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ABSTRACT 

 

LUNG-CHANG CHIEN: Multi-city Time Series Analyses Of Air Pollution And Mortality 

Data Using Generalized Geoadditive Mixed Models 

(Under the direction of Shrikant I. Bangdiwala) 

 

Background  Here we introduce the generalized geoadditive mixed model (GGAMM), 

a combination of generalized additive model and linear mixed model with unified model 

structure for more flexible applications, to alternatively examine the influence of air 

pollution to human health. 

Methods  Extant air pollution and mortality data came from the National Morbidity, 

Mortality, and Air Pollution Study for 15 U.S. cities in 1991-1995. The PM10 main model, 

distributed lag model and four co-pollutant models used the GGAMM approach to 

analyze the effect of PM10, lag effects and co-pollutants on several mortalities, adjusting 

for day-of-week, calendar time and temperature. 

Objectives  First, the effects of PM10 on mortality are preliminarily examined; second, a 

jackknife-bootstrap method and a principal component analysis are proposed to handle 

potential convergence problems; third, some missing data imputation methods are 

evaluated in the GGAMM; fourth, the issues of multicollinearity and concurvity in our 

models are examined; fifth, comparisons of the GGAMM and 2-stage Bayesian 

hierarchical model are performed; sixth, three simulations are accomplished for 

investigating the influence of concurvity, multicollinearity and missing data imputation 

methods on estimates and smoothing functions.  
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Results  First, the effects of PM10 on mortality are preliminarily examined; second, a 

jackknife-bootstrap method and a principal component analysis are proposed to handle 

potential convergence problems; third, some missing data imputation methods are 

evaluated in the GGAMM; fourth, the issues of multicollinearity and concurvity in our 

models are examined; fifth, comparisons of the GGAMM and 2-stage Bayesian 

hierarchical model are performed; sixth, three simulations are accomplished for 

investigating the influence of concurvity, multicollinearity and missing data imputation 

methods on estimates and smoothing functions. 

Conclusions  The GGAMM provides an integrate model structure to concern national 

average estimates, city-specific estimates, smoothing and spatial functions simultaneously. 

Geographical data can immediately be used in the GGAMM without being affected by 

missing data, and nation-level smoothing functions can be fitted well by enough valid 

observations from all cities. These properties are not offered by 2-stage Bayesian 

hierarchical models, and recommended by using spatio-temporal data. 
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Chapter 1 

INTRODUCTION, LITERATURE REVIEW AND OBJECTIVES 

1.1. Introduction 

Air pollution has existed since the first fire was lit, but it is increasing in modern era. 

There are two main factors contributing to this serious problem around the world. First, 

the world population is increasing exponentially, especially in urban areas; second, the 

rapid growth of industries and affluent automobiles have led to a surge in the levels of 

fossil fuel combustion in developed and developing countries (Nadakavukaren, 2006). 

 The U.S. Congress passed the Air Pollution Control Act in 1955, the Air Pollution 

Control Amendments in 1960, the Clean Air Act in 1963, the Air Quality Act in 1967, the 

Clean Air Act Extension in 1970, and Clean Air Act Amendments in 1990 and 1997. The 

acts aimed to regulate air pollutant emission and related studies started to analyze air 

pollution elements, sources, and, most importantly, their influence on human health. 

Aerologists, environmentalists, ecologists, epidemiologists, and statisticians are 

collaborating to discover unknown factors that impact health in air pollutants.  

 Beginning with the London Fog in 1952, surveys, ecological studies, and early 

time-series studies began addressing air pollution issues in the 1950s and 1960s. 

Exposure assessment has evolved from the 1970s, and offers informative evidence to 

statisticians in analyzing air quality data. More significantly, an influential experiment 

about the health effects of air pollutants in America—the Six Cities Study—started in 

1973. The study drew upon 8,000 individuals in six U.S. cities, consistently monitoring 

health effects and gathering air quality data with sophisticated laboratory equipment and 
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techniques. The study spanned across 2 decades, establishing an initial standard for 

related research in air pollution around the world (Dockery, Pope, Xu, Spengler, Ware, 

Fay, Ferris, & Speizer, 1993).  

The U.S. government funds many organizations, allowing them to collect time series 

data, which offers a complete database for scientists to analyze air pollution issues. A 

well-known example, the National Morbidity and Mortality Air Pollution Study 

(NMMAPS), is one of the greatest projects concerning the influence of air pollution to 

human health in the U.S. It was led by the Department of Biostatistics at the Johns 

Hopkins Bloomberg School of Public Health, and is still maintained by the Internet-based 

Health & Air Pollution Surveillance System (iHAPSS), which is funded by the Health 

Effects Institute (HEI). This is arguably the most organized database as it includes 

numerous longitudinal mortality and morbidity sources, air pollution monitoring data, and 

weather condition records in 108 U.S. metropolitan areas from 1987 to 2000. In the 

NMMAPS, air pollution data is obtained from the AirData database collected by the U.S. 

Environmental Protection Agency. Daily mortality counts are retrieved from the National 

Center for Health Statistics, weather data is collected from the National Climatic Data 

Center, and census data is collected from the U.S. Census Bureau. 

As modern statistical tools—especially time series and longitudinal data analysis and 

computers—were quickly developed in ‘80s and ‘90s, many modern time series studies 

(Schwartz & Marcus, 1990) and multi-city studies (Daniels, Dominici, Samet, & Zeger, 

2000; Dominici, McDermott, Zeger, & Samet, 2003a; Dominici, McDermott, Zeger, & 

Samet, 2003b; Dominici, McDermott, Daniels, Zeger, & Samet, 2005) of air pollution 

and human health were published in succession. A third method for the design of air 

pollution-mortality studies is the case-crossover design. The idea is that the exposure of 

an individual exposed to an air pollutant immediately prior to some event, such as death, 

heart attack or stroke, is comparable the exposure of the same individual with the same air 
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pollutant during control times (Smith, 2007). A case-crossover analysis of particulate 

matter air pollution and out-of-hospital primary cardiac arrest was conducted in the 

Seattle region (Levy, Sheppard, Checkoway, Kaufman, Lumley, Koenig, & Siscovick, 

2001b). The first two methodologies have represented the main stream of air pollution 

research since the 1990s.  

In the applied statistical world dominated by linear models, more and more 

researchers discovered that their research purposes can hardly be satisfied by linear 

models due to not only some special data structures, but also unsatisfying the strict 

assumptions of model fitting. Hence, the frequency of using semiparametric models is 

becoming increasingly popular, and areas of application are more widespread than ever 

before. Semiparametric models have been developed, expanded, and applied to many 

areas of research and practical problems. Due to the flexibility semiparametric models 

offer, researchers have tried to adjust the model form to match with some special 

situations. The development of the generalized additive model (GAM) is an initial 

adaptation from general semiparametric models. Hastie and Tibshirani (1990) showed a 

somewhat complete introduction of the transition from additive model to generalized 

additive model with detailed statistical inference and extensions to other settings, such as 

the proportional-hazards model, proportional odds model, and seasonal decomposition of 

time series.  

At the same time, Breslow and Clayton (1993) developed the generalized linear 

mixed model (GLMM), which has dealt with many problems, especially in repeated 

measurements. However, in application, real data easily violates the assumptions of 

GLMM, such as non-Gaussian longitudinal data. In addition, the linear assumption may 

not always be satisfied, so the necessity of a nonlinear approach is increasing as more and 

more studies require one. Although Wild and Yee (1996) and Berhane and Tibshirani 

(1998) applied the generalized estimating equations approach (Liang & Zeger, 1986) to 
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the GAM, a solid framework of dealing with non-Gaussian data and nonlinear association 

was still unsolved. Lin and Zhang (1999) combined both structures of the GLMM and 

GAM to create an initial form of the generalized additive mixed model (GAMM) and its 

statistical inference. They also adapted the spirit of the penalized quasi-likelihood 

approach of Brewslow and Clayton (1993) to make approximate inferences by the double 

penalized quasi-likelihood (DPQL) approach. Moreover, a general Bayesian approach via 

MCMC sampling for inference in the GAMM with structured or unstructured random 

effects and spatial covariates was presented by Fahrmeir and Lang (2001a), to solve bias 

problems from binary data and correlated random effects. This Bayesian approach was 

also applied in multi-categorical response variables in time-space data (Fahrmeir & Lang, 

2001b). Besides using full Bayes posterior, the empirical Bayes posterior was later 

introduced in generalized additive mixed models with penalized splines for space-time 

data to offer more computationally efficient solutions (Fahrmeir, Kneib, & Lang, 2004). 

The GAMM can be improved with a spatial function, and was given a new name as the 

generalized geoadditive mixed model (GGAMM). The boundary data, coordinate data 

(longitude and latitude), centroid data, and kringing data can all be supported by the 

spatial function in the GGAMM. The geographical variation can be entirely performed by 

the spatial function in the GGAMM. In brief, the GAMM/GGAMM is a semiparametric 

model which can consider non-Gaussian data, linear factors, nonlinear smoothing 

functions, and spatial function simultaneously. It opened the bottleneck of the 

methodology of semiparametric modeling at the end of the last decade, and facilitated 

other researchers extending the theorems to more complicated cases, such as spatial 

analysis.  

The research group of the NMMAPS project primarily used the GAM approach as 

the preliminary application of time series regression analysis to a single city across a 

period of time. In order to solve the problems of organizing different model-fitting results 
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across many cities, researchers have taken a Bayesian approach to combine versatile 

estimation with the multivariate normal hierarchical model (Everson & Morris, 2000). 

They named the combination of the generalized additive model and the multivariate 

normal hierarchical model the 2-stage Bayesian hierarchical model. This process 

considers not only linear predictors of air pollutants, such as particulate matter (PM10 or 

PM2.5) or ozone, but also non-linear smoothing functions of time and weather conditions. 

Even though the concept is innovative, it is limited by the fact that no overall model 

structure can easily explain the two-stage Bayesian hierarchical model. The 

GAMM/GGAMM approach provides a unified model structure that fixed effects and 

random effects can represent nationwide average effects and marginal county-specific 

average effects, respectively. The general focus of this research is on how a novel 

statistical methodology, the GGAMM approach, can be applied in air pollution and 

human health time series studies. Based on the study design, it is necessary to look for 

more intuitive methods to describe the relationship of air pollution to human health with 

clearer interpretations and more advanced applications. More details are shown in the 

research motivations and objectives section. 

1.2. Literature review 

1.2.1. Historical events 

For centuries, people have gradually become conscious of the influences of air 

pollution on adverse health effects in response to several earlier dramatic episodes of 

severe air pollution invasion. These occurrences include Meuse Valley, Belgium in 1930 

(Firket, 1936; Fahrmeir, Kneib, & Lang, 2001), Donora, Pennsylvania in 1948 (Ciocco & 

Thompson, 1961; Davis, 2002; Fahrmeir, Kneib, & Lang, 1949), and London, England in 

1952 and 1962 (Brimblecombe, 1987; Logan, 1953). The episodes caused a sudden surge 
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of illness and death. For example, the four-day fog in 1952 killed approximately 4,000 

Londoners (David, 1994). Such events can be ascribed to human activities or industrial 

development. Some meteorological phenomena appear in another type of air pollution, 

and also have a severe impact on human beings. Sandstorms or dust storms have caused 

substantial damage in arid and semi-arid areas, such as Tucson, Arizona in 1971 and 

Melbourne, Australia in 1983. This meteorological phenomenon occurs regularly in East 

Asia and Africa, and their frequency is increasing each year. This can be regarded as a 

branch of air pollution research, and researchers also point out the short-term effects of 

dust storms on human health, especially in acute diseases (Chang, Hwang, Chan, Wang, 

& Cheng, 2007; Kwon, Cho, Chun, Lagarde, & Pershagen, 2002). 

The improvement of statistical analysis on epidemiological data also provides 

associated studies with more precision, coherency, and consistency based on different 

targets (acute or chronic disease), exposures (short-term or lifetime), and study designs 

(longitudinal study or panel study). Moreover, studies attempting to identify the unique 

effect of a specific air pollutant are often controlled for many confounding factors and 

adjusted for simultaneous exposure to a complicated mixture of co-pollutants (Dominici 

et al., 2003a). In order to consider multiple side-effects in model fitting, advanced 

statistical methods like Cox proportional hazard models (Cox & Oakes, 1984), 

generalized linear models for count data and binary time series data (Liang & Zeger, 1986; 

McCullagh & Nelder, 1989), generalized additive models (Hastie & Tibshirani, 1990), 

and Bayesian hierarchical models (Lindley & Smith, 1972; Morris & Normand, 1992) 

have been broadly applied in public health areas and epidemiological issues.  

1.2.2. Time series studies 

Time series studies can be regarded as the most powerful methodology for 
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identifying the relationship between time-varying air pollution exposures and 

time-varying mortality or morbidity counts. Other confounders, such as weather 

conditions (ex: temperature and humidity) or time variations (ex: day of week and season), 

can also be included in time series analysis. The discussions about the quantitative 

method for effects of air pollution, the change of mortality after change of exposure, 

relationship between age-specific mortality and life expectancy, and association between 

life expectancy change and mortality after intervention are discussed in Rabl's paper 

(2006). Most research has focused on mortality or morbidity because that data was 

collected by related government organizations day by day, corresponding to daily 

measurements from air pollution monitoring stations. Along with geographical 

information, it is also available to use time and spatial data to access the within and 

between subject-specific influences and differences in exposures (Bell, McDermott, Zeger, 

Samet, & Dominici, 2004a). 

The time factor is an important confounder in time series data. Due to its variation by, 

for example, seasonality, it is explicit that there is almost no purely linear relationship to 

mortality or morbidity. Hence, one needs to consider using the concept of the smoothing 

function to adopt a time factor into air pollution analyses. Two statistical tools are 

frequently used: generalized linear models (GLM) with parametric splines (e.g. natural 

cubic splines) (McCullagh & Nelder, 1989) and generalized additive models (GAM) with 

non-parametric splines, (e.g. smoothing splines) (Hastie & Tibshirani, 1990). The GAM is 

often used in air pollution and mortality studies because its smoothing functions are more 

flexible than the fully parametric fitting of the GLM (Dominici, Sheppard, & Clyde, 

2003c). The parameter of interest, β, in the GAM for mortality counts and air pollution 

research is usually interpreted as the percentage increase in mortality per 10-unit or 

100-unit increase in ambient air pollution levels (e.g. 10 µg/m3 in PM10 or PM2.5). 

Because of the flexibility of the GAM, both linear and smoothing functions can be easily 
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included into the analysis. Investigators have already concluded that the following 

potential confounding effects are important to include in the GAM: (a) the exposure of 

co-pollutants, (b) weather variations, and (c) long-term (season) and short-term (day of 

week) time trends (Bell, Samet, & Dominici, 2004b).  

Preliminary time series studies in epidemiology on the health effects of air pollution 

focused mainly on specific events or incidents which often had severe air pollutant 

invasion over the course of a few days, and caused increased mortality and morbidity 

(Davis, 2002). The London Fog Event (Bell & Davis, 2001), the Donora Death Fog 

(Davis, 2002) and the Meuse Valley Fog Disaster (Firket, 1936; Roholm, 1937) are 

examples of using severe air pollution episodes to examine the health influence of high 

air pollutant concentrations over several days. Time series analysis in air pollution 

episodes is an important index to evaluate the impact of highly dense air pollution in a 

short time; however, their results were not generalized to make conclusions and refer to 

other non-episodic periods.  

As more and more discoveries about air pollution and human health studies were 

made, researchers learned the necessity of addressing potential confounders to long-term 

analysis. But, early time series studies did not have overwhelming results due to the lack 

of suitable statistical models and restricted computational tools. Therefore, most of them 

only consider the population in a single location to discuss issues based on similar 

population patterns (Bell et al., 2004b). Fairley (1990) used the Poisson regression model 

to explore the association between suspended particulate matters and daily mortality in 

Santa Clara County, CA, from 1980 to 1986, and observed lower influence for health risk 

at higher concentrations of coefficient of haze (COH) compared with previous studies. 

Another similar research involving the Steubenville, Ohio, metropolitan area from 1974 

to 1984, showed a roughly 4% increase in mortality on the succeeding day along with an 

increase of 100 µg/m3 in particulate matters. However, after controlling for particulate 
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matters, it was not statistically significant in its association with sulfur dioxide (Schwartz 

& Dockery, 1992). Moreover, due to its geography, the floor of Utah Valley easily 

accumulates air pollutants when temperature drops down, especially in the winter season, 

which can cause high concentrations of PM10. Pope et al. (1992) also used the Poisson 

regression model with a 5-day moving average to evaluate related data from April 1985 

through December 1989. They found the 5-day moving average of PM10 concentration 

has the strongest association. In particular, a 100 µg/m3 increase of PM10 can cause an 

increase in death of about 16%, especially in respiratory and cardiovascular diseases. This 

study was noteworthy as it not only utilized the concept of multiple-day moving averages 

(up to 7 days), but also simultaneously considered the absence of co-pollutants SO2 and 

O3 (Bell et al., 2004a). Other single location time series studies are the St. Louis and 

Kingston study (Dockery, Schwartz, & Spengler, 1992), Birmingham study (Schwartz, 

1993) and Detroit study (Schwartz, 1991).  

While these studies have consistent results, none of them are generally representative 

due to the heteroskedasticity among locations and consistent research periods. A weighted 

average approach can roughly combine those results (Ostro, 1993). By organizing those 

analyses, it was concluded that the percentages of change in the daily mortality for each 

10 µg/m3 increase in PM10 are 1.0%, 3.4%, and 1.4% for total mortality, respiratory 

disease, and cardiovascular disease, respectively (Bell et al., 2004a). However, this is not 

a recommended method, especially since more advanced models have appeared.  

The criticisms of single location time series did not stop because of a lack of 

evidence to support the representation of their choices, or ignorance of spatial 

heterogeneity from either air pollutants or other confounders (Lipfert & Wyzga, 1993; Li 

& Roth, 1995; Dominici et al., 2003c). In order to improve the deficiencies of single 

location time series studies, multi-city study design offers a powerful alternative. A 

European study—Air Pollution and Health: a European Approach (APHEA)—is a 
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preliminary attempt to merge air pollution and all cause mortality data from 12 European 

cities to carry out a combined quantitative analysis (Katsouyanni, Touloumi, Spix, 

Balducci, Medina, Rossi, Wojtyniak, Sunyer, Bacharova, Schouten, Ponka, & Anderson, 

1997), but a more concrete method was not presented until 2000 in the report from the 

National Morbidity, Mortality, and Air Pollution Study (NMMAPS) (Samet, Dominici, 

Curriero, Coursac, & Zeger, 2000a; Samet, Zeger, Dominici, Dockery, & Schwartz, 

2000b). These studies showed a 2-stage Bayesian hierarchical model to manipulate 

multi-city data, and handled some unsolved problems from single location time series 

studies. The basic concept was to use the GAM to fit a relevant city-specific model for 

each city, and then apply a Bayesian method to merge all coefficients of interest, i.e. 

city-specific air pollution effects, into a nationwide air pollution effect based on some 

priors. Additionally, they also used the Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) (Green, 1995) as the criterion for picking knots in smoothing functions 

(Dominici, Daniels, Zeger, & Samet, 2002a).  

Today, this methodology has become the standard for speculating air pollution’s 

impact to human health. Along with the well-organized NMMAPS online database, 

anyone can conveniently download it from the Internet, which facilitates the application 

of 2-stage Bayesian hierarchical models to more air pollution studies. An extension of the 

GAM is the distributed lag model, which is often used to handle the possible lag effects in 

the air pollution effect to mortality. The distributed lag effect was presented as early as 

1965 for capital appropriations and expenditures (Almon, 1965), but in recent years, more 

and more analyses are using the same concept in air pollution and mortality studies with 

the GAM (Zanobetti, Wand, Schwartz, & Ryan, 2000; Zanobetti, Schwartz, Samoli, 

Gryparis, Touloumi, Atkinson, Le Tertre, Bobros, Celko, Goren, Forsberg, Michelozzi, 

Rabczenko, Ruiz, & Katsouyanni, 2002). Because the entire model structure does not 

fundamentally change but adds more variables for lag effects, it is also available to 
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transform to the 2-stage Bayesian hierarchical model for multi-city time series studies.  

The number of cities selected in multi-city time series studies varies from 4 to 109 in 

the U.S. In the 4 U.S. city study, the authors did not use a 2-stage Bayesian hierarchical 

model, but applied a fixed effect model with weights Wc=(Vc)-1 or Wc=(D+Vc)-1 to 

combine the estimated coefficients across cities, where Vc is the covariance matrix in 

each city, and D is a diagonal between-city covariance matrix (Dominici et al., 2003a). In 

addition, they also used different kinds of discrete Fourier decompositions (Bloomfield, 

1976; Priestley, 1981) for time factors from a high frequency component (less than 3 days) 

to a low frequency component (more than 2 months). Compared with the logarithm of 

relative risks among different timescales, they found the lower frequency component (i.e. 

longer timescale) has a greater effect which reflects a greater biologic impact on chronic 

exposures than on acute exposures.  

The extension to the 20 U.S. city study from 1987 to 1994 considered other possible 

co-pollutants (O3, NO2, SO2, CO) besides PM10 and some specific diseases (Samet et al., 

2000a). Researchers used a 2-stage log-linear regression model, fitting a separate 

log-linear regression of the daily mortality on air pollutant measurements for each city, 

and pooled all estimates of the relative mortality rates associated with specific air 

pollutants by a Bayesian statistical approach (Gelman, Carlin, Stern, & Rubin, 1995). In 

this study, the increase of the estimated relative rate of all death is 0.51% (95% CI: 0.07%, 

0.93%) per 10 µg/m3 increase in PM10, and slightly rises to 0.68% (95% CI: 0.20%, 

1.16%) for cardiovascular and respiratory disease. Besides PM10, the univariate effect of 

ozone levels during a one-year period was also examined, but strong evidence was not 

found when ozone levels were the highest during the summer.  

A similar case with 20 U.S. cities, 19 of which were included in Samet et al. (2000a) 

is discussed by Dominici, Samet and Zeger (2000a). Dominici also used a 2-stage 

Bayesian hierarchical model to analyze the data. The main difference between Dominici 
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et al. (2000a) and Samet et al.(2000a) is that Dominici and her colleagues used a separate 

GAM with five smoothing functions in the first stage, and provided a preliminary 

framework of 2-stage Bayesian hierarchical model that has often been used in following 

years. Two air pollutants (PM10 and O3) and two lag effects (1-day lag and 2-day lag) 

were considered in this study. When only PM10 was included in the analysis, a 10 µg/m3 

increase was associated with 0.48% increase in mortality. When adjusted by O3, this 

association was slightly increased to 0.52%.  

Some multi-city time series studies in ozone have pointed out that ozone has a 

positive association with mortality. For example, a 95 U.S. city study confirmed 

statistically significant results that a 10-ppb increase in ozone in the previous week, can 

cause a 0.52% (95% CI: 0.27%, 0.77%) and a 0.64% (95% CI: 0.31%, 0.98%) increase in 

daily non-injury-related mortality and cardiovascular/respiratory mortality, respectively 

the following week (Bell et al., 2004a). A more completed meta-analysis of time series 

studies of ozone and mortality can be found in Bell, Dominici and Samet (2005).  

As related theories matured, researchers not only considered increasing locations in a 

study, but also used more hierarchical levels to build statistical models. The idea of 

geographic regions was being implemented to explore their heterogeneity in order to 

estimate regional air pollution mortality dose-response curves (Dominici et al., 2002a). 88 

cities were divided into seven geographic regions (Northwest, Upper Midwest, Industrial 

Midwest, Northeast, Southern California, Southwest, and Southeast). Although detailed 

about how the cities were grouped is unknown, the criterion of these geographic divisions 

is still followed by other studies using the NMMAPS database. It was no surprise that a 

positive relationship between PM10 concentration and total mortality with a 0.5% increase 

for a 10 µg/m3 increase in PM10 was found. More innovative discoveries are the 

differences between regional-adjusted and regional-unadjusted results. Researchers also 

found the strongest adverse effect of PM10 appeared in Northeast region, where the 
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increase of mortality was double compared to other regions. Moreover, a hierarchical 

spline model was also constructed to investigate the nonlinear relationship between PM10 

and mortality by replacing the linear term of PM10 with a smoothing function of PM10. 

The purpose of using the hierarchical spline model was to derive PM10 mortality 

dose-response curves. The reversible jump Markov chain Monte Carlo (RJMCMC) was 

also used to pool seven regional dose-response curves into a national dose-response curve. 

The same study design for exploring geographical variation was also showed in Dominici 

et al. (2003b). 

A seasonal analysis using 100 U.S. cities from 1987 to 2000 provided another view 

point for accessing the variation of PM10 in different seasons (Peng, Dominici, 

Pastor-Barriuso, Zeger, & Samet, 2005). In previous studies, whether with single location 

or multi-city, all coefficients of target air pollutant were fixed, which means they were not 

time-varying. However, in Peng et al. (2005), the coefficient of target air pollutant 

becomes a function of time �
�6�. They showed a sine/cosine model for �
�6� for the 

purpose of estimating smooth seasonal patterns in the city-specific log relative rates, and 

a pollutant × season interaction model for estimating PM10 log relative rates. From their 

results, the summer season has the highest increment in mortality as a 10 µg/m3 increment 

in PM10 with a value of 0.36% (95% CI: 0.11%, 0.61%). When considering geographic 

regions, the Northeast has the strongest seasonal pattern, especially in the summer. 

The distributed lag model can also apply all model modifications in previous papers. 

Welty and Zeger (2005) used 109 cities in the NMMAPS database to analyze temperature 

with seasonally and temporally varying coefficients and nonlinear temperature covariates. 

They concluded that there is a consistency with previous studies in the national average 

estimates of PM10 relative risk and robustness in model specification controlling for 

weather and seasonal trends. 

Today, time series analysis is increasingly popular in air pollution studies in the U.S. 
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This is mainly because many well-organized databases contain all the data necessary for 

this analysis. These databases not only provide a convenient data source for researchers, 

but also effectively prevent a time-consuming data collection process and curb costs. 

However, time series study is not without limitation. Users need to pay closer attention 

than they do to other study designs when controlling for season and time trend. The 

number of lags included in models must also be taken into account as it is difficult to 

balance considering possible lag effects and avoiding the appearance of a concurvity 

problem which can result in underestimating the variance of effect estimates (Ramsay, 

Burnett, & Krewski, 2003a; Morlini, 2006). In addition, the aggregation over the 

population in time series studies may cause bias in estimated coefficients (Dominic et al., 

2003c). 

1.2.3. Other epidemiological study designs 

Time series study design is not always optimal. When research groups have different 

research purposes, or restricted funding, time, and data sources, it is advisable to use 

alternative methods when approaching air pollution and mortality issues. For example, 

the case-crossover design, a modification of the case-control design (Breslow & Day, 

1980; Schlesselman, 1994), was developed by Maclure (1991) from his study of acute 

transient effects of intermittent exposures, and has been extended to some air pollution 

and mortality data in Philadelphia (Neas, Schwartz, & Dockery, 1999), Seoul (Lee & 

Schwartz, 1999), Seoul (Lee & Schwartz, 1999), Australia and New Zealand (Barnett, 

Williams, Schwartz, Neller, Best, Petroeschevsky, & Simpson, 2005). By definition, the 

"case or index time" is a hazard period which is the time frame right before the disease or 

event onset, and the "control or reference time" is a control period which is a specified 

interval other than the hazard period. Researchers collect individual information from 
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subjects who had the disease or experienced the event, and test for consistent 

relationships between the disease and the exposure, while minimizing the possibility of 

confounding. The target of case-crossover study design is to estimate the odds ratio of 

effect by dividing the number of subjects who were exposed under specific 

circumambience during case or index time by those exposed during the control or 

reference time. Adjusted odds ratios are easily estimated by conditional logistic regression 

models (Agresti, 1990; Stokes, Davis, & Koch, 2000). For instance, Neas et al. (1999) 

calculated that a 100 µg/m3 increment in the 48-hr mean level of total suspended 

particulate matter (TSP) was associated with increased all-cause mortality with an odds 

ratio of 1.056 (95% CI: 1.027, 1.086), with the odds ratio of death due to cardiovascular 

disease being 1.063 (95% CI: 1.021, 1.107) after adjusting for the same weather variables 

in Philadelphia. The case-crossover design can not only consider individual information 

(ex: age, sex, health status and behavior factors) to identify the susceptibility of subjects 

to the influence of air pollution, but also allow seasonal and secular trends by 

bi-directional selection of control periods (Jaakkola, 2003). However, it has been proved 

that this approach has approximately 50% lower power than the time series method 

(Bateson & Schwartz, 1999), and bias easily arises from time auto-correlated effects 

(Navidi, 1998; Bateson & Schwartz, 1999; Lumley & Levy, 2000; Levy, Lumley, 

Sheppard, Kaufman, & Checkoway, 2001a) and overlapped index time periods (Austin, 

Flanders, & Rothman, 1989; Lumley & Levy, 2000). Some solutions for these problems 

are conveyed in Navidi (1998), Lee and Schwartz (1999), Neas et al. (1999), Navidi and 

Weinhandl (2002) and Lumley and Levy (2000). 

When it is allowable to collect individual information and track personal exposure 

measurements consistently for air pollution related research issues over time to 

investigate changes in repeated outcomes, a panel study is an appropriate design to handle 

such longitudinal data analysis. In details, a panel study design in air pollution research 
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often studies N individuals over a well-defined period (length = T), and collects health 

outcome measurements repeatedly for some time points during this period. The exposure 

measurement of air pollutants can be from a specific air pollution monitoring station 

which is close to the location where individuals receive the test, or from personal 

monitors distributed by well-trained instructors. Modern statistical models of longitudinal 

data analysis (Diggle, Liang, & Zeger, 1994; Singer & Willett, 2003) have been applied to 

estimate the effects of air pollutants on human health in panel study design research, 

including mixed, marginal, and transition models. Generalized linear models with 

generalized estimating equations (GEE), which can reduce the bias caused from an 

improperly specified working matrix, becomes an alternative choice for non-normally 

distributed response variables in panel data (Liang & Zeger, 1986; Zeger, Liang, & Albert, 

1988). Along with the progress of Bayesian analysis, Bayesian hierarchical models are 

also broadly used to handle complicated variance structures induced by panel data. In 

addition, the advent of the faster Markov chain Monte Carlo (MCMC), has made it 

possible to do the calculations on these complex models, thus rendering the Bayesian 

hierarchical approach more practical (Gelman, Carlin, Stern, & Rubin, 2004). In air 

pollution and human health research, panel study design provides a contribution to 

investigate chronic diseases, such as asthma symptoms and lung function exacerbation. 

Some literature includes McCullagh (1980), Heagerty and Zeger (1996), Slaughter, 

Lumley, Sheppard, Koenig and Shapiro (2002) and Lagorio, Forastiere, Pistelli, Iavarone, 

Michelozzi, Fano, Marconi, Ziemacki and Ostro (2006). 

The panel study design is very popular because it is able to incorporate personal 

exposure feasibly, estimate within and between-subject effects separately, control for 

subject-specific covariates, and target subpopulations easily (Dominici et al., 2003c). 

However, it can be difficult to recruit samples large enough to provide enough power, and 

subjects often drop out of study in the middle of research period for various reasons. 
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Another serious problem is that the study design is vulnerable to test threat, which 

violates internal validity because subjects often become primed to measurement 

instruments after repeated interviewing, thus making the sample atypical. 

In the cohort study, subjects who have certain conditions and share common 

experiences receive a particular treatment and are followed over time and compared with 

another group who is thought of as the unexposed, or not affected by the condition under 

investigation. A cohort group is often defined as a group of individuals who are linked in 

some way or who have experienced the same significant life event within a given period 

(Rothman & Greenland, 1998). They can be either retrospective (looking back in time) or 

prospective (following cohorts over a time period). In air pollution and mortality study, 

the exposure variable is a measurement of cumulative air pollutants. The parameter of 

interest is the relative risk of disease incidence or death with high versus low air pollution 

exposure. The Cox proportional hazards (PH) model is a statistical tool in survival 

analysis (Cox & Oakes, 1984; Clayton & Hills, 1993), and is often used to assess the 

relationship between mortality and air pollution, especially to estimate mortality rate 

ratios for air pollutants by adjusting for other potential confounding factors. This model 

has been applied to many prominent cohort studies in air pollution research and health 

research, such as the Harvard Six Cities study (Dockery et al., 1993), American Cancer 

Society (ACS) study (Pope et al., 1995), and California-based Adventist Health and Smog 

(AHSMOG) study (Abbey et al., 1999). The participants enrolled in these studies are 

from 6,000 to 550,000 subjects. A basic assumption is that each subject within the city 

was assumed to have the same exposure level. In the Harvard Six Cities Study, air 

pollution has a significant influence in cardiopulmonary and lung disease, and the 

adjusted mortality-rate ratio for the most polluted city was 1.26 times (95% CI: 1.08, 1.47) 

higher than the least polluted city. In the ACS study, the adjusted relative risk ratios of 

all-cause mortality for the most polluted areas compared with the least polluted is 1.15 
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(95% CI: 1.09, 1.22) and 1.17 (95% CI: 1.09, 1.26) when using sulfate and fine 

particulate measurements, respectively. The AHSMOG study pointed out that long periods 

of residence and work location in areas of high ambient air pollution were associated with 

increased mortality.  

1.2.4. Extended issues in air pollution and mortality studies 

Even as statistical analyses have improved and progressed more precisely and in 

sophistication, the challenge of air pollution and human health research never ends 

because the natural properties of this issue still exist: large populations are exposed at low 

air pollution levels, so small relative risks should be detected with high statistical power 

(Dominici et al., 2003c). Scientists are still making efforts to discuss further related topics 

in this area. Some research opportunities either solved or yet to be solved are discussed 

below. 

a) Multi-pollutant models 

From previous literature, most studies have only focused on one main air pollutant 

effect. Particulate matter (PM10 or PM2.5) has been identified as the main factor of air 

pollution contributing to adverse health. Thus, particulate matter has become the primary 

target of most air pollution research. Ozone is the second factor attracting attention. Some 

studies using more than one air pollutant in statistical models assigned a main factor (PM 

or O3), and then regarded other air pollutants as confounders. We realize that any single 

air pollutant cannot act in the air without mixing and interacting with other air pollutants. 

However, little research discusses 2-pollutant models or 3-pollutant models. Chan et al. 

(2006) applied 2-pollutant models and 3-pollutant models to analyze air pollution 

influences in hospital emergency room visits for cerebrovascular diseases in Taipei. Many 
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distributed lag models incorporated with the GAM identified simultaneous mixture 

effects by 2-pollutant models (O3+CO, O3+PM2.5, O3+PM10, CO+PM2.5 and CO+PM10) 

and 3-pollutant models (O3+CO+PM2.5 and O3+CO+PM10). In detail, they found O3 and 

CO were more significantly associated with cerebrovascular admissions than PM10 and 

PM2.5 in 2-pollutant models. O3 had a significantly current effect in cerebrovascular 

diseases, but PM10’s and PM2.5’s effects were deferred to a 3-day lag. Particularly, CO had 

a significant 2-day lag effect on stroke, but the associations with other air pollutants were 

very weak. Other multi-pollutant model research can be seen in Wellenius, Schwartz and 

Mittleman (2005), Tsai, Goggins, Chiu and Yang (2003) and Le Tertre, Medina, Samoli, 

Forsberg, Michelozzi, Boumghar, Vonk, Bellni, Atkinson, Ayres, Sunyer, Schwartz and 

Katsouyanni (2002). 

b) Multicollinearity and concurvity 

Two potential problems recurrent in multi-pollutant models and distributed lag 

models are multicollinearity and concurvity, which change the direction of estimated 

parameters and present biases. Multicollinearity appears commonly among highly 

correlated linear factors, especially in lag effects. Concurvity can be regarded as a 

nonparametric analogue of multicollinearity, and often shows up among smoothers 

(Ramsay et al., 2003a). Since regression models were introduced, the task of dealing with 

multicollinearity problems has never ended. Generally speaking, concurvity in 

nonparametric and semiparametric models can cause following problems: 1) 

underestimated standard errors of parameters; 2) confidence intervals that are too narrow; 

3) understated p-value; 4) greater type I error (Figueiras, Roca-Pardiñas, & 

Cadarso-Suárez, 2003). All four problems emanate from the same source. As concurvity 

exists, underestimated standard errors of parameters cause narrow confidence intervals, 
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which commit over threefold type I error along with smaller p-values. Concurvity often 

appears in modern air pollution and mortality research because most of the current studies 

use the GAM to analyze data. It is especially common for this to happen in the smoothing 

function of time because smoothing functions are typically used to adjust for possible 

autocorrelation. If a variable has a temporal trend and a linear effect on mortality 

simultaneously, the variable becomes a function of time (Ramsay et al., 2003a). 

Meanwhile, the time factor as the strategy of solving the concurvity problem in this issue 

cannot be ignored. The concurvity issue must be faced as many studies about air pollution 

and mortality have already confirmed the existence of concurvity in their analyses 

(Dominici et al., 2002b; Ramsay et al., 2003a). 

So far, there is no strict criterion to identify the level of concurvity which can 

severely affect model fitting. Ramsay et al. (2003a) suggested using 0.5 to be the cutoff 

point. If the level of concurvity in nonparametric or semiparametric models is greater than 

0.5, it is necessary to seek in order to eliminate or reduce this problem. Currently, 

researchers pay more attention to concurvity than to multicollinearity in this area. As a 

result, multicollinearity has been well-addressed in parametric linear models (Farrar & 

Glauber, 1967), but there is less advanced development in nonparametric or 

semiparametric models. Zidek, Wong, Le and Burnett (1996) discussed causality, 

measurement error, and multicollinearity in epidemiology, but only presented the 

existence of the three problems without further inference or solutions. The method of 

handling the concurvity problem has not been proposed either. An initial parametric 

bootstrap method was presented by Ramsay et al. (2003a). However, it failed to have 

satisfactory results, and returned to suggest replacing smoothers having concurvity by 

parametric methods with B-splines or natural splines. Nonetheless, the parametric method 

is not perfect because a parametric smoother cannot always be setup with enough 

flexibility to consider the possible time trend. Therefore, a nonparametric approach was 
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created by using a conditional bootstrap method which provides two advantages: 1) 

calculating bias-free estimated standard error of any linear predictor; and 2) persisting 

partial reduction of the residual bias when strict convergence criteria are applied 

(Figueiras et al., 2003, Figueiras, Roca-Pardiñas, & Cadarso-Suárez, 2005). Comparing 

non-corrected and bootstrap corrected results from simulations, the relative bias of the 

estimated coefficient reduces 3.6%-12.1% along with the concurvity coefficient from 

0.56-0.90 as the bootstrap method is applied. Without correction, the coverage of the 

confidence intervals slumps from 0.94 to 0.66 as the concurvity coefficient raises from 0 

to 0.90; however, there is almost no change in the coverage of the confidence intervals 

with the bootstrap correction (Figueiras et al. 2003). A reanalysis was published by 

Figueiras et al. (2005).  

The bias from concurvity also appears in spatial air pollution data. Suppose (X1,X2) 

is the spatial location (e.g. longitude and latitude) of a given place, and f(X1,X2) is the 

spatial function along with a linear factor X3 in a GAM. We can also detect the concurvity 

coefficient by fitting the model X3=h(X1, X2) to get its correlation coefficient, where h(.) 

can be any smoothing function (e.g. LOESS). From simulation, when concurvity 

coefficient is getting worse (i.e. concurvity coefficient > 0.5), Ramsay, Burnett and 

Krewski (2003b) confirmed the bias of estimated coefficients is raised along with inflated 

type I error. However, previous research showed the level of bias is up to the size of 

estimated coefficient. Meanwhile, if the true effect of linear factor is large enough, the 

bias coming from the concurvity in a GAM with a spatial smoothing function can be 

ignored (Dominici et al., 2002b). 

c) Missing data 

It is inevitable that air pollution measurements have some missing data from air 
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pollution monitoring stations. The levels of missing data from different air pollution 

monitoring stations also vary. For example, compared among those cities in the 

NMMAPS database, larger cities generally have less missing data than smaller cities. 

Among air pollutants, PM2.5 tends to have more missing data than other air pollutants 

because it was not included in the NAQQS air quality standards until later. Sometimes, 

PM10 is measured once or twice per week, resulting in six or five missing PM10 

measurements within a week. The most immediate impact of the missing data in 

statistical analysis is that it produces bias in parameter estimation, and several methods 

have been proposed based on the missing data patterns and mechanisms (Plaia & Bondi, 

2006). 

After 1970, missing data analysis started to bloom in statistical models or 

methodologies, and data imputation approaches were also being published at the same 

time. The methodology of multiple imputation gradually occupied a dominant role, and 

was preliminarily applied in sample surveys (Rubin, 1978; Rubin, 1980). However, a 

comprehensive methodology of multiple imputation was not presented until 1987 (Rubin, 

1987), and the other multiple imputation approaches were generally developed based on 

Rubin’s theorems. 

The problem of missing data was not emphasized much in air pollution and mortality 

studies. Although most publications used complete case analysis (CCA), which means all 

missing data would be deleted from model fitting, researchers were not necessarily aware 

of it—especially in the distributed lag model. Many particulate matter studies have 

confirmed that daily mortality is associated with air pollutants (e.g. PM10 or PM2.5) in the 

previous few days (Schwartz, 2000). Roberts and Martin (2007) created a GAM for 

imputing the missing PM concentrations: 

 :�� � !�6A5B�,  " � 6� , !�DEA�,  " � 3� , !�6,  " � 4 H #JK5L!�  
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where tmaxt and humt are maximum temperature and minimum relative humidity on day t, 

respectively. They also suggested the possibility of extending the imputed model with 

other co-pollutants, but the limitation is that the data completeness of other co-pollutants 

is also uncertain. Zanobetti and his colleagues (2000) also proposed a similar imputed 

model to handle the missing data issue in their generalized additive distributed lag model. 

The imputed model is an additive model: 

M� � N H M��O , "O�A73. 6KA+�� , "9�LK/567PK. DEA7 �� , "Q�6� , KLL4L�, 
which can explain about 70% of the variability of the dependent variable. 

Another method which has been used to handle missing air pollutant measurements 

is data augmentation (Tanner, 1991) within the Gibbs sampler (Geman & Geman, 1984). 

All missing data was generated and imputed by a conditional distribution of vectors of 

missing covariates (Zcm), given vectors of observed covariates (Zco) were established as a 

multivariate normal distribution iteratively (Dominici et al., 2002a). This method was also 

applied in a discussion of a measurement error model (Dominici, Zeger, & Samet, 

2000b). 

Besides the aforementioned issues, more research opportunities are still worthy of 

making efforts to improve, for example, misaligned environmental pollutants and health 

data which are measured at different scales of temporal and spatial resolution (Zanobetti 

et al., 2000; Schwartz, 2001), measurement error from using central air pollution 

monitoring stations’ data to indicate individual exposure (McBride, Clyde, & Marcus, 

2002; Dominici et al., 2000b; Carroll, Ruppert, & Stefanski, 1995; Zidek et al., 1996), 

and mortality displacement if the near-death individuals have passed away by the effects 

or side-effects of other diseases (Zeger, Dominici, & Samet,1999; Schwartz, 2001).  

1.2.5. Spatial regression models 
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A spatial data set consists of a collection of observations that can be spatially located, 

and the source of spatial data includes maps, census data, air photographs, etc. It 

generally comes in three basic forms:  

1) Map data: A map data set contains points, lines and polygons. Points 

represent the coordinate (x, y) of any fixed object on the surface of the earth. 

Lines represent an object with length, such as streets and rivers. Polygons 

represent natural, political, and administrative boundaries. An advanced map 

data named topographic map, supplies a detailed depiction of the earth with 

roads, rivers, buildings and numerous mapped objects (Kraak & Ormeling, 

1996). 

2) Attribute data: Attribute data also names tabular data, which is the descriptive 

data that geographic information system (GIS) links to map features. As 

collecting and compiling data for areas like states and cities, it generates map 

data packages, and can be implemented in a GIS. 

3) Image data: This kind of data is often collected from satellite images and 

aerial photographs. Images can immediately and efficiently reflect the truest 

display from the surface of the earth. Image data is also easily cooperated 

with other map features which support the format of images.  

Due to the diversity of map data, many spatial data sources provide enormous and 

organized databases from governmental units, such as U.S. Geological Survey(USGS), 

Census Bureau, Environmental Protection Agency, NASA, and many state-level data 

centers. Some commercial data sources are also available, such as Spatial Insights Inc., 

Geography Network, and GeoCommunity GIS Data Depot. These spatial data sources 

store different quantitative geographical data which can be applied in appropriately spatial 

regression models for the purpose of investigating the geographic impact on select 
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research targets.  

Early developments in the statistical methodology of estimating spatial regression 

models can be traced back to a pioneer study of stationary processes in the plane (Whittle, 

1954). Along with the maturity of statistical methodology, the approaches of estimating 

spatial interaction terms in modeling were proposed in the mid 70s (Besag, 1974; Ord, 

1975). The influence and test of autocorrelation from spatial effects were also introduced 

during the same decade (Cliff & Ord, 1972; Cliff & Ord, 1973). The maturity and 

application of spatial modeling showed substantial progress in diagnostics for spatial 

dependence and heterogeneity, spatial econometrics (Anselin, 1988), advanced Statistics 

(Griffith, 1988; Cressie, 1993), and social and environmental science (Haining, 1990) in 

the late 1980s and early 1990s. 

Several spatial functions can embed distinguished spatial covariates with different 

kinds of geographical data, such as Markov random fields (Spitzer, 1971; Preston, 1974), 

Gaussian random fields, low rank kriging (Nychka, Haaland, O’connell, & Ellner, 1998), 

and anisotropic spatial effects (Chiles & Delfiner, 1999). In particular, Markov random 

fields have been widely used because they succeeded the concept of Markov chain to 

perform an image chain, which can connect a site with its neighbors with a conditional 

probability, but keeps independent to the other sites. Meanwhile, this probability provides 

the relationship to any couple of geographical sites s and s’ only if they share a common 

boundary or within a specific distance (Kneib, 2006a). Therefore, a Markov random field 

is a conditionally specific spatial model, which joint probability of spatial random 

variables is not constructed immediately, but established by a set of conditional 

probabilities (Huang, 2000). In the beginning, it has the difficulty that, given a 

conditional probability, it is not guaranteed that there exists a stochastic process 

containing the distribution of this conditional probability, but it was solved by 

Hammersley and Clifford (1971), who found that Markov random fields can be 
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equivalently characterized by a Gibbs distribution. This is so-called Hammersley-Clifford 

theorem, and a series of Markov random fields was established by Besag (1974) based on 

this theorem. 

Now spatial analysis has been applied in many areas, such as social science 

(Goodchild, Anselin, Appelbaum, & Harthorn, 2000), public health (Waller & Gotway, 

2004), Ecology (Fortin & Dale, 2005), Econometrics (Arbia, 2006; Anselin & Rey, 1997; 

Florax & van der Vlist, 2003; LeSage, Pace, & Tiefelsdorf, 2004) and Finance (Pace, 

Barry, & Sirmans, 1998; Pace & LeSage, 2004). Different study designs with specific 

data structure can also implemented in different types of spatial regression models, like 

the spatial econometrics of panel data (Elhorst, 2003; Anselin, Le Gallo, & Jayet, 2006), 

the analysis of spatial latent variables (Pinkse & Slade, 1998; Fleming, 2002), Bayesian 

inference of spatial autoregressive models (LeSage, 2000), and spatial generalized linear 

mixed models (Gotway & Stroup 1997, Zhang 2002, Gotway & Wolfinger 2003). 

1.2.6. Generalized additive mixed models 

The generalized additive mixed model was not established suddenly, but rather came 

about through gradually integrating many elements from different research. First, the 

generalized additive model offered methodology to match the structure of the generalized 

linear model (Hastie & Tibshirani, 1990). However, both nonparametric regressions and 

GAMs lack the ability to deal with correlated data, especially time series data. Initially, 

Hart (1990) showed a failure of cross validation when estimating the smoother parameter 

when data was positively correlated, and provided a modification in kernel regression 

estimation. A similar method of estimating the mean and covariance nonparametrically 

under the assumption that it is smooth with a modified cross-validation was proposed by 

Rice and Silverman (1991). Until the late 90s, some ideas about using linear mixed 
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models controlled by a nonparametric time function were finally developed (Zeger & 

Diggle, 1994; Zhang, Lin, Raz, & Sowers, 1998; Verbyla, Cullis, Kenward, & Welham, 

1999). Furthermore, the approach of generalized estimating equations (Liang & Zeger, 

1998) was also incorporated within the GAM for non-Gaussian longitudinal data (Wild & 

Yee, 1996; Berhane & Tibshirani, 1996). However, before the appearance of the GAMM, 

the research was limited in extending the above theories within the mixed effects model 

framework. 

Initially, there were some difficulties regarding the development of the GAMM. For 

example, less work had been done on how to choose a good estimator of smoothing 

parameters and bandwidth parameters (Green & Silverman, 1994). Moreover, 

cross-validation was often time-consuming in computation, and the influence on the 

correlation parameters was hard to realize. Cross designs also failed to be used based on 

lack of contemporarily existing methodology (Lin & Zhang, 1999). Besides, there were 

some other problems that many researchers frequently encountered in practical regression 

application, such as spatially and temporally correlated observations, insufficient 

description of the heterogeneity among subjects by covariates, and complex interactions 

between covariates (Kneib, 2006a). 

These challenges were preliminarily solved by Lin and Zhang (1999), in the spirit of 

the GAM and GLMM, by using nonparametric additive smoothing functions and adding 

random effects to the additive predictors for modeling covariate effects along with 

considering over-dispersion and correlation. In other words, the GAMM overcomes two 

main shortages of inability to estimate random effects, and within-subject variations in 

the GAM and the weakness of estimating nonparametric smoothing functions for 

nonlinear variables in the GLMM. Therefore, besides correlated data, clustered, 

hierarchical, and spatial data can also be used in the GAMM. Nested and crossed 

designed are also available (Lin & Zhang, 1999). 
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The work was not completed because Lin and Zhang (1999) pointed out the 

existence of bias, especially in binary data or special correlated random effects. Hence, a 

Bayesian approach via Markov Chain Monte Carlo (MCMC) methods can be used as an 

alternative to address this problem (Fahrmeir & Lang, 2001a) as MCMC can provide 

samples from all posteriors which can derive the necessary posterior distribution’s profile 

without any approximate normality assumption. Similar approaches in other issues can 

refer Wong and Kohn (1996) for Gibbs sampling with Gaussian data in additive models. 

Another advantage of this method is that it is more efficient in computation than other 

methods for drawing from posterior distributions of spatial factors. Besides the GAMM, 

Fehrmeir and Lang also extended this methodology to the varying-coefficient mixed 

model (VCMM), which allows incorporating smoothing functions with coefficients. Their 

inference successfully applied to forest damage data by the VCMM with tree-specific 

random effects by using an unstructured covariance structure and duration of 

unemployment data by a GAMM with spatial random effects for different districts in 

Germany.  

The basic assumption of random effects in either the GAMM or GLMM is that its 

distribution should be multivariate normal (Lin & Zhang, 1999; Brewslow & Clayton, 

1993). However, this assumption may not be realistic in application. Zhang and Davidian 

(2004) focused on the violation of the normality assumption in random effects in the 

GAMM for clustered data, and proposed a conditional marginal likelihood (CML) 

inference based on a conditional estimation procedure. The central thought of the CML is 

to use the conditional distribution from the response variable given a sufficient and 

complete statistic for the random effect, and regarding it as a nuisance parameter to make 

robustness in any random effect’s distribution. In simulation, five different distributions 

(Normal, Normal mixture, t, chi-square and Bernoulli distribution) were compared in the 

average of the estimated smoothing parameter based on their inference and double 
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penalized quasi-likelihood (DPQL) from Lin and Zhang (1999), and more robust results 

were achieved than those from DPQL estimates. They also applied CML to a case study 

from a multicenter AIDS cohort study (Kaslow, Ostrow, Detels, Phair, Polk, & Rinaldo, 

1987) with the results from DPQL approach, and had consistent findings as simulation 

results.  

Another area worthy of further research is extending the smoothing function to more 

than one variable in the GAMM. For example, using "�XO, X9� instead of "�XO�. This 

kind of smoothing offers more sophisticated nonlinear relationships between X1 v.s. Y 

and X2 v.s. Y, simultaneously, which can also be regarded as the nonparametric 

interaction term. So far, three methods are able to handle this special sort of smoothing 

function. First, a low-rank approximation approach to thin plate splines was developed in 

geoadditive model (Kammann & Wand, 2003). Second, a tensor product P-spline with the 

single penalty given by the Kronecker product of the penalties associated with the 

marginal bases was also constructed (Fahrmeir & Lang, 2001a). Third, a Bayesian type of 

tensor products B-splines was conducted with spatially symmetric priors on the B-spline 

coefficients (Lang & Brezler, 2004). A general form for deriving scale-invariant tensor 

product smoothers from low-rank penalized regression smoothers in the GAMM was also 

proposed by Wood (2006). The purposes of emphasizing scale-invariant in tensor product 

smoothers are that the covariates with unequal scales in the same tensor product smoother 

could lead to poor results. The gamm function of mgcv package in R software constructed 

by Wood can handle tensor product smoothers, but models like "�X� , "�Z� , "�X, Z� 

are not supported in current version of mgcv package. 

Based on the previous work of the GAMM, an extension of penalized spline 

generalized additive models for analyzing spatio-temporal data with a Bayesian 

perspective was proposed (Fahrmier et al., 2004; Kneib, 2006b) to be the prototype of the 

generalized geoadditive mixed model (GGAMM). The correlated spatial effects were 
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assumed to use a Gaussian Markov random field (Rue & Follestad, 2003) prior two 

dimensional P-splines. The inference was performed either with a full Bayes (FB) or an 

empirical Bayes (EB) approach. The MCMC technique and REML algorithm were still 

using the FB and EB approach, respectively. With the same framework, a general class of 

structured additive regression models for multinomial responses in either unordered or 

ordered categorical spatio-temporal data was developed (Kneib & Fahrmeir, 2006). This 

structured additive model family also extends to hazard regression models (Kneib, 2006b; 

Kneib & Fahrmeir, 2007). Note that the computational programming in these models was 

implemented in the statistical package BayesX, (see http://www.stat.uni-muenchen.de/ 

~bayesx). It was developed at the Department of Statistics, University of Munich, for 

Bayesian inference in structured additive regression models (Brezger, Kneib, & Liang, 

2005). This freeware is powerful to fit the GAM, GAMM, GGAMM, Gaussian directed 

acyclic graphs (DAGs) models (Fronk & Giudici, 2004) and the VCMM with either 

MCMC techniques or mixed model based techniques, and appropriate for any 

spatio-temporal analysis. 

1.2.7. Applications of the GAMM in air pollution and mortality studies 

As an innovative and outstanding model in the modern era, the GAMM seems not to 

be widely applied to most areas because of the inconvenience of software support. Lin 

and Zhang (1999) used the %GLIMMIX macro in SAS to propose simulation and case 

study in their paper. Right now, SAS Inc. has released the PROC GLIMMIX procedure to 

replace the function of %GLIMMIX. The gamm package in R is also available. BayesX is 

another freeware product which can fit the GAMM with the Bayesian method.  

Some panel studies in air pollution research tried to use the GAMM to explain 

epidemiological issues. A reanalysis case study (Coull, Schwartz, & Wand, 2001) 
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collected data from 41 Utah Valley schoolchildren for 109 consecutive days. The main 

purpose of the study was to investigate the influence of air pollution on peak expiratory 

flow (PEF) in schoolchildren. In their model design, daily PM10 represents air pollution 

exposure, and it was also the only linear predictor. Two smoothing functions were 

included for daily lowest temperature and time effect. One random intercept and one 

random slope for daily PM10 to specific subject-level variation were the random effects. 

They concluded that the PEF decreases 0.7 units for a 10 µg/m3 increase for PM10, which 

is consistent with the initial analysis with the GAM in Pope et al. (1991). The large 

estimated variance of random intercept with a value of 2,630 implied large variability in 

the average of PEF among those subjects. The significance of estimated variance in the 

random slope demonstrated the existence of heterogeneity of PM10 effects among those 

schoolchildren as well. 

Another example is the AIRGENE study which is a multi-center epidemiological 

study to assess inflammatory responses in association with ambient air pollution 

concentrations in myocardial infarction survivors and define susceptible subgroups of 

myocardial infarction survivors based on genotyping. The EU (European Union) funded 

study conducted data from six European cities with 1,000 myocardial infarction survivors, 

and measured their three inflammatory blood markers (CRP, Fibrinogen and 

InterLeukin-6) every 4 weeks. The logarithm of CRP is a time-invariant response variable, 

and a stepwise procedure for allowing either cubic terms or smoothers in all continuous 

predictors helps to organize this model. Note that they used an alternative model fitting 

programming by PROC MIXED procedure in SAS proposed by Ngo and Wand (2004) to 

derive AICs (Akaike, 1974). However, this model selection criterion has not been 

supported by any statistical inference in GAMM. It is concluded that Hba1c (diabetes 

indicator), alcohol intake, BMI, BNP (heart failure indicator), packs per year smoked, 

blood pressure, and cholesterol have linear effects on log(CRP), while age has a cubic 
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trend. Additionally, a dose-response curve for the air pollution effects with penalized 

splines was also explored. In this part, an exact likelihood ratio test for penalized splines 

(Crainiceanu, Ruppert, Claeskens, & Wand, 2005) was applied to test nonlinearity against 

linearity as well as no effect in the dose-response curve. To sum up, they concluded that 

ambient particles were associated with increases in IL-6 and fibrinogen concentration, 

and current treatment of myocardial infarction survivors with lipid-lowering medication 

may protect them from the adverse effects of air pollutants due to no association between 

air pollutants and CRP. In regards to those classical risk factors (BMI, age, sex, hand high 

cholesterol levels), they are correlated with surging inflammatory markers, which also 

implied the genetic variation in the inflammatory markers genes can determine their 

levels. Finally, inflammation in myocardial infarction survivors is determined by a 

number of time-invariant and time-varying environmental factors, which increases the 

risk for following events in the high-risk group of the population (Greven, Küchenhoff, 

Picciotto, Pekkanen, Bellander, Leonard, Chalamandaris, Kulmala, & Peters, 2005). 

The latest research using the GAMM is a study of looking for the potential 

mechanism of PM-induced ischemia and connecting particulate matter to cardiovascular 

diseases (Chuang, Coull, Zanobetti, Suh, Schwartz, Stone, Litonjua, Speizer, & Gold, 

2008). The subjects were gathered from Brigham and Women’s Hospital at Harvard 

Medical School with 48 patients who have 4 repeated measurements by a percutaneous 

intervention for myocardial infarction, acute coronary syndrome without infarction, and 

stable coronary artery disease without acute coronary syndrome. The association between 

previous 24-hour mean black carbon levels and the risk of ST-segment depression ≥ 

0.1mm is positive, but adversely negative in 0.5-hour averaged ST-segment level. 

Generally speaking, the ST-segment depression is correlated with increased PM2.5 and 

black carbon in cardiac patients. They also identified that the first month after the cardiac 

event could have the greatest risk of air pollution related ST-segment depression in 
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myocardial injury. Note that Chuang et al. only assigned a random intercept in this 

GAMM, and the function of the GAMM is just for diagnosing the possible outliers in 

samples. In other words, it is no way to see subject-specific effect of PM2.5 to 

cardiovascular outcomes. 

1.2.8. Applications of the GGAMM 

The GGAMM has not been widely used in air pollution and human health studies, 

but some research gradually accepted the features introduced by this model. For example, 

the car insurance claims data from a German insurance company containing detailed 

information on metrical and geographical covariates was hard to be fitted by an 

appropriate parametric model to concern their highly nonlinear relationships; but the 

generalized geoadditive model with MCMC technique had been successful analyzing the 

amount of loss and claim frequency (Fahrmeir, 2003). A Malawi study for evaluating the 

geographical location (districts) variation in the prevalence of cough among children ≤5 

years old also applied the GGAMM, cooperating with many nonlinear categorical 

covariates (Kandala, 2006). Another similar children’s health study covering more 

symptoms (diarrhea, cough, and fever) applied the GGAMM to investigate the impact of 

spatial and other potential risk factors in Nigeria (Kandala, Ji, Stallard, Stranges, & 

Cappuccio, 2007). A geoadditive hazard regression for interval censored survival data 

was also applied in the same area (Kneib, 2006b). The antenna of its application also 

reached the most popular human health research—AIDS/HIV studies. The prevalence of 

AIDS/HIV was pretty epidemic in Zambia throughout several decades, and researchers 

examined the association between the prevalence, age, gender, and districts location. The 

GGAMM found that the two districts, Lusaka and Copperbelt, had the first and highest 

prevalence of AIDS/HIV with marginal odds ratios of 3.24 and 2.88, respectively 
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(Kandala, Cappuccio, & Stones, 2008). 

1.3. Motivations and objectives 

After the new millennium, the development of methodology in air pollution and 

mortality studies gradually summarized many previous considerations with the 2-stage 

Bayesian hierarchical model (Dominici et al., 2000a; Dominici et al., 2002a; Dominici et 

al., 2003b, Dominici et al., 2005), and thus far less improvement is presented. Here, I 

proposed the generalized geoadditive mixed model (GGAMM) with an empirical 

Bayesian approach and mixed model based estimation (Fehrmeir & Lang, 2001a; 

Fehrmeir & Lang, 2001b; Kneib, 2006a) instead of the 2-stage Bayesian hierarchical 

model for the purpose of presenting a more concise model structure which can not only 

evaluate nation-level air pollutant effects, but also assess marginal city-level air pollution 

effects simultaneously. This unified model structure provides some advantages (Kneib, 

2006a): 

1. Both fixed and random effects are random variables distinguished by different 

priors with adopting a Bayesian perspective. 

2. The priors of smoothing functions and spatially correlated data can be embedded 

into one general frame. 

3. The general frame of the priors is able to be used for more general and unified 

estimating procedures, which is facilitated to be implemented and described. 

Because no previous research used the GGAMM in multi-city time series air 

pollution and mortality studies, some objectives are also anticipated to be done in the 

following: 

1. Our preliminary motivation comes from whether the GGAMM can offer more 
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intuitive and flexible device for applying multi-city time series air pollution and 

mortality data. We will pioneer a PM10 mortality model with corresponding time, 

weather, and location factors to see how the GGAMM works on spatio-temporal 

data.  

2. The current effect of air pollution exposure along with its lag effects over a few 

days on daily mortality will be analyzed by the GGAMM. 

3. The co-pollutant model will identify the influence of some co-pollutants, such as 

O3, SO2, NO2, and CO along with PM10 effect. 

4. Discussing the influence of starting values of smoothing parameter and the 

number of knots on handling potential convergence problems, twisted splines, and 

diminished spatial effect in the GGAMM. 

5. Some missing data imputation methods will be implemented with their influence 

being identified on estimates in the GGAMM. 

6. Two classic problems, multicollinearity and concurvity, are always troublesome in 

any semiparametric model; therefore, we will include the model evaluation in the 

level of multicollinearity among linear main factors, especially in corresponding 

lag effects, and the level of concurvity among smoothing functions. Our target is 

not only in original model, but also in models with imputed data because we 

wonder whether missing data imputation methods may raise the level of 

multicollinearity and concurvity.  

7. An extended distributed lag model approach will be presented to handle technical 

problem when including too many lag effects in the GGAMM. The principal 

component analysis (PCA) will cooperate in this model, and the PCA-adjusted 

estimates will be developed to transform the estimates of principal component 

variables to the estimates of original air pollutant variables. 

8. A comparison of GGAMMs and 2-stage Bayesian hierarchical models will be 
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performed with the same data using in case studies. 

9. Three simulations will be accomplished for the sake of discussing the influence of 

concurvity, multicollinearity, and missing data imputation on estimates and 

smoothing functions. 

The NMMAPS database will be used as the main data source of the whole analysis in 

the GGAMM. The general purpose of this study is to gather more concise and 

comprehensive analysis in air pollution and mortality studies via the GGAMM, and use 

the findings to apply it to more related research. 
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Chapter 2 

METHODOLOGY 

2.1. Model formulation and inference 

Consider longitudinal data for subjects n=1,…, N, observed at time points 

6 U V6O, 69, … W. With corresponding responses, covariates and smoothing functions, a 

generic structure of the GGAMM can be shown as 

-�J=�� � E=�′ � , X=�′ � , "O�B=�O� , Y , "(�B=�(� , "$%&��!=��,     �2.1� 

where J=� are predictor for subjects n at time t with corresponding covariates E=� in 

linear fixed effects, X=� � �X=�O, … , X=�[�\ in linear random effects and B=�O, … , B=�( 

in smoothing functions. The unknown parameter � is a vector for unknown regression 

coefficients of fixed effects, and � � ��O=, … �[=�\ contains q i.i.d. random intercepts or 

random slopes. Moreover, -�. � is a link function, "��. � are smoothing functions of 

continuous covariates B=��, and "$%&��. � is a spatially correlated effect of the location 

!=�, which can be boundary, contour and coordinated data. For notational simplicity, we 

initially exclude spatial function, and then equation (2.1) can be subsumed into a concise 

model structure with a semiparametric form 

]� � E�′� , "O�P�O� , Y , "%^P�%_                   �2.2� 

by defining 7 � �3, 6�, P�O � E=��, � � 1, … *, P�,(`a � X=�a, D � 1, … , �, 

"(`a^P�,(`a_ � �a=X=�a, and ]� � -�J��. As a result, this model framework a GAM-like 

structure, which can facilitate advanced Bayesian inference based on maximum 
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likelihood estimations. 

For Bayesian inference, we can express smoothing functions "��P��� to be a product 

of a design vector P�� and a vector of unknown parameters 0�, i.e. 

 "��P��� � P��′ 0�.                         �2.3� 

Hence, (2.2) can be rewritten as 

]� � E�′� , P�O′ 0O , Y , P�%′ 0%.                 �2.4� 

A prior for a smoothing function "��. � can be defined by an appropriate design 

vector P�� and a prior distribution for the vector of unknown parameter 0�. Therefore, 

we can define the general form of the prior of 0� is a multivariate Gaussian distribution 

with density 

+^0�b8�9_ c exp gh O9ijk 0�′.�0�l,                   �2.5� 
where .� is a precision matrix which can be regarded as a penalty matrix to shrink 

parameter towards zero. It can also penalize too hasty jumps between adjacent parameters. 

Because most of .�s are rank deficient, it’s no doubt that the prior of 0� is partially 

improper. Some other choices of priors of 0� can be found in Gamerman (1997) and 

Besag and Kooperberg (1995), but we will only restrict to use (2.5) in the following 

model estimation. For the prior of fixed effect vector �, we can use either diffuse prior 

+��� c n43!6 or multivariate Gaussian prior 
��o, pqr�. Here we only consider the 

noninformative prior because it can emphasize a close link of empirical Bayes approach 

to maximum likelihood estimation (Kneib, 2006a). 

In order to estimate semiparametric models with smoothing functions, we need to 

have model representation to convert semiparametric models into the frame of parametric 
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models. A similar representation has already been applied in investigating the respiratory 

mortality of school children in Utah Valley (Coull et al., 2001). First of all, we need to 

consider the estimation of unknown parameter 0� in smoothing function (2.3). Based on 

original parameterization, the joint posterior distribution of 0� is  

+^0O, … , 0%, �bJ_ c s^J, 0O, … , 0%, �_ t +^0�b8�9_%
�uO ,                         �2.6� 

where s�. � is the likelihood function and +�0�|8�9� is the prior for 0� given in (2.5). 

However, (2.6) is hard to get 0� ’s maximum likelihood function, so a reparameterization 

is necessary to apply for estimating 0� and the other unknown parameters simultaneously. 

Generally, a 0� can be decomposed in to a penalized and an unpenalized component by 

this form 

0� � Mw��� , xw���,                         �2.7� 

where Mw� is a  � H � � h *�� matrix, and xw� is a  � H *� matrix. The two matrices 

should be full rank and orthogonal. In addition, Mw�′.�Mw�=0 and Mw�′.�Mw� � �(j(Kneib, 

2006a). Let B��′ � P��′ Mw� and z��′ � P��′ xw�, we can import (2.7) to (2.4) as 

]� � { E�′� , P��′ 0�
%

�uO  
     � { E�′� , �%

�uO P��′ Mw��� , P��′ xw���� 
     � { E�′� , �B��′

%
�uO �� , z��′ ��� 

  � B�′� , z�′�,                                  �2.8� 
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where B� � ^E�′ , B�O′ , … , B�%′ _′, � � ^� ′, �O′ , … , �%′ _′, z� � ^z�O′ , … , z�%′ _′ and � �
^�O′ , … , �%′ _′. The matrix notation of (2.8) can be presented as 

] � { }� , >�0� � { }� , ^M��� , x���_ � M� , x�%
�uO

%
�uO ,        �2.9� 

where the matrices X and Z are the vector-formatted presentation of B� and z�. 
Eventually, we transform equation (2.4) to a GLMM structure with fixed effects � 

and random effects �~
�0, ��, where � � �/4n* 75-�8O9�(� , … , 8%9�% �. This model 

structure can allow us to apply GLMM methodology to estimate smoothing function "� 
and variance parameters 8�9 simultaneously. With a flat prior of �, posterior (2.6) 

becomes 

+��, �|J� c s�J, �, ��exp �h O9 �′��O��,               �2.10� 

and the log-posterior is given by 

/%��, �|J� � /�J, �, �� h { 128�9 ��′�� ,                                    �2.11�%
�uO  

where /�J, �, �� � /4-s�J, �, ��. Hence, we can use (2.11) to derive a Fisher score 

algorithm with score function and the expected Fisher information matrix. For the score 

function, we obtain  

!��, �� � �/%��, �|J����, �� � g!���, ��!���, ��l,                               �2.12� 

where 

!���, �� � �/%��, �|J��� � M′���O�J h ��,                         �2.13� 
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!���, �� � �/%��, �|J��� � x′���O�J h �� h ��O�,                  �2.14� 

� �  75-���� �  75- ��-�O�]���] �,                             �2.15� 

and 

� � P5L�J|�, �� �  75-��9� �  75- ��P����@� �.                  �2.16� 

In particular, P���� is the variance function determined by exponential family of 

response variable, � is the scale parameter of corresponding exponential family and @� 
is a positive weight. 

 Similarly, the expected Fisher information can be expressed by 

'��, �� � �'����, �� '����, ��'����, �� '����, ���,                             �2.17� 

where 

'����, �� � M′���O�M,                                               �2.18� 

'����, �� � '����, ��′ � M′���O�x,                                  �2.19� 

'����, �� � x′���O�x , ��O.                                       �2.20� 

Based on (2.12) and (2.17), the regression coefficients can be estimated by iterating 

����(`O����(`O�� � ����(����(�� , �'�(���O!�(�.                                �2.21� 

Besides, we can also use an equivalent estimation process to solve parameters by using 

iteratively weighted least squares procedure to handle this linear system 
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gM′�M M′�xx′�M x′�x , ��Ol ����(`O����(`O�� � �M′�J�x′�J��,                        �2.22� 

where 

J� � M���(� , x���(� , ��O�J h ��,                                   �2.23� 

and 

� �  75-�@�� � ���O�.                                             �2.24� 

Equation (2.22) also provides a fundament for deriving credible intervals of 

estimated smoothing function (Lin & Zhang, 1999). According to (2.8), estimated 

smoothing function can be expressed by 

"�� � M���� , x����.                        �2.25� 

Hence, the covariance matrix of "�� is given by 

n4P^"��_ � ^M�, x�_n4P^���′ , ���′_^M�, x�_′,               �2.26� 

and then the pointwise credible intervals can be constructed based on the diagnoal 

elements in (2.26) with assuming approximate normality of the estimated parameters 

(Kneib, 2006a). 

Moreover, when concerning spatial effect, the spatial function "$%&� can be divided 

into a structured spatial function "$�� and an unstructured spatial function "�=$��. The 

importance of a spatial function is that it can explain many unobserved influence that 

other factors can hardly reflect. The unstructured spatial function can be regarded as a 

part of random intercept, and assumed to be i.i.d. Gaussian distribution. Moreover, 

structured spatial function can be estimated by Markov random fields (Kindermann & 
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Snell, 1980), Kriging (Journal & Huijbregts, 1978), and so on. Here we just introduce the 

Bayesian approach applying in Markov random fields. Suppose the spatial index 

! U V1, … , �W indicates some nearby locations in a geographical area, and assume two 

neighboring sites are more alike than any couple of arbitrary sites. A general prior for 

spatial smoothers for function, for example, "$%&��s� � �$, is 

�$|�$′ , ! ′ � !, 89~
 � { @$$′@$` �$′ , 89@$`$′U��
�,                                   �2.27� 

where @$$′ � n H exp �h �!, !′�� is the weight inverse proportional to the distance of 

centroids, and @$` � ∑ @$$′$′U��  is the sum of weights of those sites s’ who is a neighbor 

of site s, i.e., �$. Additionally,  �!, !′� indicates the Euclidean distance between the 

centroids of site s and site s’, and c is a normalizing constant. Besides, when using 

boundary data, the weights can be defined as the proportion of the length in the common 

boundary of regions s and s’. 

We can obtain maximum likelihood (ML) estimations of fixed effects and random 

effects by iterating (2.21) or solving (2.22), but the loss of degree of freedom while 

estimating � is not considered when deriving maximum likelihood estimation of 

variance parameter 89, and makes estimators are biased toward zero. Hence, it’s 

necessary to adopt a restricted maximum likelihood (REML) to overcome this 

disadvantage (Patterson & Thompson, 1971).  

Define E � 	′J, where its expectation is equal to zero. The distribution of E � 	′J 

is independent of �, and it likelihood fits better in Bayesian model formulation. The 

matrix A can be derived from this decomposition 

		′ � M�M′M��OM′,                                                �2.28� 

where 	 is a matrix with dimension 3 H �3 h  7A���� and full column rank. In 
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addition, the 	 derived from (2.28) can satisfy ��E� � 0. As a result, we can obtain E 

with a marginal density 

+�E� � � O9������� ���k |M′M|�k|p|��k|M′p�OM|��kKB + �h O9 ^J h M��_′p�O^J h M��_� ,  �2.29� 

and the restricted maximum likelihood estimators of 89 and �9 can be obtained by 

maximizing  

/)�89, �9� � h O9 /4-�|p|� h O9 /4-�|M′p�OM|� h O9 ^J h M��_′���^J h M��_,  �2.30� 

where p � ��O , x�x′ is the approximation of the marginal covariance matrix of 

working observation J� � M���(� , x���(� , ��O�J h ��. 

Then, we can use Newton-Raphson algorithm to get REML estimations of those 

variance parameters from (2.29). Another easier approach is using a modification of the 

Newton-Raphson algorithm given by Fisher score functions (Kneib, 2006a). Suppose the 

score function of variance parameter 89 and dispersion parameter � is  

!)�89, �� � ^!O), … , !%`O) _\ � ��/)�89, ���8O9 , … , �/)�89, ���8%9 , �/)�89, ���� �\ ,    �2.31� 

where each element is the derivative of log-likelihood (2.30) with respect to each variance 

parameter 8�9 and dispersion parameter �. Note that, it is allowable to ignore dispersion 

parameter, particular in Poisson and Binomial data because � is fixed in several models 

(Kneib, 2006a). Moreover, the score functions of ^!O), … , !%)_ are not applicable when the 

number of observations is over 3000 because they handle much computation of several 

3 H 3 inverse matrices p�O, and possibly need huge amount of total memory to calculate 

these score functions (Kneib, 2006a). In order to avoid process p�O, an adjusted score 

function derived by Lin and Zhang (1999) is given by 
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!�) � h O9 6L^x�\�x�_ , O9 6L^x�\��M x� �O�M x�\x�_  

                                        , 12 ^J� h M�� h x��_\�x�x�\�^J� h M�� h x��_,                           �2.32� 

where  

  � gM¡�M M¡�xx¡�M x\�x , ��Ol.                                    �2.33� 

Finally, if observations are not Poisson or Binomial data, then the numerical details of 

deriving score function of dispersion parameter � can be found in Kneib (2006a). 

When score functions are prepared, we can derive the expected Fisher information 

')�89, �� � �'�,() �, j,k = 1,…, p+1. By definition, '�,() � hE g£k;)^ik,¤_£ijk £i¥k l, where 

            '�,%`O) � 12� ¦6L^x�\�x�_ h 26L^�M x�\�x�x�\��M x� �O_
, 6L §�M x�\��M x� �O�M x�\�x�x�\��M x�¨© ,   � � 1, … , +         �2.34� 

and 

          '%`O,%`O) � 12�9 ª3 h 26L��M x�\��M x� �O�
, 6L��M x�\��M x� �O�M x�\��M x� �O�«.                                       �2.35� 

The detailed proves can refer Kneib (2006a). 

To sum up, we can construct a procedure to estimate fixed effects, random effects 

and variance parameters with the following two steps: 

1. Obtain ���(� and ���(� given the current variance parameters by solving  

gM′�M M′�xx′�M x′�x , ��Ol ����(����(�� � �M′�J�x′�J��.     
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2. Update variance parameters  ¬ � �89, �� by 

¬�(`O� � ¬�(� , ')^¬�(�_�O!)^¬�(�_. 
The two steps are performed iteratively and stopped until convergence. 

2.2. Data collection 

Daily time series of mortality, weather, and air pollution data is gathered from the 

NMMAPS database (Peng & Welty, 2004), and the time period is from 1991 to 1995 

(calendar time is from day 1 to day 1,826). In order to reduce potential biases from losing 

information by missing data, 15 U.S. cities are chosen by missing rate of PM10≤60%. The 

daily mortality is using the cardiovascular mortality, pneumonia mortality and respiratory 

mortality with three age categories (<65 years old, 65−74 years old and ≥75 years old), 

but the case study in the beginning is only adopting respiratory mortality≥65 years old. 

The ambient 24-h concentration of PM10 is the main air pollutant measurement in this 

study because it is the most influential agent to adverse human health. The 1-day and 

2-day lag PM10 effects are also concerned for the purpose of evaluating particulate 

matter’s distributed lag influence. Four main co-pollutants, CO, NO2, O3 and SO2, are 

using in 2-pollutant models with PM10 for investigating potential compound effects 

between them. The 24-h average temperature is used to be the weather factor. Besides, a 

set of spatial data with longitude and latitude from selected cities is adopted.  

2.3. Statistical models 

Six GGAMMs will be showed in this section. We first introduce a single pollutant 

model fitting by the GGAMM to only consider PM10 adjusted by two smoothing 

confounders (calendar time and 24-h average temperature) and a spatial function. Define 
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�
� as the outcome variable for the number of deaths from respiratory diseases in city c 

on a particular calendar day t, and �
�~:47!!43��
��. Its corresponding exposure PM10 

concentration is :�
�. Two confounders in respective smoothing functions are ���� 

for calendar time and ���	
� for 24 hourly mean of temperature. The day-of-week 

variable ��� contains six dummy variables to indicate Monday to Saturday. The 

spatial data !
 � �/43-, /567�
 denotes the longitude and latitude in city c. Hence, the 

single pollutant model can be constructed as 

-��
�� � ­ , �o
 , ®\����� , �� , �O
�:�
� , "������ , "����	
�� 
           ,"$%&��!
�,                                               �2.36� 

where c=1,…,15 and t=1,…,1826. Parameters ­ and � are unknown fixed intercept and 

slope. ® � �®¯°= ®±�² ®³²´ ®±a�� ®µ�� ®¶&� �¡ denotes the slopes of each day-of-week 

dummy variable. The random intercept �o
 and random slope �O
 follow a multivariate 

distribution, which 

� � g�o�Ol ~�
 ·§00¨ , p � ��o9 00 �O9�¸. 

The function -�. � is a log link function, and �
� is the expected value of �
�. The 

smoothing function of "������ was used to take into account the long-term variation in 

the mortality over several years, and the short-term effect of weather on the risk of death 

by including temperature smoother "����	
��. In the interpretation, we mainly use 

�exp�10 H �� h 1� H 100 to present the nation-level increase percent of relative risk in 

mortality rate per 10 µg/m3 PM10 increase, and �exp�10 H �O
� h 1� H 100 can be 

described as the marginal city-level increase percentage. Meanwhile, if we would like to 

investigate the PM10 effect in a specific city m, it is straightforward to calculate 

�exp�10 H �� , �O¹�� h 1� H 100 to be the answer.  
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The second model is the distributed lag model extended from model 1 with two 

additional lag effects :�
�;&<O and :�
�;&<9. The model form is:  

-��
�� � ­ , �o
 , ®\����� , ��O , �O
�:�
� , ��9 , �9
�:�
�;&<O 
    ,��Q , �Q
�:�
�;&<9 , "������ , "����	
�� , "$%&��!
�,  �2.37� 

where �9 and �Q are 1-day lag and 2-day lag PM10 effect at nation-level, respectively. 

The distribution of random effects becomes 

� � º�o�O�9�Q
» ~�


¼
½½¾�0000� , p �

¼½
¾�o9 0 0 �O9 0   00   00   00   0 �99 0 0 �Q9¿À

Á
¿
ÀÀÁ. 

Four co-pollutant models include CO, NO2, O3 and SO2 to adjust PM10, respectively. 

To simplify the notation, we construct a general form of them. Suppose >
�? denotes the 

concentration of co-pollutant, and P represents any of the above four co-pollutants. The 

co-pollutant model can be shown as 

-��
�� � ­ , �o
 , ®\����� , ��O , �O
�:�
� , ��9 , �9
�>
�?  
              ,"������ , "����	
�� , "$%&��!
�.                     �2.38� 
Here �9 and �9
 represent the national level and marginal city-specific co-pollutant 

effects, and the attitudes are the same as previous models. Note that "������ is defined 

as a P-spline with first order random walk penalty for calendar time, and "����	
�� is 

defined as a quadratic P-spline with second order random walk penalty for 24-hour 

average temperature. The initial number of knots in "������ and "����	
�� is 31 

and 7, respectively.  
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2.4. Jackknife-bootstrap approach 

In order to overcome a potential convergence problem in the estimated standard 

errors of fixed and random effects in the GGAMM, a traditional jackknife approach can 

offer reasonable se(��) and se(��), but there is an inconsistent problem when drawing 

different numbers of jackknife estimates, which both of se(��) and se(��) increase along 

with the increase of the number of jackknife estimates. Therefore, we embed the concept 

of bootstrapping in the jackknife approach to robust se(��) and se(��). The modification is 

that, instead of calculating standard errors from jackknife estimates, the bootstrap 

standard errors take the place of jackknife standard errors. In addition, the chosen 

jackknife estimates are not drawn without replacement but with replacement at all. The 

detailed steps are as follows: 

Step 1: fitting the GGAMM from real data without the i th observation in each city, 

where i = 1,…,1826. Defined these estimated fixed effects as ����O�, 
����9�, …, ����OÂ9Ã�. 

Step 2: Drawing b jackknife estimates from ����O�, ����9�, …, ����OÂ9Ã� with 

replacement. Define these selected jackknife estimates as ��O, ��9, …, ��� 

Step 3: Calculating bootstrap estimate ��� by taking the average from ��� �∑ �� �/���uO . 

Step 4: Calculating bootstrap standard error by !K����� � ∑ ^�� � h ���_9/�� h 1���uO . 

Step 5: Repeating step 2 to step 4 with k times, and then taking the average of ��� 

and !K�����. 

Here m will be assigned values with 100, 200, …, 1800 in chapter 3 to review its 

stability to jackknife-bootstrap estimates. The value of k is flexible. Theoretically, larger k 

can reduce the possibility of bias from drawing. In case study, we will use k=10,000 to 

complete the last step of jackknife-bootstrap procedure.  
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2.5. Multicollinearity and concurvity analysis 

The criteria of evaluating the multicollinearity and concurvity level rely on 

calculating the correlation coefficient 

Å � n4LL�:�
�, ��:�
���,                   �2.39� 

where ��:�
�� is the prediction of :�
� by the fitted model 

��:�
�� � �]̂o , Ç�o
� , �]̂O , Ç�O
�:�
�;&<O , �]̂9,Ç�9
�:�
�;&<9    �2.40� 
or 

��:�
�� � �]̂o , Ç�o
� , �]̂O , Ç�O
�>
�?              �2.41� 
for multicollinearity level in distributed lag model or co-pollutant models, and 

��:�
�� �  "������� , "�����	

�� , "�$%&��!
�           �2.42� 
for concurvity level. The concurvity influence on co-pollutants can also be determined by 

Å � n4LL�>
�? , ��>
�?��,                   �2.43� 
where 

��>
�?� �  "������� , "�����	

�� , "�$%&��!
�.           �2.44� 
The conclusion of existing severe multicollinearity and concurvity is based on 

weather Å is larger than 0.7. In our six models, we will diagnose the following items: 

(1) The multicollinearity level between PM10 and corresponding 2 lag effects in the 

distributed lag model. 

(2) The multicollinearity level between PM10 and CO, NO2, O3, SO2 in the 
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co-pollutant model, respectively. 

(3) The concurvity level between PM10 and the equation of smoothing functions 

"������ and "����	
� with spatial function "$%&���� in each model. 

(4) The concurvity level between 2 lag PM10 effects and the equation of smoothing 

functions "������ and "����	
� with spatial function "$%&���� in the 

distributed lag model. 

(5) The concurvity level between co-pollutant CO, NO2, O3, SO2 and the equation of 

smoothing functions "������ and "����	
� with spatial function "$%&��!� 

in four co-pollutant models. 

2.6. The extended distributed lag model and PCA adjusted estimates 

The extended distributed lag model is using for handle the convergence and 

technical problems of multivariate lag effects included in the GGAMM. Theoretically, 

equation (2.36) can be implemented more number of lag effects, but may make BayesX 

crash. The multicollinearity level may become higher as well. In order to solve the two 

issues simultaneously, the most intuitive idea is doing variable condensation. Principal 

component analysis (PCA) is a popular multivariate analysis for data condensation, and 

uses an orthogonal linear transformation to convert the data into a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on (Jolliffe, 2002; Johnson & Wichern, 2007). The most 

significant property of PCA is that all principal components are orthogonal with each 

other; meanwhile, they are totally independent. The basic concept of this transformation 

is remaining most of information among data by some linear combinations to explain 

most of its variance. An expectation is that using some ‘functions’ to represent the entire 
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lag effect series– just like the function of smoothers in time and temperature; therefore, a 

linear combination organized from PCA would be the best way to merge different lag 

effects together. 

Suppose n variables can generate at most n principal components. Assume PRIN 

denotes the principal component vector, and vector X denotes original PM10 variables. 

They can be represented by a matrix form from PCA as 

:È�
 � º:È�
O:È�
9É:È�
=
» � 	M � 	

¼½
¾ :�
�:�
�;&<OÉ:�
�;&<�=�O�¿À

Á
,           �2.45� 

	 � º5O59É5=
» � º5OO 5O959O 599 Y 5O=Y 59=É É5=O 59= Ê ÉY 5==

»,              �2.46� 
where A is a loading matrix calculated from the eigenvectors (i.e., 5O, 59,…) of 

variance-covariance matrix of �:�
�, … , :�
�;&<�=�O��. The order of these eigenvalues �ËO, … , Ë=� is usually ranked from maximum to minimum. The element of loading matrix 

can be solved from 

Ì º5�O5�9É5�=
» � Ë� º5�O5�9É5�=

»,                      �2.47� 

where Ì is the sample covariance matrix of X, and each principal component can 

account for the proportion of variance among all original variables by (Ë� ∑ Ë�=�uO⁄ )×100%, 

for i=1,…,n. Suppose the first m principal components have cumulative proportion of 

variance≥70%, and then each principal component can be transformed to  

:È�

�[ � 5(O:�
� , 5(9:�
�;&<O , Y , 5(=:�
�;&<�=�O�       �2.48� 
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for q=1,…,m. Meanwhile, the distributed lag model becomes 

-��
�� � ­ , �o
 , ®\����� , ��O , �O
�:È�

�O , Y , ��¹ , �¹
�:È�

�¹ 
         ,"������ , "����	
�� , "$%&���
�,                          �2.49� 
which is so called the extended distributed lag model.  

Here we propose an approach to transform the estimates ��O, … , �¹� in (2.49) to 

original variables’ estimates, say, PCA-adjusted estimates, which can immediately reflect 

the associate between original particulate matter effect and mortality rate. Define /�� as 

the loading of the j th variable in the i th principal component. The relative proportion of the 

loading in the j th variable and the i th principal component can be calculated by 

/�� ∑ b/��b[�uOÏ . Suppose +� is the proportion of variation that the i th principal component 

can account for, so the increase of relative rate per j th original variable increase is 

��� � { /��∑ b/��b[�uO +����
¹

�uO .                                                 �2.50� 

The standard error of ��� can be derived from 

!K^���_ � Ð{ · /��∑ b/��b[�uO +�¸9 >5L�����¹
�uO Ñ

O9 .                       �2.51� 

The subject-specific effect in the kth subject in the j th variable can be calculated by 

0�(� � { /��∑ b/��b[�uO +���(�
¹

�uO ,                                      �2.52� 

so its standard error is 
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!K^0��_ � Ð{ · /��∑ b/��b[�uO +�¸9 >5L�����¹
�uO Ñ

O9 .                       �2.53� 

Therefore, the ���, !K^���_ and !K�0��� the PCA-adjusted estimates of ���, !K����� and 

!K�����. 

2.7. Missing data analysis  

Most of published literatures used complete case analysis to handle severe missing 

data problem by just deleting missingness whatever other corresponding variables are 

complete (Dominici et al., 2000a; Dominici et al., 2003a). We are interested in the 

efficiency of using some missing data imputation methods to compensate possible 

information losing, especially in smoothing functions. Suppose the mechanism of missing 

data in the NMMAPS follows MAR, the following missing data imputation methods were 

applied to make these data sets back to completeness: 

1. Nearest neighbor imputation – version I (NNI1) 

2. Nearest neighbor imputation – version II (NNI2) 

3. Multiple imputation by MCMC (MI-MCMC) 

In details, the NNI1 is a kind of hot deck imputation with a long story, and has been 

used in many surveys conducted by Statistics in Canada, the U.S. Bureau of Labor 

Statistics, and the U.S. Census Bureau. Its statistical properties had not been derived until 

Chen and Shao (2001), which gave a detailed inference over several issues to get 

asymptotically unbiased and consistent estimated variances. Generally speaking, suppose 

the data structure with m missing values for the row indices i=n-m+1,…,n can be 

re-expressed by 
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                 observed
×ØÙ
ØÚ MO...M=�¹

Û 
observed

×Ø
ØØ
Ù
ØØØ
Ú �O...�=�¹�=�¹`O...�=

Û 
                     missing 

×ØÙ
ØÚM=�¹`O...M=

Û 
A missing value M�, � � 3 h A , 1, … , 3, is imputed by choosing that value M�, 7 � 1, … , 3 h A, which is corresponding to its closest value �� to ��. This is also the true 

meaning of nearest neighbor. The definition of closest is determined by the distance 

between any two response values. In other words, the distance of the nearest 

neighborhood is calculated with all observed values for Y by 

b�� h ��b � A73Oà(à=�¹b�( h ��b                �2.54� 

When we find the response value �(, * � 1, … , 3 h A, which is the closest one to 

��, � � 1, … , 3, we can impute its corresponding M( to the missing value. If there are 

more than one M( whose corresponding response values �( has the same minimum 

distance to �� among others, then the mean of those X values is imputed. 

However, the classical NNI has a potential disadvantage because a smoothing 

function relating x and y can lead to substitutes being far away from the ‘true’ value 

(Nittner, 2002). Hence, the NNI2 has been modified from NNI1 to handle possible 

imprecision in this situation. Consider a neighborhood of J� contains a pre-determined 

number of neighbors k. A key concept in this method is to control the range of the fixed 

neighborhood, and impute data based on different principles after comparing with a 

percentage p of the length of the data interval. Suppose k=3 and p=0.05, the ordered 

values Bª$« for s=1,2,3 satisfying equation (2.54). Then, the range R and interval I can be 

expressed as 
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È � BªQ« h BªO«                          �2.55� 

� � ^Bª¹&á« h Bª¹�=«_ H 0.05              �2.56� 

Then, a concise step-by-step procedure in NNI2 based on the above assumptions is: 

Step 1. If R ≤ I, then impute a random number generated from }�BªO«, BªQ«� 

Step 2. If R > I, then compute z � È h �, and generate a random number u from 

}�0, zª¹&á«�, where zª¹&á« � 0.95 H È 

Step 2.1. If u > z, then impute �BªO« , Bª9« , BªQ«�/3 

Step 2.2. If u ≤ z, then compute an empirical distribution 
�Mâ, �9� from 

observed x and three probabilities :^M ≤ BªO«_, :^BªO« ã M ≤ BªQ«_, and 

:^M ä BªQ«_. After ordering them, imputing a value satisfying the condition of 

the maximum probability and satisfying B¹�= ≤ M ≤ B¹&á. 

Note that if there are more than one BªO« and BªQ«, the average BªO«s and BªQ«s can 

be used in the procedure. The efficiency of NNI1 and NNI2 has been confirmed in 

missing data in the independent variable when fitting additive model (Nittner, 2002). So 

far, there is no existing package in any statistical software, so two self-made SAS macros 

%NNI1 and %NNI2 were used to handle the two imputation procedures. 

In original methodology of NNI1 and NNI2, there is no special restriction. Both 

continuous and categorical variable can apply it. However, even though there is no study 

to support how large data set it can support, too small sample size may cause somehow 

imprecision. In addition, NNI1 and NNI2 can be immediately applied in one independent 

variable with one dependent variable, but impossibly used in multivariate imputation. A 

compromised way is making a correlation matrix among them, and picking the complete 

variables with the highest correlation with another variable containing missing data. 

Nonetheless, this modification is not scientific proven, and loss too many information 

from other variables which aren’t used in NNI1 and NNI2. That is the reason why 
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multiple imputation is popular in this situation, even though it needs more assumptions 

from data itself. 

The multiple imputation method can easily handle large number of variables 

simultaneously, whatever variables themselves are complete or incomplete. Among the 

categories of multiple imputation methods, the Monte Carlo Markov Chain (MCMC) 

method can simulate the joint posterior distribution of unknown values and estimate 

simulation-based posterior parameters. Considering general regression model with 

outcomes å and a vector of predictors æ. For a given subjects, these variables are either 

observed or partially missing. We define ç � �ç°�$, ç¹�$�, where ç°�$ � �ç°�$, æ°�$� 

and ç¹�$ � �å¹�$, æ¹�$�, and è as a set of indicator variables, where È� � 1 if the j th 

element of ç is observed, and È� � 0 otherwise. The appropriate situation of using 

multiple imputation method is that the data should follow either missing completely at 

random (MCAR) mechanism  

:�è|ç� � :^èbç°�$, x¹�$_ � :�è|��,            �2.57� 

which means the missing data is not related to any variable, whatever known or unknown, 

or missing at random (MAR) mechanism 

:�è|ç� � :�è|ç°�$� � :�è|��,                 �2.58� 

which indicates the missing data is only related to observed quantities of variables. Note 

that � is presumed parameter set. Use of MCAR or MAR allows the analyst to generate 

imputations �çVOW, çV9W, … , çV¹W� from the conditional distribution "�ç¹�$, �|ç°�$� 

iteratively. The whole procedure can be implemented using the IP algorithm (Schafer, 

1997), which two steps can be defined at the tth iteration as: 

Imputation step: Draw ç¹�$,��`O� from "�ç¹�$|ç°�$, �����. 
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Parameter step: Draw ���`O� from "��|ç°�$, ç¹�$,��`O��. 

In imputation step, suppose é � �éO¡, é9¡�¡ is a partitioned mean vector of ç°�$ 

and ç¹�$, and a partitioned covariance matrix of ç°�$ and ç¹�$ is 

ê � gêOO êO9êO9\ ê99l, 

where êOO and ê99 are covariance matrices of ç°�$ and ç¹�$, respectively, and êO9 

is the covariance matrix between ç°�$ and ç¹�$. Hence, the conditional distribution of 

ç¹�$ given ç°�$ � ëì is a multivariate normal distribution with the men vector  

é9.O � é9 , êO9\ êOO�O�ëì h éO�,                                   �2.59� 

and the conditional covariance matrix 

ê99.O � ê99 h êO9\ êOO�OêO9.                                            �2.60� 

In Bayesian theorem, suppose that a 3 H + matrix å � �JO\ , J9\ , … , J=\ �¡ is 

distributed with a multivariate normal distribution with mean é and covariance matrix ê, 

the posterior distributions of é and ê are  

ê|ç~��O�3 , A,Û  Û�3 h 1�í , î , 383 , 8 �zï h �o��zï h �o�\¨,       �2.61� 

é|ê, ç~�
 g 13 , 8 �3zï , 8�o�,Û  Û 13 , 8 êl,                               �2.62� 

where ��O�5, ð� means an inverted Wishart distribution with the degree of freedom a 

and a precision matrix ð; n is the total number of observations in ç; m and î are the 

mean and precision matrix of prior distribution of ê; �3 h 1�í is the corrected sum of 

squares and crossproducts (CSSCP) matrix; �o and 8 are the mean and the denominator 

of variance-covariance matrix in the prior distribution of é|ê, respectively (Anderson, 
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1984). 

 Based on (2.61) and (2.62), we can derive the posterior distribution of é and ê 

from their prior information in posterior step, and here we only use a noninformative prior, 

i.e., the Jeffery prior, to obtain 

ê��`O�|ç~��O�3 h 1,Û Û�3 h 1�í�,                                   �2.63� 

é��`O�|ê��`O�, ç~�
 �zï, ê��`O�3 �.                                  �2.64� 

The two steps construct a Markov Chain to simulate draws ñç�O�, ��O�ò, 
ñç�9�, ��9�ò, … , ñç��`O�, ���`O�ò from the posterior distribution of "�ç¹�$, �|ç°�$�, and 

this Markov Chain can converge to this posterior distribution as well. After replicating the 

above procedure m times to generate m imputed data sets, we can fit the GGAMM for 

each imputed data sets, and get m model-fitting results. Finally, m results should be 

integrated into a final result in pooling step. The purpose of this step is providing robust 

estimates of the parameters and their standard errors. Some extensive papers concerning 

the asymptotic behavior of multiple imputation methods can refer Barnard and Rubin 

(1999), Meng and Rubin (1992), and Robins and Wang (2000). 

2.8. Simulation 

 In order to identify more concrete and concise impact of multicollinearity and 

concurvity and the influence of missing data imputation methods in the GGAMM, a 

series of simulated data sets are generated to process the three simulations. The 

concurvity simulation and missing data imputation simulation are using artificial data, but 

the simulated data in the multicollinearity simulation is generated from real data.  

The artificial data generating procedure is similar as the simulation method proposed 

by Lin and Zhang (1999). The first step is constructing a simulated model to generate 
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random data repeatedly. 1,000 data sets are generated with 10 subjects in each data set, 

and each subject has 100 repeated measurements. The framework of the simulated 

GGAMM is constructed by 

-����� � ��o , �o�� , ��O , �O��MO�� , "^M9��_ , "$%&��E�, P�� , K��       �2.65� 

for i=1,…, 10 and j=1,…, 100, where MO�� is an independent random variable generated 

from a normal distribution 
�0, 0.16�; the variable M9�� is supposed to be a covariate 

changing within each subject with equally 100 knots in [0, 1], and define it follows a 

normal distribution  


 �6LE3 �7 , 45 �100 , 0.01�� h 1�, 0.0001�,  
where trun{.} indicates a truncation operator, which only remains the integer part of any 

number in it. The between-subject error term K� is generated from a normal distribution 


�0, 0.09�, and the within-subject error term has autoregressive correlation by 

K�� � ÅK�,��O , K�� with Å � 0.2. The smoothing function f is a bimodal function 

"�B� � OOo ñ6'Qo.Oó�B� , 4'Q,OO�B�ò h 1,                            �2.66�            

where '%,[�. � is the probability distribution function of beta distribution 

'%,[�B� � ô�%`[�ô�%�ô�[� B%�O�1 h B�[�O,                                     �2.67�                

and õ�. � is a gamma function. The constant 1 used in "�B� is for the purpose of 

centering smoothing function. The spatial function is simply defined as  

"$%&��E�, P�� � 0.0001 H �E� , P��,                                    �2.68� 
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where E� and P� are generated from a uniform distribution }�0, 10�. It can be regarded 

as a monotone increasing linear function from south-west to north-east. 

The true values of fixed intercept and slop (�o, �O) are defined as (0.1, 0.1), and the 

data of random intercept and slope ��o�, �O�� are simultaneously generated from a 

multivariate normal distribution  

�
 �§00¨ , §0.79 00 0.69¨�. 

Finally, the response variable ��� can be simulated from a Poisson distribution with mean 

parameter 

��� � KB + §��o , �o�� , ��O , �O��MO�� , "^M9��_ , "$%&��E�, P�� , K��¨.     �2.69� 

The artificial data simulated from above steps can be immediately use in missing 

data imputation simulation. When 1,000 simulated data sets are prepared, each data set 

randomly drops out linear predictor MO�� and covariate M9�� in smoothing function by 

different missing rates. In order to clarify the efficiency of each missing data imputation 

method, MO�� and M9�� are independently dropped out to make two scenarios in this 

simulation. Note that dependent variable ��� is always complete in both scenarios. This 

procedure is strongly based on that the missing data mechanism is missing completely at 

random (MCAR) or, at least, missing at random (MAR). The missing rates are varied 

from 5%, 10%, 20%, 30%, 40% and 50%.  

We are going to investigate targeted estimates ��O and estimated smoothing function 

"�. Two different ��Os are estimated from the simulated data with missing MO�� and 

missing M9��, respectively. An adjusted sample mean square error is modified from initial 

sample mean square error in Nittner’s paper (2002), and applied to be the criterion of 

assessing estimated smoothing functions. It follows 
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ASMSE^"��J��, "�J��_ � Où �∑ >5Lú �"��J���ù�uO , ûBý�"��J��, "�J���þ9�,      �2.70� 

where � is the number of valid y in the smoothing function, and Bý is the bias between 

"��J�� and "�J��. 

 By using the same data generating procedure from (2.65) to (2.69), a set of 

concurvity data is able to be generated based on initial MO�� and "�M9���. Suppose a new 

variable defined by 


��MO�� � MO�� , . H "�M9���,                �2.71� 

and K is a numeric value which can control the concurvity level. When assigning K=0, 

0.02, 0.05, 0.09, 0.13, 0.17, 0.22, 0.30, 0.41 and 0.64, the concurvity level between 


��MO�� and "�M9��� is 0.03, 0.10, 0.19, 0.31, 0.41, 0.50, 0.59, 0.70, 0.80 and 0.90, 

respectively. Each scenario with a specific concurvity level contains 1,000 simulated data 

set, and the average of ��O, se(��O), se(��O) and ASMSE will be evaluated. 

 Some previous air pollution studies used to simulate data from real observations 

(Dominici, McDermott, Zeger, & Samet, 2002b; He, Mazumdar, & Arena, 2006), and we 

use a similar procedure to generate data from original PM10 and SO2 concentrations. In 

order to facilitate the velocity of simulation, we restrict the study period in only 1991 

from our database. Suppose a couple of principal component variables 

x � �:È�
O :È�
9� are calculated from original 1-year data of PM10 and SO2 by PCA. 

Define a covariance matrix as 

> � g1 ÅÅ 1l, 

and a Cholesky decomposition can make it as > � È¡È, where R is a upper triangular 

matrix. As a result, two correlated variables � � ��O �9� with correlation coefficient 
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Å can be generated by � � x H È. When using the two new variables to fit 

 -��
�� � ­ , �o
 , ®\����� , ��O , �O
��O,
� , ��9 , �9
��9,
� , "������ 

  ,"����	
�� , "$%&��!
�,                                 �2.72� 

the prior prediction ��
� can be estimated from (2.72). The number of 1,000 new 

responses �
�O , … , �
�Oooo can be generated from a Poisson distribution :47���
��. Each 

scenario repeats the above steps to generate its own simulated data, and the corresponding 

estimates can be evaluated from taking the average. 

2.9. Model diagnostic methods 

The model diagnostic methods of the GGAMM have still undeveloped, and related 

practical literature also did not discuss this part. We succeeded most of the applicable 

theorems from generalized linear mixed model here. A goodness-of-fit test for whether 

the respiratory mortality rate is Poisson-distributed data is identified by Pearson’s 

chi-square test. Some preliminary model diagnostic methods, such as residual analysis, 

box plots of the residuals by level-1 units, scatter plots of standardized residuals versus 

fitted predictions and normal plot of residuals are provided for the fundamental detections 

of model fitting.   
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Chapter 3 

RESULTS 

3.1. Demographics 

Table 3.1 and table 3.2 present the demographics tables of 15 U.S. cities from 1991 

to 1995. Each city had a total 1826 records from respiratory mortality, 24-hour average 

temperature and PM10. In details, there was no missing data in daily respiratory mortality, 

and the range of daily mortality average was from 0.23 persons (Huntsville, SD=0.48) to 

7.75 persons (Chicago, SD=3.16). In 24-hour average temperature, most of the cities had 

no missing data besides Colorado Springs (34 missing data), and Detroit (1 missing 

datum). Las Vegas had the highest 24-hour average temperature with mean of 71.06� 

(SD=18.06), and the lowest city was in Minneapolis/St. Paul (Mean=47.36�, SD=22.3). 

Compared with respiratory mortality and 24-hour average temperature, PM10 relatively 

had more missing data over those cities during the study period. Pittsburg had most 

complete PM10 data with missing rate only 0.38%, but Las Vegas had almost 70% missing 

PM10. The highest level of average PM10 concentration occurred in Cleveland 

(Mean=37.23µg/m3, SD=20.04) and the lowest one was Minneapolis/St. Paul 

(Mean=22.68 µg/m3, SD=13.1). 

The profile of co-pollutants was also very different, especially in CO. The highest 

average daily concentration of CO was in Spokane, which was 3.23-fold the 

concentration of Lexington, the city with the lowest mean of CO with only 602.36 ppb 

daily. Moreover, the data collection of CO was more completed than the other 

co-pollutants, and 14 cities had less than 3% missing CO. In O3, six cities had missing 
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Table 3.1 

Demographics of respiratory mortality, temperature and PM10 in 15 U.S. cities from 1991 to 1995. 

City 

Respiratory mortality (person) Temperature (�) PM10 (µg/m3) 

N Missing % Mean SD N Missing % Mean SD N Missing % Mean SD 

Chicago 1826 0.00 7.75 3.16 1826 0.00 50.97 19.85 1778   2.63 33.26 19.17 

Cincinnati 1826 0.00 1.71 1.37 1826 0.00 56.12 18.35 1252 31.43 33.16 15.42 

Cleveland 1826 0.00 2.28 1.57 1826 0.00 52.38 18.91 1705   6.63 39.8 19.80 

Colorado Springs 1826 0.00 0.64 0.81 1792 1.86 49.41 17.24 1747   4.33 24.48 15.64 

Detroit 1826 0.00 2.77 1.72 1825 0.05 52.18 19.36 1732   5.15 34.36 20.51 

El Paso 1826 0.00 0.60 0.81 1826 0.00 69.36 15.59 1691   7.39 37.23 20.04 

Huntsville 1826 0.00 0.23 0.48 1826 0.00 61.58 15.18 1051 42.44 23.35 10.61 

Las Vegas 1826 0.00 1.43 1.23 1826 0.00 71.06 18.06 562 69.22 35.86 23.19 

Lexington 1826 0.00 0.39 0.63 1826 0.00 57.66 17.79 1127 38.28 25.16 12.17 

Minneapolis/St. Paul 1826 0.00 2.61 1.68 1826 0.00 47.36 22.30 1774   2.85 22.68 13.10 

Nashville 1826 0.00 0.94 0.97 1826 0.00 61.18 16.53 1499 17.91 30.97 13.78 

Pittsburgh 1826 0.00 2.91 1.84 1826 0.00 54.35 18.99 1819   0.38 31.51 20.25 

Salt Lack City 1826 0.00 0.88 0.96 1826 0.00 54.59 19.41 1811   0.82 34.71 24.17 

Seattle 1826 0.00 2.40 1.66 1826 0.00 54.67 11.10 1782   2.41 24.34 14.13 

Spokane 1826 0.00 0.86 0.95 1826 0.00 49.82 17.15 1587 13.09 31.53 30.35 

 

6
5
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Table 3.2 

Demographics of CO, NO2, O3, and SO2 in 15 U.S. cities from 1991 to 1995. 

City 
CO (ppb) NO2 (ppb) O3 (ppb) SO2 (ppb) 

N Missing % Mean SD N Missing % Mean SD N Missing % Mean SD N Missing % Mean SD 

Chicago 1826 0.00  783.26  316.09 1826   0.00 24.95  7.88 1826   0.00 19.38  9.62 1826   0.00  4.79 3.30 

Cincinnati 1826 0.00 1044.62  358.64 1826   0.00 24.63  6.88 1070  41.40 25.09  9.44 1810   0.88 11.11 7.70 

Cleveland 1826 0.00  850.09  381.70 1826   0.00 24.76  8.23 1070  41.40 27.96 11.64 1826   0.00  9.68 5.73 

Colorado Springs 1826 0.00 1195.20  532.06    0 100.00 - - 1826   0.00 23.57  9.48    0 100.00 - - 

Detroit 1826 0.00  629.50  321.25 1823   0.16 22.16  7.75 946  48.19 24.65  9.98 1826   0.00  6.79 4.16 

El Paso 1826 0.00 1071.07  585.01 1813   0.71 17.8  8.67 1826   0.00 26.18  9.48 1817   0.49  8.33 8.74 

Huntsville 1813 0.72  566.68  382.05 1090  40.31 13.33  5.43 1477  19.11 30.37 11.36  194  89.38  4.33 2.18 

Las Vegas 1399 30.52 1382.4 1006.75 1459  20.10 27.59 12.52 1826   0.00 31.23 12.59    0 100.00 . . 

Lexington 1782 2.47  602.36  412.11 1790   0.19 16.49  6.71 1067  41.57 31.68 10.92 1811   0.82  7.04 4.78 

Minneapolis/St. Paul 1822 0.22 1182.22  359.18 1770   3.07 19.30  7.50    0 100.00 - - 1822   0.22  3.06 1.64 

Nashville 1826 0.00  949.78  411.58 1719   5.86 13.96  7.51 1826   0.00 19.11  9.28 1818   0.44  9.80 6.46 

Pittsburgh 1826 0.00 1038.55  531.36 1812   0.77 27.65  8.13 1803   1.26 21.71 11.50 1826   0.00 13.95 8.27 

Salt Lack City 1826 0.00 1446.14  817.59 1174  35.71 26.80 11.90 1104  39.54 32.20 10.14 1826   0.00  5.69 5.84 

Seattle 1826 0.00 1567.35  621.35  296  83.79 20.15  7.11 1071  41.35 21.92  7.60    0 100.00 - - 

Spokane 1826 0.00 1948.05  770.06    0 100.00 - -  974  46.66 32.86  7.96    0 100.00 - - 
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Table 3.3 

Correlation coefficient matrix among 15 U.S. cities from 1991 to 1995. 

Correlation 

coefficient 

Respiratory

mortality PM10 PM10-lag1 PM10-lag2 CO NO2 O3 SO2 Time Temperature 

Respiratory 

mortality 

1.0000          

PM10 0.0198 1.0000         

PM10-lag1 0.0180 0.5376 1.0000        

PM10-lag2 0.0168 0.3335 0.5375 1.0000       

CO -0.0578 0.3450 0.1774 0.0784 1.0000      

NO2 0.1915 0.4804 0.2464 0.0935 0.5838 1.0000     

O3 -0.2045 0.1058 0.0981 0.0641 -0.2634 -0.1574 1.0000    

SO2 -0.0684 0.3598 0.1894 0.0767 0.2758 0.3277 -0.1361 1.0000   

Time 0.0206 -0.0408 -0.0412 -0.0411 -0.0641 0.0672 0.0152 -0.1871 1.0000  

Temperature -0.1967 0.2089 0.1769 0.1380 -0.1882 -0.0605 0.5768 -0.0151 0.0302 1.0000 

6
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rates over 40%, and Minneapolis/St. Paul was even completely missing. The situation 

became very extreme in SO2 because it was either complete or total missing. Five cities had 

missing data over 89%, and four of them (Colorado Springs, Las Vegas, Seattle and Spokane) 

had SO2 entirely missing. Even two cities (Colorado Springs and Spokane) have 100% 

missing rate in SO2 and NO2. The data collection of CO was quite good, and 14 cities had 

missing data less than 3%.  

The correlation table is shown in table 3.3. From the relationship between PM10 with 

corresponding two lag effects and respiratory mortality, it shows that current PM10 effect has 

slightly more positive correlation with mortality than lag effects. In co- pollutants, NO2 was 

the only co-pollutant having positive relationship to mortality. It was no doubt that PM10 and 

its lag effects were moderately correlated with each other, and provided the evidence that the 

desirability of using lag distributed models to identify the influence of lag effects to human 

health. PM10 also had slight correlation with O3, SO2, and CO, and had moderate correlation 

to NO2 with the value of 0.4804. In particular, temperature had much higher correlation with 

O3 that the other factors with correlation coefficient 0.5768.  

3.2. Spatial and temporal correlation of air pollutants 

Besides identifying linear relationship among these variables, we were also concerned 

with the spatial correlations of variables between any two cities and temporal correlations 

between any couple of time series variables. Figure 3.1 presents the plots of city-to-city 

correlation versus corresponding separation distance for each air pollutant and 24-hour 

average temperature. The definition of strong spatial correlation is that the city-to- city 

correlation has significant decrease along with the increase of distance  
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Figure 3.1  

City-to-city correlation and separation distance among 15 U.S. cities from 1991 to 1995. 

 

between two cities. PM10 showed the strongest city-to-city correlation. The shortest  
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Figure 3.2  

Time trend plot of respiratory mortality, 24-hour average temperature, PM10 and 
co-pollutants over 15 U.S. cities from 1991 to 1995.  

 

as PM10. The smallest correlation of temperature between two cities was still 0.70 when the 

distance was over 2,000 miles (Pittsburg vs. Seattle). The general declining trends of 
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Figure 3.3  

Cross-correlation functions of air pollutants vs. temperature.  

 
Moreover, we used the cross-correlation function (CCF) to handle the correlation 

coefficient between two time series variables. In table 3.2, we found that the correlation 

coefficients between time and the other variables were very small, but these values only 

indicate the other variables had no strong linear relationships with time. In reviewing these 

variables’ time series plots in figure 3.2, we found that most of them showed an obvious 
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Figure 3.4  

Cross-correlation functions of co-pollutant vs. PM10.  

 
Figure 3.3 showed the CCFs for temperature versus air pollutants. The lag structure of 
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vs. PM10 showed higher positive association than SO2 vs. PM10. However, both of them did 

not display stronger or weaker associations in specific months. Moreover, CO vs. PM10 and 

O3 vs. PM10 did not have similar significant performance over months. In CO vs. PM10, the 

stronger positive associations appeared in cold seasons, and weak negative associations were 

distributed from April to August. In particular, current associations from June to July were 

almost disappeared. Additionally, O3 vs. PM10 showed positive association from June to 

September, but the other associations were very weak in the other months besides current 

association. 

These results suggested that the correlation among air pollution and temperature had 

varying lag structure of associations, and the association can differ across air pollutants and 

seasons. Besides, these results also gave researchers a general sense that some potential 

problems could probably exist among those correlated factors in the GGAMM, such as 

multicollinearity and concurvity. 

3.3. Case study of using the GGAMM by BayesX 

Six model-fitting results are presented in table 3.4. In model 1, as the concentration of 

PM10 increased 10 µg/m3, the relative risk of respiratory mortality in elders increased around 

0.11% (95% CI: -0.46%, 0.67%). The virtualized smoothing and spatial functions are shown 

in figure 3.5. The time smoother went down in summer and fall seasons and rose in winter 

and spring seasons. The temperature smoother also reflected that extreme cold and hot 

weather can increase higher mortality rate. The lowest mortality rate happened at 16�. As 

temperature decreased below 11� or increased above 20�, the mortality rate started to 

climb up, and the highest mortality rate appeared at 104�. 
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Table 3.4  

The parameter estimates with corresponding estimated standard errors of fixed and random 
effects in six main models. 
Model Variable ��  se(��) se(��) 
Model 1 PM10 0.000105 0.000287 0.000194 

 
     

Model 2 PM10 0.000675 0.196834 0.762327 

  PM10-lag1 -0.00053 0.133549 0.517211 

  PM10-lag2 -0.001911 0.063516 0.245960 

       
Model 3 PM10 0.000196 0.088258 0.341813 

  CO  -0.000005 0.081648 0.316223 
       
Model 4 PM10 0.000163 0.000441 0.000638 

  NO2 0.001224 0.000846 0.000795 

       
Model 5 PM10 0.000227 0.000385 0.000531 

  O3 0.001855 0.000815 0.000650 

       
Model 6 PM10 0.000388 0.000391 0.000419 

  SO2 -0.000281 0.001830 0.004000 

 

Moreover, BayesX can generate a map to reflect how spatial functions worked at different 

locations. In the map of figure 3.5, cities located around Northeast U.S. had higher 

geographical influence in respiratory mortality for elders. In addition, cities with higher 

altitude also had higher mortality rate, such as Salt Lake City (average altitude = 4,333 feet), 

Colorado Springs (average altitude =6,009 feet) and Spokane (average altitude=2,020 feet). 

On the contrary, some cities near to coast, lake and desert had lower influence, such as 

Seattle, Minneapolis/St. Paul and Las Vegas. 

Considering the distributed lag model, the increases of relative risk in respiratory 

mortality in elders were 0.68%, -0.05% and -1.89% per 10 µg/m3 increase in PM10 
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Figure 3.5  

Smoothing functions of calendar time and 24-hour average temperature and map of spatial 
effect for 15 U.S. cities from 1991 to 1995 in model 1. 
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Figure 3.6  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in model 2. 
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Figure 3.7  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in model 3. 
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Figure 3.8  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in model 4. 
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Figure 3.9 

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in model 5. 
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Figure 3.10  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in model 6. 
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concentration at current day, 1-day lag and 2-day lag, respectively. Nonetheless, we found 

that the estimated standard errors of fixed and random effects (se(��) and se(��)) were 

exaggerated 221~600 times larger than those in model 1, and made confidence intervals too 

wide. In fact, this was a convergence problem especially happening in the GGAMM fitting 

by BayesX, and we will discuss more details and solutions about this problem in fixed and 

random effects in section 3.4~3.6. 

Regardless of the problem of overestimated standard errors, we still can review the time 

and temperature smoothers and spatial function map in model 2. Its time smoother still had 

regular fluctuation as that in model 1, and temperature smoother displayed a slightly similar 

performance. However, temperature smoother did not have significant rise in left tail. The 

spatial function also displayed similar pattern between model 1 and model 2. Meanwhile, the 

relative spatial effects were still the same. Larger spatial effects in model 1 were still large in 

model 2, and vice versa. The highest spatial effect was still located in Chicago, and the 

lowest spatial effect was still located in Huntsville. However, based on the existence of 

convergence problem, this result was still uncertain. It was questionable that why the 

distributed lag model with similar profile of smoothing and spatial function had problematic 

estimates in standard errors of fixed and random effects. We will have an advanced analysis 

to remove this problem in section 3.11, and see how these estimates, smoothing functions and 

spatial map will perform. 

In co-pollutant models, the percent relative risks of respiratory mortality increased 

0.20% (95% CI: -172.82%, 173.22%), 0.16% (95% CI: -0.70%, 1.03%), 0.23% (95% CI: 

-0.53%, 0.98%) and 0.39% (95% CI: -0.38%, 1.15%) per 10 µg/m3 PM10 increment for 

model 3, model 4, model 5 and model 6, respectively. Note that the results of estimated 



82 

 

standard errors in model 3 also reflected that this model existed a convergence problem, 

which also affected the confidence interval of the CO effect. The national effect of CO was 

associated with mortality rate with relative risk -0.01% when it increased per 10 ppb, but its 

95% confidence interval was questionably over-wide as well. It will be combined with model 

2 and discussed in section 3.4~3.6. Besides, each 10 ppb increase in the concentration of NO2 

can raise 1.23% (95% CI: -0.43%, 2.92%) relative risk of respiratory mortality in elders. O3 

also had a positive relationship with respiratory mortality rate in elders, and its relative risk 

significantly increased 1.87% (95% CI: 0.26%, 3.51%) as the concentration of ozone 

increased per 10 ppb. However, the national effect of SO2 was negative to mortality rate. 

Compared with model 1, when adjusting by co-pollutants, the PM10 national effect increased 

0.55-fold (model 4) to 2.70-fold (model 6).  

The smoothing functions in calendar time in co-pollutant models shown in figure 

3.7~figure 3.10 also presented very stable fluctuation, but the smoothing functions in 24-hour 

average temperature was quite varied among the four models. Except for problematic model 

3, the temperature smoother of model 4 was almost identical as model 2’s temperature 

smoother with a slight curve. Moreover, the temperature smoother in model 5 shown in 

figure 3.9 was no longer a curve but a straight line which was monotonic increasing from 

cold to hot. Its 95% confidence interval also tended to diverge toward the two ends of the 

tails. In model 6, extreme hot and cold weather had much influence on mortality rate, and 

presented a bowl-shape over temperature.  

Considering geographical influence, in order to keep the same Markov random field and 

make these spatial function maps comparable, we retained the complete spatial data 

regardless that some cities contained 100% missing data in co-pollutants, such as Colorado 



83 

 

Springs (O3, SO2, NO2), Las Vegas (SO2), Minneapolis/St. Paul (O3), Seattle (SO2) and 

Spokane (SO2, NO2). This was a special property of BayesX in that missing data in any 

variable will not affect spatial function because geographical data and air 

pollutant/mortality/weather data were not stored in the same data set. They belonged to two 

separated files and imported in BayesX independently. Reviewing the general pattern of 

these maps, some cities with stronger spatial effects in model 1 and model 2 still had 

relatively stronger spatial effect in the other models, such as Pittsburg, Cleveland, Salt Lake 

City, Detroit and Cincinnati. Moreover, comparing the four co-pollutant models with each 

other, the distributions of spatial effect had significant shrinkage in model 4, model 5 and 

model 6, and concentrated to zero. Note that there was no test to identify whether a spatial 

function is statistically significant in the GGAMM, so no evidence can diagnose whether the 

spatial functions were significant or non-significant; nonetheless, we were still wondering 

whether the diminish of spatial effect in model 4, model 5 and model 6 was abnormal. To 

sum up, the virtualization of spatial function in BayesX still provides obvious and 

straightforward idea to present geographical versatility in spatio-temporal analysis. More 

detailed investigations of the spatial function will be discussed in section 3.8.  

3.4. Convergence problem in the GGAMM and the smoothing parameter 

λ in smoothing functions 

From those results in previous sections, we found there were some irrational values 

appearing in estimated standard errors of either fixed effects or random effects. The 

characteristic of those irrational estimated standard errors was that they were overestimated 

with relative huge values compared to normal values. In air pollution research, reasonable 
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estimated standard errors of fixed and random effects were less than 0.01, but sometimes 

they can be estimated over 0.1 abnormally, even over 1.   

By checking the log file, we found the main reason was that the iteration of estimating 

smoothing parameter λ did not reach convergence or reach convergence too earlier. By the 

way, the default number of iteration in BayesX was 400. When the number of iteration 

reached 400, BayesX showed a warning message to alert users that this estimation does not 

reach convergence, and followed with results stopping by the last iteration. Unfortunately, 

there was no way to increase the number of iteration in BayesX, so the only way was setting 

up another starting value of λ to expect reaching convergence before 400 iterations 

appropriately. The default setting of starting value of λ was 10 in BayesX, so users can define 

any value which is larger than 10 in programs. The modified starting value of λ can be 

enlarged to 1,000 if necessary. The purpose of adjusting the smoothing function in penalized 

splines is to facilitate the speed of convergence in iterations of estimating unknown 

parameters; however, it was not guaranteed that larger smoothing functions can absolutely 

facilitate iterations. Sometimes, larger smoothing functions also had worse efficacy. Besides, 

there was no efficient approach to determine the most efficient smoothing functions in the 

GGAMM, so users have to try manually.  

 In table 3.4, the estimated standard errors of fixed effects and random effects in model 2 

and model 3 had irrationally huge values, so we used λ=11, 12, 13, 14 and 15 in both the time 

smoother and temperature smoother. The entire results are presented in Appendix A. We 

found that, if a GGAMM can reach convergence with initial starting value of λ (i.e. λ=10), 

the probability of reaching convergence with other starting values of λ was higher. For 

example, each model had 36 trials with 6 different starting values of λtime and 6 starting 
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values of λtmean. Model 1 and three co-pollutant models (PM10+NO2, PM10+O3 and 

PM10+SO2) reached convergence in initial value (λtime, λtmean)=(10,10), so they had 25, 20, 19 

and 25 successfully convergent results out of 36 trials, respectively. However, model 2 only 

had 9 successfully convergent results out of 36 trials, and model 3 even still had no 

convergent results. Figure 3.11 was constructed from 25 successfully convergent results in 

model 1. When the user-defined starting values of λtime and λtmean made iteration convergent, 

the estimated fixed effect of PM10 (��) ranged from 0.0000951 to 0.0001066, and the 

differences of the effect to the relative risk of mortality over these 25 estimates were only 

around 0.01%. The se(��)s were also estimated stably, especially when λtime = 12, 13, 14 and 

15 and λtmean=10, 11, 13, 14 and 15. Compared with initial se(��)(=0.000287), most of the 

other se(��)s were a little bit higher, but the differences were no more than 0.00001. se(��) had 

much instability than ��  and se(��). The initial se(��) was close to 0.0002, but it also can be 

estimated more than 3-folds of initial se(��), especially when starting value of was λtime 12 or 

13.     

 Figure 3.12 to figure 3.14 showed all estimates from different starting values of λtime and 

λtmean in model 2. Actually, we did not see any specific λtime or λtmean which had higher 

probability to reach convergence. Among these nine convergence results, the estimated PM10 

fixed effects ��O were close to 0.0001, which was much smaller than the other 

non-convergence results. Their corresponding se(��O)s and se(��O)s were also estimated 

consistently with reasonable values from 0.000345 to 0.000545. Comparing with the other 

non-convergence results, we found that the two estimated standard errors can almost reach 

3.9466, which was over 10,000-folds than convergence estimates. In addition, the estimated 

1-day lag PM10 fixed effects ��9 from convergence results were from -0.0000628 to  
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Figure 3.11 

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 25 convergence results using different starting values of λtime and λtmean in 
model 1. 
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Figure 3.12  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 9 convergence results using different starting values of λtime and λtmean in 
model 2. 
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Figure 3.13  

The estimated 1-day lag PM10 fixed effect with corresponding estimated standard errors of 
fixed and random effect from 9 convergence results using different starting values of λtime and 
λtmean in model 2. 
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Figure 3.14  

The estimated 2-day lag PM10 fixed effect with corresponding estimated standard errors of 
fixed and random effect from 9 convergence results using different starting values of λtime and 
λtmean in model 2. 

  

showed, a reasonable ��O should be around 0.000130 to 0.000188. The convergent se(��O)s 

were close to 0.00041�0.00005, but convergent se(��O)s were not as consistent as se(��O). The 

largest convergent se(��O) can be 4.65-fold of the smallest convergent se(��O). The pattern of 

estimates related to NO2 was similar as the pattern of estimates related to PM10 (figure 3.16). 

Comparing with ��O and ��9, we found the fixed effect of NO2 would be much stronger that  

0e
+0

0
2e

-0
4

4e
-0

4
6e

-0
4

8e
-0

4

Starting value of smoothing parameter in time smoother

E
st

im
at

es

11 11 11 12 13 13 13 14 14

10 11 12 11 10 13 15 11 15

Starting value of smoothing parameter in temperature smoother

β̂3 se(β̂3) se(b̂3)



90 

 

Figure 3.15  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 20 convergence results using different starting values of λtime and λtmean in 
model 4. 

  

the fixed effect of PM10 when they did not reach convergence. For example, when the 

starting value of λtime was 10, the convergent ��9s (λtmean=10, 12 and 13) were averagely 

7.39-fold of the convergent ��Os; on the contrary, the non-convergent ��9s (λtmean=11, 14 and 

15) were averagely 27.06-fold of the convergence ��Os. Both convergent se(��9)s and se(��9)s 

were concentrated on 0.0008, but se(��9)s were more consistent with se(��9)s.  
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Figure 3.16  

The estimated NO2 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 20 convergence results using different starting values of λtime and λtmean in 
model 4. 

  

 The probability of reaching convergence in model 5 was similar as model 4 over 36 

trials. When convergence existed, both of PM10 and O3 fixed effects (��O and ��9) were 

estimated around 0.0002 and 0.0017, respectively. In particular, when this model cannot be 

fitted with convergence, the value of ��O became negative, and the value of ��9 shrunk to 

half of convergent ��9. The convergent se(��O)s and se(��9) were located consistently, where  
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Figure 3.17  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 19 convergence results using different starting values of λtime and λtmean in 
model 5. 

  

se(��O) was 0.00038�0.00005, and se(��9) was 0.00083�0.00005, but the convergent se(��O) 

and se(��9) changed relatively significantly. However, the relative large se(��O) and se(��9) 

should not be over 0.0008 and 0.0012, respectively when model fitting reached convergence. 

Meanwhile, as long as model fitting cannot reach convergence, both se(��O) and se(��9) would 

be definitely estimated with values much over 0.0008 and 0.0012.  
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Figure 3.18  

The estimated O3 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 20 convergence results using different starting values of λtime and λtmean in 
model 5. 

  

 SO2 was the only negative effect in co-pollutants, and all non-convergent results did not 

happen in SO2’s estimates. Meanwhile, the convergence problem only appeared in PM10 in 

this model, especially in its standard error of fixed and random effect. If model-fitting was 

convergent, ��O and ��9 were close to 0.0004 and -0.0003, respectively. In addition, 

convergent se(��9)s were larger than the other convergent se(��9) in the other co-pollutant  
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Figure 3.19  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 25 convergence results using different starting values of λtime and λtmean in 
model 6. 

  

models, whatever any starting value of λtime and λtmean were used in smoothing functions. 

Moreover, the convergent se(��9)s were more consistent with different starting values of λtime 

and λtmean, and the difference between the largest se(��9) and the smallest se(��9) was only 

0.000348. This stability did not appear in the other co-pollutants’ estimated standard errors of 

random effect. Generally speaking, we found larger starting value of λtime and λtmean can have  
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Figure 3.20  

The estimated SO2 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 25 convergence results using different starting values of λtime and λtmean in 
model 6. 

 

better chance to reach convergence easily, and this co-pollutant model showed much 

consistence by applying different starting values of λtime and λtmean. 

Unfortunately, model 3 did not have convergence results while using 36 different 

combinations of λtime and λtmean. It was anticipated that there should be some good starting 

values of λtime and λtmean to make the entire model-fitting reach convergence, but in case the 
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“good” values were really hard to find out, there were another two approaches which can 

offer opportunities to reach convergence in iterations and get reasonable estimates. We will 

discuss in chapter 3.5 and 3.6. 

3.5. The influence of the number of knots in smoothing functions 

Besides using different starting values of smoothing parameter λ to look for higher 

opportunity of reasonable estimates, BayesX also allows modifying the number of knots used 

in the smoothing functions, and claims the number of knots do not affect the result of 

model-fitting too significantly. However, we found that it indeed has influence on estimations, 

and sometimes can be used for an alternative solution as long as the approach mentioning in 

chapter 3.4 can hardly find out reasonable results in the GGAMM. Based on the initial 

numbers of knots used in our six models (ktime=31 and ktmean=7), we also used additional five 

knots in time smoother (21, 26, 36, 41 and 46) and temperature smoother (5, 6, 8, 9 and 10) 

to refit all models. The entire results are shown in Appendix B, and all reasonable results are 

presented in figure 3.21 to figure 3.30. As the findings in smoothing parameter Ë, we found 

model 1, model 4, model 5 and model 6 had higher probability to reach convergence and get 

reasonable estimates. 6 different knots in either time smoother or temperature smoother can 

generate 36 different combinations, and these 4 models got 20, 18, 22 and 24 reasonable 

results over 36 trials, respectively. On the contrary, model 2 and model 3 only had 7 and 0 

reasonable results. 

 Among 20 reasonable results of model 1 shown in figure 3.21, the PM10 fixed effect ��  
and its corresponding standard error se(��) had stable estimates around 0.0001 and 0.0003, 

respectively. The ��  had a tiny decrease when ktime=21, and we generally found that fixed  
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Figure 3.21 

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 20 convergence results using different number of knots in model 1. 

   

effects were always relative smaller as long as ktime was less than 26 in the time smoother. 

The estimated standard error of random effect se(��) had more fluctuation than se(��), and it 

was smaller especially in ktime=31 and 36 in time smoother. In addition, we never saw any 

tendency in these estimates while ktmean changed in temperature smoother. 

From 7 reasonable and convergent results in model 2 (figure 3.22, 3.23, 3.24), all fixed  
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Figure 3.22  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 7 convergence results using different number of knots in model 2. 

 

effects and their standard errors had consistent estimates as the number of knots changed in 

two smoothing functions. We still found, when model-fitting had convergence problem,  ��Q 

could become negative around -0.0019 with huge overestimated se(��Q) and se(��Q). As long as 

this model was adjusted by suitable number of knots, both of ��O and ��9 were decreased no 

more than 0.000123 and -0.000017. This reflected that problematic results would also lead to  
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Figure 3.23  

The estimated 1-day lag PM10 fixed effect with corresponding estimated standard errors of 
fixed and random effect from 7 convergence results using different number of knots in model 
2. 

 

overestimated parameter estimates. When ktime=31, 36 and 46 or ktmean=5, 7 and 8, model 4 

had higher opportunities to obtain reasonable results. Figure 3.25 showed that ��Os were 

estimated between 0.000142 and 0.000208, but it decreased over a half when ktime=21. The 

se(��O)s were relative consistent around 0.0004. The highest se(��O) could reach 0.000771, and 

the lowest one was as low as 0.000210. There was no special pattern in se(��O) in model 4, but  
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Figure 3.24  

The estimated 2-day lag PM10 fixed effect with corresponding estimated standard errors of 
fixed and random effect from 7 convergence results using different number of knots in model 
2. 

  

at least over a half of se(��O)s were higher than 0.000392. Unlike PM10, all estimates related 

with NO2 in model 4 were estimated very steady (figure 3.26). An interesting finding was 

higher ��9 when ktime= 21 because this situation did not happen in the other co-pollutants.  

While replacing NO2 by O3, the PM10 relative estimates (��O, se(��O) and se(��O)) in model 

5 were similar as those in model 4, but se(��O) appeared higher estimates more frequently. In  
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Figure 3.25  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 18 convergence results using different number of knots in model 4. 

  

figure 3.27, the se(��O)s estimated from model 5 with 31 and 36 knots in time smoother had 

higher probability to have relative smaller values. Generally speaking, most se(��O)s were 

larger than 0.000531 in convergent model 5. Moreover, the convergent se(��9)s were all  

smaller than ��9, which was the fixed effect of co-pollutant O3. Figure 3.28 implied that, no 

matter any number of knots using in time smoother or temperature smoother, the variation of  
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Figure 3.26  

The estimated NO2 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 18 convergence results using different number of knots in model 4. 

  

city-level effect of ozone was not as significant as the variation of city-level effect of PM10. 

The initial se(��9) from 31 knots in time smoother and 7 knots in temperature smoother 

(0.000650) was close to the average of 22 convergent se(��9) (0.000601), so it was concluded  

that initial result was credible. 

Not similar as the estimations of PM10 fixed effect from previous models, the ��O of  
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Figure 3.27  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 22 convergence results using different number of knots in model 5. 

 

model 6 had relative higher estimates when ktime=26, and the average ��O was 0.000459, 

while the other ��Os had average value 0.000378. Figure 3.29 also presented ��O had static 

estimates with ktime=21 and 46, but there was no consistent ��O in any specific number 

of knots in temperature smoother. The se(��O) still showed more consistency than se(��O). 

Compared with estimated standard errors of random effect in the other models, the se(��9)  
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Figure 3.28  

The estimated O3 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 22 convergence results using different number of knots in model 5. 

 

presented pretty high steadiness in model 6, as well as ��9 and se(��9), which implied that 

SO2 can have much robust estimates as long as some specific numbers of knots setting in 

smoothing functions (figure 3.30). 

Section 3.4 and section 3.5 showed that the starting values of smoothing parameter and 
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Figure 3.29  

The estimated PM10 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 24 convergence results using different number of knots in model 6. 

 

stability of the estimated parameters. Even though the true source of convergent problem in the 

GGAMM has not been theoretically identified, the two modifications had been confirmed that 

the possibility of eliminating convergent problem is existing. Same as the choose of  

starting values of smoothing parameters, there is also no criterion to determine the best 

number of knots which can optimize estimated parameters, or immediately determine which  
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Figure 3.30  

The estimated SO2 fixed effect with corresponding estimated standard errors of fixed and 
random effect from 24 convergence results using different number of knots in model 6. 

 

number of knots can absolutely help parameter estimations reach convergence. Users should 

try any possible number of knots by hand in programs, and review all results from BayesX’s 

outputs. However, a principle should be followed in the time smoother. The default number  

of knots in the time smoother was setup from �3 H �# 4" JK5L!� , 1�, where n is the 

average number of knots in each circle equal to 6 and the (# of years) is equal to 5. Therefore, 
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when (# of years) is fixed, we can only adjust n for the other number of knots. The reason is 

that the time smoother is a regular  fluctuated spline which the number of knots in each 

circle is assigned averagely. Hence, when adding or deducting the number of knots, the  

average number of knots in each circle (n) should be retained the same. Besides, either the 

starting values of smoothing parameters and the number of knots are immediately operating 

in smoothing functions, so both time smoother and temperature smoother are also affected 

from the two modifications directly. This evaluation will be presented in section 3.7. 

3.6. The application of jackknife-bootstrap approach 

So far we found that the use of starting values of smoothing parameter or numbers of 

knots had similar results, but model 3 was still lacking reasonable estimates. We expected 

that there should be a specific starting value of smoothing parameter or number of knots in 

either time smoother or temperature smoother which can lead model 3 to find convergent 

values in all six estimates, but the way to precisely locate the exact setting values was 

unpredictable. In addition, fitting the GGAMM was a very time-consuming procedure, and 

much relied on considerable time and powerful computer hardware. In order to prevent 

endless and aimless search for starting values of smoothing parameters and the numbers of 

knots in smoothing functions, an empirical alternative named the jackknife-bootstrap 

approach is proposed here. 

 Before applying the jackknife-bootstrap approach, we first analyzed whether there is 

influential data in a specific date affecting estimations in model 3. Figure 3.31 presents six 

estimates (��O, se(��O), se(��O), ��9, se(��9), se(��9)) in model 3 by re-fitting 1,826 times with 

dropping out the ith observation in each city, where i=1, …, 1826. These estimates are kind of 
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estimates from a jackknife approach, and defined as ��O����, se���O�����, se���O�����, ��9����, 
se���9����� and se���9�����. It was obvious that ��O����, ��9����, se���9����� and se���9����� had 

very consistent estimates whatever any date was dropped out in each city. Through 1,826 

estimates in each parameter, almost all of  ��O����, ��9����, se���9����� and se���9����� were 

nearby their averages, but some se���O�����s and se���9�����s were significantly away from 

their averages. We found that, if se���O����� had values explicitly higher or lower than their 

averages, the corresponding se���O����� would also have explicitly higher or lower values. 

For instance, se���O���O�OQ� had the highest value (1.246450) among se���O�����s, and its 

corresponding se���O���O�OQ� = 4.827463 was also the highest value among se���O�����s. 

However, dropping out some observations which can affect se(��O) and se(��O) will not 

improve se(��9) and se(��9). In fact, figure 3.31 had proved that se(��O) and se(��O) did not 

significantly decrease to reasonable estimates. In previous example, when dropping out all 

observations in calendar time t1413, the se���9���O�OQ� and se���9���O�OQ� were 0.082051 and 

0.317786, which were pretty close to initial estimates. 

 Therefore, we first applied the traditional jackknife approach to look for improved 

estimations, but we encountered a problematic situation. The procedure found that the 

estimated standard errors of fixed and random effects would rise along with the number of 

repeated drawings. In order to solve the inconsistency of traditional jackknife approach in 

this case, we modified this approach by embedding a bootstrap concept to randomly draw 

some samples from these jackknife estimates B times (B=100, 200,…, 1800) with 

replacement, and repeating this step 10,000 times to take the average. Those averages were 

shown in figure 3.32, and through B=100 to 1800, all estimates were changed slightly and 
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Figure 3.31  

The jackknife estimates in model 3. 

 

the differences could be almost ignored. Most importantly, the huge overestimated se(��O), 

se(��9), se(��O) and se(��9) in initial results shown in table 3 were reduced to acceptable 

estimates. Because the number of drawings with replacement did not differ too much, we can 

choose the result from B=100, where the jackknife-bootstrap adjusted (��O, ��9)=(0.000206, 

-0.000005), (se(��O), se(��9))=(0.000027, 0.000001) and (se(��O),se(��9))=(0.002740, 0.000055). 

However, this approach cannot be applied on any situation that model-fitting can get 

reasonable and convergent estimates as long as the estimates can be fitted initially well, or can 

be modified by the starting values of smoothing parameters or the number of knots in 

smoothing functions. For example, model 1 can be fitted reasonably in the initial settings: 

starting values of smoothing parameters were 10 and the numbers of knots were 31 
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Figure 3.32  

The adjusted estimates by applying the jackknife-bootstrap approach in model 3. 

 

and 7 in time smoother and temperature smoother, respectively. As applying the 

jackknife-bootstrap approach in model 1 with the same design using in mode 3, three main 

estimates �� , se(��) and se(��) all showed their consistency regardless of the number of 

resamplings. Nonetheless, as compared with initial estimates shown in the bottom of table 

3.5, both of ��  and se(��) were underestimated, and se(��) was overestimated. 
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Table 3.5  

The adjusted estimates by applying the jackknife-bootstrap approach in model 1. 

B ��  se(��) se(��) 

100 0.000074149 0.000049864 0.000713967 
200 0.000074145 0.000050791 0.000713998 
300 0.000074088 0.000051179 0.000715293 
400 0.000074135 0.000051356 0.000713957 
500 0.000074140 0.000051621 0.000714157 
600 0.000074107 0.000051787 0.000714489 
700 0.000074115 0.000051821 0.000714280 
800 0.000074102 0.000051795 0.000714571 
900 0.000074115 0.000052060 0.000714666 
1000 0.000074117 0.000052076 0.000714519 
1100 0.000074103 0.000052170 0.000714849 
1200 0.000074113 0.000052043 0.000714353 
1300 0.000074145 0.000052127 0.000714040 
1400 0.000074088 0.000052041 0.000714875 
1500 0.000074108 0.000052217 0.000714660 
1600 0.000074096 0.000052120 0.000714626 
1700 0.000074105 0.000052176 0.000714732 

1800 0.000074092 0.000052117 0.000714643 

Initial estimates 0.000105264 0.000286481 0.000193690 
 

3.7. Smoothing functions 

In section 3.4, we have showed that the starting value of the smoothing parameter had 

different influences on estimates, and we also found that it can also affect smoothing 

functions, especially the temperature smoother. The entire 36 pictures of time smoothers and 

36 pictures of temperature smoothers from the combinations of 6 starting values of Ëtime and 

Ëtmean are in Appendix C. Among six models, time smoothers came out less influenced from 

different starting values of Ëtime and Ëtmean. The fluctuation frequency in time smoother can be 

maintained by different starting values of Ëtime or Ëtmean, but sometimes the 95% confidence  
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Figure 3.33  

The temperature splines of model 1 when (Ëtime, Ëtmean)= (11, 15) and (12, 12). 

 

interval became wider as starting values of (Ëtime, Ëtmean)= (13, 10) and (13, 14) in model 3 

and (11, 15), (12, 13) and (15, 11) in model 6. In temperature smoothers, different starting 

values of Ëtime and Ëtmean may have relatively higher probabilities to cause smoothing 

functions not look as usual. For example, most temperature smoothers in model 1 presented a 

hook shape, except for (Ëtime, Ëtmean) is (11, 15) and (12, 12). The two exceptions were like a 

basin, and the temperature effect went down even when temperature reached 100� and -20� 
�figure 3.33�. By tracking their results in estimates, it’s obvious that both of them did not 

complete the convergence which also caused their ��s to tend to negative value -0.000046.  

The basin-like temperature smoother also appeared in model 2 when starting values of (Ëtime, 

Ëtmean)=(13, 11), (14, 13), (15, 14) and (15, 15). The basin-like temperature smoothers were 

much often happening in co-pollutant models, especially in PM10+CO (model 3). Besides, we 

also took note of that sometimes temperature smoother was not smooth any more, and 

presented a straight line with divergent tendency at the end of two sides of 95% confidence 

interval. This situation often happened in modeling PM10 adjusted by O3.  
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Figure 3.34  

The non-smoothing splines and 95% CI of temperature in model 5, where (a, b)=(Ëtime, Ëtmean). 

 

Among 36 temperature smoother plots, 9 of them had non-smoothing results, shown in 

figure 3.34. These non-smoothing smoothers were accompanied with either convergent or 

non-convergent results. From the other smoothing temperature smoothers in model 3, most of 

them were still not smoothing enough, and the widths of 95% confidence intervals were also 

getting broader in two tails, such as plots with starting values of (Ëtime, Ëtmean)=(10, 12) and 
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(10, 14). It was concluded that, after adjusting co-pollutant O3, the linear effect of 

temperature was getting stronger and it was not necessary to enforce it in a smoothing 

function. The temperature smoother in model 6 with initial starting value of (Ëtime, Ëtmean)=(10, 

10) was not alike a hook, but the middle segment from 10 � and 70 � were flatter, but the 

spline climbing in two tails was as usual. There were still two temperature smoothers 

appearing in a basin-like shape, but the others were very robust. Both abnormal smoothers 

happened in starting value of Ëtime=12, and their estimates were also absolutely not reaching 

convergence. 

Comparing with the results in section 3.4, it was explicit that the starting values of 

smoothing function had much influence on estimates than on smoothing functions 

themselves. When finding abnormal results in estimates which possibly came out from 

incomplete convergence, we still suggest modifying the starting value of smoothing function 

to search for reasonable answers with convergence findings. Even though it had lower 

probability of affecting smoothing functions, an unusual smoothing function can highly 

affect unknown parameters’ estimation. According to our 36 trials in each model, there were 

2, 5, 20, 1, 13 and 2 temperature smoothers showed basin-like smoothers or straight lines 

from model 1 to model 6, respectively. Among these 43 temperature smoothers, there were 

37 splines coming out with abnormal estimates with convergence problem. As a result, when 

looking for suitable starting values of smoothing parameters to speed up the velocity of 

iteration and avoid convergence problem, it’s necessary to also check the smoothing 

functions ancillary.  

 The plots of time smoother and temperature smoother with different numbers of knots 

(ktime and ktmean) in each model are gathered in Appendix D. The number of knots should have  
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more immediate influence than the starting value of smoothing parameter because the entire 

structure of smoothing curve was initially decomposed into pieces by these knots and 

combined with random effects to estimate simultaneously. This part had been demonstrated 

in chapter 2.1. Using too many knots in a smoothing function with fewer turnovers could 

cause the estimated smoothing function some twisted segments in unexpected positions. On 

the contrary, a smoothing function, especially seasonal time series curve, should not use too 

fewer knots such that the estimated curve has too less variation. The number of knots using 

in our time smoothers were appropriately enough from 26 to 46, so we did not find poor 

results in each model. Either ktime and ktmean did not make time smoothers unusual, but wider 

95% confidence intervals appeared in model 1, model 3 and model 4. In particular, model 3 

displayed the situation of 5-fold wider 95% confidence intervals, and 4 of them happened in 

ktmean=6. In fact, ktmean should only affect temperature smoother itself, but the corresponding 

temperature smoothers shown in Appendix D did not present abnormal curves.  

 As what we had mentioned before, temperature smoothers were generally a pure curve 

with possibly one or two turnovers located at some particular degrees of temperature, such as 

20� in model 1 or 10� and 70� in model 6 when (ktmean, ktmean)=(31, 7) (figure 3.35). The 

reason for a regular temperature smoother in model 6 to have two turnovers is when the first 

significant turnover occurred around 10� which was earlier than model 1, the curve 

increased slowly and became flat until 70�. Another significant increase happened after 70� 

which makes the temperature smoother look like a bowl in model 6, but the only difference 

was whether the second turnover really showed up before the final climb-up until the end.  

In addition, it was surprising that more knots using in temperature smoother actually did 

not produce twisted curve, but alternatively suppressed the effect of cold weather, especially  
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Figure 3.35  

Two regular temperature smoothers in model 1 and model 6.  

 

when time smoothers used more than 31 knots. This situation frequently happened in model 

1, model 2 and model 4. In details, the temperature smoothers in model 1 showed nice curves 

under all numbers of knots in temperature smoothers and 21 knots in time smoothers. When 

ktime increased, the left tail of temperature smoothers gradually lay down, and even became 

lower than the lowest level of temperature effect in other hook-like temperature smoothers. 

For example, figure 3.36 presents a series of temperature smoothers’ changing when ktime=21, 

26, 31, 36, 41 and 46 conditional on a fixed ktmean=5. The turnover point in plot (21, 5) was 

explicitly located between 20 � and 40 �, but became nonsignificant when ktime increased. 

Moreover, the extreme point of left tail "����: � h20�� was 0.05, and the lowest level 

in the same spline "����: � 30�� was -0.05 when ktime=21. Nonetheless, as ktime 

increased to 31, "����: � h20�� decreased to -0.03 and "����: � 30�� slightly 

increased to -0.03 as well. The "����: � h20�� started to below "����: � 30�� 

when ktime kept increasing, and the turnover point at ���: � 30� also became  

disappeared. We think this situation came out from a possible reason: when using two or  
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Figure 3.36  

The temperature smoothers using ktmean=5 with different ktimes in time smoother in model 1. 

 

more smoothing functions, all of them were decomposed into pieces by knots, combined with 

random effects, and estimated simultaneously. When a smoothing function used more knots, 

it would share more effects than the others.   

If smoothing functions were not smooth any more, such as the temperature smoother in 

model 5 by using (ktime, ktmean)=(31, 7), we had found that changing the starting values of 

smoothing parameters did not improve it and still presented  straight line. By reducing ktime 

to 21, the temperature smoother would become a hook-like curve accompanied with 

appropriate ktmean (figure 3.37). Their estimates were consistent (Appendix B) and would be 

credible to present. By checking all corresponding estimates in linear factors, we found some 

basin-like or weird twisted temperature smoothers almost happened to accompany with  
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Figure 3.37  

The temperature smoothers in model 5 with (ktime, ktmean)=(21, 6), (21, 7) and (21, 9). 

 
estimates having convergence problem. Even though well-fitted smoothing functions were 

not guaranteed for helping linear factors’ estimations, they were still indispensable because 

results with convergence problem always did not have normal temperature smoothers. 
3.8. Spatial functions 

Besides the investigation of starting values of smoothing parameters in time and 

temperature smoother, we also examine how the starting value of smoothing parameter Ëspat 

affect in spatial function. For the sake of simplifying analysis, the adjustment of Ëspat was 

only based on convergence results with corresponding Ëtime and Ëtmean in smoothing functions 

in each model. Meanwhile, model 1, model 4, model 5 and model 6 were using (Ëtime, Ëtmean) 

= (10, 10), and model 2 was using (Ëtime, Ëtmean) = (11, 10) with Ëspat = 10 (default value), 11, 

12, 13, 14 and 15. The only exception was model 3 because there was no reasonable result 

based on the same Ëtimes and Ëtmeans used in the other models. Therefore, we kept (Ëtime, Ëtmean) 

= (10, 10) in this case. All spatial function maps with corresponding smoothing function plots 

are included in Appendix E. 

Because spatial function uses the relative distances among these cities, the relative effects 
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theoretically should not be changed with different Ëspats. For example, in model 1, the highest 

spatial effect "$%&��!� � 1.3684 appeared in Chicago with Ëspat = 10, and the lowest one 

with the same Ëspat was -1.3344 in Huntsville. Whatever using any Ëspat from 11 to 15, the two 

cities still had the highest and lowest spatial effect, respectively. This comparative 

relationship was also followed by any couple of cities, and never changed by adjusting 

different Ëspats. Nonetheless, the magnitude of spatial effect in single city could be changed 

with the use of different Ëspats. Table 3.6 showed the initial results of adjusting Ëspat from 

model 1 to model 6. There was no doubt to get problematic estimates in some Ëspats, but the 

situation was similar as our previous investigations in smoothing functions. That is, if a 

GGAMM can obtain reasonably convergent estimates in default Ë, it has higher probability to 

get reasonably convergence estimates in other Ës, whatever smoothing function or spatial 

function. This principle had been proved again in spatial function. For results having 

convergence estimates with default Ëspat in model 1, model 4, model 5 and model 6, besides 

initial estimates with Ëspat = 10, they obtained additional 3, 3, 4 and 2 convergence results, 

respectively. In particular, model 3 still did not have convergence results over these Ëspats.  

The main estimates from different Ëspats in table 3.6 proved that convergent results still 

had robust estimates. In model 1, the range of convergent estimates ��O was from 0.000100 

to 0.000105, and two problematic ��O with large se(��O) significantly decreased to 0.000019 

(Ëspat = 11 and 12). Considering lag effects, we got another convergent result using Ëspat = 13, 

and 1-day PM10 lag effect was slightly raised from -0.000062 to -0.000037. Its 2-day PM10 

lag effect contrarily decreased from 0.000157 to 0.000142, but the difference was very tiny. 

Their estimated standard errors were also highly consistent compared with initial result of 

Ëspat = 10. Co-pollutant effects, besides CO, had similar performance as PM10 effect. The 
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Table 3.6  

The main estimates with different Ëspats from 10 to 15 in each model. Ëspat 

Model # Parameter 10 11 12 13 14 15 
1 ��O 0.000105 0.000019 0.000100 0.000019 0.000101 0.000101 

se(��O� 0.000286 0.088380 0.000311 0.094020 0.000297 0.000300 

se(��O� 0.000194 0.342288 0.000403 0.364130 0.000292 0.000315 

2 ��O 0.000097 0.000394 0.000738 0.000093 0.000738 0.000457 

se(��O� 0.000351 0.366932 0.091934 0.000355 0.101896 0.142061 

se(��O� 0.000388 1.421119 0.356037 0.000414 0.394621 0.550190 ��9 -0.000062 -0.000040 -0.001929 -0.000037 -0.001917 -0.000019 

se(��9� 0.000400 0.000394 0.109107 0.000370 0.120712 0.000367 

se(��9� 0.000579 0.000507 0.422553 0.000385 0.467500 0.000340 ��Q 0.000157 -0.002202 0.000175 0.000142 0.000159 -0.002168 

se(��Q� 0.000318 0.517645 0.000343 0.000337 0.000410 0.130741 

se(��Q� 0.000244 2.004827 0.000394 0.000389 0.000757 0.506347 

3 ��O 0.000196 0.000221 0.000221 0.000195 0.000198 0.000197 

se(��O� 0.088258 0.081425 0.081336 0.080944 0.080557 0.085143 

se(��O� 0.341813 0.315346 0.315005 0.313484 0.311985 0.329745 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081648 0.081647 0.081651 0.081651 0.081649 0.081650 

se(��9� 0.316223 0.316219 0.316233 0.316231 0.316226 0.316231 

4 ��O 0.000163 0.000054 0.000162 0.000455 0.000141 0.000132 

se(��O� 0.000441 0.510938 0.000444 0.129984 0.000413 0.000381 

se(��O� 0.000638 1.842208 0.000652 0.468654 0.000480 0.000263 ��9 0.001224 0.002162 0.001256 0.001162 0.001256 0.001215 

se(��9� 0.000846 0.475760 0.000863 0.000835 0.000866 0.000855 

se(��9� 0.000795 1.715366 0.000919 0.000673 0.000951 0.000877 

5 ��O 0.000227 0.000214 -0.000384 0.000223 0.000208 0.000216 

se(��O� 0.000385 0.000352 0.109500 0.000414 0.000376 0.000382 

se(��O� 0.000531 0.000332 0.409701 0.000672 0.000472 0.000509 ��9 0.001855 0.001831 0.001875 0.001772 0.001778 0.001818 

se(��9� 0.000815 0.000832 0.000847 0.000837 0.000831 0.000796 

se(��9� 0.000650 0.000806 0.000645 0.000670 0.000663 0.000297 

6 ��O 0.000388 0.000473 0.000400 0.000392 0.001248 0.001250 

se(��O� 0.000391 0.000410 0.000365 0.000378 0.156022 0.160617 

se(��O� 0.000419 0.000505 0.000245 0.000343 0.517428 0.532669 ��9 -0.000281 0.000687 -0.000267 -0.000266 -0.000296 -0.000295 

se(��9� 0.001830 0.707918 0.001793 0.001813 0.001977 0.001977 

se(��9� 0.004000 2.347782 0.003860 0.003936 0.004538 0.004536 
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Figure 3.38  

The spatial function maps from Ëspat=10 in model 2 and model 4. 

 

ranges of the other three co-pollutants’ estimates under convergence results were (0.001215, 

0.001256), (0.001772, 0.001855) and (-0.000281, -0.000266) in NO2, O3 and SO2, 

respectively. We can have the same conclusion from chapter 3.5 and chapter 3.6 that Ëspat can 

reach robust results based on convergence, and the stability of ��  and se(��) was higher than 

that of se(��). 

Therefore, the remaining concern is whether spatial function can maintain its  
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Figure 3.39 

The spatial function maps from Ëspat=10 in model 5 and model 6. 

 

consistence, and we compared spatial function maps from convergence results in each 

model. A new investigation is that some spatial effects almost disappeared. This situation can 

be easily identified by reviewing the palette located in the left-bottom corner of each spatial 

function map. Each palette was labeled by minimum, zero and maximum spatial effect, and 

the log relative rate of each city was distributed within the range of band. In model 1, 

convergent estimates with Ëspat = 10, 12 and 14 had spatial effects located in (-1.33, 1.37), 
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(-1.08, 1.12) and (-0.91, 0.94), respectively, but another convergence result from Ëspat = 15 

had small spatial effect with range of (-0.02, 0.02), which made the differences of spatial 

influence in any couple of cities almost diminished. Of course, this kind of spatial effect was 

not desired anymore. Besides model 1, the other models (excluding model 3) had the same 

situation, and they had a common point: all diminished spatial effects appeared in Ëspat = 10. 

Figure 3.38 and figure 3.39 gather the initial spatial function maps from model 2, model 4, 

model 5 and model 6, which shared the same characteristic: very narrow bandwidth of the 

range of spatial effect in the palette. After using other Ëspats, model 2 found another 

convergence estimates result with wider spatial effect range (-0.51, 0.66). Model 4 still had 

even shrinkage spatial effect from -0.0006 o 0.0005 with Ëspat = 12, but its geographical 

variation became more obvious when as model 4, but finally explicit spatial influence 

appeared in Ëspat = 13, 14 and 15. Finally, we also obtained larger spatial function ranged 

from (-0.77, 0.81) and (-1.39, 1.39) in Ëspat = 12 and 13, compared with initial range (-0.007, 

0.007) based on default Ëspat. 

To sum up, Ëspat may not be as efficient as Ëtime and Ëtmean, and it’s better to regard Ëspat as 

a sort of double-checking criterion when the other estimates and smoothing functions have 

been fitted well. In the other words, the consideration of Ëspat can be ignored temporarily 

before obtaining convergent and reasonable estimates and smoothing functions. After 

checking each city’s spatial effect, we suggest process the second model-fitting by adjusting 

Ëspat if extremely small spatial effects were discovered.  

3.9. GGAMM v.s. 2-stage Bayesian hierarchical model 

 For the first glance of applying the GGAMM in air pollution research, we are interested 
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in comparing how different are the GGAMM and traditional 2-stage Bayesian hierarchical 

model. From model structure, a 2-stage Bayesian hierarchical model was composed by 

several distinguished GAMs from cities, and then included the estimates of main factors (air 

pollutants) from those GAMs into a two-level normal model with a Bayesian approach to 

make a national estimate. Actually, the models from two stages cannot be shown together, or 

say, they even do not have an organized and unified model form to present. Rather than a 

mathematical model, as it is a conceptual model. The GGAMM uses a single model form to 

fit both of national and city-specific effect simultaneously, and realizes that all estimates are 

based on a statistical model. More importantly, the estimates from GGAMMs showed 

somehow difference from the estimates from 2-stage Bayesian hierarchical models.  

 Table 3.7 shows both parameter estimates fitted from GGAMMs and 2-stage Bayesian 

hierarchical models, and the PM10 effects in a 2-stage Bayesian hierarchical model were 

generally stronger than those in the GGAMM, except for 1-day lag effect in model 2 and 

model 6. Considering their ratios, the current PM10 effect of model 2 fitted from 2- stage 

Bayesian hierarchical model has the highest ratio with value of 4.34 to that from the 

GGAMM, but its 1-day lag effect was much weaker than GGAMM’s 1-day lag effect with 

ratio of 4.03. Model 1’s PM10 in the 2-stage Bayesian hierarchical model was also 3.54 times 

higher than the same effect in the GGAMM. When controlling for co-pollutants, the ratios of 

PM10 effect between two models were reduced to 0.78~2.78. The estimated standard errors of 

PM10 effects fitted by the 2-stage Bayesian hierarchical model were slightly higher than those 

fitted by the GGAMM, except for model 3. Actually, from this comparison, we can confirm 

that the estimated standard errors of fixed effect modified by jackknife-bootstrap method in 

model 3 were underestimated. 
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Table 3.7  

The comparison of estimates from GGAMMs and 2-stage Bayesian hierarchical models. 

  
GGAMM 2-stage BH model 

Model # Parameter ��  se(��)  ��  se(��)  
Model 1 PM10  0.000105 0.000287  0.000235 0.000461 

      

Model 2 PM10  0.000093 0.000355  0.000060 0.000537 

 PM10-lag1 -0.000037 0.000370 -0.000126 0.001391 

 PM10-lag2  0.000142 0.000337  0.000117 0.000563 

      

Model 3 PM10  0.000206 0.000027  0.000397 0.000666 

 CO -0.000005 0.000001 -0.000008 0.000027 

      

Model 4 PM10  0.000141 0.000413  0.000038 0.000779 

 NO2  0.001256 0.000866  0.001313 0.001392 

      

Model 5 PM10  0.000223 0.000414  0.000176 0.000607 

 O3  0.001772 0.000837  0.001405 0.001448 

      

Model 6 PM10  0.000392 0.000378  0.000541 0.000770 

 SO2 -0.000266 0.001813  0.000406 0.002085 

* Model 2 fitting by the GGAMM was modified by starting values (Ëtime, Ëtmean, Ëspat)=(11, 10, 13). 
* Model 4 fitting by the GGAMM was modified by starting values (Ëtime, Ëtmean, Ëspat)=(11, 10, 14). 
* Model 5 fitting by the GGAMM was modified by starting values (Ëtime, Ëtmean, Ëspat)=(10, 10, 13). 
* Model 6 fitting by the GGAMM was modified by starting values (Ëtime, Ëtmean, Ëspat)=(10, 10, 13). 
* Model 3 fitting by the GGAMM was modified by jackknife-bootstrap approach. 

Comparing with PM10 effect, the co-pollutant effects fitted by the 2-stage Bayesian 

hierarchical model were reversely weaker than those fitted by the GGAMM. In particular, 

NO2 effect in the 2-stage Bayesian hierarchical model was 2.33 times smaller than the NO2 

fixed effect in the GGAMM. The ratio became 4.16 in O3 effect. However, both estimated 

standard errors in the 2-stage Bayesian hierarchical model were larger than those in the 

GGAMM, which implied that the confidence intervals of NO2 and O3 effect in the GGAMM 

were narrower. In particular, the fixed effect of SO2 became positive as long as using the 
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2-stage Bayesian hierarchical model, but their estimated standard errors were close. 

Moreover, comparing four co-pollutant models, when using the 2-stage Bayesian hierarchical 

model and controlling NO2, O3 and SO2, the PM10 estimates were changed slightly from 

0.000038, 0.000176 and 0.000541, respectively, but it increased to 0.000397 as controlling 

for CO. In the GGAMM, the PM10 fixed effects were robust when controlling for CO, O3 and 

SO2; nonetheless, when controlling for SO2, the PM10 fixed effect significantly increased to 

0.000392. 

 Reviewing the city-specific effects, many differences appeared between two models. 

Theoretically, the city-specific effect in the 2-stage Bayesian hierarchical model was 

constructed with several independent GAMs. In figure 3.1, we had proved that air pollutants 

and temperature were highly correlated when the distance between two cities was short, so 

geographical correlation cannot be ignored. Even though two-level normal models linked 

those coefficients from GAMs by two-level normal independent sampling method, the spatial 

correlation did not contain any real geographical information. The GGAMM can fit several 

kinds of spatial functions from real geographical data to explain and control most spatial 

correlation. From this framework, the city-specific effects had different profiles from two 

models. In the 2-stage Bayesian hierarchical model, the city-specific effect was fitted from 

each independent GAM in each city. The linear factors in each GAM were controlled by its 

smoothing functions. Therefore, different city-specific smoothing functions can make 

city-specific effects more versatile with corresponding confidence intervals. In the GGAMM, 

the city-specific effects were estimated on a unified framework, so the variation of 

city-specific effects was also controlled by nation-level smoothers and spatial function, and 

was finally centralized on fixed effect. In addition, because of being controlled by local 
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smoothing functions, some city-specific effects in the 2-stage Bayesian hierarchical model 

were stronger than those in the GGAMM. This property also implied wider 95% confidence 

intervals of city-specific effects in the 2-stage Bayesian hierarchical model. Besides, we also 

found that some city-specific effects from the 2-stage Bayesian hierarchical model also had 

convergence problem with huge estimates and 95% confidence intervals, such as PM10 effect 

at 1-day lag in Cincinnati and PM10 effect at 2-day lag in Huntsville (Appendix F). 

Meanwhile, a well-convergence result in the GGAMM can simultaneously guarantee any 

estimate at nation-level and city-level. 

 There were some common characteristics shared from the comparison between two 

models in each effect. First, the city-specific PM10 effects of the GGAMM tended to be 

positive more than those of the 2-stage Bayesian hierarchical model. In details, as fixed 

effects were positive, the city-specific effects had higher chance to be positive, and vice versa. 

Second, the versatility level of city-specific effects of the GGAMM was less than that of the 

2-stage Bayesian hierarchical model. Meanwhile, the range of city-specific effects of the 

GGAMM was narrower than that of the 2-stage Bayesian hierarchical model. For example, in 

figure 3.40, the range of percent increase in relative risk of mortality per 10 µg/m3 increase of 

PM10 concentration in the GGAMM was from 0.06%(Spokane) to 0.15%(Chicago), but the 

range in the 2-stage Bayesian hierarchical model was wider from -2.94%(Huntsville) 

to14.19%(Cincinnati). This situation not only appeared in PM10 effect, but also happened in 

PM10 lag effects and co-pollutants. It was implied that, in the 2-stage Bayesian hierarchical 

model, each city-specific effect was fitted from a GAM, and according to our data, each city 

was easily damaged by missing data because there was only 1,826 observations in each city. 

Due to applying CCA, missing data in PM10 or co-pollutants would also make valid 
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Figure 3.40 

The city-specific PM10 effects of the GGAMM and 2-stage Bayesian hierarchical model in 
model 1. 

 

temperature or the other weather condition variables deleted, which will make irrational 

smoothing functions and affect parameter estimation. Figure 3.41 and figure 3.42 are the time 

smoother plot and temperature smoother plot in model 1 fitted by the GAM. More missing 

data made time smoother not vary seasonally any more, such as Huntsville, Las Vegas and 

Lexington. Temperature functions also displayed twisted shapes in most cities, and cannot be  
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Figure 3.41 

The smoothing function plots of time fitting by the GAM in each city in model 1. 

 

demonstrated. That’s why sometimes the ratio of city-specific effect between two locations 

was over 50-fold, and many negative effects also were unexplainable. The unified structure 

of the GGAMM can reduce the possibility of risk from missing data and CCA. For instance, 

there were 574 missing PM10 in Cincinnati, and the corresponding temperature and calendar 

time data will also be ignored by CCA when fitting the GAM. Nonetheless, they still have 

chance to be complemented from the other cities as fitting the GGAMM. Third, the 95%  
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Figure 3.42 

The smoothing function plots of temperature fitting by the GAM in each city in model 1. 

 

confidence interval of city-specific effect in the GGAMM were narrower than the 95% 

confidence interval of city-specific effect in the 2-stage Bayesian hierarchical model, and the 

GGAMM can also make less varied 95% confidence intervals among 15 cities. Fourth, due to 

the city-specific effects in the GGAMM were produced by the summation of fixed effect and 

random effect, they were all centered around fixed effect, which implied that as long as fixed 

effects were higher, the city-specific effects were also higher, and vice versa. For example, in  
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Figure 3.43 

The city-level residual box plots of the GGAMM and 2-stage Bayesian hierarchical model in 
model 1. 

 

model 4, the fixed effects of PM10 and NO2 in the GGAMM were 0.000141 and 0.001256, 

respectively; hence, all city-specific effects of NO2 were higher than all city-specific effects 

of PM10. However, this situation did not happen in 2-stage Bayesian hierarchical models 

because each city was fitted independently and only controlling its own time smoother and 

temperature smoother. 
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  To sum up, actually there was no scientific approach or statistical test to evaluate which 

modeling approach was better or more appropriate; hence, we processed the city-level residual 

box plot to roughly identify. The two residual box plots from model 1 shown in figure 3.43 had 

totally different patterns. There was no doubt that the residual means of GGAMMs in each city 

were very consistently close to zero because of the property of GGAMMs, but some cities had 

obvious lower residual means in 2-stage Bayesian hierarchical models. Each city had more or 

less outliers in both models, but the amount of outliers from 2-stage Bayesian hierarchical 

models was more than the amount of outliers from GGAMMs. Interestingly, the outliers from 

GGAMMs were mostly negative, but 2-stage Bayesian hierarchical models only produced 

positive outliers. Considering the distribution of those outliers, GGAMMs had better 

performance to control those outliers not too far away from residual means, but the locations of 

outliers in 2-stage Bayesian hierarchical models were more diverse, especially in Colorado 

Springs, El Paso, Huntsville and Lexington. Those outliers also reflected that predicted values 

from GGAMMs were often underestimated; nonetheless, over-predicted values always 

happened in 2-stage Bayesian hierarchical models. 

3.10. Missing data imputation analysis 

 For a long time, analyses of air pollution data were undermined from missing data 

problem. Even though air pollution monitoring stations were widely built in most large cities, 

due to the consideration of budget and cost, no air pollution monitoring station can guarantee 

that they can 100% collect every air pollution materials 24 hours without rest. From the 

NMMAPS database, we can induce some situations of missing data appearing in air 

pollutants specifically. For six main air pollutants (CO, NO2, O3, SO2, PM10, PM2.5) from 
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1987 to 2000 among 108 cities, there were only 32, 11, 21, 12 cities with complete data in 

CO, NO2, O3 and SO2, respectively (Table 3.8). The missing data problem went worse in 

particulate matters PM10 and PM2.5, and no city had complete PM10 and PM2.5 over 14 years 

at all. In particular, most air pollution monitoring stations started to collect PM2.5 data after 

1999. If we just look at the valid period of data collection of PM2.5, there was still no city 

with complete PM2.5 data from 1999 to 2000. Moreover, the duration was still not enough for 

a spatio-temporal data analysis with other co-pollutants, that’s why PM2.5 was not listed in 

this study.  

 The missing data pattern was also not totally regular among different air pollutant  

Table 3.8  

The cities with complete air pollutant data in 108 U.S. cities from 1987 to 2000. 
Air pollutant Cities 
CO Akron, Albuqerque, Boston, Chicago, Cincinnati, Cleveland, Columbus, 

Dayton, Denver, Dallas/Fort Worth, El Paso, Fresno, Houston, 
Indianapolis, Kansas City(MO), Los Angeles, Louisville, Memphis, 
Milwaukee, Nashville, Norfolk, Richmond, Sacramento, Salt Lake City, 
San Bernardino, Seattle, Spokane, Santa Ana/Anaheim, St. Petersburg, 
Tampa, Tucson, Wichita 

  
NO2 Bakersfield, Boston, Chicago, Dallas/Fort Worth, Fresno, Houston, 

Kansas City(MO), Los Angeles, Oakland, San Bernardino, Santa 
Ana/Anaheim 

  
O3 Albuqerque, Bakersfield, Baton Rouge, Chicago, Denver, Dallas/Fort 

Worth, El Paso, Fresno, Houston, Los Angeles, Little Rock, Nashville, 
Oakland, Riverside, Sacramento, San Bernardino, Shreveport, Santa 
Ana/Anaheim, St. Petersburg, Tampa, Tucson 

  
SO2 Boston, Cleveland, Detroit, Houston, Indianapolis, Kansas City(MO), 

Los Angeles, Milwaukee, Pittsburg, Providence, St. Petersburg, Tampa 
PM10 None 
  
PM2.5 None 
 

monitoring stations, even though some stations collected data once per six days (PM10 in Los  
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Angeles) or half-year cycle (O3 in Akron). In statistical analysis, it is supposed that the 

missing data scenario was considered with missing completely at random (MCAR), and all 

missing data was eliminated when fitting models in chapter 3.2. This data management 

strategy is named as complete case analysis. We were interested in how missing data 

imputation methods work in the GGAMM, and look for opportunities that missing data 

imputation methods can repair the damage of missing data along with improving 

model-fitting. 

 Table 3.9 was organized by main estimates with CCA, NNI1, NNI2 and MI. When 

applying missing data imputations, we also encountered the convergence problem to get 

reasonable estimates in some models, such as model 4 with NNI2 or model 6 with NNI2. 

imputations have convergent results simultaneously. We tried to search good starting values of 

smoothing parameter in either time smother or temperature smoother in some imputations 

within each model, but only model 1, model 2, model 4, model 5 and model 6 can accomplish 

this. Note that model 3 with CCA, NNI1, NNI2 and MI-MCMC all used initial settings 

because there was no good result whatever any starting value of smoothing function or the 

number of knots was used. 

Comparing the estimated PM10 fixed effect over six models, the NNI1 increased its fixed 

effect in model 1, model 2 and model 3, and the remaining co-pollutant models did not raise 

this effect, especially in model 4, where after controlling for NO2, the PM10 fixed effect with 

NNI1 reduced around 8 times to the same effect with CCA. As imputed by NNI2, the PM10 

fixed effects were reduced besides model 3. In particular, the PM10 fixed effect became 

negative in model 1 and model 2. The largest decrement appeared in model 5, where PM10
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Table 3.9 

The model-fitting results from complete case analysis (CCA), nearest neighbor imputation version 1 and version 2 (NNI1, NNI2) 
and multiple imputation (MI-MCMC). 

  ��  se(��) se(��) 

Model Variable CCA NNI1 NNI2 
MI- 

MCMC CCA NNI1 NNI2 
MI- 

MCMC CCA NNI1 NNI2 
MI- 

MCMC 

Model 1 PM10 0.000105 0.000186 -0.000044 0.000139 0.000287 0.000345 0.000262 0.000295 0.000194 0.000691 0.000247 0.000434 

Model 2 PM10 0.000093 0.000202 -0.000013 0.000127 0.000355 0.000322 0.000320 0.000330 0.000414 0.000417 0.000554 0.000540 

  PM10-lag1 -0.000037 -0.000069 -0.000102 0.000008 0.000370 0.000355 0.000319 0.000322 0.000385 0.000540 0.000509 0.000412 

  PM10-lag2 0.000142 0.000065 0.000047 0.000061 0.000337 0.000371 0.000283 0.000316 0.000389 0.000767 0.000371 0.000502 

Model 3 PM10 0.000196 0.000546 0.000258 0.000183 0.088258 0.076300 0.125322 0.082237 0.341816 0.295501 0.485365 0.318495 

  CO -0.000005 -0.000010 -0.000011 -0.000009 0.081648 0.081645 0.081634 0.081649 0.316223 0.316210 0.316165 0.316226 

Model 4 PM10 0.000141 0.000021 0.000114 -0.000234 0.000413 0.000364 0.000301 0.000437 0.000480 0.000474 0.000345 0.000818 

  NO2 0.001256 0.000748 0.000459 0.001658 0.000837 0.000727 0.000663 0.000879 0.000951 0.000835 0.000855 0.001668 

Model 5 PM10 0.000223 0.000146 0.000004 0.000027 0.000378 0.000314 0.000266 0.000330 0.000672 0.000435 0.000242 0.000564 

  O3 0.001772 0.001496 0.000546 0.002448 0.000837 0.000652 0.000598 0.000825 0.000670 0.000786 0.000836 0.001663 

Model 6 PM10 0.000392 0.000355 0.000373 0.000519 0.000378 0.000394 0.000428 0.000391 0.000343 0.000414 0.000714 0.000417 

  SO2 -0.000266 0.000265 0.000251 0.000027 0.001813 0.001875 0.001846 0.001920 0.003936 0.004269 0.004205 0.004408 
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fixed effect reduced from 0.000227 to 0.000004. MI-MCMC generally had the same 

performance as NNI1 in PM10, except for model 6, where PM10 fixed effect raised 33.76%.  

 The fixed estimates of lag effects were all underestimated after using missing data 

imputation methods, besides 1-day lag effect in NNI1, and the most serious reduced 

situation happened in MI-MCMC. Both of NNI1 and NNI2 could make co-pollutants CO, 

NO2 and O3 decreased their effect from CCA, but SO2 was estimated as positive effect with 

value of 0.000265, 0.000251 and 0.000027 as applying NNI1, NNI2 and MI-MCMC, 

respectively. In addition, MI-MCMC not only can raise the fixed effect of SO2, but also 

increase NO2 and O3 effects.  

 The influence of missing data imputation methods in se(��) was not as much as that in 

��, but most of them were still underestimated, which means that the confidence interval of 

�� would become narrower. The se(��) from NNI2 were all decreased besides SO2 in model 

6 and PM10 in model 3. Its decrement was all larger than NNI1 and MI. These missing data 

imputation methods seemed to have no much influence on se(��) in model 6, except for 

PM10 in NNI2. Also, MI had similar se(��) with CCA in most models, especial in model 1, 

model 4 and model 5.  

 As we had reported, the versatility of city-specific effects in the GGAMM was not 

too much because it was well controlled on the entire model structure. Sometimes we 

were wondering whether more valid data can increase the versatility of city-specific 

effects, so the missing data imputation would be expected to be a good tool to make more 

variation among cities. The best index was to see whether the estimated standard errors in 

random effects were increased with imputed data. From our analysis in table 3.9, the 

PM10 random effects indeed had an increase when applying missing data imputation, 

especially in NNI1, which significantly increased se(��) 3.56 times, but NNI1 and NNI2 

cannot keep the same efficacy in co-pollutant models (model 4 & model 5). However, the 
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se(��)s in co-pollutants were all increased, besides CO, which was almost not varied from 

CCA. This increment went larger as long as using MI-MCMC. For example, the se(���s of 

NO2 and O3 in MI-MCMC were 2.10-fold and 2.55-fold to values in CCA. In lag effects, 

the se(��)s of 1-day lag effect had a slight reduce with missing data imputation methods, 

but not too far away from the value of CCA. However, the se(��)s of 2-day lag effect had 

much increase, especially in NNI1, where se(��) was raised from 0.000767 to 0.000244. 

This implied that the versatility level of city-specific effects in shorter lag effects would 

be deducted and smaller than the versatility level of city-specific effects in relatively 

longer lag effects. Note that the relative comparison between two lag effects in model 2 

could be changed if more lag effects were included. Nonetheless, this will add some 

additional problems, so we will discuss distributed lag models with more lag effects of 

the GGAMM in section 3.11. 

3.11. Extended distributed lag models 

Theoretically, a GGAMM can include more lag effects, but technically the 

sophisticated estimation procedure and huge spatial-temporal data will make BayesX 

crash easily. Suppose we really need more lag effects to control short-term, middle-term 

or even long-term influence, it is not available in current version of BayesX technically. 

An alternative way to evaluate longitudinal influence of air pollutant to adverse human 

health is using a variable reduction approach to reduce the number of variables fitted by 

the GGAMM. Here we applied principal component analysis (PCA) to solve this 

problem.  

 When considering 6 lag effects of PM10, we extended the longitudinal influence of 

fine particulate to one week. Note that the standardization for each fine particulate 

variable was not used because they have the same unit. After applying PCA, the  
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Table 3.10 

The eigenvalues of 7 principal components with corresponding distinguished and 
cumulative contribute of the total variability over PM10 and 1-day~6-day lag PM10 effect. 

Principal 

component Eigenvalue Difference Proportion Cumulative 

1 3.05540655 1.82111631 0.4365 0.4365 

2 1.23429024 0.34165427 0.1763 0.6128 

3 0.89263598 0.27240082 0.1275 0.7403 

4 0.62023516 0.13884689 0.0886 0.8289 

5 0.48138827 0.11210126 0.0688 0.8977 

6 0.36928701 0.02253024 0.0528 0.9505 

7 0.34675678 -- 0.0495 1.0000 

 

eigenvalue and the proportion of explanation over seven variables in each principal 

component were listed in table 3.10. We defined the minimum cumulative account of the 

total variability over 7 variables was 70%, and then chose the first three principal 

components with its own explanation proportion 43.65%, 17.63% and 12.75%, 

respectively, in the extended lag distributed model. The remaining principal components’ 

contributions were all less than 10%, and were ignored in the following model-fitting. 

 The loadings of each variable on each principal component were listed in table 3.11. 

The loadings in the first principal component PRIN1 were averagely and approximately 

located from 0.32~0.40, and it can be regarded as a measure of moving average of PM10 

concentration from past one week. The second principal component PRIN2 had positive 

loadings on 4-day~6-day lag PM10 effect, and negative loadings on current to 3-day lag 

effect. The third principal component PRIN3 alternatively had positive loadings on the 

most recent PM10 effects (current and 1-day lag) and the farthest PM10 effects (5-day and 

6-day lag), and the middle PM10 effect (2-day~4-day lag) were calculated with negative  



139 

 

Table 3.11 

The eigenvectors of the first three principal components when condensing current and 
1-day~6-day lag PM10 effect. 

Variable PRIN1 PRIN2 PRIN3 

PM10 0.3304 -0.4157 0.4666 

PM10-lag1 0.3805 -0.4778 0.2069 

PM10-lag2 0.4054 -0.3099 -0.2907 

PM10-lag3 0.4097 -0.0001 -0.5556 

PM10-lag4 0.4031 0.3100 -0.9545 

PM10-lag5 0.3779 0.4819 0.2079 

PM10-lag6 0.3296 0.4177 0.4646 

 

loadings. PRIN2 was measuring the “after-half” PM10 effect within the past one week. 

PRIN3 seemed to measure a fluctuation trend of PM10 effect with a cycle of 7 days, and 

reflected that the influence of PM10 concentration on human health was weekly. However, 

this cycle was not very strong, and can only explain 12.75 percent of the total variance.  

The data in each city and each day re-calculated the three principal component 

variables by the following three equations: 

PRIN1=0.03304×X1+0.3805×X2+0.4054×X3+0.4097×X4+0.4031×X5+0.3779×X6+0.3296×X7 

PRIN2=-0.4157×X1-0.4778×X2-0.3099×X3-0.0001×X4+0.3100×X5+0.4819×X6+0.4177×X7 

PRIN3=0.4666×X1+0.2069×X2-0.2907×X3-0.5556×X4-0.9545×X5+0.2079×X6+0.4646×X7 

where X1~X7 were original current and 1-day~6-day lag PM10 effect. As fitting the 

GGAMM in BayesX, the results are shown in table 3.12. PRIN1 can be interpreted that 

when the PM10 effect averagely increased per 1 µg/m3 in each day of past one week, the 

relative risk of mortality rate of respiratory diseases in elders generally increased 2.28% 

(95% CI: -7.95%, 13.64%). The strongest effect was estimated in PRIN3 with value of  
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Table 3.12 

The estimated parameter estimates with corresponding estimated standard errors of fixed 
and random effects in the GGAMM with 3 principal components from current and 
1-day~6-day lag PM10 effect. 

Variable �� se(��) se(��) 

PRIN1 0.002254 0.005375 0.011141 

PRIN2 0.000267 0.012372 0.034817 

PRIN3 0.003819 0.008674 0.017478 

 

0.003819 (95% CI: -0.013186, 0.020823), and the weakest effect was PRIN2 with value 

of 0.000267 (95% CI: -0.023987, 0.024521). They cannot be explained as PRIN1, but we 

can conclude that the PM10 week-cycle influence was 14.30 times higher than the PM10 

“after-half” influence to mortality rate of respiratory diseases in elders. Reviewing the 

explanation proportion of the entire variance in PRIN2 and PRIN3 (17.63% v.s. 12.75%), 

there is no huge difference between them, and we can conclude that the PM10 effect on 

respiratory disease in elders reacted much highly in extreme close and farthest day within 

the past one week. 

Smoothing function plots showing in figure3.44 reflected similar patterns as model 2. 

There was no doubt that time smoother went up in spring and winter season, and went 

down in summer and fall season. The temperature smoother also displayed a climbing 

trend when temperature was getting higher and lower. This plot got better performance 

because the effect went up more significantly when temperature≤0� compared with the 

same plot in figure 3.6. The spatial map also pointed out that the highest geographical 

influence appeared in some heavy-industrial cities, such as Chicago, Pittsburg and 

Detroit. 

The similar study design can be modified by extending the number of lag effect to 

14 days if we are interested in the influence of PM10 effect in the past a half of month.  
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Figure 3.44  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in the GGAMM with 3 principal 
components from current and 1-day~6-day lag PM10 effect. 

 

Using the same criterion in the previous model, we can choose the first 6 principal 

components which accounted for 73.60% of the total variance over 15 original variables 

(table 3.13). The loadings in each principal component are shown in table 3.14. We found 

a similar pattern as using three principal components in the first extended distributed lag 

model. The first three components in this model performed the same relative loading 

trends as previous model. The difference was the duration was extended to 15 days.  
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Table 3.13  

The eigenvectors of the first three principal components when condensing current and 
1-day~14-day lag PM10 effect. 

Principal 

component Eigenvalue Difference Proportion Cumulative 

1 4.8218 3.0983 0.3215 0.3215 

2 1.7235 0.3274 0.1149 0.4364 

3 1.3961 0.2014 0.0931 0.5294 

4 1.1947 0.1209 0.0796 0.6091 

5 1.0738 0.2743 0.0716 0.6807 

6 0.7995 0.1263 0.0533 0.7340 

7 0.6732 0.0860 0.0449 0.7789 

8 0.5872 0.0504 0.0391 0.8180 

9 0.5369 0.0964 0.0358 0.8538 

10 0.4404 0.0336 0.0294 0.8832 

11 0.4069 0.0143 0.0271 0.9103 

12 0.3925 0.0319 0.0262 0.9365 

13 0.3606 0.0534 0.0240 0.9605 

14 0.3072 0.0219 0.0205 0.9810 

15 0.2854 -- 0.0190 1.0000 

PRIN1 also measured a moving average over 15 original variables. Because the lag effect 

was longer, the loading in PRIN1 was diluted and became smaller. In table 3.11, the 

loading in PRIN1 can reach as high as 0.4, but it did not surpass 0.3 in table 3.14 anymore. 

The explanation proportion was also decreased from 43.65% to 32.15%. PRIN2 still 

displayed a quadratic influence, and the turnover point was deferred to 7-day lag. The 

loadings in PRIN2 were as diluted to around 0.2 and 0.3 approximately, but the 

explanation proportion was only weakened 6.14%. PRIN3 became a cubic fluctuation, 

and the peak of loadings also appeared in two extreme side of this period. Due to the  
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Table 3.14  

The eigenvectors of the first six principal components when condensing current and 
1-day~14-day lag PM10 effect. 

Variable Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 

PM10 0.2343 -0.2462 0.2412 -0.2281 0.3383 -0.3854 

PM10-lag1 0.2555 -0.3341 0.2701 -0.2926 0.2254 -0.1843 

PM10-lag2 0.2660 -0.3581 0.2197 -0.1863 -0.0830 0.2223 

PM10-lag3 0.2647 -0.3188 0.1074 0.0512 -0.3616 0.3595 

PM10-lag4 0.2667 -0.2534 -0.0597 0.3080 -0.3609 0.0859 

PM10-lag5 0.2680 -0.1695 -0.2310 0.4117 -0.1107 -0.2344 

PM10-lag6 0.2706 -0.0785 -0.3546 0.2895 0.2071 -0.2611 

PM10-lag7 0.2694 0.0132 -0.4114 0.0050 0.3150 0.0054 

PM10-lag8 0.2672 0.1146 -0.3647 -0.2679 0.1784 0.2871 

PM10-lag9 0.2641 0.2133 -0.2346 -0.3826 -0.1111 0.2204 

PM10-lag10 0.2624 0.2909 -0.0441 -0.2998 -0.3119 -0.1459 

PM10-lag11 0.2590 0.3271 0.1435 -0.0771 -0.3141 -0.3623 

PM10-lag12 0.2523 0.3369 0.2719 0.1668 -0.0778 -0.1874 

PM10-lag13 0.2422 0.3001 0.3164 0.2864 0.2184 0.2075 

PM10-lag14 0.2254 0.2116 0.2694 0.2303 0.3444 0.3830 

period’s extension, the duration of positive loading showing in each side was prolonged to 

four days. PRIN4 and PRIN5 can be regarded as polynomial fluctuation, but the starting 

time of PRIN4 was earlier than PRIN5 about two days. Both of their explanation 

proportions were reduced to around 7%. The cycle period was shortened to four days in 

PRIN6, and it can only account for 5% of the total variance over 15 original variables. 

 As re-calculating six principal component variables from original data and fitting in 

a GGAMM by BayesX, the result is shown in table 3.15. Among six parameters, only 

PRIN4 and PRIN5 had positive estimates, and PRIN4 was 1.48 times stronger than  
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Table 3.15  

The estimated parameter estimates with corresponding estimated standard errors of fixed 
and random effects in the GGAMM with 3 principal components from current and 
1-day~6-day lag PM10 effect. 

Variable �� se(��) se(0�) 
PRIN1 -0.001057 0.004991 0.010029 

PRIN2 -0.008722 0.007329 0.016007 

PRIN3 -0.001833 0.007171 0.013993 

PRIN4 0.007043 0.008052 0.015637 

PRIN5 0.004764 0.009011 0.017917 

PRIN6 -0.000252 0.010353 0.021634 

PRIN5. Either one can reflect the previous model with 3 principal component variables 

from the past one week, and confirm that the week-cycle fluctuation was scientifically the 

most possible influent period to mortality rate of respiratory diseases in elders. 

 The smoothing function plots and spatial function map of the second PCA model are 

shown in figure 3.45. The time smoother was similar as the first PCA model, but the 

temperature smoother almost became a U-shape. The effect of temperature increased 

much quicker when temperature was getting lower, and finally reached a similar level as 

the effect of temperature in extreme hot weather. The relative spatial effects in the map 

were still the same as previous models, but compared with figure 3.44, both of the highest 

and lowest spatial effects increased around 0.2~0.3. Chicago still had the strongest spatial 

effect with value of 1.5900. However, the smallest spatial effect was not located in 

Huntsville when using 3 principal components, but alternatively located in Lexington. It 

is worthy of noting that the spatial effect in Huntsville turned from negative to positive 

(-1.6399→0.0006) when including more principal components from longer lag effect, but 

the remaining cities generally had the same direction between two models.  

 Theoretically, the extended distributed lag model can include more principal  



145 

 

Figure 3.45  

Smoothing functions of calendar time and 24-hour average temperature and map of 
spatial effect for 15 U.S. cities from 1991 to 1995 in the GGAMM with 3 principal 
components from current and 1-day~14-day lag PM10 effect. 

 

components derived from more lag effects, but this model design was not recommended 

because it could raise the difficulty of interpretation. For example, if we consider lag 

effects with one month, which means 30 lag effect variables should be used in PCA, it 

can produce 10 candidate principal components to fit a GGAMM. Even though the 

model-fitting procedure was successful, the result was no longer clarified easily as 

previous two models.  

 By using equations (2.51), (2.52) and (2.54), we can transform these principal  
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Table 3.16  

The PCA-adjusted PM10 estimates in the first extended distributed lag model. 

Variable �� se(��) se(0�) 
PM10 0.000187 0.000504 0.001264 

PM10-lag1 0.000165 0.000554 0.001411 

PM10-lag2 0.000100 0.000468 0.001106 

PM10-lag3 0.000067 0.000414 0.000852 

PM10-lag4 0.000009 0.000565 0.001277 

PM10-lag5 0.000183 0.000555 0.001418 

PM10-lag6 0.000203 0.000505 0.001268 

 

component estimates to obtain original variables’ estimates with corresponding fixed and 

random effects’ standard errors. The results are shown in table 3.16 and table 3.17. 

Reviewing these PCA-adjusted PM10 estimates, we found the longitudinal influence of 

PM10 was only extended to one week because the adjusted estimates after 7-day lag in 

table 3.17 had shown all negative values. Moreover, the strongest effects were not located 

in the same day. When only considering six lag effects, the pattern of estimates presented 

a U-shape profile, and current, 1-day lag, 5-day lag and 6-day lag PM10 effect displayed 

relative larger influence to the mortality of respiratory diseases in elders. While 

considering 14 lag effects, the strongest influence appeared in 4-day and 5-day lag effect. 

Moreover, the general positive effects in table 3.17 were smaller than corresponding 

effects in table 3.16. We think it’s reasonable because too many lag effects, especially 

those behind 6-day lag, diluted the influence in each estimate. Also, the se(��) and se(��) in 

table 3.17 were smaller than those in table 3.16, which means the �� in table 3.17 was 

estimated more conservatively, and the versatility of city-specific effects was also not 

very distinguished. 
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Table 3.17  

The PCA-adjusted PM10 estimates in the second extended distributed lag model. 

Variable �� se (��) se(��) 

PM10 0.000000† 0.000155 0.000102 

PM10lag1 0.000011 0.000160 0.000108 

PM10lag2 0.000037 0.000154 0.000136 

PM10lag3 0.000069 0.000160 0.000156 

PM10lag4 0.000100 0.000154 0.000149 

PM10lag5 0.000101 0.000153 0.000137 

PM10lag6 0.000062 0.000153 0.000128 

PM10lag7 -0.000007 0.000148 0.000125 

PM10lag8 -0.000081 0.000152 0.000134 

PM10lag9 -0.000133 0.000152 0.000147 

PM10lag10 -0.000151 0.000153 0.000181 

PM10lag11 -0.000134 0.000158 0.000208 

PM10lag12 -0.000103 0.000148 0.000206 

PM10lag13 -0.000075 0.000155 0.000206 

PM10lag14 -0.000055 0.000152 0.000191 
†Original value = 0.0000003 

The advantages of PCA used in the GGAMM were: 1) resolving the technical 

problem of BayesX that leads to computer crash when using too many lag effects. From 

original distributed lag model, we only can estimate up to 2-day lag effect; however, in 

these extended distributed lag models, we found 3+ principal component variables were 

still working in BayesX; 2) extended distributed lag model had highly consistent 

estimating results when the starting values of smoothing parameters changed (detailed 

results were not shown here); 3) it spent much less time in estimating process compared 

with fitting original distributed lag effect. Even when including eight principal component 
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variables, the model-fitting iteration still spent less time than using three original 

variables. It can contribute to the iteration reaching convergence more quickly; 4) from 

the benefits of PCA which leads all principal components are independent with each other, 

the model-fitting of the GGAMM is not affected by the multicollinearity problem. 

 There are still some disadvantages: 1) compared with previous model 1~model 6, the 

95% confidence intervals of estimated parameters in extended distributed lag model were 

too wide, especially in random effects; 2) it’s impossible to exactly identify which lag 

effect had the strongest influence to the mortality rate of respiratory diseases in elders 

without advanced calculations. In addition, these estimates cannot be used to conclude a 

numeric result when each principal component variable increased per unit. Meanwhile, 

the extended distributed lag model only can explain a general and relative strength over a 

period of longitudinal trend. An advanced transformation to obtain PCA-adjusted 

estimates which were calculated by equation (2.51), (2.52) and (2.54) should be 

considered; 3) the missing data will make severe influence on PCA, and the severity level 

will also increase along with the number of lag effects. Also, any missing datum 

appearing in variables using in PCA will not be calculated all of its principal components, 

so it will immediately affect the valid data using in the model-fitting. For example, a 

current PM10 missing datum appeared in 1991/01/01 made 1-day~6-day lag effect missing 

in 1991/01/02~1991/01/07, respectively. Therefore, the three principal component 

variables PRIN1, PRIN2 and PRIN3 were all missing from 1991/01/01~1991/01/07.  

3.12. Multicollinearity and concurvity 

As what chapter 3.1 and chapter 3.2 had described, some air pollutants were 

moderately or highly correlated with each other, and they are also connected with time 

trend and geographical locations. When including them in the GGAMM, it was expected 
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that the multicollinearity and concurvity problem may exist in model-fitting. The 

multicollinearity levels were only calculated on model 2~model 6 for evaluating whether 

this problem was potentially hide between PM10 and lag effects or PM10 and four 

co-pollutants. The concurvity levels were examined in all 6 models for identifying how 

strong relationship between each air pollutant and the combination of time smoother, 

temperature smoother and spatial function. The two levels were also calculated in data 

sets applying missing data imputation methods. 

 In initial data set without dealing with missing data, the highest multicollinearity 

level appeared between PM10 and NO2 in model 4. Reviewing table 3.2, we can find it is 

not out of expectation because the correlation between PM10 and NO2 was as high as 

0.4804. Even though the strongest relationship to PM10 was its 1-day lag effect, the 

multicollinearity level in model 2 was calculating the relationship between PM10 and the 

combination of its 1-day and 2-day lag effects, and the 2-day lag effects harmonized the 

high correlation between PM10 and its 1-day lag effect. Whatever, the multicollinearity in 

model 2 was the second highest one over model 2~model 6. Three of them were larger 

than 0.5, but it’s just moderate severity, not high severity. Based on the definition of high 

multicollinearity level (0.7), these estimates fitted by CCA were not damaged seriously. 

 In table 3.18, while applying NNI1 and NNI2, we originally doubted that they will 

increase the multicollinearity level because the two missing data imputation methods 

were using the nearest datum and its distribution to identify the imputed “candidate” from 

existing data. Due to such immediate connection from imputed data and reference data 

which were used for identify “neighbors”, our analyses showed the multicollinearity 

levels from models using NNI1 and NNI2 did not surpass CCA. Compared with NNI1 

and NNI2 themselves, NNI2 had lower multicollinearity than NNI1, and NNI2 made the 

largest reduction in multicollinearity level with value of 0.1205. Moreover, the influence 

of MI-MCMC on multicollinearity was similar as NNI1, except for model 4, where this  
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Table 3.18  

The multicollinearity and concurvity level in model 1~ model 6. 

Model Multicollinearity 
 

Concurvity 
 

Model 1 
  

PM10 
 

CCA -- 
 

0.4515  
 

NNI1 -- 
 

0.4423  
 

NNI2 -- 
 

0.3962  
 

MI-MCMC -- 
 

0.4267  
 

Model 2 
 

PM10 1-day lag PM10 2-day lag PM10 

CCA 0.5697  0.4534 0.3870  0.3346 

NNI1 0.5406  0.4426 0.3834  0.3413 

NNI2 0.4773  0.3965 0.3478  0.3142 

MI-MCMC 0.5147  0.4269 0.3733  0.3307 

Model 3 
 

PM10 CO 

CCA 0.5350  0.4516  0.6632  

NNI1 0.5076  0.4423  0.6531  

NNI2 0.4770  0.3957  0.6428  

MI-MCMC 0.5345  0.4267  0.6479  

Model 4 
 

PM10 NO2 

CCA 0.5837  0.5136 0.5644  

NNI1 0.5516  0.4856  0.5607  

NNI2 0.4632  0.4209  0.5276  

MI-MCMC 0.6019  0.4660  0.5568  

Model 5 
 

PM10 O3 

CCA 0.4121  0.4800 0.7777  

NNI1 0.3995  0.4298  0.6861  

NNI2 0.3143  0.3824  0.6324  

MI-MCMC 0.3938  0.4124  0.7511  

Model 6 
 

PM10 SO2 

CCA 0.4980  0.4944 0.5607  

NNI1 0.4815  0.4921  0.5236  

NNI2 0.4481  0.4199  0.5134  

MI-MCMC 0.4840  0.4779  0.5340  

 

  



151 

 

imputation became worse, and even surpassed the original multicollinearity level 

(0.5837).  

 Although we had shown PM10 had higher relationship with locations, time and 

temperature, its concurvity levels in six models were only around 0.45. While applying 

missing data imputation methods, the concurvity level of PM10 did not have too much 

change in all models. Similar as their performance in multicollinearity, NNI2 had more 

reduction in concurvity level than NNI1 and MI-MCMC. Note that MI-MCMC made the 

concurvity levels of PM10 exceeded its original value in both of model 4 and model 6, and 

so did NNI1. Generally speaking, whether using CCA or these missing data imputation 

methods, they never caused the concurvity level of PM10 to be higher than 0.5. As a result, 

this problem was not severe in fine particulate matter in the GGAMM, but users should 

pay more attention on that the increase of concurvity level in PM10 when more lag effects 

or 2+ co-pollutants were included in case. The influence of concurvity also did not lead 

PM10’s lag effects serious. On the contrary, the concurvity level decreased along with the 

increase of lag day. 

 The concurvity problem may happen in co-pollutants in the GGAMM because they 

had higher concurvity level than PM10. The concurvity level of NO2 and SO2 were still 

under control, and only around 0.51~0.56, whether applying missing data imputation 

methods or not. Reviewing figure 3.3 in chapter 3.2, it’s believed that the regular 

fluctuated time trend of NO2 and SO2 contributed most of their concurvity levels. Model 

3 had higher concurvity level over 0.6 in CO, and its higher CCFs versus 24-hour average 

temperature should be the reason that it had higher concurvity level than NO2 and SO2 

(figure 3.3). Also, missing data imputation methods did not either worsn or improve its 

concurvity level. The largest concurvity among 4 co-pollutants appeared in O3. With CCA, 

its concurvity level was as high as 0.7751, and it can be regarded as severity concurvity 

problem. It reduced under 0.7 while imputing missing data by NNI1 and NNI2; however, 
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MI-MCMC made it over 0.7 again. Some evidences shown in figure 3.1~figure 3.3 in 

chapter 3.2 can explain this situation in O3. Comparing with the other air pollutants in 

figure 3.1, the rate of decreasing speed of the city-to-city correlation in O3 along with the 

extension of distance was the slowest one. We can set up a horizontal line r=0.6 in all air 

pollutants in figure 3.1, and find there was no more dot above r=0.6 in PM10 as 

distance≥250 miles. The downward speed of city-to-city correlation in CO, NO2 and SO2 

was also very quick, and there was almost no dot above r=0.6 as distance≥500 miles. 

However, there were still some city-to-city correlation of O3 above or close to r=0.6 as 

distance≥1,500 miles, so we can reasonably conclude spatial function shall contribute a 

part of concurvity level of O3 more than the others. The time trend plot of O3 almost 

match up with the time trend plot of temperature in figure 3.2, and the CCFs between O3 

and temperature also confirmed their high relationship over time (figure 3.3).  

3.13. Model diagnostics 

So far the methodology of model diagnostics based on the GGAMM is still under 

development because of some unbreakable bottlenecks. These difficulties will be 

discussed in chapter 5 in details. Here we only applied some existing model diagnostic 

approaches of general linear model for the GGAMM. Note that these approaches were not 

guaranteed to appropriately take place in the GGAMM, but we can still take a look at 

some possible problems existing in the model fitting of the GGAMM, and look for 

chances to improve in the future as long as relative theorems will be accomplished. Table 

3.19 showed separate goodness-of-fit tests of Poisson distribution for death counts from 

respiratory diseases in elders in each city, respectively. 6 cities (Chicago, Cleveland, 

Detroit, El Paso, Pittsburg and Seattle) presented that they violated Poisson assumption, 

with p-values≤0.05, and the overall respiratory disease death count in elders over 15 U.S. 
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Table 3.19 

Goodness-of-fit test of Poisson distribution in 15 U.S. cities from 1991~1995. 

City �9 d.f. p-value 

Chicago 79.78 20 <.0001 

Cincinnati 13.97   7 0.0518 

Cleveland 21.18   9 0.0119 

Colorado Springs   1.88   4 0.7571 

Detroit 21.45   9 0.0108 

El Paso 14.89   3 0.0019 

Huntsville   0.86   2 0.6508 

Las Vegas   0.65   6 0.1910 

Lexington   3.61   3 0.3070 

Minneapolis/St. Paul 11.39   9 0.2499 

Nashville   3.09   4 0.5434 

Pittsburg 28.64 10 0.0014 

Salt Lake City   9.60   6 0.1427 

Seattle 31.91   9 0.0002 

Spokane   9.38   5 0.0947 

 

cities also had small p-value to reject Poisson distribution (�9=16529.12, d.f.=20, p- 

value<0.0001). To check the basic properties of Poisson distribution, we found these 

respiratory death count data had overdispersion problem with mean 1.89 and variance 

5.40. The main reason is that there were too many zeros in this mortality data. Among 

overall 27,390 valid respiratory disease death count data, there were 8,522 zeros, which 

account for 31.11% of the entire data (figure 3.46). There were several cities with over  
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Figure 3.46 

The city-specific and overall histogram plots of respiratory death count from 1991~1995. 
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40% zero death count during 1,826 studies days. They are Colorado Springs(53.18%), El 

Paso(55.91%), Huntsville(79.13%), Lexington (67.96%), Salt Lake City(41.57%) and 

Spokane(43.10%). Actually, real-life count data are frequently characterized by excess 

zeros, and immediately encounter the trouble of overdispersion. Even though the 

zero-inflated count model can provide a more powerful approach to model this type of 

data and handle overdispersion problem well, so far the GGAMM based on restricted 

maximum likelihood or marginal likelihood estimation has not support ZIP (zero-inflated 

Poisson) and ZINB (zero-inflated negative binomial) data by BayesX yet. This situation 

is not actually unsolvable in the GGAMM, but there are some theoretical and technical 

difficulties in BayesX. More detailed discussion will be shown in chapter 5. 

We also used the Q-Q plot to detect the normality assumption from model 1 to model 6 

(figure 3.46). The distributed positions of normal theoretical quantiles and sample 

residual’s quantiles displayed a weak-twisted straight line in each Q-Q plots, so they 

reflected our residual analyses were a little violating normality assumption. To check the 

boxplot of residuals shown in figure 3.47, the main reason of having a slight s-shape in 

Q-Q plots was that there are many outliers in two tails of their distribution, but 

non-outliers residuals generally presented a symmetric profile in each boxplot. However, 

their histogram plots compared with the corresponding normal curves displayed that each 

residual plot had a tiny right-skewness (figure 3.48), but this problem was not too severe 

because the linear model will not be affected if the residual’s distributions are skewed 

when the number of valid data is not too small. 

The residual plots with standardized residuals against predicted values for the 

purpose of identifying independence assumption are shown in figure 3.50. From model 1 

to model 6, they shared two strange situations: 1) predictions were seldom located around 

5, and made a gap splitting dots into two parts; 2) in each residual plot, the dots located 

below prediction equal to 5 displayed a fan shape, but the dots located above prediction 
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Figure 3.47 

The Q-Q plots for residuals from model 1 to model 6. 

 
 

Figure 3.48 

The boxplots of residuals in model 1 to model 6. 
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Figure 3.49 

The histogram plots with normal curves in model 1 to model 6. 

 
Figure 3.50 

The residual plots from model 1 to model 6.  
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Figure 3.51 

The city-specific prediction plot and observation plot in model 1.  

 

equal to 5 displayed a horizontal band. The first doubtful point can be interpreted by the 

city-specific prediction plot in figure 3.51. Here we only use predictions in model 1 for 

this explanation. We found the gap appearing around prediction=5 was because all 

predictions in Chicago were larger than 5.71, the maximum value of predictions in the 

other cities were 4.29 in model 1. That’s why there is a blank area between 4.29 and 5.71 

in figure 3.51. Meanwhile, the dots located in the left part in figure 3.50 can be confirmed 

that they were all from Chicago. Compared with real observations, the daily respiratory 

disease death counts less than 5 were all overestimated in Chicago, and that’s why there 

was no prediction less than 5 in that city. As a result, this blank area was produced from 

the overestimated of predictions with observations less than 5 in Chicago.  

About the fan shape in the right part of residual plots, it seemed the correlation among the 

Y values existed. Actually, the autocorrelation of respiratory disease death count in elders 

using in this study was only 0.2, and could be ignored. However, we recognize that 

BayesX does not offer functions of covariance structure to handle potential correlation 
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Figure 3.52 

The level-1 unit (city) residual boxplots in model 1 to model 6. 

 
†City number code: 1-Chicago, 2-Cincinnati, 3-Cleveland, 4-Colorado Springs, 5-Detroit, 6-El Paso, 7-Huntsville, 8-Las Vegas, 
9-Lexington, 10-Minneapolis/St. Paul, 11-Nashville, 12-Pittsburg, 13-Salt Lake City, 14-Seattle, 15-Spokane 

from observations when fitting the GGAMM with REML estimation. In fact, this function 

is only compiled in a fully Bayesian interpretation of structure additive regression model 

using Markov chain Monte Carlo simulation techniques, but our data encountered 

technical problems based on this model in BayesX. More details will be discussed in 

chapter 5. Besides, the variance homogeneity assumption may not be followed as well, at 

least the level-1 unit boxplot (figure 3.52) showed the variance of residuals in Chicago 

was significantly larger than the variance of residuals in the other cities. 

Finally, the model evaluation methodology of the GGAMM is still underdeveloped, 

so the output from BayesX does not provide any information similar as R2 or adjusted R2 

in linear regression models. However, we still succeeded in calculating the mean square 

error (MSE) to show each model’s evaluation. The MSE in model 1 was 2.14, and 

increased to 2.25 as including 1-day and 2-day lag effects. In co-pollutant models, the 

MSE had a little bit decrease to 2.13 and 2.11 as long as including CO and O3, 
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respectively; however, it increased to 2.47 and 2.48 in model 4 (PM10+NO2) and model 6 

(PM10+SO2). 

3.14. Extended applications 

Based on the entire investigation in previous sections, it was desired to apply the 

GGAMM in more mortality data from the NMMAPS. Besides respiratory disease, this 

database also offers daily death counts in cardiovascular disease and pneumonia. These 

three mortalities were examined in three age categories (ã65, 65−74, ≥75) by the 

GGAMM, and the results of the PM10 influence on the percent increase of mortality 

relative risk are visualized in figure 3.53~figure 3.55. Detailed outputs are contained in 

Appendix G and Appendix H. Note that all models were modified by appropriate starting 

values of smoothing parameters from 10 to 15, but some models were ignored without 

obtaining reasonable results while using up those Ës.  

 The particulate matter has much different influence on cardiovascular diseases. 

Some negative but non-significant results derived in mortalityã65 years old. The impact 

of PM10 turned to positive in the population with age 65−74 years old besides adjusting 

with SO2. The reason was that SO2 has much higher effect on mortality than PM10, and 

each 10 ppb increase of SO2 concentration rose 1.77% (95% CI: -0.51%, 4.11%) relative 

risk in cardiovascular mortality in this age category. Also, SO2 had stronger consequence 

than the other co-pollutants. Adjusting with ozone in the same age category, PM10 

produced the highest 0.63% increase of relative risk in cardiovascular disease, but was 

still not significant. The first significant result occurred in mortality≥75 years old. We 

found cardiovascular mortality increased 0.47% (95% CI: 0.14%, 0.81%) relative risk per 

10 µg/m3 increase in PM10. This significant result also maintained significance and 

consistence when adjusting by NO2. 
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Figure 3.53 

The percent increase of relative risk with 95% confidence interval in cardiovascular 
mortality in three age categories. 

 

The city-specific PM10 effect displayed different patterns in different age levels. 

Without co-pollutant’s adjustment, Chicago, Cincinnati, Seattle and Spokane had stronger 

PM10 effect than the other cities to cardiovascular mortalityã65 years old; however, when 

considering co-pollutants, no city showed positive PM10 influence. In age from 65−74 

years old, most cities had positive PM10 influence besides Cincinnati, and this situation 

generally remained similar after adjusting by NO2, O3 and SO2. In particular, when 

adjusting by O3, the city-specific PM10 effect increased in Cleveland, Colorado Springs, 
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Detroit and Nashville where each 10 µg/m3 PM10 can increase over 1% relative risk of 

cardiovascular mortality. Nonetheless, the location influence did not show high diversity 

in mortality for age≥75 years old, even though all city-specific effects were positive in 

both models (PM10, PM10+NO2).  

 Compared with what we had done in previous sections, the time smoother from 

cardiovascular mortality was not as regular as respiratory mortality, but still had 

somewhat seasonal effect which caused negative influence from July to August and 

positive influence from September to next June in each year. All temperature smoother in 

cardiovascular disease had the highest impact in the coldest weather, and immediately 

decreased to the lowest point until 40�~60� with a slight rebound to 100�. In 

geographical variation, Chicago, Detroit, Cleveland and Pittsburg had stronger influence 

than the other cities. Among three age levels, the highest spatial effect appeared in 

age≤65 years old in Chicago, which relative rate was 5.44, and was 15.48-fold of 

Lexington, the location with the lowest spatial effect.  

 To be one of the ten leading causes of death in the U.S., pneumonia presented some 

significant results in our findings of mortality with age 65−74 years old. Without 

adjusting with lag effects and co-pollutant, each 10 µg/m3 increase in PM10 concentration 

can significantly increase 2.02% (95% CI: 0.01%, 4.08%) the relative risk of pneumonia 

mortality, which was higher than the same model in the other two age levels (ã65 years 

old and ≥75 years old). It was enlarged to 3.00% (95% CI: 0.64%, 5.41%) after adjusting 

for a 1-day and a 2-day PM10 lag effect. Also, controlling by O3 and SO2, we got another 

two same significant results with 2.65%; nonetheless, the effect became non-significance 

and decreased to 1.87% and 1.23% when controlling by CO and NO2.  

 The city-specific PM10 effect had enough variation and strong influence on 

pneumonia mortality in age≤65 years old and 65−74 years old. Detroit and Spokane had 

higher effect, almost reaching 3% increase of relative risk in pneumonia mortality in  
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Figure 3.54 

The percent increase of relative risk with 95% confidence interval in pneumonia mortality 
in three age categories. 

 

ageã65 years old while not adjusting by lag effects and O3, but no specifically strong PM10 

city-specific influence occurred in some cities in the other two age levels. In particular, 

Colorado Springs, El Paso, Minneapolis/St. Paul, Salt Lake City and Spokane had negative 

city-specific effects in PM10 to pneumonia mortality≥75 years old without controlling by 

lag effects or co-pollutants, but after adjusting with lag effects and co-pollutants, all 

city-specific PM10 effects were modified to positive. 

There are three characteristics in smoothing functions in pneumonia models: 1) 
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Figure 3.55 

The percent increase of relative risk with 95% confidence interval in respiratory mortality 
in three age categories. 

 

seasonal variation was not very significant with slight fluctuation in mortalityã65 years 

old, and the longitudinal influence was decreasing over time; 2) temperature effect was 

not very nonlinear in all age levels; 3) pneumonia mortality≥75 years old did not have 

obvious decrease, but presented a slight horizontal line over temperature. The spatial 

function showed weak geographical variation in most of pneumonia models, but Chicago, 

Detroit, Cleveland, Pittsburgh, Minneapolis/St. Paul and Seattle showed relative stronger 

relative rate than the other cities.  
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Respiratory mortality was examined again with three age levels, and 4 of 5 results in 

ageã65 years old also found significant findings. Each 10 µg/m3 increase of PM10 

concentration had at least 1.69% to 2.22% increase of relative risk in respiratory 

mortalityã65 years old. Besides the model controlling for NO2, the other respiratory 

models were all significant. A negative PM10 influence appeared in an extended 

distributed respiratory model with 65−74 years old, but corresponding 1-day and 2-day 

lag effects were all positive with value of 0.26% and 0.41%, respectively. However, both 

of them were still non-significant. Models with respiratory mortality≥75 years old had 

affected positively by PM10 concentration, but the magnitude had been smaller than the 

other two age levels. 

The seasonal trend in respiratory models became more significant alone with the age 

level, and temperature smoother also displayed much curved in age≥75 years old than the 

other two age levels. The spatial effect pattern in respiratory mortality was not as 

consistent as cardiovascular and pneumonia mortality. In respiratory mortalityã65 years 

old, only Chicago, Detroit and Las Vegas had positive relative rate. While considering 

mortality in 65−74 years old or ≥75 years old, more cities were included in the positive 

side, such as Seattle, Cleveland and Pittsburg, but the spatial influence was weaken in Las 

Vegas in mortality≥75 years old, surprisingly. 

 Similar as pneumonia mortality, larger national PM10 effect made higher 

city-specific effect in respiratory mortalityã65 years old and 65−74 years old. In ageã65 

years old, most of city-specific PM10 effects were estimated between 1%~3% whether 

controlling by lag effects or co-pollutants. The city-specific PM10 effects were generally 

weakened to zero in respiratory mortality≥75 years old, but all of them were still positive 

in each model. 
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Chapter 4 

SIMULATION 

In order to make more objective conclusions from case studies, we made some 

simulations to investigate convergence problem and missing data analysis in the 

GGAMM. The convergence problem in the GGAMM has not been clearly discovered in 

previous studies using BayesX, and missing data analysis is an interesting issue, that is, 

how imputation methods work in the GGAMM. Besides, we were also interested in the 

influence of concurvity in the GGAMM, and found a connection between concurvity and 

convergence problem. 

4.1. Concurvity simulation 

As what we have mentioned in chapter 3, BayesX is not similar as other statistical 

computational tools, and always shows outputs whatever the entire iteration reaches 

convergence. Even though a warning message reminds users that the model fitting is 

doubtful without convergence, people would easily ignore this warning message 

unintentionally. A significant clue to identify the convergence problem in a model fitting 

is from those overestimated standard errors. For the only statistical software which can 

handle the GGAMM so far, the source of the convergence problem is still undiscovered, 

and we found some evidences.  

One of possible sources is from concurvity problem. Table 4.1 shows 10 different 

concurvity levels with corresponding ��, se����, se���� and convergence rate in the 

GGAMM. The comprehensive analysis can investigate the influence of concurvity in the 

model fitting of the GGAMM and convergence rate simultaneously. When concurvity 
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Table 4.1 

The main estimates with different concurvity levels and corresponding convergence rate 
(CR) in the GGAMM. 

Concurvity �� se���� se���� ASMSE CR(%) 

0.03 0.0954 0.1323 0.3482 2.3582 99.8 

0.10 0.0895 0.1311 0.3438 2.3603 99.2 

0.19 0.0922 0.1274 0.3311 2.3511 99.1 

0.31 0.0875 0.1197 0.3026 2.3538 98.5 

0.41 0.0801 0.1111 0.2710 2.3521 97.2 

0.50 0.0752 0.1032 0.2402 2.3387 96.1 

0.59 0.0735 0.0944 0.2042 2.3431 95.3 

0.71 0.0661 0.0841 0.1584 2.3356 93.4 

0.80 0.0756 0.0755 0.1140 2.3101 90.5 

0.90 0.0926 0.0683 0.0692 2.2390 87.9 
* True (�, se(�), se(b))=(0.1, 0.15, 0.35) 

level was increasing, the convergence rate was decreasing from 99.8% to 87.9%. For 

1,000 replicated simulation data sets in each concurvity scenario, the data sets with 

convergence problem were only around 20 data sets as concurvity level = 0.03, but the 

number of data sets without convergence increased to around 120. Meanwhile, the 

increased rate climbed to 6 times as almost-non-concurvity became extreme concurvity in 

the GGAMM.  

In addition, the influence of concurvity in the GGAMM had also been revealed by 

our simulations. We found that ��, se(��) and se���� could be underestimated along with 

the raise of concurvity level in the GGAMM, and higher concurvity level generally 

caused more biases than lower concurvity level. Note that, as concurvity level reached 0.8, 

the decreasing-tendency of �� was curbed, and the average of �� bounced back to its true 

value 0.1 until concurvity level was 0.9. However, the averages of se(��) and se���� from 

simulation data with concurvity level=0.9 were still highly underestimated, and compared 

with the results of concurvity level=0.03, the two estimates slumped around 48.37% and 

80.13%, respectively. 
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 The influence of concurvity on smoothing functions was also investigated here. We 

applied ASMSE from equation (2.71) to quantify smoothing functions, and compared 

estimated smoothing functions with real smoothing functions. The research question 

came from a hypothesis. In chapter 2, we had described the methodology of estimating 

smoothing functions in the GGAMM. Generally speaking, it’s very similar with other 

semiparametric models, such as the GAM or GAMM, but their concept is decomposing 

smoothing functions with many pieces by knots. Those pieces can be reconstructed with a 

matrix form and combined with linear factors in a unified design matrix. Meanwhile, the 

piece parts of smoothing functions and linear factors were estimated simultaneously by 

the estimating equation. If the concurvity level would be a reason of making biases in 

linear estimated parameters, its influence on the estimation of smoothing functions should 

also be inevitable.  

 In table 4.1, we show the ASMSE of smoothing function in each concurvity level. 

The trend of ASMSE did not climb along with the increase of concurvity level, which 

means that concurvity problem only affected the parameter’s estimation of linear factors, 

but there is no much influence of making smoothing functions more biased. Reviewing 

the concurvity level appearing in case studies in chapter 3, each model had concurvity 

level with values of around 0.5. If table 4.1 can reflect the true reality, we can conclude 

that all estimates shown in table 3.4 could be probably underestimated, and it may explain 

why air pollutant influence to adverse human health in our analyses was less than 

previous studies.  

4.2. Multicollinearity simulation 

The biases produced from multicollinearity in the GGAMM mainly appeared in 

fixed effects and their standard errors. Table 4.2 shows the simulation results containing  
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Table 4.2 

The main estimates with different multicollinearity levels and corresponding convergence 
rate (CR) in the GGAMM. 

Multicollinearity ��O se(��O) se(��O) ��9 se���9� se(��9) CR(%) 

0.0 0.0016 0.0162 0.0194 0.0214 0.0279 0.0477 100.0 

0.1 -0.0002 0.0167 0.0202 0.0216 0.0272 0.0443 100.0 

0.2 -0.0035 0.0173 0.0201 0.0245 0.0264 0.0384 100.0 

0.3 -0.0061 0.0183 0.0201 0.0244 0.0262 0.0350  99.9 

0.4 -0.0088 0.0197 0.0207 0.0247 0.0266 0.0315  99.9 

0.5 -0.0110 0.0217 0.0214 0.0266 0.0276 0.0299 100.0 

0.6 -0.0157 0.0245 0.0226 0.0313 0.0293 0.0278 100.0 

0.7 -0.0216 0.0284 0.0223 0.0345 0.0322 0.0257 100.0 

0.8 -0.0304 0.0354 0.0241 0.0408 0.0382 0.0271 100.0 

0.9 -0.0464 0.0504 0.0250 0.0558 0.0520 0.0277 100.0 

two correlated variables in the GGAMM. As the multicollinearity level increased from 0 

to 0.9, two estimated fixed effects ��O and ��9 appeared biases toward different  

directions gradually, where ��O decreased to negative value, and ��9 increased to 0.0558, 

which was over 2-fold of 0.0214 from multicollinearity level=0. Both of the estimated 

standard errors se(��O) and se(��9) did not appeared too significant trends as 

multicollinearity level＜0.5, and started to have a steep climb-up until multicollinearity 

level=0.9. In random effects, se(��O) seemed not be affected too much, but se(��9) 

decreased almost a half from 0.0477 to 0.0271.  

In this simulation, we actually did not generate data for smoothing functions but 

used original calendar time and 24-hour average temperature data, so there was no true 

smoothing function used for calculating the ASMSE. We believed, from the definition of 

multicollinearity, the smoothing functions, even spatial function, should not be affected, 

unless they originally contain severe concurvity in the GGAMM. However, this 

concurvity-confounding situation did not exist because the almost perfect convergence 

rate in each scenario reflected that this simulation was not disturbed by concurvity. 
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4.3. Missing data imputation simulation 

In missing data analysis, we processed two different analyses to see how missing 

data affects modeling as long as they exist in either linear factors or smoothing functions. 

Define two factors X1 and X2 as used in a simulated GGAMM, where X1 was used in 

linear factor, and X2 was fitted as a penalized spline. The missing rate is 5%, 10%, 20%, 

30%, 40% and 50%. 

Table 4.3 displays the simulation results considering missing data only appears in 

linear factor X1. Based on MCAR and compared with true �=0.1 , CCA can maintain 

their consistency and did not make too much bias, and NNI2 also had better performance, 

even though either one became underestimated when missing rate reached 50%. NNI1 

only had better estimates on �� as missing rate was 5% and 10%, and it tended to 

underestimate while missing rate was over 10%. This result made sense because 

nonparametric missing data imputation method could only be helpful if missing rate is 

controlled below 10%. In addition, NNI1 made the range of simulated results of �� 
getting wider than NNI2 when missing rate of X1 was increasing, which implied that 

nonparametric missing data imputation method applying in higher missing rate could 

possibly cause targeted estimated parameters more unstable (result is not shown here). A 

surprising result was that MI-MCMC did not work very well in the GGAMM, and �� 
started to estimate smaller than its true value as a few missing data appeared, even though 

its stability from 1,000 simulations was always more concentrated than CCA, NNI1 and 

NNI2, and also did not change too much as missing rate was raised. 

The influence of missing data imputation in smoothing functions is also presented in 

table 4.3. It is obvious that, without using imputation method, the precision of estimated 

smoothing function was not changing too much along with the increase of missing rate in 

X1. The ASMSE began with value of 1.2493 when missing rate of X1 was 5%, and had a 
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Table 4.3 

The estimates ��, se(��), and se(��) of GGAMM with corresponding convergence rates (CR) 
when applying CCA, NNI1, NNI2 and MI in variable X1 for missing rates 5%, 10%, 20%, 
30%, 40% and 50%. 

Missing rate (%) 

Method Parameter 5 10 20 30 40 50 

CCA �� 0.1069 0.1060 0.1034 0.1024 0.1025 0.0941 

se(��) 0.3025 0.3035 0.3052 0.3074 0.3109 0.3172 

se(��) 0.9145 0.9153 0.9150 0.9147 0.9148 0.9203 

ASMSE 1.2493 1.2399 1.0690 1.1027 1.0135 1.2410 

CR(%) 99.2 99.6 99.4 99.7 99.9 99.8 

 
 

     
NNI1 �� 0.1052 0.1014 0.0907 0.0787 0.0687 0.0475 

se(��) 0.3022 0.3015 0.2994 0.2961 0.2940 0.2869 

se(��) 0.9145 0.9098 0.8981 0.8807 0.8663 0.8325 

ASMSE 1.3371 1.4733 1.3322 2.0638 2.2029 2.1213 

CR(%) 99.6 98.9 99.0 99.1 99.4 99.7 

 
 

     
NNI2 �� 0.1102 0.1129 0.1117 0.1109 0.1124 0.0956 

se(��) 0.2971 0.2921 0.2812 0.2665 0.2519 0.2338 

se(��) 0.8982 0.8801 0.8404 0.7877 0.7332 0.6664 

ASMSE 1.3358 1.4711 2.0661 2.2034 2.1191 1.9457 

CR(%) 99.5 99.7 99.1 99.4 98.6 99.3 

 
 

     
MI-MCMC �� 0.0996 0.0939 0.0746 0.0452 0.0233 0.0005 

se(��) 0.2886 0.2722 0.2546 0.2218 0.1986 0.1744 
se(��) 0.8716 0.8174 0.7580 0.6485 0.5699 0.4850 
ASMSE 1.3342 1.4717 2.0649 2.2040 2.1220 1.9439 
CR(%) 97.3 97.4 97.4 98.4 97.9 98.3 

* True (�, se(�), se(b))=(0.1, 0.3, 0.7) 

tiny decrease when missing rate of X1 was 30% and 40%. But, finally it came back to 

1.2410 when missing rate of X1 was 50%. It reflected that missing data appearing in 

linear factor X1 did not cause damages on smoothing functions’ estimation. When missing 

X1 data were imputed by NNI1, NNI2 and MI-MCMC, the values of ASMSE were all 

higher than those in CCA. Three missing data imputation methods generally did not have 

marked difference in any missing rate of X1. When missing rate of X1 was 5% and 10%, 
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their ASMSE values increased to 1.33~1.47, and raised over 2 hugely along with the 

increase of missing rate of X1. To sum up, the efficacy of these missing data imputation 

methods did not have significant improvement in smoothing functions when missing data 

only appeared in the linear factor.  

We were also interested in the convergence rate among different missing rates in X1 

and missing data imputation. Table 4.3 showed the convergence rate did not have 

significant change as long as missing rate was increasing. Nonetheless, missing data 

imputation method also did not guarantee any improvement on convergence rate. 

Whatever any missing rate is, all missing data imputation methods made tiny decrease on 

convergence rate, especially in MI-MCMC, which decreased convergence rate as low as 

98%, and even lower. A reasonable explanation is that the number of imputation easily 

caused higher probability of convergence problem. For example, we used 5 imputations 

in each simulation data, and as long as one of them had convergence problem, the average 

result from 5 imputations would become biased. Even though this is not totally 

unsolvable because chapter 3 had shown three methods to adjust it, the process will be 

still time-consuming for modification in either the starting value of smoothing parameter 

or the number of knots.  

On the other hand, when missing data only appeared in the variable used in 

smoothing functions, applying missing data imputation method would make serious 

effects on parameter estimation in linear factors. In table 4.3, compared with true value of 

�, se(�) and se(b), CCA produced close results in �� and se(��), where �� was from 

0.1081 to 0.0979 and se(��) was from 0.3032 to 0.3160 while missing data rate is from 5% 

to 50%. The se(��) was a little overestimated, and located around 0.91 under any missing 

data rate in X2, but its ASMSE confirmed that higher missing data rate did not make more 

biases on the estimation of smoothing function. Generally speaking, the result of ASMSE 
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Table 4.4 

The main estimates of GGAMM with corresponding convergence rates (CR) when 
applying CCA, NNI1, NNI2 and MI in variable X2 for missing rates 5%, 10%, 20%, 30%, 
40% and 50%. 

Missing rate (%) 

Method Parameter 5 10 20 30 40 50 

CCA �� 0.1081 0.1049 0.1044 0.1031 0.1019 0.0979 

se(��) 0.3032 0.3040 0.3061 0.3085 0.3113 0.3160 

se(��) 0.9173 0.9172 0.9181 0.9182 0.9165 0.9167 

ASMSE 1.2468 1.2424 1.0637 1.1049 1.0176 1.2398 

CR(%) 99.4 99.4 99.9 99.5 99.5 99.9 

 
     

NNI1 �� 0.1042 0.0987 0.0809 0.0595 0.0381 0.0134 

se(��) 0.2954 0.2885 0.2724 0.2563 0.2405 0.2251 

se(��) 0.8941 0.8714 0.8180 0.7645 0.7113 0.6594 

ASMSE 1.3429 1.4676 2.0625 2.2026 2.1188 1.9330 

CR(%) 99.1 99.3 99.2 99.6 99.5 99.6 

 
     

NNI2 �� 0.0883 0.0676 0.0454 0.0132 -0.0219 -0.0386 

se(��) 0.2961 0.2898 0.2775 0.2678 0.2598 0.2537 

se(��) 0.8959 0.8753 0.8345 0.8023 0.7755 0.7556 

ASMSE 1.3395 1.4807 2.0568 2.2025 2.1174 1.9307 

CR(%) 99.4 98.5 99.5 99.6 99.3 99.6 

 
     

MI-MCMC �� 0.0791 0.0412 -0.0086 -0.0495 -0.0841 -0.1076 
se(��) 0.3003 0.2971 0.2957 0.2914 0.2861 0.2905 
se(��) 0.9098 0.8995 0.8951 0.8813 0.8641 0.8788 
ASMSE 1.3462 1.4712 2.0647 2.2031 2.1118 1.9479 
CR(%) 96.3 97.4 98.0 99.1 98.9 99.7 

* True (�, se(�), se(b))=(0.1, 0.3, 0.7) 

in table 4.3 was not better than the result of ASMSE n table 4.2. Even though most values 

of ASMSE in table 4.3 were smaller than those in table 4.2, the difference was very tiny and 

can be ignored. This result in table 4.3 reflected that, when missing data appeared in 

valuables fitting with smoothing functions severely, traditional missing data imputation 

may not efficiently improve the entire model-fitting, whatever in the estimations of 

unknown parameters in linear factor or smoothing functions. If the amount of data is large 
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enough (in this simulation, the sample size of each data set is 1,000), it can stand more 

missing rate up to 50%. More discussion will be mentioned in chapter 5.  

 Finally, compared with the results of MI-MCMC in table 4.3 and table 4.4, models 

with missing data in X2 had better convergence rate than models with missing data in X1 

in high missing rates. Meanwhile, the impact of convergence problem was relative weak 

when missing data were not in linear factors. 
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Chapter 5 

DISCUSSION 

5.1. Summary 

Our main goal was to accomplish comprehensive progress using the GGAMM in air 

pollution and adverse human health research, and evaluate the reasonability of findings to 

enhance confidence in this statistical model. Because elders ≥ 65 years old dying from 

respiratory diseases were our population in the initial case study, it was smaller than other 

studies containing death from all ages, and thus lead to a lower estimated PM10. Despite 

the lack of a previous study using the respiratory mortality data from elders ≥ 65 years old, 

the application results from chapter 3.12 still had reasonable conclusions when referring 

to published literature. From previous U.S. studies, the national relative risk ranged from 

0.09%~0.68% in a 10 µg/m3 increase of PM10 over 4 to 100 cities (table 5.1). When 

restricted to cardiovascular and respiratory mortality, the range became 0.13%~0.68%, 

which covered results from all models with cardiovascular and respiratory mortality in 

ages 65−74 and ≥ 75 years old, besides PM10+SO2, in with cardiovascular mortality and 

PM10+O3 in respiratory mortality in 65−74 years old. Due to technical limitations 

discussed in chapter 5.2, our extended analysis did not adjust by age group, but was 

separated into three models in each mortality. Therefore, no age-specific results from 

previous studies can be compared. In addition, multi-city air pollution study has not 

investigated pneumonia mortality yet, so our findings provided a possibility to make it 

examinable. 
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Table 5.1 

Comparison of results across studies: estimated percent increase in mortality relative risk per 10 µg/m3 increase in PM10. 

# of cities Period Mortality Air pollutant 

%increase in mortality RR per 10 

µg/m3 increase in PM10 (95% PI) Reference 

4 cities 1987-1994 Total PM10 0.17 (-0.01, 0.34) Dominici et al. (2003a) 

CVD/RESP PM10 0.22 (-0.02, 0.46) 

20 cities 1987-1994 Total PM10 0.48 ( 0.05, 0.92) Dominici et al. (2000a) 

100 cities 1987-2000 Total PM10 0.09 (-0.01, 0.19) Peng et al. (2005) 

PM10-lag1 0.19 ( 0.10, 0.28) 

PM10-lag2 0.08 (-0.03, 0.19) 

88 cities 1987-1994 Total PM10 0.55 ( 0.10, 0.98) Dominici et al. (2002a) 

90 cities Unknown CVD/RESP PM10 0.13 (-0.05, 0.31) Dominici et al. (2005) 

PM10-lag1 0.31 ( 0.13, 0.49) 

PM10-lag2 0.20 ( 0.02, 0.38) 

20 cities 1987-1994 Total PM10 0.51 ( 0.07, 0.93) Samet et al. (2000a) 

CVD/RESP PM10 0.68 ( 0.20, 1.16) 

88 cities 1987-1994 Total PM10 0.22 ( 0.10, 0.38) Dominici et al. (2003b) 

CVD/RESP PM10 0.31 ( 0.15, 0.50) 

100 cities 1987-2000 Total PM10 0.22 ( 0.13, 0.31) Welty and Zeger (2005) 

 

  

1
7

6
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Table 5.2 

Comparison of results across studies: estimated percent increase in mortality relative risk per 10 ppb increase in O3. 

# of cities Period Mortality Air pollutant 

%increase in mortality RR per 10 

µg/m3 increase in O3 (95% PI) Reference 

95 cities 1987-2000 Total Ozone 0.28 ( 0.13, 0.48) Bell et al. (2005) 

95 cities 1987-2000 Total Ozone 0.52 ( 0.27, 0.77) Bell et al. (2004a) 

CVD/RESP Ozone 0.64 ( 0.31, 0.98) 

98 cities 1987-2000 Total Ozone-lag1 0.21 (-0.06, 0.47) Bell et al. (2007) 

98 cities 1987-2000 Total Ozone-lag1 0.32 ( 0.17, 0.46) Bell et al. (2006) 

19 cities 1987-1994 CVD/RESP Ozone 0.73 ( 0.27, 1.19) Huang et al. (2005) 

   Ozone-lag1 0.70 ( 0.26, 1.12) 

   Ozone-lag2 0.64 ( 0.17, 1.07) 

1
7

7
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The GAM was the main statistical model for fitting city-specific effect in the 2-stage 

Bayesian hierarchical model. From valid numeric record, the city-specific PM10 effect 

was generally from 0.07%~0.35% (Dominici et al., 2002a; Dominici et al., 2003a; 

Dominici et al., 2003b). Our estimates shown in table 3.7 were from 0.06%~0.15%. In 

our extended analysis shown in section 3.12, the city-specific estimates from the pure 

PM10 model without controlling lag effects and co-pollutants were more diverse than the 

other models because they had a stronger PM10 effect at a national level and estimated 

standard errors of random effect. Moreover, the distributed lag model had a negative 

effect on 1-day lag PM10 effect, which was not shown in previous studies. Four studies 

(Peng et al., 2005; Roberts & Martin, 2007; Welty & Zeger, 2005; Bell et al., 2004a) 

showed that their PM10 effects at a 1-day lag and national level had 0.19%, 0.23%, 0.55% 

and 0.50%, respectively. Note that the effects in Welty and Zeger (2005) and Dominici et 

al. (2002a) were estimated from single pollutant models, which means there was no 

current PM10 adjusting in their models simultaneously. Nonetheless, when extending the 

lag effects to 6 days and 14 days in our models, and adjusting by the principal component 

analysis, our results derived positive association to mortality rate with values of 0.17% 

and 0.01%, respectively. Our analysis also found patterns from PCA-adjusted estimates in 

PM10 with longer lag effects that previous multi-city air pollution studies never 

discovered.  

 Compared with CO, NO2 and SO2, previous multi-city time series studies examined 

O3 and human health specifically (table 5.2). Bell et al. (2004a) showed a 0.64% increase 

in cardiovascular and respiratory mortality per 10-ppb increase in the previous week’s 

ozone by fitting 2-stage Bayesian hierarchical models with NMMAPS data, and got a 

consistent result with adjustment for PM10. Compared with results shown in section 3.9, a 

10-ppb increase in O3 at national level was significantly associated with 1.79% (95% CI: 

0.13%, 3.47%) increase in respiratory mortality with adjustment by PM10, which was 
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close to the O3 effect estimated from the 2-stage Bayesian hierarchical model (1.41%, 

95% CI: -1.42%, 4.33%). Ozone and human health research was implemented by many 

meta-analysis studies, and Thurston and Ito’s (2001) conclusion was closest to ours with a 

value of 1.37% (95% CI: 0.78%, 1.96%). Different from the other ozone meta-analysis 

studies (Stieb, Judek, & Burnett, 2002; Stieb, Judek, & Burnett, 2003; Levy, Carrothers, 

Tuomisto, Hammitt, & Evans, 2001; Anderson, Atkinson, Paecock, Marston, & 

Konstantinou, 2004; Bell et al., 2005), Thurstons and Ito’s study (2001) was the only one 

which included a nonlinear relationship between temperature and mortality. This may 

explain why our results were more consistent with Thurston and Ito’s (2001) than the 

others. Our result showed the PM10 effect in nation-level increased from 0.11% to 0.23% 

as adjusting with O3, which was consistent with Dominici et al. (2000a). However, the 

increase amount is only 0.13%. Moreover, different ozone concentrations were also used. 

In Bell et al. (2004a), daily average, 8-hour maximum, and daily hourly maximum ozone 

concentration were used in a distributed lag model and the increase in mortality was 

0.52% (95% CI: 0.27%, 0.77%), 0.64% (95% CI: 0.41%, 0.86%) and 0.67%(95% CI: 

0.42%, 0.92%), respectively. Actually, the NMMAPS database provided detailed 

measurements for each air pollutant, such as hourly maximum, 2nd~5th hourly maximum, 

trimmed mean, daily median of 1-year trends, daily mean of 1-year trends, and lag 1~lag 

3 trimmed mean. Our study was not as detailed, but is expected to have overwhelming 

detections.  

 Seldom had multiple location time series studies specifically focused on CO, SO2, 

and NO2. In most air pollution research, the two co-pollutants often used for identifying 

sensitivity analysis to adjust main factor are PM10 or O3. For example, Peng et al. (2005) 

examined the influence of PM10 after adjusting with SO2 in spring, summer, fall, and 

winter. The range of per 10 µg/m3 increase on the national average estimates of 

season-specific 1-day lag PM10 concentration was 0.08%~0.33%. Although our results in 



180 

 

both the initial case study and extended analysis were all higher than 0.33%, we proved 

that PM10 effects were close between GGAMMs and 2-stage Bayesian hierarchical 

models in section 3.9. In addition, the national level effect of PM10 increased 3-fold when 

adjusting SO2, but the SO2 fixed effect was negative, which was contradicted from the 

result of the 2-stage Bayesian hierarchical model. In fact, a difficulty of investigating the 

health influence from SO2 is that the gas is associated with particulate matter as sulfate 

dioxide is the precursor for fine sulfate particles, making their effects to adverse human 

health not easy to distinguish. Many cities made efforts to reduce the ambient 

concentration of SO2, and it was believed the level was still high in larger cities (WHO, 

2005). A Netherlands study concluded that SO2 did not seem to be a causative factor for 

particulate matter associated health effects (Buringh, Fischer, & Hoek, 2000), but some 

studies still proposed the concentration of SO2 was associated with total mortality for 

relative risk larger than 1% (Katsouyanni et al., 1997; Sunyer, Castellsague, Saez, Tobias, 

& Anto, 1996; Touloumi, Samoli, & Katsouyanni, 1996; Dab, Medina, Quenel, Le 

Moullec, Le Tertre, Thelot, Monteil, Lameloise, Pirard, Momas, Ferry, & Festy, 1996; 

Zmirou, Barumandzadeh, Balducci, Ritter, Laham, & Ghilardi, 1996). These studies did 

not consider spatial variation on the heterogeneity of multiple locations; as a result, the 

conclusion for SO2 has not yet been clearly determined.  

 The estimated NO2 effect at the national level was 1.26% (95% CI: -0.44%, 3.00%) 

associated with respiratory mortality rate in elders. The estimated PM10 effect was also 

slightly raised from 0.11% to 0.14%. It is similar to Peng et al. (2005) in winter and 

spring season. Some cross-sectional and cohort studies proved an NO2 effect in lung 

function growth of children (Gauderman, McConnell, Gilliland, London, Thomas, vol, 

Vora, Berhane, Rappaport, Lurmann, Margolis, & Peters, 2000; Gauderman, Gilliland, 

Vora, Avol, Stram, McConnell, Thomas, Lurmann, Margolis, Rappaport, Berhane, & 

Peters, 2002), acute bronchitis (Ackermann-Liebrich, Leuenberger, Schwartz, Schindler, 
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Monn, Bolognini, Bongard, Brandli, Domenighetti, Elsasser, Grize, Karrer, Keller, 

Keller-Wossidlo, Kunzli, Martin, Medici, Perruchoud, Schoni, Tschopp, Villiger, 

Wuthrich, Zellweger, & Zemp, 1997), chronic respiratory symptoms (Braun-Fahrländer, 

Vuille, Sennhauser, Neu, Kunzle, Grize, Gassner, Minder, Schindler, Varonier, & 

Wuthrich, 1997; Shima & Adachi, 2000), and cough and phlegm symptoms in adults 

(Forsberg, tjernberg, & Wall, 1997; Zemp, Elsasser, Schindler, Kunzli, Perruchoud, 

Domenighetti, Medici, Ackermann-Liebrich, Leuenberger, Monn, Bolognini, Bongard, 

Brandli, Karrer, Keller, Schoni, Tschopp, Villiger, Zellweger, & Team, 1999). These 

studies did not consider spatial factor seriously, and most of them were proposed before 

the development of the 2-stage Bayesian hierarchical model. A meta-analysis collected 

109 studies published from 1982 to 2000 and concluded that over a 24-hours average NO2 

concentration, the overall effect for all-cause mortality was 2.8%±0.3% (mean±SE) and 

0.9%±0.5%(mean±SE) per 44 µg/m3 in the single-pollutant model and multi-pollutant 

model, respectively (Stieb et al., 2002). Limited results about the influence of NO2 to 

adverse human health were in previous multiple location time series studies. Samet et al. 

(2000a) fitted NMMAPS data for NO2 from 19 cities in the U.S. found little evidence on 

such an association after adjusting PM10 and ozone level. The heterogeneity among cities 

was also discovered by a European study on short-term exposure to air pollution and 

mortality and morbidity, APHEA project, and investigated data from 29 cities 

(Katsouyanni, Touloumi, Samoli, Gryparis, Le Tertre, Monopolis, Rossi, Zmirou, 

Ballester, Boumghar, Anderson, Wojtyniak, Paldy, Braunstein, Pekkanen, Schindler, & 

Schwartz, 2001). 

 The CO estimates were fitted questionably in our analyses, and no improvement 

occurred after adjusting the starting value of smoothing parameters and the number of 

knots. Our proposed jackknife-bootstrap approach could force to curb the standard errors 

of fixed and random effects, but risked the variation of the subject-specific effect being 
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diminished. In addition, the too small adjusted se(��) would increase type I error. The 

adjusted PM10 effect at the national level enlarged after adjusting CO, but the CO effect 

was too weak to identify its influence. This situation was also happened in the 2-stage 

Bayesian hierarchical model, but it doubled PM10 effect. However, previous studies 

showed the carbon monoxide had a short-term effect on mortality. Another APHEA 

project concluded that a 1-µg/m3 increase in CO was associated with a 1.20% and 1.25% 

increase in total deaths and cardiovascular mortality rate, respectively (Samoli, Touloumi, 

Schwartz, Anderson, Schindler, & Forsberg, 2007). Note that their CO level was the 

average of current and 1-day lag effect, and the spatial heterogeneity was derived by 

assigning all city-specific estimates into a random-effects regression model with a 

variance component estimated by iteratively reweighted least squares, which concept was 

similar to Dominici et al. (2003a). 

 The starting value of smoothing parameter and spatial function, as well as the 

number of knots, displayed new roles in this study that had not been discussed by 

previous literature. The main function of setting starting a smoothing function starting 

value was initially to facilitate the speed of estimation. However, we found that at times it 

can solve the overestimated problem in standard errors of parameters, irrational splines, 

and diminished geographical variation. The number of knots in smoothing functions 

theoretically does not have much influence on estimations, but we found it does have 

some impact, especially being a surrogate if the modification from the starting value of 

smoothing parameter does not work. Our results concluded that, if the model-fitting can 

reach convergence successfully, the main estimates ��, se(��) and se(��) will be robust, but 

the robust level in se(��) and se(��) is smaller than ��. 
Comparing time smoothers shown in figures 3.5 to 3.10, there was generally no 

difference, but temperature smoothers reflected some concerns. According to the thermal 

comfort index (Fanger, 1970) in table 5.3, the trend of mortality average was confirmed to  
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Table 5.3  

The number of days and elders’ respiratory mortality average from 1991 to 1995 in 15 
U.S. cities on thermal comfort index. 

ET and ETw 

indices(	) 

ET and ETw 

indices(�) 

Thermal 

sensitivity 

Physiological 

stress 

# of days Mean of 

death count 

<13 <55.4 Very cold Cold stress 861 32.05 

13-16 55.4-60.8 Cold Chills 181 27.78 

16-19 60.8-66.2 Cool Body cooling 150 25.91 

19-22 66.2-71.6 Slightly cool Vasoconstriction 158 24.96 

22-25 71.6-77.0 Comfort 

zone 

Neutral 280 23.72 

25-28 77.0-82.4 Warm Light sweat, 

vasodilatation 

188 24.09 

28-31 82.4-87.8 Moderately 

hot 

Moderate 

sweating 

8 28.38 

31-34 87.8-93.2 Hot Profuse sweating 0 0 

>34 >93.2 Very hot Impaired 

thermoregulation 

0 0 

†ET: effective temperature; ETw: wind effective temperature. 

present a U-shape, which had largest values in “very cold” and “moderately hot”. Note 

that there was no data during our study period in the thermal comfort index with “hot” 

and “very hot”. When an unreasonable temperature smoother came out, such as the initial 

plots showing in figure 3.7 and figure 3.9, it was suggested to check corresponding 

estimates results to determine whether this model fitting had convergence problem. This 

double-check is very important because we had proved that irrational smoothing 

functions may affect the convergence of estimated parameters. Although it was not 

absolutely solvable, most situations could be improved by adjusting the starting values of 

smoothing parameters and the number of knots in smoothing functions manually. In 

addition, the statement from BayesX manual about the consistence of the number of knots 

used in smoothing functions is not entirely guaranteed. A better way to handle it carefully 

is relying on re-fitting the same model with a different numbers of knots based on a 

bench-mark. For example, if we got a reasonable smoothing function plot with a fixed 
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number of knots, it is better to re-fit the same model with some versatile numbers of knots 

around the initial number of knots. If the new plots are similar to the original one, this 

plot can be confirmed to be free from the knots effect.  

 The missing data problem is inevitable in air pollution study, and some imputation 

methods did not have the anticipated effect, especially in multiple imputation method. As 

we know, the multiple imputation method needs strong assumptions (Little & Rubin, 

1987), and may not be appropriate for imputing time series data. The NNI1 and NNI2 

provide convenient ways to impute missing data, but each one has its own flaws. In our 

case study, three methods encountered the convergence problem, and, in particular, the 

multiple imputation method which needs repeated imputations, made the entire procedure 

very inefficient. Comparing the three methods, the NNI2 has the worse relative results 

because it underestimated most air pollutant effects in model 1, model 2, model 4, and 

model 5. This situation appeared in simulation, and under purer data structure, the 

underestimated situation in �� was even worse than the other two methods, which did not 

occur in case study. Moreover, these imputation methods made severe damages when 

missing data appeared in smoothing functions. This situation was not significant in our 

real data, and the simulation implied that imputed data will not improve either estimates 

or smoothing functions. While MI-MCMC was preferred to CCA because CCA may 

cause over-fitted models and biased estimates if the data does not follow MAR 

mechanism (Carder, McNamee, Beverland, Elton, Van Tongeren, Cohen, Boyd, MacNee, 

& Agius, 2008), our real data did not violate this mechanism. Because the GGAMM is a 

kind of semiparametric model, some semiparametric imputation methods can be 

considered (Durrant, 2005; Lipsitz, Zhao, & Molenberghs, 1998). The model-based 

imputation method (Zanobetti et al., 2000) failed here because it raised the concurvity 

level, and made the model-fitting harder to reach convergence.  

 The application of principal component analysis solved the technical problem in the 
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distributed lag model with the structure of the GGAMM in BayesX, and the estimates 

from principal component variables were more stable, which indirectly but considerably 

mark down the probability of a convergence problem. A quantification research for 

mortality displacement used 45 lags total suspended particulate (TSP) in the generalized 

additive distributed lag model, and the strongest log relative risk occurred at current effect. 

The trend decreased to near zero around lag 15, and slightly climb until lag 25 (Zanobetti 

et al., 2000). This study design was severely affected by missing data, and reduced the 

power with CCA. Therefore, imputing missing data is always a precursor of fitting 

distributed lag models. This is a complicated design because more problems will come 

about with each other in the GGAMM, such as multicollinearity, concurvity and 

convergence problem. Most studies only used two or three lag effects (Peng et al., 2005; 

Roberts & Martin, 2007), but our findings showed that lag effects longer than two to six 

days probably still had an influence on mortality rate.  

Most of our models had moderate multicollinearity and concurvity levels around 

0.3~0.5. Carbon monoxide and ozone had higher concurvity levels over 0.6 with 

smoothing and spatial functions. A study found some extreme results in New York City 

(Lipsitz, Zhao, & Molenberghs, 2007), but a comparison with our findings should still be 

considered. The concurvity level in this NYC study can be controlled in single pollutant 

models, and the highest one (0.77) appeared in ozone adjusting by natural splines of 

same-day temperature, dew-point, and time trend, which was close to our results in model 

5. The lowest concurvity level was 0.28 in NO2, but increased to 0.60 when including 

day-of-week variables. This level was also close to our result. Generally speaking, their 

single pollutant models were producing concurvity level≥0.6 when day-of-week variables 

were considered, and most multiple pollutant models had concurvity level from 0.69 to 

0.91. Their findings implied that adding more factors and smoothing functions can 

increase the risk of more concurvity. Note that this NYC study used 18~30 air pollution 
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monitoring stations’ data for different models, but actually the average values across these 

monitors were used in the GAM, so the spatial variation among monitoring stations did 

not consider in model fitting.  

Even though some simulations explored biases from the effect of concurvity by 

using the GAM with air pollution data (Ramsay et al., 2003a; Ramsay et al., 2003b), the 

conditional bootstrap method and partial regression approach are rarely used in most air 

pollution studies (Figueiras et al., 2005; He et al., 2006). The conditional bootstrap 

method was proved to produce more biases from a simulation (results are not shown here), 

and unable to work in the GGAMM. The partial regression approach needs to have 

advanced development to correspond with the structure of the GGAMM, but this part is 

not the main purpose of our study. At least, we not only revealed the influence of 

concurvity by simulations, but also discovered that it is a potential source of causing a 

convergence problem in the GGAMM.  

Multicollinearity is very common in any linear model, but the 2-stage Bayesian 

hierarchical model is actually not a unified linear model. It causes the evaluation of 

multicollinearity in the 2-stage Bayesian hierarchical model to be less intuitive than the 

traditional generalized linear regression model in air pollution epidemiology (Chen, 

Chock, & Winkler, 1999). A precursor of the 2-stage regression model discussed the 

confounding from multicollinearity in air pollution research (Marcus & Kegler, 2001). 

They suggested that factor analysis can be used as a preprocessing step to evaluate 

multicollinearity in 2-stage regression model, but did not propose clear analyses to prove 

it. Our approach succeeded multiple linear regression models, and offered the 

PCA-adjusted estimates to help us have indirect interpretations for each factor in the 

GGAMM. The immediate way of handling multicollinearity under the structure of the 

GGAMM is more anticipated, but generally speaking, some traditional approaches of 

handling multicollinearity in regression models can theoretically be applied in the 
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GGAMM, such as dropping one of the variables, obtaining more data, or centralizing the 

predictor variables.  

Compared with the 2-stage Bayesian hierarchical model, the GGAMM revealed 

some advantages. First, the geographical correlation can be virtualized by spatial map for 

using Markov random fields with real geographical data. The 2-stage Bayesian 

hierarchical model cannot use geographical data, but uses another Bayesian model 

containing coefficients from the first stage to consider between-city variability (Dominici 

et al., 2002a). An improved 2-stage Bayesian hierarchical model was developed by 

Dominici et al. (2003b), and the distance between two cities can be considered in the 

second stage. However, the purpose of using the model in the second stage is still 

obtaining a weighted overall average of the MLE of PM10, and no spatial function can be 

independently presented. Second, the model-fitting of the GAM could be easily damaged 

by missing data, especially in smoothing functions. The confidence intervals of estimated 

parameters also tended to be much wider, causing unreliable coefficients. This potential 

risk can be reduced by the GGAMM for two reasons: 1) geographical data will not be 

affected by missing data, and 2) smoothing functions can be fitted well by enough valid 

observations from all cities. Therefore, both fixed and random effects are controlled by a 

nation-level time smoother and temperature smoother, and have more reliable estimates 

and confidence intervals. Third, Markov random fields offer the ability to explain spatial 

correlation across cities, and removed possible confounding influence on estimated 

coefficients. Hence, from the unified model structure of the GGAMM, we can 

conveniently demonstrate the relationship between nation-level and city-level effects to 

mortality from fixed and random effect estimates in any air pollutant.  

In summary, the general findings from our analyses are: 1) the GGAMM provided an 

integrate model structure concerning national average estimates, city-specific estimates, 

smoothing and spatial functions simultaneously, and the results were acceptable in most 
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cases; 2) when the model fitting encounter a convergence problem in BayesX, users can 

solve it by adjusting either starting values of smoothing parameter or the number of knots 

manually to modify estimating results. A jackknife-bootstrap approach can be the 

alternative in case that the two methods do not work successfully; 3) single the pollutant 

model and distributed lag model with PM10 in the GGAMM presented smaller estimates 

than the results in the 2-stage Bayesian hierarchical model in national level, but 

co-pollutants, especially in NO2 and O3, had a stronger association to mortality in the 

GGAMM; 4) the application of missing data imputation methods in case study made each 

fixed effect much stronger, but easily cause convergence problems, especially in multiple 

imputation method; 5) the application of principal component analysis solved the 

technical problem in BayesX and the theoretical problem in multicollinearity; 6) The 

multicollinearity was not very severe in our case study, but concurvity severity appeared 

in co-pollutant model PM10+O3 (model 5); 7) Our models still needs some adjustments to 

satisfy model diagnostics, although the corresponding methods using in the GGAMM are 

still undeveloped; 8) the simulation results confirmed that concurvity is one of the reason 

causing a convergence problem in BayesX, and it also made biases on all estimates. In 

addition, missing data imputation methods did not improve estimates much, and even 

made severe damages when missing data appeared in smoothing functions. 

5.2. Limitations 

In the process of fitting GGAMMs with spatio-temporal air pollution data in BayesX, 

we actually encountered many problems and difficulties. Some of them have been solved 

in chapter 3, but for others, there is still no way to address them. The methodology of 

structured additive models is almost completely developed, and can be accomplished in 

BayesX, the only statistical software which can fit the GGAMM without writing 
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complicated programs. Therefore, if any model-fitting failed in BayesX, there is no 

alternative software to successfully accomplish it. An unnatural limitation in BayesX is its 

data capacity. Not like SAS and some other statistical software, the amount of data 

simultaneously importing and fitting in BayesX is restricted. Although the manual of 

BayesX showed a simple example with a data set containing 100,000 cases and 2 

variables, the actual amount of spatio-temporal air pollution data which can be 

successfully fitted in BayesX was no more than 30,000. This upper bound is the main 

restriction making the number of U.S. cities 15 and the length of time studied 5 years 

(1,826 days). As long as it continues to exceed the capacity, BayesX will crash 

immediately. One possible reason is that there are too many matrix calculations in priors, 

posteriors, estimating equations, and B-splines, which easily exceeds the maximum of 

memory in computers. Despite the memory being expanded to 4GB, the amount of data 

used in our study can no longer increase. We can expect to install more RAM in 

computers, but according to the official document from Microsoft®, 32-bit Windows with 

4GB RAM in any version of Vista is commonly used by most users. These hardware 

standards are still unaffordable. Using 128GB RAM looks possibly, but it still does not fit 

common computer hardware standards. A workstation system should be an alternative, 

but the UNIX version of BayesX remains under development. 

 Another technical problem of BayesX happened in simulation. It contains two issues. 

One is that there is no compiled do-loop function in BayesX, and another one is that the 

number of models which can be fitted in an implemented BayesX is limited. The lack of 

do-loop function makes users unable to conveniently and simultaneously fit a series of 

models with a few lines of programs. An alternative method is using external software to 

generate corresponding syntax in each model, and export them together in a .prg file, a 

format of external text file which can be read in BayesX. The second limitation comes 

from the lack of a do-loop function. We found the maximum number of models to fit in a 
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BayesX windows at once to be roughly 25,000. Exceeding this number will also cause 

BayesX to crash. This disadvantage has a severe influence on huge simulations, 

especially in those with bootstrap and jackknife methods. Users have to control the 

amount in a .prg file by splitting them into several smaller .prg files. Whatever, these 

external operations will always make advanced research more complicated and 

inconvenient.  

 About the issue of software, BayesX is well-compiled software with fixed syntax for 

fitting models only, and has less flexibility to modify from inside. Compared with other 

statistical software, BayesX is only for fitting structure additive models. The gamm() 

function in R software can also fit structure additive models, but its algorithm is based on 

Lin and Zhang (1999), which means it can only fit the GAMM. No Bayesian approach is 

applied in this package, and only contour data can be used to fit spatial function. While 

BayesX provides some syntax to make data management and descriptive statistics, there 

are few functions to perform some adjustments and improvements if we develop new 

algorithms or theorems based on structure additive models. For example, suppose a new 

method is developed for solving the concurvity problem in the GGAMM by some 

elements internally adjusting in estimating equations or iterations—BayesX cannot 

process this new method unless its programmers write algorithms in source codes, and 

compile them in a new version of BayesX. As a result, BayesX becomes an entirely 

closed programming environment which is unable to develop from users, with the 

exception of original programmers. In addition, the offset function still has problems 

when assigning population data, but it is still doubtful that whether the offset can affect 

the result with huge population and pretty small death counts. 

 Besides technical limitations in BayesX , there are still some issues which have not 

been accomplished in the methodology of the GGAMM. A critical one shall be the model 

diagnostic method and influential analysis, and of course, BayesX does not support 
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corresponding syntax either. The model diagnostics shown in chapter 3.11 were borrowed 

from the general linear mixed model, but the influence diagnostics and outliers tests for 

original GAMM which was developed by Lin and Zhang (1999) or GAM had been 

published (Fung, Zhu, Wei, & He, 2002; Kim, Park, & Kim, 2002). Lin’s and Zhang’s 

GAMM can be regarded as a protocol of Bayesian generalized structured additive models; 

therefore, the development of relative methods in the GGAMM can follow Fung et al.’s 

research to establish its own model diagnostic methods. Nonetheless, the relative theories 

have not been studied yet. It is expected that some model diagnostic methods developed 

on Lin’s and Zhang’s methodology can also be applied in the GGAMM, but subject to 

restrictions on BayesX, it is still pretty hard to implement.  

 An extended problem from model diagnostics is the over-dispersion situation from 

zero-inflated Poisson (ZIP) data. A similar situation also happens in zero-inflated negative 

binomial (ZINB) data. Air pollution research inevitably often has to use ZIP or ZINB data, 

but the two types of data can only be fitted by the GGAMM with MCMC approach in 

BayesX. Compared with MCMC method and REML method in the GGAMM, the fully 

Bayesian approach implementing in MCMC method is much more efficient than the 

REML method, but the main reason that the REML method does not support ZIP or ZINB 

data is that the standard error of parameter is still inestimable. However, our air pollution 

data cannot be fitted by the GGAMM with MCMC method because BayesX encountered 

errors from floating calculation. The main reason is still unknown, but according to the 

statement, the MCMC method can handle more than 1,000 variables and 200,000 

observations. Air pollution data fitted by the GGAMM with MCMC method should be 

technically implemented with some modifications. 

 Using the options of smoothing functions compiling in BayesX, users cannot define 

the degree of freedom, but instead estimate the generalized cross-validation (GCV) value 

for the degree of freedom. Meanwhile, there is no possibility to specify the degrees of 



192 

 

freedom since estimation of the smoothing parameter is an integral part of the model 

fitting process. There is a data-driven choice of the smoothing parameter leading to a 

data-driven choice of the degrees of freedom which ultimately avoids user-specified 

subjective choices of smoothing parameters. As a result, this default setup makes studies 

unable to perform sensitivity analyses over different degrees of freedoms which are the 

necessary part in previous air pollution research. In addition, even though BayesX allows 

users to define different numbers of knots in smoothing functions, it is unlike some 

packages in R, such as gamm(), which can import user-defined knots from non-kriging or 

non-geokriging data. Meanwhile, the distance between any two nearby knots from 

non-kriging or non-geokriging data is always equal in BayesX. 

 Finally, in regards to the convergence problem, we developed a jackknife-bootstrap 

approach to adjust overestimated standard errors of fixed and random effects. The 

disadvantage of this method is making 95% confidence intervals conservatively, but it can 

guarantee the robustness will be held with a different number of jackknife estimates 

drawing with replacement. However, using this method also indicates that the original 

estimated smoothing and spatial functions cannot be used immediately. The jackknife 

method cannot adjust parameters and smoothing/spatial functions simultaneously. As a 

result, changing the starting values of smoothing parameters or the numbers of knots in 

smoothing functions is still the first choice to look for reasonable estimates. It is 

anticipated that the jackknife-bootstrap approach can also apply in each fitted value of 

splines or spatial effects, but its efficiency should be evaluated further. We propose to 

proceed from the starting values of smoothing parameters because it can be modified up 

to the value of 1,000, but the numbers of knots must be limited (20 knots~50 knots), 

because it could make smoothing functions too twisted. In the event that the three 

methods are all unavailable, data transformation might be an alternative strategy. 
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5.3. Future work 

 The use of the GGAMM in air pollution research with spatio-temporal data is a new 

application, and the multitudes of analyses done in our study are just a premiere that still 

leaves a lot of work to be done. First, rather than endlessly expanding computer hardware, 

we anticipate that reducing the dimension of matrixes used in algorithms could be a more 

efficient way to use more data in BayesX. In addition, this kind of development could 

potentially save estimating time, even though BayesX is less time-consuming than 

WINBUGS or R when fitting some structure additive models. However, in our experience 

it is still too time-consuming when models include more variables, especially in models 

with many random effects. Sometimes, assigning more knots in smoothing functions will 

also extend process time. For example, the process time to fit model 1 shown in section 

3.3 was 3 minutes 10 seconds. When immediately including two PM10 lag effects (model 

2, including of fixed and random effects), without changing any default values of 

parameters in program, the process time extended to 48 minutes 53 seconds. When just 

increasing the number of knots of the time smoother from 31 to 46 in model 1, the 

process time extended to 5 minutes and 31 seconds. This time-consuming estimating 

procedure is an obstacle of applying some statistical approaches, such as bootstrap and 

jackknife method. Some complicated simulations will also pose problems. However, as 

long as the two disadvantages can be overcome, it is definite that the use of the GGAMM 

or the other structure additive models will become overwhelmingly popular in the future. 

 Second, the solution approach of concurvity appearing in the GGAMM is still 

underdeveloped. This issue has been examined in some air pollution studies (Ramsay et al, 

2003a; Ito et al, 2007), and a conditional bootstrap method was also proposed in the 

GAM (Figueiras et al, 2005). Unfortunately, we applied the conditional bootstrap method 

in the GGAMM and found it failed to solve dwindle concurvity level in a small 
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simulation. We still believed that the damages of a high concurvity level in the GAM will 

still occur in the GGAMM, but a new theory should be developed first to handle it in the 

GGAMM or the other structured additive models. 

 Third, the model diagnostic methods based on the GGAMM or the other generalized 

structured additive models with either the MCMC method or REML method should be 

the next step of methodological establishment. In addition, how to solve the problem of 

inestimable standard errors in parameters on the link function for ZIP and ZINB 

distribution could be another challenge. Concerning the application of the GGAMM in air 

pollution and adverse human health research, there are some opportunities related to 

enhance or develop advanced research: 1) it is believed that limited or inaccurate 

environmental exposure data induce huge measurement errors to properly estimate small 

risks, and researchers are unable to detect small effects that would probably be 

undetectable (Dominici et al, 2003c). Ambient measurements from personal exposure 

may be a better surrogate for average population exposure from air pollution monitoring 

stations. In addition, scientists were previously worried about the misrecognition of 

spatial variation in these studies (Greenland & Morgenstern, 1989; Sheppard, Prentice, & 

Rossing, 1996), but now the GGAMM or the other structured additive models have 

proven that they have the ability to handle this issue; 2) the biases from measurement 

errors in monitoring data have been confirmed in some air pollution studies using linear 

regression models (Zeager et al, 2000) and the generalized additive model (Dominici et al, 

2000b), so the succeeded research in the GGAMM should also be expected; 3) short-term 

mortality displacement comes from the near-death individuals who are infected by other 

diseases, such as cardiovascular disease or cerebrovascular disease, and high 

concentration air pollution could hasten their deaths within a short period. This issue 

induces the timescale analysis for identifying the influence of different timescales, and 

initially has been done by a hierarchical Poisson regression model and Fourier analysis in 
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the 4 U.S city study (Dominici et al, 2003b). The GGAMM should have the power to 

integrate more cities to estimate association between air pollution exposure and mortality 

at different timescales of variation.  

 Finally, except for the GGAMM, other members in the generalized structured 

additive models can be implemented in air pollution and human health studies for 

different designs or purposes, but the application of related models is still very rare. A 

re-analysis of Utah Valley Study (Coull et al, 2001) with a general additive mixed model 

is a pioneer of this kind of application, and can be a good example to follow. Some ideas 

could be accomplished in the future: 1) using boundary, centroid, or kriging data to fit 

spatial functions; 2) performing versatile advanced interaction terms in models, such as 

geographically weighted regression, two-dimensional surface function, and time-varying 

effect in Cox PH models or multi-state models; 3) analyzing panel or clinical trial data by 

fitting models for continuous time survival analysis based on structured hazard regression 

(Kneib & Fahrmeir, 2007; Kneib, 2006b) and multi-state model (Kneib & Hennerfeind, 

2006).
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APPENDIX A 

Tables of estimates from starting values of smoothing parameters 

 

Model 1 

λtime Parm 
λtmean 

10 11 12 13 14 15 

 
�� 0.000105 0.000107 0.000013 0.000107 0.000100 0.000014 

10 se(��� 0.000286 0.000375 0.168194 0.000284 0.000309 0.778382 

 
se(��) 0.000194 0.000773 0.651408 0.000167 0.000387 3.014658 

 
�� 0.000017 0.000019 0.000021 0.000106 0.000100 -0.000046 

11 se(��� 0.675334 0.096806 1.233190 0.000290 0.000330 0.479905 

 
se(��) 2.615557 0.374921 4.776118 0.000235 0.000522 1.858661 

 
�� 0.000103 0.000106 -0.000046 0.000104 0.000019 0.000098 

12 se(��� 0.000360 0.000375 0.126045 0.000348 0.097463 0.000335 

 
se(��) 0.000694 0.000772 0.488165 0.000626 0.377467 0.000549 

 
�� 0.000101 0.000102 0.000017 0.000100 0.000098 0.000104 

13 se(��� 0.000298 0.000353 0.050717 0.000327 0.000311 0.000370 

 
se(��) 0.000306 0.000656 0.196412 0.000503 0.000399 0.000746 

 
�� 0.000014 0.000100 0.000098 0.000091 0.000099 0.000102 

14 se(��� 0.952007 0.000321 0.000320 0.000303 0.000318 0.000344 

 
se(��) 3.687113 0.000469 0.000459 0.000336 0.000449 0.000603 

 
�� 0.000099 0.000100 0.000106 0.000017 0.000098 0.000100 

15 se(��� 0.000332 0.000305 0.000292 0.049699 0.000315 0.000323 

 
se(��) 0.000535 0.000354 0.000251 0.192470 0.000424 0.000477 
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Model 2 

λtime Parm 
λtmean 

10 11 12 13 14 15 

10 

��O 0.000675 0.000158 0.000166 0.000216 0.000676 0.000144 

se(��O� 0.196834 0.000405 0.000398 0.000369 0.266623 0.000356 

se(��O) 0.762327 0.000693 0.000641 0.000500 1.032623 0.000399 ��9 -0.000530 -0.000024 -0.000164 -0.000132 -0.000528 -0.001494 

se(��9� 0.133549 0.000412 0.086452 0.085502 0.088435 0.066438 

se(��9) 0.517211 0.000618 0.334801 0.331121 0.342475 0.257295 ��Q -0.001911 -0.001984 -0.001913 -0.001908 -0.001913 0.000160 

se(��Q� 0.063516 0.177789 0.068344 0.182711 0.113770 0.000419 

se(��Q) 0.245960 0.688567 0.264662 0.707626 0.440610 0.000811 

11 

��O 0.000097 0.000091 0.000108 0.000460 0.000676 0.000148 

se(��O� 0.000351 0.000367 0.000373 0.077479 0.838364 0.000368 

se(��O) 0.000388 0.000499 0.000530 0.300056 3.246968 0.000477 ��9 -0.000062 -0.000031 -0.000046 -0.000025 -0.000529 -0.001516 

se(��9� 0.000400 0.000364 0.000382 0.000374 0.595126 0.125494 

se(��9) 0.000579 0.000339 0.000459 0.000387 2.304908 0.486025 ��Q 0.000157 0.000150 0.000129 -0.002165 -0.001912 0.000182 

se(��Q� 0.000318 0.000319 0.000362 0.097382 0.096031 0.000346 

se(��Q) 0.000244 0.000261 0.000540 0.377142 0.371903 0.000422 

12 

��O 0.000676 0.000105 0.000459 0.000675 0.000136 0.000676 

se(��O� 0.386378 0.000360 0.096833 0.070675 0.000351 0.278259 

se(��O) 1.496432 0.000449 0.375017 0.273698 0.000360 1.077687 ��9 -0.000528 -0.000050 -0.000031 -0.000528 -0.001511 -0.000528 

se(��9� 0.241014 0.000387 0.000383 0.416730 0.138876 0.193717 

se(��9) 0.933432 0.000492 0.000440 1.613983 0.537856 0.750247 ��Q -0.001913 0.000131 -0.002162 -0.001912 0.000185 -0.001913 

se(��Q� 0.123914 0.000361 0.078948 0.132455 0.000335 0.160887 

se(��Q) 0.479898 0.000536 0.305746 0.512978 0.000352 0.623100 

13 

��O 0.000105 0.000612 0.000738 0.000100 0.000461 0.000107 

se(��O� 0.000367 0.209067 0.273995 0.000375 0.059710 0.000365 

se(��O) 0.000493 0.809705 1.061174 0.000545 0.231234 0.000482 ��9 -0.000046 -0.000536 -0.001920 -0.000040 -0.000026 -0.000035 

se(��9� 0.000383 1.089360 0.171184 0.000374 0.000377 0.000370 

se(��9) 0.000468 4.219052 0.662980 0.000408 0.000403 0.000378 ��Q 0.000125 -0.001949 0.000163 0.000143 -0.002166 0.000114 

se(��Q� 0.000373 0.934210 0.000395 0.000334 0.153929 0.000388 
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se(��Q) 0.000603 3.618176 0.000683 0.000370 0.596153 0.000684 

14 

��O 0.000458 0.000112 0.000459 0.000611 0.000125 0.000106 

se(��O� 0.573193 0.000360 0.201665 0.046127 0.000353 0.000345 

se(��O) 2.219966 0.000443 0.781038 0.178608 0.000381 0.000339 ��9 -0.000026 -0.000063 -0.000022 -0.000536 -0.000016 -0.000063 

se(��9� 0.000377 0.000412 0.000372 0.223534 0.000382 0.000410 

se(��9) 0.000404 0.000638 0.000368 0.865732 0.000450 0.000630 ��Q -0.002164 0.000125 -0.002167 -0.001948 -0.001973 0.000129 

se(��Q� 0.056609 0.000386 0.194721 0.115720 0.151860 0.000381 

se(��Q) 0.219217 0.000671 0.754142 0.448163 0.588143 0.000643 

15 

��O 0.000676 0.000677 0.000676 0.000737 0.000097 0.000610 

se(��O� 0.189319 0.382686 1.019010 0.112704 0.000356 0.151886 

se(��O) 0.733220 1.482134 3.946619 0.436486 0.000373 0.588239 ��9 -0.000528 -0.000544 -0.000528 -0.001929 -0.001530 -0.000535 

se(��9� 0.129039 0.150525 0.635551 0.084190 0.096627 0.131020 

se(��9) 0.499745 0.582962 2.461475 0.326041 0.374222 0.507418 ��Q -0.001913 -0.001888 -0.001914 0.000175 0.000140 -0.001949 

se(��Q� 0.154094 0.023828 0.530478 0.000347 0.000413 0.205771 

se(��Q) 0.596789 0.092197 2.054529 0.000419 0.000778 0.796937 
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Model 3 

λtime Parm 
λtmean 

10 11 12 13 14 15 

10 

��O 0.000196 0.000195 0.000220 0.000221 0.000220 0.000220 

se(��O� 0.088258 0.084556 0.087631 0.082792 0.081822 0.083734 

se(��O) 0.341813 0.327477 0.339383 0.320643 0.316885 0.324292 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081648 0.081648 0.081647 0.081651 0.081650 0.081647 

se(��9) 0.316223 0.316222 0.316216 0.316231 0.316229 0.316217 

11 

��O 0.000194 0.000195 0.000221 0.000221 0.000221 0.000221 

se(��O� 0.080495 0.077259 0.079291 0.080210 0.076693 0.080765 

se(��O) 0.311744 0.299210 0.307084 0.310642 0.297021 0.312790 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081651 0.081650 0.081650 0.081650 0.081649 0.081651 

se(��9) 0.316233 0.316228 0.316229 0.316231 0.316224 0.316234 

12 

��O 0.000196 0.000198 0.000198 0.000196 0.000198 0.000220 

se(��O� 0.081868 0.082859 0.081704 0.087217 0.086197 0.081964 

se(��O) 0.317065 0.320900 0.316430 0.337782 0.333828 0.317433 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081651 0.081651 0.081649 0.081658 0.081651 0.081649 

se(��9) 0.316233 0.316231 0.316227 0.316261 0.316231 0.316225 

13 

��O 0.000221 0.000178 0.000221 0.000221 0.000262 0.000195 

se(��O� 0.071796 0.039088 0.082335 0.111095 0.081963 0.061053 

se(��O) 0.278054 0.151368 0.318873 0.430262 0.317432 0.236445 ��9 -0.000005 -0.000007 -0.000005 -0.000005 -0.000007 -0.000005 

se(��9� 0.081648 0.081629 0.081650 0.081648 0.081646 0.081654 

se(��9) 0.316223 0.316149 0.316227 0.316221 0.316213 0.316244 

14 

��O 0.000193 0.000194 0.000192 0.000220 0.000196 0.000194 

se(��O� 0.085497 0.087237 0.073339 0.083137 0.080626 0.079331 

se(��O) 0.331118 0.337859 0.284029 0.321977 0.312253 0.307236 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081655 0.081641 0.081617 0.081652 0.081652 0.081663 

se(��9) 0.316247 0.316194 0.316103 0.316236 0.316236 0.316278 

15 

��O 0.000197 0.000196 0.000220 0.000221 0.000194 0.000221 

se(��O� 0.083373 0.082452 0.081541 0.079796 0.104653 0.081438 

se(��O) 0.322893 0.319324 0.315796 0.309038 0.405310 0.315397 ��9 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 -0.000005 

se(��9� 0.081650 0.081643 0.081648 0.081651 0.081628 0.081649 

se(��9) 0.316231 0.316201 0.316222 0.316233 0.316144 0.316223 



200 

 

Model 4 

λtime Parm 
λtmean 

10 11 12 13 14 15 

10 

��O 0.000163 0.000056 0.000136 0.000188 0.000093 0.000101 

se(��O� 0.000441 0.033306 0.000375 0.000460 0.000443 0.000414 

se(��O) 0.000638 0.120042 0.000212 0.000738 0.000627 0.000468 ��9 0.001224 0.002160 0.001145 0.001173 0.002076 0.002058 

se(��9� 0.000846 0.095700 0.000829 0.000829 0.295381 0.112645 

se(��9) 0.000795 0.344993 0.000665 0.000655 1.064998 0.406102 

11 

��O 0.000166 0.000130 0.000147 0.000139 0.000156 0.000147 

se(��O� 0.000451 0.000375 0.000410 0.000404 0.000433 0.000426 

se(��O) 0.000686 0.000209 0.000464 0.000426 0.000596 0.000554 ��9 0.001224 0.001170 0.001164 0.001233 0.001238 0.001259 

se(��9� 0.000848 0.000837 0.000830 0.000858 0.000856 0.000865 

se(��9) 0.000810 0.000739 0.000668 0.000893 0.000874 0.000942 

12 

��O 0.000437 0.000162 0.000051 0.000133 0.000458 0.000051 

se(��O� 0.091350 0.000443 0.000386 0.000379 0.141606 0.572836 

se(��O) 0.329354 0.000650 0.000221 0.000242 0.510559 2.065386 ��9 0.001227 0.001235 0.002126 0.001258 0.001150 0.002161 

se(��9� 0.000863 0.000850 0.317771 0.000876 0.000830 0.044137 

se(��9) 0.000886 0.000828 1.145722 0.001027 0.000630 0.159011 

13 

��O 0.000165 0.000447 0.000183 0.000134 0.000170 0.000135 

se(��O� 0.000460 1.259810 0.000454 0.000388 0.000466 0.000374 

se(��O) 0.000734 4.542323 0.000706 0.000324 0.000764 0.000203 ��9 0.001314 0.001193 0.001167 0.001179 0.001290 0.001178 

se(��9� 0.000886 0.000848 0.000828 0.000839 0.000871 0.000842 

se(��9) 0.001076 0.000775 0.000641 0.000747 0.000975 0.000777 

14 

��O 0.000055 0.000055 0.000054 0.000137 0.000427 0.000131 

se(��O� 0.123753 0.123179 0.099355 0.000375 0.138230 0.000371 

se(��O) 0.446186 0.444118 0.358215 0.000179 0.498386 0.000164 ��9 0.002161 0.002161 0.002159 0.002009 0.001263 0.001135 

se(��9� 0.399323 0.270087 0.251801 0.157348 0.000880 0.000825 

se(��9) 1.439764 0.973791 0.907857 0.567293 0.001005 0.000631 

15 

��O 0.000055 0.000134 0.000136 0.000142 0.000052 0.000052 

se(��O� 0.127711 0.000386 0.000372 0.000412 0.197652 0.061465 

se(��O) 0.460456 0.000308 0.000183 0.000479 0.712637 0.221592 ��9 0.002161 0.001220 0.001138 0.001235 0.002162 0.002164 

se(��9� 0.179242 0.000856 0.000827 0.000853 0.301458 0.191393 

se(��9) 0.646234 0.000886 0.000648 0.000858 1.086904 0.690049 
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Model 5 

λtime Parm 
λtmean 

10 11 12 13 14 15 

10 

��O 0.000227 0.000218 -0.000380 -0.000371 0.000207 0.000228 

se(��O� 0.000385 0.000346 0.123656 0.196623 0.000356 0.000408 

se(��O) 0.000531 0.000291 0.462672 0.735692 0.000350 0.000647 ��9 0.001855 0.001832 0.001825 0.001937 0.001808 0.001806 

se(��9� 0.000815 0.000795 0.000925 0.000817 0.000798 0.000801 

se(��9) 0.000650 0.000451 0.001184 0.000495 0.000344 0.000362 

11 

��O 0.000224 -0.000176 -0.000176 0.000215 0.000209 0.000208 

se(��O� 0.000383 0.117644 1.851610 0.000385 0.000372 0.000363 

se(��O) 0.000517 0.440172 6.928088 0.000520 0.000449 0.000396 ��9 0.001840 0.000933 0.000935 0.001791 0.001792 0.001803 

se(��9� 0.000836 0.308503 3.222230 0.000854 0.000812 0.000803 

se(��9) 0.000825 1.154301 12.056492 0.000894 0.000480 0.000393 

12 

��O 0.000209 0.000151 -0.000060 -0.000371 -0.000392 -0.000175 

se(��O� 0.000374 0.000414 4.430980 0.197671 0.118872 0.058461 

se(��O) 0.000459 0.000610 16.579174 0.739611 0.444768 0.218719 ��9 0.001781 0.001034 0.001254 0.001942 0.001822 0.000935 

se(��9� 0.000842 1.472320 6.927030 0.000815 0.000885 0.528293 

se(��9) 0.000777 5.508920 25.918526 0.000488 0.000872 1.976687 

13 

��O -0.000382 0.000206 -0.000465 -0.000381 0.000215 0.000224 

se(��O� 0.144754 0.000397 0.131895 0.121192 0.000415 0.000392 

se(��O) 0.541613 0.000580 0.493498 0.453450 0.000673 0.000563 ��9 0.001844 0.001714 0.001720 0.001910 0.001700 0.001813 

se(��9� 0.000896 0.000889 0.000875 0.000816 0.000888 0.000867 

se(��9) 0.001003 0.001046 0.000405 0.000392 0.001048 0.001028 

14 

��O -0.000383 0.000240 0.000201 0.000196 0.000214 -0.000512 

se(��O� 0.147136 0.000427 0.000341 0.000359 0.000366 0.138424 

se(��O) 0.550527 0.000748 0.000243 0.000359 0.000417 0.517930 ��9 0.001880 0.001836 0.001768 0.001726 0.001777 0.001917 

se(��9� 0.000843 0.000800 0.000837 0.000893 0.000862 0.000797 

se(��9) 0.000618 0.000353 0.000741 0.001130 0.001000 0.000020 

15 

��O 0.000226 0.000209 0.000211 -0.000384 -0.000367 -0.000376 

se(��O� 0.000412 0.000359 0.000352 0.097049 0.109707 0.740317 

se(��O) 0.000668 0.000372 0.000331 0.363113 0.410477 2.770011 ��9 0.001796 0.001795 0.001834 0.001903 0.001936 0.001913 

se(��9� 0.000818 0.000871 0.000784 0.000816 0.000834 0.000834 

se(��9) 0.000510 0.001060 0.000159 0.000362 0.000668 0.000612 
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Model 6 

λtime Parm 
λtmean 

10 11 12 13 14 15 

10 

��O 0.000388 0.001246 0.001236 0.000404 0.001249 0.001251 

se(��O� 0.000391 0.237680 2.236930 0.000364 0.157285 0.343927 

se(��O) 0.000419 0.788270 7.419057 0.000234 0.521620 1.140662 ��9 -0.000281 -0.000296 -0.000296 -0.000283 -0.000296 -0.000295 

se(��9� 0.001830 0.001977 0.001977 0.001792 0.001977 0.001977 

se(��9) 0.004000 0.004537 0.004537 0.003856 0.004536 0.004537 

11 

��O 0.000399 0.000384 0.000396 0.000383 0.000396 0.000350 

se(��O� 0.000366 0.000437 0.000371 0.000411 0.000371 0.000382 

se(��O) 0.000258 0.000658 0.000293 0.000531 0.000295 0.000359 ��9 -0.000267 -0.000267 -0.000267 -0.000265 -0.000268 -0.000401 

se(��9� 0.001795 0.001871 0.001803 0.001850 0.001803 0.001825 

se(��9) 0.003868 0.004154 0.003896 0.004076 0.003899 0.003976 

12 

��O 0.001247 0.001245 0.000399 0.001264 0.001236 0.000388 

se(��O� 0.077443 0.141010 0.000367 0.119366 0.162610 0.000456 

se(��O) 0.256774 0.467637 0.000259 0.395846 0.539279 0.000749 ��9 -0.000296 -0.000272 -0.000267 0.000197 -0.000296 -0.000267 

se(��9� 0.001977 0.001964 0.001796 0.648557 0.001977 0.001883 

se(��9) 0.004537 0.004486 0.003870 2.150891 0.004538 0.004198 

13 

��O 0.000384 0.000383 0.000383 0.000398 0.000383 0.000384 

se(��O� 0.000409 0.000425 0.000413 0.000369 0.000413 0.000399 

se(��O) 0.000520 0.000600 0.000539 0.000275 0.000541 0.000468 ��9 -0.000282 -0.000266 -0.000265 -0.000267 -0.000282 -0.000265 

se(��9� 0.001849 0.001862 0.001852 0.001799 0.001853 0.001838 

se(��9) 0.004073 0.004119 0.004082 0.003883 0.004087 0.004032 

14 

��O 0.000397 0.000386 0.000383 0.000383 0.001245 0.000383 

se(��O� 0.000369 0.000393 0.000419 0.000425 0.126867 0.000427 

se(��O) 0.000279 0.000433 0.000571 0.000600 0.420726 0.000610 ��9 -0.000266 -0.000264 -0.000282 -0.000266 -0.000296 -0.000266 

se(��9� 0.001800 0.001831 0.001858 0.001862 0.001978 0.001863 

se(��9) 0.003885 0.004003 0.004108 0.004120 0.004538 0.004125 

15 

��O 0.001252 0.001270 0.000388 0.000385 0.000383 0.000398 

se(��O� 0.835696 0.193174 0.000457 0.000398 0.000411 0.000368 

se(��O) 2.771682 0.640657 0.000750 0.000462 0.000530 0.000272 ��9 -0.000295 0.000233 -0.000268 -0.000265 -0.000265 -0.000267 

se(��9� 0.001977 0.495179 0.001884 0.001837 0.001850 0.001798 

se(��9) 0.004536 1.642157 0.004202 0.004027 0.004075 0.003880 



203 

 

APPENDIX B 

Tables of estimates from numbers of knots in smoothing functions 

 

Model 1 

ktime Parm 
ktmean 

5 6 7 8 9 10 

 
�� 0.000019 0.000011 -0.000087 -0.000078 -0.000083 0.000015 

21 se(��� 0.000353 0.000338 0.125928 0.371204 0.085468 0.000340 

 
se(��) 0.000655 0.000562 0.487711 1.437665 0.331008 0.000578 

 
�� -0.000021 0.000079 0.000083 0.000097 -0.000021 0.000088 

26 se(��� 0.818302 0.000327 0.000299 0.000299 0.167414 0.000302 

 
se(��) 3.169274 0.000503 0.000300 0.000315 0.648388 0.000334 

 
�� 0.000025 0.000012 0.000105 0.000115 0.000104 0.000023 

31 se(��� 0.125015 0.490935 0.000286 0.000291 0.000314 0.176241 

 
se(��) 0.484175 1.901381 0.000194 0.000252 0.000424 0.682576 

 
�� 0.000119 -0.000024 -0.000020 0.000126 0.000060 0.000123 

36 se(��� 0.000309 0.412745 3.396110 0.000354 0.128303 0.000287 

 
se(��) 0.000395 1.598556 13.153060 0.000666 0.496911 0.000202 

 
�� 0.000093 0.000076 0.000004 -0.000075 0.000119 0.000131 

41 se(��� 0.134636 0.386299 0.206967 0.123937 0.000328 0.000374 

 
se(��) 0.521436 1.496128 0.801577 0.480001 0.000517 0.000770 

 
�� 0.000123 0.000104 0.000117 0.000133 0.000116 0.000018 

46 se(��� 0.000339 0.000300 0.000304 0.000373 0.000330 0.111745 

 
se(��) 0.000584 0.000324 0.000362 0.000769 0.000529 0.432782 
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Model 2 

ktime Parm 
ktmean 

5 6 7 8 9 10 

21 

��O 0.000015 -0.000573 -0.000549 0.000067 0.000333 0.000330 

se(��O� 0.000367 0.066817 0.149416 0.000394 0.130682 0.176493 

se(��O) 0.000476 0.258765 0.578680 0.000611 0.506117 0.683545 ��9 -0.000069 -0.000088 -0.000088 -0.000206 -0.000043 -0.000040 

se(��9� 0.000405 0.000398 0.000400 0.135527 0.000382 0.000377 

se(��9) 0.000589 0.000540 0.000549 0.524879 0.000435 0.000402 ��Q 0.000119 0.000160 0.000127 -0.001905 -0.002165 -0.002169 

se(��Q� 0.000422 0.000317 0.000364 0.112373 0.080010 0.180094 

se(��Q) 0.000851 0.000219 0.000540 0.435200 0.309857 0.697492 

26 

��O 0.000106 0.000646 0.000135 0.000660 0.000088 0.000429 

se(��O� 0.000372 0.076514 0.000367 0.175791 0.000365 0.122638 

se(��O) 0.000518 0.296311 0.000456 0.680826 0.000478 0.474962 ��9 -0.000064 -0.000549 -0.000179 -0.000545 -0.000065 -0.000026 

se(��9� 0.000412 0.123011 0.219379 0.058361 0.000399 0.000379 

se(��9) 0.000631 0.476398 0.849642 0.225983 0.000572 0.000418 ��Q 0.000116 -0.001921 -0.001921 -0.001919 0.000164 -0.002182 

se(��Q� 0.000403 0.104139 0.117528 0.118494 0.000315 0.413553 

se(��Q) 0.000757 0.403309 0.455166 0.458907 0.000216 1.601680 

31 

��O 0.000172 0.000666 0.000675 0.000130 0.000152 0.000092 

se(��O� 0.000399 0.706279 0.196834 0.000350 0.000373 0.000346 

se(��O) 0.000649 2.735403 0.762327 0.000365 0.000498 0.000355 ��9 -0.000161 -0.000529 -0.000530 -0.000008 -0.000151 -0.000035 

se(��9� 0.105562 0.480065 0.133549 0.000364 0.075206 0.000367 

se(��9) 0.408819 1.859277 0.517211 0.000328 0.291245 0.000365 ��Q -0.001914 -0.001916 -0.001911 -0.001974 -0.001915 0.000144 

se(��Q� 0.229934 0.449746 0.063516 0.261647 0.201168 0.000332 

se(��Q) 0.890520 1.741852 0.245960 1.013351 0.779109 0.000362 

36 

��O 0.000775 0.000103 0.000711 0.000506 0.000164 0.000160 

se(��O� 0.116089 0.000370 0.425461 0.259217 0.000370 0.000364 

se(��O) 0.449596 0.000512 1.647799 1.003937 0.000489 0.000446 ��9 -0.001878 -0.000027 -0.000507 -0.000016 -0.001483 -0.000114 

se(��9� 0.099787 0.000367 0.331252 0.000373 0.110981 0.187078 

se(��9) 0.386451 0.000357 1.282922 0.000377 0.429815 0.724541 ��Q 0.000149 0.000152 -0.001896 -0.002140 0.000193 -0.001898 

se(��Q� 0.000471 0.000330 0.326809 0.079032 0.000326 0.209285 

se(��Q) 0.001051 0.000344 1.265721 0.306071 0.000280 0.810545 
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41 

��O 0.000123 0.000147 0.000113 0.000731 0.000149 0.000527 

se(��O� 0.000339 0.000371 0.000352 0.272296 0.000356 0.090195 

se(��O) 0.000318 0.000480 0.000403 1.054590 0.000389 0.349309 ��9 -0.000035 -0.000107 -0.000017 -0.000502 -0.000096 -0.000041 

se(��9� 0.000379 0.287598 0.000357 0.213788 0.057250 0.000411 

se(��9) 0.000442 1.113854 0.000279 0.827985 0.221691 0.000599 ��Q 0.000154 -0.001878 0.000135 -0.001871 -0.001877 -0.002106 

se(��Q� 0.000350 0.135982 0.000374 0.206086 0.189658 0.159508 

se(��Q) 0.000470 0.526641 0.000614 0.798159 0.734529 0.617761 

46 

��O 0.000681 0.000650 0.000167 0.000799 0.000142 0.000137 

se(��O� 0.403723 4.400490 0.000379 0.317198 0.000362 0.000355 

se(��O) 1.563608 17.043092 0.000540 1.228499 0.000451 0.000399 ��9 -0.000510 -0.000511 -0.000096 -0.001879 -0.000014 -0.000009 

se(��9� 0.323911 2.217000 0.125513 0.327453 0.000397 0.000377 

se(��9) 1.254492 8.586373 0.486095 1.268215 0.000537 0.000419 ��Q -0.001879 -0.001905 -0.001869 0.000184 -0.001896 -0.001895 

se(��Q� 0.157244 2.212080 0.119002 0.000372 0.175126 0.115730 

se(��Q) 0.608989 8.567339 0.460875 0.000562 0.678254 0.448210 
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Model 3 

ktime Parm 
ktmean 

5 6 7 8 9 10 

21 

��O 0.000114 0.000078 0.000079 0.000091 0.000118 0.000090 

se(��O� 0.082894 0.083943 0.081465 0.106514 0.082598 0.079446 

se(��O) 0.321039 0.325100 0.315502 0.412520 0.319891 0.307684 ��9 -0.000007 -0.000005 -0.000005 -0.000004 -0.000005 -0.000004 

se(��9� 0.081643 0.081650 0.081650 0.081654 0.081650 0.081652 

se(��9) 0.316201 0.316227 0.316227 0.316244 0.316229 0.316237 

26 

��O 0.000289 0.000192 0.000177 0.000277 0.000225 0.000254 

se(��O� 0.095123 0.079127 0.084949 0.074416 0.084485 0.081688 

se(��O) 0.368402 0.306446 0.328994 0.288201 0.327197 0.316365 ��9 -0.000004 -0.000005 -0.000006 -0.000004 -0.000004 -0.000004 

se(��9� 0.081641 0.081649 0.081651 0.081648 0.081650 0.081652 

se(��9) 0.316195 0.316226 0.316236 0.316220 0.316228 0.316237 

31 

��O 0.000262 0.000179 0.000196 0.000203 0.000232 0.000230 

se(��O� 0.082433 0.078968 0.088258 0.087620 0.083747 0.079721 

se(��O) 0.319252 0.305832 0.341813 0.339343 0.324342 0.308747 ��9 -0.000006 -0.000007 -0.000005 -0.000004 -0.000005 -0.000005 

se(��9� 0.081650 0.081649 0.081648 0.081650 0.081652 0.081651 

se(��9) 0.316228 0.316226 0.316223 0.316228 0.316236 0.316234 

36 

��O 0.000289 0.000192 0.000209 0.000277 0.000225 0.000254 

se(��O� 0.095123 0.079127 0.079955 0.074416 0.084485 0.081688 

se(��O) 0.368402 0.306446 0.309653 0.288201 0.327197 0.316365 ��9 -0.000004 -0.000005 -0.000004 -0.000004 -0.000004 -0.000004 

se(��9� 0.081641 0.081649 0.081651 0.081648 0.081650 0.081652 

se(��9) 0.316195 0.316226 0.316231 0.316220 0.316228 0.316237 

41 

��O 0.000314 0.000253 0.000221 0.000297 0.000238 0.000238 

se(��O� 0.082777 0.078146 0.103654 0.081360 0.082587 0.041331 

se(��O) 0.320584 0.302648 0.401441 0.315097 0.319847 0.160054 ��9 -0.000004 -0.000003 -0.000003 -0.000003 -0.000003 -0.000002 

se(��9� 0.081651 0.081647 0.081648 0.081650 0.081652 0.081607 

se(��9) 0.316233 0.316216 0.316221 0.316228 0.316236 0.316061 

46 

��O 0.000322 0.000215 0.000227 0.000233 0.000282 0.000235 

se(��O� 0.082036 0.063927 0.080571 0.081140 0.081961 0.084935 

se(��O) 0.317715 0.247577 0.312038 0.314244 0.317426 0.328942 ��9 -0.000003 -0.000003 -0.000002 -0.000002 -0.000003 -0.000002 

se(��9� 0.081649 0.081659 0.081650 0.081656 0.081651 0.081661 

se(��9) 0.316227 0.316263 0.316227 0.316251 0.316234 0.316270 
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Model 4 

ktime Parm 
ktmean 

5 6 7 8 9 10 

21 

��O 0.000054 0.000336 0.000029 0.000353 -0.000047 -0.000023 

se(��O� 0.000393 0.399171 0.000395 0.295355 0.167047 0.000445 

se(��O) 0.000346 1.439229 0.000347 1.064913 0.602286 0.000620 ��9 0.001190 0.001234 0.001324 0.001209 0.002271 0.002220 

se(��9� 0.000823 0.000829 0.000854 0.000826 0.095360 1.154620 

se(��9) 0.000641 0.000646 0.000887 0.000619 0.343764 4.163040 

26 

��O 0.000416 0.000399 0.000506 0.000153 0.000395 0.000145 

se(��O� 0.187388 0.096328 0.373232 0.000377 0.346531 0.000392 

se(��O) 0.675629 0.347301 1.345704 0.000228 1.249432 0.000342 ��9 0.001156 0.001175 0.001137 0.001137 0.001235 0.001160 

se(��9� 0.000834 0.000838 0.000833 0.000829 0.000866 0.000833 

se(��9) 0.000677 0.000708 0.000673 0.000676 0.000916 0.000708 

31 

��O 0.000053 0.000154 0.000163 0.000168 0.000142 0.000447 

se(��O� 0.000434 0.000434 0.000441 0.000428 0.000396 0.134948 

se(��O) 0.000580 0.000600 0.000638 0.000571 0.000379 0.486554 ��9 0.002015 0.001181 0.001224 0.001179 0.001218 0.001209 

se(��9� 0.167224 0.000828 0.000846 0.000835 0.000854 0.000856 

se(��9) 0.602905 0.000649 0.000795 0.000711 0.000865 0.000834 

36 

��O 0.000201 0.000467 0.000151 0.000161 0.000060 0.000163 

se(��O� 0.000446 0.121271 0.000373 0.000406 2.896330 0.000423 

se(��O) 0.000674 0.437239 0.000210 0.000447 10.442844 0.000545 ��9 0.001156 0.001168 0.001147 0.001163 0.002194 0.001230 

se(��9� 0.000837 0.000847 0.000837 0.000837 10.562100 0.000865 

se(��9) 0.000714 0.000763 0.000727 0.000725 38.081623 0.000934 

41 

��O 0.000158 -0.000071 0.000158 0.000473 0.000063 0.000064 

se(��O� 0.000404 0.103523 0.000396 0.131680 0.255017 0.062080 

se(��O) 0.000439 0.373244 0.000388 0.474769 0.919471 0.223808 ��9 0.001195 0.002340 0.001139 0.001208 0.002217 0.002217 

se(��9� 0.000867 0.122648 0.000841 0.000880 0.650972 0.129046 

se(��9) 0.000941 0.442165 0.000743 0.000987 2.347107 0.465236 

46 

��O 0.000208 0.000364 0.000168 0.000153 0.000175 0.000496 

se(��O� 0.000465 0.175408 0.000430 0.000382 0.000434 0.308258 

se(��O) 0.000771 0.632436 0.000583 0.000296 0.000607 1.111436 ��9 0.001184 0.001252 0.001174 0.001116 0.001122 0.001109 

se(��9� 0.000861 0.000852 0.000858 0.000843 0.000837 0.000841 

se(��9) 0.000890 0.000763 0.000867 0.000764 0.000706 0.000697 



208 

 

Model 5 

ktime Parm 
ktmean 

5 6 7 8 9 10 

21 

��O -0.000470 0.000143 0.000122 0.000025 0.000150 -0.000255 

se(��O� 0.089339 0.000424 0.000377 0.000371 0.000432 0.609019 

se(��O) 0.334263 0.000715 0.000461 0.000356 0.000758 2.278741 ��9 0.001985 0.001890 0.001817 0.000954 0.001886 0.000895 

se(��9� 0.000878 0.000836 0.000860 0.702301 0.000854 0.555564 

se(��9) 0.000773 0.000484 0.000722 2.627767 0.000660 2.078726 

26 

��O -0.000383 0.000226 -0.000097 0.000219 0.000250 -0.000391 

se(��O� 0.095490 0.000413 0.287002 0.000392 0.000434 0.104591 

se(��O) 0.357279 0.000667 1.073858 0.000560 0.000780 0.391332 ��9 0.001936 0.001809 0.001232 0.001837 0.001902 0.001977 

se(��9� 0.000885 0.000885 1.100490 0.000827 0.000798 0.000812 

se(��9) 0.000989 0.001065 4.117657 0.000611 0.000368 0.000348 

31 

��O 0.000223 -0.000379 0.000227 0.000206 0.000208 -0.000395 

se(��O� 0.000406 4.484990 0.000385 0.000353 0.000356 0.169782 

se(��O) 0.000635 16.781269 0.000531 0.000335 0.000353 0.635261 ��9 0.001798 0.001912 0.001855 0.001802 0.001795 0.001795 

se(��9� 0.000816 0.000819 0.000815 0.000803 0.000848 0.000906 

se(��9) 0.000522 0.000447 0.000650 0.000407 0.000879 0.000993 

36 

��O -0.000020 0.000202 0.000193 -0.000361 0.000188 0.000216 

se(��O� 0.066078 0.000391 0.000349 0.114272 0.000358 0.000415 

se(��O) 0.247221 0.000544 0.000294 0.427556 0.000348 0.000671 ��9 0.001371 0.001770 0.001766 0.001914 0.001745 0.001778 

se(��9� 0.187260 0.000858 0.000819 0.000870 0.000808 0.000844 

se(��9) 0.700649 0.000853 0.000526 0.000901 0.000203 0.000703 

41 

��O -0.000351 0.000223 -0.000126 0.000233 0.000227 0.000226 

se(��O� 0.119205 0.000402 7.243420 0.000421 0.000404 0.000436 

se(��O) 0.446016 0.000610 27.102546 0.000710 0.000622 0.000773 ��9 0.001984 0.001898 0.001176 0.001882 0.001907 0.001800 

se(��9� 0.000808 0.000788 0.152673 0.000848 0.000788 0.000906 

se(��9) 0.000318 0.000128 0.571232 0.000827 0.000185 0.001099 

46 

��O 0.000185 -0.000353 0.000235 0.000234 0.000199 -0.000352 

se(��O� 0.000349 0.185156 0.000434 0.000430 0.000383 0.080523 

se(��O) 0.000294 0.692786 0.000773 0.000757 0.000501 0.301276 ��9 0.001871 0.001986 0.001910 0.001913 0.001851 0.001973 

se(��9� 0.000816 0.000830 0.000839 0.000790 0.000854 0.000873 

se(��9) 0.000549 0.000436 0.000760 0.000180 0.000849 0.000790 
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Model 6 

ktime Parm 
ktmean 

5 6 7 8 9 10 

21 

��O 0.000371 0.001147 0.001155 0.000350 0.000343 0.000351 

se(��O� 0.000357 0.233861 2.586480 0.000363 0.000369 0.000359 

se(��O) 0.000205 0.775606 8.578397 0.000245 0.000295 0.000206 ��9 -0.000231 -0.000202 -0.000189 -0.000195 -0.000180 -0.000198 

se(��9� 0.001750 0.001922 0.001922 0.001743 0.001747 0.001730 

se(��9) 0.003699 0.004335 0.004333 0.003670 0.003684 0.003619 

26 

��O 0.001311 0.000449 0.000439 0.001307 0.000465 0.000482 

se(��O� 0.129040 0.000432 0.000361 0.080172 0.000365 0.000368 

se(��O) 0.427932 0.000652 0.000218 0.265830 0.000278 0.000314 ��9 -0.000496 -0.000444 -0.000402 -0.000495 -0.000439 -0.000459 

se(��9� 0.002023 0.001906 0.001800 0.002022 0.001830 0.001840 

se(��9) 0.004715 0.004294 0.003890 0.004713 0.004007 0.004049 

31 

��O 0.000445 0.000389 0.000388 0.001308 0.001313 0.001254 

se(��O� 0.000409 0.000456 0.000391 0.167843 0.073811 0.088550 

se(��O) 0.000561 0.000750 0.000419 0.556638 0.244725 0.293621 ��9 -0.000357 -0.000284 -0.000281 0.000365 0.000425 -0.000319 

se(��9� 0.001880 0.001892 0.001830 0.905552 1.103570 0.001991 

se(��9) 0.004198 0.004234 0.004000 3.003283 3.660055 0.004588 

36 

��O 0.000420 0.001254 0.000382 0.000425 0.000369 0.000364 

se(��O� 0.000382 0.128542 0.000361 0.000450 0.000391 0.000419 

se(��O) 0.000414 0.426282 0.000204 0.000748 0.000422 0.000570 ��9 -0.000263 -0.000230 -0.000181 -0.000288 -0.000191 -0.000191 

se(��9� 0.001842 0.001977 0.001776 0.001900 0.001826 0.001853 

se(��9) 0.004051 0.004537 0.003791 0.004267 0.003983 0.004083 

41 

��O 0.001317 0.001280 0.001255 0.000409 0.000362 0.000366 

se(��O� 0.175718 0.124692 0.123943 0.000373 0.000390 0.000454 

se(��O) 0.582759 0.413512 0.411027 0.000350 0.000412 0.000735 ��9 -0.000257 -0.000192 0.000452 -0.000218 -0.000152 -0.000161 

se(��9� 0.001983 0.001960 0.001138 0.001811 0.001805 0.001862 

se(��9) 0.004558 0.004469 0.000380 0.003927 0.003899 0.004114 

46 

��O 0.000391 0.000352 0.000358 0.000367 0.000356 0.001375 

se(��O� 0.000403 0.000445 0.000391 0.000380 0.000422 0.062549 

se(��O) 0.000525 0.000695 0.000413 0.000361 0.000586 0.207362 ��9 -0.000242 -0.000179 -0.000153 -0.000179 -0.000163 0.000276 

se(��9� 0.001852 0.001856 0.001807 0.001810 0.001842 1.390010 

se(��9) 0.004080 0.004088 0.003904 0.003916 0.004035 4.610087 
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APPENDIX C 

Smoothing functions of time and temperature from different starting values of smoothing 
parameters, where (a, b)=(λtime, λtmean). 

 
Model 1: Time 
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Model 2: Time 
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Model 3: Time 
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Model 4: Time 
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Model 5: Time 
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Model 6: Time 
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Model 1: Temperature 
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Model 2: Temperature 
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Model 3: Temperature 
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Model 4: Temperature 
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Model 5: Temperature 
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Model 6: Temperature 
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APPENDIX D 

Smoothing functions of time and temperature from different numbers of knots, where (a, 
b)=(ktime, ktmean). 

 
Model 1: Time 
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Model 2: Time 
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Model 3: Time 
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Model 4: Time 
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Model 5: Time 
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Model 6: Time 
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Model 1: Temperature 
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Model 2: Temperature 
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Model 3: Temperature 
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Model 4: Temperature 

 
 
 
 
  



232 

 

Model 5: Temperature 
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Model 6: Temperature 
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APPENDIX E 

Spatial function maps from different starting values of λspat. 
 

Model 1 
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Model 2 
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Model 3 
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Model 4 
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Model 5 

 
  

-3e-05 0 3e-05

λspat = 10

-0.07024 0 0.07925

λspat = 11

-1.1958 0 1.55277

λspat = 12

-1.70488 0 1.83113

λspat = 13

-1.20011 0 1.30169

λspat = 14

-0.88925 0 0.97239

λspat = 15



239 

 

Model 6 
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APPENDIX F 

Comparison plots of city-specific PM10 effects between the GGAMM and 2-stage Bayesian 
hierarchical model. 
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Model 2: PM10 
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Model 2: PM10-lag1 
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Model 2: PM10-lag2 
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Model 4: PM10 
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Model 4: NO2 
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Model 5: PM10 
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Model 5: O3 
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Model 6: PM10 
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Model 6: SO2 
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APPENDIX G 

Tables of parameter estimates for cardiovascular, pneumonia, and respiratory mortality in 
three age categories  

 
Cardiovascular mortality 

Age Model Variable ��  se(��) se(��) 
<65 Model 1 PM10 -0.000157 0.000370 0.000707 

 Model 4 PM10 -0.000276 0.000458 0.000740 

   NO2 0.000039 0.000799 0.000606 

 Model 5 PM10 -0.000266 0.000468 0.000929 

   O3 0.000892 0.000998 0.001801 

 Model 6 PM10 -0.000433 0.000352 0.000288 

   SO2 0.001292 0.001506 0.002752 

65−74 Model 1 PM10 0.000375 0.000310 0.000555 

 Model 4 PM10 0.000284 0.000374 0.000512 

   NO2 -0.000013 0.000984 0.002018 

 Model 5 PM10 0.000632 0.000403 0.000804 

   O3 0.000735 0.000903 0.001750 

 Model 6 PM10 -0.000061 0.000427 0.000787 

   SO2 0.001755 0.001157 0.001667 ≥75 Model 1 PM10 0.000472 0.000171 0.000237 

 Model 4 PM10 0.000480 0.000193 0.000042 

   NO2 0.000342 0.044061 0.158832 
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Pneumonia mortality 
Age Model Variable ��  se(��) se(��) 

<65 Model 1 PM10 0.001823 0.001091 0.001699 

 Model 2 PM10 0.000981 0.001250 0.001759 

   PM10-lag1 0.001484 0.001356 0.001702 

   PM10-lag2 -0.001443 0.001218 0.001180 

 Model 3 PM10 0.001659 0.001193 0.001652 

   CO  0.000069 0.104924 0.316837 

 Model 4 PM10 0.001144 0.001315 0.000847 

   NO2 0.002744 0.002886 0.002037 

 Model 5 PM10 0.001774 0.001205 0.001693 

   O3 -0.004638 0.002870 0.002997 

 Model 6 PM10 0.000382 0.001339 0.001394 

   SO2 0.005537 0.004722 0.006357 

65−74 Model 1 PM10 0.002004 0.001018 0.001283 

 Model 2 PM10 0.002957 0.001182 0.001600 

   PM10-lag1 -0.002252 0.001256 0.000827 

   PM10-lag2 0.001095 0.001306 0.002056 

 Model 3 PM10 0.001848 0.001108 0.000961 

   CO  0.000026 0.081491 0.315612 

 Model 4 PM10 0.001225 0.001336 0.001268 

   NO2 0.005534 0.002675 0.000887 

 Model 5 PM10 0.002619 0.001205 0.001667 

   O3 0.004249 0.002574 0.002219 

 Model 6 PM10 0.002614 0.001317 0.001543 

   SO2 -0.002958 0.004472 0.005302 ≥75 Model 1 PM10 0.0002662 0.000545 0.001013 

 Model 2 PM10 0.0007194 0.000530 0.000506 

   PM10-lag1 -0.001241 0.000800 0.001686 

   PM10-lag2 -0.000091 0.000743 0.001654 

 Model 4 PM10 0.000586 0.000590 0.000490 

   NO2 0.001298 0.001272 0.001085 

 Model 5 PM10 0.000603 0.000558 0.000567 

   O3 0.003231 0.001355 0.001287 

 Model 6 PM10 0.000664 0.000582 0.000652 

   SO2 -0.000427 0.002657 0.005582 
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Respiratory mortality 

Age Model Variable ��  se(��) se(��) 
<65 Model 1 PM10 0.002095 0.000703 0.000947 

 Model 2 PM10 0.001672 0.000802 0.000949 

   PM10-lag1 0.000818 0.000912 0.001130 

   PM10-lag2 -0.000177 0.000841 0.001019 

 Model 4 PM10 0.001797 0.001055 0.001566 

   NO2 0.000183 0.002081 0.002362 

 Model 5 PM10 0.002191 0.000828 0.001154 

   O3 -0.007584 0.002745 0.006312 

 Model 6 PM10 0.001886 0.000871 0.000837 

   SO2 -0.000951 0.003108 0.003716 

65−74 Model 1 PM10 0.000199 0.000630 0.000953 

 Model 2 PM10 -0.000009 0.000728 0.001030 

   PM10-lag1 0.000262 0.000728 0.000870 

   PM10-lag2 0.000405 0.000658 0.000806 

 Model 4 PM10 0.000329 0.000933 0.001670 

   NO2 0.002703 0.001603 0.001242 

 Model 5 PM10 0.000706 0.000779 0.001221 

   O3 0.000332 0.002128 0.004678 

 Model 6 PM10 0.000416 0.000736 0.000767 

   SO2 -0.000182 0.002840 0.004784 ≥75 Model 1 PM10 0.000133 0.000343 0.000311 

 Model 2 PM10 0.000184 0.000443 0.000654 

   PM10-lag1 -0.000317 0.000545 0.001060 

   PM10-lag2 0.000074 0.000412 0.000550 

 Model 4 PM10 0.000258 0.000462 0.000445 

   NO2 0.000703 0.000954 0.000670 

 Model 5 PM10 0.000155 0.000408 0.000360 

   O3 0.002087 0.000964 0.000760 

 Model 6 PM10 0.000397 0.000467 0.000564 

   SO2 -0.000082 0.001924 0.003835 
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APPENDIX H 

Smoothing function plots of time and temperature and spatial function map in extended 
applications 

Cardiovascular disease＜65 years old / Model: PM10 

 
 

Cardiovascular disease＜65 years old / Model: PM10+NO2 
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Cardiovascular disease＜65 years old / Model: PM10+O3 

  
 

Cardiovascular disease＜65 years old / Model: PM10+SO2 
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Cardiovascular disease 65−74 years old / Model: PM10 

  
 

Cardiovascular disease 65−74 years old / Model: PM10+NO2 
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Cardiovascular disease 65−74 years old / Model: PM10+O3 

  
 

Cardiovascular disease 65−74 years old / Model: PM10+SO2 
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Cardiovascular disease≥75 years old / Model: PM10 

  
 

Cardiovascular disease≥75 years old / Model: PM10+NO2 

  
  

Time

E
ff

ec
t 

of
 t

im
e

Time smoother

-0
.3

-0
.1

0.
1

0.
3

0 500 1000 1500

Temperature

E
ff

ec
t 

of
 t

em
pe

ra
tu

re

Temperature smoother

0.
0

0.
2

0.
4

0.
6

-20 0 20 40 60 80 100

-0.25003 0 0.38043

Chicago

Cincinnati

Cleveland

Colorado Springs

Detroit

El Paso
Huntsville

Las Vegas
Lexington

Minneapolis/St. Paul

Nashville

Pittsburgh

Salt Lake City

Seattle Spokane

Time

E
ff

ec
t 

of
 t

im
e

Time smoother

-0
.3

-0
.1

0.
1

0.
3

0 500 1000 1500

Temperature

E
ff

ec
t 

of
 t

em
pe

ra
tu

re

Temperature smoother

0.
0

0.
2

0.
4

0.
6

-20 0 20 40 60 80 100

-0.10284 0 0.13763

Chicago

Cincinnati

Cleveland

Colorado Springs

Detroit

El Paso
Huntsville

Las Vegas
Lexington

Minneapolis/St. Paul

Nashville

Pittsburgh

Salt Lake City

Seattle Spokane



258 

 

Pneumonia＜65 years old / Model: PM10 

  
 

Pneumonia＜65 years old / Model: PM10+lag 
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Pneumonia＜65 years old / Model: PM10+CO 

  
 

Pneumonia＜65 years old / Model: PM10+NO2 
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Pneumonia＜65 years old / Model: PM10+O3 

  
 

Pneumonia＜65 years old / Model: PM10+SO2 
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Pneumonia 65−74 years old / Model: PM10 

  
 

Pneumonia 65−74 years old / Model: PM10+lag 
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Pneumonia 65−74 years old / Model: PM10+CO 

  
 

Pneumonia 65−74 years old / Model: PM10+NO2 
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Pneumonia 65−74 years old / Model: PM10+O3 

  
 

Pneumonia 65−74 years old / Model: PM10+SO2 
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Pneumonia≥75 years old / Model: PM10 

  
 

Pneumonia≥75 years old / Model: PM10+lag 
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Pneumonia≥75 years old / Model: PM10+NO2 

  
 

Pneumonia≥75 years old / Model: PM10+O3 
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Pneumonia≥75 years old / Model: PM10+SO2 

  
 

Respiratory disease＜65 years old / Model: PM10 
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Respiratory disease＜65 years old / Model: PM10+lag 

  
 

Respiratory disease＜65 years old / Model: PM10+NO2 
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Respiratory disease＜65 years old / Model: PM10+O3 

  
 

Respiratory disease＜65 years old / Model: PM10+SO2 
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Respiratory disease 65−74 years old / Model: PM10 

  
 

Respiratory disease 65−74 years old / Model: PM10+lag 
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Respiratory disease 65−74 years old / Model: PM10+NO2 

  
 

Respiratory disease 65−74 years old / Model: PM10+O3 
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Respiratory disease 65−74 years old / Model: PM10+SO2 

  
 

Respiratory disease≥75 years old / Model: PM10 
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Respiratory disease≥75 years old / Model: PM10+lag 
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Respiratory disease≥75 years old / Model: PM10+O3 

  
 

Respiratory disease≥75 years old / Model: PM10+SO2 
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