its multiplicity (ref . (1));  
b VM is defined as the density of the protein in the crystal in Å3 per Da (ref. (2)) ; 
c +,FP – FP(calc) ,/ + FP, where FP and FP(calc) are the observed and calculated structure factor 
amplitudes, respectively. Rfree is calculated similarly using test set reflections never used during 
refinement; 
d Average B-factors include TLS contributions; 
e Using the parameters of Engh & Huber (3). 
 
References for Collection & Refinement Information: 
 
1. Diederichs, K., and Karplus, P. A. (1997) Nat Struct Biol 4, 269-275 
2. Matthews, B. W. (1968) J Mol Biol 33, 491-497 
3. Engh, R. A., and Huber, R. (1991) Acta Crystallographica Section A 47, 392-400 



  95 

Table 2.2: Atomic distances (in Å) between side-chain nitrogens of conserved !VIII 
arginine within R4-family RGS domains and neighboring aspartate/asparagine at junction 
of helices !VII and !VIII.  
 

Side-chain atom of !VIII 

arginine RGS domain 
PDB 

id 

Residue (side-chain 

atoms) 
NH1 NH2 

RGS2(wildtype) 2AF0 Asn-184 (OD1, ND2) 3.2 5.9 
RGS1 2BV1 Asp-172 (OD1, OD2) 2.8 3.4 
RGS8 2IHD Asp-157 (OD1, OD2) 5.0 5.7 
RGS16 2BT2 Asp-166 (OD1, OD2) 2.5 6.0 
RGS16 3C7L Asp-165 (OD2, OD1) 5.1 3.2 
RGS/G! i/o 

complex 
    

RGS2(triple)/G!i3 2V4Z Asp-184 (OD2, OD1) 2.7 3.0 
RGS1/G!i1 2GTP Asp-172 (OD1, OD2) 3.0 3.0 
RGS4/G!i1 1AGR Asp-161 (OD1, OD2) 2.7 3.2 
RGS8/G!i3 2ODE Asp-157 (OD1, OD2) 2.9 3.0 
RGS16/G!i1 2IK8 Asp-166 (OD2, OD1) 3.0 3.1 
RGS16/G!o 3C7K Asp-165 (OD1, OD2) 3.7 2.8 

 
 



 

 

 
 
 
 
 

CHAPTER 3 

 

THE RGS PROTEIN INHIBITOR CCG-4986 IS A COVALENT MODIFIER OF THE 

RGS4 G!-INTERACTION FACE 

 

 

Elements of this work referenced in this chapter have been published in:  

Kimple, A. J., Willard, F. S., Giguere, P. M., Johnston, C. A., Mocanu, V. and 
Siderovski, D. P. (2007) The RGS protein inhibitor CCG-4986 is a covalent modifier 
of the RGS4 Galpha-interaction face. Biochim Biophys Acta. 1774: 1213-1220. 
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3.1  ABSTRACT 

 

Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric 

G-protein alpha subunits and are thus crucial to the timing of G protein-coupled receptor 

(GPCR) signal transduction. Small molecule inhibition of RGS proteins is an attractive 

therapeutic approach to diseases that involve dysregulated GPCR signaling. Methyl-N-[(4-

chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986) was recently reported as a 

selective RGS4 inhibitor, but with an unknown mechanism of action [1]. Here, we describe 

the mechanism of action of CCG-4986 as covalent modification of RGS4. Mutant RGS4 

proteins devoid of surface-exposed cysteine residues were characterized as to their sensitivity 

to CCG-4986 inhibition using surface plasmon resonance and Förster resonance energy 

transfer (FRET) assays of G! binding as well as single-turnover GTP hydrolysis assays of 

RGS4 GAP activity. From these analyses, we identified cysteine-132 within RGS4 as 

required for the inhibitory activity of CCG-4986. Mass spectrometry analysis identified a 153 

dalton fragment of CCG-4986 as being covalently attached to the surface-exposed cysteines 

of the RGS4 RGS domain. We therefore conclude that the mechanism of action of the RGS 

protein inhibitor CCG-4986 is via covalent modification of Cys-132 of RGS4, likely causing 

steric hinderance with the all-helical domain of the G! substrate. 
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3.2  INTRODUCTION 

 

The single largest class of pharmaceuticals currently prescribed are those that target 

G protein-coupled receptor (GPCR) signaling pathways [2]. Recently, members of the 

“regulator of G-protein signaling” (RGS) protein superfamily have emerged as critical 

endogenous modulators of GPCR signal transduction (reviewed in [3, 4]). Via their 

conserved RGS domain that confers “GTPase-accelerating protein” (GAP) activity, RGS 

proteins deactivate heterotrimeric G-protein ! subunits and thereby attenuate GPCR signal 

transduction [5, 6]. We and others have speculated that small molecule RGS protein 

modulators should have clinical utility in potentiating or inhibiting the actions of endogenous 

GPCR agonists (e.g., refs. [7, 8]); combining existing GPCR agonists with specific RGS 

domain inhibitors should potentiate cellular responses and could also markedly increase 

specificity of action of existing drugs. In particular, the diversity of RGS proteins with highly 

localized and dynamically regulated distributions in the human brain makes them attractive 

targets for pharmacotherapy of central nervous system disorders such as Parkinson’s disease 

and opiate addiction (reviewed in [9, 10]). 

 Despite their obvious potential as vanguards of a novel pharmacotherapeutic strategy, 

few reports currently exist of small molecule inhibitors of RGS protein action. Two groups 

have recently described identifying inhibitors of the RGS protein/G! interaction (BMS-

195270, CCG-4986), but the specific biochemical mechanism of action for each compound 

remained unresolved in these initial studies [1, 11]. Roman et al. identified CCG-4986 in a 

flow-cytometric protein interaction assay as an inhibitor of RGS4 binding to the G-protein 

subunit G!o [1].  CCG-4986 inhibits the GAP activity of RGS4 in single-turnover GTP 

hydrolysis and inactivates the action of recombinant RGS4 protein in inhibiting µ-opioid 
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receptor signaling by permeabilized C6 glioma cells; in contrast, G! binding and inhibition 

of µ-opioid receptor signaling by a related R4-subfamily RGS protein (RGS8) is unperturbed 

by the actions of CCG-4986 [1]. Here, we describe biochemical, biophysical, and mass 

spectrometric analyses of the interaction between CCG-4986 and RGS4, which support the 

conclusion that this small molecule RGS inhibitor is a reactive modifier of a solvent-exposed 

cysteine present in RGS4 and not RGS8, thereby explaining its in vitro RGS protein 

specificity. 

3.3.  MATERIALS 

 

3.3.1 Chemicals 

 

Methyl-N-[(4-chlorophenyl)sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986; MW 

374.82) was purchased from ChemBridge (San Diego, CA); identity and purity of CCG-4986 

was confirmed by electrospray mass spectrometry (ESI-MS) conducted at the UNC-Duke 

Michael Hooker Proteomics Core Facility. Unless otherwise noted, all reagents used were the 

highest grade available from Sigma Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, 

PA).   

 

4.3.2 Protein expression and purification 

 

Wildtype human RGS4 (amino acids 29-198; cloned as a hexahistidine-tagged fusion in 

pSGC-LIC) was obtained from the Structural Genomics Consortium (Oxford, UK); point 

mutations were made using QuikChange site directed mutagenesis (Stratagene, La Jolla, 

CA). DNA encoding amino acids 50-177 of wildtype human RGS4, and cysteine point 

mutants thereof, were also subcloned into a Novagen (San Diego, CA) pET vector-based 

prokaryotic expression construct (“pET-YFP-LIC-C”) using PCR and ligation-independent 
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cloning [12]. The resultant constructs encoded RGS4 as C-terminal fusions to enhanced 

yellow fluorescent protein (hereafter described as YFP; Clontech, Mountain View, CA) with 

an intervening 12 amino acid linker sequence (TSRGRMYTQSNA).  

For expression of both hexahistidine-tagged and YFP-tagged RGS4 proteins, 

BL21(DE3) E. coli were grown to an OD600nm of 0.7-0.8 at 37°C before induction with 0.5 

mM isopropyl-"-D-thiogalactopyranoside.  After culture for 14-16 hours at 20°C, cells were 

pelleted by centrifugation and frozen at -80°C. Prior to purification, bacterial cell pellets 

were resuspended in N1 buffer (50 mM HEPES pH 8.0, 300 mM NaCl, 30 mM imidazole, 

2.5% (w/v) glycerol). Bacteria were lysed at 10,000 kPa using pressure homogenization with 

an Emulsiflex (Avestin; Ottawa, Canada). Cellular lysates were centrifuged at 100,000 x g 

for 30 minutes at 4°C. The supernatant was applied to a nickel-nitrilotriacetic acid resin 

FPLC column (FF HisTrap; GE Healthcare, Piscataway, NJ), washed with 7 column volumes 

of N1 then 3 column volumes of 30 mM imidazole before elution of RGS4 proteins with 300 

mM imidazole. Eluted protein was cleaved with tobacco etch virus (TEV) protease overnight 

at 4°C and dialyzed into low imidazole buffer (N1 plus 5 mM DTT) before being passed over 

a second HisTrap column to separate residual His6-RGS4 from untagged, cleaved RGS4.  

The column flow-through was pooled and resolved using a calibrated 150 ml size exclusion 

column (Sephacryl S200; GE Healthcare) with S200 buffer (50 mM Tris pH 8.0, 250 mM 

NaCl, DTT 5 mM, 2.5% (w/v) glycerol). Protein was then concentrated to approximately 1 

mM, as determined by A280nm measurements upon denaturation in 8 M guanidine 

hydrochloride. Concentration was calculated based on predicted extinction coefficient 

(http://us.expasy.org/tools/protparam.html).  RGS4 was prepared for MS analysis using S200 

buffer without glycerol (“MS Buffer”). Human RGS8 and RGS16 constructs were also 
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provided by the Structural Genomic Consortium and purified as described  

(RGS8: http://www.sgc.ox.ac.uk/structures/MM/RGS8A_2ihd_MM.html,  

RGS16: http://www.sgc.ox.ac.uk/structures/MM/RGS16A_2bt2_MM.html). C-terminally 

biotinylated G!i1 and G!i1-CFP fusion proteins were prepared as described previously [13, 

14].  His6-G!oA was purifed as described [15]. 

 

 

4.3.3 Fluorescent and radiolabelled nucleotide single-turnover GTPase assays  

 

BODIPYFL-GTP (Invitrogen; Carlsbad, CA) hydrolysis was measured and quantified using 

single nucleotide binding-and-turnover assays as previously described [15]. Single turnover 

[#-32P]GTP hydrolysis assays were conducted using 100 nM G!i1, 200 nM RGS4 protein, 

and 2 µM CCG-4986 as previously described [16]. Briefly, 100 nM G!i1 was incubated for 

10 minutes at 30oC with 1 x 106 cpm of [#-32P]GTP (specific activity of 6500 dpm/Ci) in the 

absence of free magnesium. Reaction was then chilled on ice for 1 minute prior to the 

addition of 10 mM MgCl2 (final concentration) with or without added RGS protein (200 nM 

final) in the presence or absence of 10-fold molar excess CCG-4986. Reactions were kept on 

ice and 100 ml aliquots were taken at 30 second intervals, quenched in 900 µl of charcoal 

slurry, centrifuged, and 600 µl aliquots of supernatant counted via liquid scintillation as 

described [16].  

 

4.3.4 Surface plasmon resonance-based binding assays 

 

Optical detection of surface plasmon resonance (SPR) was performed using a Biacore 3000 

(Biacore Inc., Piscataway, NJ). Biotinylated G!i1 was immobilized on streptavidin sensor 
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chips (Biacore) to densities of ~6000 RU as previously described [14]. In pilot studies, CCG-

4986 was observed to react with, and thereby irreversibly modify, the biosensor surface, 

preventing us from obtaining high-quality protein/protein interaction data in its presence 

(data not shown). To obviate this problem, we removed excess CCG-4986 from RGS protein 

samples using rapid gel filtration. Specifically, all proteins samples were first incubated for 3 

minutes at room temperature in a 50 µl volume containing 30 µM RGS protein with a 10-fold 

molar excess of CCG-4986 (or DMSO equivalent) in the absence or presence of 10 mM 

DTT. RGS protein was then separated from unbound compound and other low-molecular 

weight reagents by Sephadex G-25 chromatography (Illustra$ MicroSpin$ G-25 Column; 

GE Healthcare) via centrifugation for 1 minute at 735 x g. The flow through was then diluted 

in 250 µl of BIA running buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.05% NP40, 100 

µM GDP, 5 µM EDTA, 10 mM MgCl2, 10 mM NaF, 30 µM AlCl3) for injection across 

biosensor surfaces. Binding curves for wildtype RGS proteins and cysteine point-mutants of 

RGS4 were obtained at 20°C using 200 µl injections (using the KINJECT command) with a 

200 second dissociation phase at 20 µl/min.  Non-specific binding to a denatured G!i1-biotin 

surface was subtracted from each curve (BIAevaluation software v3.0; Biacore). 

 

4.3.5 Förster resonance energy transfer (FRET)-based binding assays 

 

Förster resonance energy transfer was used to measure binding interactions between G!i1 and 

RGS4 as previously described [13]. Briefly, FRET between G!i1-CFP and YFP-RGS4 fusion 

proteins was measured using a SpectraMax Gemini 96-well plate fluorescence reader 

(Molecular Devices; Sunnyvale, CA); association of G!i1-CFP and YFP-RGS4 induced by 

the addition of aluminum tetrafluoride results in non-photonic energy transfer and a 
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subsequent increase in emission at 528 nm relative to the emission at 480 nm. All runs were 

conducted with excitation wavelength of 433 nm, a 455 nm cutoff filter, and emission scans 

from 474 nm to 532 nm at 2 nm intervals. FRET was calculated as the ratio of emission at 

528 nm / 480 nm. Binding assays were initiated by the addition of G!i1-CFP and 

fluorescence was measured within 2 minutes, given that reactions containing CCG-4986 did 

not appear to be stable over long time periods. 

 

4.3.6 Mass spectrometry 

 

Sample Preparation: 39 nmol of RGS4 proteins were incubated in MS Buffer with a 15-fold 

molar excess of CCG-4986 (30 mM in DMSO) for 5 minutes at room temperature and then 

filtered on a 5 ml sephadex G-25 column (HiTrap Desalting Column; GE Healthcare) in 

order to remove DMSO and excess CCG-4896.  

Sample Analysis: Prior to mass spectrometric analyses, RGS4 protein samples were applied 

to C4 ZipTip columns (Millipore, Billerica, MA) and eluted using 50% acetonitrile/2% acetic 

acid. For intact molecular weight determination, 1 µl of each sample was analyzed by 

electrospray ionization mass spectrometry (ESI-MS) on an ABI QSTAR-Pulsar QTOF mass 

spectrometer fitted with a nanoelectrospray source (Proxeon Biosistems A/S, Odense, 

Denmark). To determine the labeled sites of RGS4, tryptic digestions of untreated and CCG-

4986-treated RGS4 were performed. Digested samples were then applied to C18 ZipTips and 

eluted with 50% acetonitrile/0.1% trifluoroacetic acid. 0.5 µl of each sample was mixed with 

0.5 µl matrix (a saturated solution of a–cyano-4-hydroxycinnamic acid in 50% 

acetonitrile/0.1% trifluoroacetic acid) and analyzed by matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS and MALDI-MS/MS fragmentation) 
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on a Bruker Ultraflex I mass spectrometer (Bruker Daltonics, Billerica, MA, USA). All mass 

spectrometric data were gathered at the UNC-Duke Michael Hooker Proteomics Center 

(Chapel Hill, NC). 

 

4.3.7 Molecular modeling 

 

Model building using the RGS4/G!i1 complex coordinates (PDB id 1AGR; ref. [17]) was 

performed in the program O [18]. Structural images were made with PyMol (DeLano 

Scientific, South San Francisco, CA). 

 

4.4.  RESULTS AND DISCUSSION 

 

4.4.1 CCG-4986 is a cysteine-dependent RGS4 inhibitor 

 

In a desire to establish the structural determinants of CCG-4986 function as an RGS protein 

inhibitor, we initiated crystallization trials towards obtaining a high-resolution structure of a 

RGS4/CCG-4986 complex by x-ray diffraction. However, we found that admixture of CCG-

4986 with purified RGS4 protein solutions containing reducing agents (e.g., dithiothreitol 

[DTT]) led to an immediate generation of a bright yellow substance (data not shown); this 

proved problematic to continued crystallization trials, as the purification of RGS4 in the 

absence of reducing agent resulted in a heterogenous mixture of monomer and dimers (data 

not shown). This bright yellow color reaction was reproduced by exposing CCG-4986 to 

DTT only. As CCG-4986 contains two sulfur atoms, we hypothesized that its mechanism of 

action could be one of thiol reactivity and, hence, covalent modification of cysteine 

residue(s) in RGS4.  
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To highlight solvent-exposed residues within RGS4, a multiple sequence alignment 

of RGS domains was created in combination with the GETAREA 1.1 algorithm for 

calculating accessible surface area [19] as applied to the NMR structural coordinates of 

uncomplexed RGS4 (PDB id 1EZT; ref. [20]). This alignment revealed two solvent-exposed 

cysteines present within the RGS domain of RGS4 (Cys-71 and Cys-132, Figure 3.1A). 

These two cysteines within RGS4 are not conserved among other R4-subfamily RGS 

proteins; for example, the corresponding residues in RGS8 are Tyr-65 and Gln-126 and in 

RGS16 are Asn-74 and Glu-135 (Figure 3.1A). To determine if the inhibitory activity of 

CCG-4986 was dependent on the Cys-71 and/or Cys-132 residues unique to RGS4, mutant 

RGS4 proteins were purified bearing Cys-71-to-Asn and/or Cys-132-to-Glu point mutations 

(Figure 3.1B) and subjected to biochemical analyses of RGS protein function.  

Assays of RGS4 GAP activity were initially performed using the fluorescent 

nucleotide analog BODIPYFL-GTP [15]. Wildtype RGS4 stimulated the intrinsic GTPase 

activity of G!oA in a dose-dependent manner (Figure 3.2A). GAP activity was substantially 

diminished by preincubation of wildtype RGS4 with 30 mM CCG-4986 (Figure 3.2A). The 

double point-mutant RGS4(C71N/C132E) also had potent GAP activity toward G!oA, but 

this activity was not inhibited by preincubation with 30 mM CCG-4986 (Figure 3.2B), thus 

demonstrating the requirement of a cysteine residue in RGS4 for CCG-4986 bioactivity.  

Surface plasmon resonance (SPR) was used to measure the ability of wildtype and 

mutant RGS4 proteins to bind immobilized G!i1 in its GDP/aluminum tetrafluoride-bound 

transition state (the G! nucleotide state bound most avidly by RGS proteins; ref. [21]). 

Addition of a 10-fold molar excess of CCG-4986 completely abolished wildtype RGS4 

binding to G!i1·GDP·AlF4
- (Figure 3.3A), but had no significant effect on G!i1 binding by 
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RGS8 and RGS16 proteins (Figure 3.3B-C). Preincubation of CCG-4986 with DTT blocked 

its inhibitory action on the RGS4/G!i1 interaction (Figure 3.3A). Mutation of the two 

solvent-exposed cysteines of RGS4 also resulted in a dramatic reduction in the inhibitory 

effect of CCG-4986 on the RGS4/G!i1 interaction (Figure 3.3D). To determine the individual 

roles of Cys-71 and Cys-132 in CCG-4986 activity, the single point-mutants of RGS4 were 

also profiled for G!i1 binding using SPR. The Cys-71-to-Asn mutant remained sensitive to 

inhibition by CCG-4986; as with wildtype RGS4, this inhibitory effect was lost upon 

treatment of CCG-4986 with DTT (Figure 3.3E). In contrast, G!i1 binding by the Cys-132-

to-Glu mutant of RGS4 was unaffected by CCG-4986 (Figure 3.3F). These results suggest 

that Cys-132 is required for CCG-4986-mediated inhibition of G!i1 binding by RGS4.  

To confirm these SPR findings, we used an independent experimental approach of in 

vitro FRET between CFP- and YFP-labeled fusion proteins to quantify RGS4/G!i1 binding 

in the presence of CCG-4986.  We previously reported [13] that, upon interaction between 

YFP-RGS4 and G!i1-CFP (the latter in its GDP/aluminum tetrafluoride-bound transition 

state), excitation of CFP at 433 nm results in an increase in acceptor (YFP) emission at 528 

nm and a corresponding decrease in donor (CFP) emission at 480 nm. The ratio of emissions 

at 528 nm and 480 nm can thus be used to quantify binding between RGS4 and G!i1. We 

observed a concentration-dependent reduction in FRET between YFP-RGS4 and transition-

state G!i1-CFP upon the addition of CCG-4986 (Figure 3.4A).  Similarly, addition of CCG-

4986 to YFP-RGS4(C71N) reduced observed FRET (Figure 3.4B), while the addition of 

solvent alone (DMSO) had no inhibitory effect on FRET from either protein pairing (Figure 

3.4A,B). In contrast, no reduction in FRET was seen upon addition of CCG-4986 to YFP-

RGS4(C132E) or YFP-RGS4(C71N, C132E) proteins (Figure 3.4C,D). To confirm that the 
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interaction between transition state G!i1-CFP and YFP-RGS4 was reversible, unlabeled 

RGS4 was used as a positive control for inhibition (Figure 3.4C,D).  

  Our BODIPYFL-GTP hydrolysis, SPR, and FRET data all confirmed previously 

published findings describing CCG-4986 as a selective inhibitor of the RGS4/G! binding 

interaction and of RGS4 GAP activity on G!o [1]; our analysis of cysteine point-mutants of 

RGS4 further demonstrated that Cys-132 is necessary for the inhibitory activity of CCG-

4986. To confirm that CCG-4986 inhibition of RGS4-mediated GAP activity required the 

Cys-132 residue within RGS4, we repeated in vitro GAP assays using radiolabeled GTP as 

previously described [16]. Calculated initial rates of [#-32P]GTP hydrolysis from these single-

turnover assays were as follows: 

G! alone, 0.011 s-1; G! + RGS4(wildtype), 0.21 s-1; G! + RGS4(wildtype) + CCG-4986, 

0.074 s-1; G! + RGS4(C132E), 0.044 s-1; G! + RGS4(C132E) + CCG-4986, 0.036 s-1. The 

Cys-132-to-Glu mutation reduced the GAP activity of RGS4 (4-fold increase in initial GTP 

hydrolysis rate vs 19-fold for wildtype RGS4); however, this mutant RGS protein was clearly 

still active as an accelerator of G! GTP hydrolysis and not significantly inhibited by 

preincubation with a 10-fold molar excess CCG-4986 (18% reduction in GAP activity vs 

65% reduction of wildtype RGS4 GAP activity). These results again highlight the 

requirement of the Cys-132 residue in RGS4 to CCG-4986 inhibitory activity. 

 

4.4.2 CCG-4986 covalently modifies RGS4 cysteine residues 

 

To unambiguously determine if CCG-4986 is a covalent modifier of RGS4, intact molecular 

weight determinations of unreacted and CCG-4986-treated RGS4 protein samples were 

performed by nano-ESI-MS. Compared to unreacted RGS4 protein (Figure 3.5A), CCG-
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4986-treated RGS4 protein revealed three prominent forms (Figure 3.5B), with molecular 

weights that correspond to wildtype RGS4 (19,743 Da), RGS4 plus one 153 Da substituent 

(19,896 Da), and RGS4 plus two 153 Da substituents (20,050 Da). To identify specific 

reaction sites, tryptic digestion of unreacted and CCG-4986-treated RGS4 protein samples 

was performed, followed by MALDI-MS detection of tryptic peptide fragments. Two tryptic 

peptides, T13 (amino acids 59-WAESLENLISHECGLAAFK-77) and T23 (amino acids 126-

EVNLDSCTR-134), that contain Cys-71 and Cys-132, respectively, were found to have an 

increased mass of 153 Da in the CCG-4986 treated sample (data not shown). MS/MS data 

from peptide fragmentation confirmed that the molecular mass modification reaction arising 

from CCG-4986 treatment occurred specifically on Cys-71 and Cys-132 residues (data not 

shown). While such MS/MS analysis does not define the structure of the attached moiety, it 

most likely represents a fragment of CCG-4986 covalently bonded to a cysteine via a 

disulfide bond (Figure 3.5C). We hypothesize that the attached fragment is a 

4-nitrobenzenethiol radical (MW 154.17) derived from breakdown of CCG-4986. Formation 

of a disulfide bond by this reacting fragment of CCG-4986 would result in the loss of a 

hydrogen atom from the thiol of cysteine (1.0 Da) and account for the observed 153 Da 

moiety observed as a covalent substituent on Cys-71 and Cys-132 residues.  

 

4.4.3 Structural basis of RGS4 inhibition by CCG-4986  

 

From the atomic resolution structure of the RGS4/G!i1 complex [17], it is apparent that 

covalent addition of a 153 Da 4-nitrobenzenethiol moiety to the Cys-132 residue of RGS4 

would cause significant steric hindrance to the binding of G!. Specifically, the addition of a 

CCG-4986 fragment is predicted to result in van der Waals collisions with Arg-86 and Arg-
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90 residues of the all-helical domain of G!i1 (Figure 3.6). Hence, from the biochemical and 

mass spectrometry data presented above, our conclusion is that the most likely mechanism 

for the inhibitory properties of CCG-4986 is non-specific modification of surface-exposed 

cysteine residues in RGS4 causing a steric inhibition of the RGS4/G!i1 interaction. While 

reactive inhibitors have made widely successful drugs (e.g., aspirin, clopidogrel; refs. [22, 

23]), the lack of selectivity of CCG-4986 for cysteines on RGS4 suggests that CCG-4986 

will react with surface-exposed cysteines in a myriad of proteins beyond its intended RGS 

protein target. Furthermore, although Roman and colleagues have speculated that the lack of 

CCG-4986 activity on intact RGS4-transfected cells is a result of poor membrane 

permeability [1], it is more likely that the requirement for cell membrane permeabilization to 

observe the effects of CCG-4986 reflects sensitivity to a reducing environment such as that 

found inside intact cells. These predictions as to the labile and reactive nature of CCG-4986 

bode ill for its further development as a lead chemical entity for RGS protein-directed 

pharmacotherapy.  
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Figure 3.1. Multiple sequence alignment of human R4-subfamily RGS proteins RGS4, 

-8, -16, and the RZ-subfamily member RGS19. (A) Solvent-accessible residues within 
RGS4 are demarcated by “o” (outside), while internal residues are noted by “i” (inside) and 
partially solvent-exposed residues are unlabeled, as predicted by the GETAREA 1.1 
algorithm [19] using a solvent probe of 1.40 Å as applied to the high-resolution structure of 
free RGS4 [20]. Position of Cys-71 and Cys-132, found uniquely within RGS4, are indicated 
by arrowheads. Alpha-helices observed within the NMR structures of RGS4 and RGS19 [20, 
24] are numbered in Roman numerals. (B) Equivalent purification of wildtype and cysteine 
point-mutant RGS4 proteins for biochemical and mass spectrometry analyses is highlighted 
by coomassie blue staining of SDS-PAGE resolved proteins.  



 

 113 

 
 
 

Figure 3.2. In vitro assays of RGS4 GAP activity. Single nucleotide binding-and-
hydrolysis assays were conducted to measure acceleration of G!oA GTP hydrolysis rate by 
(A) wildtype and (B) cysteine-substituted  (C71N/C132E) forms of RGS4. The fluorescence 
of 50 nM BODIPYFL-GTP was measured at 20 °C in 1 ml of buffer containing various 
concentrations of RGS4 protein (0 to 5 mM) previously incubated for 2 minutes with 30 mM 
CCG-4986 or DMSO vehicle only. Fluorescence measurements were initiated and, at 
60 seconds, G!oA (100 nM) was added to cuvettes. Normalized GAP activity was then 
calculated as described [15] and plotted on the ordinate versus RGS4 concentration on the 
abscissa. 
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Figure 3.3. Surface plasmon resonance-based G!-binding assays analyzing the 

inhibitory properties of CCG-4986 on wildtype RGS4 (A), RGS8 (B), RGS16 (C), and 
indicated cysteine mutants of RGS4 (panels D-F). 6000 resonance units (RU) of biotin-G!i1 
protein was immobilized on a streptavidin biosensor surface. A 200 µl aliquot of 5 µM RGS 
protein, previously incubated with either DMSO vehicle (black), CCG-4986 (gray), or DTT-
reduced CCG-4986 (dotted gray), was injected at 20 µl/min (0 to 600 seconds) with a follow-
up 200 seconds of dissociation time in running buffer only (600 to 800 seconds).  
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Figure 3.4. Competition FRET assays of the G! i1-CFP /YFP-RGS4 interaction. (A) 
Addition of increasing concentrations of CCG-4986 inhibitor to 200 nM G!i1-CFP and 280 
nM YFP-RGS4, in buffer containing aluminum tetrafluoride (AMF), decreased the 528 nm/ 
480 nm emission ratio, indicating a decrease in the RGS4/G!i1 interaction. Neither mock 
treatment with DMSO vehicle alone nor addition of CCG-4986 in GDP-containing buffer 
(i.e., lacking aluminum tetrafluoride) resulted in a significant change in the FRET ratio, 
indicating that competition is caused specifically by CCG-4986. While a covalent reaction 
cannot be characterized by traditional pharmacological analysis (i.e., IC50 or Ki calculations), 
the signal was seen to be reduced by 50% at 18 µM CCG-4986.  
(B) Analogous to wildtype YFP-RGS4, the YFP-RGS4(C71N) mutant displayed a dose-
dependent decrease in the emission ratio, indicating the ability of CCG-4986 to act as an 
inhibitor of its association with G!i1-CFP. 50% inhibition was achieved at 4 µM CCG-4986. 
No inhibitory effect was seen as the result of DMSO treatment alone. (C) Increasing amounts 
of CCG-4986 had no inhibitory effects on the interaction between the C71N/C132E double 
mutant of YFP-RGS4 (560 nM) and 400 nM G!i1-CFP in its aluminum tetrafluoride-loaded 
form. Unlabeled RGS4, added as a positive control for competitive inhibition of YFP-RGS4 
binding, was able to decrease the emission ratio as expected (IC50 value of 375 nM; 95% 
confidence interval of 300-470 nM). (D) As with the double mutant, the inhibitory effects of 
CCG-4986 were abolished upon mutating solely the cysteine-132 of YFP-RGS4. To confirm 
that this single cysteine mutation did not alter the sensitivity of the assay to detect inhibition, 
unlabeled RGS4 was used as a competitor and found to have an IC50 of 284 nM (95% C.I. of 
200-410 nM). All samples in all panels were performed in triplicate, with error bars 
representing the mean ± SEM. 
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Figure 3.5. Intact molecular weight determination of unreacted and CCG-4986 treated 

RGS4. (A) Untreated RGS4 was found to exist in a single dominant form corresponding to 
its predicted molecular weight. (B) RGS4 preincubated with CCG-4986 was found in to 
consist of three major forms.  The three peaks obtained by nano-ESI-MS correspond to the 
molecular weight of RGS4 (19,743 Da), RGS4 + 153 Da (19,896 Da), and RGS4 + 2x(153 
Da) (20,050 Da). (C) CCG-4986 (methyl-N-[(4-chlorophenyl)sulfonyl]-4-
nitrobenzenesulfinimidoate) has two sulfur atoms that potentially could react with thiol 
groups of solvent-exposed cysteine residues.  Based on the mass spectrometry data from 
CCG-4986-treated RGS4, we propose that the 4-nitrobenzenethiol group is covalently 
attached to the two surface-exposed cysteines Cys-71 and Cys-132 in RGS4. The mass of the 
disulfide-bonded adduct derived from CCG-4986 would correspond precisely with the MS 
peaks at 19,896 Da (RGS4 + one 4-nitrobenzenethiol group) and 20,050 Da (RGS4 + two 4-
nitrobenzenethiol groups).  
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Figure 3.6. Proposed model for RGS4 inhibition by CCG-4986. The presence of the 
cysteine-132 residue of RGS4 is clearly necessary for the inhibitory action of CCG-4986. 
While cysteine-132 is not critical for the RGS4/G! interaction per se (i.e., its conversion to 
glutamate does not eliminate GAP activity [Fig. 2] nor G! association [Figs. 3 & 4]), the 
known high-resolution structure of the RGS4/G!i1 complex [17] suggests that a small moiety 
(purple) covalently coupled to Cys-132 (orange) would result in steric hindrance with the 
Arg-86 and Arg-90 (light gray) of the all-helical domain of G!i1 (steel blue). The C! ribbon 
trace of RGS4 is illustrated in green; GDP bound within the G-protein is colored in wheat, 
with the aluminum tetrafluoride ion in light blue and gray. 
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CHAPTER 4 

 

A HIGH-THROUGHPUT FLUORESCENCE POLARIZATION ASSAY FOR 

INHIBITORS OF THE GoLoco MOTIF / G-alpha INTERACTION 

 

 

Elements of this work referenced in this chapter have been published in:  

Kimple, A. J., Yasgar, A., Hughes, M., Jadhav, A., Willard, F. S., Muller, R. E., Austin, 

C. P., Inglese, J., Ibeanu, G. C., Siderovski, D. P. and Simeonov, A. (2008) A High 

Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco 

Motif/G-alpha Interaction. Comb Chem High Throughput Screen. 11: 396-409. 
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4.1  ABSTRACT 

 

The GoLoco motif is a short G!-binding polypeptide sequence. It is often found in proteins 

that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that 

regulate mitotic spindle orientation and force generation during cell division, such as 

GPSM2/LGN. Here, we describe a high-throughput fluorescence polarization (FP) assay 

using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco 

motif interaction with the G-protein alpha subunit G!i1. The assay exhibits considerable 

stability over time and is tolerant to DMSO up to 5%. The Z´-factors for robustness of the 

GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 

0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced 

a Z´-factor of 0.80.  To determine the screening factor window (Z-factor) of the RGS12 

GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. 

The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well 

when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized 

to a 4 µL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) 

labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich 

LOPAC
1280

 collection was screened three times with every library compound being tested 

over a range of concentrations following the quantitative high-throughput screening (qHTS) 

paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for 

the green- and red-label assays, respectively.  
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4.2  INTRODUCTION 

 

Many extracellular signals, including hormones, neurotransmitters, growth factors, and 

sensory stimuli relay information intracellularly by activation of plasma membrane-bound 

receptors. The largest class of such receptors is the superfamily of seven transmembrane-

domain G protein-coupled receptors (GPCRs), so named because these cell-surface proteins 

were originally found to couple extracellular stimuli into intracellular changes via activation 

of G-protein heterotrimers (G!"#) [1]. GPCRs represent a major therapeutic target giving 

rise to the largest single fraction of the prescription drug market with annual sales of several 

billion dollars [2]; however, opportunities to develop therapeutics that target the intracellular 

regulatory machinery controlling the kinetics and duration of GPCR signal transduction have 

been relatively ignored by comparison. 

A diverse family of G!-interacting proteins has been shown to share a common 

GoLoco (“G!i/o-Loco” interaction) motif (Figure 4.1) (reviewed in [3, 4]). GoLoco motif-

containing proteins generally bind to GDP-bound G! subunits of the Gi (adenylyl-cyclase 

inhibitory) class and act as GDP dissociation inhibitors (GDIs), slowing the spontaneous 

exchange of GDP for GTP and preventing re-association with G"# subunits [5-13]. 

Determination of the crystallographic structure of G!i1·GDP in complex with the GoLoco 

motif of RGS14 [14] revealed critical determinants of G! subunit specificity and GDI 

activity. The N-terminal alpha-helix of the GoLoco motif peptide binds between switch II 

and the !3 helix of the G!i1 Ras-like domain (Figure 4.1B), grossly deforming the normal 

site of G"# interaction [7]. The aspartate-glutamine-arginine triad, which defines the final 

residues of the highly-conserved 19 amino-acid GoLoco motif signature (Figure 4.1A), 



 
121 

orients the arginine residue into the guanine nucleotide-binding pocket of G!, allowing 

contacts to be made between its basic $-guanido group and the !- and "-phosphates of GDP 

[7]. Mutation of this single arginine residue within the Asp-Gln-Arg triad causes a loss of 

GDI activity [7, 8, 11]. 

A well-characterized physiological function of GoLoco motif proteins is in the 

regulation of asymmetric cell division in worm, fruit fly, and mammalian development 

(reviewed in [15, 16]). For example, GPSM2 (a quadruple GoLoco motif-containing protein, 

previously known as LGN) binds to nuclear mitotic apparatus protein (NuMA) and regulates 

mitotic spindle assembly; altering endogenous cellular levels of GPSM2, either via 

overexpression or RNA interference-mediated knockdown, leads to aberrant chromosomal 

segregation during mitosis [17]. Similar functions have also been ascribed to Drosophila and 

C. elegans homologs of GPSM2 (Pins and GPR-1/-2, respectively; refs. [18-22]).  

Evidence is also emerging that GoLoco motif-containing proteins act as critical 

components of cell-surface receptor-mediated signal transduction pathways. GPSM2 over-

expression has been found to affect both basal and GPCR-activated potassium currents from 

GIRK channels [23], the latter effect similar to what we previously observed via cellular 

microinjection of GoLoco motif peptides [24]. We have recently shown RGS12 to be a 

receptor-selective scaffold for components of the mitogen-activated protein kinase (MAPK) 

cascade [13]. RNA interference-mediated knockdown of RGS12 protein levels in primary 

mouse dorsal root ganglion neurons blunts nerve growth factor-stimulated axonogenesis [13]. 

Mutating the arginine residue within the Asp-Gln-Arg triad of the RGS12 GoLoco motif 

leads to a mislocalization of RGS12 to the nucleus, away from its normally punctate 

endosomal pattern of expression [25]. This latter finding suggests that small molecule 
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inhibition of the GoLoco motif/G!i interaction could serve to abrogate the normal signaling 

regulatory properties of GoLoco motif proteins, not only for RGS12 in the context of 

inhibiting sustained MAPK signal output, but also for GPSM2 and homologs in the context 

of dysregulating cell division processes in cancerous states of unchecked cellular 

proliferation [14, 26].  

In this article, we describe the development of high-throughput screening (HTS) 

assays based on fluorescence polarization (FP) for the identification of small molecule 

inhibitors of the GoLoco motif/G! protein interaction (Figure 4.2). FP is often used to detect 

the binding of fluorescently-labeled small ligands to larger binding partners (e.g., refs. [27-

32]). FP is based on the physical principle that fluorescein and other fluorophores are only 

excited by incident light that is polarized parallel to their axis. If this fluorophore is stationary 

or only slowly rotating, subsequent emission remains polarized along the same axis. 

Conversely, if polarized light excites a fluorophore rapidly tumbling in solution (Figure 2A), 

the resulting emission is depolarized by the rapid rotational diffusion that occurs during the 

lifetime of the excited state (~4 ns for fluorescein, ref. [33]). This depolarization is quantified 

as fluorescence anisotropy (FA) or fluorescence polarization (FP) by measuring the intensity 

of the emission perpendicular (I%) and parallel (I||) to the plane of excitation (Equation (4.1); 

for a more comprehensive explanation of FA and FP, we refer the reader to ref. [33]). FA and 

FP are not equal but can be interconverted using equation (4.2). FP is a unitless ratio; 

however, it is often expressed as “milliP” (mP).  

 

(4.1) 

! 

FA =
I
||
" I#

I
||
+ 2I#

  

! 

FP =
I
||
" I#

I
||
+ I#
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(4.2) 

! 

FA =
2 FP( )
3" FP

  

 

Because the depolarization of fluorophore-emitted light is directly related to the 

rotational motion of the fluorophore-labeled molecule, and thus inversely related to its total 

molecular weight (MW), FA and FP are theoretically limited to measuring the binding of a 

lower MW ligand to a higher MW substrate (e.g., Figure 4.2B). While in theory this 

technique can be used to measure binding of any fluorescently-labeled ligand to a substrate 

as long as the MWligand is much less than MWsubstrate, in practice these assays are limited to 

ligands that have a MW of less than 5,000 Da. This limitation arises because of the short 

half-life (~4 ns) of the excited state of fluorescein isothiocyanate (FITC) [33], the most 

readily used dye in fluorescence polarization assays. (Rhodamine-based dyes have an even 

shorter half-life in the excited state; ref. [33]). While other dyes with longer lifetimes can be 

used to measure binding between larger molecules [34-36], their use has not been 

widespread.  

Fluorescence polarization assays have been developed to detect various biological 

events such as phosphorylation, proteolytic cleavage, single nucleotide polymorphism 

detection, cAMP production, protein-protein interactions, and protein-DNA interactions [17, 

28, 29, 31, 32, 37-40]. This article focuses on our development and validation of a ligand 

displacement assay to screen for inhibitors of RGS12/G!i1 and GPSM2/G!i1 interactions 

(Figure 4.2C).  
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4.3  MATERIALS AND METHODS 

 

4.3.1 Chemicals and Assay Material 

 

Unless otherwise noted, all chemicals used were the highest grade available from Sigma 

Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA). Tris-HCl used in the 1,536-

well plate format assay was procured from Invitrogen. 96-well black bottom plates were 

obtained from Costar (Corning, NY). The LOPAC
1280

 library of known bioactives (1280 

compounds from Sigma-Aldrich; arrayed for screening as 8 concentrations at 5 $L each in 

1,536-well Greiner polypropylene compound plates) was received as DMSO solutions at 

initial concentration of 10 mM. Plate-to-plate (vertical) dilutions in 384-well format and 384-

to-1,536 compressions were performed on an Evolution P
3
 dispense system equipped with 

384-tip pipetting head and two RapidStak units (Perkin-Elmer; Wellesley, MA). Additional 

details on the preparation of the compound library for quantitative high-throughput screening 

(qHTS) are provided elsewhere [41, 42]. 

 

4.3.2 Protein Expression and Purification 

 

Expression and purification of human His6-G!i1 from the expression plasmid pProEXHTb-

hG!i1 was performed essentially as previously described [14]. Briefly, BL21 (DE3) E. coli 

(Novagen; San Diego, CA) were grown to an OD600 nm of 0.6-0.8 at 37°C before induction 

with 0.5 mM isopropyl-"-D-thiogalactopyranoside.  After culture for 14-16 hours at 20°C, 

cells were pelleted by centrifugation and frozen at -80°C. Prior to purification, bacterial cell 

pellets were resuspended in N1 buffer (50 mM Tris pH 8.0, 300 mM NaCl, 10 mM MgCl2, 

10 mM NaF, 30 µM AlCl3, 50 µM GDP, 30 mM imidazole, 5% (w/v) glycerol). Bacteria 
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were lysed at 10 MPa using an Emulsiflex pressure homogenizer (Avestin; Ottawa, Canada). 

Cellular lysates were centrifuged at 100,000 x g for 30 minutes at 4°C. The supernatant was 

applied to a nickel-nitrilotriacetic acid resin FPLC column (FF HisTrap; GE Healthcare), 

washed with 7 column volumes of N1 buffer then 3 column volumes of N1 buffer containing 

an additional 30 mM of imidazole before eluting with N1 buffer containing an additional 300 

mM of imidazole. Eluted protein was incubated with tobacco etch virus (TEV) protease and 

dialyzed into low imidazole buffer (N1 buffer with 5 mM DTT) overnight at 4°C (to cleave 

the N-terminal hexahistidine tag) before being passed over a second HisTrap column to 

separate the untagged G!i1 from contaminants and cleavage products. The column flow-

through was pooled and resolved using a calibrated 150 ml size exclusion column (Sephacryl 

S200, GE Healthcare) with S200 buffer (50 mM Tris pH 7.5, 150 mM NaCl, 10 µM GDP, 

5% (w/v) glycerol). Protein was then concentrated to approximately 1 mM, as determined by 

A280 nm measurements upon denaturation in guanidine hydrochloride. Concentration was 

calculated based on the predicted extinction coefficient obtained using the ProtParam 

webtool [43]. His6-G!oA was purified using similar chromatographic methods as previously 

described [44]. 

 

4.3.3 Peptide Synthesis 

 

Unless otherwise denoted, peptides were synthesized by Fmoc-group protection, purified via 

HPLC, and confirmed using mass spectrometry by the Tufts University Core Facility 

(Medford, MA). Peptide sequences were as follows:  
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FITC-RGS12: 

FITC-"-alanine-DEAEEFFELISKAQSNRADDQRGLLRKEDLVLPEFLR-amide;  

FITC-GPSM2(GL2): 

FITC-"-alanine-NTDEFLDLLASSQSRRLDDQRASFSNLPGLRLTQNSQS-amide;  

GPSM1 GoLoco consensus: 

TMGEEDFFDLLAKSQSKRMDDQRVDLAG-amide; 

GPR-1(GoLoco wildtype)  

EPVDMMDLIFSMSSRMDDQRTELPAARFIPPRPVSSASK-amide;  

GPR-1(GoLoco R>F):  

EPVDMMDLIFSMSSRMDDQFTELPAARFIPPRPVSSASK-amide. 

The 5-carboxytetramethylrhodamine (TAMRA)-labeled peptide (TAMRA-

DEAEEFFELISKAQSNRADDQRGLLRKEDLVLPEFLR-amide) was synthesized and 

HPLC-purified by Invitrogen (Carlsbad, CA). 

 

4.3.4 Fluorescence Polarization Measurements in 96-well and 384-well Plate Formats  

 

Polarization measurements during assay pilot trials were conducted using a PHERAstar 

microplate reader (BMG Labtech; Offenburg, Germany) with the fluorescence polarization 

module.  Excitation wavelength was 485 ± 6 nm and emission was detected at 520 ± 15 nm. 

For each independent experiment, the gain of the parallel and perpendicular channel was 

calibrated so that 5 nM of FITC-RGS12 peptide had a polarization value of ~35 mP. The 
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final volume of each 96-well plate well was brought to 180 µl with PheraBuffer (10 mM Tris 

pH 7.5, 150 mM NaCl, 10 mM MgCl2, 100 µM GDP, and 0.05% (v/v) NP40); the final 

volume per well in the 384-well plate format was 50 µL. For nucleotide selectivity studies, 

PheraBuffer was alternatively supplemented with aluminum tetrafluoride (i.e., addition of 10 

µM NaF and 30 µM AlCl3). Data analysis for these assay pilot trials was conducted using 

PHERAstar software V1.60 (BMG LABTECH, Germany), as well as Excel version X for 

Macintosh (Microsoft, Seattle, Washington) and GraphPad Prism v4.0 (San Diego, CA). All 

dissociation constant (KD) values were determined with non-linear regression and fitting to 

Equation 4.3, in which FP is the fluorescence polarization (measured in mP), [G!] is the 

concentration of G!i1, Bmax is the maximum polarization, and FPzero is a correction factor to 

account for the polarization of unbound peptide (~35 mP). 

 

(4.3) 
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4.3.5 Surface Plasmon Resonance (SPR) Binding Assay 

 

As a secondary screen for compounds that demonstrated at least partial concentration-

dependent responses in the primary FP screen, optical detection of surface plasmon 

resonance (SPR) was performed using a Biacore 3000 (GE Healthcare; Piscataway, NJ). 

Surfaces of carboxymethylated dextran (CM5) biosensors (GE Healthcare) were covalently 

derivatized with anti-GST antibody as previously described [4, 44]. A GST fusion protein 

containing the minimal GoLoco motif of RGS12 [25] and GST protein alone (the latter as a 
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negative control) were separately loaded onto anti-GST antibody surfaces to levels of ~900 

resonance units (RUs) before 200 mL of 40 nM G!i1·GDP protein (preincubated in either test 

compound or DMSO vehicle only) was injected over all flow cells using the KINJECT 

command at a flow-rate of 40 µL/minute with a dissociation phase of 2000 seconds. The 

biosensor surface was then stripped with a 40 µL injection of 10 mM Glycine pH 2.2 before 

being reloaded with GST-RGS12 fusion protein or GST alone for subsequent G!i1·GDP 

injections. Non-specific binding to the GST alone surface was subtracted from each 

sensorgram curve using BIAevaluation software v.3.0 (Biacore). Percent inhibition of 

binding was calculated as the maximal RUs of specific binding observed (just before the 

dissociation phase) from a compound-treated G!i1·GDP injection compared to a paired 

DMSO control-treated G!i1·GDP injection. 

 

4.3.6 qHTS Validation in 1,536-well Plate Format 

 

Control plate set-up. Titration of the unlabeled control peptide was delivered via pin transfer 

[45] of 23 nL of solution per well from a separate source plate into column 2 of each assay 

plate. The starting concentration of the control peptide was 10 mM and 20 mM for the FITC 

(green) and TAMRA (red) assay, respectively, followed by two-fold dilution points in 

duplicate, for a total of sixteen concentrations, resulting in final assay concentration range 

from 57.2 $M to 1.74 nM, and 114 $M to 3.49 nM, for the green and red assay, respectively. 

 

Pre-screen assay miniaturization and optimization. Titration samples containing a constant 

amount of fluorophore-labeled peptide and variable concentrations of G!i1 protein were 
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prepared in 384-well plates and transferred into 1,536-well black solid bottom plates by the 

use of CyBiWell 384-tip pipeting system (CyBio Boston, MA). For the subsequent 1,536-

well-based experiments, a Flying Reagent Dispenser (FRD, Aurora Discovery, presently 

Beckman-Coulter) [46] was used to dispense reagents into the assay plates. 

 

qHTS protocol. Four $L of reagents (10 nM FITC- or 15 nM TAMRA-labeled peptide in 

columns 3 and 4 as negative control; a mixture of 10 nM FITC- or 15 nM TAMRA-labeled 

peptide with G!i1 [50 nM in the green assay and 25 nM in the red assay, respectively] in 

columns 1, 2, 5 – 48) were dispensed into 1,536-well Greiner black assay plates. Compounds 

and control peptide (23 nL) were transferred via Kalypsys pintool equipped with a 1,536-pin 

array (10 nL slotted pins, V&P Scientific, San Diego, CA) [45]. The plate was incubated for 

10 min at room temperature, and then read on a ViewLux high-throughput CCD imager 

(Perkin-Elmer, Wellesley, MA) using FITC polarization filter sets (excitation 480 nm, 

emission 540 nm) for the green assay and BODIPY sets (excitation 525 nm, emission 598 

nm) for the red assay, respectively. During reagent dispensing, reagent bottles were kept 

submerged in a 4 °C recirculating chiller bath and all liquid lines were covered with 

aluminum foil to minimize probe and protein degradation. All screening operations were 

performed on a fully integrated robotic system (Kalypsys, San Diego, CA) containing one 

RX-130 and two RX-90 anthropomorphic robotic arms (Staubli, Duncan, SC). Library plates 

were screened starting from the lowest and proceeding to the highest concentration. Vehicle-

only plates, with DMSO being pin-transferred to the entire column 5 – 48 compound area, 

were included at the beginning, middle, and the end of the validation run in order to record 

any systematic shifts in assay signal.  
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Analysis of qHTS data. Screening data were corrected and normalized, and concentration-

effect relationships derived by using NCGC in-house developed algorithms. Percent activity 

was computed after normalization using the median values of the uninhibited, or neutral, 

control (32 wells located in column 1) and the free-probe, or 100% inhibited, control (64 

wells, entire columns 3 and 4), respectively. An in-house database was used to track sample 

concentrations across plates, while ActivityBase (ID Business Solutions Ltd, Guildford, UK) 

was used for compound and plate registrations. A four-parameter Hill equation [47] was 

fitted to the concentration-response data by minimizing the residual error between the 

modeled and observed responses. 

 

4.4  RESULTS 

 

4.4.1 Detection of G!/GoLoco motif interactions using fluorescence polarization. 

 

We previously described the use of a fluorescein isothiocyanate-labeled RGS12 GoLoco 

motif peptide (FITC-RGS12) as a probe to measure G!/GoLoco motif interactions using FP 

[48]. Our aim in this present study was to validate this FP assay, and develop a corresponding 

G!i1/GPSM2 interaction assay, as robust techniques for high-throughput screening for small 

molecule inhibitors of the G!/GoLoco motif interaction. To establish an assay for G!i1 

binding to a GoLoco motif from GPSM2 (Figure 4.3), we first incubated increasing 

concentrations of G!i1 protein (up to 10 µM) with constant amounts (either 0.1, 1.0, or 10 

nM) of FITC-GPSM2(GL2) peptide encoding the second GoLoco motif of GPSM2. We 

observed robust interaction of G!i1 with FITC-GPSM2(GL2), whereby addition of saturating 
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amounts of G!i1 caused an increase in FP from ~35 mP to ~160 mP (Figure 4.3A). Saturation 

binding isotherms illustrated that signal strength was optimal at FITC-GPSM2(GL2) probe 

concentrations of 1 nM and above (Figure 4.3A). Non-linear regression was used to fit the 

binding isotherms from experiments using two different probe concentrations to Equation 

4.3, yielding dissociation constants (KD) of 34 nM (using 1.0 nM probe) and 38 nM (using 10 

nM FITC-GPSM2(GL2) probe). Saturation binding isotherms of FITC-RGS12 binding to 

G!i1 were also generated (Figure 4.4). FITC-RGS12 levels were held constant at 0.01, 0.1, 1, 

or 10 nM while the concentration of G!i1 was increased up to 3 µM. While binding was 

observable with sub-nanomolar concentrations of FITC-RGS12 probe, maximal polarization 

(~200 mP) was observed at FITC-RGS12 concentrations %1 nM (Figure 4.4A); however, at 

probe concentrations below 5 nM, increased noise was observed upon the addition of DMSO 

(data not shown). The binding affinity for the FITC-RGS12 to G!i1 was 3.8 nM (using 1 nM 

FITC-RGS12 probe).  

To verify that these FP assays truly detect binding of the FITC-GPSM2(GL2) and 

FITC-RGS12 probes to their intended target of G!i1·GDP (consistent with the known 

biochemistry of GoLoco motif/G! interactions [16]), we tested the nucleotide dependence of 

the interaction. Saturation binding isotherms were generated at a constant concentration of 1 

nM of FITC-GPSM2(GL2) probe with increasing concentrations of G!i1 in either 

PheraBuffer or PheraBuffer with aluminum tetrafluoride (AlF4
-
, which binds G! to create a 

transition state-mimetic form). As expected, upon the addition of AlF4
-
, there was a dramatic 

decrease in observed binding affinity. FITC-GPSM2(GL2) probe bound three orders of 

magnitude more avidly to G!i1·GDP than to G!i1·GDP·AlF4
-
 (KD of 35 nM versus 15 µM, 
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respectively; Figure 4.3B). Binding of FITC-RGS12 probe demonstrated a similar preference 

for G!i1·GDP (KD of 4.3 nM versus 1.6 µM for G!i1·GDP·AlF4
-
; Figure 4.4B). 

While GoLoco motifs were originally described as G!i/o-binding peptides [3], 

subsequent biochemical characterization has demonstrated preferential binding to the G!i 

subfamily (G!i1, G!i2, G!i3) and not to G!o (e.g., refs. [6, 9]). To assess G! subunit 

specificity, the binding of FITC-GPSM2(GL2) and FITC-RGS12 probes to G!i1·GDP and 

G!o·GDP proteins was compared. Both GoLoco motif probes exhibited significantly higher 

binding affinities for G!i1·GDP than for G!o·GDP. The KD for the FITC-

GPSM2(GL2)/G!o·GDP interaction was determined to be 3 µM, nearly two orders of 

magnitude higher than the affinity of the FITC-GPSM2(GL2)/G!i1·GDP interaction (Figure 

4.3B). Similarly, the binding affinity of FITC-RGS12 for G!o·GDP was observed to be 70 

µM versus 4.3 nM for G!i1·GDP (Figure 4.4B).  

To further validate this GoLoco motif/G!i1 interaction assay for use in HTS, we 

characterized time dependence and dimethylsulfoxide (DMSO) tolerance of the assay. To 

assess the stability of the assay over extended periods of time, we measured saturation 

binding isotherms using 96-well plates containing FITC-GPSM2(GL2) or FITC-RGS12 

probes (and increasing concentration of G!i1) that were rescanned at several hour time 

intervals.  The KD of the FITC-GPSM2(GL2)/G!i1 interaction was consistent over the first 

25 hours of repeated measurements and increased marginally only at 48 hours (Figure 4.3C). 

Similar long-term stability was also observed for FITC-RGS12/G!i1 interaction (Figure 

4.4C).  Additional tests were made to establish the sensitivity of the assay to the standard 

HTS compound solvent DMSO; the FP assay using either FITC-GPSM2(GL2) or FITC-



 
133 

RGS12 probe demonstrated remarkable tolerance up to at least 5% (v/v) DMSO (Figures 

4.3D, 4.4D).  

 

4.4.2 Competitive Binding Studies 

 

To confirm that the FITC-GPSM2(GL2) and FITC-RGS12 probes bound in a reversible 

manner, unlabeled GoLoco motif peptides were used as “cold competitors” (Figure 4.5). For 

these competition binding assays, the concentrations of the FITC-labeled probe and G!i1 

were chosen so that the polarization signal was at ~80% of the maximal response [49]. 

Addition of unlabeled competitor peptide, derived from GPSM1 GoLoco motifs [5], to a 

mixture of 5 nM FITC-RGS12 probe and 30 nM G!i1 resulted in a dose-dependent decrease 

in polarization (Figure 4.5A) with an IC50 of 1 µM. In separate tests using 1 nM FITC-

GPSM2(GL2) probe and 600 nM G!i1, the IC50 for the unlabeled GoLoco motif competitor 

(based on GPR-1; [19]) was determined to be 177 nM (Figure 4.5B). To rule out the 

possibility of the apparent competition being an artifact of high peptide concentrations, we 

also titrated in a GoLoco motif peptide with the critical arginine of the Asp-Gln-Arg triad 

mutated to phenylalanine (“GoLoco R>F”; Figure 4.5B). As expected, this mutant peptide 

had no inhibitory effect at the same or higher concentrations.   

 

4.4.3 Estimation of Screening Window 

 

The next step in validation of this FP-based HTS assay was determining its screening 

window. An initial screening window can be crudely estimated by measuring many samples 

that only contain positive or negative controls for inhibition of the probe/G! interaction [50, 
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51]. The mean and standard deviation of these controls were used to determine a Z´-factor for 

the assay using Equation (4.4), where & is the standard deviation of the positive or negative 

control for inhibition and µ is the mean of the positive or negative control FP measurement 

[51]. Unlike other methods for quantifying the quality of an assay, the Z´-factor accounts for 

both the dynamic range (denominator) of the assay as well as the variation from well-to-well 

(numerator). The Z´-factor for the FP assay using 5 nM FITC-RGS12 probe, 30 nM G!i1, 

and 30 µM unlabeled GoLoco motif competitor peptide was calculated to be 0.84. This value 

was obtained by running one 96-well plate of positive controls and one 96-well plate of 

negative controls at 175 µl final volume and 1% (v/v) DMSO. Reduction in well volume 

below 175 µl was found to increase the standard deviation of both positive and negative 

controls (data not shown). Performing the same analysis with the FITC-GPSM2(GL2) probe 

resulted in a Z´-factor of 0.81. To assess the scalability of this FP assay to higher density 

plates, the same replicates of positive and negative controls for inhibition were also run with 

the FITC-RGS12 probe using 384 well plates. The Z´-factor was found to be 0.80 using a 

final volume of 50 µl. 

 

(4.4)  

 

4.4.4 Initial Small Molecule Screen in 96-well Plate Format 

 

While computing a Z´-factor is useful in assay development, screening window data from an 

actual compound library screen is more informative [50]. Towards this goal, we first 
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obtained the National Cancer Institute (NCI) Developmental Therapeutics Program’s 

Diversity Set (http://dtp.nci.nih.gov/branches/dscb/diversity_explanation.html) and screened 

1976 compounds from this collection at 100 µM final concentration (Figure 4.6). Raw 

fluorescence polarization data was first normalized to the mean polarization signal from 

negative controls (1% (v/v) DMSO only; set to 100% binding signal) and from positive 

controls for inhibition (30 µM GPSM1 competitor peptide; set to 0% binding signal) (Figure 

4.6A). A total of 286 compounds were excluded based on non-specific effects on the 

fluorescence polarization and total fluorescence intensity readouts. First, compounds were 

excluded if the obtained polarization value was 5 standard deviations higher than the 

negative control or 5 standard deviations lower than the positive control for inhibition 

(“Polarization filter”, Figure 4.6B). Next, compounds were excluded if the raw fluorescence 

intensity value was 6 standard deviations higher than the negative control or 6 standard 

deviations lower than the positive control for inhibition (“Intensity filter”, Figure 4.6C). The 

screening window Z-factor from normalized data for the remaining 1690 compounds was 

0.66, with a hit-rate of 0.3% (6 out of 1976 compounds tested; ‘hit’ defined as >75% 

inhibition) (Figure 4.6C). A parallel screening of the Diversity Set at 50 µM final compound 

concentration gave a screening window Z-factor of 0.69 with a hit rate of 0.48 % (data not 

shown). 

 

4.4.5 Screening in the 384-well plate format and hit validation by SPR 

 

To examine the performance of the FP assay against a larger compound collection, we used 

the 384-well plate formatted assay in a screen of a 33,600-compound subset of the Biogen 
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Idec 350,000 compound library. Thirty-two compounds were identified as inhibiting the 

assay by at least 30% (~1% hit rate); most of the hits were found in four clusters (Figure 

4.7A), reflecting the grouping of compounds sharing similar chemistry on the same plates 

which is inherent to the design of the library subset derived from the original 350,000 

compound library. Subsequent re-testing of each hit revealed 17 compounds exhibiting at 

least partial concentration-dependent inhibition of the primary FP assay. To validate these 

hits as inhibitors of the protein/peptide interaction, a secondary assay was performed based 

on optical detection of changes in surface plasmon resonance (e.g., Figure 4.7B,C) upon 

binding G!i1 to immobilized GST-RGS12(GoLoco motif) fusion protein [25]. One of the hits 

from the primary FP assay was also found to inhibit the secondary SPR assay in a dose-

dependent fashion (Figure 4.7D,E). This compound is now the subject of further analysis. 

 

4.4.6 Assay miniaturization to 1,536-well plates and evaluation of red-shifted peptide 

probes 

The FP assay was further miniaturized to a final volume of 4 µL in 1,536-well plate 

format by direct volume reduction. Retaining the inclusion of NP-40 in the assay buffer 

helped prevent peptide and protein absorption to the polystyrene wells due to the increased 

surface-to-volume ratio and also served to minimize the interfering effect of promiscuous 

inhibitors acting via colloidal aggregate formation [42, 45]. In a titration experiment using 10 

nM FITC-RGS12 probe (hereinafter referred to as green probe), a robust FP signal change 

was observed (Figure 4.8) and a G!i1 protein concentration of 50 nM was selected for 

subsequent validation experiments. When the complex of 10 nM green probe and 50 nM G!i1 

protein was incubated with varying concentrations of unlabeled peptide in the 1,536-well 
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plate, a concentration-response curve was observed (Figure 4.8B) whose associated IC50 

value matched closely that obtained from 96- and 384-well based experiments.  

In parallel with the miniaturization of the original green assay, a red-shifted probe 

was explored. Prior experience and our recent profiling of the NIH Molecular Libraries Small 

Molecule Repository (MLSMR) compound library with respect to autofluorescence [52] 

prompted us to seek a red-shifted assay system in order to minimize the fraction of 

fluorescent compounds interfering with the fluorescent readout. Thus, a peptide of the same 

RGS12 GoLoco motif sequence was labeled with 5-carboxytetramethyl rhodamine 

(TAMRA, hereinafter referred to as red probe) and subjected to the same assay optimization 

experiments. In order to maintain robust fluorescence intensity signal with this fluorophore, 

the red probe concentration was increased slightly to 15 nM. In protein titration experiments, 

the FP signal change observed with the red-labeled peptide was higher, in the range of 180-

190 mP, as previously experienced with this fluorophore [52] (Figure 4.8A). The increased 

FP window per same protein concentration allowed us to decrease the G!i1 protein 

concentration in the red assay to half that of the green assay (25 nM versus 50 nM) while 

maintaining a sufficient signal window. Consistent with lowered probe and protein 

concentrations for the red system (15 nM red probe with 25 nM G!i1 protein versus 10 nM 

green probe and 50 nM G!i1 protein), the displacement of the red probe from its complex by 

the unlabeled competitor peptide resulted in left-shifted concentration-response curve (Figure 

4.8B), thus confirming that the lowered protein load resulted in slightly improved assay 

sensitivity.  

During the course of our red probe exploration, we evaluated two red-shifted 

fluorophores. An RGS12 GoLoco motif peptide of the same sequence labeled with BODIPY 
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Texas Red failed to yield a change in fluorescence polarization when titrated with G!i1 

protein (data not shown), presumably due to an adverse effect of the fluorophore on the 

RGS12 peptide binding affinity and/or increased self-aggregation of the probe due to the 

hydrophobic nature of the BODIPY moiety. Thus, not every combination of peptide probe 

and fluorophore should be expected to yield a readily-optimizable binding assay and, as the 

present limited example suggests, fluorophores of an overly-hydrophobic nature might be 

problematic when used with peptides (as opposed to oligonucleotide or DNA probes, for 

example) while those containing a number of ionizable groups such as TAMRA might offer a 

better chance for developing a good peptide-based FP assay [52] 

 

4.4.7 qHTS robotic validations using the LOPAC1280 library 

 

Once the peptide probe and G!i1 protein concentrations were optimized for the green and red 

assays, we proceeded to run fully-automated, 1,536-well based robotic validations. For each 

fluorophore system, the LOPAC
1280

 collection was screened three consecutive times in 

concentration-response mode [41]. A total of 30 plates were run per fluorophore assay:  24 

compound plates (i.e., three iterations of the LOPAC
1280

 eight-concentrations set) and 6 

control DMSO plates,.  The assay signal windows, as expressed by the difference between 

mean FP values for the bound and unbound labeled peptide controls, were stable throughout 

the robotic validation (Figure 4.9A). Both assays performed robustly, yielding an average Z’ 

factor of 0.84 for the green assay and 0.66 for the red assay, respectively (Figure 4.9B). The 

intra-plate peptide control titration curves remained nearly overlapping throughout the screen 

progression (Figure 4.9C), yielding average IC50 values of 7.8 mM and 0.6 mM for the green 

and red assays, respectively. During these qHTS experiments, each library compound was 
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tested as an eight-point titration, with concentrations ranging from 2 nM to 57 µM, and for 

each well and each assay system, fluorescence polarization values, as well as parallel- and 

perpendicular-plane fluorescence intensity values, were collected and stored in the database.  

Unlike traditional HTS, qHTS provides concentration responses for all the 

compounds screened and allows determination of the half-maximal activity concentrations 

associated with each active compound. Additionally, compound effect can be described with 

respect to the shape, efficacy, and goodness-of-fit of its concentration-response curve [41]. 

Our LOPAC
1280

 library validation runs revealed 8 active compounds shared by the green and 

red screens, some of which were associated with complete concentration-response curves 

while others showed single-point inhibition at the highest concentration and, as such, the 

sigmoidal dose-response curves fitted through their data were of the lowest quality and 

reproducibility. However, for most of the active compounds identified in the LOPAC
1280

 

library, there was excellent reproducibility within the triplicate runs, as well as good 

agreement between the outcomes from the green and red assays. Four examples of triplicate 

green and red concentration-response curves derived from the validations are shown in 

Figure 4.10.  

 

4.5  DISCUSSION 

 

4.5.1 Sensitivity of Binding Detection and Screening Window Optimization 

 

In agreement with several previous studies of G!i/GoLoco interactions (reviewed in [16]), 

the FP assay we have developed clearly demonstrates preferential binding of the GoLoco 

motif to the inactive, ground state of G!i (i.e., G!i1·GDP) and selective binding of G!i1 
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versus G!o (Figures 4.3B and 4.4B). The equilibrium binding-based FP assay was also found 

to detect binding with affinities that are consistent, but higher, than previously published and 

unpublished results using kinetic measurements (kon, koff) obtained by surface plasmon 

resonance [7, 9]. These higher observed affinities for the RGS12 and GPSM2 interactions 

with G!i1·GDP are most likely the result of the highly-sensitive probe detection technique 

being used in the FP assay, allowing use of probe concentrations that are less than the 

observed KD values. Additionally, the relatively hydrophobic FITC moiety added to these 

GoLoco motif peptides is likely to bind to G!i1 and thereby increase the overall affinity of 

the labeled GoLoco motif peptide for its G!i substrate. 

From Equation (4.2), one can see that the Z´-factor is dependent on the standard 

deviation of the positive and negative controls. We found that the standard deviation could be 

decreased by increasing the amount of FITC-GoLoco motif probe in the assay as well as 

increasing the number of excitation flashes per well during fluorescence polarization 

measurements. However, these two factors must be balanced with competing considerations 

of increasing reagent consumption and the time to scan plates. An alternative way to increase 

the screening window would be to increase the G!i1 concentration to increase the difference 

between the minimum and maximum FP signal; however, this change would concomitantly 

increase the amount of unbound G!i1 and thus require more cold competitor peptide or 

compound to cause inhibition in the signal, resulting in a less sensitive assay.    
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4.5.2 Small-Scale Library Screens and Strategies for Minimizing Compound 

Interference 

The fundamentally ratiometric nature of the fluorescence polarization measurement 

theoretically reduces the effects of interference from compounds that have overlapping 

spectra with the FITC-labeled probe [30]. Interference from compounds with overlapping 

absorbance spectra should not change an FP reading so long as the absorbance is proportional 

(P) along both axes (Equation 4.5); however, the robustness of this ratiometric measurement 

cannot compensate for compounds that interfere by increasing or decreasing the signal in an 

additive (A) manner (Eq. 4.5). 
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While a high tolerance to interference from compound absorbance is an advantage of FP 

assays, 226 compounds (11.4% of the set) were excluded from our pilot screening data of the 

NCI Diversity Set, based on FP measurement interference. With the FITC-labeled (green) 

assay, we developed a systematic way to exclude interfering compounds as shown in Figure 

4.6.  From the initial raw data, each plate was normalized so that the average of eight positive 

control wells for inhibition were set to 0% binding and the average of eight negative control 

wells were set to 100% binding. After this normalization, compounds that resulted in 

polarization values 5 standard deviations above 100% binding or 5 standard deviations below 

0% binding were excluded. Compounds giving readings above the threshold likely interfered 

by causing aggregation of either probe or substrate. Compounds giving readings significantly 

below 0% binding were excluded because these compounds clearly interfered with probe 
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fluorescence. Following this “polarization filter”, additional compounds were excluded based 

on intensity values [30]. While we observed that the fluorescence intensity of the FITC-

GoLoco motif probes increased upon binding to G!, this change in intensity was consistent 

between wells and across plates. Compounds that resulted in a total intensity value (2I%+I||) 

falling 6 standard deviations outside of the intensity window established from the controls 

were also excluded. As the result of these exclusions, 1690 of 1976 compounds remained 

within the NCI Diversity Set for consideration as G!i/GoLoco motif binding inhibitors, with 

6 of these compounds demonstrating inhibition of greater than 75 percent. From this single-

concentration screen of nearly two thousand compounds at 100 µM final concentration and 

1% (v/v) DMSO, the Z-factor was 0.66. This FP screen was also conducted at 50 µM final 

compound concentration and very little improvement in Z-factor was noted (data not shown).  

While the Z-factor was significantly lower than the Z´-factor calculated from controls, the Z-

factor derived from this pilot library screen represents the actual screening window and, at a 

value of 0.66, still reflects an excellent assay robustness amenable to HTS of larger 

compound collections.   

Another aspect of our optimization of this FP screening strategy was the development 

and implementation of a red-shifted fluorophore assay employing a TAMRA-labeled version 

of the RGS12 GoLoco motif peptide. The rationale for this change was to move farther away 

from the autofluorescence-sensitive regions of the light spectrum. In fact, our recently-

completed fluorescent spectroscopic profiling of the NIH Molecular Libraries Small 

Molecule Repository (MLSMR) and other compound libraries demonstrated that, in blue-

shifted fluorophore regions such as the frequently-utilized UV/vis spectrum (excitations near 

360 nm and emissions near 450 nm) and fluorescein spectrum (excitations around 480 nm 
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and emissions near 520 nm), a significant proportion of library compounds are expected to 

interfere with the fluorescent assay readout (as high as 3% in the UV/vis region and 0.1% in 

the fluorescein region, respectively) [53]. In the present work, the transition to a red-shifted 

fluorophore resulted in an additional two-fold benefit of lowering the protein requirement for 

the screen and improving the sensitivity of the binding assay, both due to the fact that the 

rhodamine-based probe afforded greater FP signal change for the same protein concentration. 

 

4.5.3 Benefits of the qHTS Approach 

The robotic validation screen for inhibitors of the RGS12 GoLoco motif/G!i1 

complex was performed in qHTS format, with every compound tested over a range of 

concentrations, spanning from tens of micromolar to low nanomolar, to generate a broad 

concentration-response profile. Thus, in addition to potencies and efficacies being assigned 

to each active compound immediately out of the primary screen, false positives and negatives 

due to single-point outliers are easily identified in the context of compound titration. Stated 

differently, after performing qHTS, the selection of active compounds is based on the 

premise that the biological effect of an active compound is a function of its concentration, 

rather than on pure statistical arguments and application of cutoffs. While the library 

preparation and the primary screen are “front-loaded” with an increased number of plates, the 

savings associated with reduced cherry-picking, re-arraying, and retesting steps tend to make 

up for those elevated initial costs, due to the increased robustness and higher information 

content of the screening data. Additionally, the higher quality of such screening datasets is 

expected to make them more valuable for data-mining in recently-established public 

databases such as PubChem.  
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In both robotic validations, the green and red assays performed robustly in the 1,536-

well plate format, with Z´-factors remaining flat with the screen progression. The intra-plate 

unlabeled peptide control titration, which can be viewed as a combined internal standard for 

both the underlying assay biology and the reproducibility of compound transfer, yielded 

concentration-response curves that remained stable and reproducible throughout the screens 

(Figure 4.9C). Of note, miniaturization of this and other assays all the way to the 1,536-well 

plate format not only leads to reagent savings but also allows one to employ additional 

controls such as the intra-plate titration described here. The application of such controls that 

measure “the pulse” of the assay, while not necessarily required for signal normalization 

purposes, is made possible by the availability of so many additional wells in the 1,536-well 

plate. In lower plate densities, such as the 96-well plate, allocating 8 or 16 wells to low and 

high normalization controls is frequently barely enough to provide good statistics during 

large-scale screening. In contrast, in 1,536-well plates, the simple propagation of one empty 

96-well plate column (equivalent to 8 wells) to the higher density plate leads to the natural 

creation of 128 wells (sixteen 96-well source plates feeding into one 1,536-well final plate) 

[42]. This 16-fold increase in the potentially-available wells makes it possible to add 

information content to each assay plate (by further partitioning the controls area) during 

large-collection miniaturized screens without placing undue burden on library preparation or 

otherwise compromising the outcome of the screens.  

During our qHTS validations, each library compound was tested at eight 

concentrations and, for each well and fluorophore-type assay, three measurements were 

collected for a combined total of ~200,000 data points. The observed top active compounds 

in the green and red screens reproduced well upon repeated primary screening and across 
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fluorophores (Figure 4.10). Our successful robotic validation screen suggests that this FP 

assay is robust and sensitive enough to be utilized in a large-scale, 1,536-well based screen. 

 

4.6  ACKNOWLEDGEMENTS 

 

Work performed at the NCGC was supported by the Molecular Libraries Initiative of the 

National Institutes of Health Roadmap for Medical Research. Work performed in the 

Siderovski lab was funded by NIH grants F30 MH074266 (to A.J.K.) and R03 NS053754 (to 

D.P.S.). 
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Figure 4.1. The GoLoco motif is a G! i'GDP -interacting polypeptide found singly or in 

arrays in various proteins. (A) Domain architecture of representative GoLoco motif 

proteins and a sequence alignment of the conserved core of the RGS12 and RGS14 GoLoco 

motifs. Domain abbreviations: GPSM, G-protein signaling modulator; PDZ, PSD-95/Discs 

large/ZO-1 homology; PTB, phosphotyrosine-binding domain; RGS, regulator of G-protein 

signaling box; RBD, Ras-binding domain; RapGAP, Rap-specific GTPase-activating protein 

domain. (B) The crystal structure of G!i1 (Ras-like domain in blue, all !-helical domain in 

green, switch regions in cyan) bound to the GoLoco motif of RGS14 (PDB ID 2OM2). The 

GoLoco motif peptide (tan) binds across the Ras-like and all-helical domains of G!i1, 

trapping GDP (magenta, with !- and "-phosphates in orange) within its binding site. The 

bound magnesium ion is illustrated in lime green. 
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Figure 4.2. Schematic of a fluorescence polarization assay for detection of FITC-

GoLoco motif probe binding to its G! i1 subunit target. (A) When excited by plane-

polarized light, the rapid rotational motion of the unbound FITC-GoLoco motif probe 

decorrelates the light. (B) The rotational diffusion of the FITC-GoLoco motif probe 

dramatically decreases as its effective molecular weight changes upon binding to G!i1. 

Consequently, polarized excitation results in polarized emission. (C) A small molecule 

inhibitor (“I”) that binds to G!i1 in competition with the FITC-GoLoco motif probe increases 

the concentration of unbound (and rapidly rotating) probe, resulting in a decreased 

polarization signal.    
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Figure 4.3. 96-well microtiter plate-formatted fluorescence polarization assay for FITC-

GPSM2(GL2) probe binding to G! i1.  (A) Concentration dependence and saturability of 

binding. Indicated concentrations of FITC-GPSM2(GL2) probe were incubated with 

indicated concentrations of G!i1·GDP prior to measuring fluorescence polarization at 

equilibrium. (B) Nucleotide and G! subunit dependence of polarization signal. 1 nM of 

FITC-GPSM2(GL2) probe was incubated with indicated concentrations of G!i1·GDP 

(ground-state), G!i1·GDP·AlF4
-
 (transition-state-mimetic form), or G!o·GDP prior to 

measuring fluorescence polarization at equilibrium.  (C) Time-stability studies. 1 nM of 

FITC-GPSM2(GL2) probe was incubated with indicated concentrations of G!i1·GDP in 96-

well microtiter plate wells for indicated times prior to measuring fluorescence polarization. 

Inset, Time-dependence of polarization signal from 1 nM of FITC-GPSM2(GL2) probe 

incubated with 3 µM G!i1·GDP. (D) DMSO tolerance. 1 nM of FITC-GPSM2(GL2) probe 

was incubated with indicated concentrations of G!i1·GDP and indicated final concentrations 

(v/v) of DMSO prior to measuring fluorescence polarization.  
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Figure 4.4. 96-well microtiter plate-formatted fluorescence anisotropy assay for FITC-

RGS12 GoLoco motif probe binding to G! i1.  (A) Concentration dependence and 

saturability of binding. Indicated concentrations of FITC-RGS12 probe were incubated with 

indicated concentrations of G!i1·GDP prior to measuring fluorescence polarization at 

equilibrium. (B) Nucleotide and G! subunit dependence of polarization signal. 5 nM of 

FITC-RGS12 peptide was incubated with indicated concentrations of G!i1·GDP (ground-

state), G!i1·GDP·AlF4
-
 (transition-state-mimetic form), or G!o·GDP prior to measuring 

fluorescence polarization at equilibrium. (C) Time-stability studies. 5 nM of FITC-RGS12 

probe was incubated with indicated concentrations of G!i1·GDP in 96-well microtiter plate 

wells for indicated times prior to measuring fluorescence polarization. Inset, Time-

dependence of polarization signal from 5 nM of FITC-RGS12 probe incubated with 30 nM 

G!i1·GDP. (D) DMSO tolerance. 5 nM of FITC-RGS12 peptide was incubated with 

indicated concentrations of G!i1·GDP and indicated final concentrations (v/v) of DMSO 

prior to measuring fluorescence polarization. Error bars are mean ± SEM from triplicate 

samples.   
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Figure 4.5. Competitive inhibition of fluorescence polarization signal by unlabeled 

GoLoco motif peptides. (A) Indicated concentrations of the unlabeled GPSM1 GoLoco 

motif consensus peptide was added to 5 nM FITC-RGS12 probe and 30 nM G!i1. (B) 

Indicated concentrations of the unlabeled GPR-1 GoLoco motif peptide (“GoLoco wildtype) 

or the same peptide with the critical arginine mutated to phenylalanine (“GoLoco R>F”). 

Peptides were incubated with 1 nM of FITC-GPSM2(GL2) probe and 600 nM of G!i1·GDP 

protein prior to measuring fluorescence polarization at equilibrium.  
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Figure 4.6. Data from pilot screen of the NCI Diversity Set to establish a screening 

window Z-factor. (A) Plot of normalized fluorescence polarization data from entire 1976 

compound set run in 96-well plate format with 5 nM of FITC-RGS12 probe and 30 nM of 

G!i1·GDP protein. Positive control wells contained 30 µM of competitor GPSM1 peptide; 

negative control wells contained vehicle only (1% (v/v) DMSO). (B) Data after exclusion of 

wells with polarization values 5 standard deviations outside control values (as described in 

text). (C) Data after additional exclusion of wells with raw fluorescence intensity values 6 

standard deviations outside control values (as described in text). 
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Figure 4.7. Data from pilot primary screen of the BRITE Biogen Idec library subset 

and hit validation using an SPR-based secondary assay. (A) Plot of percent inhibition for 

each compound in the 33,600-element BRITE Biogen Idec library subset run at 10 µM final 

concentration in 384-well plate format with 5 nM of FITC-RGS12 probe and 46 nM of 

G!i1·GDP protein. Note the clustering of inhibitory activity reflecting plate-wise grouping of 

similar compound chemistry within the 33,600 compound subset of the larger 350,000 

Biogen Idec library.  Gray dashed line represents cut-off of greater than 30% inhibition used 

to select compounds for subsequent dose-response testing in the same primary FP assay. (B, 

C) Representative SPR data from two compounds exhibiting at least partial concentration-

dependent responses in the primary FP assay. Panel B represents negative data from 
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compounds (such as #050) that, after preincubation with G!i1·GDP, did not inhibit the latter 

binding to a GST-RGS12(GoLoco motif) biosensor surface during a 5 minute association 

phase (0 – 300 seconds). Panel C represents positive data from a confirmed inhibitor of the 

G!i1·GDP / GST-RGS12(GoLoco motif) interaction (compound #516). (D) Results of single-

dose testing (13.3 µM final concentration) of 16 hits from the primary FP assay in the SPR-

based secondary assay, performed as described in Materials and Methods. (E) Dose-response 

curve of the sole confirmed hit (compound #516) from the SPR-based secondary assay, 

performed as described in Materials and Methods, except with 50 µL injections of G!i1·GDP 

at a flow-rate of 20 µL/min and a subsequent 200 second dissociation time. 
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Figure 4.8. Miniaturization of FP assay to 1,536-well plate format and evaluation of 

FITC- versus TAMRA-labeled RGS12 GoLoco motif peptide probe. (A) Fluorescence 

polarization signal of FITC- (green) and TAMRA- (red) probes in the 1,536-well plate 

format. Protein-concentration dependence of the FP signal of 10 nM green probe (solid 

squares) and 15 nM red probe (solid circles) was measured in titrations with G!i1. Evident 

from the plots is the greater FP signal obtained from the red probe. (B) Probe displacement 

by unlabeled peptide control in the 1,536-well plate format. Green (solid squares, 10 nM 

FITC-RGS12 probe plus 50 nM G!i1) and red (solid circles, 15 nM TAMRA-RGS12 probe 

plus 25 nM G!i1) protein complexes were allowed to interact with series of concentrations of 

unlabeled peptide (pin-transferred from DMSO stock solutions) for 15 min at room 

temperature. The leftward-shift in dose-response of the red probe curve is a reflection of the 

slight increase in assay sensitivity afforded by the decreased protein concentration. 
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Figure 4.9. qHTS Performance. Shown for both the green and red probe FP assays are the 

(A) FP signal window, (B) Z’ factor trend, and (C) intra-plate control titrations (duplicate 

curves per plate) as a function of screening plate number. 
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Figure 4.10. Examples of validation-derived active compounds. The concentration-

response curves (triplicate runs in both colors, with green probe data in solid squares and red 

probe data in solid circles) are shown for (A) NCGC00093568 (PubChem SID 11110719), 

(B) NCGC00093901 (PubChem SID 11111142), (C) NCGC00094195 (PubChem SID 

11111500), and  (D) NCGC00094379 (PubChem SID 11111810). 

 

 

 



 

 

 

 

 

CHAPTER 5 

 

TWO G! i1 RATE-MODIFYING MUTATIONS ACT IN CONCERT TO ALLOW 

RECEPTOR-INDEPENDENT, STEADY-STATE MEASUREMENTS OF RGS 

PROTEIN ACTIVITY 

 

 

Elements of this work referenced in this chapter have been published in:  

Kimple, A. J.*, Zielinski, T.*, Hutsell, S. Q., Koeff, M. D., Siderovski, D. P., Lowery, R. 

G., Two G!i1 Rate-Modifying Mutations Act in Concert to Allow Receptor 
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5.1  ABSTRACT 

 

RGS proteins are critical modulators of G protein-coupled receptor (GPCR) signaling given 

their ability to deactivate G! subunits via “GTPase-accelerating protein” (GAP) activity. 

Their selectivity for specific GPCRs makes them attractive therapeutic targets. However, 

measuring GAP activity is complicated by slow GDP release from G! and lack of solution-

phase assays for detecting free GDP in the presence of excess GTP. To overcome these 

hurdles, we developed a G!i1 mutant with increased GDP dissociation and decreased GTP 

hydrolysis, enabling detection of GAP activity using steady-state GTP hydrolysis. 

G!i1(R178M/A326S) GTPase activity was stimulated 6~12 fold by RGS proteins known to 

act on G!i subunits, and not affected by those unable to act on G!i, demonstrating that the 

G!/RGS domain interaction selectivity was not altered by mutation. G!i1(R178M/A326S) 

interacted with RGS proteins with expected binding specificity and affinities. To enable non-

radioactive, homogenous detection of RGS protein effects on G!i1(R178M/A326S), we 

developed a Transcreener® fluorescence polarization immunoassay based on a monoclonal 

antibody that recognizes GDP with greater than 100-fold selectivity over GTP.  Combining 

G!i1(R178M/A326S) with a homogenous, fluorescence-based GDP detection assay provides 

a facile means to explore the targeting of RGS proteins as a new approach for selective 

modulation of GPCR signaling. 

5.2  INTRODUCTION 

 

The standard model of GPCR signal transduction had long been restricted to a three-

component system:  receptor, G-protein, and effector [1]. The seven-transmembrane domain 

receptor is coupled to a membrane-associated heterotrimeric complex composed of a GTP-
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hydrolyzing G! subunit and a G!" dimeric partner. Agonist-induced conformational changes 

enhance the guanine nucleotide exchange activity of the receptor, leading to the release of 

GDP (and subsequent binding of GTP) by the G! subunit. On binding GTP, conformational 

changes within the three ‘switch’ regions of G! allow the release of G!". Separated G!·GTP 

and G!" subunits are then free to propagate intracellular signaling via diverse effectors [2]. 

The intrinsic GTP hydrolysis (GTPase) activity of G! resets the cycle by forming G!·GDP 

which has low affinity for effectors but high affinity for G!". In this way, the inactive, GDP-

bound heterotrimer (G!·GDP/G!") is reformed and capable once again to interact with 

activated receptor.  

Based on this cycle of receptor-catalyzed GTP exchange and intrinsic GTP hydrolysis 

by G!, the duration of heterotrimeric G-protein signaling is thought to be controlled by the 

lifetime of the G! subunit in its GTP-bound state. After the establishment of this basic 

model [1], RGS proteins (“regulators of G-protein signaling”) were subsequently discovered 

[3-5] to bind G! subunits (via a conserved ~120 amino-acid RGS domain) and dramatically 

accelerate their intrinsic GTPase activity [6], thereby attenuating heterotrimer-linked 

signaling. Nearly 40 human proteins contain at least one RGS domain, with many of these 

proteins (e.g., RGS4, RGS16) serving as GTPase-accelerating proteins (GAPs) for G!i/o 

subunits, yet others such as RGS2 and p115-RhoGEF being particularly attuned to G!q/11 and 

G!12/13 substrates, respectively [7]. The discovery of this superfamily of G!-directed GAPs 

resolved apparent timing paradoxes between observed rapid physiological responses 

mediated by GPCRs and the slow hydrolysis activity of the cognate G-proteins seen in vitro. 

Thus, in this capacity as negative regulators of GPCR signal transduction, the RGS proteins 

present themselves as excellent potential drug discovery targets [7]. For example, 
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pharmacological inhibition of RGS domain GAP activity should lead to prolonged signaling 

from G-proteins activated by agonist-bound GPCRs.  

The most direct way to detect RGS protein function is by measuring the increased 

GTPase activity exhibited by its target G! protein. However, accurate in vitro measurements 

of G!-catalyzed GTP hydrolysis are difficult to obtain without laborious biochemical 

reconstitutions with purified G"# and an activated GPCR (e.g., ref. [8]). In the absence of 

GPCR-mediated nucleotide exchange, it is GDP release (rather than GTP hydrolysis) that is 

the rate-limiting step in the G! nucleotide cycle [9]. Thus, to examine the effect of an RGS 

protein in accelerating GTP hydrolysis by an isolated G! subunit in vitro, a single round of 

hydrolysis of radiolabelled GTP is usually performed (a.k.a. the “single-turnover GTPase 

assay”; ref. [6]). This standard assay for measuring RGS domain-mediated GAP activity is 

low-throughput and requires discrete steps of [#-32
P]GTP loading onto G!, protein reactant 

admixture (with addition of the critical cofactor Mg
2+

 to initiate hydrolysis), isolation (in 

discrete time intervals) of released [
32

P]phosphate with activated charcoal precipitation and 

centrifugation, and finally scintillation counting. We have described an alternative single-

turnover GTPase assay [10] using a coumarin-labeled, phosphate-binding protein to facilitate 

fluorescence-based detection of inorganic phosphate production; however, this method 

demands stringent controls on multiple experimental steps to eliminate phosphate 

contaminants that interfere with the detection of GTPase activity. Such convoluted protocols 

of inorganic phosphate detection are difficult for the non-specialist and especially not suited 

for high-throughput screening (HTS) of large compound libraries for RGS domain inhibitors. 

We and others have reported alternative, fluorescence-based strategies for detecting the 
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binding between RGS protein and G! substrate [10-12], but none has specifically facilitated 

a discrete endpoint measurement of RGS domain-mediated GAP activity per se. 

In order to develop a facile steady-state GTPase assay for RGS domain GAP activity, 

we first set out to increase the spontaneous GDP release rate of G! (koff(GDP)) while also 

decreasing its intrinsic rate of GTP hydrolysis (kcat(GTPase)), thereby allowing detection of at 

least a five-fold enhancement of steady-state GTP hydrolysis by RGS proteins to provide an 

adequate signal-to-noise ratio. G!i1 and closely related G! proteins have been the focus of 

extensive structure/function studies [13-16], and point mutations that affect both koff(GDP) and 

kcat(GTPase) without affecting functional interaction with the RGS domain have been identified 

previously [13-15, 17] (e.g., Figure 5.1A). Two of the most striking G! mutations have been 

made to the highly-conserved active-site arginine (R178C; ref. [13]), which causes a ~100-

fold reduction in GTPase activity, and to the alanine residue within the conserved TCAT 

loop that contacts the guanine ring (A326S; ref. [15] which results in a ~25-fold increase in 

koff(GDP) relative to wildtype yet an identical kcat(GTPase).   

To detect RGS protein-accelerated GTPase activity, we adapted a monoclonal 

antibody and fluorescent tracer, previously developed for the Transcreener ADP assay [18], 

for selective immunodetection of GDP with a fluorescence polarization readout.  

Measurement of GTPase activity using this Transcreener GDP assay overcomes the signal-

to-noise limitations of phosphate detection methods and has been validated as a robust HTS 

method in the case of ADP detection for kinases and ATPases [19-21].  Moreover, because it 

is a catalytic assay rather than a substrate binding assay, it should enable detection of all 

types of modulators of RGS protein GAP activity, including those that bind at allosteric sites 
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and affect RGS protein catalytic activity without directly targeting the RGS domain G! 

binding-site [22]. 

In this present study, we tested multiple point-mutant G!i1 proteins with increased 

GDP dissociation and/or decreased GTP hydrolysis rates for their ability to enable detection 

of RGS domain GAP activity using a steady-state GTPase assay format (i.e., multiple rounds 

of turnover of GTP to GDP). Coupling one of these variants, G!i1(R178M/A326S), to the 

Transcreener GDP detection system has not only allowed facile detection of RGS protein 

GAP activity, but was useful in helping establish (along with surface plasmon resonance 

spectroscopy) that the mutant G!i1 interacted with RGS proteins with the same specificity 

and affinity as the wildtype G!i1 protein. 

 

5.3  MATERIALS AND METHODS 

5.3.1 Chemicals and assay materials  

 

 GDP and GTP were purchased from USB Corp. (Cleveland, OH). The monoclonal 

antibody and tracer used for GDP detection were developed at BellBrook Labs (Madison, 

WI) as described [18], with the tracer comprising ADP conjugated to Alexa Fluor 633 

(Invitrogen/Molecular Probes). Unless otherwise specified, all additional reagents were of the 

highest quality obtainable from Sigma (St. Louis, MO) or Fisher Scientific (Hampton, NH).   

 

5.3.2 Protein expression and purification  

 

 Wildtype, full-length human G!i1 and various RGS proteins used in these studies 

were expressed in E. coli and purified as previously described [23]. G!i1 point mutants were 

created using PCR-based site-directed mutagenesis (QuikChange® II, Stratagene; La Jolla, 
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CA) on the wildtype pProEXHTb-G!i1 expression vector; mutagenesis primers were 

designed using Stratagene’s QuikChange primer-design program and synthesized/PAGE-

purified by Sigma-Genosys. All mutant constructs were sequence verified at Functional 

Biosciences LLC (Madison, WI) before protein expression, purification, concentration, 

quantitation, and cryopreservation using established protocols [10, 23]. 

 

5.3.3 Radiolabeled nucleotide binding and single turnover GTPase assays  

 

 Assessments of spontaneous GDP release and single-turnover GTP hydrolysis rates 

by wildtype and mutant G!i1 subunits, using measurements of [
35

S]GTP#S binding and 

[#-32
P]GTP hydrolysis respectively, were conducted exactly as previously described [23, 24]. 

Briefly, for [
35

S]GTP#S binding by 100 nM of G!i1 subunits at 20 °C, timed aliquots were 

removed, filtered through nitrocellulose, and washed four times with 10 ml of wash buffer 

before scintillation counting. Assays were conducted in duplicate, counts were subtracted 

from analogous reactions in “non-specific binding” buffer [23], and normalized data plotted 

as mean ± S.E.M.  For single-turnover [#-32
P]GTP hydrolysis assays, G!i1 subunits (100 nM) 

were pre-bound to [#-32
P]GTP in the absence of Mg

2+ 
for 10 minutes at 30 °C. Reactions 

were then initiated by the addition of 10 mM MgCl2 (final concentration) and the production 

of 
32

Pi was measured by activated charcoal filtration and liquid scintillation counting [9]
,
[24]. 

Initial rates obtained by data analysis using GraphPad Prism (La Jolla, CA). 
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5.3.4 Radiolabeled nucleotide steady-state GTPase assays 

 

 Assessments of steady-state [#-32
P]GTP hydrolysis rates by wildtype and mutant G!i1 

subunits were conducted essentially as previously described [25]. Briefly, G!i1 protein was 

diluted to 50 nM in a buffer containing 50 mM Tris pH 7.5, 100 mM NaCl, 0.05% C12E10, 1 

mM DTT, 5 mM EDTA, 10 mM MgCl2, and 5 µg/ml BSA. Assays were initiated with the 

addition of [#-32
P]GTP (and RGS4 if used), aliquots stopped at indicated time intervals, and 

free [#-32
P]Pi quantified as previously described [25]. 

 

5.3.5 Transcreener GDP assays 

 

 Standard curves and GTPase reactions were both run at 30 
o
C in kinetic mode on a 

Tecan Safire
2
 multiwell reader in Corning

®
 384-well black round-bottom low-volume 

polystyrene non-binding surface microplates (Part # 3676). Fluorescence polarization was 

read using 635 nm excitation (20 flashes per well) and 670 nm emission. A free tracer 

reference was set to 20 mP by adjusting the photomultiplier tubes, and buffer containing 

GDP antibody alone was used as a blank for sample and reference wells. EC50 and EC85 

values, Hill slopes, and curves were generated by GraphPad Prism (La Jolla, CA). Unless 

otherwise indicated, reactions were run in 20 mM Tris 7.5 pH, 1 mM EDTA, 10 mM MgCl2, 

10 µM GTP, 8 µg/ml GDP antibody, and 2 nM tracer in a final 20 µl volume. GDP antibody 

was used at a concentration 85% of the amount required for saturated binding to tracer (i.e., 

the EC85). Where shown, polarization data was converted to the amount of GDP produced 

using standard curves. Reaction rates were then determined in GraphPad Prism using linear 
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regression to estimate slope.  For GTPase and GAP assays, reactions were started with the 

addition of GTP with or without RGS protein.  

 

5.3.6 Compound interference test 

 

To assess the robustness of the Transcreener GDP assay for practical screening 

applications, we performed a control screen using the GenPlus library of 960 bioactive 

molecules from Microsource Discovery Systems, many of which are approved drugs.  GDP 

assay reagents (as denoted above) were added to duplicate wells containing 10 µM 

compound and either 10 µM GTP to mimic no-enzyme control reactions or 9 µM GTP plus 1 

µM GDP to mimic completed enzyme reactions in 1% DMSO. 

 

5.3.7 Pilot screen and counterscreen of GenPlus Library 

 

 Screens of the GenPlus library with the Transcreener GDP assay (10 µM final 

compound concentration) for modulators of RGS4 GAP activity on G!i1(R178M/A326S), as 

well as for non-specific modulators of intrinsic GTPase activity of G!i1(R178M/A326S) 

alone, were conducted as mentioned above with the following changes. GTPase reactions 

containing 50 nM G!i1(R178M/A326S) with or without 250 nM RGS4 were run in 

Corning$ 384-well microplates at 30 °C in 20 mM Tris pH 7.5, 1 mM EDTA, 10 mM 

MgCl2, 10 µM GTP, 12 µg/µl GDP antibody, 2 nM tracer, and 0.5% DMSO (v/v) in a final 

volume of 20 µl. Fluorescence polarization was read at 60, 90, 120, and 180 minutes of 

elapsed reaction time on a Tecan Safire
2
 multiwell reader as described above. 
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5.3.8 Surface plasmon resonance (SPR) spectroscopy 

 

 Optical detection of surface plasmon resonance (SPR) was performed using a 

BIAcore 3000 (GE Healthcare; Piscataway, NJ). Wildtype and mutant G!i1 proteins were 

immobilized onto nickel-nitrilotriacetic acid SPR sensor chips (GE Healthcare) by 

hexahistidine tag-mediated capture-coupling as previously described [26]. Affinities of RGS 

proteins for immobilized G!i1 proteins were obtained from dose-response sensorgrams using 

equilibrium saturation binding analyses as previously described [23]. 

 

5.4  RESULTS AND DISCUSSION 

 

5.4.1 Profiling multiple G! i1 point-mutations for nucleotide cycling rate alterations 

 

 Using PCR-based site-directed mutagenesis, we created several amino-acid 

substitutions at various positions within G!i1 known to affect koff(GDP) and/or kcat(GTPase) (e.g., 

Figure 5.1). These mutants included:  aspartate, serine, or threonine replacing Ala-326; 

cysteine, lysine, or methionine replacing Arg-178; alanine, serine, or valine replacing Thr-

181; single mutants K192A and F336A; and double mutants K192A/F336A, R178C/A326S, 

R178C/A326T, R178M/A326S, R178C/A326T, and T181A/A326S. Note that multiple 

different substitutions were made at several sites, including amino-acids intended to be more 

or less disruptive than the original reported mutation. For instance, R178K and R178M were 

tested as more conservative substitutions at the catalytic arginine position relative to the 

original R178C variant; it was thought that either of these alternative substitutions might 

result in a smaller decrease in kcat(GTPase) than the cysteine replacement which reduces 

kcat(GTPase) by two orders of magnitude [13]. While the R178C mutation leads to a substantial 

decrease in kcat(GTPase), Berman et al. [6] have shown that the single-turnover GTPase rate of 
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this G! mutant can still be increased by RGS domain-mediated GAP activity, whereas the 

more conventional GTPase-crippling mutation of Q204L renders G!i1 truly dead in terms of 

responsiveness to RGS proteins. Thus, the G!i1(Q204L) mutant was not pursued in this 

study. 

 G!i1 mutants were initially profiled for enhanced GDP release and/or reduced 

GTPase rate sufficient to see a change in steady-state GTP hydrolysis upon RGS protein 

addition. This initial profiling led us to focus on two positions: Arg-178 and Ala-326. 

Binding of the non-hydrolyzable GTP analog, [
35

S]GTP"S, to G!i1·GDP was used to 

measure the rate of GDP dissociation (e.g., Figure 5.1B); the prevailing assumption for G! 

subunits is that kon for [
35

S]GTP"S binding is much more rapid than koff(GDP) [27].  Single 

turnover GTP hydrolysis measuring 
32

Pi released from G!-bound ["-
32

P]GTP – an assay 

format which is not rate-limited by GDP dissociation [9] – was used to assess intrinsic kcat 

rates for the G!i1 mutants (e.g., Figure 5.1C).  

 As expected, G!i1 variants with mutation to the active-site catalytic residue Arg-178 

had very low or undetectable levels of GTP hydrolysis, whereas G!i1(A326S), the single 

mutation reported to only affect GDP dissociation, had a GTPase rate similar to wildtype 

G!i1 (Figure 5.1C-D). [
35

S]GTP"S binding assays showed that two variants with mutations 

only at the catalytic site, R178M and R178C, had GDP dissociation rates similar to wildtype 

G!i1, whereas introduction of the A326S mutation, either alone or in combination with 

R178C, caused a three-fold acceleration in GDP dissociation (Figure 5.1B,D). When the 

A326S mutation was combined with methionine at Arg-178 (instead of cysteine), the GDP 

dissociation rate increased more than ten-fold over wildtype:  from 0.008 min
-1

 to 0.130 min
-1

 

(Figure 5.1D). We currently do not have a precise structural explanation for why the 
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particular combination of R178M and A326S mutations results in more rapid GDP release 

than the single A326S mutation alone; it is not an additive effect, since the singly-mutated 

G!i1(R178M) variant exhibits wildtype GDP dissociation (Figure 5.1B). It is interesting to 

note that Posner and colleagues, when reporting the crystal structure of the G!i1(A326S) 

mutant [15], suggested the presence of an indirect interaction between the Arg-178 and Ser-

326 residues (via contacts with nucleotide and Gly-45), thereby providing a possible 

mechanism for the functional interaction we have observed here between the R178M and 

A326S mutations. 

 

5.4.2 Combined action of two G! i1 mutations allows steady-state measurement of GAP 

activity 

 

 With the R178M/A326S mutant of G!i1 demonstrating the largest change in GDP 

release rate of all mutants tested, we next examined whether this particular G!i1 variant 

would be affected by RGS domain-mediated GAP activity in steady-state ["-
32

P]GTP 

hydrolysis assays. Addition of purified RGS4 protein to the G!i1(R178M/A326S) variant (in 

the presence of free ["-
32

P]GTP and Mg
2+

) resulted in a dramatic increase in [
32

P]Pi detected 

over time.  In contrast, there was no effect of RGS4 on wildtype G!i1 in this steady-state 

assay (Figure 5.2A vs B), as expected given the original report by Berman et al. [6].  

 

5.4.3 Development of a Transcreener GDP assay 

 

 The Transcreener platform relies upon highly selective antibodies for detection of 

nucleotides produced in enzyme reactions [28].  To allow measurement of RGS protein-

mediated acceleration of steady-state GTP hydrolysis in a homogenous format without 
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radioactivity, a Transcreener assay for GDP was developed (Figure 5.3A) using a 

competitive fluorescence polarization immunoassay format. For this method, a recently-

developed monoclonal antibody that recognizes GDP with >100-fold higher affinity than 

GTP [18] is added to the reaction, along with a fluorescent tracer which binds to the antibody 

with high affinity. When no free, unlabeled GDP is present in the reaction, the fluorescent 

tracer remains antibody-bound and exhibits a high polarization given its high apparent 

molecular weight. GDP produced in the reaction displaces the tracer from the antibody, 

thereby reducing its apparent molecular weight, increasing its rotational motion, and thus 

reducing the degree of polarization of emitted light. A similar Transcreener assay has been 

widely used for detection of ADP produced by kinases and other ATP-hydrolyzing proteins 

(e.g., refs. [19-21]; reviewed in [28]). 

 Figure 5.3B shows typical fluorescence polarization standard curves mimicking the 

conversion of GTP to GDP by a GTPase. An important aspect of flexibility for a GTPase 

assay is the ability to accommodate a range of initial GTP concentrations, so that diverse 

enzymes and screening strategies can be employed; therefore, these studies were performed 

using different GTP concentrations of 1, 10 and 100 µM.  Because the antibody cross-reacts 

to some degree with GTP, its concentration must be increased as higher GTP concentrations 

are used, in order to buffer for the total guanine nucleotide pool. Thus, for this analysis, the 

EC85 concentrations of monoclonal antibody were first determined in the presence of the 

indicated initial GTP concentrations (2.2, 12 and 64 µg/ml Ab for 1, 10 and 100 µM GTP, 

respectively) and the standard curves for GTP to GDP conversion were performed with 16 

replicates at those antibody concentrations.  At a GDP concentration equivalent to 10% 

conversion of GTP, which is generally considered to be well within the initial velocity 
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region, polarization shifts of 108, 134, and 148 mP were observed for the 1, 10, and 100 µM 

GTP concentration curves, respectively (Figure 5.3B). Acceptable Z’-factor values (ref. [29]) 

of greater than 0.5 were observed down to 2% conversion for the two higher initial GTP 

concentrations, and to 5% for the 1 µM initial GTP curve (Figure 5.3C), suggesting that the 

Transcreener GDP assay should be capable of very robust detection of GTPase enzyme 

initial velocity over at least a 100-fold range of initial GTP concentration.   

 To assess the potential for compound interference with the Transcreener GDP assay 

readout, we performed a control screen (Figure 5.3D) with the GenPlus library of 960 

bioactive molecules, many of which are approved drugs. This control screen was done under 

conditions mimicking 10% conversion to GDP for a GTPase reaction run at 10 µM initial 

GTP concentration.  All wells were run in duplicate.  The vast majority of the compounds 

clustered very tightly around the means for the 10 µM GTP and the 9 µM GTP/1 µM GDP 

conditions; the Z’-factor for the no-compound controls in this screen was 0.93.  There were 

only three compounds in the control screen that caused the signal to vary more than three 

standard deviations from the mean:  dirithromycin, metazolamide, and lonidamin (Figure 

5.3D).  There is no obvious structural similarity between them nor are any of them similar in 

structure to guanine nucleotide.  These data suggests that compound interference with the 

Transcreener GDP assay readout will be minimal. 

 

5.4.4 FP-based detection of RGS protein GAP activity is dependent on two rate-altering 

mutations 

 

 Having validated the utility of the Transcreener assay in detecting GDP in the 

presence of GTP, we next tested its use in measuring RGS protein GAP activity on several 

rate-altered G!i1 variants (Figure 5.4). In these experiments, the G!i1 proteins were 
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incubated with and without the well-characterized, G!i-directed RGS protein RGS4 [30] in 

the presence of the Transcreener GDP assay reagents, and plates were read at intervals 

starting at 15 minutes.  The change in the absolute value of polarization at each time-point 

(%mPt = | mPt(G!i1) - mPt(no G!i1) |) was plotted over a time-course of 6 hours; in addition, 

the plotted change in polarization that occurred in the linear region (over the first hour) was 

converted to GDP formation using standard curves (akin to those of Figure 5.3B) and 

normalized to the amount of G!i1 protein present in the reaction, with the resultant initial 

rates of GTP hydrolysis calculated from these data shown in Figure 5.4E.   

 

 The two G!i1 variants with single mutations at the catalytic arginine only, R178C or 

R178M, each had lower steady-state GTPase activity than wildtype G!i1 and, like wildtype, 

were unaffected by RGS4 (GAP factors of 0.9 and 1.2, respectively; Figure 5.4E).  These 

results are expected because their steady-state GTPase rate is limited by slow GDP 

dissociation. Conversely, the A326S variant exhibited a much higher steady-state GTPase 

rate than wildtype, as expected from its higher koff(GDP) (Figure 5.1); however, its steady-state 

GTPase rate was unaffected by RGS4 (GAP ratio of 1.1; Figure 5.4E), presumably because a 

further rate increase in GTPase is limited by koff(GDP). Most importantly, the two double 

mutants, R178C/A326S and R178M/A326S, had very low basal steady-state GTPase 

activities that became demonstrably higher in the presence of RGS4 (e.g., Figure 5.4A-B); 

the GAP effect on G!i1(R178M/A326S) was greater than with the G!i1(R178C/A326S) 

variant (GAP factors of 5.5 and 3.6, respectively; Figure 5.4E). Given its high GAP factor 

response in both the steady-state ["-
32

P]GTP hydrolysis assay (Figure 5.2) and the 
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Transcreener GDP assay (Figure 5.4), the G!i1(R178M/A326S) variant was used in 

subsequent analyses. 

 

5.4.5 G! i1(R178M/A326S) interacts with RGS proteins with same affinity and 

specificity as wildtype 

 

 A possible concern about the use of a mutated G! protein for RGS protein GAP 

assays is that the mutation(s) could disrupt the global fold of G! or, at the very least, affect 

the disposition of the switch regions and other surface contact points to which RGS proteins 

interact [23, 30], thereby altering the normal affinity and specificity that RGS proteins show 

for their various G! substrates. The two point mutations of R178M and A326S are interior to 

the guanine nucleotide binding pocket (Figure 5.5), but could nevertheless affect the RGS 

domain interaction surface.  

 To test for this possibility, we used SPR to compare the binding interactions of RGS2 

and RGS16 with wildtype G!i1 versus the G!i1(R178M/A326S) variant. Multiple previous 

studies [8, 23, 31] have established that RGS2, a potent GAP for G!q, does not interact with 

wildtype G!i1 in vitro; this same lack of interaction was observed with the 

G!i1(R178M/A326S) mutant (data not shown). Conversely, RGS16 is known to be a G!i-

interacting RGS protein [23], and was found by SPR to bind equivalently to immobilized 

wildtype G!i1 and G!i1(R178M/A326S) proteins (Figure 5.6). This equivalence included 

RGS16 only interacting with high affinity to the G! subunits in their transition state-mimetic 

form (namely, G! in complex with GDP and aluminum tetrafluoride [30]). These binding 

results suggest that no long-range perturbations have been made to the RGS domain 

interaction sites on G!i1 by the two rate-altering mutations of R178M and A326S. 
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 Using the Transcreener GDP assay, we performed an additional test of the 

G!i1(R178M/A326S) variant to control for any unintended changes the two point mutations 

could have engendered within G! to alter its interaction specificity with various RGS 

proteins. With the same RGS protein spectrum used in the SPR binding experiments, we 

found that RGS2 (highly selective for G!q over G!i substrates) had no effect on increasing 

steady-state GTPase activity of G!i1(R178M/A326S), whereas RGS16 increased steady-state 

GTPase activity 12-fold over the basal rate (Figure 5.7).  

5.4.6 Pilot screen for inhibitors of RGS4 GAP activity on G! i1(R178M/A326S) 

 

Given the robust performance of the Transcreener GDP assay in the control screen for 

potential compound interference (Figure 5.3D) and evidence that the two mutations to G!i1 

affected neither the affinity nor specificity of the G!/RGS domain interaction (Figs. 6 and 7), 

we proceeded to a pilot screen with G!i1(R178M/A326S) and RGS4 using the GenPlus 

library of 960 bioactive molecules (Figure 5.8). The screening window was first optimized 

by varying the concentrations of G! and RGS protein inputs; at 50 nM G!i1(R178M/A326S) 

and 250 nM RGS4, a maximal signal to background difference of 112 mP units was obtained 

after 120 minutes of elapsed reaction time before FP measurement. The thiol-reactive 

compound CCG-4986 was used in the screen as a positive control for RGS4 inhibition [11, 

32]. The GenPlus library screen was conducted with G!i1(R178M/A326S) and RGS4 (Figure 

5.8A); a separate counterscreen of the library was performed with G!i1(R178M/A326S) and 

no RGS4 (Figure 5.8B) to identify compounds having either non-specific effects or 

modifying G!i1 GTPase activity (rather than RGS4 GAP activity per se).  

Z’-factors of 0.60, 0.83, 0.83, and 0.82 were obtained at 60, 90, 120, and 180 minutes 

elapsed reaction time, as calculated based on data from control wells containing either 
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G!i1(R178M/A326S) only or G!i1(R178M/A326S) plus RGS4. Note that these Z’-factor 

values reflect only the RGS4-dependent increase in GTPase activity, and not the total 

observed GTPase activity relative to no-enzyme controls. The Z-factor for the GenPlus 

library screen at the 120 minute time point (shown in Figure 5.8A) was 0.73, which was 

calculated by excluding values from wells containing hit compounds. Of the 960 compounds 

in the GenPlus library, 17 compounds were initially considered hits in the RGS4/G! screen:  

i.e., those data points that fell outside the µ±3& range. However, ten of these 17 hits also 

resulted in a greater than ±3& change in the mean signal within the G!-only counterscreen 

and thus were excluded because these compounds are likely either affecting the G! subunit 

or otherwise interfering with the assay. Thus the RGS4-specific hit rate was 0.7%:  seven 

compounds from the 960 compound library exhibited an modulatory effect on GDP 

production that was specific to RGS4-stimulated GTPase activity (Figure 5.8A vs 5.8B). Six 

compounds (id # 62, 63, 244, 413, 524, 812) exhibited an RGS4-specific inhibitory effect 

(i.e., a change in polarization greater than the [mean + 3 S.D.] signal threshold) and one 

compound (#596) exhibited an RGS4-specific activating effect on GDP production (i.e., a 

change in polarization less than the [mean - 3 S.D.] signal threshold). This hit rate may be 

artificially high in this pilot screen given that the collection of compounds surveyed (GenPlus 

library) is not a diverse sampling of chemical space but a collection of US, European, and 

Japanese approved drugs and other bioactive compounds. As expected [11, 32], the thiol-

reactive RGS4 inhibitor CCG-4986 consistently exhibited inhibition of RGS4-stimulated 

GDP production (Figure 5.8A).  

 To our knowledge, the combined use of a GDP detection assay with a rate-altered G! 

subunit represents a unique strategy to the detection of RGS protein GAP activity. Even 
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though the two primary components of G! catalysis, GTP hydrolysis rate and product 

release, were altered significantly by mutation, the resultant G! subunits still served as 

functional substrates for the GTPase-accelerating activity of RGS proteins. Using this double 

mutation strategy to develop a steady-state RGS protein GAP assay that is easy for the non-

specialist to perform, and is well-suited for HTS, removes a major technical barrier 

preventing the exploration of RGS proteins as therapeutic targets. Moreover, G!i1 is a 

substrate for the GAP activity of several RGS protein family members [23] in addition to 

those we have tested here; thus, the reagents and methods that we have described should have 

broad applicability across the protein family. Employing the rate-altered 

G!i1(R178M/A326S) mutant in a homogeneous, end-point-based, enzymatic HTS assay will 

not only be useful in screening for RGS protein inhibitors but, unlike existing assays based 

on the RGS domain/G! binding interaction [10-12], this enzymatic assay should also 

facilitate identification of small molecule activators of RGS domain-mediated GAP activity. 

The lipid moiety phosphatidylinositol-3,4,5-trisphophate (PIP3) has been shown to bind to, 

and thereby inhibit in an allosteric fashion, the GAP activity of select RGS domains such as 

that of RGS4 [22]; Ca
2+

/calmodulin reverses this PIP3-mediated inhibition by competing for 

the PIP3-binding site [22]. A small molecule targeting this site of allosteric modulation over 

RGS domain GAP activity could potentially be quite valuable therapeutically in 

pathophysiological situations which may arise from a loss of RGS protein activity, such as 

RGS2 in hypertension [33] and RGS4 in schizophrenia [34]. 
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Figure 5.1. Increased GDP release and decreased GTP hydrolysis of the 

G! i1(R178M/A326S) mutant compared to wildtype G! i1 and single point-mutants, 

as measured by [
35

S]GTP!S binding and single-turnover [!-
32

P]GTP hydrolysis, 

respectively. (A) Point mutations to G!i-family subunits previously reported in the 

literature [15-18] to alter intrinsic GTP hydrolysis and GDP dissociation rates. (B) 

Binding of [
35

S]GTP"S to wildtype or indicated mutant G!i1 subunits. (C) Single-

turnover GTP hydrolysis activities of wildtype or indicated mutant G!i1 subunits. (D) 

Initial rates of GTP binding and hydrolysis for the G!i1(R178M/A326S) mutant, as well 

as other G!i1 point mutants derived from data similar to that of panels B and C.  
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Figure 5.2. RGS4 GAP activity is observed as an increase in steady-state GTP 

hydrolysis only for the rate-altered G! i1(R178M/A326S) variant. Time courses of 

steady-state ["-
32

P]GTP hydrolysis by 50 nM G!i1(R178M/A326S) mutant (A) or 50 nM 

wildtype G!i1 (B) in the presence or absence of 250 nM RGS4 at 20°C. Results are the 

mean (± S.E.M.) of duplicate samples. 
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Figure 5.3. Fluorescence polarization immunoassay for the detection of GDP. (A) 

Schematic representation of methodology underlying the Transcreener GDP assay as 

applied to steady-state GTP hydrolysis (and resultant GDP production) by a rate-altered 

G! protein. Fluorescent tracer is illustrated with a jagged oval; when bound to the GDP-

selective monoclonal antibody, emitted light remains polarized, whereas there is low 

polarization of emitted light when tracer is displaced by free GDP. (B) The Transcreener 

GDP assay was used to generate standard curves for conversion of GTP into GDP at 

initial GTP concentrations of 1, 10, and 100 µM using appropriate EC85 concentrations of 

GDP antibody established for these initial GTP concentrations (2.2, 12, and 64 µg/mL, 

respectively). (C) Z’-factor values, reflecting both assay signal window and signal 

variability [30], were determined in 16 replicates for each of the points in the GDP-

detection standard curves presented in panel B. Although the assay window was reduced 

at lower percent conversions (e.g., 57 mP for 3% conversion to GDP of 10 µM initial 

GTP; panel B), acceptable Z’-factors [30] of >0.5 were observed down to 2% conversion 

for the two higher initial GTP concentrations and to 5% for the 1 µM initial GTP curve, 

given the very low signal variability. (D) Control screen using the 960 compound 

GenPlus library. Assay components were added to duplicate wells containing 10 µM 

compound and either 10 µM GTP (to mimic no-enzyme control reactions) or 9 µM GTP 

plus 1 µM GTP (to mimic completed GTPase reactions). The range of signal observed (3 

standard deviations about the mean; “µ±3&”) in each condition is demarked with a dotted 

grey line. 
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Figure 5.4. RGS4 increases the steady-state GTPase activity of G! i1(R178M/A326S) 

but not wildtype G! i1, as measured using the Transcreener GDP assay and reported 

in absolute change in polarization (left panels) and GDP produced per G!  protein in 

reaction (right panels). R178M/A326S double-mutant (A,B) and wildtype (C,D) G!i1 

proteins were present at 50 nM final concentration. Dashed lines represent reactions 

conducted in the presence, and solid lines (“mock”) in the absence, of 250 nM RGS4 

protein. (A,C) Change in polarization (%mP) at each time-point for indicated G!i1 protein 

was calculated as %mP = |mP(G!i1) - mP(no G!i1)|. (B,D) Data from panels A and C 

were converted to GDP produced per mol of input G!i1 using previously established 

standard curves for GDP detection in the presence of GTP (e.g., Figure 5.3B). (E) 

Summary of initial rates obtained by the Transcreener GDP assay for each G!i1 mutant 

tested. “GAP factor” is defined as the ratio between steady-state GTPase rate in the 

presence of RGS protein and steady-state GTPase rate in the absence of RGS protein. 
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Figure 5.5. Structural features of the RGS16/G! i1"GDP"AlF4
-
 complex highlighting 

the locations of Arg-178 and Ala-326 residue positions mutated in the 

G! i1(R178M/A326S) variant. The RGS16/G!i1 complex (PDB id 2IK8; ref. [24]), was 

rendered using PyMOL with the RGS16 RGS domain in orange and G!i1 protein in blue, 

respectively. G!i1 switch regions are depicted in grey; switches one and two (SI, SII) are 

visible in the foreground, whereas switch three is in the background and thus unlabeled. 

GDP is shown in magenta, the AlF4
-
 ion is red, and Mg

2+
 ion is depicted as a yellow 

sphere. Residues arginine-178 and alanine-326 are rendered as ‘sticks’ in green with 

CPK atomic coloring (nitrogen = blue, oxygen = red). 
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Figure 5.6. RGS16 binds equivalently to wildtype G! i1 and the rate-altered 

G! i1(R178M/A326S) mutant. (A,B) Sensorgrams derived from 600 second injections of 

various concentrations (3 nM to 10 µM) of RGS16 over SPR biosensors of immobilized 

(A) wildtype G!i1·GDP·AlF4
-
 or (B) G!i1(R178M/A326S)·GDP·AlF4

-
. SPR experiments 

were also conducted with both G!i1 subunits in their inactive, GDP-bound state (data not 

shown). (C,D) Resultant sensorgrams were used in equilibrium saturation binding 

analyses (as previously described [24]) to derive dissociation constants (KD values). 

RGS16 bound to wildtype G!i1·GDP·AlF4
-
 with a dissociation constant of 124 nM (95% 

C.I. of 76-174 nM; panel C), whereas RGS16 bound to G!i1(R178M/A326S)·GDP·AlF4
-
 

with a dissociation constant of 115 nM (64-166 nM; panel D). Note that interactions were 

not observed (for either G! subunit) when the G! was GDP-bound (as expected; refs. 

[24,31]), nor when RGS2 was injected (data not shown). 
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Figure 5.7. The steady-state GTPase activity of G! i1(R178M/A326S) is increased by 

RGS4 and RGS16, but not by the G!q-selective RGS2.  Transcreener GDP assays 

were performed as in Figure 5.4, using 250 nM of the indicated RGS protein. Moles of 

GDP produced per mol input G!i1(R178M/A326S) protein were first plotted over time 

using GraphPad Prism and linear regression performed to determine steady-state GTPase 

rates. Presented bar graph denotes GAP factors derived from these steady-state GTPase 

rates.  
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Figure 5.8. Pilot screen and counterscreen using the 960 compound GenPlus library. 

Transcreener GDP assay components were added to wells containing 50 nM G!i1 

(R178M/A326S) with (panel A) or without (panel B) 250 nM RGS4 protein and either 10 

µM compound (in 0.5% [v/v] final concentration of DMSO), 150 µM of reactive RGS4 

inhibitor CCG-4986, or 0.5% DMSO only, as indicated in the legends. The range of 

signal observed (three standard deviations [&] about the mean [µ]) is denoted by the 

dashed lines for the 960 compound library screen using RGS4 and G!i1 (R178M/A326S) 

(black; panel A, coefficient of variation [CV%] = 8.8%) and library counterscreen using 

G!i1 (R178M/A326S) alone (gray; panel B, CV% = 3.0%). Data in panel A was obtained 

at 120 minutes of elapsed reaction time; data in panel B was obtained after 210 minutes 

of elapsed reaction time, given the slower GTPase (and GDP production) rate of G!i1 

(R178M/A326S) in the absence of RGS4 GAP activity. 



 

 

 

 

 

CHAPTER 6 

 

RGS21:  A NOVEL REGULATOR OF GUSTATION 
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6.1.  INTRODUCTION 

 

The biological process of signal transduction controls a wide variety of cellular activities, 

ranging from transmembrane ion flux to regulation of gene transcription. One major class 

of signal transduction pathways is controlled by heterotrimeric guanine nucleotide-

binding proteins ("G-proteins") [1, 2]. In addition to being the largest target of currently 

prescribed pharmaceuticals [3], GPCRs allow us to see, smell and taste the world in 

which we live. While gustation may seem a luxury, evolutionarily this sense has allowed 

animals to distinguish between nourishing foods and poisonous toxins.  

Mammalian taste can be divided into five components: bitter, sweet, umami 

(Japanese for savory), salty, and sour. Three of these tastes, bitter, sweet and umami, are 

directly mediated through GPCRs [4-6]. Radioligand binding experiments, cellular work, 

and mouse knockouts have provided strong evidence that the T2R family of taste 

receptors is responsible for the transduction of bitter taste. Some members of the T2R 

family, such as T2R9, demonstrate remarkable selectivity for one agonist, (e.g., 

cycloheximide), while others, such as the T2R14 receptor, can be activated by a wide 

array of bitter compounds [7, 8]. In contrast to the T2R receptors which are functional 

when expressed individually, T1R taste receptors only function when expressed as 

heterodimers. Knockout animals and heterologous expression experiments have 

demonstrated that L-amino acids (umami compounds) signal through a T1R1/T1R3 

heterodimer [6, 9, 10]. In the absence of either T1R1 or T1R3 expression, L-amino acids 

cannot initiate signaling. Similarly, sweet compounds bind to a T1R2/T1R3 heterodimer 

to initiate taste [5]. As expected, T1R3 knockout mice are able to taste bitter compounds 

at normal levels but are significantly less sensitive to appetitive effects of sweet and 
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umami compounds [6, 11]. If the T1R1 or T1R2 receptor is individually knocked out, 

mice respond normally to bitter compounds but exhibit no response to umami or sweet 

compounds, respectively [5, 6].   

Upon tastant binding to a taste receptor, the receptor acts as a guanine nucleotide 

exchange factor (GEF), promoting release of GDP by G! subunits [4, 8, 12]. The 

heterotrimeric G-proteins involved in gustation are those that classically inhibit adenylyl 

cyclase; based on G! deficient animals, the G! subunits of gustducin and transducin are 

considered the primary mediators of taste signaling [13-15].  Upon the receptor-mediated 

exchange of nucleotide, the GTP bound G! subunit releases G"#. The free G!(GTP) and 

G"# are then capable of modulating downstream effectors. In gustatory signaling, the 

primary effector of the GTP-bound G! subunit is adenylyl cyclase [16, 17] and the 

primary effector of the G"# heterodimer is PLC-"2 [18-20].  Of these two downstream 

effectors, PLC-"2 appears to be the principal effector in mediating the appetitive and 

aversive effects of tastants in mouse models [20]. The activation of PLC-"2 by G"# leads 

to an increase in intracellular calcium (via IP3R activation [21]) and subsequent gating of 

the taste-transduction channel TRPM5 [20, 22]. While the soluble G!-GEF Ric-8A was 

recently shown to affect T2R16 signaling in over-expression studies [23], currently no 

modulators of GPCR signaling -- neither GTPase accelerating proteins (GAPs), guanine 

nucleotide dissociation inhibitors (GDIs), nor non-receptor GEFs -- are known to affect 

taste signaling in an endogenous context; however, based on other work, it has been 

shown that the rate of GTP hydrolysis by G! is critical to proper perception of the 

environment (e.g., the critical role of RGS9, the G!-transducin GAP, in the vertebrate 

visual system [24, 25]).   
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The duration of activation of the GPCR-initiated signaling cascade is controlled by 

the hydrolysis rate of GTP by the G! subunit which can be greatly accelerated by 

Regulators of G-protein Signaling (RGS proteins) that serve as GTPase-accelerating 

proteins [26-30]. The physiological effects of RGS proteins are illustrated in the retinal 

photoreceptor paradigm. In RGS9-deficient mice [24], the rate-limiting time constant of 

retinal recovery from flash response increases from 0.2 seconds (wildtype) to 9 seconds 

(RGS9-null), clearly implicating the importance of these regulators in proper signal 

transduction timing [31]. Recently, two independent groups have identified a novel 

member of the RGS protein superfamily, RGS21 [32, 33], as being a potential GAP for 

taste receptor signaling in analogy to the role of RGS9 in the visual system. Using in situ 

hybridization and RT-PCR analyses, von Buchholtz and colleagues characterized Rgs21 

as having a highly selective distribution in the rat, namely only in lingual epithelium taste 

cells [33]; however, Li and colleagues described Rgs21 as being ubiquitously expressed 

(as detected by RT-PCR in 16 different human tissues) [32].  In this chapter, we resolve 

this discrepancy regarding the expression pattern of the Rgs21 transcript, characterize 

RGS21 biochemically, and provide evidence of the cellular function of this unique RGS 

protein in tastant receptor signal transduction.   

 

6.2.  MATERIALS AND METHODS 

6.2.1 Chemicals and assay materials 

 

Unless otherwise noted, all chemicals were the highest grade available from 

Sigma Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA).  
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6.2.2 Quantitative, real-time reverse transcription-polymerase chain reaction (qRT-

PCR) assays 

 

For qRT-PCR experiments to determine expression of human RGS21 and mouse 

Rgs21, isolation of RNA and subsequent RT-PCR reactions were performed in triplicate 

exactly as previously described [34] using gene-specific primers and 6-

carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) dual labeled 

probes.  Primer sequences: Human RGS21: forward, 5’-TGC-TGT-TTC-TAC-AGG-

TCA-CC-3’; reverse 5’-GTT-GGC-TAA-AAG-CGT-GTC-CA-3’; probe, 5’-FAM-CTG-

CGG-AAA-CAA-TGA-CAT-GGT-CTG-TAMRA-3’; human 18S: forward 5’-AGA 

AAC GGC TAC CAC ATC CA-3’; reverse, 5’-CTC GAA AGA GTC CTG TAT TGT-

3’; Probe 5’-FAM-AG GCA GCA GGC GCG CAA ATT ACQ-TAMRA-3’.  Mouse 

Rgs21: forward, 5’-GTA-GCT-GAT-GCA CCA-AAA-GAG-3’; reverse, 5’-TGG-AGT-

TGG-TTC-AGC-AAT-ATT-C-3’; probe, 5'-FAM-CAT-TGA-CTT-CAG-TAC-CAG-

AGA-CCT-CA-TAMRA-3'; mouse 18S: forward, 5’-AGA-AAC-GGC-TAC-CAC-ATC-

CA-3’; reverse, 5’-CTC-GAA-AGA-GTC-CTG-TAT-TGT-3’; probe 5’-FAM-AGG-

CAG-CAG-GCG-CGC-AAA-TTA-C-TAMRA-3’. The number of cycles until threshold 

(Ct) was determined using an ABI Prism 7700 Sequence Detector System (Applied 

Biosystems, Foster City, CA). To normalize for the efficiency of mRNA extraction, the 

Ct value of 18S was subtracted from the Ct of Rgs21. The relative expression of RGS21 

transcript in shRNA lentivirus-transfected stable cell lines vs the control lentivirus-

transfected 16-HBE cell line was then calculated using the  

! 

2
" ##C

t( )  method [35] as shown 

below: 

! 

RGS21[ ] =100 " 2
# $Ct shRNA _ Line( )#$Ct control _ line( )( )
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where: 

! 

"C
t
(shRNA_ line) = C

t
(shRNA_ line) #C

t
(18S)  and 

! 

"C
t
(control_ line) = C

t
(control_ line) #C

t
(18S).  

 

6.2.3 In situ hybridization 

 

 Full length mouse RGS21, PLC"2 (nucleotides 227 -740), and Gustducin 

(nucleotides 83 - 610) were cloned into pBluescript II SK (Stratagene) using the KpnI 

and NotI digestion sites.  Digoxygenin labeled riboprobes were generated using T7 RNA 

polymerase and a dig-RNAlabeling mix (Roche).  Hybridization was performed by the 

UNC Neuroscience Center In Situ Hybridization Core according to standard protocols 

(UNC-Chapel Hill). 

 

6.2.4 Cloning  

 

 The RGS21 open-reading frame (ORF) was cloned from cDNA isolated from rat 

taste bud cell cDNA (a gift from Lars von Buchholtz) using the sense primer 5’-

CCAGTGAAATGCTGTTTCTAC-3’ and antisense primer 5’-

CAGGAAAGGCAGCCATC-3’ using an annealing temperature of 52 °C and an 

extension time of 22 s with Phusion thermostable DNA polymerase (New England 

Biolabs, Ipswich, MA).  Following amplification, a 453 bp band was resolved using 

agarose electrophoresis and isolated by Qiagen Gel Extraction (Qiagen).  A second round 

of PCR, using primers to extend the ORF sequence, was used to subclone the isolated 

fragment into our pET-based (Novagen) ligation-independent cloning vector to make a 
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tobacco etch virus protease (TEV) cleavable His6-fusion protein for protein production in 

E. coli, as well as into a pcDNA3.1-based (Invitrogen) ligation-independent cloning 

vector to make an hemagglutinin (HA)-epitope fusion protein for expression in 

mammalian cells, both as previously described [36, 37].  Quick Change site-directed 

mutagenesis (Stratagene) was used to mutate Arg-126 of the RGS21 ORF to a glutamic 

acid residue with the sense primer: 5’-

GTCTCATGGCCAAGGATTCCTTCCCTGAGTTTCTAAAGTCAGAAATTTATAAG

AAA-3’ and the antisense primer: 5'-

TTTCTTATAAATTTCTGACTTTAGAAACTCAGGGAAGGAATCCTTGGCCATGA

GAC-3'. 

 

6.2.5 Protein expression and purification  

 

 The vector encoding the His6-rRGS21(wildtype) or -RGS21(R126E) was 

transformed into E. coli BL21(DE3) cells (Novagen) and grown at 37°C in Luria broth 

until a culture density of OD600 = 0.75 was reached. Protein expression was then induced 

by the addition of 0.75 mM isopropyl-"-D-thiogalactopyranoside.  After culture for 14-

16 hours at 20°C, cells were pelleted by centrifugation and frozen at -80°C. Prior to 

purification, bacterial cell pellets were resuspended in N1 buffer (50 mM Tris pH 7.5, 

300 mM NaCl, 30 mM imidazole, 5% (w/v) glycerol) for lysis using high-pressure 

homogenization with an Emulsiflex (Avestin; Ottawa, Canada). Cellular lysates were 

clarified by centrifugation for 45 minute at 100,000 x g at 4°C before the supernatant was 

applied to a nickel-nitrilotriacetic acid resin FPLC column (FF HisTrap; GE Healthcare). 

The column was washed with 7 column volumes of N1 lacking imidazole then 3 column 
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volumes of N1 containing 30 mM imidazole, 5 column volumes of N1 containing 300 

mM imidazole, and 5 column volumes of N1 containing 700 mM imidazole.  Soluble 

RGS21 was found in the 300 mM imidazole-containing fractions. The column flow-

through was pooled and resolved using a calibrated 150 ml size exclusion column 

(Sephacryl S200, GE Healthcare) with S200 buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

5% (w/v) glycerol). Protein was concentrated to approximately 1 mM as determined by 

A280nm measurements upon denaturation in guanidine hydrochloride.  

 His6-G!oA was purified using similar chromatographic methods as previously 

described [38]. His6-G!i1,i2,i3 and His6-G!i1(G183S) subunits were purified exactly as 

previously described for the production of G!i1 [39]. The His6-G!t/i1 chimeric G! 

subunit was purified as previously described [40] and transducin was purified from 

bovine rod outer segments as previously described [41]. 

 

6.2.6 NTA pull-down assays 

 

 COS7 cells were plated in 6-well dishes and transfected with 1.5 µg of DNA 

(when at 70% confluency) with Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA) 

according to manufacturer’s instructions.  Cells were lysed in lysis buffer containing 20 

mM Tris (pH 7.5), 100 mM NaCl, 100 µM GDP, 5 mM GDP, 1 mM EGTA, and 1% 

Triton-100. To mimic the GTP hydrolysis transition state of the heterotrimeric G-protein 

! subunit, the lysis buffer was supplemented with 20 mM NaF and 30 µM AlCl3. Cell 

monolayers were scraped in lysis buffer and incubated at 4 °C for 45 minutes with 

sonication before insoluble components were separated by centrifugation at 14,000 x g at 

4 °C for 10 minutes.  Recombinant purified His6-RGS21 protein (10 µg) was then added 
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to the clarified cell lysate and rocked at 4°C for 1 hour before the addition of NTA-

Agarose and continued incubation overnight at 4°C with rocking.  NTA-Agarose was 

then washed four times with lysis buffer and bound proteins resolved using SDS-PAGE 

electrophoresis, transferred to nitrocellulose, and detected by chemiluminescence using 

standard immuno-blotting techniques.   

 

6.2.7 Surface Plasmon Resonance (SPR) 

 

Optical detection of surface plasmon resonance (SPR) was performed using a 

Biacore 3000 (Biacore Inc., Piscataway, NJ) exactly as previously described [42, 43]. 

 

6.2.8 GTP hydrolysis assays 

 

The intrinsic and RGS enhanced GTP hydrolysis rate of G! subunits was assessed 

by monitoring the production of 
32

P-Pi during a single round of GTP hydrolysis.  In brief, 

wild-type G!i1 or G!i1 mutants (100 nM) were separately incubated for 10 minutes at 20 

°C with 1 x 10
6
 cpm of [#-32

P]GTP (Perkin Elmer; specific activity of 6500 dpm/Ci) in 

reaction buffer lacking Mg
2+

 (50 mM Tris pH 7.5, 0.05% C12E10, 1 mM DTT, 10 mM 

EDTA, 100 mM NaCl, and 5 µg/ml BSA). The reaction was then chilled on ice for 5 

minutes prior to initiation of the reaction by the addition of RGS protein, 10 mM MgCl2 

and 100 µM GTP#S (final concentration). At periodic intervals, 100 µl aliquots were 

quenched in 900 µl of charcoal slurry (i.e., 5% (w/v) activated charcoal in 50 mM H3PO4 

pH 3.0) and centrifuged at 4 °C for 10 minutes at 3750 RCF. Subsequently, 600 µl 

aliquots of the supernatant were counted via liquid scintillation to quantify 
32

P-Pi 

production. 
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6.2.9 Transient gene overexpression 

 

16-HBE cells were seeded onto 6 well plates at a density of 3 X 10
5
 cells per well 

and incubated in DMEM supplemented with 10% fetal bovine serum (FBS), 4 mM L-

glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin at 37 
o
C in a 5% CO2/95% 

air atmosphere.  After 24 hours, media was replaced with fresh media.  lasmid DNA (1.5 

µg) and FuGENE 6 (Roche; Indianapolis, IN) were complexed and added dropwise to 

each well, per the manufacturer’s instructions.  Cell monolayers were incubated an 

additional 24 hours prior to use in the FLIPR assay for transient intracellular calcium 

mobilization. 

 

6.2.10 Stable gene underexpression 

 

Stable 16-HBE cell lines were generated via lentiviral infection.  pLKO.1 

plasmids encoding human RGS21-directed shRNA (Oligo IDs TRCN0000036859, 

TRCN0000036861, and TRCN0000036863; generated by The RNAi Consortium and 

purchased from Open Biosystems as catalog # RHS3979-9604267, RHS3979-98492449, 

and RHS3979-9604271) were prepared from bacterial stocks via maxiprep (Qiagen; 

Valencia, CA) and packaged into a lentiviral vector by the UNC Lineberger 

Comprehensive Cancer Center Lenti-shRNA Core Facility (Dr. Tal Kafri, director). A 

control empty lentiviral vector (Open Biosystems catalog #RHS4080) was also packaged 

to establish the negative control cell line. These viruses were used to infect separate 16-

HBE cell cultures seeded onto 100 mm dishes at 50% confluency.  Stably-transfected cell 
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lines were selected with puromycin (Cellgro; Manassas, VA) and maintained in standard 

media supplemented with puromycin for several weeks prior to use in the FLIPR assay. 

 

6.2.11 GloSensor cAMP assays 

 

 Twenty-four hours post–transfection, cells were re-plated on poly-D-lysine-

treated, clear-bottom, white 384-well plates at a density of 15,000 cells/well. Forty-eight 

hours post-transfection, culture medium was aspirated and cells were washed once with 

assay medium (DMEM (without FBS or phenol), 15 mM HEPES pH 7.4) before being 

incubated for 2 hours with 20 µl/well of equilibration medium (assay medium with 4% 

GloSensor™ substrate [Promega]). After two hours, 10 µl of 3x final concentration 

denatonium benzoate  (diluted in 3 µM forskolin-containing assay medium) was added to 

each well and allowed to incubate for 10 minutes before GloSensor emission was read on 

a MicroBeta Plate Counter (PerkinElmer). Before plotting, luminescence counts were 

normalized to 100% maximal response for each condition to account for variability in 

GloSensor expression, transfection efficiency, and the exact number of cells per well. 

 

6.2.12 Fluorescence Imaging Plate Reader (FLIPR) calcium flux assays 

 

Calcium flux assays were performed as previously described [44].  16-HBE cells 

were trypsinized, counted, and seeded onto clear-bottomed 96 well plates (Greiner Bio-

One; Monroe, NC) pre-coated with poly-D-lysine, at a density of 7.5 X 10
5 

cells per well.  

After a 24 hour incubation, media was removed and replaced with a Ca
2+

 assay buffer (20 

mM HEPES, 1" HBSS, 2.5 mM probenecid, and Ca
2+

 assay dye, pH 7.4) (FLIPR® 
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Calcium Assay Kit; Molecular Device Corp, Sunnyvale, CA).  After a 1-hour incubation 

at 37
o
C, during which the cells were allowed to take up the dye, fluorescence responses 

of cells were measured with a FLIPR
TETRA

 (Molecular Device Corp; Sunnyvale, CA) 

device upon the addition of variable concentrations of tastant, or vehicle, in the presence 

of assay buffer (20 mM HEPES, pH 7.4, 1x Hanks Balanced Salt [Invitrogen; Carlsbad, 

CA] and 2.5 mM probenecid).  After data acquisition, a subsequent addition of 5 mM 

thapsigargin was injected into each well, and fluorescence was measured again.  Net peak 

responses to tastants were normalized to net peak responses to thapsigargin. Responses 

were compared with that of wild-type control 16-HBE cells.  Statistical and graphical 

analyses were performed using Prism v. 5.0b (GraphPad Software; La Jolla, CA). 

 

6.3.  RESULTS AND DISCUSSION 

 

Given the discrepancy in RGS21 expression patterns presented by the first two reports on 

RGS21 [32, 33], we first set out to profile the expression of RGS21 transcripts by the use 

of quantitative reverse transcription-PCR on RNA isolated from mouse as well as human 

tissues.  In human tissues, RGS21 was highly expressed in circumvallate papillae and 

expressed at lower levels in lung tissue (Figure 6.1A). This same expression pattern was 

also present in mouse tissue, with the addition that Rgs21 transcripts were also detected 

in RNA isolated from whole, homogenized mouse tongue (Figure 6.1C).  These results 

support the expression pattern of rat Rgs21 that was described by von Buchholtz et al. 

[33]. To identify more specifically the cellular localization of Rgs21 transcripts within 

lingual tissue, we performed in situ hybridization on mouse tongue tissue. Using this 
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approach, we were able to identify Rgs21 expression in cells that appeared to be 

chemosensory cells only in the circumvallate papillae (Figure 6.2). 

Because of the recent evidence implicating gustatory components in 

enteroendocrine cells in the digestive tract [45-49], we also analyzed RGS21 transcript 

levels in different regions of the human and mouse gastrointestinal tract (Figure 6.1B,D). 

While RGS21 transcripts were identified in the human gastrointestinal tract, we were 

unable to identify Rgs21 transcripts in the mouse GI tract (Figure 6.1B,D).  While this 

may represent a difference in expression between the two organisms, it may also be due 

to differential probe sensitivity; however, our results suggest that RGS21 expression is 

associated with related tastant signaling components known to be expressed in 

chemosensory cells of the human digestive tract [45-49].   

 While R4 family RGS domains (Figure 6.3) primarily bind to adenylyl cyclase- 

inhibitory G! subunits and G!q/11 subunits [50-52], RGS domains in general have also 

been reported to modulate signaling mediated through G!s [53, 54], G!olf [55] and 

G!12/13 [56-60]. To identify what subset of G! proteins RGS21 is capable of binding, we 

performed pull down assays with recombinant His6-RGS21 protein and cellular lysates 

containing overexpressed G! subunits. RGS21 was observed to bind G!i1, G!i2, G!i3, 

G!o, gustducin, and G!q in their transition state form (e.g., bound with GDP/AlF4
-
) and 

not in their ground-state, GDP-bound form.  These results with RGS21 are consistent 

with other reports that, with the exception of RGS2 [61, 62], all R4 family RGS domains 

can interact with both Gi/o and Gq subfamily G! subunits [50, 63].   

 We next used surface plasmon resonance (SPR) spectroscopy to determine if the 

RGS21/G! interaction is direct and occurs in a manner consistent with the canonical 
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RGS domain/G! interaction [50, 51].  An SPR biosensor surface was generated with 

either immobilized biotin-G!i1 or His6-G!q fusion protein, and RGS21 was subsequently 

injected over both surfaces, either in buffer containing aluminum magnesium 

tetrafluoride (Mg2AlF4 or “AMF”; to create the transition state form) or GDP alone.  

RGS21 bound selectively to G!i1(AMF) and G!q(AMF) with affinities (Kd values) of 64 

nM (95% confidence interval [C.I.] of 40 - 87 nM) and 20 nM (95% C.I. 11 -29 nM) 

respectively (Figure 6.5A,B). These affinities for transition state G! subunits are 

consistent with earlier reports from other R4 family RGS proteins using SPR [64]. No 

binding was observed to either G!i1 or G!q surfaces in their GDP-bound state. A charge 

reversal of the highly conserved Arg 126 (Figure 6.6 to gluatamic acid (R>E or R126E), 

previously shown to disrupt RGS domain/G! interactions [38, 62], was observed to 

disrupt the RGS21 interaction with G!i1(AMF) and G!q(AMF) surfaces. SDS-PAGE 

electrophoresis and circular dichroism studies were performed to verify that the 

RGS21(R126E) protein was equivalent in purity to wildtype RGS21 protein, and that the 

global fold of the mutant protein was preserved (Figures 6.7 & 6.8).   

To verify the affinities obtained with immobilized G! SPR surfaces, and to test 

additional purified G! subunits for their interaction with RGS21, a GST-RGS21 fusion 

protein biosensor surface was generated [42] and the binding affinities (Kd values) of 

G!i1, G!i2, G!i3, G!o, and transducin (Chi6 chimer; [40]) (all in their AMF-bound 

transition state form) were determined to be 114 nM (95% C.I. 65 - 163 nM), 63 nM 

(95% C.I. 30 - 95 nM), 61 nM (95% C.I. 25 - 97 nM), 24 nM (95% C.I. 18 - 32 nM), and 

190 nM (95% C.I. 134 - 247 nM) respectively; as previously observed, no binding was 

detected to GDP-bound G! subunits.   
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 Next, to assess directly if RGS21 could accelerate the GTPase activity of GTP-

bound G! subunits, we measured a single round of GTP hydrolysis by various G! 

subunits.  RGS21 was able to accelerate robustly the hydrolysis of GTP by G!i1.  The 

intrinsic rate of hydrolysis by G!i1 was determined to be 0.009 sec
-1

 (95% C.I. 0.007 - 

0.011 sec
-1

) while the hydrolysis rate of GTP upon the addition of RGS21 (50 nM) was 

0.25 sec
-1

 (95% C.I. 0.11 - 0.38 sec
-1

), over 25 times faster (Figure 6.9A). RGS21-

mediated GAP activity was also determined on G!i2, G!i3, G!o, and transducin purified 

from bovine rod outer segments (Figure 6.9 and summarized in Table 6.1).  To ensure 

that the increase in observed hydrolysis rate was not due to a contaminating GTPase 

protein in the RGS21 preparation, single turnover assays were repeated with a RGS-

insensitive G!i1 point mutant, namely G!i1(G183S) [65, 66].  The intrinsic hydrolysis 

rate of G!i1(G183S) was not accelerated upon the addition of 250 nM of RGS21 or 

RGS21(R126E) proteins (Figure 6.9B).   

 The primary G! subunits implicated in gustation are gustducin-! (GNAT3) and 

transducin-! (GNAT1) [13-15].  Based on the RGS9/transducin-! structure and 

comparisons with other RGS domain/G! complexes [50, 67], the predicted RGS domain 

contacts on gustducin-! are 95% identical and 100% similar to transducin-! (Figure 

6.10). Because the RGS domain/G! contacts are predicted to be nearly identical, we 

expect that RGS21 would act as a GAP equivalently on gustducin and transducin alpha 

subunits.     

 To determine if RGS21 is capable of modulating gustatory signaling in an 

integrated, whole-cell context, we first used quantitative RT-PCR to identify a model cell 

line expressing components of the gustatory singling cascade well as endogenous RGS21.  
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While we were unable to identify a enteroendocrine cell line that expressed endogenous 

RGS21 (data not shown), we were able to identify two pulmonary epithelial cell lines 

(Calu-3 and 16-HBE) that express mRNA transcripts for taste receptors and RGS21 

(Figure 6.11).  To test the hypothesis that RGS21 is a negative regulator of gustation, we 

used the bitter receptor agonist denatonium benzoate and monitored inhibition of 

intracellular cAMP in the 16-HBE cell line (Figure 6.12).  Upon the administration of 

denatonium, cells overexpressing RGS21 had less inhibition of forskolin-mediated cAMP 

production than control cells.  Overexpression of the loss-of-function RGS21(R126E) 

mutant did not significantly alter bitter tastant-induced reduction of forskolin-mediated 

cAMP production (i.e., results were comparable to cells transfected with vector-only 

control; Figure 6.12). To ensure that the overexpression of RGS21 did not have 

unanticipated, global consequences on GPCR-mediated signaling, isoproterenol-activated 

production of cAMP was also monitored in 16-HBE cells overexpressing RGS21, 

RGS21(R126E), or vector alone. No significant alteration in the potency (EC50 values) of 

isoproterenol upon RGS21 overexpression was observed (Figure 6.15).  

 While bitter taste receptor activation of Gi/o subfamily G! subunits results in the 

inhibition of adenylyl cyclase activity (Figure 6.12), in the prevailing model of gustatory 

signal transduction, it is the released G"# heterodimer that is thought to have the primary 

role in signaling, via PLC-"2 activation that results in production of IP3 and DAG and a 

subsequent increase in intracellular calcium [68].  To determine if RGS21 is also able to 

inhibit the activation of PLC-"2-mediated Ca
2+

 release, we monitored intracellular 

calcium in 16-HBE cells upon the addition of denatonium. A significant decrease in Ca
2+
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release was observed in RGS21-overexpressing 16-HBE cells, as compared to cells 

overexpressing the RGS21(R126E) mutant or vector only (Figure 6.14).   

 While both the cAMP accumulation and Ca
2+

 mobilization data suggest that 

RGS21 can act as a negative regulator of bitter taste signaling upon its ectopic 

overexpression in cells, we wanted to test whether endogenous RGS21 expression serves 

to negatively regulate denatonium signaling.  We generated three stable 16-HBE cell 

lines with decreased RGS21 expression using lentiviral shRNA-mediated knockdown 

(Figure 6.15).  No difference was seen in levels of forskolin-stimulated cAMP production 

in the absence of denatonium or upon the addition of 5 mM denatonium; however, at 

higher concentrations of denatonium (up to 14 mM tested), a significant (p<0.01) 

decrease in cAMP generation was observed in all three cell lines with reduced RGS21 

expression versus the control lentivirus-treated cell line (Figure 6.16). To confirm that the 

generation of the stable RGS21 knockdown cell lines had not disrupted GPCR-mediated 

cAMP signaling in a non-specific fashion, we tested isoproterenol responses in these cell 

lines. No significant different in potency or maximal efficacy was observed; specifically, 

we determined the EC50 values of each cell line for isoproterenol-induced cAMP 

production to be 4.4 nM  (95% C.I. 3.6 - 5.5 nM), 3.7 nM (95% C.I. 2.9 – 4.8 nM), 5.2 

nM (95% C.I. 4.4-6.1 nM), and 3.2 nM (95% C.I. 2.4-4.1 nM) for vector control, 

shRNA#59, shRNA#61, and shRNA#63 stable lines, respectively (Figure 6.17).  

Intracellular Ca
2+

 responses were also measured in the stable RGS21 knockdown cell 

lines upon denatonium addition.  At all concentrations tested, decreased RGS21 

expression was observed to result in an increase in denatonium-induced Ca
2+

 release 

(Figure 6.18).  While the unique distribution of RGS21 in lingual gustatory tissue was 
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originally described by von Buchholtz et al. [33], leading to the possibility that RGS21 

could be a regulator of gustatory signal transduction, our work has demonstrated the 

ability of RGS21 to act as a GAP for multiple G! subunits known to be involved in 

tastant receptor signaling, as well as provides the first evidence of a non-receptor, G-

protein regulatory component to the signal transduction pathway that alters the sensitivity 

of tastant responsiveness in an endogenous, cellular context.   
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FIGURES 

 

 

 

Figure 6.1. RGS21 transcripts are highly expressed in human and mouse 

chemosensory tissues as well as in the lung and human gastrointestinal tissues – 

(A,B) Real-time, quantitative PCR using fluorogenic probe detection was performed on 

total RNA from indicated human organs.  Variable quantities of RNA were normalized 

by comparison to 18S ribosomal RNA and expression of RGS21 was set to 100% in the 

circumvallate (c.v.) papillae using the  method [35]. (C,D) Total RNA was 

extracted from indicated mouse organs prior to quantitative RT-PCR.  Variation in total 

amounts of RNA isolated were normalized to 18S ribosomal RNA and were normalized 

using the  method [35] so that expression of mouse Rgs21 in the tongue was set to 

100%. 
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Figure 6.2. PLC-!2, Gustducin-! , and RGS21 transcripts are expressed in 

chemosensory cells in the mouse circumvallate papillae.  Sections of mouse 

circumvallate papillae were hybridized with digoxigenin riboprobes for (A) PLC-"2, (B) 

Gustducin-!, and (C) RGS21.  Following hybridization and washes, probes were 

detected using an alkaline phosphatase labeled anti-digoxigenin antibody and BCIP/NBT 

(5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine Salt / Nitro-Blue Tetrazolium 

Chloride) chromogenic detection. 
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Figure 6.3. Phylogenetic relationship of the 37 RGS domain-containing proteins 

identified in humans. An unrooted dendrogram, based on the RGS domain polypeptide 

sequence of the indicated proteins, was generated using ClustalW [69] and visualized 

using TreeView [70]. Based on this sequence homology analysis, RGS21 is categorized 

as a member of the R4 subfamily of RGS proteins. 
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Figure 6.4. RGS21 interacts with Gi/o subfamily G!  subunits only in their transition 

state for GTP hydrolysis.  (A) COS7 cells were separately transfected using Fugene 6 

with 1.5 µg of DNA encoding one of the indicated G! subunits fused to the KT3 epitope.  

Forty-eight hours post transfection, cells were lysed in lysis buffer containing GDP, Mg
2+

 

and AlF4
-
 (“AMF”) or GDP alone.  Clarified cell lysates were incubated with 10 µg of 

purified His6-RGS21 protein at 4 °C overnight with NTA-Agarose.  Samples were 

centrifuged, agarose beads washed four times in lysis buffer, and precipitated proteins 

eluted by boiling for 5 minutes in loading buffer prior to being resolved by SDS-PAGE 

electrophoresis, transferred to a nitrocellulose membrane, and detected using anti-KT3 

antibody and chemiluminescence.  (B) COS7 cells were transfected with 1.5 µg of DNA 

encoding an HA-gustducin-! fusion protein using Fugene 6. The pulldown experiment 

was then conducted exactly as described for panel A.  
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Figure 6.5. RGS21 interacts with transition state forms of G! i/o subunits and G!q 

with nanomolar affinities.  (A) Biotin-G!i1 and alkaline-denatured biotin-G!i1 were 

immobilized on separate streptavidin biosensor surfaces for SPR binding analyses.  

Indicated concentrations of recombinant RGS21 protein were injected over both surfaces 

at 20 µl/min for 600 sec (injection start at t=0) with a subsequent 300 s dissociation time.  

Non-specific binding to the alkaline-denatured biotin-G!i1 surface was subtracted using 

BiaEvaluation software.  (B) Sensorgrams derived from experiments as illustrated in 

panel A were used for equilibrium saturation binding analyses to determine the affinity of 

wild-type RGS21 or RGS21(R126E) proteins for G!i1 or G!q in both their transition 

state (AMF) and ground state (GDP) forms.  G!q biosensor sensorgrams were obtained 

by immobilizing His6-G!q using capture coupling exactly as previously described [43].  

The affinity of the G!i1(AMF)/RGS21 interaction was determined to be 64 nM (95% C.I. 

40-87 nM) and the G!q(AMF)/RGS21 affinity was determined to be 20 nM (95% C.I. 

11-29 nM). No specific binding was observed for the loss-of-function RGS21(R126E) 

protein toward G!i1 or G!q nor for wild-type RGS21 toward GDP-bound G!i1 or G!q. 
(C) GST-RGS21 fusion protein or GST alone was immobilized on a biosensor surface 

exactly as previously described [42]. 200 µl of indicated concentrations of various G! 

subunits (in their transition state form) were injected over the biosensor surface. Non-

specific binding toward GST alone was subtracted using BiaEvaluation. The binding at t 

= 590 s was plotted and used for equilibrium binding analyses.  The affinities of G!i1, 

G!i2, G!i3, G!o, and transducin for immobilized RGS21 were determined to be 114 nM 

(95% C.I. 65-163 nM), 63 nM (95% C.I. 30-95 nM), 61 nM (95% C.I. 25-97 nM), 24 nM 

(95% C.I. 18-32 nM), and 190 nM (95% C.I. 134-247 nM), respectively. Open symbols 

denote no binding was detected when the various G! subunits were in their ground-state, 

GDP-loaded form. 
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Figure 6.6. Multiple sequence alignment of the RGS domains of all human R4 

family members. Sequence alignment of the indicated RGS domains was made using 

ClustalW [69]. Secondary structure assignments (alpha-helices denoted in Roman 

numerals) are based on the structure of RGS1 (PDB id 2BV1; [50]). Arg-126 is 

highlighted with a star; this residue is known to be a highly-conserved, surface-exposed 

constituent of the G!-binding “A-site” of RGS domains [50] and its charge-reversal to 

glutamic acid results in a loss of G! binding affinity and GAP activity.   
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Figure 6.7. Equivalent purification of wildtype RGS21 and RGS21 point-mutant 

(Arg-126-to-Glu; “R126E”). Proteins used for biochemical analyses in this study are 

highlighted by Coomassie blue staining after being resolved by SDS-PAGE. 
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Figure 6.8. Wild-type RGS21 and RGS21(R126E) have similar overall secondary 

structure. Circular dichroism spectra were separately collected using 0.1 mg/ml of 

RGS21 and RGS21(R126E) proteins, each diluted in 10 mM potassium phosphate salt 

(pH 7.5) at 25 °C using a PiStar-180 spectrophotometer (Applied Photophysics, UK).  

Spectra were collected from 185 nm – 260 nm in 0.5 nm steps with a bandwidth of 2 nm.   
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Figure 6.9. RGS21 acts as a GAP for Gi/o subfamily G!  subunits.  Intrinsic GTPase 

activity of indicated G! subunits, as well as RGS protein acceleration of this activity, was 

determined using [#-32
P]GTP single turnover assays. In the absence of Mg

2+
, 100 nM of 

(A) G!i1, (B) RGS-insensitive G!i1(G183S), (C) G!i2, (D) G!i3, and (E) G!oA was 

preincubated with [#-32
P] GTP at 30 °C for 10 minutes.  The reaction was then initiated 

by the addition of MgCl2 (10 mM), indicated concentration of recombinant RGS protein, 

and GTP#S (400 µM). At indicated time points, the production of inorganic phosphate 

was quantified by activated charcoal filtration and subsequent liquid scintillation.  (F) 

Transducin assays were conducted on a preformed complex between the G-protein 

heterotrimer (transducin-!"#; 2 µM) and rhodopsin (20 µM) and were initiated by the 

addition of [#-32
P]GTP supplemented with GTP (250 nM) [71].  Nonlinear regression was 

used to fit the data to a single exponential function using GraphPad PRISM; observed 

rates are presented in Table 7.1.  
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Figure 6.10. Gustducin and transducin G!  subunits have nearly identical interfaces 

for RGS domains. A protein sequence alignment of human gustducin-!  (“GNAT3”; 

GenBank accession number NP_001095856.1), transducin-!  (“GNAT1”; GenBank 

NP_653082.1), and G!i1 (“GNAi1”; GenBank NP_002060.4) was generated using 

ClustalW [69].  Contacts between the Ras-like domain of transducin-!  (Chain A) and the 

RGS9 RGS domain (Chain B) from the RGS9/transducin structure (PDB ID: 1FQK; ref. 

[67]) were identified using contact map analysis [72] and are denoted with a “C” above 

the alignment. 
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Figure 6.11. Quantitative RT-PCR results demonstrating expression of tastant 

signaling component transcripts within pulmonary epithelial cell lines 16-HBE and 

Calu-3, but not the human alveolar epithelium carcinoma cell line A549. Real-time, 

quantitative RT-PCR using fluorogenic probe detection was performed for the indicated 

transcripts and normalized to 18S rRNA signal.  
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Figure 6.12. Overexpression of wild-type RGS21, but not a loss-of-function, point-

mutant RGS21, leads to inhibition of bitter tastant signaling to reduction of cAMP 

levels in the human airway epithelial cell line 16-HBE. Cultures of the 16-HBE cell 

line were transiently transfected with Fugene 6 (Roche), the Promega GloSensor cAMP-

biosensor cDNA, and expression plasmids containing HA-epitope-tagged open reading 

frames for wildtype (wt) rat RGS21, or Arg-126-to-Glu point mutated (R>E) rat RGS21, 

or empty pcDNA3.1 (Invitrogen), as indicated. Inhibition of forskolin-stimulated cAMP 

production by treatment with indicated concentrations of denatonium-B was determined 

24 hours post-transfection by detection of GloSensor-dependent luminescence. Inset, 

Western blot of whole cell lysates of transfected cell cultures with anti-HA-epitope 

antibody and chemiluminescence detection, demonstrating equivalent expression of 

wildtype and point-mutant RGS21 proteins. Asterisks denote statistically significant 

differences, p < 0.05 (one-way ANOVA with Bonferroni’s post-test). 
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Figure 6.13. Isoproterenol-stimulated production of cAMP is not perturbed by 

overexpression of RGS21 or RGS21(R126E) in 16-HBE cells.  Cells were transfected 

exactly as described in Figure 6.12.  Isoproterenol-induced cAMP production was 

detected by GloSensor-dependent luminescence.  EC50 values for isoproterenol were 2.9 

nM (95% C.I. 2.3 - 3.7 nM), 3.8 nM (95% C.I. 3.1 - 4.7 nM), and 3.8 nM (95% C.I. 3.1 - 

4.7 nM) for 16-HBE cells overexpressing RGS21, RGS21(R126E), and pcDNA3.1 empty 

vector, respectively.   
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Figure 6.14. Overexpression of wild-type RGS21, but not a loss-of-function, point-

mutant RGS21, leads to inhibition of bitter tastant signaling to increased 

intracellular calcium in the human airway epithelial cell line 16-HBE. Cultures of the 

16-HBE cell line were transiently transfected with Fugene 6 (Roche) and expression 

plasmids containing HA-epitope-tagged open reading frames for wildtype (wt) human 

RGS21, or Arg-126-to-Glu point mutated (R>E) rat RGS21, or empty pcDNA3.1 

(Invitrogen), as indicated. Net peak intracellular calcium production, as elicited by 

treatment with indicated concentrations of denatonium-B, was determined using calcium 

indicator dye and FLIPR detection (relative fluorescence units, RFUs), 48 hours post-

transfection. Asterisks denote statistically significant differences, p < 0.05 (one-way 

ANOVA with Newman-Keuls post-test). 
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Figure 6.15. Quantitative RT-PCR demonstrating shRNA-mediated knockdown of 

RGS21 transcript levels in the stable, lentivirus-transfected variants of the human 

airway epithelial cell line 16-HBE. Real-time, quantitative PCR using fluorogenic probe 

detection was performed for the RGS21 transcript and normalized to 18S rRNA signal.  
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Figure 6.16. shRNA-mediated knockdown of endogenous RGS21 potentiates bitter 

tastant signaling to inhibition of cAMP accumulation in the human airway epithelial 

cell line 16-HBE.  The 16-HBE human airway epithelial cell line was stably-transfected 

with either empty lentivirus (“Empty”) or one of three, RGS21-directed shRNA-

expressing lentiviruses (#59, #61, #63), as indicated. Inhibition of forskolin-stimulated 

cAMP production by treatment with indicated concentrations of denatonium-B was 

determined 24 hours post-transfection by detection of GloSensor-dependent 

luminescence.  Asterisks denote statistically significant differences, p < 0.01 (one-way 

ANOVA with Dunnett's Multiple Comparison Test). 
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Figure 6.17. Isoproterenol-stimulated production of cAMP is not perturbed by 

shRNA-mediated knockdown of RGS21 in 16-HBE cells.  Cells were treated exactly as 

described in Figure 6.13.  Stimulation of isoproterenol-induced cAMP production was 

detected by GloSensor-dependent luminescence.  EC50 values for isoproterenol were 4.4 

nM  (95% C.I. 3.6 - 5.5 nM), 3.7 nM (95% C.I. 2.9 - 4.8 nM), 5.2 nM (95% C.I. 4.4 - 6.1 

nM), and 3.2 nM (95% C.I. 2.4 - 4.1 nM) for 16HBE cells expressing empty vector 

control, shRNA#59, shRNA#61, or shRNA#63, respectively.   
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Figure 6.18. shRNA-mediated knockdown of endogenous RGS21 potentiates bitter 

tastant signaling to increased intracellular calcium in the human airway epithelial 

cell line 16-HBE. The 16-HBE human airway epithelial cell line was stably-transfected 

with either empty lentivirus (“Control”) or one of three, RGS21-directed shRNA-

expressing lentiviruses (#59, #61, #63), as indicated. Net peak intracellular calcium 

production, as elicited by treatment with indicated concentrations of denatonium-B, was 

determined using calcium indicator dye and FLIPR detection (relative fluorescence units, 

RFUs).  
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Table 6.1.  GTP hydrolysis rates observed in single turnover assays.  Rates were 

determined using non-linear regression using GraphPad Prism 5.0 and are expressed in 

sec
-1

.  95% confidence intervals are shown in brackets
 
.  

 

RGS21 

(nM) 
G!i1 G!i1(G183S) G!i2  G!i3 Transducin 

0.0090 0.0039 0.0074 0.0088 0.036 
0 

(0.0071-0.011) (0.0036-0.0042) 
(0.0058-

0.0091) 

(0.0079-

0.0097) 
(0.020-0.051) 

0.015 0.0092 0.013 
1 

0.013-0.018 
n.d. 

0.0081-0.010 (0.010-0.016) 
n.d. 

0.060 0.031 0.033 
10 

(0.051-0.068) 
n.d. 

(0.028-0.034) (0.030-0.036) 
n.d. 

0.051 
25 n.d. n.d. n.d. n.d. 

(0.034-0.067) 

0.25 0.20 0.14 
50 

(0.11-0.38) 
n.d. 

(0.14-0.25) (0.10-0.17) 
n.d. 

0.23 0.22 0.16 0.18 
100 

(0.078-0.38) 
n.d. 

(0.065-0.37) (0.12-0.19) (0.12-0.23) 

.0033 0.51 
250 n.d. 

(0.0029-0.0036) 
n.d. n.d. 

0.35-0.67 

0.0090 .0033 0.0065 0.0093 250; 

R126E (0.0071-0.011) (0.0029-.0037) 
(0.0048-

0.0082) 
(0.0083-0.010) 

n.d. 

0.74 
1000 n.d. n.d. n.d. n.d. 

0.25-1.2 

0.033 1000; 

R126E 
n.d. n.d. n.d. n.d. 

(0.013-0.053) 
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CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS 
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7.1  GAPS IN THE STRUCTURAL KNOWLEDGE OF RGS PROTEIN / G!  

ENGAGEMENT 

 

The original report of the RGS4/G!i1 structure by Dr. John Tesmer and colleagues in 

1997 initiated a frenzy of structure biology directed towards the RGS protein superfamily 

[1].  The work of the laboratories of Dr. Sprang, Dr. Tesmer, and Dr. Sigler as well as 

Natural Science Research Institute in Japan (RIKEN) and the international Structural 

Genomics Consortium has provided the public domain with nearly 40 NMR and x-ray 

crystallographic structures of isolated RGS domains and RGS/G! complexes (Table 7.1).  

Remarkably, the archetypal RGS/G! interaction, originally described by the RGS4/G!i1 

structure, is highly conserved in all complexes of R4 and R7 family members binding 

G!i1, G!i3, G!o, and transducin-G!i1 chimeras [1-4]. While subtle differences can be 

identified among the complexes, primarily within the G! all-helical domain/RGS domain 

interactions [4], the overall mechanism of action and stabilization of the Switch I region 

of G! is highly conserved [1-4]. It is doubtful that additional structures of the RGS/G!i 

family members will provide any novel structural insights. However, there currently is a 

dearth of structural information regarding how canonical (i.e., GAP-competent) RGS 

proteins interact with G!q, despite the fact that specific RGS domains can interact 

selectively with G!q (i.e., RGS2) or selectively with G!i and not G!q (e.g., RGS10, 

RGS12, RGS14, RGS6, RGS7, and RGS20) (Figure 1.8) [4-9]. Complexes of 

GRK2/G!q/G"# have been solved; however, the “RGS-homology” domain of GRK2 

binds as a G!q effector, using a surface that is distinct from the binding site of canonical 

RGS domains [10, 11].  Based on the model of G!q from the GRK2/G!q/G"# structure 

and the p63RhoGEF/G!q/RhoA structure [10, 12], the canonical RGS domain-binding 
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interface is highly conserved; however, the !B-!C loop of the all helical region of G! is 

reoriented in G!q as compared to G!i subunits [10].  This perturbation in the all-helical 

region of G!q may be a mechanism by which RGS proteins selectively bind G! subunits.  

A structure of G!q in complex with an R4 family RGS protein (i.e., one with canonical 

GAP activity and no effector function) could therefore help explain the role of the 

all-helical region in G! subfamily binding specificity. Chimera and mutagenesis studies 

have identified critical amino acids within the G!q-selective RGS2 that inhibit its binding 

to G!i subunits [13, 14]; in addition, our laboratory has solved a structure of a mutant 

RGS2 that can bind G!i (Chapter 2). However, little is known about how wild-type 

RGS2 selectively engages and accelerates GTP hydrolysis by its native substrate of 

G!q(GTP).   

 While the primary binding partner of RGS proteins is the heterotrimeric G-protein 

! subunit, RGS4 has been demonstrated to bind to phosphatidylinositol-3,4,5-

trisphosphate (PIP3) and Ca
2+

/calmodulin, in a competitive, mutually exclusive manner,  

at a distinct site from the G!-binding interface (Figure 1.10) [15, 16]. Structural 

information from an RGS domain with PIP3 or Ca
2+

/calmodulin bound at this allosteric 

B-site could provide novel insight into how binding a completely distinct site modifies 

the catalytic activity of the RGS protein. This information could be used to help design 

small molecules that could mimic the inhibition or activation by PIP3 or Ca
2+

/calmodulin, 

respectively; such B-site-targeted molecules would be valuable in those clinical or 

pathological indications where activation of RGS domain GAP activity (rather than 

inhibition) is desired (e.g., RGS4 function in schizophrenia). 
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 In addition to the PIP3/Ca
2+

/calmodulin B-site of R4 family members, RGS 

proteins are thought to either bind receptors directly [17-19], or through adaptor proteins 

such as spinophilin [20].  While co-immunoprecipitation studies and pull down assays 

using cellular lysates have demonstrated that RGS2 interacts with spinophilin [20], it has 

yet to be shown whether spinophilin can interact directly with RGS2 or if the binding is 

dependent on other cellular components.  A comprehensive biochemical study of 

RGS/spinophilin and RGS/receptor complexes would help to identify additional targets 

for NMR or x-ray crystallographic structure determinations that could reveal the 

molecular mechanism(s) by which RGS proteins engage specific receptors and thereby 

act in receptor-selective manners in the context of the intact cell.   

 In addition to future studies investigating the structural basis of RGS domain/G!q 

interactions and allosteric modulation of RGS proteins by PIP3 and Ca
2+

/calmodulin, an 

understanding of how RGS12 and RGS14 assemble multiple components of the 

Ras/Raf/MEK/ERK signaling cascade would broaden our structural understanding of 

how RGS12 and RGS14 facilitate activation of the MAPK system.  Our lab has been at 

the forefront of understanding how RGS12 and RGS14 use their multi-domain 

architectures to act as signaling scaffolds (Figure 1.7).  In addition to their RGS domain 

and GoLoco motif (Figure 1.9), both of which interact with adenylyl-cyclase inhibitory 

G! subunits, RGS12 and RGS14 also contain tandem Ras-binding domains (RBD). 

Furthermore, RGS12 contains an additional phosphotyrosine binding domain (PTB) and 

a PSD-95/Dlg/ZO-1 (PDZ) domain [21-23].  In 2007, we reported that RGS12 can bind 

the nerve growth factor receptor tyrosine kinase TrkA, as well as the downstream 

signaling components of H-Ras, B-Raf, and MEK2, in an in vivo context. By assembling 
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these components, RGS12 promotes nerve growth factor-mediated neuritogenesis in 

PC12 cells and axonogenesis in explanted embryonic dorsal root ganglion neurons [23].  

Currently, we do not understand the physiological consequences of the seemingly 

divergent roles of RGS12, which acts as a G! guanine nucleotide dissociation inhibitor 

(potentially prolonging signaling from G"# subunits), a G! GAP (terminating 

heterotrimeric G-protein signaling), and a scaffolding protein (assembling TrkA with 

H-Ras, B-Raf, and MEK2). Our lab has demonstrated that the GoLoco motif of RGS12 is 

necessary for the endosomal sub-cellular localization of RGS12 [24]; however, it is not 

known how the G!-interacting domains (i.e., RGS domain and GoLoco motif) and the 

scaffolding domains (i.e., PDZ, PTB, RBD1 and RBD2) allow for RGS12 to integrate 

signaling from these two signal transduction pathways. Structural information of RGS12 

bound to heterotrimeric G-protein binding partners and scaffolding partners would 

provide insight into whether the binding of components from one signaling system 

(GPCR vs RTK) affects the other system.  It is possible that association of G! with 

RGS12 via its RGS domain or GoLoco motif inhibits or facilitates the binding of TrkA, 

H-Ras, B-Raf, and/or MEK2.  An additional question to resolve is the nature of the 

binding exhibited by RGS12 both to activated H-Ras and to B-Raf. It is known that the 

N-terminal RBD of B-Raf binds H-Ras(GTP) [25]. Our lab has subsequently 

demonstrated that RGS12 directly binds H-Ras(GTP) via its first RBD and overexpresion 

of activated H-Ras enhances precipitation of a B-Raf/H-Ras(GTP)/RGS12 complex [23]. 

However the particular mode of engagement by which two RBD-containing proteins (B-

Raf & RGS12) bind to activated H-Ras simultaneously remains enigmatic; thus, future 
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biochemical and structural studies will be required to allow us to define the mechanism of 

this binding.   

 None of the approximately 40 structures of RGS proteins currently in the public 

domain are of non-mammalian RGS proteins.  Our laboratory is well suited to solve 

structures of non-mammalian RGS domain/G! pairs. For example, our lab has described 

a unique seven-transmembrane domain RGS protein in the model plant organism 

Arabidopsis [26-28] and a unique RGS domain-containing RhoGEF in Entamoeba 

histolytica, as well as its cognate G! (manuscript in preparation).  Structures of unique 

and evolutionarily divergent RGS protein/G! complexes would provide an understanding 

of how RGS proteins have evolved.  Based on mutagenesis studies of the Arabidopsis 

thaliana G! subunit, it is likely that the RGS domain/G! interaction does not occur in 

the canonical manner depicted by the known mammalian RGS domain/G! structures; 

specifically, mutation of the switch I glycine in Arabidopsis G! (analogous to G183S in 

human G!i1) does not result in a RGS-insensitive G! subunit (Dr. Francis Willard, 

personal communication).  The RGS-RhoGEF of E. histolytica also appears to bind its 

EhG! partner in a unique manner. The RGS-insensitive mutation to the switch I glycine 

that is used to produce RGS-insensitive G! subunits (e.g., mammalian G!i1, G!i2, G!o, 

G!q; yeast Gpa1 [29-32]) does not result in a loss of binding between G!13 and 

p115RhoGEF, the archetypal mammalian RGS-RhoGEF [33]; in contrast to these 

mammalian proteins, the RGS-insensitivity mutation is able to abolish binding between 

EhG! and EhRGS-RhoGEF (manuscript in preparation), indicating that this E. 

histolytica RGS-RhoGEF engages heterotrimeric G-protein subunits by a mechanism 

distinct from its mammalian counterparts.   
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7.2  THE PROMISE OF SMALL MOLECULE MODULATORS OF RGS 

PROTEINS 

 

Even with a significant amount of effort from the pharmaceutical industry and academic 

laboratories trying to identify small molecule inhibitors of RGS domain GAP activity, the 

field still has a dearth of validated small molecule inhibitors that function in vivo. Despite 

this, we remain committed to identifying small molecule modulators of RGS proteins and 

validating RGS proteins as viable therapeutic targets. All in vitro high throughput screens 

that have been performed have been dependent on identifying small molecules that 

disrupt the binding of the RGS protein to the G! [34, 35] and, by their very design, 

cannot identify small molecules that bind allosterically and potentiate GAP activity, nor 

could they identify small molecules that trap the RGS domain/G! interaction in a stable 

complex.  The adoption of measuring RGS domain/G! binding as a proxy for RGS 

domain-accelerated GTP hydrolysis in screening assays arose because the gold standard 

assay used to quantify RGS activity involves multiple discrete steps difficult to 

miniaturize and automate for high-throughput screening campaigns. First the G! is 

loaded with 
32

P-GTP in the absence of Mg
2+

, then the assay is initiated by the addition of 

Mg
2+

, an RGS protein, and excess GTP#S, and finally timed aliquots starting at zero 

seconds are sampled, which requires centrifugation, separation of the supernatants, and 

then liquid scintillation.  This “single turnover” assay design was required because GDP 

release (instead of GTP hydrolysis) was always the rate-limiting step of the guanine 

nucleotide cycle (Figure 1.1).  In Chapter 4, we described development of a fluorescent, 

homogeneous assay that can be used to measure GAP activity of RGS proteins using an 
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automatable, high-throughput design.  It is our hope that, in the future, the Transcreener 

GDP assay will be used to identify both inhibitory and potentiating small molecules and 

will provide higher sensitivity than traditional binding assays.    

While we have previously stressed the desire to identify small molecules that 

interact with either the A-site or B-site of RGS domains (Figure 1.10), another possible 

interaction point exists to target with small molecules. The N-terminal helices, which lay 

outside of the canonical RGS domain on most R4 RGS proteins, have been demonstrated 

to provide receptor selectivity to RGS-mediated negative regulation of GPCR signaling 

[19, 36] and evidence exists that these N-terminal helices can engage receptors either 

directly or via adaptor proteins [17, 20].  While the molecular mechanisms and structural 

details of these interactions remain to be elucidated (see Section 7.1 above), targeting the 

RGS protein/GPCR interaction with small molecules may provide a valuable alternative 

to targeting the RGS domain/G! interface.  Such an approach is supported by the 

observation that RGS2 is mislocalized because of a single, SNP-induced point mutation 

in its N-terminus, a region outside of the canonical catalytic domain; this SNP results in 

enhanced vasoconstrictive signaling and subsequent hypertension in humans, reminiscent 

of the phenotype that is observed in RGS2-deficient mice [37, 38].  The possibility that 

RGS proteins are interacting with the third intracellular loop of GPCRs [17, 39] also 

suggests that a small molecule that interacts with the GPCR at its intracytosolic interface 

could perhaps destabilize (or conversely stabilize) the RGS protein/GPCR interaction and 

thereby inhibit (or enhance) the negative regulatory activity of the RGS protein on GPCR 

signal transduction.  
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 The yeast-based high-throughput screen [40-42] for small molecule inhibitors of 

RGS protein activity is the only screen in the literature to date that was directed at 

identifying RGS protein inhibitors without using purified components in vitro. We have 

actively avoided using cellular systems to screen for small molecule RGS protein 

modulators because of the high day-to-day variability, the convoluted manner of 

quantifying the RGS protein G!i-directed GAP activity on an inhibitory system (i.e., 

measuring compound inhibition of RGS protein inhibition of G!i-mediated inhibition of 

adenylyl cyclase activity), and the inherent difficulty in identifying the ultimate 

molecular target of a small molecule that is first discovered in a cellular screen; however, 

the advent of robust non-radioactive assays to quantify intracellular Ca
2+

 (e.g., FLIPR 

assays) and cAMP content (e.g., Promega GloSensor) should encourage us to reconsider 

cell-based assays.   

 Because many RGS proteins act on adenylyl-cyclase inhibitory G! subunits (G!i 

subfamily members), quantification of forskolin-induced cAMP accumulation has been a 

common cellular assay to quantify the activity of RGS proteins [43, 44]; however, 

historically these assays have been low-throughput, radioactive assays [45-47].  The 

advent of robust, luminescence screens for real-time quantification of cAMP levels opens 

the possibility of performing screens for RGS protein inhibitors using cell lines.  

Currently there are a wide variety of commercial, non-radioactive assays for quantifying 

cAMP including “CatchPoint cyclic-AMP” (Molecular Devices; Sunnyvale, CA), 

“HitHunter™ cAMP” (DiscoverRX; Fremont, CA), “MSD® cAMP” (Meso Scale 

Discovery; Gaither, MD), and “GloSensor™” (Promega; Madison, WI). (For a more 

complete review of available cAMP assay, we refer the reader to: [48]).  We have 
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successfully used the GloSensor™, a luminescence-based cAMP assay, in live cells to 

quantify changes in cAMP levels in response to overexpressed, mutant RGS2 (i.e., 

mutated to act on G!i subunits; Figure 2.8).  It may be possible, with optimization, to 

configure this assay to be used to detect small molecule modulators of RGS protein G!i-

directed GAP activity.  One of the advantages of using such an approach is that the 

candidate molecules identified will likely be cell-permeable and thus will not require 

extensive medicinal chemistry efforts to make primary hits cell-permeable.   

 The benefits of many therapeutic drugs are often not without negative 

consequences.  For example, many patients undergoing chemotherapy experience severe 

neutropenia or anemia and therefore treatment with adjuvant drugs such as granulocyte 

stimulating factor or erythropoietin has been formulated to allow patients to maintain 

their chemotherapeutic regimens [49, 50].  Currently the primary therapeutic option for 

cognitive impairment, such as Alzheimer’s disease, increases acetylcholine levels by 

targeting acetylcholine esterase activity [51].  However, increased acetylcholine levels 

results in increased signaling at all muscarinic and nicotinic receptors and, while the 

improvement in cognition is mediated by G!q-coupled muscarinic receptors, adverse 

effects such as bradycardia result from agonism of G!i-coupled muscarinic receptors.  Up 

to 15% of patients report discontinuing the use of acetylcholine esterase inhibitors 

because of the side effects [52, 53].  Given the highly selective RGS2/G!q interaction 

(Chapter 2), administration of a subtherapeutic dose of an acetylcholine esterase inhibitor 

along with an RGS2-selective inhibitor could enhance the cognition improving effects of 

the additional acetylcholine generated on G!q-muscarinic receptors while minimizing the 

G!i-muscarinic receptor-mediated nausea and diarrhea.  
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 While the challenge of identifying a new drug class is daunting -- there are 

potentially hundreds of G!/RGS protein interactions that could be targeted (not even 

considering receptor/G!/RGS protein combinations) -- there must be at least one 

compound in all of chemical space that can modulate RGS protein activity.  We just have 

to find it.   

 

7.3 RGS21, A NOVEL REGULATOR OF GUSTATION? 

 

The work presented in Chapter 6 has comprehensively characterized the biochemical 

properties of RGS21; however, there remains a myriad of experimental questions 

regarding the role of RGS21 in the perception of taste. To more fully understand the role 

of RGS21 in gustation, it seems essential to develop a mouse deficient in RGS21 

expression and assess the changes in gustation that result from this deficiency.  Even with 

the knowledge that RGS21 can act as a GAP in vitro for G!i1,i2,i3,o and transducin 

subunits, and inhibits bitter signaling in cellular assays (Chapter 6), it is difficult to 

predict a priori how RGS21 may affect the perception of bitter, sweet, and/or umami 

compounds in an entire organism. An example of an RGS protein with an unexpected 

chemosensory phenotype comes from C. elegans, which has a sensory-specific RGS 

protein: Rgs-3. C. elegans worms deficient in Rgs-3 expression have normal 

development and motor function, but are unable to respond to chemoattractants such as 

isoamyl alcohol at levels which would ordinarily invoke a response in C. elegans [54]. 

Interestingly, as the concentration of isoamyl alcohol is decreased, Rgs-3 deficient worms 

regain the ability to respond to isoamyl alcohol [54]. It is plausible that RGS21 plays a 

similar role by which it dampens tastant signaling so that the gustatory system is not 
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overwhelmed when molecules are overly abundant on the lingual epithelium. To test how 

RGS21 might act to regulate taste, I would initially use a two-bottle taste test on wildtype 

mice and RGS21-deficient mice.  In one bottle, normal water is present and, in the second 

bottle, water with a known concentration of either a bitter, sweet, or umami compound is 

present.  Over a 24-hour period, the consumption of each bottle is recorded, and the 

preference can be calculated based on consumption of the experimental water (containing 

bitter, sweet, or umami) compared to the total consumption of water during the time 

period.  It seems likely that the removal of a negative regulator of taste would allow 

RGS21-deficient mouse strains to detect the appetitive effects of sweeteners at 

concentrations below the detection limit of wild-type animals.  This apparent increase in 

potency of appetitive compounds would result in a left-shift of the dose-response curve; 

however, based upon the results seen with Rgs-3 in C. elegans, it may be possible to have 

a left-shift at lower concentrations of an appetitive compound but also a total loss of 

perception at high concentrations. This could occur if RGS21 is crucial to preventing the 

gustatory system from being saturated by high tastant concentrations.   

It is possible that the taste perception phenotype of RGS21-deficient mice may be 

too subtle to be observed using such a method; in that case, recordings from the chorda 

tympani (the nerve responsible for the transduction of lingual chemosensory signal to the 

brain) could be used to monitor action potentials generated upon administration of bitter, 

sweet, or umami compounds directly to the circumvallate papillae.  The advantage of 

conducting this type of study is that it removes the integration of other complex inputs 

that occur once tastant-induced action potentials reach the brain.   
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 In addition to having a negative regulatory role in gustation, we expect RGS21 

could also be regulating “local gustation” in the digestive tract. While conscious 

perception of taste is mediated only through lingual chemosensory cells, evidence is 

rapidly emerging that bitter and sweet taste receptors are also expressed in 

enteroendocrine cells and modulate glucagon-like peptide (GLP-1) and insulin levels in 

response to ingested bitter and sweet compounds [55-57].  I hypothesize that RGS21 

suppresses basal activation of taste receptors in enteroendocrine cells.  If this hypothesis 

is true, I expect that RGS21-deficient mice would have a higher fasting insulin levels; 

chronically, this condition could result in the development of insulin resistance. In 

contrast to the previous report of Rgs21 transcripts being expressed exclusively in the 

circumvallate papillae [58], we have identified Rgs21 transcripts in digestive and 

pulmonary tissues using RNA isolated from these organs; however, these results need to 

be followed up with work defining the particular subset(s) of cells in the lungs and in the 

digestive tract that express RGS21.  We have unsuccessfully attempted to make 

monoclonal antibodies against two different RGS21-derived immunogens, and in situ 

hybridization has proven difficult in lung tissue slides derived from rodents; thus, it 

would be useful to develop a transgenic animal that used the Rgs21 promoter to drive the 

expression of a fluorescent protein marker (e.g., mCherry).  The creation of a mouse line 

that expressed a fluorescent reporter would allow us to perform cross-breeding with 

T1R3/YFP, Gustducin/GFP, PLC"2/GFP, and/or TRPM5/GFP transgenic mouse strains 

that have been created by other labs [59-61].  These initial crosses, in conjunction with 

fluorescence-based detection of markers indicating expression of tastant signaling 

components, would provide conclusive evidence as to what subset(s) of taste cells 
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express RGS21 in lingual epithelium and also allow us to identify RGS21-expressing 

chemosensory cells in pulmonary and digestive epithelia.   

Our discovery that mRNA transcripts for RGS21 and taste receptors are expressed 

in a human bronchial epithelial cell line (16-HBE) and a human pulmonary epithelial cell 

line (Calu-3) was initially surprising, as these cell lines are typically used as a model for 

cystic fibrosis research; however, contemporaneous with our discovery of RGS21 

expression in 16-HBE cells, Shah and colleagues reported that bitter compounds increase 

the ciliary beat frequency of airway cells [62]. This published report was the first 

evidence of gustatory components having a functional role in pulmonary epithelium.  

Both 16-HBE and Calu-3 cell lines are frequently used in cystic fibrosis research because 

of their native expression of Cystic Fibrosis Transmembrane conductance Regulator 

(CFTR).  This anion channel is expressed in epithelial cells in the lungs, pancreas, 

intestines, reproductive tract, and sweat glands [63]. Classically, upon phosphorylation of 

the CFTR regulatory “R” domain by Protein Kinase A (PKA) in an ATP-dependent 

manner, the CFTR channel opens to allow the movement of chloride ions onto the apical 

epithelial surface [64, 65].  The excess negative charge generated by the CFTR on the 

epithelial surface results in the movement of sodium ions to neutralize the electrical 

gradient.  The excess sodium chloride on the epithelial surfaces causes the movement of 

water – decreasing the viscosity of the mucus [66].  While the PKA activation of CFTR 

chloride conductance is well established, the mechanism of CFTR activation in vivo is 

much more complex. In addition to cAMP activation of PKA, activation of the G!q 

coupled P2-puringeric receptor (P2Y2) results in a transient increase in intracellular Ca
2+

 

mediating a protein kinase C (PKC)-dependent activation of the CFTR [67, 68] and 
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activation of the Ca
2+

-dependent Cl
-
 channels [69, 70].  Given that gustatory signaling 

can both inhibit adenylyl cyclase via the G-protein ! subunit and stimulate Ca
2+

 release 

by G"# activation of PLC-"2 I hypothesize that activation of bitter receptors in lung 

epithelial cell lines (and the native pulmonary epithelium) modulates CFTR-driven 

chloride efflux.  In order to protect the airway from the inhalation of potentially toxic 

substances, it would be logical for T2R activation by bitter compounds to result in 

increased CFTR function to facilitate clearance of the toxic substance from the lung.  

This type of response would be consistent with the increased ciliary beat frequency 

observed in pulmonary epithelial cells in response to bitter substances [62] and would 

also be consistent with the observation that bitter compounds, when applied to ex vivo 

intestinal tissue, results in an increased Cl
-
 and HCO3

-
 secretions [71].  If bitter receptors 

play a protective role in the airway, I would expect that endogenous RGS21 levels serve 

to antagonize the effects of bitter compounds on T2Rs.  Specifically, in a RGS21-

deficient mouse, the administration of bitter compounds should result in an exaggerated 

mucociliary clearance compared to wild-type mice; however, it is possible that the 

decreased level of cAMP production, mediated by adenylyl-cyclase inhibitory G! 

subunits left unchecked by RGS21 GAP activity, could result in deactivation of CFTR 

function – a counterproductive response for the RGS21-deficient mouse to exhibit to a 

bitter inhalant challenge.  

While the work presented in this dissertation has provided convincing evidence 

that RGS21 is a biochemically active negative regulator of G! subunits and that RGS21 

is expressed selectively in chemosensory cells, this work has resulted in more 
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unanswered questions regarding the physiological role of RGS21 in the protection of 

airways and in the perception of taste.   

While the ability to enjoy savory foods or the bitterness of a cup of coffee may 

seem like a unnecessary luxury, it has been noted that taste is the only external sensory 

system that is necessary for life [72].  Individuals born with a complete loss of vision, 

hearing, or smell are able to adapt and function in society; however few, if any, reports of 

congenital ageusia (loss of taste) in humans exist [72].  A significant proportion (35-70%) 

of patients who undergo radiation therapy for head and neck cancers report a loss of taste 

that remains after a year, and this loss of taste correlates with weight loss [73, 74].  When 

the loss of the pleasurable experience of consuming caloric (sweet) food is removed 

patients must be vigilant to maintain body mass.   

In addition to clinicians working with patients with head and neck cancers, 

pediatricians are well aware of the clinical consequences of gustation.  One of the main 

factors of non-compliance among pediatric populations is the predominant bitter taste of 

many xenobiotics [75-77].  Additional research into blocking the activation of bitter 

receptors by xenobiotics would allow prescribed pharmaceuticals to be taken more 

consistently and allow their full therapeutic potential to be realized.   
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Table 7.1:  Database of apo- and G!-complexed RGS domain structures 

RGS 

protein 

family 

PDB 

  code 
a
 

Description 
Method of structure 

  determination 
b
 

Reference 
c
 

R4 2BV1 RGS1 X-ray crystallography 18434541 

R4 2AF0 RGS2 X-ray crystallography 18434541 

R4 none RGS3 NMR (BMRB# 15178) 18434541 

R4 2OJ4 RGS3 X-ray crystallography Unpublished 

R4 1EZT, 1EZY RGS4 NMR (BMRB# 4386) 10852703 

R4 2CRP RGS5 NMR Unpublished 

R4 2IHD RGS8 X-ray crystallography 18434541 

R4 2BT2 RGS16 X-ray crystallography 18434541 

R4 3C7L RGS16 X-ray crystallography 18434540 

R4 2OWI, 2JM5 RGS18 NMR (BMRB# 7106) 16964532 

R4 2DLV RGS18 NMR Unpublished 

R7 2ES0 RGS6 X-ray crystallography 18434541 

R7 2A72 RGS7 X-ray crystallography 18434541 

R7 2D9J RGS7 NMR Unpublished 

R7 1FQI RGS9 X-ray crystallography 11234020 

RZ 1ZV4 RGS17 X-ray crystallography 18434541 

RZ 1CMZ RGS19 NMR (BMRB# 4407) 10452897 

RZ none RGS20 NMR (BMRB# 5872) 14872136 

R12 2I59 RGS10 NMR (BMRB# 7272) 17180548 

R12 2DLR RGS10 NMR Unpublished 

R12 2JNU RGS14 NMR (BMRB# 15128)  18434541 

RA 1DK8 Axin X-ray crystallography 10811618 

GEF 1HTJ PDZ-RhoGEF X-ray crystallography 11470431 

GEF 1IAP p115-RhoGEF X-ray crystallography 11524686 

R4 2GTP 
RGS1 bound to 

G!i1·GDP·AlF4
-
 

X-ray crystallography 18434541 

R4 1AGR 
RGS4 bound to 

G!i1·GDP·AlF4
-
 

X-ray crystallography 9108480 

R4 2ODE 
RGS8 bound to 

G!i3·GDP·AlF4
-
 

X-ray crystallography 18434541 

R4 2IK8 
RGS16 bound to 

G!i1·GDP·AlF4
-
 

X-ray crystallography 18434541 

R4 3C7K 
RGS16 bound to 

G!o·GDP·AlF4
-
 

X-ray crystallography 18434540 

R7 1FQK 
RGS9 bound to 

G!t/i1·GDP·AlF4
-
 

X-ray crystallography 11234020 

R7 1FQJ 
RGS9 bound to PDE# and 

G!t/i1·GDP·AlF4
-
 

X-ray crystallography 11234020 

R12 2IHB 
RGS10 bound to 

G!i3·GDP·AlF4
-
  

X-ray crystallography 18434541 

GEF 1SHZ 
p115-RhoGEF bound to 

G!13/i1·GDP·AlF4
-
 

X-ray crystallography 15665872 

GRK 2BCJ 
GRK2 bound to 

G!q·GDP·AlF4
-
 

X-ray crystallography 16339447 

a
 Accessible at the Protein Data Bank, www.pdb.org. 

b
 Assigned chemical shifts are accessible at the Biological Magnetic Resonance Data Bank (BMRB), 

www.bmrb.wisc.edu. 
c
 Published references are listed as PMID numbers accessible at PubMed, www.pubmed.org. 

Adapted from Soundarajaran, Kimple, et al. 2008 Proceedings of the National Academy of Sciences USA, 

vol. 105, pgs. 6457-6462.   
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