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ABSTRACT

LUNG-CHANG CHIEN: Multi-city Time Series Analyses Of Air Pollution AirMortality
Data Using Generalized Geoadditive Mixed Models
(Under the direction of Shrikant I. Bangdiwala)

Background Here we introduce the generalized geoadditiveethixodel (GGAMM),
a combination of generalized additive model anddimmixed model with unified model
structure for more flexible applications, to ali@imely examine the influence of air
pollution to human health.

Methods Extant air pollution and mortality data came frdma National Morbidity,
Mortality, and Air Pollution Study for 15 U.S. @8 in 1991-1995. The PlMmain model,
distributed lag model and four co-pollutant modeded the GGAMM approach to
analyze the effect of P) lag effects and co-pollutants on several monaljtadjusting
for day-of-week, calendar time and temperature.

Objectives First, the effects of PN on mortality are preliminarily examined; second, a
jackknife-bootstrap method and a principal compo@alysis are proposed to handle
potential convergence problems; third, some misdatg imputation methods are
evaluated in the GGAMM; fourth, the issues of nadliinearity and concurvity in our
models are examined; fifth, comparisons of the GGARhd 2-stage Bayesian
hierarchical model are performed; sixth, three $atons are accomplished for
investigating the influence of concurvity, multitoearity and missing data imputation

methods on estimates and smoothing functions.



Results First, the effects of PM on mortality are preliminarily examined; second, a
jackknife-bootstrap method and a principal compoa@alysis are proposed to handle
potential convergence problems; third, some misdatg imputation methods are
evaluated in the GGAMM,; fourth, the issues of nadliinearity and concurvity in our
models are examined; fifth, comparisons of the GGAlRhd 2-stage Bayesian
hierarchical model are performed; sixth, three $athons are accomplished for
investigating the influence of concurvity, multitoearity and missing data imputation
methods on estimates and smoothing functions.

Conclusions The GGAMM provides an integrate model structuredoncern national
average estimates, city-specific estimates, smogthind spatial functions simultaneously.
Geographical data can immediately be used in thAIM&K3 without being affected by
missing data, and nation-level smoothing functicas be fitted well by enough valid
observations from all cities. These propertiesnateoffered by 2-stage Bayesian

hierarchical models, and recommended by usingspatiporal data.
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Chapter 1
INTRODUCTION, LITERATURE REVIEW AND OBJECTIVES

1.1. Introduction

Air pollution has existed since the first fire wdsbut it is increasing in modern era.
There are two main factors contributing to this@aes problem around the world. First,
the world population is increasing exponentialgpecially in urban areas; second, the
rapid growth of industries and affluent automoblese led to a surge in the levels of
fossil fuel combustion in developed and develomiagntries (Nadakavukaren, 2006).

The U.S. Congress passed the Air Pollution Cortedin 1955, the Air Pollution
Control Amendments in 1960, the Clean Air Act ir629the Air Quality Act in 1967, the
Clean Air Act Extension in 1970, and Clean Air Achendments in 1990 and 1997. The
acts aimed to regulate air pollutant emission afated studies started to analyze air
pollution elements, sources, and, most importattiBir influence on human health.
Aerologists, environmentalists, ecologists, epid#agists, and statisticians are
collaborating to discover unknown factors that ictgeealth in air pollutants.

Beginning with the London Fog in 1952, surveyslegical studies, and early
time-series studies began addressing air pollusisues in the 1950s and 1960s.
Exposure assessment has evolved from the 1970gff@nsl informative evidence to
statisticians in analyzing air quality data. Moigngicantly, an influential experiment
about the health effects of air pollutants in Aroa#-the Six Cities Study—started in
1973. The study drew upon 8,000 individuals inl$i$. cities, consistently monitoring

health effects and gathering air quality data wibphisticated laboratory equipment and



techniques. The study spanned across 2 decadasljgtshg an initial standard for
related research in air pollution around the wéildckery, Pope, Xu, Spengler, Ware,
Fay, Ferris, & Speizer, 1993).

The U.S. government funds many organizations, atigéhem to collect time series
data, which offers a complete database for scisrttisanalyze air pollution issues. A
well-known example, the National Morbidity and Mality Air Pollution Study
(NMMAPS), is one of the greatest projects concagitive influence of air pollution to
human health in the U.S. It was led by the DepantroéBiostatistics at the Johns
Hopkins Bloomberg School of Public Health, andtils maintained by the Internet-based
Health & Air Pollution Surveillance System (iIHAPS8)hich is funded by the Health
Effects Institute (HEI). This is arguably the mosganized database as it includes
numerous longitudinal mortality and morbidity sascair pollution monitoring data, and
weather condition records in 108 U.S. metropoldeeas from 1987 to 2000. In the
NMMAPS, air pollution data is obtained from the Bata database collected by the U.S.
Environmental Protection Agency. Daily mortalityurds are retrieved from the National
Center for Health Statistics, weather data is ctdié from the National Climatic Data
Center, and census data is collected from the CeSsus Bureau.

As modern statistical tools—especially time seaed longitudinal data analysis and
computers—were quickly developed in ‘80s and ‘90any modern time series studies
(Schwartz & Marcus, 1990) and multi-city studiesafiels, Dominici, Samet, & Zeger,
2000; Dominici, McDermott, Zeger, & Samet, 2003annici, McDermott, Zeger, &
Samet, 2003b; Dominici, McDermott, Daniels, Zege§amet, 2005) of air pollution
and human health were published in successionrémhethod for the design of air
pollution-mortality studies is the case-crossowesign. The idea is that the exposure of
an individual exposed to an air pollutant immediaggior to some event, such as death,

heart attack or stroke, is comparable the expasiutlee same individual with the same air
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pollutant during control times (Smith, 2007). A easossover analysis of particulate
matter air pollution and out-of-hospital primarydiac arrest was conducted in the
Seattle region (Levy, Sheppard, Checkoway, Kaufrhamley, Koenig, & Siscovick,
2001b). The first two methodologies have represktite main stream of air pollution
research since the 1990s.

In the applied statistical world dominated by linesdels, more and more
researchers discovered that their research purpasdsardly be satisfied by linear
models due to not only some special data structbregsalso unsatisfying the strict
assumptions of model fitting. Hence, the frequenitysing semiparametric models is
becoming increasingly popular, and areas of apjbicare more widespread than ever
before. Semiparametric models have been develeppdnded, and applied to many
areas of research and practical problems. Duectfidkibility semiparametric models
offer, researchers have tried to adjust the mamteh to match with some special
situations. The development of the generalizedtagdinodel (GAM) is an initial
adaptation from general semiparametric models.iélasd Tibshirani (1990) showed a
somewhat complete introduction of the transitianfradditive model to generalized
additive model with detailed statistical infererazel extensions to other settings, such as
the proportional-hazards model, proportional oddsleh and seasonal decomposition of
time series.

At the same time, Breslow and Clayton (1993) dgwedbthe generalized linear
mixed model (GLMM), which has dealt with many pretls, especially in repeated
measurements. However, in application, real dagdyedolates the assumptions of
GLMM, such as non-Gaussian longitudinal data. Ildita@h, the linear assumption may
not always be satisfied, so the necessity of aineat approach is increasing as more and
more studies require one. Although Wild and Ye9@)%nd Berhane and Tibshirani

(1998) applied the generalized estimating equatigmpsoach (Liang & Zeger, 1986) to
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the GAM, a solid framework of dealing with non-Gailas data and nonlinear association
was still unsolved. Lin and Zhang (1999) combinethistructures of the GLMM and
GAM to create an initial form of the generalizedigide mixed model (GAMM) and its
statistical inference. They also adapted the spiihe penalized quasi-likelihood
approach of Brewslow and Clayton (1993) to make@pmate inferences by the double
penalized quasi-likelihood (DPQL) approach. Morgpaegeneral Bayesian approach via
MCMC sampling for inference in the GAMM with struced or unstructured random
effects and spatial covariates was presented byrieahand Lang (2001a), to solve bias
problems from binary data and correlated randoecesf This Bayesian approach was
also applied in multi-categorical response variglietime-space data (Fahrmeir & Lang,
2001b). Besides using full Bayes posterior, theiangh Bayes posterior was later
introduced in generalized additive mixed model$wienalized splines for space-time
data to offer more computationally efficient soduis (Fahrmeir, Kneib, & Lang, 2004).
The GAMM can be improved with a spatial functiondavas given a new name as the
generalized geoadditive mixed model (GGAMM). Theihdary data, coordinate data
(longitude and latitude), centroid data, and kmgpiata can all be supported by the
spatial function in the GGAMM. The geographicaligéion can be entirely performed by
the spatial function in the GGAMM. In brief, the ®M/GGAMM is a semiparametric
model which can consider non-Gaussian data, lifaesors, nonlinear smoothing
functions, and spatial function simultaneouslypgdened the bottleneck of the
methodology of semiparametric modeling at the drttielast decade, and facilitated
other researchers extending the theorems to monelmated cases, such as spatial
analysis.

The research group of the NMMAPS project primangged the GAM approach as
the preliminary application of time series regressanalysis to a single city across a

period of time. In order to solve the problems wfamizing different model-fitting results
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across many cities, researchers have taken a Bayagproach to combine versatile
estimation with the multivariate normal hierarchicedel (Everson & Morris, 2000).
They named the combination of the generalized agdmodel and the multivariate
normal hierarchical model the 2-stage Bayesiarahibical model. This process
considers not only linear predictors of air polhtg such as particulate matter (RMr
PMz2.5) or ozone, but also non-linear smoothing functiohsme and weather conditions.
Even though the concept is innovative, it is lirditey the fact that no overall model
structure can easily explain the two-stage Baydsi@rarchical model. The
GAMM/GGAMM approach provides a unified model st that fixed effects and
random effects can represent nationwide averagetefand marginal county-specific
average effects, respectively. The general focubkisfresearch is on how a novel
statistical methodology, the GGAMM approach, campglied in air pollution and
human health time series studies. Based on thg gtegign, it is necessary to look for
more intuitive methods to describe the relationgiipir pollution to human health with
clearer interpretations and more advanced apphicsitiMore details are shown in the

research motivations and objectives section.

1.2. Literaturereview

1.2.1. Historical events

For centuries, people have gradually become consa@bthe influences of air
pollution on adverse health effects in responset@ral earlier dramatic episodes of
severe air pollution invasion. These occurrencelside Meuse Valley, Belgium in 1930
(Firket, 1936; Fahrmeir, Kneib, & Lang, 2001), DoaoPennsylvania in 1948 (Ciocco &
Thompson, 1961; Davis, 2002; Fahrmeir, Kneib, & ¢,a1949), and London, England in

1952 and 1962 (Brimblecombe, 1987; Logan, 1953¢. disodes caused a sudden surge



of illness and death. For example, the four-dayifof952 killed approximately 4,000
Londoners (David, 1994). Such events can be asttdbbuman activities or industrial
development. Some meteorological phenomena appeaoither type of air pollution,
and also have a severe impact on human beingsst®amg or dust storms have caused
substantial damage in arid and semi-arid areab, asiducson, Arizona in 1971 and
Melbourne, Australia in 1983. This meteorologicaépomenon occurs regularly in East
Asia and Africa, and their frequency is increas#agh year. This can be regarded as a
branch of air pollution research, and researchiscsint out the short-term effects of
dust storms on human health, especially in ac#esdes (Chang, Hwang, Chan, Wang,
& Cheng, 2007; Kwon, Cho, Chun, Lagarde, & Pershag602).

The improvement of statistical analysis on epiddogical data also provides
associated studies with more precision, coheramy,consistency based on different
targets (acute or chronic disease), exposurest{stran or lifetime), and study designs
(longitudinal study or panel study). Moreover, sésdattempting to identify the unique
effect of a specific air pollutant are often cofiegd for many confounding factors and
adjusted for simultaneous exposure to a complicatietlire of co-pollutants (Dominici
et al., 2003a). In order to consider multiple safiects in model fitting, advanced
statistical methods like Cox proportional hazarddels (Cox & Oakes, 1984),
generalized linear models for count data and bitiarg series data (Liang & Zeger, 1986;
McCullagh & Nelder, 1989), generalized additive ralsdHastie & Tibshirani, 1990),
and Bayesian hierarchical models (Lindley & Smith72; Morris & Normand, 1992)

have been broadly applied in public health aredsepidemiological issues.

1.2.2. Time series studies

Time series studies can be regarded as the mostrfudvnethodology for



identifying the relationship between time-varyinggollution exposures and

time-varying mortality or morbidity counts. Othesrdounders, such as weather
conditions (ex: temperature and humidity) or tinagiations (ex: day of week and season),
can also be included in time series analysis. Teaudsions about the quantitative
method for effects of air pollution, the changevuadrtality after change of exposure,
relationship between age-specific mortality and ékpectancy, and association between
life expectancy change and mortality after inteti@mare discussed in Rabl's paper
(2006). Most research has focused on mortality @rndity because that data was
collected by related government organizations dagidy, corresponding to daily
measurements from air pollution monitoring statidkisng with geographical

information, it is also available to use time apdtgal data to access the within and
between subject-specific influences and differemeexposures (Bell, McDermott, Zeger,
Samet, & Dominici, 2004a).

The time factor is an important confounder in tisegies data. Due to its variation by,
for example, seasonality, it is explicit that thex@lmost no purely linear relationship to
mortality or morbidity. Hence, one needs to consideng the concept of the smoothing
function to adopt a time factor into air pollutianalyses. Two statistical tools are
frequently used: generalized linear models (GLMhvgiarametric splines (e.g. natural
cubic splines) (McCullagh & Nelder, 1989) and gafieed additive models (GAM) with
non-parametric splines, (e.g. smoothing splinegsfié & Tibshirani, 1990). The GAM is
often used in air pollution and mortality studiecause its smoothing functions are more
flexible than the fully parametric fitting of theL® (Dominici, Sheppard, & Clyde,
2003c). The parameter of intergitjn the GAM for mortality counts and air pollution
research is usually interpreted as the percentagedse in mortality per 10-unit or
100-unit increase in ambient air pollution levedgy( 10 pg/min PMyo or PMs).

Because of the flexibility of the GAM, both lineand smoothing functions can be easily
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included into the analysis. Investigators haveaalyeconcluded that the following
potential confounding effects are important toude in the GAM: (a) the exposure of
co-pollutants, (b) weather variations, and (c) keegn (season) and short-term (day of
week) time trends (Bell, Samet, & Dominici, 2004b).

Preliminary time series studies in epidemiologytloa health effects of air pollution
focused mainly on specific events or incidents Wwiatten had severe air pollutant
invasion over the course of a few days, and causgdased mortality and morbidity
(Davis, 2002). The London Fog Event (Bell & Daa§01), the Donora Death Fog
(Davis, 2002) and the Meuse Valley Fog Disastak@¥ 1936; Roholm, 1937) are
examples of using severe air pollution episodescamine the health influence of high
air pollutant concentrations over several days.eTg@aries analysis in air pollution
episodes is an important index to evaluate the @inpighighly dense air pollution in a
short time; however, their results were not germezdlto make conclusions and refer to
other non-episodic periods.

As more and more discoveries about air pollutioth lamnman health studies were
made, researchers learned the necessity of aduygsstential confounders to long-term
analysis. But, early time series studies did neehaverwhelming results due to the lack
of suitable statistical models and restricted cot@jpanal tools. Therefore, most of them
only consider the population in a single locatioriscuss issues based on similar
population patterns (Bell et al., 2004b). Fairl@940) used the Poisson regression model
to explore the association between suspended platecmatters and daily mortality in
Santa Clara County, CA, from 1980 to 1986, and iMesklower influence for health risk
at higher concentrations of coefficient of haze l©ompared with previous studies.
Another similar research involving the Steubenyiio, metropolitan area from 1974
to 1984, showed a roughly 4% increase in mortalityhe succeeding day along with an

increase of 100 pgfhin particulate matters. However, after controllfng particulate
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matters, it was not statistically significant ia @ssociation with sulfur dioxide (Schwartz
& Dockery, 1992). Moreover, due to its geographg floor of Utah Valley easily
accumulates air pollutants when temperature dropsidespecially in the winter season,
which can cause high concentrations ofiRNMope et al. (1992) also used the Poisson
regression model with a 5-day moving average tduaet@ related data from April 1985
through December 1989. They found the 5-day moairerage of Plyy concentration

has the strongest association. In particular, aigfT increase of Pk can cause an
increase in death of about 16%, especially in raspiy and cardiovascular diseases. This
study was noteworthy as it not only utilized th@oept of multiple-day moving averages
(up to 7 days), but also simultaneously considénedabsence of co-pollutants S&hd

O3 (Bell et al., 2004a). Other single location tineeiss studies are the St. Louis and
Kingston study (Dockery, Schwartz, & Spengler, J9®&rmingham study (Schwartz,
1993) and Detroit study (Schwartz, 1991).

While these studies have consistent results, nbtieem are generally representative
due to the heteroskedasticity among locations andistent research periods. A weighted
average approach can roughly combine those rg€dtso, 1993). By organizing those
analyses, it was concluded that the percentagesamige in the daily mortality for each
10 pg/nt increase in Php are 1.0%, 3.4%, and 1.4% for total mortality, iestpry
disease, and cardiovascular disease, respectBellydt al., 2004a). However, this is not
a recommended method, especially since more addanocdels have appeared.

The criticisms of single location time series dat stop because of a lack of
evidence to support the representation of theircesp or ignorance of spatial
heterogeneity from either air pollutants or othenfounders (Lipfert & Wyzga, 1993; Li
& Roth, 1995; Dominici et al., 2003c). In orderitoprove the deficiencies of single
location time series studies, multi-city study desoffers a powerful alternative. A

European study—Air Pollution and Health: a Europ&pproach (APHEA)—is a
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preliminary attempt to merge air pollution andalise mortality data from 12 European
cities to carry out a combined quantitative analyKiatsouyanni, Touloumi, Spix,
Balducci, Medina, Rossi, Wojtyniak, Sunyer, BaclhardSchouten, Ponka, & Anderson,
1997), but a more concrete method was not presemit#d®000 in the report from the
National Morbidity, Mortality, and Air Pollution 8ty (NMMAPS) (Samet, Dominici,
Curriero, Coursac, & Zeger, 2000a; Samet, ZegemiDizi, Dockery, & Schwartz,
2000b). These studies showed a 2-stage Bayesiardheal model to manipulate
multi-city data, and handled some unsolved probl&om single location time series
studies. The basic concept was to use the GAM wrilevant city-specific model for
each city, and then apply a Bayesian method to engigoefficients of interest, i.e.
city-specific air pollution effects, into a natiorde air pollution effect based on some
priors. Additionally, they also used the Reversihlenp Markov Chain Monte Carlo
(RIMCMC) (Green, 1995) as the criterion for pickkigts in smoothing functions
(Dominici, Daniels, Zeger, & Samet, 2002a).

Today, this methodology has become the standarspieculating air pollution’s
impact to human health. Along with the well-orgaadZNMMAPS online database,
anyone can conveniently download it from the Iné&rvhich facilitates the application
of 2-stage Bayesian hierarchical models to moredlution studies. An extension of the
GAM is the distributed lag model, which is oftereddo handle the possible lag effects in
the air pollution effect to mortality. The distrited lag effect was presented as early as
1965 for capital appropriations and expenditurdsn@, 1965), but in recent years, more
and more analyses are using the same conceptpolaition and mortality studies with
the GAM (Zanobetti, Wand, Schwartz, & Ryan, 200@ndbetti, Schwartz, Samoli,
Gryparis, Touloumi, Atkinson, Le Tertre, Bobros |Kbe Goren, Forsberg, Michelozzi,
Rabczenko, Ruiz, & Katsouyanni, 2002). Becauseettige model structure does not

fundamentally change but adds more variables fpeféects, it is also available to
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transform to the 2-stage Bayesian hierarchical midenulti-city time series studies.

The number of cities selected in multi-city timeisg studies varies from 4 to 109 in
the U.S. In the 4 U.S. city study, the authorsrbtiuse a 2-stage Bayesian hierarchical
model, but applied a fixed effect model with weg=(V°)™ or W=(D+V°)* to
combine the estimated coefficients across citiégres\f is the covariance matrix in
each city, and D is a diagonal between-city covemeamatrix (Dominici et al., 2003a). In
addition, they also used different kinds of diseréburier decompositions (Bloomfield,
1976; Priestley, 1981) for time factors from a higgquency component (less than 3 days)
to a low frequency component (more than 2 montbsinpared with the logarithm of
relative risks among different timescales, theynfibthe lower frequency component (i.e.
longer timescale) has a greater effect which reflagyreater biologic impact on chronic
exposures than on acute exposures.

The extension to the 20 U.S. city study from 1987994 considered other possible
co-pollutants (@ NO,, SQ, CO) besides PN and some specific diseases (Samet et al.,
2000a). Researchers used a 2-stage log-linearssegnemodel, fitting a separate
log-linear regression of the daily mortality on pallutant measurements for each city,
and pooled all estimates of the relative mortakitys associated with specific air
pollutants by a Bayesian statistical approach (@ealn€Carlin, Stern, & Rubin, 1995). In
this study, the increase of the estimated relatate of all death is 0.51% (95% CI: 0.07%,
0.93%) per 1Qug/m® increase in Ph, and slightly rises to 0.68% (95% ClI: 0.20%,
1.16%) for cardiovascular and respiratory diseBssides P, the univariate effect of
ozone levels during a one-year period was also eambut strong evidence was not
found when ozone levels were the highest duringtimemer.

A similar case with 20 U.S. cities, 19 of which eencluded in Samet et al. (2000a)
is discussed by Dominici, Samet and Zeger (20@aninici also used a 2-stage

Bayesian hierarchical model to analyze the data.rmhin difference between Dominici
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et al. (2000a) and Samet et al.(2000a) is that Dmirand her colleagues used a separate
GAM with five smoothing functions in the first segand provided a preliminary
framework of 2-stage Bayesian hierarchical modat tas often been used in following
years. Two air pollutants (Piand Q) and two lag effects (1-day lag and 2-day lag)
were considered in this study. When only gMas included in the analysis, a 10 ug/m
increase was associated with 0.48% increase inafitgriVhen adjusted by Dthis
association was slightly increased to 0.52%.

Some multi-city time series studies in ozone hasiated out that ozone has a
positive association with mortality. For exampl&=U.S. city study confirmed
statistically significant results that a 10-ppbraese in ozone in the previous week, can
cause a 0.52% (95% CI: 0.27%, 0.77%) and a 0.648% @I: 0.31%, 0.98%) increase in
daily non-injury-related mortality and cardiovasaitespiratory mortality, respectively
the following week (Bell et al., 2004a). A more qalieted meta-analysis of time series
studies of ozone and mortality can be found in ,Badiminici and Samet (2005).

As related theories matured, researchers not amlgidered increasing locations in a
study, but also used more hierarchical levels itdlstatistical models. The idea of
geographic regions was being implemented to expleie heterogeneity in order to
estimate regional air pollution mortality dose-r@sge curves (Dominici et al., 2002a). 88
cities were divided into seven geographic regidtmihwest, Upper Midwest, Industrial
Midwest, Northeast, Southern California, Southwast] Southeast). Although detailed
about how the cities were grouped is unknown, titeron of these geographic divisions
is still followed by other studies using the NMMAES&tabase. It was no surprise that a
positive relationship between Ritoncentration and total mortality with a 0.5% eese
for a 10pg/m® increase in Pipwas found. More innovative discoveries are the
differences between regional-adjusted and regianatjusted results. Researchers also

found the strongest adverse effect of;g&ppeared in Northeast region, where the
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increase of mortality was double compared to otegions. Moreover, a hierarchical

spline model was also constructed to investigaentmlinear relationship between pM
and mortality by replacing the linear term of RMith a smoothing function of P

The purpose of using the hierarchical spline meded to derive Pl mortality
dose-response curves. The reversible jump Markaindiionte Carlo (RIMCMC) was

also used to pool seven regional dose-responsesurio a national dose-response curve.
The same study design for exploring geographicaatran was also showed in Dominici

et al. (2003b).

A seasonal analysis using 100 U.S. cities from 188000 provided another view
point for accessing the variation of Pjvih different seasons (Peng, Dominici,
Pastor-Barriuso, Zeger, & Samet, 2005). In preveiudies, whether with single location
or multi-city, all coefficients of target air potlnt were fixed, which means they were not
time-varying. However, in Peng et al. (2005), tbef@icient of target air pollutant
becomes a function of timg€(t). They showed a sine/cosine model f&fi(t) for the
purpose of estimating smooth seasonal patterrieicity-specific log relative rates, and
a pollutant x season interaction model for estintaR My log relative rates. From their
results, the summer season has the highest inctémeortality as a 10 pg/fincrement
in PMyo with a value of 0.36% (95% CI: 0.11%, 0.61%). Wlensidering geographic
regions, the Northeast has the strongest seasattafrp especially in the summer.

The distributed lag model can also apply all madetifications in previous papers.
Welty and Zeger (2005) used 109 cities in the NMMAdRatabase to analyze temperature
with seasonally and temporally varying coefficieat&l nonlinear temperature covariates.
They concluded that there is a consistency withiptes studies in the national average
estimates of PM relative risk and robustness in model specificationtrolling for
weather and seasonal trends.

Today, time series analysis is increasingly populair pollution studies in the U.S.
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This is mainly because many well-organized databeasetain all the data necessary for
this analysis. These databases not only providemaenient data source for researchers,
but also effectively prevent a time-consuming datidection process and curb costs.
However, time series study is not without limitatidJsers need to pay closer attention
than they do to other study designs when contigfian season and time trend. The
number of lags included in models must also bertaki® account as it is difficult to
balance considering possible lag effects and angithe appearance of a concurvity
problem which can result in underestimating thearare of effect estimates (Ramsay,
Burnett, & Krewski, 2003a; Morlini, 2006). In adidih, the aggregation over the
population in time series studies may cause biastimated coefficients (Dominic et al.,

2003c).

1.2.3. Other epidemiological study designs

Time series study design is not always optimal. Miesearch groups have different
research purposes, or restricted funding, time datd sources, it is advisable to use
alternative methods when approaching air polluiod mortality issues. For example,
the case-crossover design, a modification of tise-cantrol design (Breslow & Day,
1980; Schlesselman, 1994), was developed by Mafl9@1) from his study of acute
transient effects of intermittent exposures, argllfeen extended to some air pollution
and mortality data in Philadelphia (Neas, Schwa&tbockery, 1999), Seoul (Lee &
Schwartz, 1999), Seoul (Lee & Schwartz, 1999), alist and New Zealand (Barnett,
Williams, Schwartz, Neller, Best, Petroeschevskysi&pson, 2005). By definition, the
"case or index time" is a hazard period which esttme frame right before the disease or
event onset, and the "control or reference time'ésntrol period which is a specified

interval other than the hazard period. Researat@lect individual information from
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subjects who had the disease or experienced thm, erel test for consistent
relationships between the disease and the expasghile, minimizing the possibility of
confounding. The target of case-crossover studigdes to estimate the odds ratio of
effect by dividing the number of subjects who wexeosed under specific
circumambience during case or index time by thapesed during the control or
reference time. Adjusted odds ratios are easiiyneseéd by conditional logistic regression
models (Agresti, 1990; Stokes, Davis, & Koch, 206@yr instance, Neas et al. (1999)
calculated that a 100 pgfimcrement in the 48-hr mean level of total suspend
particulate matter (TSP) was associated with irsgdall-cause mortality with an odds
ratio of 1.056 (95% CI: 1.027, 1.086), with the sddtio of death due to cardiovascular
disease being 1.063 (95% CI: 1.021, 1.107) aftprstidg for the same weather variables
in Philadelphia. The case-crossover design caommigtconsider individual information
(ex: age, sex, health status and behavior factoiglentify the susceptibility of subjects
to the influence of air pollution, but also allo@esonal and secular trends by
bi-directional selection of control periods (Jadkk@003). However, it has been proved
that this approach has approximately 50% lower padiaan the time series method
(Bateson & Schwartz, 1999), and bias easily afiges time auto-correlated effects
(Navidi, 1998; Bateson & Schwartz, 1999; Lumley &uy, 2000; Levy, Lumley,
Sheppard, Kaufman, & Checkoway, 2001a) and ovegldppdex time periods (Austin,
Flanders, & Rothman, 1989; Lumley & Levy, 2000)n&osolutions for these problems
are conveyed in Navidi (1998), Lee and Schwart®9)9Neas et al. (1999), Navidi and
Weinhandl (2002) and Lumley and Levy (2000).

When it is allowable to collect individual informah and track personal exposure
measurements consistently for air pollution relatsikarch issues over time to
investigate changes in repeated outcomes, a panii is an appropriate design to handle

such longitudinal data analysis. In details, a pahealy design in air pollution research
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often studies N individuals over a well-definedipdr(length = T), and collects health
outcome measurements repeatedly for some timespaiming this period. The exposure
measurement of air pollutants can be from a speaifipollution monitoring station
which is close to the location where individualsaige the test, or from personal
monitors distributed by well-trained instructorsodérn statistical models of longitudinal
data analysis (Diggle, Liang, & Zeger, 1994; Singéwillett, 2003) have been applied to
estimate the effects of air pollutants on humarithéa panel study design research,
including mixed, marginal, and transition modelgn@ralized linear models with
generalized estimating equations (GEE), which ealnce the bias caused from an
improperly specified working matrix, becomes armlative choice for non-normally
distributed response variables in panel data (L&geger, 1986; Zeger, Liang, & Albert,
1988). Along with the progress of Bayesian analyB#sy/esian hierarchical models are
also broadly used to handle complicated variantetsires induced by panel data. In
addition, the advent of the faster Markov chain koGarlo (MCMC), has made it
possible to do the calculations on these compleaeatsothus rendering the Bayesian
hierarchical approach more practical (Gelman, @a8tern, & Rubin, 2004). In air
pollution and human health research, panel studigderovides a contribution to
investigate chronic diseases, such as asthma sgm@nd lung function exacerbation.
Some literature includes McCullagh (1980), Heagarg Zeger (1996), Slaughter,
Lumley, Sheppard, Koenig and Shapiro (2002) andtiagForastiere, Pistelli, lavarone,
Michelozzi, Fano, Marconi, Ziemacki and Ostro (2006

The panel study design is very popular becauseaibie to incorporate personal
exposure feasibly, estimate within and betweenesailgffects separately, control for
subject-specific covariates, and target subpoparateasily (Dominici et al., 2003c).
However, it can be difficult to recruit samplesgarenough to provide enough power, and

subjects often drop out of study in the middleesfearch period for various reasons.
16



Another serious problem is that the study desigiuiserable to test threat, which
violates internal validity because subjects oftendme primed to measurement
instruments after repeated interviewing, thus mgkine sample atypical.

In the cohort study, subjects who have certain itmmd and share common
experiences receive a particular treatment anfbdosved over time and compared with
another group who is thought of as the unexposedpivaffected by the condition under
investigation. A cohort group is often defined ag@up of individuals who are linked in
some way or who have experienced the same signifida event within a given period
(Rothman & Greenland, 1998). They can be eitheospective (looking back in time) or
prospective (following cohorts over a time peridd)air pollution and mortality study,
the exposure variable is a measurement of cumaelaiivpollutants. The parameter of
interest is the relative risk of disease incideoicdeath with high versus low air pollution
exposure. The Cox proportional hazards (PH) madalstatistical tool in survival
analysis (Cox & Oakes, 1984; Clayton & Hills, 1998nd is often used to assess the
relationship between mortality and air pollutiogpecially to estimate mortality rate
ratios for air pollutants by adjusting for othettgmatial confounding factors. This model
has been applied to many prominent cohort studies ipollution research and health
research, such as the Harvard Six Cities studyK&nycet al., 1993), American Cancer
Society (ACS) study (Pope et al., 1995), and Calitebased Adventist Health and Smog
(AHSMOG) study (Abbey et al., 1999). The particifsa@nrolled in these studies are
from 6,000 to 550,000 subjects. A basic assumpsidhat each subject within the city
was assumed to have the same exposure level. hatvard Six Cities Study, air
pollution has a significant influence in cardiopolmary and lung disease, and the
adjusted mortality-rate ratio for the most pollutety was 1.26 times (95% CI: 1.08, 1.47)
higher than the least polluted city. In the ACSdgtuhe adjusted relative risk ratios of

all-cause mortality for the most pollutaceas compared with the least polluted is 1.15
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(95% CI: 1.09, 1.22) and 1.195% CI: 1.09, 1.26) when using sulfate and fine
particulate measurementsspectively. The AHSMOG study pointed out thagigeriods
of residence and work location in areas of highiemttair pollution were associated with

increased mortality.

1.2.4. Extended issues in air pollution and mortality stsd

Even as statistical analyses have improved andg@segd more precisely and in
sophistication, the challenge of air pollution dnaonan health research never ends
because the natural properties of this issueestidit: large populations are exposed at low
air pollution levels, so small relative risks shobble detected with high statistical power
(Dominici et al., 2003c). Scientists are still nrakiefforts to discuss further related topics
in this area. Some research opportunities eitHgedmr yet to be solved are discussed

below.

a) Multi-pollutant models

From previous literature, most studies have onty$®d on one main air pollutant
effect. Particulate matter (Plylor PM; 5) has been identified as the main factor of air
pollution contributing to adverse health. Thus tigatate matter has become the primary
target of most air pollution research. Ozone issieond factor attracting attention. Some
studies using more than one air pollutant in dtaismodels assigned a main factor (PM
or O3), and then regarded other air pollutants as corfers. We realize that any single
air pollutant cannot act in the air without mixiagd interacting with other air pollutants.
However, little research discusses 2-pollutant rieode3-pollutant models. Chan et al.
(2006) applied 2-pollutant models and 3-pollutandels to analyze air pollution

influences in hospital emergency room visits falebeovascular diseases in Taipei. Many
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distributed lag models incorporated with the GAMntlfied simultaneous mixture
effects by 2-pollutant models ¢§&CO, G+PM, 5, Os+PM;o, CO+PM 5 and CO+PMy)

and 3-pollutant models (CO+PM s and Q+CO+PMy). In detail, they found @and
CO were more significantly associated with cerebsoular admissions than RiMand
PM, s in 2-pollutant models. ©£had a significantly current effect in cerebrovdacu
diseases, but P)s and PMs's effects were deferred to a 3-day lag. Parti¢cyl&O had
a significant 2-day lag effect on stroke, but teeagiations with other air pollutants were
very weak. Other multi-pollutant model research lbarseen in Wellenius, Schwartz and
Mittleman (2005), Tsai, Goggins, Chiu and Yang @0and Le Tertre, Medina, Samoli,
Forsberg, Michelozzi, Boumghar, Vonk, Bellni, Atkon, Ayres, Sunyer, Schwartz and

Katsouyanni (2002).

b) Multicollinearity and concurvity

Two potential problems recurrent in multi-pollutantodels and distributed lag
models are multicollinearity and concurvity, whicange the direction of estimated
parameters and present biases. Multicollinearipeaps commonly among highly
correlated linear factors, especially in lag ee€@oncurvity can be regarded as a
nonparametric analogue of multicollinearity, antenfshows up among smoothers
(Ramsay et al., 2003a). Since regression models waoduced, the task of dealing with
multicollinearity problems has never ended. Gemgrgeaking, concurvity in
nonparametric and semiparametric models can callseiing problems: 1)
underestimated standard errors of parameters;ritijdemce intervals that are too narrow;
3) understated p-value; 4) greater type | errog€iras, Roca-Pardifias, &
Cadarso-Suarez, 2003). All four problems emanata the same source. As concurvity

exists, underestimated standard errors of parameéeise narrow confidence intervals,
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which commit over threefold type | error along waimaller p-values. Concurvity often
appears in modern air pollution and mortality reskedecause most of the current studies
use the GAM to analyze data. It is especially comioo this to happen in the smoothing
function of time because smoothing functions apéclly used to adjust for possible
autocorrelation. If a variable has a temporal trand a linear effect on mortality
simultaneously, the variable becomes a functioinoé (Ramsay et al., 2003a).
Meanwhile, the time factor as the strategy of swwhe concurvity problem in this issue
cannot be ignored. The concurvity issue must bedas many studies about air pollution
and mortality have already confirmed the existesfogoncurvity in their analyses
(Dominici et al., 2002b; Ramsay et al., 2003a).

So far, there is no strict criterion to identifyetievel of concurvity which can
severely affect model fitting. Ramsay et al. (2003&ygested using 0.5 to be the cutoff
point. If the level of concurvity in nonparametacsemiparametric models is greater than
0.5, it is necessary to seek in order to elimimateeduce this problem. Currently,
researchers pay more attention to concurvity tbanulticollinearity in this area. As a
result, multicollinearity has been well-addresse@arametric linear models (Farrar &
Glauber, 1967), but there is less advanced devedapm nonparametric or
semiparametric models. Zidek, Wong, Le and Burfi&96) discussed causality,
measurement error, and multicollinearity in epidaogy, but only presented the
existence of the three problems without furtheetiehce or solutions. The method of
handling the concurvity problem has not been pregasther. An initial parametric
bootstrap method was presented by Ramsay et &3820However, it failed to have
satisfactory results, and returned to suggest camlasmoothers having concurvity by
parametric methods with B-splines or natural sggliifdonetheless, the parametric method
is not perfect because a parametric smoother caftwats be setup with enough

flexibility to consider the possible time trend.erafore, a nonparametric approach was
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created by using a conditional bootstrap methodwprovides two advantages: 1)
calculating bias-free estimated standard errongflmear predictor; and 2) persisting
partial reduction of the residual bias when sttatvergence criteria are applied
(Figueiras et al., 2003, Figueiras, Roca-Pardifi@adarso-Suarez, 2005). Comparing
non-corrected and bootstrap corrected results fiomlations, the relative bias of the
estimated coefficient reduces 3.6%-12.1% along thighconcurvity coefficient from
0.56-0.90 as the bootstrap method is applied. Withorrection, the coverage of the
confidence intervals slumps from 0.94 to 0.66 ascttncurvity coefficient raises from 0
to 0.90; however, there is almost no change irctdwerage of the confidence intervals
with the bootstrap correction (Figueiras et al. 208 reanalysis was published by
Figueiras et al. (2005).

The bias from concurvity also appears in spatigpallution data. Suppose (X>)
is the spatial location (e.g. longitude and la&@udf a given place, arf@X1,X>) is the
spatial function along with a linear factog  a GAM. We can also detect the concurvity
coefficient by fitting the model 2ch(X4, X>) to get its correlation coefficient, wheng)
can be any smoothing function (e.g. LOESS). Franufation, when concurvity
coefficient is getting worse (i.e. concurvity coeitnt > 0.5), Ramsay, Burnett and
Krewski (2003b) confirmed the bias of estimatedffocients is raised along with inflated
type | error. However, previous research showedeabe of bias is up to the size of
estimated coefficient. Meanwhile, if the true effetlinear factor is large enough, the
bias coming from the concurvity in a GAM with a spasmoothing function can be

ignored (Dominici et al., 2002b).

c) Missing data

It is inevitable that air pollution measurementsédaome missing data from air
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pollution monitoring stations. The levels of migsuata from different air pollution
monitoring stations also vary. For example, comppamong those cities in the
NMMAPS database, larger cities generally have meissing data than smaller cities.
Among air pollutants, Pl tends to have more missing data than other aliutpoits
because it was not included in the NAQQS air qualiandards until later. Sometimes,
PMyo is measured once or twice per week, resultingximisfive missing PMo
measurements within a week. The most immediate ahgfahe missing data in
statistical analysis is that it produces bias irapeeter estimation, and several methods
have been proposed based on the missing datarsastied mechanisms (Plaia & Bondi,
2006).

After 1970, missing data analysis started to blaostatistical models or
methodologies, and data imputation approaches asoebeing published at the same
time. The methodology of multiple imputation gralippaccupied a dominant role, and
was preliminarily applied in sample surveys (Ruldi&78; Rubin, 1980). However, a
comprehensive methodology of multiple imputatiorswat presented until 1987 (Rubin,
1987), and the other multiple imputation approachese generally developed based on
Rubin’s theorems.

The problem of missing data was not emphasized nmualt pollution and mortality
studies. Although most publications used complase@nalysis (CCA), which means all
missing data would be deleted from model fittiregearchers were not necessarily aware
of it—especially in the distributed lag model. Magoarticulate matter studies have
confirmed that daily mortality is associated with@ollutants (e.g. Py or PMys) in the
previous few days (Schwartz, 2000). Roberts andimM&007) created a GAM for

imputing the missing PM concentrations:

PM; = s(tmax;,df = 6) + s(hum,,df =3) +s(t,df =4 X #years)

22



wheretmax andhum are maximum temperature and minimum relative hitgn@h dayt,
respectively. They also suggested the possibifigxtending the imputed model with
other co-pollutants, but the limitation is that thea completeness of other co-pollutants
is also uncertain. Zanobetti and his colleague8@p@lso proposed a similar imputed
model to handle the missing data issue in theiegdized additive distributed lag model.

The imputed model is an additive model:

X; =0 X Xi_q1 + fi(min.temp,) + f,(relative. humid,) + f5(t) + errory,

which can explain about 70% of the variability loé tdependent variable.

Another method which has been used to handle ngissirpollutant measurements
is data augmentation (Tanner, 1991) within the Gikdmpler (Geman & Geman, 1984).
All missing data was generated and imputed by ditional distribution of vectors of
missing covariates ¢4), given vectors of observed covariateg#ere established as a
multivariate normal distribution iteratively (Doman et al., 2002a). This method was also
applied in a discussion of a measurement error tr{@aeninici, Zeger, & Samet,
2000b).

Besides the aforementioned issues, more reseapditapities are still worthy of
making efforts to improve, for example, misaligregtvironmental pollutants and health
data which are measured at different scales of éeahjpnd spatial resolution (Zanobetti
et al., 2000; Schwartz, 2001), measurement eroon fising central air pollution
monitoring stations’ data to indicate individuapesure (McBride, Clyde, & Marcus,
2002; Dominici et al., 2000b; Carroll, Ruppert, &fanski, 1995; Zidek et al., 1996),
and mortality displacement if the near-death indlnals have passed away by the effects

or side-effects of other diseases (Zeger, Domigi&®amet,1999; Schwartz, 2001).

1.2.5. Spatial regression models
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A spatial data set consists of a collection of obet#gons that can be spatially located,
and the source of spatial data includes maps, sateta, air photographs, etc. It

generally comes in three basic forms:

1) Map data: A map data set contains points, linespatygbons. Points
represent the coordinate (X, y) of any fixed obg@tthe surface of the earth.
Lines represent an object with length, such agr@nd rivers. Polygons
represent natural, political, and administrativermaries. An advanced map
data named topographic map, supplies a detaileidtampof the earth with
roads, rivers, buildings and numerous mapped abj&stak & Ormeling,
1996).

2) Attribute data: Attribute data also names tabukgadwhich is the descriptive
data that geographic information system (GIS) littkenap features. As
collecting and compiling data for areas like stated cities, it generates map
data packages, and can be implemented in a GIS.

3) Image data: This kind of data is often collectamhfrsatellite images and
aerial photographs. Images can immediately andieffily reflect the truest
display from the surface of the earth. Image datdso easily cooperated

with other map features which support the formatrages.

Due to the diversity of map data, many spatial dat&ces provide enormous and
organized databases from governmental units, ssith& Geological Survey(USGS),
Census Bureau, Environmental Protection Agency, NA&d many state-level data
centers. Some commercial data sources are aldalaleaisuch as Spatial Insights Inc.,
Geography Network, and GeoCommunity GIS Data Defiuese spatial data sources
store different quantitative geographical data Wwidan be applied in appropriately spatial

regression models for the purpose of investigatieggeographic impact on select
24



research targets.

Early developments in the statistical methodolofgstimating spatial regression
models can be traced back to a pioneer study tdsgay processes in the plane (Whittle,
1954). Along with the maturity of statistical mettwdogy, the approaches of estimating
spatial interaction terms in modeling were propasetie mid 70s (Besag, 1974; Ord,
1975). The influence and test of autocorrelatiemfispatial effects were also introduced
during the same decade (Cliff & Ord, 1972; Cliffi&d, 1973). The maturity and
application of spatial modeling showed substamtiagress in diagnostics for spatial
dependence and heterogeneity, spatial econompamselin, 1988), advanced Statistics
(Griffith, 1988; Cressie, 1993), and social andiesnmental science (Haining, 1990) in
the late 1980s and early 1990s.

Several spatial functions can embed distinguisipatia covariates with different
kinds of geographical data, such as Markov randeldd (Spitzer, 1971; Preston, 1974),
Gaussian random fields, low rank kriging (Nychkaakhnd, O’connell, & Ellner, 1998),
and anisotropic spatial effects (Chiles & DelfinE999). In particular, Markov random
fields have been widely used because they succebdambncept of Markov chain to
perform an image chain, which can connect a site g neighborswith a conditional
probability, but keeps independent to the othessiMeanwhile, this probability provides
the relationship to any couple of geographicakst@nds’ only if they share a common
boundary or within a specific distance (Kneib, 280a herefore, a Markov random field
is a conditionally specific spatial model, whiclnjoprobability of spatial random
variables is not constructed immediately, but disthhéd by a set of conditional
probabilities (Huang, 2000). In the beginning,ashhe difficulty that, given a
conditional probability, it is not guaranteed tttere exists a stochastic process
containing the distribution of this conditional pedility, but it was solved by

Hammersley and Clifford (1971), who found that Markandom fields can be
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equivalently characterized by a Gibbs distributibhis is so-called Hammersley-Clifford
theorem, and a series of Markov random fields vetabéished by Besag (1974) based on
this theorem.

Now spatial analysis has been applied in many ase@$ as social science
(Goodchild, Anselin, Appelbaum, & Harthorn, 2000)blic health (Waller & Gotway,
2004), Ecology (Fortin & Dale, 2005), Econometriasbia, 2006; Anselin & Rey, 1997;
Florax & van der Vlist, 2003; LeSage, Pace, & Tisderf, 2004) and Finance (Pace,
Barry, & Sirmans, 1998; Pace & LeSage, 2004). dife study designs with specific
data structure can also implemented in differepésyof spatial regression models, like
the spatial econometrics of panel data (Elhordd328nselin, Le Gallo, & Jayet, 2006),
the analysis of spatial latent variables (Pinks8l&le, 1998; Fleming, 2002), Bayesian
inference of spatial autoregressive models (LeS2@@0), and spatial generalized linear

mixed models (Gotway & Stroup 1997, Zhang 2002 wWagt& Wolfinger 2003).

1.2.6. Generalized additive mixed models

The generalized additive mixed model was not estadd suddenly, but rather came
about through gradually integrating many elemerasfdifferent research. First, the
generalized additive model offered methodology #iai the structure of the generalized
linear model (Hastie & Tibshirani, 1990). HoweMesoth nonparametric regressions and
GAMs lack the ability to deal with correlated dag¢apecially time series data. Initially,
Hart (1990) showed a failure of cross validatiorewlestimating the smoother parameter
when data was positively correlated, and providetbdification in kernel regression
estimation. A similar method of estimating the meaad covariance nonparametrically
under the assumption that it is smooth with a medi€ross-validation was proposed by

Rice and Silverman (1991). Until the late 90s, sate@s about using linear mixed
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models controlled by a nonparametric time functiame finally developed (Zeger &
Diggle, 1994; Zhang, Lin, Raz, & Sowers, 1998; Wab Cullis, Kenward, & Welham,
1999). Furthermore, the approach of generalizethashg equations (Liang & Zeger,
1998) was also incorporated within the GAM for @aussian longitudinal data (Wild &
Yee, 1996; Berhane & Tibshirani, 1996). Howevefplethe appearance of the GAMM,
the research was limited in extending the aboverteg within the mixed effects model
framework.

Initially, there were some difficulties regardirtgetdevelopment of the GAMM. For
example, less work had been done on how to chogse@estimator of smoothing
parameters and bandwidth parameters (Green & Siber 1994). Moreover,
cross-validation was often time-consuming in corapah, and the influence on the
correlation parameters was hard to realize. Cresgyds also failed to be used based on
lack of contemporarily existing methodology (LinZhang, 1999). Besides, there were
some other problems that many researchers frequemtbuntered in practical regression
application, such as spatially and temporally dategl observations, insufficient
description of the heterogeneity among subjectsdwariates, and complex interactions
between covariates (Kneib, 2006a).

These challenges were preliminarily solved by lnd Zhang (1999), in the spirit of
the GAM and GLMM, by using nonparametric additivea®thing functions and adding
random effects to the additive predictors for modgtovariate effects along with
considering over-dispersion and correlation. Ireothords, the GAMM overcomes two
main shortages of inability to estimate randomaffeand within-subject variations in
the GAM and the weakness of estimating nonparam&tnoothing functions for
nonlinear variables in the GLMM. Therefore, besideselated data, clustered,
hierarchical, and spatial data can also be us#ttiGAMM. Nested and crossed

designed are also available (Lin & Zhang, 1999).
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The work was not completed because Lin and Zha@@d)lpointed out the
existence of bias, especially in binary data ocspeorrelated random effects. Hence, a
Bayesian approach via Markov Chain Monte Carlo (MONhethods can be used as an
alternative to address this problem (Fahrmeir &d,&82001a) as MCMC can provide
samples from all posteriors which can derive theessary posterior distribution’s profile
without any approximate normality assumption. Samédpproaches in other issues can
refer Wong and Kohn (1996) for Gibbs sampling viussian data in additive models.
Another advantage of this method is that it is nmedfieient in computation than other
methods for drawing from posterior distributionssphtial factors. Besides the GAMM,
Fehrmeir and Lang also extended this methodolodlyewvarying-coefficient mixed
model (VCMM), which allows incorporating smoothifghctions with coefficients. Their
inference successfully applied to forest damage dathe VCMM with tree-specific
random effects by using an unstructured covariatrceture and duration of
unemployment data by a GAMM with spatial randoneet$ for different districts in
Germany.

The basic assumption of random effects in eithetGAMM or GLMM is that its
distribution should be multivariate normal (Lin &ang, 1999; Brewslow & Clayton,
1993). However, this assumption may not be realistapplication. Zhang and Davidian
(2004) focused on the violation of the normalitg@saption in random effects in the
GAMM for clustered data, and proposed a conditionafginal likelihood (CML)
inference based on a conditional estimation proeedthe central thought of the CML is
to use the conditional distribution from the respowrariable given a sufficient and
complete statistic for the random effect, and rdigay it as a nuisance parameter to make
robustness in any random effect’s distributionsimulation, five different distributions
(Normal, Normal mixture, t, chi-square and Berniogitribution) were compared in the

average of the estimated smoothing parameter lmas#teir inference and double
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penalized quasi-likelihood (DPQL) from Lin and Zigaj1999), and more robust results
were achieved than those from DPQL estimates. alsyapplied CML to a case study
from a multicenter AIDS cohort study (Kaslow, Osty®etels, Phair, Polk, & Rinaldo,
1987) with the results from DPQL approach, and ¢@ukistent findings as simulation
results.

Another area worthy of further research is extegdire smoothing function to more
than one variable in the GAMM. For example, usifi@X;, X,) instead off(X;). This
kind of smoothing offers more sophisticated nordmelationships betweem X.s. Y
and X% v.s. Y, simultaneously, which can also be regamethe nonparametric
interaction term. So far, three methods are ablatulle this special sort of smoothing
function. First, a low-rank approximation approaclthin plate splines was developed in
geoadditive model (Kammann & Wand, 2003). Secoridnaor product P-spline with the
single penalty given by the Kronecker product &f prenalties associated with the
marginal bases was also constructed (Fahrmeir &l2001a). Third, a Bayesian type of
tensor products B-splines was conducted with shaigmmetric priors on the B-spline
coefficients (Lang & Brezler, 2004). A general fofon deriving scale-invariant tensor
product smoothers from low-rank penalized regressimoothers in the GAMM was also
proposed by Wood (2006). The purposes of emphassdale-invariant in tensor product
smoothers are that the covariates with unequagsaalthe same tensor product smoother
could lead to poor results. Tgammfunction ofmgcvpackage in R software constructed
by Wood can handle tensor product smoothers, bdetadike f(X) + f(Z) + f(X, Z)
are not supported in current versiomajcvpackage.

Based on the previous work of the GAMM, an extemsibpenalized spline
generalized additive models for analyzing spatiogeral data with a Bayesian
perspective was proposed (Fahrmier et al., 2004jd$r2006b) to be the prototype of the

generalized geoadditive mixed model (GGAMM). Therelated spatial effects were
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assumed to use a Gaussian Markov random field gRe@lestad, 2003) prior two
dimensional P-splines. The inference was perforeibetr with a full Bayes (FB) or an
empirical Bayes (EB) approach. The MCMC technigug REML algorithm were still
using the FB and EB approach, respectively. Withsdame framework, a general class of
structured additive regression models for multiredmesponses in either unordered or
ordered categorical spatio-temporal data was dpedl@Kneib & Fahrmeir, 2006). This
structured additive model family also extends teand regression models (Kneib, 2006b;
Kneib & Fahrmeir, 2007). Note that the computatlggragramming in these models was
implemented in the statistical package BayesX, lig@e&/www.stat.uni-muenchen.de/
~bayesx) It was developed at the Department of Statisticsyersity of Munich, for
Bayesian inference in structured additive regressiodels (Brezger, Kneib, & Liang,
2005). This freeware is powerful to fit the GAM, G, GGAMM, Gaussian directed
acyclic graphs (DAGs) models (Fronk & Giudici, 20@hd the VCMM with either
MCMC techniques or mixed model based techniques agpropriate for any

spatio-temporal analysis.

1.2.7. Applications of the GAMM in air pollution and molity studies

As an innovative and outstanding model in the mo@ea, the GAMM seems not to
be widely applied to most areas because of thenwexdence of software support. Lin
and Zhang (1999) used the %GLIMMIX macro in SAPtopose simulation and case
study in their paper. Right now, SAS Inc. has redebthe PROC GLIMMIX procedure to
replace the function of %GLIMMIX. Thgammpackage in R is also available. BayesX is
another freeware product which can fit the GAMMmnilhe Bayesian method.

Some panel studies in air pollution research tivegse the GAMM to explain

epidemiological issues. A reanalysis case studylC8chwartz, & Wand, 2001)
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collected data from 41 Utah Valley schoolchildren109 consecutive days. The main
purpose of the study was to investigate the infbeenf air pollution on peak expiratory
flow (PEF) in schoolchildren. In their model desigaily PM represents air pollution
exposure, and it was also the only linear predidiwo smoothing functions were
included for daily lowest temperature and time @ff®©ne random intercept and one
random slope for daily PMto specific subject-level variation were the ramdeffects.
They concluded that the PEF decreases 0.7 units Torpug/mincrease for P, which
is consistent with the initial analysis with the An Pope et al. (1991). The large
estimated variance of random intercept with a valu2 630 implied large variability in
the average of PEF among those subjects. The is@mie of estimated variance in the
random slope demonstrated the existence of heteedgef PM effects among those
schoolchildren as well.

Another example is the AIRGENE study which is atiecgnter epidemiological
study to assess inflammatory responses in assmtiaith ambient air pollution
concentrations in myocardial infarction survivorglalefine susceptible subgroups of
myocardial infarction survivors based on genotypifige EU (European Union) funded
study conducted data from six European cities Wj@®0 myocardial infarction survivors,
and measured their three inflammatory blood marie@RP, Fibrinogen and
InterLeukin-6) every 4 weeks. The logarithm of CRR time-invariant response variable,
and a stepwise procedure for allowing either ctdxims or smoothers in all continuous
predictors helps to organize this model. Note they used an alternative model fitting
programming by PROC MIXED procedure in SAS propadsgdgo and Wand (2004) to
derive AICs (Akaike, 1974). However, this modelestion criterion has not been
supported by any statistical inference in GAMMisltoncluded that Hbalc (diabetes
indicator), alcohol intake, BMI, BNP (heart failuredicator), packs per year smoked,

blood pressure, and cholesterol have linear effmtisg(CRP), while age has a cubic
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trend. Additionally, a dose-response curve foraimgollution effects with penalized
splines was also explored. In this part, an exkelihood ratio test for penalized splines
(Crainiceanu, Ruppert, Claeskens, & Wand, 2005)apgdied to test nonlinearity against
linearity as well as no effect in the dose-respansge. To sum up, they concluded that
ambient particles were associated with increaséis-éhand fibrinogen concentration,
and current treatment of myocardial infarction stoxs with lipid-lowering medication
may protect them from the adverse effects of diufants due to no association between
air pollutants and CRP. In regards to those claksigk factors (BMI, age, sex, hand high
cholesterol levels), they are correlated with sugghflammatory markers, which also
implied the genetic variation in the inflammatorgnkers genes can determine their
levels. Finally, inflammation in myocardial infai@h survivors is determined by a
number of time-invariant and time-varying enviromta factors, which increases the
risk for following events in the high-risk group tbfe population (Greven, Kiichenhoff,
Picciotto, Pekkanen, Bellander, Leonard, Chalamasidaulmala, & Peters, 2005).

The latest research using the GAMM is a study okileg for the potential
mechanism of PM-induced ischemia and connectinticodate matter to cardiovascular
diseases (Chuang, Coull, Zanobetti, Suh, Schw@attme, Litonjua, Speizer, & Gold,
2008). The subjects were gathered from BrighamVdachen’s Hospital at Harvard
Medical School with 48 patients who have 4 repeatedsurements by a percutaneous
intervention for myocardial infarction, acute coaoy syndrome without infarction, and
stable coronary artery disease without acute coysyandrome. The association between
previous 24-hour mean black carbon levels andisieof ST-segment depressian
0.1mm is positive, but adversely negative in 0.bfreveraged ST-segment level.
Generally speaking, the ST-segment depressiorrislated with increased PMand
black carbon in cardiac patients. They also idedtithat the first month after the cardiac

event could have the greatest risk of air pollutielated ST-segment depression in
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myocardial injury. Note that Chuang et al. onlyigsed a random intercept in this
GAMM, and the function of the GAMM is just for diagsing the possible outliers in
samples. In other words, it is no way to see sugpecific effect of PMs to

cardiovascular outcomes.

1.2.8. Applications of the GGAMM

The GGAMM has not been widely used in air pollutaord human health studies,
but some research gradually accepted the featuresluced by this model. For example,
the car insurance claims data from a German inseraompany containing detailed
information on metrical and geographical covariatas hard to be fitted by an
appropriate parametric model to concern their lyigionlinear relationships; but the
generalized geoadditive model with MCMC techniqad been successful analyzing the
amount of loss and claim frequency (Fahrmeir, 20A@3lalawi study for evaluating the
geographical location (districts) variation in firevalence of cough among childreb
years old also applied the GGAMM, cooperating withny nonlinear categorical
covariates (Kandala, 2006). Another similar chitdséhealth study covering more
symptomgdiarrhea, cough, and fever) applied the GGAMMniesstigate the impact of
spatial and other potential risk factors in Nig€Kandala, Ji, Stallard, Stranges, &
Cappuccio, 2007). A geoadditive hazard regressiointerval censored survival data
was also applied in the same area (Kneib, 2006i8.ahtenna of its application also
reached the most popular human health research—/ANIVStudies. The prevalence of
AIDS/HIV was pretty epidemic in Zambia throughoatsral decades, and researchers
examined the association between the prevaleneegagder, and districts location. The
GGAMM found that the two districts, Lusaka and Ceyielt, had the first and highest

prevalence of AIDS/HIV with marginal odds ratios®24 and 2.88, respectively
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(Kandala, Cappuccio, & Stones, 2008).

1.3. Motivations and objectives

After the new millennium, the development of metblogy in air pollution and
mortality studies gradually summarized many presioonsiderations with the 2-stage
Bayesian hierarchical model (Dominici et al., 200Daminici et al., 2002a; Dominici et
al., 2003b, Dominici et al., 2005), and thus faslenprovement is presented. Here, |
proposed the generalized geoadditive mixed mod@XKM) with an empirical
Bayesian approach and mixed model based estim@ehrmeir & Lang, 2001a,;
Fehrmeir & Lang, 2001b; Kneib, 2006a) instead ef2hkstage Bayesian hierarchical
model for the purpose of presenting a more comuigeel structure which can not only
evaluate nation-level air pollutant effects, bisoahssess marginal city-level air pollution
effects simultaneously. This unified model struetprovides some advantages (Kneib,

2006a):

1. Both fixed and random effects are random variadisnguished by different
priors with adopting a Bayesian perspective.

2. The priors of smoothing functions and spatiallyretated data can be embedded
into one general frame.

3. The general frame of the priors is able to be dsethore general and unified

estimating procedures, which is facilitated to to@lemented and described.

Because no previous research used the GGAMM inifTityttime series air
pollution and mortality studies, some objectives a@iso anticipated to be done in the

following:

1. Our preliminary motivation comes from whether th@ &MM can offer more
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intuitive and flexible device for applying multitgitime series air pollution and
mortality data. We will pioneer a Plyimortality model with corresponding time,
weather, and location factors to see how the GGAMMKs on spatio-temporal
data.

2. The current effect of air pollution exposure alawnth its lag effects over a few
days on daily mortality will be analyzed by the GKaI.

3. The co-pollutant model will identify the influenoé some co-pollutants, such as
O3, SG, NO, and CO along with PM effect.

4. Discussing the influence of starting values of sthimg parameter and the
number of knots on handling potential convergemroblpms, twisted splines, and
diminished spatial effect in the GGAMM.

5. Some missing data imputation methods will be im@etad with their influence
being identified on estimates in the GGAMM.

6. Two classic problems, multicollinearity and condtyvare always troublesome in
any semiparametric model; therefore, we will ineude model evaluation in the
level of multicollinearity among linear main facspespecially in corresponding
lag effects, and the level of concurvity among sthimg functions. Our target is
not only in original model, but also in models witputed data because we
wonder whether missing data imputation methods raeg the level of
multicollinearity and concurvity.

7. An extended distributed lag model approach wilpbesented to handle technical
problem when including too many lag effects in @@AMM. The principal
component analysis (PCA) will cooperate in this elpdnd the PCA-adjusted
estimates will be developed to transform the egemaf principal component
variables to the estimates of original air polldtaariables.

8. A comparison of GGAMMSs and 2-stage Bayesian hid¢iaet models will be
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performed with the same data using in case studies.

9. Three simulations will be accomplished for the sakdiscussing the influence of
concurvity, multicollinearity, and missing data iatgtion on estimates and
smoothing functions.

The NMMAPS database will be used as the main datece of the whole analysis in

the GGAMM. The general purpose of this study igather more concise and
comprehensive analysis in air pollution and mastadtudies via the GGAMM, and use

the findings to apply it to more related research.
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Chapter 2
METHODOLOGY

2.1. Mode formulation and inference

Consider longitudinal data for subjectsl,..., N, observed at time points
t € {ty, t5, ... }. With corresponding responses, covariates and gnmgofunctions, a

generic structure of the GGAMM can be shown as

IWne) = u1’1tV + Wr'ltb + f1(ner) + o+ fie(per) + fspat(snt)u (2.1)

where y,,; are predictor for subjectsat timet with corresponding covariatas,; in

linear fixed effects,w,; = (Wn¢1, ..., Wneg)' in linear random effects ang,,4, ..., xpex

in smoothing functions. The unknown paramegers a vector for unknown regression
coefficients of fixed effects, antl = (b, ... bgn)" containgy i.i.d. random intercepts or
random slopes. Moreovey(.) is a link function, f;(.) are smoothing functions of
continuous covariates,,;, and f,,:(.) is a spatially correlated effect of the location
Sne» Which can be boundary, contour and coordinateal. dor notational simplicity, we
initially exclude spatial function, and then equoat(2.1) can be subsumed into a concise

model structure with a semiparametric form

m=wy + i) + -+ fr(vip) (2.2)

by defining i = (n,t), vi1 = Upej, J= 1,0k, Vigsn = Wnen, R =1,..., 4,
fein(Viksn) = brnWnen, and n; = g(y;). As a result, this model framework a GAM-like

structure, which can facilitate advanced Bayesi&réence based on maximum



likelihood estimations.
For Bayesian inference, we can express smoothimgfiins f;(v;;) to be a product

of a design vectow;; and a vector of unknown parameteis i.e.
fiwi) = v;¢;. (2.3)
Hence, (2.2) can be rewritten as
m=wy+vpé + -+ vi’pfp' (2.4)

A prior for a smoothing functiory;(.) can be defined by an appropriate design
vector v;; and a prior distribution for the vector of unknoparameteré;. Therefore,
we can define the general form of the priorégf is a multivariate Gaussian distribution

with density
p(§j[7f) o exp (—ﬁf}lﬁs‘j), 2.5)
J

where K; is a precision matrix which can be regarded asmalty matrix to shrink
parameter towards zero. It can also penalize tstyljamps between adjacent parameters.
Because most ok;s are rank deficient, it's no doubt that the pabr; is partially
improper. Some other choices of priorsgf can be found in Gamerman (1997) and
Besag and Kooperberg (1995), but we will only iesto use (2.5) in the following
model estimation. For the prior of fixed effect t@cy, we can use either diffuse prior
p(y) < const or multivariate Gaussian pria¥ (y,, 2,,). Here we only consider the
noninformative prior because it can emphasize secliok of empirical Bayes approach
to maximum likelihood estimation (Kneib, 2006a).

In order to estimate semiparametric models withamag functions, we need to
have model representation to convert semiparanmawitels into the frame of parametric
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models. A similar representation has already beghed in investigating the respiratory
mortality of school children in Utah Valley (Cowt al., 2001). First of all, we need to
consider the estimation of unknown paramefgrin smoothing function (2.3). Based on

original parameterization, the joint posterior dimition of ¢; is

4
p(fll '"'Ep' )/|y) X L(y' Ell '"'Ep' )/) np(fjlsz): (26)
j=1

]

where L(.) is the likelihood function and)(fjhjz) is the prior foré; given in (2.5).
However, (2.6) is hard to get;’s maximum likelihood function, so a reparametefaa

is necessary to apply for estimatigg and the other unknown parameters simultaneously.
Generally, a¢; can be decomposed in to a penalized and an umpethabmponent by

this form
where X; is ad; x (d; — k;) matrix, andZ; is a d; x k; matrix. The two matrices

should be full rank and orthogonal. In additiofjk;X;=0 and X;K;X; = I (Kneib,

2006a). Letx;; = v;;X; and z;; = v;;Z;, we can import (2.7) to (2.4) as

p
n = Zuél’ +v¢;

j=1
14

14
=D iy + (B + 7ighy)

= x;8 + z;b, (2.8)
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where x; = (), xi1, ., Xip) » B= (V' Bur s By) s 21 = (zi1, r2i,) and b =

(by, bp) The matrix notation of (2.8) can be presented as

p p
=) Uy 4V = Uy + (X +2Zb) =XB+2b,  (29)
j=1 j=1
where the matriceX andZ are the vector-formatted presentationwfand z;.

Eventually, we transform equation (2.4) to a GLMtvusture with fixed effectss
and random effect$~N (0, Q), where Q = blockdiag(rflkl, .., Tpl, ). This model
structure can allow us to apply GLMM methodologyestimate smoothing functiofi
and variance parametetﬁ simultaneously. With a flat prior of, posterior (2.6)

becomes

p(B,bly) « L(y, B, b)exp (—>b'Q7*b), (2.10)

and the log-posterior is given by
4 1
b(B,B1Y) = 10,8, 0) = Y = bjb, (211)
j=1

where I(y, B,b) = logL(y, 8, b). Hence, we can use (2.11) to derive a Fisher score
algorithm with score function and the expected &ishformation matrix. For the score

function, we obtain

_ 0L, (B,bly) _ (sp(B,b)
s(B,b) = 0Gb) (sb(ﬁ, b)), (2.12)
where
al,(B,b ,
sg(B,b) = %Iy) =XDS™ 'y —w), (2.13)
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a1, (B, bly)

0(8,5) = 22 = 7'D57(y )~ @b, (2.14)
D = diag(D,) = diag <ag_a—1n("")>, (2.15)

and
S = var(y|B,b) = diag(c?) = diag (d’v(fi)). (2.16)

In particular, v(y;) is the variance function determined by exponerfdiadily of
response variablep is the scale parameter of corresponding expordatraly and w;
is a positive weight.

Similarly, the expected Fisher information carelzpressed by

F60= (20 ) @7
where
Fzp(B,b) = X' DS™'DX, (2.18)
Fg»(B,b) = Fpp(B,b) = X'DS™'DZ, (2.19)
Fo,(B,b) =Z'DS™DZ + Q1. (2.20)

Based on (2.12) and (2.17), the regression coeffisican be estimated by iterating
ﬁ(k+1) [?(k) _
(B<k+1) =00 )+ (F)~1s, (2.21)

Besides, we can also use an equivalent estimataoesgs to solve parameters by using

iteratively weighted least squares procedure talleathis linear system
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<X’WX XWZ ) D\ (XWy 29
ZWX ZWZ+Q')\pt+ | " \zWy5) (2.22)

where

7 =XB® +72b® + D~1(y — p), (2.23)

and

W = diag(w;) = DS™1D. (2.24)

Equation (2.22) also provides a fundament for degieredible intervals of
estimated smoothing function (Lin & Zhang, 1999 cArding to (2.8), estimated

smoothing function can be expressed by

Hence, the covariance matrix gf,f is given by
cov(f;) = (X;, Z;)cov(B;, b;) (X;. Z;), (2.26)

and then the pointwise credible intervals can bestacted based on the diagnoal
elements in (2.26) with assuming approximate naitgnaf the estimated parameters
(Kneib, 2006a).

Moreover, when concerning spatial effect, the gpétinction f;,,, can be divided
into a structured spatial functiofi;,, and an unstructured spatial functigp,s:-. The
importance of a spatial function is that it canlakpmany unobserved influence that
other factors can hardly reflect. The unstructigpeatial function can be regarded as a
part of random intercept, and assumed to be Galissian distribution. Moreover,

structured spatial function can be estimated bykigharandom fields (Kindermann &
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Snell, 1980), Kriging (Journal & Huijbregts, 1978hd so on. Here we just introduce the
Bayesian approach applying in Markov random fieRigppose the spatial index

s €{1,...,S} indicates some nearby locations in a geographies, and assume two
neighboring sites are more alike than any coupkrioitrary sites. A general prior for

spatial smoothers for function, for exampfg,,:(s) = s, is

slgys" # 5,T2~N s , (2.27)

where wg = ¢ X exp (—d(s,s")) is the weight inverse proportional to the distaote
centroids, andws, = Y, Wss 1S the sum of weights of those sigsvho is a neighbor
of sites, i.e., d,;. Additionally, d(s,s") indicates the Euclidean distance between the
centroids of sites and sites’, andc is a normalizing constant. Besides, when using
boundary data, the weights can be defined as thgoption of the length in the common
boundary of regionsands’.

We can obtain maximum likelihood (ML) estimatiorfdiged effects and random
effects by iterating (2.21) or solving (2.22), bl loss of degree of freedom while
estimating 8 is not considered when deriving maximum likelihastimation of
variance parameter?, and makes estimators are biased toward zero.e;l#isc
necessary to adopt a restricted maximum likelihg&IML) to overcome this
disadvantage (Patterson & Thompson, 1971).

Define u = Ay, where its expectation is equal to zero. The iistion of u = Ay
is independent of3, and it likelihood fits better in Bayesian modetrhulation. The

matrix A can be derived from this decomposition

AA =X (X' X)X, (2.28)

where A is a matrix with dimensiom x (n — dim(f)) and full column rank. In
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addition, theA derived from (2.28) can satisfif(u) = 0. As a result, we can obtain

with a marginal density

n—dim (B)

p@) = () 7 IXXEIZIHXE X exp {2 (v - XB) 2 (v~ XB)}, (229)

and the restricted maximum likelihood estimatorsréfand ¢ can be obtained by

maximizing
A1 ~
I'(x%,0%) = —2log(1Z]) — S log(IXE XD -2 (y = XB)~ (v —XB), (2.30)

where ¥ = W~1 + ZQZ' is the approximation of the marginal covariancérinaf
working observationj = X + z2b® + D~1(y — p).

Then, we can use Newton-Raphson algorithm to g&iR&stimations of those
variance parameters from (2.29). Another easieragmb is using a modification of the
Newton-Raphson algorithm given by Fisher scoretions (Kneib, 2006a). Suppose the
score function of variance parameter and dispersion parameter is

ol* (72, ¢) ol*(t2,¢) al* (72, ¢)
aff T a‘rz% ’ d¢

s*(t%,¢) = (s{, ...,S;+1)’ = ( > , (2.31)

where each element is the derivative of log-liketiti (2.30) with respect to each variance
parameterrj2 and dispersion parametér. Note that, it is allowable to ignore dispersion
parameter, particular in Poisson and Binomial th@t@ause¢ is fixed in several models
(Kneib, 2006a). Moreover, the score functions(o{, ...,s;;) are not applicable when the
number of observations is over 3000 because thegibanuch computation of several

n X n inverse matrices 1, and possibly need huge amount of total memopatculate
these score functions (Kneib, 2006a). In ordenvtmichprocessy 1, an adjusted score

function derived by Lin and Zhang (1999) is given b
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si = —%tr(Zj’WZj) + %tr(ZjW(X Z)H (X 2)'Z;)

1 o .
+§(37 —XB—Zb) WZ,ZjW (§ — XB — Zb), (2.32)

where

H:<XWX XWz )

ZWX Z'WZ+Q* (2:33)

Finally, if observations are not Poisson or Bindrdeta, then the numerical details of
deriving score function of dispersion paramefercan be found in Kneib (2006a).

When score functions are prepared, we can derevexpected Fisher information

821" (t%,9)

2 5.2
6‘rj 0Ty,

F*(t%,¢) = (F}). j,k=1,...,p+1. By definition, F; = —E( ) where

1
Fips1 =35 (tr(zjwz;) — 200 (X 2YWZZIW (X Z)H)

+tr((XZ)’W(XZ)H‘l(XZ)’WZjZJ-’W(XZ))], i=1..p (234

and

1
Fpaipr = gz [n—20r(X YW (X Z)H™Y)

+tr((X 2)W(X Z)H (X 2)'W(X Z)H™ D] (2.35)

The detailed proves can refer Kneib (2006a).
To sum up, we can construct a procedure to estifixate effects, random effects
and variance parameters with the following two step

1. Obtain % and b™® given the current variance parameters by solving

(X'WX Xwz ) BN (X'Wy
ZWX ZWZ+Q*)\pw )" \zwy)
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2. Update variance parametets= (72, ¢) by

9k+1) = 9 4 F*(lg(k))_ls*(,g(k))_
The two steps are performed iteratively and stoppei convergence.

2.2. Datacollection

Daily time series of mortality, weather, and aiflgiion data is gathered from the
NMMAPS database (Peng & Welty, 2004), and the treod is from 1991 to 1995
(calendar time is from day 1 to day 1,826). In ofdereduce potential biases from losing
information by missing data, 15 U.S. cities aresgroby missing rate of Pi¥60%. The
daily mortality is using the cardiovascular motialpneumonia mortality and respiratory
mortality with three age categories (<65 years 6%+74 years old ard/5 years old),
but the case study in the beginning is only adgptaspiratory mortality65 years old.
The ambient 24-h concentration of RN6 the main air pollutant measurement in this
study because it is the most influential agentwesse human health. The 1-day and
2-day lag PMpeffects are also concerned for the purpose of atialy particulate
matter’s distributed lag influence. Four main cdhgants, CO, NQ, O; and SQ, are
using in 2-pollutant models with Piyifor investigating potential compound effects
between them. The 24-h average temperature istodmelthe weather factor. Besides, a

set of spatial data with longitude and latitudenfreelected cities is adopted.

2.3. Statistical modds

Six GGAMMs will be showed in this section. We firstroduce a single pollutant
model fitting by the GGAMM to only consider Riyladjusted by two smoothing

confounders (calendar time and 24-h average termypejand a spatial function. Define
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Y.; as the outcome variable for the number of deatim fespiratory diseases in city
on a particular calendar dgyand Y. ~Poisson(u.). Its corresponding exposure M
concentration isPM,,. Two confounders in respective smoothing functiaresTIME

for calendar time and’MEAN, for 24 hourly mean of temperature. The day-of-week
variable DOW contains six dummy variables to indicate Mondagaturday. The
spatial datas. = (long, lati),. denotes the longitude and latitude in ctydence, the

single pollutant model can be constructed as

gue) = a+ by, + 6 (DOW) + (B + by.)PMy + f(TIME) + f(TMEAN,)
+fspar(Sc), (2.36)

wherec=1,...,15 and=1,...,1826. Parameterg and f are unknown fixed intercept and
slope. § = (6yon O1ue Owed OThur Orri Osqr )' denotes the slopes of each day-of-week
dummy variable. The random intercefyf, and random slopé,,. follow a multivariate

distribution, which

o= ()-(@).2= (5 2))

The function g(.) is alog link function, andu.; is the expected value df.;. The
smoothing function off (TIME) was used to take into account the long-term variah
the mortality over several years, and the shomteffect of weather on the risk of death
by including temperature smoothg(TMEAN,). In the interpretation, we mainly use
(exp(10 x ) — 1) x 100 to present the nation-level increase percentlafive risk in
mortality rate per 1Qg/m® PMyo increase, andexp(10 x b§) — 1) x 100 can be
described as the marginal city-level increase pegage. Meanwhile, if we would like to
investigate the PMeffect in a specific cityn, it is straightforward to calculate

(exp(10 x (B + b7™)) — 1) X 100 to be the answer.
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The second model is the distributed lag model elddrirom model 1 with two

additional lag effectsPM %" and PM'29%. The model form is:

9ee) = a+ by + 6" (DOW) + (B + bic)PM + (B2 + bzc)PMlagl

ct

+(Bs + b3c)PM29% + f(TIME) + f(TMEAN,) + fopar(sc),  (2.37)

where 3, and (3 are 1-day lag and 2-day lag Pj\ffect at nation-level, respectively.

The distribution of random effects becomes

bo /0 /002 0 o0 o\\
bl 1 0 2 O 0

0
b= ~MN , 2= :
b, 0 0 0 o5 O |
bs 0 0 O 0 032 /

Four co-pollutant models include CO, p@; and SQ to adjust PMy, respectively.
To simplify the notation, we construct a generahfof them. Suppos&/, denotes the
concentration of co-pollutant, afdrepresents any of the above four co-pollutants. Th
co-pollutant model can be shown as

9uet) = a4 boc + 8" (DOW) + (By + b1 )PMy + (B2 + by )V
+f(TIME) + f(TMEAN,) + f:spat(sc)- (2.38)

Here B, and b,. represent the national level and marginal cityegmeco-pollutant
effects, and the attitudes are the same as premodels. Note thaf (TIME) is defined
as a P-spline with first order random walk penédtycalendar time, angF(TMEAN,) is
defined as a quadratic P-spline with second omlellom walk penalty for 24-hour
average temperature. The initial number of knotg (f/ME) and f(TMEAN,) is 31

and 7, respectively.
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2.4. Jackknife-bootstrap approach

In order to overcome a potential convergence probitethe estimated standard
errors of fixed and random effects in the GGAMMyaitional jackknife approach can
offer reasonable sg) and sekf), but there is an inconsistent problem when drgwin
different numbers of jackknife estimates, whichrbot sef?) and sef) increase along
with the increase of the number of jackknife estesaTherefore, we embed the concept
of bootstrapping in the jackknife approach to rdtsef?) and sef). The modification is
that, instead of calculating standard errors fraokknife estimates, the bootstrap
standard errors take the place of jackknife stahdemors. In addition, the chosen
jackknife estimates are not drawn without replacembet with replacement at all. The
detailed steps are as follows:

Step 1: fitting the GGAMM from real data withouet' observation in each city,

wherei = 1,...,1826. Defined these estimated fixed effast§ (1,
pED, .. p-1826),

Step 2: Drawing jackknife estimates fronf (-0, g2 ., p(-1826) yjth

replacement. Define these selected jackknife estsras S, §2, ..., BP

Step 3: Calculating bootstrap estimgié& by taking the average fromi® =

X2 B /b.
Step 4: Calculating bootstrap standard errorsbg®) = ¥2_; (p/ - ,[?B)z/(b - 1).

Step 5: Repeating step 2 to step 4 Withmes, and then taking the averagedt
and se(B%).
Heremwill be assigned values with 100, 200, ..., 1800hapter 3 to review its
stability to jackknife-bootstrap estimates. Theueabfk is flexible. Theoretically, largek
can reduce the possibility of bias from drawingcése study, we will ude=10,000 to

complete the last step of jackknife-bootstrap pdoce.
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2.5. Multicollinearity and concurvity analysis

The criteria of evaluating the multicollinearitycdanoncurvity level rely on

calculating the correlation coefficient

p = corr(PM., E(PM.)), (2.39)

where E(PM,,) is the prediction ofPM,, by the fitted model

E(PM) = (g + Poc) + (1 + P1c)PMLLIt + (4@ ) PMIST? (2.40)

or

E(PM.) = (fip + Poc) + (1 + P10V (2.41)

for multicollinearity level in distributed lag molder co-pollutant models, and

E(PM.) = f(TIME) + f(TMEAN) + fepar (s) (2.42)

for concurvity level. The concurvity influence oo-pollutants can also be determined by

p = corr(VE,E(VD)), (2.43)
where
E(VE) = f(TIME) + f(TMEAN) + fpar (sc). (2.44)

The conclusion of existing severe multicollineaatyd concurvity is based on

weatherp is larger than 0.7. In our six models, we willghase the following items:

(1) The multicollinearity level between Plyland corresponding 2 lag effects in the
distributed lag model.

(2) The multicollinearity level between Plyland CO, NG, O3, SG in the
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co-pollutant model, respectively.

(3) The concurvity level between Ryand the equation of smoothing functions
f(TIME) and f(TMEAN) with spatial functionf,,.(S) in each model.

(4) The concurvity level between 2 lag kdwffects and the equation of smoothing
functions f(TIME) and f(TMEAN) with spatial functionf;,,.(S) in the
distributed lag model.

(5) The concurvity level between co-pollutant CO, NO;, SG and the equation of
smoothing functionsf (TIME) and f(TMEAN) with spatial functionfs,,.(s)

in four co-pollutant models.

2.6. Theextended distributed lag model and PCA adjusted estimates

The extended distributed lag model is using fordhathe convergence and
technical problems of multivariate lag effects ud#d in the GGAMM. Theoretically,
equation (2.36) can be implemented more numbeageéffects, but may make BayesX
crash. The multicollinearity level may become higas well. In order to solve the two
issues simultaneously, the most intuitive ideaoimg variable condensation. Principal
component analysis (PCA) is a popular multivaratealysis for data condensation, and
uses an orthogonal linear transformation to conviertdata into a new coordinate system
such that the greatest variance by any projectidheodata comes to lie on the first
coordinate (called the first principal componetitg second greatest variance on the
second coordinate, and so on (Jolliffe, 2002; Joh@&sWichern, 2007). The most
significant property of PCA is that all principadlmponents are orthogonal with each
other; meanwhile, they are totally independent. basic concept of this transformation
is remaining most of information among data by sdimear combinations to explain

most of its variance. An expectation is that usame ‘functions’ to represent the entire
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lag effect series— just like the function of smaothin time and temperature; therefore, a
linear combination organized from PCA would beltlest way to merge different lag
effects together.

Suppose variables can generate at mogrincipal components. AssuniRIN
denotes the principal component vector, and veXtenotes original PAj variables.

They can be represented by a matrix form from PEA a

PRIN, Pl\?ct \‘
PM agl
PRIN = PR:INZ =AX=A ct , (2.45)
lag(n—-1)
PRIN, PM_; /
a, a1 A2 A1n
a a a a
A= 2= ™ o (2.46)

an An1  Q2n Ann

whereA is a loading matrix calculated from the eigenvextae., a;, a,,...) of
variance-covariance matrix q@® My, ..., PM-29"~) The order of these eigenvalues
(A4, ..., A,) is usually ranked from maximum to minimum. Thenaedat of loading matrix

can be solved from

a1 iy
a; a;

sl =4 ¥ (2.47)
Ain Ain

where S is the sample covariance matrix>qfand each principal component can
account for the proportion of variance among éltjioal variables by4; /Y7, 4;)*100%,
fori=1,...n. Suppose the firsh principal components have cumulative proportion of

variance>70%, and then each principal component can beftianed to

PRIN. = @y PMgy + aiaPMI9" + o + @ PML29 Y (2.48)

ct
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for g=1,... m. Meanwhile, the distributed lag model becomes

g(.uct) =a+ bOc + 5’(DOW) + (ﬁl + blc)PRIthl + et (ﬁm + bmc)PRIthm
+f(TIME) + f(TMEAN,) + fspat(SC), (2.49)

which is so called the extended distributed lag @hod

Here we propose an approach to transform the es$ng;, ..., 5,,) in (2.49) to
original variables’ estimates, say, PCA-adjustadreges, which can immediately reflect
the associate between original particulate maftecteand mortality rate. Defing;; as
the loading of th¢" variable in thé™ principal component. The relative proportion af th
loading in thg™ variable and th&" principal component can be calculated by
Lij/%3_,|li;|- Supposep; is the proportion of variation that ti& principal component

can account for, so the increase of relative rat¢"poriginal variable increase is

v s

The standard error of; can be derived from

1 pibi. (2.50)
ij

1
2

2
. STy A
se(7;) = Z z:q—MPi Var(B)| - (2.51)
i=1 \&j=11"U
The subject-specific effect in thé& subject in thg™ variable can be calculated by

£ = qu T

T pibii, (2.52)
ij

SO its standard error is
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1
m 2

2
A I ~
se(§;) = Z(Zq;]““lpi) Var(by)| . (2.53)
i=1 \&j=11"l
Therefore, thep;, se(?;) and se(¢;) the PCA-adjusted estimates ff, se(f;) and

se(Bj).
2.7. Missing data analysis

Most of published literatures used complete cas¢yais to handle severe missing
data problem by just deleting missingness whatethear corresponding variables are
complete (Dominici et al., 2000a; Dominici et &003a). We are interested in the
efficiency of using some missing data imputatiorthrods to compensate possible
information losing, especially in smoothing functso Suppose the mechanism of missing
data in the NMMAPS follows MAR, the following misg) data imputation methods were
applied to make these data sets back to completenes

1. Nearest neighbor imputation — version | (NNI1)
2. Nearest neighbor imputation — version Il (NNI2)
3. Multiple imputation by MCMC (MI-MCMC)

In details, the NNI1 is a kind of hot deck imputatiwith a long story, and has been
used in many surveys conducted by Statistics im@anthe U.S. Bureau of Labor
Statistics, and the U.S. Census Bureau. Its statigiroperties had not been derived until
Chen and Shao (2001), which gave a detailed inéeremer several issues to get
asymptotically unbiased and consistent estimatednees. Generally speaking, suppose
the data structure with m missing values for the imdices i=n-m+1,...,n can be

re-expressed by
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(X1 (h
observed <
\Xn—m Y,_
observed{ , "™
(Xn—m+1 Yn—m+1
missing <
\ Xn \ Y,

A missing valueX;, j =n—m+1,...,n, is imputed by choosing that valug,
[ =1,..,n—m, which is corresponding to its closest valjjeto Y;. This is also the true
meaning ohearest neighborThe definition ofclosestis determined by the distance
between any two response values. In other wordgjigtance of the nearest

neighborhood is calculated with all observed valoey by
|Yi = Y| = minisksn-m|Ye = Y] (2.54)

When we find the response valig, k =1, ...,n —m, which is the closest one to
Y;, j =1,..,n, we can impute its correspondidf} to the missing value. If there are
more than oneX; whose corresponding response valligshas the same minimum
distance toY; among others, then the mean of thdsalues is imputed.

However, the classical NNI has a potential disathga because a smoothing
function relating x and y can lead to substitutesi@ far away from the ‘true’ value
(Nittner, 2002). Hence, the NNI2 has been modifrech NNI1 to handle possible
imprecision in this situation. Consider a neighlwarth of y; contains a pre-determined
number of neighbors k. A key concept in this mettsoid control the range of the fixed
neighborhood, and impute data based on differentipies after comparing with a
percentage p of the length of the data intervgbp®ae k=3 and p=0.05, the ordered
values x5 for s=1,2,3 satisfying equation (2.54). Then, the raRged interval can be

expressed as
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R = X[3] — X[1] (255)

I = (x[max] - x[min]) x 0.05 (2.56)

Then, a concise step-by-step procedure in NNI2dasdhe above assumptions is:

Step 1. IfR<I, then impute a random number generated fld(w,3, x(3})

Step 2. IfR > |, then computez = R — I, and generate a random numbédrom

U(0, Zimax])» Where zppay) = 0.95 X R

Step 2.1. Iu > z then impute(x[; + x21 + x[31)/3

Step 2.2. lu < z then compute an empirical distributidn(X, S?) from
observedk and three probabilitie® (X < x[;), P(x) < X < x731), and

P(X > x[5)). After ordering them, imputing a value satisfyihg condition of
the maximum probability and satisfying,,;, < X < Xmnax-

Note that if there are more than omg; and x5}, the averagex(;;s and xj3;s can
be used in the procedure. The efficiency of NNId BiNI2 has been confirmed in
missing data in the independent variable whem§tadditive model (Nittner, 2002). So
far, there is no existing package in any statissoétware, so two self-made SAS macros
%NNI1 and %NNI2 were used to handle the two impaoitepprocedures.

In original methodology of NNI1 and NNI2, therenis special restriction. Both
continuous and categorical variable can applyawklver, even though there is no study
to support how large data set it can support, toallssample size may cause somehow
imprecision. In addition, NNI1 and NNI2 can be indregely applied in one independent
variable with one dependent variable, but impogsiisked in multivariate imputation. A
compromised way is making a correlation matrix agittvem, and picking the complete
variables with the highest correlation with anothariable containing missing data.
Nonetheless, this modification is not scientifioyen, and loss too many information

from other variables which aren’t used in NNI1 &dI2. That is the reason why
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multiple imputation is popular in this situationves though it needs more assumptions
from data itself.

The multiple imputation method can easily handigdanumber of variables
simultaneously, whatever variables themselves @mgptete or incomplete. Among the
categories of multiple imputation methods, the Mo@Garlo Markov Chain (MCMC)
method can simulate the joint posterior distriboitid unknown values and estimate
simulation-based posterior parameters. Considgamgral regression model with
outcomesY and a vector of predictorX. For a given subjects, these variables are either
observed or partially missing. We defile= (Z°P%, Z™), where Z°bS = (Z°Ps, X°bs)
and Z™s = (Y™, X™s), and R as a set of indicator variables, whekg= 1 if thej"
element ofZ is observed, and&; = 0 otherwise. The appropriate situation of using
multiple imputation method is that the data shdaltbw either missing completely at

random (MCAR) mechanism
P(R|Z) = P(R|z°%,Zz™5) = P(R|9), (2.57)

which means the missing data is not related tovanable, whatever known or unknown,

or missing at random (MAR) mechanism
P(R|Z) = P(R|Z°*) = P(R|¢), (2.58)

which indicates the missing data is only relatedliserved quantities of variables. Note
that¢ is presumed parameter set. Use of MCAR or MARvaIthe analyst to generate
imputations (Z{1, 23, ..., Z™}) from the conditional distributiorf (Z™s, ¢|Z°bS)
iteratively. The whole procedure can be implementgdg the IP algorithm (Schafer,

1997), which two steps can be defined attthieeration as:

Imputation step: Drawz™s(+0) from f(Z2™|Z°bs, p®),
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Parameter step: Draw ¢+ from f(¢|Z0Ps, Zmis(t+D),

In imputation step, suppose = (u,’, u,")’ is a partitioned mean vector @°>s

and Z™$, and a partitioned covariance matrix 81?° and Z™* is

Ly Xpp
== (g, 1)
i Zp

where Z,; and Z,, are covariance matrices @ and Z™, respectively, an®,,
is the covariance matrix betwedff?s and Z™. Hence, the conditional distribution of

Z™s given Z°PS = z, is a multivariate normal distribution with the meector
Hoq = Hp + 213,211 (21 — o), (2.59)
and the conditional covariance matrix
2r21 = Z2p — Z15211 Zpp. (2.60)
In Bayesian theorem, suppose that x p matrix Y = (y1,y3, ..., V5)' IS

distributed with a multivariate normal distributienth meanu and covariance matrig,

the posterior distributions ot and X are

nt
EIZ~W (e m, (- DS+ ¥ +— +T(z—u0)(z—u0)'), (2.61)
%z MN( (7 + 1), — z) 2.62
["’Il n+TnZ T:HOJn_I_T ) ( )

where W~1(a, b) means an inverted Wishart distribution with thgrée of freedona

and a precision matrib; n is the total number of observationsZy mand W are the
mean and precision matrix of prior distribution®f (n — 1)S is the corrected sum of
squares and crossproducts (CSSCP) matrjxand t are the mean and the denominator
of variance-covariance matrix in the prior disttion of u|X, respectively (Anderson,
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1984).
Based on (2.61) and (2.62), we can derive thespostdistribution ofu and £
from their prior information in posterior step, ainere we only use a noninformative prior,

i.e., the Jeffery prior, to obtain

2ED|Z~W1(n -1, (n — 1)8), (2.63)

(t+1)
ﬂ(t+1)|z(t+1),Z~MN (Z, - ) (2.64)

The two steps construct a Markov Chain to simutagevs {ZV, ¢ (M},
(2@, @}, . {2+, D from the posterior distribution of (Z™, ¢|Z°b%), and
this Markov Chain can converge to this posteristribution as well. After replicating the
above procedure m times to generate m imputedsgésawe can fit the GGAMM for
each imputed data sets, and get m model-fittingltseg=inally, m results should be
integrated into a final result in pooling step. Thepose of this step is providing robust
estimates of the parameters and their standardseBome extensive papers concerning
the asymptotic behavior of multiple imputation nueth can refer Barnard and Rubin

(1999), Meng and Rubin (1992), and Robins and Waag0).
2.8. Simulation

In order to identify more concrete and concise iobj@# multicollinearity and
concurvity and the influence of missing data impatamethods in the GGAMM, a
series of simulated data sets are generated tegsdbe three simulations. The
concurvity simulation and missing data imputationudation are using artificial data, but
the simulated data in the multicollinearity simidatis generated from real data.

The artificial data generating procedure is simaathe simulation method proposed

by Lin and Zhang (1999). The first step is condingca simulated model to generate
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random data repeatedly. 1,000 data sets are gedevéh 10 subjects in each data set,
and each subject has 100 repeated measurementsaiftevork of the simulated

GGAMM is constructed by

9(Yij)) = (Bo + bor) + By + b1 X1ij + f(Xaij) + fopar(uivi) + &5 (2.65)

fori=1,..., 10 and=1,..., 100, whereX,;; is an independent random variable generated
from a normal distributionV (0, 0.16); the variableX,;; is supposed to be a covariate
changing within each subject with equally 100 knotf, 1], and define it follows a

normal distribution

trun {l ‘|5‘ 4

100

N } + 0.01(j — 1),0.0001 |,

wheretrun{.} indicates a truncation operator, which only raims the integer part of any
number in it. The between-subject error teemis generated from a normal distribution
N(0,0.09), and the within-subject error term has autoregresrrelation by

e;j = pe;j_1 +e;; with p = 0.2. The smoothing functiohis a bimodal function

f@) = {6F3017 () + 4F51, (1)} — 1, (2.66)
where E, ,(.) is the probability distribution function of betésttibution

— r'(p+q) p—-1 _ q-1
E,q(x) ror@ (1—x)71, (2.67)

and I'(.) is a gamma function. The constant 1 usedf {w) is for the purpose of

centering smoothing function. The spatial funci®simply defined as

f;pat(ui, 'Ul') = (0.0001 x (ul- + Ul'), (268)
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where u; and v; are generated from a uniform distributidi{0, 10). It can be regarded
as a monotone increasing linear function from seugit to north-east.

The true values of fixed intercept and sI@p, 3;) are defined as (0.1, 0.1), and the
data of random intercept and slopk,;, b;;) are simultaneously generated from a

multivariate normal distribution

v ((5). (7 %))

Finally, the response variablg; can be simulated from a Poisson distribution witran

parameter

Kij = exp ((ﬁo + boi) + (B + b1)Xaij + f(X2ij) + fopar(ue vi) + eij)- (2.69)

The artificial data simulated from above steps lwammmediately use in missing
data imputation simulation. When 1,000 simulatet dats are prepared, each data set
randomly drops out linear predictdf;;; and covariateX,;; in smoothing function by
different missing rates. In order to clarify théi@éncy of each missing data imputation
method, X;;; and X,;; are independently dropped out to make two scemarithis
simulation. Note that dependent variatie is always complete in both scenarios. This
procedure is strongly based on that the missing &ichanism is missing completely at
random (MCAR) or, at least, missing at random (MAR)e missing rates are varied
from 5%, 10%, 20%, 30%, 40% and 50%.

We are going to investigate targeted estimgigsand estimated smoothing function
f. Two different §;s are estimated from the simulated data with missfy; and
missing X»;;, respectively. An adjusted sample mean square isrmodified from initial
sample mean square error in Nittner’s paper (20808),applied to be the criterion of

assessing estimated smoothing functions. It follows
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ASMSE(f (), f ) = {ZicaVarFop) + BEO. o] ) 270)

where x is the number of valigin the smoothing function, anB is the bias between

f(y]') and f (y;).

By using the same data generating procedure fB0é5) to (2.69), a set of
concurvity data is able to be generated baseditalirky;; and f(X;;;). Suppose a new

variable defined by
NEWXlU = Xlij + K X f(XZij)i (271)

andK is a numeric value which can control the concyrl@vel. When assigning=0,

0.02, 0.05, 0.09, 0.13, 0.17, 0.22, 0.30, 0.41(Ad, the concurvity level between
NEWXy;; and f(X,;;) is 0.03, 0.10, 0.19, 0.31, 0.41, 0.50, 0.59, 00780 and 0.90,
respectively. Each scenario with a specific conituttevel contains 1,000 simulated data
set, and the average 6%, se@,), sep,) and ASMSE will be evaluated.

Some previous air pollution studies used to siteutiata from real observations
(Dominici, McDermott, Zeger, & Samet, 2002b; He,Mendar, & Arena, 2006), and we
use a similar procedure to generate data fromra@id?M,, and SQ concentrations. In
order to facilitate the velocity of simulation, westrict the study period in only 1991
from our database. Suppose a couple of principapoment variables
Z = (PRIN; PRIN,) are calculated from original 1-year data of lghd SQ by PCA.

Define a covariance matrix as

-( %)

and a Cholesky decomposition can make iVas R'R, whereR is a upper triangular

matrix. As a result, two correlated variablds = (W, W,) with correlation coefficient
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p can be generated by = Z x R. When using the two new variables to fit

gee) = a + boc + 8" (DOW) + (By + by )Wy e + (B2 + b)) Wo o + f(TIME)

+f(TMEAN,) + fspat(Sc), (2.72)

the prior predictioni,; can be estimated from (2.72). The number of 11860
responsed}, ..., YA%°° can be generated from a Poisson distributian(ii.,). Each
scenario repeats the above steps to generaterntsiowlated data, and the corresponding

estimates can be evaluated from taking the average.

2.9. Mode diagnostic methods

The model diagnostic methods of the GGAMM havé stitleveloped, and related
practical literature also did not discuss this paf succeeded most of the applicable
theorems from generalized linear mixed model hegnodness-of-fit test for whether
the respiratory mortality rate is Poisson-distrdzlitlata is identified by Pearson’s
chi-square test. Some preliminary model diagnasgthods, such as residual analysis,
box plots of the residuals by level-1 units, sagttets of standardized residuals versus
fitted predictions and normal plot of residuals previded for the fundamental detections

of model fitting.
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Chapter 3
RESULTS

3.1. Demographics

Table 3.1 and table 3.2 present the demographiestaf 15 U.S. cities from 1991
to 1995. Each city had a total 1826 records frospiratory mortality, 24-hour average
temperature and P} In details, there was no missing data in daibpmatory mortality,
and the range of daily mortality average was frog8(ersons (Huntsville, SD=0.48) to
7.75 persons (Chicago, SD=3.16). In 24-hour averaggerature, most of the cities had
no missing data besides Colorado Springs (34 ngsata), and Detroit (1 missing
datum). Las Vegas had the highest 24-hour avesagpdrature with mean of 716
(SD=18.06), and the lowest city was in Minneap8lisPaul (Mean=47.36, SD=22.3).
Compared with respiratory mortality and 24-hourrage temperature, Piyirelatively
had more missing data over those cities duringthey period. Pittsburg had most
complete PMp data with missing rate only 0.38%, but Las Vegas almost 70% missing
PMjo. The highest level of average RP)Moncentration occurred in Cleveland
(Mean=37.23ug/rh SD=20.04) and the lowest one was Minneapoli§/stl
(Mean=22.68 pg/ SD=13.1).

The profile of co-pollutants was also very diffeiegspecially in CO. The highest
average daily concentration of CO was in Spokarnégchwwas 3.23-fold the
concentration of Lexington, the city with the lowesean of CO with only 602.36 ppb
daily. Moreover, the data collection of CO was mooepleted than the other

co-pollutants, and 14 cities had less than 3% mgsSIiO. In Q, six cities had missing



Table 3.1

Demographics of respiratory mortality, temperatared PMg in 15 U.S. cities from 1991 to 1995.

Respiratory mortality (person) Temperature®f) PMio (ug/nT)

City N Missing % Mean SD N Missing % Mean SD N Missing % Mean SD
Chicago 1826 0.00 7.75 3.16 | 1826 0.00 50.97 19.85 | 1778 263 33.26 19.17
Cincinnati 1826 0.00 1.71 1.37 | 1826 0.00 56.12 18.35 | 1252 31.43 33.16 1542
Cleveland 1826 0.00 2.28 1.57 | 1826 0.00 52.38 18.91 | 1705 6.63 39.8 19.80
Colorado Springs 1826 0.00 0.64 0.81 | 1792 1.86 4941 17.24 | 1747 433 2448 15.64
Detroit 1826 0.00 277 1.72 | 1825 0.05 52.18 19.36 | 1732 515 3436 20.51
El Paso 1826 0.00 0.60 0.81 | 1826 0.00 69.36 15.59 [ 1691 739 37.23 20.04
Huntsville 1826 0.00 0.23 0.48 | 1826 0.00 61.58 15.18 | 1051 42.44 23.35 10.61
Las Vegas 1826 0.00 143 1.23 | 1826 0.00 71.06 18.06 | 562 69.22 35.86 23.19
Lexington 1826 0.00 0.39 0.63 | 1826 0.00 57.66 17.79 | 1127 38.28 25.16 12.17
Minneapolis/St. Paul | 1826 0.00 261 1.68 | 1826 0.00 47.36 2230 | 1774 285 22.68 13.10
Nashville 1826 0.00 0.94 0.97 | 1826 0.00 61.18 16.53 | 1499 17.91 30.97 13.78
Pittsburgh 1826 0.00 291 184 | 1826 0.00 54.35 18.99 [ 1819 0.38 3151 20.25
Salt Lack City 1826 0.00 0.88 0.96 | 1826 0.00 5459 1941 | 1811 0.82 3471 2417
Seattle 1826 0.00 240 1.66 | 1826 0.00 54.67 11.10 | 1782 241 2434 1413
Spokane 1826 0.00 0.86 0.95 | 1826 0.00 49.82 17.15 | 1587 13.09  31.53 30.35
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Table 3.2

Demographics of CO, NDO;, and SQin 15 U.S. cities from 1991 to 1995.

o CO (ppb) NO; (ppb) Os (ppb) SG; (ppb)

v N  Missing % Mean SD N  Missing% Mean SD N  Missing% Mean SD N  Missing % Mean SD
Chicago 1826 0.00 783.26 316.09| 1826 0.00 2495 7.88]| 1826 0.00 19.38 9.62( 1826 0.00 4.79 3.30
Cincinnati 1826 0.00 1044.62 358.64| 1826 0.00 24.63 6.88] 1070 41.40 25.09 9.44( 1810 0.88 11.11 7.70
Cleveland 1826 0.00 850.09 381.70| 1826 0.00 24.76 8.23( 1070 41.40 27.96 11.64| 1826 0.00 9.68 5.73
Colorado Springs | 1826 0.00 1195.20 532.06 0 100.00 - - 1826 0.00 23.57 9.48 0 100.00 - -
Detroit 1826 0.00 629.50 321.25| 1823 0.16 22.16 7.75( 946 48.19 24.65 9.98| 1826 0.00 6.79 4.16
El Paso 1826 0.00 1071.07 585.01| 1813 0.71 178 8.67( 1826 0.00 26.18 9.48( 1817 0.49 8.33 8.74
Huntsville 1813 0.72 566.68 382.05| 1090 40.31 13.33 5.43| 1477 19.11 30.37 11.36| 194 89.38 4.33 2.1¢8
Las Vegas 1399  30.52 1382.4 1006.75| 1459 20.10 27.59 12.52( 1826 0.00 31.23 12.59 0 100.00
Lexington 1782 2.47 602.36 412.11| 1790 0.19 16.49 6.71] 1067 41.57 31.68 10.92( 1811 0.82 7.04 478
Minneapolis/St. Pay 1822 0.22 1182.22 359.18| 1770 3.07 19.30 7.50 0 100.00 - - 1822 0.22 3.06 1.64
Nashville 1826 0.00 949.78 411.58| 1719 586 13.96 7.51( 1826 0.00 19.11 9.28( 1818 0.44 9.80 6.46
Pittsburgh 1826 0.00 1038.55 531.36| 1812 0.77 27.65 8.13] 1803 1.26 21.71 11.50( 1826 0.00 13.95 8.27
Salt Lack City 1826 0.00 1446.14 817.59| 1174 35.71 26.80 11.90( 1104 39.54 32.20 10.14( 1826 0.00 5.69 5.84
Seattle 1826 0.00 1567.35 621.35| 296 83.79 20.15 7.11( 1071 41.35 2192 7.60 0 100.00 - -
Spokane 1826 0.00 1948.05 770.06 0 100.00 - - 974 46.66 32.86 7.96 0 100.00 - -
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Table 3.3

Correlation coefficient matrix among 15 U.S. citiemn 1991 to 1995.

Correlation | Respiratory
coefficient | Mmortality PMyo PMir-lagl PM;glag2 CO NO> O3 SO Time  Temperature
Respiratory 1.0000
mortality
PMyo 0.0198 1.0000
PMyolagl 0.0180  0.5376 1.0000
PMyolag2 0.0168  0.3335 0.5375 1.0000
CcO -0.0578 0.3450 0.1774 0.0784 1.0000
NO, 0.1915 0.4804 0.2464 0.0935 0.5838 1.0000
05 -0.2045  0.1058 0.0981 0.0641 -0.2634 -0.1574  1.0000
SO, -0.0684  0.3598 0.1894 0.0767  0.2758  0.3277 -0.1361  1.0000
Time 0.0206 -0.0408  -0.0412  -0.0411 -0.0641 0.0672 0.0152 -0.1871 1.0000
-0.1967 0.2089 0.1769 0.1380 -0.1882 -0.0605 0.5768 -0.0151 0.0302 1.0000

Temperature
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rates over 40%, and Minneapolis/St. Paul was ewvemptetely missing. The situation

became very extreme in $0ecause it was either complete or total missing €ities had
missing data over 89%, and four of them (Colorapgorgs, Las Vegas, Seattle and Spokane)
had SQ entirely missing. Even two cities (Colorado Spsragnd Spokane) have 100%
missing rate in S@and NQ. The data collection of CO was quite good, andifids had
missing data less than 3%.

The correlation table is shown in table 3.3. Fromrelationship between Rwith
corresponding two lag effects and respiratory nlitytdt shows that current PM effect has
slightly more positive correlation with mortalitgan lag effects. In co- pollutants, N@as
the only co-pollutant having positive relationskopmortality. It was no doubt that Ryand
its lag effects were moderately correlated withheather, and provided the evidence that the
desirability of using lag distributed models tontl&y the influence of lag effects to human
health. PMy also had slight correlation withsO5G,, and CO, and had moderate correlation
to NO, with the value of 0.4804. In particular, temperatbad much higher correlation with

O3 that the other factors with correlation coeffidi@rb768.

3.2. Spatial and temporal correlation of air pollutants

Besides identifying linear relationship among thesgables, we were also concerned
with the spatial correlations of variables betwaag two cities and temporal correlations
between any couple of time series variables. Fi§utgresents the plots of city-to-city
correlation versus corresponding separation dist&orceach air pollutant and 24-hour
average temperature. The definition of strong gpatrrelation is that the city-to- city

correlation has significant decrease along withitiseease of distance
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Figure 3.1

City-to-city correlation and separation distanceamg 15 U.S. cities from 1991 to 1995.
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between two cities. PM showed the strongest city-to-city correlation. Bhertest

distance between two cities had the highest cdivelaoefficient with value of 0.73
(Cincinnati vs. Lexington), and the correlation lde=d quickly as the distance was getting
longer. As long as the distance between two citigs longer than 1,000 miles, their
correlations in Py were closed to zero or tiny negative. In 24-howgrage temperature, the

correlation was also decreasing along with theadis, but the falling speed was not as fast
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Figure 3.2

Time trend plot of respiratory mortality, 24-howexage temperature, Piyland
co-pollutants over 15 U.S. cities from 1991 to 1995
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as PMy. The smallest correlation of temperature betweendities was still 0.70 when the
distance was over 2,000 miles (Pittsburg vs. S®aifthe general declining trends of
co-pollutants were similar as RiMbut they were not as obvious as fgMspecially in @

The highest city-to-city correlation (r=0.75) happd in Cincinnati and Lexington that the
distance between these two cities was only 75.88sibut correlations were still as high as

0.6 even though the distance was over 1,500 miles.
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Figure 3.3

Cross-correlation functions of air pollutants ventperature.
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Moreover, we used the cross-correlation functioBkLto handle the correlation
coefficient between two time series variablesalvl¢ 3.2, we found that the correlation
coefficients between time and the other variablesewery small, but these values only
indicate the other variables had no strong linekationships with time. In reviewing these
variables’ time series plots in figure 3.2, we fduhat most of them showed an obvious
seasonal trend over time. In details, both respiyanortality and 24- hour average
temperature showed significant seasonal variaéind,co-pollutants also showed somehow

regular fluctuation over time, such as CO and O
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Figure 3.4

Cross-correlation functions of co-pollutant vs. RM
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Figure 3.3 showed the CCFs for temperature versyobutants. The lag structure of
association was generally not symmetric besidegRd temperature and;@s.
temperature in summer seasons. CO,N@@d SQ had relative smaller cross-correlation of
temperature than Pjdland Q, but SQ generally had more explicitly positive association
with the following days’ 24-hour average temperatiivan NQ and CO. PN, obviously was
positively associated with both previous and follogvdays’ 24-hour average temperature,
especially from April to October, but its relatitnms with previous days’ 24-hour average
temperature almost disappeared in November andnilezre On the contrary,{&lmost had
both associations whenever any month it is, butahel decreases significantly in cold
seasons (October to February).

Figure 3.4 presents the CCFs for co-pollutantsRiMeh. The lag structure of

association was almost symmetric in N@. PM and SQvs. PMg in each month, but NO
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vs. PMy showed higher positive association than 89 PM,. However, both of them did

not display stronger or weaker associations iniipenonths. Moreover, CO vs. Plyland

O3 vs. PMy did not have similar significant performance oranths. In CO vs. P, the
stronger positive associations appeared in colsosesa and weak negative associations were
distributed from April to August. In particular, mant associations from June to July were
almost disappeared. Additionallyz @s. PM, showed positive association from June to
September, but the other associations were veri wdae other months besides current
association.

These results suggested that the correlation amiopgllution and temperature had
varying lag structure of associations, and the@ason can differ across air pollutants and
seasons. Besides, these results also gave ressaaaeneral sense that some potential
problems could probably exist among those corrélfetors in the GGAMM, such as

multicollinearity and concurvity.

3.3. Casestudy of usingthe GGAMM by BayesX

Six model-fitting results are presented in table 81 model 1, as the concentration of
PMyg increased 1Qg/nt, the relative risk of respiratory mortality in eld increased around
0.11% (95% CI: -0.46%, 0.67%). The virtualized sthow and spatial functions are shown
in figure 3.5. The time smoother went down in sumarel fall seasons and rose in winter
and spring seasons. The temperature smootheredleoted that extreme cold and hot
weather can increase higher mortality rate. Theskiwnortality rate happened atEL6As
temperature decreased belowFLDbr increased above 20 the mortality rate started to

climb up, and the highest mortality rate appeateD&F.
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Table 3.4

The parameter estimates with corresponding estidhsti@ndard errors of fixed and random
effects in six main models.

P

Model Variable B se) sep)
Model 1  PMg 0.000105 0.000287 0.000194
Model 2 PMg 0.000675 0.196834 0.762327
PMlagl -0.00053 0.133549 0.517211
PMyg-lag2 -0.001911 0.063516 0.245960
Model 3  PMg 0.000196 0.088258 0.341813
CcoO -0.000005 0.081648 0.316223
Model 4 PMg 0.000163 0.000441 0.000638
NO, 0.001224 0.000846 0.000795
Model 5 PMo 0.000227 0.000385 0.000531
O3 0.001855 0.000815 0.000650
Model 6 PMg 0.000388 0.000391 0.000419
SO -0.000281 0.001830 0.004000

Moreover, BayesX can generate a map to reflectdpmatial functions worked at different
locations. In the map of figure 3.5, cities locasedund Northeast U.S. had higher
geographical influence in respiratory mortality &ders. In addition, cities with higher
altitude also had higher mortality rate, such ds1Ske City (average altitude = 4,333 feet),
Colorado Springs (average altitude =6,009 feet)$pakane (average altitude=2,020 feet).
On the contrary, some cities near to coast, laked@sert had lower influence, such as
Seattle, Minneapolis/St. Paul and Las Vegas.

Considering the distributed lag model, the increageelative risk in respiratory

mortality in elders were 0.68%, -0.05% and -1.898% 30 ug/mincrease in Plyh
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Figure 3.5

Smoothing functions of calendar time and 24-howrage temperature and map of spatial
effect for 15 U.S. cities from 1991 to 1995 in nhdde
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Figure 3.6

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 1@9Hodel 2.
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Figure 3.7

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 1@9Hodel 3.
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Figure 3.8

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 1@9Hodel 4.
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Figure 3.9

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 1@9Hodel 5.
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Figure 3.10

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 1@9Hodel 6.
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concentration at current day, 1-day lag and 2-dgyrespectively. Nonetheless, we found
that the estimated standard errors of fixed andaaneffects (sgd) and sef)) were
exaggerated 221~600 times larger than those in Mo@ad made confidence intervals too
wide. In fact, this was a convergence problem aafigtappening in the GGAMM fitting
by BayesX, and we will discuss more details andtsms about this problem in fixed and
random effects in section 3.4~3.6.

Regardless of the problem of overestimated stanelaods, we still can review the time
and temperature smoothers and spatial functionimagmdel 2. Its time smoother still had
regular fluctuation as that in model 1, and temjpeeasmoother displayed a slightly similar
performance. However, temperature smoother dichaee significant rise in left tail. The
spatial function also displayed similar patternAestn model 1 and model 2. Meanwhile, the
relative spatial effects were still the same. Lagptial effects in model 1 were still large in
model 2, and vice versa. The highest spatial effest still located in Chicago, and the
lowest spatial effect was still located in HunteviHowever, based on the existence of
convergence problem, this result was still uncertiiwas questionable that why the
distributed lag model with similar profile of smbatg and spatial function had problematic
estimates in standard errors of fixed and randdetesf. We will have an advanced analysis
to remove this problem in section 3.11, and see these estimates, smoothing functions and
spatial map will perform.

In co-pollutant models, the percent relative risksespiratory mortality increased
0.20% (95% CI: -172.82%, 173.22%), 0.16% (95% QI70%, 1.03%), 0.23% (95% CI:
-0.53%, 0.98%) and 0.39% (95% ClI: -0.38%, 1.15%)1q1g/m> PM,o increment for

model 3, model 4, model 5 and model 6, respectibye that the results of estimated
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standard errors in model 3 also reflected thatrtiogel existed a convergence problem,
which also affected the confidence interval of @@ effect. The national effect of CO was
associated with mortality rate with relative ri€k31% when it increased per 10 ppb, but its
95% confidence interval was questionably over-vadevell. It will be combined with model
2 and discussed in section 3.4~3.6. Besides, éxpipl increase in the concentration of NO
can raise 1.23% (95% CI: -0.43%, 2.92%) relatig& df respiratory mortality in elderssO
also had a positive relationship with respiratoyrality rate in elders, and its relative risk
significantly increased 1.87% (95% CI: 0.26%, 3.5E%the concentration of ozone
increased per 10 ppb. However, the national eGE8O, was negative to mortality rate.
Compared with model 1, when adjusting by co-potitgathe PM, national effect increased
0.55-fold (model 4) to 2.70-fold (model 6).

The smoothing functions in calendar time in co4m@lht models shown in figure
3.7~figure 3.10 also presented very stable fluanabut the smoothing functions in 24-hour
average temperature was quite varied among thenfodels. Except for problematic model
3, the temperature smoother of model 4 was alndesitical as model 2's temperature
smoother with a slight curve. Moreover, the tempgesmoother in model 5 shown in
figure 3.9 was no longer a curve but a straigtg rhich was monotonic increasing from
cold to hot. Its 95% confidence interval also tehttediverge toward the two ends of the
tails. In model 6, extreme hot and cold weatherradh influence on mortality rate, and
presented a bowl-shape over temperature.

Considering geographical influence, in order togkéee same Markov random field and
make these spatial function maps comparable, aenezt the complete spatial data

regardless that some cities contained 100% misktein co-pollutants, such as Colorado
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Springs (Q, SO, NO,), Las Vegas (S£), Minneapolis/St. Paul (£), Seattle (S¢ and
Spokane (S& NO,). This was a special property of BayesX in thaggimg data in any
variable will not affect spatial function becausmgraphical data and air
pollutant/mortality/weather data were not storethim same data set. They belonged to two
separated files and imported in BayesX indepengdRéviewing the general pattern of
these maps, some cities with stronger spatial sfiaanodel 1 and model 2 still had
relatively stronger spatial effect in the other mlsdsuch as Pittsburg, Cleveland, Salt Lake
City, Detroit and Cincinnati. Moreover, comparirg tfour co-pollutant models with each
other, the distributions of spatial effect had digant shrinkage in model 4, model 5 and
model 6, and concentrated to zero. Note that tvarseno test to identify whether a spatial
function is statistically significant in the GGAMMp no evidence can diagnose whether the
spatial functions were significant or non-signifitanonetheless, we were still wondering
whether the diminish of spatial effect in modet#hdel 5 and model 6 was abnormal. To
sum up, the virtualization of spatial function iay&sX still provides obvious and
straightforward idea to present geographical veityah spatio-temporal analysis. More

detailed investigations of the spatial functionl\wg discussed in section 3.8.

3.4. Convergence problem in the GGAMM and the smoothing parameter

A in smoothing functions

From those results in previous sections, we foledetwere some irrational values
appearing in estimated standard errors of eitkedfeffects or random effects. The
characteristic of those irrational estimated stath@arors was that they were overestimated

with relative huge values compared to normal valireair pollution research, reasonable
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estimated standard errors of fixed and random &sffeere less than 0.01, but sometimes
they can be estimated over 0.1 abnormally, even bve

By checking the log file, we found the main reas@s that the iteration of estimating
smoothing paramet@rdid not reach convergence or reach convergenceanier. By the
way, the default number of iteration in BayesX w86. When the number of iteration
reached 400, BayesX showed a warning messagertaségs that this estimation does not
reach convergence, and followed with results stapply the last iteration. Unfortunately,
there was no way to increase the number of iteratiBayesX, so the only way was setting
up another starting value bfto expect reaching convergence before 400 iteratio
appropriately. The default setting of starting watfA was 10 in BayesX, so users can define
any value which is larger than 10 in programs. ifoalified starting value df can be
enlarged to 1,000 if necessary. The purpose ofstdgithe smoothing function in penalized
splines is to facilitate the speed of convergendéerations of estimating unknown
parameters; however, it was not guaranteed thgglamoothing functions can absolutely
facilitate iterations. Sometimes, larger smootHungctions also had worse efficacy. Besides,
there was no efficient approach to determine thstrefficient smoothing functions in the
GGAMM, so users have to try manually.

In table 3.4, the estimated standard errors effigffects and random effects in model 2
and model 3 had irrationally huge values, so welisé1, 12, 13, 14 and 15 in both the time
smoother and temperature smoother. The entiretsemd presented in Appendix A. We
found that, if a GGAMM can reach convergence wiitial starting value ok (i.e.1=10),
the probability of reaching convergence with otstarting values of was higher. For

example, each model had 36 trials with 6 diffesgtatting values df;me and 6 starting
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values ofiimean Model 1 and three co-pollutant models (BMNO,, PM;¢+Os and
PM;o+SG) reached convergence in initial valu@q, Amean=(10,10), so they had 25, 20, 19
and 25 successfully convergent results out of id&irrespectively. However, model 2 only
had 9 successfully convergent results out of Zéstrand model 3 even still had no
convergent results. Figure 3.11 was constructad 6 successfully convergent results in
model 1. When the user-defined starting valuésiqf andimeanmade iteration convergent,
the estimated fixed effect of RW(8) ranged from 0.0000951 to 0.0001066, and the
differences of the effect to the relative risk afmality over these 25 estimates were only
around 0.01%. The $8)s were also estimated stably, especially whga= 12, 13, 14 and
15 andimea=10, 11, 13, 14 and 15. Compared with initial3&£0.000287), most of the
other sef)s were a little bit higher, but the differenceseeo more than 0.00001. s¢had
much instability thand and sef). The initial seb) was close to 0.0002, but it also can be
estimated more than 3-folds of initial B(especially when starting value of wage 12 or
13.

Figure 3.12 to figure 3.14 showed all estimatemfdifferent starting values &fme and
Mmeanin Mmodel 2. Actually, we did not see any spedifige Or AimeanWhich had higher
probability to reach convergence. Among these norerergence results, the estimated, M
fixed effects 3; were close to 0.0001, which was much smaller tharother
non-convergence results. Their corresponding;3s@nd sdf;)s were also estimated
consistently with reasonable values from 0.000848.000545. Comparing with the other
non-convergence results, we found that the twonedéd standard errors can almost reach
3.9466, which was over 10,000-folds than convergerstimates. In addition, the estimated

1-day lag PMq fixed effects 8, from convergence results were from -0.0000628 to
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Figure 3.11

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 25 convergence results usirfgrdifit starting values @fime andAimeanin
model 1.
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-0.0000314. From those non-convergence resgltscould be much more underestimated
than convergent results. Convergenfsi and sel{,) were close to convergent B¢( and
sep,). An interesting finding was in estimates of 2-diay PM, effect. If the starting values
of eitheriime OF AmeanCan hardly make iteration reach convergence, #ti@ydag PM, fixed
effect f; would be estimated negatively, but when it wasrested with convergence,
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Figure 3.12

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 9 convergence results usingreifit starting values Gfime andAimeanin

model 2.
Starting value of smoothing parameter in temperature smoother
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S5 would be estimated positively with value from @Q04 to 0.000157. Its standard error

se(3;) was also reasonable and consistently estimatethdr0.000318 to 0.000388, but

se(p;) was widely distributed from 0.000244 to 0.00068éte that larger estimated standard

errors in random effect can reflect the higher a&tlity level of city-level effect.
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Figure 3.13

The estimated 1-day lag Rpfixed effect with corresponding estimated standardrs of
fixed and random effect from 9 convergence resisitsg different starting values &f,. and
Jtmeanin Model 2.
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When considering co pollutant N@ model 4, all estimates had higher opportuniies
reach convergence whefn. was 11 and 13, dkmeanwas 12 and 13. As long as iteration
cannot end with convergence, most estimatedofiked effects 8;s were underestimated
with values around 0.05. SometimBs could be overestimated to 0Xfe, Aimea)=(12, 10),
(12, 14), (13, 11) and (14, 14)), but from thosevagence results, as what figure 3.15
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Figure 3.14

The estimated 2-day lag Rpfixed effect with corresponding estimated standardrs of
fixed and random effect from 9 convergence resisitsg different starting values &f,. and
Jtmeanin Model 2.
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showed, a reasonabl@, should be around 0.000130 to 0.000188. The coemesef;)s

were close to 0.000440.00005, but convergent $gfs were not as consistent as&®(The
largest convergent gg() can be 4.65-fold of the smallest convergenbge{The pattern of
estimates related to NQvas similar as the pattern of estimates relatdeMg (figure 3.16).

Comparing with8; and f3,, we found the fixed effect of NQvould be much stronger that

89



Figure 3.15

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 20 convergence results usirfgrdifit starting values @fime andAimeanin
model 4.
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the fixed effect of P\p when they did not reach convergence. For examien the
starting value ofyime Was 10, the convergert,s (umea=10, 12 and 13) were averagely
7.39-fold of the convergeng;s; on the contrary, the non-convergghs (umear=11, 14 and
15) were averagely 27.06-fold of the convergefigs. Both convergent s&()s and sef,)s

were concentrated on 0.0008, butfs¥g were more consistent with Bg)s.
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Figure 3.16

The estimated NCixed effect with corresponding estimated stanaardrs of fixed and
random effect from 20 convergence results usirfgrdifit starting values @fime andAimeanin
model 4.
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The probability of reaching convergence in modelds similar as model 4 over 36

trials. When convergence existed, both of,p&hd Q fixed effects g, and j,) were

estimated around 0.0002 and 0.0017, respectivelyaiticular, when this model cannot be
fitted with convergence, the value @ became negative, and the valueff shrunk to
half of convergentB,. The convergent sB()s and s&f,) were located consistently, where
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Figure 3.17

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 19 convergence results usirfgrdifit starting values @fime andAimeanin
model 5.
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se(3;) was 0.000380.00005, and sff) was 0.000830.00005, but the convergent Bg(

and seb,) changed relatively significantly. However, théative large séf;) and sef,)

should not be over 0.0008 and 0.0012, respectiveBn model fitting reached convergence.
Meanwhile, as long as model fitting cannot reaafiveogence, both si() and sef,) would

be definitely estimated with values much over 088a6d 0.0012.
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Figure 3.18

The estimated £¥ixed effect with corresponding estimated stanaardrs of fixed and
random effect from 20 convergence results usirfgrdifit starting values @fime andAimeanin
model 5.
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SO, was the only negative effect in co-pollutants, alhshon-convergent results did not
happen in Sgks estimates. Meanwhile, the convergence problely appeared in PM in

this model, especially in its standard error oétixand random effect. If model-fitting was
convergent,8; and 3, were close to 0.0004 and -0.0003, respectivelgdiition,
convergent sg,)s were larger than the other convergenfgef the other co-pollutant
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Figure 3.19

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 25 convergence results usirfgrdifit starting values @fime andAimeanin
model 6.
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models, whatever any starting valué\gfe andimeanWere used in smoothing functions.
Moreover, the convergent $gfs were more consistent with different startingresl ofAime

andumean and the difference between the largesh.gefnd the smallest dg() was only
0.000348. This stability did not appear in the otteepollutants’ estimated standard errors of

random effect. Generally speaking, we found laggarting value okjme andiimeancan have
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Figure 3.20

The estimated SQixed effect with corresponding estimated standardrs of fixed and
random effect from 25 convergence results usirfgrdifit starting values @fime andAimeanin
model 6.
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better chance to reach convergence easily, anddhpollutant model showed much
consistence by applying different starting valuekipe andAiimean

Unfortunately, model 3 did not have convergencaltesvhile using 36 different
combinations ofime andAmean It was anticipated that there should be some gtarding

values ofkime andimeanto make the entire model-fitting reach convergebeo in case the
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“good” values were really hard to find out, thererevanother two approaches which can
offer opportunities to reach convergence in iteragiand get reasonable estimates. We will

discuss in chapter 3.5 and 3.6.

3.5. Theinfluence of the number of knotsin smoothing functions

Besides using different starting values of smoajipmarametek to look for higher
opportunity of reasonable estimates, BayesX alswalmodifying the number of knots used
in the smoothing functions, and claims the numlfémots do not affect the result of
model-fitting too significantly. However, we fourtidat it indeed has influence on estimations,
and sometimes can be used for an alternative enlas long as the approach mentioning in
chapter 3.4 can hardly find out reasonable resulise GGAMM. Based on the initial
numbers of knots used in our six modelg,(k31 and knear7), We also used additional five
knots in time smoother (21, 26, 36, 41 and 46)tantperature smoother (5, 6, 8, 9 and 10)
to refit all models. The entire results are showAppendix B, and all reasonable results are
presented in figure 3.21 to figure 3.30. As theliings in smoothing paramet&rwe found
model 1, model 4, model 5 and model 6 had highelbadility to reach convergence and get
reasonable estimates. 6 different knots in eith@as smoother or temperature smoother can
generate 36 different combinations, and these 4efagbt 20, 18, 22 and 24 reasonable
results over 36 trials, respectively. On the cagtnanodel 2 and model 3 only had 7 and 0
reasonable results.

Among 20 reasonable results of model 1 showrgiré 3.21, the PM fixed effect 3
and its corresponding standard erro3$é(ad stable estimates around 0.0001 and 0.0003,

respectively. TheB had a tiny decrease whegnk=21, and we generally found that fixed
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Figure 3.21

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 20 convergence results usirfgrdifit number of knots in model 1.
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effects were always relative smaller as longas Was less than 26 in the time smoother.
The estimated standard error of random effed)efd more fluctuation than $( and it
was smaller especially inijke=31 and 36 in time smoother. In addition, we nezaw any
tendency in these estimates whijg.k,changed in temperature smoother.

From 7 reasonable and convergent results in moffejire 3.22, 3.23, 3.24), all fixed
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Figure 3.22

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 7 convergence results usingreifit number of knots in model 2.
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effects and their standard errors had consistémates as the number of knots changed in
two smoothing functions. We still found, when mofiing had convergence problemf;
could become negative around -0.0019 with hugeestienated s¢&;) and seff;). As long as
this model was adjusted by suitable number of krmith of 8, and 3, were decreased no

more than 0.000123 and -0.000017. This reflectatigroblematic results would also lead to
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Figure 3.23

The estimated 1-day lag Rpfixed effect with corresponding estimated standardrs of
fixed and random effect from 7 convergence resisitsg different number of knots in model
2.
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overestimated parameter estimates. Whgga81, 36 and 46 orgkea=5, 7 and 8, model 4
had higher opportunities to obtain reasonable teskigure 3.25 showed th#&;s were
estimated between 0.000142 and 0.000208, butiiedsed over a half wheg:=21. The
se(3,)s were relative consistent around 0.0004. Thedsigbel,) could reach 0.000771, and
the lowest one was as low as 0.000210. There wapeial pattern in sk() in model 4, but
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Figure 3.24

The estimated 2-day lag Rpfixed effect with corresponding estimated standardrs of
fixed and random effect from 7 convergence resisitsg different number of knots in model
2.
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at least over a half of dg(s were higher than 0.000392. Unlike RMall estimates related

with NO, in model 4 were estimated very steady (figure B.26 interesting finding was

higher 8, when kmne= 21 because this situation did not happen in thera@o-pollutants.
While replacing N@ by O, the PMg relative estimates3(, se;) and sef,)) in model

5 were similar as those in model 4, bubgpappeared higher estimates more frequently. In
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Figure 3.25

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 18 convergence results usirfgrdifit number of knots in model 4.
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figure 3.27, the sé()s estimated from model 5 with 31 and 36 knotsnretsmoother had
higher probability to have relative smaller valuBenerally speaking, most g)s were
larger than 0.000531 in convergent model 5. Moredte convergent skf)s were all

smaller thanf,, which was the fixed effect of co-pollutans.@igure 3.28 implied that, no

matter any number of knots using in time smoothéemperature smoother, the variation of
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Figure 3.26

The estimated NCixed effect with corresponding estimated stanaardrs of fixed and
random effect from 18 convergence results usirfgrdifit number of knots in model 4.
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city-level effect of ozone was not as significasttlae variation of city-level effect of Pyl
The initial seb,) from 31 knots in time smoother and 7 knots ingerature smoother
(0.000650) was close to the average of 22 convergdi) (0.000601), so it was concluded
that initial result was credible.

Not similar as the estimations of RMixed effect from previous models, thg of

102



Figure 3.27

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 22 convergence results usirfgrdifit number of knots in model 5.
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model 6 had relative higher estimates whgp+26, and the averagg, was 0.000459,
while the otherf;s had average value 0.000378. Figure 3.29 alsemex$;, had static
estimates with ..=21 and 46, but there was no consist@ptin any specific number
of knots in temperature smoother. Thefspétill showed more consistency thanigg(

Compared with estimated standard errors of randteutén the other models, the $g)
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Figure 3.28

The estimated £¥ixed effect with corresponding estimated stanaardrs of fixed and
random effect from 22 convergence results usirfgrdifit number of knots in model 5.
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presented pretty high steadiness in model 6, dsawef, and se§,), which implied that
SO, can have much robust estimates as long as soroéicpembers of knots setting in
smoothing functions (figure 3.30).

Section 3.4 and section 3.5 showed that the sgavfilues of smoothing parameter and

the number of knots had similar influence on thabpbility of reaching convergence and the
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Figure 3.29

The estimated PMfixed effect with corresponding estimated standardrs of fixed and
random effect from 24 convergence results usirfgrdifit number of knots in model 6.
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stability of the estimated parameters. Even thdabghrue source of convergent problem in the
GGAMM has not been theoretically identified, theotmodifications had been confirmed that
the possibility of eliminating convergent problesreixisting. Same as the choose of

starting values of smoothing parameters, there is also iterion to determine the best

number of knots which can optimize estimated pataragor immediately determine which
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Figure 3.30

The estimated SQixed effect with corresponding estimated standardrs of fixed and
random effect from 24 convergence results usirfgrdifit number of knots in model 6.
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number of knots can absolutely help parameter asitbms reach convergence. Users should
try any possible number of knots by hand in prograamd review all results from BayesX’s
outputs. However, a principle should be followedha time smoother. The default number
of knots in the time smoother was setup frgmx (# of years) + 1), wheren is the

average number of knots in each circle equal todbthe € of yearyis equal to 5. Therefore,
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when { of year$ is fixed, we can only adjustfor the other number of knots. The reason is
that the time smoother is a regular fluctuatethspivhich the number of knots in each
circle is assigned averagely. Hence, when addirgducting the number of knots, the
average number of knots in each cirelgghould be retained the same. Besides, either the
starting values of smoothing parameters and thebeuf knots are immediately operating
in smoothing functions, so both time smoother amdgerature smoother are also affected

from the two modifications directly. This evaluatiwill be presented in section 3.7.

3.6. Theapplication of jackknife-bootstrap approach

So far we found that the use of starting valuesnebothing parameter or numbers of
knots had similar results, but model 3 was stdklag reasonable estimates. We expected
that there should be a specific starting valuenadathing parameter or number of knots in
either time smoother or temperature smoother wtéchlead model 3 to find convergent
values in all six estimates, but the way to prdgik®ate the exact setting values was
unpredictable. In addition, fitting the GGAMM wawyary time-consuming procedure, and
much relied on considerable time and powerful campliardware. In order to prevent
endless and aimless search for starting valuesiobthing parameters and the numbers of
knots in smoothing functions, an empirical altewehamed the jackknife-bootstrap
approach is proposed here.

Before applying the jackknife-bootstrap approaeé first analyzed whether there is
influential data in a specific date affecting esttrans in model 3. Figure 3.31 presents six
estimatesf;, se@,), seb,), B., sef,), seb,)) in model 3 by re-fitting 1,826 times with

dropping out the"l observation in each city, where i=1, ..., 1826. Bhestimates are kind of
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estimates from a jackknife approach, and define@@¥, se(,)?, sgb,)™?, g™,
se(B,)D and s€b,)D. It was obvious thap! ™, 7, sqB,)D and s€b,)D had
very consistent estimates whatever any date waspdobout in each city. Through 1,826
estimates in each parameter, almost all gf ™, {7, sg2,)) and s¢b,) were
nearby their averages, but somé(—s and séb,)"?s were significantly away from
their averages. We found that, i{8¢)"? had values explicitly higher or lower than their
averages, the correspondingis® > would also have explicitly higher or lower values.
For instance, §&;)("1%1® had the highest value (1.246450) amon@sg~"s, and its
corresponding &,)("*13) =4.827463 was also the highest value amoihy 3 s.
However, dropping out some observations which ¢atesef;) and se;) will not
improve sef,) and sef,). In fact, figure 3.31 had proved thatg(and sef,) did not
significantly decrease to reasonable estimatestdwnious example, when dropping out all
observations in calendar timg the s€f,)141%) and séb,)"1413) were 0.082051 and
0.317786, which were pretty close to initial estiesa

Therefore, we first applied the traditional jackkrapproach to look for improved
estimations, but we encountered a problematictsioal he procedure found that the
estimated standard errors of fixed and random &ffeould rise along with the number of
repeated drawings. In order to solve the inconststef traditional jackknife approach in
this case, we modified this approach by embeddingadstrap concept to randomly draw
some samples from these jackknife estimates B t{Be$00, 200,..., 1800) with
replacement, and repeating this step 10,000 time&zke the average. Those averages were

shown in figure 3.32, and through B=100 to 180Destimates were changed slightly and
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Figure 3.31

The jackknife estimates in model 3.
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the differences could be almost ignored. Most irtatity, the huge overestimated S8(
se,), seb,) and sek,) in initial results shown in table 3 were redute@cceptable
estimates. Because the number of drawings witlacephent did not differ too much, we can
choose the result from B=100, where the jackknietstrap adjusted3(, £,)=(0.000206,

-0.000005), (sé4;), sef,))=(0.000027, 0.000001) and (Bg),sep,))=(0.002740, 0.000055).
However, this approach cannot be applied on aogtsitn that model-fitting can get
reasonable and convergent estimates as long astihetes can be fitted initially well, or can

be modified by the starting values of smoothingapaeters or the number of knots in
smoothing functions. For example, model 1 can tedireasonably in the initial settings:

starting values of smoothing parameters were 1Ql@mdumbers of knots were 31
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Figure 3.32

The adjusted estimates by applying the jackknitggiap approach in model 3.
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and 7 in time smoother and temperature smoothsgeatively. As applying the
jackknife-bootstrap approach in model 1 with thesalesign using in mode 3, three main
estimatesf, sef) and sef) all showed their consistency regardless of thalver of
resamplings. Nonetheless, as compared with isaimates shown in the bottom of table

3.5, both of § and se§) were underestimated, andBegas overestimated.
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Table 3.5

The adjusted estimates by applying the jackknifggiap approach in model 1.

B B se) seb)
100 0.000074149 0.000049864 0.000713967
200 0.000074145 0.000050791 0.000713998
300 0.000074088 0.000051179 0.000715293
400 0.000074135 0.000051356 0.000713957
500 0.000074140 0.000051621 0.000714157
600 0.000074107 0.000051787 0.000714489
700 0.000074115 0.000051821 0.000714280
800 0.000074102 0.000051795 0.000714571
900 0.000074115 0.000052060 0.000714666
1000 0.000074117 0.000052076 0.000714519
1100 0.000074103 0.000052170 0.000714849
1200 0.000074113 0.000052043 0.000714353
1300 0.000074145 0.000052127 0.000714040
1400 0.000074088 0.000052041 0.000714875
1500 0.000074108 0.000052217 0.000714660
1600 0.000074096 0.000052120 0.000714626
1700 0.000074105 0.000052176 0.000714732
1800 0.000074092 0.000052117 0.000714643
Initial estimates 0.000105264 0.000286481 0.0009936

3.7.  Smoothing functions

In section 3.4, we have showed that the startimgevaf the smoothing parameter had
different influences on estimates, and we alsodahiat it can also affect smoothing
functions, especially the temperature smoother.értiee 36 pictures of time smoothers and
36 pictures of temperature smoothers from the coatiwins of 6 starting values #fne and
Amean@re in Appendix C. Among six models, time smoathteame out less influenced from
different starting values dfime andAmean The fluctuation frequency in time smoother can be
maintained by different starting valuesAgh.e or Aimean but sometimes the 95% confidence
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Figure 3.33

The temperature splines of model 1 whépd 4mean= (11, 15) and (12, 12).
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interval became wider as starting valuesigh{, Aimean= (13, 10) and (13, 14) in model 3
and (11, 15), (12, 13) and (15, 11) in model @emperature smoothers, different starting
values ofd;me andAimeanmay have relatively higher probabilities to cass®othing

functions not look as usual. For example, most tgatpre smoothers in model 1 presented a
hook shape, except fokifne, Aimean iS (11, 15) and (12, 12). The two exceptions Wikrea
basin, and the temperature effect went down eveenwémperature reached tB@nd -20F
(figure 3.33. By tracking their results in estimates, it’s aioys that both of them did not
complete the convergence which also caused ifeito tend to negative value -0.000046.
The basin-like temperature smoother also appearetbdel 2 when starting values @fife,
Amean=(13, 11), (14, 13), (15, 14) and (15, 15). Theilrdike temperature smoothers were
much often happening in co-pollutant models, espgdn PM;o+CO (model 3). Besides, we
also took note of that sometimes temperature sneo@ths not smooth any more, and
presented a straight line with divergent tendendfi@end of two sides of 95% confidence
interval. This situation often happened in modelid, o adjusted by @
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Figure 3.34

The non-smoothing splines and 95% CI of temperatumneodel 5, where (a, b)Z(me,
jtmear)-
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Among 36 temperature smoother plots, 9 of themnwadsmoothing results, shown in
figure 3.34. These non-smoothing smoothers weremapanied with either convergent or
non-convergent results. From the other smoothingpé&rature smoothers in model 3, most of
them were still not smoothing enough, and the vedth95% confidence intervals were also

getting broader in two tails, such as plots witkrtetg values of Ajime, Amean=(10, 12) and
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(10, 14). It was concluded that, after adjustingpotiutant Q, the linear effect of
temperature was getting stronger and it was natssgy to enforce it in a smoothing
function. The temperature smoother in model 6 wiitial starting value of Aiime, Atmean=(10,
10) was not alike a hook, but the middle segmenhfi0°F and 70°F were flatter, but the
spline climbing in two tails was as usual. Thereenill two temperature smoothers
appearing in a basin-like shape, but the otherg wery robust. Both abnormal smoothers
happened in starting value &f,=12, and their estimates were also absolutelyeexthing
convergence.

Comparing with the results in section 3.4, it waglieit that the starting values of
smoothing function had much influence on estimtitaa on smoothing functions
themselves. When finding abnormal results in edgsavhich possibly came out from
incomplete convergence, we still suggest modifyhrgstarting value of smoothing function
to search for reasonable answers with convergendmds. Even though it had lower
probability of affecting smoothing functions, anusnal smoothing function can highly
affect unknown parameters’ estimation. Accordinguo 36 trials in each model, there were
2,5, 20, 1, 13 and 2 temperature smoothers shbagd-like smoothers or straight lines
from model 1 to model 6, respectively. Among thé3d¢emperature smoothers, there were
37 splines coming out with abnormal estimates withvergence problem. As a result, when
looking for suitable starting values of smoothiraggmeters to speed up the velocity of
iteration and avoid convergence problem, it's neagsto also check the smoothing
functions ancillary.

The plots of time smoother and temperature smoattik different numbers of knots

(Kime and kmean) in each model are gathered in Appendix D. Thelmemof knots should have
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more immediate influence than the starting valusnebothing parameter because the entire
structure of smoothing curve was initially decomgmbsto pieces by these knots and
combined with random effects to estimate simultasgo This part had been demonstrated
in chapter 2.1. Using too many knots in a smootfumgtion with fewer turnovers could
cause the estimated smoothing function some twtgchents in unexpected positions. On
the contrary, a smoothing function, especially eseaktime series curve, should not use too
fewer knots such that the estimated curve hase®uariation. The number of knots using
in our time smoothers were appropriately enoughf2® to 46, so we did not find poor
results in each model. Eitherk and kneandid Nnot make time smoothers unusual, but wider
95% confidence intervals appeared in model 1, mddeld model 4. In particular, model 3
displayed the situation of 5-fold wider 95% confide intervals, and 4 of them happened in
kimear=6. IN fact, kneanshould only affect temperature smoother itself,tha corresponding
temperature smoothers shown in Appendix D did nesgnt abnormal curves.

As what we had mentioned before, temperature dmo®ivere generally a pure curve
with possibly one or two turnovers located at sgaeicular degrees of temperature, such as
20°F in model 1 or 1€F and 70F in model 6 when (kean Kimean=(31, 7) (figure 3.35). The
reason for a regular temperature smoother in mddehave two turnovers is when the first
significant turnover occurred around°’EQvhich was earlier than model 1, the curve
increased slowly and became flat untifF.0Another significant increase happened aftéF70
which makes the temperature smoother look likeval bomodel 6, but the only difference
was whether the second turnover really showed tgrééhe final climb-up until the end.

In addition, it was surprising that more knots gsim temperature smoother actually did

not produce twisted curve, but alternatively suppeel the effect of cold weather, especially
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Figure 3.35

Two regular temperature smoothers in model 1 andeh6.
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when time smoothers used more than 31 knots. Tthistion frequently happened in model
1, model 2 and model 4. In details, the temperatareothers in model 1 showed nice curves
under all numbers of knots in temperature smootaeds21 knots in time smoothers. When
kime increased, the left tail of temperature smootlgezslually lay down, and even became
lower than the lowest level of temperature effaabther hook-like temperature smoothers.
For example, figure 3.36 presents a series of testyre smoothers’ changing whep.&=21,
26, 31, 36, 41 and 46 conditional on a fixggLk=5. The turnover point in plot (21, 5) was
explicitly located between 2F and 40°F, but became nonsignificant whegykincreased.
Moreover, the extreme point of left tafl(TEMP = —20°F) was 0.05, and the lowest level
in the same spling (TEMP = 30°F) was -0.05 whengke=21. Nonetheless, agk
increased to 31f(TEMP = —20°F) decreased to -0.03 and{TEMP = 30°F) slightly
increased to -0.03 as well. THETEMP = —20°F) started to belowf(TEMP = 30°F)
when kmne kept increasing, and the turnover pointTdMP = 30°F also became

disappeared. We think this situation came out feopossible reason: when using two or
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Figure 3.36

The temperature smoothers usingk=5 with different knes in time smoother in model 1.
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more smoothing functions, all of them were decoragasto pieces by knots, combined with

random effects, and estimated simultaneously. Vdh@moothing function used more knots,
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it would share more effects than the others.

If smoothing functions were not smooth any morehsas the temperature smoother in
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model 5 by using (e, kmea=(31, 7), we had found that changing the stanisges of

smoothing parameters did not improve it and st#lspnted straight line. By reducing.k

to 21, the temperature smoother would become a-lik®kurve accompanied with

appropriate fean(figure 3.37). Their estimates were consistentp@ix B) and would be
credible to present. By checking all correspondisgimates in linear factors, we found some

basin-like or weird twisted temperature smoothérat happened to accompany with
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Figure 3.37

The temperature smoothers in model 5 withdkimean=(21, 6), (21, 7) and (21, 9).
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estimates having convergence problem. Even thowghfitted smoothing functions were
not guaranteed for helping linear factors’ estimagi they were still indispensable because

results with convergence problem always did noehawmal temperature smoothers.

3.8. Spatial functions

Besides the investigation of starting values of gthimg parameters in time and
temperature smoother, we also examine how thergjaralue of smoothing parametpa
affect in spatial function. For the sake of simphfy analysis, the adjustment afwas
only based on convergence results with correspgmiin: andAimeanin smoothing functions
in each model. Meanwhile, model 1, model 4, modah& model 6 were usingine, Atmean
= (10, 10), and model 2 was usitgnfe, Atmean = (11, 10) withAspar= 10 (default value), 11,
12, 13, 14 and 15. The only exception was modecabse there was no reasonable result
based on the samignes andimeas Used in the other models. Therefore, we kK&pfe( Atmean
= (10, 10) in this case. All spatial function mayth corresponding smoothing function plots
are included in Appendix E.

Because spatial function uses the relative diseao®ng these cities, the relative effects
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theoretically should not be changed with differégts. For example, in model 1, the highest
spatial effectfs,q:(s) = 1.3684 appeared in Chicago with.= 10, and the lowest one
with the samélspawas -1.3344 in Huntsville. Whatever using &gy from 11 to 15, the two
cities still had the highest and lowest spatia¢@&tfrespectively. This comparative
relationship was also followed by any couple ofesitand never changed by adjusting
differentAspas.Nonetheless, the magnitude of spatial effect iglsigity could be changed
with the use of differentspss. Table 3.6 showed the initial results of adjusfig:from
model 1 to model 6. There was no doubt to get prohtic estimates in sonig,.s, but the
situation was similar as our previous investigationsmoothing functions. That is, if a
GGAMM can obtain reasonably convergent estimatetefaulta it has higher probability to
get reasonably convergence estimates in dth&rhatever smoothing function or spatial
function. This principle had been proved againgat&l function. For results having
convergence estimates with defalifa:in model 1, model 4, model 5 and model 6, besides
initial estimates witispo:= 10, they obtained additional 3, 3, 4 and 2 cogeece results,
respectively. In particular, model 3 still did f@ve convergence results over théges.

The main estimates from differehyy,s in table 3.6 proved that convergent results still
had robust estimates. In model 1, the range ofaxgent estimateg; was from 0.000100
to 0.000105, and two problematf; with large seg,) significantly decreased to 0.000019
(Aspat= 11 and 12). Considering lag effects, we got fa@otonvergent result usidgya:= 13,
and 1-day PN lag effect was slightly raised from -0.000062Q@d000037. Its 2-day PM
lag effect contrarily decreased from 0.000157 90142, but the difference was very tiny.
Their estimated standard errors were also highhgistent compared with initial result of

Aspat= 10. Co-pollutant effects, besides CO, had sinp&formance as P)deffect. The
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Table 3.6

The main estimates with differefahas from 10 to 15 in each model.

Aspa
Model # Parameter 10 11 12 13 14 15
1 B, 0.000105  0.000019  0.000100  0.000019  0.000101  0GIOO1
se(By) 0.000286  0.088380  0.000311  0.094020  0.000297  OGIDO3
se(b;) 0.000194  0.342288  0.000403  0.364130  0.000292 0103
2 B 0.000097  0.000394  0.000738  0.000093  0.000738  03¥004
se(f,) 0.000351  0.366932 0.091934  0.000355  0.101896  0GH420
se(by) 0.000388  1.421119  0.356037  0.000414  0.394621  0%HO1
B, -0.000062  -0.000040 -0.001929 -0.000037  -0.00191D.000019
se(f,) 0.000400  0.000394  0.109107  0.000370  0.120712  0GX003
se(b,) 0.000579  0.000507  0.422553  0.000385  0.467500  04WD03
s 0.000157 -0.002202  0.000175  0.000142  0.000159 2068
se(fs) 0.000318  0.517645 0.000343  0.000337  0.000410 041307
se(bs) 0.000244  2.004827  0.000394  0.000389  0.000757 04063
3 B, 0.000196  0.000221  0.000221  0.000195  0.000198  09XOO01
se(8y) 0.088258  0.081425 0.081336  0.080944  0.080557  04m51
se(by) 0.341813  0.315346 0.315005 0.313484  0.311985 0497
B -0.000005  -0.000005 -0.000005 -0.000005  -0.000008.000005
se(f,) 0.081648  0.081647 0.081651 0.081651  0.081649  03IB16
se(b,) 0.316223  0.316219  0.316233  0.316231  0.316226 03162
4 B 0.000163  0.000054  0.000162  0.000455  0.000141  03WO1
se(f,) 0.000441  0.510938  0.000444  0.129984  0.000413  0SI003
se(by) 0.000638  1.842208 0.000652  0.468654  0.000480  0GR02
B, 0.001224  0.002162 0.001256  0.001162  0.001256  0IE12
se(B,) 0.000846  0.475760 0.000863  0.000835  0.000866  0SE08
se(b,) 0.000795 1.715366  0.000919  0.000673  0.000951  0ZI008
5 B 0.000227  0.000214 -0.000384  0.000223  0.000208  QIMO
se(fy) 0.000385  0.000352  0.109500  0.000414  0.000376  0SI03
se(by) 0.000531  0.000332  0.409701  0.000672  0.000472 0005
B, 0.001855  0.001831 0.001875 0.001772  0.001778  0I®18
se(B,) 0.000815  0.000832  0.000847  0.000837  0.000831  0YBIO7
se(b,) 0.000650  0.000806  0.000645  0.000670  0.000663  09X002
6 B, 0.000388  0.000473  0.000400  0.000392  0.001248  0SW12
se(By) 0.000391  0.000410  0.000365 0.000378  0.156022 01606
se(b;) 0.000419  0.000505 0.000245 0.000343  0.517428  OE&B26
B, -0.000281  0.000687 -0.000267 -0.000266  -0.000296.006295
se(B,) 0.001830  0.707918  0.001793  0.001813  0.001977  0A019
se(b,) 0.004000 2.347782 0.003860 0.003936  0.004538  03W45
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Figure 3.38

The spatial function maps frod,,=10 in model 2 and model 4.
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ranges of the other three co-pollutants’ estimateter convergence results were (0.001215,
0.001256), (0.001772, 0.001855) and (-0.00028004266) in NQ, O; and SQ,
respectively. We can have the same conclusion tleapter 3.5 and chapter 3.6 thgh:can

reach robust results based on convergence, arsdabiéity of # and sef) was higher than

that of seb).

Therefore, the remaining concern is whether sphtradtion can maintain its
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Figure 3.39

The spatial function maps frosp,=10 in model 5 and model 6.
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consistence, and we compared spatial function rfmapsconvergence results in each
model. A new investigation is that some spatis¢@f almost disappeared. This situation can
be easily identified by reviewing the palette l@chin the left-bottom corner of each spatial
function map. Each palette was labeled by minimzeno and maximum spatial effect, and
the log relative rate of each city was distributathin the range of band. In model 1,

convergent estimates wil3po:= 10, 12 and 14 had spatial effects located ir8g,11.37),
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(-1.08, 1.12) and (-0.91, 0.94), respectively, dnther convergence result fraiga= 15
had small spatial effect with range of (-0.02, 0.®zich made the differences of spatial
influence in any couple of cities almost diminish@d course, this kind of spatial effect was
not desired anymore. Besides model 1, the otheetaddxcluding model 3) had the same
situation, and they had a common point: all dinfiet spatial effects appearediiga= 10.
Figure 3.38 and figure 3.39 gather the initial Eddtinction maps from model 2, model 4,
model 5 and model 6, which shared the same chaisitevery narrow bandwidth of the
range of spatial effect in the palette. After usitigerAspas, model 2 found another
convergence estimates result with wider spatigotffange (-0.51, 0.66). Model 4 still had
even shrinkage spatial effect from -0.0006 o 0.080b Aspa:= 12, but its geographical
variation became more obvious when as model 4fitaity explicit spatial influence
appeared idspai= 13, 14 and 15. Finally, we also obtained lagggtial function ranged
from (-0.77, 0.81) and (-1.39, 1.39)Ags= 12 and 13, compared with initial range (-0.007,
0.007) based on defaulfya

To sum upAspatmay not be as efficient dgmeandAmean and it’s better to regartipa@s
a sort of double-checking criterion when the ogstimates and smoothing functions have
been fitted well. In the other words, the consitleraof Aspa:Can be ignored temporarily
before obtaining convergent and reasonable estiaaite smoothing functions. After
checking each city’s spatial effect, we suggestgss the second model-fitting by adjusting

Aspatif €xtremely small spatial effects were discovered

3.9. GGAMM v.s. 2-stage Bayesian hierarchical model

For the first glance of applying the GGAMM in aollution research, we are interested
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in comparing how different are the GGAMM and tramhal 2-stage Bayesian hierarchical
model. From model structure, a 2-stage Bayesiaatuleical model was composed by
several distinguished GAMs from cities, and thesiuded the estimates of main factors (air
pollutants) from those GAMs into a two-level normabdel with a Bayesian approach to
make a national estimate. Actually, the models ftamm stages cannot be shown together, or
say, they even do not have an organized and umiiedel form to present. Rather than a
mathematical model, as it is a conceptual modet. GBEAMM uses a single model form to
fit both of national and city-specific effect sinaheously, and realizes that all estimates are
based on a statistical model. More importantly,@sgmates from GGAMMSs showed

somehow difference from the estimates from 2-sBmeesian hierarchical models.

Table 3.7 shows both parameter estimates fitmu l6GAMMs and 2-stage Bayesian
hierarchical models, and the Rjffects in a 2-stage Bayesian hierarchical moasew
generally stronger than those in the GGAMM, exdepfl-day lag effect in model 2 and
model 6. Considering their ratios, the current;pP&ffect of model 2 fitted from 2- stage
Bayesian hierarchical model has the highest ratilo value of 4.34 to that from the
GGAMM, but its 1-day lag effect was much weakemnt&GAMM’s 1-day lag effect with
ratio of 4.03. Model 1's PM in the 2-stage Bayesian hierarchical model was 354 times
higher than the same effect in the GGAMM. When aahihg for co-pollutants, the ratios of
PM;, effect between two models were reduced to 0.78-Zffe estimated standard errors of
PM;y, effects fitted by the 2-stage Bayesian hierardhmeadel were slightly higher than those
fitted by the GGAMM, except for model 3. Actualfypm this comparison, we can confirm
that the estimated standard errors of fixed efi@atlified by jackknife-bootstrap method in

model 3 were underestimated.
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Table 3.7

The comparison of estimates from GGAMMs and 2-dBayesian hierarchical models.

GGAMM 2-stage BH model

Model # Parameter B se) B se(d)
Model 1 PMy 0.000105 0.000287 0.000235 0.000461
Model 2  PMg 0.000093 0.000355 0.000060 0.000537
PMie-lagl -0.000037 0.000370 -0.000126 0.001391
PM;g-lag2 0.000142 0.000337 0.000117 0.000563
Model 3 PMy 0.000206 0.000027 0.000397 0.000666
CcoO -0.000005 0.000001 -0.000008 0.000027
Model 4 PMg 0.000141 0.000413 0.000038 0.000779
NO, 0.001256 0.000866 0.001313 0.001392
Model 5 PMg 0.000223 0.000414 0.000176 0.000607
O3 0.001772 0.000837 0.001405 0.001448
Model 6 PMg 0.000392 0.000378 0.000541 0.000770
SO, -0.000266 0.001813 0.000406 0.002085

* Model 2 fitting by the GGAMM was modified by starg values fiime, Atmean, Aspar)=(11, 10, 13).
* Model 4 fitting by the GGAMM was modified by starg values Liime, Atmean, Aspar)=(11, 10, 14).
* Model 5 fitting by the GGAMM was modified by starg values fiime, Atmean, Aspa)=(10, 10, 13).

* Model 6 fitting by the GGAMM was modified by starg values ftime, Amean, Aspat)=(10, 10, 13).
* Model 3 fitting by the GGAMM was modified by jakhife-bootstrap approach.

Comparing with PMy effect, the co-pollutant effects fitted by thetaegge Bayesian
hierarchical model were reversely weaker than ttitteel by the GGAMM. In particular,
NO; effect in the 2-stage Bayesian hierarchical meded 2.33 times smaller than the NO
fixed effect in the GGAMM. The ratio became 4.18geffect. However, both estimated
standard errors in the 2-stage Bayesian hieraidmodel were larger than those in the
GGAMM, which implied that the confidence intervalsNO, and Q effect in the GGAMM

were narrower. In particular, the fixed effect @.$ecame positive as long as using the
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2-stage Bayesian hierarchical model, but theinested standard errors were close.
Moreover, comparing four co-pollutant models, whising the 2-stage Bayesian hierarchical
model and controlling N& Os; and SQ, the PM estimates were changed slightly from
0.000038, 0.000176 and 0.000541, respectivelyitntreased to 0.000397 as controlling
for CO. In the GGAMM, the PM fixed effects were robust when controlling for G@,and
SO; nonetheless, when controlling for §&e PMy fixed effect significantly increased to
0.000392.

Reviewing the city-specific effects, many diffeces appeared between two models.
Theoretically, the city-specific effect in the Zgée Bayesian hierarchical model was
constructed with several independent GAMs. In &g8rl, we had proved that air pollutants
and temperature were highly correlated when thiaie between two cities was short, so
geographical correlation cannot be ignored. Evengh two-level normal models linked
those coefficients from GAMs by two-level normadl@pendent sampling method, the spatial
correlation did not contain any real geographin&drimation. The GGAMM can fit several
kinds of spatial functions from real geographicatledto explain and control most spatial
correlation. From this framework, the city-spec#itects had different profiles from two
models. In the 2-stage Bayesian hierarchical malelg¢ity-specific effect was fitted from
each independent GAM in each city. The linear facio each GAM were controlled by its
smoothing functions. Therefore, different city-siffiesmoothing functions can make
city-specific effects more versatile with corresgimgy confidence intervals. In the GGAMM,
the city-specific effects were estimated on a edifiramework, so the variation of
city-specific effects was also controlled by natlemel smoothers and spatial function, and

was finally centralized on fixed effect. In additidecause of being controlled by local
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smoothing functions, some city-specific effectshia 2-stage Bayesian hierarchical model
were stronger than those in the GGAMM. This propaltso implied wider 95% confidence
intervals of city-specific effects in the 2-stagayBsian hierarchical model. Besides, we also
found that some city-specific effects from the &ggt Bayesian hierarchical model also had
convergence problem with huge estimates and 95%dente intervals, such as Rieffect

at 1-day lag in Cincinnati and Rbykeffect at 2-day lag in Huntsville (Appendix F).
Meanwhile, a well-convergence result in the GGAMah simultaneously guarantee any
estimate at nation-level and city-level.

There were some common characteristics sharedtfreroomparison between two
models in each effect. First, the city-specific Bffects of the GGAMM tended to be
positive more than those of the 2-stage Bayesiaratghical model. In details, as fixed
effects were positive, the city-specific effectsltagher chance to be positive, and vice versa.
Second, the versatility level of city-specific effe of the GGAMM was less than that of the
2-stage Bayesian hierarchical model. Meanwhilerdinge of city-specific effects of the
GGAMM was narrower than that of the 2-stage Bayehiararchical model. For example, in
figure 3.40, the range of percent increase inikaatsk of mortality per 1(ug/m® increase of
PMjo concentration in the GGAMM was from 0.06%(Spokane).15%(Chicago), but the
range in the 2-stage Bayesian hierarchical modslwider from -2.94%(Huntsville)
t014.19%(Cincinnati). This situation not only appashin PM, effect, but also happened in
PMyq lag effects and co-pollutants. It was implied tlathe 2-stage Bayesian hierarchical
model, each city-specific effect was fitted froAM, and according to our data, each city
was easily damaged by missing data because tharenmsa 1,826 observations in each city.

Due to applying CCA, missing data in RMr co-pollutants would also make valid
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Figure 3.40

The city-specific PM effects of the GGAMM and 2-stage Bayesian hiereatimodel in

model 1.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.

temperature or the other weather condition vargbideted, which will make irrational

smoothing functions and affect parameter estimatiagure 3.41 and figure 3.42 are the time

smoother plot and temperature smoother plot in mbdigted by the GAM. More missing

data made time smoother not vary seasonally ang,sach as Huntsville, Las Vegas and

Lexington. Temperature functions also displayedt®d shapes in most cities, and cannot be
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Figure 3.41

The smoothing function plots of time fitting by @&M in each city in model 1.
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demonstrated. That’s why sometimes the ratio gfsjtecific effect between two locations
was over 50-fold, and many negative effects als@weaexplainable. The unified structure
of the GGAMM can reduce the possibility of riskrifnanissing data and CCA. For instance,
there were 574 missing RWin Cincinnati, and the corresponding temperatac lendar

time data will also be ignored by CCA when fittitihgg GAM. Nonetheless, they still have

1000 1500

1000 1500

chance to be complemented from the other citiditagy the GGAMM. Third, the 95%
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Figure 3.42

The smoothing function plots of temperature fittityghe GAM in each city in model 1.
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confidence interval of city-specific effect in tt&ESAMM were narrower than the 95%
confidence interval of city-specific effect in tBestage Bayesian hierarchical model, and the
GGAMM can also make less varied 95% confidencewale among 15 cities. Fourth, due to
the city-specific effects in the GGAMM were prodddsy the summation of fixed effect and
random effect, they were all centered around fixdéelct, which implied that as long as fixed

effects were higher, the city-specific effects walso higher, and vice versa. For example, in
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Figure 3.43

The city-level residual box plots of the GGAMM &rstage Bayesian hierarchical model in

model 1.
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model 4, the fixed effects of Piland NQ in the GGAMM were 0.000141 and 0.001256,

respectively; hence, all city-specific effects dDNwere higher than all city-specific effects

of PMyo. However, this situation did not happen in 2-stBggesian hierarchical models

because each city was fitted independently and amtyrolling its own time smoother and

temperature smoother.
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To sum up, actually there was no scientific apphoor statistical test to evaluate which
modeling approach was better or more appropriaecé, we processed the city-level residual
box plot to roughly identify. The two residual bpbots from model 1 shown in figure 3.43 had
totally different patterns. There was no doubt thatresidual means of GGAMMSs in each city
were very consistently close to zero because gbtbeerty of GGAMMSs, but some cities had
obvious lower residual means in 2-stage Bayesiaratghical models. Each city had more or
less outliers in both models, but the amount ofiengtfrom 2-stage Bayesian hierarchical
models was more than the amount of outliers fromAGIGIs. Interestingly, the outliers from
GGAMMs were mostly negative, but 2-stage Bayesiaranchical models only produced
positive outliers. Considering the distributiontlebse outliers, GGAMMSs had better
performance to control those outliers not too faawfrom residual means, but the locations of
outliers in 2-stage Bayesian hierarchical modelsevmore diverse, especially in Colorado
Springs, El Paso, Huntsville and Lexington. Thosi@rs also reflected that predicted values
from GGAMMSs were often underestimated; nonethelegsy-predicted values always

happened in 2-stage Bayesian hierarchical models.

3.10. Missing dataimputation analysis

For a long time, analyses of air pollution dataeawendermined from missing data
problem. Even though air pollution monitoring stas were widely built in most large cities,
due to the consideration of budget and cost, npdaiution monitoring station can guarantee
that they can 100% collect every air pollution miale 24 hours without rest. From the
NMMAPS database, we can induce some situationss¥ing data appearing in air

pollutants specifically. For six main air pollutafCO, NQ, Oz, SO, PMyo, PM, 5) from
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1987 to 2000 among 108 cities, there were onlyl3221, 12 cities with complete data in
CO, NQ, O; and SQ, respectively (Table 3.8). The missing data pnobleent worse in
particulate matters PMand PM s, and no city had complete Riyand PM s over 14 years
at all. In particular, most air pollution monitogstations started to collect Bidata after
1999. If we just look at the valid period of datdlection of PM 5, there was still no city
with complete PMs data from 1999 to 2000. Moreover, the duration stdlsnot enough for
a spatio-temporal data analysis with other co-patits, that's why PMs was not listed in
this study.

The missing data pattern was also not totally lszgamong different air pollutant

Table 3.8

The cities with complete air pollutant data in 10&. cities from 1987 to 2000.

Air pollutant Cities

CcoO Akron, Albugerque, Boston, Chicago, Cincinn@lgveland, Columbus,

Dayton, Denver, Dallas/Fort Worth, El Paso, Frestmyston,
Indianapolis, Kansas City(MO), Los Angeles, LouigyiMemphis,
Milwaukee, Nashville, Norfolk, Richmond, Sacramergalt Lake City,
San Bernardino, Seattle, Spokane, Santa Ana/Anal&tirRetersburg,
Tampa, Tucson, Wichita

NO, Bakersfield, Boston, Chicago, Dallas/Fort Wortregho, Houston,
Kansas City(MO), Los Angeles, Oakland, San Bermardbanta
Ana/Anaheim

O3 Albugerque, Bakersfield, Baton Rouge, Chicago,\@enDallas/Fort

Worth, El Paso, Fresno, Houston, Los Angeles,d Rbck, Nashville,
Oakland, Riverside, Sacramento, San Bernardin@v@port, Santa
Ana/Anaheim, St. Petersburg, Tampa, Tucson

SO, Boston, Cleveland, Detroit, Houston, Indianapdiansas City(MO),
Los Angeles, Milwaukee, Pittsburg, Providence Pettersburg, Tampa
PMsg None

PM;: None

monitoring stations, even though some station®ctdt data once per six days (i8hh Los
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Angeles) or half-year cycle ¢dn Akron). In statistical analysis, it is suppogbdt the
missing data scenario was considered with missangptetely at random (MCAR), and all
missing data was eliminated when fitting modelshapter 3.2. This data management
strategy is named as complete case analysis. Weinterested in how missing data
imputation methods work in the GGAMM, and look @pportunities that missing data
imputation methods can repair the damage of missatg along with improving
model-fitting.

Table 3.9 was organized by main estimates with O@XI1, NNI2 and MI. When
applying missing data imputations, we also encoedtéhe convergence problem to get
reasonable estimates in some models, such as dhedti NNI2 or model 6 with NNI2.
imputations have convergent results simultaneoM#dytried to search good starting values of
smoothing parameter in either time smother or teatpee smoother in some imputations
within each model, but only model 1, model 2, matlahodel 5 and model 6 can accomplish
this. Note that model 3 with CCA, NNI1, NNI2 and MICMC all used initial settings
because there was no good result whatever aningtaglue of smoothing function or the
number of knots was used.

Comparing the estimated Rpixed effect over six models, the NNI1 increassdixked
effect in model 1, model 2 and model 3, and theaiemg co-pollutant models did not raise
this effect, especially in model 4, where afterteolting for NO,, the PM, fixed effect with
NNI1 reduced around 8 times to the same effect @ITA. As imputed by NNI2, the PM
fixed effects were reduced besides model 3. Iriqudatr, the PMo fixed effect became

negative in model 1 and model 2. The largest deen¢@mppeared in model 5, where M
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Table 3.9

The model-fitting results from complete case analfGCA), nearest neighbor imputation version 1 gagsion 2 (NNI1, NNI2)

and multiple im

putation (MI-MCMC).

~

B sefs) seb)
M- M- M-

Model Variable CCA NNI1 NNI2 MCMC CCA NNI1 NNI2 MCMC CCA NNI1 NNI2 MCMC
Model 1 PMygq 0.000105 0.000186 -0.000044 0.000139| 0.000287 0.000345 0.000262 0.000295| 0.000194 0.000691 0.000247 0.000434
Model 2 PMyg 0.000093 0.000202 -0.000013 0.000127| 0.000355 0.000322 0.000320 0.000330| 0.000414 0.000417 0.000554 0.000540

PM-lagl | -0.000(37 -0.00006! -0.00010: 0.00000: [ 0.00(37C 0.00035' 0.00031' 0.00032: | 0.00(385 0.00054( 0.00050¢ 0.00041

PM-lag2 | 0.000142 0.00006! 0.00004 0.00006: [ 0.000:37 0.00037: 0.00028: 0.00031( | 0.00(38¢ 0.00076° 0.00037: 0.00050:
Model 3 PMyq 0.000196 0.000546 0.000258 0.000183| 0.088258 0.076300 0.125322 0.082237| 0.341816 0.295501 0.485365 0.318495

(6{0) -0.000005 -0.000010 -0.000011 -0.000009| 0.081648 0.081645 0.081634 0.081649| 0.316223 0.316210 0.316165 0.316226
Model 4 PMyq 0.00041 0.00002: 0.00011: -0.0002:4 | 0.000413 0.00036: 0.0003(1 0.00043 | 0.00(48C 0.00047. 0.00034! 0.00081:

NO, 0.001256 0.000748 0.000459 0.001658| 0.000837 0.000727 0.000663 0.000879| 0.000951 0.000835 0.000855 0.001668
Model 5 PMyg 0.000223 0.000146 0.000004 0.000027| 0.000378 0.000314 0.000266 0.000330| 0.000672 0.000435 0.000242 0.000564

O 0.001772 0.001496 0.000546 0.002448| 0.000837 0.000652 0.000598 0.000825| 0.000670 0.000786 0.000836 0.001663
Model 6 PMgq 0000392 0.00(35¢ 0.0003'3 0.00059 | 0.00037¢ 0.00039: 0.0004:8 0.00039:| 0.00(34= 0.00041:- 0.00071- 0.0004:7

SO, -0.00C26€  0.00(26t5  0.00025. 0.000(27 | 0.00181. 0.00187' 0.001846 0.001220 | 0.0C393¢ 0.00426! 0.0042(5  0.0044(@8

135



fixed effect reduced from 0.000227 to 0.000004.NMMIMC generally had the same
performance as NNI1 in P} except for model 6, where Rpfixed effect raised 33.76%.

The fixed estimates of lag effects were all ungémeated after using missing data
imputation methods, besides 1-day lag effect in NMhd the most serious reduced
situation happened in MI-MCMC. Both of NNI1 and NMNtould make co-pollutants CO,
NO, and Q decreased their effect from CCA, butS@as estimated as positive effect with
value of 0.000265, 0.000251 and 0.000027 as apgpNMI1, NNI2 and MI-MCMC,
respectively. In addition, MI-MCMC not only can saithe fixed effect of SQbut also
increase N@and Q effects.

The influence of missing data imputation methatséf3) was not as much as that in
£, but most of them were still underestimated, whigans that the confidence interval of
£ would become narrower. The B¢from NNI2 were all decreased besides, 80model
6 and PMo in model 3. Its decrement was all larger than NaH#l MI. These missing data
imputation methods seemed to have no much influenc®) in model 6, except for
PMyoin NNI2. Also, MI had similar sg¥) with CCA in most models, especial in model 1,
model 4 and model 5.

As we had reported, the versatility of city-specéffects in the GGAMM was not
too much because it was well controlled on theremtiodel structure. Sometimes we
were wondering whether more valid data can incrédaseersatility of city-specific
effects, so the missing data imputation would hgeeied to be a good tool to make more
variation among cities. The best index was to seether the estimated standard errors in
random effects were increased with imputed datamFour analysis in table 3.9, the
PM;o random effects indeed had an increase when appiyiasing data imputation,
especially in NNI1, which significantly increaseelfs) 3.56 times, but NNI1 and NNI2

cannot keep the same efficacy in co-pollutant mofebdel 4 & model 5). However, the
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se(p)s in co-pollutants were all increased, besides @@ch was almost not varied from
CCA. This increment went larger as long as usingIIMC. For example, the s&)s of
NO, and Q in MI-MCMC were 2.10-fold and 2.55-fold to valuesCCA. In lag effects,
the seb)s of 1-day lag effect had a slight reduce withginig data imputation methods,
but not too far away from the value of CCA. Howetke seb)s of 2-day lag effect had
much increase, especially in NNI1, whereb3e(as raised from 0.000767 to 0.000244.
This implied that the versatility level of city-sp#c effects in shorter lag effects would
be deducted and smaller than the versatility lefelty-specific effects in relatively
longer lag effects. Note that the relative commarisetween two lag effects in model 2
could be changed if more lag effects were includahetheless, this will add some
additional problems, so we will discuss distribul@gl models with more lag effects of

the GGAMM in section 3.11.

3.11. Extended distributed lag models

Theoretically, a GGAMM can include more lag effedtst technically the
sophisticated estimation procedure and huge sgatigboral data will make BayesX
crash easily. Suppose we really need more lagtsftecontrol short-term, middle-term
or even long-term influence, it is not availablecurrent version of BayesX technically.
An alternative way to evaluate longitudinal infleerof air pollutant to adverse human
health is using a variable reduction approach doice the number of variables fitted by
the GGAMM. Here we applied principal component gsial (PCA) to solve this
problem.

When considering 6 lag effects of Pjywe extended the longitudinal influence of
fine particulate to one week. Note that the stadidation for each fine particulate

variable was not used because they have the samafter applying PCA, the
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Table 3.10

The eigenvalues of 7 principal components withesponding distinguished and
cumulative contribute of the total variability oM, and 1-day~6-day lag P} effect.

Principal
componen  Eigenvalue Difference Proportion Cumulative
1 3.0554065¢ 1.8211163] 0.4365 0.4365
2 1.2342902¢ 0.3416542; 0.1763 0.6128
3 0.8926359¢ 0.2724008: 0.1275 0.7403
4 0.6202351¢ 0.1388468¢ 0.0886 0.8289
5 0.4813882] 0.1121012¢ 0.0688 0.8977
6 0.36928701 0.0225302¢ 0.0528 0.9505
7 0.3467567¢ -- 0.0495 1.0000

eigenvalue and the proportion of explanation oe®ea variables in each principal
component were listed in table 3.10. We definedntim@mum cumulative account of the
total variability over 7 variables was 70%, andntiebose the first three principal
components with its own explanation proportion 836 17.63% and 12.75%,
respectively, in the extended lag distributed mo@lkeé remaining principal components’
contributions were all less than 10%, and wererngdan the following model-fitting.
The loadings of each variable on each principaionent were listed in table 3.11.
The loadings in the first principal component PRIMdre averagely and approximately
located from 0.32~0.40, and it can be regardedrmasasure of moving average of M
concentration from past one week. The second pa@hciomponent PRIN2 had positive
loadings on 4-day~6-day lag Rpkffect, and negative loadings on current to 3{dgy
effect. The third principal component PRIN3 alteiveely had positive loadings on the

most recent PM effects (current and 1-day lag) and the farthastoreffects (5-day and

6-day lag), and the middle Rbkeffect (2-day~4-day lag) were calculated with riega
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Table 3.11

The eigenvectors of the first three principal comgrts when condensing current and
1-day~6-day lag PM effect.

Variable PRIN1 PRIN2 PRIN3

PMio 0.3304 -0.4157 0.4666
PMyo-lagl 0.3805 -0.4778 0.2069
PMyo-lag2 0.4054 -0.3099 -0.2907
PMyo-lag3 0.4097 -0.0001 -0.5556
PMyo-lag4 0.4031 0.3100 -0.9545
PMyo-lags 0.3779 0.4819 0.2079
PMyo-lagé 0.3296 0.4177 0.4646

loadings. PRIN2 was measuring the “after-half’ f3Eiffect within the past one week.

PRIN3 seemed to measure a fluctuation trend oforffflect with a cycle of 7 days, and

reflected that the influence of Rytconcentration on human health was weekly. However,

this cycle was not very strong, and can only expl&l.75 percent of the total variance.
The data in each city and each day re-calculatedhtfee principal component

variables by the following three equations:

PRIN1=0.03304xX+0.3805xX%+0.4054%X%+0.4097xX%+0.4031xX%+0.3779%>%+0.3296x%
PRIN2=-0.4157xX%-0.4778xX%-0.3099%>-0.0001xX+0.3100%X%+0.4819%%+0.4177xX%

PRIN3=0.4666xX%+0.2069%X%-0.2907%X%-0.5556%X%-0.9545%%+0.2079x%%+0.4646%xX%

where X~X7 were original current and 1-day~6-day lag gkffect. As fitting the
GGAMM in BayesX, the results are shown in table23RRIN1 can be interpreted that
when the PN effect averagely increased pend/m® in each day of past one week, the
relative risk of mortality rate of respiratory deses in elders generally increased 2.28%

(95% CI: -7.95%, 13.64%). The strongest effect astgnated in PRIN3 with value of
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Table 3.12

The estimated parameter estimates with correspgnelstimated standard errors of fixed
and random effects in the GGAMM with 3 principainpmnents from current and
1-day~6-day lag PM effect.

~

Variable B se() se()
PRIN1 0.002254 0.005375 0.011141
PRIN2 0.000267 0.012372 0.034817
PRIN3 0.003819 0.008674 0.017478

0.003819 (95% CI: -0.013186, 0.020823), and thekesteeffect was PRIN2 with value
of 0.000267 (95% CI: -0.023987, 0.024521). Theyncame explained as PRIN1, but we
can conclude that the Ryweek-cycle influence was 14.30 times higher tia@nRM g
“after-half” influence to mortality rate of respicay diseases in elders. Reviewing the
explanation proportion of the entire variance inl®Rand PRIN3 (17.63% v.s. 12.75%),
there is no huge difference between them, and weaaclude that the Pjdeffect on
respiratory disease in elders reacted much highéxtreme close and farthest day within
the past one week.

Smoothing function plots showing in figure3.44 eetied similar patterns as model 2.
There was no doubt that time smoother went upimg@nd winter season, and went
down in summer and fall season. The temperatur®granalso displayed a climbing
trend when temperature was getting higher and loltes plot got better performance
because the effect went up more significantly wieemperaturg0°F compared with the
same plot in figure 3.6. The spatial map also gairdut that the highest geographical
influence appeared in some heavy-industrial cisesh as Chicago, Pittsburg and
Detroit.

The similar study design can be modified by extegdhe number of lag effect to

14 days if we are interested in the influence of,P&ffect in the past a half of month.
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Figure 3.44

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 189%he GGAMM with 3 principal
components from current and 1-day~6-day lag,Péffect.
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Using the same criterion in the previous modelcam choose the first 6 principal

[0

components which accounted for 73.60% of the waehnce over 15 original variables
(table 3.13). The loadings in each principal congrdrare shown in table 3.14. We found
a similar pattern as using three principal comptsenthe first extended distributed lag
model. The first three components in this modelgrered the same relative loading

trends as previous model. The difference was thatidm was extended to 15 days.
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Table 3.13

The eigenvectors of the first three principal comgrts when condensing current and
1-day~14-day lag PM effect.

Principal

componen Eigenvalue Difference Proportion Cumulative
1 4.8218 3.0983 0.3215 0.3215
2 1.7235 0.3274 0.1149 0.4364
3 1.3961 0.2014 0.0931 0.5294
4 1.1947 0.1209 0.0796 0.6091
5 1.0738 0.2743 0.0716 0.6807
6 0.7995 0.1263 0.0533 0.7340
7 0.6732 0.0860 0.0449 0.7789
8 0.5872 0.0504 0.0391 0.8180
9 0.5369 0.0964 0.0358 0.8538
10 0.4404 0.0336 0.0294 0.8832
11 0.4069 0.0143 0.0271 0.9103
12 0.3925 0.0319 0.0262 0.9365
13 0.3606 0.0534 0.0240 0.9605
14 0.3072 0.0219 0.0205 0.9810
15 0.2854 -- 0.0190 1.0000

PRIN1 also measured a moving average over 15 atigariables. Because the lag effect
was longer, the loading in PRIN1 was diluted ancebge smaller. In table 3.11, the
loading in PRIN1 can reach as high as 0.4, butindt surpass 0.3 in table 3.14 anymore.
The explanation proportion was also decreased #8165% to 32.15%. PRIN2 still
displayed a quadratic influence, and the turnowémtpvas deferred to 7-day lag. The
loadings in PRIN2 were as diluted to around 0.2 @8dapproximately, but the
explanation proportion was only weakened 6.14% N3Rlecame a cubic fluctuation,

and the peak of loadings also appeared in two metigde of this period. Due to the
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Table 3.14

The eigenvectors of the first six principal compusavhen condensing current and
1-day~14-day lag PM effect.

Variable Prinl Prin2 Prin3 Prin4 Prin5 Prin6
PMio 0.2343  -0.2462 0.2412 -0.2281 0.3383 -0.3854
PM;¢-lagl 0.2555 -0.3341 0.2701  -0.2926 0.2254  -0.1843
PM;g-lag2 0.2660  -0.3581 0.2197 -0.1863  -0.0830 0.2223
PM;¢-lag3 0.2647 -0.3188 0.1074 0.0512 -0.3616 0.3595
PMg-lag4 0.2667  -0.2534  -0.0597 0.3080  -0.3609 0.0859
PM;¢-lag5 0.2680  -0.1695 -0.2310 0.4117 -0.1107 -0.2344
PMjo-lag6 0.2706  -0.0785 -0.3546 0.2895 0.2071 -0.2611
PMjo-lag7 0.2694 0.0132 -0.4114 0.0050 0.3150 0.0054
PMjo-lag8 0.2672 0.1146 -0.3647 -0.2679 0.1784 0.2871
PMjo-lag9 0.2641 0.2133 -0.2346  -0.3826 -0.1111 0.2204
PM;o-lagl10 0.2624 0.2909 -0.0441  -0.2998 -0.3119 -0.1459
PMio-lagll 0.2590 0.3271 0.1435 -0.0771 -0.3141  -0.3623
PMjo-lagl2 0.2523 0.3369 0.2719 0.1668 -0.0778  -0.1874
PM;¢-lagl3 0.2422 0.3001 0.3164 0.2864 0.2184 0.2075
PMolagl4 0.2254 0.2116 0.2694 0.2303 0.3444 0.3830

period’s extension, the duration of positive load&#mowing in each side was prolonged to
four days. PRIN4 and PRIN5 can be regarded as poiial fluctuation, but the starting
time of PRIN4 was earlier than PRIN5 about two d&ath of their explanation
proportions were reduced to around 7%. The cyd®g@evas shortened to four days in
PRING, and it can only account for 5% of the te@liance over 15 original variables.

As re-calculating six principal component variableom original data and fitting in
a GGAMM by BayesX, the result is shown in table53 Among six parameters, only

PRIN4 and PRIN5 had positive estimates, and PRIBg W48 times stronger than
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Table 3.15

The estimated parameter estimates with correspgnefstimated standard errors of fixed

and random effects in the GGAMM with 3 principaingmnents from current and
1-day~6-day lag PM effect.

Variable % sef) se€)
PRIN1 -0.001057 0.004991 0.010029
PRIN2 -0.008722 0.007329 0.016007
PRIN3 -0.001833 0.007171 0.013993
PRIN4 0.007043 0.008052 0.015637
PRINS 0.004764 0.009011 0.017917
PRING6 -0.000252 0.010353 0.021634

PRINS. Either one can reflect the previous modéh\8iprincipal component variables
from the past one week, and confirm that the weakedluctuation was scientifically the
most possible influent period to mortality ratere$piratory diseases in elders.

The smoothing function plots and spatial functieap of the second PCA model are
shown in figure 3.45. The time smoother was sinakthe first PCA model, but the
temperature smoother almost became a U-shape ffEce & temperature increased
much quicker when temperature was getting lowet,farally reached a similar level as
the effect of temperature in extreme hot weathlee Elative spatial effects in the map
were still the same as previous models, but condpaith figure 3.44, both of the highest
and lowest spatial effects increased around 0.2€hRago still had the strongest spatial
effect with value of 1.5900. However, the smalkgsttial effect was not located in
Huntsville when using 3 principal components, dtdraatively located in Lexington. It
is worthy of noting that the spatial effect in Hswitle turned from negative to positive
(-1.6399-0.0006) when including more principal componentsfionger lag effect, but
the remaining cities generally had the same dadbetween two models.

Theoretically, the extended distributed lag madel include more principal
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Figure 3.45

Smoothing functions of calendar time and 24-howrage temperature and map of
spatial effect for 15 U.S. cities from 1991 to 189%he GGAMM with 3 principal
components from current and 1-day~14-day lag féffect.
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components derived from more lag effects, butnislel design was not recommended
because it could raise the difficulty of interpteta. For example, if we consider lag
effects with one month, which means 30 lag effectables should be used in PCA, it
can produce 10 candidate principal components @GAMM. Even though the
model-fitting procedure was successful, the resak no longer clarified easily as
previous two models.

By using equations (2.51), (2.52) and (2.54), ae ttansform these principal
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Table 3.16

The PCA-adjusted P)Mestimates in the first extended distributed lagleho

Variable % sef) se€)

PMio 0.000187 0.000504 0.001264
PM;¢-lagl 0.000165 0.000554 0.001411
PM;¢-lag2 0.000100 0.000468 0.001106
PM;¢-lag3 0.000067 0.000414 0.000852
PM;¢-lag4 0.000009 0.000565 0.001277
PM;¢-lag5 0.000183 0.000555 0.001418
PM;¢-lag6 0.000203 0.000505 0.001268

component estimates to obtain original variablesheates with corresponding fixed and
random effects’ standard errors. The results avevshn table 3.16 and table 3.17.
Reviewing these PCA-adjusted RPMstimates, we found the longitudinal influence of
PMjo was only extended to one week because the adjastedates after 7-day lag in
table 3.17 had shown all negative values. Moredfierstrongest effects were not located
in the same day. When only considering six lagotffethe pattern of estimates presented
a U-shape profile, and current, 1-day lag, 5-dgydiad 6-day lag PM effect displayed
relative larger influence to the mortality of resppory diseases in elders. While
considering 14 lag effects, the strongest influeaqmeeared in 4-day and 5-day lag effect.
Moreover, the general positive effects in table’3uvkre smaller than corresponding
effects in table 3.16. We think it’'s reasonablechese too many lag effects, especially
those behind 6-day lag, diluted the influence icheastimate. Also, the g8 and sef) in
table 3.17 were smaller than those in table 3.tfctvmeans the3 in table 3.17 was
estimated more conservatively, and the versablityity-specific effects was also not

very distinguished.
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Table 3.17

The PCA-adjusted P)Mestimates in the second extended distributed ladem

~

Variable I se ) sep)
PMio 0.000000 0.000155 0.000102
PMjdagl 0.000011 0.000160 0.000108
PMjdag2 0.000037 0.000154 0.000136
PMjgdag3 0.000069 0.000160 0.000156
PM;dag4 0.000100 0.000154 0.000149
PMjdag5 0.000101 0.000153 0.000137
PM;dag6 0.000062 0.000153 0.000128
PMydag7 -0.000007 0.000148 0.000125
PMjdag8 -0.000081 0.000152 0.000134
PMydag9 -0.000133 0.000152 0.000147
PMsdagl0 -0.000151 0.000153 0.000181
PMdagll -0.000134 0.000158 0.000208
PMdagl2 -0.000103 0.000148 0.000206
PMdagl3 -0.000075 0.000155 0.000206
PMdagl4 -0.000055 0.000152 0.000191

tOriginal value = 0.0000003

The advantages of PCA used in the GGAMM were: 49lkeng the technical
problem of BayesX that leads to computer crash wisémg too many lag effects. From
original distributed lag model, we only can estienap to 2-day lag effect; however, in
these extended distributed lag models, we foungrBieipal component variables were
still working in BayesX; 2) extended distributed lamodel had highly consistent
estimating results when the starting values of ghing parameters changed (detailed
results were not shown here); 3) it spent muchtless in estimating process compared

with fitting original distributed lag effect. Evemhen including eight principal component
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variables, the model-fitting iteration still spdéass time than using three original
variables. It can contribute to the iteration reaglconvergence more quickly; 4) from

the benefits of PCA which leads all principal comeots are independent with each other,
the model-fitting of the GGAMM is not affected Hyet multicollinearity problem.

There are still some disadvantages: 1) comparddpevious model 1~model 6, the
95% confidence intervals of estimated parameteexiended distributed lag model were
too wide, especially in random effects; 2) it's imsgible to exactly identify which lag
effect had the strongest influence to the mortaiite of respiratory diseases in elders
without advanced calculations. In addition, thestengates cannot be used to conclude a
numeric result when each principal component végiaictreased per unit. Meanwhile,
the extended distributed lag model only can expageneral and relative strength over a
period of longitudinal trend. An advanced transfation to obtain PCA-adjusted
estimates which were calculated by equation (2@1%2) and (2.54) should be
considered; 3) the missing data will make seveitaance on PCA, and the severity level
will also increase along with the number of lageet$. Also, any missing datum
appearing in variables using in PCA will not beccigdited all of its principal components,
so it will immediately affect the valid data usimgthe model-fitting. For example, a
current PMo missing datum appeared in 1991/01/01 made 1-ddgyBag effect missing
in 1991/01/02~1991/01/07, respectively. Thereftre,three principal component

variables PRIN1, PRIN2 and PRIN3 were all missiogrf 1991/01/01~1991/01/07.

3.12. Multicallinearity and concurvity

As what chapter 3.1 and chapter 3.2 had descrdmede air pollutants were
moderately or highly correlated with each othed #rey are also connected with time

trend and geographical locations. When includiregnthn the GGAMM, it was expected
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that the multicollinearity and concurvity problenaynexist in model-fitting. The
multicollinearity levels were only calculated on deb2~model 6 for evaluating whether
this problem was potentially hide between Biind lag effects or P and four
co-pollutants. The concurvity levels were examiiredll 6 models for identifying how
strong relationship between each air pollutanttaedcombination of time smoother,
temperature smoother and spatial function. Theléwels were also calculated in data
sets applying missing data imputation methods.

In initial data set without dealing with missingtd, the highest multicollinearity
level appeared between Rjvnd NQ in model 4. Reviewing table 3.2, we can find it is
not out of expectation because the correlation eéetwPMy and NQ was as high as
0.4804. Even though the strongest relationshigMgoRvas its 1-day lag effect, the
multicollinearity level in model 2 was calculatitize relationship between Riyand the
combination of its 1-day and 2-day lag effects, tred2-day lag effects harmonized the
high correlation between PiMand its 1-day lag effect. Whatever, the multicahrity in
model 2 was the second highest one over model 2ehgod hree of them were larger
than 0.5, but it’s just moderate severity, not héglierity. Based on the definition of high
multicollinearity level (0.7), these estimatesditby CCA were not damaged seriously.

In table 3.18, while applying NNI1 and NNI2, wagdnally doubted that they will
increase the multicollinearity level because the missing data imputation methods
were using the nearest datum and its distribubadentify the imputed “candidate” from
existing data. Due to such immediate connectiomfrmputed data and reference data
which were used for identify “neighbors”, our aredg showed the multicollinearity
levels from models using NNI1 and NNI2 did not sagp CCA. Compared with NNI1
and NNI2 themselves, NNI2 had lower multicollinéathan NNI1, and NNI2 made the
largest reduction in multicollinearity level witlalue of 0.1205. Moreover, the influence

of MI-MCMC on multicollinearity was similar as NN)Except for model 4, where this
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Table 3.18

The multicollinearity and concurvity level in model model 6.

Model Multicollinearity Concurvity
Model 1 PMzo
CCA -- 0.4515
NNI1 -- 0.4423
NNI2 -- 0.3962
MI-MCMC -- 0.4267
Model 2 PMio 1l-day lag PMy 2-day lag PMg
CCA 0.5697 0.4534 0.3870 0.3346
NNI1 0.5406 0.4426 0.3834 0.3413
NNI2 0.4773 0.3965 0.3478 0.3142
MI-MCMC 0.5147 0.4269 0.3733 0.3307
Model 3 PMyo (6{0)
CCA 0.5350 0.4516 0.6632
NNI1 0.5076 0.4423 0.6531
NNI2 0.4770 0.3957 0.6428
MI-MCMC 0.5345 0.4267 0.6479
Model 4 PMio NO,
CCA 0.5837 0.5136 0.5644
NNI1 0.5516 0.4856 0.5607
NNI2 0.4632 0.4209 0.5276
MI-MCMC 0.6019 0.4660 0.5568
Model 5 PMyo O3
CCA 0.4121 0.4800 0.7777
NNI1 0.3995 0.4298 0.6861
NNI2 0.3143 0.3824 0.6324
MI-MCMC 0.3938 0.4124 0.7511
Model 6 PMio SO
CCA 0.4980 0.4944 0.5607
NNI1 0.4815 0.4921 0.5236
NNI2 0.4481 0.4199 0.5134
MI-MCMC 0.4840 0.4779 0.5340
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imputation became worse, and even surpassed thiearmmulticollinearity level
(0.5837).

Although we had shown Pjyihad higher relationship with locations, time and
temperature, its concurvity levels in six modelsevenly around 0.45. While applying
missing data imputation methods, the concurvitgl®ef PM;o did not have too much
change in all models. Similar as their performanaaulticollinearity, NNI2 had more
reduction in concurvity level than NNI1 and MI-MCM®ote that MI-MCMC made the
concurvity levels of Pl exceeded its original value in both of model 4 aratlel 6, and
so did NNI1. Generally speaking, whether using GL#ese missing data imputation
methods, they never caused the concurvity levef, to be higher than 0.5. As a result,
this problem was not severe in fine particulateterah the GGAMM, but users should
pay more attention on that the increase of contukevel in PM, when more lag effects
or 2+ co-pollutants were included in case. Theuigrfice of concurvity also did not lead
PMygo's lag effects serious. On the contrary, the covitptevel decreased along with the
increase of lag day.

The concurvity problem may happen in co-pollutantthe GGAMM because they
had higher concurvity level than RMThe concurvity level of N©and SQ were still
under control, and only around 0.51~0.56, whetpptydng missing data imputation
methods or not. Reviewing figure 3.3 in chapter B'2believed that the regular
fluctuated time trend of N£Qand SQ contributed most of their concurvity levels. Model
3 had higher concurvity level over 0.6 in CO, atschigher CCFs versus 24-hour average
temperature should be the reason that it had higiesurvity level than N@and SQ
(figure 3.3). Also, missing data imputation methddsnot either worsn or improve its
concurvity level. The largest concurvity among 4patiutants appeared in;OWNith CCA,
its concurvity level was as high as 0.7751, arwit be regarded as severity concurvity

problem. It reduced under 0.7 while imputing migsitata by NNI1 and NNI2; however,
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MI-MCMC made it over 0.7 again. Some evidences shimwfigure 3.1~figure 3.3 in
chapter 3.2 can explain this situation i Oomparing with the other air pollutants in
figure 3.1, the rate of decreasing speed of thetokcity correlation in @along with the
extension of distance was the slowest one. We @ampsa horizontal line r=0.6 in all air
pollutants in figure 3.1, and find there was no endot above r=0.6 in PMas
distance=250 miles. The downward speed of city-to-city ctatien in CO, NQ and SQ
was also very quick, and there was almost no doteb=0.6 as distanzé&00 miles.
However, there were still some city-to-city corteda of O; above or close to r=0.6 as
distance>1,500 miles, so we can reasonably conclude sgahation shall contribute a
part of concurvity level of @more than the others. The time trend plot g&{nost
match up with the time trend plot of temperaturéigare 3.2, and the CCFs betweesn O

and temperature also confirmed their high relatignsver time (figure 3.3).

3.13. Model diagnostics

So far the methodology of model diagnostics basethe GGAMM is still under
development because of some unbreakable bottlenElo&se difficulties will be
discussed in chapter 5 in details. Here we onlyi@gpgome existing model diagnostic
approaches of general linear model for the GGAMMteNthat these approaches were not
guaranteed to appropriately take place in the GGAMM we can still take a look at
some possible problems existing in the model fitth the GGAMM, and look for
chances to improve in the future as long as reddtieorems will be accomplished. Table
3.19 showed separate goodness-of-fit tests of ®odistribution for death counts from
respiratory diseases in elders in each city, rasfdz 6 cities (Chicago, Cleveland,
Detroit, El Paso, Pittsburg and Seattle) presetitatthey violated Poisson assumption,

with p-values<0.05, and the overall respiratory disease deathtaaielders over 15 U.S.
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Table 3.19

Goodness-of-fit test of Poisson distribution inL%. cities from 1991~1995.

2

City X d.f. p-value
Chicago 79.78 20 <.0001
Cincinnati 13.97 7 0.0518
Cleveland 21.18 9 0.0119
Colorado Springs 1.88 4 0.7571
Detroit 21.45 9 0.0108
El Paso 14.89 3 0.0019
Huntsville 0.86 2 0.6508
Las Vegas 0.65 6 0.1910
Lexington 3.61 3 0.3070
Minneapolis/St. Paul 11.39 9 0.2499
Nashville 3.09 4 0.5434
Pittsburg 28.64 10 0.0014
Salt Lake City 9.60 6 0.1427
Seattle 31.91 9 0.0002
Spokane 9.38 5 0.0947

cities also had small p-value to reject Poissotrilligtion (y>=16529.12, d.f.=20, p-
value<0.0001). To check the basic properties o distribution, we found these
respiratory death count data had overdispersiobl@nowith mean 1.89 and variance
5.40. The main reason is that there were too mamyszn this mortality data. Among
overall 27,390 valid respiratory disease death tdata, there were 8,522 zeros, which

account for 31.11% of the entire data (figure 3.Z®Bere were several cities with over
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Figure 3.46

The city-specific and overall histogram plots afpatory death count from 1991~1995.
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40% zero death count during 1,826 studies daysy &reeColorado Springs(53.18%), El
Paso0(55.91%), Huntsville(79.13%), Lexington (67.96%alt Lake City(41.57%) and
Spokane(43.10%). Actually, real-life count datafaegquently characterized by excess
zeros, and immediately encounter the trouble ofdispersion. Even though the
zero-inflated count model can provide a more powepproach to model this type of
data and handle overdispersion problem well, sthielKGGAMM based on restricted
maximum likelihood or marginal likelihood estimatibas not support ZIP (zero-inflated
Poisson) and ZINB (zero-inflated negative binomdaja by BayesX yet. This situation
is not actually unsolvable in the GGAMM, but thare some theoretical and technical
difficulties in BayesX. More detailed discussiorilee shown in chapter 5.

We also used the Q-Q plot to detect the normatisumption from model 1 to model 6
(figure 3.46). The distributed positions of norrttaoretical quantiles and sample
residual’s quantiles displayed a weak-twisted ghtline in each Q-Q plots, so they
reflected our residual analyses were a little tinganormality assumption. To check the
boxplot of residuals shown in figure 3.47, the nr@ason of having a slight s-shape in
Q-Q plots was that there are many outliers in t&its ©f their distribution, but
non-outliers residuals generally presented a symer@file in each boxplot. However,
their histogram plots compared with the correspogdiormal curves displayed that each
residual plot had a tiny right-skewness (figure83.4but this problem was not too severe
because the linear model will not be affectedef tsidual’s distributions are skewed
when the number of valid data is not too small.

The residual plots with standardized residualsresjairedicted values for the
purpose of identifying independence assumptiorshosvn in figure 3.50. From model 1
to model 6, they shared two strange situationpréddictions were seldom located around
5, and made a gap splitting dots into two partsn Bach residual plot, the dots located

below prediction equal to 5 displayed a fan shapéethe dots located above prediction
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Figure 3.47

The Q-Q plots for residuals from model 1 to model 6

Figure 3.48

The boxplots of residuals in model 1 to model 6.
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Figure 3.49

The histogram plots with normal curves in moded inbdel 6.
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The residual plots from model 1 to model
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Figure 3.51

The city-specific prediction plot and observatidatpn model 1.
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Prediction
equal to 5 displayed a horizontal band. The fitlatful point can be interpreted by the
city-specific prediction plot in figure 3.51. Henee only use predictions in model 1 for
this explanation. We found the gap appearing arquadiction=5 was because all
predictions in Chicago were larger than 5.71, tleimum value of predictions in the
other cities were 4.29 in model 1. That's why thiera blank area between 4.29 and 5.71
in figure 3.51. Meanwhile, the dots located in lgfe part in figure 3.50 can be confirmed
that they were all from Chicago. Compared with md@dervations, the daily respiratory
disease death counts less than 5 were all ovemdstinn Chicago, and that’s why there
was no prediction less than 5 in that city. Assaule this blank area was produced from
the overestimated of predictions with observatiess than 5 in Chicago.

About the fan shape in the right part of residuaty it seemed the correlation among the
Y values existed. Actually, the autocorrelatiorregpiratory disease death count in elders
using in this study was only 0.2, and could be rgdoHowever, we recognize that

BayesX does not offer functions of covariance stmgcto handle potential correlation
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Figure 3.52

The level-1 unit (city) residual boxplots in modléb model 6.
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from observations when fitting the GGAMM with REMistimation. In fact, this function
is only compiled in a fully Bayesian interpretatiohstructure additive regression model
using Markov chain Monte Carlo simulation technisjusut our data encountered
technical problems based on this model in BayesreMietails will be discussed in
chapter 5. Besides, the variance homogeneity agsumpay not be followed as well, at
least the level-1 unit boxplot (figure 3.52) showtled variance of residuals in Chicago
was significantly larger than the variance of raaid in the other cities.

Finally, the model evaluation methodology of the A\BM is still underdeveloped,
so the output from BayesX does not provide anyrinfition similar as Ror adjusted R
in linear regression models. However, we still gacked in calculating the mean square
error (MSE) to show each model’s evaluation. TheBMiEmodel 1 was 2.14, and
increased to 2.25 as including 1-day and 2-daeftagts. In co-pollutant models, the

MSE had a little bit decrease to 2.13 and 2.1bag &s including CO andzO
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respectively; however, it increased to 2.47 an@ h4nodel 4 (PMy+NO,) and model 6

(P M]_o"'SOz).

3.14. Extended applications

Based on the entire investigation in previous sestiit was desired to apply the
GGAMM in more mortality data from the NMMAPS. Besglrespiratory disease, this
database also offers daily death counts in cardmyar disease and pneumonia. These
three mortalities were examined in three age caieg)¢<65, 65-74>75) by the
GGAMM, and the results of the R¥yinfluence on the percent increase of mortality
relative risk are visualized in figure 3.53~figud®5. Detailed outputs are contained in
Appendix G and Appendix H. Note that all models everodified by appropriate starting
values of smoothing parameters from 10 to 15, botesmodels were ignored without
obtaining reasonable results while using up thisse

The particulate matter has much different inflleeno cardiovascular diseases.
Some negative but non-significant results derivenhortality<65 years old. The impact
of PMyo turned to positive in the population with age 6%-yéars old besides adjusting
with SO,.. The reason was that $8as much higher effect on mortality than gMnd
each 10 ppb increase of S€ncentration rose 1.77% (95% CI: -0.51%, 4.118@tive
risk in cardiovascular mortality in this age catggélso, SQ had stronger consequence
than the other co-pollutants. Adjusting with ozaméhe same age category, M
produced the highest 0.63% increase of relatikeini€ardiovascular disease, but was
still not significant. The first significant resutcurred in mortality 75 years old. We
found cardiovascular mortality increased 0.47% (9584.14%, 0.81%) relative risk per
10 ug/m® increase in PM,. This significant result also maintained significa and

consistence when adjusting by NO
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Figure 3.53

The percent increase of relative risk with 95% aberice interval in cardiovascular
mortality in three age categories.
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The city-specific PMp effect displayed different patterns in differegedevels.
Without co-pollutant’s adjustment, Chicago, Cin@tinSeattle and Spokane had stronger
PMyo effect than the other cities to cardiovasculartality<65 years old; however, when
considering co-pollutants, no city showed positA\M,, influence. In age from 65-74
years old, most cities had positive RNhfluence besides Cincinnati, and this situation
generally remained similar after adjusting by INO; and SQ. In particular, when

adjusting by @, the city-specific PN effect increased in Cleveland, Colorado Springs,
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Detroit and Nashville where each 10 ugffM,o can increase over 1% relative risk of
cardiovascular mortality. Nonetheless, the locatifluence did not show high diversity
in mortality for age75 years old, even though all city-specific effegtse positive in
both models (P, PMio+NOy).

Compared with what we had done in previous sesfithre time smoother from
cardiovascular mortality was not as regular asiragpy mortality, but still had
somewhat seasonal effect which caused negatiweemtke from July to August and
positive influence from September to next Juneaitheyear. All temperature smoother in
cardiovascular disease had the highest impaceicdldest weather, and immediately
decreased to the lowest point untiPBO6C°F with a slight rebound to 10B. In
geographical variation, Chicago, Detroit, Clevelamd Pittsburg had stronger influence
than the other cities. Among three age levelshtgkest spatial effect appeared in
age<65 years old in Chicago, which relative rate wakl5and was 15.48-fold of
Lexington, the location with the lowest spatialeett

To be one of the ten leading causes of deatheitUt®., pneumonia presented some
significant results in our findings of mortality thiage 65-74 years old. Without
adjusting with lag effects and co-pollutant, eabhuf/nt increase in PM10 concentration
can significantly increase 2.02% (95% CI: 0.01%38%0) the relative risk of pneumonia
mortality, which was higher than the same modé¢henother two age level65 years
old and>75 years old). It was enlarged to 3.00% (95% @4%, 5.41%) after adjusting
for a 1-day and a 2-day Rilag effect. Also, controlling by £and SQ, we got another
two same significant results with 2.65%; nonetrelése effect became non-significance
and decreased to 1.87% and 1.23% when controlir@® and NQ.

The city-specific PNy effect had enough variation and strong influente o
pneumonia mortality in agés5 years old and 65-74 years old. Detroit and Spekead

higher effect, almost reaching 3% increase of isaisk in pneumonia mortality in
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Figure 3.54

The percent increase of relative risk with 95% aerice interval in pneumonia mortality

in three age categories.
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age<65 years old while not adjusting by lag effects @gdbut no specifically strong P
city-specific influence occurred in some citieghe other two age levels. In particular,
Colorado Springs, El Paso, Minneapolis/St. Paut,L%&ke City and Spokane had negative
city-specific effects in Ply) to pneumonia mortality75 years old without controlling by
lag effects or co-pollutants, but after adjustinthvag effects and co-pollutants, all
city-specific PM, effects were modified to positive.

There are three characteristics in smoothing fonstin pneumonia models: 1)
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Figure 3.55

The percent increase of relative risk with 95% aberice interval in respiratory mortality
in three age categories.
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seasonal variation was not very significant wiigtgl fluctuation in mortalit65 years
old, and the longitudinal influence was decreasingr time; 2) temperature effect was
not very nonlinear in all age levels; 3) pneumaniatality>75 years old did not have
obvious decrease, but presented a slight horizngabver temperature. The spatial
function showed weak geographical variation in naégineumonia models, but Chicago,
Detroit, Cleveland, Pittsburgh, Minneapolis/St. Pad Seattle showed relative stronger

relative rate than the other cities.
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Respiratory mortality was examined again with thage levels, and 4 of 5 results in
age<65 years old also found significant findings. Ea6hug/ni increase of P
concentration had at least 1.69% to 2.22% increfegative risk in respiratory
mortality<65 years old. Besides the model controlling for,Ni®e other respiratory
models were all significant. A negative PNhfluence appeared in an extended
distributed respiratory model with 65-74 years blat, corresponding 1-day and 2-day
lag effects were all positive with value of 0.26%dd®.41%, respectively. However, both
of them were still non-significant. Models with pgstory mortality>75 years old had
affected positively by PM concentration, but the magnitude had been sniaber the
other two age levels.

The seasonal trend in respiratory models became significant alone with the age
level, and temperature smoother also displayed ruoked in age75 years old than the
other two age levels. The spatial effect pattemregpiratory mortality was not as
consistent as cardiovascular and pneumonia marthditespiratory mortalitg65 years
old, only Chicago, Detroit and Las Vegas had pesitelative rate. While considering
mortality in 65-74 years old @75 years old, more cities were included in the tpasi
side, such as Seattle, Cleveland and Pittsburghlewtpatial influence was weaken in Las
Vegas in mortalitz75 years old, surprisingly.

Similar as pneumonia mortality, larger nationalsgBffect made higher
city-specific effect in respiratory mortalky65 years old and 65-74 years old. In<a§8é
years old, most of city-specific Piyeffects were estimated between 1%~3% whether
controlling by lag effects or co-pollutants. Theyespecific PMg effects were generally
weakened to zero in respiratory mortatffb years old, but all of them were still positive

in each model.
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Chapter 4
SIMULATION

In order to make more objective conclusions frosecstudies, we made some
simulations to investigate convergence problemrarssing data analysis in the
GGAMM. The convergence problem in the GGAMM has Imetn clearly discovered in
previous studies using BayesX, and missing datlysieas an interesting issue, that is,
how imputation methods work in the GGAMM. Besides, were also interested in the
influence of concurvity in the GGAMM, and found @anmection between concurvity and

convergence problem.

4.1. Concurvity simulation

As what we have mentioned in chapter 3, BayesXismilar as other statistical
computational tools, and always shows outputs wieatine entire iteration reaches
convergence. Even though a warning message remsgais that the model fitting is
doubtful without convergence, people would eagjlyore this warning message
unintentionally. A significant clue to identify tromnvergence problem in a model fitting
is from those overestimated standard errors. Fooitty statistical software which can
handle the GGAMM so far, the source of the convecgegoroblem is still undiscovered,
and we found some evidences.

One of possible sources is from concurvity probl€anle 4.1 shows 10 different
concurvity levels with correspondiy s€), s€b) and convergence rate in the
GGAMM. The comprehensive analysis can investiga¢arfluence of concurvity in the

model fitting of the GGAMM and convergence rate @itmneously. When concurvity



Table 4.1

The main estimates with different concurvity lewsld corresponding convergence rate
(CR) in the GGAMM.

Concurvity I se(f) sgb) ASMSE CR(%)
0.03 0.0954 0.1323 0.3482 2.3582 99.8
0.10 0.0895 0.1311 0.3438 2.3603 99.2
0.19 0.0922 0.1274 0.3311 2.3511 99.1
0.31 0.0875 0.1197 0.3026 2.3538 98.5
0.41 0.0801 0.1111 0.2710 2.3521 97.2
0.50 0.0752 0.1032 0.2402 2.3387 96.1
0.59 0.0735 0.0944 0.2042 2.3431 95.3
0.71 0.0661 0.0841 0.1584 2.3356 93.4
0.80 0.0756 0.0755 0.1140 2.3101 90.5
0.90 0.0926 0.0683 0.0692 2.2390 87.9

* True (8, sef), sep))=(0.1, 0.15, 0.35)

level was increasing, the convergence rate wasdsitrg from 99.8% to 87.9%. For
1,000 replicated simulation data sets in each awitgiscenario, the data sets with
convergence problem were only around 20 data seaterecurvity level = 0.03, but the
number of data sets without convergence increasatbund 120. Meanwhile, the
increased rate climbed to 6 times as almost-notaeity became extreme concurvity in
the GGAMM.

In addition, the influence of concurvity in the GBIM had also been revealed by
our simulations. We found that, se@) and s€b) could be underestimated along with
the raise of concurvity level in the GGAMM, and Inégy concurvity level generally
caused more biases than lower concurvity leveleNoat, as concurvity level reached 0.8,
the decreasing-tendency @f was curbed, and the averageffbounced back to its true
value 0.1 until concurvity level was 0.9. Howewke averages of s&( and séb) from
simulation data with concurvity level=0.9 wereldtighly underestimated, and compared
with the results of concurvity level=0.03, the testimates slumped around 48.37% and

80.13%, respectively.
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The influence of concurvity on smoothing functiomas also investigated here. We
applied ASMSE from equation (2.71) to quantify stirag functions, and compared
estimated smoothing functions with real smoothungctions. The research question
came from a hypothesis. In chapter 2, we had de=tithe methodology of estimating
smoothing functions in the GGAMM. Generally speakiit’'s very similar with other
semiparametric models, such as the GAM or GAMM,thair concept is decomposing
smoothing functions with many pieces by knots. Ehpigces can be reconstructed with a
matrix form and combined with linear factors inrafied design matrix. Meanwhile, the
piece parts of smoothing functions and linear fiecteere estimated simultaneously by
the estimating equation. If the concurvity levelulbbe a reason of making biases in
linear estimated parameters, its influence on gienation of smoothing functions should
also be inevitable.

In table 4.1, we show the ASMSE of smoothing fiorcin each concurvity level.

The trend of ASMSE did not climb along with thernease of concurvity level, which
means that concurvity problem only affected theapeater’s estimation of linear factors,
but there is no much influence of making smoothingctions more biased. Reviewing
the concurvity level appearing in case studiesagpter 3, each model had concurvity
level with values of around 0.5. If table 4.1 ceflact the true reality, we can conclude
that all estimates shown in table 3.4 could be @bbpunderestimated, and it may explain
why air pollutant influence to adverse human hemthur analyses was less than

previous studies.

4.2. Multicollinearity simulation

The biases produced from multicollinearity in th&/&AVM mainly appeared in

fixed effects and their standard errors. Tablesth@vs the simulation results containing
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Table 4.2

The main estimates with different multicollineatéyels and corresponding convergence
rate (CR) in the GGAMM.

Multicollinearity g, se,) seb,) B, sqf,) sep,) CR(%)

0.0 0.0016 0.0162 0.0194 0.0214 0.0279 0.0477 100.0
0.1 -0.0002 0.0167 0.0202 0.0216 0.0272 0.0443 (100.
0.2 -0.0035 0.0173 0.0201 0.0245 0.0264 0.0384 (100.
0.3 -0.0061 0.0183 0.0201 0.0244 0.0262 0.0350 9 99.
0.4 -0.0088 0.0197 0.0207 0.0247 0.0266 0.0315 9 99.
0.5 -0.0110 0.0217 0.0214 0.0266 0.0276 0.0299 0100.
0.6 -0.0157 0.0245 0.0226 0.0313 0.0293 0.0278 (100.
0.7 -0.0216 0.0284 0.0223 0.0345 0.0322 0.0257 (100.
0.8 -0.0304 0.0354 0.0241 0.0408 0.0382 0.0271 (Q100.
0.9 -0.0464 0.0504 0.0250 0.0558 0.0520 0.0277 (0100.

two correlated variables in the GGAMM. As the medtlinearity level increased from 0
to 0.9, two estimated fixed effecf$, and 8, appeared biases toward different
directions gradually, wher@, decreased to negative value, afid increased to 0.0558,
which was over 2-fold of 0.0214 from multicollinégiievel=0. Both of the estimated
standard errors s&() and se§,) did not appeared too significant trends as
multicollinearity levek 0.5, and started to have a steep climb-up untitioollinearity
level=0.9. In random effects, $g] seemed not be affected too much, bub.ge(
decreased almost a half from 0.0477 to 0.0271.

In this simulation, we actually did not generatéadar smoothing functions but
used original calendar time and 24-hour averagpéeature data, so there was no true
smoothing function used for calculating the ASM®& believed, from the definition of
multicollinearity, the smoothing functions, everasal function, should not be affected,
unless they originally contain severe concurvityiea GGAMM. However, this
concurvity-confounding situation did not exist besa the almost perfect convergence

rate in each scenario reflected that this simutatvas not disturbed by concurvity.
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4.3. Missing data imputation simulation

In missing data analysis, we processed two difteaealyses to see how missing
data affects modeling as long as they exist ireeiinear factors or smoothing functions.
Define two factors Xand X% as used in a simulated GGAMM, whergWas used in
linear factor, and Xwas fitted as a penalized spline. The missingisa®6, 10%, 20%,
30%, 40% and 50%.

Table 4.3 displays the simulation results consmdemissing data only appears in
linear factor X. Based on MCAR and compared with trde0.1 , CCA can maintain
their consistency and did not make too much biad,NINI2 also had better performance,
even though either one became underestimated whssmgrate reached 50%. NNI1
only had better estimates ¢h as missing rate was 5% and 10%, and it tended to
underestimate while missing rate was over 10%. fidsalt made sense because
nonparametric missing data imputation method coulg be helpful if missing rate is
controlled below 10%. In addition, NNI1 made thega of simulated results ¢f
getting wider than NNI2 when missing rate afWas increasing, which implied that
nonparametric missing data imputation method appglyn higher missing rate could
possibly cause targeted estimated parameters metahle (result is not shown here). A
surprising result was that MI-MCMC did not work yawell in the GGAMM, andf
started to estimate smaller than its true value f@sv missing data appeared, even though
its stability from 1,000 simulations was always mooncentrated than CCA, NNI1 and
NNI2, and also did not change too much as missatgywas raised.

The influence of missing data imputation in smaoghiunctions is also presented in
table 4.3. It is obvious that, without using imgiga method, the precision of estimated
smoothing function was not changing too much aleithy the increase of missing rate in

X1. The ASMSE began with value of 1.2493 when missatg of X was 5%, and had a
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Table 4.3

The estimateg?, sef), and sef) of GGAMM with corresponding convergence rates)(CR
when applying CCA, NNI1, NNI2 and Ml in variablef&r missing rates 5%, 10%, 20%,
30%, 40% and 50%.

Missing rate (%)

Method Parameter 5 10 20 30 40 50
CCA J4 0.1069 0.1060 0.1034 0.1024 0.1025 0.0941
se) 0.3025 0.3035 0.3052 0.3074 0.3109 0.3172
sep) 0.9145 0.9153 0.9150 0.9147 0.9148 0.9203
ASMSE 1.2493 1.2399 1.0690 1.1027 1.0135 1.2410
CR(%) 99.2 99.6 99.4 99.7 99.9 99.8
NNI1 J4 0.1052 0.1014 0.0907 0.0787 0.0687 0.0475
se) 0.3022 0.3015 0.2994 0.2961 0.2940 0.2869
sep) 0.9145 0.9098 0.8981 0.8807 0.8663 0.8325
ASMSE 1.3371 1.4733 1.3322 2.0638 2.2029 2.1213
CR(%) 99.6 98.9 99.0 99.1 99.4 99.7
NNI2 J4 0.1102 0.1129 0.1117 0.1109 0.1124 0.0956
se) 0.2971 0.2921 0.2812 0.2665 0.2519 0.2338
sep) 0.8982 0.8801 0.8404 0.7877 0.7332 0.6664
ASMSE 1.3358 1.4711 2.0661 2.2034 2.1191 1.9457
CR(%) 99.5 99.7 90.1 99.4 98.6 99.3
MI-MCMC g ) 0.099¢ 0.093¢ 0.074¢ 0.045: 0.023: 0.000¢
seiR) 0.288¢ 0.272: 0.254¢ 0.221¢ 0.198¢ 0.174«
seb) 0.871¢ 0.817¢ 0.758( 0.648: 0.569¢ 0.485(
ASMSE 1.334: 14717 2.064¢ 2.204( 2.122( 1.943¢
CR(%) 97.% 97.4 97.¢ 98.4 97.¢ 98.:

* True (8, se), seb))=(0.1, 0.3, 0.7)

tiny decrease when missing rate gfwas 30% and 40%. But, finally it came back to

1.2410 when missing rate of, ¥vas 50%. It reflected that missing data appearng

linear factor X did not cause damages on smoothing functionshesion. When missing

X, data were imputed by NNI1, NNI2 and MI-MCMC, thalwes of ASMSE were all

higher than those in CCA. Three missing data inpurtanethods generally did not have

marked difference in any missing rate af When missing rate of Xwvas 5% and 10%,
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their ASMSE values increased to 1.33~1.47, aneédaosver 2 hugely along with the
increase of missing rate of XTo sum up, the efficacy of these missing datauitaion
methods did not have significant improvement in sthimg functions when missing data
only appeared in the linear factor.

We were also interested in the convergence rategmidferent missing rates ini X
and missing data imputation. Table 4.3 showed tmeergence rate did not have
significant change as long as missing rate wagasing. Nonetheless, missing data
imputation method also did not guarantee any imgmuent on convergence rate.
Whatever any missing rate is, all missing data itafpon methods made tiny decrease on
convergence rate, especially in MI-MCMC, which é&sed convergence rate as low as
98%, and even lower. A reasonable explanationasttie number of imputation easily
caused higher probability of convergence problean.gxample, we used 5 imputations
in each simulation data, and as long as one of theirconvergence problem, the average
result from 5 imputations would become biased. Bheungh this is not totally
unsolvable because chapter 3 had shown three neetbedijust it, the process will be
still time-consuming for modification in either tiséarting value of smoothing parameter
or the number of knots.

On the other hand, when missing data only appeaarégt variable used in
smoothing functions, applying missing data imputatnethod would make serious
effects on parameter estimation in linear factbrsable 4.3, compared with true value of
B, sef) and sdf), CCA produced close results ji and se), where 8 was from
0.1081 to 0.0979 and ¥(was from 0.3032 to 0.3160 while missing data isfeom 5%
to 50%. The sé() was a little overestimated, and located arouBd Qnder any missing
data rate in X but its ASMSE confirmed that higher missing datie did not make more

biases on the estimation of smoothing function. €&ty speaking, the result of ASMSE
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Table 4.4

The main estimates of GGAMM with corresponding eayence rates (CR) when
applying CCA, NNI1, NNI2 and Ml in variable ¥r missing rates 5%, 10%, 20%, 30%,
40% and 50%.

Missing rate (%)

Method Parameter 5 10 20 30 40 50
CCA It 0.1081 0.1049 0.1044 0.1031 0.1019 0.0979
se() 0.3032 0.3040 0.3061 0.3085 0.3113 0.3160
sep) 0.9173 0.9172 0.9181 0.9182 0.9165 0.9167
ASMSE 1.2468 1.24241.0637 1.1049 1.0176 1.2398
CR(%) 99.4 99.4 99.9 99.5 99.5 99.9
NNI1 It 0.1042 0.0987 0.0809 0.0595 0.0381 0.0134
se() 0.2954 0.2885 0.2724 0.2563 0.2405 0.2251
sep) 0.8941 0.8714 0.8180 0.7645 0.7113 0.6594
ASMSE 1.3429 1.46762.0625 2.2026 2.1188 1.9330
CR(%) 99.1 99.3 99.2 99.6 99.5 99.6
NNI2 ¢ 0.0883 0.0676 0.0454 0.0132 -0.0219-0.0386
se() 0.2961 0.2898 0.2775 0.2678 0.2598 0.2537
sep) 0.8959 0.8753 0.8345 0.8023 0.7755 0.7556
ASMSE 1.3395 1.48072.0568 2.2025 2.1174 1.9307
CR(%) 99.4 98.5 99.5 99.6 99.3 99.6
MI-MCMC 3 0.079: 0.041: -0.008¢ -0.049¢ -0.084: -0.107¢
se@ 0.300: 0.297: 0.2957 0.291¢ 0.286. 0.290¢
seb) 0.909¢ 0.899¢ 0.895. 0.881: 0.864. 0.878¢
ASMSE 1.3462 1.471: 2.064. 2.203. 2.111¢ 1.947¢
CR(%) 96.< 97.4 98.C 99.1 98.¢ 99.7

* True (B, sef), seb))=(0.1, 0.3, 0.7)

in table 4.3 was not better than the result of A&MSable 4.2. Even though most values
of ASMSE in table 4.3 were smaller than those lohetd.2, the difference was very tiny and
can be ignored. This result in table 4.3 refle¢ted, when missing data appeared in
valuables fitting with smoothing functions severétaditional missing data imputation
may not efficiently improve the entire model-figinwhatever in the estimations of

unknown parameters in linear factor or smoothingefions. If the amount of data is large
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enough (in this simulation, the sample size of edath set is 1,000), it can stand more
missing rate up to 50%. More discussion will be eered in chapter 5.

Finally, compared with the results of MI-MCMC ialdle 4.3 and table 4.4, models
with missing data in Xhad better convergence rate than models with ngsata in X
in high missing rates. Meanwhile, the impact ofweEngence problem was relative weak

when missing data were not in linear factors.
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Chapter 5
DISCUSSION

5.1. Summary

Our main goal was to accomplish comprehensive pssgusing the GGAMM in air
pollution and adverse human health research, aaldae the reasonability of findings to
enhance confidence in this statistical model. Bsealders 65 years old dying from
respiratory diseases were our population in thelrdase study, it was smaller than other
studies containing death from all ages, and thad e a lower estimated Ry Despite
the lack of a previous study using the respiratooytality data from elders 65 years old,
the application results from chapter 3.12 still he@sonable conclusions when referring
to published literature. From previous U.S. studies national relative risk ranged from
0.09%~0.68% in a 1@g/m’ increase of Pl over 4 to 100 cities (table 5.1). When
restricted to cardiovascular and respiratory miytahe range became 0.13%~0.68%,
which covered results from all models with cardsaar and respiratory mortality in
ages 65-74 and 75 years old, besides RSO, in with cardiovascular mortality and
PM;¢+0Os in respiratory mortality in 65-74 years old. Dodéchnical limitations
discussed in chapter 5.2, our extended analysisatiddjust by age group, but was
separated into three models in each mortality. loee, no age-specific results from
previous studies can be compared. In addition,iraiiit air pollution study has not
investigated pneumonia mortality yet, so our figdiprovided a possibility to make it

examinable.



Table 5.1

Comparison of results across studies: estimatedgmeincrease in mortality relative risk per 10 pgincrease in Ph.

%increase in mortality RR per 10

# of cities Period Mortality Air pollutant Hg/nT increase in P (95% PI) Reference
4 cities 1987-1994 Total Pl 0.17 (-0.01, 0.34) Dominici et al. (2003a)
CVD/RESP PMo 0.22 (-0.02, 0.46)
20 cities 1987-1994  Total PMso 0.48 ( 0.05, 0.92) Dominici et al. (2000a)
100 cities 1987-2000 Total P 0.09 (-0.01, 0.19) Peng et al. (2005)
PMyglagl 0.19 (0.10, 0.28)
PMyglag2 0.08 (-0.03, 0.19)
88 cities 1987-1994  Total PMso 0.55(0.10, 0.98) Dominici et al. (2002a)
90 cities Unknown CVD/RESP Pivi 0.13 (-0.05, 0.31) Dominici et al. (2005)
PMio-lagl 0.31(0.13,0.49)
PM;glag2 0.20 (0.02, 0.38)
20 cities 1987-1994  Total PMso 0.51 (0.07, 0.93) Samet et al. (2000a)
CVD/RESP PMso 0.68 (0.20, 1.16)
88 cities 1987-1994 Total Pyl 0.22 (0.10, 0.38) Dominici et al. (2003b)
CVD/RESP PMo 0.31 (0.15, 0.50)

100 cities 1987-2000  Total PMso 0.22(0.13, 0.312) Welty and Zeger (2005)
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Table 5.2

Comparison of results across studies: estimatedgrgrincrease in mortality relative risk per 10 ppbrease in @

%increase in mortality RR per 10

# of cities Period Mortality Air pollutant pg/nt increase in ©(95% PI) Reference

95 cities 1987-2000 Total Ozone 0.28 (0.13, 0.48) Bell et al. (2005)

95 cities 1987-2000 Total Ozone 0.52 (0.27,0.77) Bell et al. (2004a)

CVD/RESP Ozone 0.64 (0.31, 0.98)

98 cities 1987-2000 Total Ozone-lagl 0.21 (-0.067p Bell et al. (2007)

98 cities 1987-2000 Total Ozone-lagl 0.32(0.17, 0.46) Bell et al. (2006)

19 cities 1987-1994 CVD/RESP Ozone 0.73(0.2Q@)1.1 Huang et al. (2005)
Ozone-lagl 0.70(0.26, 1.12)
Ozone-lag2 0.64 (0.17,1.07)

177



The GAM was the main statistical model for fittioidy-specific effect in the 2-stage
Bayesian hierarchical model. From valid numeriordcthe city-specific PM effect
was generally from 0.07%~0.35% (Dominici et al.028; Dominici et al., 2003a;
Dominici et al., 2003b). Our estimates shown ifd&h7 were from 0.06%~0.15%. In
our extended analysis shown in section 3.12, tiyespiecific estimates from the pure
PMjo model without controlling lag effects and co-ptdints were more diverse than the
other models because they had a strongep@Nect at a national level and estimated
standard errors of random effect. Moreover, theibigted lag model had a negative
effect on 1-day lag PM effect, which was not shown in previous studiesirfstudies
(Peng et al., 2005; Roberts & Martin, 2007; Welty &ger, 2005; Bell et al., 2004a)
showed that their PM effects at a 1-day lag and national level had%.,1@.23%, 0.55%
and 0.50%, respectively. Note that the effects alty\and Zeger (2005) and Dominici et
al. (2002a) were estimated from single pollutantdais, which means there was no
current PMy adjusting in their models simultaneously. Nonethe] when extending the
lag effects to 6 days and 14 days in our models aaljusting by the principal component
analysis, our results derived positive associatiomortality rate with values of 0.17%
and 0.01%, respectively. Our analysis also fourttepas from PCA-adjusted estimates in
PMyo with longer lag effects that previous multi-city pollution studies never
discovered.

Compared with CO, N©£and SQ, previous multi-city time series studies examined
O3z and human health specifically (table 5.2). Bekle{2004a) showed a 0.64% increase
in cardiovascular and respiratory mortality pergl® increase in the previous week’s
ozone by fitting 2-stage Bayesian hierarchical ndath NMMAPS data, and got a
consistent result with adjustment for RMCompared with results shown in section 3.9, a
10-ppb increase in{£at national level was significantly associatedwiit79% (95% CI:

0.13%, 3.47%) increase in respiratory mortalityhvatjustment by PM, which was
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close to the @effect estimated from the 2-stage Bayesian hibreat model (1.41%,
95% CI: -1.42%, 4.33%). Ozone and human healtrarekevas implemented by many
meta-analysis studies, and Thurston and Ito’s (200dclusion was closest to ours with a
value of 1.37% (95% CI: 0.78%, 1.96%). Differertrfr the other ozone meta-analysis
studies (Stieb, Judek, & Burnett, 2002; Stieb, BudeBurnett, 2003; Levy, Carrothers,
Tuomisto, Hammitt, & Evans, 2001; Anderson, AtkinsBaecock, Marston, &
Konstantinou, 2004; Bell et al., 2005), Thurstond #o’s study (2001) was the only one
which included a nonlinear relationship betweengerature and mortality. This may
explain why our results were more consistent withiffton and Ito’s (2001) than the
others. Our result showed the RMffect in nation-level increased from 0.11% to3042
as adjusting with € which was consistent with Dominici et al. (20QGdpwever, the
increase amount is only 0.13%. Moreover, diffedne concentrations were also used.
In Bell et al. (2004a), daily average, 8-hour maxm and daily hourly maximum ozone
concentration were used in a distributed lag madelthe increase in mortality was
0.52% (95% CI: 0.27%, 0.77%), 0.64% (95% CI: 0.40%86%) and 0.67%(95% CI:
0.42%, 0.92%), respectively. Actually, the NMMAP&abase provided detailed
measurements for each air pollutant, such as howsyimum, 2nd~5th hourly maximum,
trimmed mean, daily median of 1-year trends, deiban of 1-year trends, and lag 1~lag
3 trimmed mean. Our study was not as detailedisbexpected to have overwhelming
detections.

Seldom had multiple location time series studpecically focused on CO, SO
and NQ. In most air pollution research, the two co-pahis often used for identifying
sensitivity analysis to adjust main factor areebt O;. For example, Peng et al. (2005)
examined the influence of Plafter adjusting with S@in spring, summer, fall, and
winter. The range of per 1@/m® increase on the national average estimates of

season-specific 1-day lag RiMtoncentration was 0.08%~0.33%. Although our resalt
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both the initial case study and extended analysi®\all higher than 0.33%, we proved
that PMy effects were close between GGAMMSs and 2-stage Sagéierarchical
models in section 3.9. In addition, the nationaélesffect of PMy increased 3-fold when
adjusting S@ but the S@fixed effect was negative, which was contradidted the
result of the 2-stage Bayesian hierarchical mdddhct, a difficulty of investigating the
health influence from S{s that the gas is associated with particulatedenas sulfate
dioxide is the precursor for fine sulfate particlemking their effects to adverse human
health not easy to distinguish. Many cities maderts to reduce the ambient
concentration of S§ and it was believed the level was still highargler cities (WHO,
2005). A Netherlands study concluded that 8fd not seem to be a causative factor for
particulate matter associated health effects (Bmifrischer, & Hoek, 2000), but some
studies still proposed the concentration ob 8@s associated with total mortality for
relative risk larger than 1% (Katsouyanni et 897, Sunyer, Castellsague, Saez, Tobias,
& Anto, 1996; Touloumi, Samoli, & Katsouyanni, 1998ab, Medina, Quenel, Le
Moullec, Le Tertre, Thelot, Monteil, Lameloise, &il, Momas, Ferry, & Festy, 1996;
Zmirou, Barumandzadeh, Balducci, Ritter, Laham, &il&di, 1996). These studies did
not consider spatial variation on the heterogerdityultiple locations; as a result, the
conclusion for S@has not yet been clearly determined.

The estimated Ng&effect at the national level was 1.26% (95% Cl4406, 3.00%)
associated with respiratory mortality rate in edddihe estimated Pjgleffect was also
slightly raised from 0.11% to 0.14%. It is simitarPeng et al. (2005) in winter and
spring season. Some cross-sectional and cohorestpbved an N@effect in lung
function growth of children (Gauderman, McConnélilliland, London, Thomas, vol,
\ora, Berhane, Rappaport, Lurmann, Margolis, & Pet2000; Gauderman, Gilliland,
Vora, Avol, Stram, McConnell, Thomas, Lurmann, Maig, Rappaport, Berhane, &

Peters, 2002), acute bronchitis (Ackermann-Liebriguenberger, Schwartz, Schindler,
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Monn, Bolognini, Bongard, Brandli, Domenighettisgsser, Grize, Karrer, Keller,
Keller-Wossidlo, Kunzli, Martin, Medici, Perruchou8ichoni, Tschopp, Villiger,
Wuthrich, Zellweger, & Zemp, 1997), chronic respirg symptoms (Braun-Falirider,
Vuille, Sennhauser, Neu, Kunzle, Grize, Gassnendéi, Schindler, Varonier, &
Wuthrich, 1997; Shima & Adachi, 2000), and cougl phlegm symptoms in adults
(Forsberg, tjernberg, & Wall, 1997; Zemp, ElsasSehindler, Kunzli, Perruchoud,
Domenighetti, Medici, Ackermann-Liebrich, Leuenkergvionn, Bolognini, Bongard,
Brandli, Karrer, Keller, Schoni, Tschopp, Villigetellweger, & Team, 1999). These
studies did not consider spatial factor seriowmhyg] most of them were proposed before
the development of the 2-stage Bayesian hierarchiodel. A meta-analysis collected
109 studies published from 1982 to 2000 and comdubdat over a 24-hours averageZNO
concentration, the overall effect for all-cause taltty was 2.8%0.3% (meahSE) and
0.9%0.5%(meatiSE) per 44 pg/mhin the single-pollutant model and multi-pollutant
model, respectively (Stieb et al., 2002). Limitedults about the influence of N@
adverse human health were in previous multipletiondime series studies. Samet et al.
(2000a) fitted NMMAPS data for Ndrom 19 cities in the U.S. found little evidenae o
such an association after adjusting flo&hd ozone level. The heterogeneity among cities
was also discovered by a European study on shontégposure to air pollution and
mortality and morbidity, APHEA project, and invegited data from 29 cities
(Katsouyanni, Touloumi, Samoli, Gryparis, Le Tertonopolis, Rossi, Zmirou,
Ballester, Boumghar, Anderson, Woijtyniak, PaldyawBrstein, Pekkanen, Schindler, &
Schwartz, 2001).

The CO estimates were fitted questionably in malyses, and no improvement
occurred after adjusting the starting value of sthing parameters and the number of
knots. Our proposed jackknife-bootstrap approachdcfmrce to curb the standard errors

of fixed and random effects, but risked the vapiatdf the subject-specific effect being
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diminished. In addition, the too small adjusteg33efould increase type | error. The
adjusted PNy effect at the national level enlarged after adpgsCO, but the CO effect
was too weak to identify its influence. This siioatwas also happened in the 2-stage
Bayesian hierarchical model, but it doubled g Bffect. However, previous studies
showed the carbon monoxide had a short-term effechortality. Another APHEA
project concluded that aig/m® increase in CO was associated with a 1.20% ar&$4..2
increase in total deaths and cardiovascular mtytalte, respectively (Samoli, Touloumi,
Schwartz, Anderson, Schindler, & Forsberg, 200 0teNhat their CO level was the
average of current and 1-day lag effect, and théaheterogeneity was derived by
assigning all city-specific estimates into a raneffects regression model with a
variance component estimated by iteratively reweidleast squares, which concept was
similar to Dominici et al. (2003a).

The starting value of smoothing parameter andadanction, as well as the
number of knots, displayed new roles in this sttt had not been discussed by
previous literature. The main function of settitgr8ng a smoothing function starting
value was initially to facilitate the speed of asition. However, we found that at times it
can solve the overestimated problem in standandseof parameters, irrational splines,
and diminished geographical variation. The numiidéinots in smoothing functions
theoretically does not have much influence on esions, but we found it does have
some impact, especially being a surrogate if thdifivation from the starting value of
smoothing parameter does not work. Our resultsladed that, if the model-fitting can
reach convergence successfully, the main estim@tee) and sef) will be robust, but
the robust level in sg] and sef) is smaller thang.

Comparing time smoothers shown in figures 3.5 1@ 3there was generally no
difference, but temperature smoothers reflectedesconcerns. According to the thermal

comfort index (Fanger, 1970) in table 5.3, thedrehmortality average was confirmed to
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Table 5.3

The number of days and elders’ respiratory moryadiverage from 1991 to 1995 in 15
U.S. cities on thermal comfort index.

ETandET, ETand ET, Thermal Physiological # of days Mean of

indicesfC) indicesfF)  sensitivity  stress death count

<13 <55.4 Very cold Cold stress 861 32.05

13-16 55.4-60.8 Cold Chills 181 27.78

16-19 60.8-66.2 Cool Body cooling 150 25.91

19-22 66.2-71.6 Slightly coolVasoconstriction 158 24.96

22-25 71.6-77.0 Comfort Neutral 280 23.72
zone

25-28 77.0-82.4 Warm Light sweat, 188 24.09

vasodilatation

28-31 82.4-87.8 Moderately Moderate 8 28.38
hot sweating

31-34 87.8-93.2 Hot Profuse sweating 0 0

>34 >03.2 Very hot Impaired 0 0

thermoregulation

TET: effective temperature; BTwind effective temperature.

present a U-shape, which had largest values iry“seld” and “moderately hot”. Note
that there was no data during our study periotiénthermal comfort index with “hot”

and “very hot”. When an unreasonable temperatu@fimer came out, such as the initial
plots showing in figure 3.7 and figure 3.9, it veagygested to check corresponding
estimates results to determine whether this matlielg had convergence problem. This
double-check is very important because we had pirthvat irrational smoothing

functions may affect the convergence of estimatedmeters. Although it was not
absolutely solvable, most situations could be impdoby adjusting the starting values of
smoothing parameters and the number of knots iroiimgy functions manually. In
addition, the statement from BayesX manual abaittnsistence of the number of knots
used in smoothing functions is not entirely guagadt A better way to handle it carefully
is relying on re-fitting the same model with a diint numbers of knots based on a

bench-mark. For example, if we got a reasonableoimmay function plot with a fixed
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number of knots, it is better to re-fit the samededavith some versatile numbers of knots
around the initial number of knots. If the new plate similar to the original one, this
plot can be confirmed to be free from the knots@ff

The missing data problem is inevitable in air pidin study, and some imputation
methods did not have the anticipated effect, egfigen multiple imputation method. As
we know, the multiple imputation method needs girassumptions (Little & Rubin,
1987), and may not be appropriate for imputing tsages data. The NNI1 and NNI2
provide convenient ways to impute missing datagagch one has its own flaws. In our
case study, three methods encountered the conwergeoblem, and, in particular, the
multiple imputation method which needs repeatedui@ons, made the entire procedure
very inefficient. Comparing the three methods, X2 has the worse relative results
because it underestimated most air pollutant effecinodel 1, model 2, model 4, and
model 5. This situation appeared in simulation, ander purer data structure, the
underestimated situation i was even worse than the other two methods, whithat
occur in case study. Moreover, these imputatiorhogs made severe damages when
missing data appeared in smoothing functions. Jitistion was not significant in our
real data, and the simulation implied that impwtath will not improve either estimates
or smoothing functions. While MI-MCMC was prefernedCCA because CCA may
cause over-fitted models and biased estimateg iflha does not follow MAR
mechanism (Carder, McNamee, Beverland, Elton, \éarg@&ren, Cohen, Boyd, MacNee,
& Agius, 2008), our real data did not violate tmechanism. Because the GGAMM is a
kind of semiparametric model, some semiparametrutation methods can be
considered (Durrant, 2005; Lipsitz, Zhao, & Molerdies, 1998). The model-based
imputation method (Zanobetti et al., 2000) failedenbecause it raised the concurvity
level, and made the model-fitting harder to reamtvergence.

The application of principal component analysiwao the technical problem in the
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distributed lag model with the structure of the Q@4 in BayesX, and the estimates
from principal component variables were more staltgch indirectly but considerably
mark down the probability of a convergence problamuantification research for
mortality displacement used 45 lags total suspepdeticulate (TSP) in the generalized
additive distributed lag model, and the strongegtrelative risk occurred at current effect.
The trend decreased to near zero around lag 15lahdy climb until lag 25 (Zanobetti
et al., 2000). This study design was severely tdteby missing data, and reduced the
power with CCA. Therefore, imputing missing datalways a precursor of fitting
distributed lag models. This is a complicated desigcause more problems will come
about with each other in the GGAMM, such as mulliicearity, concurvity and
convergence problem. Most studies only used twibree lag effects (Peng et al., 2005;
Roberts & Martin, 2007), but our findings showedttlag effects longer than two to six
days probably still had an influence on mortaldayer

Most of our models had moderate multicollinearityl @oncurvity levels around
0.3~0.5. Carbon monoxide and ozone had higher coitglevels over 0.6 with
smoothing and spatial functions. A study found se@xteeme results in New York City
(Lipsitz, Zhao, & Molenberghs, 2007), but a comgani with our findings should still be
considered. The concurvity level in this NYC studyn be controlled in single pollutant
models, and the highest one (0.77) appeared inecadjusting by natural splines of
same-day temperature, dew-point, and time treneshwias close to our results in model
5. The lowest concurvity level was 0.28 in N Out increased to 0.60 when including
day-of-week variables. This level was also closeuporesult. Generally speaking, their
single pollutant models were producing concunetyel>0.6 when day-of-week variables
were considered, and most multiple pollutant motat$ concurvity level from 0.69 to
0.91. Their findings implied that adding more fastand smoothing functions can

increase the risk of more concurvity. Note thas thiyC study used 18~30 air pollution
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monitoring stations’ data for different models, batually the average values across these
monitors were used in the GAM, so the spatial ¥@meamong monitoring stations did
not consider in model fitting.

Even though some simulations explored biases flaneffect of concurvity by
using the GAM with air pollution data (Ramsay ef 2a003a; Ramsay et al., 2003b), the
conditional bootstrap method and partial regresafproach are rarely used in most air
pollution studies (Figueiras et al., 2005; He et2006). The conditional bootstrap
method was proved to produce more biases from alaion (results are not shown here),
and unable to work in the GGAMM. The partial regiea approach needs to have
advanced development to correspond with the streictiithe GGAMM, but this part is
not the main purpose of our study. At least, weamdy revealed the influence of
concurvity by simulations, but also discovered ih&t a potential source of causing a
convergence problem in the GGAMM.

Multicollinearity is very common in any linear mddbut the 2-stage Bayesian
hierarchical model is actually not a unified lin@aodel. It causes the evaluation of
multicollinearity in the 2-stage Bayesian hieracghimodel to be less intuitive than the
traditional generalized linear regression modeirrpollution epidemiology (Chen,
Chock, & Winkler, 1999). A precursor of the 2-staggression model discussed the
confounding from multicollinearity in air pollutioresearch (Marcus & Kegler, 2001).
They suggested that factor analysis can be usageeprocessing step to evaluate
multicollinearity in 2-stage regression model, biat not propose clear analyses to prove
it. Our approach succeeded multiple linear regoessiodels, and offered the
PCA-adjusted estimates to help us have indireetpnétations for each factor in the
GGAMM. The immediate way of handling multicollingstrunder the structure of the
GGAMM is more anticipated, but generally speaksmne traditional approaches of

handling multicollinearity in regression models ¢haoretically be applied in the
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GGAMM, such as dropping one of the variables, atdtg more data, or centralizing the
predictor variables.

Compared with the 2-stage Bayesian hierarchicalahdide GGAMM revealed
some advantages. First, the geographical corralata be virtualized by spatial map for
using Markov random fields with real geographicatied The 2-stage Bayesian
hierarchical model cannot use geographical data¥es another Bayesian model
containing coefficients from the first stage to sioler between-city variability (Dominici
et al., 2002a). An improved 2-stage Bayesian htbiaal model was developed by
Dominici et al. (2003b), and the distance betw&endities can be considered in the
second stage. However, the purpose of using thehothe second stage is still
obtaining a weighted overall average of the MLEPdf; o, and no spatial function can be
independently presented. Second, the model-fitifrthe GAM could be easily damaged
by missing data, especially in smoothing functidiige confidence intervals of estimated
parameters also tended to be much wider, causirgliainie coefficients. This potential
risk can be reduced by the GGAMM for two reasongiebgraphical data will not be
affected by missing data, and 2) smoothing funsticen be fitted well by enough valid
observations from all cities. Therefore, both fixadl random effects are controlled by a
nation-level time smoother and temperature smopémel have more reliable estimates
and confidence intervals. Third, Markov randomdgebffer the ability to explain spatial
correlation across cities, and removed possibléocmaing influence on estimated
coefficients. Hence, from the unified model struetaf the GGAMM, we can
conveniently demonstrate the relationship betwegion-level and city-level effects to
mortality from fixed and random effect estimatesny air pollutant.

In summary, the general findings from our analyses 1) the GGAMM provided an
integrate model structure concerning national ayeestimates, city-specific estimates,

smoothing and spatial functions simultaneously, thedesults were acceptable in most
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cases; 2) when the model fitting encounter a cayeraze problem in BayesX, users can
solve it by adjusting either starting values of sthing parameter or the number of knots
manually to modify estimating results. A jackknbdeetstrap approach can be the
alternative in case that the two methods do nokwaccessfully; 3) single the pollutant
model and distributed lag model with PMn the GGAMM presented smaller estimates
than the results in the 2-stage Bayesian hieraatmodel in national level, but
co-pollutants, especially in N@nd Q, had a stronger association to mortality in the
GGAMM; 4) the application of missing data imputatimethods in case study made each
fixed effect much stronger, but easily cause caysmece problems, especially in multiple
imputation method; 5) the application of principamponent analysis solved the
technical problem in BayesX and the theoreticabfmm in multicollinearity; 6) The
multicollinearity was not very severe in our cagely, but concurvity severity appeared
in co-pollutant model PM+0O3 (model 5); 7) Our models still needs some adjusta®
satisfy model diagnostics, although the correspandiethods using in the GGAMM are
still undeveloped; 8) the simulation results cand that concurvity is one of the reason
causing a convergence problem in BayesX, andatralsde biases on all estimates. In
addition, missing data imputation methods did ngiriove estimates much, and even

made severe damages when missing data appeamaddathéng functions.

5.2. Limitations

In the process of fitting GGAMMSs with spatio-tempbair pollution data in BayesX,
we actually encountered many problems and diffiesiltSome of them have been solved
in chapter 3, but for others, there is still no wayaddress them. The methodology of
structured additive models is almost completelyedigyed, and can be accomplished in

BayesX, the only statistical software which cartlig# GGAMM without writing
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complicated programs. Therefore, if any modelffdtfailed in BayesX, there is no
alternative software to successfully accomplisAit.unnatural limitation in BayesX is its
data capacity. Not like SAS and some other staistioftware, the amount of data
simultaneously importing and fitting in BayesX estricted. Although the manual of
BayesX showed a simple example with a data seagong 100,000 cases and 2
variables, the actual amount of spatio-temporapaliution data which can be
successfully fitted in BayesX was no more than 80,0 his upper bound is the main
restriction making the number of U.S. cities 15 #mallength of time studied 5 years
(1,826 days). As long as it continuestaeed the capacity, BayesX will crash
immediately. One possible reason is that thereécarenany matrix calculations in priors,
posteriors, estimating equations, and B-splineschviasily exceeds the maximum of
memory in computers. Despite the memory being edgamno 4GB, the amount of data
used in our study can no longer increase. We cpaaxo install more RAM in
computers, but according to the official documeaif Microsoff, 32-bit Windows with
4GB RAM in any version of Vista is commonly usedrbhgst users. These hardware
standards are still unaffordable. Using 128GB RAMdKis possibly, but it still does not fit
common computer hardware standards. A workstagistesy should be an alternative,
but the UNIX version of BayesX remains under depeient.

Another technical problem of BayesX happenednmugation. It contains two issues.
One is that there is no compiled do-loop functim®BayesX, and another one is that the
number of models which can be fitted in an impletedBayesX is limited. The lack of
do-loop function makes users unable to convenienrity simultaneously fit a series of
models with a few lines of programs. An alternativethod is using external software to
generate corresponding syntax in each model, aparethem together in @rg file, a
format of external text file which can be read iayBsX. The second limitation comes

from the lack of a do-loop function. We found theximum number of models to fit in a
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BayesX windows at once to be roughly 25,000. Exiceethis number will also cause
BayesX to crash. This disadvantage has a sevéoemnte on huge simulations,
especially in those with bootstrap and jackknifeéhods. Users have to control the
amount in aprg file by splitting them into several smallgrg files. Whatever, these
external operations will always make advanced rebeaore complicated and
inconvenient.

About the issue of software, BayesX is well-comgitoftware with fixed syntax for
fitting models only, and has less flexibility to dify from inside. Compared with other
statistical software, BayesX is only for fittingwtture additive models. Tlgamm()
function in R software can also fit structure angitmodels, but its algorithm is based on
Lin and Zhang (1999), which means it can onlyH# GAMM. No Bayesian approach is
applied in this package, and only contour datalsansed to fit spatial function. While
BayesX provides some syntax to make data manageandrdescriptive statistics, there
are few functions to perform some adjustments amtovements if we develop new
algorithms or theorems based on structure additiodels. For example, suppose a new
method is developed for solving the concurvity peaiin the GGAMM by some
elements internally adjusting in estimating equaior iterations—BayesX cannot
process this new method unless its programmers afgorithms in source codes, and
compile them in a new version of BayesX. As a fre®dyesX becomes an entirely
closed programming environment which is unableewetbp from users, with the
exception of original programmers. In addition, dfsetfunction still has problems
when assigning population data, but it is still bibul that whether the offset can affect
the result with huge population and pretty sma#itdecounts.

Besides technical limitations in BayesX , there still some issues which have not
been accomplished in the methodology of the GGAMMritical one shall be the model

diagnostic method and influential analysis, andaifrse, BayesX does not support
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corresponding syntax either. The model diagnosticsvn in chapter 3.11 were borrowed
from the general linear mixed model, but the infice diagnostics and outliers tests for
original GAMM which was developed by Lin and Zhaii§99) or GAM had been
published (Fung, Zhu, Wei, & He, 2002; Kim, ParkKén, 2002). Lin’s and Zhang’s
GAMM can be regarded as a protocol of Bayesian ig¢imed structured additive models;
therefore, the development of relative methodeénG@GAMM can follow Fung et al.’s
research to establish its own model diagnostic aghNonetheless, the relative theories
have not been studied yet. It is expected that soowel diagnostic methods developed
on Lin’s and Zhang’s methodology can also be agphe¢he GGAMM, but subject to
restrictions on BayesX, it is still pretty harditaplement.

An extended problem from model diagnostics isaver-dispersion situation from
zero-inflated Poisson (ZIP) data. A similar sitoatalso happens in zero-inflated negative
binomial (ZINB) data. Air pollution research ineafitly often has to use ZIP or ZINB data,
but the two types of data can only be fitted by@@&@AMM with MCMC approach in
BayesX. Compared with MCMC method and REML methothe GGAMM, the fully
Bayesian approach implementing in MCMC method ismmore efficient than the
REML method, but the main reason that the REML meétthoes not support ZIP or ZINB
data is that the standard error of parameterlisratstimable. However, our air pollution
data cannot be fitted by the GGAMM with MCMC methHzetause BayesX encountered
errors from floating calculation. The main reasestill unknown, but according to the
statement, the MCMC method can handle more thed0l@riables and 200,000
observations. Air pollution data fitted by the GGAMMvith MCMC method should be
technically implemented with some modifications.

Using the options of smoothing functions compilingayesX, users cannot define
the degree of freedom, but instead estimate thergkred cross-validation (GCV) value

for the degree of freedom. Meanwhile, there is ossphility to specify the degrees of
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freedom since estimation of the smoothing paramet&n integral part of the model
fitting process. There is a data-driven choicehefsmoothing parameter leading to a
data-driven choice of the degrees of freedom whltimately avoids user-specified
subjective choices of smoothing parameters. Asaltrehis default setup makes studies
unable to perform sensitivity analyses over difféer@degrees of freedoms which are the
necessary part in previous air pollution researtladdition, even though BayesX allows
users to define different numbers of knots in stimgf functions, it is unlike some
packages in R, such gamm() which can import user-defined knots from non-krigor
non-geokriging data. Meanwhile, the distance betwas®/ two nearby knots from
non-kriging or non-geokriging data is always eqondBayesX.

Finally, in regards to the convergence problemgeseloped a jackknife-bootstrap
approach to adjust overestimated standard errdigeaf and random effects. The
disadvantage of this method is making 95% confidentervals conservatively, but it can
guarantee the robustness will be held with a difienumber of jackknife estimates
drawing with replacement. However, using this mdthtso indicates that the original
estimated smoothing and spatial functions cannatsiee immediately. The jackknife
method cannot adjust parameters and smoothingdspatictions simultaneously. As a
result, changing the starting values of smoothisgmeters or the numbers of knots in
smoothing functions is still the first choice t@lofor reasonable estimates. It is
anticipated that the jackknife-bootstrap approamaiso apply in each fitted value of
splines or spatial effects, but its efficiency sldoe evaluated further. We propose to
proceed from the starting values of smoothing patars because it can be modified up
to the value of 1,000, but the numbers of knotstrhadimited (20 knots~50 knots),
because it could make smoothing functions too &slisin the event that the three

methods are all unavailable, data transformatiaghtrbbe an alternative strategy.
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5.3. Futurework

The use of the GGAMM in air pollution researchiwspatio-temporal data is a new
application, and the multitudes of analyses dormuimstudy are just a premiere that still
leaves a lot of work to be done. First, rather teadlessly expanding computer hardware,
we anticipate that reducing the dimension of masixsed in algorithms could be a more
efficient way to use more data in BayesX. In aadditithis kind of development could
potentially save estimating time, even though BAyiedess time-consuming than
WINBUGS or R when fitting some structure additivedels. However, in our experience
it is still too time-consuming when models includere variables, especially in models
with many random effects. Sometimes, assigning rkinogs in smoothing functions will
also extend process time. For example, the prdoesgo fit model 1 shown in section
3.3 was 3 minutes 10 seconds. When immediatelydirg) two PMg lag effects (model
2, including of fixed and random effects), with@tianging any default values of
parameters in program, the process time extend48 minutes 53 seconds. When just
increasing the number of knots of the time smoadffzen 31 to 46 in model 1, the
process time extended to 5 minutes and 31 sec®histime-consuming estimating
procedure is an obstacle of applying some stadistipproaches, such as bootstrap and
jackknife method. Some complicated simulations ®al#lo pose problems. However, as
long as the two disadvantages can be overcongedéfinite that the use of the GGAMM
or the other structure additive models will becamaerwhelmingly popular in the future.

Second, the solution approach of concurvity apgpgan the GGAMM is still
underdeveloped. This issue has been examined ia aorpollution studies (Ramsay et al,
2003a; Ito et al, 2007), and a conditional boogstreethod was also proposed in the
GAM (Figueiras et al, 2005). Unfortunately, we apglthe conditional bootstrap method

in the GGAMM and found it failed to solve dwindlerccurvity level in a small
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simulation. We still believed that the damages bigin concurvity level in the GAM will
still occur in the GGAMM, but a new theory shoulel dleveloped first to handle it in the
GGAMM or the other structured additive models.

Third, the model diagnostic methods based on {BAKAM or the other generalized
structured additive models with either the MCMC heoet or REML method should be
the next step of methodological establishmentdutiteon, how to solve the problem of
inestimable standard errors in parameters on tikefdinction for ZIP and ZINB
distribution could be another challenge. Concertinggapplication of the GGAMM in air
pollution and adverse human health research, #rereome opportunities related to
enhance or develop advanced research: 1) it isvealithat limited or inaccurate
environmental exposure data induce huge measuresmens to properly estimate small
risks, and researchers are unable to detect sffedt®that would probably be
undetectable (Dominici et al, 2003c). Ambient measwents from personal exposure
may be a better surrogate for average populatipngxe from air pollution monitoring
stations. In addition, scientists were previoustried about the misrecognition of
spatial variation in these studies (Greenland & ¢oistern, 1989; Sheppard, Prentice, &
Rossing, 1996), but now the GGAMM or the otherdtited additive models have
proven that they have the ability to handle thssigs 2) the biases from measurement
errors in monitoring data have been confirmed me&air pollution studies using linear
regression models (Zeager et al, 2000) and therglererl additive model (Dominici et al,
2000b), so the succeeded research in the GGAMMIdladgp be expected; 3) short-term
mortality displacement comes from the near-deatividuals who are infected by other
diseases, such as cardiovascular disease or ceasbutar disease, and high
concentration air pollution could hasten their deatithin a short period. This issue
induces the timescale analysis for identifyingitifeience of different timescales, and

initially has been done by a hierarchical Poissgression model and Fourier analysis in
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the 4 U.S city study (Dominici et al, 2003b). Th& &M should have the power to
integrate more cities to estimate association betvasr pollution exposure and mortality
at different timescales of variation.

Finally, except for the GGAMM, other members ie tieneralized structured
additive models can be implemented in air pollugmal human health studies for
different designs or purposes, but the applicatiorelated models is still very rare. A
re-analysis of Utah Valley Study (Coull et al, 2D@dth a general additive mixed model
is a pioneer of this kind of application, and canabgood example to follow. Some ideas
could be accomplished in the future: 1) using b@updcentroid, or kriging data to fit
spatial functions; 2) performing versatile advancgdraction terms in models, such as
geographically weighted regression, two-dimensicoalace function, and time-varying
effect in Cox PH models or multi-state models; Rlgzing panel or clinical trial data by
fitting models for continuous time survival anal/diased on structured hazard regression
(Kneib & Fahrmeir, 2007; Kneib, 2006b) and multétst model (Kneib & Hennerfeind,

2006).
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APPENDIX A

Tables of estimates from starting values of smogtiparameters

Model 1
Aime  Parm Aamean
10 11 12 13 14 15
It 0.00010% 0.000107 0.00001: 0.000107 0.00010C 0.00001:
10  sef) 0.00028¢ 0.00037t 0.16819< 0.000284 0.00030¢ 0.77838:
sep) 0.00019¢ 0.00077% 0.65140¢ 0.000167 0.000387 3.01465¢
It 0.00001% 0.00001¢ 0.00002: 0.00010¢ 0.00010C -0.00004¢
11 sef) 0.67533¢« 0.09680¢ 1.23319( 0.00029( 0.00033( 0.47990¢
sep) 2.615%7 0.37492. 4.77611¢ 0.00023t 0.00052: 1.85866:
It 0.00010: 0.00010¢ -0.00004¢ 0.00010<¢ 0.00001¢ 0.00009¢
12 sef) 0.00036( 0.00037t 0.12604f 0.00034¢ 0.09746: 0.00033¢
sep) 0.00069« 0.000772z 0.48816f 0.00062¢ 0.377467 0.00054¢
It 0.00010: 0.00010z 0.000017 0.00010C 0.00009¢ 0.00010¢
13 sef) 0.00029¢ 0.00035% 0.050717 0.000327 0.00031: 0.00037(
sep) 0.00030¢ 0.00065¢ 0.19641: 0.00050: 0.00039¢ 0.00074¢
¢ 0.00001¢« 0.00010C 0.000098 0.00009: 0.00009¢ 0.00010:Z
14 sef) 0.952007 0.00032. 0.00032( 0.00030: 0.00031¢ 0.00034«
sep) 3.68711: 0.00046¢ 0.00045¢ 0.00033¢ 0.00044¢ 0.00060:
J4 0.00009¢ 0.00010C 0.00010¢ 0.000017 0.00009¢ 0.00010(
15  sef) 0.000332 0.00030t 0.00029: 0.04969¢ 0.00031f 0.00032:
se() 0.00053t 0.00035¢ 0.00025: 0.19247( 0.00042: 0.00047
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Model 2

Mn
Mime Parm
10 11 12 13 14 15

B, 0.00067¢ 0.00015¢ 0.00016€¢ 0.00021¢ 0.00067¢ 0.00014«
se(,) 0.19683¢ 0.00040¢ 0.00039¢ 0.00036¢ 0.266627 0.00035¢
sep,) 0.762327 0.00069: 0.00064: 0.00050C 1.03262% 0.00039¢
B, -0.00053( -0.00002¢ -0.00016¢ -0.00013: -0.00052¢-0.00149:
10  sef3,) 0.13354¢ 0.00041z 0.08645: 0.08550: 0.08843f 0.06643¢
sep,) 0.51721. 0.00061¢ 0.33480. 0.33112: 0.34247% 0.25729¢
B -0.00191: -0.00198¢ -0.00191: -0.00190¢ -0.00191: 0.00016(
se(3s) 0.06351¢ 0.17778¢ 0.06834¢ 0.18271. 0.11377C 0.00041¢
seps) 0.24596( 0.688567 0.26466:z 0.70762¢ 0.44061( 0.00081:
B, 0.000097 0.00009: 0.00010¢ 0.00046( 0.00067¢ 0.00014¢
se(,) 0.00035. 0.000367 0.00037: 0.07747¢ 0.83836< 0.00036¢
se(,) 0.00038¢ 0.00049¢ 0.00053( 0.30005¢ 3.24696¢ 0.00047:
B, -0.00006: -0.00003: -0.00004¢ -0.00002t -0.00052¢-0.00151¢
11 sef,) 0.00040( 0.00036¢ 0.00038: 0.00037¢ 0.59512¢ 0.12549¢
sep,) 0.00057¢ 0.00033¢ 0.00045¢ 0.000387 2.30490¢ 0.48602¢
B 0.000157 0.00015(C 0.00012¢ -0.00216%¢ -0.00191: 0.00018:
se(3;) 0.00031¢ 0.00031¢ 0.00036:z 0.09738: 0.09603:. 0.00034¢
seps) 0.00024¢ 0.00026: 0.00054( 0.37714: 0.37190: 0.00042:
B 0.00067¢ 0.00010¢ 0.00045¢ 0.00067¢ 0.00013¢ 0.00067¢
se(,) 0.38637¢ 0.00036( 0.09683: 0.07067¢ 0.00035: 0.27825¢
se(,) 1.49643: 0.00044¢ 0.375017 0.27369¢ 0.00036( 1.07768"
B, -0.00052¢ -0.00005( -0.000031 -0.00052¢ -0.00151:-0.00052¢
12 sef,) 0.24101¢ 0.000387 0.00038: 0.41673( 0.13887¢ 0.19371"
sep,) 0.93343: 0.00049: 0.00044( 1.61398: 0.53785¢ 0.75024"
B -0.00191: 0.00013: -0.00216: -0.00191: 0.00018:-0.00191:
se(3s) 0.12391¢ 0.00036: 0.07894¢ 0.13245¢ 0.00033% 0.16088:
seps) 0.47989¢ 0.00053¢ 0.30574¢ 0.51297¢ 0.00035Z 0.62310(
B, 0.00010t 0.00061: 0.00073¢ 0.00010C 0.00046: 0.00010:"
se(;) 0.000367 0.209067 0.27399¢ 0.00037¢ 0.05971( 0.00036¢
sep,) 0.00049: 0.80970¢ 1.06117¢ 0.00054f 0.23123< 0.00048:
13 ﬁ% -0.00004¢ -0.00053¢ -0.00192( -0.00004( -0.00002¢-0.00003¢
se(,) 0.00038: 1.08936( 0.17118¢ 0.0003A4 0.000377 0.00037(
sep,) 0.00046¢ 4.21905: 0.66298( 0.00040¢ 0.00040: 0.00037¢
B 0.00012t -0.00194¢ 0.00016: 0.00014: -0.00216¢ 0.00011¢
se(3;) 0.00037: 0.93421( 0.00039f 0.00033¢ 0.15392¢ 0.00038¢
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sef;) | 0.00060: 3.61817¢ 0.00068: 0.00037¢ 0.59615: 0.00068:
2, 0.00045¢ 0.00011: 0.00045¢ 0.00061; 0.00012¢ 0.00010¢
se@,) | 0.57319: 0.00036( 0.20166¢ 0.04612; 0.00035: 0.00034:
sef,) | 2.21996¢ 0.00044: 0.781038 0.17860¢ 0.00038: 0.00033
g, |-0.00002¢ -0.00006: -0.00002: -0.00053¢ -0.00001¢-0.00006:
14  se@,) | 0.00037: 0.00041: 0.00037: 0.22353: 0.00038: 0.00041(
sef,) | 0.00040: 0.00063¢ 0.00036¢ 0.86573: 0.00045( 0.00063
B, |-0.00216: 0.00012¢ -0.002167 -0.00194¢ -0.00197: 0.00012¢
sef;) | 0.05660¢ 0.00038¢ 0.19472: 0.11572( 0.15186( 0.00038:
sefb;) | 0.219217 0.00067: 0.75414: 0.44816: 0.58814: 0.00064:
£, 0.00067¢ 0.000677 0.00067¢ 0.000737 0.000097 0.00061(
se@,) | 0.18931¢ 0.38268¢ 1.01901( 0.11270: 0.00035¢ 0.15188¢
sef,) | 0.73322( 1.48213: 3.94661¢ 0.43648¢ 0.00037: 0.58823
#, |-0.00052¢ -0.00054: -0.00052¢ -0.00192¢ -0.001530-0.00053
15 se@,) | 0.12903¢ 0.15052¢ 0.63555. 0.08419( 0.096627 0.13102(
seb,) | 0.49974 0.58296: 2.46147F 0.32604. 0.37422: 0.50741¢
f; |-0.00191: -0.00188¢ -0.00191¢ 0.00017¢ 0.00014(-0.00194¢
sef;) | 0.15409: 0.02382¢ 0.53047¢ 0.000347 0.00041% 0.20577:
sefb;) | 0.59678¢ 0.09219; 2.05452¢ 0.00041¢ 0.00077¢ 0.79693;
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Model 3

Mime Parm Mmean
10 11 12 13 14 15
b1 0.00019¢ 0.00019:¢ 0.00022( 0.00022: 0.00022( 0.0002D
se(;) | 0.08825¢ 0.08455¢ 0.08763: 0.08279. 0.08182: 0.08373¢
10 sep,) | 0.34181: 0.32747: 0.33938: 0.32064: 0.31688¢ 0.32429:
B -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢
se(3,) | 0.08164¢ 0.08164¢ 0.081647 0.08165: 0.08165( 0.08164:
sep,) | 0.31622: 0.31622: 0.31621¢ 0.31623. 0.31622¢ 0.31621:
B, 0.00019¢ 0.00019¢ 0.00022: 0.00022: 0.00022: 0.00022:
se;) | 0.08049t 0.07725¢ 0.07929. 0.08021( 0.076693 0.08076¢
11 sep,) | 0.31174« 0.29921( 0.30708: 0.31064: 0.29702: 0.31279(
B, -0.00000¢t -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢
se(@,) | 0.08165. 0.08165( 0.08165( 0.08165( 0.08164¢ 0.08165:
sep,) | 0.31623: 0.31622¢ 0.31622¢ 0.31623. 0.31622¢ 0.31623«
B, 0.00019¢ 0.00019¢ 0.00019¢ 0.00019¢ 0.00019¢ 0.00022(
se;) | 0.08186¢ 0.08285¢ 0.08170: 0.08721: 0.086197 0.08196:
12 sep,) | 0.31706%¢ 0.32090( 0.31643( 0.33778- 0.33382¢ 0.31743:
B, -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢
se(@,) | 0.08165. 0.08165. 0.08164¢ 0.08165¢ 0.08165. 0.08164¢
sep,) | 0.31623: 0.31623. 0.316227 0.31626. 0.31623. 0.31622"
B, 0.00022: 0.00017¢ 0.00022: 0.00022: 0.00026: 0.00019¢
se;) | 0.07179¢ 0.03908¢ 0.08233¢ 0.11109¢ 0.08196: 0.06105:
13 sep,) | 0.27805¢ 0.15136¢ 0.31887: 0.43026: 0.31743. 0.23644"
B, -0.00000¢t -0.000007 -0.00000¢ -0.00000¢ -0.00000° -0.00000¢
se(@,) | 0.08164¢ 0.08162¢ 0.08165( 0.08164¢ 0.08164¢ 0.08165¢
sep,) | 0.31622: 0.31614¢ 0.316227 0.31622. 0.31621: 0.31624«
B, 0.00019: 0.00019¢ 0.00019: 0.00022( 0.00019¢ 0.00019¢
se;) | 0.085497 0.087237 0.07333¢ 0.08313" 0.08062¢ 0.07933:
14 sep,) | 0.33111¢ 0.33785¢ 0.28402¢ 0.321977 0.31225: 0.30723¢
B, -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢
se(@,) | 0.08165t 0.08164: 0.081617 0.08165. 0.08165. 0.08166:
sep,) | 0.316247 0.31619¢ 0.31610: 0.31623¢ 0.31623¢ 0.31627¢
B, 0.000197 0.00019¢ 0.00022( 0.00022: 0.00019¢ 0.00022:
se;) | 0.08337: 0.08245. 0.08154. 0.079P6 0.10465! 0.08143¢
15 sep,) | 0.32289: 0.31932¢ 0.31579¢ 0.30903¢ 0.40531( 0.31539:
B, -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢ -0.00000¢
se(@,) | 0.08165( 0.08164: 0.08164¢ 0.08165. 0.08162¢ 0.08164¢
sep,) | 0.31623: 0.31620: 0.31622: 0.31623! 0.31614: 0.31622:
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Model 4

Mime  Parm Mmean
10 11 12 13 14 15

b1 0.00016: 0.00005¢ 0.00013¢ 0.00018¢ 0.00009: 0.00010:
se(;) | 0.00044: 0.03330¢ 0.00037¢ 0.00046( 0.00044: 0.00041
10 sep,) | 0.00063¢ 0.12004: 0.00021: 0.00073¢ 0.000627 0.00046¢
B 0.00122¢ 0.00216( 0.00114f 0.00117: 0.00207¢ 0.00205¢
se(,) | 0.00084¢ 0.09570( 0.00082¢ 0.00082¢ 0.29538: 0.11264¢
sep,) | 0.00079¢ 0.34499: 0.00066: 0.00065:¢ 1.06499¢ 0.40610:
B, 0.00016¢ 0.00013C 0.00014° 0.00013¢ 0.00015¢ 0.00014"
se(;) | 0.00045. 0.00037¢ 0.00041( 0.00040: 0.00043: 0.00042¢
11 sep,) | 0.00068¢ 0.00020¢ 0.00046: 0.00042¢ 0.00059¢ 0.00055¢
B, 0.00122¢ 0.00117C 0.00116< 0.00123: 0.00123¢ 0.00125¢
se(,) | 0.00084¢ 0.000837 0.00083( 0.00085¢ 0.00085¢ 0.00086"
sep,) | 0.00081( 0.00073¢ 0.00066¢ 0.00089: 0.00087: 0.00094:
B, 0.000437 0.000162 0.00005. 0.00013: 0.00045¢ 0.00005:
se(;) | 0.09135( 0.00044: 0.00038¢ 0.00037¢ 0.14160¢ 0.57283¢
12 sep;) | 0.32935: 0.00065( 0.00022: 0.00024: 0.51055¢ 2.06538¢
B, 0.00122°7 0.00123% 0.00212¢ 0.00125¢ 0.00115( 0.00216:
se(@,) | 0.00086: 0.00085( 0.31777: 0.00087¢ 0.00083( 0.04413:
sep,) | 0.00088¢ 0.00082¢ 1.14572: 0.001027 0.00063( 0.15901:
B, 0.00016% 0.000447 0.00018: 0.00013¢ 0.00017C 0.00013¢
se(;) | 0.00046( 1.25981( 0.00045¢ 0.00038¢ 0.00046¢ 0.00037+
13 sep,) | 0.00073¢ 4.54232: 0.00070¢ 0.00032¢ 0.00076¢ 0.00020:
B, 0.00131¢« 0.00119: 0.00116°% 0.00117¢ 0.00129( 0.00117¢
se(@,) | 0.00088¢ 0.00084¢ 0.00082¢ 0.00083¢ 0.00087: 0.00084:
sep,) | 0.00107¢ 0.00077¢ 0.00064: 0.00074% 0.00097¢ 0.00077:
B, 0.00005% 0.00005¢ 0.00005¢ 0.000137 0.00042° 0.00013:
se(;) | 0.12375: 0.12317¢ 0.09935¢ 0.00037¢ 0.13823( 0.00037:
14 sep,) | 0.44618¢ 0.44411¢ 0.35821f 0.00017¢ 0.49838¢ 0.00016¢
B, 0.00216: 0.00216: 0.00215¢ 0.00200¢ 0.00126: 0.00113¢
se,) | 0.39932: 0.270087 0.25180: 0.15734¢ 0.00088( 0.00082"
sep,) | 1.43976¢ 0.97379: 0.90B57 0.56729: 0.00100¢ 0.00063:
B, 0.00005% 0.00013¢ 0.00013¢ 0.00014: 0.00005: 0.00005:
se(;) | 0.12771: 0.00038¢ 0.00037: 0.00041: 0.19765. 0.06146:
15 sep,) | 0.46045¢ 0.00030¢ 0.00018: 0.00047¢ 0.712637 0.221592
B, 0.00216: 0.00122( 0.00113¢ 0.00123% 0.00216: 0.00216¢
se@,) | 0.17924. 0.00085¢ 0.000827 0.00085: 0.30145¢ 0.19139:
sep,) | 0.64623: 0.00088¢ 0.00064¢ 0.00085¢ 1.08690¢ 0.69004¢
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Model 5

Mime Parm Mmean
10 11 12 13 14 15
b1 0.00022°7 0.00021¢ -0.00038( -0.00037: 0.00020° 0.00022¢
se(;) | 0.00038: 0.00034¢ 0.12365¢ 0.19662: 0.00035¢ 0.00040¢
10 sep,) | 0.00053: 0.00029: 0.46267: 0.73569. 0.00035( 0.00064"
B 0.001855 0.00183: 0.00182F 0.00193° 0.00180¢ 0.00180¢
se(3,) | 0.00081¢ 0.00079¢ 0.00092¢ 0.00081 0.00079¢ 0.00080:
sep,) | 0.00065( 0.00045. 0.00118: 0.00049¢ 0.00034: 0.00036:
B, 0.00022¢ -0.00017¢ -0.00017¢ 0.00®15 0.00020¢ 0.00020¢
se;) | 0.00038: 0.11764« 1.85161( 0.00038: 0.00037: 0.00036:
11 sep,) | 0.00051: 0.44017: 6.92808¢ 0.00052( 0.00044¢ 0.00039¢
B, 0.00184( 0.00093: 0.00093¢ 0.00179: 0.00179: 0.00180:s
se(@,) | 0.00083¢ 0.30850: 3.22223( 0.00085: 0.00081: 0.00080:
sep,) | 0.00082¢ 1.15430: 12.05649. 0.00089: 0.00048( 0.00039:
B, 0.00020¢ 0.00015: -0.00006( -0.00037: -0.00039: -0.00017¢
se;) | 0.00037: 0.00041: 4.43098C 0.19767. 0.11887. 0.05846:
12 sep,) | 0.00045¢ 0.00061( 16.57917« 0.73961. 0.44476¢ 0.21871¢
B, 0.00178:. 0.00103: 0.00125¢ 0.00194: 0.00182: 0.00093:
se(@,) | 0.00084: 1.47232( 6.92703( 0.00081:¢ 0.00088: 0.52823
sep,) | 0.00077: 5.50892( 25.91852¢ 0.00048¢ 0.00087: 1.97668"
B, -0.00038: 0.00020¢ -0.00046% -0.00038: 0.00021¢ 0.00022:
se;) | 0.14475: 0.00039 0.13189* 0.12119: 0.00041¢ 0.00039:
13 sep,) | 0.54161: 0.00058( 0.49349¢ 0.45345( 0.00067: 0.00056:
B, 0.00184« 0.00171¢ 0.00172( 0.00191( 0.00170C 0.00181:
se(3,) | 0.00089¢ 0.00088¢ 0.00087¢ 0.00081¢ 0.00088¢ 0.00086"
sep,) | 0.00100: 0.00104¢ 0.00040: 0.00039: 0.001@+8 0.00102¢
B, -0.00038: 0.00024( 0.00020: 0.00019¢ 0.00021:¢ -0.00051:
se;) | 0.14713¢ 0.00042: 0.00034: 0.00035¢ 0.00036¢ 0.13842:
14 sep,) | 0.55052 0.00074¢ 0.00024: 0.00035¢ 0.000417 0.51793(
B, 0.00180 0.00183¢ 0.00176¢ 0.00172¢ 0.00177° 0.00191"
se(3,) | 0.00084: 0.00080( 0.00083: 0.00089: 0.00086: 0.00079:
sep,) | 0.00061¢ 0.00035: 0.00074: 0.00113( 0.00100( 0.00002(
B, 0.00022¢ 0.00020¢ 0.00021: -0.000384-0.00036" -0.00037¢
se;) | 0.00041: 0.00035¢ 0.00035: 0.09704¢ 0.10970° 0.74031;
15 sep,) | 0.00066¢ 0.00037: 0.00033: 0.36311: 0.41047 2.77001:
B, 0.00179¢ 0.00179% 0.00183¢ 0.00190: 0.00193¢ 0.00191:
se(@,) | 0.00081¢ 0.00087: 0.00078: 0.00081¢ 0.00083: 0.00083:
sep,) | 0.00051( 0.00106( 0.00015¢ 0.00036: 0.00066¢ 0.00061:
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Model 6

Mime Parm Mmean
10 11 12 13 14 15
b1 0.00038¢ 0.00124¢ 0.00123¢ 0.00040:¢ 0.00124¢ 0.001251
se,) | 0.00039: 0.23768( 2.23693( 0.00036: 0.15728" 0.34392"
10 sep,) | 0.00041¢ 0.78827( 7.41905: 0.00023: 0.52162( 1.14066:
B -0.00028: -0.00029¢ -0.00029¢ -0.00028: -0.00029¢ -0.00029¢
se(,) | 0.00183( 0.00197% 0.00197: 0.00179: 0.00197: 0.00197:
sep,) | 0.00400( 0.00453: 0.004537 0.00385¢ 0.00453¢ 0.00453:
B, 0.00039¢ 0.00038¢ 0.00039¢ 0.00038: 0.00039¢ 0.00035(
se(;) | 0.00036¢ 0.000437 0.00037: 0.00041: 0.000371 0.00038:
11 sep,) | 0.00025¢ 0.00065¢ 0.00029: 0.00053: 0.00029¢ 0.00035¢
B, -0.000267 -0.00026° -0.000267 -0.00026% -0.00026¢ -0.00040:
se(@,) | 0.00179¢ 0.00187: 0.00180: 0.00185( 0.00180: 0.00182¢
sep,) | 0.00386¢ 0.00415: 0.00389¢ 0.00407¢ 0.00389¢ 0.00397¢
B, 0.00124°7 0.00124f 0.00039¢ 0.00126¢ 0.00123¢ 0.00038¢
se;) | 0.07744: 0.14101( 0.000367 0.11936¢ 0.16261( 0.00045¢
12 sep,) | 0.25677¢ 0.46763 0.00025¢ 0.39584¢ 0.53927¢ 0.00074¢
B, -0.00029¢ -0.00027: -0.000267 0.000197 -0.00029¢ -0.00026"
se(3,) | 0.001977 0.00196¢ 0.00179¢ 0.64855 0.00197: 0.00188:
sep,) | 0.004537 0.00448¢ 0.00387( 2.15089: 0.00453¢ 0.00419¢
B, 0.00038« 0.00038: 0.00038: 0.00039¢ 0.00038: 0.00038¢
se(;) | 0.00040¢ 0.00042¢ 0.00041: 0.00036¢ 0.00041: 0.00039¢
13 sep,) | 0.00052( 0.00060( 0.00053¢ 0.00027:¢ 0.00054: 0.00046¢
B, -0.00028: -0.00026¢ -0.00026¢ -0.000267 -0.00028: -0.00026¢
se(3,) | 0.00184¢ 0.00186: 0.00185. 0.00179¢ 0.00185: 0.00183¢
sep,) | 0.00407: 0.00411¢ 0.00408: 0.00388: 0.00408° 0.00403:
B, 0.000397 0.00038¢ 0.00038: 0.00038: 0.001245 0.00038:
se(;) | 0.00036¢ 0.00039: 0.00041¢ 0.00042¢ 0.126867 0.00042]
14 sep,) | 0.00027¢ 0.00043: 0.00057: 0.00060( 0.42072¢ 0.00061(
B, -0.00026¢ -0.00026< -0.00028: -0.00026¢ -0.00029¢ -0.00026¢
se(3,) | 0.00180C 0.00183: 0.00185¢ 0.00186: 0.00197¢ 0.00186:
sep,) | 0.00388: 0.00400: 0.00410¢ 0.00412( 0.00453¢ 0.00412°
B, 0.00125z 0.00127( 0.00038¢ 0.00038: 0.00038: 0.00039¢
se(;) | 0.83569¢ 0.19317: 0.00045% 0.00B98 0.00041: 0.00036¢
15 sep,) | 2.77168. 0.64065: 0.00075( 0.00046: 0.00053( 0.00027:
B, -0.00029f 0.00023: -0.00026¢ -0.00026% -0.00026¢ -0.00026"
se(@,) | 0.001977 0.49517¢ 0.00188: 0.00183" 0.00185( 0.00179¢
sep,) | 0.00453¢ 1.64215 0.00420: 0.004027 0.00407¢ 0.00388(
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APPENDIX B

Tables of estimates from numbers of knots in smogtfunctions

Model 1
ktmean
kime  Parm 5 6 7 8 9 10
; 0.00001¢ 0.00001: -0.00008: -0.00007¢ -0.00008: 0.0000.5
21  se) | 0.00035: 0.00033¢ 0.12592¢ 0.37120¢ 0.08546¢ 0.00034(
sef) | 0.00065¢ 0.00056: 0.48771: 1.43766% 0.33100¢ 0.00057¢
£ |-0.000027 0.00007¢ 0.00008: 0.000097 -0.00002: 0.00008¢
26  se) | 0.81830: 0.000327 0.000B9 0.00029¢ 0.16741: 0.00030:
sef) | 3.16927: 0.00050: 0.00030( 0.00031f 0.64838¢ 0.00033¢
; 0.00002¢ 0.00001: 0.00010¢ 0.00011f 0.00010: 0.00002:
31  se@) | 0.12501f 0.49093¢ 0.00028¢ 0.00029: 0.00031< 0.17624:
sef) | 0.48417¢ 1.90138: 0.00019¢ 0.00025: 0.00042: 0.68257¢
; 0.00011¢ -0.00002¢ -0.00002( 0.00012¢ 0.00006( 0.00012:
36 se@) | 0.00030¢ 0.41274f¢ 3.39611( 0.00035:¢ 0.12830: 0.00028:
sef) | 0.00039¢ 1.59855¢ 13.15306( 0.00066¢ 0.496911 0.00020:
; 0.00009: 0.00007¢ 0.00000: -0.00007° 0.00011¢ 0.00013:
41  se@) | 0.13463¢ 0.38629¢ 0.206967 0.123937 0.00032¢ 0.00037
sef) | 0.52143¢ 1.49612¢ 0.80157: 0.48000: 0.00051; 0.00077(
; 0.00012: 0.00010¢ 0.00011: 0.00013: 0.00011¢ 0.00001¢
46 se@) | 0.00033¢ 0.00030( 0.00030: 0.00037: 0.00033( 0.11174¢
sef) | 0.00058: 0.00032: 0.00036: 0.00076¢ 0.00052¢ 0.43278:
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Model 2

ktmean
kime  Parm 5 6 7 8 9 10
4, | 0.00001f -0.000572 -0.00054¢ 0.000067 0.00033: 0.00033(
se@,) | 0.000367 0.066817 0.14941¢ 0.00039: 0.13068: 0.17649:
sef,) | 0.00047¢ 0.25876f 0.57868( 0.00061 0.50611; 0.68354:
B,  |-0.00006¢ -0.00008¢ -0.00008¢ -0.00020¢ -0.000042-0.00004(
21  se@,) | 0.00040¢ 0.00039¢ 0.00040C 0.135527 0.00038: 0.00037:
sef,) | 0.00058¢ 0.00054( 0.00054¢ 0.52487¢ 0.00043t 0.00040:
f, | 0.00011¢ 0.00016( 0.00012; -0.00190¢ -0.00216:-0.00216¢
se@;) | 0.00042; 0.000317 0.00036¢ 0.11237: 0.08001( 0.18009¢
sef;) | 0.00085: 0.00021¢ 0.00054( 0.43520( 0.309857 0.69749:
4, | 0.00010¢ 0.00064¢ 0.00013¢ 0.00066( 0.00008¢ 0.00042¢
se@,) | 0.00037: 0.07651¢ 0.000367 0.17579: 0.00036% 0.12263¢
sef,) | 0.00051¢ 0.296317 0.00045¢ 0.68082¢ 0.00047¢ 0.47496:
B, |-0.00006¢ -0.00054¢ -0.00017¢ -0.00054¢ -0.00006:-0.00002¢
26  se,) | 0.00041: 0.12301: 0.21937¢ 0.05836. 0.00039¢ 0.00037
sef,) | 0.00063: 0.47639¢ 0.84964: 0.22598! 0.00057: 0.00041¢
B, | 0.00011¢ -0.00192: -0.00192 -0.00191¢ 0.00016:-0.00218:
se@;) | 0.00040: 0.10413¢ 0.11752¢ 0.11849: 0.00031f 0.41355!
sef;) | 0.000757 0.40B09 0.45516¢ 0.45890° 0.00021¢ 1.60168(
4, | 0.00017: 0.00066¢ 0.00067¢ 0.00013( 0.00015: 0.00009:
se@,) | 0.00039¢ 0.70627¢ 0.19683¢ 0.00035( 0.00037: 0.00034¢
sef,) | 0.00064¢ 2.73540: 0.762327 0.00036% 0.0004980.00035:
B, |-0.00016: -0.00052¢ -0.00053( -0.00000¢ -0.00015:-0.00003
31 se@,) |0.10556: 0.48006% 0.13354¢ 0.00036¢ 0.07520¢ 0.00036:
sef,) | 0.40881¢ 1.859277 0.51721: 0.00032¢ 0.29124f 0.00036:
f,  |-0.00014 -0.00191¢ -0.00191: -0.00197¢ -0.00191f 0.00014¢
se@;) | 0.22993: 0.44974¢ 0.06351¢ 0.261647 0.20116¢ 0.00033:
sef;) | 0.89052( 1.74185: 0.24596( 1.01335: 0.77910¢ 0.00036:
4, | 0.00077¢ 0.00010: 0.00071: 0.000506 0.00016: 0.00016(
se@,) | 0.11608¢ 0.00037( 0.42546: 0.259217 0.00037( 0.00036:
sef,) | 0.44959¢ 0.00051: 1.64779¢ 1.003937 0.00048¢ 0.00044¢
f, |-0.00187¢ -0.000027 -0.00050; -0.00001¢ -0.00148:-0.00011¢
36 se@,) | 0.099787 0.000367 0.33125: 0.00037: 0.11098: 0.18707¢
sef,) | 0.38645: 0.000357 1.28292; 0.00037: 0.42981f 0.72454:
f, | 0.00014¢ 0.00015: -0.00189¢ -0.00214( 0.00019:-0.00189%
se@;) | 0.00047. 0.00033( 0.32680¢ 0.07903: 0.00032¢ 0.20928
sef;) | 0.00105: 0.00034: 1.26572: 0.30607: 0.00028( 0.81054:
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g, |0.00012: 0.000147 0.00011: 0.00073: 0.00014¢ 0.00052]
se@,) | 0.00033¢ 0.00037: 0.00035: 0.27229¢ 0.00035¢ 0.09019E
sef,) | 0.00031¢ 0.00048( 0.00040: 1.05459( 0.00038¢ 0.34930
g, |-0.00003¢ -0.000107 -0.00001; -0.00050: -0.00009¢-0.00004:

41 se@,) | 0.00037¢ 0.28759¢ 0.00035: 0.21378¢ 0.05725( 0.00041
sef,) | 0.00042 1.11385: 0.00027¢ 0.82798: 0.22169: 0.00059¢
g, | 0.00015: -0.00187¢ 0.00013¢ -0.00187: -0.001873-0.00210¢
se@d;) | 0.00035( 0.13598: 0.00037: 0.20608¢ 0.18965¢ 0.15950¢
sef;) | 0.00047C 0.52664: 0.00061¢ 0.798159 0.73452¢ 0.61776:
g, | 0.00068: 0.00065( 0.000167 0.00079¢ 0.00014: 0.00013’
se@d,) | 0.40372: 4.40049( 0.00037¢ 0.31719¢ 0.00036: 0.00035:
sef,) | 1.56360¢ 17.04309; 0.00054( 1.22849¢ 0.00045: 0.00039
#, |-0.00051( -0.00051: -0.00009¢ -0.00187¢ -0.00001<-0.00000

46  sef,) | 0.323917 2.21700( 0.12551:! 0.32745: 0.000397 0.00037:
sef,) | 1.25449. 8.58637: 0.48609 1.26821¢ 0.000537 0.00041
f, |-0.00187¢ -0.00190¢ -0.001869 0.00018: -0.00189¢-0.00189:
se®;) | 0.15724¢ 2.21208( 0.11900; 0.00037: 0.17512¢ 0.11573(
sef;) | 0.60898¢ 8.56733¢ 0.46087¢ 0.00056: 0.67825: 0.44821(
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Model 3

ktime

Parm

5

ktmean

6 7 8 9 10

21

B
se31)
sed,)

B
se)
se,)

0.00011¢
0.08289¢
0.32103¢
-0.00000"
0.08164:
0.31620:

0.00007¢ 0.00007¢ 0.00009: 0.00011¢ 0.00009(
0.08394: 0.08146: 0.10651« 0.08259¢ 0.07944¢
0.32510( 0.31550z 0.41252( 0.31989: 0.30768¢
-0.00000: -0.00000¢% -0.00000¢< -0.00000% -0.00000¢
0.08165( 0.08165( 0.08165+ 0.08165( 0.08165:
0.31622, 0.316227 0.31624< 0.31622¢ 0.31623;

26

B
se31)
sed,)

B
se)
se,)

0.00028¢
0.09512:
0.36840:
-0.00000¢
0.08164:
0.31619¢

0.00019: 0.000177 0.00027: 0.00022¢ 0.00025¢
0.07912, 0.08494¢ 0.07441¢ 0.08448: 0.08168¢
0.30644¢ 0.32899¢ 0.28820: 0.32719: 0.31636¢
-0.00000: -0.00000¢ -0.00000¢< -0.00000<-0.00000¢
0.08164¢ 0.081651 0.08164¢ 0.08165( 0.08165-
0.31622¢ 0.31623¢ 0.31622( 0.31622¢ 0.31623;

31

B
se31)
sed,)

B
se3,)
se,)

0.00026:
0.08243:
0.31925:
-0.00000¢
0.08165(
0.31622¢

0.00017¢ 0.00019¢ 0.00020: 0.00023: 0.00023(
0.07896¢ 0.08825¢ 0.08762( 0.08374: 0.07972!
0.30583% 0.34181: 0.33934: 0.32434: 0.30874
-0.00000' -0.00000¢% -0.00000<-0.00000% -0.00000¢
0.08164¢ 0.08164¢ 0.08165( 0.08165: 0.08165!
0.31&26 0.31622: 0.31622¢ 0.31623¢ 0.31623¢

36

B
se31)
sed,)

B
se3,)
se,)

0.00028¢
0.09512:
0.36840:
-0.00000¢
0.08164:
0.31619¢

0.00019: 0.00020¢ 0.00027: 0.00022¢ 0.00025¢
0.07912, 0.07995:¢ 0.07441¢ 0.08448: 0.08168¢
0.30644¢ 0.30965: 0.28820: 0.327197 0.31636¢
-0.00000: -0.00000+-0.00000¢<-0.00000<-0.00000¢
0.08164¢ 0.08165. 0.08164¢ 0.08165( 0.08165-
0.31622¢ 0.31623. 0.31622( 0.31622¢ 0.31623;

41

B
se31)
sed,)

B,
se3,)
se,)

0.000314
0.08277:
0.32058¢
-0.00000¢
0.08165:
0.31623:

0.00025: 0.00022: 0.00029: 0.00023¢ 0.00023¢
0.07814¢ 0.10365¢ 0.08136( 0.08258 0.04133!
0.30264¢ 0.40144:. 0.31509: 0.31984. 0.16005¢
-0.00000: -0.00000: -0.00M03 -0.00000: -0.00000z
0.08164. 0.08164¢ 0.08165( 0.08165: 0.08160:
0.31621¢ 0.31622. 0.31622¢ 0.31623¢ 0.31606!

46

B
sef31)
sed,)

B
se3,)
se,)

0.00032:
0.08203¢
0.31771¢
-0.00000:
0.08164¢
0.31622:

0.00021% 0.000227 0.00023: 0.00028: 0.00023¢
0.063927 0.08057: 0.08114( 0.08196:. 0.08493¢
0.24757 0.31203¢ 0.31424< 0.31742¢ 0.32894:
-0.00000: -0.00000% -0.00000% -0.00000: -0.00000z
0.08165¢ 0.08165( 0.08165¢ 0.08165. 0.08166!
0.31626: 0.316227 0.316257 0.31623< 0.31627(
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Model 4

ktime

Parm

5

ktmean

6 7 8 9

10

21

B
se31)
sed,)

B
se)
se,)

0.00005¢
0.0003%
0.00034¢
0.00119(
0.00082:
0.00064:

0.00033¢ 0.00002¢ 0.00035: -0.00004
0.39917: 0.00039¢ 0.29535¢ 0.16704.
1.43922¢ 0.00034 1.06491: 0.60228¢
0.00123< 0.00132< 0.00120¢ 0.00227:
0.00082¢ 0.00085« 0.00082¢ 0.09536(
0.00064¢ 0.00088: 0.00061¢ 0.34376¢

-0.00002:

0.00044:
0.00062(
0.00222(
1.15462(
4.16304(

26

B
se31)
sed,)

B
se)
se,)

0.00041¢
0.18738¢
0.67562¢
0.00115¢
0.00083¢
0.00067"

0.00039¢ 0.00050¢ 0.00015: 0.00039¢
0.09632¢ 0.373232 0.00037: 0.34653:
0.34730: 1.34570< 0.00022¢ 1.24943:
0.00117¢ 0.001137 0.00113°" 0.00123¢
0.00083¢ 0.00083: 0.00082¢ 0.00086¢
0.00070¢ 0.00067: 0.0006676 0.00091¢

0.00014¢
0.00039-
0.00034
0.00116(
0.00083:
0.00070¢

31

B
se31)
sed,)

B
se3,)
se,)

0.00005:
0.00043¢
0.00058(
0.00201¢
0.16722¢
0.60290¢

0.00015¢< 0.00016: 0.00016¢ 0.00014:
0.00043< 0.00044- 0.00042¢ 0.00039¢
0.00060( 0.00063¢ 0.00057: 0.00037¢
0.00118: 0.00122< 0.00117¢ 0.00121¢
0.00082¢ 0.00084¢ 0.00083¢ 0.00085¢
0.00064¢ 0.00079¢ 0.00071: 0.00086¢

0.00044
0.13494¢
0.48655¢
0.00120¢
0.00085¢
0.00083¢

36

B
se31)
sed,)

B
se3,)
se,)

0.00020:
0.00044¢
0.00067+
0.00115¢
0.00083:
0.00071¢

0.000467 0.00015: 0.00016: 0.00006(
0.12127:0.00037: 0.00040¢ 2.89633(
0.43723¢ 0.00021( 0.00044" 10.44284-
0.00116¢ 0.00114. 0.00116: 0.00219¢
0.00084 0.000837 0.00083" 10.56210(
0.00076: 0.00072: 0.00072¢ 38.08162:

0.00016:
0.00042:
0.00054¢
0.00123(
0.00086¢
0.00093¢

41

B
se31)
sed,)

B,
se3,)
se,)

0.00015¢
0.00040¢
0.00043¢
0.00119¢
0.00086
0.00094:

-0.00007: 0.00015¢ 0.00047: 0.00006:
0.10352: 0.00039¢ 0.13168( 0.25501.
0.37324< 0.00038¢ 0.47476¢ 0.91947:
0.00234( 0.00113¢ 0.00120¢ 0.00221
0.12264¢ 0.00084- 0.00088( 0.65097:
0.44216% 0.00074: 0.00098 2.34710:

0.00006¢
0.06208(
0.22380¢
0.00221:
0.129046
0.46523¢

46

B
sef31)
sed,)

B
se3,)
se,)

0.00020¢
0.00046¢
0.00077:
0.00118¢
0.00086:
0.00089(

0.00036¢« 0.00016¢ 0.00015: 0.00017¢
0.17540¢ 0.00043( 0.00038: 0.00043¢
0.63243¢ 0.00058: 0.00029¢ 0.00060:
0.00125: 0.00117< 0.00111¢ 0.00112:
0.00085:2 0.00085¢ 0.00084: 0.00083:
0.00076: 0.000867 0.00076¢« 0.0007®

0.00049¢
0.30825¢
1.11143¢
0.00110¢
0.00084:
0.00069"
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Model 5

ktime

Parm

5

ktmean

6

7

8 9

10

21

B
se)
sed,)

B,
sef)
seb,)

-0.00047(
0.08933¢
0.33426:
0.00198¢
0.00087¢
0.00077:

0.00014:
0.00042¢
0.00071¢
0.00189(
0.00083¢
0.00048¢

0.00012% 0.00002:0.00015(-0.00025¢

0.000377
0.00046:
0.00181"
0.00086(
0.00072-

0.00037:0.00043:
0.0003560.00075¢
0.0009540.00188¢
0.7023020.00085¢
2.62776.0.00066(

0.60901¢
2.27874:
0.00089¢
0.55556¢
2.07872¢

26

B
se)
sed,)

B
sef,)
seb,)

-0.00038:
0.09549(
0.35727¢
0.00193¢
0.00088¢
0.00098¢

0.00022¢
0.00041:
0.00066
0.00180¢
0.00088¢
0.00106¢

-0.00009:
0.28700z
1.07385¢

0.00021¢0.00025(
0.0003920.00043¢
0.00056(0.00078(

0.001232 0.001837:0.00190z

1.10049(
4.11765]

0.0008270.00079¢
0.00061:0.00036¢

-0.00039:
0.10459:
0.39133:
0.00197:
0.00081:
0.00034¢

31

B
se)
sed,)

B
sef)
seb,)

0.00022:
0.00040¢

-0.00037¢
4.48499(

0.00063:16.78126¢

0.00179¢
0.00081¢
0.00052:

0.00191-

0.00022}
0.00038¢
0.00053:
0.00185¢

0.000819 0.00081*

0.00044

0.00065(

0.00020¢0.00020¢
0.00035:0.00035¢
0.00033:0.00035¢
0.00180z0.00179¢
0.00080:0.00084¢
0.00040.0.00087¢

-0.00039¢
0.16978:
0.63526:
0.00179¢
0.00090¢
0.00099:

36

B
se)
sed,)

B
sef)
seb,)

-0.00002(
0.06607¢
0.24722:
0.00137:
0.18726(
0.70064¢

0.00020z%
0.00039:
0.00054¢
0.00177¢(
0.00085¢
0.00085:

0.00019¢
0.00034¢
0.00029¢
0.00176¢
0.00081¢
0.00052¢

-0.00036:0.00018¢
0.1142720.00035¢
0.42755¢0.00034¢
0.0019140.00174¢
0.00087(0.00080¢
0.00090:0.00020¢

0.00021¢
0.00041¢
0.00067:
0.00177¢
0.00084¢
0.00070¢

41

B
se)
sed,)

B,
sef3)
seb,)

-0.00035:
0.11920¢
0.44601¢
0.00198¢
0.00080¢
0.00031¢

0.00022:
0.00040z

-0.00012¢
7.24342(

0.00061(27.10254¢

0.00189¢
0.00078¢
0.00012¢

0.00117¢
0.15267:
0.57123-

0.00023:0.00022
0.00042:0.00040¢
0.00071(0.00062%
0.0018820.00190:
0.00084¢0.00078¢
0.0008270.00018¢

0.00022¢
0.00043¢
0.00077:
0.00180(
0.00090¢
0.00109¢

46

B
se)
sed,)

B
sef)
seb,)

0.00018¢
0.00034¢
0.00029¢
0.00187:
0.00081¢
0.00054¢

-0.00035:
0.18515¢
0.69278¢
0.00198¢
0.00083(
0.00043¢

0.00023¢
0.00043¢
0.00077:
0.00191(
0.00083¢
0.00076(

0.00023<0.00019¢
0.00043(0.00038¢
0.0007570.00050:
0.0019130.00185:
0.00079(0.00085¢
0.00018(0.00084¢

-0.00035%
0.08052:
0.30127¢
0.00197:
0.00087:
0.00079(
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Model 6

ktime

Parm

ktmean

5 6 7 8 9

10

21

A
se)
sed,)

p.
sef)
seb,)

0.00037: 0.00114: 0.00115& 0.00035( 0.00034:
0.000357 0.23386: 2.58648( 0.00036: 0.00036¢
0.00020% 0.77560¢ 8.57839: 0.00024% 0.00029¢

-0.00023:-0.00020z-0.00018¢-0.00019¢-0.00018( -

0.00175( 0.00192: 0.00192: 0.00174: 0.00174.
0.00369¢ 0.00433% 0.00433: 0.00367( 0.00368¢

0.00035:
0.00035¢
0.00020¢
0.00019¢
0.00173(
0.00361¢

26

B
se)
sed,)

p.
sef3)
seb,)

0.00131: 0.00044¢ 0.00043¢ 0.00130: 0.00046
0.12904( 0.00043% 0.00036: 0.08017z 0.00036¢
0.42793% 0.000652 0.00021¢ 0.26583( 0.00027¢

-0.00049¢-0.00044<-0.000402-0.00049:-0.00043¢ -

0.00202: 0.00190¢ 0.00180( 0.00202z 0.00183(
0.00471% 0.00429+ 0.00389( 0.00471: 0.00400:

0.00048%
0.00036¢
0.00031¢
0.00045¢
0.00184(
0.00404¢

31

A
se)
sed,)

p.
sef)
seb,)

0.00044: 0.00038¢ 0.00038¢ 0.00130¢ 0.00131«
0.00040¢ 0.00045¢ 0.00039: 0.16784: 0.07381:
0.00056: 0.00075( 0.00041¢ 0.55663¢ 0.24472¢

-0.000357-0.00028<-0.00028: 0.00036¢ 0.00042: -

0.00188( 0.00189: 0.00183( 0.90555: 1.10357(
0.00419¢ 0.00423« 0.004000 3.00328: 3.66005¢

0.00125¢
0.08855(
0.29362:
0.00031¢
0.00199:
0.00458¢

36

A
se)
sed,)

pa
sef)
seb,)

0.00042( 0.00125« 0.00038% 0.00042t 0.00036¢
0.000382 0.12854: 0.00036: 0.00045( 0.00039:
0.00041+ 0.42628- 0.00020+ 0.00074¢ 0.00042:

-0.00026:-0.00023(-0.00018:-0.00028¢-0.00019: -

0.00184: 0.00197: 0.00177¢ 0.00190( 0.00182¢
0.00405: 0.004537 0.00379: 0.00426 0.00398:

0.00036+¢
0.00041¢
0.00057(
0.00019:
0.00185:
0.00408:

41

A
se)
sed,)

p.
sef)
seb,)

0.00131: 0.0012® 0.00125% 0.00040¢ 0.00036:
0.17571¢ 0.12469: 0.12394: 0.00037: 0.00039(
0.58275¢ 0.41351: 0.41102 0.00035( 0.00041:

0.00036¢
0.00045¢
0.00073¢

-0.000257-0.000192 0.00045:-0.00021¢-0.000152-0.00016:

0.00198: 0.00196( 0.00113¢ 0.00181: 0.00180¢
0.00455¢ 0.00446¢ 0.00038( 0.003927 0.00389¢

0.00186z
0.00411¢

46

A
se)
sed,)

p.
sef)
seb,)

0.00039: 0.000352 0.00035¢ 0.000367 0.00035¢
0.000403 0.00044: 0.00039: 0.00038( 0.00042:
0.00052% 0.00069% 0.00041: 0.00036: 0.00058¢
-0.00024%-0.00017¢-0.00015:-0.00017¢-0.00016:
0.001852 0.00185¢ 0.00180: 0.001810 0.00184:
0.00408( 0.00408¢ 0.00390+ 0.00391¢ 0.00403¢

0.00137¢
0.06254¢
0.20736%
0.00027¢
1.39001(
4.61008"
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APPENDIX C

Smoothing functions of time and temperature froffetént starting values of smoothing
parameters, where (a, b)sbe, Atmean-

Model 1: Time

{10, 12) {10, 13) (10, 14) (10, 18)

(10, 10) (10, 11)

{13, 13) (13, 14) (13, 18)

(14,12)
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Model 2: Time

{10, 10) {10,11) {10, 12) {10, 13) (10, 14) (10, 18)

5

3 i 5

(11,12) (11,13) {11, 14) {11, 15)

(13,15)

{15, 10) (18,11 (15, 12) (15, 13) {15, 14) {15, 16)
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Model 3: Time

{10, 10) {10,11) {10, 12) {10, 13) (10, 14) (10, 18)

{12, 15)

(12, 10) (12, 11)

(13, 11) (13,12) {13,13) (13, 14)

{14,10) (14, 14)
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{10,11)

Model 4: Time

(10, 14)

{10, 10)

{10,12)

{10, 13)

(10, 18)

{11, 15)

(12,11) (12, 12) (12, 13) (12, 14) (12, 185)

:

(13, 13) 13, 14) (13,15)

(14, 18)

{15, 10) (18,11 (15, 12) (15, 13) {15, 14) {15, 16)
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Model 5: Time

{10, 10) . {10,11) i {10, 12) i {10, 13) (10, 14) . (10, 18)

H = 3 i 3 H z
b H b i b
17 s iz i: i3
§ H
3 3 ] E 5 H
v - - . v - - T - m e T - - . v - - . v - - .
- - - - - -

(11,13) {11, 14 {11, 15)

E E : ) M B 3
[ ¥E
is i
3 H
R
-

3

e owom on o owow

3 3

a 2 7
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Model 6: Time

{10, 10)

{10,11)

{10,12)

{10, 13)
]

(10, 14)
;

(10, 18)

: = T . = : = o [
s & = o & &
{11, 10)

3

4

y

)

(18,11

f ok
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Model 1: Temperature

{10, 10) ] {10,11) {10, 12) {10, 13) . (10, 14) (10, 18)

{11, 10) (11,11) (11,12) (11,13) {11, 14) {11, 15)

. (12, 13) 12, 14) (12, 185)

{12, 10) {12, 11) {12, 12)

= c o om o« o womom a o+ o3 a4 omomom e & 0 @ o owm owom = s o3 & owmowom o ox 4 omomow
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Model 3: Temperature
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APPENDIX D

Smoothing functions of time and temperature froffecknt numbers of knots, where (a,
b)=(kiime, Ktmean-
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Model 2: Time
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Model 3: Time
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Model 4: Time
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Model 5: Time
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Model 6: Time
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Model 1: Temperature
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Model 2: Temperature
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Model 6: Temperature
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APPENDIX E
Spatial function maps from different starting valwésp

Model 1
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APPENDIX F

Comparison plots of city-specific Pieffects between the GGAMM and 2-stage Bayesian
hierarchical model.

Model 1: PMo
GGAMM 2-stage BH model
Spokane il Spokane |
Seattle HH Seattle |
Salt Lake City He1 Salt Lake City ]
Pittsburg He Pittsburg
Nashville Hq Nashville |'E‘f1
Minneapolis Heq Minneapolis |’f3 1
Lexington HH Lexington fé‘“ﬂ'"“
Las Vegas H Las Vegas |‘E|'|
Huntsville He1 Huntsville f"“iﬂ' 'é’"‘|
El Paso hdl El Paso fE'l
Detroit B Detroit f3'|
Colorado Springs ey Colorado Springs f 3“|
Cleveland He| Cleveland fD‘I
Cincinnati sl Cincinnati fE'-|
Chicago el Chicago H
I [ [ [

%increase of relative risk

-30 -15 0 15 30

%increase of relative risk

*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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Model 2: PMo

GGAMM 2-stage BH model
Spokane F-8-1 Spokane ] F3'|
Seattle FE-1 Seattle f3|
Salt Lake City t-B-1 Salt Lake City — *3|
Pittsburg b5 -| Pittsburg — F|
Nashville t-B- Nashville — f 3"|
Minneapolis t-B- Minneapolis — IE}|
Lexington I-8- Lexington ] éf‘é“E'""
Las Vegas t-B- Las Vegas — fEll
Huntsville F-8-1 Huntsville — f"“ﬂ"*é' “'1
El Paso t-B- El Paso ] |’f3’
Detroit - Detroit — f3|
Colorado Springs F-8-1 Colorado Springs f53’|
Cleveland g Cleveland F
Cincinnati Fe-1 Cincinnati fEl-l
Chicago & Chicago ﬁl
I [ [ [ [
-4 -2 0 2 4 -40 -20 0 20 40

%increase of relative risk %increase of relative risk

*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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Model 2: PMeo-lag2
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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Model 5: PMo

GGAMM 2-stage BH model
Spokane F-+- Spokane ] f"‘l
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%increase of relative risk %increase of relative risk

*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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Model 6: PMo
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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*The red vertical lines in 2-stage Bayesian Hierarchical model plot are the range of x-axis in the GGAMM plot.
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Tables of parameter estimates for cardiovascuteyumonia, and respiratory mortality in

APPENDIX G

three age categories

Cardiovascular mortality

A~

Age Model Variable B se) sep)

<65 Model 1 PMg -0.000157 0.000370 0.000707
Model 4 PMy -0.000276 0.000458 0.000740

NO, 0.000039 0.000799 0.000606

Model 5 PMy -0.000266 0.000468 0.000929

O3 0.000892 0.000998 0.001801

Model 6 PMg -0.000433 0.000352 0.000288

SO 0.001292 0.001506 0.002752

65-74 Modell PMy 0.000375 0.000310 0.000555
Model 4 PMy 0.000284 0.000374 0.000512

NO, -0.000013 0.000984 0.002018

Model 5 PMy 0.000632 0.000403 0.000804

O3 0.000735 0.000903 0.001750

Model 6 PMg -0.000061 0.000427 0.000787

SO 0.001755 0.001157 0.001667

=75 Model 1 PMg 0.000472 0.000171 0.000237
Model 4 PMy 0.000480 0.000193 0.000042

NO, 0.000342 0.044061 0.158832
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Pneumonia mortality

Age Model Variable B sefd) seb)

<65 Model 1 PMy 0.001823 0.001091 0.001699
Model 2 PMg 0.000981 0.001250 0.001759
PMio-lagl 0.001484 0.001356 0.001702

PMio-lag2 -0.001443 0.001218 0.001180

Model 3 PMp 0.001659 0.001193 0.001652

CcO 0.000069 0.104924 0.316837

Model 4 PMg 0.001144 0.001315 0.000847

NO; 0.002744 0.002886 0.002037

Model 5 PMp 0.001774 0.001205 0.001693

O; -0.004638 0.002870 0.002997

Model 6 PMp 0.000382 0.001339 0.001394

SO 0.005537 0.004722 0.006357

65-74 Model1 PMy 0.002004 0.001018 0.001283
Model 2 PMp 0.002957 0.001182 0.001600
PMg-lagl -0.002252 0.001256 0.000827

PMg-lag2 0.001095 0.001306 0.002056

Model 3 PMp 0.001848 0.001108 0.000961

CO 0.000026 0.081491 0.315612

Model 4 PMg 0.001225 0.001336 0.001268

NO, 0.005534 0.002675 0.000887

Model 5 PMp 0.002619 0.001205 0.001667

O; 0.004249 0.002574 0.002219

Model 6 PMp 0.002614 0.001317 0.001543

SO -0.002958 0.004472 0.005302

>75 Model 1 PMy 0.0002662 0.000545 0.001013
Model 2 PMg 0.0007194 0.000530 0.000506
PM;o-lagl -0.001241 0.000800 0.001686

PM;o-lag2 -0.000091 0.000743 0.001654

Model 4 PMg 0.000586 0.000590 0.000490

NO, 0.001298 0.001272 0.001085

Model 5 PMg 0.000603 0.000558 0.000567

Os 0.003231 0.001355 0.001287

Model 6 PMg 0.000664 0.000582 0.000652

SO -0.000427 0.002657 0.005582
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Respiratory mortality

Age Model Variable B se) sep)

<65 Model 1 PMo 0.002095 0.000703 0.000947
Model 2 PMg 0.001672 0.000802 0.000949
PMolagl 0.000818 0.000912 0.001130

PMio-lag2 -0.000177 0.000841 0.001019

Model 4 PMq 0.001797 0.001055 0.001566

NO, 0.000183 0.002081 0.002362

Model 5 PMy 0.002191 0.000828 0.001154

O; -0.007584 0.002745 0.006312

Model 6 PMg 0.001886 0.000871 0.000837

SO -0.000951 0.003108 0.003716

65-74 Modell PMy 0.000199 0.000630 0.000953
Model 2 PMy -0.000009 0.000728 0.001030
PM;o-lagl 0.000262 0.000728 0.000870

PM;o-lag2 0.000405 0.000658 0.000806

Model 4 PMg 0.000329 0.000933 0.001670

NO, 0.002703 0.001603 0.001242

Model 5 PMgq 0.000706 0.000779 0.001221

Os 0.000332 0.002128 0.004678

Model 6 PMg 0.000416 0.000736 0.000767

SO -0.000182 0.002840 0.004784

=75 Model 1 PMg 0.000133 0.000343 0.000311
Model 2 PMg 0.000184 0.000443 0.000654
PM;olagl -0.000317 0.000545 0.001060

PM;o-lag2 0.000074 0.000412 0.000550

Model 4 PMq 0.000258 0.000462 0.000445

NO, 0.000703 0.000954 0.000670

Model 5 PMgq 0.000155 0.000408 0.000360

O3 0.002087 0.000964 0.000760

Model 6 PMq 0.000397 0.000467 0.000564

SO -0.000082 0.001924 0.003835
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APPENDIX H

Smoothing function plots of time and temperature spatial function map in extended
applications
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Cardiovascular diseases5 years old / Model: PM+O3
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Cardiovascular disease 65-74 years old / Model;oPM
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Cardiovascular disease 65-74 years old / Model;(P®%
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Cardiovascular diseas@5 years old / Model: PM
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Respiratory disea&er5 years old / Model: Pitlag

Time smoother Temperature smoother

Effect of time
Effect of temperature

0 500 1000 1500 -20 0 20 40 60 80 100
Time Temperature
eattle Spok ne\k

et City

Colorado Sprifrg

El Paso

-le-04

Respiratory diseaze’5 years old / Model: PM+NO,

Time smoother Temperature smoother
o |
° 1
£ g °
Z £ o
] T 9
s £
= - -
w 1=
L o
mg
T T T T T T T
0 500 1000 1500 -20 0 20 40 60 80 100
Time Temperature

catlle_Spok ne\k

et City

Colorado Sprifrg
@)

El Paso

-1.75642 1.60386

272



Respiratory disea&er5 years old / Model: Pi+Os

Time smoother Temperature smoother
<
S o B
5 .
o o T o
E © g IS}
5 o g _
5 © 2 8]
o o
g g
< ! TR e
S s 1~
' ' T T T T T T
0 500 1000 1500 0O 20 40 60 80 100
Time Temperature

catle_Spok ne\k

et City

Colorado Sprifrg

El Paso

-3e-04

Respiratory diseaze’5 years old / Model: PM+SG,

Time smoother Temperature smoother
o I
5 @\
o 8 © ! ;
£ 5] /
= g8 _
s § o
g s °
w 1= —
2
] g i S _
T T T T T T T
0 500 1000 1500 -20 0 20 40 60 80 100
Time Temperature

catlle_Spok ne\k

et City

()

Colorado Sprifrg

O

El Paso

| (U

-0.0106 0 0.01202

273



REFERENCE

Abbey, D. E., Nishino, N., McDonnell, W. F., Burdtee R. J., Knutsen, S. F., Lawrence, B.
W., & Yang, J. X. (1999). Long-term inhalable peles and other air pollutants
related to mortality in nonsmokeismerican Journal Respiratory and Critical Care
Medicine 159(2), 373-382.

Ackermann-Liebrich, U., Leuenberger, P., SchwalizSchindler, C., Monn, C., Bolognini,
C., Bongard, J. P,, Brandli, O., Domenighetti, Bsasser, S., Grize, L., Karrer, W.,
Keller, R., Keller-Wossidlo, H., Kunzli, N., MartjiB. W., Medici, T. C., Perruchoud,
A. P., Schoni, M. H., Tschopp, J. M., Villiger, B\uthrich, B., Zellweger, J. P., &
Zemp, E. (1997). Lung function and long term expeda air pollutants in
Switzerland American Journal of Respiratory and Critical Careetiicine 155(1),
122-129.

Agresti, A. (1990)Categorical Data AnalysidNew York: John Wiley & Sons, Inc.

Akaike, H. (1974). A new look at the statistical adebidentification|EEE Transactions on
Automatic Contrqgl19(6), 716—723.

Almon, S. (1965). The distributed lag between @@ppropriations and expenditures.
Econometrica33(1), 178-196.

Anderson, R., Atkinson, A., Peacock, J. L., Marstan& Konstantinou, K. (2004).
Meta-analysis of time-series and panel studiesastidalate Matter and Ozone {0
WHO Task Group. WHO Regional Office for Europe, &€dagen 2004
(EUR/04/5042688)Retrieved fronhttp://www.euro.who.int/document/E82792.pdf

Anderson, T. W. (1984 An introduction to multivariate statistical analggSecond Edition).
New York: John Wiley & Sons, Inc.

Anselin, L. (1988)Spatial Econometrics, methods and mod@éston: Kluwer Academic.

Anselin, L., & Rey, S. (1997). Introduction to thpecial issue on spatial econometrics.
International Regional Science Revié@, 1-7.

Anselin, L., Le Gallo, J., & Jayet, H. (2008he Econometrics of panel data, fundamentals
and recent developments in theory and pradtded ed.).Springer Berlin Heidelberg.

Arbia, G. (2006)Spatial Econometrics: Statistical Foundations ampHKcations to
Regional Convergenc8erlin: Springer-Verlag.

Austin, H., Flanders, W. D., & Rothman, K. J. (198Bias arising in case-control studies
from selection of controls from overlapping grouim¢ernational Journal of
Epidemiology18(3), 713-716.

Barnard, J., & Rubin, D. B. (1999). Small samplgrées of freedom with multiple

274



imputation.Biometrika,86, 948-955.

Barnett, A. G., Williams, G. M., Schwartz, J., NgJIA. H., Best, T. L., Petroeschevsky, A. L.,
& Simpson, R. W. (2005). Air pollution and childspgratory health: A case-crossover
study in Australia and New Zealan&imerican Journal of Respiratory and Critical
Care Medicingl171(11), 1272-1278.

Bateson, T. F., & Schwartz, J. (1999). Controldeasonal variation and time trend in
case-crossover studies of acute effects of envieoah exposureg€pidemiology
10(5), 539-44.

Bell, M. L., McDermott, A., Zeger, S. L., SametM., & Dominici, F. (2004a). Ozone and
short-term mortality in 95 US urban communities32:2000.Journal of the
American Medical Associatio@92(19), 2372-2378.

Bell, M. L., Samet, J. M., & Dominici, F. (2004)ime-series studies of particulate matter.
Annual Review of Public HealtB5, 247-280.

Bell, M. L., Dominici, F., & Samet, J. M. (2005).rAeta-analysis of time-series studies of
ozone and mortality with comparison to the natianatbidity, mortality, and air
pollution studyEpidemiology16(4), 436-45.

Bell, M. L., Peng, R. D., & Dominici, F. (2006). €exposure-response curve for ozone and
risk of mortality and the adequacy of current ozmgulationsEnvironmental
Health Perspectived414(4), 532-536.

Bell, M. L., Kim, J. Y., & Dominici, F. (2007). Pential confounding of particulate matter on
the short-term association between ozone and migritaimultisite time-series
studiesEnvironmental Health Perspectivdd5(11), 1591-1595.

Berhane, K., & Tibshirani, R.J. (1996). Generaliagditive models for longitudinal data.
The Canadian Journal of Statisti&§(4), 517-535.

Besag, J. (1974). Spatial interaction and stasisaoalysis of lattice systemiournal of the
Royal Statistical Society Series B-Methodologi8&{2), 192-236.

Besag, J., & Kooperberg, C. (1995). On conditiara intrinsic autoregressiorBiometrika,
82, 733-746.

Bloomfield, P. (1976)Fourier analysis of time series: an introductiddew York: John
Wiley and Sons, Inc.

Braun-Fahrlander, C., Vuille, J. C., Sennhausdad.FNeu, U., Kunzle, T., Grize, L., Gassner,
M., Minder, C., Schindler, C., Varonier, H. S., &idrich, B. (1997). Respiratory
health and long-term exposure to air pollutantSwiss schoolchildrerAmerican
Journal of Respiratory and Critical Care Medicijri&5(3), 1042-1049.

Breslow, N. E., & Day, N. E. (1980). Statistical tmeds in cancer research. Volume | - The

275



analysis of case-control studi®8RC Scientific Publicatior82, 335-338.

Breslow, N. E., & Clayton, D. G. (1993). Approxiredhference in generalized linear mixed
models.Journal of the American Statistical Associatig8, 9-25.

Brezger, A., Kneib, T., & Lang, S. (2005). BayegXalyzing Bayesian structured additive
regression modelsournal of Statistical Softwaré4(11). Retrieved from
http://www.|statsoft.org/v14/ill/paper

Brimblecombe, P. (1987T.he big smoke: A history of air pollution in Londgince medieval
times.New York: Methuen.

Buringh, E., Fischer, P., & Hoek, G. (2000). Is;®rausative factor for the PM-associated
mortality risks in the Netherland$fthalation Toxicologyl2(Supplement 1), 55-60.

Carder, M., McNamee, R., Beverland, I., Elton,Y&n Tongeren, M., Cohen, G. R., Boyd, J.,
MacNee, W., & Agius, R. M. (2008). Interacting efife of particulate pollution and
cold temperature on cardiorespiratory mortalitgsgotland Occupational and
Environmental Medicing5(3), 197-204.

Carroll, R. J., Ruppert, D., & Stefanski, L. (1999easurement Error in Nonlinear Models.
London: Chapman & Hall.

Chan, C. C., Chuang, K. J., Chien, L. C., ChenJ\\& Chang, W. T. (2006). Urban air
pollution and emergency admissions for cerebrovascliseases in Taipei, Taiwan.
European Heart JournaR7, 1238-1244.

Chang, C. C., Hwang, J. S., Chan, C. C., Wang,, R €heng, T. J. (2007). Effects of
concentrated ambient particles on heart rate, bfwedsure, and cardiac contractility
in spontaneously hypertensive rats during a dostrséventinhalation Toxicology
19(11), 973-978.

Chen, C., Chock, D. P., & Winkler, S. L. (1999)siulation study of confounding in
generalized linear models for air pollution epidelogy. Environmental Health
Perspectivesl07(3), 217-222.

Chen, J., & Shao, J. (2000). Nearest Neighbor latprt for Survey Datalournal of
Official Statistics16(2), 113-131.

Chiles, J. P., & Delfiner, P. (1999}eo0statistics. Modeling spatial uncertainiyew York:
John Wiley & Sons.

Chuang, K. J., Coull, B. A., Zanobetti, A., Suh, Bchwartz, J., Stone, P. H., Litonjua, A.,
Speizer, F. E., & Gold, D. R. (2008). Particulatepallution as a risk factor for
st-segment depression in patients with coronagradiseaseCirculation, 118(13),
1314-1320.

Ciocco, A., & Thompson, D. (1961). A follow-up ofodora ten years after: methodology and

276



findings.American Journal of Public Health]l, 155-164.

Clayton, D., & Hills, M. (1993)Statistical Models in Epidemiolog@xford: Clarendon
Press.

Cliff, A., & Ord, J. K. (1972). Testing for spatialtocorrelation among regression residuals.
Geographical Analysigi(3), 267-284.

Cliff, A., & Ord, J. K. (1973)Spatial AutocorrelationLondon: Pion.

Coull, B. A., Schwartz, J., & Wand, M. P. (2001 edpiratory health and air pollution:
Additive mixed model analyseBiostatistics 2(3), 337-49.

Cox, D. R., & Oakes, D. O. (1984 nalysis of Survival DataNew York: Chapman & Hall.

Crainiceanu, C., Ruppert, D., Claeskens, G., & WahdP. (2005). Exact likelihood ratio
tests for penalized splindBiometrika,92(1), 91-103.

Cressie, N. (1993ptatistics for Spatial DatdNew York: Wiley.

Dab, W., Medina, S., Quenel, P., Le Moullec, Y., Tiestre, A., Thelot, B., Monteil, C.,
Lameloise, P., Pirard, P., Momas, I., Ferry, RE&sty, B. (1996). Short term
respiratory health effects of ambient air pollutiegsults of the APHEA project in
Paris.Journal of Epidemiology and Community Hea), S42-S46.

Daniels, M. J., Dominici, F., Samet, J. M., & Zed@rL. (2000). Estimating particulate
matter-mortality dose-response curves and thredbweéds: An analysis of daily
time-series for the 20 largest US citi@serican Journal of Epidemiology52(5),
397-406.

Davis, D. L. (2002)When Smoke Ran Like Water: Tales of Environmergaéption and the
Battle Against PollutionNew York: Basic Books.

Diggle, P. J., Liang, K. Y., & Zeger, S. L. (1994nalysis of Longitudinal DataOxford:
Clarendon Press.

Dockery, D. W., Schwartz, J., & Spengler, J. D.92P Air-pollution and daily mortality -
associations with particulates and acid aero&oisironmental Research9(2),
362-373.

Dockery, D. W., Pope, C. A,, Xu, X. P., SpengleJ Ware, J. H., Fay, M. E., Ferris, B. G.,
& Speizer, F. E. (1993). An association betweespallution and mortality in six US
cities.New England Journal of Medicing829(24), 1753-1759.

Dominici, F., Samet, J. M., & Zeger, S. L. (2000@pmbining evidence on air pollution and

daily mortality from the 20 largest US cities: Aeharchical modelling strategy.
Journal of the Royal Statistical Society Seriesati§ics in Societyl63, 263-284.

277



Dominici, F., Zeger S. L., & Samet J. M. (2000b)masurement error model for time-series
studies of air pollution and mortalitgiostatistics 2, 157-175.

Dominici, F., Daniels, M., Zeger, S. L., & SametMl (2002a). Air pollution and mortality:
Estimating regional and national dose-responséioakhips.Journal of the
American Statistical Associatip@7(457), 100-111.

Dominici, F., McDermott, A., Zeger, S. L., & Samét,M. (2002b). On the use of generalized
additive models in time-series studies of air padiu and healthAmerican Journal of
Epidemiology 156(3), 193-203.

Dominici, F., McDermott, A., Zeger, S. L., & Samét,M. (2003a). Airborne particulate
matter and mortality: Timescale effects in four &itges. American Journal of
Epidemiology157(12), 1055-1065.

Dominici, F., McDermott, A., Zeger, S. L., & Samét,M. (2003b). National maps of the
effects of particulate matter on mortality: Exptayigeographical variation.
Environmental Health Perspectivad1(1), 39-43.

Dominici, F., Sheppard, L., & Clyde, M. (2003c). &l effects of air pollution: A statistical
review. International Statistical Review1(2), 243-276.

Dominici, F., McDermott, A., Daniels, M., Zeger, IS, & Samet, J. M. (2005). Revised
analyses of the national morbidity, mortality, aadpollution study: Mortality among
residents of 90 citiedournal of Toxicology and Environmental Health-Part
a-Current Issues8(13-14), 1071-1092.

Durrant, G. B. (2005). A semi-parametric multipleputation data augmentation procedure.
Proceedings of the Survey Research Methods Seaoerican Statistical
AssociationAmerican Statistical AssociatioRetrieved from
http://www.amstat.org/Sections/Srms/Proceeding9g#tles/JSM2005-000425. pdf

Elhorst, J. P. (2003). Specification and estimatibapatial panel data modelsternational
Regional Science Revig6(3), 244-268.

Everson, P. J., & Morris, C. N. (2000). Inferenoerultivariate normal hierarchical models.
Journal of the Royal Statistical Society Series@iS&ical Methodology62,
399-412.

Fahrmeir, L., & Lang, S. (2001a). Bayesian infeeefar generalized additive mixed models
based on Markov random field priodaurnal of the Royal Statistical Society Series
C-Applied Statisticsb0, 201-220.

Fahrmeir, L., & Lang, S. (2001b). Bayesian semipaatiic regression analysis of
multicategorical time-space datnnals of the Institute of Statistical Mathematk3;
10-30.

Fahrmeir, L., Lang, S., & Spies, F. (2003). Gerireal geoadditive models for insurance

278



claims dataBlatter der DGVFM26(1), 7-23.

Fahrmeir, L., Kneib, T., & Lang, S. (2004). Penatistructured additive regression for
space-time data: A Bayesian perspect8tatistica Sinical4(3), 731-761.

Fairley, D. (1990). The relationship of daily mditiato suspended particulates in Santa
Clara County 1980-198&nvironmental Health Perspectiveé3§, 159-168

Fanger, P. O. (1970Thermal ComfortCopenhagen: Danish Technical Press.

Farrar, D. E., & Glauber, R. R. (1967). Multicoliarity in regression analysis - problem
revisited.Review of Economics and Statisti49(1), 92-107.

Figueiras, A., Roca-Pardifias, J., & Cadarso-Su&e{2003). Avoiding the effect of
concurvity in generalized additive models in tinegiss studies of air pollutiohe
ISI International Conference on Environmental Stats and HealthAvailable from
http://isi-eh.usc.es/trabajos/i10_70_fullpaper.pdf

Figueiras, A., Roca-Pardifas, J., & Cadarso-Su&e@005). A bootstrap method to avoid
the effect of concurvity in generalised additivedals in time series studies of air
pollution. Journal of Epidemiology and Community Heaf(10), 881-884.

Firket J. (1936). Fog along the Meuse VallByansactions of the Faraday Socie22,
1192-1197.

Fleming, M. (2002)Techniques for estimating spatially dependent digcchoice model$n
Anselin, L., Florax, R. J., and Rey, S. J., editddvances in Spatial Econometrics.
Springer-Verlag, Heidelberg. Forthcoming.

Florax, R., & Van der Vlist, A. J. (2003). Spatelonometric data analysis: Moving beyond
traditional modelslnternational Regional Science Revij&6(3), 223-243.

Forsberg, B., Stjernberg, N., & Wall, S. (1997)eWwence of respiratory and hyperreactivity
symptoms in relation to levels of criteria air pdnts in SwederEuropean Journal
of Public Health,7(3), 291-296.

Fortin, M. J., & Dale, M. (20055patial Analysis: A Guide for Ecologis@ambridge:
Cambridge University Press.

Fronk, E. M., & Giudici, P. (2004). Markov chain Mg Carlo model selection for DAG
models.Statistical Methods and Applicatiork3, 259-273

Fung, W.-K., Zhu, Z.-Y., Wei, B.-C., & He, X. (20p2nfluence diagnostics and outlier tests
for semiparametric mixed modelurnal of the Royal Statistical Society,Series B,
64, 565-579.

Gamerman, D. (1997Markov chain Monte Carlo: stochastic simulation Bayesian
inference New York: Chapman & Hall.

279



Gauderman, W. J., McConnell, R., Gilliland, F., don, S., Thomas, D., Avol, E., Vora, H.,
Berhane, K., Rappaport, E. B., Lurmann, F., Magdii. G., & Peters, J. (2000).
Association between air pollution and lung functgyowth in southern California
children.American Journal of Respiratory and Critical Careedlicine 162(4),
1383-1390.

Gauderman, W. J., Gilliland, G. F., Vora, H., Aval, Stram, D., McConnell, R., Thomas, D.,
Lurmann, F., Margolis, H. G., Rappaport, E. B.,i&zere, K., & Peters, J. M. (2002).
Association between air pollution and lung functgrowth in southern California
children - results from a second cohéunerican Journal of Respiratory and Critical
Care Medicine166(1), 76-84.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin,B (1995) Bayesian Data Analysis.
London: Chapman & Hall.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin,B) (2004) Bayesian Data Analysis.
Second Edition. Boca Raton: Chapman & Hall/CRC.

Geman, S., & Geman, D. (1984). Stochastic relaratBbbs distributions, and the Bayesian
restoration of image$EEE Transactions on Pattern Analysis and Machine
Intelligence6, 721-741.

Goodchild, M. F., Anselin, L., Appelbaum, R. P.Harthorn, B. H. (2000). Toward spatially
integrated social scienciternational Regional Science Revi@s(2), 139-159.

Gotway, C. A., & Stroup, W. W. (1997). A generalizlinear model approach to spatial data
analysis and predictiodournal of Agricultural, Biological and Environmexht
Statistics2(2), 157-178.

Gotway, C. A., & Wolfinger, R. D. (2003). Spatiaegliction of counts and rateStatistics in
Medicine 22(9), 1415-1432.

Green, P. J. (1995). Reversible jump Markov chaond Carlo computation and Bayesian
model determinatiorBiometrikg 82(4), 711-732.

Green, P. J., & Silverman, B. W. (199K)pnparametric Regression and Generalized Linear
Models London: Chapman and Hall.

Greenland, S., & Morgenstern, H. (1989). Ecologimak, confounding, and effect
modification.International Journal of Epidemiolog$8(1), 269-274.

Greven, S., Kiichenhoff, K., Koenig, W., Picciot®, Pekkanen, J., Bellander, T., Leonard,
B. J., Chalamandaris, A., Kulmala, M., & Peterg2005). Statistical Aspects in
Additive Mixed Models for the AIRGENE Study. Avalike from
http://www.stat.uni-muenchen.de/~greven/presentatiacv.pdf

Griffith, D. A. (1988).Advanced Spatial Statistid®or-drecht: Kluwer Academic.

280



Haining, R. (1990)Spatial data analysis in the social and environrakstiences
Cambridge: Cambridge University Press.

Hammersley, J. M., & Clifford, P. (1971 arkov fields on finite graphs and lattices
Unpublished.

Hart, J. D. (1991). Kernel regression estimatiothwime-series errorgournal of the Royal
Statistical Society Series B-Methodologj&3(1), 173-187.

Hastie, T. J., & Tibshirani, R. J. (199@eneralized additive modeNew York: Chapman
and Hall.

He, S., Mazumdar, S., & Arena, V. C. (2006). A camgtive study of the use of gam and glm
in air pollution researctenvironmetrics17(1), 81-93.

Heagerty, P. J., & Zeger, S. L. (1996). Margingression models for clustered ordinal
measurementgournal of the American Statistical Associatiéh(435), 1024-1036.

Huang, Y., Dominici, F., & Bell, M. L. (2005). Bag®n hierarchical distributed lag models
for summer ozone exposure and cardio-respiratonyaiity. Environmetrics 16(5),
547-562.

Ito, K., Thurston, G. D., & Silverman, R. A. (200Dharacterization of PM2.5, gaseous
pollutants, and meteorological interactions in¢batext of time-series health effects
models.Journal of Exposure Science and Environmental Epidegy, 17, S45-S60.

Jaakkola, J. J. K. (2003). Case-crossover desigir pollution epidemiologyEuropean
Respiratory Journal2l, 81S-85S.

Johnson, R. A., & Wichern, D. W. (200Applied Multivariate Statistical Analysidlew
Jersey: Prentice Hall.

Jolliffe, 1. T. (2002).Principal Component Analysi@nd Edition. New York: Springer.
Journel, A. G., & Huijbregts, C. J. (1978)ining GeostatisticsLondon: Academic Press.

Kammann, E. E., & Wand, M. P. (2003). Geoadditivedels.Journal of the Royal Statistical
Society Series C-Applied Statisfibg, 1-18.

Kandala, N. B. (2006). Bayesian geo-additive maaiglbf childhood morbidity in Malawi.
Applied Stochastic Models in Business and Indugg(g), 139-154.

Kandala, N. B., Ji, C., Stallard, N., Stranges&Cappuccio, F. P. (2007). Spatial analysis
of risk factors for childhood morbidity in NigeriAmerican Journal of Tropical
Medicine and Hygien&7(4), 770-778.

Kandala, N. B., Ji, C., Cappuccio, P. F., & Stories\W. (2008). The epidemiology of HIV
infection in ZambiaAids Care-Psychological and Socio-Medical Aspettaids/Hiy,

281



20(7), 812-819.

Kaslow, R., Ostrow, D., Detels, R., Phair, J., Pélk& Rinaldo, C. (1987). The multicenter
AIDS cohort study: rationale, organization and st characteristics of participants.
American Journal of Epidemiologl26(2), 310-318.

Katsouyanni, K., Touloumi, G., Spix, C., Schwa#z,Balducci, F., Medina, S., Rossi, G.,
Wojtyniak, B., Sunyer, J., Bacharova, L., Schouterk., Ponka, A., & Anderson, H.
R. (1997). Short term effects of ambient sulphwoixitle and particulate matter on
mortality in 12 European cities: Results from tisegies data from the APHEA
project.British Medical Journgl314(7095), 1658-1663.

Katsouyanni, K., Touloumi, G., Samoli, E., GrypaAs, Le Tertre, A., Monopolis, Y., Rossi,
G., Zmirou, D., Ballester, F., Boumghar, A., AndersH. R., Wojtyniak, B., Paldy, A.,
Braunstein, R., Pekkanen, J., Schindler, C., & ScotryJ. (2001). Confounding and
effect modification in the short-term effects oflaent particles on total mortality:
Results from 29 European cities within the APHEA@]@ct. Epidemiology 12(5),
521-531.

Kim, C., Park, B. U., & Kim, W. (2002). Influenceagjnostics in semiparametric regression
models.Statistics and Probability Letter60(1), 49-58.

Kindermann, R., & Snell, J. L. (198MWarkov Random Fields and Their Applications
American Mathematical Society. Retrieved from
http://www.ams.org/online_bks/conm1/conmi-whole.pdf

Kneib, T. (2006a)Mixed model based inference in structured addi@gression. Retrieved
from Munich University Library

Kneib, T. (2006b). Mixed model-based inferenceaonadditive hazard regression for
interval-censored survival timeSomputational Statistics & Data Analysii,
777-792.

Kneib, T., & Fahrmeir, L. (2006). Structured adeitiregression for categorical space-time
data: A mixed model approadBiometrics 62(1), 109-118.

Kneib, T., & Hennerfeind, A. (2006). Bayesian seangmetric multi-state modelStatistical
Modelling, 8(2), 169-198.

Kneib, T., & Fahrmeir, L. (2007). A mixed model apach for geoadditive hazard regression.
Scandinavian Journal of Statistj&4(1), 207-228.

Kraak, M.-J., & Ormeling, F. (1996artography: Visualization of Spatial Dathlew
Jersey: Prentice Hall.

Kwon, H. J., Cho, S. H., Chun, Y., Lagarde, F.,&d$hagen, G. (2002). Effects of the Asian
dust events on daily mortality in Seoul, Kor&avironmental ResearcB0(1), 1-5.

282



Lagorio, S., Forastiere, F., Pistelli, R., lavaroneMichelozzi, P., Fano, V., Marconi, A.,
Ziemacki, G., & Ostro, B. D. (2006). Air pollutieand lung function among
susceptible adult subjects: a panel stiohwironmental Health: A Global Access
Science Sourcé(11). Retrieved fromhttp://www.ehjournal.net/content/5/1/11

Lang, S., & Brezger, A. (2004). Bayesian p-splieairnal of Computational and Graphical
Statistics 13(1), 183-212.

Le Tertre, A., Medina, S., Samoli, E., Forsberg,NBichelozzi, P., Boumghar, A., Vonk, J. M.,
Bellini, A., Atkinson, R., Ayres, J. G., Sunyer, Schwartz, J., & Katsouyanni, K.
(2002). Short-term effects of particulate air ptiin on cardiovascular diseases in
eight European citiegournal of Epidemiology and Community Hea86(10),
773-779.

Lee, J. T., & Schwartz, J. (1999). Reanalysis efdfiects of air pollution on daily mortality
in Seoul, Korea: a case-crossover dedivironmental Health Perspectiveg)7,
633-636.

LeSage, J. P. (2000). Bayesian estimation of ludnitependent variable spatial autoregressive
models.Geographical Analysjs32(1), 19-35.

LeSage, J. P., Pace, R. K., & Tiefelsdorf, M. (2004ethodological developments in spatial
econometrics and statisticSeographical Analysis36(2), 87-89.

Levy, D., Lumley, T., Sheppard, L., Kaufman, J.C&eckoway, H. (2001a). Referent
selection in case-crossover analyses of acutehheffdicts of air pollution.
Epidemiology12(2), 186-192.

Levy, D., Sheppard, L., Checkoway, H., Kaufmanl.dmley, T., Koenig, J., & Siscovick, D.
(2001b). A case-crossover analysis of particuleaéten air pollution and
out-of-hospital primary cardiac arreEjpidemiology12(2), 193-199.

Levy, J. I, Carrothers, T. J., Tuomisto, J. T.pHatt, J. K., & Evans, J. S. (2001). Assessing
the public health benefits of reduced ozone conagomis.Environmental Health
Perspectives]09, 1215-1226.

Li, Y. Z., & Roth, H. D. (1995). Daily mortality atysis by using different regression-models
in Philadelphia county, 1973-199@halation Toxicology7(1), 45-58.

Liang, K. Y., & Zeger, S. L. (1986). Longitudinahid-analysis using generalized
linear-modelsBiometrikg 73(1), 13-22.

Lin, X. H., & Zhang, D. W. (1999). Inference in gealized additive mixed models by using
smoothing splineslournal of the Royal Statistical Society Series&iSical
Methodology61, 381-400.

Lindley, D. V., & Smith, A. F. M. (1972). Bayes @anttes for the linear modelournal of the
Royal Statistical Society - Series3#, 1-41.

283



Lipfert, F. W., & Wyzga, R. E. (1995). Air-pollutioand mortality - issues and uncertainties.
Journal of the Air & Waste Management Associgtis(12), 949-966.

Lipsitz, S. R., Zhao, L. P., & Molenberghs, G. (82A semiparametric method of multiple
Imputation.Journal of the Royal Statistical SocieBeries B Statistical Methodology,
60(1), 127-144.

Little, R. J. A., & Rubin, D. B. (1987 btatistical Analysis with Missing DatBlew York:
John Wiley & Sons.

Logan, W. P. D. (1953). Mortality in London fog ident, 19521 ancet.264(1), 336-338.

Lord, F. M. (1955). Estimation of parameters fraradmplete datalournal of the American
Statistical Associatiarb0(271), 870-876.

Lumley, T., & Levy, D. (2000). Bias in the casessover design: Implications for studies of
air pollution.Environmetrics 11(6), 689-704.

Maclure, M. (1991). The case-crossover design ethad for studying transient effects on
the risk of acute eventdmerican Journal of Epidemiolog¥33(2), 144-153.

Marcus, A. H., & Kegler, S. R. (2001). Confoundingair pollution epidemiology: When
does two-stage regression identify the probl&n®@ronmental Health Perspectives
109(12), 1193-1196.

McBride, S. J., Clyde, M. A., & Marcus, A. (2002Jodeling Airborne Particulate Matter
Concentrations by Combining Data from Multiple Mims. Technical report,
Institute of Statistics and Decision Sciences.

McCullagh, P. (1980). Regression-models for ordd&h.Journal of the Royal Statistical
Society Series B-MethodologicdP(2), 109-142.

McCullagh, P., & Nelder, J. A. (1983peneralized Linear Modeldondon: Chapman and
Hall.

Meng, X. L., & Rubin, D. B. (1992). Performing likeood ratio tests with multiply-imputed
data setsBiometrikg 79(1), 103-111.

Morlini, I. (2006). On Multicollinearity and Concuty in Some Nonlinear Multivariate
Models.Statistical Methods and Applicatiorks, 3-26.

Morris, C. N., & Normand, S. L. (1992). Hierarchicaodels for combining information and
for meta-analysiBayesian Statistics @. M. Bernardo, J. O. Berger, A. P. Dawid
and A. F. M. Smith, eds.). Oxford: University Pre3281—-344.

Nadakavukaren, A. (20068pur Global Environment — A Health Perspectillnois:
Waveland Press.

284



Navidi, W. (1998). Bidirectional case-crossoverigas for exposures with time trends.
Biometrics 54(2), 596-605.

Navidi, W., & Weinhandl, E. (2002). Risk set samglifor case-crossover designs.
Epidemiology13(1), 100-105.

Neas, L. M., Schwartz, J., & Dockery, D. (1999)case-crossover analysis of air pollution
and mortality in Philadelphig&nvironmental Health Perspectivd€97(8), 629-631.

Nemery, B., Hoet, P. H. M., & Nemmar, A. (2001) eTiMeuse valley fog of 1930: An air
pollution disasterLancet 357(9257), 704-708.

Ngo, L., & Wand, M. P. (2004). Smoothing with mixetbdel softwareJournal of Statistical
Software, 91). Retrieved fronittp://www.|statsoft.org/v09/i01/paper

Nittner, T. (2004). The additive model affectedrbigsing completely at random in the
covariate Computational Statistic4)9, 261-282.

Nychka, D., Haaland, P., O’connell, M., & Ellner,($998). FUNFITS, data analysis and
statistical tools for estimating functions. In Nkeh D., Piegorsch, W. W. and Cox, L.
H. (eds),Case Studies in Environmental Statistidew York: Springer.

Ord, K. (1975). Estimation methods for models ddt&g interactionJournal of the
American Statistical Associatiprn0(349), 120-126.

Ostro, B. (1993). The association of air-polluteomd mortality - examining the case for
inference Archives of Environmental Health8(5), 336-342.

Pace, R. K., Barry, R., & Sirmans, C. F. (1998)at&p statistics and real estaleurnal of
Real Estate Finance and Economitg(l), 5-13.

Pace, R. K., & Lesage, J. P. (2004). Spatial siezgiand real estatdournal of Real Estate
Finance and Economic29(2), 147-148.

Patterson, H. D., & Thompson, R. (1971). Recovéinter-block information when block
sizes are unequdiometrika,58, 545-554.

Peng, R.D., & Welty, L. J. (2004). The NMMAPSdatecRageR News, 410-14. Retrieved
from http://cran.r-project.org/doc/Rnews/

Peng, R. D., Dominici, F., Pastor-Barriuso, R., &e&. L., & Samet, J. M. (2005). Seasonal
analyses of air pollution and mortality in 100 Uges. American Journal of
Epidemiology 161(6), 585-594.

Pinkse, J., & Slade, M. E. (1998). Contractingpace: An application of spatial statistics to
discrete-choice modeldournal of Econometrig85(1), 125-154.

Plaia, A., & Bondi, A. L. (2006). Single imputationethod of missing values in

285



environmental pollution data setsmospheric Environment0(38), 7316-7330.

Pope, C. A., Dockery, D. W., Spengler, J. D., &&aine, M. E. (1991). Respiratory health
and PMg pollution: a daily time series analysfanerican Review of Respiratory
Disease;144, 668-674.

Pope, C. A, Schwartz, J., & Ransom, M. R. (1982)ly mortality and PM, pollution in
Utah valley.Archives of Environmental Health7(3), 211-217.

Pope, C. A, Thun, M. J., Namboodiri, M. M., Dockdd. W., Evans, J. S., Speizer, F. E., &
Health, C. W., Jr. (1995). Particulate air pollatias a predictor of mortality in a
prospective study of U.S. adulsmerican Journal of Respiratory and Critical Care
Medicine,151, 669-674.

Preston, C. J. (1974%ibbs States on Countable Se&tambridge: Cambridge University
Press.

Priestley, M. B. (1981)Spectral analysis and time seri®&&ew York: Academic Press, Inc.

Rabl, A. (2006). Analysis of air pollution mortgliin terms of life expectancy changes:
relation between time series, intervention, andcdo$tudiesEnvironmental Health:
A Global Access Science Soursd,), 1-11.

Ramsay, T. O., Burnett, R. T., & Krewski, D. (20D3Bhe effect of concurvity in generalized
additive models linking mortality to ambient pauiate matterEpidemiology14(1),
18-23.

Ramsay, T. O., Burnett, R. T., & Krewski, D. (2003Bxploring Bias in a Generalized
Additive Model for Spatial Air Pollution Dat&nvironmental Health Perspectives,
111(10), 1283-1288.

Rice, J. A., & Silverman, B. W. (1991). Estimatithge mean and covariance structure
nonparametrically when the data are curdesirnal of the Royal Statistical Society
Series B-Methodologicab3(1), 233-243.

Roberts, S., & Martin, M. A. (2007). Methods foabireduction in time-series studies of
particulate matter air pollution and mortalilpurnal of Toxicology and
Environmental Health-Part a-Current Issy&@9(8), 665-675.

Robins, J. M., & Wang, N. S. (2000). Inferenceifoputation estimator8iometrikg 87(1),
113-124.

Roholm, K. (1937). The Fog Disaster in the MeuskeYa1930: A Fluorine Intoxicationthe
Journal of Industrial Hygiene and Toxicolod$, 126-137

Rothman, K., & Greenland, S. (1998)odern Epidemiology?"® ed.). Philadelphia:
Lippincott-Raven.

286



Rubin, D. B. (1978). Multiple imputation in samerveys — a phenomenological Bayesian
approach to nonresponse. Proceedding of the Semi@urvey Research Methods.
Alexandra, VA: American Statistical Association.

Rubin, D. B. (1980). lllustrating the use of mulkipmputations to handle nonresponse in
sample surveyi2"Session of the International Statistical Institut879, Book 2
517-532.

Rubin, D. B. (1987)Multiple Imputatin for Nonresponse in Survelew York: Wiley.

Rue, H., & Follestad, T. (2003gkaussian markov random fields models with applocato
spatial statisticsReport no. 5-2003. Trondheim, Norway, Norvegianvdrsity of
Science and Technology.

Samet, J. M., Dominici, F., Curriero, F. C., Coutda & Zeger, S. L. (2000a). Fine
particulate air pollution and mortality in 20 USies, 1987-1994New England
Journal of Medicing343(24), 1742-1749.

Samet, J. M., Zeger, S. L., Dominici, F., Dock@y, & Schwartz, J. (2000bJ.he National
Morbidity, Mortality, and Air Pollution Study Patt Methods and Methodological
IssuesHealth Effects Institute, Cambridge, MA.

Samoli, E., Touloumi, G., Schwartz, J., AndersonRH Schindler, C., & Forsberg B. (2007).
Short-term effects of carbon monoxide on mortabty:analysis within the APHEA
project.Environmental Health Perspectiveds, 1578-1583.

Schlesselman, J. J. (199@unse Control Studies: Design, Conduct, Analydeswy York:
Oxford University Press.

Schwartz, J., & Marcus, A. (1990). Mortality and pollution in London: A time series
analysisAmerican Journal of Epidemiologi31, 185-194.

Schwartz, J. (1991). Particulate air-pollution aady mortality in Detroit Environmental
Research56(2), 204-213.

Schwartz, J., & Dockery D.W. (1992). Particular@otlution and daily mortality in
Steubenville, OhioAmerican Journal of Epidemiolog}35(1), 12-19.

Schwartz, J. (1993). Air pollution and daily moitiain Birmingham, AlabamaAmerican
Journal of Epidemiology 37, 1136-1147.

Schwartz, J. (2000). The distributed lag betweepaliution and daily death&pidemiology
11(3), 320-326.

Schwartz, J. (2001). Is there harvesting in the@ation of airborne particles with daily
deaths and hospital admissioigiidemiology12(1), 55-61.

Scott, J. A. (1963). The London fog of Decembef2l8edical Officer,109, 250-252.

287



Schafer, J. L. (1997RAnalysis of Incomplete Multivariate Dataondon: Chapman & Hall.

Sheppard, L., Prentice, R. L., & Rossing, M. A.46R Design considerations for estimation
of exposure effects on disease risk, using aggeatgth studiesStatistics in
Medicine 15(17-18), 1849-1858.

Shima, M., & Adachi, M. (2000). Effect of outdoandhindoor nitrogen dioxide on
respiratory symptoms in schoolchildrénternational Journal of Epidemiologg29(5),
862-870.

Shrenk, H. H., Heimann, H., Clayton, G. D., Gafaf#r M., & Wexler, H. (1949)Air
pollution in Donora, PA: Epidemiology of the unuksmog episode of October 1948.
Washington, DC: Public Health Service.

Singer, J. D., & Willett, J. B. (2003\pplied Longitudinal Data Analysis: Modeling Change
and Event Occurrenc&lew York: Oxford University Press.

Slaughter, J. C., Lumley, T., Sheppard, L., Koedid)., & Shapiro, G. S. (2002). Effects of
ambient air pollution on symptoms severity and roatiibn usage in asthmatic
children.Annals of Allergy, Asthma, and Immunold@l, 346-353.

Smith, R. L. (2007). Air pollution risk. Retrievé@b-17-07, from
http://www.stat.unc.edu/postscript/rs/airpollutirstrpdf.

Spitzer, F. (1971). Markov random fields and GibhsemblesAmerican Mathematical
Monthly, 78(2), 142-154.

Stieb, D. M., Judek, S., & Burnett, R. T. (2002)etsl-analysis of time-series studies of air
pollution and mortality: Effects of gases and mdet and the influence of cause of
death, age, and seasdournal of the Air & Waste Management Associgtii4),
470-484.

Stieb, D. M., Judek, S., & Burnett, R. T. (2003)etsl-analysis of time-series studies of air
pollution and mortality: Update in relation to thee of generalized additive models.
Journal of the Air & Waste Management Associatis3(3), 258-261.

Stokes, M. E., Davis, C. S., & Koch, G. G. (200Dategorical Data Analysis Using The SAS
Systen{Second Ed.). Cary: SAS Inc.

Sunyer, J., Castellsague, J., Saez, M., Tobiag Anto, J. (1996). Air pollution and
mortality in Barcelonalournal of Epidemiology and Community Hea8@,
S76-S80.

Tanner, M. A. (1991)Tools for statistical inference-observed data aathcaugmentation
methods lecture notes in Statistics Bléw York: Springer.

Thurston, G. D., & Ito, K. (2001). Epidemiologicstudies of acute ozone exposures and
mortality. Journal of Exposure Analysis and Environmental Epitblogy 11(4),

288



286-294.

Touloumi, G., Samoli, E., & Katsouyanni, K. (199Bgily mortality and "winter type" air
pollution in Athens, Greece - a time series analysthin the APHEA project.
Journal of Epidemiology and Community Heatif, S47-S51.

Tsai, S. S., Goggins, W. B., Chiu, H. F., & Yang,YC(2003). Evidence for an association
between air pollution and daily stroke admissionKaohsiung, TaiwarStroke
34(11), 2612-2616.

Verbyla, A. P., Cullis, B. R., Kenward, M. G., & WWam, S. J. (1999). The analysis of
designed experiments and longitudinal data by usingothing splines (with
discussion)Applied Statistics48, 269-311.

Waller, L. A., & Gotway, C. A. (2004 Applied spatial statistics for public health data.
Hoboken, NJ: John Wiley.

Wellenius, G. A., Schwartz, J., & Mittleman, M. 005). Air pollution and hospital
admissions for ischemic and hemorrhagic stroke gnhdedicare beneficiaries.
Stroke 36(12), 2549-2553.

Welty, L. J., & Zeger, S. L. (2005). Are the acatftects of particulate matter on mortality in
the national morbidity, mortality, and air pollutictudy the result of inadequate
control for weather and season? A sensitivity aialysing flexible distributed lag
models. American Journal of Epidemiolog¥62(1), 80-88.

Whittle, P. (1954). On stationary processes inplhee.Biometrika,41, 434-449.

Wild, C. J., & Yee, T. W. (1996). Additive extene®to generalized estimating equation
methodsJournal of the Royal Statistical Society Series &Hddological 58(4),
711-725.

Wong, C. M., & Kohn, R. (1996). A Bayesian appro&zladditive semiparametric regression.
Journal of Econometric§4, 209-235.

WHO. (2005).Air quality guidelines. Global update 2005. Parlete matter, ozone,
nitrogen dioxide and sulfur dioxid&eneva: World Health Organization. Retrieved
from http://www.euro.who.int/Document/E90038. pdf

Wood, S. N. (2006). Low-rank scale-invariant tens@duct smooths for generalized
additive mixed modelBiometrics 62(4), 1025-1036.

Zanobetti, A., Wand, M., Schwartz, J., & Ryan, 20Q0). Generalized additive distributed
lag modelsBiostatistics,1, 279-292.

Zanobetti, A., Schwartz, J., Samoli, E., Grypakis,Touloumi, G., Atkinson, R., Le Tertre,

A., Bobros, J., Celko, M., Goren, A., Forsberg, Bichelozzi, P., Rabczenko, D.,
Ruiz, E. A., & Katsouyanni, K. (2002). The Temporattern of Mortality Responses

289



to Air Pollution. Epidemiology;13, 87-93.

Zeger, S. L., Liang, K. Y., & Albert, P. S. (1988)odels for longitudinal data - a generalized
estimating equation approaddiometrics 44(4), 1049-1060.

Zeger, S. L., & Diggle, P. J. (1994). Semiparancetrodels for longitudinal data with
application to cd4 cell numbers in HIV seroconvextBiometrics 50(3), 689-699.

Zeger, S. L., Dominici, F., & Samet, J. (1999). WHating-resistant estimates of air pollution
effects on mortalityEpidemiology10(2), 171-175.

Zeger, S. L., Thomas, D., Dominici, F., Samet, J.8¢hwartz, J., Dockery, D., & Cohen, A.
(2000). Exposure measurement error in time-setigles of air pollution: Concepts
and consequencesnvironmental Health Perspectivd98(5), 419-426.

Zemp, E., Elsasser, S., Schindler, C., Kunzli,®érruchoud, A. P., Domenighetti, G., Medici,
T., Ackermann-Liebrich, U., Leuenberger, P., Mo@n,Bolognini, G., Bongard, J. P.,
Brandli, O., Karrer, W., Keller, R., Schoni, M. Hschopp, J. M., Villiger, B.,
Zellweger, J. P., & Team, S. (1999). Long-term anbair pollution and respiratory
symptoms in adults (sapaldia studinerican Journal of Respiratory and Critical
Care Medicing159(4), 1257-1266.

Zhang, D., Lin, X. H., Raz, J., & Sowers, M. F. 989. Semiparametric stochastic mixed
models for longitudinal datdournal of the American Statistical Associati®8(442),
710-719.

Zhang, D., & Lin, X. (1999). Inference in generalizadditive mixed models by using
smoothing splines. Journal Royal Statistical Society B1, 381-400.

Zhang, D., & Davidian, M. (2004). Likelihood andrzhtional likelihood inference for
generalized additive mixed models for clustereé@ deturnal of Multivariate
Analysis,91(1), 90-106.

Zhang, H. (2002). On estimation and predictionsfoatial generalized linear mixed models.
Biometrics 58(1), 129-136.

Zidek, J. V., Wong, H., Le, N. D., & Burnett, R.996). Causality, measurement error and
multicollinearity in epidemiologyEnvironmetrics7(4), 441-451.

Zmirou, D., Barumandzadeh, T., Balducci, F., RitRey Laham, G., & Ghilardi, J. P. (1996).
Short term effects of air pollution on mortalitytime city of Lyon, France, 1985-90.
Journal of Epidemiology and Community Hea8, S30-S35.

290



