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ABSTRACT

Thomas Corona: Methodology and Application of High Performance Electrostatic Field Simulation in the
KATRIN Experiment

(Under the direction of John Wilkerson)

The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed

to make a direct, model independent measurement of the electron neutrino mass. The experimental ap-

paratus employs strong (O[T ]) magnetostatic and (O[105 V
m ]) electrostatic fields in regions of ultra high

(O[10−11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near

the endpoint of tritium β-decay. The electrostatic fields in KATRIN are formed by multiscale electrode

geometries, necessitating the development of high performance field simulation software. To this end, we

present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the

Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We de-

scribe an implementation of these techniques for high performance computing environments in the software

KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application

of KEMField and KGeoBag to KATRIN’s spectrometer and detector sections, and demonstrate its use in

furthering several of KATRIN’s scientific goals. Finally, we present the results of a measurement designed

to probe the electrostatic profile of KATRIN’s main spectrometer in comparison to simulated results.
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CHAPTER 1: Introduction

Section 1.1: Motivation for measurement of the neutrino mass

1.1.1: Evidence for neutrino mass from flavor oscillation

The canonical Standard Model of particle physics, a theory that has successfully predicted the experimen-

tal results of almost all particle physics experiments in the past forty years, presupposes the neutrino to be

massless. In the past 20 years, several experiments measuring neutrinos from the sun and from interactions

in our atmosphere have uncovered compelling evidence to the contrary, linking the mass of the neutrino to

an observable phenomenon known as flavor oscillation (11). In the commonly accepted 3-neutrino model of

flavor oscillations, a neutrino interacts according to its flavor eigenstates (| να〉, α = e,µ,τ) and propagates

through space according to its mass eigenstates (| νi〉, i = 1,2,3). The mass and flavor eigenstates of a

neutrino are related by the unitary Maki-Nakagawa-Sakata (MNS) matrix Uαi (12):

| νi〉 =
∑

α

Uαi | να〉. (1.1)

When a neutrino is created, it is in a flavor eigenstate (| να〉). As it propagates through space, it becomes

a time-varying superposition of the three flavor eigenstates (| ν(t)〉 =
∑

α

Cα(t) | να〉) whose amplitudes

Cα(t) are determined by components of the MNS matrix, the time of propagation, the momentum of the

neutrino and the mass squared differences between neutrino mass eigenstates. Upon charged-current weak

interaction∗, the neutrino wave function interacts as one of the three flavor eigenstates with the probability

P (να)(t) = |Cα(t)|2.

In the case of two-flavor† oscillations, Uαi can be represented as a simple rotation matrix dependent upon

a single mixing angle θ, and the probability of neutrino oscillation is expressed as

P (να → νβ) = sin2 (2θ)× sin2

(
1.27∆m2

12L

E

)
, (1.2)

∗an interaction mediated by a W ± boson

†Though there are three neutrino flavors, the two-flavor model of neutrino oscillation is useful since neutrino oscillation
experiments are usually only sensitive to one baseline.
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where ∆m2
12 = m2

1 −m2
2 is the mass squared difference of the mass eigenstates in eV2, L = c · t is the distance

from the neutrino’s creation to detection in kilometers, and E is the neutrino energy in GeV (13). For

three-flavor oscillations for Dirac neutrinos, there are six parameters intrinsic to the neutrino that determine

is oscillatory properties: two mass squared differences (∆m2
21 ≃ ∆m2

⊙, ∆m2
32 ≃ ∆m2

atm), three mixing angles

(θ12, θ23, and θ13), and a CP violating phase (δ). The current best fit values and 3σ ranges for the neutrino

oscillation parameters are provided in (1), and are reproduced in Table 1.1.‘

Parameter Best fit 3σ range
δm2/10−5 eV2 7.54 6.99 - 8.18
sin2θ12/10−1 3.08 2.59 - 3.59
∆m2/10−3 eV2 2.38 2.19 - 2.56
sin2θ13/10−2 2.40 1.78 - 2.98
sin2θ23/10−1 4.55 3.80 - 6.41
δ/π 1.31 0.98 - 1.60 (1σ range)

Table 1.1: Current best fit values and 3σ ranges for neutrino oscillation parameters from global 3ν oscillation
analysis, taken from (1). In this table, ∆m2 is defined as m2

3 − (m2
1 +m2

2)/2, δm2 is defined as m2
2 −m2

1, and
an inverted neutrino mass hierarchy is assumed.

1.1.2: Significance of neutrino mass

By measuring nonzero splittings between the mass eigenstates, neutrino oscillation implies that at least

two of the three neutrinos are not massless. The evidence of massive neutrinos has given rise to several

interesting questions in neutrino physics theory. The three most prominent questions related to neutrino

mass are:

• are neutrinos Dirac (ν and ν̄ are distinct) or Majorana (ν = ν̄) particles,

• what is the ordering of the mass eigenstates, and

• what is the overall scale of the neutrino masses?

While there are several different experiments currently underway whose primary focus is to answer one of

these three questions, it should be noted that the physics motivating these questions is largely interrelated,

and that information about any one of these three questions will invariably shed light on the other two. As

such, the Karlsruhe Tritium Neutrino (KATRIN) experiment is specifically designed to measure the overall

scale of the neutrino masses, and its result will also complement the results of other neutrino experiments.

1.1.3: Current limits on the neutrino mass scale

There are several experimental techniques that can be used to determine the neutrino mass scale. Mea-

sured anisotropies in the cosmic microwave background, in conjunction with other measured astronomical
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parameters, set the sum of the three neutrino masses to be
∑

mν < 0.23 eV (14). This constraint is de-

pendent upon the assumptions made in the cosmological model to which these parameters are fit, however.

Experiments designed to measure a process known as neutrinoless double-beta decay, a process whose half-

life is associated with a Majorana mass term (mββ , an incoherent sum of the electron neutrino mass states),

have set a limit on mββ to be less than 140 − 380 meV (15). This constraint is also model-dependent, and

would necessarily equal zero if neutrinos are Dirac particles. Finally, the current best limit on the mass of

the neutrino via tritium beta decay (mβ , discussed further in Sec. 1.2.1) has been set in 2005 by the Mainz

experiment to be mβ < 2.3 eV (95% C.L.) (16) and more recently by the Troitsk experiment in 2012 to be

mβ < 2.05 eV (95% C.L.) (17). Measurements of this type are referred to as direct searches, since the value

to be measured is independent of any physics model.

Section 1.2: The KATRIN experiment

The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to

make a direct, model independent measurement of neutrino mass with a sensitivity of mβ = 0.2 eV (90%

C.L.), an order of magnitude lower than the current limit, with a 5 sigma discovery level of 0.35 eV. To extract

a neutrino mass from KATRIN one needs to understand the generation of an electron energy spectrum via

tritium β decay, and the subsequent transport and measurement of this energy spectrum.

1.2.1: Kinematics of tritium β decay

Tritium β decay is described by the following reaction:

3H → 3He + e− + ν̄e. (1.3)

Noting that ν̄e is a superposition of the three mass eigenstates, the energy spectrum of the outgoing electron

in this process is

dN

dE
= C × F (Z,E)p(E + mec2)(E0 − E)

∑

i

|Uei|2[(E0 − E)2 − m2
i ]

1
2 Θ(E0 − E − mi), (1.4)

where E is the electron energy, me is the mass of the electron, p is the electron momentum, E0 represents

the maximum electron energy (setting mν = 0), F (Z,E) is the Fermi function (accounting for the Coulomb

interaction between the outgoing electron and the 3He+ nucleus), Θ(E0 − E − mν) is the Heaviside step
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function (to ensure energy conservation), and

C =
G2

F

2π3
cos2 θC |M |2, (1.5)

where GF is the Fermi constant, θC is the Cabibbo angle and M is the nuclear matrix element (18). Three

properties of Equation 1.4 are particularly worthy of note: first, the measurement of the β energy spectrum is

independent of whether the neutrino is Majorana or Dirac. Second, if the energy resolution of the experiment

is less than the splittings between the mass eigenstates of the neutrino (as is the case for KATRIN), the

mass mν can be treated as a weighted average of the neutrino mass eigenstates that comprise ν̄e (19). In

other words, we can rewrite Equation 1.4 with

m2
β =

∑

i

|Uei|2m2
i (1.6)

as

dN

dE
= C × F (Z,E)p(E + mec2)(E0 − E)[(E0 − E)2 − m2

β]
1
2 Θ(E0 − E − mβ), (1.7)

producing a single observable in experiment that is dependent upon all three neutrino mass eigenstates.

Finally, the count rate of electrons near the end-point energy can be determined by Equation 1.4 to be

proportional to (E0 − E)3, which quickly approaches zero at the endpoint.

mν sensitivity = 200 meV/c2

Figure 1.1: The (A) total and (B) endpoint of the electron energy spectrum of tritium β decay for mν = 0
eV and mν = 1 eV. The shaded region denotes the measurable difference between the massive and massless
neutrino spectra (representing only 2 × 10−13 of the total β spectrum). Images taken from (2).

Using Equation 1.4, tritium β decay experiments measure the neutrino mass by measuring the variance

of the shape of the endpoint of the electron energy spectrum from the mν = 0 spectrum. As depicted in
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Figure 1.1, the fraction of events in the region of sensitivity to a massive ν̄e is very small: for example, only

2×10−13 of the emitted β decays account for the last 1 eV of the spectrum. The ability to accurately obtain

a signal for a significantly small neutrino mass is therefore strongly dependent upon the luminosity of the

tritium source, as well as the ability to precisely filter the emitted electrons below a given energy threshold‡.

(3).

1.2.2: Overview of the apparatus

The KATRIN apparatus is depicted in Figure 1.2. In the Windowless Gaseous Tritium Source (WGTS),

Tritium molecules β decay with an endpoint energy of 18.6 keV within a solenoidal magnetic field, producing

an electron beam with a luminosity of 4.25 × 1010 β
s . This electron beam is transported along magnetic

field lines through the differential and cryogenic pumping sections (DPS and CPS, respectively), where the

residual gas molecules from the WGTS are removed, resulting in a tritium reduction factor of 1011. The

beam then passes through a rough (∼ 100 eV resolution) and fine (∼ 1 eV resolution) integrating energy filter,

respectively named the pre-spectrometer and main spectrometer (see Sec. 1.2.3 for a description of this filter

type). Finally, the beam is deposited on a silicon pin diode detector in the detector section, designed to

obtain a count rate of the β beam with a background rate ≤ 1 mHz (2)(3).

1.2.3: Measurement of the electron energy spectrum

In order to resolve the shape near the endpoint energy of the resultant electron spectrum with sufficient

resolution to extract the neutrino mass, KATRIN employs an integral spectrometer known as a Magnetic

Adiabatic Collimation followed by an Electrostatic Filter (MAC-E-Filter, see Fig. 1.3) (20)(21)(22). The

filter is designed to adiabatically transfer a charged particle’s transverse momentum into longitudinal mo-

mentum using magnetostatic fields of different strengths, and then to perform an energy rejection using

electrostatic fields. For a magnetic field that varies from Bmax to Bmin and an electric potential at the

analyzing plane of U0, the transmission function of a MAC-E-Filter rises from 0 to 1 for an electron with

kinetic energy T0 as

qU0 ≤ T0 ≤ qU0

(
1 +

Bmin

Bmax

)
, (1.8)

corresponding to a resolving power of

T0

∆T
=

U0

∆U
=

Bmax

Bmin
. (1.9)

‡Additional corrections to the spectrum shape due to the nuclear recoil and final state distributions of molecular tritium
contribute as subdominant limitations on KATRIN’s ability to measure a signal (2).
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detector region

Figure 1.2: A pictorial representation of the Karlsruhe Tritium Neutrino (KATRIN) experiment (2). The KATRIN beam line is ∼ 70 m long.
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Figure 1.3: General setup of a MAC-E-Filter. (Top) experimental configuration and (bottom) the adiabatic
momentum transformation of charged particle through the filter. Image taken from (3)
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The relationship between Bmax and Bmin determines the volume of the MAC-E-Filter (or, in the case of

KATRIN, the volume is also constrained by the size of the streets from the river Rhine to the experimental

hall!). For the purposes of simulation, this fact is critical because it determines the large macroscopic

scale intrinsic to electrostatic modeling for the KATRIN experiment. Once the filtered particles exit the

spectrometer, they are collected using a silicon semiconductor detector.

1.2.4: KATRIN signal and background rates

As mentioned in 1.2.1, the integrated region of the tritium β spectrum that is used to fit for the neutrino

mass represents a very small fraction of the entire spectrum. As a result, KATRIN requires a very intense

source in order to achieve a mν sensitivity of 0.2 eV. To this end, KATRIN’s gaseous tritium source is

designed to transport 4.25 × 1010 β per second to the entrance of the spectrometers. This rate corresponds

to a rate of ∼ 10−2 β per second within the last eV of the energy spectrum (the shaded region in Fig. 1.1).

Another requirement for attaining KATRIN’s desired sensitivity is a relatively small background. The

primary source of background in KATRIN is expected to come from particles generated within the main

spectrometer, and is mitigated by a complex electrode system (see Chapter 5) and ultra-high vacuum within

the vessel. With these preventative measures in place, the main spectrometer is designed to contribute

backgrounds at or below 10 mHz at the tritium endpoint energy. Finally, to achieve a sufficient reduction

of statistical error, the experiment is expected to take data by scanning over the endpoint of the energy

spectrum, with interlaced calibration runs to monitor the stability of the apparatus, for ∼ 3 years (23).

1.2.5: Impact on neutrino physics theory

Given the expected range of sensitivities attainable by KATRIN, either an upper limit or a definitive

measurement of the neutrino mass will yield important results to determining the nature of neutrino mass.

If a value for the mass mν can be determined, we will be able to fix the absolute mass spectrum of the

mass eigenstates. Because the splittings of the mass eigenstates are an order of magnitude smaller than the

expected sensitivity of KATRIN, the reconstructed neutrino mass will be a weighted average of the three

mass eigenstates according to Equation 1.6 and, while not sensitive to mass ordering, would determine that

the neutrino masses are nearly degenerate. Such a measurement could also be used in tandem with 0νββ

experiments to determine whether neutrinos are Majorana particles. The absence of a signal would result

in the most competitive direct limit on the absolute neutrino mass scale to date, and additionally constrain

cosmological parameters by providing external prior knowledge of the neutrino mass range for parametrized

cosmological fits (24).
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Section 1.3: Electromagnetic simulations in the KATRIN experiment

1.3.1: Boundary Element Method

To characterize the properties of its particle transport and filtering apparatus, an accurate simulation

of KATRIN’s electromagnetic fields is required. To achieve this goal, we have developed a Boundary Ele-

ment Method (BEM) for converting three-dimensional boundary value problems in potential theory into a

numerically soluble linear algebraic form. A description of this technique is given in Chapter 2.

1.3.2: Robin Hood linear algebraic solver

As a result of the large range of length scales inherent in KATRIN’s transport and spectrometer system,

the linear algebraic equations generated by our BEM can quickly become very large (resulting in dense square

matrices with rank ∼ 106). To solve these systems of equations, we have employed a novel quasi-stationary

Robin Hood linear algebraic solver, and adapted it to perform in high-performance computing environments.

The Robin Hood linear algebraic solver is described in greater detail in Chapter 3.

1.3.3: Electromagnetic simulation software

Following the theoretical description of the BEM and Robin Hood solver, Chapter 4 provides a descrip-

tion of their implementation in the KEMField software. We also briefly present KGeoBag, software designed

to describe the complex geometries inherent in the KATRIN experiment. In some respects, KGeoBag has

been designed to operate as a front-end to KEMField: KGeoBag accepts user-defined descriptions of macro-

scopic geometry elements and provides navigation, discretization and visualization routines for them. These

elements are then passed into KEMField, whose primary focus is the high-performance computation of the

BEM and subsequent field queries.

1.3.4: Application to the KATRIN experiment

With the aforementioned software tools in place, Chapter 5 exhibits the application of KGeoBag and

KEMField to KATRIN’s spectrometer and detector section (SDS). We present a description of the three-

dimensional models prepared for the detector section and main spectrometer, and the results of the applica-

tion of the BEM to these geometries. Additionally, we describe several analyses that were performed using

these models.
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1.3.5: Shifted analyzing surfaces

Finally, to validate our model of KATRIN’s main spectrometer, in Chapter 6 we present an analysis of

measurements taken during KATRIN’s spectrometer commissioning, where the electrostatic configuration

of the main spectrometer was adjusted to shift its analyzing surface away from the center of the vessel. To

do this, we first present a technique for simulating the transmission function from a point-like electron gun

source. We then compare the results of simulation to their empirical counterparts.

Section 1.4: Summary

In the past 20 years we have been witness to a complete paradigm shift in our understanding of neutrinos.

The confirmation of the theory of neutrino oscillation has raised as many questions as it has answered, as

the task of accommodating massive neutrinos in the Standard Model that fit experimental measurements is

a nontrivial task. At present, the questions of the Majorana versus Dirac nature of neutrinos, the ordering of

the neutrino mass hierarchy and the absolute neutrino mass scale comprise some of the central questions to

be answered in neutrino physics. The KATRIN tritium β decay experiment is currently the most sensitive

method for probing the absolute neutrino mass scale. To this end, the characterization of the transport and

filtering sections is a critical task within the KATRIN experiment. To handle the complexity of KATRIN’s

apparatus and the level of accuracy required for characterization, large-scale simulations that employ high-

performance computation techniques have been developed. The following chapters describe these methods,

as well as their implementation in software and application to the KATRIN experiment.
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CHAPTER 2: Boundary Element Method

Section 2.1: Introduction

The Boundary Element Method (BEM) is a technique for numerically solving linear partial differential

equations (PDEs) that can be represented as an integral over the domain boundary. Compared to other

popular methods like the Finite Element and Finite Difference Methods, the BEM requires that all source

terms reside on the system’s boundaries, rather than its interior (25). This restricts the applicability of

the technique to a subset of PDEs, but also reduces the dimensionality of the problem and facilitates

the calculation of fields for regions that extend out to infinity (rather than restricting computation to a

finite region) (26). These two features make the BEM more favorable than competing methods when it is

applicable.

The method involves taking an integral equation that describes a field as a function of its boundaries, and

feeding the boundary conditions into the equation in order to construct a profile for the unknown function

in the integrand. Typically, the integral equation is a Fredholm integral equation of the first or second type,

defined respectively as

f(x) =

∫

Γ
K(x,x′)ϕ(x′)dx′ (2.1)

and

ϕ(x) = f(x) + λ

∫

Γ
K(x,x′)ϕ(x′)dx′, (2.2)

where K(x,x′) (known as the Fredholm kernel) and f(x) are known, square-integrable functions, λ is a

constant, Γ is the system’s boundary and ϕ(x) is the function for which we are trying to solve (27).

Many variants of the BEM exist. The version described here is known as an indirect Boundary Element

Method, as the technique emphasizes matching the solution function’s values or derivatives across domains

that share a common boundary. This is in contrast to direct Boundary Element Methods, which use the

complete specification of the boundary of a single region to obtain a description of the function in that

region∗.

∗The term direct refers to the act of directly solving for a function’s boundary derivative values from the function’s boundary
values, or vice versa.
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Section 2.2: Conversion of the Laplace Equation to a Fredholm integral equation

2.2.1: Description of the Laplace Equation

The governing partial differential equation for electrostatic systems is the Laplace equation:

∇2φ = 0. (2.3)

The Laplace equation admits a unique solution when φ is defined on all boundary surfaces (Dirichlet bound-

ary conditions), ∂φ
∂n is defined on all boundary surfaces (Neumann boundary conditions)†, or an admixture

of φ and ∂φ
∂n are defined along the entire boundary (mixed boundary conditions).

To apply the BEM to electrostatics we will convert Equation 2.3 into a Fredholm integral equation of the

first type (see Eq. 2.1). We must also ensure that the resulting Fredholm kernel is square-integrable. The

following technique is derived from the methods described in (28)(29)(30)(31)(32)(33), and is described in 3

dimensions (with 2-dimensional accompanying images).

2.2.2: Integral Statement for the Interior Equation

Σ

x

Figure 2.1: A graphical depiction of the region Σ and observation point x with dimensionality d = 2.

We begin by defining a volume Σ, bounded by a piecewise smooth closed and positively oriented contour

(see Fig. 2.1). We apply Green’s second identity to Σ:

∫

Σ

(
u∇2w + w∇2u

)
dV =

∫

∂Σ

(
u

∂w

∂n
− w

∂u

∂n

)
dS, (2.4)

where u,w : R3 → R are C2 continuous in Σ and on its boundaries ∂Σ, and ∂w
∂n is the magnitude of the

gradient of w in the direction of the outward pointing normal n to the surface element dS‡. We let u be the

†Neumann boundary conditions uniquely specify a solution up to an additive constant.

‡We define C2 continuity for a function f(x) on V ∪ ∂V in the limiting sense: ∀x ∈ V ∪ ∂V,y ∈ V, limy→x f(x) and

limy→x

∂f(x)
∂n

are well-defined.
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solution to Equation 2.3, eliminating one of the terms on the left-hand side of Equation 2.4 and leaving us

with ∫

Σ
φ∇2w dV =

∫

∂Σ

(
φ

∂w

∂n
− w

∂φ

∂n

)
dS. (2.5)

Next, we choose a suitable w to eliminate the remaining domain integral on the left-hand side of Equation

2.5, so that only calculations around the boundaries of Σ remain. This is done by casting the left-hand side

as a singular integral whose kernel is the fundamental solution of the Laplace equation, G : R3 ×R
3 → R,

defined by the property

∇′2G(x,x′) = δ(x− x′), (2.6)

and one of whose arguments is an (often implied) observation point x ∈R
3. In 3 dimensions, the fundamental

solution to the Laplace equation is

G(x,x′) =
1

4π|x− x′| . (2.7)

Immediately, it can be seen that our choice of w has introduced singularities that could potentially prevent

our final Fredholm kernel from being square integrable. It is therefore necessary to address the singularities

in Equation 2.5 when x = x′, both in Σ and on its boundaries.

2.2.3: Resolving Singularities with Limiting Behaviors

Our approach to dealing with singularities in Equation 2.5 is to excise a parametrized volume containing

our observation point (hereafter referred to as Ex (ǫ)) from our domain, Σ, so our equations become inte-

grable. We then observe the behavior of our equations in the limit that the parametrized volume vanishes.

We begin by dealing with the singularity that occurs when x = x′, and x ∈ Σ. For this condition, we excise

Σ

Ε (ε)x

Figure 2.2: By excluding a small Ex (ǫ), we are able to avoid the divergence in Eq. 2.5 when x = x′, and
x ∈ Σ. Taking the limit as ǫ → 0, we recover our original domain.

from our domain Σ a parameterized spherical volume Ex (ǫ), centered on our observation point x with radius
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ǫ > 0 (see Fig. 2.2). This results in a modification of Equation 2.5 to

∫

Σ\Ex(ǫ)
φ∇2G dV =

∫

∂Σ

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS −

∫

∂Ex(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS. (2.8)

The left-hand side of this equation is then trivially zero (since ∀ x′ ∈ Σ\Ex (ǫ) ⇒ ∇′2G(x,x′) = 0), and

Equation 2.8 reduces to

∫

∂Σ

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS =

∫

∂Ex(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS. (2.9)

To evaluate the right-hand side of Equation 2.9, we convert into a local spherical coordinate system centered

on our observation point:

x′ − x ≡ ρ(ρ,θ,ϕ),

n =
ρ

|ρ| ,

dS = ǫ2dΩ. (2.10)

We evaluate the first term on the right-hand side to be

∫

∂Ex(ǫ)
φ(x′)

∂

∂n
G(x,x′) · dS =

∫

∂Ex(ǫ)
φ(x+ρ) · ∂

∂ρ

(
1

4πρ

)
· dS =

=

∫

Ω
dΩ · ǫ2 · φ(x+ρ) ·

(
− 1

4πǫ2

)
=

= − 1

4π

∫

Ω
dΩ · φ(x+ρ), (2.11)

which, as ǫ → 0, approaches −φ(x). The second term on the right-hand side of Equation 2.9 becomes

∫

∂Ex(ǫ)
G(x,x′)

∂

∂n
φ(x′) · dS =

∫

∂Ex(ǫ)

(
1

4πρ

)
· ∂

∂ρ
φ(x+ρ) · dS

=
ǫ

4π

∫

Ω
dΩ · ∂

∂ρ
(φ(x+ρ)|ρ=ǫ , (2.12)

which approaches 0 as ǫ → 0, since we are guaranteed that ∂
∂ρφ(x+ρ) is well-behaved by the earlier require-

ment that ∀x′ ∈ Σ : φ(x′) be twice continuously differentiable. We therefore determine that the right-hand

side of Equation 2.5 converges to φ(x) when x = x′,x ∈ Σ.

Next, we deal with the singularity that occurs for x = x′,x ∈ ∂Σ. In this condition, we excise a partial

sphere Ex(ǫ) centered on x with radius ǫ and internal solid angle Ωx. Further, we will define SΩ
x (ǫ) to be the
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Σ

Ε (ε)x

x

Ωx

Figure 2.3: When x = x′,x ∈ ∂Σ, we exclude a partial sphere Ex (ǫ) with interior solid angle Ωx to eliminate
the divergence in Eq. 2.5. Taking the limit as ǫ → 0, we recover our original domain.

spherical portion of ∂Ex(ǫ), and SΣ
x (ǫ) to be the portion of ∂Ex(ǫ) along ∂Σ (see Fig. 2.3)§. This excision

changes Equation 2.5 to be

∫

Σ\Ex(ǫ)
φ∇2G dV =

∫

∂Σ\SΣ
x

(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS −

∫

SΩ
x

(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS. (2.13)

Once again, the left-hand side of Equation 2.13 evaluates to 0, leaving us with

∫

∂Σ\SΣ
x

(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS =

∫

SΩ
x

(ǫ)

(
φ

∂G

∂n
− G

∂φ

∂n

)
dS. (2.14)

We convert to a local spherical coordinate system as prescribed in Equation 2.10 and evaluate the first term

on the right-hand side of Equation 2.15 to be

∫

SΩ
x

(ǫ)
φ(x′)

∂

∂n
G(x,x′) · dS =

∫

SΩ
x

(ǫ)
φ(x+ρ) · ∂

∂ρ

(
1

4πρ

)
· dS =

= ǫ2

∫

Ωx

dΩ · φ(x+ρ) ·
(

− 1

4πǫ2

)
=

= − 1

4π

∫

Ωx

dΩ · φ(x+ρ), (2.15)

which, as ǫ → 0, approaches − Ωx

4π · φ(x). The second term on the right-hand side of Equation 2.13 becomes

∫

SΩ
x

(ǫ)
G(x,x′)

∂

∂n
φ(x′) · dS =

∫

SΩ
x

(ǫ)

(
1

4πρ

)
· ∂

∂ρ
φ(x+ρ) · dS

=
ǫ

4π

∫

Ωx

dΩ · ∂

∂ρ
(φ(x+ρ)|ρ=ǫ , (2.16)

which tends to 0 as ǫ → 0, since since we are once again guaranteed that ∂
∂ρφ(x +ρ) is well-behaved by

§If x is on a smooth contour, Ωx = 2π. Otherwise, Ωx is dependent upon the C1 discontinuity of the piecewise-continuous
boundary segments that comprise ∂Σ.
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the earlier requirement that φ(x) be twice continuously differentiable. We have therefore shown that, when

x = x′,x ∈ ∂Σ, the right-hand side of Equation 2.5 converges to Ωx

4π · φ(x).

2.2.4: Final form of the Interior Equation

Having demonstrated that G(x,x′) is square-integrable ∀x ∈ R
3, we now formulate an expression for the

solution to the Laplace equation in Σ as an integral equation:

c(x) · φ(x) =

∫

∂Σ

(
φ(x′)

∂G(x,x′)

∂n
− G(x,x′)

∂φ(x′)

∂n

)
· dS, (2.17)

c(x) =





1 x ∈ Σ

Ωx

4π x ∈ ∂Σ

0 x /∈ Σ

. (2.18)

Up to this point, our derivation has held valid for the treatment for both the direct and indirect Boundary

Element Methods. To proceed with a direct formalism, Equation 2.17 would be used to compute source

terms given appropriate boundary conditions, and an equation would be obtained that is valid ∀x ∈ Σ. With

a little more manipulation, however, the indirect approach yields a much more general solution that is valid

∀x ∈ R
3.

2.2.5: Extension to the Exterior Equation

Σ

x

R

S (R)1

~

Σ

Figure 2.4: A graphical depiction of Σ̃ in 2 dimensions.

We next apply the same formalism as in Section 2.2.2 to a region Σ̃, bound externally by a closed spherical

shell of radius R (referred to as S2(R)) and internally by ∂Σ (see Fig. 2.4), yielding a relation analogous to
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Equation 2.5 for Σ̃: ∫

Σ̃
φ̃∇2G dV =

∫

∂Σ̃

(
φ̃

∂G

∂n
− G

∂φ̃

∂n

)
dS. (2.19)

It is important to note that, as a consequence of the choice of boundary orientation, we have defined

∂Σ̃ = S2(R) ∪ (−∂Σ). By requiring that

lim
|x|→∞

φ̃(x) = lim
|x|→∞

∂φ̃

∂n

∣∣∣∣∣
x

= 0, (2.20)

we can impose the condition that S2(R) have no contribution to the right-hand side of Equation 2.19 by

extending R → ∞. Subsequent application of the procedure described in Section 2.2.3 yields the following

integral equation:

c̃(x) · φ̃(x) =

∫

∂Σ̃

(
φ̃(x′)

∂G(x,x′)

∂n
− G(x,x′)

∂φ̃(x′)

∂n

)
· dS, (2.21)

c̃(x) =





1 x ∈ Σ̃

1 − Ωx

4π x ∈ ∂Σ̃\S2(R)

0 x /∈ Σ̃

, (2.22)

and the subtended solid angle Ωx has been defined earlier (see Fig. 2.3). With care to preserve the correct

boundary orientations, we can rewrite Equation 2.21 in terms of our original region Σ and its boundary:

c̃(x) · φ̃(x) = −
∫

∂Σ

(
φ̃(x′)

∂G(x,x′)

∂(n)
+ G(x,x′)

∂φ̃(x′)

∂(−n)

)
· dS (2.23)

c̃(x) =





0 x ∈ Σ

1 − Ωx

4π x ∈ ∂Σ

1 x /∈ Σ

. (2.24)

2.2.6: Composing a Global Solution

We now have two distinct regions (Σ,Σ̃) that share a common boundary, each with a solution function

(φ,φ̃) dependent on the properties of the boundaries of our system. With this, We can compose a global

solution function Φ that spans both regions by enforcing a boundary matching condition between our solu-

tions. Our two choices are to enforce a relationship between φ and φ̃ and solve for a source term σ defined

by the discontinuities between ∂φ
∂n and ∂φ̃

∂(−n) , or to enforce a requirement on the derivatives and solve for a

source term µ defined by a discontinuity between φ and φ̃. The two choices result in a single-layer potential

and double-layer potential formalism, respectively. We use the former prescription, since it yields a result
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that extends more naturally to a physical description within the field of electrostatics.

By enforcing a C0 continuity condition between φ and φ̃ along ∂Σ:

φ(x) = φ̃(x) ∀x ∈ ∂Σ, (2.25)

and defining our globally defined composite function Φ as

Φ(x) =





φ(x) x ∈ Σ ∪∂Σ

φ̃(x) x /∈ Σ
, (2.26)

we can add Equations 2.17 and 2.23 to obtain a global integral equation:

Φ(x) = −
∫

∂Σ
G(x,x′)

(
∂φ(x′)

∂n
+

∂φ̃(x′)

∂(−n)

)
· dS. (2.27)

Since we are treating the discontinuity of the derivatives at the boundary as an independent function, we

can define σ(x),x ∈ ∂Σ as

σ(x) = −
(

∂φ(x)

∂n
+

∂φ̃(x)

∂(−n)

)
, (2.28)

and rewrite Equation 2.27 as

Φ(x) =

∫

∂Σ
G(x,x′) · σ(x′) · dS. (2.29)

Now that we have Equation 2.29, we need to incorporate the boundary conditions that uniquely define our

solution function Φ.

2.2.7: Application of Boundary Conditions

As mentioned in Section 2.2.1, our solution function Φ is uniquely described by imposing Dirichlet,

Neumann or mixed boundary conditions on the boundaries of our system. To apply a Dirichlet boundary

condition, we simply restrict the domain of Equation 2.29 to our boundary:

∀x ∈ ∂Σ : Φ(x) =

∫

∂Σ
G(x,x′) · σ(x′) · dS (2.30)

and, with Φ(x) as a known function ∀x ∈ ∂Σ, apply Equation 2.30 as a Fredholm equation of the first kind.

For the Neumann boundary condition, we once again restrict the domain of Equation 2.29 to our bound-

ary, and additionally differentiate both sides with respect to the unit boundary normal at x. However, we

must be careful how we differentiate Φ(x) on the boundary, since it is a composition of two functions defined
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to have discontinuous derivatives at the boundary. Using our convention of defining the function as a limit

to the boundary, we therefore obtain two different formulae for this derivative as we approach from within

Σ or without:

∀x ∈ ∂Σ,y+ ∈ Σ :
∂Φ(x)

∂n

∣∣∣∣
+

= lim
y+→x

∂Φ(y+)

∂n
=

∫

∂Σ\x

∂G(x,x′)

∂n
· σ(x′) · dS − Ωx

4π
· σ(x), (2.31)

∀x ∈ ∂Σ,y− /∈ Σ :
∂Φ(x)

∂n

∣∣∣∣
−

= lim
y−→x

∂Φ(y−)

∂n
=

∫

∂Σ\x

∂G(x,x′)

∂n
· σ(x′) · dS +

(
1 − Ωx

4π

)
· σ(x), (2.32)

where we have adopted the convention of ± being the limit taken along or away from the boundary normal,

respectively.

With Equations 2.31 and 2.32, we can enforce a relationship between the derivatives at either side of the

boundary. For example, the condition

ǫ+ · ∂Φ(x)

∂n

∣∣∣∣
+

= ǫ− · ∂Φ(x)

∂n

∣∣∣∣
−

(2.33)

yields the following integral equation:

σ(x) =

∫

∂Σ\x


 ǫ+ − ǫ−

Ωx

4π ǫ+ +
(

1 − Ωx

4π

)
ǫ−


 · ∂G(x,x′)

∂n
· σ(x′) · dS, (2.34)

which is a Fredholm equation of the second kind.

A mixed boundary condition is simply the discrete combination of Dirichlet and Neumann boundary

conditions along ∂Σ. As such, we can solve problems of this type by applying Equations 2.30 and 2.34 to the

Dirichlet and Neumann sections of the boundary, respectively. This is explained in more detail in Section

2.4.

2.2.8: Extension to Multiple Regions and Disjoint Boundaries

Although we have derived our integral equations using a single boundary enclosing a volume, this method

is immediately extensible to the partitioning of space into multiple regions that share boundaries. Doing so

would simply result in an integral equation for each region of space, with the requirement that the solution

function be a composite of these solutions that is C0 continuous across each boundary. The final integral

equations used to solve for the single-layer source terms are identical to those in the single boundary case,

with an extension of our domain to include all boundaries. For example, the Dirichlet boundary integral
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equation is given as

∀x ∈
⋃

j

∂Σj : Φ(x) =
∑

j

∫

∂Σj

G(x,x′) · σ(x′) · dS. (2.35)

ΣΓ

Figure 2.5: A disjoint boundary Γ (solid black line), and a constructed space Σ partially bound by Γ. The
remaining boundary ∂Σ\Γ (dashed black line) can be assigned the null boundary condition defined in Eq.
2.36, allowing us to apply our formalism on a closed contour.

The resulting derivation can be extended to accommodate systems with disjoint boundaries as well. To

demonstrate this, we can connect disjoint boundaries with an artificial boundary that enforces a continuity

of the derivatives on either side of a boundary segment:

∂Φ(x)

∂n

∣∣∣∣
+

=
∂Φ(x)

∂n

∣∣∣∣
−

. (2.36)

It can be seen from Equations 2.31 and 2.32 that the application of this null condition to a boundary segment

enforces that σ(x) = 0 in this region. To apply our formalism to a disjoint boundary, we can construct a space

that is partially bound by a disjoint boundary, and define the remainder of its boundary to have this null

boundary condition (see Fig. 2.5). In practice this is obviously not necessary; we can apply our boundary

integral equations to these disjoint boundaries without any extra work.

Section 2.3: Discretization of Fredholm Integrals for Numeric Computation

Now that we have constructed Fredholm integrals to represent the Laplace equation with both Dirichlet

boundaries (Equation 2.30) and Neumann boundaries (Equation 2.34), we describe a technique for solving

these equations.

2.3.1: Dirichlet Boundaries

We begin with a system containing only Dirichlet boundaries, represented by a Fredholm integral equation

of the first kind (Equation 2.1). With no loss in generality, we can subdivide the integration interval of
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Equation 2.1 so that Γ =
∑

j ∆Γj , and then recast the equation as

f(x) =
∑

j

∫

∆Γj

K(x,x′) · ϕ(x′) · dS. (2.37)

Applying a Collocation Scheme

We approximate a solution for ϕ to second order accuracy with respect to the length scale of ∆Γj using

a zeroth-order collocation scheme, which approximates ϕ as a piecewise-constant function defined on our

boundaries. To do this, we first use the fact that the average of a smooth function f(x) over a surface Γ

is approximated to the second order of the length scale of Γ by its evaluation at the geometric mean of the

surface (34):

〈f(x)〉Γ ≡ 1

|Γ| ·
∫

Γ
f(x′) · dS = f(x0) + O (|Γ|) , (2.38)

where |Γ| is the area measure of the surface Γ,

x0 ≡
∫

Γ x′dS

|Γ| (2.39)

is the centroid of Γ, and the truncation error O (|Γ|) scales with the square of the maximal distance of a

point x ∈ Γ from x0:

O (|Γ|) ≡ O
(
|x− x0|2

)
. (2.40)

We also note that the product of the average of two functions is equal to the average of the product of the

functions to second order, since

〈f(x)〉Γ · 〈g(x)〉Γ = (f(x0) + O (|Γ|)) · (g(x0) + O (|Γ|)) =

= f(x0) · g(x0) + O (|Γ|) =

= 〈f(x) · g(x)〉Γ + O (|Γ|) . (2.41)

To affect our collocation scheme, we first convert the integral over x′ in Equation 2.37 into an average

over ∆Γj :

f(x) =
∑

j

|∆Γj | ·
〈
K(x,x′) · ϕ(x′)

〉
∆Γj

. (2.42)
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We then expand the averaged term in Equation 2.42 using Equation 2.41:

f(x) =
∑

j

|∆Γj | ·
(〈

K(x,x′)
〉

∆Γj
·
〈
ϕ(x′)

〉
∆Γj

+ O (|∆Γj |)
)

=

=
∑

j

|∆Γj | ·
〈
K(x,x′)

〉
∆Γj

·
〈
ϕ(x′)

〉
∆Γj

+ O
(
|∆Γj |2

)
. (2.43)

Next, we substitute an approximation to 〈ϕ(x′)〉∆Γj
as defined in Equation 2.38:

f(x) =
∑

j

|∆Γj | ·
〈
K(x,x′)

〉
∆Γj

·
(
ϕ(xj) + O (|∆Γj |)

)
+ O

(
|∆Γj |2

)
=

=
∑

j

|∆Γj | ·
〈
K(x,x′)

〉
∆Γj

· ϕ(xj) + O
(
|∆Γj |2

)
, (2.44)

where xj is the centroid of ∆Γj as defined by Equation 2.39. Converting 〈K(x,x′)〉∆Γj
back into integral

form, we arrive at our collocated equation:

f(x) =
∑

j

(∫

∆Γj

K(x,x′) · dS

)
· ϕ(xj) + O

(
|∆Γj |2

)
. (2.45)

If we assume that, ∀j, |∆Γj | ≈ ǫ2 (where ǫ is the average length scale of our surfaces), the summation of the

error terms in Equation 2.45 results in an overall collocation error of O
(
ǫ2
)
:

f(x) =


∑

j

(∫

∆Γj

K(x,x′) · dS

)
· ϕ(xj)


+ O

(
ǫ2
)

. (2.46)

Discretizing the Boundary

Equation 2.46 provides us with a means to compute field values given a piecewise-constant solution for ϕ,

but we still must solve for ϕ. This is accomplished by converting Equation 2.46 into a discrete set of soluble

equations, using known values of f(x). The natural choice for these known field values are the centroids of

∆Γi:

f(xi) =
∑

j

(∫

∆Γj

K(xi,x
′) · dS

)
· ϕ(xj), (2.47)
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where the error estimate has been omitted for the sake of clarity. By affecting the following change in

notation:

f(xi) → fi, (2.48)
∫

∆Γj

K(xi,x
′)dS → Kij , (2.49)

ϕ(xj) → ϕj , (2.50)

to Equation 2.47, we arrive at the following relation:

fi =
∑

Kijϕj , (2.51)

in which ϕj can be solved using one of many computational linear algebraic techniques.

2.3.2: Neumann Boundaries

The procedure for the Neumann condition is analogous to that for the Dirichlet condition, applied to the

Fredholm integral equation of the second kind (Equation 2.2). We discretize our region of integration:

ϕ(x) = f(x) + λ
∑

j

∫

∆Γj

K(x,x′)ϕ(x′)dS, (2.52)

apply our collocation scheme and discretize our boundary¶:

ϕ(xi) = f(xi) + λ
∑

j

(∫

∆Γj

K(xi,x
′) · dS

)
· ϕ(xj), (2.53)

and recast into a linear algebraic equation:

fi =
∑

Kijϕj , (2.54)

where

fi = f(xi),

Kij = −λ ·
∫

∆Γj

K(xi,x
′)dS + δij,

ϕj = ϕ(xj). (2.55)

¶By applying the same technique as outlined in 2.3.1, it can be shown that Equation 2.53 is accurate to O
(
ǫ2
)

.
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Section 2.4: Application of the Boundary Element Method to Laplace Integral Equations

We now have in place all of the tools required to construct the linear algebraic equation necessary

to solve the Laplace equation subject to mixed boundary conditions. All that remains is to apply the

technique outlined in Section 2.3 to our boundary integrals derived in Section 2.2. As before, we define the

i-th discretized boundary element ∆∂Σi with centroid xi. Additionally, we define the set of our Dirichlet

boundaries as D , and the set of our Neumann boundaries as N . Our final equation is then

fi =
∑

Kijϕj , (2.56)

where

fi =





Φ(xi) ∆∂Σi ∈ D

0 ∆∂Σi ∈ N

, (2.57)

Kij =





∫
∆∂Σj

G(xi,x
′) · dS ∆∂Σi ∈ D

 ǫ+−ǫ−

Ωxi
4π ǫ++

(
1−

Ωxi
4π

)
ǫ−


 ·
∫

∆∂Σj

∂G(xi,x′)
∂n · dS ∆∂Σi ∈ N , i 6= j

1 ∆∂Σi ∈ N , i = j

, (2.58)

and

ϕi = σ(xi). (2.59)

Once determined, the source values ϕi can be inserted back into Equation 2.29 to compute field values in

all space. In the electrostatic case, the formulae for numerically computing the electric potential and electric

fields are

Φ(x) =
∑

j

(∫

∆∂Σj

G(x,x′)dS

)
· σ(xj) (2.60)

and

E(x) = −
∑

j

(∫

∆∂Σj

∂G(x,x′)

∂n
dS

)
· σ(xj), (2.61)

respectively. Analytic expressions for the integrals in Equations 2.60 and 2.61 for triangle and rectangle

boundary surfaces are given in Appendix A and B, respectively. Additionally, a solution profile can be

incorporated into a more sophisticated field-solving technique (like fast multipole methods).
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Section 2.5: Conclusion

Given the Laplace equation and a sufficient description of a system’s boundaries, we have developed

a means of converting an arbitrarily complex electrostatic system into a discrete set of coupled equations

whose solution provides a means to approximate our solution field to second order with respect to the

length scale of our discretization. While this description is tailored to solving the electrostatic problem,

this derivation can naturally be extended to solve other elliptic problems (magnetostatics and frequency-

dependent electromagnetic problems, for example). Furthermore, the integral descriptions of the Laplace

equation subject to different boundary conditions described here are directly applicable to other Boundary

Element Method techniques (such as employing Galerkin methods in lieu of the collocation method). In

the following chapters, we will construct techniques for solving these coupled equations, demonstrate the

accuracy provided by this method, and describe the results of its application.
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CHAPTER 3: Robin Hood Iterative Linear Algebraic Solver

Section 3.1: Introduction

A crucial step in implementing the Boundary Element Method (BEM) to compute charge densities for

electrostatic geometry configurations is solving the linear algebraic equation

A x = b (3.1)

for vector x, where matrix A and vector b are known quantities. Problems involving equations of this type are

ubiquitous in all fields of computational analysis. Consequently, the study of techniques used to solve these

methods is quite active and spans many fields of research. Due to the varied nature and scale of problems

of this type, there is no distinct “best approach” in obtaining a solution; solvers are instead tailored to

complement distinguishing properties inherent to the matrix A (exploiting such features as element density,

symmetries, data management, etc.).

The technique introduced here is known as the Robin Hood method, described in (35), (36). The Robin

Hood method is a nonstationary iterative method, named for its original implementation where the two

solution elements corresponding to the most positive and most negative residual terms are simultaneously

corrected at each iteration (thus “taking from the rich and giving to the poor” terms of the solution vector).

The method has since been generalized to resemble a nonstationary adaptation of the Successive Subspace

Correction (SSC) method, where the residual is iteratively minimized over subspaces of A (37).

Section 3.2: Iterative Methods

The technique of employing an iterative, or relaxation, method to solve Equation 3.1 is theoretically

straightforward: an initial guess for the solution vector x is made (defined as x(0)), and a transformation is

continually affected on this vector until a desired accuracy is reached. In most cases where the true solution

vector x is not known a priori, the norm of the residual r,

r(k) = b − A x(k), (3.2)
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is computed to quantify the state of convergence of the system. In order to provide context for the Robin

Hood method, we require some background in both stationary and nonstationary iterative methods.

Section 3.3: Stationary Iterative Methods

Stationary methods are so named because the action performed on the solution vector x(k) does not vary

from iteration to iteration. The Jacobi and Gauss-Seidel methods, described below, are canonical examples

of stationary methods. As will be demonstrated later in this chapter, there is a direct connection between

these methods and the Robin Hood method, warranting their brief description.

3.3.1: Jacobi Method

The Jacobi method, as described in (38), is derived by first affecting an additive splitting on A of the

form

A = D + L + U, (3.3)

where D represents the diagonal elements of matrix A, and L and U represent the lower and upper triangular

components of A, respectively. Equation 3.1 can then be rewritten as

(D + L + U)x = b, (3.4)

which can be manipulated algebraically into

x = D−1 (b − (L + U)x) , (3.5)

the classical description of the Jacobi method in matrix form. The component-wise description of Equation

3.5 is expressed as

xi =
1

Aii


bi −

∑

j<i

Aijxj −
∑

j>i

Aijxj


 . (3.6)

Since Equation 3.6 describes a single element of x in terms of the other elements of x, the expression extends

naturally to the recurrence relation

x
(κ+1)
i =

1

Aii


bi −

∑

j<i

Aijx
(κ)
j −

∑

j>i

Aijx
(κ)
j


 . (3.7)
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3.3.2: Gauss-Seidel Method

While the Jacobi method is useful as an academic tool to introduce stationary iterative matrix solving

techniques, it is rarely used; the Gauss-Seidel method is favored in practice. The implementation of the

Gauss-Seidel method differs from the Jacobi method by utilizing the newly computed x elements as soon

as they are available, rather than after the completion of an entire iteration. This change is described

mathematically by the recurrence relation

x
(κ+1)
i =

1

Aii


bi −

∑

j<i

Aijx
(κ+1)
j −

∑

j>i

Aijx
(κ)
j


 , (3.8)

where it is assumed that, prior to the computation of element xj , the previous j − 1 elements of x have

already been computed and can therefore be used to increase the accuracy of xj . Because the estimate for

xj is improved over that of the Jacobi method, the Gauss-Seidel method comparatively reduces the number

of iterations required to obtain a certain tolerance.

It is important to emphasize the aspect of element-replacement within a single iteration of the Gauss-

Seidel method. The aforementioned modification to the Jacobi method introduces an implicit ambiguity in

the application of the Gauss-Seidel method: the order in which the elements of x are updated will produce

entirely different convergence patterns for the same choice of A, b and x(0).

Section 3.4: Nonstationary Methods

In contrast to stationary methods, nonstationary methods affect adaptive algorithms to x(k) that are

computed at each iteration. In general, nonstationary methods successively refine an initial guess x(0) via a

repeated application of an iterative equation of the form

x(k) = x(k−1) + α(k)d(k), (3.9)

where d(k) is a search vector, and α(k) is the step length of the k-th correction. The means by which a search

vector is chosen is specific to the particular nonstationary method being applied. Once a search vector is

chosen, the step length is computed to minimize the norm of the projection of the k-th residual along d(k):

(
d(k)

)T
r(k) =

(
d(k)

)T (
b − Ax(k)

)

=
(

d(k)
)T (

b − A
(

x(k−1) + α(k)d(k)
))

=

=
(

d(k)
)T (

r(k−1) − α(k)Ad(k)
)

= 0, (3.10)
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or

α(k) =

(
d(k)

)T
r(k−1)

(
d(k)

)T
Ad(k)

. (3.11)

Section 3.5: Reinterpretation of the Gauss-Seidel Method

Though it is a stationary method, the Gauss-Seidel method can be redefined in the form of Equation

3.9. The Gauss-Seidel implementation described in Equation 3.8 is constructed by selecting the k-th search

vector to be

d(k) = ek mod N , (3.12)

where ei is the i-th canonical basis vector and N is the dimension of the matrix. Inserting Equation 3.12

into Equation 3.11 and defining i ≡ k mod N yields the step length

α(k) =
(ei)

T r(k−1)

(ei)
T Aei

, (3.13)

which can be inserted back into Equation 3.9 to yield the recurrence relation

x(k) = x(k−1) +
(ei)

T r(k−1)

(ei)
T Aei

ei. (3.14)

To show that this is equivalent to Equation 3.8, we must first note that a single κ-iteration in the stationary

approach is equivalent to N k-iterations in this nonstationary method (one sweep of the stationary Gauss-

Seidel method updates every element of x, whereas one sweep of the nonstationary version only updates the

i-th element). As a result, during the computation of the (k)-th iteration x(k) has updated values ∀x
(k)
j , j < i,

and has the same values as the prior (κ)-iteration ∀x
(k)
j , j ≥ i. In other words,

x
(k−1)
j =





x
(κ)
j j < i

x
(κ−1)
j j ≥ i

. (3.15)
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We can then explicitly write the i-th element of x(k) in Equation 3.14 as follows:

x
(k)
i = x

(k−1)
i +

r
(k−1)
i

Aii
=

= x
(k−1)
i +

1

Aii


bi −

∑

j

Aijx
(k−1)
i


=

= x
(k−1)
i +

1

Aii


bi −

∑

j<i

Aijx
(κ)
j −

∑

j≥i

Aijx
(κ−1)
j


=

=
1

Aii


bi −

∑

j<i

Aijx
(κ)
j −

∑

j>i

Aijx
(κ−1)
j


 , (3.16)

which is identical to Equation 3.8.

Section 3.6: Generalization of the Gauss-Seidel method to a Successive Subspace Correction

Method

For the description of the Gauss-Seidel method in Section 3.5, we chose our search vectors from the set

of N canonical basis vectors ei, i = {1 . . .N}. However, the technique of minimizing the projection of the

residual is quite general. Instead of projecting our residual onto a vector, we can instead project our residual

vector onto any subspace of our solution space that we desire, and iterate by minimizing the norm of its

projected component. This technique is known as the Successive Subspace Correction (SSC) method, and

extends the number of elements of x(k) that are updated during each iteration (37).

We begin by defining the N -dimensional space in which our problem lies as SN . We then divide this

space into N D-dimensional subspaces that span SN , and label these subspaces Si, i = {1 . . .N }. The means

of selecting these subspaces is arbitrary, provided they span SN ; for our implementation, we choose Si to be

spanned by D sequential canonical basis vectors of our problem space∗ (Si = span
(
eD·(i−1)+1, . . . ,eD·i

)
).

In a similar fashion to the Gauss-Seidel method, we choose our (k)-th search subspace S(k) to be

S(k) = Sk mod N . (3.17)

We define i ≡ k mod N , and the projection matrix onto subspace Si as PSi
. Once we have selected our k-th

subspace S(k), we find our (k)-th search vector and step size simultaneously by enforcing that they minimize

∗For the sake of simplicity, we have implicitly assumed that D divides N evenly.
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the norm of the projection of our residual:

PSi
r(k) = PSi

(
b − Ax(k)

)
=

= PSi

(
b − A

(
x(k−1) + α(k)d(k)

))
=

= PSi

(
r(k−1) − Aα(k)d(k)

)
= 0. (3.18)

Solving Equation 3.18 for α(k)d(k) yields

α(k)d(k) = (PSi
A)−1

PSi
r(k−1), (3.19)

where (PSi
A)−1 is the inverse of the sub-matrix (PSi

A) ∈ Si.

We can immediately see that, for D = 1, our search subspace reduces to the i-th canonical basis vector

ei, and we recover Equations 3.12 and 3.13 for the k-th search vector and step length, respectively:

α(k)d(k) = (PSi
A)−1

PSi
r(k−1) =

=
(

(ei)
T Aei

)−1(
(ei)

T
r(k−1)

)
ei. (3.20)

In other words, our SSC method is merely an extension of the Gauss-Seidel method that simultaneously

corrects D elements with each iteration. For higher dimensions, our (k)-th residual correction is obtained by

inverting the sub-matrix PSi
A and applying it to the the components of the residual vector that lie in our

(k)-th subspace.

The SSC method has the useful property that multiple equations are solved simultaneously. This feature

can be exploited to easily apply additional constraints between elements of our system of equations that

would otherwise require a complete restructuring of our matrix equation. One such example where it is

useful to apply additional constraints to multiple elements simultaneously is the electrostatic case of an

isolated charged surface, where charge must be macroscopically conserved across a contiguous boundary (see

(36)).

Section 3.7: Robin Hood method

With the preceding derivations in mind, we define the Robin Hood method as a non-stationary extension

to the SSC method, where our (k)-th search subspace is determined adaptively using information from the

(k − 1)-th residual. For the D-Element Robin Hood method, we define N =
(N

D

)
D-dimensional subspaces,

where each subspace is defined as the span of D unique canonical basis vectors ei, i ∈ {1 . . .N}. The (k)-th
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subspace is then chosen from these N subspaces to maximize the norm† of the subspace projection of the

(k − 1)-th residual:

PS(k)r
(k−1) = max

j

∣∣∣PSj
r(k−1)

∣∣∣ . (3.21)

In other words, for the (k)-th iteration we choose the D canonical basis vectors that correspond to the D

largest terms of the (k −1)-th residual vector, and we project our residual vector onto the subspace spanned

by these D vectors. We then minimize this projection by choosing a search vector and step size as prescribed

in Equation 3.19.

By exploiting our knowledge about the residual vector from the prior iteration to judiciously choose our

next subspace, the Robin Hood method provides for an acceleration in convergence over the SSC method.

The Robin Hood method can be construed as an effective conversion of the SSC method to a non-stationary

method: while the principle equations affected in both the SSC and Robin Hood methods are identical (the

minimization of the (k)-th residual norm over a subspace comprised of basis vectors of A), the Robin Hood

method incorporates prior information to adaptively select the (k)-th subspace.

For completeness, we shall restate the definition of the Robin Hood method compactly: given a linear

algebraic equation

Ax = b (3.22)

where A, b are known and x is unknown, the Robin Hood method is a nonstationary iterative method of

the form

x(k) = x(k−1) + α(k)d(k) (3.23)

where, at each iteration step, a D-dimensional subspace S(k) is constructed from D unique canonical basis

vectors of A that maximize the D-dimensional projection of the (k − 1)-th residual onto this subspace:

PS(k)r
(k−1) = max

j

∣∣∣PSj
r(k−1)

∣∣∣ , (3.24)

and a search vector d(k) and step length α(k) are defined with respect to this subspace as

α(k)d(k) =
(
PS(k)A

)−1
PS(k)r(k−1) (3.25)

to minimize this projection.

We have empirically determined that the fastest rate of convergence is obtained in the case where D = 1.

†It is important to note that the infinity norm is not used in Equation 3.21.
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It is still useful to consider the higher-dimensional variants, however, for the aforementioned ability to apply

constraints to simultaneous elements, and to justify the method’s name for the D = 2 case! Pseudocode for

both the 1-dimensional and D-dimensional Robin Hood technique presented in Appendix C.

Section 3.8: Comparison of Robin Hood to Krylov Methods

It is useful to compare the Robin Hood method to Krylov Subspace nonstationary methods, which are

more commonly used to solve equations in the form of Equation 3.1 (39). Krylov methods, for example

the conjugate gradient method (and its adaptation to non-symmetric matrices, the stabilized biconjugate

gradient method or BiCGStab), also take the form of Equation 3.9. The defining characteristic of these

methods is the construction of search vectors that span the subspace formed by sequential matrix powers

times the original residual,

Kk(A,r(0)) = span(r(0),Ar(0),A2r(0), ...,Ak−1r(0)), (3.26)

that have the property of being orthogonal in the solution space, or conjugate:

(
d(i)

)T
Ad(j) = 0 ∀i 6= j. (3.27)

The conjugate nature of these search vectors yields the advantage of guaranteeing convergence in N iterations

(and, in practice, usually converging in much fewer than N iterations).

While we defer the discussion of the implementation of the methods described here to Chapter 4, it

is worth noting that our BEM matrix constructed in Chapter 2 is pathologically dense, asymmetric, and

evaluated using only the properties of N boundary elements. As such, it is advantageous to avoid the memory

constraints inherent to an explicit construction of our entire matrix, in favor of maintaining an O [N ] memory

footprint and recomputing each element as it is required. While this approach makes feasible the scaling of our

problem space to at least O
[
106
]

dimensions (see Chapter 5), we incur the cost of computationally expensive

(i.e. time-consuming) access to our matrix elements‡. As a result, the properties of our A matrix disfavor the

use of Krylov Subspace methods due to their requirement of aggressive access to matrix elements inherent to

repeated matrix-vector multiplication (each matrix-vector multiplication naively requires N2 matrix element

calls). In contrast, the choice of constructing search subspaces from the canonical basis vectors of our A

matrix in the Robin Hood method matches the memory access properties of our BEM implementation quite

‡This computational cost is mitigated to a large degree by the use of purely analytic expressions in our matrix element
evaluations (see Chapters A, B), but is still far more expensive than the cost of accessing a precomputed value.
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well: for each Robin Hood iteration, only N matrix element calls are performed.

Section 3.9: Comparison of Matrix Solving Methods applied to the Spherical Capacitor

(a) (b)

Figure 3.1: (a) A diagram of a spherical capacitor, and (b) its boundaries discretized into 4112 triangles,
colored for clarity.

To compare the convergence rates of the methods described in this chapter, we compute the charge

density profile for a spherical capacitor with two linear dielectric media using different levels of boundary

discretization (See Figure 3.1). The three spherical boundary shells are discretized into triangular regions

using Gmsh (40). As a comparison, a generic Gaussian elimination solver is also used§ (39). A description

of the linear algebra solvers is given in Section 4.1.3. All iterative solvers were set to compute to a residual

norm of 10−6. At this level of precision, the predominant error of these simulations is due to discretization

artifacts, rather than from the implementation of different methods (see Fig. 3.2 for a comparison of the

resultant fields to their analytic counterparts). All methods were performed without parallel enhancement

(i.e. using only a single thread)¶

Figure 3.3 shows a comparison of the different methods for various dimensions of matrix A, in the case

where the elements of A were recomputed each time they were accessed. As expected, the single-element

and 2-element Robin Hood methods show a marked improvement in performance over their stationary

counterparts, the Gauss-Seidel and 2-dimensional SSC methods, respectively. It is also apparent from this

figure that the BiCGStab methods show a larger dependence on the dimensionality of A than the Robin

§The Gaussian elimination solver must precompute the matrix elements before solving. Since it is not an iterative solver,
there is no associated residual norm.

¶Computations were performed on a Mac Pro ”Eight Core” 3.2 (Early 2008) with two 3.2 GHz Quad Core Intel Xeon
processors.
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Hood method.

Figure 3.4 shows a comparison of the different methods for various dimensions of matrix A, in the case

where the elements of A were precomputed prior to the solve. By precomputing the matrix elements, we

remove the time-cost of accessing individual elements, allowing for a correlation of the intrinsic properties of

the matrix and the efficacy of the solver. To this end, there is a marked improvement in computation time

between the non-stationary and stationary methods, demonstrating the benefit of an adaptive selection of

subspace refinement in Robin Hood over the Gauss-Seidel and SSC methods.

Finally, Figure 3.5 compares Robin Hood convergence times for different subspace dimensions, from D = 1

to 10. A single-element Robin Hood method is also displayed; this algorithm was tailored specifically to the

D = 1 case. It is apparent from this figure that the advantages of simultaneously correcting multiple elements

of the solution in a single iteration quickly become offset by the computational cost of inverting increasingly

larger sub matrices of A.

Section 3.10: Conclusion

We have derived the Robin Hood method, a technique for solving large linear algebraic equations in the

form of Equation 3.1. This method was constructed by first introducing the Gauss-Seidel method, a classical

stationary iterative solver. The Gauss-Seidel method was then augmented to operate over multidimensional

subspaces of our problem space, thus introducing a technique known as the Successive Subspace Correction

(SSC) method. Finally, the Robin Hood method was derived as a conversion of the SSC method into a

nonstationary method, where a subspace that maximized the projection of the current residual was selected

at each iteration. In the context of comparing the Robin Hood method to more commonly used techniques, we

briefly introduced the conceptual framework of Krylov Subspace methods, highlighting their use of conjugate

search vectors over the canonical basis vectors used in the Robin Hood method. By comparing the rates

of convergence of these methods when applied to an archetypical implementation of our linear algebraic

system (as described in Chapter 2), we have demonstrated that, when we incorporate the computational

cost of recomputing matrix elements as they are needed, the Robin Hood method has the fastest rate of

convergence.
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Figure 3.2: Comparison of (a) analytic (blue) to computed (green) electric potential and electric field mag-
nitude and (b) their residuals (boundaries have been discretized into 4112 triangles). While the associated
charge density profile was computed using the Robin Hood method, the solutions from all solvers display
similar results; the error in the computed values is dominated by discretization artifacts.
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Figure 3.3: Computation time of the spherical capacitor vs dimension for several computation methods, where the elements of A are recomputed each
time they were accessed. The single- and 2-element Robin Hood methods overlap with the fastest convergence times.
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CHAPTER 4: Simulation Software

Section 4.1: KEMField: a Boundary Element Method implementation in C++

KEMField is an object-oriented toolkit written in C++ that constructs and solves BEM systems by

applying the techniques outlined in Chapters 2 and 3. To accomplish this, KEMField is logically separated

into the following tasks:

• construction and aggregate manipulation of Surfaces,

• execution of Boundary Integrals over surface elements,

• Linear Algebra methods for solving equations in the form of Equation 3.1,

• Serialization for generalized data manipulation and persistency,

• Field Solvers that use the results of the BEM computation to calculate fields in space,

• External Fields that do not rely on the BEM for generation,

• optional Plugins that use external libraries augment KEMField’s set of features, and

• Validation to validate and and demonstrate the utility of the software.

The primary implementation of KEMField is for the solution of electrostatic systems; however, the software

has been designed to be extensible enough to incorporate other linear BEM systems (like magnetostatic,

frequency-dependent electromagnetic and steady-state heat systems).

4.1.1: Surfaces

KEMField surfaces (KSurface elements) are composed using a policy-based design (41). Each surface

is the unique composition of a basis, boundary and shape policy. Within this context, a basis policy defines

the type of problem to be solved (e.g. electrostatic, magnetostatic, etc.), as well as the dimensionality and

type associated with a 2-dimensional boundary surface (e.g. a 1 dimensional real field corresponding to

an electrostatic charge density, 2 dimensional real fields corresponding to orthogonal magnetostatic surface

currents, etc.). A boundary policy defines the type of boundary condition a surface element describes (e.g.

Dirichlet, Neumann, etc.), and the values associated with this boundary condition. Finally, a shape policy

describes the geometric representation of the surface (e.g. rectangle, triangle, etc), and its defining values.
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Figure 4.1: Diagram of KSurface basis policies.

The use of a policy-based design to describe surface elements allows for extensibility to other BEM-related

systems and boundary types, while keeping the memory footprint of each surface element at a minimum (a

feature that becomes necessary for large systems containing many surface elements).

Surfaces are stored in a surface container (KSurfaceContainer), a heterogeneous container optimized for

element access according to surface policy type. Surface containers are ordered and provide access to their el-

ements both by index and by iterator. In addition, by explicitly specifying surface policies, a surface container

provides fast access to ordered subsets of its contents. Once constructed, KSurfaceContainer is the sole

means of access to surface elements within KEMField, using surfaces’ base class handle KSurfacePrimitive,

by use of the typelist visitor pattern, or directly as a Standard Template Library (STL)-style container (41).

4.1.2: Boundary Integrals

Boundary Integral classes contain the methods that affect integrations over single surface elements. The

requirements imposed on these classes are general by design, allowing a user to implement his or her own

integration technique to compute a boundary integral. Boundary integral classes are required to define the

method BoundaryIntegral that accepts a source surface (the surface on which the source is located), a

source term index (for multidimensional sources, the index of the source dimension), and a target surface

(whose centroid is the field evaluation point), and returns the value due to the indexed term of the source
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Figure 4.2: Diagram of KSurface boundary policies.
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Figure 4.3: Diagram of KSurface shape policies.

Figure 4.4: Diagram of KSurface.
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surface at the target surface:

ValueType BoundaryIntegrator::BoundaryIntegral(KSurfacePrimitive* source,

unsigned int index,

KSurfacePrimitive* target);

Boundary integral classes must also define methods for accessing a surface’s boundary and basis values

corresponding to a source term index:

ValueType BoundaryIntegrator::BoundaryValue(KSurfacePrimitive* source,

unsigned int index);

and

ValueType BoundaryIntegrator::BasisValue(KSurfacePrimitive* source,

unsigned int index);

These methods are converted from surface-specific queries into discrete, indexed values by the classes

KBoundaryIntegralMatrix, KBoundaryIntegralVector, and KBoundaryIntegralSolutionVector, which

derive from the virtual classes KSquareMatrix and KVector, described in the following section.

4.1.3: Linear Algebra

KEMField’s linear algebra library is used to solve the equation Ax = b for vector x, where matrix A

and vector b are known quantities.

Matrix-free implementation

The primary types used in KEMField’s linear algebra library are KSquareMatrix and KVector, which

are abstract representations of a matrix and vector, respectively. Rather than requiring that the elements

of a matrix and vector be stored explicitly, the data contained within these classes are manipulated via the

virtual methods

ValueType KSquareMatrix::operator() (unsigned int i,

unsigned int j) const;

ValueType& KVector::operator() (unsigned int i);

ValueType KSquareMatrix::Multiply(const KVector&, KVector&) const;

ValueType KSquareMatrix::MultiplyTranspose(const KVector&, KVector&) const;

By keeping these classes abstract, it is possible to represent large matrices while maintaining a minimal

memory footprint (a so-called matrix-free matrix design).
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Solvers

Available linear algebraic solvers all have the method signature

void Solver::Solve(const KSquareMatrix& A, KVector& x, const KVector& b);

Additionally, iterative solvers have been designed to accept visitor classes to perform incremental state save

and retrieval, and to visualize the progress of an iterative solve.

KEMField has implementations for the following solvers:

• Gaussian Elimination,

• Gauss-Seidel,

• Stabilized Biconjugate Gradient method,

• Stabilized Biconjugate Gradient method with Jacobi preconditioner,

• Successive Subspace Correction method,

• Single-Element Robin Hood, and

• Multi-Element Robin Hood.

With the inclusion of the plugin for the third-party linear algebra package PETSc (see Sec. 4.1.7), the user

can also use all of the linear algebraic solvers associated with the PETSc project (42).

4.1.4: Serialization

In order to flexibly send and receive data to and from files (a process known as serialization), KEMField

employs a templated streamer pattern. The pattern is designed to decouple the objects containing raw data

from the objects that act on raw data streams. To accomplish this, each object in KEMField that holds

data contains methods for streaming its contents in the form of fundamental types (integers, floating point

fields, etc.). In turn, the objects that accept data streams (hereafter referred to as streamers) need only

know how to perform actions on fundamental types. For cases where a streamer’s actions are dependent on a

streamed object’s type, a streamer has access to the object type both before and after an object is streamed.

The templated streamer pattern provides a uniform interface to all data contained by KEMField ob-

jects. This access facilitates the straightforward implementation of streamers that store data to file, generate

unique hashes for an object, and even manipulate data in situ, such as transforming a surface’s coordinates,

without requiring a dependency between streamers and streamed objects.

45



4.1.5: Field Solvers

Once the BEM is performed on a discretized surface, the resulting solution is used to compute field

values. Currently, fields can be computed by summing the contributions from each surface element using

KIntegratingFieldSolver, and fields from axially symmetric systems can be computed via zonal harmonic

expansion using KZonalHarmonicFieldSolver (43). Work is currently underway on a fast Fourier transform

on multipoles (FFTM) expansion technique (44).

4.1.6: External Fields

In addition to field solvers that utilize the results of a BEM computation, KEMField uses the techniques

described in Section 4.1.5 to generate fields from user-defined sources. An example of this is the use of

superposition to sum the magnetostatic contribution of line currents, and the zonal harmonic expansion to

compute magnetostatic fields from axially symmetric current sources (45). These external fields could also

be used as additional terms in applying the BEM (e.g. the charge density profile of a grounded sphere in

the presence of a constant electric field).

4.1.7: Plugins

In order to ensure compatibility with as many computing systems as possible, the base features of KEM-

Field depend only on the C++ Standard Library (46). There are obvious benefits to using preexisting

software to augment the feature set of KEMField, however. Additional dependencies are therefore parti-

tioned into optional plugins that can be included at compile time.

Parallel Implementations

To facilitate the implementation of linear algebra solvers in a high performance computing environment,

KEMField uses the Message Passing Interface (MPI) to transfer information across multiple processors

(47). Specifically, the Robin Hood algorithm has been optimized with MPI to distribute computation

tasks within a single iteration. In conjunction with MPI, the Portable, Extensible Toolkit for Scientific

Computation (PETSc) has been incorporated as an optional linear algebraic solver, providing the user with

a large selection of matrix solving algorithms (42).

The compact representation of BEM matrix data and the use of analytic methods to compute matrix

elements make the solution of the BEM matrix equation well-suited for computation on a graphical processing

unit (GPU). To this end, KEMField uses the OpenCL standard for GPU implementations of both the

Robin Hood and Gauss-Seidel solvers, and as a parallel integrating field solver (48). A hybrid MPI and
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OpenCL implementation of Robin Hood has also been developed, enabling the application of the BEM to

geometries containing an excess of 5 million elements on GPU-enabled clusters (see Section 5.3).

Visualization

KEMField uses the Visualization Toolkit (VTK) to construct 3-dimensional visual models and generate

field maps (49). Using VTK, models can be rendered in real-time or saved to file and analyzed off-line using

ParaView (50). Additionally, the ROOT framework can be used in substitution of VTK for generating

two-dimensional field maps (51).

4.1.8: Validation

To validate our software, we have compared the results of our computation against both analytically

soluble systems and against the published results of other BEM techniques. Since our application of the

BEM effectively solves for a piece-wise constant function for the charge density on our boundaries, it is

straightforward to compute the capacitance C of a geometry as the sum of the computed charge of our

system held at unit voltage. In other words, for a system described by Equation 2.56,

C =
∑

i

|∂Σi| · ϕi, (4.1)

where |∂Σi| and ϕi are the area measure and computed charge density of the i-th boundary element, respec-

tively.

Once a charge density profile is generated for a system, the electrostatic potential Φn(x) and electric

field En(x) is computed using Equations 2.60 and 2.61, respectively, where the subscript n indicates the

number of discrete boundary elements in the system∗. To obtain a numeric estimate of the accuracy of these

formulae, we first define a 3-dimensional region D over which the analytic solutions Φ and E are known. We

then construct an error field Errn(x) : R3 → R
4, defined as

(Errn(x))i =





Φ(x) − Φn(x) i = 0

(E(x) − En(x)) · x̂i i = 1,2,3
. (4.2)

We then use the 2-norm and ∞-norm of the components of our error field over D, using the definitions

||(Errn)i ||2 ≡
(

1

|D| ·
∫

D

[(
Errn(x′)

)
i

]2
dV

) 1
2

, (4.3)

∗Both MPI and OpenCL were used to compute the charge density profiles and fields in the following tests.
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and

||(Errn)i ||∞ ≡ max
[∣∣(Errn(x′)

)
i

∣∣]
x′∈D

, (4.4)

to compute an absolute global and local error estimate of our potential and electric field, respectively. To

acquire a relative global and local error estimate, we normalize our absolute error estimate using the norm

of our analytic fields over D:

||(Errn)i ||rel
k =





||(Errn)i||k
||Φ||k

i = 0

||(Errn)i||k
||E·x̂i||k

i = 1,2,3
. (4.5)

Our technique for evaluating the integrals in Equation 4.3 is given in Appendix D.

Unit Cube

While there is no analytic expression for the capacitance of the unit cube, the task of numerically estimat-

ing the capacitance has been performed by computational physicists using several techniques, including the

BEM, Finite Difference Method, and Monte Carlo random walks. A current best value for the capacitance

in units of 4πǫ0 is given by Hwang et al. to be C = 0.6606782 ± 1 × 10−7 (52). Using KEMField, we can

compute this capacitance using Equation 4.1 with successively refined boundaries to gain insight into how

the accuracy of our charge density profile scales with the length scale of our discretized boundary elements.

We can also acquire a sense for how a parametrization of the length scales of our boundary elements can

improve this scaling factor.

Figure 4.5 (a) depicts the accuracy of the KEMField’s capacitance measure relative to that of Hwang

et al. as a function of the length scale of the discretized boundary elements in the cases where all boundary

elements are subdivided into squares with equal side length. Figure 4.5 (b) depicts error values for simulations

with the the same number of boundary elements as in (a), but where the length scale of the boundary elements

are scaled according to the distance of a surface element to an edge of the cube. By noting the increase in

the convergence slope between (a) and (b), we see that, while our zeroth-order collocation scheme provides

the scaling relationship between error and element dimension, we can improve this scaling factor by a factor

of ∼ 1.9 by judiciously dicretizing a boundary to conform to a charge density profile (in this case, applying

smaller area elements to regions closer to the edges of the cube).

Inside a unit cube centered at the origin and held at unit potential, the analytic values for the potential

and electric field are determined by application of Gauss’ law to be Φ(x) = 1 and E(x)·x̂i = 0 ∀x : |x ·x̂j | < 0.5,

∀i,j ∈ {1,2,3}. Figure 4.6 depicts the global and local error estimates for Φ and E, computed using Equations

4.3 and 4.4, respectively, for the charge density profiles in Figure 4.5. As predicted in Section 2.3, Figure 4.6
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Figure 4.5: Computed error of the capacitance of the unit cube relative to Hwang et al. with discretized
boundary elements that are (a) equal in measure, and (b) scaled according to a power of two near the edges
of the cube. Error estimates on the electric field in (b) are omitted for length scales < 0.01 due to memory
overflow problems related to convergence with the adaptive integrator, but trends in the global and local
error of the electric field are still identifiable.
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Figure 4.6: Absolute Error of the electrostatic potential and electric field for the unit cube with discretized
boundary elements that are (a) equal in measure, and (b) scaled according to a power of two near the edges
of the cube.

49



(a) shows that, with our collocation technique, the error in the global norm of the electrostatic potential for

the unit cube with equal measure boundary elements is proportional to the square of the boundary length

scale. In Figure 4.6 (b), we see that applying a discretization tailored to the charge density profile yields an

improvement in global accuracy of the electrostatic potential of ∼ 1.79 (i.e. for the same number of elements,

the tailored discretization is 101.79 more accurate than the uniform discretization). In both simulations, the

local norm of the potential demonstrates a smoothing of the potential at finer length scales.

It is interesting to note that, while the global norm of the error in the electric field seems to be proportional

to the boundary length scale to the first power (as expected, since the electric field is the negative gradient

of the potential), the local norm of the error in the electric field is independent of length scale. This may

be attributed to the effects of approximating a discontinuity at the boundary with a continuous function,

resulting in an overshoot irrespective of the granularity at the boundary (this overshoot can be seen in Fig.

3.2 for the spherical capacitor).

Spherical Capacitor

The boundary configuration for the spherical capacitor has been described in Section 3.9. This model

incorporates both Dirichlet and Neumann boundary conditions, and is comprised of triangle boundary ele-

ments. Given the boundary conditions Φ0, ǫ1 and ǫ2 and the radii r1 < r2 < r3, we can use Gauss’ law to

compute the free charge on the inner boundary QF , as well as the total (free and bound) charge deposited

on the inner electrode Q1, the dielectric boundary interface Q2 and the outer electrode Q3 to be

QF = 4πΦ0

(
1

ǫ2r2
− 1

ǫ2r3
+

1

ǫ1r1
− 1

ǫ1r2

)−1

, (4.6)

Q1 = QF ·
(

1 − ǫ1 − ǫ0

ǫ1

)
, (4.7)

Q2 = QF ·
(

ǫ1 − ǫ0

ǫ1
− ǫ2 − ǫ0

ǫ2

)
, (4.8)

Q3 = QF ·
(

ǫ2 − ǫ0

ǫ2
− 1

)
. (4.9)

The total charge on each boundary surface can be used to calculate the analytic potential and electric field

to be

Φ(x) =





Φ0 |x| < r1

1
4πǫ0

·
(

Q2
r2

− (Q1+Q2)
r3

+ Q1
|x|

)
r1 < |x| < r2

Q1+Q2
4πǫ0

·
(

1
|x| − 1

r3

)
r2 < |x| < r3

0 |x| > r3

(4.10)
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and

E(x) =





0 |x| < r1 or |x| > r3

Q1
4πǫ0|x|2

x̂ r1 < |x| < r2

Q1+Q2
4πǫ0|x|2

x̂ r2 < |x| < r3

. (4.11)
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Figure 4.7: Error analysis of (a) the computed charge and (b) electrostatic potential and electric field for
the spherical capacitor. Error estimates on the electric field in (b) are omitted for length scales < 0.02 due
to memory overflow problems related to convergence with the adaptive integrator, but trends in the global
and local error of the electric field are still identifiable.

Figure 4.7 (a) depicts the relative error of the computed charge at the three boundary interfaces with

respect to the length scale of the discretization, as compared to the analytic values defined in Equation 4.9.

The boundary elements for these models were constructed via Delaunay triangulation using Gmsh (40). The

error in the computed charge on the Dirichlet boundaries (the black and green squares in Fig. 4.7 (a)) appear

to scale nearly with the square of the length scale. The error in the charge at the Neumann boundary (the

red squares in the same figure) is more difficult to predict; from experience with the convergence of systems

with Neumann boundaries, error estimates for Neumann boundaries tend to have a less stable convergence.

Figure 4.7 (b) depicts the relative error of the computed electrostatic potential and electric field com-

ponents with respect to the length scale of the discretization, as compared to the analytic values defined in

Equations 4.10 and 4.11. We see that the global norm of the error in potential scales nearly exactly with

the square of the length scale, in accordance to Equation 2.46, while the global norms of the errors in the

components of the electrostatic field scale with the length scale to the first power. By noting that the local

error in the electric field remains constant for different length scales, we see again the invariance of the local

norm of the error in electric field, owing to discontinuities at the boundary.
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Section 4.2: KGeoBag: C++ geometry modeling software

4.2.1: Motivation

Now that we have a BEM solver in place, we need to provide it with discretized boundary systems. The

task of constructing a navigable and discretizable geometry is deceptively tricky: one must strike a balance

between a faithful representation of the system to be modeled and a generated system that is computationally

approachable. Additionally, the modeling software must be sufficiently flexible to work in concert with our

BEM solver, allowing for seamless integration into larger, more complex simulation software. There are many

preexisting software packages designed to accomplish the goals of navigation and discretization (various CAD

modeling applications, CGAL (53), and Gmsh (40), for example). After considering the implementation of an

external geometry package, we were unable to find available software that provided us with the right amount

of control over the generated mesh that would be easily implementable into a larger simulation framework.

To solve this problem, we have constructed geometry modeling software in C++ called KGeoBag.

4.2.2: Overview

KGeoBag is a software package for designing generic 3-dimensional models for physics simulations, and

has been designed around the fundamental concept of providing users with the ability to naturally extend

its functionality to suit their needs by the use of extensible C++ templates. The underlying idea behind

KGeoBag is straightforward: in order to construct a model, we first decompose it into parametrically

defined shapes that are geometrically easy to describe. We then provide navigation and discretization

methods for each of these shapes. Finally, we compose our systems from a discrete set of these shapes,

and assign user-defined information to each shape (e.g. BEM boundary type and value, visualization color,

etc.). The description of the shapes, parameters and other information that comprise our system can be

constructed directly in C++, or can be provided as inputs in an XML document.

The active elements of a KGeoBag geometry are KGSurfaces and KGSpaces. Instances of these two

element types are associated with one of a multitude of KGAreas and KGVolumes, respectively. Conceptu-

ally, a KGArea and KGVolume provide a description of the physical aspects of a shape, while a KGSurface

and KGSpace represent the actual implementation of these shapes in a simulation. Instances of KGSpace

and KGSurface can be placed within a parent KGSpace to form a recursive geometry tree, facilitating the

construction of complex geometry assemblies while maintaining a minimal memory footprint.

An important feature of KGeoBag that applies to its implementation as an input generator for KEM-

Field is the method of generating surface meshes. The use of a zeroth-order collocation scheme in our
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derivation of the BEM in Chapter 2 implies a constant solution value across each of our discretized ele-

ments. It is therefore critical that the size of our discretized elements conform to our solution profile. In

the case of electrostatics, we know a priori that charge densities vary most greatly near sharp gradients in

a surface’s curvature (e.g. surface edges, sharp corners, etc.). The discretization of surfaces in KGeoBag

is therefore parametrized to facilitate a reduction in element size near surface edges. This provides us with

tunable parameters with which we can tailor the generated mesh specifically for use in the electrostatic BEM

computation.

Section 4.3: Conclusion

KEMField is a software package written in C++ designed to implement the BEM as described in

Chapters 2 and 3, and subsequently compute the associated scalar and vector fields in all space. While

its primary use-case is the application to electrostatic simulations, KEMField exploits the extensibility of

C++ templates to provide a natural extension to a broad range of BEM physics simulations. Additionally,

KEMField has been designed to non-intrusively incorporate third-party software to enable users to easily

extend its available features. This aspect of its design is successfully demonstrated by the incorporation

of hybrid CPU and GPU-enabled parallel acceleration techniques to facilitate the application of the BEM

to large-scale simulations, and by the inclusion of the geometry modeling software KGeoBag to model

sophisticated problems in electrostatics. Both KEMField and KGeoBag are currently in use by the

KATRIN collaboration to model the complex electrostatic and magnetostatic fields intrinsic to its mass

spectrometers and detector system, described in greater detail in Chapter 5.
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CHAPTER 5: Development and Application of Simulation Software for the KATRIN

Experiment

Section 5.1: Introduction

Figure 5.1: A side-by-side comparison of a photograph looking downstream inside KATRIN’s main spec-
trometer (left) and its representation in KGeoBag (right).

Electrostatics and magnetostatics play critical roles in the tasks of particle transport, mass spectroscopy

and background suppression in the KATRIN experiment. As a consequence, we have devoted a large amount

of time and effort towards acquiring a deep understanding of the electromagnetic fields throughout the entire

KATRIN assembly, from both a computational and experimental viewpoint. This chapter describes some of

the work that has been performed to simulate the electromagnetic fields present in KATRIN’s focal plane

detector (FPD) system and main spectrometer, and to understand the effects these fields may have on the

efficacy of the experiment’s scientific goals.

Section 5.2: KATRIN detector region

5.2.1: Overview of Electromagnetic Components

From an magnetostatic perspective, KATRIN’s FPD section consists of two superconducting magnets

designed to focus the incident electron beam, referred to as the pinch and detector magnets (see Fig. 5.2).
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Figure 5.2: A CAD representation of the KATRIN FPD system, with the flux tube in green (4). In this
orientation, the direction of the beam line is up and to the right. For a length scale, the pinch magnet
(upstream) casing is 711 mm, and the detector magnet (downstream) casing is 910 mm.

The pinch magnet is located immediately downstream from the main spectrometer vessel, and acts as the

refocusing magnet for this MAC-E filter (see Section 1.2.3) by producing a magnetic field of 6 T . The

detector magnet surrounds KATRIN’s silicon pin diode detector and, with the pinch magnet, focuses the

electron beam onto the detector face by producing a magnetic field of 3.3 T (with the ability to produce

magnetic fields up to 6 T ). By doing so, the detector magnet acts to minimize possible backgrounds due to

the backscattering of incident electrons with trajectories oblique to the detector face (4).

The electrostatic fields that influence the electron beam’s trajectory in the FPD are formed by a post-

acceleration system designed to translate the energy of the electrons emerging from the spectrometer into

a favorable energy region for detection (see Fig. 5.2). The post-acceleration system consists of a horn-

shaped electrode (this region is referred to as the flux-tube region; see Fig. 5.2) held at a post-acceleration

potential (that can be set up to 30 kV ), and three quartz cylinders coaxial to the flux-tube region and lined

on both the inner and outer faces with stainless-steel electrodes. The post-acceleration horn is connected

to the grounded detector base by a ceramic insulator (with a relative dielectric constant ǫr of ∼ 7). The

inner electrodes affixed to the quartz tubes (which have a relative dielectric constant ǫr of ∼ 3.8) are held

at post-acceleration potential, while the outer electrodes are fixed to ground; they are designed to prevent

the formation of Penning traps in the flux-tube region (see Section 5.2.3). Additionally, a segmented silicon

detector located at the center of the detector magnet bore reads the count rate and energy of our signal

electrons and is held at 125 V above the post-acceleration voltage. Finally, there is a pneumatic calibration

system capable of inserting a disk electrode held at a user-definable electrostatic potential (from 0 to −20

kV ) into the beam line (4).
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5.2.2: Electrostatic & Magnetostatic Simulation

Using KGeoBag, we have converted a CAD model of KATRIN’s FPD system into a BEM model consist-

ing of 40 parametrized surfaces and 5 parameterized shape types (KGCylinder, KGPortHousing, KGRotated-

Object, KGExtrudedObject and KGGateValve). The resulting mesh has ∼ 450,000 elements consisting of

rectangles and triangles, whose areas are tailored to better conform to sharp curvatures in the geometry (see

Fig. 5.3).

System Technique Hardware
Concurrency # Wall Time

(nodes or streams) (h)

Killdevil (UNC) MPI Intel 2.93 GHz 100 19.76
Hopper (NERSC) MPI Cray XE6 96 9.87

Jolokia (local) OpenCL
ATI Radeon

1600 8.65
HD 5870

Scorpion (local) OpenCL
AMD FirePro

2048 11
W9000

Table 5.1: Computation times for the charge density calculation of KATRIN’s detector section on the
Killdevil cluster at UNC, the Hopper supercomputer at the National Energy Research Scientific Computing
Center (NERSC), and on two local GPU-enabled workstations (Jolokia and Scorpion). On both the Killdevil
and Hopper systems, MPI-parallel algorithms were used. On Jolokia and Scorpion, OpenCL-parallel algo-
rithms were used.

To solve the linear algebraic system affiliated with a BEM implementation of the detector region, we

developed the Robin Hood linear algebraic solver that is readily extendable to a cluster computing environ-

ment, and whose whose memory requirement scales linearly with the number of elements in the simulation

(see Sec. 3.7). We then adapted this solver to utilize either cluster-based or GPU-based architectures (see

Sec. 4.1.7). While both methods proved to be effective for computing the electrostatic charge density profile

of the detector section (see Table 5.1 for a time comparison on different architectures), we resultantly used

the GPU-based technique for our subsequent analysis, owing to the simplicity of performing a computation

on a local computer with a single GPU compared to the relatively more complicated procedure inherent

to the use of a dedicated computing cluster. Figure 5.4 shows the KEMField-computed charge density

profile and the computed electrostatic potential and magnetostatic field lines for the FPD system with the

boundary conditions depicted in Figure 5.3 (a).

5.2.3: Penning Trap Search

Motivation

One use-case for an electromagnetic field simulation of the FPD system is a search for regions in our

apparatus that may be susceptible to Penning discharge. Penning discharge occurs when a charged particle
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Figure 5.3: (a) A KGeoBag representation of the KATRIN FPD system, and (b) an area measure of its
discretization, colored by area. The model consists of 444,821 elements.
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Figure 5.4: (a)The computed charge density (scaled to accentuate small deviations from zero) and (b)
electrostatic potential (color scale) and magnetic field lines (white) in the KATRIN FPD system.
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confined within a Penning trap (a potential well along a magnetic field line) ionizes residual gas molecules,

resulting in background noise and allowing for the formation of unstable plasmas. Penning traps are a

geometry-dependent phenomenon, related to the configurations of both the electromagnets and electrodes

producing the magnetostatic and electrostatic fields, respectively. Since these fields can quickly become

rather complex for even a simple electrode and magnet configuration and since it is difficult (and dangerous

to the electronic components of the detector) to experimentally locate Penning traps, the task of identifying

Penning traps is best suited to simulation. An additional requirement for the formation of stable Penning

traps is that they be axially contiguous, since a secondary term in a particles’ trajectory through strong

electrostatic and magnetostatic fields corresponds to an axial drift (54). It is therefore efficacious to use

a fully 3-dimensional model of a system instead of an axially symmetric approximation, as the latter may

falsely identify axially contiguous traps that result from a geometric approximation.

Technique

Figure 5.5 outlines the procedure for performing a Penning trap search on a toy model of the pre-

spectrometer (a). We begin by voxelizing our region into a uniform grid (b). We then reject the points in

our grid that are outside of our geometry (c), and keep the remaining points as sampling points. For each

sampling point H in our system, we traverse the magnetic field line in both the upstream and downstream

directions until the field line exits our system (d). We then sample the electrostatic potential along this

field line (e), producing a discrete vector Φ− of potential values along the field line that crosses through

sampling point H (the superscript on Φ− represents the fact that our subsequent analysis is performed on

the negative values of the potential).

Now that we have a vector of negated potential values Φ− corresponding to sampling point H and

ordered by the field sampling location on the one-dimensional magnetic field line, we can analyze this data

for possible Penning traps. We begin by identifying the local minima of Φ− (labeled C in Table 5.5 (f)).

For each local minimum, we locate the smallest neighboring local maximum D, and obtain a value for the

depth of the potential well (labeled A in Table 5.5 (g)). Using the value of Φ− at D, we identify the points

E and F on the opposing side of our identified potential well, and interpolate to obtain a second extremum

and width B for the well (see Table 5.5 (h)). We omit all identified potential wells that do not contain our

sampling point H , leaving us with at most one potential well corresponding to H . Finally, we compute the

depth G of the potential well at our sampling point H (see Table 5.5 (i)).
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Figure 5.5: Diagrammatic representation of a Penning trap search simulation.
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(a)

(b)

Figure 5.6: (a) Sampling points for a full (green) and focused (blue) Penning trap searches in the KATRIN
FPD system, and (b) the field lines corresponding to these sampling points.
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Figure 5.7: Result of a Penning trap search in the KATRIN FPD system. In this image, sampling points
are assigned values according to the depth of the Penning trap at the sampling point (labeled G in Table
5.5 (i)).

Result

By applying the aforementioned Penning trap search technique on the KATRIN FPD system, we per-

formed a search over the entire system with 5 × 5 × 5 cm3 voxels, and a focused search around the detector

with 2×2×2 cm3 voxels (see Fig. 5.6). As a result, we identified a Penning trap in the region outside of the

flux tube region, resulting from radial offsets of the quartz tubes in the post-acceleration system (see Fig.

5.7). This region is isolated from the flux-tube region, and will therefore not contribute as a background to

the FPD’s detection efficiency. However, it has been postulated that the location and depth of the identified

Penning trap may contribute to the experimentally determined limit placed on the post-acceleration voltage

of 12 kV , as values above this threshold result in discharges within the apparatus (4).

Section 5.3: KATRIN main spectrometer

5.3.1: Overview of Electromagnetic Components

KATRIN’s main spectrometer is a MAC-E-Filter that acts as a high-pass filter on the energy spectrum of

the incident electron beam. The largest electrode in the system is the spectrometer’s vessel, with a maximum

diameter of ∼ 10 m and a length of 23.3 m (see Fig. 5.8). The vessel is largely axially symmetric, with
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Figure 5.8: A diagram of KATRIN’s main spectrometer, with superconducting magnets (green) at its en-
trance and exit.

the largest exception being the three large (∼ 0.8 m radius) vacuum pump ports located on the lower half

of the downstream section. To produce a more axially symmetric field in the vicinity of these pump ports,

the regions of intersection between the vessel and pump ports are spanned by 5 mm diameter stainless steel

rods (2).

(a) (b)

Figure 5.9: (a) A schematic of the use of wire arrays to improve background rejection in the main spectrometer
(in the cylinder section of the main spectrometer: d1 = 0.3 mm, d2 = 0.2 mm, l1 = 150 mm, l2 = 220 mm,
s = 25 mm, δU1 = 100 V , δU2 = 200 V ). Image from (5). (b) A photograph of one of the 248 wire modules
that tile the inside of KATRIN’s main spectrometer.

The large dimensions of the main spectrometer provide for an unprecedented theoretical energy resolution

for a filter of its type (< 1 eV at 18.6 keV ). However, they also increase the spectrometer’s susceptibility to

background electrons from the large (∼ 650 m2) electrode surfaces. To mitigate this source of background,

the interior of the main spectrometer is lined with two concentric wire arrays, held at increasingly negative

voltage with respect to the vessel (see Fig. 5.9 (a)). In addition to providing the electrostatic profile for

the filtering mechanism of the spectrometer, these wire arrays create an electrostatic barrier for background

electrons emitted from the vessel surface, while minimizing the additional surface area from which background

electrons can be emitted.

To match the contours of the interior of the main spectrometer vessel, 148 wire modules have been

installed with six different geometric profiles (referred to as the Full Metal, Steep Cone, Small, Middle &
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Figure 5.10: A cross-section of a wire module ring in the cylindrical section of the main spectrometer. The
teeth of the wire module combs are capped by a long, narrow metal strip, labeled in this image as caps.

Figure 5.11: A diagram of the wire module placements (rings 2 − 16) in KATRIN’s main spectrometer.

Large Flat Cone and Cylinder wire modules). These wire modules consist of the two aforementioned wire

arrays affixed to two wire combs held at the outer wire potential, which are connected by C-shaped beams

(known as C-profiles) also held at outer wire potential. As an example, Figure 5.9 (b) is a picture of a

Small Flat Cone wire module prior to installation. These wire modules have been azimuthally tiled in a

ring-formation about the interior of the spectrometer vessel, and affixed to the vessel’s interior by a series of

support structures held at vessel potential (see Fig. 5.1). To reduce the influence of the wire combs on the

potential profile within the center of the spectrometer, the cylinder wire module rings have additional wire

comb caps held at inner wire potential along the interior of the wire combs (see Fig. 5.10). The electrical

connections for these wire modules are designed to be isolated between the East and West halves of the

spectrometer, enabling the option for introducing a global dipole field to further reduce background particles

within the spectrometer. In addition to the wire modules, the main spectrometer has conically shaped solid
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electrodes at its entrance and exit (referred to as the Ground and Anti-Penning electrodes), designed to

create a reference potential for the filter, and to prevent the formation of Penning traps in these regions of

strong magnetic field, respectively.

Figure 5.12: A diagram of KATRIN’s main spectrometer with the air coil system. The green air coils
represent the low field correction system (LFCS), and the blue, red and orange air coils denote the elements
that comprise the Earth magnetic field compensation system (EMCS). Image from (6).

The magnetostatic components of the main spectrometer consist of a superconducting magnet at either

end of the spectrometer (the green components in Fig. 5.8), which produce the maximal magnetic field (up

to 6 T ) for MAC-E-Filtering. Additionally, the low field correction system (LFCS, colored green in Fig.

5.12) consists of 14 air coils coaxial to the spectrometer’s primary axis, and affects the axially symmetric

magnetic field by providing finer control of the shape of the flux tube within the spectrometer. Finally, the

Earth magnetic field compensation system (EMCS, colored blue, red and orange in Fig. 5.12) counteracts

the magnetic field of the Earth (6).

5.3.2: Electrostatic & Magnetostatic Simulation

Using KGeoBag, we have constructed a BEM model of KATRIN’s main spectrometer from its rep-

resentation in CAD. The model contains 2166 parametrized surfaces and 9 parametrized surface types

(KGCylinder, KGRotatedObject, KGExtrudedObject, KGPortHousing, KGConicSectPortHousing, KGRod,

KGWireComb, KGWireArray and KGBeam). The generated mesh associated with this model is comprised of
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Figure 5.13: KATRIN’s main spectrometer, generated using KGeoBag. To reproduce the effects of the electrodes immediately upstream and
downstream from the spectrometer, additional cylinders held at ground have been added to the entrance and exit of the spectrometer. Surface
elements are colored by log10(area).
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∼ 5M elements consisting of primitive shapes (rectangles, triangles and line segments) whose areas are

tailored to better conform to sharp curvatures in the geometry (see Fig. 5.13).

It is important to accurately model the main spectrometer’s wire modules because of their primary role

in setting the electrostatic potential within the spectrometer, and due to the axially asymmetric artifacts

they may impart on the electrostatic field. To reproduce the complex structure of the wire combs in these

modules, we modified dxflib, open-source C++ software designed to interpret geometries represented in

AutoCad’s Drawing Exchange Format (DXF), to generate KGeoBag surfaces (55). Figure 5.16 depicts the

results of this technique on the six wire module types.

System Technique Hardware
Concurrency # Problem Wall Time

(nodes or streams) Dimension (h)

Scorpion (local) GPU
AMD FirePro

2048 3.5 M 213
W9000

Killdevil (UNC)
Cluster Intel 2.93 GHz &

8 × 448 5 M 104
& GPU Nvidia M2070

Table 5.2: Computation times for the charge density calculation of KATRIN’s main spectrometer on the
GPU-enabled nodes of the Killdevil cluster at UNC, and on a local GPU-enabled workstation. On the
Killdevil system, a hybrid MPI & GPU-parallel algorithm was used. On Scorpion, OpenCL-parallel algo-
rithms were used.

Compared to that of the detector section, the linear algebraic system that results from the application

of the BEM to the main spectrometer is an order of magnitude larger in dimension. To accommodate

a large, dense system of this type, we developed a hybrid GPU and cluster-parallel Robin Hood linear

algebraic solving algorithm (see Sec. 4.1.7). This new algorithm combines the hardware-acceleration and

massive parallelism inherent to GPU calculations with the scalability and distributed memory paradigm

of a dedicated cluster, facilitating the computation of the main spectrometer’s charge density profile on a

GPU-enabled computer cluster (like UNC’s Killdevil cluster) in about three days of wall time (as opposed

to the O[weeks] predicted wall time of a supercomputer). Table 5.2 describes hardware configurations and

wall times that contrast the GPU-parallel algorithm to the hybrid GPU & cluster-parallel algorithm on two

different architectures. A pictorial result of a computation of the main spectrometer’s charge density profile

is given in Figure 5.14.

5.3.3: Electrical Short Circuit Studies

One of the steps for preparing the main spectrometer for commissioning involved performing a bake-out of

the spectrometer, where the vessel is heated to remove impurities on its surface. An accidental consequence of

this bake-out was the formation of short circuits between wire module rings, and between wire arrays within
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Figure 5.14: (a) A potential configuration and (b) the corresponding charge density profile for KATRIN’s
main spectrometer (scaled to accentuate small deviations from zero).
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Short−circuitfromouter to innerwire layer

Figure 5.15: Diagram of the short circuits that resulted from bake-out. Image from (7).
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Figure 5.16: KGeoBag representations of the (a) full metal, (b) steep cone, (c) small flat cone, (d) middle
flat cone, (e) large flat cone and (f) cylinder wire modules.
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single rings∗ (see Fig. 5.15). In addition to reducing the efficiency of background reduction, the presence

of short circuits in the wire modules produced unintended changes to the electrostatic potential within

the spectrometer as compared to its intended configuration (i.e. without electrical short circuits, hereafter

referred to as the nominal condition). Using KGeoBag and KEMField, we were able to produce models

to quantify these effects (see Fig. 5.17), which could then be analyzed to determine how the KATRIN

collaboration should proceed with the commissioning process. The following discussion of the electrostatic

profile of main spectrometer in both the nominal and shorted conditions are direct results from the utilization

of the software described in Chapter 4.

Azimuthal and Radial Effects

As described in Section 5.3.1, the inner and outer wire arrays of each wire module are affixed to wire

combs and C-profiles. In the nominal condition, these support structures are held at the outer wire potential.

Because of this, their impact on the electrostatic potential within the spectrometer’s flux tube region is largely

shielded by the more negative inner wire electrode system, resulting in an azimuthally uniform potential (see

Fig. 5.18).

The radial profile of the electrostatic potential at the analyzing plane is determined for large radii by

an effective potential composed of a superposition of the potentials of the outer and inner wire arrays (this

is reflected in the overall scales of Fig. 5.18 (a) & (b)). For decreasing radii, the ground and anti-Penning

electrodes at the entrance and exit of the spectrometer produce an increasingly prominent effect, resulting

in a radial inhomogeneity at the analyzing plane of ∼ 20 V .

The introduction of electrical connections between the inner and outer wire layers resulted in a reduction

of the shielding of the support structures. As a result, discretely rotationally symmetric perturbations from

the C-profiles can be observed near the wire arrays, but decrease in amplitude for smaller radii (see Fig.

5.19). Additionally, because the electrical shorts cause the inner and outer wire arrays to act as a more

uniform electrode, there is an increase in the radial homogeneity at the analyzing plane to ∼ 2 V (8).

Axial Effects

Because of the MAC-E-Filter requirement that the electrostatic minimum in the axial direction must

be located at the minimum of the magnetic field (known as the transmission condition), understanding

the profile of the electrostatic potential along a magnetic field line near the analyzing plane is of primary

importance to the spectrometer’s efficacy. Prior to bake-out, simulation tools were developed to iteratively

∗The short circuits were caused by the deformation of CuBe rods, used to electrically connect wire modules, at high
temperatures. Most short circuits have since been repaired.
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(a)

(b)

Figure 5.17: Potential profile of the main spectrometer for (a) the nominal condition, and (b) with short
circuits. Figure (a) shows a ∆U between the inner and outer wire electrodes of 100 V , while in Figure (b)
∆U = 0 V .

72



-18581

-18583 -18582

Electric Potential (V)

-18584

(a)

18

18.5

19

19.5

20

0 1.5708 3.14159 4.71239 6.28319

U
-
U
w
ir
e
[V
]

phi [rad] (pi/2=top)

Potential variation along azimuthal path at fixed radius (r =3.55, 3.7, 4.0, 4.3, 4.55m; z =0m)

Uwire =-18600 V ring 04 - 14

Uvessel =-18400 V

Standard geometrywithout short-circuit (outer wires at -18500 V)

r =3.55m
r=3.7 m
r=4.0 m
r=4.3 m

r=4.3 m(10x exaggerated)

(b)

Figure 5.18: (a) Pictorial representation of the electrostatic potential at the analyzing plane near the wire
modules for the nominal condition. For scale, the distance between the teeth of the wire module combs
is 25 mm. (b) Azimuthal dependence of the electrostatic potential at the analyzing plane of the main
spectrometer at different fixed radii for the nominal condition. The plotted values are the differences between
the potential at a field point and the potential of the inner wire electrode system. Image from (8).

converge on an optimized magnet configuration for the nominal electrostatic condition, where the wire combs

are held at a more positive potential than the inner wire arrays (see Fig. 5.20 (a)).

As can be seen in Figure 5.20 (b), the presence of short circuits resulted in an increase in the electrostatic

potential contribution from the wire combs and wire comb caps at large radii. As a result, the magnet

configurations used for assessing the transmission properties of the main spectrometer during commissioning

were recomputed with a stronger minimal field at the analyzing plane (from 3.7 G at the analyzing plane to

9 G).

5.3.4: Vessel Deformation Studies

Prior to the installation of the wire modules, precise measurements of the radii of the as-built main

spectrometer vessel were recorded (9). Results from the cylinder section of the vessel are depicted in Figure

5.21. These measurements showed a O[10−2] m deviation of radial uniformity from design specifications.

To determine the effects of the vessel deformation on the electrostatic potential within the spectrometer’s

flux tube region, it was necessary to first convert the discrete set of measured points into a two-dimensional

continuous function defined over the vessel’s surface.

To construct a continuous deformation profile, we first affect an M th order trigonometric interpolation

over coplanar subsets of our measured data points (points sharing a common z-value, hereafter referred to
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Figure 5.19: (a) Pictorial representation of the electrostatic potential at the analyzing plane near the wire
modules for the shorted condition. For scale, the distance between the teeth of the wire module combs
is 25 mm. (b) Azimuthal dependence of the electrostatic potential at the analyzing plane of the main
spectrometer at different fixed radii for the shorted condition. The plotted values are the differences between
the potential at a field point and the potential of the inner wire electrode system. Image from (8).

(a) (b)

Figure 5.20: Electrostatic potential along magnetic field lines for a magnet configuration optimized for the
nominal condition (a) in the intended nominal case, and (b) with short circuits. Magnetic field lines are
colored from blue to red by increasing radius within the flux tube region. In (a), the more positive wire
combs result in an increase in the electrostatic potential at z ≈ ±0.9, even when partially offset by the wire
comb caps. In (b), the wire combs and caps produce the opposite effect, creating two separate minima for
larger radii that are no longer aligned with the minimum of the magnetic field. Images from (8).
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Figure 5.21: Measured values for the center of the spectrometer vessel prior to wire installation. For reference,
the design value for the radius of the middle of the spectrometer is 4.9 m. Images from (9).
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Figure 5.22: Two-dimensional interpolated vessel deformation profile. Measured values are represented by
black dots.

as S i for the subset corresponding to the ring of points at zi):

Ri(θ) =

M∑

k=0

ai
k sin(kθ) +

M∑

k=0

bi
k cos(kθ), (5.1)

where ai
j , bi

j , j ∈ {0..M} are determined by fitting to the data points in S i. A trigonometric interpolation

technique was chosen for these subsets because it naturally yields a result that is C∞ continuous and periodic.

To compensate for the fact that this technique requires equidistant data points along its domain, we perform

a linear interpolation between gaps to complete our data set.

Once we have obtained a discrete set of N azimuthal interpolation functions spanning a continuous region

of the vessel, we can apply a cubic spline interpolation in the axial dimension:

R(θ,z) = Ai(θ)(z − zi)
3 + Bi(θ)(z − zi)

2 + Ci(θ)(z − zi) + Di(θ) (5.2)

for z ∈ [zi,zi+1], where Ai,Bi,Ci and Di are determined by fitting Rj(θ), j ∈ {1..N}. The use of a cubic

spline interpolation provides us with a reasonably continuous (C2) function and a fast (O[N ]) algorithm

for computing coefficients. This feature is important, since these coefficients must be recomputed at each

function call. In the regions where the vessel is only C0 continuous (i.e. at the intersection of the conical

and cylindrical sections), a linear spline interpolation is used to enforce only C0 continuity. The results of

this technique for M = 16 can be seen in Figure 5.22.
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Figure 5.23: (a) East and (b) West sides of the main spectrometer model, with vessel deformation effects
included (coloring only applies to the spectrometer vessel, not the ports).
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With a continuous interpolation function for the vessel deformation in place, we were then able to modify

the discretized elements that comprise the vessel to conform to this profile. Figure 5.23 depicts a graphical

result of this application. A simulation containing these vessel deformations for a grounded spectrometer

vessel and with the electrode system held at 1 kV was then performed. As a result, we were able to determine

that the perturbation of the electrostatic potential at the analyzing plane of the main spectrometer due to

vessel deformation is a < 1% effect (see Fig. 5.24).
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Figure 5.24: Simulated potential values for the main spectrometer at z = 0, r = 3,4 m with the deformed
vessel held at ground, and the wire system held at 1 kV . For this plot, θ = 0 corresponds to the West direction,
θ = π

2 corresponds to the positive vertical direction, θ = π corresponds to the East direction, and θ = 3π
2

corresponds to the negative vertical direction. At r = 4 m (blue), both the effects from vessel deformation
and the C-profiles of the wire modules can be observed. For r = 3 m (green), the effects from individual
C-profiles has diminished, and the effects from vessel deformation become the dominant perturbative effect.

Section 5.4: Conclusion

In this chapter, we demonstrated the application of KGeoBag and KEMField to the electromagneti-

cally active components of KATRIN’s detector region and main spectrometer. By combining our knowledge

of the geometric, electrostatic and magnetostatic profiles of these apparatus with the BEM technique and

sufficient computational power, we were able to reconstruct these components and their resultant fields in

simulation with a heretofore unprecedented degree of accuracy. With these results, we could both explain

phenomena witnessed in measurement, and adapt our measurement strategies to improve future results. In

summary, we have applied a theoretical understanding of potential theory to information about our system,

thereby transforming this information into a form more readily applicable to analysis of KATRIN’s trans-

port system. In the following chapter, we will build upon this information by incorporating a theoretical
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framework for electron and ion optics, and using these results to analyze transmission profiles for KATRIN’s

main spectrometer.
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CHAPTER 6: Transmission Function Measurements in the KATRIN Main Spectrometer

with Shifted Analyzing surfaces

Section 6.1: Introduction

An integral part of commissioning KATRIN’s main spectrometer involves validating its electromagnetic

configuration via transmission function measurements. To perform these measurements, a well-characterized

incident electron beam is passed through a targeted region of the spectrometer, and the filtering effects of

the spectrometer in this region are then recorded as a function of the energy of the incident beam. Under

standard MAC-E-Filtering conditions, this technique provides information about a two-dimensional plane

transverse to the beam line and located at the center of the spectrometer (commonly referred to as the

analyzing plane). While an electron source with positional selectivity facilitates probing the electromagnetic

properties of our spectrometer across the analyzing plane, it does not provide much information about the

electromagnetic system both upstream and downstream from this plane.

With different electromagnetic configurations, it is possible to change both the location and the shape of

the two-dimensional analyzing plane (to which we hereafter refer more generally as the analyzing surface).

Subsequent transmission function experiments under these new configurations facilitate the scanning of

different regions of the spectrometer, allowing us to measure the electromagnetic fields in these regions. This

chapter describes the measurements we performed using nonstandard electromagnetic configurations, and

their comparison to our expected results obtained in simulation.

In order to compare our measured transmission values to simulation, we require both a well-characterized

incident electron beam and understanding of the electromagnetic components of the spectrometer. As

such, Section 6.2 contains a brief description of KATRIN’s electron gun and the relevant properties of its

generated electron beam for our measurements, and the electromagnetic conditions under which our shifted

analyzing surface measurements were performed. In Section 6.3, we describe a technique for combining

our geometric description of the KATRIN electromagnetic components described in Chapter 5 with the our

electron gun characterization to compute simulated transmission function values under the same conditions

as our measurements. Finally, in Section 6.4 we compare our simulated results to our measured results.
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Section 6.2: Experimental setup

6.2.1: Electron gun

(a)

z

x

y
α

α

h

v
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θgun

gun

rm

xgun

(b)

Figure 6.1: (a) CAD representation of the electron gun (with the beam axis from right to left). The cylinder
on the right (grey) houses the gun’s cathode and anode, and the curved section (pink) depicts the angular
selection mechanism. The gun is mounted to the main spectrometer entrance magnet (aqua). Image from
(10). (b) Description of electron gun parameters (αv,αh) and the parameters used in analysis (ρgun,θgun),
with origin at xm.

For the commissioning of the main spectrometer, an electron gun was developed to provide a characterized

mono-energetic electron beam with a tunable position, pitch angle∗ and energy profile (see Fig. 6.1 (a)).

The electron gun generates the emission of electrons via the photoelectric effect using a silver target exposed

to an ultraviolet LED light source. These electrons are then accelerated to a user-defined kinetic energy

through an axially symmetric anode before entering the flux tube region.

The position of the electron gun is defined with respect to intrinsic parameters of the electron gun as

xgun = (−rm cos(αv)sin(αh) + xm,rm sin(αv) + ym,−rm cos(αv)cos(αh) + zm) , (6.1)

where rm is the length of the electron gun’s manipulator arm, αh and αv are the horizontal and vertical

angles of the manipulator arm, and xm = (xm,ym,zm) is the positional offset of the apparatus with respect

to global coordinates, where the center of the main spectrometer is the origin (see Fig. 6.1 (b)). These

parameters have been determined in (10) and refined in (56), and are described in Table 6.1. To achieve

angular selectivity, the gun’s cathode is designed to pivot about one of its primary axes. While this design

is efficacious when the spectrometer and electron gun assembly is held at higher voltages (∼ 18.6 kV ),

∗The pitch angle of a particle is the angle between the momentum vector and the magnetic field; see Sec. 6.3.1.
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Figure 6.2: Simulation comparing the electron gun’s user-selected angle to the resultant pitch angle of
ejected particles at the spectrometer’s entrance, for Φanode − Φcathode = 50 V . Calculated for electron
starting energies which are Gaussian distributed around 0.2 eV with a sigma of 0.2 eV. Image courtesy of M.
Zacher (personal communication, June 26, 2014).

parameter symbol value
manipulator arm length rm 1.206 m

x-coordinate of electron gun offset xm −0.0157 m
y-coordinate of electron gun offset ym −0.0012 m
z-coordinate of electron gun offset zm −12.416 m

Table 6.1: Electron gun parameters.

no correlation between the electron gun angle θgun and the resulting incident pitch angle θ0 is observed in

electron optics simulations in a low-energy configuration (with the anode at ∼ 1 kV , see Fig. 6.2). The energy

distribution of the resultant electron beam for the low-energy configuration has been measured empirically

to be normally distributed about a user-defined input energy e · Te (10). Using a UV LED with a peak

wavelength of 295 nm, a standard deviation of 0.076 eV was observed.

6.2.2: Electrostatic configuration

For standard operating conditions, the main spectrometer’s electromagnetic configuration is chosen to

form an electrostatic potential that is nearly axially symmetric, and containing an electrostatic minimum

along the beam axis at the center of the spectrometer (the analyzing plane). To match this electrostatic

profile, the magnetostatic fields are configured to be axially symmetric and to achieve maximum strength at

the entrance and exit of the spectrometer, and minimum strength at the analyzing plane.
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(d) Configuration IV

(e) Configuration V

Figure 6.3: Electrostatic configurations for shifted analyzing plane measurements. Configurations I through
V have a single downstream wire module ring (rings 12 through 16, respectively) held at −1 kV , with the
remaining rings held at −900 V . For all measurements, the spectrometer vessel was held at ground.
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For each of the shifted analyzing surface measurements, a single downstream electrode ring was held

at a more negative potential than the remaining electrodes (see Fig. 6.3), with the intent of producing a

potential minimum that is both translated away from the center of the spectrometer and and deformed into

a nonplanar surface. The magnetostatic configuration used for these measurements was unchanged from

the standard condition, resulting in a misalignment of the electrostatic and magnetostatic minima. While

this implies a sub-optimal overall transmission condition, the goal of these measurements to sample different

regions of the spectrometer is largely insensitive to this misalignment, and the effects of misalignment on

the overall transmission function can be accounted for in simulation (see Sec. 6.3).

6.2.3: Run settings

Table 6.2 describes the electron gun and spectrometer settings for the runs comprising the shifted an-

alyzing plane measurements. For each of the five spectrometer settings, transmission function runs were

performed with the electron gun having an azimuthal angle corresponding to a particle trajectory near the

middle of a wire module (Run Sets 1 through 4), and subsequently corresponding to a trajectory in between

two wire modules (Run Sets 5 through 8). For each of these two settings, four measurements were performed

with the gun set to different radial offsets.

Section 6.3: Simulation of transmission functions

A general expression for the expected transmission fraction given a configuration of the electron gun ce

and spectrometer cs is given as

P (ce,cs) =

∫

I
Pocc(ce,χ) × Ptrans(cs,χ) dχ, (6.2)

where I defines the available phase space of initial particle states, Pocc(ce,χ) is a probability density function

describing the likelihood of the occurrence of state χ given the electron gun parameters ce, and Ptrans(cs,χ)

describes the probability that a particle with initial state χ is successfully transmitted through the spectrom-

eter with configuration cs. Our goal is then to determine functional forms for Ptrans(cs,χ) and Pocc(ce,χ),

so that a numerical evaluation of Equation 6.2 can be computed and compared against empirical results.

We will hereafter refer to these probability density functions as the transmission probability and occurrence

probability, respectively.
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Run # αv(deg) αh(deg) Config. Run # αv (deg) αh (deg) Config.
Run Set 1 Run Set 5

6101 14.00 13.60 I 6158 16.40 11.60 I
6103 14.00 13.60 II 6160 16.40 11.60 II
6005 14.00 13.60 III 6162 16.40 11.60 III
6107 14.00 13.60 IV 6164 16.40 11.60 IV
6109 14.00 13.60 V 6166 16.40 11.60 V

Run Set 2 Run Set 6
6111 13.54 13.15 I 6172 14.40 10.22 I
6113 13.54 13.15 II 6174 14.40 10.22 II
6115 13.54 13.15 III 6176 14.40 10.22 III
6117 13.54 13.15 IV 6178 14.40 10.22 IV
6119 13.54 13.15 V 6180 14.40 10.22 V

Run Set 3 Run Set 3
6125 12.95 12.60 I 6192 17.20 5.50 I
6127 12.95 12.60 II 6194 17.20 5.50 II
6129 12.95 12.60 III 6196 17.20 5.50 III
6131 12.95 12.60 IV 6198 17.20 5.50 IV
6133 12.95 12.60 V 6200 17.20 5.50 V

Run Set 4 Run Set 8
5135 12.08 11.80 I 6214 15.20 4.85 I
6137 12.08 11.80 II 6216 15.20 4.85 II
6140 12.08 11.80 III 6218 15.20 4.85 III
6142 12.08 11.80 IV 6220 15.20 4.85 IV
6144 12.08 11.80 V 6222 15.20 4.85 V

Table 6.2: Run configurations for the shifted analyzing plane measurement.

6.3.1: Determination of the transmission probability

Definition of parameters

To acquire a description of the transmission probability as a function of initial particle states, we begin by

analytically describing the parametrized trajectory of a single transmitted non-relativistic electron through

an idealized MAC-E-Filter (i.e. a large evacuated vessel with adiabatically changing electrostatic and mag-

netostatic fields). Since our particle’s trajectory is a one-dimensional path, it is possible to parametrize the

state of the particle along this path by a unitless parameter s ∈ [0,1] that spans the trajectory. We define the

state variables of our particle’s trajectory x(s) and p(s) as the parametrized position and momentum of the

electron, respectively. Additionally, we define B(s) = B(x(s)) and Φ(s) = Φ(x(s)) to be the parametrized

magnetic field and electrostatic potential along the electron’s trajectory.

Decomposition of state variables into transverse and longitudinal components

We define θ(s) = cos−1
(

p̂(s) · B̂(s)
)

as the angle between the particle’s momentum and the magnetic

field (referred to as the pitch angle), allowing us to recast our momentum vector into the local coordinates
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of the magnetic field: p(s) = p‖(s) + p⊥(s), where

p‖(s) =
(

p · B̂
)

B̂ = |p|cosθ B̂ (6.3)

and

p⊥(s) = p × B̂ = |p|sinθ
(

p̂ × B̂
)

. (6.4)

We define the kinetic energy of our particle

T (s) =
|p|2
2m

, (6.5)

and decompose it into longitudinal and transverse contributions as well:

T‖(s) =
p2

‖

2m
=

|p|2 cos2 θ

2m
(6.6)

and

T⊥(s) =
p2

⊥

2m
=

|p|2 sin2 θ

2m
, (6.7)

where T = T‖ + T⊥.

In a similar fashion, we decompose our particle’s trajectory x(s) into a component along the magnetic

field line (hereafter referred to as the guiding center component, or xgc(s)) and a cyclotron precession about

the guiding center (denoted xcyc(s)), so that

x(s) = xgc(s) + xcyc(s). (6.8)

The zeroth-order magnitude of the cyclotron motion of our particle |xcyc(s)| is its cyclotron radius rg(s):

rg(s) =
|p⊥(s)|
|e||B(s)| (6.9)

with angular frequency

ωg(s) =
|e||B(s)|

m
, (6.10)

where e is the signed electron charge and m is the electron mass in SI units. We can define an additional

azimuthal angle φ(s) as a measure the cyclotron precession in the plane transverse to the magnetic field

B(s); however, it suffices for now to merely acknowledge that a unique φ(s1) corresponds to a single φ(s2)

for all s1,s2 ∈ [0,1]. The trajectory of our guiding center component can be computed by numerically solving
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the ordinary differential equation

d

ds
xgc(s) = B̂(xgc(s)) (6.11)

using standard Runge-Kutta techniques (57), subject to the initial condition

xgc(0) = x(0) +
(

p̂(0) × B̂(0)
)

rg(0). (6.12)

Adiabatic invariance and energy conservation

MAC-E-Filters are designed to exploit the conservation of the angular momentum of a particle’s cyclotron

motion (22). In the non-relativistic limit, this corresponds to an adiabatically invariant magnetic moment

of the electron’s cyclotron orbit:

|µ| =
T⊥(s)

|B(s)| . (6.13)

This equality holds throughout the electron’s trajectory through the filter:

∀s1,s2 ∈ [0,1] :
T⊥(s1)

|B(s1)| =
T⊥(s2)

|B(s2)| . (6.14)

Incorporating the effects of an electrostatic potential in the MAC-E-Filter yields the energy relation

∀s1,s2 ∈ [0,1] : T (s1) + e · Φ(s1) = T (s2) + e · Φ(s2). (6.15)

By combining Equations 6.14 and 6.15 into

∀s1,s2 ∈ [0,1] : T‖(s2) = T (s1)

(
1 − |B(s2)|

|B(s1)| · sin2 θ(s1)

)
− e · (Φ(s2) − Φ(s1)) , (6.16)

and by enforcing the condition that the particle be transmitted (i.e. we require that T‖(s) > 0 ∀s), we arrive

at an inequality to describe the transmission condition

∀s1,s2 ∈ [0,1] : T (s1) > H(s1,s2), (6.17)

where

H(s1,s2) =
e · (Φ(s2) − Φ(s1))(

1 − |B(s2)|
|B(s1)| · sin2 θ(s1)

) . (6.18)

While Equation 6.17 holds for any two points on the particle’s trajectory, the condition is most restrictive

when s1 is chosen to identify the incident particle’s initial state (i.e. s1 = 0), and when s2 is selected to
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maximize Equation 6.18:

H(0,s∗) = max
s

[H(0,s)] . (6.19)

Given a distribution of initial particle states, the locus of corresponding positions x(s∗) define a surface within

the spectrometer called the analyzing surface. Using the above definitions in tandem with the equations from

Section 6.3.1, we can construct a method for adiabatically propagating a distribution of initial particle states

to the analyzing surface, and evaluating the resulting transmission condition.

Computing the intersection of the guiding center with the analyzing surface

Our first step in adiabatically propagating an initial particle state to the analyzing surface is to compute

the intersection of a particle’s guiding center with the analyzing surface. We do this as follows:

• Given an initial condition x0, p0, we compute the magnetic field B0 = B(x0) and electrostatic potential

Φ0 = Φ(x0).

• Our initial pitch angle can now be evaluated as θ0 = cos−1
(

p̂0 × B̂0

)
.

• We then use these values to compute xgc(0) = x0 +
(

p̂0 × B̂0

)
· rg(0), where rg(0) =

|p0|sinθ0
|e||B0| .

• Using the initial condition xgc(0), we obtain an expression for xgc(s) by numerically solving Equation

6.11.

• We perform a maximization over Hgc(0,s) to find x∗
gc = xgc(s∗), where

Hgc(0,s∗) = max
s

e · (Φ(xgc(s)) − Φ0)(
1 − |B(xgc(s))|

|B0| · sin2 θ0

) . (6.20)

Generalization to a distribution of initial conditions

Since we have not resolved the azimuthal angle φ(s) of the particle’s cyclotron progression, we only know

that our particle lies somewhere on a circle transverse to our guiding center, whose radius is given by the

cyclotron radius at the analyzing surface. By combining Equations 6.7, 6.9 and 6.14, we can solve for this

cyclotron radius in terms of initial conditions to be

rg(s) =
|p0|sinθ0

|e|
√

|B0||B(xgc(s))|
. (6.21)

It turns out that, for a continuous statistical distribution of initial momenta p0, this scope of resolution

is sufficient for calculating the rate of transmitted particles for a given configuration. This result is due to

the strong dependence of the integrated angular frequency on the initial energy. We can confirm this in
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simulation by numerically computing the approximate number of cyclotron orbits completed by a trajectory

from its initial position to the analyzing surface:

φ(s∗)

2π
=

1

2π

∫ s∗

0
ds · ωg(s)

dt

ds
≈

≈ |e|
2π

∫ s∗

0
ds · |B(xgc(s)) |

|p‖(s)| =

=
|e|

2π
√

2m

∫ s∗

0

|B(xgc(s)) |ds√
T0

(
1 − |B(xgc(s))|

|B0| · sin2 θ0

)
− e · (Φ(xgc(s)) − Φ0)

. (6.22)

Using Equation 6.22 with specified initial conditions just above the transmission threshold and varying the

initial kinetic energy by ∆T , ∆T
T0

∼ O
[
10−5

]
, we have numerically obtained an order-of-magnitude estimate

for the sensitivity of the azimuthal angle of our particle at the analyzing surface with respect to fluctuations

in the initial kinetic energy:

φ(s∗;x0,T0 + ∆T,θ0) − φ(s∗;x0,T0,θ0)

2π
∼ O

[
102
]
. (6.23)

Since O
[
102
]

≫ 1, we can well approximate the distribution of final particle states at the analyzing surface

as azimuthally uniformly distributed about the intersection of the guiding center and the analyzing surface.

Determining the Surface of Intersection on the Analyzing Surface

We now have a point on our analyzing surface x∗
gc, and a unit vector orthogonal to the analyzing surface

B̂(x∗
gc) (hereafter referred to as B̂∗). We can construct a pair of mutually orthogonal vectors Ĉ∗ and D̂∗,

B̂∗ · Ĉ∗ = B̂∗ · D̂∗ = Ĉ∗ · D̂∗ = 0:

B̂∗ = Bxx̂+ Byŷ + Bz ẑ,

Ĉ∗ =
1√

1 − B2
y

(−Bzx̂+ Bxẑ) ,

D̂∗ =
1√

1 − B2
y

(
BxByx̂−

(
1 − B2

y

)
ŷ + ByBz ẑ

)
, (6.24)

and express our particle’s location at the analyzing surface in terms of Equations 6.8 and 6.24 and a unique

azimuthal phase φ′:

y(s∗,φ′) = xgc(s∗) + rg(s∗)
(

Ĉ∗ cosφ′ + D̂∗ sinφ′
)

, (6.25)
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where

rg(s∗) =

√
2mT0 sinθ0

|e|
√

|B0||B(xgc(s∗))|
. (6.26)

In the event that our analyzing surface has nonzero curvature, the result of Equation 6.25 must be

projected back onto the analyzing surface. To perform this projection, we modify Equation 6.18 to account

for the offset of the gyroradius:

G(s1,s2) =
e · (Φ(y(s2)) − Φ(y(s1)))(
1 − |B(y(s2))|

|B(y(s1))| · sin2 θ(s1)
) (6.27)

and perform our maximization over this function:

G(0,s∗) = max
s

[G(0,s)] . (6.28)

We now have a numerically soluble description for our transmission probability in terms of the spectrom-

eter properties cs, and initial particle conditions x0 and T0 and θ0, as well as our final azimuthal angle at

the analyzing plane φ:

Ptrans(x0,T0,θ0,φ;cs) =





1 T0 ≥ G(x0,T0,θ0,φ;cs)

0 T0 < G(x0,T0,θ0,φ;cs)
, (6.29)

where

G(x0,T0,θ0,φ;cs) =
e · (Φ(y∗) − Φ(x0))(
1 − |B(y∗)|

|B(x0)| · sin2 θ0

) (6.30)

and the magnetic field and electrostatic potential are implicitly dependent upon the spectrometer config-

uration cs. Since the distribution of azimuthal angles at the analyzing plane is uniform, we can integrate

Equation 6.29 over the final azimuthal angles to obtain our desired expression for the transmission probability

as a function of spectrometer properties and initial particle conditions:

Ptrans(x0,T0,θ0;cs) =

∫ 2π

0
dφ · Ptrans(x0,T0,θ0,φ;cs). (6.31)

6.3.2: Determination of the occurrence probability

The occurrence probability is intrinsically derived from a statistical description of the electron gun. As

such, a natural basis of state variables for this probability density function is linked to the free parameters

of the electron gun: the position x, the energy T , pitch angle θ and azimuthal angle φ of the ejected
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particle. Due to the strong electrostatic fields responsible for particle acceleration within the electron gun,

the trajectories of the ejected particles are ill-suited to an adiabatic approximation in this region. As a result,

we rely on Monte-Carlo simulation and empirically measured parameters to obtain a statistical description

of initial particle states at the entrance to the spectrometer, where the assumption of adiabatic particle

transport is valid.

For a given angular setting αv, αh, the location of the electron gun’s ejected particles is given by Equation

6.1 as xgun. Particles originating from this position will precess about the magnetic field line crossing

through xgun, allowing us to apply the same technique we employed in Section 6.3.1: we approximate the

initial position of the particle by propagating a guiding center from xgun to the entrance of the spectrometer

and apply an offset for the gyroradius. If we treat the initial particle position as exact†, our goal is then to

represent the initial momentum states as a statistical distribution

Pocc(T0,θ0,φ0) (6.32)

describing the likelihood of obtaining an initial particle with a given state configuration.

Assuming that the energy, pitch angle and azimuthal angle are uncorrelated, Equation 6.32 can be

decomposed into the product of three probability density functions:

Pocc(T0,θ0,φ0) = P (T0) × P (θ0) × P (φ0). (6.33)

We can immediately substitute P (φ0) = 1
2π , since the ejected particles are uniformly distributed in the

azimuthal direction. At low energies, our pitch angle at the spectrometer’s entrance θ0 has been measured

in simulation to have mean value and standard deviation

µθ = 0.12 rad, (6.34)

σθ = 0.10 rad, (6.35)

respectively. If we assume a truncated normal distribution for θ confined to [0,π], our dependence on θ

becomes

P (θ0;µθ,σθ) =
1

Z(µθ,σθ)
· 1

σθ

√
2π

e
−

(θ0−µθ)2

2σ2
θ , (6.36)

where Z(µθ,σθ) is a normalization constant to account for the finite domain. Finally, we define P (T0) as a

†This assumption is predicated upon the hypothesis that the broadening effects of the transmission edge due to the spatial
distribution of the particle beam are subdominant to those from the momentum distribution.
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normal distribution with a mean value Te chosen to be the user-selected electron gun energy, and empirically

measured standard deviation σT = 0.076 eV :

P (T0;Te,σT ) =
1

σT

√
2π

e
−

(T0−Te)2

2σ2
T . (6.37)

Combining the above formulae, we arrive at our final probability density function for the initial momentum

states:

Pocc(T0,θ0,φ0;Te,σT ,µθ,σθ) =
1

Te

√
2π

e
−

(T0−Te)2

2σ2
T ×

× 1

Z(µθ,σθ)
· 1

σθ

√
2π

e
−

(θ0−µθ)2

2σ2
θ ×

× 1

2π
. (6.38)

6.3.3: Numerical Calculation of Transmission Function

By combining Equations 6.31 and 6.38, we arrive at an equation for the transmission fraction given both

a spectrometer and an electron gun configuration:

P (ce,cs) =

∫ ∞

0
dT0

∫ π

0
dθ0

∫ 2π

0
dφ0 Pocc(T0,θ0,φ0;ce) × Ptrans(T0,θ0;ce,cs). (6.39)

The integrations in Equation 6.39 can be computed numerically for discrete electron gun mean energies Te

sweeping through a configuration’s transmission region (where P (ce,cs) increases from zero to one), yielding

a set of points relating the particle beam’s mean energy to the transmission fraction, in analogue to our

measured data points.

Section 6.4: Comparison of experimental data to simulation

6.4.1: Parametrized fits for measured and simulated data

During data taking, the number of transmitted electrons is recorded over a fixed time interval for discrete

values of the electron gun voltage Uegun ≡ Te
e that span the dynamic portion‡ of the transmission function.

Average values of the count rate are then taken for energies below and above the transmission edge, cor-

responding to a background rate and saturation rate of transmission, respectively. These values yield a

‡where the transmission function rises from zero to one
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Figure 6.4: Measured (black) and simulated (red) transmission function profiles for Run 6176. Prior to
simulation, the electron gun’s position was fit to minimize the difference in the measured and simulated
energy edge for measurements corresponding to Configurations I and II (see Sec. 6.2.3).

constant offset and a linear scale with which the count rate can be normalized to a transmission fraction

ranging from zero to one. Finally, the transmission fraction is plotted against the difference between the

minimum potential of the main spectrometer’s electrode system (denoted UIE , for inner electrode potential)

and the electron gun voltage.

Once discrete values correlating the transmission fraction and the electron gun’s potential are obtained,

we quantify the transmission function’s profile by fitting it to a parametrized function. Because MAC-E-

Filters are integrating filters and our incident particle beam is normally distributed in energy, a reasonable

choice for a parametrized fit function T (UIE − Uegun) for our transmission points is

T (U ;a,b,µ,σ) =
a

2

(
1 + erf

(
U − µ√

2σ

))
+ b, (6.40)

where a parametrizes the amplitude, b is a constant background offset, µ represents the midpoint of trans-

mission (i.e. where 50% of the incident particles are transmitted), σ is a measure of the function’s width,

and the error function is related to the integral of a normal distribution (10). As an example, Figure 6.4

depicts the measured and simulated transmission functions for Run 6176 in black and red, respectively. A

complete set of measured and simulated transmission functions is provided in Appendix E.
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Figure 6.5: A comparison of the measured and simulated edge fit values with respect to θgun, the angle
between the electron gun’s manipulator arm and the beam axis. Simulations were performed with the
electron gun parameters described in Table 6.1.

6.4.2: Comparison of the transmission edge parameter

Figure 6.5 depicts a comparison of the fitted edge data (corresponding to the midpoint of the transmission

threshold) using the values described in Table 6.1 for the electron gun position. The gun’s angular position

is described by θgun, the angle between the electron gun’s manipulator arm and the beam axis (see Fig. 6.1

(b)), given as

θgun = cos−1 (cosαv cosαh) . (6.41)

While it appears that the simulated edge values trend correctly with the gun angle, the offset between

simulated and measured values suggests a possible misalignment in the simulated electron gun’s position.

This misalignment does not appear to similarly affect the simulated values for Configuration V, however,

implying that the transmission threshold for this configuration is caused by a different process.

6.4.3: Mapping the analyzing surfaces

To better understand the transmission surfaces for each configuration, Figure 6.6 depicts the results of

computing points on the analyzing surfaces for each configuration. From this simulation, we see that the

analyzing surface for Configuration V is not caused by a potential minimum from the full metal electrode ring,
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Figure 6.6: Simulated transmission surfaces from left to right: Configuration V (blue), I (green), II (magenta),
III (cyan), IV (red).

but rather from a minimum in the magnetic field at the spectrometer’s center. This implies that the proximity

of the full metal electrode to the grounded anti-Penning electrode at the spectrometer’s entrance prevents

the formation of an electrostatic minimum in the downstream section of the spectrometer in Configuration

V. Because of the relatively small variations in the electrostatic potential with respect to radial changes

at the center of the spectrometer, the resultant transmission threshold for Configuration V is only weakly

dependent upon the physical displacement of the electron gun.

6.4.4: Fitting for the optimal gun position

Using the transmission function calculation routines described in Section 6.3, we can fit for the ideal

offsets for the electron gun (xm and ym from Table 6.1). The technique we used to perform this fit is

outlined below:

• For each electron gun configuration, we propagate along the magnetic field line that crosses through xgun

to the entrance of the spectrometer, and label this point x0.

• Additionally, we propagate along the magnetic field line for the electron gun condition αv = αh = 0 to

the entrance of the spectrometer, and label this point xorigin.

• For each transmission function measurement, we iteratively move our trajectory’s initial position between
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Figure 6.7: Starting positions for fixed threshold and θgun for each run. The average position of Configura-
tions I and II is represented by a black star.

x0 and xorigin until the simulated and measured transmission thresholds agree to within a given tolerance.

• Once a position is found that reproduces the measured transmission threshold, we propagate backwards

along the magnetic field line to the identify its corresponding gun position.

parameter symbol value
x-coordinate of electron gun offset xm 0.0056 m
y-coordinate of electron gun offset ym −0.0310 m

Table 6.3: Fitted electron gun parameters from Configurations I and II.

Figure 6.7 depicts the resulting starting positions for each measured transmission function. From Figure

6.5, we can see that the threshold fits for Configurations I and II are comparatively much more sensitive to

variations in the electron gun’s initial position than Configurations III, IV and V (as evidenced by the span

of the range for each configuration). As such, the results from fitting to the first two configurations were used

to select an electron gun offset. Table 6.3 shows the results of this fit, and Figure 6.8 depicts the updated

comparison between simulated and measured transmission thresholds after applying this offset correction.

While our fitted correction to the electron gun position results in a marked improvement in the com-

parison of simulated and measured transmission thresholds, we still see a substantial disagreement between

the simulated and measured threshold vales for Configuration IV. This discrepancy could be attributed to
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Figure 6.8: A comparison of the measured and simulated edge fit values with respect to θgun, the angle
between the electron gun’s manipulator arm and the beam axis. Simulations were performed with the
electron gun parameters described in Table 6.3.

deviations in the as-built dimensions of the spectrometer compared to its corresponding CAD models. Were

such a discrepancy to exist, its affect on the accuracy of the simulated electrostatic potential inside the flux

tube would be most dramatic at the entrance and exit of the spectrometer, where the distances to surfaces

are relatively smaller.

Section 6.5: Conclusion

In this chapter, we analyze the results of experimentally measuring transmission functions for several non-

standard electrostatic configurations of KATRIN’s main spectrometer, using an electron gun with position

and energy selectivity. We began with a description of the experimental conditions under which the mea-

surements were performed. We then derived a means for numerically computing the expectant transmission

function using the main spectrometer model described in Chapter 5. Finally, we presented our experimental

data in juxtaposition to our simulated results, fit for the position of the electron gun, and applied these

corrections to our model. Our resultant comparison of measured to simulated data shows nice agreement

for analyzing surfaces near z = 0, thus verifying our simulation’s ability to predict electrostatic fields inside

the main spectrometer for standard run configurations (i.e. with symmetric electrostatic profiles). We posit

that a discrepancy between CAD and as-built values for the dimensions of the spectrometer may explain
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discrepancies observed for analyzing surfaces far from the center of the spectrometer.
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CHAPTER 7: Conclusion and Outlook

The KATRIN experiment employs electrostatic and magnetostatic fields with ubiquity throughout its

apparatus to reach the scientific goal of probing the neutrino mass with a sensitivity of 0.2 eV (90% C.L.).

To generate these fields, large electrodes of complex design and multiple superconducting magnets have been

built around KATRIN’s main spectrometer, one of the largest vessels at ultra-high vacuum in the world. We

have developed several computational techniques to meet the challenges of performing simulations with the

extreme range of geometric sizes and field strengths within the KATRIN spectrometer and detector systems.

To solve for electrostatic fields constrained by complicated surfaces, we have developed a Boundary

Element Method that accepts Dirichlet, Neumann and mixed boundary conditions. This technique relies

on the use of analytic solutions to discrete boundary integrals, which we present in Appendices A and B.

The derivation of this method in Chapter 2 is intended to be sufficiently general enough to apply to other

problems in potential theory, such as magnetostatics and the steady-state heat equation.

Complementing our BEM technique, we have derived the Robin Hood nonstationary linear algebraic

solver. The Robin Hood solver is readily adapted to a high-performance computing environment, and can be

implemented with a memory footprint that scales linearly with the dimension of the system. In comparison

with other stationary and nonstationary solvers, we have demonstrated Robin Hood to be well suited to

solving electrostatic BEM systems.

These methods have been implemented in the C++ software KEMField. KEMField is designed to be a

flexible framework that is extensible to a broad class of linear partial differential equations. KEMField can

operate independently with no required external dependencies; its functionality is extended by third-party

software via an optional plugin model. Through this plugin design, support for cluster computing via MPI,

GPU computing with OpenCL, and hybrid MPI-OpenCL are provided. There is also a plugin for KGeoBag,

software we have designed to handle such geometry-related tasks as navigation and discretization.

In application of KEMField and KGeoBag to the KATRIN experiment, we have constructed full 3-

dimensional models for both the detector section and main spectrometer, and have applied the BEM to

these models on several high performance computing systems. As a result, simulations using these mod-

els have been successfully used to further KATRIN’s scientific goals via design validation and parameter

optimization.

As a validation of our models, we have performed measurements designed to probe the electrostatic
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properties of several locations within the main spectrometer. To analyze these measurements, we constructed

a technique for reproducing these measurements in simulation. As a result of applying this technique to our

measured results, we were able to identify potential deviations in our model from the as-built configuration.

There are several directions in which this research can be continued in order to further assist KATRIN

in reaching its scientific goal. First (and perhaps most importantly), additional measurements like those

described in Chapter 6 should be performed with a larger span of electron gun values. Currently, the

measurement of transmission functions is the most precise technique available for characterizing the main

spectrometer’s electrostatic properties and, with enough data, our model could be parametrically fit to

replicate the results of these measurements. Additionally, KEMField’s high performance BEM solvers can

be applied to magnetostatic simulations, providing the KATRIN collaboration with the ability to more

accurately model magnetic fields within the apparatus. Finally, the method of constructing meshes for

KATRIN’s apparatus could be improved by the implementation of iterative mesh refinement, allowing the

results of a BEM computation to influence the sizes of mesh elements for subsequent BEM iterations.
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APPENDIX A: Analytic Integral Evaluation of Green’s Functions over a Triangular Surface

Section A.1: Definition of Initial Parameters

b

a x

y

z

p xx

y

y

z
1

1

2

2

p0 n1

x3

n2

Figure A.1: A right triangular sub-element defined by the position of the corner opposite the hypotenuse
p0, the lengths of the sides a and b, and the unit vectors in the directions of sides a and b, labeled n1 and
n2. The field point is defined as p, with local coordinates (0,0,z). The corners of the triangle are recast into
local coordinates to facilitate integration.

A right triangular surface ∆∂Σ is defined by the position of the vertex opposite the hypotenuse p0,

the lengths of its sides a and b, and the unit vectors defining its sides n1 and n2 (see Fig. A.1). For the

computation of the Green’s function integrals at an observation point p, it is necessary to transform into a

local coordinate frame, where the triangle lies in the x̂-ŷ plane and the field point lies along the ẑ-axis, as

depicted in Figure A.1. In the local coordinate system, the parameters necessary for the calculation are:

z = (p − p0) · n3, (A.1)

x1 = (p0 − p) · n1, (A.2)

x2 = x1 + a, (A.3)

y1 =
z

|z| · (p0 − p) · n2, (A.4)

y2 = y1 +
z

|z| · b, (A.5)

where n3 = n1 × n2.
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Section A.2: Dirichlet Boundary Condition

The analytic calculation of the Dirichlet Green’s function over a right triangular surface is performed as

follows: the integral equation in terms of the local coordinates described in Figure A.1 is

∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

∫ a+by

x1

1√
x2 + y2 + z2

· dx · dy, (A.6)

where the upper limit of integration in x, a+ by, is the line describing the hypotenuse of the triangle. Using

basic algebra, it can be seen that a = x2y2−x1y1
y2−y1

and b = x1−x2
y2−y1

. The inner integral can be evaluated as

follows:

we first manipulate the equation into a more soluble form:

∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

∫ a+by

x1

dx · dy√
x2 + (y2 + z2)

=

=

∫ y2

y1

dy · 1√
y2 + z2

∫ a+by

x1

dx · 1√(
x√

y2+z2

)2

+ 1

. (A.7)

From here it is possible to substitute x√
y2+z2

= sinh(u) and dx =
√

y2 + z2 ·cosh(u) ·du. Equation A.7 then

becomes ∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

dy

∫ u2

u1

cosh(u) · du√
sinh2 (u) + 1

, (A.8)

where u1 = sinh−1

(
x1√

y2+z2

)
and u2 = sinh−1

(
a+by√
y2+z2

)
. Using the identity

cosh2(x) − sinh2(x) = 1, (A.9)

Equation A.8 becomes

∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

dy

∫ u2

u1

du =

=

∫ y2

y1

dy

[
sinh−1

(
a + by√
y2 + z2

)
− sinh−1

(
x1√

y2 + z2

)]
. (A.10)

After dividing by z to make the integral dimensionless, Equation A.10 becomes

∫

∆∂Σ
G(p,x′) · dS′ = z ·

[∫ u2

u1

du · sinh−1

(
a′ + bu√
u2 + 1

)
−
∫ u2

u1

du · sinh−1

(
x′

1√
u2 + 1

)]
, (A.11)
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where a′ = a
z , u = y

z , ui = yi
z , and x′

1 = x1
z . If we define the following indefinite integrals

I1(a,b,u) =

∫
sinh−1

(
a + bu√
u2 + 1

)
· du (A.12)

and

I2(x,u) =

∫
sinh−1

(
x√

u2 + 1

)
· du, (A.13)

Equation A.11 can be rewritten as

∫

∆∂Σ
G(p,x′) · dS′ = z ·

[
I1(a′, b,u2) − I1(a′, b,u1) − I2(x′

1,u2) + I2(x′
1,u1)

]
. (A.14)

A.2.1: Integral I1(a,b,u)

Integral I1 can be solved by following the steps outlined in (58). The steps are as follows:

Integral I1 can be converted into a more soluble integral by integrating by parts:

I1(a,b,u) = (A.15)

=

∫
sinh−1

(
a + bu√
u2 + 1

)
du = (A.16)

= u · sinh−1

(
a + bu√
u2 + 1

)
+

∫
(au2 − bu) · du

((1 + a2) + 2(ab)u + (1 + b2)u2)
1
2 (u2 + 1)

, (A.17)

or

I1(a,b,u) = F1(a,b,u) + I3(a,b,u) − I4(a,b,u), (A.18)

where

F1(a,b,u) = u · sinh−1

(
a + bu√
u2 + 1

)
, (A.19)

I3(a,b,u) =

∫
au2 · du

U
1
2 (u2 + 1)

, (A.20)

I4(a,b,u) =

∫
bu · du

U
1
2 (u2 + 1)

, (A.21)

and the substitution

U =
(
(1 + a2) + 2(ab)u + (1 + b2)u2

)
(A.22)
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has been made merely to clarify the equations. By noting that I3 can be rewritten as

I3(a,b,u) = a ·
(∫

du

U
1
2

−
∫

du

U
1
2 (u2 + 1)

)
, (A.23)

we can move the second term into I4, leaving us with

I1(a,b,u) = F1(a,b,u) + Ĩ3(a,b,u) − Ĩ4(a,b,u), (A.24)

where

Ĩ3(a,b,u) =

∫
a · du

U
1
2

, (A.25)

Ĩ4(a,b,u) =

∫
(bu + a) · du

U
1
2 (u2 + 1)

, (A.26)

A.2.2: Integral Ĩ3(a,b,u)

By affecting a change in variables,

a′ = 1 + b2, (A.27)

b′ = 2ab, (A.28)

c′ = 1 + a2, (A.29)

Ĩ3 can be cast into a form readily found in tables of integrals:

Ĩ3

a
=

∫
du√

a′u2 + b′u + c′
. (A.30)

The general solution to this integral for a′ > 0 is taken from (59) to be

∫
du√

a′u2 + b′u + c′
=

1√
a′

ln
(

2a′u + b′ + 2
√

a′
√

a′u2 + b′u + c′
)

. (A.31)

Recast into our variables of interest, we arrive at an equation for Ĩ3:

Ĩ3(a,b,u) =
a ln

(
2
(√

b2 + 1
√

a2 + 2abu + (b2 + 1)u2 + 1+ b(a + bu) + u
))

√
b2 + 1

. (A.32)
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A.2.3: Integral Ĩ4(a,b,u)

Integral Ĩ4 is in a form that can be solved analytically by performing the following change of variables:

a′ = 1 + b2, (A.33)

b′ = ab, (A.34)

c′ = 1 + a2, (A.35)

h = b, (A.36)

k = a. (A.37)

The integral is now

Ĩ4 =

∫
(hu + k)du

(u2 + 1)
√

a′u2 + 2b′u + c′
, (A.38)

and can be solved using the technique outlined in (60):

Making the substitutions

u → λt + 1

t − λ
, du → − (λ2 + 1)

(t − λ)2
dt (A.39)

in the equation and recovering the form

Ĩ4 =

∫
(lt + m)dt

(t2 + 1)
√

αt2 + 2βt + γ
(A.40)

goes as follows:

Ĩ4 =

∫
(

h (λt+1)
(t−λ)

+ k
)

−(λ2+1)
(t−λ)2 dt

(
(λt+1)2

(t−λ)2 + 1
)√

a′ (λt+1)2

(t−λ)2 + 2b′ (λt+1)
(t−λ)

+ c′
= (A.41)

=

∫ −(λ2+1)
(t−λ)3 (h(λt + 1) + k(t − λ))dt

(
(λt+1)2

(t−λ)2 + 1
)√

a′ (λt+1)2

(t−λ)2 + 2b′ (λt+1)
(t−λ) + c′

= (A.42)

=

∫
(λ2 + 1)(−(hλ+ k)t + (kλ− h))dt

(t − λ)3
(

(λt+1)2

(t−λ)2 + 1
)√

a′ (λt+1)2

(t−λ)2 + 2b′ (λt+1)
(t−λ) + c′

= (A.43)

=

∫
(λ2 + 1)(−(hλ+ k)t + (kλ− h))dt

((λt + 1)2 + (t − λ)2)
√

a′(λt + 1)2 + 2b′(λt + 1)(t − λ) + c′(t − λ)2
= (A.44)

=

∫
(λ2 + 1)(−(hλ+ k)t + (kλ− h))dt

(λ2t2 + 1 + t2 + λ2)
√

λ2t2a′ + 2λta′ + a′ + 2b′λt2 − 2b′λ2t + tb′t − 2b′λ+ c′t2 − 2c′λt + c′λ2
=

=

∫
(−(hλ+ k)t + (kλ− h))dt

(t2 + 1)
√

(λ2a′ + 2b′λ+ c′)t2 + 2(−b′λ2 + (a′ − c′)λ+ b′)t + (a′ − 2b′λ+ c′λ2)
(A.45)
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We can see from the Equation A.45 that

l = −hλ− k = −bλ− a, (A.46)

m = kλ− h = aλ− b, (A.47)

α = λ2a′ + 2b′λ+ c′ = (1 + b2)λ2 + 2(ab)λ+ (1 + a2), (A.48)

β = −b′λ2 + (a′ − c′)λ+ b′, (A.49)

γ = a′ − 2b′λ+ c′λ2 = (1 + b2) − 2(ab)λ+ (1 + a2)λ2. (A.50)

Now, if we let λ equal one of the roots of β,

λ =
(a′ − c′) ±

√
(c′ − a′)2 + 4b′2

2b′
= (A.51)

=

(
b

a

)
or
(

−a

b

)
, (A.52)

we can remove β from Equation A.40 and split the integral into two parts:

Ĩ4 =

∫
ltdt

(t2 + 1)
√

αt2 + γ
+

∫
mdt

(t2 + 1)
√

αt2 + γ
. (A.53)

The second integral can be put in the same form as the first if we affect another change of variables, t → 1
s ,

and take t > 0, s > 0:

Ĩ4 =

∫
ltdt

(t2 + 1)
√

αt2 + γ
−
∫

msds

(s2 + 1)
√

γs2 + α
. (A.54)

Solutions to integrals of this form are as defined as

∫
tdt

(t2 + 1)
√

ξt2 + ζ
=

tan−1

(√
ξt2+ζ
ξ−ζ

)

√
ξ − ζ

. (A.55)

Using Equation A.55 and taking the more positive root of β (λ = b
a ), we arrive at a closed form solution for

Ĩ4:

Ĩ4(a,b,u) = −(
b2

a
+ a) · 1√

α − γ
· tan−1

(√
αt2 + γ

α − γ

)
, (A.56)
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where

α =

(
a2 + b2

)(
a2 + b2 + 1

)

a2
,

γ = 1 +
b2

a2
,

t = −
(

bu + a

au − b

)
. (A.57)

For consistency, the solution to I3 using the more negative root of β (λ = − a
b ) is

Ĩ4(a,b,u) = (
a2

b
+ b) · 1√

γ′ − α′
· tan−1

(√
γ′s2 + α′

γ′ − α′

)
, (A.58)

where

α′ = 1 + a2

b2 =
a2

b2
γ,

γ′ =
(a2+b2)(a2+b2+1)

b2 =
a2

b2
α,

s = bu+a
au−b = −t. (A.59)

As expected, the answers derived from using the two roots of β are equivalent. Since a corresponds to the

x−intercept of the hypotenuse and b represents the inverted slope, it is safer to use Equation A.58, ensuring

that there is never a division by zero.

To further reduce the number of necessary computations, it is possible to obtain an analytic solution for
(
Ĩ4(a,b,u2) − Ĩ4(a,b,u1)

)
, as is explained in the next subsection.

A.2.4: Ĩ4(a,b,u2) − Ĩ4(a,b,u1)

First, we shall take the solution of Ĩ4(a,b,u) described in Equation A.56 (since we have shown that

Equations A.56 and A.58 are equivalent, we lose no generality in this assumption). We then have

Ĩ4(a,b,u2) − Ĩ4(a,b,u1) =

((
a2

b
+ b

)
· 1√

γ′ − α′

)
·


tan−1



√

αt2
2 + γ

α − γ


− tan−1



√

αt2
1 + γ

α − γ




 , (A.60)

where α,γ,t1, and t2 are described by Equations A.57. Using the formulas

tan−1 (u)+ tan−1 (v) = tan−1

(
u + v

1 − uv

)
,

tan−1 (−v) = −tan−1 (v) , (A.61)
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Equation A.60 can be rewritten as

Ĩ4(a,b,u2) − Ĩ4(a,b,u1) = −
((

b2

a
+ a

)
· 1√

α − γ

)
·


tan−1




√
αt2

2+γ

α−γ −
√

αt2
1+γ

α−γ

1 +

√
αt2

2+γ·
√

αt2
1+γ

α−γ





=

= −
((

b2

a
+ a

)
· 1√

α − γ

)
·


tan−1




√
α − γ ·

(√
αt2

2 + γ −
√

αt2
1 + γ

)

(α − γ) +
√

αt2
2 + γ ·

√
αt2

1 + γ







A.2.5: Integral I2(x,u)

The techniques used to solve I2(x,u) are similar to the ones described in Section A.2.1. We begin by first

integrating by parts:

I2(x,u) =

∫
sinh−1

(
x√

u2 + 1

)
· du = (A.62)

= u · sinh−1

(
x√

u2 + 1

)
+

∫
u2x · du

(u2 + 1)
√

u2 + (x2 + 1)
= (A.63)

= F1(x,0,u) + I5(x,u), (A.64)

where F1 is defined by Equation A.19, and

I5(x,u) =

∫
u2x · du

(u2 + 1)
√

u2 + (x2 + 1)
. (A.65)

By noting that

I5(x,u) = x ·
(∫

du√
u2 + (x2 + 1)

−
∫

du

(u2 + 1)
√

u2 + (x2 + 1)

)
= (A.66)

= x · (I6(x,u) + I7(x,u)) , (A.67)

we can apply Equation A.31 to I6 and, after affecting a change of variables u → 1
t and keeping u,t > 0, we

can apply Equation A.55 to I7, as demonstrated below:

I6(x,u) = ln
(

2
(√

u2 + x2 + 1+ u
))

, (A.68)
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and

I7(x,u) = −
∫

du

(u2 + 1)
√

u2 + (x2 + 1)
= (A.69)

=

∫
t · dt

(t2 + 1)
√

(x2 + 1)t2 + 1
= (A.70)

=

tan−1

(√
(x2+1)t2+1

x2

)

|x| . (A.71)

A.2.6: Limiting Case: z = 0

When z = 0, the above formalism cannot be applied, since it would involve a division by zero. Instead,

we start with a modified version of Equation A.10:

∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

dy

[
sinh−1

(
a + by

|y|

)
− sinh−1

(
x1

|y|

)]
, (A.72)

where the parameters are defined in the same way as in Section B.1. These two integrals can be made more

soluble by integrating by parts:

∫

∆∂Σ
G(p,x′) · dS′ =

[
y · sinh−1

(
a + by

|y|

)
+

∫ y2

y1

dy√
(1 + b2)y2 + (2ab)y + a2

−

−y · sinh−1

(
x1

|y|

)
−
∫ y2

y1

x1 · dy√
y2 + x2

1


 . (A.73)

The first integral in Equation A.73 can be performed using Equation A.31, while the second integral can be

performed via trigonometric substitution. The resulting formula at z = 0 is

∫

∆∂Σ
G(p,x′) · dS′ =

[
y · sinh−1

(
a + by

|y|

)
+

a√
1 + b2

· ln

(
2(1 + b2)y + 2ab + 2

√
1 + b2

√
(1 + b2)y2 + 2aby + a2

)
−

−y · sinh−1

(
x1

|y|

)
− x1 · sinh−1

(
y

|x1|

)]y2

y1

. (A.74)

Section A.3: Extension to Non-Right triangles

To extend our previous results to include non-right triangles, we must first define a general triangle in

local coordinates:
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Figure A.2: A non-right triangular sub-element defined by a corner p0, the length of the longest side a and
corresponding height b, and the unit vectors in the directions of the sides connected to p0, labeled n1 and
n2 (n1 always points in the direction of a). The field point is defined as p, with local coordinates (0,0,z).
The corners of the triangle are recast into local coordinates to facilitate integration.

z = (p − p0) · n3, (A.75)

x1 = (p0 − p) · n1, (A.76)

x2 = x1 + a, (A.77)

x3 = x1 + (n1 · n2) · b, (A.78)

y1 =
z

|z| · (p0 − p) · n′
2, (A.79)

y2 = y1 +
z

|z| · b, (A.80)

where n3 = n1 × n2, and n′
2 is the unit normal to n1 in the direction of n2 (n′

2 = n2−(n2·n1)n1
|n2−(n2·n1)n1| ).

The analytic calculation of the Dirichlet Green’s function integral over this triangle can be computed

as the sum of the potentials from two right triangles: applying Equation A.6 using the local coordinates

described in Figure A.2, we get

∫

∆∂Σ
G(p,x′) · dS′ =

(∫ y2

y1

∫ x3

a1+b1y

1√
x2 + y2 + z2

· dx · dy+

+

∫ y2

y1

∫ a2+b2y

x3

1√
x2 + y2 + z2

· dx · dy

)
=

=

(∫ y2

y1

∫ a2+b2y

a1+b1y

1√
x2 + y2 + z2

· dx · dy

)
, (A.81)

where a1 = x1y2−x3y1
(y2−y1) , a2 = x2y2−x3y1

(y2−y1) , b1 = x3−x1
y2−y1 and b2 = x3−x2

y2−y1 . Evaluating the first integral, we use
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Equation A.11 to get

∫

∆∂Σ
G(p,x′) · dS′ = z ·

[∫ u2

u1

du · sinh−1

(
a′

2 + b2u√
u2 + 1

)
−
∫ u2

u1

du · sinh−1

(
a′

1 + b1u√
u2 + 1

)]
, (A.82)

where a′
1 = a1

z , a′
2 = a2

z , u = y
z and ui = yi

z . Using Equation A.12, the solution to this integral is

∫

∆∂Σ
G(p,x′) · dS′ = z ·

[
I1(a′

2, b2,u2) − I1(a′
2, b2,u1) − I1(a′

1, b1,u2) + I1(a′
1, b1,u1)

]
. (A.83)

For the case z → 0, our solution becomes

∫

∆∂Σ
G(p,x′) · dS′ =

[
y · sinh−1

(
a + by

|y|

)
+

a√
1 + b2

· ln

(
2(1 + b2)y + 2ab + 2

√
1 + b2

√
(1 + b2)y2 + 2aby + a2

)
−

−y · sinh−1

(
x1

|y|

)
− x1 · sinh−1

(
y

|x1|

)]y2

y1

. (A.84)

Section A.4: Neumann Boundary Condition

Using the same local parameters as in Section B.1, the integral equation for the Neumann boundary

condition is given by

∫

∆∂Σ
∇G(p,x′) · dS′ = ·

∫ y2

y1

dy

∫ a+by

x1

dx · xx̂ + yŷ− zẑ

(x2 + y2 + z2)
3
2

. (A.85)

From Equation A.85, we begin by computing the x-component:

∫

∆∂Σ
x̂ · ∇G(p,x′) · dS′ =

∫ y2

y1

dy

∫ a+by

x1

dx · x

(x2 + y2 + z2)
3
2

=

=

∫ y2

y1

dy

(
−1√

x2 + y2 + z2

∣∣∣∣∣

a+by

x1

=

= −



∫ y2

y1

dy√
(b2 + 1)y2 + (2ab)y + (a2 + z2)

−
∫ y2

y1

dy√
x2

1 + y2 + z2


=

=
−z

a′ · |z| ·
(
Ĩ3(a′, b,u2) − Ĩ3(a′, b,u1)

)
− z

|z| ·
(
I6(x′

1,u2) − I6(x′
1,u1)

)
.
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The y-component can be computed as follows:

∫

∆∂Σ
ŷ · ∇G(p,x′) · dS′ =

∫ y2

y1

dy

∫ a+by

x1

dx · y

(x2 + y2 + z2)
3
2

=

=

∫ y2

y1

dy

(
y · x

(y2 + z2)
√

x2 + y2 + z2

∣∣∣∣∣

a+by

x1

=

=

(∫ y2

y1
dy

by2 + ay

(y2 + z2)
√

(b2 − 1)y2 + 2(ab)y + (a2 + z2)
−

−
∫ y2

y1
dy

x1y

(y2 + z2)
√

y2 + x2
1 + z2


=

=

(∫ u2

u1
du

bu2 + a′u

(u2 + 1)
√

(b2 − 1)u2 + 2(a′b)u + (a′2 + 1)
−

−
∫ u2

u1
du

x′
1u

(u2 + 1)
√

u2 + x′2
1 + 1


=

=
(
J1 (a,b,u1,u2) − J2

(
x′

1,u1,u2

))
. (A.86)

Solving J1:

J1 (a,b,u1,u2) =

∫ u2

u1
du

bu2 + a′u

(u2 + 1)
√

(b2 − 1)u2 + 2(a′b)u + (a′2 + 1)

=

∫ u2

u1
du

b
(
u2 + 1

)
+ (a′u − b)

(u2 + 1)
√

(b2 − 1)u2 + 2(a′b)u + (a′2 + 1)
=

= b ·
∫ u2

u1

du
1√

(b2 − 1)u2 + 2(a′b)u + (a′2 + 1)
+

+

∫ u2

u1

du
a′u − b

(u2 + 1)
√

(b2 − 1)u2 + 2(a′b)u + (a′2 + 1)
, (A.87)
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which can be recast into Ĩ3 and Ĩ4 from earlier. To solve J2:

J2

(
x′

1,u1,u2

)
=

∫ u2

u1
du

x′
1u

(u2 + 1)
√

u2 + x′2
1 + 1

= x′
1 ·
∫ ζ2

ζ1

dζ
ζ(

ζ2 − x′2
1 − 1 + 1

)
|ζ| =

(
where ζ2 = u2 + x′2

1 + 1
)

= x′
1 ·
∫ ζ2

ζ1

dζ

ζ2 − x′2
1

=

=
x′

1

2|x′
1| ·
(

ln

(
ζ − |x′

1|
ζ + |x′

1|

)∣∣∣∣
ζ2

ζ1

=

=
x′

1

2|x′
1| · ln




(√
u2

2 + x′2
1 + 1− |x′

1|
)(√

u2
1 + x′2

1 + 1+ |x′
1|
)

(√
u2

2 + x′2
1 + 1+ |x′

1|
)(√

u2
1 + x′2

1 + 1− |x′
1|
)


. (A.88)

Finally, the z-component is

∫

∆∂Σ
ẑ · ∇G(p,x′) · dS′ =

∫ y2

y1

dy

∫ a+by

x1

dx · −z

(x2 + y2 + z2)
3
2

=

=

∫ y2

y1

dy

(
−z · x

(y2 + z2)
√

x2 + y2 + z2

∣∣∣∣∣

a+by

x1

. (A.89)

Dividing out by z to make the integral more soluble, we get

∫

∆∂Σ
ẑ · ∇G(p,x′) · dS′ =

= −z ·
∫ u2

u1

du ·
(

z2 · x′

z3 (u2 + 1)
√

u2 + x′2 + 1

∣∣∣∣
a′+bu

x′
1

=

= −
∫ u2

u1

du ·
(

x′

(u2 + 1)
√

u2 + x′2 + 1

∣∣∣∣
a′+bu

x′
1

=

=

∫ u2

u1

du ·


 a′ + bu

(u2 + 1)
√

(b2 + 1)u2 + 2(a′b)u + (a′2 + 1)
− x′

1

(u2 + 1)
√

u2 + (x′2
1 + 1)




= −
(
Ĩ4(a′, b,u1) − Ĩ4(a′, b,u2)

)
− x′

1 ·
(
I7(x′

1,u1) − I7(x′
1,u2)

)
. (A.90)
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APPENDIX B: Analytic Integral Evaluation of Green’s Functions over a Rectangular

Surface

Section B.1: Definition of Initial Parameters

b

a x

y

z

p xx

y

y

z
1

1

2

2

p0 n1

x3

n2

Figure B.1: A rectangular sub-element defined by the position of the corner opposite the hypotenuse p0, the
lengths of the sides a and b, and the unit vectors in the directions of sides a and b, labeled n1 and n2. The
field point is defined as p, with local coordinates (0,0,z). The corners of the triangle are recast into local
coordinates to facilitate integration.

A rectangular surface ∆∂Σ is defined by the position of the vertex opposite the hypotenuse p0, the lengths

of its sides a and b, and the unit vectors defining its sides n1 and n2 (see Fig. B.1). For the computation of

the Green’s function integrals at an observation point p, it is necessary to transform into a local coordinate

frame, where the triangle lies in the x̂-ŷ plane and the field point lies along the ẑ-axis, as depicted in Figure

B.1. In the local coordinate system, the parameters necessary for the calculation are:

z = (p − p0) · n3, (B.1)

x1 = (p0 − p) · n1, (B.2)

x2 = x1 + a, (B.3)

y1 =
z

|z| · (p0 − p) · n2, (B.4)

y2 = y1 +
z

|z| · b, (B.5)

where n3 = n1 × n2.
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Section B.2: Dirichlet Boundary Condition

The analytic calculation of the Dirichlet Green’s function over a rectangular surface is performed as

follows: the integral equation in terms of the local coordinates described in Figure B.1 is

∫

∆∂Σ
G(p,x′) · dS′ =

∫ y2

y1

∫ x2

x1

1√
x2 + y2 + z2

· dx · dy. (B.6)

We can define the indefinite integral I1(x,y,z) as

I1(x,y,z) =

∫
dy√

x2 + y2 + z2
= ln

(
y +

√
x2 + y2 + z2

)
, (B.7)

and recast Equation B.6 in terms of Equation B.7 as

∫

∆∂Σ
G(p,x′) · dS′ =

∫ x2

x1

(I1(x,y2,z) − I1(x,y1,z)) · dx. (B.8)

By defining the indefinite integral I2(x,y,z) as

I2(x,y,z) =

∫
ln
(

y +
√

x2 + y2 + z2
)

· dx =

= z · arctan

(
x√

x2 + y2 + z2

)
− z · arctan

(
x · y

z ·
√

x2 + y2 + z2

)
− x+

+y · ln
(

x+
√

x2 + y2 + z2
)

+ x · ln
(

y +
√

x2 + y2 + z2
)

, (B.9)

we arrive at our final equation:

∫

∆∂Σ
G(p,x′) · dS′ = I2(x2,y2,z) − I2(x2,y1,z) − I2(x1,y2,z) + I2(x1,y1,z). (B.10)

Section B.3: Neumann Boundary Condition

Using the same local parameters as in Section B.1, the integral equation for the Neumann boundary

condition is given by ∫

∆∂Σ
∇G(p,x′) · dS′ = ·

∫ y2

y1

dy

∫ x2

x1

dx · xx̂ + yŷ− zẑ

(x2 + y2 + z2)
3
2

. (B.11)
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We begin by computing the x-component:

∫

∆∂Σ
x̂ · ∇G(p,x′) · dS′ =

∫ y2

y1

dy

∫ x2

x1

dx · x

(x2 + y2 + z2)
3
2

=

=

∫ y2

y1

dy√
x2

1 + y2 + z2
−
∫ y2

y1

dy√
x2

2 + y2 + z2
=

= I1(x1,y2,z) − I1(x1,y1,z) −

−I1(x2,y2,z) + I1(x2,y1,z). (B.12)

By the symmetry of the x and y dimensions in Equation B.11, we can immediately compute the y-component

to be

∫

∆∂Σ
ŷ · ∇G(p,x′) · dS′ = I1(y1,x2,z) − I1(y1,x1,z) −

−I1(y2,x2,z) + I1(y2,x1,z). (B.13)

Finally, the z-component evaluates to

∫

∆∂Σ
ẑ · ∇G(p,x′) · dS′ =

∫ y2

y1

dy

∫ x2

x1

dx · −z

(x2 + y2 + z2)
3
2

=

=

∫ y2

y1

dy

(
−z · x

(y2 + z2)
√

x2 + y2 + z2

∣∣∣∣∣

x2

x1

. (B.14)

Dividing out by z to make the integral more soluble, we get

∫

∆∂Σ
ẑ · ∇G(p,x′) · dS′ =

= −z ·
∫ u2

u1

du ·
(

z2 · x′

z3 (u2 + 1)
√

u2 + x′2 + 1

∣∣∣∣
x′

2

x′
1

=

= −
∫ u2

u1

du ·
(

x′

(u2 + 1)
√

u2 + x′2 + 1

∣∣∣∣
x′

2

x′
1

=

=

∫ u2

u1

du ·


 x′

2

(u2 + 1)
√

u2 + (x′2
2 + 1)

− x′
1

(u2 + 1)
√

u2 + (x′2
1 + 1)




= x′
2 ·
(
I7(x′

2,u1) − I7(x′
2,u2)

)
− x′

1 ·
(
I7(x′

1,u1) − I7(x′
1,u2)

)
, (B.15)

where I7(a,b) is defined in A.

116



APPENDIX C: Pseudocode for Single-Element and Multi-Element Robin Hood

Section C.1: Single-Element Robin Hood

Algorithm 1: Single-Element Robin Hood

Input: A ∈ R
N ×R

N ; x, b ∈ R
N ; rtol ∈ R

+

Output: x ∈ R
N

Data: b′, r ∈ R
N ; m ∈ N; c ∈ R // Ax = b′, b − b′ = r

1 /* initialization */

2 for i = 0 to N do

3 xi = b′

i = 0; ri = bi;
4 end

5 m = 0;
6 /* iteration loop */

7 while
(

rm/ |b|
∞

)
> rtol do

8 /* compute correction */

9 c = rm/Amm;
10 /* update solution */

11 xm = xm + c;
12 /* update vector approximation */
13 for i = 0 to N do

14 b′

i = b′

i + Aim · c;
15 end

16 /* compute residual and identify maximum residual element */

17 m = 0;
18 for i = 0 to N do

19 ri = bi − b′

i;
20 if |ri| > |rm| then

21 m = i;
22 end

23 end

24 end

Section C.2: Multiple-Element Robin Hood
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Algorithm 2: Multiple-Element Robin Hood

Input: A ∈ R
N ×R

N ; x, b ∈ R
N ; rtol ∈ R

+; D ∈ N

Output: x ∈ R
N

Data: b′, r ∈ R
N ; m ∈ N

D ; c ∈ R
D; A′ ∈ R

D ×R
D , r′ ∈ R

D // Ax = b′, b − b′ = r

1 /* initialization */
2 for i = 0 to N do

3 xi = b′

i = 0; ri = bi;
4 end

5 for i = 0 to D do

6 mi = i; r′

i = bi;
7 end

8 /* iteration loop */

9 while
(∣∣r′

∣∣
∞

/ |b|
∞

)
> rtol do

10 /* compute corrections */

11 for i = 0 to D do

12 for j = 0 to D do

13 A′

ij = Amimj
;

14 end

15 end

16 c =
(

A′

)
−1

r′;

17 /* update solution */

18 for i = 0 to D do

19 xmi
= xmi

+ ci;

20 end

21 /* update vector approximation */
22 for i = 0 to N do

23 for j = 0 to D do

24 b′

i = b′

i + Aimj
· cj ;

25 end

26 end

27 /* compute residual and identify maximum residual elements */

28 for i = 0 to D do

29 mi = i;
30 end

31 for i = D to N do

32 ri = bi − b′

i;
33 for j = 0 to D do

34 if |ri| > |rmj
| then

35 for k = j + 1 to D do

36 if |rmj
| > |rmk

| then

37 mk = mj ;
38 break;

39 end

40 end

41 mj = i;
42 break;

43 end

44 end

45 end

46 for i = 0 to D do

47 r′

i = rmi
;

48 end

49 end
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APPENDIX D: Numeric Integration of Scalar and Vector Fields

The following numerical integration technique was used to compute the error 2-norm of the electrostatic

potential and fields in Chapter 4.

Section D.1: Numeric Integration by Riemann Sum

We begin with a function f defined over a d-dimensional domain and with an r-dimensional range

(f : Rd → R
r), and a d-dimensional hypercube C over which the integral is performed. We define a,b ∈ R

d

as the extrema of C, and I ∈ R
r as the analytic result the integration of f over C:

I =

∫

C
f(x)dx =

∫ b1

a1

∫ b2

a2

· · ·
∫ bd

ad

f(x)dx. (D.1)

To approximate this integral, we uniformly partition our region of integration C into nd hypercubes with

equal volume ∆c =
|C|
nd , and define the center of each partition as

xi1i2···id
=

d∑

j

(
aj +

ij − 1
2

n(bj − aj)

)
· ej , (D.2)

where ij ∈ {1,2, . . . ,n} and ej represents the j-th canonical basis vector of our domain. We then define a

function R(f,a,b,n), n ∈ N, as the cell-centered Riemann sum approximation of Equation D.1:

R(f,a,b,n) =

n∑

i1

n∑

i2

· · ·
n∑

id

f(xi1i2···id
)∆c, (D.3)

and we define In ≡ R(f,a,b,n), In ∈ R
r, as the result of our integral approximation.

Section D.2: Error Estimates

Using Richardson extrapolation, we can obtain an error estimate for In when n = 2k, k ∈ N and k > 1.

The following explanation assumes r = 1, but can easily be extended to higher dimensions of the range. We

begin with the assumption that the error of In scales with some power of n:

En ≡ (I − In) ≈ c1 · nc2 , (D.4)
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where c1 and c2 are unknown constants. We then compare successive terms of En:

En = I − In ≈ c1 · nc2 ,

E n
2

= I − I n
2

≈ c1 ·
(

1

2

)c2

· nc2

E n
4

= I − I n
4

≈ c1 ·
(

1

4

)c2

· nc2 . (D.5)

These equations can be simultaneously solved for an approximation of I as

I ≈
InI n

4
−
(

I n
2

)2

In − 2I n
2

+ I n
4

, (D.6)

which can be used to provide a numerical estimate for En:

En ≈
InI n

4
−
(

I n
2

)2

In − 2I n
2

+ I n
4

− In. (D.7)

Using this estimate, we can construct a function E(f,a,b,n) that returns En.

Section D.3: Adaptive Integration

Now that we have the functions R(f,a,b,n) and E(f,a,b,n) to compute the numeric integral and ap-

proximate error of Equation D.1, respectively, we can construct an adaptive integrator that successively

partitions C to acquire a numerical estimate of I while avoiding excessive field sampling in regions of the do-

main where f is well behaved. Pseudocode for this algorithm is provided in Algorithm 3, with the additional

terms Im and Etol as a metric and relative accuracy tolerance, respectively.

Algorithm 3: AdaptiveIntegral( f,a,b,n,Im,Etol)

Input: f : Rd → R
r; a, b ∈ R

d; n ∈ N > 1; Im ∈ R
r; Etol ∈ R

+

Output: I ∈ R
r

Data: E1, E2 ∈ R
r

1 I = R(f, a, b, n);
2 E1 = E(f, a, b, n);
3 E2 = E(f, a, b, n

2
);

4 if |E′

2 − E′

1| > |Im| · Etol then

5 I = 0;

6 Subdivide Domain into 2d domains via bifurcation in each dimension d;

7 for i = 0 to 2d do

8 I = I+ AdaptiveIntegral( f, ai, bi, n, Im, Etol );
9 end

10 end

11 return I;

120



APPENDIX E: Measured and simulated transmission function plots

The following plots depict the measured (black) and simulated (red) transmission functions and their associated

parameters from fitting to Equation 6.40. For the simulated transmission function points, the position of the electron

gun was first corrected to minimize the edge offsets for the ring 12 and ring 13 measurements.
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background  0.0134± 0.009112 
edge      0.009153± -31.91 
width     0.01431± 0.137 

-32.4 -32.2 -32 -31.8 -31.6 -31.4
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1 amplitude  0.004581± 0.996 
background  0.003339± 0.006466 
edge      0.0009875± -46.16 
width     0.00133± 0.08488 

amplitude  0.004581± 0.996 
background  0.003339± 0.006466 
edge      0.0009875± -46.16 
width     0.00133± 0.08488 

Transmission for Config. II, Gun pos. 16.40 11.60

amplitude  0.0008467± 1.001 

background  0.0005776± -0.0006576 
edge      0.0002179± -47.08 

width     0.0002929± 0.09216 

amplitude  0.0008467± 1.001 

background  0.0005776± -0.0006576 
edge      0.0002179± -47.08 

width     0.0002929± 0.09216 

-47.4 -47.3 -47.2 -47.1 -47 -46.9 -46.8
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1 amplitude  0.00522± 0.9982 
background  0.003732± 0.006107 
edge      0.001092± -70.19 
width     0.001466± 0.07854 

amplitude  0.00522± 0.9982 
background  0.003732± 0.006107 
edge      0.001092± -70.19 
width     0.001466± 0.07854 

Transmission for Config. III, Gun pos. 16.40 11.60

amplitude  0.0007029±     1 

background  0.0004768± -0.0001625 
edge      0.0001454± -68.46 

width     0.0001957± 0.07838 

amplitude  0.0007029±     1 

background  0.0004768± -0.0001625 
edge      0.0001454± -68.46 

width     0.0001957± 0.07838 

-68.7 -68.6 -68.5 -68.4 -68.3 -68.2
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1 amplitude  0.003558± 1.001 

background  0.00229± 0.004362 

edge      0.000759± -92.38 

width     0.001019± 0.08314 

amplitude  0.003558± 1.001 

background  0.00229± 0.004362 

edge      0.000759± -92.38 

width     0.001019± 0.08314 

Transmission for Config. IV, Gun pos. 16.40 11.60

amplitude  0.0008519± 1.001 

background  0.0005758± -0.0003733 
edge      0.0001754± -85.26 

width     0.0002358± 0.07723 

amplitude  0.0008519± 1.001 

background  0.0005758± -0.0003733 
edge      0.0001754± -85.26 

width     0.0002358± 0.07723 

-85.5 -85.4 -85.3 -85.2 -85.1 -85
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1 amplitude  0.004556± 1.002 
background  0.002886± 0.005312 
edge      0.0009709±  -107 
width     0.001306± 0.08311 

amplitude  0.004556± 1.002 
background  0.002886± 0.005312 
edge      0.0009709±  -107 
width     0.001306± 0.08311 

Transmission for Config. V, Gun pos. 16.40 11.60

amplitude  0.001044± 0.9999 
background  0.0007099± 0.0002757 
edge      0.0002134± -107.3 
width     0.0002884± 0.07598 

amplitude  0.001044± 0.9999 
background  0.0007099± 0.0002757 
edge      0.0002134± -107.3 
width     0.0002884± 0.07598 

-107.6 -107.5 -107.4 -107.3 -107.2 -107.1 -107
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1 amplitude  0.006765± 1.002 
background  0.004409± 0.008718 
edge      0.001495± -55.87 
width     0.002018± 0.0942 

amplitude  0.006765± 1.002 
background  0.004409± 0.008718 
edge      0.001495± -55.87 
width     0.002018± 0.0942 

Transmission for Config. I, Gun pos. 14.40 10.22

amplitude  0.09747± 1.063 
background  0.06199± -0.05571 
edge      0.03544± -55.19 
width     0.05082± 0.2542 

amplitude  0.09747± 1.063 
background  0.06199± -0.05571 
edge      0.03544± -55.19 
width     0.05082± 0.2542 

-56.2 -56 -55.8 -55.6 -55.4 -55.2 -55 -54.8 -54.6 -54.4 -54.2

U_IE - U_egun (V)
-59.2 -59.1 -59 -58.9 -58.8 -58.7

tr
an

sm
is

si
on

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6
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1 amplitude  0.004636± 0.9977 
background  0.003178± 0.006769 
edge      0.0009706± -58.94 
width     0.001313± 0.07938 

amplitude  0.004636± 0.9977 
background  0.003178± 0.006769 
edge      0.0009706± -58.94 
width     0.001313± 0.07938 

Transmission for Config. II, Gun pos. 14.40 10.22

amplitude  0.0009381±     1 

background  0.0006334± -0.0002192 
edge      0.000196± -59.46 

width     0.0002648± 0.08104 

amplitude  0.0009381±     1 

background  0.0006334± -0.0002192 
edge      0.000196± -59.46 

width     0.0002648± 0.08104 

-59.7 -59.6 -59.5 -59.4 -59.3 -59.2
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1 amplitude  0.005451± 0.9971 
background  0.004204± 0.007791 
edge      0.001118± -75.42 
width     0.001486± 0.07763 

amplitude  0.005451± 0.9971 
background  0.004204± 0.007791 
edge      0.001118± -75.42 
width     0.001486± 0.07763 

Transmission for Config. III, Gun pos. 14.40 10.22

amplitude  0.001259± 0.9997 
background  0.000855± -0.0002437 
edge      0.0002581± -73.35 
width     0.0003501± 0.07689 

amplitude  0.001259± 0.9997 
background  0.000855± -0.0002437 
edge      0.0002581± -73.35 
width     0.0003501± 0.07689 

-73.6 -73.5 -73.4 -73.3 -73.2 -73.1
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1 amplitude  0.00454± 0.9954 
background  0.003394± 0.005714 
edge      0.0009507± -94.66 
width     0.001272± 0.07939 

amplitude  0.00454± 0.9954 
background  0.003394± 0.005714 
edge      0.0009507± -94.66 
width     0.001272± 0.07939 

Transmission for Config. IV, Gun pos. 14.40 10.22

amplitude  0.001053± 1.001 
background  0.0007134± -0.000135 
edge      0.0002163± -87.77 
width     0.0002905± 0.07688 

amplitude  0.001053± 1.001 
background  0.0007134± -0.000135 
edge      0.0002163± -87.77 
width     0.0002905± 0.07688 
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U_IE - U_egun (V)
-107.6 -107.5 -107.4 -107.3 -107.2 -107.1

tr
an

sm
is

si
on

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1 amplitude  0.005209± 0.9966 
background  0.003736± 0.007918 
edge      0.001096± -107.4 
width     0.001465± 0.08005 

amplitude  0.005209± 0.9966 
background  0.003736± 0.007918 
edge      0.001096± -107.4 
width     0.001465± 0.08005 

Transmission for Config. V, Gun pos. 14.40 10.22

amplitude  0.0006731±     1 

background  0.0004571± -0.0001646 
edge      0.0001378± -107.7 

width     0.0001853± 0.07605 

amplitude  0.0006731±     1 

background  0.0004571± -0.0001646 
edge      0.0001378± -107.7 

width     0.0001853± 0.07605 

-108 -107.9 -107.8 -107.7 -107.6 -107.5
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1 amplitude  0.01222± 1.005 

background  0.008068± 0.01073 

edge      0.002812± -52.59 

width     0.003792± 0.1063 

amplitude  0.01222± 1.005 

background  0.008068± 0.01073 

edge      0.002812± -52.59 

width     0.003792± 0.1063 

Transmission for Config. I, Gun pos. 17.20 05.50

amplitude  0.08783± 0.9915 
background  0.05859± -0.02143 
edge      0.0234± -53.1 
width     0.03721± 0.1165 

amplitude  0.08783± 0.9915 
background  0.05859± -0.02143 
edge      0.0234± -53.1 
width     0.03721± 0.1165 

-53.5 -53.4 -53.3 -53.2 -53.1 -53 -52.9 -52.8 -52.7
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1 amplitude  0.004357± 0.9962 
background  0.003099± 0.006189 
edge      0.0009064± -57.15 
width     0.001229± 0.0775 

amplitude  0.004357± 0.9962 
background  0.003099± 0.006189 
edge      0.0009064± -57.15 
width     0.001229± 0.0775 

Transmission for Config. II, Gun pos. 17.20 05.50

amplitude  0.0004265±     1 

background  0.0002876± -0.0001793 
edge      8.95e-05± -58.12 

width     0.0001209± 0.08222 

amplitude  0.0004265±     1 

background  0.0002876± -0.0001793 
edge      8.95e-05± -58.12 

width     0.0001209± 0.08222 

-58.4 -58.3 -58.2 -58.1 -58 -57.9 -57.8
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1 amplitude  0.005223± 0.997 

background  0.003608± 0.00669 

edge      0.001084± -74.56 

width     0.001465± 0.07535 

amplitude  0.005223± 0.997 

background  0.003608± 0.00669 

edge      0.001084± -74.56 

width     0.001465± 0.07535 

Transmission for Config. III, Gun pos. 17.20 05.50

amplitude  0.0008915±     1 
background  0.0006027± 0.0001621 
edge      0.0001835± -72.98 
width     0.000247± 0.07731 

amplitude  0.0008915±     1 
background  0.0006027± 0.0001621 
edge      0.0001835± -72.98 
width     0.000247± 0.07731 
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1 amplitude  0.004545± 0.9993 

background  0.003081± 0.00625 

edge      0.0009472± -94.28 

width     0.001274± 0.076 

amplitude  0.004545± 0.9993 

background  0.003081± 0.00625 

edge      0.0009472± -94.28 

width     0.001274± 0.076 

Transmission for Config. IV, Gun pos. 17.20 05.50

amplitude  0.001158± 0.9995 
background  0.0007867± 0.0005495 
edge      0.0002366± -87.48 
width     0.0003207± 0.07598 

amplitude  0.001158± 0.9995 
background  0.0007867± 0.0005495 
edge      0.0002366± -87.48 
width     0.0003207± 0.07598 

-87.7 -87.6 -87.5 -87.4 -87.3 -87.2
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1 amplitude  0.005583± 0.9946 
background  0.003939± 0.006953 
edge      0.001174± -107.4 
width     0.001588± 0.07869 

amplitude  0.005583± 0.9946 
background  0.003939± 0.006953 
edge      0.001174± -107.4 
width     0.001588± 0.07869 

Transmission for Config. V, Gun pos. 17.20 05.50

amplitude  0.00111±     1 

background  0.0007553± -0.0002638 
edge      0.0002278± -107.7 

width     0.0003061± 0.07661 

amplitude  0.00111±     1 

background  0.0007553± -0.0002638 
edge      0.0002278± -107.7 

width     0.0003061± 0.07661 

-107.9 -107.8 -107.7 -107.6 -107.5 -107.4
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1 amplitude  0.00432± 0.9948 
background  0.003311± 0.008654 
edge      0.0008953± -64.44 
width     0.001204± 0.07761 

amplitude  0.00432± 0.9948 
background  0.003311± 0.008654 
edge      0.0008953± -64.44 
width     0.001204± 0.07761 

Transmission for Config. I, Gun pos. 15.20 04.85

amplitude  0.02852± 1.002 

background  0.02033± -0.003805 
edge      0.007976± -64.92 

width     0.01078± 0.0977 

amplitude  0.02852± 1.002 

background  0.02033± -0.003805 
edge      0.007976± -64.92 

width     0.01078± 0.0977 

-65.3 -65.2 -65.1 -65 -64.9 -64.8 -64.7 -64.6
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1 amplitude  0.005163± 0.9931 
background  0.004028± 0.009582 
edge      0.00105± -64.83 
width     0.001418± 0.07514 

amplitude  0.005163± 0.9931 
background  0.004028± 0.009582 
edge      0.00105± -64.83 
width     0.001418± 0.07514 

Transmission for Config. II, Gun pos. 15.20 04.85

amplitude  0.0007653±     1 
background  0.0005169± 0.0001569 
edge      0.0001584± -65.36 
width     0.0002134± 0.0786 

amplitude  0.0007653±     1 
background  0.0005169± 0.0001569 
edge      0.0001584± -65.36 
width     0.0002134± 0.0786 

-65.6 -65.5 -65.4 -65.3 -65.2 -65.1
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0.8

1 amplitude  0.005754± 0.9931 
background  0.004302± 0.008416 
edge      0.001184± -78.27 
width     0.001594± 0.07361 

amplitude  0.005754± 0.9931 
background  0.004302± 0.008416 
edge      0.001184± -78.27 
width     0.001594± 0.07361 

Transmission for Config. III, Gun pos. 15.20 04.85

amplitude  0.0009776± 0.9997 
background  0.0006626± 0.0003329 
edge      0.0002002± -76.26 
width     0.000272± 0.07677 

amplitude  0.0009776± 0.9997 
background  0.0006626± 0.0003329 
edge      0.0002002± -76.26 
width     0.000272± 0.07677 

-76.5 -76.4 -76.3 -76.2 -76.1 -76
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1 amplitude  0.004524±     1 
background  0.003031± 0.005833 
edge      0.0009308±   -96 
width     0.001258± 0.07458 

amplitude  0.004524±     1 
background  0.003031± 0.005833 
edge      0.0009308±   -96 
width     0.001258± 0.07458 

Transmission for Config. IV, Gun pos. 15.20 04.85

amplitude  0.0006489± 1.001 

background  0.0004392± -2.684e-05 
edge      0.0001333± -89.4 

width     0.000179± 0.07672 

amplitude  0.0006489± 1.001 

background  0.0004392± -2.684e-05 
edge      0.0001333± -89.4 

width     0.000179± 0.07672 
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1 amplitude  0.005588± 0.9962 
background  0.004102± 0.007238 
edge      0.001171± -107.5 
width     0.001569± 0.07859 

amplitude  0.005588± 0.9962 
background  0.004102± 0.007238 
edge      0.001171± -107.5 
width     0.001569± 0.07859 

Transmission for Config. V, Gun pos. 15.20 04.85

amplitude  0.0005429± 1.001 

background  0.0003689± -0.0003549 
edge      0.0001116± -107.8 

width     0.0001501± 0.07692 

amplitude  0.0005429± 1.001 

background  0.0003689± -0.0003549 
edge      0.0001116± -107.8 

width     0.0001501± 0.07692 

-108 -107.9 -107.8 -107.7 -107.6 -107.5
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A Benôıt, A Benoit-Lévy, J P Bernard, M Bersanelli, P Bielewicz, J Bobin, J J Bock, A Bonaldi,
J R Bond, J Borrill, F R Bouchet, M Bridges, M Bucher, C Burigana, R C Butler, E Calabrese,

128



B Cappellini, J F Cardoso, A Catalano, A Challinor, A Chamballu, R R Chary, X Chen, H C Chiang,
L Y Chiang, P R Christensen, S Church, D L Clements, S Colombi, Colombo, L. P. L., F Cou-
chot, A Coulais, B P Crill, A Curto, F Cuttaia, L Danese, R D Davies, R J Davis, P de Bernardis,
A de Rosa, G de Zotti, J Delabrouille, J M Delouis, F X Désert, C Dickinson, J M Diego, K Dolag,
H Dole, S Donzelli, O Doré, M Douspis, J Dunkley, X Dupac, G Efstathiou, F Elsner, T A Enßlin,
H K Eriksen, F Finelli, O Forni, M Frailis, A A Fraisse, E Franceschi, T C Gaier, S Galeotta, S Galli,
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