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ABSTRACT
RICHARD F. MACLEHOSE: Bayesian Methods for Highly Correlated
Exposures: an Application to Tap Water Disinfection By-Products and

Spontaneous Abortion.
(Under the direction of Dr. Jay Kaufman.)

Highly correlated exposures are common in epidemiology. However, standard max-

imum likelihood techniques frequently fail to provide reliable estimates in the pres-

ence of highly correlated exposures. As a result, hierarchical regression methods are

increasingly being used. Hierarchical regression places a prior distribution on the

exposure-specific regression coefficients in order to stabilize estimates and incorporate

prior knowledge. We examine three types of hierarchical models: semi-Bayes, fully-

Bayes, and Dirichlet Process Priors. In the semi-Bayes approach, the prior mean and

variance are treated as fixed constants chosen by the epidemiologist. An alternative is

the fully-Bayes approach that places hyperprior distributions on the mean and variance

of the prior distribution to allow the data to inform about their values. Both of these

approaches rely on a parametric specification for the exposure-specific coefficients. As

a more flexible nonparametric option, one can use a Dirichlet process prior which also

serves to cluster exposures into groups, effectively reducing dimensionality. We examine

the properties of these three models and compare their mean squared error in simulated

datasets.

We use these hierarchical models to examine the relationship between disinfection

by-products and spontaneous abortion. Spontaneous abortion is a common pregnancy

outcome, although relatively little is known about its causes. Previous research has gen-

erally indicated an increased risk of spontaneous abortion among those who consume

higher amounts of disinfection by-products. Right from the Start is a large multi-center

cohort study of women who were followed through early pregnancy. Disinfection by-

product concentrations were measured each week during the study, allowing for more

precise exposure measurement than previous epidemiologic studies. We focus our atten-

tion on the concentrations of 13 constituent disinfection by-products (4 trihalomethanes

and 9 haloacetic acids), some of which are so highly correlated that conventional maxi-

mum likelihood estimates are unreliable. To allow simultaneous estimation of effects, we

implement 4 Bayesian hierarchical models : semi-Bayes, fully-Bayes, Dirichlet process
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prior (DPP1) and Dirichlet process prior with a selection component (DPP2). Models

that allowed prior parameters to be updated from the data tended to give far more

precise coefficients and be more robust to prior specification. The DPP1 and DPP2

models were in close agreement in estimating no effect of any constituent disinfection

by-products on spontaneous. The fully-Bayes model largely agreed with the DPP1 and

DPP2 models but had less precision, while the semi-Bayes model provided the least

precise estimates.
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CHAPTER 1

BACKGROUND

1.1 Spontaneous Abortion

Spontaneous abortion is defined as a pregnancy loss prior to 20 weeks of completed

gestation. The exact risk of spontaneous abortion is unknown, largely because of dif-

ficultly in detecting early pregnancy. However, spontaneous abortion is well known to

be a common occurrence in pregnancy, with over 30% of all pregnancies ending in a

loss and roughly 20% of all pregnancies ending in loss before they are clinically de-

tectable.(Wilcox et al., 1988) Risk of spontaneous abortion remains high (roughly 1.0%

each week) through the 12th week of gestation and then rapidly declines.(Goldhaber

and Fireman, 1991)

Given the high prevalence of spontaneous abortion, it is surprising that so little

is known about its causes. Increased risk of spontaneous abortion has consistently

been associated with advanced maternal age and prior spontaneous abortion.(Coste

et al., 1991; Osborn et al., 2000) Smoking has also been associated with an increased

risk of spontaneous abortion.(Coste et al., 1991; Harlap and Shiono, 1980; Ness et al.,

1999; Windham et al., 1992) In addition, high levels of maternal lead exposure and

paternal occupational exposures such as mercury, lead, and solvents have been asso-

ciated with increased risk of spontaneous abortion.(Hertz-Picciotto, 2000; Lindbohm

et al., 1991a,b; Savitz et al., 1994; Taskinen et al., 1989) Although a number of stud-

ies have found an association between caffeine consumption and spontaneous abortion,

potential recall bias and difficulty with exposure measurement have left any conclusion

uncertain.(al Ansary and Babay, 1994; Cnattingius et al., 2000; Fenster et al., 1991,

1997; Hansteen, 1990; Infante-Rivard et al., 1993; Kline et al., 1991; Mills et al., 1993;

Parazzini et al., 1991, 1998; Signorello and McLaughlin, 2004; Srisuphan and Bracken,



1986; Wen et al., 2001)

1.2 Disinfection Process

One of the first uses of chlorine as a disinfectant was by Semmelweis who reduced

the transmission rate of puerperal fever by hand-washing with chlorine. Following

John Snow’s research on the cause of cholera in London in 1850, interest was raised

in finding ways to provide safe, uncontaminated drinking water. Indeed, Snow himself

added chlorine to the Broad street pump in an effort to eliminate cholera. Thirty-one

years later, Koch formally demonstrated the anti-microbial properties of hypochlorite.

In 1902, the public water supplies in Middelkerke, Belgium began to be routinely treated

with chlorine. The first municipality to adopt chlorination in the United States was

Jersey City, New Jersey in 1908.(White, 1999) Since then, routine disinfection of water

has become standard, although the type of disinfection varies among municipalities.

Water disinfection has become much more sophisticated over the past century, al-

though no single approach to water disinfection is used by all municipalities in the

United States. Federal law stipulates drinking water standards that must be met by all

public water systems (for instance, the allowable concentration of arsenic or coliform).

Each system can meet these requirements in different ways. Some systems, particularly

those served by ground water (roughly 30% of the US population) may need less disin-

fection than public water systems that get their water from surface areas (such as lakes

or reservoirs). Generally, however, water treatment proceeds through a series of three

steps: removal of solids from the water, primary disinfection and residual disinfection.

The removal of solids from the water may proceed by the addition of a coagulant (such

as alum or iron salts) which precipitates suspended matter out of the water. Filtra-

tion can then remove the precipitates as well as smaller solids that did not precipitate

out. Primary disinfection is generally accomplished through the addition of chlorine

(either free chlorine or chloramines) or ozone. Chlorine is the traditional method of

disinfection and has different biocidal properties for different organisms. It is generally

more effective at low pH’s and appears to act through disruption of nucleic acid and

the cell wall.(Dennis et al., 1979; Haas and Engelbrecht, 1980a,b; Venkobachar et al.,

1975) Recently its inability to eliminate all pathogens (particularly Cryptosporidium),

as well as the potential effect of disinfection by-products, has caused concern. Ozone

has more recently been used as an alternative to chlorine in the primary disinfection

process due to its extreme toxicity to organisms, including Cryptosporidium. The chem-
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ical composition of ozone, however, makes it very unstable and insoluble in water and

therefore ozone provides little or no continued disinfection after the water leaves the

treatment facility. To prevent contamination of the newly treated water while it flows

through the pipes, water treatment facilities commonly put a small amount of chlorine

(again, either free chlorine or chloramines) into the water supply before it leaves the

facility. In equal concentrations, chloramines (a mixture of NH2Cl, NHCl2, and NCl3)

are less effective in killing bacteria and viruses but also less likely to combine with

organic material and form disinfection by-products than free chlorine, which has led to

its widespread use.(Hoff, 1986) Finally, in order to remove any residual biotic growth

on pipes downstream of the treatment facility, many public water systems introduce

higher concentrations of free chlorine for a short time each year.

The use of disinfectants in the water supply has led to dramatic decreases in the

incidence of typhoid, paratyphoid, cholera, legionnaire’s disease, and dysentery. How-

ever, the addition of these disinfectants has not been without controversy: chlorination

of water supplies has led to many law suits, which ended in the courts upholding the

rights of the state to disinfect the water supply by routine use of chlorination in order

to better protect the public health.

1.3 Disinfection By-products

Chlorine is a halogen that, in nature, is always found in combined form. Its propen-

sity to react with other molecules enables it to kill microbes and viruses in the water

supply; it also enables it to react with inanimate organic matter. The most com-

mon source of organic matter in the water supply is decaying vegetation, but microbes

and algae contribute significant amounts as well. Because of this, organic matter is

common in surface water, but uncommon in ground water. In 1974, two groups of re-

searchers identified disinfection byproducts in water treated with chlorine.(Bellar et al.,

1974; Rook, 1974) It is now recognized that chlorine reacts with organic matter com-

monly found in surface water to produce a large number of disinfection by-products.

Two classes of disinfection by-products are of interest to us; the first are halogenated

methanes, or trihalomethanes (THMs): chloroform (CHCl3), bromodichloromethane

(CHBrCl2), chlorodibromomethane (CHBr2Cl) and bromoform (CHBr3). The sec-

ond are halogenated acetic acid, or haloacetic acids (HAAs): monochloroacetic

acid (ClAA), monobromoacetic acid (BrAA), dichloroacetic acid (Cl2AA), bro-

mochloroacetic acid (BrClAA), dibromoacetic acid (Br2AA), trichloroacetic acid
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(Cl3AA), bromodichloroacetic acid (BrCl2AA), dibromochloroacetic acid (Br2ClAA),

and tribromoacetic acid (Br3AA).

Following the discovery of disinfection by-products in the water supply, epidemio-

logic studies began to examine potential adverse outcomes associated with disinfection

by-products. These studies initially focused on the effect of disinfection by-products

(particularly THMs) on different types of cancer. Increased risk of bladder cancer and to

a lesser extent rectal and colon cancer have been associated with increased consump-

tion of disinfection by-products.(Crump and Guess, 1982; Mughal, 1992; Villanueva

et al., 2004) Other studies of disinfection by-products and reproductive health have

linked THM4, chloroform and bromodichloromethane to intrauterine death, stillbirth

and miscarriage.(Aschengrau et al., 1989; Bove et al., 1995; Dodds et al., 2004, 1999;

King et al., 2000; Savitz et al., 1995)

1.4 Animal Studies

Animal studies provide some insights into the potential mechanisms by which disinfec-

tion by-products cause spontaneous abortion although most of the exposures in these

studies occur at doses thousands of times higher than humans could ever be exposed to.

The effect of trihalomethanes on reproductive outcomes in rats has been studied the

most extensively. Very high levels of chloroform have not shown teratogenic effects but

have been shown to have fetotoxic effects and reduce fetal weight.(Murray et al., 1979;

Palmer et al., 1979; Ruddick et al., 1983; Schwetz et al., 1974; Thompson et al., 1974)

Chloroform has also been shown to have a toxic effect on the kidney, liver, sex organs

and bone marrow.(Palmer et al., 1979) Chlorodibromomethane has also been shown to

have a fetotoxic response in rats.(Ruddick et al., 1983) Bromodichloromethane, which

had the strong effect on spontaneous abortion in Waller et al., and bromofrom have been

shown by some studies to decrease the viability of offspring; however, other studies have

indicated little effect of either.(Gulati et al., 1989; Narotsky et al., 1997; Ruddick et al.,

1983) Bromodichloromethane has been shown to change sperm morphology.(Klinefelter

and Linder, 1996) Halogenated acetic acids have been less well studied but exposure to

them reduces fetal body weight and changes neural tube development in utero.(Hunter

et al., 1996; Smith et al., 1992, 1988)
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1.5 Previous Research on Disinfection By-products

and Spontaneous Abortion

During 1980 and 1981 an industrial spill from a semiconductor manufacturer leaked

solvents into the groundwater of Santa Clara County, California. An investigation

into whether exposure to these solvents could explain a cluster of spontaneous abor-

tions in the community revealed that hypothesis to be highly unlikely. Surrounding

communities with much higher levels of solvent exposure did not have an increased

rate of spontaneous abortions. (Deane et al., 1989; Wrensch et al., 1990) However,

during these studies the investigators noted that women who drank tap water had

an increased risk of spontaneous abortion, relative to women who drank bottled wa-

ter.(Deane et al., 1989) In order to more thoroughly investigate this surprising finding,

five studies were conducted examining the association between drinking tap-water and

risk of spontaneous abortion. Two retrospective cohort studies found the strongest

associations: Deane et al. reported that increased consumption of tap water was as-

sociated with an increased risk of spontaneous abortion, with an Odds Ratio (OR) of

3.4 and 95% Confidence Interval (CI) of (0.6, 19.4).(Deane et al., 1989) Wrensch et al.

found that relative to not drinking tap water, drinking tap water was associated with

an increased risk of spontaneous abortion (OR= 6.9, 95%CI: 2.7, 17.7).(Wrensch et al.,

1990, 1992) Windham et al. conducted a case-control study and found a moderate

increase in risk of spontaneous abortion among women who reported any consumption

of cold tap water (vs. none) (OR=1.2, 95%CI: 1.0, 1.5).(Windham et al., 1992) Fenster

et al. found a moderately decreased risk of spontaneous abortion among women who

drank tap water relative to non-drinkers of tap water and also noted evidence of report-

ing bias among women in their study.(Fenster et al., 1992) Finally, in a case-control

study, Hertz-Picciotto et al. found that the relationship between tap water consump-

tion and spontaneous abortion depended on whether respondents were interviewed over

the phone (in which case a positive association was found: OR=2.2, 95% CI: 1.4, 3.6)

or through the mail (in which case a much diminished association was found: OR=1.3,

95% CI: 0.8, 2.0).(Hertz-Picciotto et al., 1992) A review of these articles noted that the

effects of the two retrospective studies that showed the largest association may have

been due to recall bias since both studies mentioned the well-publicized solvent spill and

its potential effect on spontaneous abortion in a letter to study subjects.(Swan et al.,

1992) Another study published during the same year, but conducted in a different part

of California, also observed an increased risk of spontaneous abortion among tap-water
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drinkers relative to bottled-water drinkers (RR=2.2, 95%CI (1.3, 3.6)). (Aschengrau

et al., 1989)

All of these studies are limited in their exposure assessment; none attempted to

measure the amount of disinfection by-products in the water, with most relying simply

on consumption of tap-water as a surrogate. In 1995, Savitz et al. used quarterly

averages of THM levels to measure the effect of THM consumption on spontaneous

abortion in a case-control study in central North Carolina. They found a modest in-

crease in the odds of spontaneous abortion (OR=1.7; 95% CI: 1.1, 2.7) for each 50

part per billion unit increase in THM level.(Savitz et al., 1995) In a prospective cohort

study, Swan et al found an increased risk of spontaneous abortion among women who

drank more than 5 glasses of tap water per day (OR=2.2, 95%CI: 1.2-3.9), however

this result was only found in one region of their study. Waller et al. furthered these

findings by assigning a THM level to each woman in the study, equal to the reported

THM level from each woman’s water service provider. They found that of the four tri-

halomethanes, CHBrCl2 was associated with an increased risk of spontaneous abortion

(OR=2.0, 95%CI: 1.2-3.5).(Waller et al., 1998) Waller et al. and a previous analysis

of Right from the Start by Savitz et al. remain the only study that has examined

constituent disinfection by-products rather than the aggregate measures of THM or

glasses of water consumed.(Savitz et al., 2005; Waller et al., 1998)

While these studies generally indicate a positive association between disinfection

by-products and spontaneous abortion, reaching a conclusion about whether the as-

sociation is causal is hindered by limitations in each of the studies. The positive as-

sociations found in earlier studies are consistent with the hypothesis that women who

experienced a spontaneous abortion may be more likely to recall (or perhaps overesti-

mate) the amount of tap water they consumed.(Deane et al., 1989; Hertz-Picciotto et al.,

1992; Neutra et al., 1992; Petitti, 1992; Swan et al., 1992; Wrensch et al., 1992; Zier-

ler, 1992) Only two studies examined disinfection by-product levels in the water, and

of those only Waller examined individual disinfection by-products.(Savitz et al., 1995;

Waller et al., 1998) However, the studies that did examine disinfection by-products

only determined exposure level based on the level reported from the water utility in

their quarterly report, leaving the possibility of substantial misclassification.
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1.6 Highly Correlated Data in Epidemiology

Because of the high proportion of pregnant women who are exposed to disinfection

by-products through tapwater, any effect of disinfection by-products on spontaneous

abortion could have enormous public health implications. Unfortunately, efforts to

measure the effect of the 13 constituent disinfection by-products (4 THMs and 9 HAAs)

on spontaneous abortion are hindered by the high correlation between the disinfection

by-products. The amount of chlorine in the disinfection process, the amount of organic

matter in the water supply, and the amount of bromide in the water supply all effect

the concentration of the 13 disinfection by-products. These common latent factors not

only cause a high correlation but also serve to confound the effect of any one of the 13

constituent disinfection by-products unless the remaining 12 are controlled for (Figure

1.1). Unfortunately, common approaches to controlling confounding, such as maximum

likelihood regression, perform poorly in precisely this setting.

Highly correlated exposure data frequently arise when the multiple exposures are

caused by a single, but frequently latent, factor. Such problems with high correlation

are common in epidemiology. For instance, in nutritional epidemiology vitamins and

nutrient levels will commonly be highly correlated because of food preferences by indi-

viduals. In epidemiologic studies of pesticides, the exposure to certain chemicals may

be correlated because they are common to multiple pesticides. Occupational exposures

may also be highly correlated since a person’s occupation typically dictates exposure

to multiple chemicals.

1.7 Common Methods for Correlated Data

The most common approach to modeling the effect of some exposures on disease in epi-

demiology is by using a maximum likelihood logistic regression model. Unfortunately,

in the presence of highly correlated data, the maximum likelihood logistic model can

produce extremely unstable estimates or even fail to converge.(Hosmer and Lemeshow,

1989) Epidemiologists have tried a variety of approaches to avoid this scenario. A

common approach is to estimate the effect of one exposure at a time, leaving all other

exposures out of the model. This approach produces a much more stable estimate

that will be unbiased if the correlated variables are not also confounders, but it will

produce biased estimates when the correlated variables are confounders. For instance,

in the disinfection by-product example, if each of the 13 disinfection by-products have
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an effect on spontaneous abortion and all are caused by a common unmeasured factor,

then any given exposure is confounded by the remaining 12. A regression model that

estimates the effect of only one disinfection by-product, while excluding the other 12,

will therefore produce confounded estimates of effect. An alternative approach is to col-

lapse the correlated exposure variables into a summary statistic, such as the mean or a

weighted average. Such an approach, while generally allowing the maximum likelihood

logistic regression to converge, is unappealing since it makes interpretation difficult and

can mask important individual effects in the data. For instance, if only one of the 13

disinfection by-products has an effect, an exposure metric that is a weighted average

of all 13 disinfection by-products will show a diluted, and possibly difficult to detect,

effect. Previous analyses of disinfection by-product data have generally adopted this

approach, collapsing the constituent disinfection by-products into categories such as

THMs or HAAs.

Problems with collinearity have motivated a number of alternatives to maximum

likelihood estimation. An early approach was ridge regression, which modifies max-

imum likelihood estimation by including a penalty, k, for large negative or positive

values of the regression coefficients.(Hoerl and Kennard, 1970a,b) This penalty can be

shown to correspond to the inverse of the variance of a normal prior distribution on the

regression coefficients, so that ridge regression is a type of Bayesian estimator.(Lindley

and Smith, 1972) When k = 0, there is an infinite prior variance (no penalty) and

βRG = βMLE (RG=ridge regression estimate, MLE=maximum likelihood estimate);

however with k > 0, ridge regression coefficients will be shrunk toward zero and have

smaller variance than the MLEs.(Hoerl and Kennard, 1970b) As illustration, consider

a normal linear regression

E(Yi|xi1, xi2) = β1xi1 + β2xi2 (1.1)

with the predictors xi1 and xi2 having a bivariate normal distribution with unit variance

and correlation 0.9. Supposing β1 = 2 and β2 = 2, we plot the distribution of the MLE

and ridge regression estimator for a sample of 100 subjects in Figure 1.2. The high

negative correlation of the MLEs is clear from the figure. Ridge regression coefficients

exhibit far less correlation and less overall variance. The MLE are centered very close

to the true value , while the ridge regression estimates are shrunk slightly towards

zero. It will not always be the case that the MLE will be close to the true value;

in highly correlated problems, the MLE could be far from the true values. However,
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results from this example are indicative of the general improved performance for ridge

regression relative to MLE: while MLEs are asymptotically unbiased, their variance

can be enormous and their mean squared error (MSE) is worse than the MSE for ridge

regression estimates, which are slightly biased but have a greatly decreased MSE.(Hoerl

and Kennard, 1970b; Strawderman, 1978)

1.8 Hierarchical Models

Although ridge regression has only seen limited use in epidemiology, it represents a

special case of a broader type of model that has seen some use: hierarchical models.

Hierarchical models are those that define model parameters in an ordered structure.

For instance, a basic linear regression such as that in equation 1.1 models the random

variable yi conditional on parameters β1 and β2. These parameters can in turn be

modeled conditional on other parameters (called hyperparameters), for example βi ∼
N(µ, φ2), where N is a normal distribution with mean µ and variance φ2. In the ridge

regression example, µ = 0 and φ2 = 1/k. Ridge regression stops at this level of the

hierarchy but the hyperparameters (µ and φ2) can in turn be modeled conditional on

still other parameters, for example: µ ∼ N(ψ, ζ) and φ2 ∼ IG(α1, α2), where IG

is the inverse gamma distribution. A parameter, conditional on the parameters one

level above it in the hierarchy, is independent of other parameters. For instance, after

accounting for β1 and β2, the parameters µ, φ2, α1 and α2 contain no information about

yi.

Hierarchical models represent a natural way to formulate problems in epidemiology.

For instance, consider the problem of estimating the effect of disinfection by-products on

spontaneous abortion. A natural first step is to model the outcome, yi, conditional on

the effects of the disinfection by-products, β1 . . . β13: h(Pr(yi)) = β0+x1β1+· · ·+x13β13,

where h(·) is a function such as the logit. In turn, β1 . . . β13 can be modeled as a

function of hyperparameters: βj ∼ N(µ, φ2). The parameter µ can be a function

of other variables (such as an indicator for whether the chemical is brominated), to

incorporate information about how the βj varies over those variables (for instance,

brominated disinfection by-products may have a different effect than non-brominated

disinfection by-products). Although hierarchical models are not necessarily Bayesian,

they lend themselves easily to Bayesian interpretation. For instance, the distribution

placed on βj is the prior distribution and µ incorporates our belief about the size of the

effect of the jth disinfection by-product and φ2 is our uncertainty regarding that effect
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size.

Hierarchical models are becoming more common in epidemiology. They have seen

use investigating the association between occupational exposures and neuroblastoma,

between pesticide exposure and neuroblastoma, between genotypes and bladder cancer,

and between nutrition and breast cancer.(De Roos et al., 2001; Hung et al., 2004;

Kirrane et al., 2005; Witte et al., 1994) However, these models all represent the most

basic Bayesian hierarchical model: one with only two levels. Such models have been

referred to as semi-Bayes models.(Greenland, 1992, 1993, 1994; Greenland and Poole,

1994) However, the hierarchical framework lends itself to being easily expanded past two

levels. Specifying additional levels can allow for large gains in parameter precision and,

paradoxically, can limit the reliance of model estimates on user specified parameters

(such as µ and φ in the semi-Bayes model).

1.9 Summary

Disinfection by-products have been frequently (though not consistently) associated with

spontaneous abortion in both toxicologic and epidemiologic studies. Studies with im-

proved exposure measurement may help elucidate the possible etiologic effect disinfec-

tion by-products have on early pregnancy loss. Previous research has generally aggre-

gated constituent disinfection by-products into categories and analyzed the effects of

these categories on spontaneous abortion. Greater interest may focus instead on the

effect of the constituent disinfection by-products. However, in order to estimate the

effect of any single constituent disinfection by-product, the remaining 12 must be in-

cluded in the model, since failure to include them could result in a confounded estimate

of effect. The 13 constituent disinfection by-products are highly correlated with one

another and standard epidemiologic analytic techniques perform poorly in this arena.

We suggest the use of four related hierarchical models for correlated exposure data:

semi-Bayes, fully-Bayes, and two semi-parametric models. We compare the properties

of these four hierarchical models and implement them in a study examining the effect

of disinfection by-products on spontaneous abortion.
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CHAPTER 2

METHODS

2.1 Overview of Right From the Start

This dissertation implemented four hierarchical models (semi-Bayes, fully-Bayes and

two semi-parametric models) using data from a recently concluded study of pregnancy:

Right from the Start(PI: Dr. David Savitz). Right from the Start was a prospective

cohort study examining the effect of disinfection by-products on spontaneous abortion.

The study was conducted from 2001-2004 and enrolled an ethnically diverse cohort

of women over 18 from 3 study sites with different disinfection by-product distribu-

tions. Site 1 drew its water supply from a lake. The water was initially disinfected

with ozone when it first reached the water treatment plant and then treated with chlo-

ramines before it left the plant. A low concentration of bromides together with a high

concentration of organic matter caused the disinfection by-products in site 1’s water

supply to be distributed most heavily towards the chlorinated THMs and HAAs. For

the entire month of March each year, site 1 added free chlorine to its water supply in

order to disinfect the pipes. The second site drew its water supply from a groundwater

source that had very low levels of organic matter and consequently very low levels of

disinfection by-products were found in its water system. The third site also used chlo-

rination to disinfect its water source, which had high concentrations of organic matter

and bromides, leading to a higher concentration of brominated THMs and HAAs. Like

site 1, site 3 used free chlorine to disinfect its water system once a year for two weeks.

Women were eligible for participation in the study if they 1) were over 18 and

pregnant (or attempting to become pregnant), 2) resided in areas served by one of

the three water systems, 3) were not using assisted reproductive technology, 4) had a

positive pregnancy test 5) intended to carry the pregnancy to term 6) did not intend



to move out of the area before the end of the study 7) were able to read and write in

English or Spanish and 8) if they had not yet conceived, they could not have been trying

to conceive for greater than 6 months. Enrollment in site 1 began in 2001; sites 2 and 3

began enrollment in 2002. Women were recruited into the study through promotional

information in public and private obstetric practices, community-based recruitment

(child-care facilities, churches, fitness clubs, etc), and through local drug stores (where

invitations to join the study were available near pregnancy test kits). After women

contacted the study, an initial screening interview was performed to ensure that they

met eligibility requirements.

2.1.1 Data Collection

If a woman met the eligibility criteria, informed consent was obtained and a base-

line interview was conducted to collect pertinent information including: age, ethnicity,

caffeine consumption, education, marital status, income, smoking status, alcohol use

during pregnancy, previous pregnancy history, menstrual history, diabetes history, vi-

tamin use and water consumption. Following the baseline interview, study participants

were scheduled for an ultrasound that occurred between 6 2/7 and 7 5/7 weeks of

gestation but no later than 14 0/7 weeks. The first trimester ultrasound was used to

accurately determine gestational age of the fetus, fibroid status of the mother, and other

physiologic information. A follow-up interview with all participants occurred between

the 20th and 25th week of gestation and was used to ascertain water use, pregnancy

related symptoms, and prenatal care. Following the end of the pregnancy, trained

chart reviewers abstracted data from each participant’s medical records for outcome

ascertainment as well as additional medical information.

2.1.2 Water Sampling

Water samples from each site were extracted from the water treatment facility in each

city. Samples were taken at the point of entry (POE) of the treated water into the

water system. Four samples of water were obtained weekly from each location for the

duration of the study. The three cities in this study were chosen partly due to their use

of chemical disinfectants that minimize spacial variability of the exposure measurement

over the distribution system. For instance, site 2 had very low levels of organic material

in its water supply and very low levels of disinfection by-products throughout its entire

distribution system. Sites 1 and 3 both used chloramine (for the majority of the year)
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as the secondary disinfectant. Chloramine is less likely to combine with organic mate-

rial and form disinfection by-products outside of the water treatment facility, ensuring

a relatively constant concentration disinfection by-products throughout these to cities.

However, for a period of 2 weeks in site 3 and one month in site 1, free chlorine was

added to disinfect the pipes in the water system. The highly reactive chlorine (which

makes it a particularly good disinfectant) readily combined with organic molecules, pro-

ducing heterogeneity in levels of disinfection by-products throughout the water system.

During the months of free chlorine use in these two cities, samples were drawn from

10 locations throughout each water distribution system, in order to reflect the poten-

tial heterogeneity of disinfection by-product concentrations. Additionally, periodically

during the study, samples were drawn at locations throughout the water distribution

system in order to ensure that disinfection by-product measurements calculated from

samples at the point of entry correlated with measurements throughout the distribution

system. THM samples were analyzed within 2 weeks of collection and HAA samples

within 3 weeks. EPA standard Method 551.1 was used to analyze the concentration

of THM levels in water samples and EPA standard Method 552.2 was used to analyze

HAA concentrations.(EPA, 1995a,b) All samples were analyzed with a 5890 series II

gas chromatograph (Agilent Technologies, Palo Alto, CA) equipped with an electron

capture detector. A carrier gas of Ultra High Purity helium and a make-up gas of Ultra

High Purity Nitrogen were used.

2.2 Overview of Analysis

The purpose of this dissertation was to estimate the effects of the 13 constituent dis-

infection by-products on spontaneous abortion. Because each of the 13 constituent

disinfection by-products depend on shared factors (i.e., the concentration of bromide

and organic matter in the water reservoir and the concentration of chlorine used in

the disinfection process) the effect of any one of the 13 disinfection by-products may

be confounded by the remaining 12, so all must be retained in any regression model

to produce unbiased estimates. A standard maximum likelihood logistic regression

that includes all 13 constituent disinfection by-products would result in unstable esti-

mates because of the high correlation between the disinfection by-products. Instead,

we adopted a hierarchical Bayesian approach that allowed us to stabilize parameter

estimates and incorporate prior knowledge regarding the effects of the constituent dis-

infection by-products on spontaneous abortion. The general Bayesian approach and
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four hierarchical models are described in detail below and in Chapter 3.

2.3 Bayesian Analysis

The vast majority of analytic techniques employed in epidemiology are frequentist and

rely on hypothetical repeated sampling of some super-population for their interpreta-

tion. While there are many reasons to object to frequentist inference (such as violation

of the likelihood principle), there are three very pragmatic reasons why epidemiolo-

gists should be skeptical of a strictly frequentist approach to data analysis.(Lindley

and Phillips, 1976) First, frequentist analyses, by relying on repeated sampling, often

give obtuse answers to questions. For instance, the interpretation of a 95% confidence

interval for an OR is that under a very large number of samples generated in precisely

the same way, 95% of the constructed intervals will contain the true OR. In most epi-

demiologic settings such an interval has little use: the constructed interval in one study

either does or does not contain the true value and the 95% confidence interval does

nothing to inform us whether that it does or does not. Second, there are broad classes

of problems for which frequentist analyses have not produced useful results. Exact

statistics and change-point problems are two examples where frequentist approaches

are limited and/or extremely difficult to implement. Third, human beings are remark-

ably bad at combining evidence in a coherent fashion and frequentist approaches do

not offer any way to combine prior knowledge with the current data.

The Bayesian approach offers a solution to these three limitations. In the first

case, Bayesian inference provides statistics that have a clear interpretation (i.e., a 95%

credible interval around an OR is the region within which we are 95% certain that the

true OR lies). In the second case, Bayes theorem provides a natural and systematic

way to approach complex problems (for example, Bayesian analyses naturally provide

exact statistics without relying on asymptotic assumptions). In the third case, by

incorporating prior knowledge in the analysis, the Bayesian approach provides a way

to coherently update prior knowledge in light of newly collected data.

The essence of the Bayesian approach is that it quantifies prior information about

a parameter (perhaps β = ln(OR)) through a probability distribution, f(β). We may

not (and frequently don’t) believe that the parameter is a random quantity, but instead

use the prior distribution to quantify our prior knowledge. Bayes theorem provides a

method for combining the prior information (f(β)) with some observed data y (charac-

terized by the likelihood function, f(y|β, x)) to generate a distribution that represents
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our new state of knowledge (a posterior distribution, f(β|y)). Bayes theorem for con-

tinuous data is:

f(β|y) =
f(y|β, x)f(β)∫

β
f(y|β, x)f(β)∂β

=
f(y|β, x)f(β)

f(y|x)
. (2.1)

Standard epidemiologic practice is to ignore the prior distribution and base infer-

ences only on the likelihood. For instance, the most common technique in epidemiology

is the logistic regression, in which case:

f(y|β, x) =
N∏

i=1

(
exp(xiβ)

1− exp(xiβ)

)yi
(

1− exp(xiβ)

1− exp(xiβ)

)1−yi

is the likelihood that is maximized in a standard frequentist logistic regression to pro-

duce a maximum likelihood estimate, β̂. Instead, the Bayesian approach specifies a

prior distribution, f(β). For instance, we may assume that the log-odds are normally

distributed with mean µ and variance φ2, in which case f(β) = N(µ, φ2). The prior

distribution and the likelihood are combined in equation 2.1 to give f(β|y), the dis-

tribution of the OR that is our updated prior belief in β’s effect given the observed

data.

2.4 Markov Chain Monte Carlo Algorithms

There are a few special cases in which the posterior distribution from equation 2.1 is

available in closed form, but these are relatively rare. For instance, let y = (y1 . . . yn)′,

X be an n× k design matrix and β = (β1 . . . βk)
′. Then we can define a normal linear

model with normal prior:

f(y|X,β) = N(Xβ, σ2) (2.2)

f(β|β0, Σ0) = Nk(β0, Σ0) (2.3)

where equation 2.2 is the likelihood, σ2 is a known variance of the outcome, equation

2.3 is the prior distribution of β with vector of prior means β0, prior covariance matrix

Σ0 and Nk is a k-dimensional normal distribution with k the number of covariates.

We can combine equation 2.2 and equation 2.3 using Bayes theorem. The posterior
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distribution is available, after some matrix algebra, in closed form as:

f(β|y) = Nk

(
A,B

)

A =
(
X ′X/σ2 + Σ−1

0

)−1(
X ′y/σ2 + Σ−1

0 β0

)

B =
(
X ′X/σ2 + Σ−1

0

)−1

While certain conjugate prior distributions will allow the posterior distribution to

be calculated in closed form, this is seldom encountered in practical applications. In

situations where the posterior distribution is not available in closed form, a variety of

approaches can be taken. Potentially, if the posterior distribution is of small dimension

(only a few parameters) a discrete grid based approach could work well (where the

grid is a set of points of the unknown parameters). Since the likelihood and prior are

known, their product could be calculated for the value of the unknown parameter at

every point on the grid and divided by the sum of all the products to approximate the

posterior density at each grid point. Such approximations are potentially dangerous if

the sample space is large (since the chosen grid may not correspond well to the sample

space with highest posterior probability) and too onerous if the posterior distribution

is of more than 3 or 4 dimensions.

A more fruitful approach is to abandon the task of integrating equation 2.1 and

focus attention instead on drawing samples directly from the posterior distribution,

f(β|y). If a large number of samples of β can be drawn from the posterior distribution,

inference is trivial: we calculate whatever statistic (mean, median, variance) we are

interested in from our generated samples. This also allows us to approximate the

posterior distribution as closely as we like by simply generating more samples.

A widely used approach that allows samples to be drawn from the posterior distri-

bution is Markov Chain Monte Carlo (MCMC) simulation. We focus on a particular

form of MCMC sampling called Gibbs sampling in the remainder of this section.(Casella

and George, 1992) Gibbs sampling is particularly useful in generalized linear models

where a full conditional distribution for a parameter is typically easy to derive or sam-

ple from. A full conditional distribution is the posterior distribution of a parameter

conditional on all other parameters. Gibbs sampling proceeds by repeatedly sampling

parameter values from their full conditional posterior distributions. At each step of the

Gibbs sampler, the conditional posterior distributions are conditioned on the value of

the other parameters at the most recent iteration. Consider the following linear model

with no covariates, just an intercept, β, and an unknown error term, σ2, and prior
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distributions on both of them:

yi ∼ N(β, σ2)

β ∼ N(µ, φ2)

σ2 ∼ IG(α1/2, α2/2)

where IG is the inverse gamma distribution. The inverse gamma distribution is a

common choice for the prior distribution of a variance term, since it allows for easy

computation of conditional posteriors (however, it is not without controversy in some

settings).(Gelman, 2005) A closed form solution is not available for the marginal dis-

tributions f(β|y) and f(σ2|y), but the full conditional posterior distributions can be

easily obtained:

f(β|σ2,y) ∝
∏

f(yi|β, σ2)f(β)

=
∏

N(β, σ2)N(µ, φ2)

∝ N

(
µ/φ2 +

∑
yi/σ

2

1/φ2 + n/σ2
,

1

1/φ2 + n/σ2

)

f(σ2|β, y) ∝
∏

f(yi|β, σ2)f(σ2)

=
∏

N(β, σ2)IG(α1/2, α2/2)

∝ IG

(
α1 + n

2
,
α2 +

∑
(yi − β)2

2

)

A Gibbs sampling algorithm for this model can be implemented by specifying initial

values of β(0) and σ2(0) and sampling from the full conditional posterior distributions

as follows:

1a. [β(1)|σ2(0)]

1b. [σ2(1)|β(1)]

2a. [β(2)|σ2(1)]

2b. [σ2(2)|β(2)]
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3a. [β(3)|σ2(2)]

3b. [σ2(3)|β(3)]

...

Na. [β(n)|σ2(n− 1)]

Nb. [σ2(n)|β(n)]

An initial k number of iterations are discarded to allow the Gibbs algorithm to

achieve convergence, and samples following that burn-in are treated as random draws

from f(β, σ2|y). To find the mean of β, we simply calculate the sample average of

β((k+1)a) . . . β(na). To find the variance of β, we simply calculate the sample variance

of β((k + 1)a) . . . β(na). Similarly, if we wish to calculate the mean of the posterior

distribution of σ2, we can simply calculate the sample mean of σ2((k + 1)b) . . . σ2(nb).

Thus, as this simple example demonstrates, even in the absence of a closed form solution

for the marginal posterior distribution, Gibbs sampling makes it possible to approxi-

mate that distribution by sampling from the full conditional distributions. Although

the resultant samples only form an approximation to the posterior distribution, we can

make our approximation arbitrarily close to the true posterior distribution by simply

running the Gibbs sampler for a larger number of iterations.

2.4.1 Data Augmentation Approach

In non-linear equations however, full conditional posterior distributions can be more

difficult to obtain. For example, in logistic models the full conditionals are not im-

mediately available. Modifications to the Gibbs algorithm that use adaptive rejection

sampling allow Gibbs algorithms to be generated without specifying the full conditional

posterior, however such algorithms can be difficult to implement and slow to converge.

As an alternative, Albert and Chib propose a data augmentation approach that is eas-

ily implemented and allows full conditional posterior distributions to be calculated for

logistic and probit models.(Albert and Chib, 1993) Let yi be a dichotomous outcomes

for the ith individual. We wish to model yi as a function of predictors xi (a 1 × k

vector of predictors) that have effects β = (β1 . . . βk)
′. First consider modeling y using

a probit model:

Pr(y) = Φ(Xβ),
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where Φ is the cumulative of the standard normal distribution. It is possible to express

the probit model as a latent variable model. We assume there is a continuous latent

variable z that generates y by the function:

yi = 1 if zi > 0

yi = 0 if zi ≤ 0

and model the latent variable as a function of the predictors:

Pr(z) = N(Xβ, 1),

where the variance of z is chosen as 1 to ensure identifiability. It is important to note

two features of this formulation. First, introducing a latent variable z does not change

our interpretation of β in any way. Second, it simplifies a non-linear probit model to

an ordinary linear regression and makes full conditional posterior distributions easy to

calculate. Let the prior distribution for β be f(β) = N(β0, Σ0), then the conditional

posteriors are:

f(z|y = 0,β) ∝ N(Xβ, 1) truncated to the right of 0 (2.4)

f(z|y = 1,β) ∝ N(Xβ, 1) truncated to the left of 0 (2.5)

f(β|z, y) ∝ N

((
Σ−1

0 + X ′X
)−1(

Σ−1
0 β0 + X ′y

)
,
(
Σ−1

0 + X ′X
)−1

)
(2.6)

These full conditionals make it easy to implement a Gibbs sampling algorithm to obtain

the posterior distribution for β in a probit model. After specifying initial values of z

and β, we first sample (impute) the latent variable z given y and β using equations

2.4 and 2.5. Next, we sample β conditional on z using equation 2.6.

Extending this result to a logit model is straight forward.(Albert and Chib, 1993;

O’Brien and Dunson, 2004) A t-distribution with 7 or 8 degrees of freedom is a

nearly perfect representation of the logistic distribution. Because sampling from a

t-distribution can be difficult, we express the t-distribution as a scale mixture of nor-

mal distributions. So rather than specifying that z ∼ N(Xβ, 1) as in the probit model,

we can specify z ∼ N(Xβ, σ2φi) with φi ∼ G(ν/2, ν/2). The normal distribution of

z is ’mixed’ over the parameter φi to produce a t-distribution. As a result, if we

choose ν properly we can use this parametrization to produce a logit model. Following

O’Brien and Dunson we choose a value of ν = 7.3 and σ2 ≈ 0.87 for a nearly exact
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approximation of a logistic distribution.

2.4.2 Gibbs Algorithm for Semi-Bayes

The semi-Bayes model is a hierarchical model that places a prior distribution on effects.

In the Albert and Chib data augmentation form, the semi-Bayes model is:

y = 1 if z > 0

= 0 if z < 0

z ∼ N(Xβ, σ2φi)

β ∼ N(β0,Σ0)

φi ∼ G(ν/2, ν/2)

Full conditional posterior distributions of the random variables are immediately avail-

able as:

f(z|y = 0,β) ∝ N(Xβ,W ) truncated to the right of 0

f(z|y = 1,β) ∝ N(Xβ,W ) truncated to the left of 0

f(β|z, y, φ) ∝ N

((
Σ−1

0 + X ′W−1X
)−1(

Σ−1
0 β0 + X ′W−1y

)
,
(
Σ−1

0 + X ′W−1X
)−1

)

f(φi) ∝ G

(
ν + 1

2
,
ν + σ−2(zi − x′iβ)2

2

)

where W is an n× n matrix with diagonal elements σ2 × φi and off diagonal elements

zero. We implement this Gibbs algorithm in Matlab, however Winbugs is capable of

estimating coefficients in semi-Bayes models using adaptive rejection sampling (rather

than relying on the data augmentation approach). Results between the Gibbs algo-

rithm presented above and results from Winbugs should be virtually identical, but by

programming in Matlab we give ourselves greater flexibility (and speed).

2.4.3 Gibbs Algorithm for Fully-Bayes

The fully-Bayes model expands on the semi-Bayes model by allowing the prior variance,

Σ0 to be random. For simplicity, let Σ0 = τ I, where I is the identity matrix and τ is a
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constant prior variance for model coefficients (τ can be allowed to vary over coefficients

with little increase in difficulty). The fully-Bayes model can be written as:

y = 1 if z > 0

= 0 if z < 0

z ∼ N(Xβ, σ2φi)

β ∼ N(β0,Σ0)

τ ∼ IG(α1/2, α2/2)

φi ∼ G(ν/2, ν/2)

The fully-Bayes model allows the prior variance to be update based on the observed

data. This is apparent from the full conditional distributions:

f(z|y = 0,β) ∝ N(Xβ, W ) truncated above at 0

f(z|y = 1,β) ∝ N(Xβ, W ) truncated below at 0

f(β|z,y,φ) ∝ N

((
Σ−1

0 + X ′WX
)−1(

Σ−1
0 β0 + X ′Wy

)
,
(
Σ−1

0 + X ′WX
)−1

)

f(τ |y,β,φ, z) ∝ IG

(
α1 + n

2
,
α2 + (β − β0)

′(β − β0)

2

)

f(φi) ∝ G

(
ν + 1

2
,
ν + σ−2(zi − x′iβ)2

2

)

Because the posterior distribution of τ is conditional on the variance in the observed

data, (β − β0)
′(β − β0), the results of the fully-Bayes analysis will be more robust to

prior specification of τ than the semi-Bayes model.

2.5 Dirichlet Process Prior

The fully-Bayes and semi-Bayes approaches both assume a parametric distribution

for the prior distribution of the coefficients. In the examples above, a normal prior

distribution was chosen, though this is not the only possible distribution. In some

settings, it may be preferable to avoid specifying a prior distribution for the coefficients

and a non-parametric approach may be more appealing. The Dirichlet process prior is
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a prior distribution that allows such non-parametric inference.

Parametric models dominate the epidemiologic literature, with nonparametric ap-

proaches largely limited to rank correlation methods and Kaplan-Meier curves.(Kaplan

and Meier, 1958) Parametric models, as their name implies, specify the parameters that

are used to index specific distributions (e.g., a normal distribution is specified when one

specifies the mean and variance). Non-parametric models differ by not presuming that

the specific distribution is known. Semi-parametric models represent a useful middle

ground between these two classes of models, with one part of the model specified para-

metrically with another specified non-parametrically. Use of semi-parametric models in

epidemiology is limited almost exclusively to Cox’s proportional hazards model, that

specifies a linear predictor and link function but not a baseline hazard function.(Cox,

1972) Although other semi-parametric models are uncommon in the epidemiologic lit-

erature, they have attractive features by ”avoid[ing] restrictive assumptions about sec-

ondary aspects of a problem while preserving a tight formulation for the features of

primary concern.”(Oakes, 1988) For instance in a hierarchical model (see below), a

first level parametric model could be specified for the effect of a covariate on the out-

come while a second level non-parametric model would be specified for the distribution

of the coefficient for that predictor. As many (particularly frequentist) non-parametric

methods reduce assumptions about the parameters in a distribution, Bayesian non-

parametric methods specify a prior that places a probability distribution over the set

of all possible probability distributions. Common choices of priors include the Dirichlet

process and Pólya tree, both of which can be centered on a simple parametric distri-

bution (e.g., normal), while allowing flexible deviations.(Muller and Quintana, 2004)

This approach limits sensitivity and distributional assumptions, while allowing for con-

straints on the unknown distributions, such as smoothness. In contrast, nonparametric

maximum likelihood estimators and other frequentist methods commonly produce es-

timates inconsistent with prior belief - for example, such estimates commonly take the

form of un-smoothed step functions.

2.5.1 The Dirichlet Distribution

Before introducing the Dirichlet process, it is necessary to briefly review the properties

of Dirichlet distributions, which are commonly used in Bayesian analyses but uncom-

mon in epidemiology. The Dirichlet distribution is a multivariate extension of the beta

distribution and is a conjugate prior for the multinomial family of distributions (just
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as the beta distribution is conjugate with the binomial family of distributions). Ran-

dom variables drawn from a Dirichlet distribution are constrained to lie between 0 and

1. Dirichlet distributions have as many parameters as the discrete sample space over

which they are placed has categories. These parameters are restricted to the set of real

numbers greater than 0, and influence the relative probability of sampling from one of

the discrete categories in the sample space. For instance, a prior Dirichlet distribution

could be placed on the probability that a person will respond to one of three possible

answers on a survey question. In this example, three parameters (α1, α2, α3) need to be

specified. The probability of choosing answer j (where j=1,2 or 3) will be αj/
∑3

i=1 αi.

2.5.2 The Dirichlet Process

Dirichlet process, as the name suggests, is a distribution that generates a Dirichlet

distribution. It serves as the genesis of most Bayesian non-parametric techniques and

has the important property that it places a probability distribution over the set of all

possible probability distributions. Developed by Ferguson in 1973, a Dirichlet process,

denoted DP (λD0), serves as a way to randomly generate a distribution D.(Fabius,

1964; Ferguson, 1973; Freedman, 1963) Two parameters specify the Dirichlet process:

D0 is a specified base distribution, such as a standard normal and λ is a positive

scalar precision parameter determining how close draws from DP (λD0) will follow D0.

A random distribution D follows a Dirichlet process, DP (λD0), if for any partition

of a sample space into categories B1,B2, . . . ,Br, then D(B1), D(B2), . . . , D(Br) has a

Dirichlet distribution with parameters (λD0(B1), λD0(B2), . . . , λD0(Br)). As λ → ∞,

the sample distribution D → D0, and thus the Dirichlet process degenerates to the

parametric distribution D0. More intuitive definitions of the Dirichlet Process have

been given; we briefly discuss two of them.

The first definition of the Dirichlet process is via the stick breaking process. Random

draws from a Dirichlet process almost surely generate discrete distributions, as can be

seen more easily in the stick-breaking formulation of the Dirichlet process.(Ferguson,

1973; Sethuraman, 1994) In the stick-breaking construction, we define a draw, D, from

a Dirichlet process as the infinite weighted sum of degenerate point masses δθj
, that

place all their mass on point θj.

D =
∞∑

j=1

wjδθj
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where

wj = zj

j−1∏
s=1

(1− zs)

zj ∼ beta(1, λ)

θj ∼ D0

That is, samples θj are drawn from the base distribution D0. A ”stick” that is

initially of unit length is repeatedly ”broken” to assign a weight, wj, to each θj. Each

wj is broken from what remains of the stick following the previous j − 1 breaks. The

sum of the weighted point masses is D. Note that if λ is large, small weights will (in

expectation) be given to each θj, so any large deviation from the baseline distribution

will receive a small weight and D will tend to closely resemble D0, as can be seen in

Figure 2.1. A small λ will allow large deviations from D0 to potentially have a large

weight and D may not resemble D0, as can be seen in Figure 2.2. The stick breaking

representation of the Dirichlet process nicely represents its discrete nature. A result

of this is that the probability of sampling the same θj more than once is non-zero. In

fact, the discrete nature of the Dirichlet process allows for clustering of data which we

will discuss in more detail below.

The second useful way of describing the Dirichlet process is through the Pólya Urn

representation. Many statistical distributions can be derived from urn models.(Johnson

and Kotz, 1977) The Pólya urn representation serves not only as a way to describe

the Dirichlet process but also as a method of implementing Gibbs sampling algo-

rithms.(Blackwell and MacQueen, 1973; Escobar, 1994; Ferguson, 1973) Consider a

random variable βi which is distributed as some unknown distribution D, which in

turn has a Dirichlet process prior, D ∼ DP (λD0). Sampling βi proceeds as a follows:

1. β1 is sampled from the base distribution, D0.

2. β2 is set equal to β1 with probability p1. Otherwise it is drawn from D0 with

probability 1− p1

3. βj is set equal to βk (k = 1 . . . j − 1), with probability pk; otherwise it is drawn

from D0 with probability 1−∑k
i=1 pi.

We define pj = 1
α+n−1

for j = (1, . . . , n).
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The conditional distribution of βi given β(i) = (β1, . . . , βi−1, βi+1, . . . , βn) is given

by:

[βi|β(i)] ∼ (
1−

∑

j 6=i

pj

)
D0 +

∑

j 6=i

pjδβj

This representation illustrates an important property of Dirichlet processes: the

grouping of observations. A series of n draws from a Dirichlet process will be clustered

into k (k ≤ n) groups. Note that if all draws of βi have the same value, then βi ∼ D0.

We take advantage of this clustering property to both reduce the dimensionality of the

data as well as to cluster effect estimates into groups of disinfection by-products that

have similar effects on risk of spontaneous abortion.

2.5.3 The Dirichlet Process Prior in Practice

Although Dirichlet processes were introduced by Ferguson in 1973 and Dirichlet process

mixture models were introduced by Antoniak in 1974, they were not computationally

feasible until the work of Escobar and West provided MCMC techniques to obtain pos-

terior distributions.(Escobar, 1994; Escobar and West, 1995; Ferguson, 1973; MacEach-

ern, 1994; West et al., 1994) Since then, Dirichlet processes have seen widespread use

in a variety of fields, often with the common theme of needing to reduce the dimen-

sionality of a problem. Cao and West incorporate multiple Dirichlet process priors in a

mixture model to examine neurological response data.(Cao and West, 1996) Dirichlet

process mixture models have also been used in molecular biology to estimate equilibrium

frequencies of gene mutations, where the number of large number of genes makes indi-

vidual estimation of each frequency impossible.(Lartillot and Philippe, 2004) Gelfand

and Kuo use a Dirichlet process prior to aid in the estimation of potency curves in bioas-

say experiments.(Gelfand and Kuo, 1991) Gopalan and Berry propose using Dirichlet

process priors to make multiple comparisons.(Gopalan and Berry, 1998) Generalized

linear models (GLMs) have been extended by incorporating Dirichlet priors reducing

their dependence on model specification and making them semi-parametric. A Dirich-

let process prior on the link function has been implemented by Newton et al.(Newton

et al., 1996) Placing a Dirichlet process prior on coefficients or error terms in a gener-

alized linear model has led to semi-parametric GLMs, generalized linear mixed models

and overdispersed GLM’s.(Kleinman and Ibrahim, 1998; Mukhopadhyay and Gelfand,

1997)
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2.5.4 Dirichlet Process Priors for Clustering Regression Co-

efficients

While both semi-Bayes and fully-Bayes models are a distinct improvement over stan-

dard epidemiologic analytic techniques, they may be unsuitable in two ways. First,

results may be sensitive to the assumed prior distribution of βj and a non-parametric

prior would be preferable. Second, when sufficient prior information exists the co-

efficients may be grouped into exchangeable categories by incorporating second level

coefficients. Unfortunately, in many epidemiologic applications, prior knowledge on

how to group the coefficients may be unknown and a procedure that allows them to be

grouped into clusters based on similarity of effect sizes would be preferred.

An important property of the Dirichlet process prior is its ability to cluster coeffi-

cients into groups. Assuming βj ∼ D and D ∼ DPP (λD0), implies the following prior

distribution on βj:(West et al., 1994)

[βj] ∼ λ

λ + k − 1
D0 +

1

λ + k − 1

∑

i6=j

δβi
(2.7)

were δβi
is a point mass at βi. Thus, βj has a probability of being distributed as the

base distribution, D0, or being clustered with any other βi, i 6= j. Group membership is

determined by the precision parameter λ, with higher probability of clustering any two

coefficients together increasing as λ decreases. At each iteration of the Gibbs sampler,

a coefficient is either clustered in a group with some other coefficient(s) or occupies its

own cluster. It is important to note that while coefficients will be clustered together

during particular iterations of the Gibbs sampler, they will (generally) not be clustered

together at every iteration of the Gibbs sampler. So posterior means of coefficients will

be similar if the two are frequently clustered together, but are unlikely to be identical.

2.5.5 Gibbs Algorithm for Dirichlet Process Priors

The Gibbs sampling algorithm for the Dirichlet process prior model is more difficult

to implement than either the fully-Bayes or semi-Bayes models. Also, unlike the semi-

Bayes or fully-Bayes models, the Dirichlet process prior model cannot be implemented

in Winbugs and requires more programming knowledge. We begin our discussion of the

Gibbs algorithm by expressing the Dirichlet process prior model in hierarchical form:
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y = 1 if z > 0

= 0 if z < 0

z ∼ N(Xβ, σ2φi)

β ∼ D

D ∼ DP (λD0)

λ ∼ G(a, b)

D0 = N(µ, τ 2)

τ 2 ∼ IG(α1/2, α2/2)

φi ∼ G(ν/2, ν/2)

Unlike the semi-Bayes and fully-Bayes models which specified a particular distribu-

tion for βj, the Dirichlet process prior model allows the distribution of βj to be random.

A precision parameter, λ, determines how closely the random distribution follows the

base distribution D0. We have placed a gamma prior distribution on λ to allow the data

to inform about it. The coefficients can be clustered together into k groups that have

unique values: γ1 . . . γk. For instance, β1 and β4 may have a common value γ3, while β2

and β10 have common value γ1. We use the notation (j) to denote a parameter’s value

when the jth element is excluded. For instance, β(j) = (β1, . . . , βj−1, βj+1, . . . βp). In

order to implement a Gibbs sampling algorithm, we need full conditional distributions,

however they are not as easily obtained for the Dirichlet process prior model. The

necessary full conditionals can be shown to be:

f(z|y = 0, β) ∝ N(Xβ,W ) truncated above at 0 (2.8)

f(z|y = 1, β) ∝ N(Xβ,W ) truncated below at 0 (2.9)

f(βj|z,y, φ) ∝ pnew,jN
(
Edpp

j , V dpp
j ) +

k(j)∑

l=1

pl,jδγ
(j)
l

(2.10)

f(τ |y,β,φ,z) ∝ IG

(
α1 + n

2
,
α2 +

∑
(γj − µ)2

2

)
(2.11)

f(φi) ∝ G

(
ν + 1

2
,
ν + σ−2(zi − x′iβ)2

2

)
(2.12)
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where

Edpp
j = (τ−2 +

n∑
i

x2
ij/φ

2
i )
−1(µ/τ 2 +

n∑
i

xijh
(j)
i /φ2

i ) (2.13)

V dpp
j = (τ−2 +

n∑
i

x2
ij/φ

2
i )
−1 (2.14)

We define h
(j)
i = zi−x

(j)′
i β(j). The full conditional posterior distribution of βj contains

the weights:

pnew,j =
λ

λ + p− k(j) − 1
× N(0|µ, τ 2)

∏
N(h

(j)
i |0, φ2

i )

N(0|Edpp
j , V dpp

j )
(2.15)

pl,j =
p

λ + p− k(j) − 1
×

n∏
i=1

N(h
(j)
i |xijβ

(j)
l , φ2

i ) (2.16)

The Gibbs sampling algorithm proceeds by first imputing the latent continuous

variable z. Second, coefficients β1 . . . βp are assigned to clusters γ1 . . . γk. Cluster

allocation is determined by the weights in equation 2.15 and equation 2.16. For each

coefficient, we sample from the multinomial distribution defined by equations 2.15 and

2.16. With probability pnew,j the jth coefficient is assigned to a new cluster or it

is assigned to existing cluster l with probability pl,j. After determining the cluster

allocation of each coefficient, the third step is to define a new design matrix to reflect

the allocation. For example, if we had 4 coefficients that were clustered into groups as

follows:

γ1 = β1 = β2 = β4

γ2 = β3

We would then generate a new matrix, R = (r1, r2) where r1 = (x1 + x2 + x4)

and r2 = x3. Now, the cluster-specific coefficients can be updated by sampling from

N(Eγ, Vγ), where Vγ = (Σ−1
γ + R′W−1

γ R)−1 and Eγ = Vγ(Σ
−1
γ µ + RW−1

γ z) and W γ

is a matrix with diagonal terms σ2φi.

The fourth step of the Gibbs sampler updates the precision parameter using the

data augmentation technique of Escobar and West and updates the prior variance in

the base distribution as in the fully-Bayes model.(Escobar and West, 1998)
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2.5.6 Dirichlet Process Prior with Selection Component

Although we wish to estimate the effect of each exposure, we anticipate that in many

studies some of the exposures will have no effect. If a given exposure has no effect on

the outcome it cannot confound the effect of any other exposure and we would prefer

to exclude it from the model. Variable selection techniques in the epidemiologic liter-

ature are limited, generally relying on backward or forward selection strategies. These

strategies generally look at a large number of models to determine whether individual

terms should be included or excluded. A common exclusion criterion in epidemiologic

variable selection is that the OR of interest change by less than 10% when the variable is

excluded (and frequently includes a component examining whether the variable is an ef-

fect modifier as well). A final model is arrived at and is treated as the only model that

was examined, a strategy leads to inappropriately small reported variances.(Draper,

1995; Leamer, 1978; Raftery, 1996) However, there has been an increasing focus on

variable selection methods in the statistical literature, largely motivated by gene ex-

pression applications.(Efron and Tibshirani, 2002; Newton et al., 2001) For example,

Geweke proposed a mixture prior, that allows an unknown subset of the predictors

to have zero coefficients (βj = 0), while using a normal prior for the remaining coef-

ficients.(Geweke, 1996) When using a Dirichlet process prior for the coefficients, the

exposures are automatically clustered into groups. By using Geweke’s mixture prior

for the group specific coefficients, we allow a cluster of exposures that has coefficients

equal to zero. We adopt this prior distribution in the Dirichlet process prior to per-

form simultaneous variable selection and clustering which is known to have excellent

properties.(Ishwaran and Rao, 2005)

2.5.7 Gibbs Algorithm for Dirichlet Process Prior with Selec-

tion Component

The Gibbs algorithm for the selection component is similar to the algorithm without

it. The hierarchical model can be defined as follows:
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y = 1 if z > 0

= 0 if z < 0

z ∼ N(Xβ, σ2φi)

β ∼ D

D ∼ DP (λD0)

λ ∼ G(a, b)

D0 = πδ0 + (1− π)N(µ, τ 2)

τ 2 ∼ IG(α1/2, α2/2)

φi ∼ G(ν/2, ν/2)

π ∼ beta(a, b)

where δ0 is a degenerate distribution with all its mass at zero. The probability, π, that

a randomly selected coefficient will be zero is given a beta prior to allow the data to

help inform about its value.

The Gibbs sampler proceeds as above except the weights for assigning cluster allo-

cation are now defined:

pnew,j =
λ(1− π)

λ + p− k(j) − 1
× N(0|µ, τ 2)

∏
N(h

(j)
i |0, φ2

i )

N(0|Edpp
j , V dpp

j )
(2.17)

p0,j = π (2.18)

pl,j =
p(1− π)

λ + p− k(j) − 1
×

n∏
i=1

N(h
(j)
i |xijβ

(j)
l , φ2

i ) (2.19)

These weights are used as parameters in the multinomial distribution as before, with the

difference being that now a draw can take the value of another coefficient (pl,j), a new

value (pnew,j), or be assigned a value of zero (p0,j). The next step is to update the cluster

specific coefficients as before. The only additional step is to update the probability of

assigning a coefficient a zero value, π. Its conditional posterior distribution is a function

of the number of coefficients assigned a zero value in the last iteration, n0:

f(π|y,β) = beta(a + n0, b + p− n0)

.

32



2.6 Model Specification for Analysis of Disinfection

By-Products and Spontaneous Abortion

We specified a discrete time hazard model for the probability that a spontaneous abor-

tion occurs in a given gestational week with terms for gestational week specific intercepts

confounders and 13 constituent disinfection by-products. The concentrations of these

by-products were categorized to allow for a more flexible relationship between the logit

of the probability of spontaneous abortion and dose, we categorized constituent disin-

fection by-products into quartiles, when possible. We implemented the four Bayesian

hierarchical models we previously discussed: semi-Bayes, fully-Bayes, Dirichlet process

prior, and Dirichlet process with a selection component. We use the existing literature

to specify prior distributions for these models. Because the results of any analysis de-

pend heavily on modeling assumptions, we performed sensitivity analyses to assess how

changes to our prior specifications alter our assumptions.

We programmed Gibbs sampling algorithms for each of the four models in Mat-

lab.(Mathworks Development, 2005) All models were run for 60,000 iterations, with

the initial 5,000 iterations discarded as a burn-in. The remaining iterations were ex-

amined for convergence by examining trace plots of the sample parameter values by

iteration of the algorithm. Because MCMC algorithms can be sensitive to initial values,

we ran our algorithms several times with different starting values.
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FIGURE 2.1: Histogram of 1000 samples drawn from DP (λ = 50, G0 = N(0, 1)).
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FIGURE 2.2: Histogram of 1000 samples drawn from DP (λ = 5, G0 = N(0, 1)).
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CHAPTER 3

BAYESIAN METHODS FOR

HIGHLY CORRELATED

EXPOSURE DATA

3.1 Abstract

Studies that include individuals with multiple highly correlated exposures are common

in epidemiology. Because standard maximum likelihood techniques often fail to pro-

vide plausible estimates in such instances, hierarchical regression methods have seen

increasing use. Bayesian hierarchical regression places prior distributions on exposure-

specific regression coefficients to stabilize estimation and incorporate prior knowledge

if available. In the semi-Bayes approach, the prior mean and variance are treated as

fixed constants chosen by the researcher. An alternative is a fully-Bayes approach that

places distributions on the prior mean and variance to allow the data to inform about

their values. Both of these approaches typically rely on a normal prior for the exposure-

specific coefficients. As a more flexible semi-parametric option, one can use a Dirichlet

process prior, that clusters exposures into groups, effectively reducing dimensionality.

We compare these hierarchical regression methods and demonstrate the reduced mean

squared error of fully Bayes and Dirichlet process prior models in many instances.



3.2 Introduction

3.2.1 Motivation and Background

Highly correlated exposures are ubiquitous in epidemiologic research, and may arise

due to an association between the measured exposures and one or more latent factors.

For example, pesticide exposures for farm workers tend to be highly correlated because

individuals apply multiple pesticides in a year, with choice of pesticide influenced by

type of crop.(Alavanja et al., 1996; Kirrane et al., 2005) Another example is the cor-

relation in nutrient intake that arises from an individual’s food preferences. Lifestyle

factors can also contribute to dependency between exposures, such as smoking, alcohol

intake, and illicit drug use.

We depict this correlated exposure problem in more general fashion using the di-

rected acyclic graph (DAG) in Figure 3.1. Let x1, . . . , xk denote the levels of k different

exposure variables, let U denote an unmeasured variable or variables explaining the

correlation in x1, . . . , xk, and let Y denote the outcome. Researchers will generally be

interested in estimating effect measures, β1, . . . , βk, for exposures x1, . . . , xk. Hence, a

common strategy is to fit the logistic regression model:

logit{Pr(Yi = 1 |xi1, . . . , xik)} = α0 + β1xi1 + · · ·+ βkxik. (3.1)

Unfortunately, maximum likelihood estimation of the model in equation 3.1 can fail

to converge when predictors are highly correlated, and estimated coefficients may be

unreliable even when convergence is achieved.

This problem has led many epidemiologists to fit logistic regression models incorpo-

rating one exposure variable at a time. However, the other exposure variables may be

confounders and, if so, must be included in order to assess the causal effect of any spe-

cific exposure.(Greenland et al., 1999) Another commonly-used strategy is to collapse

the specific exposure information into summaries, such as a sum across chemicals in a

class. Unfortunately, this results in a loss of information, does not allow inferences on

effects of specific exposures, and can be sensitive to the summary chosen.

3.2.2 Hierarchical Regression

Problems with collinearity have motivated increased use of hierarchical mod-

els.(Greenland, 1992) Ordinary regression models treat the outcome as a random vari-
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able, dependent on parameters. For example in equation 3.1, Yi is a random variable

that depends on the parameters α0 and β1 . . . βk. Hierarchical regression extends ordi-

nary regression models by also treating parameters as random variables that depend

on further coefficients through a prior distribution. Estimates obtained through hi-

erarchical regression are shrinkage estimators in the sense that they are moved away

from the unbiased maximum likelihood estimate (MLE) and toward the center of the

prior distribution. The amount of shrinkage is controlled by the variance of the prior

distribution. A smaller prior variance causes greater shrinkage. By changing the prior

distribution, a wide variety of hierarchical regression models can be specified.

Two types of hierarchical regression models have seen wide use in epidemiologic

research: empirical Bayes (EB) and semi-Bayes (SB).(De Roos et al., 2001; Engel et al.,

2005a,b; Greenland, 1992, 1993, 1994; Greenland and Poole, 1994; Steenland et al.,

2000) These methods vary in how they specify prior distributions on coefficients. A

typical prior distribution for βj (where j indexes the k coefficients in equation 3.1) is

N(µ, φ2), where µ characterizes the investigator’s prior knowledge about the true value

of the coefficients and φ2 is the uncertainty regarding that value. SB and EB procedures

differ in how they treat φ2. EB models use the current data to estimate φ2, while SB

methods offer the researcher an opportunity to specify the prior variance based on

substantive knowledge.(Casella, 1985; Greenland, 1994) One process of elicitation for

φ2 that may be used in SB procedures is for the researcher to specify a range of values

within which 95% of coefficient values are expected to fall under repeated sampling.

This range can be used to calculate a value for the variance term, which is then treated

as fixed and used in the hierarchical model.

Typically, in a model such as equation 3.1, a large number of coefficients will need

to be estimated. Consider a model in which 20 coefficients are estimated and each

has a N(0, φ2) prior. Prior scientific knowledge may exist about the variability of the

estimates, but the data also contain information about that variability, with a simplistic

estimate being the variance about the prior mean of the 20 MLEs. The EB method

uses the observed variability to estimate φ2 but ignores prior substantive information.

The SB method incorporates prior knowledge by treating φ2 as known (and fixed)

but ignores the information regarding the variability of the coefficients about the prior

mean that is contained in the observed data. Thus SB models have a fixed amount

of shrinkage regardless of the support for the prior distribution provided by the data.

Alternatively, a fully-Bayes (FB) approach estimates φ2 by combining prior knowledge

regarding the variance of the coefficients with the observed variability in the data,
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resulting in estimates that will generally be more robust than SB methods and provide

a more realistic summary of the current state of knowledge than EB methods. We note

that although we refer to one particular hierarchical model as a fully-Bayes model, all

four hierarchical models that we present are equally Bayesian, including the SB model.

Our nomenclature was chosen to be in keeping with existing naming conventions.

3.2.3 Extensions

The SB and FB models have potential disadvantages. First, results may be overly

sensitive to the assumed parametric form of the prior distribution. Second, in order for

SB and FB methods to shrink parameter estimates towards multiple prior means, the

coefficients must be specified into classes (e.g., if the coefficients are the effects of differ-

ent pesticides, they could be classified as fungicides or herbicides to allow coefficients

in those classes to be shrunk toward different means). In many situations, it may be

impossible to specify which effects should be grouped in to which classes, or even how

many classes there should be. In this situation, a method that allows the data to guide

the clustering of coefficients into classes would be preferable. For this reason, we place

a Dirichlet process prior (DPP) on the distribution of the coefficients.(Ferguson, 1973,

1974; Gopalan and Berry, 1998) The DPP allows for non-parametric estimation of βj,

while simultaneously clustering the βj into groups based on effect size.

Although we wish to estimate the effect of each exposure, we anticipate that in

many studies some of the exposures will have no effect. If exposure xj (Figure 3.1)

has no effect on the outcome it cannot confound the effect of any other exposure and

we would prefer to exclude it from the model. Variable selection techniques in the

epidemiologic literature are limited, generally relying on backward or forward selection

strategies that increase the type I error rate (Draper, 1995; Leamer, 1978; Raftery,

1996). However, there has been an increasing focus on variable selection methods in

the statistical literature, largely motivated by gene expression applications.(Efron and

Tibshirani, 2002; Newton et al., 2001) For example, Geweke proposed a mixture prior,

that allows an unknown subset of the predictors to have zero coefficients (βj = 0),

while using a normal prior for the remaining coefficients.(Geweke, 1996) When using

a DPP for the coefficients, the exposures are automatically clustered into groups. By

using Geweke’s mixture prior for the group specific coefficients, we allow a cluster of

exposures that has coefficients equal to zero. We adopt this prior distribution in the

DPP to perform simultaneous variable selection and clustering which has been shown

39



to have excellent properties.(Ishwaran and Rao, 2005)

3.3 Properties of SB and FB Estimators

SB and FB models have been discussed in detail elsewhere.(Greenland, 1992, 1993,

1994, 2000; Lindley and Smith, 1972) Here, we illustrate some of their properties in

the simple setting of an ordinary linear regression model in which covariates xi1 . . . xik

are regressed on an outcome yi. For ease of presentation, we assume the linear model

has a known error term, σ2, and that the covariates are orthogonal (i.e., they are not

correlated).

As mentioned above, the SB model incorporates information on βj through a prior

distribution. A typical specification for the SB ordinary linear model is:

[yi|βsb
j ] ∼ N

( k∑
j=1

βsb
j xij, σ

2

)

[
βsb

j

] ∼ N

(
ηj, φ

2
j

)
(3.2)

where the prior mean, ηj, incorporates prior evidence regarding the size of the effect

for the jth coefficient and xij may be standardized so they are on the same scale. Prior

scientific knowledge may indicate that the prior mean is the same for all coefficients,

that it varies across the coefficients (i.e, some coefficients have one prior mean and

others have a different prior mean) or that each coefficient has its own mean. For

example, if β1 . . . βk are the effect of pesticides on retinal degeneration, one could assume

that the prior knowledge of the effect of pesticides is the same for all pesticides (e.g.,

no effect: ηj = 0), or that the effect varies over different classes of pesticides (such

as fungicide, herbicide, insecticide, etc).(Kirrane et al., 2005) In this case, indicator

variables for pesticide class, zlj, can be introduced into the prior distribution by allowing

ηj =
∑p

l=1 θsb
l zlj. The prior variance, φ2

j represents the certainty of the prior evidence

that βsb
j has an effect of size ηj. The prior variance could be specified from a meta-

analysis or could be calculated by choosing a range within which the researcher believes

95% of effect estimates on this topic would lie. Solving the the standard confidence

interval formula for the variance term allows the researcher to specify the prior variance.

The lack of a prior distribution on θsb
l or φ2

j is the distinguishing feature of SB.

The posterior distribution (i.e., the distribution that results when the prior distri-
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bution is updated with the observed data) for βsb
j is given by:

[
βsb

j |Data
] ∼ N

(
ηj/φ

2
j +

∑
xijyi/σ

2

1/φ2
j +

∑
x2

ij/σ
2

,
1

1/φ2
j +

∑
x2

ij/σ
2

)
(3.3)

The posterior mean is an average of the prior mean (ηj) and the maximum likeli-

hood estimate (
∑

xijyi/
∑

x2
ij), inverse weighted by their respective variances, φ2

j and

σ2/
∑

x2
ij. This is the essence of a shrinkage estimator: the posterior distribution of βsb

j

is shrunk towards its prior distribution. For concreteness, we generate a small (n=50)

dataset with 5 orthogonal covariates, none of which have an effect. We assume the SB

model in equation 3.2 with ηj = 0 and k = 5. Figure 3.2 shows the distribution of βmle
1

and βsb
1 for φ2

j = 0.5, 1.0, and 2.0. The amount of shrinkage is a function of the prior

variance: as the prior variance decreases (representing increasing certainty about the

effect of βsb
1 ), the posterior distribution shrinks towards the prior mean. Conversely,

as the prior variance increases the posterior distribution converges to the distribution

of the maximum likelihood estimate. Also, as can be seen from formula 3.3, as the

number of observations increases, the posterior distribution is weighted more heavily

toward the observed data. With orthogonal data of moderate size, the observed data

will quickly overwhelm anything but the strongest priors (i.e., those with very small

φ2), and SB or FB results will be similar to the MLE.

In studies with a large number of covariates, SB methods have been advocated as a

way to reduce problems with multiple comparisons since their shrinkage properties can

decrease the probability of finding false positives.(Hung et al., 2004) We briefly comment

on two troubling aspects of this approach (Appendix 1 contains more details). First, the

lower type-I error rate only occurs when the prior mean is given the value of βj under

the null hypothesis (typically, βj = 0). If a different value is chosen for the prior mean

(including non-null values more consistent with scientific knowledge), the probability of

rejecting the null will increase. Second, although SB methods can improve the overall

error-rate, the improvement may be much less dramatic than most researchers would

prefer. For example, we simulate a dataset with 20 orthogonal covariates and show

(Figure 3.3) the increase in the overall type-I error rate as the number of covariates

being tested increases from 1 to 20 (with prior mean: ηj = 0). The MLE exhibits an

error rate of 5% when 1 covariate is tested and 64.15% when 20 covariates are tested.

On the other hand the SB estimate (with prior variance: φ2 = 1/2) has an error rate

of 4.29% when 1 covariate is tested and 58.43% when 20 are tested. The error rate

for SB models can be reduced by assuming a smaller prior variance, however the level
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of prior knowledge regarding βj required to obtain an ’acceptable’ error rate may be

incommensurate with existing research.

Because φ2 is so vital to SB methods, users are advised to vary it in sensitivity

analyses to see how βsb
j changes with different plausible values of φ2. In Figure 3.2, for

example, φ2 = 1.0 may have been the best guess of the variance of βsb
j with sensitivity

analyses conducted for φ2 = 2.0 and φ2 = 0.5. FB methods implicitly account for this

uncertainty by placing a prior distribution on φ2, resulting in βfb
j estimates that are

averaged over plausible values for φ2. Unlike SB methods that have a fixed amount

of shrinkage, FB models that treat φ2 as random allow shrinkage of βfb
j to be based

not only on the specification of the prior variance but also the observed variability of

βj from the prior mean in the data. Additionally, when the prior mean is a function

of covariates (e.g., ηj =
∑

θlzlj), prior information may exist for the effect of those

variables and a prior distribution can be placed on those parameters. For instance in

the same scenario as above, a typical FB model is specified as:

[
yi|βfb

j

] ∼ N

( k∑
j=1

βfb
j xij, σ

2

)

[
βfb

j |θ, φ2
j

] ∼ N

( p∑

l=1

θfb
l zlj, φ

2
j

)

[
θfb

l

] ∼ N
(
µl, ω

2
l

)
[
φ2

j

] ∼ IG
(
α1, α2

)
(3.4)

Here, the θfb
l are the effects of the zlj covariates and their prior mean, µl, is the prior

knowledge regarding the size of that effect, while the prior variance ω2
l represents

uncertainty in that effect. The prior distribution for the φ2
j is chosen as an inverse

gamma (IG) distribution with parameters α1 and α2. The inverse gamma distribution

is a common choice for the prior distribution of a variance term because of its flex-

ibility and for computational convenience. The prior mean of φ2
j is 1/(α2(α1 − 1))

and its variance is 1/(α2
2(α1 − 1)2(α1 − 2)). In choosing values of α1 and α2 for

an analysis, we suggest specifying a most likely value of φ2 (call this E(φ2)) and a

value for the variance of φ (call this V(φ2)) such that 95% of the reasonable φ2 values

would fall within E(φ2) ± 1.96
√

V(φ2). Solving these equations for α1 and α2 gives:

α1 = (E(φ2)2/V(φ2)) + 2 and α2 = (E(φ2)3/V(φ2) + E(φ2))−1.
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The full conditional posterior distributions for the parameters in the FB model are:

[
βfb

j |Data, σ2
2, θj, φ

2
] ∼ N

(∑
θfb

l zlj/φ
2
j +

∑
xijyi/σ

2

1/φ2
j +

∑
x2

ij/σ
2

,
1

1/φ2 +
∑

x2
ij/σ

2

)
(3.5)

[
θj|Data, βfb

j , φ2
j

] ∼ N

(
µl/ω

2
l +

∑
zljβ

fb
j /φ2

1/ω2
l +

∑
z2

lj/φ
2
j

,
1

1/ω2
l +

∑
z2

ij/φ
2
j

)
(3.6)

[
φ2|Data, βfb

j , θj

] ∼ IG

(
α1 + p/2, (

∑
(βfb

j − zljθ
fb
j )2

2
+

1

α2

)−1

)
(3.7)

The conditional distribution of φ2 is of particular interest. Its adaptive shrinkage prop-

erties are apparent from the
∑

(βfb
j − zljθj)

2 term, that is the variation in the βfb
j from

their prior mean. As the variance of the parameters increases, φ2 also increases and

when the variance decreases, φ2 decreases. Thus, if there is little evidence in the data

to support the prior specification for φ2, the posterior estimate of φ2 is increased to

reflect this. Since φ2 determines the amount of shrinkage, if little evidence in support

of the prior specification of φ2 is seen in the data, φ2 will increase and less shrinkage

will be observed. The converse is also true; if the there is little variability in the data

of the estimates from the prior mean, the posterior estimate of φ2 will decrease and

cause greater shrinkage of βfb
j to their prior distribution. Non-informative values of

α1 and α2 could be chosen to allow the data to completely guide inference, however

epidemiologists generally have information regarding the prior variance and should in-

corporate that knowledge. In cases where prior knowledge is completely lacking, the

inverse gamma prior for φ2 should be avoided in favor of the half-t distribution to ensure

a proper posterior distribution.(Gelman, 2005)

The distribution of βfb
j in equation 3.5 is very similar to the distribution of βsb

j in

equation 3.3. However, the distribution of the SB estimates is conditional on known

values while the distribution of the FB estimates is conditional on random variables

(φ2 and θj). Thus, the distribution of βfb
j should be averaged over these random vari-

ables before inferences are made (i.e., the inferences should be based on the marginal

distribution of βfb
j rather than its conditional distribution). Markov chain Monte Carlo

(MCMC) sampling provides a way to generate the marginal posterior distribution.

Gibbs sampling (a type of MCMC) proceeds by iteratively drawing random samples

from the full conditional distributions in equations 3.5, 3.6 and 3.7, given the value of

the other random variables in the previous iteration. After running the Gibbs sampler

for a large number of iterations and discarding some initial number of iterations to

allow for a burn-in period, the mean and variance of βfb
j in the remaining samples are
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the mean and variance of the marginal posterior distribution of interest. Although we

implemented our Gibbs sampling routines in Matlab, they are also easily implemented

in Winbugs, a freely downloadable program.(Spiegelhalter et al., 1999) Winbugs gener-

ates and runs Gibbs sampling algorithms based on modeling assumptions provided by

the user, so little programming knowledge is required. We also note that MCMC algo-

rithms generate the exact posterior distribution of the coefficient which will be useful

in small datasets (which is also when SB and FB methods will be most useful). This is

an improvement over previous methods for fitting SB models that rely on asymptotic

assumptions.(Witte et al., 1998)

We analyze, under the FB model, the dataset we previously examined for the SB

model. We assume the prior mean for βfb
j is fixed at zero and assume that the pa-

rameters for the prior variance, φ2, are α1 = 1 and α2 = 1. We ran a Gibbs sampling

algorithm for 50000 iterations and excluded the first 5000 iterations as a burn-in pe-

riod. The marginal posterior distributions of βfb
1 and φ2 are presented in Figure 3.4.

The mean of βfb
1 = −0.51, which is between the mean of the SB estimates under the

assumption of a fixed φ2 = 1 (βsb
1 = −0.56) and φ2 = .5 (βsb

1 = −0.43). Although the

mean of the prior variance was 1 in the FB model, βfb
1 . . . βfb

5 exhibited less variability

than the prior indicated, and the posterior mean of φ2 (0.87) decreased to reflect this

additional information. Thus, by incorporating information on φ2 that is contained in

the data, we adaptively allow greater shrinkage of βfb
1 towards its prior mean.

Although we have focused on linear regression with orthogonal data, the results we

have presented can be generalized to correlated data and logistic regression as well. It

is only for computational convenience that we have focused on linear models here. We

implement logistic hierarchical models in simulations and the applied example presented

later in this paper.

3.4 Dirichlet Process Priors

As we will demonstrate through simulations, both SB and FB models are a distinct im-

provement over standard epidemiologic analytic techniques. However, results of either

model may be sensitive to the assumed prior distribution of βj and a non-parametric

prior would be preferable. Further, although when sufficient prior information exists,

coefficients may be grouped into exchangeable categories by incorporating second level

coefficients, in many epidemiologic applications such prior knowledge may not exist.

Instead, we explore a procedure that allows coefficients to be grouped into clusters
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based on similarity of effect sizes before shrinking them toward a prior distribution.

One approach to solving these problems is to assume that the prior distribution of βj

is a mixture of 2 or more distributions. That is, rather than assuming βj ∼ N(ηj, φ
2), we

could assume βj ∼
∑m

k=1 qkN(ηk, φ
2
k), where qk is the probability of βj being distributed

as the kth normal distribution and m is the number of components of the mixture

distribution. Such models, while still parametric, allow for much more flexible modeling

of βj (e.g., allowing multiple modes). However, such mixture priors can be difficult

to implement due to identifiability problems (for instance, there is ambiguity in the

ordering of components) and also require the number of mixtures to be prespecified.

Increased flexibility can be gained by allowing the number of mixture components, m, to

be unknown. This can be accomplished using the DPP, which allows for nonparametric

modeling of βj and simultaneous clustering of the βj into groups.(Richardson and Green,

1997)

In Bayesian nonparametric inference, a common method to limit the dependence of

a parameter on a particular prior distribution is to let the prior distribution itself be

random. For example, in the previous section we had βj ∼ N(µ, φ2). Instead, we could

specify βj ∼ D, where D is an unspecified random distribution. Because D is random

we place a prior distribution on it; in this case we choose a DPP, D ∼ DPP (λD0), where

D0 is a base distribution, such as a normal and λ is a precision parameter determining

how closely D will follow D0. As λ → ∞, then D → D0, so the DPP converges to

the parametric distribution D0 and hence βj ∼ D0. Smaller values of λ indicated less

certainty that βj ∼ D0.

An important property of the DPP is its ability to cluster coefficients into groups.

Assuming βj ∼ D and D ∼ DPP (λD0), implies the following conditional prior distri-

bution on βj:(West et al., 1994)

[βj|β1, . . . , βj−1, βj+1, . . . , βk] ∼
(

λ

λ + k − 1

)
D0 +

(
1

λ + k − 1

) ∑

i6=j

δβi
(3.8)

were δβi
is a point mass at βj = βi. Thus, βj has a probability of being distributed

as the base distribution, D0, or being clustered with any other βi, i 6= j. Prior group

membership is determined by the precision parameter λ, with higher probability of

clustering any two coefficients together increasing as λ decreases.

A semi-parametric version of the FB model (semi-parametric because the distribu-

tion of yi is parametric, while the distribution of βj is non-parametric) can be specified
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as:

yi ∼ N(
k∑

j=1

βjxij, σ
2)

βj ∼ D

D ∼ DP (λD0)

D0 = N(µ, φ2)

λ ∼ G(a, b)

φ2 ∼ IG(α1, α2), (3.9)

where G is a gamma distribution with mean ab and variance ab2. Placing a prior on the

precision parameter, λ, serves the same function as placing a parameter on φ2 in the

FB model: it allows the data to help guide inference rather than relying solely on prior

knowledge. Generally, relatively noninformative values are chosen for a and b, such as

a = 1, b = 1 or a = .01, b = .01. However, empirical Bayes methods are available to

estimate this parameter as well.(McAuliffe et al., 2005)

As with the FB model, marginal distributions are not available in closed form and

estimating these parameters requires a Gibbs sampling algorithm. The properties of

this model can be more clearly seen by briefly describing the Gibbs algorithm used for

posterior computation (a modification of that proposed by Escobar and West).(Escobar

and West, 1995, 1998) At each iteration of the Gibbs sampler, βj is either sampled from

the posterior base distribution (i.e. the distribution of D0 after it has been updated

based on the observed data) or is set equal to the value of one of the other βi, i 6= j

coefficients. That is, each coefficient is either clustered with another coefficient or

sampled from the posterior base distribution.

In many situations, such as the one in Figure 3.1, a variable selection technique

may be beneficial. For efficiency, we may wish to exclude variables that have no effect

on the outcome or there may be prior substantive knowledge that the exposure has no

effect. In either case, modification of the base distribution D0 in equation 3.9 allows a

variable selection prior to be incorporated in a DP model. Following the approach of
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Dunson et al., we specify a second DP model:(Dunson et al., 2005)

yi ∼ N(
k∑

j=1

βjxij, σ
2)

βj ∼ D

D ∼ DP (λD0)

D0 = πδ0 + (1− π)N(µ, φ2)

λ ∼ G(a, b)

π ∼ beta(c, d)

φ2 ∼ IG(α1, α2) (3.10)

where δ0 indicates a point mass at the value zero. The base distribution has a value

of 0 with probability π, and distribution N(µ, φ2) with probability 1− π. This simple

modification to the base distribution, allows βj to be exactly equal to 0, in which case

it is effectively removed from the regression equation, 100π% of the time. When π = 0,

this model reduces to the first DPP model. The coefficient π is given a beta(c, d)

distribution in order to allow the data to inform the probability that a coefficient is

zero. Elicitation of c and d can proceed by specifying the expected probability, E(π),

that a randomly selected coefficient is zero and the variance surrounding that estimate,

V(π). Solving the equations for the mean and variance of the beta distribution:

c =
E(π)2 − E(π)3

V(π)
− E(π)

d =
E(π)3(1/E(π)− 1)2

V(π)
+ E(π)− 1.

3.5 Performance of Models in Simulated Datasets

To assess these models (SB, FB, DPP, and DPP with selection prior) and their ability

to estimate effects in a variety of scenarios, we examined their performance in simulated

data. Data were simulated from the logistic model:

logitPr(Yi = 1 |xi1, . . . , xi10) = β0 + β1xi1 + · · ·+ β10xi10,

with 1) all βj = 0; 2) β1 = 0.5 and β2 . . . β10 = 0; 3) β1 . . . β5 = 0.5 and β5 . . . β10 = 0;

4) β1 = 0.05, β2 = 0.1, β3 = 0.15 . . . β10 = 0.5. Each of the 4 models was simulated for
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orthogonal data and for data with a correlation of 0.9 between each of the 10 variables.

Datasets of 500 observations were generated from each model and were analyzed using

a standard maximum likelihood logistic regression as well as a logistic regression with

the priors specified in Table 3.1. Gibbs sampling algorithms to analyze each model were

programmed and run in Matlab for 10,000 iterations. The initial 3000 iterations were

discarded as a burn-in. Prior parameter values (shown in Table 3.1) were chosen to

enhance comparability between the results of the models. We simulated each dataset

250 times and estimate the MSE (i.e., average squared difference between the model

estimate and true parameter) for each of the estimates (the posterior means) as shown

in figure 3.5. Because of the moderate size of the dataset, the ML, SB and FB methods

all produced roughly equivalent MSE in orthogonal data. However, ML had a notably

worse MSE than other methods, and FB methods performed somewhat better than SB

in highly correlated data. The two DPP models generally had better performance than

ML, SB, and FB models not only in terms of MSE, but also had lower type-I error

rates and higher power. In the 2nd set of simulations, in which only one coefficient had

an effect, the DP model with a selection prior had poorer MSE for the coefficient with

an effect (but still had far better MSE for the coefficients that had no effect). Even in

the 4th set of simulations, where none of the coefficients had the same effect, the two

DPP models performed somewhat better than the FB and SB models.

3.6 Application to Study of Pesticides and Retinal

Degeneration

The Agricultural Health Study (AHS) enrolled farmers who applied for pesticide li-

censes in Iowa or North Carolina between 1993 and 1997 and has been described in

more detail elsewhere.(Alavanja et al., 1996) Kirrane et al. recently examined the as-

sociation between pesticide exposure and retinal degeneration among the wives of AHS

farmers.(Kirrane et al., 2005) A questionnaire was sent to spouses of farmers to de-

termine if they had retinal degeneration and to determine, among other things, the

types of pesticide they had used. We analyzed the same cohort Kirrane et al. used

in their analysis (31,173 women,281 of whom experienced retinal degeneration), but

limit our analysis only to herbicides, of which there are 18 unique chemicals. Table

3.2 shows the 4 hierarchical models used to analyze the data. Gibbs sampling algo-

rithms were programmed in Matlab and run for 50,000 iterations with the initial 5,000
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excluded as a burn-in period. The results of the models are presented in Table 3.3.

The maximum likelihood model estimated a large effect of imazethapyr on macular

degeneration (OR=2.6, 95% CI (1.0, 6.3)). The result is statistically significant but

imprecise. The hierarchical models shrunk this result toward the prior distribution to

varying degrees. The SB model produced an effect of imazethapyr that was no longer

statistically significant but still markedly elevated (OR=1.7, 95% CI (0.8, 3.6)). The

FB, DPP1 and DPP2 models were all in agreement, indicating little evidence of effect of

imazethapyr on macular degeneration. Because little variability was observed between

estimated coefficients, the posterior of the prior variance, φ2, was much smaller in the

FB, DPP1 and DPP2 models than its fixed value in the SB model and subsequently

greater shrinkage was observed in these models.

3.7 Discussion

Highly correlated data are common in epidemiologic research, however standard ana-

lytic techniques can produce extremely imprecise confidence intervals or fail altogether

in this setting. In this paper, we have examined four Bayesian models for use in this

context; however, these models may have broad use beyond highly correlated data

settings (for example in problems with a large number of covariates).

When deciding which of the four models to use in an analysis, consideration should

be given to the properties of each model as well as the computational skill required

to implement them. Of the four methods, SB and FB are the easiest approaches

computationally. Either model can be easily implemented in Winbugs, using the code

we provide in the appendix as a starting point. The advantages of the FB approach over

the SB approach justify its use despite the (very) minor increase in computation. SB

estimates assume a fixed prior variance, while FB estimators update the prior variance

based on the observed data. This ’Bayesian learning’ allows for adaptive shrinkage

in FB models and makes their estimates more data-driven and less sensitive to prior

specification than SB estimates. Further, in some epidemiologic settings the prior

variance may be a parameter of scientific interest and rather than specifying its value

(as in SB models), the researcher may wish to estimate it. However, as the sample

size increases, the difference between FB and SB (and MLE) will tend to decrease. In

orthogonal (or nearly orthogonal data), specifying a prior distribution as FB or SB may

make little difference unless the prior variance is very small. In highly correlated data

specification of a prior distribution can make a large difference.
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Although more computationally intensive than the FB or SB models, the two DPP

models discussed in section 3 have very desirable properties in many situations. In

models where some coefficients have similar values, the DPP models decrease MSE by

aggregating data within clusters of coefficients. Indeed, even if the clustered coefficients

are not exactly identical (as in the 4th set of simulations in Figure 3.5), occasionally

clustering them together can still reduce MSE. However, when clustering of coefficients

can occur, the DPP models perform remarkably well. The decision to implement the

DPP with or without the selection component should be made on substantive grounds.

When researchers have a high prior probability that many of the effects in question

may be zero, the selection prior can help estimation. However, when the true value

of most coefficients is zero and only a few coefficients are non-zero (but still close to

zero), the selection prior could perform slightly worse than the DPP model without the

selection prior.

In summary, the difficulties of analyzing highly correlated data can be greatly dimin-

ished through Bayesian methods. The SB, FB and two DPP models we examine in this

paper provide useful alternatives to current ML techniques. FB models are generally

superior to SB models and are easily implemented in Winbugs. DPP models, although

more difficult to implement, often have better performance than other methods.
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TABLE 3.1: Hierarchical models used in analysis of simulated data.

SB∗ FB∗

βj ∼ N(0, 1) βj ∼ N(0, φ2)
φ2 ∼ IG(3, 1/2)

DPP1∗ DPP2∗

βj ∼ D βj ∼ D
D ∼ DP (λD0) D ∼ DP (λD0)

D0 = N(0, φ2) D0 = πδ0 + (1− π)N(0, φ2)
λ ∼ G(5, 1) λ ∼ G(5, 1)

φ2 ∼ IG(3, 1/2) φ2 ∼ IG(3, 1/2)
π ∼ beta(1, 1)

* SB=semi-Bayes; FB=fully-Bayes; DPP1=Dirichlet process prior; DPP2=Dirichlet

process prior with selection component
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TABLE 3.2: Hierarchical models used to analyze Agricultural Health Study data on
herbicides and macular degeneration.

SB∗ FB∗

βj ∼ N(0, .35) βj ∼ N(0, φ2)
φ2 ∼ IG(2.1, 2.5)

DPP1∗ DPP2∗

βj ∼ D βj ∼ D
D ∼ DP (λD0) D ∼ DP (λD0)

D0 = N(0, φ2) D0 = πδ0 + (1− π)N(0, φ2)
λ ∼ G(1, 1) λ ∼ G(1, 1)

φ2 ∼ IG(2.1, 2.5) φ2 ∼ IG(2.1, 2.5)
π ∼ beta(1.5, 1.5)

* SB=semi-Bayes; FB=fully-Bayes; DPP1=Dirichlet process prior; DPP2=Dirichlet

process prior with selection component
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* OR, odds ratio; CI, confidence interval for ML and credible interval for SB, FB,

DPP1, and DPP2; MLE, maximum likelihood estimate; SB, semi-Bayes; FB, fully-

Bayes; DPP1, Dirichlet process prior; DPP2, Dirichlet process prior with selection

component

† 2,4,5-TP, 2,4,5-trichlorophenoxypropionic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic

acid; 2,4-D, 2,4-dichlorophenoxyacetic acid; EPTC, S-ethyl dipropylthiocarbamate

‡ All models adjusted for state and age.
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FIGURE 3.1: DAG for correlated exposure variables.

55



F
IG

U
R

E
3.

2:
D

is
tr

ib
u
ti

on
of

S
B

an
d

M
L

es
ti

m
at

or
s.

56



Figure 3.2: Distribution of SB and ML estimators.

solid line: distribution of ML estimator.

dashed line: distribution of βsb
1 with φ2

j = 2

dotted line: distribution of βsb
1 with φ2

j = 1

dash-dot line: distribution of βsb
1 with φ2

j = .5

verticle line: true value of β1
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Figure 3.3: Probability of finding at least one false positive result in SB models as the

number of covariates increases.

solid line: ML estimate.

dashed line: φ2
j = 2

dotted line: φ2
j = 1

dash-dot line: φ2
j = .5
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Figure 3.4: Distribution of βfb
1 and φ2 in FB analysis with α1 = 1 and α2 = 1.

Verticle line: true value of β1.
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Figure 3.5: Mean squared error of parameter estimates under different combinations of

coefficient effects and correlation. The parameter estimates from the 5 models (MLE,

SB, FB, DPP, DPP with selection component) are grouped in order within each of the

10 coefficients.

label:

1) all βj = 0 2) β1 = 0.5 and β2 . . . β10 = 0 3) β1 . . . β5 = 0.5 and β5 . . . β10 = 0, 4)

β1 = 0.05, β2 = 0.1, β3 = 0.15 . . . β10 = 0.5
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3.8 Appendix 1

Bayesian credible intervals, the region within which we are 100(1− α)% certain βj lies

given our prior knowledge, can be calculated using the posterior mean and variance in

equation 3.3:

Esb
j − zα/2

√
V sb

j ≤ βj ≤ Esb
j + zα/2

√
V sb

j

While credible intervals give our certainty regarding the size of βj, frequentist confidence

intervals only offer 100(1 − α)% coverage probability of the true effect over repeated

studies. Credible intervals do not generally guarantee the same coverage probability as

confidence intervals. Instead, the frequentist coverage probability of Bayesian credible

intervals can be calculated as:

2× Φ

(
zα/2

(
1 +

σ2

φ2
j

∑
x2

ij

)1/2

− µj − βj

φ2
j

(
σ2

∑
x2

ij

)1/2)
(3.11)

where Φ is the cumulative probability of the standard normal distribution. The prob-

ability of covering the true parameter is plotted in Figure 3.6 by values of the prior

mean and variance in a sample dataset. It is clear from the figure that how well the

credible intervals cover the true parameter value depends on the specification of the

prior distribution. As the prior variance increases, the credible intervals provide nomi-

nal 100(1− α)% coverage of the true parameter. As the prior variance decreases (i.e.,

as more belief is placed in the prior mean), coverage generally decreases as the credible

intervals become increasingly narrow about the prior mean. The exception occurs when

the prior mean is equal to the true mean and coverage increases as the prior variance

decreases. As a special case (the dotted line in Figure 3.6), consider testing the null

hypothesis that βj = 0. The increased coverage of the null hypothesis when ηj = 0

implies that the SB estimate will be less likely to flag a result as significant than the

MLE.
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Figure 3.6: Coverage probability for credible intervals by prior mean and variance.

dotted line: prior mean=0

dashed line: prior mean=1

dash-dot line: prior mean=5
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CHAPTER 4

A BAYESIAN HIERARCHICAL

ANALYSIS OF DISINFECTION

BY PRODUCTS AND

SPONTANEOUS ABORTION

4.1 Abstract

Spontaneous abortion (SAB) is a common pregnancy outcome, with over 30% of all

pregnancies ending in loss. Previous research suggests an increased risk of SAB among

those who consume higher amounts of tap-water disinfection by-products (DBPs).

Right from the Start is a large multi-site cohort study of women’s exposure to DBPs

followed through early pregnancy. We examined the effect of 13 constituent DBPs (4

trihalomethanes and 9 haloacetic acids) on SAB. Some of the constituent DBPs are

highly correlated making conventional maximum likelihood regression models contain-

ing all DBPs unreliable. To allow simultaneous estimation of effects, we implemented

4 Bayesian hierarchical models : semi-Bayes (SB), fully-Bayes (FB), Dirichlet process

prior (DPP1) and Dirichlet process prior with a selection component (DPP2). Models

that allowed prior parameters to be updated from the data gave far more precise coef-

ficients and were more robust to prior specification. The DPP1 and DPP2 models were

in close agreement in estimating no effect of any constituent DBP on SAB. The FB

model largely agreed with the DPP1 and DPP2 models but had less precision, while

the SB model provided the least precise estimates. Our results suggest none of the

constituent DBPs have an effect on SAB.



4.2 Introduction

Spontaneous abortion (SAB), defined as a pregnancy loss prior to 20 weeks of com-

pleted gestation, is a common occurrence, with over 30% of all pregnancies ending in a

loss.(Wilcox et al., 1988) Increased risk of SAB has consistently been associated with

advanced maternal age, smoking and prior spontaneous abortion.(Coste et al., 1991;

Ness et al., 1999) Caffeine consumption and exposure to industrial solvents and heavy

metals have also been associated with SAB, though with less consistency.(Fenster et al.,

1991, 1997; Hertz-Picciotto, 2000; Savitz et al., 1994)

In the 1980’s, a series of epidemiologic studies found an association between high

consumption of tap water during pregnancy (relative to low consumption of tap wa-

ter) and SAB.(Aschengrau et al., 1989; Fenster et al., 1992; Swan et al., 1992, 1998;

Windham et al., 1992; Wrensch et al., 1992) Mechanisms through which increased con-

sumption of tap water could increase the risk of SAB are unknown. However, certain

disinfection by-products (DBPs) present in tap-water have been consistently associated

with an increased risk of bladder and colorectal cancer and have been shown to have

fetotoxic effects in rats.(Mughal, 1992; Nieuwenhuijsen et al., 2000) Chlorine, the most

common drinking water disinfectant in the United States, combines with organic matter

in the water supply to produce DBPs. Two classes of DBPs have been subject to regu-

lation in the U.S.: trihalomethanes (THMs), consisting of CHCl3, CHBrCl2, CHBr2Cl,

and CHBr3 and haloacetic acids (HAAs), consisting of ClAA, Cl2AA, Cl3AA, BrAA,

Br2AA, Br3AA, BrClAA, BrCl2AA, and Br2ClAA. Little epidemiologic research exists

regarding HAAs and SAB. Results of previous research are inconsistent but suggest

there may be an increased risk of SAB among women with higher intake of THMs

(particularly CHBrCl2).(Savitz et al., 1995; Waller et al., 1998)

The purpose of this study is to estimate the effects of the tap water concentration of

13 constituent DBPs on SAB. Although, concentration of DBPs may be less biologically

relevant than amount of ingested DBPs, we believe tap water concentration serves as

a meaningful proxy. Because each of the DBPs depend on shared factors (i.e., the con-

centration of bromides and organic matter in the water reservoir and the concentration

of chlorine used in the disinfection process), the effect of any one of the 13 DBPs may

be confounded by the remaining 12, so all must be retained in a regression model to

produce unbiased estimates. A standard maximum likelihood logistic regression that

includes all 13 constituent DBPs would result in unstable estimates because of the

high correlation among the DBPs. Instead, we adopt a hierarchical Bayesian approach
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that allows us to stabilize parameter estimates while incorporating prior knowledge

regarding the effects of the constituent DBPs on SAB.(MacLehose et al., 2005)

4.3 Methods

4.3.1 Study Design

Right from the Start (RFTS) was a prospective cohort study designed to investigate

effects of DBPs on spontaneous abortion.(Promislow et al., 2004) A diverse cohort of

2483 women over 18 was enrolled from 3 metropolitan areas between 2001 and 2004.

Women were eligible for enrollment if they could speak English or Spanish, had not

used assisted reproductive technology to conceive, intended to carry the pregnancy to

term, and did not plan to move outside of the area of study. A baseline interview was

conducted to collect information on potential confounding factors and last menstrual

period, which was used to date the onset of pregnancy. The time at which a pregnancy

loss occurred was determined by self-report or chart abstraction. Water samples were

taken at treatment facilities in the 3 metropolitan areas weekly in two sites and once

every 2 weeks in the other site that had low DBP levels. EPA standard methods were

used to estimate the concentration of THM and HAA, respectively.(EPA, 1995a,b)

A concentration for each of the 13 constituent DBPs for each gestational week was

assigned for all women in the study.

Although some women enrolled in the study for multiple pregnancies, this analysis

is limited to the first pregnancy for which a woman was enrolled. We excluded 4

losses that occurred before the 5th week of gestation due to inability to routinely detect

pregnancies at such an early stage for a final sample size of 2407 women.

4.3.2 Analysis

We specify a discrete time hazard model for the probability that a SAB occurs in a

given gestational week, which is analogous to a continuation odds ratio model.(Cole and

Ananth, 2001) We included terms in the model for gestational week specific intercepts

(i.e., one coefficient for each week to allow probability of SAB to vary by gestational

week), potential confounders and 13 constituent DBPs. DBP concentrations change

over the course of a woman’s pregnancy, so the 13 constituent DBPs were included as

time-varying covariates. To allow for a more flexible relationship between the logit of

the probability of SAB and the concentration of the DBPs, we categorized 8 constituent
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DBPs into quartiles. Five of the HAAs could not be categorized into quartiles because of

their scarcity and were categorized into tertiles or dichotomized. Estimating the effects

of the 32 categorized DBP coefficients (β1 . . . β32) is hindered by the high correlation

between many of the constituent DBPs (greater than 90% between some), a situation

in which standard maximum likelihood techniques are known to perform poorly.

As an alternative, we incorporated prior knowledge about the size of β1 . . . β32 using

Bayesian methods. We implemented four hierarchical models (Table 4.1), which placed

slightly different prior distributions on β1 . . . β32: semi-Bayes (SB), fully-Bayes (FB),

Dirichlet process prior (DPP1), and Dirichlet process prior with selection component

(DPP2).(Dunson et al., 2005; Greenland, 1992; MacLehose et al., 2005) Coefficients

from each of these models are shrinkage estimates since they are slightly biased towards

the prior distribution, but have reduced variance resulting in a smaller mean squared

error than maximum likelihood techniques.

4.3.3 Semi-Bayes (SB) Model

The SB model assumes the jth coefficient, βj = ln(ORj) with j = 1 . . . 32, has a prior

mean µj and prior variance φ2
j (Table 4.1).(Greenland, 1992) The prior mean charac-

terizes our knowledge regarding the effect of the jth category of constituent DBP on

SAB, and the prior variance is our certainty in that knowledge. Ideally, we would use

previous research to inform prior values for µj. Unfortunately, no previous epidemio-

logic studies specifically examined the effect of HAAs on SAB, and while some studies

examined the effect of THMs on SAB, only one gives results for the effect of the four

constituent THMs.(Waller et al., 1998) Further, the definition of exposure in that study

was based on a woman consuming more than 5 glasses of water per day and falling in

the highest exposure quartile. Their study observed a greater range of THM exposure

than was seen in RFTS. Consequently, this study provided little guidance for choosing

prior values for the effect of the four THMs on SAB.

Initially, we conservatively assumed that none of the constituent DBPs (HAAs and

THMs) has an effect on SAB, which corresponds to assuming µj = ln(1) = 0 for all

j. Next, we specified our certainty regarding the prior mean. Again, no previous

research exists to explicitly help us quantify the uncertainty regarding the effect of

DBPs on SAB, but the largest deviation from the null of any constituent DBP or

summary DBP measure from any previous study was from Waller et al. who noted

an OR=3.0.(Waller et al., 1998) For this initial analysis, we assumed that 95% of the
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coefficients of interest have an OR between 3.0 and 1/3 and calculate φ2 as: φ2 =

((ln(3) − ln(1/3))/(2 ∗ 1.96))2 = 0.3142. Because φ2 plays an important role in the

degree of shrinkage, it is desirable to assess the sensitivity of results to a variety of

values, which we do below.

4.3.4 Fully-Bayes (FB) Model

The SB model extends the traditional frequentist regression analysis by treating

β1 . . . β32 as random. The FB model we propose analogously extends the SB model

by treating φ2 as random and placing a prior distribution on them. This allows us to

incorporate substantive knowledge regarding the prior variance while also allowing the

data to help inform about it. For instance, our prior guess at the variability among

the ORs may be much larger (or smaller) than the observed variability. The FB model

estimates φ2 as a weighted average of our initial belief of the prior variance and the

observed variance of the estimates, resulting in a more data-driven procedure.

To proceed with the FB analysis, we chose values of the hyperparameters α1 and α2

(Table 4.1) of the inverse gamma distribution for φ2. First, we specified our best guess

for the prior variance, E(φ2). In keeping with our reasoning for the SB analysis, it made

sense to choose E(φ2) = 0.3142. Next, we chose a value for the variance of φ2, V(φ2),

such that E(φ2) ± 1.96
√

V(φ2) contains 95% of reasonable φ2 values. An OR≥6.0 or

OR≤1/6 for any of the constituent DBPs would be extremely unlikely. The value of φ2

if 95% of OR’s fall between 6.0 and 1/6 is φ2 = ((ln(6)− ln(1/6))/(2×1.96))2 = 0.8357.

We treated this value of φ2 as the upper 95% CI and used it to calculate V(φ2). Since

0.3142 + 1.96
√

V(φ2) = 0.8357, then V(φ2) = 0.0708. Values for α1 and α2 were

calculated as 3.39 and 1.33, respectively, using the formulae: α1 = E(φ2)2/V(φ2) + 2

and α2 = (E(φ2)3/V(φ2) + E(φ2))−1.

4.3.5 Dirichlet Process Prior (DPP1) Model

The third hierarchical model allowed us to avoid specifying a particular family of dis-

tributions (such as the normal family) for β1 . . . β32, while simultaneously clustering

them into groups based on the magnitude of their effects. Very little prior information

exists on the effects of the constituent DBPs on SAB, and there may be classes of DBPs

that have similar coefficients; for example, all brominated haloacetic acids could have

a similar effect. The DPP1 model automatically clusters the coefficients into groups,

without any prior specification of what the groups might be. The probability that two
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coefficients are clustered together depends on how similar two coefficients are and a

parameter λ. The more similar two coefficients are the more likely they are to be clus-

tered together, and the smaller λ is, the more likely they are to be clustered together.

These clusters could be of great regulatory and scientific interest. In this model, along

with treating β1 . . . β32 and φ2 as random, we treat the distribution of β1 . . . β32 as ran-

dom. This random distribution, D, may be similar to a base distribution, D0, where

the similarity depends on a precision parameter, λ. If λ is small, D will not resemble

D0, but if λ is large, D converges to D0, and the DPP1 model is equivalent to the FB

model. We placed a prior distribution on λ to allow the data to help determine its

value, in the same way placing a prior on φ2 allowed the data to help inform about its

value.

To complete the DPP1 model, we specified values for µ, α1, α2, a and b (Table 4.1).

Specification of µ, α1, and α2 in the DPP1 model was identical to that in the FB model.

The parameters a and b were prior parameters for λ and determined how closely D

follows D0. We began our analysis with a fairly noninformative choice of a = 1 and

b = 1.

4.3.6 Dirichlet Process Prior with Selection Component

(DPP2) Model

The fourth hierarchical model modified the DPP1 model by incorporating a group of

chemicals that has no effect (βj = 0). Priors that allow zero coefficients are commonly

referred to as selection priors, because if βj = 0, then the jth predictor is effectively

excluded from the model.(Geweke, 1996) This conveniently serves two purposes. First,

if a constituent DBP has no effect, it cannot confound the effect of any of the other

DBPs, and we would prefer to remove it from the model. Second, when estimating

the effects of a large number of exposures, some of them may have no effect. The

variable selection prior we used assigns a prior probability, π, that a randomly selected

coefficient is zero. In similar fashion to the approach we took in the FB and DPP1

model, we assigned a prior distribution to π in order to allow the data to inform the

proportion of chemicals having no effect (βj = 0).

The parameters in the DPP2 model were identical to the DPP1 model except for the

addition of π, whose prior distribution required specification of c and d. We calculated

these values by specifying our belief that a randomly selected coefficient was zero, E(π),

and the variability of that estimate, V(π). We began our analyses by specifying that
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a coefficient being null was E(π)=0.5, but with a fairly large variance, V(π)=0.0625

(corresponding to 95% confidence intervals: 0.01, 0.99). By using the equations,

c =
E(π)2 − E(π)3

V(π)
− E(π)

d =
E(π)3(1/E(π)− 1)2

V(π)
+ E(π)− 1,

we specified c = 1.5 and d = 1.5. Alternatively, a similar approach to estimating π

would be to specify the probability that none of the coefficients have an effect (πall)

and solve for π in the equation: πall = πp, where p is the number of coefficients.

4.3.7 Week Specific Risk of SAB

We completed our specification of the discrete time hazard model by placing prior

distributions on the gestational-week specific probabilities of SAB. Because coefficients

for the week specific probability of SAB in our model were log-odds, we calculated

the log-odds of SAB and variances of these log-odds using Goldhaber and Fireman’s

results.(Goldhaber and Fireman, 1991) To illustrate, for the 10th week of gestation,

Goldhaber and Fireman reported 62 losses occurring among 4437 pregnancies at risk in

that week, for a risk of 1.4%. This translates to ln(p/(1−p)) = −4.27 and V(ln(p/(1−
p)))=0.016. We used these results to place a N(−4.27, .016) prior on the coefficient for

the probability of a SAB in the 10th week. Priors for remaining weeks were calculated

in the same manner.

4.3.8 Sensitivity Analysis

The results of any analysis depend heavily on modeling assumptions. In a Bayesian

analysis, there may be concern over the specification of the prior distribution. It is

important to alter those specifications over a plausible range of values to assess how

those changes modify our results.

Our choice of µj = 0 in all four priors may be overly conservative in light of epi-

demiologic studies that have found an increased risk of SAB among women who report

higher consumption of tap-water and among women who are exposed to higher levels

of THMs. To address this, we chose two alternative specifications for sensitivity anal-

yses: µj = ln(6.9) = 1.9 and µj = ln(3.0) = 1.1. The first specification was the most

extreme result observed among studies examining the effect of drinking tap water on
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SAB; the second was the most largest OR among studies examining the effect of THM

concentration on SAB.(Savitz et al., 1995; Wrensch et al., 1992)

To assess the impact of our specification of the prior variance in the SB analysis, we

varied it from 0.1 (strong prior belief in the value of µj) to 5.0 (weak belief in the value

of µj). We varied the prior parameters for φ2 in the FB, DPP1, and DPP2 models in

a similar fashion. We chose values of α = (α1, α2) that correspond to E(φ2)=0.1, 0.3

and 5.0 with a large variance, V(φ2)=3.0: α = (2, 10), α = (2, 3.2) and α = (2.1, 1.8);

and a small variance, V(φ2)=0.1: α = (2.1, 9), α(2.90, 1.8) and α(252, 0.001).

In the DPP models, we varied prior parameters for the precision estimate, λ. We

initially chose values of a = 1 and b = 1, corresponding to a mean of λ = 1. Here, we

ran a sensitivity analysis with a = .01 and b = .01 representing a less informative prior,

and thus allowing large deviations from the base distributions. Sensitivity analyses that

increase λ were unnecessary, because as λ increases, the DPP1 becomes equivalent to

the FB model, for which we already have results. Finally, we consider the prior on π and

vary c and d, which determined the prior probability of a randomly selected coefficient

being zero in the DPP2 model. We began with an uninformative prior, (c = 1, d = 1)

that implies we believe every value of π from 0 to 1 to be equally likely. We also

specified two highly informative priors with E(π)=0.15 (a null result is unlikely) and

0.85 (a null result is likely) and V(π)=0.1: (c = 0.04, d = 0.23) and (c = 0.23, d = 0.04),

respectively.

4.3.9 MCMC Sampling and Convergence Monitoring

We programmed MCMC algorithms for each of the four models using a data augmen-

tation approach and ran them in Matlab.(Albert and Chib, 1993; Mathworks Devel-

opment, 2005; O’Brien and Dunson, 2004) All models were run for 60,000 iterations,

with the initial 5,000 iterations discarded as a burn-in. The remaining iterations were

examined for convergence by examining trace plots of the sampled parameter values by

iteration of the algorithm.

4.4 Results

Figure 4.1 shows trace plots used for monitoring convergence of one of the 32 coefficients

(the 4th quartile of Cl2AA). A sequence of parameter values that has converged will show

a fuzzy horizontal band; a sequence that has not converged may show an increasing or
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decreasing trend. While the SB and FB trace plots are typical of MCMC algorithms,

the DPP1 and DPP2 trace plots are less common. The trace plots for DPP1 indicate

that the sampled coefficients are frequently near zero, which occurs when this coefficient

is clustered with other coefficients. Similarly, the trace plot for DPP2 indicates that

the sampled coefficient is often zero (sampled from the zero cluster). All trace plots

for all coefficients from all models indicated good convergence. We tested sensitivity to

starting values by initiating the MCMC algorithms from different points. All algorithms

quickly converged to the same region.

The estimated effects of the 13 constituent DBPs on SAB for the 4 hierarchical mod-

els and a maximum-likelihood logistic regression are shown in Table 4.2. The maximum

likelihood results showed a strong, but imprecise, negative effect of the 3rd quartile of

BrClAA on SAB and strong positive, but imprecise, effects of the 2nd quartiles of Cl2AA

and Cl3AA on SAB. The SB model produced ORs most similar to the maximum like-

lihood estimates. The SB model, however, indicated that Cl2AA had little effect on

SAB, but an elevated risk of Cl3AA was observed (particularly, for the 2nd quartile).

No negative association between BrClAA and SAB was observed in the SB model. The

estimates in the SB model were more precise than those in the maximum likelihood

model.

The posterior mean of φ2 in the FB model was 0.04, far smaller than its fixed value

in the SB model (φ2 = 0.3142) or the prior mean in the FB model (E(φ2) = 0.3142).

This indicates that our initial guess at the variability of the 32 DBP coefficients was

far from accurate, with little variability between coefficients. The small posterior mean

of φ2 caused estimates from the FB model to be shrunk much further toward the prior

mean (µj = 0) than estimates from the SB model. Most ORs from the FB model

indicated no association between DBPs and SAB.

The results from the DPP1 and DPP2 models were in close agreement with each

other, both indicating a nearly null effect for all constituent DBPs. In each iteration of

the MCMC algorithm for these 2 models, coefficients could either belong to their own

cluster or be clustered with other coefficients. Both DPP1 and DPP2 models tended to

strongly cluster coefficients together (with aggregate effects near zero). The clustering

in these models allowed far more precise estimates than either the SB or FB models.

The results for the highest quartile of Cl2AA were typical of the pattern of results

seen in these analyses. In the maximum likelihood analysis, a woman in the highest

quartile of Cl2AA was estimated to have 2.67 times the odds of SAB as a woman in

the lowest quartile (95% Confidence Interval: 0.50, 14.29). The SB model reduced the
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estimated OR to 1.72 and increased the precision in the estimate as well. The 95%

credible intervals from the SB model were 0.65, 2.55, indicating that if we believe the

assumptions of the SB model, we are 95% certain that the true OR lies between 0.65 and

2.55. By allowing φ2 to be informed by the data, the FB model shrunk the estimated

effect even closer to the prior distribution (OR= 1.06, 95% credible interval: 0.77, 1.47).

The DPP1 (OR=1.00, 95% credible interval: 0.88, 1.14) and DPP2 (OR=1.00, 95%

credible interval: 0.89, 1.11) models produced similar estimates, but reduced the width

of the credible interval. The posterior distribution for the effect of Cl2AA is shown in

Figure 4.2, which clearly illustrates the gains in precision. The posterior distribution

from the DPP2 model also illustrates that this coefficient is grouped in the null cluster

a large proportion of times.

We ran a number of sensitivity analyses to assess how our results would vary with

different prior assumptions (see Appendix). Results from the sensitivity analyses for the

SB model indicated our interpretation of the results would remain largely unchanged

over a range of different prior parameters. Only Cl2AA and Cl3AA showed some ev-

idence of effect if the prior mean was either µj = ln(3.0) or µj = ln(6.9). Results

from sensitivity analyses for the FB model showed similar results: varying priors gen-

erally had little impact on interpretation, with the exception again being for Cl2AA

and Cl3AA. The two DPP models were relatively robust to prior specification. Under

a variety of different parameterizations, the DPP1 and DPP2 models indicated little or

no effect of any DBPs.

4.5 Discussion

Standard maximum likelihood logistic regression results indicated several imprecise but

strong positive (Cl2AA, Cl3AA) and negative (BrClAA) associations between DBPs and

SAB. These imprecise estimates are typical of maximum likelihood in the presence of

highly correlated data. We implemented four hierarchical models to allow more precise

estimation of effects. The SB estimates exhibited the least shrinkage and indicated only

moderate increased or decreased risk of SAB for some constituent DBP categories. The

results of the FB, DPP1, and DPP2 models were all consistent and indicated none of

the constituent DBPs had an effect on SAB.

Results of sensitivity analyses indicated that with the SB or FB model, our inter-

pretation of results for Cl2AA and Cl3AA depended, to some extent, on our prior belief

about the effect of these constituent DBPs. However, for Cl3AA the dose response was
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opposite what one would expect; the second quartile (vs. first quartile) had the high-

est OR and effect for subsequent quartiles diminished. The effect of Cl2AA was more

dependent on prior information, indicating a lack of information regarding this effect

in the data. The DPP1 and DPP2 models provided little evidence of effect and were

more robust to prior specification. The robustness of the coefficients in these models

was expected, since their prior distribution was nonparametric. If the prior parameters

µ and φ2 specifying the base distribution, D0, were widely inaccurate, the precision

parameter, λ, allows the random distribution, D, to vary widely from D0.

These results are consistent with the results of Savitz et al., who analyzed these

data without controlling for other constituent DBPs.(Savitz et al., 2005) However,

the results are at odds with the two other studies that measured DBP levels (rather

than using the proxy of consumed water).(Savitz et al., 1995; Waller et al., 1998) The

discrepancy could be due to more precise DBP measurement in RFTS, which measured

DBP concentrations every week as opposed to other studies that relied on quarterly

measurements. Cumulative exposure to DBPs may be more important, etiologically,

than the dose received in a given week. Quarterly measurements may better reflect this

than the week-specific concentrations we have used. Additionally, the study of Waller

et al. and this study were conducted in different geographic regions with different study

populations and different DBP levels.

The hierarchical models we used greatly reduced the variability of the estimates.

The SB model proved to be somewhat sensitive to the prior specification of φ2. The

FB model allowed φ2 to be data driven, which was important in this study because the

prior specification of φ2 = 0.3142 was far greater than the variability noted in the data;

the posterior estimate of φ2 from the FB model was almost 8 times smaller. By allowing

φ2 to be updated based on the observed data, we were able to obtain much more precise

estimates. The semi-parametric DPP models produced estimates with greater precision

than the FB model; when estimates were clustered together, the model contained fewer

terms and the clustered terms contained more information about the effect of those

clusters.

In conclusion, the use of hierarchical models enabled us to adjust for a large number

of correlated exposures while incorporating prior subject matter knowledge. Although

SB models are the most commonly used Bayesian hierarchical models in epidemiology,

our results suggest that more complex models that allow prior parameters to be updated

based on the data can have large benefits. The FB, DPP1 and DPP2 models all

produced results that suggest that none of the constituent DBPs have an effect on
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SAB.
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Figure 4.2: Posterior distribution of the effect the highest quartile of Cl2AA (vs the

lowest quartile) for all four hierarchical models

SB=semi-Bayes; FB=fully-Bayes; DPP1=Dirichlet process prior; DPP2=Dirichlet pro-

cess prior with selection component
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TABLE 4.1: Bayesian hierarchical models used in RFTS Analysis.

SB∗ FB∗

βj ∼ N(µj, φ
2) βj ∼ N(µj, φ

2)
φ2 ∼ IG(α1, α2)

DPP1∗ DPP2∗

βj ∼ D βj ∼ D
D ∼ DP (λD0) D ∼ DP (λD0)

D0 ∼ N(µ, φ2) D0 ∼ πδ0 + (1− π)N(µ, φ2)
λ ∼ G(a, b) λ ∼ G(a, b)

φ2 ∼ IG(α1, α2) φ2 ∼ IG(α1, α2)
π ∼ beta(c, d)

* SB=semi-Bayes; FB=fully-Bayes; DPP1=Dirichlet process prior; DPP2=Dirichlet

process prior with selection component
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*DBP=disinfection byproduct; ML=maximum likelihood; SB=semi-Bayes; FB=fully-

Bayes; DPP1=Dirichlet process prior; DPP2=Dirichlet process prior with selection

component

† OR= odds ratio; CI=confidence interval for ML and Credible Interval for SB, FB,

DPP1 and DPP2

‡ Models are adjusted for smoking, alcohol use, ethnicity, and maternal age
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4.6 Appendix 1: Sensitivity Analyses
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4.7 Appendix 2: Winbugs Code for Semi-Bayes and

Fully-Bayes Models

We provide a generic template of Winbugs code that can be used to implement either SB

and FB models. We present code for a hypothetical dataset with a binary outcome, y,

and 7 dichotomous covariates x1 . . . x7. Information on how to read data into Winbugs

can be found in the Winbugs manual.(Spiegelhalter et al., 1999) We use the following

data:

list( x1=c(0,1,0,0,0,0,0,0), x2=c(0,0,1,0,0,0,0,0), x3=c(0,0,0,1,0,0,0,0),

x4=c(0,0,0,0,1,0,0,0), x5=c(0,0,0,0,0,1,0,0), x6=c(0,0,0,0,0,0,1,0),

x7=c(0,0,0,0,0,0,0,1),

n = c(100,100,100,100,100,100,100,100), y = c(10, 8, 11, 12, 9, 13, 11, 14), N = 8,

J=7)

The data are in aggregate form (i.e., there 100 people who are unexposed to x1 . . . x7

and 10 of them have the outcome. There are 100 people who are exposed to x1 and 8

of them have the outcome, etc). The following Winbugs code can be used to analyze

this dataset using a SB model:

4.7.1 Winbugs Code for SB Model

model {
for( i in 1 : N ) {
y[i] ∼ dbin(p[i],n[i])

logit(p[i]) ← alpha + bsb[1]*x1[i]+bsb[2]*x2[i]+bsb[3]*x3[i]

+ bsb[4]*x4[i]+bsb[5]*x5[i]+bsb[6]*x6[i]+bsb[7]*x7[i] }
for(j in 1:J) {
bsb[j] ∼ dnorm(0,.3) }
alpha ∼ dnorm(0.0,0.01) }

We note that dnorm(a,b) is a normal distribution with mean a and variance 1/b.

Therefore, in the FB model a gamma prior is place on the inverse of the variance (as

opposed to our approach earlier which placed an inverse gamma prior on the variance).
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4.7.2 Winbugs Code for FB Model

model {
for( i in 1 : N ) {
y[i] ∼ dbin(p[i],n[i])

logit(p[i]) ← alpha + bfb[1]*x1[i]+bfb[2]*x2[i]+bfb[3]*x3[i]

+ bfb[4]*x4[i]+bfb[5]*x5[i]+bfb[6]*x6[i]+bfb[7]*x7[i] }
for(j in 1:J) {
bfb[j] ∼ dnorm(0,phi) }
alpha ∼ dnorm(0.0,0.01)

phi ∼ dgamma(0.075,4)}
In the FB model, dgamma is a Gamma(α, β) distribution with mean= αβ and

variance=αβ2. So our above specification gives a prior mean of 0.3 and prior variance

of 1.2.

The code in sections A.2.1 and A.2.2 can be run for 50,000 iterations in Winbugs

in a matter of seconds.
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CHAPTER 5

DISCUSSION

5.1 The Use of Bayesian Methods for Correlated

Data

Although highly correlated data are common in epidemiologic research. Standard an-

alytic techniques, such as maximum likelihood regression may provide very unstable

estimates or even fail to converge. We have presented four Bayesian hierarchical models

that have superior performance when compared to standard techniques. Although we

have presented these models in the scope of correlated data, these hierarchical models

could also prove useful in regressions with a large number of variables.(Dunson et al.,

2005)

5.1.1 The Semi-Bayes Model

The semi-Bayes model was introduced over 10 years ago and has seen periodic use. Re-

searchers have used semi-Bayes models in occupational, genetic, nutritional and cancer

epidemiology.(De Roos et al., 2001; Greenland, 1992; Hung et al., 2004; Witte et al.,

1994) By placing a prior distribution on model coefficients, the semi-Bayes model not

only allows the researcher to incorporate prior knowledge but also shrinks coefficients

toward that prior distribution. The amount of shrinkage in the semi-Bayes model de-

pends on the prior variance. Smaller prior variances (indicating more prior knowledge)

cause greater shrinkage to the prior mean while larger prior variances (indicating less

prior knowledge) cause less shrinkage. In datasets of moderate size, the impact of the

prior distribution is likely to be minimal. Previous studies that have used semi-Bayes

models frequently specify relatively large prior variances. For instance, Kirrane et al.



specify a prior variance equivalent to 95% of possible ORs falling in a ten-fold range.

There are two problems with such large prior variances. First they are almost guaran-

teed to cause little shrinkage and be dominated by the observed data. Second, they are

frequently incommensurate with prior knowledge. In the study by Kirrane et al., the

authors indicate prior research showed a small increased risk of macular degeneration

among users of pesticides (with the OR observed in a previous study of 2.0). It is un-

likely the investigators would truly assign any prior probability to an OR=5, let alone

OR=10. Users of semi-Bayes models should consider specifying more substantively

realistic prior variances (ORs of 10 could be ruled out a priori in most studies) to reap

more benefits from the Bayesian model.

A further troubling aspect of the use of semi-Bayes models is their role in reducing

the type-I error rate in hypothesis testing.(Hung et al., 2004; Steenland et al., 2000)

As we have demonstrated, there are two problems with this approach. First, semi-

Bayes credible intervals only have increased frequentist coverage (i.e., they cover the

true parameter estimate ≥ (1 − α)% of the time and so are less likely to incorrectly

reject the null) when the prior mean is zero. While such a prior mean may sometimes

be justifiable, it will frequently be incommensurate with existing research. Second,

even if setting the prior mean to zero is reasonable, the increased coverage probability

will generally be minimal. Since this method requires assumptions that will frequently

be untenable and even when tenable, will produce little gain in coverage, we suggest

against using semi-Bayes methods for reducing type-I error rates.

Our simulation results generally demonstrate that the semi-Bayes model has some-

what worse properties than the other three Bayesian hierarchical models that we exam-

ine. This is not a surprising result. The semi-Bayes models suffers, to paraphrase Jim-

mie Savage, from breaking the Bayesian egg without making a Bayesian omelet.(Savage,

1954) That is, the researcher who uses semi-Bayes models allows some amount of

Bayesian learning by updating the prior distribution about the effects with the ob-

served data, but doesn’t allow the prior variance to be updated with the observed data.

It stands to reason that methods that do allow the prior variance to be updated will

outperform the semi-Bayes method simply because they make use of more available

data.

This result is also somewhat misleading: it is possible to generate scenarios in which

the semi-Bayes model outperforms (in terms of mean squared error) the fully-Bayes

model. The scenarios in which the fully-Bayes model will most radically outperform

the semi-Bayes model will be ones in which the semi-Bayes model has specified a prior
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variance that is completely incompatible with the data. On the other hand, were we

to generate a dataset and fit a semi-Bayes model with a prior variance equal to the

variance observed in the dataset, the semi-Bayes model could perform somewhat better

than the fully-Bayes model (since the prior variance was correctly specified to begin

with). However, as we are never likely to know what the true variance is, we view the

fully-Bayes approach as superior to the semi-Bayes approach. Indeed, in the applied

example on disinfection by-products and spontaneous abortion we found that our en-

tirely plausible prior variance in the semi-Bayes model was completely incompatible

with the small amount of variability between estimates in the observed data.

When semi-Bayes models were introduced, presumably, it was because they were

easier to fit than fully-Bayes models given the limitations of existing software at that

time. However, in presenting methods to fit semi-Bayes models, these authors relied

on asymptotic properties.(Witte et al., 1998) It is important for researchers to recog-

nize that it is precisely those situations where asymptotics will hold (i.e., with large

datasets) that semi-Bayes methods will be least useful. It is in those datasets where

asymptotic assumptions are most tenuous that Bayesian methods will be most useful.

Many of the recent articles using semi-Bayes techniques are frequently implemented in

studies where asympototic assumptions may be tenuous, at best (for instance Kirrane

et al. observe cell sizes of zero and De Roos et al. observe cell sizes of two).(De Roos

et al., 2001; Kirrane et al., 2005) We have given templates of semi-Bayes and fully-

Bayes code in Winbugs to alleviate the need to rely on asymptotic normality in fitting

Bayesian models. We have also presented the basics of the Gibbs sampling routines we

programmed in Matlab.

5.1.2 The Fully-Bayes Model

While the semi-Bayes model is a large improvement over standard techniques, it too

is easy to improve upon. The fully-Bayes model is the most straightforward improve-

ment. Rather than treating the prior mean and variance as fixed, it places distributions

on them and allows them to be updated using data in the study. These models are

common in other disciplines, but lacking in epidemiology. The simulation results we

presented showed the fully-Bayes model typically having smaller mean squared error

than the semi-Bayes model. It generally did not perform as well as the more com-

plicated Dirichlet process models. Our applied analysis of disinfection by-products

and spontaneous abortion showed a situation in which the fully-Bayes model offered
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profound benefits, compared to the semi-Bayes model. Very little variation was seen

between estimated effects in the Right from the Start data. By updating the prior

variance with the observed data, the fully-Bayes model generate estimates with greater

shrinkage and much greater precision than the semi-Bayes model.

The fully-Bayes applications in this dissertation have generally treated the prior

mean as fixed but allowed the prior variance to be random by placing a prior distribution

on it. The reason we have treated the prior mean as fixed is because our models have

not specified more complex formulations of the prior mean (for instance, the prior mean

could be a linear combination of other covariates: µj = α0 + α1z1j + α2z2j). If we had

specified the prior mean as a function of other covariates, we could easily place a prior

distribution on the effects of those covariates (say, αk ∼ N(µ2, φ
2
2)). However, when

the prior mean is a constant, placing a prior distribution on it is redundant and only

serves to increase the prior variance. If uncertainty exists concerning the prior mean, it

should be incorporated directly into the prior variance rather than through a hyperprior

distribution on the prior mean.

More generally, some may be concerned with how many hierarchies (prior distri-

butions) are sufficient in a hierarchical model. We suggest that prior distributions

should be used when there is important information to incorporate through that prior

distribution and when the use of the prior distribution has practical advantages. For

instance, placing a prior distribution on a main effect (such as the effect of CHCl3 on

spontaneous abortion) allows incorporation of prior knowledge and, in practical terms,

allows shrinkage of estimates and decreased mean squared error. Placing a hyperprior

distribution on the prior variance has similar advantage: it allows us to use the data to

help update our prior knowledge of the variance. Placing a hyperprior distribution on

a constant mean, however, has no practical advantage and only serves to increase the

prior variance.

Presumably, the lack of fully-Bayes models in the epidemiologic literature is partially

due to the lack of a SAS procedure to fit them (as there is for semi-Bayes). The

Winbugs code we provide for the fully-Bayes model contains only a few more lines

than the Winbugs code for the semi-Bayes model and we feel certain that if researchers

invest a few hours learning Winbugs they will find these programs easier to run than

the SAS code for the semi-Bayes model.
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5.1.3 The Dirichlet Process Models

We relaxed the parametric assumptions of the semi-Bayes and fully-Bayes model by

introducing a Dirichlet process prior. Rather than assuming that the coefficients had

a normal distribution, we allowed their distribution to be unknown and assigned that

unknown distribution a Dirichlet process prior, both without (DPP1) and with (DPP2)

a selection component. The Dirichlet process models allowed the regression coefficients

to be clustered into groups at each iteration of the Gibbs sampler. The clustering

process served to increase precision in the estimates. The two Dirichlet process models

generally had the most precise estimates and smallest MSE of the four models we

examined.

A possible concern of the semi-Bayes and fully-Bayes models is that they serve to

shrink all estimates toward the same common mean. For instance, the effects of all 13

constituent disinfection by-products were shrunk toward the prior mean of zero. This

is a good property to have when all estimates are believed to have the same effect,

however consider the situation in which one of the 13 constituents has an effect but

the other 12 do not. The by-product that has an effect is still shrunk toward the prior

mean of zero, making its effect less apparent. The Dirichlet process prior rectifies this

problem by allowing coefficients to occupy their own cluster. In the disinfection by-

product example, the 12 disinfection by-products will be shrunk toward zero while the

one by-product that does have an effect will have its own cluster that will not be shrunk

toward zero.

The increased precision of the Dirichlet process models can be viewed in two ways.

First, by clustering coefficients we are essentially including fewer terms in the regression

model. With fewer terms comes increased precision. Second, clustering coefficients

inherently decreases the variance. Consider a linear regression with orthogonal data:

yi = β1xi1 + β2xi2 + εi. Estimates of β̂1 and β̂2 are given by
∑

xi1yi/
∑

x2
i1 and∑

xi2yi/
∑

x2
i2 with variance σ2/

∑
x2

i1 and σ2/
∑

x2
i2, respectively. If we cluster β1

and β2 together, we are assuming β1 = β2 = βcl. We can rewrite the regression as

yi = βcl(xi1 + xi2) + εi, in which case β̂cl =
∑

(xi1 + xi2)yi/
∑

(xi1 + xi2)
2 with variance

σ2/
∑

(xi1+xi2)
2. Taking expectations of β̂1, β̂2 and β̂cl we see that they are all unbiased

and equal (assuming β1 = β2). However, we see that the variance of β̂cl is smaller than

the variance of either β̂1 or β̂2. Thus, when variables are clustered variability decreases.

This is intuitively appealing, since by combining coefficients in clusters we are indicating

that we have additional information about the size of the cluster’s effect (that is, two
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covariates worth of information rather than one). Because of the decreased variance

associated with clustering coefficients, this procedure can reduce overall mean squared

error even when coefficients that do not have precisely equal coefficient estimates are

clustered together.

The applied examples in this dissertation show Dirichlet process prior models that

estimate routinely null, but very precise, effects for all parameters. A potential concern

is that these models might prove ineffective at estimating non-null effects. The results

of our simulations in Chapter 3 indicate this is not the case. The same properties have

been noted by Dunson et al. in genetic applications.(Dunson et al., 2005) Indeed, by

allowing the unknown distribution of the coefficients to differ from the base distribution,

the Dirichlet process model may be better at detecting coefficients that have an effect

than the semi-Bayes or fully-Bayes models (that shrink all estimates toward zero).

5.2 Disinfection By-products and Spontaneous

Abortion

Previous epidemiologic studies have found somewhat discrepant results, but generally

indicated an increased risk of spontaneous abortion among women who consume more

disinfection by-products. Our conclusion is in keeping with a previous analysis of this

data by Savitz et al.: in contrast to previous studies, there is little evidence of any effect

of any constituent disinfection by-product on spontaneous abortion in Right from the

Start.

The maximum likelihood logistic regression produced results that showed quite a

few large associations between constituent disinfection by-products and spontaneous

abortion. In particular, the 2nd through 4th quartiles of Cl2AA and Cl3AA showed

between 1.5 times and 3.0 times the risk of spontaneous abortion as those in the first

quartile, while those exposed to concentrations of BrClAA in the 2nd through 4th quar-

tiles had roughly 1/3 the risk of spontaneous abortion as those in the first quartile. The

maximum likelihood estimates were often characterized by their extreme imprecision,

with the most obvious example being the OR for the 4th quartile (vs. the 1st quartile)

of CL2AA which had a 95% CI of (0.50, 14.29). The extremely imprecise nature of the

maximum likelihood estimates made these results virtually impossible to interpret in

many cases.

The semi-Bayes model produced effect estimates that were much more precise than
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the maximum likelihood estimates, however they were less precise than the other three

hierarchical models. The semi-Bayes model indicated generally null results of all con-

stituent disinfection by-products, however there were a few categories of some con-

stituent disinfection by-products that suggested an increased risk of spontaneous abor-

tion, such as the 4th quartile of CHBrCl2 and the 2nd quartile of Cl3AA. However, the

lack of any systematic patterns or dose response relationships make these scattered re-

sults seem biologically implausible. Indeed, under the fully-Bayes model, these results

were shrunk much further back toward the null. None of the constituent disinfection

by-products seemed to have an effect when examined using the fully-Bayes model.

The two Dirichlet process models produced results that were quite similar and by far

the most precise of all 4 hierarchical models. These semi-parametric models produced

results providing no evidence of effect for any constituent disinfection by-product.

Results of sensitivity analyses indicate that with the SB or FB model, our inter-

pretation of results for Cl2AA and Cl3AA depends, to some extent, on our prior belief

about the effect of these constituent DBPs. However, for Cl3AA the dose response is

opposite what one would expect, with the second quartile (vs. first quartile) having

the highest OR and effect for subsequent quartiles diminishing. The effect of Cl2AA

is somewhat more dependent on prior information, indicating a lack of information

regarding this effect in the data. The DPP1 and DPP2 models provided little evidence

of effect and were much more robust to prior specification.

Our results are consistent with a previous analysis of these data by Savitz et al.

However, Savitz et al. generally analyzed these data by aggregating over groups of

disinfection by-products (such as the four trihalomethanes and nine haloacetic acids),

an approach not sensitive to detecting effects of individual disinfection by-products.

They also did not attempt to control for multiple disinfection by-products in their

analyses of constituent disinfection by-products, so results could have been confounded.

Previous research on disinfection by-products and spontaneous abortion is limited.

Early studies used crude proxies of disinfection by-product consumption, such as the

number of glasses of tap-water consumed per day. The two studies that have specifically

looked at disinfection by-products are the study by Savitz et al. and by Waller et

al.(Savitz et al., 1995; Waller et al., 1998) The study by Savitz found a relationship

between total THM consumption and spontaneous abortion, but only in the highest

sextile. No association was seen when exposure was classified in tertiles. Savitz et al.

measured exposure using quarterly reports from water suppliers. The Savitz et al. study

is particularly interesting because it draws participants from the same geographical
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location as Right from the Start. The discrepancy between these results and Savitz et

al.’s could be due to a number of factors. First, Savitz et al. reported a relatively low

response rate in their study so selection bias could account for their positive finding.

Second, their measurement of exposure was based on quarterly reports from the water

facilities, while Right from the Start had weekly data on disinfection by-products.

Possibly, quarterly water data were gathered at a moment unrepresentative of recent

disinfection by-product levels.

Waller et al. examined the relation between the four THMs and spontaneous

abortion and are the only previous study to look at constituent disinfection by-

products.(Waller et al., 1998) They found an increased risk (OR=2.0 95% CI: 1.2,

3.5) of spontaneous abortion among those in the highest exposure quartile of CHBrCl2

(vs the other three quartiles combined). The three other THMs show no effect on

spontaneous abortion. Interestingly, when Waller et al. combine all THMs in a single

maximum likelihood logistic model their estimates become imprecise. Our study found

no association between CHBrCl2 and spontaneous abortion, despite a similar cutpoint

for the highest quartile. We were in agreement with their null findings regarding the

concentration of ChCl3, ChBr3, and ChBr2Cl, however. It is unlikely that controlling

for all disinfection by-products simultaneously accounted for the discrepancy in results

since we observed similar results when we analyzed only one by-product at a time.

Waller et al. conducted a prospective cohort study, limiting the chance that recall

bias was responsible for their findings. The most obvious difference between the this

study and theirs is the exposure assessment, with Waller et al. using quarterly data

on disinfection by-product concentrations as opposed to our weekly data. Again, the

quarterly data in Waller, could have been gathered at a moment unrepresentative of

recent disinfection by-product levels.

Our study is not without its limitations. We have studied the relationship between

disinfection by-product concentration in a given week and the probability of sponta-

neous abortion. The week-specific concentration of disinfection by-products may be

less important than the accumulated dosage. However, examining the effect of cu-

mulative dose on week specific probability of loss is a more difficult problem that we

will examine in future research. We have not accounted for the amount of disinfec-

tion by-product actually consumed through ingestion or through other routes (such as

inhalation). Although such measures are available, we believe the crude measure of

disinfection by-product concentration in the water supply is a good proxy for these

measures. There is concern that the time at which a pregnancy is no longer viable does
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not always correlate well with the time at which the products of conception are lost

from the uterus. Preliminary results adjusting for this misclassification indicate it does

not change our interpretation of the results. Although Right from the Start enrolled

women in early pregnancy, very early losses (those before 5 weeks) were impossible for

us to detect. It is possible that disinfection by-products have an effect on very early

losses, and we were unable to detect it.

5.3 Summary

The hierarchical models we used greatly reduced the variability of the estimates. The

semi-Bayes model proved to be overly dependent on the specification of the prior vari-

ance. The fully-Bayes model allowed the prior variance to be update based on the

data, which was important in Right from the Start since the specification of the prior

variance (φ2 = 0.3142) was far greater than the variability noted in the data. The

posterior estimate of the prior variance from the fully-Bayes model was almost 8 times

smaller. By allowing the prior variance to be update based on the observed data, we

were able to obtain much more precise estimates. The two semi-parametric Dirichlet

process prior models we implemented provided the most precise results and generally

had the smallest mean squared error in simulations. These models were also very robust

to prior specification.

Our results suggest that disinfection by-products may not have an effect on sponta-

neous abortion. The use of hierarchical models enabled us to adjust for a large number

of correlated exposures while also incorporating subject matter knowledge. Although

semi-Bayes models are the most commonly used Bayesian hierarchical models in epi-

demiology, our results suggest that more complex models that allow prior parameters

to be updated based on the data can have large benefits.
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