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ABSTRACT

Sean Rogers: The Springer Morphism, Polynomial Representation Rings, and the Cohomology Ring of
Grassmannians

(Under the direction of Shrawan Kumar)

To any almost faithful representation of a complex, connected, reductive algebraic group G of highest

weight λ one can associate a dominant morphism from the group to its Lie algebra g. This map enjoys many

nice properties. In particular, when restricted to a maximal torus it maps to the Cartan subalgebra. This map

can be used to give a natural definition of polynomial representations for the classical groups of types B, C,

and D. Given a parabolic subgroup P ⊂ G, Kumar showed there is a surjective algebra homomorphism from

the polynomial represntations of a Levi subgroup of P to the cohomology of G/P which extends a classical

result relating the polynomial representations of GL(r) and the cohomology of the grassmannian of r-planes

in n-space H∗(Gr(r, n)). In this work we give an explicit determination of the map θλ for simple groups

and consider Kumar’s map for types B, C, and G.
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CHAPTER 1

Introduction

1.1 Historical Context

Schubert calculus as subject emerged from Schubert’s work on the calculus of enumerative grometry

[Sc1, Sc2]. A typical example of an enumerative problem is as follows (borrowed from [KL]). In three

space, how many lines intersect four given lines? The solution for lines in general position turns out to

be two. Schubert’s approach to such problems was to work in the Grassmannian manifold. Let V = Cn.

Then the Grassmannian manifold Gr(m,V ) as a set is the set of all m-dimensional subspaces of V . It

can be given the structure of a complex manifold (or projective variety) of dimension n(m − n). Let

F• := {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V }, where dimFi = i, be a complete flag. The

Grassmannian has a stratification of affine subsets given by geometric intersection conditions with respect to

this flag. A partition λ = {λ1, ..., λm} is a sequence of weakly decreasing integers. Let |λ| =
∑m

i=1 λi. For

a partiton λ such that λ1 ≤ n−m we can define a subset of the Grassmannian,

Ωλ(F•) = {X ∈ Gr(m,n) : dim(X ∩ Vn−m+j−λj > j ∀i ≤ j ≤ m}.

These subsets are isomorphic to Cm(n−m)−|λ| and are called Schubert cells. They form a stratification the

Grassmannian. Their closures are the so called Schubert varietiesXλ(F•). Let [Xλ] ∈ H2(m(n−m)−|λ|)(Gr(m,n))

denote the fundamental class of Xλ in the singular homology of the Grassmannian. Then, take σλ ∈

H2|λ|(Gr(m,n)) be their Poincare dual classes. Then the Schubert basis theorem states that these classes,

hereafter called Schubert classes, σλ form an integral basis of the singular cohomology ring of the Grass-

mannian H∗(Gr(m,n)). These classes are independent of the choice of flag F•. The fundamental insight of

classical Schubert calculus is that problems in enumerative geometry and intersection theory can be solved

by performing corresponding algebraic calculations in the ring H∗(Gr(m,n)). Let σi be the Schubert class

corresponding to the partition λ = (i, 0, ..., 0). These are called the special Schubert classes. Pieri gave a
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rule for expanding the cup product of a special Schubert class and a general Schubert class in the Schubert

basis. Giambelli gave a formula for expressing any Schubert class σλ as a polynomial in the special Schubert

classes σi. Solving the above problem in enumerative geometry amounts to computing σ4
1 = 2σ(2,2) in

H∗(Gr(2, 4)). σ(2,2) is the class of a point and we arrive at our answer of two. In general we have the

structure constants of H∗(Gr(m,n)) are

σλ · σµ =
∑

cνλµσν .

The constant cνλµ is know to be the number of points in the intersection of general translates of the Schubert

varieties Xλ, Xµ, and Xν̌ , where ν̌ is the dual partition ν̌i = m− n− νm+1−i.

A combinatorial rule for computing the coefficients cνλµ in terms of the given partitions was given by

Littlewood and Richardson. The context with which the coefficients arose however was not apriori related to

intersections of Schubert cycles. Schur polynomials sλ are a basis for the symmetric polynomials. Then one

has sλsµ =
∑
cνλµsν . It is well know that polynomial irreducible representations of GL(m) are indexed by

partitions λ = (λ1 ≥ ... ≥ λm) where λ represents the highest weight of the representation. Denote this

representation by V (λ). The character of this representation is the Schur polynomial sλ. As the character of

a tensor product of representations is the product of the characters of the given representations, it holds that

V (λ)⊗ V (µ) =
∑

cνλµV (ν)

.

Note that cνλµ counts the dimension of the GL(m) invariant subspace of V (λ)⊗ V (µ)⊗ V (ν̌), where

V (ν̌) is the dual representation of V (ν). Let Reppoly(GL(m)) be the polynomial representation ring. That

the structure constants of H∗(Gr(m,n)) and Reppoly(Gl(m)) coincide as long as the partitions λ, µ, ν fit

in a m×m− n rectangle was proved by Lesiur [Les] in 1947. However, the proof is indirect. Essentially,

they are both rings are governed by Schur functions. See [F6] for the history of this problem and other

contexts in which the Littlewood-Richardson coefficients appear. Thus one wonders if there is a more natural

explanation of this fact or a generalization to other classical groups (Sp(2m), SO(2m), SO(2m + 1)).

Possible explanations have been given by Tamvakis via the Chern-Weil theory of characteristic classes
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[T1], by Belkale via tangent spaces to Schubert varieties [Be], and by Mukhin, Tarasov, and Varchenko via

represenations of the Bethe algebra [MTV]. One problem of generalization is how to adequately define

polynomial representations for other classical groups, or more generally connected reductive groups. Kumar

gives one attempt at generalization via the Springer morphism in [Ku2]. This work is the genesis for this

thesis.

A modern formulation of Schubert calculus can be given in terms of generalized partial flag varieties.

A generalized flag variety can be defined for an connected, complex, reductive algebraic group G as the

projective variety G/B. Here B is a Borel subgroup, i.e. a maximal, connected, solvable Zariski closed

subgroup. For G = GL(m), the standard Borel subgroup is the set of upper triangular matrices and we have

G/B = {F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = Cm}

is the variety of complete flags F• with dim(Fi) = i. Every reductive goup has a maximal torus T ⊂ B ⊂ G

and a Weyl group W = N(T )/T. Let t, b, g be the corresponding Lie algebras. The flag variety G/B has

a cell decomposition called the Bruhat decomposition into affine open cells Bw, indexed by elements of

the Weyl group w ∈ W . The closures of these cells Xw are also called Schubert varieties and a Schubert

calculus can be defined on H∗(G/B). Let εw be the Kronecker dual to the fundamental homology class of

Xw (εw is then called a Schubert class). As before, H ∗ (G/B) has a basis of Schubert classes. Borel, [Bo],

also gave a characterization of the cohomology of H∗(G/B) via the characteristic map

β : S(t∗)→ H∗(G/B).

Here S(t∗) is the symmetric algebra of the dual of the Cartan subalgebra t. The map is given by mapping

characters to the first Chern class of the related line bundle. A Pieri-type formula is given by Chevalley,

and a Giambelli type formula is given by the BGG Scubert polynomials defined by Bernstein, Gelfand, and

Gelfand in their seminal work relating the Bruhat and Schubert presentations of the cohomology of G/B

[BGG]. They identify a set of polynomials pw in S(t∗) corresponding Schubert classes εw using divided

difference operators Aw : S(t∗)→ S(t∗) corresponding to elements of the Weyl group. A parabolic group P

is any group containing a Borel subgroup B ⊂ P . Then G/P is a generalized partial flag variety and there is
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an analagous picture of the Schubert calculus on G/P . For maximal parabolics P ⊂ GL(m), GL(m)/P is

a Grassmannian.

Information about reductive groups and their Schubert calculus is discussed in more detail in Chapter 2

(Preliminaries).

1.2 Concerning this work

Here we describe the rest of the thesis. Let G be a connected reductive algebraic group over C with

Borel subgroup B and maximal torus T ⊂ B of rank n with character group X∗(T ). Let P be a standard

parabolic subgroup with Levi subgroup L containing T . Let W (resp. WL) be the Weyl group of G (resp.

L). Let Vλ be an irreducible almost faithful representation of G with highest weight λ, i.e. λ is a dominant

integral weight and the corresponding map ρλ : G → GL(Vλ) has finite kernel. Then, Springer defined

an adjoint-invariant regular map with Zariski dense image from the group to its Lie algebra, θλ : G → g,

which depends on λ [BR]. Properties of this map are discussed in Chapter 3 Section 1. In particular,

when restricted to the maximal torus we have θλ|T : T → t. We note that this map can also be viewed

as a generalization of the classical Cayley map. Furthermore, Kumar [Ku2] use this map to define the λ-

polynomial representation ring of a group G, RepCλ (G). The ring RepCλ (G) is a subring of representation ring

of G which is isomorphic to S(t∗)W , the ring of Weyl group invariant polynomials. For any weights λ1, λ2

the λ-polynomial representation ring are isomorphic but the isomorphism is different. For Sp(2n), SO(2n),

and SO(2n+ 1) we define the polynomial representation ring to be RepCω1
(G).

We can restate the classical result relating the polynomial representation ring of GL(r) to the singu-

lar cohomology ring of the Grassmannian H∗(Gr(r, n) as follows. There is an explicit surjective ring

homomorphism

ξ : Reppoly(GL(r))→ H∗(Gr(r, n)).

In recent work by Kumar [Ku2], the Springer morphism is used in a crucial way to extend the above

classical result relating the polynomial representation ring of the general linear group GLr and the singular

cohomology ring H∗(Gr(r, n)) of the Grassmannian of r-dimensional complex linear subspaces of Cn to

the Levi subgroups of any reductive group G and the cohomology of the corresponding flag varieties G/P .

Computing θλ|T is integral to this process. Importantly, θλ takes the maximal torus T to its Lie algebra t,
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thus inducing an injective C-algebra homomorphism (θλ|T )∗ : C[t] → C[T ] between the corresponding

affine coordinate rings. Let L be the Levi subgroup of the parabolic P which contains the torus T . The

Springer morphism is equivariant under the adjoint action and thus (θλ|T )∗ takes C[t]WL to C[T ]WL . One

can then define the λ − polynomial subring RepCλ−poly(L) to be the image of C[t]WL under (θλ|T )∗ (as

RepC(L) ' C[T ]WL). Here RepC(L) is the complex representation ring of L. This leads to a surjective

C-algebra homomorphism ξPλ : RepCλ−poly(L)→ H∗(G/P,C), as in [Ku2]. The map θλ enjoys many nice

properties (see [KM]). In this work we compute θλ|T in a uniform way for all simple algebraic groups G and

any dominant integral weight λ.

As θλ|T maps T into t, we have that for a given simple group G and an irreducible representation Vλ,

one may write

θλ(t) =
n∑
i=1

ci(λ)α̌i,

where we take the simple coroots {α̌i} as a basis for t. We give a complete determination for these

coefficients ci(t) for any simple, simply-connected algebraic group G as a sum over the weights of the torus

action on Vλ.

For a given representation Vλ, let Λλ be the set of weights appearing in the weight space decomposition

of Vλ =
⊕
V µ
λ , listed with multiplicity. Let ω1, ..., ωn be the fundamental weights in t∗, and consider the

weights µ ∈ Λλ written in the fundamental weight basis, i.e. µ = (µ1, ..., µn) = µ1ω1 + ... + µnωn. Let

eµ(t) ∈ X∗(T ) be the corresponding character of T . Then we find that,

Theorem. The coefficients ci(t) are determined by the following set of equations.



∑
µ∈Λλ

µ1e
µ(t)

...∑
µ∈Λλ

µne
µ(t)

 = S(G,λ)



c1(t)

c2(t)

...

cn(t)


,

where S(G,λ) = {
∑
µ∈Λλ

µiµj}ij .
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The main result of [R] determines that

Theorem. The above matrix

S(G,λ) := {
∑
µ∈Λλ

µiµj}ij = (
1

2

∑
µ∈Λλ

µ2
i )S ,

where S is a specific uniform symmetrization of the Cartan matrix A for G, and µi is the coordinate of

the fundamental weight corresponding to a long root (or any root in the simply-laced case).

In particular, for the simply-laced groups S(G,λ) = (1
2

∑
µ∈Λλ

µ2
1)A. The determination of S(G,λ) relies

on the fact that Λλ is invariant under the action of the Weyl group W , and moreover that if σ ∈ W then

dim(Vµ) = dim(Vσ.µ). The above results are discussed in Chapter 3.

In Chapters 4 and 5 we recall the work Representation ring of Levi subgroups versus the cohomology

ring of flag varieties by Kumar [Ku2]. In particular, discuss the map

ξPω1
(L) : RepCλ−poly → H∗(G/P,C)

in the case of the classical complex algebraic groups GL(k), Sp(2k), and SO(2k + 1) and their maximal

parabolics (Vω1 is the defining representation in each case). Note we do not analyze the type D case, SO(2n).

The analysis is more or less uniform. In types A, B, and C quotienting by a maximal parabolic gives a

Grassmannian. Consider the Dynkin diagram in classical type of rank n and take the maximal parabolic

Pn−k corresponding to the (n− k)th node of the Dynkin diagram. Then, the Grassmannians in question are:

For type A,

Gr(n− k, n) = {X ∈ Cn : dim(X) = n− k},

For type C (let ϑ be a skew-symmetric bilinear form on C2n),

IG(n− k, 2n) = {X ∈ C2n : dim(X) = n− k, ϑ(v, w) = 0 ∀v, w ∈ X},
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For type B (let ϑ be a symmetric bilinear form on C2n+1),

OG(n− k, 2n+ 1) = {X ∈ C2n+1 : dim(X) = n− k, ϑ(v, w) = 0 ∀v, w ∈ X}.

Then for each of these spaces there is a short exact sequence of vector bundles

0→ S → V → Q→ 0.

Where V is the trivial rank n (respectively 2n, 2n + 1) bundle, S is the tautological subbundle (i.e. the

fiber over X ∈ Gr(n − k, n) is X ⊂ Cn for the type A case), and Q is the tautological quotient bundle.

In the above cases the Chern classes ci(Q) generate the cohomology ring H∗(G/Pn−k) [BKT1]. Buch,

Kresch, and Tamvakis gave Pieri and Giambelli formulas with the Chern classes ci(Q) as special classes for

both the classical and quantum cohomology of IG(n− k, 2n) and OG(n− k, 2n+ 1) in terms of k−strict

partitions (see [BKT1, BKT2, BKT3, BKT4]). We rely heavily on their formalism and presentations of the

cohomology rings.

For the parabolic group Pn−k above we have that the Levi subgroups of Pn−k for types A, B, and C

are LAn−k = GL(n− k)×GL(k), LCn−k = GL(n− k)× Sp(2k), and LBn−k = GL(n− k)× SO(2k+ 1).

We then have maps ξn−k, from the the Levi subgroup Ln−k to the corresponding Grassmannian. Factoring

through this map allows one to recover the classical map ξ [Ku2, Theorem 8]. We give explicit descriptions

of these maps ξn−k, i.e. we describe the images of the generators of RepCpoly(Ln−k) in terms of the Chern

classes of S andQ. If we fix k, and allow n to go to infinity we get the stable cohomology rings. For example,

the stable cohomology ring of type A, H(Grk), is the inverse limit in the category of graded rings of the

system

· · · ← H∗(Gr(n− k, n),C)← H∗(Gr(n− k + 1, n+ 1),C)← . . .

Then, factoring through ξn−k gives an isomorphism RepCω1
(GL(k)) ' H(Grk). We prove that the analogous

maps in types B and C are injective.
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CHAPTER 2

Preliminaries

2.1 Reductive Groups, Root Data, and Representations

Let G be a linear algebraic group over the complex numbers C, i.e. a group which is also an algebraic

variety such that the inverse and multiplication maps are morphisms. The radical of an algebraic group is

the identity component of its maximal, closed, solvable subroup and the subgroup of unipotent elements in

this group is referred to as its unipotent radical. If the unipotent radiacal is trivial then G is called reductive .

Further, if the radical of G is trivial then the group is called semi-simple. For the rest of this subsection we

will assume G is reductive.

A subgroup that is isomophic to (C∗)k for some k is called a torus. For a given maximal torus T we

can define the Weyl group W = N(T )/T , where N(T ) is the normalizer of T in G. Since all maximal tori

are conjugate, different choices of T will lead to isomorphic Weyl groups. A Borel subgroup is a maximal,

solvable, connected, Zariski closed subgroup. All Borel subroups are conjugate and contain a maximal torus.

For the rest of this section we will fix T ⊂ B ⊂ G and we fix dim T = n, called the semisimple rank of G

(or just rank). Let X(t) denote the character group of T , that is the set of morphisms T → C∗

The tangent space at the identity of an algebraic group has the structure of a Lie algebra and is denoted

using the lowercase gothic character g. Similarly, we let t, b denote the Lie algebras of T , and B. There is a

natural map exp : g→ G. It follows that any representation of G

ρ : G→ GL(V )

yields a Lie algebra representation by taking the differential

dρ : g→ gl(V )

8



If we restrict the representation to t and note that all representations of t are completely reducible, we can

right down a weight space decomposition for the representation V =
⊕
Vλ. Here λ ∈ t∗ = HomC(t,C)

and Vλ = {v ∈ V | X · v = λ(X)v ∀ X ∈ t}

In particular, G naturally acts of g by the adjoint action Ad,

Ad(g) ·X =
d

dt
g exp(tX) g−1|t=0

Differentiating this action give the adjoint representation of g

ad : g→ gl(g)

X → [X, ·]

Then under the adjoint action of t we can decompose g as

g = t⊕
⊕

gα

The nonzero weights α ∈ t∗ of the adjoint representation are called the roots of g (and G respectively).

Denote the set of roots by R. R then forms a root system in t∗. Our choice of Borel B (hence b) determines a

base ∆ = α1, ..., αn of simple roots. Every root in R can be written as a linear combination of simple roots

with either all non-negative or all non-positive coefficients. Then let R+ be the set of positive roots and let

R− = −R+ be the set of negative roots. The action of W on T and the adjoint action of G on g induce an

action of W on t. For any root α and any µ ∈ t∗ we define the reflection in t∗

sα(µ) = µ− µ(α̌)α = µ− 2〈α, µ〉
〈α, α〉

α

Then the simple reflections si, where si = sαi for any simple root, generate W when W is identified with its

action on t

The Killing form on g is a symmetric, adjoint-invariant, W -invariant bilinear form given by 〈X,Y 〉 =

Tr(ad(X)ad(Y )). This induces an identification of t and t∗. For any root α ∈ R, let α̌ = 2α
〈α,α〉 be the
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corresponfing coroot and let Ř denote the set of coroots. The simple coroots ∆̌ form a basis for t. Define the

fundameltal weights ωi by 〈ωi, α̌j〉 = ωi(α̌j) = δij . Let Λ =
⊕n

i=1 ωi be the weight lattice in t∗, and let

Γ =
⊕

α∈∆ α be the root lattice. Identify X(T ) with a lattice in t∗ by differentiating. Then in general we

have

Γ ⊂ X(T ) ⊂ Λ

If G is simply connected we have X(T ) = Λ.

A weight λ is called dominant if < λ,α >≥ 0 ∀ α ∈ ∆. Any dominant weight can be written as a

non-negative linear combination of fundamental weights. Denote the set of dominant weights by Λ+. Given

a representation V of G, a vector v ∈ V is called highest weight if (under the induced representation on g) v

is an eigenvector of the action of t and is in the kernel of the action of gα for all roots α. If the highest weight

vector v is in the weight space Vλ, we say that λ is a highest weight for the representation V . It is highest in

the sense that it will be the highest weight given by the followin partial order on weights. We say that λ > µ

if µ = λ−
∑

α∈∆ kαα with kα ≥ 0 and integral. If V is irreducible then there is a unique highest weight.

The following classification is a fundamental theorem in Lie theory,

Theorem 2.1. For any dominant weight λ ∈ X(T ) ∩ Λ+ there is a unique irreducible finite-dimensional

representation Vλ of G with highest weight λ.

This will allow us to concretely describe the representation ring of a complex reductive group (See [FH,

§23.2] and [BD, §II.7]). We form the representation ring Rep(G) by taking a free abelian group on the

isomorphism classes [V ] of finite dimensional representations V , modulo the relations [V ] = [V ′] + [V ′′]

whenever V ' V ′ ⊕ V ′′. Since G is reductive this is indeed a free abelian group on the classes of irreducible

representations. The tensor product of representations turns this into a ring [V ] · [W ] = [V ⊗W ]. Elements

such as [V ]− [W ] are called virtual representations, or virtual characters if we identify a representation with

its character. We note that Rep(G×H) ' Rep(G)⊗Rep(H). Recall that the kth exterior power
∧k V of

a representation has the following property

∧k
(V ⊕W ) =

∑
i+k=k

∧i
(V )⊗

∧j
(W )
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Then the operators

λi : Rep(G)→ Rep(G)

[V ]→ [
∧i

V ]

makeRep(G) into a special λ-ring. As we will see this structure will also hold for the subrings of polynomials

representations for the classical groups.

Note that for a maximal torus T ⊂ G, the Weyl group W acts on T and thus on Rep(T ). The inclusion

of the torus T ↪→ G induces in isomorphism Rep(G) ' Rep(T )W . If we consider the complexified

representation ring RepC(G) we have that

RepC(G) ' C[T ]W

. Given the representations Vωi of highest weight ωi for the fundamental weights, we can also describe

the representation ring and complex representation ring by Rep(G) =
⊕

ZVωi and RepC(G) =
⊕

CVωi

respectively.

2.1.1 Weyl Groups

Finally, we will collect some facts about the Weyl group which follow from the fact that is is also a

Coxeter group (i.e. (W,S) is a Coxeter system. Again we note that W is generated by the simple reflections

S = si associated to each simple root. These simple reflections obey several relations dependant on the root

system. In particular they all obey

s2
i = 1

sisj = sjsi if |i− j| ≥ 2

And for say G = SL(n,C), where W = Sn the symmetric group we have the relation

sisi+1si = si+1sisi+1
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. This allows us to define a length function l : W → Z≥0, where l(w) is the smallest integer n such that w

can be written as a product of n elements from S. Geometrically, the length of w is the cardinality of the set

wR+ ∩R− (note the set of roots is invariant under the action of the Weyl group). A word, or decomposition,

w = si1si2 ...sik is said to be reduced if l(w) = k. A Weyl group has a unique longest element w0 where

w0R
+ = R−. Then l(ww0) = l(w0w) = l(w0)− l(w). Note also that l(w−1) = l(w).

Any Coxeter system (W,S) admits a partial ordering ≥ on W called the Bruhat order.

Definition 2.1. (Bruhat Order)

If w,w′ ∈ W and there is a conjugate t of some s ∈ S such that w′ = tw and l(w′) = l(w) + 1 then

we say w′ covers w (denoted w → w′). The Bruhat order is the transitive closure of→ (i.e. u < v with

l(v) = l(u) + k then there is a sequence

u→ u1 → ...→ uk−1 → v

Note that if the Coxeter system (W,S) comes from a the Weyl group of some root system the the

conjugate t of s corresponds to the reflection sβ for some positive root β ∈ R+.

Consider a proper subset θ ∈ S. The subgroup of W generated by θ is called a parabolic subgroup,

which we will denote Wθ. (Wθ, θ) is itself a coxeter system. There is a natural, distinguished set of left coset

representatives in W/Wθ given by

W θ = {w ∈W : l(ws) = l(w) + 1, for all s ∈ S}

This gives the following decomposition [Hi, Chapter I, Section 5]

Theorem 2.2. If w ∈W , θ ∈ S, then there is a unique expression w = wθwθ with wθ ∈W θ and wθ ∈Wθ

with l(w) = l(wθ) + l(wθ).

As a corollary we see that the set W θ is precisely the set of minimal-length representatives in each coset

wWθ.
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2.1.2 Dynkin Index

We believe that for the λ-polynomials ring RepCλ (G) (to be defined in Chapter 4), the most appropriate

weight to consider is the fundamental weight of minimum Dynkin index. For the classical groups of types

A,B,C,D (that is GLn, SLn, SO2n+1, Sp2n, SO2n) this is just the defining representation. We define the

Dynkin index and describe some of its properties here. This subsection follows [Ku3, §Appendix A]

Definition 2.2. Let f : g1 → g2 be a Lie algebra homomorphism between finite-dimiensional simple Lie

algebras over C. Then there exists a unique number df ∈ C called the Dynkin index of f , satisfying

〈f(x), f(y)〉 = df 〈x, y〉, for all x, y ∈ g1

where 〈·, ·〉 is the nondegenerate, invariant, symmetric, bilinear form on gi normalized so that 〈θi, θi〉 = 2 for

the highest root θi of gi.

Note that if h : g2 → g3, for g3 simple, then df◦g = df · dg. Given a finite dimensional representation

V of a simple Lie algebra g, fV : g→ gl(V ), we set

dV = dfV

. Then for two representations V1 and V2, taking their direct sum V1 ⊕ V2 we have

dV1⊕V2 = dV1 + dV2

For their tensor product V1 ⊗ V2, we have that

dV1⊕V2 = dV1dim(V2) + dV2dim(V1)

We have the following formula for the Dynkin index of an irreducible representation of highest weigh λ of a

simple Lie algebra [Ku3, Lemma A.2, A.3]

13



Lemma 2.1. Let g be a simple Lie algebra and let V (λ) be an irreducible finite dimensional representation

of g with highest weight λ. Then

dλ = dV (λ) =
dimCV (λ)

dimCg
(‖λ+ ρ‖2 − ‖ρ‖2)

where |µ‖2 denotes µ, 〉 and 2ρ represents the sum of all positive roots. Thus, d is a stictly positive real

number for any λ 6= 0. It is in fact true that dλ is a positive integer.

Lemma 2.2. Let g be a finite-dimensional simple Lie Algebra as before. Let V be a finite dimensional

representation of g with its formal character given by

ch V =
∑
λ∈t∗

nλe
λ, nλ ∈ Z

with t ⊂ g the Cartan subalgebra. Then,

dV =
1

2

∑
λ

nλ(λ(θ̌2))

where θ̌ ∈ t is the coroot associated to the highest root θ of g.

Using Lemma 2.2 and the root data [?] one finds that the fundamental representations of minimal Dynkin

index are the representations ω1 of index 1 for the classical groups of types A,B,C, and D. For the exceptional

groups we find that for G2 it is ω1 (index 2), for F4 it is ω4 (index 6), for E6 it is ω1 or ω6 (index 6), for E7

it is ω7 (index 12), and for E8 it is ω8 (index 60).

2.2 Bruhat Decomposition, Schubert varieties, and Parabolic Subgroups

Fix T ⊂ B ⊂ G. An arbitrary Borel group can be decomposed as B = T o U , where U is the set

of unipotent elements contained in B. A choice of Borel B is equivalent to choice of positive roots R+.

The map exp restricted to gα) is an isomorphism of varieties, and hence we write Uα = exp(gα). This is a
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closed, one-dimensional subroup of G isomorphic to C. In particular, U '
∏
α∈R+ Uα, with correspnding

Lie algebra u =
⊕

α∈R+ gα

For any Borel B there is always an opposite Borel B− such that B ∩B− = T . Then we can write B− =

T o U−, where U− '
∏
α∈R− Uα. U− has Lie algebra u− =

⊕
α∈R− gα. Define U−w = U ∩ wU−w−1

and its correspoding Lie algrbra u−w = (Adw)u− ∩ u =
⊕

α∈wR−∩R+ gα. Note that u−w is isomorphic as a

variety to Cl(w). The following theorem [Borel, page 147] can be seen as a formal consequence of the fact

that the data G,B,N(T ), S form what its known as a BN-pair [Tits].

Theorem 2.3. (Bruhat Decomposition) If G is a complex reductive group and T ⊂ B, then G is the disjoint

union of double cosets BwB, i.e.

G =
⊔
w∈W

BwB

. Further, there is an isomorphism of varietes U−w ×B ' BwB.

The homogenous space G/B is a projective variety. We have the following corollary of the Bruhat

decomposition. The homogenous space G/B is a disjoint union of double cosets

G/B =
⊔
w∈W

BwB/B

Further, we have that BwB/B is a cell of complex dimension l(w) via the sequence of algebraic isomor-

phisms

u−w
exp−−→ U−w → U−wwB/B = UwB/B = BwB/B

We introduce the notation

Cw = BwB/B

This open affine variety, known as a Schubert Cell, is an orbit under the left translation action of B on G. We

will denote the closure of Cw by Xw. This is know as a Schubert Variety. Note that Xw is also B − stable

15



and can thus be written as the disjoint union

Xw =
⊔
v≤w

Cw

, where v, w ∈ W and v ≤ w in the Bruhat order from the previous section. Use [Xw] to denote the the

image of the fundamental class of Xw in the singular cohomology H∗(G/B), where [Xw] ∈ H2l(w)(G/B).

We will use PD(Xw) to denote the cohomology class of complementary dimension associated to Xw by

Poincaré duality. The fact that G/B (also known as the flag variety) has a cellular decomposition with cells

of only even real dimension has many consequences. In particular G/B is simply connected. Additionally,

we have the following well know ([Reiner]):

Theorem 2.4. The integral singular homology H∗(G/B) and cohomology H∗(G/P ) are free Z modules.

They form dual lattices under the Kronecker pairing, having Z-dual basis given by the cellular homology

classes {[Xw] : w ∈W} and their Kronecker dual cohomology classes denoted {εw : w ∈W}.

Thus, for v, w ∈W we have that

〈εw, Xv〉 = δv,w

where 〈·, ·〉 is the usual Kronecker pairing between homology and cohomology.

Note that dim(G/B) = l(w0). Thus we have that εw ∈ H2l(w)(G/B) andPD(Xw) ∈ H2l(w0)−2l(w)(G/B).

The class PD(Xw) can be expressed in terms of the {εw : w ∈W} basis as follows [BGG]

Theorem 2.5. For w ∈W we have,

PD(Xw) = εw0w

In other words, for Xw0w = Bw0wB/B we have that PD(Xw0w) = εw

Now that we have a preferred basis for the cohomology ring H∗(G/B) we would like to describe the

multiplication (i.e. cup product) with respect to this basis. That is, given v, w ∈W we want a closed formula

for the constants cuvw appearing in the decomposition of the product

εv · εw =
∑
w∈W

cuvwεu
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where · is really the cup product. To this end we have the following Pieri-like formula due to Chevalley

[BGG]

Theorem 2.6. (Chevalley Formula) For any w ∈ W and any simple root α, with corresponding simple

reflection sα, we have that

εw · εsα =
∑

(ωα, β̌)εwsβ

where the sum runs over the positive roots such that l(wsβ) = l(w) + 1. sβ is the reflection associated to a

root given by sβ(ξ) = ξ − (ξ, β̌)β for ξ ∈ t∗.

In the next section we will discuss a Giambelli-like formula due to [BGG]. Now we will discuss parabolic

subgroups B ⊂ P and the generalized partial flag varieties G/P . Aparabolic subgroup is any subgroup such

that the quorient G/P can be realized as the orbit of the action of G on P(V ) for some representation V of P .

In particular, G/P is a projective variety. Equivalently, parabolic subgroups are those subgroups that contain

a conjugate of a Borel subgroup. So Borel subgroups are the minimal parabolic subgroups. Generally, we

will fix a Borel and consider parabolics B ⊂ P . Parabolic subgroups are completely characterized by subsets

of the simple roots ∆ up to conjugacy, and since the simple roots are in one-to-one correspondence to the

vertices of the Dynkin diagram for G we have that parabolics are in one to one correspondence with subsets

of vertices of the Dynkin diagram.

Consider a subset θ ∈ S = {α1, ..., αn}. The we define the parabolic Lie algebra

pθ = t⊕
⊕

β∈T (θ)

gα

where T (θ) is equal to the set of positive roots R− and all roots generated by the negatives of θ. Let Pθ

be the corresponding parabolic group. Note that P∅ = B and PS = G. Parabolic subgroups have a Levi

decomposition Pθ = LθUθ, where Uθ =
∏
α∈R+\T (θ) is the unipotent radical of Pθ, and Lθ = 〈T,Uα| α ∈

Rθ〉 is a reductive group called the Levi subgroup and Rθ is the root system generated by θ. Let Wθ be the

Weyl group of Lθ. If the parabolic P is understood this will sometimes be denoted WP . Note that Wθ is

exactly the parabolic subgroup mentioned at the end of the previous section. We now have the following
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Bruhat decompositions for G and G/P

G =
⊔

w∈W θ

BwPθ

G/P =
⊔

w∈W θ

BwPθ/Pθ

W θ is the set of minimal length coset representatives inW/Wθ. Geometrically,B-orbits inG/P are obtained

by collapsing orbits in G/B if their w′s lie in the same Wθ coset. Fix Pθ = P . Again we have schubert

cells CPw = BwP/P isomorphic to the affine space Cl(w) for w ∈ WP = W θ. Then the schubert variety

XP
w , fundamental class[XP

w ], Poincare and Kronecker duals PD(XP
w ), εPw and all defined analogously as for

G/B. These cohomology classes are related in the next theorem [Ku1, chapter 11].

Theorem 2.7. Let πP : G/B → G/P be the natural projection. Then the induced map π∗P : H∗(G/P )→

H∗(G/B) is injective with image equal to H∗(G/B)WP , the WP invariants. In particular, for w ∈WP , we

have

π∗(εPw) = εw

.

Let K ⊂ G be a maximal compact subgroups of G, with maximal compact torus T = K ∩H . Then

there is a homoemorphism K/T ' G/B, and further we can identify W = N(H)/H = N(T )/T . W acts

on K by conjugation and this action preserves T so there is an action of W on K/T . This induces an action

of W on the homology and cohomology of K/T and hence on G/B.

So we can identify H∗(G/P ) with a subring of H∗(G/B) and drop the P superscript from εPw when it

is understood. Note that the action of W on H∗(G/B) is induced from the action of W on K/T = G/B.

Recall that every element w ∈ W can be decomposed as w = wθwθ where wθ ∈ Wθ , wθ ∈ W θ, and

l(w) = l(wθ) + l(wθ). Applying this to w0 we write w0 = w0,Pw0,P for Pθ = P . Then w0,P is the longest

element of WP and w0,P is the longest minimal-length representative in WP . Then Poincare duality between

H∗(G/P ) and H∗(G/P ) is given by the following theorem (see [KLM, 2.1])
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Theorem 2.8. Let w ∈ WP . Define the involutive map θP : W → W by θP (w) = w0ww0,p. The θP

carries WP into itself and we have

PD(XP
w ) = εw0ww0,P

The proof relies on the following key lemma. Let a · b denote the intersection pairing on H∗(G/B) with

a ∈ Hk(G/B) and b ∈ Hl(w0,P )−k(G/P ). Then we have that

〈PD(a), b〉 = a · v

Lemma 2.3. For v, w ∈WP with l(w) = l(v),

XP
w ·XP

θP (v) = δv,w

2.3 Borel Characteristic map and BGG-operators

The discussion above may be referred to as the Schubert picture of cohomology [Hi]. In this section we

will discuss another point of view called the Borel picture of cohomology and we will discuss the results

and fomalism of Bernstein, Gelfand, Gelfand [BGG] and Demazure [D2] to connect the two pictures. Good

resources for this material are the origonal papers [BGG], [D2], [Hi, chapter IV], [KLM, sections 2,3], [FP,

appendix E], and [P4].

Let X be a variety that B acts freely on from the right such that the qoutient X/B exists and the

projection p : X → X/B is a principal B-bundle. Let ρ : B → GL(V ) be a representation of B. Then

consider the complex vector bundle Lρ=X ×B V given by taking the quotient of X × V by the relation

(x, v) ∼ (xb, ρ(b)−1v)

for x ∈ X, b ∈ B, v ∈ V . In particular let λ : B → C∗ be a character of B, and let Lλ be the complex

line bundle described above. First define β : X(B) → H2(X/B) by taking a character of B to the first

chern class of the associated line bundle, i.e. β(λ) = c1(Lλ). This can be extended symmetrically to a
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homomorphism of graded rings (doubling degrees)

β : S(X(B))→ H∗(X/B,Z)

where S∗(X(B)) is the symmetric algebra of X(B). This map is called the characteristic map of the fiber

bundle p : X/B.

For our purposes, we letB act onG on the right and the fiber bundle under consideration is p : G→ G/B.

Now, consider t∗ = HomC(t,C). So t∗ is just the characters of the Cartan subalgebra. Let us assume that

G is simply connected. Then any χ ∈ t∗ lifts to a character χ : T → C∗ by(exp(t)) = exp(χ(t)) for t ∈ t.

This character can be further extended to B = TU by setting χ|U = 1 (and indeed the character group of B

and T are euivalent under this identification). Then as above we can define a map β : t∗ → H2(G/B) by

lifting a character χ to B and taking the first chern class of the associated complex line bundle Lχ over G/B.

Again, we extend this symmetrically to obtain

β : S(t∗)→ H∗(G/B,Z)

This is known as the Borel characteristic map [Bo]. If we consider β ⊗ C then the map is surjective and has

kernel J generated by the W -invariants with no constant term. So, letting S = S(t∗) and taking complex

coefficients, we have an isomorphism β : S/J → H∗(G/B,C). Note that β commutes with the action of W

on S and on H∗(G/B) [BGG, proposition 1.3(i)]. Also, since W acts as a finite complex reflection group

on t∗, then by Chevalley’s theorem the W -invariants S(t∗)W are a polynomial subalgebra C[f1, ...fn] where

n is the rank of G [Hi, chapter II, section 3]. Thus, under Borel’s presentation we see that H∗(G/B) is a

complete intersection ring with n generators and as many relations.

Let P ⊂ G be a parabolic. Then we also have an isomorphism of graded rings as follows. Let SWP be

the set of WP invariants under the action of WP on t∗). Then if we restrict we have

β : SWP → H∗(G/P ) ' H∗(G/B)WP

again with (S/J)WP ' H∗(G/P ).
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In their seminal paper [BGG] Berstein, Gelfand, Gelfand developed a connection between the Schubert

and Borel pictures of the cohomology ofH∗(G/B). In particular the give polynomials pw ∈ Sl(w)(t∗)mod J

such that

β(pw) = εw ∈ H2l(w)(G/B)

The key algebraic operator used in this work is the following

Definition 2.3. For each root α ∈ R define a divided difference operator Aα : Sk(t∗)→ Sk−1(t∗) by

Aα(f) =
f − sif
αi

These operators are also known as BGG or Demazure operators in the literature. We collect some

properties of Asi in the following omnibus lemma [BGG, Lemma 3.3].

Lemma 2.4. Let α ∈ S and w ∈W . Let f, g ∈ S(t∗)

(i) A2
α = 0

(ii) A−α = −Aα

(iii) wAαw−1 = Awα

(iv) sαAα = Aα

(v) sα = 1− αAα

(vi) Aα(f) = 0↔ sαf = f

(vii) Aα(fg) = Aα(f)g + (sαf)Aα(g)

(viii) AαJ ⊂ J

By (viii) above we see that Aα induces an operator on S/J . For any w ∈W we further define

Aw := Asα1 ◦ · · · ◦Aαsk

where w = sα1 · · · sαk is a reduced decomposition for w. The we have that [Hi, Chapter IV, Proposition 1.7]
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Proposition 2.1. The operators Aw are well defined, i.e. they do not depend on the choice of reduced

decomposition for w. Further, we have that Aw ◦ Av = Awv if l(wv) = l(w) + l(v) and Aw ◦ Av = 0

otherwise.

The Borel characteristic map, the Schubert classes and theBGG operators are all related by the following

equation [BGG, section 4].

Proposition 2.2. Let β : S(t∗)→ H∗(G/B). For f ∈ Sk

β(f) =
∑
l(w)=k

Aw(f)εw

The above equation is valid for partial flag varieties as well if we restrict the summation to the set {w ∈

WP : l(w) = k}.

There is an analogue of the BGG operator Dsi on H∗(G/B) which commutes with the Borel character-

istic map, i.e. for f ∈ S we have that β(Asif) = Dsiβ(f). Hence we will just use Aw to refer to the BGG

operator on both S and H∗(G/B). For an explicit description of the geometric operator Dsi see [KLM,

section 3.3]. Then we have the following description of the action of Aw on the Schubert classes εv [BGG,

Theorem 3.14]

Theorem 2.9. For v, w ∈W such that l(vw−1) = l(v)− l(w), we have that

Awεv = εvw−1

and equals 0 otherwise.

We also give the following formula for the Weyl group action on a Schubert class. For a simple root α

and w ∈W

sαεw = εw if l(wsα) = l(w) + 1

sαεw = −εw −
∑

(α, γ̌)εwsαsγ if l(wsα) = l(w)− 1

where the sum is over all positive roots γ 6= α such that l(wsαsγ) = l(w).
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Now define elements pw ∈ S as follows. Starting with the longest element w0 we let pw0 =

1
|W |
∏
γ∈R+ γ. Then for arbitrary w ∈ W recursively define pw by pw = Aw−1w0

pw0 . Then the main

result of [BGG] is

Theorem 2.10.

β(pw) = εw

where really we are taking pw mod J in S/J .

These are polynomial representatives in S of the Schubert classes. Lascoux and Schurtzenburger

[?] introduced another set of polynomial representatives in type A, called Schubert polynomials, which

enjoy many nice combinatorial properties. These are obtained by applying divided difference operators

to the monomial xn−1
1 xn−2

2 ...xn−1 which represents the top class (here x1, ..., xn are the coordinates of

the standard representation of An−1. There are natural analogues for the other classical types such as the

Schubert polynomials of Billey and Haiman [BH], the theta and eta polynomials of Buch, Kresch, and

Tamvakis [BKT1, BKT2].

We also note that the the Chevalley formula (Theorem 2.6) is a partial solution to the general Littlewood-

Richardson problem of describing the coefficients on the expansion

εwεv =
∑
u∈W

cuwvε
u
wv

These represent geometric intersections of the varities Xw0u, Xw0v and Xu and thus must be positive. We

now give a brief description of these coeffiecients due to Pragacz [P3, P4]. Then by combining the above

expansion with Theorem 2.9 we see that

cuwv = Au(εw · εv)

Now suppose that l(w) = k and that l(v) = l. Let u = sα1 ...sαk+l be a reduced decomposition. Then by

iterating 2.2 (vii) we have

cuwv = Aα1 ◦ ... ◦Aαk+l(εw · εv) =
∑

AI(εw) ·AIα(εv)
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where the sum is over all subsequences I = (i1, ..., ik) ⊂ [1, ...k + l] and AI = Aαi1 ◦ ... ◦Aαik and AIα is

obtained by taking Aα1 ◦ ... ◦Aαk+l and replacing each Aαi by sαi for all i ∈ I . Then by Theorem 2.9 we

can deduce that

cuwv =
∑

AIα(εv)

where the sum is over all subsequences I such that sαi1 ...sαik is a reduced decomposition for w. The

Chevalley formula can then be derived form this rule.
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CHAPTER 3

The Springer Morphism

We will first briefly set the notation for this chapter, primarily in §3.2

Let G be a simply-connected semi-simple algebraic group over C (though the constructions of this

§3.1 are valid in the more general case of a connected reductive complex group). Denote its Lie algebra

g = t⊕
⊕
α
gα of rank n, and fixed base of simple roots ∆ = {αj}. Take the set of simple co-roots ∆̌ = {α̌j}

as a basis for the Cartan subalgebra t ⊂ g. Then tZ =
n⊕
j=1

Zα̌j is the co-root lattice. Further, the weight

lattice is t∗Z =
n⊕
i=1

Zωi, where ωi ∈ t∗ is the ith fundamental weight of g defined by ωi(α̌j) = δij . Then the

maximal torus T ⊂ G (with Lie algebra t) can be identified with T = HomZ(t∗Z,C∗) as in [Sp]. Finally, let

W be the Weyl group of G, generated by the simple reflections si. So for µ ∈ t∗, si(µ) = µ− µ(α̌i)αi.

Let Vλ be the irreducible representation of G with highest weight λ. Then Vλ has weight space

decomposition

Vλ =
⊕

V µ
λ

where V µ
λ = {v ∈ Vλ| t.v = ((µ1ω1 + ... + µnωn)(t))v ∀v ∈ Vλ} is the weight space with weight

µ = µ1ω1 + ...+ µnωn.

So for t ∈ T and v ∈ Vµ1,µ2,...,µn we have that the action of t on v is given by

t.v = t(µ1, ..., µn)v = eµ(t)v

where (µ1, ...µn) = µ1ω1 + ...+ µnωn. Additionally α̌j ∈ t acts on v by

α̌j .v = (µ1ω1 + ...+ µnωn)(α̌j)v = µjv.
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A representation ρ : G → GL(V ) is called almost faithful if it has finite kernel, i.e. the induced

representation dρ : g→ gl(V ) is injective.

3.1 Definition and Properties

In the literature this construction is also known as the Generalized Cayley Transform. Some references

for this material are [BR, KM]. The following construction is in fact a special case of what [LPR1, §10] call

a generalized Cayley map which is any dominant algebraic morphism G→ g.

Given a connected reductive group G, its Lie algebra g, and an almost faithful representation Vλ, the

Springer morphism is a map

θλ : G→ g

given by

G //

θλ

**

Aut(V (λ)) ⊂ End(V (λ)) = g⊕ g⊥

πλ

��
g

where g sits canonically inside End(Vλ) via the derivative dρλ, the orthogonal complement g⊥ is

taken via the adjoint invariant form < A,B >= tr(AB) on End(Vλ), and π is the projection onto the g

component. So θλ = πλ ◦ ρλ. By considering a compact form K ⊂ G, it is easy to see that the restiction of

trace form to dρλ(g) is non degenerate and thus g∩g⊥ = {0}. Note, that since π◦dρλ is the the identity map,

θλ is a local diffeomorphism at 1, and hence has Zariski dense image. By construction, θλ is an algebraic

morphism.

Let dθλ = πλ ◦ Tθλ : TG → Tg = g × g → g denote the differential of θλ, so that dθλ(g) =

πλ ◦ TgG → g. We let X1, ..., Xn be a linear basis of g and let LX1 , ..., LXn denote the corresponding

left-invariant vector fields on G. Let

Ψλ(g) = det(dθλ(g))

be the Springer determinant (or Cayley Determinant) for the representation Vλ. Note that Ψλ does not depend

on choice of basis for g. We list the following basic properties of θλ and Ψλ(g).
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Theorem 3.1. LetG be a connected, reductive, complex algebraic group and let θλ be the Springer morphism,

where Vλ is an almost faithful representation. Let T ⊂ G be a maximal torus and let Bλ be the restiction of

the inner product 〈A,B〉 = tr(AB) on dθλ(g) ⊂ End(V ) Then,

1. θλ ◦ Conjb = Adb ◦ θλ

2. θλ|T : T → t

3. Ψλ is invariant under conjugation.

4. dθλ(e) : g→ g is the identity mapping. So dθλ(g) is invertible for g in the non-empty Zariski open

dense subset {h ∈ G : θλ(h) 6= 0} and is not invertible on the hypersurface {h ∈ G : θλ(h) = 0}

5. Let χλ be the character of ρλ, i.e. χλ(g) = tr(ρλ(g)). Then dχλ(g)(Te(µg)X) = tr(dρ(θλ(g))dρλ(X)) =

Bλ(θλ(g), X)

6. The differential dθλ(g).Te(µg).X ∈ g is given by the implicit equation tr(dρλ(dθλ(g)Te(µg)X)dρλ(Y )) =

tr(θλ(g)dρλ(X)dρλ(Y )) for Y ∈ g

7. If θλ(e) = 0 and a ∈ G is such that ρλ(a) ∈ dρλ(g) then dθλ(a−1) is not invertible.

Proof. We give a proof of (2) because of its importance to the rest of the paper. Let t ∈ T . We then write

θλ(t) = h+
∑
α∈R

xα, for h ∈ t, and xα ∈ gα

Then by conjugation invariance (see (1) which follows from the invaraiance of trace) we have

θλ(t) = θλ(sts−1) = h+
∑
α∈R

Ads(xα) for any s ∈ T

Thus we see that xα = 0, i.e., θλ(t) ∈ t
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Example 3.1. The Springer morphism θλ : G→ g, in general, indeed depends upon the choice of λ. For

example, the Springer morphism θω1 : Sl2 → sl2 restricted to the diagonal torus can easily seen to be

θω1

z 0

0 z−1

 =

 z−z−1

2 0

0 − z−z−1

2

 .

On the other hand, the Springer morphism θ2ω1 : SL2 → sl2 restricted to the diagonal torus is given by

θ2ω1

z 0

0 z−1

 =

 z2−z−2

4 0

0 − z2−z−2

4

 .

♦

We also record the following theorems from Kostant and Michor [KM, 2.7,2.8]

Theorem 3.2. Let G be semisimple and let ρ : G → GL(V ) be an almost faithful representation. Let

g = g1 ⊕ ... ⊕ gk be the decomposition of g into simple ideals gi. Let Gi, ..., Gk be the corresponding

connected subgroups of G. Then we have that

θρ|Gi = θρ|Gi
, for i = 1, ...k

Theorem 3.3. Let G be a simple algebraic group and let ρi : G→ GL(Vi) be non-trivial representations for

i = 1, 2. The inner product Bρi on g is a multiple of the Cartan Killing form B on g, so we write Bρi = jρiB.

Then we have

1. For the direct sum representation ρ1 ⊕ ρ2 : G→ GL(V1 ⊕ V2) we have

θρ1⊕ρ2(g) =
jρ1

jρ1⊕ρ2
θρ1(g) +

jρ2
jρ1⊕ρ2

θρ2(g) ∈ g
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2. For the tensor representation ρ1 ⊗ ρ2 : G→ GL(V1 ⊗ V2) we have

θρ1⊗ρ2(g) =
jρ1χρ2
jρ1⊗ρ2

θρ1(g) +
jρ2χρ1
jρ1⊗ρ2

θρ2(g) ∈ g

3. For the n-fold tensor product representation ⊗nρ : G→ GL(⊗nV ) we have

θ⊗nρ(g) = (
χρ(g)

dim(V )
)n−1θρ(g)

4. For the contragradient representation ρT : G→ GL(V ∗) given by ρT (g) = ρ(g−1)T we have

θρT (g) = −θρ(g−1)

Where, for a complex simple algebraic group, jρi is amultiple of the Dynkin Index of the representation ρi. It

is non-negative and satisfies

jρ1⊕ρ2 = jρ1 + jρ2 ,

jρ1⊗ρ2 = dim(V2)jρ1 + dim(V1)jρ2 ,

jρλ =
dim(Vλ)

dim(g)
B(λ, λ+ ρ)

where in the last line ρ is the half sum of all positive roots.

One motivation for studying such maps comes from a result of Springer which states that the Unipotent

varity U ⊂ G of unipotent elements is isomorphic as an algebraic variety to the nilcone N ⊂ g of

nilpotent elements in the lie algebra. Bardsley and Richardson [BR] used Springer morphisms, even in finite

characteristic for good primes, to give examples of such isomorphisms. Kostant and Michor [KM, 4.5] then

consider the complex case and generalize this to reductive algebraic groups to show

Theorem 3.4. Let a ∈ G be regular and assume that dθλ(s) is invertible. Then θlambda resticts to an

isomorphism of affine varieties

θλ : ConjG(a)→ AdG(θλ(a)
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Additionally, the Springer morphisms preserve the Jordan decompostion. Recall that any element a ∈ G

has a multiplicitave Jordan decomposition a = asau, where as and au are semisimple and unipotent elements.

Similiarly, for any X ∈ fg we have that X = Xs + Xn, where Xs and Xn are semisimple and nilpotent

elements respectively. Then we have [KM, 4.11] that θλ(as) = θλ(a)s and θλ(au) = θλ(a)u.

Finally we also want to consider the degree of the map θλ. To that end we have the following theorems

from [KM, 2.9,3.3] and [LPR2, Corrolary 2]

Theorem 3.5. For the Springer morphism θλ the induced mapping θ∗λ : C[g]→ C[G] between the algebra

of regular functions is injective, equivatiant, and maps the subalgebras of invariant regular functions to

each other, θ∗λ : C[g]G → C[G]G. Thus, θλ : G → g is a dominant algebraic morphism. By the algebraic

Peter-Weyl theorem we have that C[G] = ⊕µ∈DC[G]µ where D is the set of dominant integral weights, and

where

C[G]µ = {f ∈ C[G] : f(g) = tr(ρµ(g)B) for some B ∈ End(Vµ)}

For an irreducible representation ρλ we thus have θ∗λ(g∗) ∈ C[G]λ.

Finally, we have the following result about the degrees of Springer morphisms.

Theorem 3.6. For a Springer morphism θλ of a connected reductive group G. Then,

deg θλ = [Q(G) : Q(g)] = [Q(G)G : Q(g)G] = [Q(T )W : Q(t)W ]

We hope then that the results of the next section could help determine the degree of a Springer map for

any semi-simple group.

3.2 An Explicit Determination of the Springer Morphism

Let Vλ be a d dimensional almost faithful irreducible representation of G of highest weight λ. Let

Λλ = {(µi1, ..., µin)}di=1 be an enumeration of the set of weights considered with their multiplicity that appear

in the weight space decomposition of Vλ (so µij is the coordinate of the jth fundamental weight for the ith

weight in the decomposition) Then we can take a basis of weight vectors {vµi1,...,µin}
d
i=1 on which the torus

T and hence each simple co-root acts diagonally. Thus,
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ρλ(t) = diag{eµ1(t), ..., eµ
d
(t)} ∈ Aut(Vλ)

and for a simple co-root α̌j we have that

dρλ(α̌j) = diag{µ1
j , ..., µ

d
j} ∈ End(Vλ).

In order to compute the projection to g ∈ End(Vλ)) ' g⊕ g⊥ we calculate dρλ(g)⊥ ∈ End(Vλ) with

respect to the symmetric bilinear form tr(AB). Recall that dρλ is faithful so we identify g with its image

under dρλ. Let X = (xij) ∈ End(Vλ). Then for X to be contained in dρλ(g)⊥ it follows that

tr(dρλ(α̌j) ·X) = 0 =⇒
d∑
i=1

µijxii = 0

for all co-roots, α̌j ∈ t.

So
∑

µ∈Λλ
µi1xii =

∑
µ∈Λλ

µi2xii = ... =
∑

µ∈Λλ
µinxii = 0. Now to project ρλ(t) onto dρλ(t) we

write ρλ as a sum

ρλ(t) =
n∑
j=1

cj(t)dρλ(α̌j) +X(t).

where cj : T 7→ C is a function that depends on λ, and X(t) ∈ dρλ(g)⊥. It follows then that

θλ(t) =
∑

cj(t)α̌j

We aim to solve for the coefficients cj(t). Note that for the root space gα, we have that gα.Vµ ⊂ Vµ+α.

Thus, dρλ(eα) for eα ∈ gα will only have off diagonal entries, and as such the condition tr(dρλ(eα) ·X) = 0

will only add constraints to the off diagonal entries of X ∈ dρλ(g)⊥. As the action of t and α̌j are both

diagonal, by comparing coordinates we have the following set of d equations

eµ
1
(t) = c1(t)µ1

1 + ...+ cn(t)µ1
n + x11(t)
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eµ
2
(t) = c1(t)µ2

1 + ...+ cn(t)µ2
n + x22(t)

...

eµ
d
(t) = c1(t)µd1 + ...+ cn(t)µdn + xdd(t).

This can be reduced to n equations by utilizing the fact that
d∑
i=1

µijxii = 0, as follows. Multiply each

equation above by µi1 and sum (then repeat with µi2, ..., µ
i
n)

d∑
i=1

µi1e
(µi1,...,µ

i
n)(t) =

d∑
i=1

(µi1)2c1(t) +

d∑
i=1

µi1µ
i
2c2(t) + ...+

d∑
i=1

µi1µ
i
ncn(t)

...

d∑
i=1

µine
(µi1,...,µ

i
n) =

d∑
i=1

µi1µ
i
nc1(t) +

d∑
i=1

µi2µ
i
nc2(t) + ...+

d∑
i=1

(µin)2cn(t)

More concisely this can be written as



∑
µ∈Λλ

µ1e
µ(t)

...∑
µ∈Λλ

µne
µ(t)

 = S(G,λ)



c1(t)

c2(t)

...

cn(t)



where

S(G,λ) :=



∑
µ∈Λλ

µ2
1

∑
µ∈Λλ

µ1µ2 ...
∑
µ∈Λλ

µ1µn∑
µ∈Λλ

µ1µ2
∑
µ∈Λλ

µ2
2 ...

∑
µ∈Λλ

µ2µn

...
. . .

...∑
µ∈Λλ

µ1µn ...
∑
µ∈Λλ

µn−1µn
∑
µ∈Λλ

µ2
n
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In the next section we will show that S(G,λ) is a multiple of a symmetrization of the Cartan matrix for

G, and is thus invertible. So, we have that



c1(t)

c2(t)

...

cn(t)


= S−1(G,λ)



∑
µ∈Λλ

µ1e
µ(t)

...∑
µ∈Λλ

µne
µ(t)



We calculate the matrix S(G,λ) for the classical and exceptional simple algebraic groups. In the

following sections, we continue the notation

Λλ = {(µ1, ...µn)| µ1ω1 + ...+ µnωn is a weight ofVλ}

counted with multiplicity.

Our main result will be calculating the matrix S(G,λ) as defined in section 3, for the simple algebraic

groups. We use the convention that the Cartan matrix associated to the root system of g is A = (Aij), where

Aij = αi(α̌j). Then A is a change-of-basis matrix for t∗ between the fundamental weights and the simple

roots. Furthermore, A satisfies the following properties

• For diagonal entries Aii = 2

• For non-diagonal entries Aij ≤ 0

• Aij = 0 iff Aji = 0

• A can be written as DS, where D is a diagonal matrix, and S is a symmetric matrix.

Let D be the diagonal matrix defined by Dij =
δij
2 (αi, αj), where if we realize the root system R associated

to g as a set of vectors in a Euclidean space E, then (·, ·) is the standard inner product. In this framework we

can write Aij = αi(α̌j) =
2(αi,αj)
(αj ,αj)

Then, writing A = DS, we find that the matrix S has coordinate entries

given by
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Sij =
4(αi, αj)

(αi, αi)(αj , αj)

and is clearly symmetric.

(·, ·) is an invariant bilinear form on t∗, normalized so that so that (αi, αi) = 2 where αi is the highest

root. Note that under this formulation, if G is of simply-laced type then D is the identity matrix and S is the

Cartan matrix. We find that in general for a given simple group G that S(G,λ) is a multiple of S. Before

stating our result precisely we fix the following notation. If αj is any long simple root (for the simply laced

case αj can be any simple root), consider the corresponding fundamental weight ωj . Let xj(λ) :=
∑
µ∈Λλ

µ2
j ,

where µj is the jth coordinate of the weight µ ∈ Λλ in the fundamental weight basis.

Proposition 3.1. Let G be a simple algebraic group. Let S(G,λ) be defined as in section 3. Set xj(λ) :=∑
µ∈Λλ

µ2
j for a long root αj . Let S be a symmetrization of the Cartan matrix as above. Then S(G,λ) is a

multiple of S. More precisely,

S(G,λ) =
1

2
xj(λ) · S

and this is independent of the choice of long root αj .

Proof. The proof will rely on the fact that the set of weights Λλ of Vλ is invariant under the action of the

Weyl group on t∗, i.e. for w ∈ W , w.Λλ = Λλ. The following Lemma is true for all simple groups. The

following two lemmas are sufficient to prove the simply-laced case but also hold for the non-simply laced

cases.

Lemma 3.1. For a given simple group G, if the Cartan matrix entry Aij = 0, i.e the nodes representing the

simple roots αi and αj are not connected on the associated Dynkin diagram, then

∑
µ∈Λλ

µiµj = 0,

where µ = (µ1, ..., µn).
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Proof. Consider the simple reflection si acting on a weight µ = (µ1, ...µn) ∈ Λλ. Then

si(µ) = (µ1, ...µn)− ((µ1, ...µn)(α̌i))(αi)

where (µ1, ...µn)(α̌i) = (µ1ω1 + ...µnωn)(α̌i) = µi. Using the Cartan matrix to write the simple roots αi

in the fundamental weight basis gives αi = (Ai,1, ..., Ai,n). Then the above reflection yields

si(µ) = (µ1, ...µn)− µi(Ai,1, ..., Ai,n) = (µ1 − µiAi1, ..., µn − µiAin)

Now note that Aii = 2 and Aij = 0. So the ith coordinate of si(µ) is [si(µ)]i = µi − µiAii = −µi and

the jth coordinate of si(µ) is [si(µ)]j = µj − µiAij = µj . Thus we find that

∑
µ∈Λλ

µiµj =
∑

si(µ)∈Λλ

µiµj =
∑
µ∈Λλ

[si(µ)]i · [si(µ)]j =
∑
µ∈Λλ

−µiµj ,

by invariance of Λλ under si. Thus, the result follows.

Lemma 3.2. If simple roots αi and αj of G are connected via the Dynkin diagram and have the same length

then ∑
µ∈Λλ

µ2
i =

∑
µ∈Λλ

µ2
j .

Furthermore, ∑
µ∈Λλ

µiµj = −1

2

∑
µ∈Λλ

µ2
i

Proof. We have that Aij = Aji = −1. Then as above with µ = (µ1, ...µn) ∈ Λλ, we have that si(µ) =

(µ1 − µiAi1, ..., µn − µiAin). Now consider

sjsi(µ) = ((µ1 − µiAi1)− (µj − µiAij)Aj1, ..., (µn − µiAin)− (µj − µiAij)Ajn)
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Thus, [sjsi(µ)]i = (µi − µiAii)− (µj − µiAij)Aji = −µi − (µj + µi)(−1) = µj . Thus,

∑
µ∈Λλ

µiµi =
∑
µ∈Λλ

[sjsi(µ)]i · [sjsi(µ)]i =
∑
µ∈Λλ

µjµj

The second part of the lemma follows from the fact that [si(µ)]j = µj − µiAij with Aij = −1. It follows

that ∑
µ∈Λλ

µ2
j =

∑
µ∈Λλ

[si(µ)]2j =
∑
µ∈Λλ

(µj + µi)
2

Thus,
∑
µ∈Λλ

µiµi = −2
∑
µ∈Λλ

µiµj

Recall that the root systems of simple groups of type Bn, Cn, G2, F4 contain long and short simple roots.

Our convention will be the same as in [Bou]. That is, for Bn that α1, ..., αn−1 are the long roots and αn is

short, for Cn that α1, ...αn−1 are short and αn is long, for G2 that α1 is short and α2 is long, and for F4 that

the first and second are long and that the third and fourth are short.

Proposition 3.2. Let G be a rank n simple group of types Bn, Cn, or F4. For any long root αj , set

xj(λ) =
∑

µ∈Λλ
µ2
j . If αi is a short root, then

∑
µ∈Λλ

µ2
i = 2xj(λ). If either or both of αi and αj are short,

then
∑

µ∈Λλ
µiµj = −xj(λ)

Proof. Note that if αi and αj are both long roots, connected via the Dynkin diagram, then Aij = Aji = −1

So Lemma 4.3 shows that ∑
µ∈Λλ

µ2
i =

∑
µ∈Λλ

µ2
j ,

and that
∑

µ∈Λλ
µiµj = −1

2

∑
µ∈Λλ

µ2
i . The same is true for the short roots as Aij = Aji = −1 for

connected short roots. So we need to show that if αi and αj are short and long roots respectively and

connected via the Dynkin diagram, then
∑

µ∈Λλ
µ2
i = 2xj(λ), and that

∑
µ∈Λλ

µiµj = −xj(λ). To show

this we first note that Aij = −1 and Aji = −2 and then compare [si(µ)]i, [sj(µ)]j , [sj(µ)]i and [si(µ)]j .

Note that [si(µ)]i = −µi and sj(µj) = −µj as before. Also, [si(µ)]j = µj − µiAi,j = µj + µi and

[sj(µ)]i = µi − µjAji = µi + 2µj . Thus, we have that
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∑
µ∈Λλ

µiµj =
∑
µ∈Λλ

[sj(µ)]i · [sj(µ)]j =
∑
µ∈Λλ

(µi + 2µj)(−µj) =
∑
µ∈Λλ

−µiµj − 2µ2
j

Thus
∑

µ∈Λλ
µiµj = −

∑
µ∈Λλ

µ2
j = −xj(λ). Applying, si to µ gives

∑
µ∈Λλ

µiµj =
∑
µ∈Λλ

[si(µ)]i · [si(µ)]j =
∑
µ∈Λλ

−µiµj − µ2
i

Thus,
∑
µ∈Λλ

µ2
i = 2xj(λ)

So it follows that with xj(λ) =
∑
µ∈Λλ

µ2
j , where αj is a long root, then

S(Bn, λ) =
xj(λ)

2



2 −1

−1 2 −1

−1
. . .

2 −1

−1 2 −2

−2 4


, S(Cn, λ) =

xj(λ)

2



4 −2

−2 4 −2

−2
. . .

4 −2

−2 4 −2

−2 2



S(F4, λ) =
xj(λ)

2



2 −1 0 0

−1 2 −2 0

0 −2 4 −2

0 0 −2 4


We give inverses of these matrices in the next section.

Let α1 be the short root, and α2 the long root of G2.
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Proposition 3.3.
∑
µ∈Λλ

µ2
1 = −2

∑
µ∈Λλ

µ1µ2 = 3
∑
µ∈Λλ

µ2
2

Proof. Let µ = (µ1, µ2) ∈ Λλ. Then since A =

 2 −1

−3 2

, we find that s1(µ) = (−µ1, µ1 + µ2) and

that s2(µ) = (µ1 + 3µ2,−µ2). So,

∑
µ∈Λλ

µ2
1 =

∑
µ∈Λλ

(µ1 + 3µ2)2

from which it follows that
∑

µ∈Λλ
µ1µ2 = −3

2

∑
µ∈Λλ

µ2
2. Additionally, we have that

∑
µ∈Λλ

µ2
2 =

∑
µ∈Λλ

(µ1 + µ2)2

from which we can see that
∑

µ∈Λλ
µ2

1 = −2
∑

µ∈Λλ
µ1µ2 = 3

∑
µ∈Λλ

µ2
2. Thus,

S(G2, λ) =
1

2

∑
µ∈Λλ

µ2
2

 6 −3

−3 2



In particular, we can solve for c1(t) and c2(t) as

c1(t)

c2(t)

 = S(G2, λ)−1


∑
Λλ

µ1e
µ(t)∑

µ∈Λλ

µ2e
µ(t)
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then, letting x =
∑
µ∈Λλ

µ2
2 we have that S−1(G,λ) = 2

3x

2 3

3 6

. Thus,

c1(t, λ) =
2

3x

∑
µ∈Λλ

(2µ1 + 3µ2)eµ(t)

c2(t, λ) =
2

3x

∑
µ∈Λλ

(3µ1 + 6µ2)eµ(t)

.

3.2.1 Examples

Consider G = Sp(2n,C)={A ∈ GL(2n)|M = AtMA} where M =

 0 In

−In 0

 where In is the

n× n identity matrix, and sp(2n,C)={X ∈ gl(2n)|XtM +MX = 0}.

Let λ = ω1, the defining representation. Then we have that Λλ={±ω1 and ±(ωi − ωi+1) for 1 ≤ i ≤

n − 1}. So, x =
∑
Λλ

µ2
n = 2. Let T = diag{t1, ..., tn, t−1

1 , ..., t−1
n }. The simple roots are αi = εi − εi+1

for 1 ≤ i ≤ n − 1 and αn = 2εn. The simple coroots in t are then α̌i = Ei − Ei+1 − En+i + En+i+1

for 1 ≤ 1 ≤ n − 1 and α̌n=En − E2n where Ei is the diagonal matrix with a 1 in the ith slot and 0’s

elsewhere [FH]. In the orthogonal basis for t, ωi = ε1 + ... + εi. Thus, the character eµ(t) is given by

eµ(t) = tµ1+...µn
1 · tµ2+...+µn

2 · ... · tµnn . Then, we have that


c1(t)

...

cn(t)

 =
1

2



1 1 1 ... 1

1 2 2 ... 2

1 2 3 ... 3

... ... ... ... ...

1 2 3 ... n





t1 − t−1
1 − t2 + t−1

2

t2 − t−1
2 − t3 + t−1

3

...

tn−1 − t−1
n−1 − tn + t−1

n

tn − t−1
n
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which gives


c1(t)

...

cn(t)

 =
1

2



t1 − t−1
1

...

tn−1 − t−1
n−1

t1 − t−1
1 + ...+ tn − t−n 1


Thus,

θλ(t) = c1(t)α̌1 + ...+ cn(t)α̌n = diag(
t1 − t−1

1

2
, ...,

tn − t−1
n

2
,− t1 − t

−1
1

2
, ...,− tn − t

−1
n

2
).

Note that this is equivalent to the Cayley transform as in §6 of [Ku2]. Similar results hold for θω1(t) for the

standard maximal tori of SO(2n+ 1,C) and SO(2n,C).

The inverses of the Cartan matrices for An, Dn, E6, E7, E8 respectively have the form (as in [Ro])

1

n+ 1



n n− 1 n− 2 ... 3 2 1

n− 1 2(n− 1) 2(n− 3) ... 6 4 2

n− 2 2(n− 2) 3(n− 2) ... 9 6 3

... ... ... ... ... ... ...

2 4 6 ... (2n− 2) 2(n− 1) n− 1

1 2 3 ... n− 2 n− 1 n


,



1 1 1 ... 1 1
2

1
2

1 2 2 ... 2 1 1

1 2 3 ... 3 3
2

3
2

... ... ... ... ... ... ...

1 2 3 ... n− 2 n−2
2

n−2
2

1
2 1 3

2 ... n−2
2

n
4

n−2
4

1
2 1 3

2 ... n−2
2

n−2
4

n
4
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4
3 1 5

3 2 4
3

2
3

1 2 2 3 2 1

5
3 2 10

3 4 8
3

4
3

2 3 4 6 4 2

4
3 2 8

3 4 10
3

5
3

2
3 1 4

3 2 5
3

4
3


,



2 2 3 4 3 2 1

2 2
2 4 6 9

2 3 3
2

3 4 6 8 6 4 2

4 6 8 12 9 6 3

3 9
2 6 9 15

2 5 5
2

2 3 4 6 5 4 2

1 3
2 2 3 5

2 2 3
2



,



4 5 7 10 8 6 4 2

5 8 10 15 12 9 6 3

7 10 14 20 16 12 8 4

10 15 20 30 24 18 12 6

8 12 16 24 20 15 10 5

6 9 12 18 15 12 8 4

4 6 8 12 10 8 6 3

2 3 4 6 5 4 3 2



The inverse of the matrix S for types Cn, Bn, G2, F4 have the form

1

2



1 1 1 ... 1

1 2 2 ... 2

1 2 3 ... 3

... ... ... ... ...

1 2 3 ... n


,
1

2



2 2 2 ... 2 1

2 4 4 ... 4 2

2 4 6 ... 6 3

... ... ... ... ... ...

2 4 6 ... 2(n− 1) n− 1

1 2 3 ... n− 1 2


,

2
3 1

1 2

 ,



2 3 2 1

3 6 4 2

2 4 3 3
2

1 2 3
2 1
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CHAPTER 4

Representation Ring of Levi Subgroups vs Cohomology Ring of Flag Varieties

4.1 Classical Result and Polynomials Invariants

Let Gr(r, n) be the Grassmanian of r-planes in Cn. Then a classical result states that the tensor product

of irreducible polynomial representations of the general linear group GL(r) over C corresponds in a certain

sense to the cup product in the cohomology of the flag manifold, H∗(Gr(r, n),Z).

Note that the Lie group GL(r) is contained in its Lie algebra gl(r) = Mr×r.

Definition 4.1. An irrep V (λ) of GL(r) is called a polynomial rep if its character lifts to a character on the

Lie algebra gl(r)

GL(r)

i
��

χλ // C

gl(r)

<<

Alternately, a finite dimensional representation ρ : GL(r)→ GL(V ) is said to be polynomial if there

exists a basis of V such that entries of ρ(g) are polynomials in the matrix entries of g. Every irreducible

polynomial representation of GL(r) is indexed by a partition (its highest weight)

λ = {λ1 ≥ λ2 ≥ ... ≥ λr ≥ 0}

such that the action of the torus is given by


t1

. . .

tr

→ tλ11 ...tλrr
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Note that Gr(r, n) = GL(r)/Pr where Pr is a maxiamal parabolic subgroups containing the the standard

upper triangular Borel subgroup B ⊂ Pr ⊂ GL(r). Pr is taken by deleting the rth node of the Dynkin

diagram for GL(r) (or in the language of Chapter 2, Pr = Pθ with θ = ∆ − {αr}. Then we have the

following Bruhat decomposition ⊔
w∈WG/WPr

BwPr/Pr

whereWG = Sn andWPr = Sr×Sn−r−1 andWG/WPr = W θ is the following set of length r subsequences

of [n], S(r, n) = {A : 1 ≤ a1 ≤ a2 < ... < ar ≤ n}. Any such tuple represents the permutation

νA = (a1, ..., ar, ar+1, ..., an), i 7→ ai

Then we have that

H∗(Gr(r, n),Z) =
⊕

A∈S(r,n)

Z
εPr
ν(A)

where εPrν(A) ∈ H
2l(ν(A))(Gr(r, n)). This leads to the classical result that

Theorem 4.1. The following map ξ is a surejective ring homomorphism

ξ : Reppoly(Gl(r))→ H∗(Gr(r, n),Z)

where

[V (λ)]→ εPrν(A) if λ1 ≤ n− r

→ 0 otherwise

and A(λ) = {1 + λr < 2 + λr−1 < ... < r + λ1} is a surjective homomorphism.

The work [Ku2] (on which this thesis is largely based) aimed at generalizing the above classical result

to the larger context of the Levi subgroups of reductive groups and the cohomology of the corresponding

partial flag varieties. For another attempt at generalization, see [?]. We will use the Borel characteristic

map of §2.3 and the Springer morphism of the previous chapter to do so in the next section. A historical

difficulty for extending the above result to other classical types is that it is not clear how to define polynomial
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representations for other groups. The polynomial ring of invariants S(t∗)W for a Weyl group will serve as

the model for the polynomial representations of a group with said Weyl group. We now give some basic facts

about the ring S(t∗)W and examples for the Weyl groups of simple groups.

4.1.1 Weyl Group Invariants

More generally, let G be a group acting linearly on a vector space V . If C[V ] is the space of polynomial

functions on V , then there is an induced action of G on C[V ] given by (g · f)(x) = f(g−1(x)). Classical

invariant theory was concerned itself with the structure of the space of invariant polynomials C[V ]G = {f ∈

C[V ]| g · f = f ∀g ∈ G}, particularly finiteness results [Hu]. For example, Hilbert and Noether showed

that the ring of invariants is a finitely generated C−algebra. A theorem of Chevalley-Shepard-Todd showed

that the ring of invariants is a polynomial ring if and only if G is a complex reflection group. Furthermore the

degrees of the generators are unique. As Weyl groups are complex reflection groups, their ring of invariants

S(t∗)W is a polynomial ring on rank(t) generators. The degrees di of these generators are listed below.

Type Degrees
An 2,3,...,n+1
Bn 2,4,6,...,2n
Cn 2,4,6,...,2n
Dn 2,4,6,...,2n-2,n
G2 2,6
F4 2,6,8,12
E6 2,5,6,8,9,12
E7 2,6,8,10,12,14,18
E8 2,8,12,14,18,20,24,30

Table 4.1: Degrees of Basic Invariants

In particular, we also have that
∏n
i=1 di = |W | and

∑n
i=1(di − 1) is the number of reflections. We can

now describe the well-known polynomial invariants for the classical groups. For examples for the exceptional

groups see [Lee, Me, Ts].

Type An : It is convenient to work in Cn+1 restricted to the hyperplane x1 + ... + xn+1 = 0. Then

WAn = Sn+1 acts on C[x1, ..., xn + 1] by permuting the variables. Recall [Hu] that the simple roots are

given by ∆ = {ei − ei+1| i = 1, ..., n}. Then the simple reflections si act by permuting xi with xi+1. Then
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we have the following set of basic invariants

fi = ei(x1, ..., xn+1)

for i = 2, 3, .., n+ 1, where ei is the ith elementary symmetric polynomial (Note that e1(x1, ..., xn+1) =

x1 + ...xn+1 = 0.

Type Bn and Cn : Note that Cn and Bn have the same Weyl Group. The simple roots of type Bn are

∆ = {ei − ei+1| i = 1, .., n} ∪ {en}. So the simple reflections si act by permuting xi and xi+1 and sn acts

by taking xn to −xn. In particular, the Weyl group WBb ' Sn o Z2 is the hyperoctahedral group. We have

the following set of basic invariants

fi = ei(x
2
1, ...x

2
n)

for i = 1, ..., n.

TypeDn The simple roots of type Dn are given by ∆ = {ei− ei+1| i = 1, .., n− 1∪{en−1 + en}. The

first n− 1 simple reflections act as before and sn acts by permuting xn−1 and xn and changing their sign.

The Weyl group WDn is the subgroup of WBn of elements with an even number of sign changes. We have

the following set of basic invariants.

fi = ei(x
2
1, ..., x

2
n)

for i = 1, ..., n− 1 and

fn = en(x1, ..., xn) = x1...xn

4.2 Main Result

We are now ready to state the main result of [Ku2]. Let G be a connected reductive algebraic group over

C and P a standard parabolic subgroup with Levi subgroup L containing the chosen maximal torus T . Let

WL be the Weyl group of L.

Recall the surjective Borel morphism from §2.3,

S(t∗)→ H∗(G/B,C)
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which takes a chacter µ ∈ X(T ) to the first chern class of the line bundle L(µ). We can realize X(T ) as a

lattice in t∗ via taking derivative. WL acts on both S(t∗) and H∗(G/B,C), and restricting we get a surjective

graded algebra homomorphism:

βP : S(t∗)WL → H∗(G/B,C)WL ' H∗(G/P,C),

. where the last isomorphism is induced from the projection G/B → G/P .

Take an almost faithful G-module Vλ. Let θλ : G→ g be the associated Springer morphism from §3.

Restricting θλ|T : T → t induces the corresponding W−equivariant injective algebra homomorphism on the

affine coordinate rings:

θ∗λ|T : C[t] = S(t∗)→ C[T ]

So, resticting to WL invariants we get the following injective algebra homomorphism:

θλ|T (P )∗ : C[t]WL = S(t∗)WL → C[T ]WL

Now we let Rep(L) be the representation ring of L and let RepC(L) = Rep(L)⊗C be its complexified

representation ring. Then, recall from §2.1 that RepC(L) ' C[T ]WL obtained by taking the character of

an L−module restricted to T . Note again that a representation V of L is denoted by [V ] as an element of

Rep(L).

Then we make the following definition inspired by the definition for a polynomial representation of

GL(r) given earlier

Definition 4.2. A virtual character χ ∈ RepC(G) is called λ−poly if the following diagram commutes

G

θλ
��

χ
// C

g

??

I.e. χ ∈ RepC(L) is λ − poly iff the corresponding function in C[T ]WL is in the image of θλ|T (P )∗.

The set RepCλ−poly(L) of all λ−polynomial characters is a subalgebra of RepC(L) isomorphic to the algebra
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S(t∗)WL of Weyl polynomial invaraints. Thus, θλ|T (P )∗ induces an isomporphism

θλ|T (P )∗ : S(t∗)WL → RepCλ−poly(L)

Now, the main result is as follows by composing the above maps

Theorem 4.2. Let Vλ be an almost faithful irreducible G-module and let P be any standard parabolic

subgroup. Then, the above maps (specifically βP ◦ (θλ|T (P )∗)−1) give rise to a surjective C-algebra

homomorphism

ξPλ : RepCλ−poly(L)→ H∗(G/P,C).

Moreover, let Q be another standard parabolic subgroup with Levi subgroup R containing T such that

P ⊂ Q (and hence L ⊂ R). Then, we have the following commutative diagram:

RepCλ−poly(R)

γ

��

ξQλ // H∗(G/Q,C)

π∗

��

RepCλ−poly(L)
ξPλ // H∗(G/P,C),

where π∗ is induced from the standard projection π : G/P → G/Q and γ is induced from the restriction of

representations.

Example 4.1. The subalgebra RepCλ−poly(G) ⊂ RepC(G), in general, indeed depends upon the choice of λ.

For example, for G = SL2, following Example 3.1,

RepCω1−poly(SL2) = C[(z − z−1)2],

whereas

RepC2ω1−poly(SL2) = C[(z2 − z−2)2],
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for the maximal torus in SL2 given by

T =


z 0

0 z−1

 : z ∈ C∗

 .

♦

4.3 Type A

In this section we will show how we can recover the classical result stated at the beginning of this section

from Theorem 4.2 and give more details on the Cohomology of the Grassmannian.

4.3.1 Recovering the Classical Result

We adopt the same notation as from the beginning of the chapter and follow [Ku2, §5]. The torus

T ⊂ Gl(n) is the set of diagonal matrices inGL(n) and the cartan subalgebra is then given by set of diagonal

matrices t = {diag(t1, ..., tn) : ti ∈ C}. Then the simple roots and coroots are given by

αi = ti − ti+1 and α̌i = diag(0, , , 0, 1,−1, 0, ...0), for any 1 ≤ i ≤ n− 1

where 1 is in the ith place. And the fundamental weights are given by

ωi = t1 + ...+ ti

The Weyl group of type An is the symmetric group Sn generated by the reflections Sαi associated to the

simple roots. Here, Sαi = si = (i, i + 1). Now let Pr be the standard maximal parabolic associated to

the subset θ = ∆− {αr} of simple roots. Then Lr is the unique Levi subgroup containing T such that its

simple roots are θ. Then as mentioned before GL(n)/Pr ' Gr(r, n), the Grassmannian of n-planes in Cn.

Furthermore the set of minimal length cosets which index the Schubert classes in the cohomology of the

grassmannian can be parametrized by the following set of strictly increasing sequences,

S(r, n) = {I := 1 ≤ a1 < ... < ar ≤ n}.
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These sequences represent the permutation νA ∈ Sn given by

I = (a1, ..., ar, ar+1, ..., an), i 7→ ai

where the above permutation is written in one-line notation and the {ar+1, ..., an}=[n]\{a1, ..., ar} are

put in increasing order. Such permutations are said to have a descent at r, i.e. w(r+1) < w(r) or equivalently

l(wsr) < l(w). There is also a paremtrization by partitions λ = {n − r ≥ λ1 ≥ λ2 ≥ ... ≥ λ1 ≥ 0}.

The partition λI corresponding to the sequence I is given by λi = Ir+1−i − (r + 1− i). So For example,

if n=5 and r=3, the sequence I = (1, 3, 5) corresponds to the one-line permutation wI = (1, 3, 5, 2, 4)

and to the partition λI = (2, 1, 0). The corresponding Schubert variety will then be denoted by either

XI , XwI , or XλI .

Now as mentioned above, irreducible polynomial representations of GL(r) are also parametrized by

permutations. The map ξ from Theorem 4.1 can then be stated as mapping [V (λ)] 7→ ελ.

Let G = GL(n) and let λ = ω1 so Vλ is the defining representation. Then we have that,

θω1 : GL(n)→ g(n)

. Furthermore, Repω1−poly(G) coincides with the usual notion of polynomial representation (where

Repω1−poly(G) = RepCω1−poly(G) ∩Rep(G). For 1 ≤ r ≤ n− 1, the Levi subgroup Lr is the subgroup

Lr ' GL(r)×GL(n− r) ⊂ GL(n).

Then, from Theorem 4.2 we have a C-algebra homomorphism:

ξPrω1
: RepCω1−poly(Lr)→ H∗(Gr(r, n),C)

where,

RepCω1−poly(Lr) '
[
Reppoly(GL(r))⊗Reppoly(GL(n− r))

]
⊗Z C
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In order to get a map from RepCω1
(GL(r)) we factor through the ring homorphism

i : Reppoly(GL(r))→ Reppoly(GL(r))⊗Reppoly(GL(n− r))

where we tensor a GL(r) representation with the trivial one-dimensional GL(n− r) representation.

Theorem 4.3. ξPrω1
◦ i coincides with ξ from Theorem 4.1.

Proof. Note that since these are C algebra homomorphisms, we need only check that they correspond on

the fundamental representations [Vω1 ] since they generate Reppoly(GLr). Note that for λ = (1, .., 1, 0, .., 0)

with i one’s we have [V (ωi)] = [V (λ)]. Furthermore, wλ = sr−i+1...sr. Thus by definition,

ξ([V (ωi)]) = εPrsr−i+1...sr .

Moreover, the character of [V (ωi)] is the ith elementary symmetric polynomial ei(x1, ..., xr) where xi is the

ith coordinate map on t. Thus,

ξPrω1
([V (ω1)]) = β(ei(x1, ..., xr))

where β is the Borel characteristic map. Then, by [Hi, Chapter 4 Lemma 5.4] we have

β(ei(x1, ..xr)) = εPrsr−i+1...sr

completing the proof.

4.3.2 Cohomology of the Grassmannian

As a model for what we will discuss in Chapter 5 for the other classical groups we will briefly discuss in

more detail the structure of the cohomology of the Grassmannian. References for this material are [T2, T7]

From the previous section we know that X = Gr(r, n) can be realized as the homogenous space

GL(n)/Pr. Then from chapter 2, sections 2 and 3, we saw that H∗(Gr(r, n),C) has an additive schubert

basis indexed by the minimal length elements of W/WPr
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Fix the complete flag of vector subspaces (Fi = 〈e1, ..., ei〉 ⊂ Cn)

F• : 0 = F0 ⊂ F1 ⊂ ... ⊂ Fn = Cn

. Consider the set of index sets S(r, n) = {I : 1 ≤ i1 < ... < ir ≤ n}. Now let Ω ∈ X , then we can define

a corresponding index set I(Ω) by

I(Ω) = {(i1, .., ir)| Ω ∩ Fij ! Ω ∩ Fij−1}

Then we can define the following subvariety of X for a given index set I ,

X◦I (F•) := {Ω ∈ X|I(Ω) = I}

X◦I (F•) is then isomorphic to an affine space of dimension
∑r

j=1(ij − j) and these give a familiar cell

decomposition of the grassmannian

Gr(r, n) =
∐
I

X◦I (F•)

These are exactly the open Bruhat cells(up to choice of full flag or Borel subgroup) and an index set

corresponds to an element W/WPr as in the previous subsection. Let XI(F•) be the closure. We can also

parametrize subvarieties by partitions λ = (λ1 ≥ λ2 ≥ ... ≥ λr) where we require n − r ≥ λ1. The

subvarieties are

Xλ(F•) = {Ω ∈ X| dim(Ω ∩ Fn−r+j−λj ) ≥ j, 1 ≤ j ≤ r}

. We can associate a partition making the codimension of XI apparent to an index set I by letting

λj = n− r + j − ij .

Then Xλ(F•) is a subvariety of co-dimension |λ| =
∑r

j=1 λj . We can also associate the dual partition λ̃

given by

λ̃j = ir+1−j − (r + 1− j).
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Then, Xλ̃(F•) is a variety of dimension |λ|. Associate a permutation wλ to a partition λ by

wλ(i) = λr+1−i + i

. Now, let [Xλ] be the fundamental homology class of the subvariety Xλ (the class is independent of choice

of flag, see [Br]). Associate ελ and ελ̃ be cohomology classes associated to an index set I . Then ελ̃ and ελ

are related to each other as εw and εw0wwP0
are from §2.2 (w0w0,P is the longest element of WP ).

For example, let w = (1, 2, 3, 6, 4, 6) be an element of S(4, 6), i.e. the associated index set is I =

(1, 2, 3, 6). Then, λ = (2, 2, 2, 0) and λ̃ = (2, 0, 0, 0) based of I as above. Then we have that

εw = ελ̃,

and εw = PD[Xλ] or equivalently that εw0ww0P
= ελ.

The varieties indexed by partitions of a single part Xp := X(p,0,..,0) for 1 ≤ p ≤ n− r play a special

role in determining the cohomology ring. They depend only on a single Schubert condition,

Xp(F•) =
{

Ω ∈ X| Ω ∩ Fn+1−p 6= 0
}
.

Note, εp ∈ Hp(X,C). These are called the special Schubert classes.

We now want to give a presentation for the colomology ring H∗(Gr(r, n),C). The idea here is the same

for all grassmannians of classical type [BKT1, §0]. Over the grassmannian there is a universal short exact

sequence of vector bundles

0→ S → V → Q→ 0.

V is the trivial rank n bundle. S is the tautological rank r subbundle where the fiber over a point Ω ∈ X is

Ω, and Q is the tautological rank d = n− r quotient bundle. Then we have that εp = cp(Q), i.e. εp is the

pth Chern class of the quotient bundle. Now, multiplication in the cohomology ring is determined by the

classical Pieri rule, which is a type of Chevalley rule from §2.2. It states that the product of a Schubert class
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ελ ∈ H |λ| with a special Schubert class is given by,

ελ · εp =
∑

εµ,

where the sum is over all partitions µ obtained from λ by adding p blocks to λ while adding no two in the

same column. Additionally, any Schubert class ελ can be expressed as a polynomial in the special Schubert

classes. This is the classical Giambelli formula,

ελ = det(ελi+j−i)1≤i<j≤n

The Pieri formula implies that the special Schubert classes εp generate the cohomology of the grass-

mannian. We can present the cohomology as a qutient of the polynomial ring C[ε1, ...εd]/Ir,d where Ir,d is

generated by the determinantal relations

det(ε1+j−i)1,j≤m = 0, r + 1 ≤ m ≤ n

The Whitney sum folmula applied to S and Q, c(S)c(Q) = 1 where c(Q) is the total Chern class of the

bundle Q, can be used to show that these relations hold in H∗(X,C) and dimensional considerations show

that they are sufficient. We will be able to give presentations for the cohomology of grassmannians of type B

and C in terms of the Chern classes of a universal quotient bundle as well.

4.3.3 Result in the Inverse Limit

We will look at the situation from §4.3.1 again this time focusing on the second factor. Fix an integer

d. We want to compare the ring Reppoly(GL(d)) to the cohomology ring H∗(Gr(n − d, n),C) of the

grassmannian of codimension d subspaces of C. Again we consider the maximal parabolic Pn−d associated

to the subset of simple roots ∆− {αn−d}. Then as before Lr = GL(n− d)×GL(d) and theorem 4.2, and

we have

RepCω1
(Lr) = RepCω1

(GL(n− d))⊗C RepCω1
(GL(d)) = Csym[t1, ..., tn−d]⊗ Csym[td+1, ...tn]
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Here again Csym[x1, ..., xk] is the subring of of polynomials invariant under permutation of variable. The

fundamental theorem of symmetric polynomials says that any symmetric polynomial can be written as

a polynomial in the elementary symmetric polynomials ei(x1, ..., xk) for 1 ≤ i ≤ k. The elementary

symmetric polynomial is defined as

ei(x1, ...xk) =
∑

1≤j1<..<ji≤k
xj1 ...xji

We saw in 4.3.1 that

ξ
Pn−d
ω1 (ei(t1, .., tn−d)) = εsn−d−i+1...sn−d

Consider e1(tn−d+1, ..., tn) = tn−d+1 + ...+ tn. Let T = {t = (t1, ..., tn)|ti 6= 0} be the maximal torus in

GL(n). Then with θω1(t) = t ∈ gln. Let xi : t→ C be the linear map taking

diag(x1, ..., xn) ∈ t to xi

Then since θω1|T is just the inclusion T ⊂ t, (θ∗ω1|T )−1(xi) 7→ ti, so ei(t1, ..., tn) 7→ ei(x1, ..., xn). Then

we just need to compute β(ei(xn−d+1, ..., xn)). Recall that β(ωi) = εsi . In the fundamental weight basis

xi = ωi − ωi−1, so

β(xi) = β(ωi)− β(ωi−1) = εsi − εsi−1 ,

except for β(xn) = β(ωn − ωn−1) = −εsn−1 . Then, finally

β(e1(xn−d+1, ..., xn)) =
d∑
i=1

β(ωn−d+i − ωn−d+i−1) = −εsn−d

In general, we claim

Lemma 4.1. For any k = 1, ..., d, the following eqution holds in H∗(Gr(n− d, n),C)

β(ek(xn−d+1,...,xn) = (−1)k(εsn−d+k−1...sn−d)
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Proof. Recall that we can relate the Borel morphism to Schubert classes by

β(f) =
∑

w∈WP

Aw(f)εw.

So we just need to show thatAw(ek(xn−d+1, ..., xn)) = (−1)k ifw = sn−d+k...sn−d and equals 0 otherwise.

This follows by inducting on the number of variables and noting the following properties of Asi

Asi(ek(xj , ..., xn)) 6= 0 only if i = j − 1

Asj ((ek(xj , ..., xn)) = −ek−1(xj+1, ..., xn)

If we also consider the bijections between elements ofWPr and S(n−d, d) we can associate β(ek(xn−d+1, ..., xn))

to ελ for some partition λ. The Weyl group element sn−d+ksn−d+k−1...sn−d corresponds to the one-line

permutation [1, 2, .., n−d−1, n−d+k, ...] where w(n−d+1) through w(n) are taken from the remaining

number and put in increasing order. This element then corresponds to the partition (k, 0, .., 0). Thus,

εsn−d+k−1...sn−d = εk = ck(Q).

We also note that εsn−d−k+1...sn−d = ε(1, .., 1, 0, ..0) = ck(S), where (1, ..1, 0, .., 0) is the partition with k

leading ones and ck(S) is the kth chern class of the tautological subbundle. We collect the above results and

discussions into the following proposition

Proposition 4.1. Let Ln−d = GL(n− d)×GL(d) ⊂ GL(n) = G be the Levi subgroup of the maximal

parabolic Pn−d associated to subset of simple roots ∆− {αn−d}. Then the map

ξ
Pn−d
ω1 : RepCω1

(Ln−d)→ H∗(GL(n− d, n),C)

takes,

ek(t1, ..., tn−d) 7→ ε1k = ck(S
∗)
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and

ek(tn−d+1, ..., tn) 7→ εk = (−1)kck(Q)

Now, consider the map

ιn2 : Reppoly(Gl(d))→ Reppoly(GL(n− d))⊗Reppoly(GL(d))

given by tensoring a GL(d) polynomials representation with the trivial GL(n− d) representation. Then this

gives a map from ξn,dω1 : Reppoly(GL(d)) 7→ H∗(Gr(n− d, n)) by composing ξPn−dω1 ◦ i2. Now consider the

following inclusion of varieties

...→ Gr(n− d, n)→ Gr(n+ 1− d, n+ 1)→ ...

This yields a corresponding sequence

...← H∗(Gr(n− d, n),C)← H∗(Gr(n− d+ 1, n+ 1),C)← ...

Note the Chern classes of the universal quotient bundles are stable in this system, i.e. in the map H∗(Gr(n−

d, n)C)← H∗(Gr(n− d+ 1, n+ 1),C) one has cp(Qn)← cp(Qn+1). Then let

H(Grd) = lim←−H
∗(Gr(n− d, n),C),

that is the inverse limit in the categrory of graded rings in the above system. Consider the diagram

RepCω1
(Gl(d))

ξn,dω1 ◦ι
n
2
//

ξn+1,d
ω1

◦ιn+1
2

))

H∗(Gr(n− d, n),C)

i∗n

OO

H∗(Gr(n+ 1− d, n),C)

i∗n+1

OO

i∗n+2

OO
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Then due to the stability of the chern classes, we have

i∗n+1 ◦ ξn+1,d
ω1

(ek(x)) = i∗n+1((−1)kck(Qn+1)) = (−1)kck(Qn) = ξn,dω1
(ek(x))

. Thus, we have a map from

RepCω1
(GL(d))→ H(Grd)

. Looking at the presentation for the coholomology of H∗(Gr(n− d, n),C), none of the relations hold in

the inverse limit. This yields the following theorem

Theorem 4.4. There is an graded algebra isomorphism betweenReppoly(GL(d)) and H(Grd) = lim←−H
∗(Gr(n−

d, n),C) = C[ε1, ..., εd], given by mapping the kth elementary symmetric polynomial to the class εk =

ck(Q).

We will attempt to derive similar results fro other Lie types in the next chapter.
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CHAPTER 5

Types B,C, and G

5.1 Representation Ring of the Classical groups

In this section all results are due to and we follow closely [Ku2, §6]. In accordance with our expectation

that the fundamental weight of minimal dynkin index is the most appropriate dominant weight for which to

consider the λ-polynomial representation ring, we let λ = ω1 (which is the defining representation for the

classical groups Sp(2n,C), SO(2n+ 1,C), and SO(2n,C)).

Take symmetric forms on C2n,C2n+1 (resp. an alternating form on C2n) so that SO(2n), SO(2n+ 1)

(resp. Sp(2n)) are given respectively by

SO(2n) = {g ∈ SL2n : (gt)−1 = EDgE
−1
D }

SO(2n+ 1) = {g ∈ SL2n+1 : (gt)−1 = EBgE
−1
B }

Sp(2n) = {g ∈ SL2n : (gt)−1 = ECgE
−1
C },

where ED is the antidiagonal matrix with all its antidiagonal entries 1; EB is the antidiagonal matrix with all

its antidiagonal entries 1 except the (n+ 1, n+ 1)-th entry which is 2; EC is the block matrix

EC =

 0 −Jn

Jn 0

 ,

where Jn is the antidiagonal n× n matrix with all its antidiagonal entries 1. (The suffix D,B,C refers to

the types of the corresponding groups.)
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Depending upon the case, denote ED, EB or EC by the common symbol E. Consider the Springer

morphism for these groups with λ = ω1, which is their defining representation. Then, Springer morphism in

this case is just the Cayley transform [Ku2, Lemma 10].

Lemma 5.1. The Springer morphism θ : G→ g for G = So2n, So2n+1 or Sp2n is given by

g 7→ g − E−1gtE

2
, for g ∈ G.

Proof. The lemma follows immediately since under the decomposition

End(V (ω1)) = g⊕ g⊥,

any A ∈ End(V (ω1)) decomposes as

A =
(A− E−1AtE)

2
+

(A+ E−1AtE)

2
.

We choose the maximal tori in Sp(2n), SO(2n) and SO(2n+ 1) respectively as follows:

TC = TD =
{
t =

(
t1, . . . , tn, t

−1
n , . . . , t−1

1

)
: ti ∈ C∗

}
(5.1)

TB =
{
t =

(
t1, . . . , tn, 1, t

−1
n , . . . , t−1

1

)
: ti ∈ C∗

}
. (5.2)

Their associated Cartan subalgebras are then given by

tC = tD =
{
t̄ =

(
x1, . . . , xn,−xn, . . . ,−x1

)
: xi ∈ C

}
(5.3)

tB =
{
t̄ =

(
x1, . . . , xn, 0,−xn, . . . ,−x1

)
: xi ∈ C

}
. (5.4)

From the description of the Springer morphism given above, we immediately get the following:
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Lemma 5.2. Restricted to the maximal torus as above, we get the following description of the Springer

morphism θω1 (which can also easily be derived from Proposition 3.1 as the example in §3.2.1 was for type

C) :

(a) G = SO2n) : θ(t) =
( t1−t−1

1
2 , . . . , tn−t

−1
n

2 ,−( tn−t
−1
n

2 ), . . . ,−(
t1−t−1

1
2 )

)
(b) G = Sp(2n) : Same as in the above case of G = So(2n).

(c) G = So(2n) : θ(t) =
( t1−t−1

1
2 , . . . , tn−t

−1
n

2 , 0,−( tn−t
−1
n

2 ), . . . ,−(
t1−t−1

1
2 )

)
.

Recall that RepCω1
(G) is isomophic to the ring of Weyl group invariants S(t∗)W . Then the above Lemma

together with the description of S(t∗)W given in §4.1 yields the following result

Lemma 5.3. • Let G = SO(2n+ 1) or Sp(2n). Then the polynomial representation ring is given by

RepCω1
(G) ' Csym

[( t1 − t−1
1

2

)2
, ...,

( tn − t−1
n

2

)2]

• Let G = SO(2n). Then the polynomial representation ring is given by

RepCω1
(SO(n)) = Csym

[( t1 − t−1
1

2

)2
, ...,

( tn−1 − t−1
n−1

2

)2
,
( t1 − t−1

1

2

)
...
( tn − t−1

n

2

)]

Furthermore, like the standard representation rings Rep(G) the ω1-polynomial rings of type B and C

also carry the structure of a special λ-ring as mentioned in §2.1. We give the following more complete

definition, from [AT, §1].

Definition 5.1. A special λ-ring is, by definition, a commutative ring R with identity with a map

λ : R→ R[[q]], x 7→
∑
i≥0

λi(x)qi,

which satisfies the following:

(1) λ0(x) = 1

(2) λ1(x) = x, for all x ∈ R

(3) λ(x+ y) = λ(x)λ(y), for all x, y ∈ R
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(4) λ(1) = 1 + q, and

(5) There are universal (independent of R) polynomials Pk and Pk,l over Z such that

λk(xy) = Pk

(
λ1(x), . . . , λk(x), λ1(y), . . . , λk(y)

)
and λk(λlx) = Pk,l

(
λ1(x), . . . , λkl(x)

)
, for all k, l ≥ 1.

Then as mentioned in Chapter 2, the operation

λi([V )] = [∧i(V )]

turns Rep(G) into a special λ− ring and extend it to virtual representations by property (3). Then we have

the following Theorem [Ku2, Lemma 15, Lemma 16, Lemma 18] for the classical groups.

Theorem 5.1. a) Let G = SO(2n + 1) or Sp(2n). Then, the subring Rep(G) ⊂ Rep(G) of ω1-

polynomial characters is a special λ-subring, where

Rep(G) := RepC(G) ∩Rep(G).

b) Moreover, the character

χ(t) =
n∑
i=1

(
t2i + t−2

i

)
∈ (G), for t ∈ TC given by (5.1) or t ∈ TB given by (5.2)

generates (G) as a λ-ring, i.e., χ(t), λ2(χ(t)), . . . , λn(χ(t)) generate the ring (G).

In the case G = Sp(2n), χ(t) is the character of the virtual representation [S2V ]− [
∧
V ], where [V ]

is the standard representation of Sp(2n).

In the case G = SO(2n + 1), χ(t) is the character of the virtual representation [S2V ] − [
∧
V ] −

[ε], where [V ] is the standard representation of So(2n + 1) and [ε] is the trivial one-dimensional

representation.
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c) The ring Reppoly(SO(2n)) is not a λ-subring of Rep(G). (Consider the function
∏n
i=1(ti − t−1

i ) ∈

Reppoly(SO(2n))

d) For SO(2n) (n ≥ 3),
∏n
i=1(ti − t−1

i ) is the character of the virtual represnentation [V (2ωn)] −

[V (2ωn−1)] where ωi − poly is the ith fundamental representation of Spin(2n).

e) For G = Sp(2n)[n ≥ 2], SO(2n+ 1)[n ≥ 3], SO(2n)[n ≥ 4], no non-trivial irreducible representa-

tion [V (λ)] belong to RepCω1
(G).

Note the contrast of Theorem 5.1(e) with the type A case in which V [ωi] ∈ RepCω1
(Gl(n)).

5.2 Type C

We try to generalize Theorem 4.4 to type C. We will describe the cohomology of isotropic grassmannians,

how theorem 4.2 specializes to said case, and the extension to the inverse limit.

5.2.1 Cohomology of IG(n-k,2n)

In this section we will describe the additive and multiplicative structure of the cohomology ring of

isotropic grassmannians X = IG(n − k, 2n). Again we fix an integer k, the reason for this will become

apparent when we want to derive a partial analogue to Theorem 4.4 in type C. As for type A we have

parametrizations of Schubert varieties, classes, and Poincare dual classes via index sets, partitions, and

minmal length coset representatives ofW/WPn−k . There are special Schubert classes and Pieri and Giambelli

formulas as well. The ring structure can also be described by Chern classes of certain tautological bundles.

References for the following parametrizations can be found in [BK2, BKT1, LL, PR1, T2, T7].

Equip V = C2n with a non-degenerate skew-symmetric bilinear form ϑ. Fix a complete isotropic flag

F•,

0 = F0 ⊂ F1 ⊂ ... ⊂ F2n = V

where Fi = F⊥2n−i with respect to ϑ. Note, Fn is a maximal isotropic subspace. Then, we define the isotropic

grassmannian IG(n− k, 2n) as,

IG(n− k, 2n) :=
{

Ω ∈ Gr(n− k, 2n) : ϑ(v, v′) = 0, ∀v, v′ ∈ Ω
}
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There exists numerous parametrizations of the Schubert varieties in the isotropic grassmannian. For one,

they are parametrized by index sets {I : 1 ≤ pi1 < ... < pin−k ≤ 2n} such that pi + pj 6= 2n + 1. The

corresponding Schubert cell is given by

X◦I = {Ω ∈ X| Ω ∩ Fp ! Ω ∩ Fp−1},

and the Schubert variety is given by

XI(F•) = {Ω ∈ X|dim(Ω ∩ Fpj ) ≥ j, ∀1 ≤ j ≤ n− k}.

We also note that the dual index set is then given by Ǐ given by setting p̌j = 2n + 1 − pn−k+1−j . These

index sets of course correspond to minimal length coset representatives of course.

Note that Sp(2n) can be realized as the fixed point subgroup Gσ of G = SL(2n) under the involution

σ(A) = E(At)−1E−1 whereE = EC as in §5.1. Here, we follow [BK2]. If TA ⊂ BA are the maximal torus

and Borel subgroup of SL(2n), then T σ = T, andBσ = B as in the previous section. Let∆C = {β1, ..., βn}

be the simple roots of Sp(2n). Then, βi = αi|t where {α1, ..., α2n−1} are the simple roots of SL(2n). The

corresponding simple coroots are given by

β̌i = α̌i + α̌2n−1, for 1 ≤ i ≤ n,

and

β̌n = α̌n

Under the inclusion WC ⊂ S2n we have that the simple reflections of Sp(2n) are given by

si = rir2n−i if 1 ≤ i ≤ n− 1

= rn if i = n
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where ri is the ith simple reflection for Sl(2n). The Weyl group WCn can be identified with the subset of

WA2n invariant under σ:

{(a1, ...., a2n) ∈ S2n : a2n+1−i = 2n+ 1− ai ∀1 ≤ i ≤ 2n}

. Consider the parabolic weyl subgoup generated by ∆C − {βn−k}. Then the minimal length coset

representatives of WC/WC,Pn−k are can be identified with the set

I(n− k, 2n) = {I := 1 ≤ p1 < · · · < pn ≤ 2n and I ∩ I) = ∅},

where I = {2n+ 1− p1, ..., 2n+ 1− pn−k}. But this is just an index set. It represents the permutation in

S2n given by taking pn−k + 1, ..., pn = [n]\(I t I) and setting p2n+1−i = 2n+ 1− pi

Finally we can also associate a k-strict permutation to an index set or Weyl group element. First, a

partition λ is said to be k−strict if no part greater than k is repeated (i.e. λj > k ⇒ λj+1 < λj . This is

the combinatorial object with which Buch, Kresch, and Tamvakis derive their Pieri and Giambelli rules in

both the classical and quantum cohomology of the isotropic grassmannian. The bijection between index sets

and k-strict partitions (contained in an (n− k)× (n+ k)) rectangle is defined as follows [BKT1, 4.1]. Let

I = {1 ≤ i1 < ... < in−k ≤ 2n} be an index set. Then

λj(I) = n+ k + 1− Ij + {i < j : Ii + Ij > 2n+ 1}.

In the reverse, given a k-strict partition λ = (λ1, ..., λn−k) associates to an index set I(λ) by

Ij(λ) := n+ k + 1− λj + {i < j : λi + λj ≤ 2k + j − i}.

The Schubert class of codimension |λ| is then simply Xλ = XI(λ) where the Schubert variety with index set

I is defined as above. The dual λ̌ is the k− strict partition associated to the dual index set. The set of barred

permuations in W/WPn−k can also be bijectively associated to k−strict partitions [T7, 4.2].

For an example, let n = 5, k = 2. Then s2s3 ∈ W/WP3 is associated to the index set (1, 3, 4).

The associated k−strict partition is then (7, 5, 4). The dual index set is (7, 8, 10) and the dual partition
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is (1, 1, 0). For our purposes, we actually wish to associate to a Weyl group element w a partition λw

such that l(w) = |λ|. So in the above case, we will write εs3s2 = ε(1,1,0). In general, when we write

εw = ελ ∈ H l(w)=|λ|(IG(n− k, n)) the partition we refer to can be arrived at as follows. The index set is

Iw = {w(1), ..., w(n− k)}. Then take the dual index set Ǐ and take λ(Ǐ). We write λ(w) for this partition,

and will interchange between writing εw and ελ. The classes εi for 1 ≤ i ≤ n + k are referred to as the

special Schubert classes.

We will also need the Giambelli formula of [BKT2] and we follow closely some of the exposition given

their. A fundamental insight of theirs is that classical Giambelli formulas can be restated in terms of Young’s

raising operators [?](see also [T3]). For any integer sequence (a1, a2, ...) with finite support and i < j, they

define Rij = (α1, ..., αi + 1, ..., αj − 1, ..). Then a raising operator is any monomial in the R′ijs. Setting

mα =
∏
i εi, then Rmα = mRα for any raising operator. They show that the classical Giambelli formula for

H∗(Gr(n− k, n)) can be restated as

ελ =
∏
i<j

(1−Rij)mλ.

For example, in H∗(Gr(3, 5)) (with the convention ε0 = 1 and εi = 0 for i < 0 and i > 5) one has

ε(3,2,1) = (1−R12)(1−R13)(1−R23)m321

= (1−R12 −R23 −R13 +R12R23 +R12R13 +R13R23 −R12R13R23)m321

= m321 −m411 −m4,2,0 +m4,2,0 +m5,1,−1 +m4,3,−1 −m5,2,−1 = ε3ε2ε1 − ε4ε21

To any k−strict partition λ the associated raising operator is

Rλ =
∏
i<j

(1−Rij)
∏

λi+λk>2k+j−i

1

1 +Rij

. The Giambell formula of Buch, Kresch, and Tamvakis can then be simply stated as
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Theorem 5.2. [BKT2, Theorem 1] For any k-strict partition ελ, we have ελ = Rλmλ in the cohomology

ring of IG(n− k, 2n).

Indeed, in the computations we need it for the partitions will only have 2 non-zero parts with λ1+λ2 < 2k

so the Giambelli formula reduces to ε(λ1,λ2) = ελ1ελ2 − ελ1+1ελ2−1

As in type A we have the following short exact sequence of vector bundles,

0→ S → VC → Q→ 0,

where VC is the trivial bundle of rank 2n, S is the tautogogical subbundle of rank n − k, and Q is the

tautological quotient bundle of rank n+ k. Then the Schubert classes εi equal to the ith Chern class of the

qoutient bundle ci(Q), and these classes generate the cohomology ring. We give reduced decompositions so

that εi in the next section such that εi = εw ∈ H∗(IG(n− k, 2n),C). Also, like the type A case there is a

Pieri formula for the product of any Schubert class with that of a special Schubert class. Then we have the

following presentation of the cohomology ring due to [BKT2, Theorem 1.2]. By convention we set ε0 = 1

and εp = 0 if p < 0 or p > n+ k.

Theorem 5.3. The cohomology ring H∗(IG(n− k, 2m),C) is presented as the quotient of the polynomial

ring C[ε1, ..., εn+k] by the relations

det(ε1+j−i)1≤i<j≤r, n− k + 1 ≤ r ≤ n+ k,

and

ε2r +

n+k−r∑
i=1

(−1)iεr+iεr−i = 0, k + 1 ≤ r ≤ n

As in type A, the determinantal relations come from the Whitney sum formula c(S)c(Q) = 1. The

quadratic relations come from considering that the symplectic form gives a pairing SQ→ O which yields an

injection S → Q∗. Chern classes cj(Q∗/S) vanish for j > k and one can deduce that c(Q)c(Q∗) vanishes

in degree > 2k.

66



5.2.2 Theorem 4.2

As for type A, we aim to explicitly determine the map in Theorem 4.2 for G = Sp(2n) and any maximal

parabolic Pn−k. Take V = C2n and IG(n− k, 2n) as in the previous section. Here we follow and expand

on [Ku2, §7].

We take BC := B ∩ Sp2n as the Borel subgroup of Sp2n, where B is the standard Borel subgroup

of SL2n consisting of upper triangular matrices of determinant 1. Then, IG(n − k, 2n) is the quotient

Sp2n/Pn−k of Sp2n by the standard maximal parabolic subgroup Pn−k with ∆ \ {αr{n− k} as the set of

simple roots of its Levi component Ln−k. (We take Ln−k to be the unique Levi subgroup of Pr containing

TC .)

Ln−k ' GL(n− k)× Sp(2k).

From Lemma 5.2, we have

θω1(tC) =

(
t1 − t−1

1

2
, ...,

tn − t−1
n

2
,−
( tn − t−1

n

2

)
, ...,−

( t1 − t−1
1

2

))

Also, recall that RepCω1
(Ln−k) ' S(t∗C)WP . Using the fundamental invariants from §4.1.1 we find that

the representation ring is given by,

RepCω1
(Ln−k) ' Csym

[( t1 − t−1
1

2

)
, ...,

( tn−k+1 − t−1
n−k+1

2

)]

⊗CCsym
[( tn−k+1 − t−1

n−k+1

2

)2
, ...,

( tn − t−1
n

2

)2]
where Csym denotes the subalgebra of the polynomial ring consisting of symmetric polynomials. Further,

by Theorem 5.1,

Csym[(
tn−k+1 − t−1

n−k+1

2
)2, . . . , (

tn − t−1
n

2
)2]
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is generated (as a C-algebra) by the virtual representations:

{λd
(
[S2(V2(n−r))]− [Λ2(V2(n−r))]

)
}1≤d≤k,

where V2k = C2k is the standard representation of Sp(2k) and λ is the λ-ring structure on Rep(G).

The following theorem [Ku2, P roposition19] partially determined the homomorphism of Theorem 4.2

Theorem 5.4. The map ξPn−k : RepCpoly(L
C
n−k)→ H∗(IG(n− k, 2n),C) of Theorem 4.2 takes

1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k)→ εsn−k ,

and

1

4

[
(tn−k+1 − t−1

n−k+1)2 + · · ·+ (tn + t−1
n )2

]
→ ε2sn−k + 2

n−1∑
j=n−k+1

ε2sj + ε2sn − 2
n−1∑
j=n−k

εsj εsj+1

Proof. For 1 ≤ n, let xi : t→ C be the linear map which takes

diag(x1, ..., xn,−xn, ...,−x1)→ xi

. Then by Lemma 5.2, the homomorphism θ∗ω1|T : C[t]→ C[T ] induced from the Springer morphism θω1

takes

x1 + · · ·+ xn−k →
1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k).

However, note that the weight x1 + ...+ xn−k is the first fundamental weight ωn−k. Thus,

β ◦ (θ∗ω1|T )−1(
1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k) = β(x1 + · · ·+ xn−k) = β(ωn−k) = εsn−k ,
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where the last inequality comes from the fact that by 2.2

β(ωn−k) =
∑
α∈∆

Aα(ωn−k)εsα

. Note that sn−k(ωn−k) = ωn−k−αn−k and si(ωn−k) = 0 otherwise. Then β(ωn−k) = Aαn−k(ωn−k)εsn−k =

εsn−k . Indeed, in general for β : S(t∗)→ H∗(G/B), one has that β(ωj) = εsj

Similiarly, under (θ∗ω1|T )−1,

1

4

(
(t2n−k+1 − tn−k+1)−1 + · · ·+ (tn + t−1

n )2

)
→ x2

n−k + · · ·+ x2
n

Since in type C we have ωi =
∑i

j=1 xi, then we can right the coordinate functions in the fundamental weight

basis xi = ωi − ωi−1. So, x2
n−k+1 + · · ·+ x2

n = (ωn−k+1 − ωn−k)2 + · · ·+ (ωn − ωn−1)2. Then from the

remark above it is clear that ξPn−k takes

1

4

(
(t2n−k+1 − tn−k+1)−1 + · · ·+ (tn + t−1

n )2

)
→ (εsn−k+1

− εsn−k)2 + · · ·+ (εsn − εsn−1)2,

which expands to give the stated result.

Note that the term

ε2sn−k + 2
n−1∑

j=n−k+1

ε2sj + ε2sn − 2
n−1∑
j=n−k

εsj εsj+1

is not written in the basis {εw : w ∈ Pn−k} of H∗(Sp(2n)Pn−k,C) = H∗(IG(n − k, 2n),C). Indeed,

sn−k is the only simple reflection in WP
n−k. We can in theory use Chevalley’s formula (§2.6 to expand the

quadratic terms into the additive Schubert basis and all nonvanishing terms should be elements of WP
n−k.

Since the terms are all low degree this is feasible. We have the following lemma on products εsiεsj in

H∗(Sp(2n),C) which is just a corollary to Chevalley’s theorem.
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Lemma 5.4. 1. If |i− j| ≥ 2, then

εiεj = εsisj

2. If i, i+ 1 6= n,

εsiεsi+1 = εsisi+1 + εsi+1si

3. If i 6= 1, n,

ε2i = εsi−1si + εsisi+1

4. If i = 1,

ε2s1 = εs2s1

5. If i = n,

ε2sn = 2εsn−1sn

Using the Lemma 5.4, the quadratic term simplifies to

ε2sn−k + 2

n−1∑
j=n−k+1

ε2sj + ε2sn − 2

n−1∑
j=n−k

εsj εsj+1 = εsn−k−1sn−k − εsn−k+1sn−k ,

with {sn−k+1sn−k, sn−k−1sn−k} ∈ WP
n−k. In order to fully realize the map ξPn−kω1 , the images of the

elementary symmetric plynomials ek in the above torus variables must be determined. The above strategy

using the Chevalley formula would be difficult as the degrees get large. Rather, as in type A we want to

determine the image of ξPn−kω1 in terms of the Chern classes ck(Q) of the tautological quotient bundle. Indeed,

we have the following expansion of the previous theorem.

Theorem 5.5. The map ξPn−k : RepCpoly(L
C
n−k)→ H∗(IG(n− k, 2n),C) of Theorem 4.2 takes

ei

[( t1 − t−1
1

2

)
, ...,

( tn−k − tn−k
2

)]
→ ci(S) = ε(1)i(S) = εsn−k+i−1...sn−k
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For 1 ≤ i ≤ n− k. Now, let εi = ci(Q) and let ε0 = 1 and εp = 0 for p < 0 or p > n+ k. Then

ei

[( tn−k+1 − t−1
n−k+1

2

)2
, ...,

( tn − tn
2

)2]→ ε2i + 2
n+k−r∑
j=1

(−1)iεi+jεi−j

for 1 ≤ i ≤ k

Proof. The ′Type A′ part follows exactly as before. We see that

(θ∗ω1|T )−1
(
ei

[( t1 − t−1
1

2

)
, ...,

( tn−k − tn−k
2

)])
= ei(x1, ..., xn−k)

Assume k > 1, then

β(ei(x1, ..., xn−k)) =
∑
l(w)=i

Aw(ei(x1, ..., xn−k)εw.

Note that we are taking ∆ = {e∗1 − e∗2, ..., e∗n−2 − e∗n−1, 2e
∗
n} to be the simple roots.

Then, just as in §4.3.1, we haveAw(ei(x1, ..., xn−k)) = δw,w1i
, wherew1i = sn−k−1+i . . . sn−k−1sn−k.

Furthermore, εw1i
is the ith Chern class of the tautological subbundle [LL, 4.1].

Now let k = 0. So IG(n, 2n) is the variety of maximal isotropic planes in C2n. Then its clear

Asm(e1(x1, ..., xn)) = 0 if sm 6= sn. Otherwise,

Asn(ei(x1, ..., xn)) =
ei(x1, ..., xn)− ei(x1, ...,−xn)

2xn

Recall the following useful identity for elementary symmetric polynomials,

ei(x1, ..., xm) = ei(x1, ..., xn−1) + xn(ei−1(x1, ..., xn−1))

. Then,

Asn(ei(x1, ..., xn)) =
ei(x1, ..., xn−1) + xnei−1(x1, ..., xn−1)− ei(x1, ..., xn) + xnei−1(x1, ..., xn−1)

2xn
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=
2xnei−1(x1, ..., xn)

2xn
= ei−1(x1, ..., xn−1)

From here the result follows as before.

The ′typeC ′ part of the above theorem is trickier. First, we examine the polynomials associated to

the Chern classes of the tautological quotient bundle. We note [LL, Remark 4.3] that for 1 ≤ i ≤ k,

ci(S) = εsn−k+i−1...sn−k as before. For i ≥ k+ 1, then ci(S) = εsn−i+k+1...sn−1snsn−1...sn−k . Let 1 ≤ i ≤ k,

then β(ei(xn−k+1, ...xn)) = εsn−k+1−1...sn−k = ci(Q). This is a type A element and so the proof is the

same as for the quotient bundle over the grassmannian. The polynomials mapping to elements ci(Q) for

i ≥ k are certain interpolations of Schur-Q and elementary symmetric polynomials called theta functions.

These were developed in [BKT2, §5] (see also [W, TW]). Nevertheless, we observe how to compute

β(ei(x
2
n−k+1, ..., x

2
n)). Under the association εw = ελ described in §5.2.1. The idea is to show that

Aw(ei(x
2
n−k+1, ..., x

2
n)) = ±1 if λ(w) = (λ(w)1, λ(w)2) = (2i − j + 1, j − 1) for 1 ≤ j ≤ i + 1.,

and Aw(ei(x
2
n−k, ..., x

2
n)) = 0 otherwise. For example, if i = 3 then the partitions which show up are

(6, 0), (5, 1), (4, 2), (3, 3). Then in general we have

β(ei(x
2
n−k+1, ..., x

2
n)) =

i+1∑
j=1

(−1)i+j−1ε(2i−j+1,j−1)

Furthermore, applying to the Giambelli formula,

ε(2i+1−j,j−1) = ε2i+1−jεj−1 − ε2i+2−jεj−2

and simplifying then yields

(ei(x
2
n−k, ..., x

2
n)) = ε2i + 2

j=i∑
j=1

εi−jεi+j .

To simplify notation, we let l = n− k. Then we want to evaluate Aw(ei(x
2
l+1, ..., x

2
n)) for words w ∈WP

with l(w) = i2. We have

Aslei(x
2
l+1, ..., x

2
n) = (−xl − xl+1)ei−1(x2

l+2, ..., x
2
n)
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and Asjei(x
2
l+1, ..., x

2
n) = 0 if j 6= l. From here the options are Asl+1

or Asl−1
. If we apply Asl−1

, using the

Leibniz formula we get.

Asl−1sl(ei(X
2)) = Asl−1

(−xl − xl+1)ei−1(x2
l+2, ..., x

2
n) + sl−1(−xl−1 − xl)Asl−1

ei−1(x2
l+2, ..., x

2
n)

But Al−1ei−1(x2
l+2, ..., x

2
n) = 0 and we have

Asl−1slei(x
2
l+1, ..., x

2
n) = ei−1(x2

l+2, ..., x
2
n).

From here one must apply Asl+1
and we are essentially back where we started. We remind the reader that

if a word w̃ is not reduced, then Aw̃=0. We also adopt a preferred reduced decomposition in which ’lower’

reflections are moved to the right if possible. I.e., if i < j and si and sj commute we will move si to the

right of sj if possible via the commutation or braid relations.

Now, given the above, we will prove the theorem for k = 2 and then proceed by induction. So, we want

to consider find w ∈W such that Awe2(x2
n−1, x

2
n) 6= 0. From above we have

β(e1(xn−1, xn) = εsn−3sn−2 − εsn−1sn−2

The first operator applied to e2(x2
n−1, x

2
n) must be Asn−2 as above which gives

Asn−2e2(x2
n−1, x

2
n) = (−xn−2 − xn−1)(x2

n).

Choosing the lowest reduced decomposition, apply Asn−3 ,

Asn−3sn−2e2(x2
n−1, x

2
n) = x2

n.

From here only Asn−1 can be applied to give

Asn−1sn−3sn−2e2(x2
n−1, x

2
n) = −xn−1 − xn.
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From here apply Asn−2 to get

Asn−2sn−1sn−3sn−2e2(x2
n−1, x

2
n) = 1,

or apply Asn to get

Asnsn−1sn−3sn−2e2(x2
n−1, x

2
n) =

−xn−1 − xn + xn−1 − xn
2xn

= −1.

If instead after Asn−2 we were to apply Asn−1 we would get

Asn−1sn−2e2(x2
n−1, x

2
n) = −x2

n + (xn−2 + xn)(xn−1 + xn).

Then the only choice (which we have not seen before under preferred reduced decomposition) is An,

Asnsn−1sn−2e2(x2
n−1, x

2
n) = xn−1 + xn−2.

Finally again our only choice to produce a new word is Asn−1 ,

Asn−1snsn−1sn−2e2(x2
n−1, x

2
n) = 1

. Thus, collecting the above gives

β(e2(x2
n−1, x

2
n)) = εsn−2sn−1sn−3sn−2 − εsnsn−1sn−3sn−2 + εsn−1snsn−1sn−2 .

In terms of k−strict partitions this give

β(e2(x2
n−1, x

2
n)) = ε − ε + ε

Then, under the Giambelli formula of [BKT2] one has in this case ελ = (1−R12)mλ , or

β(e2(x2
n−1, x

2
n)) = (ε22 − ε3ε1)− (ε3ε1 − ε4) + ε4 = ε22 − 2ε3ε1 + 2ε4
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Now we are ready to state our (weaker) analog to Theorem 4.4.

5.2.3 Inverse Limit

As in type A, define the stable cohomology ring [BKT3, §1.3] as

H(IGk) = lim←−H
∗(IG(n− k, 2n),C)

as the inverse limit in the category of graded rings of the inverse system

· · · ← H∗(IG(n− k, 2n),C)← H∗(IG(n− k + 1, 2n+ 2),C)← . . .

This ring has an additive basis of Schubert classes ελ for each k− strict partition λ. There is a natural

surjective ring homorphism H(IGk) → H∗(IG(n − k, 2n),C) given by mapping ελ to ελ whenever λ

fits in a (n − k) × (n + k) rectangle and to zero otherwise. Furthermore, from the presentation of the

ring H∗(IG(n− k, n),C) (Theorem 5.3), none of the determinantal relations hold in the inverse limit. So,

H(IGk) is isomorphic to the polynomial ring C[ε1, ε2, ...] modulo the relations

ε2m + 2

m∑
i=1

(−1)iεm+iεm−i

for m > k. To get a map from RepCω1
(SP (2k)) to H(IGk) we map a polynomial f(h) ∈ RepCω1

(Sp(2k)) =

C[(
h1−h−1

1
2 )2, ..., (

hk−h−1
k

2 )2] to 1⊗ f(t) ∈ RepCω1
(LCn−k), where f(t) is the same polynomial written in the

variables (
ti−t−1

i
2 )2 for n− k + 1 < i < n. Then we have the map ξn,k := ξPn−k ◦ ι2 : RepCω1

(SP (2k))→
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H∗(IG(n− k, 2n),C). Consider the following diagram

RepCω1
(Sp(2k))

ξn,k
//

ξn+1,k

**

H∗(IG(n− k + 1, 2n+ 2),C)

π∗
n

OO

H∗(IG(n− k, 2n),C)

π∗
n+1

OO

π∗
n+2

OO

This map is compatible with the system since Chern classes are stable.

Then we have the following analog to 4.2,

Theorem 5.6. Define the map ξk : RepCω1
(Sp(2k))→ H(IGk) by mapping generators

ei(h
2
1, ..., h

2
k)→ ε2m + 2

m∑
i=1

(−1)iεm+jεm−j .

Then this map is injective.

Proof. The above map is equivalent to the map C[e1, ..., ek]→ C[ε1, ....]/I where I is given by the relations

ε2m + 2

m∑
i=1

(−1)iεm+iεm−i m > k.

Reduce coeffiecients to Z. Note that H(IGk) over Z is a free, torsion-free, Z module. Reduce coefficients to

Z2. Then the map becomes,

Z2[e1, , ..., ek]→ Z2[ε1, ..., εk]⊗ Z2[εk+1, ...]/〈ε2m = 1〉m>k

, with ei → εi. Then, clearly this map is injective. This suffices.
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5.3 Type B

The results here are nearly identical to those in type C.

5.3.1 Cohomology of OG(n-k,2n+1)

In this section we will describe the additive and multiplicative structure of the cohomology ring of

orthogonal grassmannians X = OG(n− k, 2n). Again we fix an integer k, the reason for this will become

apparent when we want to derive a partial analogue to Theorem 4.4 in type B. As for type A we have

parametrizations of Schubert varieties, classes, and Poincare dual classes via index sets, partitions, and

minmal length coset representatives ofW/WPn−k . There are special Schubert classes and Pieri and Giambelli

formulas as well. The ring structure can also be described by Chern classes of certain tautological bundles.

References for the following parametrizations can be found in [BK2, BKT1, LL, PR1, T2, T7].

Equip V = C2n+1 with a non-degenerate symmetric bilinear form ϑ. Fix a complete orthogonal flag F•,

0 = F0 ⊂ F1 ⊂ ... ⊂ F2n+1 = V

where Fi = F⊥2n+1−i with respect to ϑ. Note, Fn is a maximal isotropic subspace. Then, we define the

orthogonal grassmannian OG(n− k, 2n+ 1) as,

OG(n− k, 2n+) :=
{

Ω ∈ Gr(n− k, 2n+ 1) : ϑ(v, v′) = 0, ∀v, v′ ∈ Ω
}

Schubert varieties of OG(n− k, 2n+ 1) are also paremtrized by index sets {I : 1 ≤ pi1 ≤ · · · ≤ pin−k ≤

2n+ 1} such that pi + pj 6= 2n+ 2. The open Schubert cell X◦I and the closed Schubert variety XI(F•) are

defined in the same way as for type C.

Following [BK2], we can realize SO(2n+ 1) as the fixed point subgroup Gθ of G = SL(2n+ 1) under

the involution σ(A) = E−1(At)−1E where E = EB as in §5.1. If TA ⊂ BA are the maximal torus and

Borel subgroup of SL(2n + 1), then T σ = T, and Bσ = B as in the §5.1. Let∆B = {β1, ..., βn} be the

simple roots of SO(2n+ 1). Then, βi = αi|t where {α1, ..., α2n} are the simple roots of SL(2n+ 1). The
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corresponding simple coroots are given by

β̌i = α̌i + α̌2n+1−1, for 1 ≤ i ≤ n,

and

β̌n = 2α̌n + 2α̌n+1

Under the inclusion WB ⊂ S2n we have that the simple reflections of SO(2n) are given by

si = rir2n+1−i if 1 ≤ i ≤ n− 1

= rnrn+1rn if i = n

where ri is the ith simple reflection for Sl(2n+ 1). The Weyl group WBn can be identified with the subset

of WA2n+1 invariant under σ:

{(a1, ...., a2n+1) ∈ S2n+1 : a2n+2−i = 2n+ 2− ai ∀1 ≤ i ≤ 2n}

. Consider the parabolic Weyl subgoup generated by ∆B − {βn−k}. Then the minimal length coset

representatives of WB/WB,Pn−k can be identified with the set

I(n− k, 2n+ 1) = {I := 1 ≤ p1 < · · · < pn ≤ 2n+ 1 pj 6= n+ 1 for any j and I ∩ I) = ∅},

where I = {2n+ 2− p1, ..., 2n+ 2− pn−k}. But this is just an index set. It represents the permutation in

S2n+ given by taking pn−k + 1, ..., pn = [n]\(I t I) and setting p2n+1−i = 2n+ 1− pi.

The Schubert varieties are also parametrized by the same set of k-stict partitions which fit in a (n− k)×

(n+ k) rectangle. Following [BKT1, §4.2], to any k-strict partition, let Ij(λ) = n+ k + 1− λj + {i < j :

λi + λj ≤ 2k + j − i}. Then the appropriate index set for the type B Schubert variety is given by Ī where,

Īj(λ) =


Ij(λ) + 1 if λj ≤ k,

Ij(λ) it λj > k
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Let ελ be the Schubert class associated to a k− strict partition as before. Then, again, εi are the special

Schubert classes.

As in types A and C, there is a short exact sequence of vector bundles

0→ SB → VB → QB → 0

where VB is the trivial bundle and SB and QB are the tautological sub and quotient bundles. For a given

k−strict partition λ, let lk(λ) be the number of parts of λ which are strictly greater than k. Then a well known

result of [BS], when translated into the language of k−strict partitions in [BKT4], says that the map taking

cp(QC) to cp(QB) extends to a ring isomorphism φ : H∗(IG(n−k, 2n),C)→ H∗(OG(n−k, 2n+ 1),C)

such that φ(ελ) = 2lk(λ)ελ.

Buch, Kresch, and Tamkvakis have also shown that

ci(QB) =


εi if i ≤ k

2εi if i > k

The Giambelli formula is then given by

ελ = 2−lk(λ)Rλmλ

Note that mλ =
∏
i cλ1 is given in terms of the Chern classes (which unlike type C do not exactly match up

the special Schubert classes εi). In terms of the variables ci = ci(QB) for 1 ≤ i ≤ n− k (with c0 = 1 and

ci = 0 if i < 0 or n− k > 0, H∗(OG(n− k, 2n+ 1),C) has the same presentation H∗(IG(n− k, 2n),C)

from Theorem 5.3.

5.3.2 Theorem 4.2

As for type A, we aim to explicitly determine the map in Theorem 4.2 for G = So(2n + 1) and any

maximal parabolic Pn−k. Take V = C2n+1 and OG(n − k, 2n + 1) as in the previous section. Here we

follow and expand on [Ku2, §8].
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We take BB := B ∩SO2n+1 as the Borel subgroup of SO2n+1, where B is the standard Borel subgroup

of SL2n+1 consisting of upper triangular matrices of determinant 1. Then, OG(n−k, 2n+ 1) is the quotient

SO2n+1/Pn−k of SO2n+1 by the standard maximal parabolic subgroup Pn−k with ∆ \ {αn−k} as the set of

simple roots of its Levi component Ln−k. (We take Ln−k to be the unique Levi subgroup of Pr containing

TB). Then,

Ln−k ' GL(n− k)× SO(2k + 1).

From Lemma 5.2, we have

θω1(tC) =

(
t1 − t−1

1

2
, ...,

tn − t−1
n

2
, 0,−

( tn − t−1
n

2

)
, ...,−

( t1 − t−1
1

2

))

Also, recall that RepCω1
(Ln−k) ' S(t∗B)WPn−k . Using the fundamental invariants from §4.1.1 we find

that the representation ring is given by,

RepCω1
(Ln−k) ' Csym

[( t1 − t−1
1

2

)
, ...,

( tn−k − t−1
n−k

2

)]

⊗CCsym
[( tn−k+1 − t−1

n−k+1

2

)2
, ...,

( tn − t−1
n

2

)2]
where Csym denotes the subalgebra of the polynomial ring consisting of symmetric polynomials. Further,

by Theorem 5.1,

Csym[(
tr+1 − t−1

r+1

2
)2, . . . , (

tn − t−1
n

2
)2]

is generated (as a C-algebra) by the virtual representations:

{λd
(
[S2(V ′2k+1)]− [Λ2(V ′2k+1)])− [ε]

)
}1≤d≤k,

where V ′2k+1 = C2k is the standard representation of SO(2k + 1), [ε] is the trivial one-dimensional

representation, and λ is the λ-ring structure on Rep(G).
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The following theorem [Ku2, P roposition20] partially determined the homomorphism of Theorem 4.2

Theorem 5.7. The map ξPn−k : RepCpoly(L
C
n−k)→ H∗(OG(n− k, 2n+ 1),C) of Theorem 4.2 takes

1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k)→ εsn−k , if k > 0,

1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k)→ 2εsn−k , if k = 0,

and

1

4

[
(tn−k+1− t−1

n−k+1)2 + · · ·+(tn+ t−1
n )2

]
→ ε2sn−k +2

n−1∑
j=n−k+1

ε2sj +4ε2sn−2

n−1∑
j=n−k

εsj εsj+1−4εsn−1εsn

Proof. For 1 ≤ n, let xi : t→ C be the linear map which takes

diag(x1, ..., xn, 0,−xn, ...,−x1)→ xi

. Then by Lemma 5.2, the homomorphism θ∗ω1|T : C[t]→ C[T ] induced from the Springer morphism θω1

takes

x1 + · · ·+ xn−k →
1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k).

However, note that the weight x1 + ...+ xn−k is the first fundamental weight ωn−k if k > 0. Thus,

β ◦ (θ∗ω1|T )−1(
1

2
(t1 − t−1

1 + · · ·+ tn−k + t−1
n−k) = β(x1 + · · ·+ xn−k) = β(ωn−k) = εsn−k .

If k = 0, one has

x1 + · · ·+ xn →
1

2
(t1 − t−1

1 + · · ·+ tn + t−1
n ).
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Note that for type B that ωn = x1+...+xn
2 . Thus,

β ◦ (θ∗ω1|T )−1(
1

2
(t1 − t−1

1 + · · ·+ tn + t−1
n ) = β(x1 + · · ·+ xn) = β(2ωn) = 2εsn .

Similiarly, under (θ∗ω1|T )−1,

1

4

(
(t2n−k+1 − tn−k+1)−1 + · · ·+ (tn + t−1

n )2

)
→ x2

n−k + · · ·+ x2
n

In type B we have ωi =
∑i

j=1 xi for 1 ≤ i ≤ n− 1, and ωn = x1+...+xn
2 . Then we can right the coordinate

functions in the fundamental weight basis xi = ωi − ωi−1 for 1 ≤ i ≤ n− 1, and xn = 2ωn − ωn−1. So,

x2
n−k+1 + · · ·+ x2

n = (ωn−k+1 − ωn−k)2 + . . . (ωn−1 − ωn−2) + (2ωn − ωn−1)2. Then from the remark

above it is clear that ξPn−k takes

1

4

(
(t2n−k+1−tn−k+1)−1+· · ·+(tn+t−1

n )2

)
→ (εsn−k+1

−εsn−k)2+· · ·+(εsn−1−εsn−2)+(2εsn−εsn−1)2,

which expands to give the stated result. To write it in the WPn−k
B basis one can use the Chevalley formula or

we note that

Asj (x
2
n−k+1 + ...+ x2

n) = −xn−k − xn+1 if j = n− k and 0 otherwise.

Then we have Asn−k−1
(−xn−k − xn−k+1) = 1 and Asn−k+1(−xn−k − xn−k+1) = −1. Thus, we have

exactly as in type C,

ξPn−k
[
(
1

4

[
(tn−k+1 − t−1

n−k+1)2 + · · ·+ (tn + t−1
n )2

]
→ εsn−k−1sn−k − εsn−k+1sn−k

In terms of the Chern classes ci we get essentially the same result as in Theorem 5.5
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Theorem 5.8. The map ξPn−k : RepCpoly(L
B
n−k)→ H∗(OG(n− k, 2n+ 1),C) of Theorem 4.2 takes

ei

[( t1 − t−1
1

2

)
, ...,

( tn−k − tn−k
2

)]
→ ci(S) = ε(1)i(S) = εsn−k+i−1...sn−k if k>0

ei

[( t1 − t−1
1

2

)
, ...,

( tn−k − tn−k
2

)]
→ ci(S) = ε(1)i(S) = 2εsn−k+i−1...sn−k if k=0

For 1 ≤ i ≤ n− k, let ci = ci(QB). Define c0 = 1 and cp = 0 for p < 0 or p > n+ k. Then,

ei

[( tn−k+1 − t−1
n−k+1

2

)2
, ...,

( tn − tn
2

)2]→ c2
i + 2

n+k−r∑
j=1

(−1)ici+jci−j

for 1 ≤ i ≤ k.

Proof. For the type A part with k > 0 the proof is the same as for Theorem 5.5. For k = 0, it is essentially

the same except in this case

Asn(ei(x2, ..., xn)) =
ei(x1, ..., xn)− ei(x1, ...,−xn)

xn
,

and we see that

Asn(ei(x1, ..., xn)) =
2xnei − 1(x1, ..., xn−1

xn
= 2ei−1(x1, ..., xn−1).

The result follows from here.

The type B part is analogous to the proof of Theorem 5.5 up to accounting for factors of two when

applying Asn and using the type B Giambelli formula.

5.3.3 Inverse Limit

Analogously, we define the stable cohomology ring [BKT3, §3.2] as

H(OGk) = lim←−H
∗(OG(n− k, 2n+ 1),C)
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as the inverse limit in the category of graded rings of the inverse system

· · · ← H∗(OG(n− k, 2n+ 1),C)← H∗(OG(n− k + 1, 2n+ 3),C)← . . .

This ring has an additive basis of Schubert classes ελ for each k− strict partition λ. There is a natural

surjective ring homorphism H(OGk)→ H∗(OG(n− k, 2n+ 1),C) given by mapping ελ to ελ whenever λ

fits in a (n− k)× (n+ k) rectangle and to zero otherwise. In terms of the variables ci we have that H(OGk)

has the exact same presentation as H(IGk) from §5.2.3. Factoring through ξPn−k : RepComega1(Ln−k) →

H∗(SO(n− k, 2n+ 1) as in §5.2.3, we get a map from RepCSO(2k + 1) to H(OGk). Then we have the

analogous theorem,

Theorem 5.9. The map ξk : RepCω1
(SO(2k + 1))→ H(OGk) given by mapping generators

ei(h
2
1, ..., h

2
k)→ c2

i + 2
i∑

j=1

(−1)ici+jci−j

is injective.

5.4 G2

5.4.1 Representation Ring of G2

Here we compute the ω1-polynomial representation ring of G2. Note that ω1 is the fundamental

representation of minimal Dynkin index. We first need to compute the Springer morphism. We write

θω1(t) = c1(t)α̌1 + c2(t)α̌2. From §3.2 we saw that

c1(t, λ) =
2

3x

∑
µ∈Λλ

(2µ1 + 3µ2)eµ(t)

c2(t, λ) =
2

3x

∑
µ∈Λλ

(3µ1 + 6µ2)eµ(t)
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, for θλ. In this case x =
∑

Λλ
µ2

2 where µ2 is the coordinate of the second fundamental weight for a given

weight µ ∈ Λλ. For λ = ω1 the weights are

Λω1 = {(1, 0), (−1, 0), (1,−1), (−1, 1), (2,−1), (−2, 1)}.

Let s be the simple reflection asscoiated to the first simple root α1 and t be the simple reflection for α2.

To state the result more clearly we note the following from [A, Appendix A]. There is an embedding

WG2 → WA6 given by s → r12r35r67 and t → r23r56 where rij is the transposition (i, j) in S7. This

inclusion corresponds to an inclusion G2→ GL(7). The inclusion of tori is given by

(t1, t2)→ (t1, t2, t1t
−1
2 , 1, t−1

1 t2, t
−1
2 , t−1

1 ).

The inclusion on Cartan subaglebras is then given by

(h1, h2)→ (h1, h2, h1 − h2, 0, h2 − h1,−h2,−h1).

Let xi be the ith coordinate function on the cartan subalgebra. We then have the following root data for G2.

The simple roots are given by

α1 = x1 − x2, α2 = −x1 + 2x2.

The simple coroots are given by

α̌1 = 3h1 − 3h2, α̌2 = −h1 + 2h2.

The fundamental weights are given by

ω1 = x1, ω2 = x1 + x2.

We also note that α3 = α1 + α2 = x2 and α4 = 2α1 + α2 = x1. We can also now write eµ(t) =

e(µ1,µ2)(t1, t2) = tµ1+µ2
1 tµ22 . From the fundamental weights given above and the formulas from §3.2, we
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have

c1(t) =
1

6
(2e(1,0)(t) + e(−1,1)(t) + e(2,−1)(t)− e(−2,1)(t)− e(1,−1)(t)− 2e(−1,0)(t))

c2(t) =
1

6
(3e(1,0)(t) + 3e(−1,1)(t)− 3e(1,−1)(t)− 3e(−1,0)(t)).

More explicity using eµ(t) = tµ1+µ2
1 tµ22 we have,

c1(t) =
1

6
(2t1 + t2 + t1t

−1
2 − t

−1
1 t2 − t−1

2 − 2t−1
1 )

c2(t) =
1

2
(t1 + t2 − t−1

1 − t
−1
2 )

Then, we have θω1(t1, t2) = c1(t)α̌1 + c2(t)α̌2 = (3c1(t)− c2(t),−3c1(t) + 2c2(t)) which gives

θω1(t1, t2) =

(
t1 − t−1

1 + t1t
−1
2 − t

−1
1 t2

2
,
t2 − t−1

2 + t−1
1 t2 − t1t−1

2

2

)

Now, recall that by definition RepCω1
(G) = S(t∗)W . The Weyl group of G2 is the dihedral group

D6 = {s, t|s2 = t2 = (st)6 = 1} and has fundamental invariants 2,6 (see Table 4.1). The following set of

polynomial invariants is given by [Ts, 3.3](other sets of invariants can be found in [Lee, Me]). in terms of

the simple roots α1 and α2:

f2k = α2k
1 + (α1 + α2)2k + (2α1 + α2)2k.

Then we have S(t∗) = C[f2, f6]. Using the coordinates from above we can re-write these as

f2k = (x1 − x2)2k + x2k
1 + x2k

2 .

So,

f2 = 2x2
1 + 2x2

2 − 2x1x2

f6 = 2x6
1 − 6x5

1x2 + 15x4
1x

2
2 − 20x3

1x
3
2 + 15x2

1x
4
2 − 6x1x

5
2 + 2x6

2.
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Then,

RepCω1
(G2) = C[f2(

t1 − t−1
1 + t1t

−1
2 − t

−1
1 t2

2
,
t2 − t−1

2 + t−1
1 t2 − t1t−1

2

2
),

f6(
t1 − t−1

1 + t1t
−1
2 − t

−1
1 t2

2
,
t2 − t−1

2 + t−1
1 t2 − t1t−1

2

2
)].

We have the following analogue of [Ku2, Proposition 24]. Under the coordinates of θω1(t1, t2) on the

maximal torus T ⊂ G2.

RepCω1
(T ) = C[

t1 − t−1
1 + t1t

−1
2 − t

−1
1 t2

2
,
t2 − t−1

2 + t−1
1 t2 − t1t−1

2

2
]

where we think if T as the Levi subgroup of B.

Theorem 5.10. Under the homomorphism ξB : RepCω1
(T )→ H∗(G2/B,C), we have

t1 − t−1
1 + t1t

−1
2 − t

−1
1 t2

2
→ εs1

and,

t2 − t−1
2 + t−1

1 t2 − t1t−1
2

2
→ εs2 − εs1

Proof. Observe that x1 = ω1 and x2 = ω2 − ω1, and β(ωi) = εsi .
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Dubreil-Malliavin 1989-1990, Lecture Notes in Math. 1478 (1991), 130–191, Springer-Verlag,
Berlin, 1991.

[P3] P. Pragacz : Symmetric polynomials and divided differences in formulas of intersection theory,
Parameter spaces (Warsaw, 1994), 125–177, Banach Center Publ. 36, Polish Acad. Sci., Warsaw,
1996.

[P4] P.Pragascz : Multiplying Schubert Classes, Topics in Cohomological Studies of Algebraic Varieties.
Trends in Mathematics. Birkhäuser Basel, 163–174 2005
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