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ABSTRACT 

QIAN ZHANG: Development and Characterization of Mouse Models of Human 
Glioblastoma 

(Under the direction of Terry A. Van Dyke) 
 

Glioblastoma multiforme (GBM) is a very challenging disease clinically because of lacking 

effective treatments. Accurate and accessible preclinical models of GBM are required to both 

understand these diseases and facilitate development of diagnostic tests and therapies. 

Recently, genetic mutations in human gliomas are better understood and techniques to 

generate genetically engineered mice (GEM) are more sophisticated, which makes it possible 

to mimic those mutations in the mouse in an accurate way. Here, we developed mouse 

models of human GBM by simulating most common genetic mutations in human GBMs, 

including abnormal RTK-Ras signal, Rb pathway, and Pten locus. In the beginning, the 

model was manipulated so that the mutation (K-RasG12D) was transferred to astrocytes using 

an hGFAP-Cre allele, which resulted in primary GBMs. This model is valuable for 

understanding the role of K-Ras overactivation in primary GBM’s formation and cell-of-

origin. However, developmental phenotypes other than GBM in this model restrict its further 

uses in mechanistic studies and combinations with other mutations. In subsequent models, we 

modified the strategy and generated an inducible system, in which genetic changes can be 

spatially and temporally induced in adult astrocytes, thus avoiding developmental defects. 

Induction is elicited by activation of CreERtam, expressed from the human GFAP promoter, 

after intraperitoneal 4OH-tamoxifen injection. With high penetrance and reproducible timing, 
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 the combination of all three events induces tumors that possess all common histological 

features of human GBM, including brain invasion, high mitotic indexes, angiogenesis, and 

necrosis. Furthermore, analysis of event combinations provides insight into disease etiology. 

For example, without Pten inactivation, pRb inactivation and K-Ras activation predispose to 

high-grade astrocytic tumors that lack the necrotic phenotype characteristic of GBM. Neither 

activation of K-Ras nor inactivation of Pten alone produces detectable pathology, and thus 

are involved in tumor progression. In contrast, inactivation of pRb function initiates disease 

that does not progress to high-grade tumors. Because of their inducibility, high-penetrance 

and molecular and histological similarity to human high-grade astrocytomas, these models 

are extremely promising for both further mechanistic analyses and for preclinical studies, 

including the validation of potential drug targets and diagnostic and therapeutic development.  
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CHAPTER ONE 

 INTRODUCTION 

 
Brain tumors greatly impact the quality of human life as the central nervous system (CNS) 

plays a fundamental role in the control of human behavior.  In the CNS, two major cell types 

are neurons and glial cells, the latter including astrocytes and oligodendrocytes. Neurons and 

glial cells are very different despite the fact that they develop from the same neural stem cells 

in early development. Neurons play a central role in controlling the sense, reaction, cognition 

and other human activities, while glial cells function as supporting roles for neurons. The 

majority of primary brain tumors in the adult are derived from glial cells. Astrocytoma 

develops from astrocytes and oligodendrocytoma develops from oligodendrocytes; and all of 

them are called gliomas. Malignant glioma is a very challenging cancer clinically.  Although 

not as prevalent as breast cancer and prostate cancer, the lethality of this cancer is among the 

highest. New cancer therapies have been developed due to breakthroughs in cancer biology 

and other science technologies in recent years, and many types of cancers can now be treated 

with a greatly increased rate of survival. However, this is not the case for malignant gliomas, 

for which the situation has not changed in decades. To understand this unique tumor 

mechanism and develop meaningful therapies for this disease, preclinical models are 

necessary.      
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1.1 Features of Gliomas 

       The most common gliomas are astrocytomas, including the most advanced form, 

glioblastoma multiforme (GBM). Astrocytomas account for 75% of human gliomas 

(CBTRUS, 2006). According to the WHO grading system, astrocytomas are divided into four 

grades according to the histopathology of tumor.  

1.1.1 Grade I astrocytoma 

       Pilocytic astrocytoma, or grade I astrocytoma, is the most common brain tumor in 

children and young adults. It accounts for about 5.7% of all gliomas (CBTRUS, 2006). This 

tumor is found in the cerebellum, optic nerve, chiasm and the hypothalamus. Classic 

pilocytic astrocytomas have the structures of cystic cavity and mural nodule. Typical 

histological features of pilocytic astrocytoma are bipolar cells with Rosenthal fibers that are 

immuno-reactive to GFAP (glial fibrillary acidic protein) and loose multi-polar cells with 

microcysts and granular bodies that stain poorly with GFAP. GFAP is a component of the 

astrocytic intermediate filament that is used as a marker for mature astrocytes. In the normal 

brain, the proliferation rate is nearly 0%. Pilocytic astrocytoma is a slow-growing tumor with 

a low rate (<1%) of mitosis, and no necrosis. This type of tumor is well circumscribed, is 

usually not infiltrative and has no tendency to be malignant (Kleihues and Cavenee, 2000). 

Genetically, pilocytic astrocytoma is associated with neurofibromatosis type 1(NF1), 

especially optic pathway gliomas (Listernick et al., 1999). It is always curable using surgery 

with or without radiation therapy and 80% of patients survive more than 20 years after 

diagnosis.  
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1.1.2 Grade II Astrocytoma 

       Diffusive astrocytoma, also referring to low-grade diffuse astrocytoma of adults, is grade 

II astrocytoma that accounts for 1.7% of human gliomas (CBTRUS, 2006). Diffusive 

astrocytoma can occur in any region of the brain, but the most common locations are the 

frontal and temporal lobes. Less often, it may be found in the brain stem and the spinal cord. 

This type of astrocytoma rarely affects the cerebellum. Diffusive astrocytoma has moderate 

cellularity and sometimes cells with atypical nuclei are found. Tumor cells are in a loosely 

structured background and infiltrate the surrounding tissues (Kleihues and Cavenee, 

2000;Maher et al., 2001).  

       Astrocytoma at this stage is well differentiated demonstrated by the fact that most cells 

are immuno-reactive to GFAP and S100 (an acidic protein widely used as a glial marker), 

though the latter is not related to the diagnosis (Kleihues and Cavenee, 2000).  Nestin, which 

is an intermediate filament protein and a marker for neural precursors, is usually not detected 

at this stage (Kleihues and Cavenee, 2000). Diffusive astrocytoma grows slowly with a 

mitotic rate of about 2.5%, and is detected by Ki67/MIB-1 (proteins expressed in the 

proliferating cells) immuno-histochemistry (IHC) labeling (Kleihues and Cavenee, 2000). A 

mutation in p53 is one of the most frequent genetic changes at this stage and occurs in about 

75% of diffusive astrocytomas (Watanabe et al., 1997). Other mutations include 

overexpression of PDGFRα  (platelet-derived growth factor receptor alpha) (Hermanson et 

al., 1992), LOH (loss of heterozygosity) of 10p (on chromosome 10) (Ichimura et al., 1998), 

LOH of 22q (Huang et al., 1996) and loss of chromosome 6 (Miyakawa et al., 2000). 

Surgical resection and radiotherapy are treatments for diffusive astrocytomas, but these 

tumors tend to recur because the tumor cells can’t be removed completely.          



 4

1.1.3 Grade III astrocytoma 

       Anaplastic astrocytoma (AA) is a grade III astrocytoma in the WHO grading system, and 

accounts for 7.9% of human gliomas (CBTRUS, 2006). Anaplastic astrocytoma always 

develops from low-grade astrocytoma, so the location of these tumors is correspondent to 

those of grade II astrocytomas with a preference for the cerebral hemispheres. The significant 

features of anaplastic astrocytoma are nuclear atypia, high mitotic activity, and higher 

cellularity than diffusive astrocytoma. The mitosis rate is about 5-10% according to 

Ki67/MIB-1 IHC labeling. Another histological feature is the presence of secondary 

structures of Scherer: peri-nuclear and peri-vascular satellitosis that was discovered by 

Scherer in 1938 (Kleihues and Cavenee, 2000;Maher et al., 2001).   

       Although the majority of anaplastic astrocytoma cells are GFAP positive, lack of GFAP 

expression is observed in some cells. At the same time, nestin expression in some tumor cells 

is more common at this stage reflecting the dedifferentiated status of the cells. The most 

frequent genetic change at this stage is p53 mutation with an incidence of more than 90% 

(Watanabe et al., 1997). Other mutations include p16INK4a (a cell cycle regulator) deletion, 

RB (retinoblastoma) alterations, p14ARF (a cell cycle regulator) deletion, CDK4 (cyclin-

dependent kinase 4) amplification, Pten (phosphatase and tensin homolog deleted on 

chromosome ten) mutation and LOH of 10q on chromosome 10. Standard treatments for 

anaplastic astrocytoma are surgery plus radiation therapy, or surgery plus radiation therapy 

and chemotherapy. However, the cure rate is very low for anaplastic astrocytoma, which has 

the tendency to progress to the highly malignant glioblastoma. The average length of survival 

after diagnosis is approximately 2 years. 



 5

1.1.4 Grade IV astrocytoma          

       Grade IV astrocytoma is also called glioblastoma or glioblastoma multiforme (GBM), 

which accounts for 50.7% of human gliomas (CBTRUS, 2006). As indicated by the name, 

GBM is highly heterogeneous, with many different cell components (astrocytes, 

oligodendrocytes, spindle cells and others) and diversified cell morphologies (poorly 

differentiated, fusiform, round or pleomorphic cells). Two common variants of GBM are 

gliosarcoma and giant cell glioblastoma. The majority of GBM cells are nestin immuno-

reactive but expression of GFAP is always found in a subset of tumor cells. GBMs occur 

frequently in the sub-cortical white matter of the cerebral hemispheres with a preference in 

the temporal, parietal, frontal and occipital lobes. Tumors are most often located in the 

temporal-frontal lobe and rarely in the cerebellum or brain stem. Due to the invasive 

properties of GBM, it can infiltrate the other hemisphere and subsequently form certain 

pattern like a butterfly (Kleihues and Cavenee, 2000). Angiogenesis and necrosis are two 

hallmark features of human GBMs (Maheret al., 2001), which are not observed in the lower 

grades of astrocytomas. Other key histological features include highly anaplastic glial cells 

and a high level of mitosis. Although necrosis is a hallmark feature of GBM, apoptosis is not 

always found (Tachibana et al., 1996).  

       Glioblastomas can develop from lower grade astrocytoma after many years or de novo 

with a clinical history shorter than 3 months (Kleihues and Ohgaki, 1997). These are called 

secondary GBM (mean age=45) and primary GBM (mean age=62) respectively (Ohgaki et 

al., 2004). Although they are indistinguishable histologically, primary GBM and secondary 

GBM harbor different genetic changes. In primary GBM, frequent mutations include LOH of 

10p/10q, EGFR (epidermal growth factor receptor) amplification/overexpression, MDM2 
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(transformed 3T3 cell double minute 2; p53-binding protein) overexpression, Pten mutation 

and p16INK4a deletion. In secondary GBM, common mutations include p53 mutations, PDGF-

A (platelet-derived growth factor)/PDGFR-α overexpression, Rb alteration and LOH 10q. 

GBMs are usually not curable using standard treatments such as surgery, radiotherapy and 

chemotherapy. The prognosis for GBM patients is very poor and the median survival is 9-12 

months (Reilly and Jacks, 2001;de Bruin et al., 2003).  

1.2 Genetics of gliomas      

1.2.1. Mutations in the cell cycle machinery 

1.2.1.1 Rb pathway: p16INK4a-CDK4-pRb 

       Rb (Retinoblastoma) is a major regulator of the G1 to S transition in the cell cycle. In 

quiescent cells, Rb protein binds to E2F transcription factor and eliminates its ability to 

transcriptionally activate multiple genes that facilitate DNA synthesis in cell proliferation 

(Roussel, 1999). The Rb protein activity is controlled by two components in the Rb pathway, 

p16INK4a and CDK4. CDK4 acts directly and p16INK4 acts indirectly. Upon binding to cyclin 

D1, CDK4 phosphorylates the Rb protein and releases it from the E2F transcription complex, 

thus promoting cell proliferation. CDK4 is counter- controlled by p16INK4a, which binds to 

CDK4 and inhibits the functional CDK4-cyclin D1 complex, resulting cell cycle arrest (Sherr 

and Roberts, 1999) (Fig 1).       

       p16INK4a--CDK4--Rb is a linear pathway, so mutations in any step disrupt its function. 

Alterations of Rb, including deletion of the Rb locus and methylation of the Rb promoter, 

result in loss of Rb protein expression (Henson et al., 1994;Ichimura et al., 1996;Ueki et al., 

1996;Nakamura et al., 2001b).  Rb gene promoter methylation is more frequent in secondary 

glioblastoma than in primary glioblastoma, with incidences of 43% and 14% respectively 
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(Nakamura et al., 2001b).  This mutation could possibly be a late event in glioblastoma 

progression, since it is not found in low-grade astrocytoma. Second, amplification of CDK4 

is found in 11-15% of glioblastomas. Third, homozygous deletion of the p16INK4a gene occurs 

in 33%-68% of human GBM and is more frequent in primary than in secondary GBM 

(Henson et al., 1994;Ueki et al., 1996). Interestingly, those mutations are mutually exclusive. 

In total, approximately 70-80% of human gliomas harbor mutations of components in the Rb 

pathway. 

1.2.1.2. p53 pathway: p16Arf-MDM2-p53 

       p53, also known as the guardian of genome, is an important tumor suppressor gene.  

Loss-of-function mutations of p53 are common in a wide spectrum of human cancers, 

including astrocytoma (Levine et al., 1991). p53 is a major regulator of the cellular response 

to stress such as DNA damage, viral onco-protein expression or hypoxia (Levine, 1997). 

Under stress conditions, stabilized p53 causes cell cycle arrest in the G1-S and G2-S 

transitions or apoptosis if the damage is not corrected (Levine, 1997;Hansen and Oren, 

1997;Bates and Vousden, 1996). Thus, inhibition of p53 function leads to uncontrolled cell 

growth and genomic instability. MDM2 is a negative regulator of p53, which makes it a pro-

oncogene. In normal situations, MDM2 inhibits the transcriptional function of p53 by 

escorting p53 to the cytoplasm and inducing the ubiquitin-mediated degradation of p53 

protein. p14Arf (human homolog of mouse p16Arf) facilitates p53’s function by inhibiting 

MDM2, thus stabilizing the p53 protein (Harris and Levine, 2005) (also see Fig1).  

       All three members of the p14Arf-MDM2-p53 pathway are frequently mutated in 

glioblastomas. p53 mutations are usually found in secondary glioblastomas  at a greater than 

65% incidence, but are rarely found in primary glioblastomas (Kleihues and Cavenee, 2000). 
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Also, according to biopsy studies, mutations in this pathway seem to occur in the early stages 

of secondary GBMs, such as low-grade astrocytomas or anaplastic astrocytomas (Ohgaki et 

al., 2004;Watanabe et al., 1996;Watanabe et al., 1997). Most mutations of p53 occur at the 

hotspot codons 248 and 273 in secondary GBM (Kleihues and Cavenee, 2000). In addition, 

low expression levels of p53 protein are found in low-grade gliomas due to the methylation 

of the p53 promoter region (Amatya et al., 2005). Loss of p14ARF expression, due to either 

gene deletion or promoter methylation occurs in about 76% of gliomas with no bias toward 

either of the two types of GBM (Nakamura et al., 2001a). MDM2 

amplification/overexpression occurs in about 50% of primary glioblastomas and is not 

frequent in the secondary glioblastomas (Reifenberger et al., 1993;Ghimenti et al., 

2003;Biernat et al., 1997). MDM2 and p53 mutations are mutually exclusive, suggesting an 

alternative or compensate mechanism to inactivate p53 pathway.  

1.2.2. RTKs: EGFR and PDGFR 

       Receptor tyrosine kinases (RTKs) regulate important cell behaviors including cell 

growth, differentiation and survival. When they receive signals from the extracellular 

ligands, RTKs are self-phosphorylated at the tyrosine sites, which in turn activate multiple 

downstream signal cascades leading to changes in cell activities. Two common RTKs 

mutated in human gliomas are EGFR and PDGFR.      

       EGFR mutations are hallmark genetic changes in glioblastoma, mainly in primary GBMs 

and rarely in secondary GBMs. The mutations of EGFR include EGFR amplification and 

overexpression, both of which generate high levels of EGFR protein (Wong AJ et al., 

1987;Chaffanet et al., 1992). Amplification of EGFR is always accompanied by the 

alterations in the EGFR gene structure. Approximately 20-50% of EGFR amplifications have 
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a deletion in exons 2-7 producing a truncated extracellular domain variant of EGFR, called 

EGFRvIII.  EGFRvIII is constitutively active at threshold levels because of two reasons: 

first, it is lack of a ligand-binding domain and in an activated status; second, its activity can’t 

be down-regulated (Huang et al., 1997). EGFR amplification occurs in about 40% and EGFR 

overexpression occurs in about 60% of primary glioblastomas.  

       Abnormal PDGF signal is always found in low-grade astrocytomas and secondary 

GBMs. Both PDGFR ligand and receptor overexpression are increased in human 

astrocytomas, suggesting stimulation of the ligand-receptor loop by autocrine or paracine 

factors (Nister et al., 1988). PDGFR has two isoforms: PDGFR-α and PDGFR-β and two 

ligands: PDGF-A and PDGF-B. PDGF-A and PDGFR-α overexpression is found about 60% 

of low-grade astrocytomas and amplification of PDGFR-α is found in about 16% of 

glioblastomas (Kleihues and Ohgaki, 1999). It has been noted that expression of PDGFR-β in 

GBMs is related to the proliferation of endothelial cells inside tumors (Plate et al., 

1992;Hatva et al., 1995).  

       Both EGFR and PDGFR signals play important roles in glial development, which may 

provide clues as to why they are involved in the tumorigenesis of glioblastoma. The function 

of EGFR in glial development is complex, but the basic fact is that EGF-EGFR signaling is 

related to the development/differentiation of astrocytes (Burrows et al., 1997;Weickert and 

Blum, 1995). In addition, EGFR contributes to maintenance of the neural stem cell 

compartment that resides in the ventricular/subventricular zone, in aspects of proliferation 

(Fricker-Gates et al., 2000), differentiation and migration (Doetsch et al., 2002). In contrast, 

PDGF-PDGFR signaling is related to oligodendrocyte development, since PDGFR-α level is 

decreased when glial progenitors differentiate into oligodentrocytes (Calver et al., 1998). 
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Figure 1. Important molecular pathways in human glioblastoma. 

A. Gene mutations in cell cycle control pathways are frequent in human GBMs. The Ink4a 

locus encodes two genes, p16INK and p14ARF that inhibit the Rb and p53 pathways 

respectively. Both pathways are involved in cell cycle arrest. Rb controls the G1 to S 

transition in the cell cycle by binding to E2F. This activity is negatively regulated by CDK4, 

which phosphorylates the Rb protein. Hyperphosphorylated Rb releases E2F, which in turn 

transcriptionally activates the DNA replication machinery thus allowing the cell cycle to 

progress. In the lower arm, p53 regulates cell cycle arrest in both the G1 and G2 phase; it 

also induces apoptosis when cells are exposed to stress such as encountering genomic 

instability. p53 activity is inhibited by MDM2, which escorts p53 to the cytoplasm and 

induces p53 degradation mediated by ubiquitin.  

B. Gene mutations in the signal transduction pathway are frequent in human glioblastoma. 

RTKs including EGFR and PDGFR are frequently mutated in GBMs. Two main downstream 

pathways are Ras and PI3K. Ras promotes cell proliferation by signaling through the p-ERK 

mitogenic pathway; Ras also sends signals to the cell survival pathway via the PI3K-Akt 

pathway. PI3K phosphorylates PIP2 to make PIP3 due to its kinase activity, which is 

antagonized by Pten. Pten is a tumor suppressor gene that is frequently inactivated in GBMs. 

The Akt pathway, signaling through mTOR and others, is implicated in apoptosis and cell 

proliferation. 

 In this figure, oncogenes are represented by ovals and tumor suppressor genes are 

represented by rectangles. 
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1.2.3. LOH on Chromosome 10 and Pten mutations 

       The most frequent genetic change in glioblastoma is the loss of heterozygosity (LOH) on 

chromosome 10, which occurs in approximately 60-80% of human GBMs (Ohgaki, 2005). 

LOH on chromosome 10 is the only identified mutation with a similar frequency in primary 

and secondary glioblastomas, suggesting its contribution to the common features of both 

GBMs. LOH mutations on chromosome 10 are loss of entire chromosome 10, or deletion of 

10p14-p15, 10q23-24 or 10q25-pter (Karlbom et al., 1993;Rasheed et al., 1995). Deletions on 

chromosome 10 are more severe in primary glioblastomas than in secondary glioblastomas: 

primary GBMs are associated with LOH of the entire chromosome 10; while deletion is 

restricted to 10q in secondary GBMs (Fujisawa et al., 2000).  LOH on chromosome 10 is a 

later event in GBM progression since it is not usually found in the lower grades of 

astrocytoma. LOH on chromosome 10, which could be concurrent with other genetic 

changes, is the only genetic change relating to the shorter survival time of human patients 

(Ohgaki et al., 2004). The mechanism causing LOH on chromosome 10 is not yet clear. 

       Multiple deletion loci on chromosome 10 indicate that several tumor suppressor genes 

are involved in the GBM progression (Ichimura et al., 1998).  The candidate genes at these 

loci (Fujisawa et al., 2000) include Pten at 10q23.3 (Li and Sun, 1997;Steck et al., 1997;Li et 

al., 1997), LGI1 at 10q24 (Chernova et al., 1998), BuB3 at 10q24-26 (Cahill et al., 1999), 

MXI1 at 10q25.1 (Eagle et al., 1995;Wechsler et al., 1997), Hours-neu at 10q25.1 (Nakamura 

et al., 1998), DMBT1 at 10q26.1 (Mollenhauer et al., 1997) and KLF6 at 10p15-15 (Jeng and 

Hsu, 2003). Among those genes, Pten garners the most attention, and significant progress in 

understanding its function has been made in recent years.  About 15-40% of human GBMs 

harbor Pten mutations, suggesting that Pten is involved in GBM progression (Knobbe et al., 
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2002). The mutations of Pten include nonsense mutations, truncated mutations due to stop 

codons resulting from nuclear acid insertion or deletion, missense mutations, in frame 

deletions, splicing mutations and point mutations in the 5’ UTR (Ohgaki et al., 2004).  

       Pten is a tumor suppresser gene, the alternative name of which is MMAC1 (mutated in 

multiple advanced cancers) or TEP1 (tensin-like phosphatase) (Li et al., 1997;Steck et al., 

1997;Li and Sun, 1997). Pten was first cloned in 1997 due to the fact that LOH on the loci 

close to 10q23 are highly frequent in the multiple advanced cancers, including glioblastoma 

and others cancers such as prostate carcinomas (Steck et al., 1997;Li et al., 1997). Functional 

studies of Pten showed that Pten is a lipid phosphatase. The most established activity of Pten 

is to remove a phosphate from PIP3, a molecular messenger signaling to Akt (protein kinase 

B; downstream of PI3-kinase) pathway, thus antagonizing the function of PI3K 

(phosphoinositide-3 kinase) (see Fig1). Once Akt is activated, it can regulate several 

important cell activities, including apoptosis, as well as cell cycle control, cell 

migration/invasion, cell growth, angiogenesis and glucose metabolism (Altomare and Testa, 

2005). The functions of Pten in glioblastoma are strongly related to the PI3K/Akt pathway. 

By resisting the activity of PI3K/Akt, Pten inhibits G1 cell-cycle progression dependent on 

pRb’s controlling of the cell cycle. The anti-apoptosis function of Pten is dependent on Akt 

and Pten mutations may be related to the hypoxia in GBMs, which in turn activates HIF1 

(hypoxia-inducible factor-1) and then VEGF (vascular endothelial growth factor) resulting in 

angiogenesis. All of those are also related to the PI3K/Akt pathway (Xiao et al., 

2002;Knobbe et al., 2002).  
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1.3. Ras pathway in gliomas 

       Ras protein is a 21kD small molecule, which functions as a molecular switch, occupying 

a central position in the networks of cell signaling. Ras pathways regulate multiple cell 

activities involving proliferation, differentiation, apoptosis, cell migration and angiogenesis. 

Ras protein is recycled between an active form, RasGTP when bound to GTP, and an 

inactive form, RasGDP when bound to GDP, which makes it an on-off switch in the control 

of signal pathways. The conversion of an inactive RasGDP to an active RasGTP is facilitated 

by GEF (guanine nucleotide exchange factor). Conversely, the conversion of an active 

RasGTP to an inactive RasGDP is facilitated by GAP (GTPase activating proteins). GAP 

catalyzes the GTPase function of Ras protein, and is a negative regulator of Ras, thus it is a 

potential tumor suppressor gene, such as NF1 (neurofibromin 1). Loss of NF1 is found in 

several related tumors, typically neurofibroma and optical nerve astrocytoma (Listernick et 

al., 1999).   

       The direct involvement of Ras in tumorigenesis is demonstrated by the fact that Ras 

mutations occur in about 30% of human cancers. Ras mutations are found in 90% of 

pancreatic cancers and 50% of colon cancers as well as significant percentages in many other 

tumors. Ras genes are sarcoma viral oncogene homologs, including K-Ras homolog to 

Kirsten sarcoma virus, H-Ras homolog to Harvery sarcoma virus and N-Ras isolated from 

neurobalstoma (Chang et al., 1982;Shimizu et al., 1983;Hall et al., 1983). Among them, K-

Ras is mutated most frequently in human cancers (Bos, 1989). At the same time, K-Ras also 

plays an important role in embryonic development as shown by the observation that 

homozygous deletion of K-Ras is embryonic lethal (Koera et al., 1997). Mutations in Ras 

usually occur at amino acids 12, 13 and 61. These mutations disable the GTPase function of 
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Ras, resulting in a constitutively activated Ras since it is locked as an active from of 

RasGTP.   

       Ras is also involved in tumorigenesis indirectly. Although mutation of Ras proteins are 

usually not observed in human gliomas, increased levels of activated Ras are common in 

malignant astrocytoma (grade III and grade IV astrocytomas) associated with abnormal 

upstream RTK signals (Tuzi et al., 1991;Guha et al., 1997;Knobbe et al., 2004). Several lines 

of evidence indicate that Ras is related to the advanced stage of GBM progression: first, an 

increased level of RasGTP is associated with EGFR and PDGFR in high grade astrocytoma 

(Guha et al., 1997); secondly, mouse models with Ras mutations developed GBM-like 

morphology (Reilly et al., 2000;Holland et al., 2000;Ding et al., 2001;Zhu et al., 2005). One 

of the most studied downstream events of the activated Ras pathway is the mitogenic 

pathway, which signals through the Raf-MEK-ERK and leads to cell proliferation (Pruitt and 

Der, 2001). Another significant downstream event of the Ras pathway is the PI3K-Akt 

pathway which contributes to cell survival (Rodriguez-Viciana et al., 1994;Rodriguez-

Viciana et al., 1997). In addition, the Ras pathway also contributes to angiogenesis by up-

regulating VEGF that possibly signals through the PI3K pathway (Arbiser et al., 1997) or 

EGFR (Casanova et al., 2002).  
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Figure 2. Summary of genetic pathways and cell-of-origin in the evolution of primary 

and secondary glioblastomas.  

Glioblastomas (GBMs) either develop from low-grade astrocytomas (secondary 

glioblastomas), or develop de novo (primary glioblastomas). Although these two types of 

GBM are indistinguishable histologically, they harbor different genetic mutations. This 

figure illustrates a step-wise progression of related genetic changes, either over-expression of 

pro-oncogenes or loss-of-function mutations of tumor suppressor genes. In the early stage of 

secondary GBMs, p53 and PDGFR signals are frequently mutated, which is rare in primary 

GBMs. In contrast, EGFR and MDM2 mutations are common in primary GBMs but not in 

secondary GBMs. LOH on chromosome 10 is a common mutation in both GBMs. On the 

other hand, Pten mutation is more frequent in primary GBMs and Rb alteration is more 

frequent in secondary GBMs. It is possible that GBMs develop either from mature astrocytes 

or from neural precursors.  
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1.4. Astrocytoma Mouse models 

       Animal models of human gliomas have been used for mechanism studies and therapy 

tests for many years. The earlier glioma models were generated either by chemical mutagen 

treatment (Swenberg et al., 1971), or by transplantation of glioma cells from established cell 

lines, originally obtained from human or rodent tumors, into an immuno-deficient mouse or 

rat. This is called a xenograft or allograft (Shapiro et al., 1979;Kobayashi et al., 1980). Most 

preclinical tests have been done using those conventional models. However, there are some 

drawbacks with these models. For example, the particular genetic mutations are unclear in 

those models, which could restrict their use in the emerging new therapies targeting 

molecular pathways. Also, in the xenograft or allograft models, tumors do not elicit an 

immune reaction from the host and tumor morphologies differ from human cases. The 

discrepancies between animal models and human disease limit the translation of test results 

to clinical applications using those models.  

       Recently, the knowledge of the genetic mutations found in human gliomas is increasing 

and the techniques to generate genetically engineered mice (GEM) are more sophisticated, 

which makes it possible to mimic those mutations in the mouse in a very accurate way. 

Several mouse models of human astrocytoma have been generated by manipulating genetic 

changes using different approaches, as summarized in table 1.  

       All of these models were generated by mimicking the most common genetic changes in 

human cases including mutations in cell cycle control pathway and signal transduction 

pathway: inactivation of Rbf by T121 (first 121 amino acids of SV40 large T antigen) which 

resulted in grade III astrocytoma (Xiao et al., 2002); loss of p53 function by p53 gene 

deletion together with Nf1 deletion resulted in grade II-IV astrocytoma (Reilly et al., 
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2000;Zhu et al., 2005); overexpression of mutant H-Ras resulted in grade II-III astrocytoma 

or GBM-like lesion depending on dose (Ding et al., 2001); over expression of v-src 

(oncogene of Rous sarcoma virus), resembling the abnormal EGFR/PDGFR signal, resulted 

in grade II-IV astrocytoma with a very low penetrance (Weissenberger et al., 1997). It seems 

that the most efficient way to model grade IV astrocytoma (GBM) is to introduce mutations 

in both the cell cycle control pathway and the signal transduction pathway at the same time. 

Interestingly, combined mutations from both pathways always result in GBM phenotype, like 

p53/Nf1 and Ink4a-Arf -/-/K-Ras. This suggests that multiple genetic mutations from both 

pathways and their cooperation could be critical for GBM formation. 

       Another consideration in the generation of mouse models is that what cells are suitable 

targets for genetic mutation. Currently, there are two theories about the cell-of-origin in 

glioblastoma formation (Figure2). First, based on the fact that secondary glioblastoma can 

evolve from grade II or grade III astrocytoma, during which tumor cells lose GFAP 

expression but gain nestin expression gradually, it is possible that mature astrocytes are the 

original targets for tumorigenesis. GFAP promoter was used broadly in current astrocytoma 

mouse models to target genetic mutations to mature astrocytes, such as transgenic mutant H-

Ras, T121 and v-src models (Weissenberger et al., 1997;Ding et al., 2001;Xiao et al., 2002). In 

those models, there was nestin expression in the tumor cells, suggesting astrocytes may 

undergo de-differentiation when transformed. However, the GFAP promoter also regulates 

gene expression in neural stem cells in the early developmental stage, which makes results 

using these models inconclusive. Second, most GBM cells are positive for nestin and do not 

necessarily develop from low-grade astrocytoma, such as primary GBM. It is hypothesized 

that GBMs can arise from neural precursors, which differentiate into astrocytes as well as 
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oligodentrocytes, of which the latter is present in some GBMs. GBM models have been 

generated successfully by targeting mutations to Nestin positive neural precursor cells, 

supporting the idea that these precursors are the cell-of-origin. For example, transduction of 

viruses carrying K-Ras and Akt oncogenes to nestin expressing cells leads to GBM formation 

(Holland et al., 2000).  

       Overall, mouse models help us understand the mechanism of glioma genesis and 

progression both on the molecular level and the cellular level, which is difficult to achieve by 

following human cases. In addition, mouse models can speed up therapy testing by offering 

testable systems for certain drugs. However, GEM models have not been widely used in 

preclinical testing, and one of the reasons could be that drawbacks of the current mouse 

models limit further application in therapeutic uses.   
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Table 1. Astrocytoma mouse models. 

Targeted 
mutation
s 

Targeted 
cells 

Tumor 
developed 

Phenotype Reference 

v-src         Astrocyte 
(GFAP+) 

Grade II, III 
IV (GBM) 
astrocytoma 

14.4% penetrance; 
developmental phenotype such 
as retarded growth, cerebellar 
ataxia and hydrocephalus 

Weissenbe
rger J, 
1997 
oncogene 

Nf1+/-

+p53+/- 
in cis 

All cells Grade II, III 
and IV 
(GBM) 
astrocytoma 

Severity and penetrance is 
background strain dependent 

Reilly KM, 
2000 Nat 
Genet 

K-
Ras+Akt 

Progenitor 
(nestin+) 

Glioblastoma 
multiforme 
 (WHO IV) 

Mutations were introduced in 
P1; GBM developed when 
targeting to Nestin expressing 
cells, but not GFAP expressing 
cells; ~25% penetrance 

Holland 
EC, 2000 
nature 
genetics 

V12Ha-
Ras           

Astrocyte 
(GFAP+) 

Grade II, III 
astrocytomaa
t low 
dose;GBM at 
high dose 

Developmental defects; Severity 
of phenotype is dose dependent; 
GBM only in mouse with high 
dose of Ras, which died early 
and can’t be germline 
transmitted;  

Ding H, 
2001 
cancer res 

T121 
(inactivat
ed Rbf) 

Astrocyte 
(GFAP+) 

Grade III 
astrocytoma 

Diffusive anaplastic astrocytoma 
with 100% penetrance; Pten, but 
not p53 contribute to tumor 
progression; developmental 
defects 

Xiao A, 
2002 
cancer cell 

Ink4a-
Arf -/- 
+K-Ras 
with or 
without 
Akt 

Astrocytes 
(GFAP+) 
or 
progenitor 
(nestin+) 

Glioblastoma 
multiforme 
 (WHO IV) 

Mutations were introduced in 
P1; GBM developed both from 
GFAP and nestin expressing 
cells 

Uhrbom L, 
2002 
cancer res 

Nf1+/-

+p53+/- 
All cells Glioblastoma 

multiforme 
 (WHO IV) 

GBM with neuronal 
differentiation; neural precursors 
suspected to be origin of 
tumorigenesis 

Zhu Y, 
2005 
Cancer cell
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1.5. Test of potential therapies on genetically-engineered mouse models          

       Conventional therapy choices for human malignant gliomas include surgical resection, 

radiotherapy and chemotherapy. However, those treatments don’t favor the improvement of 

prognosis for patients. Thus, researchers have been motivated to explore new therapies for 

this disease. In the last few years, the knowledge of molecular aberrations in human gliomas 

has advanced rapidly. Accordingly, recent interest in novel therapy development is mainly 

focused on targeted molecular therapy. This also is a trend with other solid tumors, which 

may allow for a personalized approach to which is based on the individual’s specific tumor 

mutations.   

       Therefore, reliable GEM models are essential for testing targeted molecular therapies. 

GEM models mimic certain genetic changes in human cases, which make every model 

specific to a certain targeted molecular therapy. Second, GEM models have similar histology 

to human cases, thus the results are more comparable with results of trials possibly being 

more reproducible in humans. Third, GEM models generate a consistent phenotype, which 

will help assess the outcome of various therapies. 

       Current targeted molecular therapies include small molecular inhibitors, gene therapy 

and immunotherapy.  

1.5.1. Molecular inhibitors 

       EGFR as a target for cancer treatment has attracted a lot of attention in recent years. 

High levels of EGFR have been found in multiple cancers, including non-small-cell lung 

cancer (NSCLC), breast, colorectal, head and neck, prostate, and renal cancers, and primary 

GBM. Gefitinib (ZD 1839, Iressa) and Erlotinib (OSI-774, Tarceva) are two drug inhibitors 

of EGFR, which have generated promising results in clinical trials. The FDA has approved 
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Gefitinib for NSCLC treatment due to significant clinical responses in a subset of patients 

(Fukuoka et al., 2003;Kris et al., 2003;Pao and Miller, 2005). In malignant gliomas and 

GBMs, Gefitinib and Erlotinib are used in several ongoing phase I and II clinical trials 

(Raizer, 2005). In general, only small subsets of patients are responsive to Gefitinib or 

Erlotinib monotherapy (Rich et al., 2004;Mellinghoff et al., 2005).  

       However, it is possible that combined therapy using EGFR inhibitors in conjunction with 

other inhibitors, radiotherapy and/or chemotherapy will improve patient outcome.  For 

example, several pieces of evidence suggest that inhibition of both EGFR and the Akt 

pathway inhibits the growth of gliomas (Mellinghoff et al., 2005;Goudar et al., 2005).  

       Another RTK target is PDGFR, which is frequently mutated in secondary GBM. The 

PDGFR inhibitor used in current clinical trials is Imatinib mesylate (ST157, Gleevec), which 

has been proven effective in GBM cell lines (Kilic et al., 2000). Results from the phase II 

study indicated that Imatinib mesylate has limited clinical benefit (Kesari et al., 2005) and  

increases the risk of intratumoral hemorrhage (Wen and Kesari, 2004;Reardon et al., 2005). 

Although PDGFR doesn’t get as much attention as EGFR, this target is possibly as important 

as EGFR. That is because PDGFR and EGFR have similar pathways in GBMs and their 

mutations in GBMs are mutually exclusive (Kleihues and Cavenee, 2000). Thus, if inhibition 

of RTKs is critical for treatment, then PDGFR inhibitors are needed in the patients with 

PDGFR but not EGFR mutations.  

       Other than the RTKs themselves, downstream signals of the RTK pathway can also be 

targeted for drug tests and one of those generating interest is mTOR (the mammalian target 

of rapamycin). mTOR expression is mediated by the RTK-PI3K-Akt pathway, and regulates 

protein synthesis  (Burnett et al., 1998). Several inhibitors of mTOR have been used in 
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clinical trials and result in modest benefits (Kesari et al., 2005). In one study using a mouse 

model, treatment with the mTOR inhibitor CCI-779 resulted in apoptosis in a subset of tumor 

cells (Hu et al., 2005). All of these results suggest the potential use of mTOR inhibitors on 

patients with cancers involving RTK-PI3K-Akt pathway. Inhibitors are available for multiple 

points in the RTK-FT-Ras-raf-mek-Erk pathway. Some of them are already in clinical trials, 

such as FT (farnesyl transferase) and Raf inhibitors. Inhibitors for Ras and Mek are available, 

but they have not been evaluated in humans. The inhibitors targeting the RTK/VEGFR 

pathways, together with protein degradation and histone deacetylase are summarized in 

Figure 3.  

1.5.2 Gene therapy  

       In addition to using small molecular inhibitors, gene therapy is another attractive 

treatment that has been tested in malignant gliomas for many years. In this strategy, a gene 

carried by a virus is delivered to the brain either by stereotactic intratumoral injection or 

intraoperative injection into the tumor cavity. The most commonly used viruses are 

adenovirus and retrovirus.  Compared with retrovirus, which affects proliferating cells only, 

adenovirus transduces both proliferating and quiescent cells, thus offering higher 

transduction efficiency. The strategies used in gene therapy include: delivery of suicide genes 

to kill the tumor cells; delivery of tumor suppressor genes; delivery of a gene to promote 

apoptosis or an anti-angiogenesis gene; delivery of a rapid replicating virus vector to 

compete for DNA consumption in the proliferating tumor cells; delivery of drugs to tumor 

cells using high-affinity ligands; delivery of a gene to enhance the immune response; and 

delivery of antisense oligonuleotides (Pulkkanen and Yla-Herttuala, 2005). Gene therapy has 

proved safe and effective with very good outcomes in a small portion of patients (Wen and 
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Kesari, 2004). However, the low transduction efficiency of virus limits its further uses. Based 

on the fact that neural stem cells are responsive to and migrate into glioma areas, it is 

suggested that using neural stem cell-guided gene therapy could be one of the ways to 

increase the efficiency of gene therapy (Kanzawa et al., 2003). 

1.5.3 Immunotherapy 

       Immunotherapy is a relatively less well-developed therapy that introduces a monoclonal 

antibody to the tumor. The targeted antigen is usually specific to or highly expressed in 

tumors. Most often, the antibody can be radio- labeled or conjugated to a toxin that helps 

damage the tumor cells. For example, Tenascin, an extracellular matrix glycoprotein, 

monoclonal antibody is labeled with 131I and used in clinical trials to delay tumor growth in 

malignant gliomas patients (Cokgor et al., 2000). Alternatively, the antibody itself is used to 

disrupt the function of the targeted antigen, which needs to be in the cell surface, such as the 

monoclonal antibody to EGFR (Yang et al., 1999). Using vaccination strategies is another 

intriguing option in immunotherapy (Yang et al., 2003). 
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Figure 3. Summary of targeted molecular inhibitor therapy in malignant gliomas.  

Multiple molecules can be targets for drug tests, as indicated by arrows in the genetic 

pathways of human gliomas. Those molecules are in pathways mainly related to signal 

transduction. At the upstream end of the pathway, EGFR, PDGFR and VEGFR are some of 

the most interesting targets involving both inhibitor and antibody tests in clinical trials. Two 

main pathways downstream of growth factor receptors are Ras-Raf-Mek-Erk and PI3K-Akt-

mTOR; the latter is also counter controlled by PTEN. To disable the Ras pathway, an 

inhibitor to farnesyl transferase is used, which interrupts the activation of Ras from receptor 

tyrosine kinase, or an inhibitor to downstream raf. To disable the Akt pathway, an inhibitor 

of mTOR downstream of Akt is used. Other inhibitors are related to the regulation of cell 

activity at the broader level of protein degradation and gene expression, such as inhibitors to 

proteasome and HDAC (histone deacetylase).  
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CHAPTER TWO 

ROLES OF K-Ras IN THE ETIOLOGY OF GLIOBLASTOMA: 

PART 1 (TUMORIGENESIS) 

 
EGFR, which activates the Ras-ERK pathway in high-grade gliomas, is frequently amplified 

or overexpressed in glioblastoma multiforme (GBM), especially in primary GBM. To 

generate a mouse model simulating this change in human GBMs, we transferred a 

constitutively activated K-Ras mutant allele (K-RasG12D) at its endogenous expression level 

to astrocytic lineage cells by introducing a GFAP-Cre allele to floxed stop floxed K-RasG12D 

knock-in mice. As a result, some mutant mice (8.3%) developed brain tumors resembling 

human primary GBMs, in a location adjacent to rostral SVZ (sub ventricular zone). These 

results indicate that mutant K-Ras at its physiological level, possibly targeting precursor 

populations in the SVZ (described in Chapter 3), was sufficient to initiate de novo 

glioblastoma formation. Brain tumor formation was accelerated in mice with a p53+/- 

background, in which the remaining p53 allele was lost (LOH). However, those tumors had 

characteristics of primitive neuroectodermal tumors (PNET), and had both glial and neuronal 

differentiation with almost no necrosis.  
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Introduction 

       Gliomas, including astrocytoma and the less common oligodendroglioma, are the most 

common malignant primary brain tumors in humans (Kleihues and Cavenee, 2000). Grade IV 

gliomas, also known as glioblastoma multiforme (GBM), account for about 50% of gliomas 

and usually occur in adults after middle age (CBTRUS, 2006). The prognosis for GBM 

patients is very poor because GBM is highly malignant and incurable by currently available 

treatments. Thus, we are interested in generating mouse models of GBM to promote better 

understanding of this disease and to pave the way for new therapeutic tests. 

       Our lab has generated a grade III astrocytoma mouse model by using transgenic T121, a 

truncated large T antigen of SV40, which disrupts Rb pathway by inhibiting Rb as well as its 

family members p107/130 (Xiao et al., 2002).  However, since grade III astrocytoma doesn’t 

progress to GBM, we were interested in determining what secondary mutation(s) is required 

for the transition to highly malignant GBM. The Ras-ERK pathway is one of the most 

interesting candidates, since the activation of this pathway was not detected in this model, 

despite the fact it was frequently up- regulated in human GBM (Guha et al., 1997). 

Moreover, the Ras-ERK pathway is related to the later stage of gliomas, since it was found 

up-regulated in high-grade gliomas, (Guha et al., 1997) and mutations in Ras are always 

associated with the GBM phenotype in mouse models (Ding et al., 2001; Holland et al., 

2000). Before testing if Ras contributes to the tumor progression in our TgT121 model, we 

first examined the role of Ras alone in astrocytoma formation.         

       In a previous astrocytoma mouse model, H-Ras overexpression predisposed astrocytes to 

different grades of astrocytoma, in a dose-dependent fashion (Ding et al., 2001): higher levels 

of transgenic mutant H-Ras elicited GBM formation while lower levels leaded to grade II/III 
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astrocytoma. This suggests that the dose of oncogene could affect the role of this gene in 

tumorigenesis, such that overexpression of the oncogene, especially in the case of multiple 

copies of transgene, doesn’t reflect the real situation found in humans. To avoid or minimize 

this artificial effect, we used a K-RasG12D knock-in mouse, in which a stop element flanked 

with loxP sites is in front of the mutant gene (Jackson et al, 2001). The K-RasG12D mice were 

crossed to a GFAP-Cre (glial fibrillary acidic protein) mouse line. Upon Cre expression in 

astrocytes, the stop element was removed, and then K-RasG12D was expressed under the 

control of its endogenous promoter. Thus, K-RasG12D was introduced at its physiological 

level to the astrocytic lineage cells, including astrocytes, neurons and neural precursors. This 

chapter focuses on the tumorigenesis caused by this mutant K-Ras allele. The specific cell 

types susceptible to tumorigenesis will be stated in Chapter 3.  

 

Results 

Introduction of an endogenous level of K-RasG12D to astrocytic cells 

       To generate an astrocytoma mouse model simulating an abnormal Ras pathway in 

humans, we used a conditional loxP-stop-LoxP K-RasG12D knock-in mouse (Jackson et al., 

2001) (Fig. 4A). In the conditional K-RasG12D knock-in mouse, a mutation was introduced in 

the exon 1 of the K-Ras gene, which changed the twelfth amino acid, from Gly to Asp. As a 

result, the function of GTPase was disabled in the K-RasG12D protein and made it a dominant 

positive mutant. However, the K-RasG12D gene is only expressed upon Cre mediated 

recombination of the stop element that is flanked by LoxP sites upstream of this gene. To 

restrict K-RasG12D expression in astrocytes, we introduced Cre specifically to astrocytes by 

using a GFAP-Cre transgenic mouse line (Zhuo et al., 2001) (Fig. 4A). In this line, Cre 
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expression is under the control of a 2.2kb human glial fibrillary acidic protein (hGFAP) 

promoter, which is turned on in mature astrocytes. However, unexpectedly, recent studies 

show that the hGFAP promoter is also expressed in stem cells (radial glial cells) in 

development (Zhuo et al., 2001). Using a Rosa/26 reporter mouse line (Dr. McCarthy; 

Soriano, 1999), we have shown that the reporter protein is expressed as early as E12.5 in the 

telencephalon, medulla and spinal cord (Fig4B). These structures contain stem cells, which 

develop into both astrocytic and neuronal populations in adults.  

       To confirm deletion of the stop element in adult astrocytes and neurons, we used the 

Rosa/26 reporter to do β-gal immunohistochemistry (IHC) staining in the adult brain cortex, 

which turned out to be positive (Fig4C). β-gal is a protein expressed in the reporter mouse 

when loxP sites were recombined. Since the Rosa/26 reporter mouse can’t express β-gal in 

astrocytes, the positive cells were mainly neurons (Casper and McCarthy, 2006). To test if 

deletion occurred in astrocytes, we did IHC staining for Cre, which was driven by the GFAP 

promoter in adult astrocytes, and confirmed that it was expressed (Fig 4C).  

       Therefore, in our mouse model, the endogenous K-Ras promoter controls the expression 

of mutant K-RasG12D allele in GFAP expressed/expressing cells, including mature astrocytes 

and neurons. In addition, K-RasG12D can potentially be expressed in adult neural stem cells in 

the sub ventricular zone (SVZ), as it is known now that those cells express GFAP protein 

(data from reporter line not shown here; Doetsch et al., 1999). 

Glioblastoma in the front brain  

       K-Ras+/G12D;GFAP-Cre+/- mice developed both a brain and a skin phenotype (latter not 

described here). The majority of K-Ras+/G12D;GFAP-Cre+/- mice were sacrificed due to the 

presence of skin tumors (data not shown), but some  mice died from hydrocephalus at a 
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Figure 4. Targeting K-RasG12D to astrocytic lineage cells at its physiological expression 

level.  

A: Schematic drawing of gene constructs for the K-RasG12D knock-in mouse and the GFAP-

Cre transgenic line. The upper panel is a diagram of the K-RasG12D mutant fragment. In 

Exon1, a mutation resulting in the change of amino acids from G to D at the 12th residue is 

introduced. A stop element flanked with LoxP sites is upstream of Exon1 so that the mutant 

protein cannot be produced until Cre recombinase is introduced. In the knock-in mouse, K-

RasG12D expression is under the control of the K-Ras endogenous promoter. The lower panel 

shows the construct used to generate the transgenic Cre line. Cre expression is under the 

control of a 2.2kb human GFAP (glial fibrillary acidic protein) promoter (Zhuo et al., 2001). 

B: A Rosa26 reporter mouse strain (B6; 129S4-Gt(ROSA) 26Sortm1Sor) was used to test 

efficiency of deletion of the stop element. In this reporter line, positive lacZ staining (blue) 

will indicate that loxP sites were recombined. The upper panel shows 12.5 day embryos with 

the genotype of RosaStop+/m;K-Ras+/G12D;GFAP-Cre+/-. The lower panel shows a negative 

control (without RosaStopm). LacZ staining shows that deletion began as early as embryonic 

day 12.5 and occurred mainly in the telencephalon, medulla and spinal cord. C: Cre and β-

Gal (Beta-galactosidase) IHC (immunohistochemistry) staining confirmed that embryonic 

deletion of LoxP sites resulted in the removal of the stop element in both glial and neuronal 

populations in the adult. The upper panel shows the cortex area in a RosaStop+/m;K-

Ras+/G12D;GFAP-Cre+/- brain. The lower panel shows negative controls from RosaStop+/m;K-

Ras+/G12D;GFAP-Cre-/- mice. The left panel shows β-Gal staining and the right panel shows 

Cre staining. Positive staining is brown and the counter stain is blue. Scale bar in each image 

in C is 20µm.  
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young age and the remaining mice died from brain tumors or seizure at about 7 months of 

age. In 8.3% of the K-Ras+/G12D;GFAP-Cre+/- mice older than 5.5 months (Table 3, Fig. 8),  

solid brain tumors developed in 5.5-8 months in the junction between the olfactory bulb and 

the sub ventricular zone (SVZ) (Fig. 5A), or in the hypothalamus/thalamus (data not shown). 

The brain tumors were very aggressive; the volume of the tumor dramatically increased in 

one week. The brain tumor had features resembling human glioblastoma, such as 

pseudopallisading necrosis and angiogenesis (Fig. 5; Table 3). One of the solid brain tumors 

that developed in this system was similar to gliosarcoma, a subtype of human glioblastoma 

multiforme (Kleihues and Cavenee, 2000). Most of these tumor cells appeared to have a 

spindle and fibrosarcoma-like morphology, and in addition, some cells were immuno-

reactive to GFAP indicating an astrocytic origin. 

       IHC staining of p-ERK, a downstream signal of Ras, was positive in the majority of 

tumor cells, indicating that the Ras-ERK pathway was activated, thus providing evidence of 

K-RasG12D expression as an oncogenic event related to tumorigenesis (Fig. 6A). In those 

tumors, cells were heterogeneous and only a sub-set of them were immuno reactive to GFAP 

as indicated by IHC staining (Fig 6B, 6C), which is similar to human GBMs. Furthermore, 

pseudopallisading cells surrounding a necrotic center were intensely stained by GFAP IHC 

(data not shown), which also resembles human GBMs. 95% of human GBMs are immuno-

reactive to nestin protein, a marker for neural precursors. By performing nestin IHC staining 

we found that almost all tumor cells were positive for this marker of precursor cells. This 

also indicated that the tumor cells were in a stage of de-differentiation or un-differentiation. 

IHC staining of synaptophysin, a marker for neuronal differentiation was negative in those 
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tumors (Fig. 7D; table 3), confirming that they were glioblastomas. In conclusion, all of the 

evidence here strongly suggests that these tumors can be categorized as glioblastomas. 

Glioblastomas developed in this model are possibly primary GBMs  

       As discussed in the introduction, glioblastoma multiforme can develop from low-grade 

astrocytoma after 5-10 years latency (secondary GBM), or can develop de novo, (primary 

GBM). These two types of GBM are indistinguishable in tumor histology, and the only 

difference is diagnosis history. In our mouse model, the brains of 9 mice sacrificed at 

terminal stage (7 months), were analyzed. The brain abnormalities included an expanded 

population in the SVZ precursor cell niche, an expanded corpus callosum and a smaller 

hippocampus (Table 2). However, no neoplastic lesions were observed (Fig 11). The 

abnormal areas were well organized, suggesting a developmental defect rather than a 

tumorigenic effect. Since no low-grade gliomas were identified, GBMs developed in this 

model were similar to human primary GBMs. Interestingly, this is the first spontaneously 

arising mouse model of primary GBM, in which the tumors developed without the early 

detection of neoplastic lesions indicative of lower grade gliomas.  
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Figure 5. Tumors developed in the frontal brain of adult mice 

Solid brain tumors arose in K-RasG12D;GFAP-Cre mice (A). Tumors usually developed in the 

junction between the front brain and the olfactory bulb as shown by arrows. B is a normal 

brain control. H&E sections show the tumor at low magnification (C). Staining shows 

abundant angiogenesis and necrosis. The olfactory bulb morphology was normal. 

Representative images of necrosis and angiogenesis from H&E sections are shown in D and 

E. Arrows point to necrosis and vessels. The pseudopallisading appearance of cells around 

the necrosis center is noticeable. 

Scale bar in C is 500µm and scale bar in D and E is 50µm. 

Abbreviations: T-tumor; O-olfactory bulb; C-cortex. 
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Figure 6. Characterization of brain tumors in K-RasG12D;GFAP-Cre mice 

p-ERK IHC staining indicates that the K-Ras/ERK pathway was activated in K-

RasG12D;GFAP-Cre tumors (A and B). Positive staining is brown and counter staining is in 

blue.  

GFAP staining indicates that the tumors contained an astrocytic population (C and D). 

Positive GFAP staining is blue and counter staining is red.  

Nestin staining indicates that tumors contained a dedifferentiated or undifferentiated neural 

precursor population (E and F). Positive staining is brown and counter staining is blue. 

Images in the right panel are magnifications from the boxed areas in images in the left 

panels.  Arrows point to the cells with positive staining. Scale bar in A, C and E is 500um 

and scale bar in B, D and F is 50um. 
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Table 2. Abnormalities in mice more than 5 mon old. 
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p53 deficiency contributed to the acceleration of tumorigenesis, but  changed  the tumor 

classification from GBM  to PNET 

       Loss of function mutations of p53 are a common event in human secondary 

glioblastoma. Although p53 itself is rarely mutated in primary glioblastoma, its antagonist 

MDM2, which tags p53 protein for degradation, is amplified in more than 50% of primary 

GBMs. Thus, we asked if p53 deficiency contributed to the progression of tumorigenesis in 

this mouse model. We generated K-Ras+/G12D;GFAP-Cre+/-;p53+/- mice by doing triple 

crosses. As shown by the survival curve in Fig. 8A, tumorigenesis was greatly accelerated in 

the p53+/- background. At the same time, the frequency of tumors is much higher in the p53+/- 

background (Table 3). Similar to K-Ras+/G12D;GFAP-Cre+/- tumors, tumors on a K-

Ras+/G12D;GFAP-Cre+/-;p53+/- background were highly vascular (Fig. 7A, 7B) and a portion of 

the tumor cells showed astrocytic differentiation (Table2). Tumors in K-Ras+/G12D;GFAP-

Cre+/- mice with p53 wild type were different than tumor cells in mice with a p53+/- 

background. The cells from mice with p53+/- looked primitive and undifferentiated as shown 

in Fig 7A. IHC staining of neural cell markers showed that the tumors contain both astrocytic 

and neuronal cells (Fig. 7E, F and Table 3), suggesting that they are primitive 

neuroectodermal tumors (PNETs) instead of GBMs. Consistent with human GBM and 

PNET, necrotic centers were abundant in the tumors of K-Ras+/G12D;GFAP-Cre+/- mice, but 

hardly seen in the tumors of K-Ras+/G12D;GFAP-Cre+/-;p53+/- mice (Fig. 8B). These results 

indicate that a lack of p53 did contribute to the tumorigenesis; however, p53 changes the 

differentiation of tumor cells, which converts the tumor from GBM to PNET. Interestingly, 

tumor cells were more heterogeneous in the p53+/- background mice. Sometimes the size of 

tumor cells was increased with abnormal nuclear (Fig 7C) indicating of giant cell 
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glioblastoma, suggesting that a deficiency of p53 may contribute to such a phenotype in 

human GBM. 

p53 loss in tumors in p53+/- background 

       Although tumorigenesis was accelerated in mice with a p53+/- background, it is not clear 

whether p53 protein is functional in tumors due to the existence of a wild type allele of p53. 

To test this, we examined if p53 was expressed in tumors by performing p53 IHC staining in 

tumors with p53+/+ and p53+/- backgrounds (Fig. 9A, 9B). We found that p53 was not 

expressed in tumors with a p53+/- background indicating that the tumor suppressor functions 

of p53 were abrogated. In contrast, p53 was expressed throughout the whole GBM tumor in 

Kras+/G12D;GFAP-Cre+/- mice. Interestingly, especially higher level of p53 protein expression 

were observed in pseudopallisading cells surrounding the necrotic center compared to other 

region. Correlation of increased p53 expression and the necrotic center suggests the possible 

involvement of p53 in necrotic genesis. This may explain the absence of necrosis in tumors 

with p53+/- background.  

       To test if lack of p53 expression in PNET is caused by loss of the remaining wild- type 

allele of the p53 gene, we performed PCR analysis of the wild type and knockout alleles of 

p53 from samples extracted from either the tumor area or surrounding normal brain tissue. 

As shown in Fig. 9C, there was barely detectable p53 wild type allele in the tumor area, 

whereas p53 was present in the normal tissue. This result suggests that loss of heterozygosity 

(LOH) of p53 occurred in tumor cells and these were selectively expanded in PNET tumors.  
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Figure 7. Characterization of tumors in mice with a p53+/- background. 

H&E sections from multiple tumors in K-Ras+/G12D;GFAP-Cre+/-;p53+/- mice were analyzed 

(A-C). In a portion of the tumors, cells were round with a dense nucleus and not much 

cytoplasm, suggesting that the cells are primitive (A). In some tumors, cells were around fine 

vessels (B), similar to a structure called a rosette, which is usually seen in human PNET. 

Multinucleated giant cells were observed in some tumors (C).   

Synaptophysin IHC staining showed neuronal differentiation in K-Ras+/G12D;GFAP-Cre+/-

;p53+/- tumors (E), but not K-Ras+/G12D;GFAP-Cre+/- (D). Positive staining is brown. Counter 

staining is shown in blue.    

NeuN IHC staining detected mature neurons (F). Brown color is positive staining, blue color 

is counter staining.  

Scale bar in A, B, C and F is 100µm and scale bar in D and E 300µm. 
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Figure 8. Tumor growth was accelerated in the p53+/- background mice. 

Brain tumor survival curves of K-Ras+/G12D;GFAP-Cre+/- mice (in red) and K-

Ras+/G12D;GFAP-Cre+/-;p53+/- (in green) are shown in panel A.  

The bar graph summarizes the number of necrotic centers in the tumors (B). Numbers were 

obtained by counting the total number of necrotic centers in one section, from the middle 

layer of tumors of similar sizes. The presence of necrotic centers were a typical phenotype in 

K-Ras+/G12D;GFAP-Cre+/- mice, while this was rarely observed in K-Ras+/G12D;GFAP-Cre+/-

;p53+/- mice. p= 0.0009. 
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Table 3. Tumor frequency and marker study in tumor with/without p53. 
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1. Only includes mice after initial onset of tumors (greater than 5 months of age); mice 
younger than 5 months of age will not included due to incidence of skin tumors and 
hydrocephalus. 

 
2. GBM: glioblastoma multiforme. 
 
3. PNET: primitive neuroectodermal tumors. 
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Figure 9. LOH of p53 in brain tumors with a p53+/- background. 

IHC staining of p53 was performed in tumors with genotypes of K-Ras+/G12D;GFAP-Cre+/- 

(A) and K-Ras+/G12D;GFAP-Cre+/-;p53+/- (B). Positive staining was identified in the K-

Ras+/G12D;GFAP-Cre+/- tumor, as indicated by the brown color. In contrast, there was no 

positive staining in K-Ras+/G12D;GFAP-Cre+/-;p53+/- tumors, indicative of no  p53 expression. 

Counter staining is blue.    

 PCR (polymerase chain reaction) assays show the second allele of the p53 gene was deleted 

in tumor cells with a p53+/- background (C). DNA was extracted from cells both from the 

tumor and from a normal brain area from paraffin sections of seven brains. The upper panel 

is a PCR to test if the wild type allele of the p53 gene is present. The lower panel tests the 

presence of the knocked-out allele of p53, which was also used as DNA quality control. + is 

positive control and – is negative control. 

Scale bar in A is 50µm. 
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Discussions 

Endogenous levels of K-RasG12D predispose brain to GBM formation  

       This study shows that physiological levels of K-RasG12D in astrocytic lineage cells leads 

to brain tumors with many of the characteristics of human primary glioblastoma (Fig 5), 

providing direct evidence that the K-Ras pathway is involved in GBM formation. However, 

secondary mutations may be required for the tumorigenesis since it took about 7 months for 

tumors to develop; the penetrance of tumorigenesis is low (8.3%); and no pre-tumor nodules 

were identified in most cases. Secondary mutations could be random, supported by the fact 

that every tumor had very different features. For example, in one case, the tumor cells looked 

like glial cells, while in another case, tumor cells are fibrosarcoma-like. It could be that 

different second or third mutations occurred in these two cases. The differences in tumor 

morphology shown here could also reflect the heterogeneous nature of the tumor, which 

resembles human GBMs. However, to draw a definitive conclusion, further analysis of this 

model is needed.  

       Since K-RasG12D is under the control of its endogenous promoter, functional activation of 

this mutant requires the transcriptional activation of the K-Ras gene. Physiological levels of 

K-RasG12D in the brain are able to initiate GBM, suggesting that the K-Ras gene is activated 

in certain cells, which are prone to tumorigenesis. This cell-of-origin question will be 

discussed in Chapter 3. 

       Using constitutively active Ras mutants to generate astrocytoma or GBM mouse models 

has resulted in different phenotypes. It has been shown that overexpression of one copy of 

V12H-Ras causes grade II or grade III astrocytoma formation and multiple copies of V12H-Ras 

leads to a GBM like lesion (Ding et al., 2001). In another study, K-RasG12D itself could not 
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elicit glial genesis when targeted to either mature astrocytes or precursor cells; however, K-

RasG12D combined with Akt caused GBM formation when targeted to precursors (Holland et 

al., 2000). Our model shows that physiological levels of K-RasG12D by itself were sufficient 

for GBM formation. These conflicting results could be due to different Ras mutants/isoforms 

or targeting these mutations to different cell populations. For example, the same K-RasG12D 

was used in Holland’s model and ours; however, our model showed that a single mutation of 

K-RasG12D was sufficient for GBM formation, while K-RasG12D required Akt to initiate GBM 

in Holland’s model (Holland et al., 2000). One of the reasons for this conflicting data is 

possibly the targeted cell. Virus was used in Holland’s model to transfer K-RasG12D, therefore 

a smaller population of cells may have been affected by the mutant allele. 

 p53 loss and PNET formation 

       Our work shows that physiological levels of K-RasG12D predisposed brain to primary 

GBM. Surprisingly, a p53 deficiency in this model changed the classification of the tumor 

from GBM to PNET. In humans, except for being mutated in early stage of GBM, p53 

mutation is also related to PNET. Our result is consistent with a recent reported GBM mouse 

model (Zhu et al., 2005), in which Nf1 (a RasGTPase activating protein, GAP) and p53 were 

mutated in brain, resulting in tumorigenesis with both glial and neuronal differentiation. 

Generating mouse models of GBM, which accurately simulate the genetic changes of GBM 

in humans, could be important. Point mutations in p53 are frequently found in the early stage 

of secondary GBM, but not in primary GBMs. Since MDM2 is frequently mutated in primary 

GBMs and is in the same pathway as p53, we assumed that a p53 mutation could substitute 

for an MDM2 mutation in primary GBMs. However, our result demonstrating that p53 loss 

changes the type of tumors elicited by physiological levels of K-RasG12D, suggests that this 
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may not be true. Furthermore, though p53 mutations and EGFR mutations are common in 

human GBMs, they are mutually exclusive, indicating a unique underlying mechanism of 

p53 pathway inactivation for tumor evolution.  

       In this model, the p53 mutation is introduced into every cell, thus targeting a broader 

spectrum of cells than those with the K-RasG12D mutation. Recent work by Hill et al. showed 

that disruption of the Rb pathway in prostate epithelium induces both autonomous p53 loss in 

epithelium and non-autonomous p53 loss in stromal cells. A similar scenario could occur 

here in glial tumor cells, which would subsequently cause p53 loss in the neuronal population 

and transform them. Once neuronal cells or precursors are transformed, they evolve with 

glial tumor cells, forming a tumor mass including both glial and neuronal cells. An 

alternative possibility could be that p53 loss affects cell differentiation or different cells were 

targeted.           

             

Materials and methods 

Genetic engineered mouse breeding. To target the mutant K-Ras allele specially in 

astrocytes, K-RasG12D conditional knock-in mice (from Dr. Tyler Jack’s lab) were crossed to 

GFAP-Cre mice (from Dr. Ken D McCarthy’s lab). To generate K-Ras+/G12D;GFAP-Cre+/-

;p53+/- mice (p53 mice originally from Jackson labs),  K-Ras+/G12D;p53+/- mice were 

generated first, then mated to GFAP-Cre+/- mice, because K-Ras+/G12D;GFAP-Cre+/- mice 

can’t nurse offspring well. K-Ras+/G12D;GFAP-Cre+/-;Rosa/26+/m were generated by mating 

Rosa/26+/m;GFAP-Cre+/- mice to K-Ras+/G12D.  For K-Ras+/G12D mutant allele genotyping, 

primers are 5’ – AGC TAG CCA CCA TGG CTT GAG TAA GTC TGC A – 3’ and 5’ – 

CCT TTA CAA GCG CAC GCA GAC TGT AGA – 3’. PCR condition is  94oC 3min, 35 
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cycles of 94oC 30sec, 60oC 1min 30sec and 72oC 5min, and then 72oC 5min.  For GFAP-Cre 

genotyping, primers are 5’ – TGA TGA GGT TCG CAA GAA CC – 3’ and 5’ – CCA TGA 

GTG AAC GAA CCT GG – 3’. PCR condition is 94oC 1’30’’, 35 cycles of 94oC 30sec, 59oC 

1min and 72oC 5min, and then 72oC 5min. For p53 knock out allele PCR, primer sets were 5’ 

– TCC TCG TGC TTT ACG GTA TC – 3’ and 5’ – TAT ACT CAG AGC CGG CCT – 3’. 

PCR condition is 94oC 3min, 35 cycles of 94oC 1min, 60oC 2min and 72oC 2min, and then 

72oC 5min.  For Rosa/26+/m mutant allele genotyping, primers are 5’ – AAA GTC GCT 

CTG AGT TGT TAT– 3’ and 5’ – GCG AAG AGT TTG TCC TCA ACC– 3’. PCR 

condition is 94oC 2min, 35 cycles of 94oC 30sec, 60oC 30secn and 72oC 30sec, and then 

72oC 3min. 

Histology and immunohistochemistry.  

Tissue processing and H&E. Mice were euthanized in a CO2 chamber. Brain tissue was 

removed and fixed in 10% formalin for 20hr- 24hr, then stored in 70% EtOH. Fixed tissues 

were paraffin embedded and sectioned at 5µM. Hematoxylin and eosin staining was 

performed as previously described (Symonds, Krall et al., 1994). 

Single staining procedure. Paraffin sections were deparaffinized with Histo-clear and 

rehydrated with ethanol/H2O, followed by a PBS wash. For antigen retrieval, sections were 

treated with citrate buffer by microwave heating for 2min at high power and 7min at power 

2, and then were cooled to room temperature. Depending on the antibodies, slides were pre-

treated with trypsin or trilogy or not pre-treated. Slides were washed twice with double-

distilled water for 5min then quenched in 5% H2O2 with ddH2O for 5 min. After washing, the 

slides were blocked with 5% goat serum/ PBS-T (0.1MPBS, 0.5% Tween 20) for 30min at 

room temperature. Primary antibody was diluted in 5% serum/ PBS-T and the slides were 
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incubated at room temperature for 1hr or at 4°C over night depending on which antibodies 

were used. Slides were washed and incubated with a 1:333 dilution of secondary antibody in 

2% serum/ PBS-T for 30 min. After washing, the slides were incubated with Vectors 

Vectastain elite AB solution, and the color developed using Vector’s NovaRED substrate kit. 

Slides were counter stained using Vector’s hematoxylin for 2min, rinsed briefly in double-

distilled water, and then rinsed in Li2CO3 for 1-3 seconds. After washing, the slides were 

dehydrated and mounted. A few samples were stained using Vector’s ABC-AP substrate kit 

instead of Vector’s NovaRED substrate kit and counter stained with Nuclear Fast Red for 12 

min at room temperature without the quenching step. 

Primary antibodies used were: GFAP(Z0334, DAKO rabbit at 1:100); NeuN (Chemicon 

mouse at 1:500);Cre (69050-3 Novagen, rabbit at 1:6000); phosphor-Erk1,2Thr202/Tyr204 (9101, 

cell signaling, rabbit at 1:50); Syn (A0010 Dako, rabbit at 1:50); β-gal(anti-b-galactosidase, 

A-11132 molecular Probes; rabbit at 1:500); p53(NCL-p53-CM5p Novo, rabbit at 1:750). 

LacZ staining. Staged embryos (including E12.5), newborn pups or adult tissue were 

collected and washed with cold 0.1M PBS, then fixed in 4%PFA/0.1M PBS at 4°C with 

shaking for 30min for embryos and 24h for the rest. Samples were then washed in 0.1M PBS, 

3 X 20’. Fresh LacZ staining solution (1mg/ml X-gal, 5mM K3FE, 5mM K4FE, 2mM 

MgCL2, 0.02% NP40, 0.01% Na Deoxicholate in 0.1M PBS) was added. E12.5 embryos were 

incubated at 37°C (or RT with longer incubation time) overnight; other samples were 

incubated at room temperature and checked every 2h for staining status. The staining reaction 

was stopped by rinsing three times in PBS for 20 min each and the samples were stored in 

70% EtOH. For embryos, tails were cut and used for genotyping PCR. 
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p53 LOH by PCR. To extract DNA, targeted cells in the tumor area or in the normal region 

were scratched using an 18-gauge needle under a dissection microscope. A fresh needle was 

used for each scratch. 50ul extraction solution A (25mM NaOH/0.2mM EDTA) was added, 

and samples were incubated at 65°C for about 20hr. 50ul solution B (40mM Tris-HCl) was 

then added, mixed well, and spun for 2 min and the supernatant kept for PCR.  The PCR to 

detect the p53 knockout allele was performed as above.  For the p53 wild-type allele PCR, 

primers were 5’ – ACA GCG TGG TGG TAC CTT AT – 3’ and 5’ – TAT ACT CAG AGC 

CGG CCT – 3’. PCR condition was 94oC 3min, 35 cycles of 94oC 1min, 60oC 2min and 

72oC 2min, and then 72oC 5min.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER THREE 

ROLES OF K-Ras IN THE ETIOLOGY OF GLIOBLASTOMA: 

PART 2 (CELL OF ORIGIN) 

 
In chapter two, we presented a mouse model in which activation of K-RasG12D is under the 

control of its endogenous promoter in astrocytic lineage cells, including astrocytes, neurons 

and neural precursors. Although mixed populations of cells were involved in glioblastoma 

genesis, this model offers a system to understand the cell-of-origin of GBM, since specific 

cells susceptible to tumorigenesis can be identified in the pre-tumor stage. When the brain 

was examined at sub terminal stages, we observed an abnormal cell population consisting of 

neural precursors accumulating around the anterior sub-Ventricular Zone (SVZa) stem cell 

niche that belongs to type C precursors, which was absent in the control. Ras-ERK pathway 

activation was detected in the region of SVZa. In addition, both astrocytes and neurons were 

less susceptible to tumorigenesis than precursors, based on the fact that the expanded 

astrocytes were well organized and quiescent and the neurons were not much different from 

those in control. Thus, our results suggest that SVZ precursors, possibly type C cells, could 

be the original targets for primary GBM formation.  
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Introduction 

       The cell-of-origin in GBM has been an intriguing topic in the field of GBM study (Sanai 

et al., 2005;Holland, 2001;Gutmann et al., 2006). Since secondary GBM can be developed 

from grade II/III astrocytoma, it is suggested that mature astrocytes are the original targeted 

cells (Kleihues and Cavenee, 2000). On the other hand, since the majority of GBM cells are 

nestin immuno-reactive, which is characteristic of neural precursors, and they are 

heterogeneous, it has also been suggested that GBM can originate from neural precursors 

(Kleihues and Cavenee, 2000;Maher et al., 2001). The latter theory is possibly more 

applicable to primary GBM, as no early stage astrocytoma is observed.  

       Current mouse models usually use either hGFAP (human GFAP) or nestin promoters to 

restrict the range of cells for targeted genetic mutations (Weissenberger et al., 1997;Holland 

et al., 2000;Ding et al., 2001;Xiao et al., 2002). At the same time, these promoters were used 

to provide clues as to whether GBM develops from astrocytes (GFAP promoter), or 

precursors (nestin promoter). However, recent progress in neurology suggests that the 

expression spectrum of these promoters is more complicated than was previously understood.  

       Although GFAP is a marker for mature astrocytes, studies have shown that hGFAP 

promoter also directs gene expression in neural stem cells, either in the developmental stage 

(Campbell and Gotz, 2002;Malatesta et al., 2000;Malatesta et al., 2003;Zhuo et al., 2001) or 

in the adult (Doetsch et al., 1997;Doetsch et al., 1999). In the embryonic stage, GFAP is 

expressed in radial glial cells, which are a dominant glial population, and serve as precursor 

cells that differentiate into both neurons and astrocytes (Campbell and Gotz, 2002). In the 

adult stage, GFAP is also expressed in neural stem cells, which accounts for a very small 

portion of brain (Doetsch et al., 1997). 
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       Nestin is a neural precursor marker, nevertheless it is not astrocyte specific. In adult 

brain, there is a stem cell niche residing in the sub-ventricular zone, which continually 

generates neuronal cells destinated to the olfactory bulb through a route called the Rostral 

Migratory Stream (RMS) (Doetsch et al., 1997). This stem cell niche is composed of three 

types of precursors that express nestin. They are SVZ astrocytes (also named type B stem 

cells), type C transit amplifying immature precursors and type A neuroblasts (McKay, 

1997;Alvarez-Buylla and Garcia-Verdugo, 2002). Usually, type B stem cells differentiate 

into type C transit amplifying immature precursors and then further differentiate into type A 

neuroblasts (Fig. 13). Among them, the neuroblast is a precursor of neurons. Therefore, a 

nestin promoter will direct mutated gene expression in multiple types of precursors, 

including astrocytic and neuronal precursors, and can’t be used to determine which precursor 

is the origin of GBM. 

       To better understand how neural precursors or mature astrocytes are subjected to GBM 

genesis, a new system is needed. Unexpectedly, the mouse model generated here provides 

some clues about which cell type(s) are prone to tumorigenesis when physiological levels of 

K-RasG12D are introduced.       

 

Results 

Brain abnormalities caused by endogenous level of K-RasG12D   

       To examine the global effect caused by K-RasG12D, 9 mice dissected before the terminal 

stage were analyzed and evaluated the morphological changes in the brain by H&E sections 

(Fig. 11). The terminal stage was defined as about 7 months in age, because all mice died 

from seizures or brain tumors by that age. Primary abnormalities in the brain include a 
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thicker corpus callosum, an expanded cell population in SVZa/ RMS/SVZ region and a 

smaller hippocampus. The penetrance of abnormality is 100%, which is also summarized in 

Table 1 in Chapter 2. As addressed in Chapter 2, K-RasG12D can potentially be activated in 

mature astrocytes and neurons. Thus, we examined whether both astrocytic and neuronal 

populations were affected by overactivated K-Ras pathway. For this purpose, we used GFAP 

IHC staining to label astrocytes and used NeuN IHC staining to label neurons. Astrocytic 

populations were expanded dramatically in the corpus callosum and RMS/SVZa (Fig. 12), 

but not in the hippocampus (Fig. 12B; staining data not shown). In contrast, the neuronal 

population was not changed in the whole brain (Fig. 12C). This result suggests that astrocytes 

were affected by K-RasG12D actvation but not neurons. 

       Since no neoplastic lesion was observed and the abnormal regions were well organized 

with a structure similar to the control, it is possible that the observed changes were caused by 

abnormal brain development. To test this, PCNA IHC staining was performed to mark 

proliferating cells, to see if there are actively proliferating cells in those expanded cell 

populations in the adult. No proliferation was observed in either the corpus callosum or 

hippocampus, indicating that the expanded astrocyte population was quiescent in these areas 

confirming that the abnormal populations were expanded in the developmental stage. For the 

SVZ cells, which are active in normal mice, the number of proliferating cells was increased 

in the mutant brain (Fig. 11E). Again, since the structure of that region was well organized 

and similar to normal brain, this increase is possibly due to the expansion of the whole 

population rather than the transformation of the cells. Interestingly, proliferating cells were 

restricted to the stem cell niche since positive cells were rarely observed outside the niche 

(data not shown).           
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Figure 10. Neural stem cell niche in the SVZ area. 

Box on the left shows the structure of the whole brain, in which the sub ventricular zone 

(SVZ) and stem cell niche are highlighted by a yellow dashed-line circle. The SVZ is a 

region contiguous to the lateral ventricle (LV) and the dark line in the SVZ is the stem cell 

niche in the anterior SVZ (rostral SVZ, SVZa). Cell components inside the stem cell niche 

are illustrated on the right. Three types of precursor cells reside in the SVZ: type B stem 

cells/SVZ astrocytes (blue), type C transit amplifying immature precursors (green), and type 

A neuroblasts (red). Type B stem cells differentiate into type C transit amplifying precursors, 

which further differentiate into type A neuroblasts (Doetsch et al., 1999). Type A neuroblasts 

then form a chain that is wrapped by astrocytes and travel all the way to the olfactory bulb, 

where these cells differentiate into mature neurons. 

O-olfactory bulb, H-hippocampus, CB-cerebellum, SVZ-sub-ventricle zone, LV-lateral 

ventricle 
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Abnormal precursors around the neural precursor niche 

       Since the neural stem cell niche was the only active proliferating population among the 

three abnormal regions and tumors developed in a contiguous area, this region was further 

examined. Analysis of mice at 2 weeks, 1.5 months and 7 months of age showed that the 

stem cell niche shrinks as mice age. However, the degree of shrinkage is much smaller in the 

mutant brain (Fig. 13). To further analyze this area, nestin IHC staining was performed to 

study precursor populations in this area. Strikingly, an abnormal precursor population was 

identified outside the stem cell niche in the K-Ras+/G12D;GFAP-Cre+/- mice (A and C), while 

in the normal brain, nestin positive cells are restricted to the neural precursor niche (B and 

D).  

       SVZ precursors include three different types: type B stem cell which are also SVZ 

astrocytes, type C transit-amplifying neuronal precursors and type A neuroblast cells.  Here, 

a marker study is used to determine which type of precursor the abnormal cells outside stem 

cell niche are. Three precursors can be distinguished by specific cell markers: type B cells are 

both nestin- and GFAP-positive; and type C cells are nestin-positive only; type A cells are 

both nestin- and Tuj1-positive (Garcia-Verdugo et al., 1998). Double staining of 

nestin/GFAP and nestin/Tuj1 were performed on brain sections containing the RMS/SVZ 

layer. The abnormal precursors were nestin positive with no overlap with GFAP or Tuj1 

staining, indicating that these abnormal precursors are type C cells (Fig. 14E-H).  

Interestingly, multiple pre-tumor nodules that contain similar abnormal precursors were 

observed in the nearby stem cell niche (Fig. 15), suggesting a correlation of abnormal 

precursors with tumorigenesis.  

Ras downstream signals of p-ERK are activated in the stem cell niche 
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       According to the previous study, EGF-EGFR signal is related to the maintenance of the 

stem cell compartment (Doetsch et al., 2002). As proposed in Fig. 16G, in a normal situation, 

type B stem cells don’t express EGFR, but they will express it once activated; type C cells 

always express EGFR owing to active proliferation (Doetsch et al., 2002). p-ERK, a well-

established downstream signal of Ras, was used here to teat if the Ras pathway was activated  

in these precursors. The level of IHC staining is stronger in mutant brains than in controls 

based on the number of positive staining cells and the strength of the positive stain, 

consistent with the possibility that K-Ras pathway is over activated in the mutant. p-ERK 

positive staining was not found in neuroblasts according to the double staining of  p-ERK 

and Tuj1 (marker for neuroblast) (Fig. 16). Thus, this system has shown the activation of 

Ras-ERK pathway in type C and/or type B cells. This is similar to the pattern of EGF-EGFR 

expression in cells of the SVZ, where EGF-EGFR is expressed in type C transit amplifying 

cells, activated type B stem cells, but not in type A neuroblasts (Doetsch et al., 2002). 

Furthermore, abnormal type C precursors distributed outside the stem cell niche, which is 

consistent with the proposal that (expansion or increase of the) EGF-EGFR signal will cause 

type C cells to reprogram and migrate out of the niche (Doetsch et al., 2002). Since abnormal 

type C cells were not observed in other regions of the brain, it is unlikely that they are 

vestiges of developmental precursors that are distributed everywhere in the brain.   
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Figure 11. Abnormal regions in the brain of K-RasG12D before terminal stage. 

The abnormalities include an expanded population in the stem cell niche, a larger corpus 

callusom and a smaller hippocampus. Panels A and B are brain sections from K-

Ras+/G12D;GFAP-Cre+/- mice at about 7 months. Panels C and D are comparable brain 

sections from a control mouse (Ras+/G12D without Cre). The corpus callosom (CC) is 

highlighted by the black line. The cell population in the dark area, as pointed to by arrows, is 

precursors in the RMS, SVZ and SVZa. H indicates the area of the hippocampus.  

Panel E is the summarized data of PCNA (define) IHC staining, which marks proliferating 

cells. The red bar indicates cell numbers from K-Ras+/G12D;GFAP-Cre+/- and the black bar 

indicates cell numbers from normal brains . 

Abbreviations: RMS-rostral migratory stream; SVZ-sub-ventricular zone; SVZa-rostral or 

anterior sub ventricular zone; CC-corpus callosom; H-hippocampus.  
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Figure 12. The number of astrocytes but not of neurons is increased in abnormal 

regions. 

Two major cell populations in the brain, neurons and astrocytes, were examined by marker 

staining (A).  The genotype of the mutant is K-Ras+/G12D;GFAP-Cre+/- and the control is K-

Ras+/G12D or GFAP-Cre+/-. Green staining is GFAP indicating astrocytes, and red staining is 

NeuN indicating neurons. The staining shows that the actrocytic cell population was 

expanded, while the neuronal population was similar to the control in the area of corpus 

callosum and RMS/SVZa. The structure and organization of the expanded population of 

astrocytes in the mutant brains were similar to control. The bar chart summarizes the 

quantification of astrocytes (B) and neurons (C), in which cortex neurons were counted as 

representative population for neurons.   

Abbreviation: RMS-rostral migration stream; SVZa-rostral or anterior sub ventricular zone; 

CC-corpus callosom.  
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Figure 13. Morphology changes in the SVZ area when K-RasG12D mice were aged.  

H&E sections show the stem cell niche (dark cell population in the section as pointed by 

arrows) from two weeks (A and B), 1.5 months (C and D) and 7 months (E and F) brains. 

Niche stem cells (dark populations) were found to be no different between the mutated (A) 

and the control (B) brains at 2 weeks of age.  However, this area shrank at the age of 1.5 

months old in normal mice (D), and further shrank at the age of 7 months. However, in the 

mutant mice, the shrinkage was not as severe as in the control (B and D).  

Abbreviation: SVZ-sub-ventricular zone  
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Figure 14. Abnormal precursor population outside the stem cell niche. 

The SVZ area was analyzed by nestin IHC staining for the precursor population. A-D is 

nestin IHC staining. An abnormal cell population was identified outside the stem cell niche 

(dark area) in the K-Ras+/G12D;GFAP-Cre+/- mouse ( A and C). In the control, precursors were 

restricted to the stem cell niche (B and D). Brown is positive staining for nestin and blue is 

the counter stain. 

Panel E-H show double staining to examine the specific type of precursors, including double 

staining of Nestin/GFAP to show stem cells, and Nestin/Tuj1 to show neuroblasts. No 

overlap was identified for either Nestin/GFAP double staining (E) or Nestin/Tuj1 double 

staining (G), featuring type C precursors. Nestin staining is green; GFAP and Tuj1 are red. E 

and H are the normal controls.  
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Figure 15. Pre-tumor nodules in the brain of K-RasG12D mice. 

This figure shows a representative picture of a pre-tumor nodule from K-Ras+/G12D; GFAP-

Cre+/- mice. Nestin staining (A and B) and Nestin/GFAP double staining (C) indicate that the 

pre-tumor nodule cells are similar to the abnormal precursors outside the stem cell niche. A 

blue circle highlights the area of the nodule, and B is a magnification of the boxed area in A.  
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Figure 16. p-ERK activation in precursors. 

Positive IHC staining of p-ERK (pointed to by arrows) was observed in the stem cell niche 

precursors, both in K-Ras+/G12D;GFAP-Cre+/- mice (B) and in control (A). The positive p-

ERK stain is brown and the counter stain is blue. The p-ERK positive cells have a 

morphology resembling type C (or type B) precursors, unlike type A neuroblasts, which have 

an elongated and condensed nucleus as highlighted by ‘A’ in the figure. C is an H&E section 

from a similar area showing morphology of the cells. Double staining of p-ERK (green) and 

Tuj1 (red) showed no overlap of stains (F), confirming that the p-ERK positive cells are not 

neuroblasts. E is lower power view of p-ERK single staining and D is a control without 

primary antibody.   
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Discussions 

The Cell of origin of primary glioblastoma     

       In this study, we show evidence for the first time that physiological levels of K-RasG12D 

initiate the tumorigenesis of primary glioblastoma without earlier detection of low-grade 

gliomas. Our model is different from other models of secondary GBM, in which mutations 

were usually introduced into astrocytes using the GFAP promoter (Ding et al., 2001;Xiao et 

al., 2002;). The mutation in our system was under the control of its endogenous promoter and 

expressed in a broader cell population in the brain. Thus, the original cells susceptible to 

transformation could be different from the models using GFAP or nestin prompters. Indeed, 

we have identified abnormal type C precursors outside the stem cell niche, which are transit 

amplifying type C cells and could be the cell of origin of GBM. Three abnormal populations 

were observed in the brain with mutant K-RasG12D, including hippocampus astrocytes, corpus 

callosum astrocytes and stem cell niche precursors. Among them, hippocampus astrocytes 

and corpus callosum astrocytes were unlikely to be subjected to transformation, since they 

are quiescent in the adult stage and no tumor or neoplastic lesions were observed in those 

regions. Except for abnormal type C precursors, the entire cell population in the stem cell 

niche was expanded and could potentially be transformed, thus arguing that type C 

precursors are the cell of origin of GBM. However, several observations support the 

hypothesis that abnormal type C cells but not precursors in the stem cell niche are targeted 

for tumorigenesis. First, although the precursor population in the niche was expanded, the 

cell morphology and niche structure were similar to those in the normal brain. Second, pre-

tumor nodules were composed of abnormal type C cells and were in a location independent 
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of the stem cell niche. Third, portions of cells in the stem cell niche are neuroblasts, while no 

neuronal differentiation was found in the GBM tumors. 

       Type C precursors are EGF responsive cells in the precursor niche. A recent report from 

Doetsch et al. showed that prolonged exposure of type C cells to EGF interrupts their 

neuronal differentiation and endows them with the ability to migrate (Doetsch et al., 2002). 

Comparatively, stronger activation of K-Ras/ERK signal was present in type C cells or type 

B cells (Fig. 16). Thus, the possible scenario (Fig. 17) of the tumorigenesis occurring here 

could be that in the stem cell niche, overactivated K-Ras reprograms type C cells, which are 

then able to migrate out of niche. Once those cells travel out of the niche, they lose the EGF 

stimulation, which is restricted to the stem cell niche, and become quiescent. If there is a 

secondary stimulation, either from the microenvironment or from a second mutation inside 

the cells, the type C cells are then transformed. It is likely that once those abnormal neural 

precursors are transformed, they progress to GBM aggressively in a short time because of the 

high plasticity of precursors, which explains the evolution of primary glioblastoma without 

an early clinical history. In contrast, transformed mature astrocytes in low grade astrocytoma 

may need a longer period of time to gain not only proliferation but also de-differentiation or 

trans-differentiation abilities that lead to a phenotype of secondary GBM.  

Primary GBM: its association with EGFR/K-Ras pathway and neural precursors 

       Receptor tyrosine kinase (RTK) pathways, including EGFR and PDGFR, are frequently 

mutated in human GBM (Kleihues and Cavenee, 2000). Interestingly, to a certain degree 

EGFR is specific to primary GBM while PDGFR is specific to secondary GBM, suggesting a 

distinctive etiology despite similar pathways being disrupted in the two GBMs. It is not clear 

how the PDGFR mutation contributes to secondary GBM formation, but this study indicates 
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that EGFR pathway activation in precursors could be a predetermining factor for primary 

GBM formation. In our model, overactivation of K-Ras pathway, possibly from the EGFR 

signal, resulted in the abnormal type C precursors appearing outside the stem cell niche. 

Thus, it seems that type C precursors are sensitive to changes in the EGFR/Ras signal and 

susceptible to reprogramming. In another sense, the type C precursors is a “weakest target”, 

prone to transformation when the EGFR/Ras signal is maladjusted. Though no direct 

evidence is available as yet, type C cells seem to be related to primary GBM in this model. 

Type C cells are highly plastic, since they are actively proliferating and differentiating. It is 

possible that type C cells gain epigenetic modifications or signal activation facilitating their 

proliferation and differentiation (Cheng et al., 2005). Similar genetic or epigenetic changes 

could be needed for tumorigenesis.  Thus, once type C cells are transformed, they could 

evolve into GBM so quickly that an early neoplastic lesion would be difficult to detect. For 

the tumor developed from but tumor formation could require additional mutations to 

transform a quiescent mature astrocyte into a tumorigenic cell and further evolve.  

       In recent years, the hypothesis that stem cells in the brain could be the cell of origin of 

glioblastoma has garnered huge amounts of attention (Sanai et al., 2005). The majority of 

glioblastomas in humans are primary GBMs (Kleihues and Cavenee, 2000;Ohgaki et al., 

2004;). However, although it is realized that genetic mutations are different in primary and 

secondary GBMs (Kleihues and Cavenee, 2000;Ohgaki et al., 2004), determining the cell of 

origin of these cancers is still an unexplored field, and could be critical for treatment (Sanai 

et al., 2005). Unlike secondary GBM, which was generated numerous GEM mouse models, 

the mechanisms of primary GBM formation have been less reported, possibly due to a lack of 

mouse models. Our data show for the first time that type C precursors are related to primary 
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GBM formation. Although no direct evidence proves the evolution from type C cell to 

primary GBM, if this hypothesis is true, it will have a profound impact on elucidating the 

etiology of primary GBM.   
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Figure 17. Model of tumorigenesis. 

One of the possible mechanisms for how tumors are evolved in this model is that normally, 

the precursors are restricted to the stem cell niche. The K-Ras pathway is activated in the 

precursor population, possibly via EGF-EGFR signal. However, when the K-Ras pathway is 

constitutively activated, type C cells are reprogrammed and migrate out of the stem cell 

compartment. Subsequently, secondary mutations occur in these abnormal populations, 

resulting in the transformation of cells, which further evolve into primary GBM in a 

relatively short period of time.  
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Materials and methods 

Histology of brain and step sections. Dissection of mouse and brain processing was same 

as described in chapter two. To check the abnormality of whole brain, paraffin embedded 

brain was step sectioned, so that different layers of brain can be analyzed. One section from 

each step was stain with hematoxylin and eosin for histology. 

Single staining procedure. Detail is as described in chapter two. Primary antibodies used 

were: GFAP(Z0334, DAKO rabbit at 1:100); NeuN (Chemicon mouse at 1:500);GFAP 

(556330 BD, mouse at 1:1000); Tuj1 (anti-β-tubulin type III Covance, mouse at 1:500). Cre 

(69050-3 Novagen, rabbit at 1:6000); phosphor-Erk1,2Thr202/Tyr204 (9101, cell signaling, rabbit 

at 1:50); PCNA(SC-7907, Santa Cruz, rabbit at 1:100). 

Immunofluorescence double staining procedure. After de-paraffin, sections were 

pretreated with citrate buffer as above. After washing twice with PBS, slides were blocked in 

5% goat serum/ PBS-T for 30min in room temperature. Added first primary rabbit antibody 

diluted in 5% goat serum/ PBS-T and incubated in 4°C over night. In second day, washed 

slides in PBS-T 3 times and 5 min each. Blocked slides again in 5% goat serum/ PBS-T for 

30min in room temperature. Added second primary mouse antibody diluted in 5% goat 

serum/ PBS-T and incubated in 4°C over night. In third day, wash slides in PBS-T 3 times 

and 5 min each. Added ALEXA FLUOR 488 goat anti rabbit and ALEXA FLUOR 543 goat 

anti mouse secondary antibody (Molecular Probes) in 5% goat serum/ PBS-T to slides and 

incubated slides at 4°C for 45min. Wash 3X PBS/Tween 20, 5~10min each time, and washed 

with water at last. Counter stained and mounted slides with vector’s VectaShield Hardset 

with DAPI. Primary antibodies used were: GFAP(Z0334, DAKO rabbit at 1:100); NeuN 
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(Chemicon mouse at 1:500);GFAP (556330 BD, mouse at 1:1000); Tuj1 (anti-β-tubulin type 

III Covance, mouse at 1:500).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER FOUR 

INDUCIBLE MODELS OF SPONTANEOUS HIGH-GRADE ASTROCYTOMAS 

PROVIDE MECHANISTIC INSIGHT AND AVENUES FOR PRELINICAL 

DEVELOPMENT 

 
There is currently no effective therapy for high-grade astrocytomas. Studies in accurate and 

accessible preclinical animal models are required to both understand these diseases and to 

facilitate development of diagnostic tests and therapies. We have developed an inducible 

model of glioblastoma (GBM) in genetically engineered mice (GEM) that was constructed 

based on common specific pathways deregulated with high frequency in the human 

malignancies: disruption of the pRb pathway, K-Ras activation and Pten inactivation. GEM 

were engineered such that these events are inducible (alone or in combination) specifically in 

adult astrocytes. Induction is elicited by activation of CreERtam, expressed from the human 

GFAP promoter, after intraperitoneal 4OH-tamoxifen (4-OHT) injection. With high 

penetrance and reproducible timing, the combination of all three events induces tumors that 

possess all common histological features of human GBM, including high mitotic indexes, 

angiogenesis, pseudo palisading tumor cells and necrosis. Furthermore, analysis of event 

combinations provides insight into disease etiology. For example, without Pten inactivation, 

pRb inactivation and K-Ras activation predispose to high-grade astrocytic tumors that lack 

the necrotic phenotype characteristic of GBM. Neither activation of K-Ras nor inactivation 
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of Pten alone produces detectable pathology, and thus are involved in tumor progression. In 

contrast, inactivation of pRb function initiates disease that does not progress to high-grade 

tumors. Because of their inducibility, high-penetrance and molecular and histological 

similarity to human high-grade astrocytomas, these models are ideal for both further 

mechanistic analyses and for preclinical studies, including the validation of potential drug 

targets and diagnostic and therapeutic development.   
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Introduction  

       High-grade astrocytomas are the most common human malignant primary brain tumor, 

and there is currently no effective treatment for these devastating diseases (CBTRUS, 2006). 

While the standard of care generally involves surgery, radiation and chemotherapy, these 

treatments are largely palliative as these cancers are among the most lethal and resistant. 

Post-treatment survival of patients with glioblastoma multiforme (GBM), the most malignant 

astrocytoma (WHO grade IV), is an average of 9-12 months; with anaplastic astrocytoma 

(AA; WHO grade III), 2-3 years (Kleihues and Cavenee, 2000; Maher et al., 2001).  

       GBMs have characteristics of highly proliferative and invasive tumor cells of variable 

marker specificities, extensive angiogenesis and pseudo palisading necrosis. AAs and GBMs 

frequently harbor aberrations in cell-cycle regulatory factors, pRb (20-30%), INK4a/ARF 

(33-68%) or CDK4 (10-15%), amplification or overexpression of the epidermal growth 

factor receptor (EGFR) (~40% or ~60%), or overexpression of platelet derived growth factor 

receptor (PDGFR) (60%), and chromosome 10 loss (69%) including Pten tumor suppressor 

gene locus, and mutation of Pten gene (24%) (Henson et al., 1994;Ueki et al., 1996; Kleihues 

and Cavenee, 2000; Ohgaki et al., 2004). Although not generally mutated, K-Ras is activated 

in many tumors at about 40-50% (Friday and Adjei, 2005), likely a result of EGFR/PDGFR 

activation. GBMs present de novo or arise subsequent to lower grade tumors (Kleihues and 

Cavenee, 2000). While differences in the frequency and spectrum of genetic aberrations 

between the two groups have been noted, in neither case is the etiology understood. 

Furthermore, the complexity of the brain and the critical roles of the tumor 

microenvironment in disease etiology preclude an understanding based solely on studies of 

human tumor samples. Accurate and accessible preclinical astrocytoma models are essential 
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for both understanding the underlying mechanisms of disease etiology and for preclinical 

therapeutic and diagnostic assessment and discovery. For effectiveness in preclinical studies, 

such models should reflect the molecular and biological characteristics of the human 

diseases, develop disease predictably with high penetrance, and require minimal expertise for 

disease induction. 

       Recent studies have utilized genetically engineered mice (GEM) to model and study 

astrocytoma with significant success. The results have contributed to our knowledge of basic 

mechanisms and provide the foundation for further model development. While the existing 

models have been fruitful, there are still significant impediments to their broad use in 

preclinical discovery. Here, we report the development and characterization of inducible 

GEM models that exhibited a multi-step progression of high-grade astrocytoma when 

harboring most common mutations of human GBM.  

 

Results 

Astrocytoma initiation by T121  

       In a previous study, we reported a mouse model of grade III astrocytoma by disruption 

of Rb pathway in astrocytes through using a T121 that was driven by human glial fibrillary 

acidic protein (GFAP) transcriptional regulatory fragment (Xiao et al, 2002). T121 is a 

truncated SV40 T antigen and inhibits pRb as well as its family members p107 and p130 

(Kleihues and Cavenee, 2000), thus fully disabling pRb’s function due to 

redundancy/compensation of p107/p130 to pRb (Listernick et al., 1999). However, since 

GFAP promoter expresses as early as E11.5 and thereafter, its application in astrocytoma 

modeling always resulted in developmental defects such as hydrocephalus and expansion of 
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sub ventricular zone (Xiao et al, 2002;Ding et al., 2001;Weissenberger et al., 1997). To 

circumvent early induction of T121, a GFAP-CreERTM mouse was used, in which the function 

of Cre can be activated by IP injection of 4-OHT at an arbitrary time point (Fig. 18) 

(McCarthy K, unpublished).  

       To introduce three oncogenic events, including interruptions of Rb, Ras and Pten 

pathways, a Cre conditional T121 transgenic line, a conditional K-RasG12D knock-in line 

(Jackson et al, 2001) and a conditional Pten knockout line were used (Suzuki et al, 2001) 

(Fig. 18). For each case, the conditional allele is activated when Cre recombinase is 

introduced. For T121, GFAP promoter controls its expression directly. For K-RasG12D and Pten 

loss, their activities were directed by endogenous promoters but restricted to astrocytic cells 

because the Cre used here was under the control of GFAP promoter (Fig. 18) 

       In this study, 4-OHT was injected into 3 months old mice, when three events were 

restricted to mature astrocytes (Fig. 18, lower panel) (McCarthy K, unpublished) and 

possibly in neural stem cells (Doetsch et al., 1997;Doetsch et al., 1999). To confirm that the 

loxP sites were recombined by Cre enzyme, DNAs were extracted from multiple brain 

paraffin sections for PCR detection (Fig. 19). The mutant K-RasG12D allele generated a larger 

band product after the stop element was removed and a smaller band product for K-Ras wild 

type allele. The wild type band is stronger than the mutant band, because both astrocytes and 

neurons were harbored for PCR and stop element was removed only in astrocytes but not in 

neurons.  

       To test if oncogenic events were activated after 4-OHT treatments, T121 expression and 

p-ERK levels were analyzed by IHC staining in the brains of mice 2 weeks post injection 

(Fig. 20). In this stage, there was no difference in the level of cellularity (Fig. 24) and T121 
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expression between T121
+/- and T121

+/-;K-RasG12D brain, indicating the Ras pathway didn’t 

contribute to tumorigenesis in the very early stage. T121 positive cells were always cluster 

together indicating they may proliferate from some targeted astrocytes due to the disruption 

of Rb pathway (CBTRUS, 2006);(Kleihues and Cavenee, 2000;Maher et al., 2001). p-ERK 

was detected in both T121
+/-;K-RasG12D and T121

+/- brain (Fig. 20m). However, p-ERK was 

hardly detected in K-RasG12D brain (Fig. 20m), which is as same as in the control, suggesting 

that endogenous level of K-RasG12D alone is not oncogenic and the activation of K-Ras 

pathway is possibly depending on the T121 disruption of the Rb pathway (Peeper et al., 1997).       

       To confirm the expression of T121 is in adult astrocytes, T121 (red) was double stained 

with GFAP (green) (Fig. 20 d-g) in the brain sections 2 weeks post 4-OHT. Because GFAP is 

a cytoplasmic protein and T121 is localized to both the cytoplasm and the nucleus, they 

couldn’t be decided to be in the same cells, though they had some yellow overlap in the 

cytoplasm. To further confirm this result double staining T121 with S100, a nuclear protein 

and glial cell marker was performed (Fig. 20 h-k).  

       In the mice with T121 mutation only (TgG(∆Z) Tam T121), the IP injection of 4-OHT 

recapitulated the grade III astrocytoma developed in the TgG(∆Z)T121 model (Fig. 22a) (Xiao 

A, 2002). As predicted, expanded population in sub ventricular zone observed in 

TgG(∆Z)T121 model, which may be caused by the expression of T121 in developmental stage, 

didn’t not appear in this new system. TgG(∆Z Tam)T121 mice lived up to more than one year 

post 4-OHT injection without the observation of tumor mass in brain (Fig. 21a, 22a, 24). In 

either mice with single mutation of K-RasG12D or Pten-/-, no obvious brain lesion was 

observed (data not shown). Thus, among the three oncogenic events, only T121 can initiate 

astrocytoma genesis; on their own, over activated K-Ras pathway at physiological levels 
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(Fig. 21a) or Pten loss were not sufficient to initiate tumorigenesis (data not shown here) 

(Fraser et al., 2004).  

Acceleration of astrocytoma genesis with K-RasG12D mutation 

       Interestingly, when mutations of T121 and K-RasG12D were co-presenting, brain tumor 

development was dramatically accelerated (Fig. 21b, Fig. 24), such that the solid tumor bulb 

could be visually identified (Fig. 23d). The locations of brain tumor are variable, including 

front brain, thalamus, brain stem, and optical nerve, which reflect the broader induction of 

oncogenic events in astrocytes. 

       To determine if over activated Ras pathway played a role in the astrocytoma progression, 

resulting in the progression of the grade III astrocytoma to GBM, tumor masses with 

combined mutations of T121 and K-RasG12D were characterized. Brain tumor cells in T121;K-

RasG12D mice looked poorly differentiated and tumors were packed by cells without much 

cytoplasm (Fig. 22b). However, large portions of tumor cells were immuno-reactive to GFAP 

(Fig. 23a) indicating a glial origin. Staining of the neuronal differentiation marker 

synaptophysin is negative and staining for the neural precursor marker nestin is positive 

indicating the GBM characteristics of tumors (Fig. 23b, 23c).  Furthermore, angiogenesis was 

a consistent phenotype in solid tumors as exemplified by the big vessels in the H&E sections 

(Fig. 22b), whole brain image (Fig. 23d) or 3D view of vessel network generated based on 

MRA data (Fig. 23e, 23f), indicating the GBM-like feature of the tumors. The fact that 

intensive angiogenesis occurred in the brain tumor with combined mutations of T121;K-

RasG12D but not  with single mutation of T121 suggests the important role of Ras pathway in 

the angiogenesis observed in GBM, which may be a critical factor for the solid tumor 

formation. 
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       To test how the over activated K-Ras pathway cooperated with T121 mutation in 

astrocytoma progression, brains from mice 2weeks, 2 months and 4 months post 4-OHT 

treatment were analyzed. After 2 weeks, there were small clusters of tumor cells distributed 

around the brain in either T121 or T121;K-RasG12D brains (Fig. 24). It is interesting that there 

was no difference in the cellularity (Fig. 24), T121 level (Fig. 20b, 20c), or 

apoptosis/proliferation level (data not shown) between T121 and T121;K-RasG12D at this stage. 

This suggests that physiological level of K-RasG12D didn’t contribute to the tumorigenesis 

initiated by T121 in the very early stage, though there was some activated signal of K-Ras 

pathway as indicated by p-ERK IHC (Fig. 20l, 20m). However, after 2 months, there was 

increased cellularity in both T121 and T121;K-RasG12D brains. At this stage, surprisingly, there 

already were peri-nuclear and peri-vascular satellites (red and blue arrows in Fig. 24), 

especially in the brain with the combined mutations of T121 and K-RasG12D, consistent with a 

grade III astrocytoma. Moreover, as compared to the 2 week’s time course, increased 

cellularity was much more severe in the brain with combined mutations of T121 and K-

RasG12D than T121 single mutation at 2 months time course. This indicates that K-Ras pathway 

have been adequately activated (supported by p-ERK and p-Akt staining and data not shown 

here) and accelerates tumorigenesis at this stage. After 4 months post 4-OHT treatment, the 

tumorigenesis was further accelerated in the T121;K-RasG12D brain. Cell clusters with very 

high cell density distributed as patchy pattern in the brain and there was solid tumor 

formation in some locations, possibly developed from those clusters. In contrast, tumor cells 

were equally distributed in T121 single mutation brain without big cluster of tumor cells.  

       In the previous studies, disruption of Rb pathway by T121 always resulted in increased 

levels of proliferation and apoptosis in several mouse models including astrocytoma (Xiao et 
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al., 2002;Simin et al., 2004;Hill et al., 2005a). To test if overactivated K-Ras pathway has 

impact on those two events related to T121, the levels of apoptosis and proliferation in the 

brains were examined. We compared proliferating cells and apoptotic cells with T121 

expressing cells, instead of total cells in the field. There was no obvious change in the level 

of proliferation (Fig. 25) despite the fact that K-Ras can signal to a mitogenic pathway (Pruitt 

and Der, 2001). This suggests that, in term of proliferation, K-RasG12D is upstream of Rb 

pathway, which controls the G1 to S transition in cell cycle, such that overactivated K-Ras 

pathway couldn’t further loosen the control of cell proliferation when T121 was expressed. 

Interestingly, there was some apoptosis in the T121;K-RasG12D brain, but the level is 

significantly decreased at about 42% compared with T121 brain (p=0.028). This indicates that 

K-RasG12D could signal to some anti-apoptotic pathway without completely blocking the 

apoptotic pathway of tumor cells. Thus, the partial inhibition of apoptosis by K-RasG12D, 

could be one of the reasons contributing to the higher cellularity in the T121;K-RasG12D brain. 

It is also possible that the transformed tumor cells in the T121;K-RasG12D brain obtain the 

ability to growth independently of T121 or both T121 and K-RasG12D that also could contribute 

to the progression of tumorigenesis. 

Contribution of Pten-/- to further GBM evolution 

       Necrosis, a hallmark feature of GBM, was not present in tumors with combined 

mutations of T121 and K-RasG12D.  Necrosis appears in most human GBM cases although it is 

not a criterion for the diagnosis of GBM (WHO). Interestingly, in this study, when Pten+/- or 

Pten-/- mutation was added to the mutations of T121 and K-RasG12D, not only angiogenesis but 

also necrosis, especially with pseudopallisading cells around the necrotic center, were 

exhibited in tumors (Fig. 22b). Few studies have addressed the relationship of gene mutations 
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with GBM morphologies and this is the first direct evidence showing that Pten loss is related 

to the necrotic center formation. However, whether the disruptions of Rb and overactivated 

K-Ras pathway were required for the function of Pten in necrosis is not known. VEGF levels 

are usually up-regulated in the progression of astrocytoma and are dramatically high in the 

necrotic regions in human GBM due to the angiogenic response caused by hypoxic stress 

(WHO). A similar feature was observed in this model as VEGF in-situ experiment indicated 

a high level of VEGF mRNA surrounding the necrotic center (Fig. 23g).  

       Histologically, the tumor cells were more glial-like in a more loose structure in the 

T121;K-RasG12D ;Pten-/-  than in T121;K-RasG12D  background; this was also found in some area 

in the T121;K-RasG12D ;Pten+/- background possibly due to some transition of genetic 

mutations occurred in this background. Same as the tumors developed in the T121;K-RasG12D 

background, marker studies in these groups of tumor also suggested that they belong to 

GBMs (Fig. 23a-c).  

       When Pten+/- was added to the combined mutations of T121 and K-RasG12D, majority mice 

developed solid brain tumors in the front brain with median survival time of 4.3 months, 

which is close to that of T121;K-RasG12D mice(Fig. 21c). However, when Pten alleles were 

lost, the median onset of tumors was accelerated from 4.73 months to 2.17 months (Fig. 24, 

21c). Mice died from brain tumor or other causes (Fig. 21), when solid brain tumors were 

sorted out, there were significant accelerations of tumorigenesis in T121;K-RasG12D ;Pten+/- 

(T50=4.01 months) and T121;K-RasG12D ;Pten-/- (T50=1.13 months) backgrounds compared 

with T121;K-RasG12D ;Pten+/+  background (T50=4.83 months) (p <0.05 in both cases, T test) 

(Fig. 21d).  
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       Examination of the histology showed that a higher cellularity was observed in T121;K-

RasG12D ;Pten-/-  mice than in T121 and T121;K-RasG12D mice two weeks post 4-OHT 

injection/treatment (Fig. 24), suggesting Pten’s involvement in the early stages of 

tumorigenesis. 2 months after 4-OHT injection, cellularity further increased in T121;K-

RasG12D ;Pten-/- mice, where either a big tumor mass or pre-tumor nodule was observed, while 

similar lesions appeared about 4 months post 4-OHT treatment in T121;K-RasG12D mice. The 

analysis of proliferation and apoptosis showed that apoptosis level was further decreased in 

the T121;K-RasG12D ;Pten-/- mice compared with T121;K-RasG12D mice. These results indicate 

that the Pten pathway is not completely overlapped with K-Ras pathway and is important for 

the tumor progression.   
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Figure 18. Schematic illustration of the strategy to induce oncogenic events in adult 

astrocytes.  

Multiple oncogenic events were inducible by using three conditional mouse strains (upper 

panel), including GFAP-floxed stop-T121 (TgGZT121), floxed stop K-RasG12D knock-in (K-

Ras+/lslG12D) and floxed exon4/exon5 Pten knock out (Pten+/fl). Triangles represent loxP sites 

and “stop” with arrows point to stop signals in the genes. In TgGZT121 conditional transgenic 

allele, T121 expression is under the control of GFAP promoter when stop signals were 

removed by the recombination of loxP sites by Cre. In K-Ras+/lslG12D allele, K-RasG12D mutant 

expression is under the control of K-Ras endogenous promoter when Cre removed floxed-

stop. Cre mediated expression of Exons 4 and 5 resulted in loss of a stable Pten protein. To 

temporally induce the oncogenic events, GFAP-CreER was used, in which Cre activity was 

activated by IP injections of 4-OHT. A Cre recombinase would induce recombination, thus 

causing adult astrocytes to harbor three separate mutations: expression of T121, constitutively 

activated K-Ras, and loss of one Pten allele (lower panel).  
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Figure 19. Recombination of loxP sites after 4-OHT treatment.  

DNA was extracted from paraffin sections from T121;K-RasG12D mouse brain two months 

after 4-OHT treatment. PCR analysis shows that stop elements in GZT121 transgenic and K-

RasG12D knock-in alleles were deleted after 4-OHT injection/exposure. The positive control 

for T121 was from tail DNA of a GdZT121 mouse that had a broader deletion of stop element. 

The positive control for K-RasG12D was from a tumor developed in K-RasG12D;GFAP-Cre 

mouse. Negative controls were from a wild type mouse.  
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Figure 20. Induction of oncogenic events in adult astrocytes. 

Paraffin brain sections from mouse culled two weeks post-4OHT injections were used for 

IHC analysis to confirm induction of T121 and K-Ras pathway in astrocytes. T121 staining 

shows indistinctive positive stain (brown with blue counter staining) level and pattern in 

T121;KrasG12D (b) and T121 (c) brains. In the brain without 4-OHT treatment, T121 is not 

expressed (a). T121 expression is specific to astrocytes as shown by double staining of GFAP 

/T121 (d-g) and GFAP/S100 (h-k). GFAP and S100 staining is in green and T121 staining is in 

red. DAPi staining for nuclei is blue. p-ERK, a downstream signal of K-Ras, was activated in 

cortex of T121;KrasG12D and T121 (l-m), With a similar level (m). However, there is no 

expression of p-ERK in the cortex in controls including K-RasG12D (m). The insets provide 

further detail; the cellular shapes and relationships to adjacent neurons are all consistent with 

the immunopositive cells being astrocytes.  

Wt: wild type; R: K-RasG12D; T: T121 

 

 

 

 

 



 100

 

 

 

 

 

 

 

 

 

p-ERK Positive Cells

T
otal N

um
ber in 

C
ortex

0

2
4
6
8
10
12 

  Wt       R         T        T,R 

10µm 

200µm 

a b c

l 

d e f g

kji 

m

h 

50µm 



 101

Figure 21. Incidence and onset time of tumors in different genetic background.  

Death events in different cohort of mice were summarized by Kaplan-Meier survival curves. 

The times in the curves are months after 4-OHT injections. Individual mouse was indicated 

as dot in different color according to the tumor type. Tumors are including brain tumor mass 

(BM, red dot), skin tumor mass (SM, yellow dot), thymus lymphoma (TL, green dot). The 

dead causes of portion of mice are not determined (ND, dot in blue) or sac for old age (small 

point in flat line). In cohorts of the single mutation of T121 (mean live time is 16.57 months, 

n=7) or K-RasG12D (T50=12.27 months, n=11), no solid brain tumor mass was observed 

though there were skin tumor and thymus lymphoma in portion of mice with K-RasG12D 

mutation (A). Survival of combined mutations of T121 and K-RasG12D (T50=4.73 months, 

n=11) was shown in red line (B); genotypes with T121
+/-; K-Ras+/G12D; Pten+/- (T50=4.3 

months, n=13) and T121
+/-; K-Ras+/G12D; Pten-/- (T50=2.17 months, n=10) were shown in 

purple and gold lines (C). When only brain tumors were sorted out, there was obvious 

acceleration of tumorigenesis in T121
+/-; K-Ras+/G12D; Pten-/- (T50=1.13 months, n=2) 

compared with T121
+/-; K-Ras+/G12D; Pten+/- (T50=4.01 months, n=6) and T121

+/- and K-

Ras+/G12D (T50=4.83 months, n=8).  
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Figure 22. Progression of astrocytoma in different genetic backgrounds.  

4a, H&E staining showed increased cellularity in the T121 brain (bottom panel) about one 

year post 4-OHT treatment, compared with normal control (top panel). Note the diffuse 

infiltration of the cerebral cortex by anaplastic-appearing astrocytoma cells.  

4b, solid tumor masses developed in T121;K-RasG12D brains; these tumors displayed extensive 

vascular development in the form of an extensive vasculature, but no necrosis was observed.  

When Pten loss was added to those mutations, solid tumors featuring both angiogenesis and 

necrosis developed. Black arrows and "N" designate foci of necrosis. Tumor cells were 

poorly differentiated with the combined T121 and K-RasG12D mutations. While when Pten+/- or 

Pten-/- mutation was added to T121 and K-RasG12D mutations, some tumor cells had a more 

glial appearance, with more visible eosinophilic cytoplasm and some background fibrillarity,  
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Figure 23. Solid tumor mass featuring characteristics of human GBM. 

a-c: Representative immunohistochemistry demonstrating the glial nature of the tumors: 

GFAP shows conspicuous staining of cell cytoplasm, including perikarya and processes (a); 

nestin is expressed (b); tumor cells are negative for synaptophysin (c).  

d, macroscopic picture of a solid tumor (red arrow) in the frontal lobe (control on left; 

T121;K-RasG12D;Pten+/- on right). The red color of the tumor shows considerable vascularity. 

e-f, panel e is MRA image of a brain tumor located in the brain stem/cerebellum of a  T121,K-

RasG12D mouse. Red arrow points to the tumor as shown by white area in the T1 MRA image. 

Solid tumors are highly vascular as exemplified by the 3D view of vessel distributions out 

(blue) of and inside (red, gold, yellow, and cyan lines) the tumor bulb (f).  

g-h: Necrosis, including with perinecrotic palisades of tumor cells, was a common feature 

(left panel, highlighted by blue dash line) in tumors from T121;K-RasG12D;Pten+/- or T121;K-

RasG12D;Pten-/- mice. VEGF expression, as shown by in-situ hybridization, was upregulated 

in the palisading cells around necrotic foci, as is seen in human glioblastomas. 
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Figure 24. Contribution of different genetic changes to the astrocytoma progression. 

H&E staining of brain sections from mice 2 weeks, 2 months and 4 months post-4-OHT 

treatment were used for time course analysis (a.). In image a, panels from left to right are the 

representative brains of controls, T121, T121;K-RasG12D , and T121;K-RasG12D;Pten-/-. All 

images were from similar fields in the cortex of brain. Controls include GFAP-CreER treated 

with 4-OHT or T121;K-RasG12D treated with vehicle. Brains in K-RasG12D mice were similar to 

controls (data not shown). There was slight increased cellularity (green arrows) in T121 and 

T121;K-RasG12D mice two weeks after 4-OHT treatment. The cellularity in T121;K-

RasG12D;Pten-/- is higher than T121 or T121;K-RasG12D at 2 weeks and 2 months post-4-OHT. 

Red arrows point to perineuronal satellitosis and blue arrows points to perivascular 

satellitosis.  
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Figure 25. Contribution of different genetic changes to proliferation and apoptosis. 

Quantification of proliferating cells and apoptotic cells versus T121 expressing cells are from 

mice 2 months after 4-OHT treatment. Related apoptosis and proliferation data of 2 weeks 

were similar between T121 and T121;K-RasG12D (data not shown here). When T121;K-RasG12D 

brains were compared with T121 brains, proliferation rates increased about 22% (P value 

=0.395). Apoptosis was significantly decreased by 42%  (P value=0.028). Three mice were 

used to generate each bar.  When T121;K-RasG12D;Pten-/- brain was compared with T121;K-

RasG12D brain, proliferation rate increased about 10%, but this is not statistical significant 

(p=0.5422). Apoptosis level was greatly decreased about 40% and it is statistical significantly 

(p=0.074).  

T=T121; R=K-RasG12D; P=Pten; Wt=wild type.  
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Discussions 

Evade developmental defects by adulthood induction of tumor genes 

       In currently available astrocytoma models, the GFAP promoter is largely used to direct 

gene mutations in astrocytes either by straight transgenic technique or conditional induction 

mediated by GFAP-Cre. However, GFAP expresses as early as E11.5 in the radial glial cells, 

which are neural stem cells and can differentiate into both astrocytes and neurons. Thus, it is 

not known if the neuronal population is affected and also subjected to tumorigenesis using 

this strategy. Although neuronal differentiation was observed in some models (Zhu et al 

2005; Zhang et al unpublished), it is not know that if they were differentiated from neural 

precursors or if they were transformed from neuroblasts. In addition, mouse models 

generated using direct GFAP regulation always have brain defects unrelated to tumor 

formation, such as retarded growth, hydrocephalus and expanded population in the SVZ 

(Weissenberger et al., 1997; Ding et al., 2001; Xiao et al., 2002). These phenotypes were 

possibly caused by the interruption of brain development due to the early induction of 

oncogenic events. As a result, those mice usually are not suitable to cross with other 

genetically mutated mice.  

       In this study, we adopted a new strategy to circumvent developmental defects by using a 

GFAP-CreER mouse. Here, the recombinase function of the CreER chimeric protein is 

controlled by IP injection of 4-OHT. Thus, we were able to temporally induce the oncogenic 

events by injection of  4-OHT at about 3 months old. At this stage, the brain is developed and 

most cells are mature except for a very small portion of neural precursors. Compared with the 

early induction of T121  from embryonic stage, there was no developmental defect of brain, 

such as hydrocephalus and no abnormal population in the sub ventricular zone (SVZ). Thus, 
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this system has proved an applicable strategy to evade early induction of tumor genes. 

Furthermore, this strategy can introduce multiple genetic mutations at the same time without 

the early death caused by the developmental defects.  

       In the adult stage, except for mature astrocytes, GFAP also expresses in the neural stem 

cells that are a small population residing in the sub-ventricular zone. In this model, tumor 

masses developed in multiple locations, including frontal brain, brain stem, thalamus and 

optical nerve. And pre-tumor nodule can be identified anywhere in the brain. All of this 

suggests majority of tumors, if not all, evolved from mature astrocytes.  

Multiple mutations are needed for the GBM formation and progression 

       Genetic studies indicate that the evolution of GBM involves more than one genetic 

mutation based on the fact that multiple mutations coexist in same GBMs (Kleihues and 

Cavenee, 2000). Recent work with genetically engineered mouse models suggests that one 

mutation is not sufficient for GBM formation (Kleihues and Cavenee, 2000). The scenario 

could be each mutation contributes to certain features of tumor, especially for the progression 

of low grade to high-grade astrocytoma in secondary GBMs. Thus, it is intriguing to know 

how various genetic mutations contribute to tumor evolution. 

       Time course analysis of tumorigenesis shows abnormal cell clusters were observed 2 

weeks after 4-OHT introduction in the brain with T121 mutation alone (Fig. 20a-c, 24).  This 

suggests that disruption of the Rb pathway can initiate tumorigenesis, ruling out other 

possibilities such as foregoing mutations are required to initiate tumorigenesis. Other than 

Rbf inactivation, neither K-Ras mutation not Pten loss can initiate tumorigenesis of 

astrocytes, which was consistent with previous reports ((Hermanson et al., 1992); (Ichimura 

et al., 1998); (Huang et al., 1996).  In another astrocytoma mouse model, overexpression of 
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mutant H-Ras led to different grades of astrocytoma dependent on dose. The possible reasons 

could be: in this system, mutant K-Ras was under the control of its endogenous promoter, 

which was not turned on in normal brains; or, if there was expression, mutant K-Ras caused 

cell cycle arrest instead of cell proliferation (reference).  

       However, interestingly, tumorigenesis was greatly accelerated when mutant K-Ras was 

added to pRbf inactivation. At two months post 4-OHT treatment, peri-nuclear and peri-

vascular satellitetosis were present which is indicative of a grade III astrocytoma. Most 

strikingly, at about 4 months post 4-OHT treatment, solid tumors with GBM characteristics 

developed. Mutant K-Ras seems to be critical for the formation of a solid tumor, because 

diffusive astrocytoma developed in both T121 and T121; Pten-/- background without 

progression to a solid tumor. One of the key factors for solid tumor formation could be 

angiogenesis, as indicated by previous studies, which show that Ras pathways contribute to 

new vessel formation in the solid tumors (Miyakawa et al., 2000).  

       Necrosis and angiogenesis are two hallmark features of human GBM. However, necrosis 

was not observed in the solid tumor with mutations of T121;K-RasG12D. Surprisingly, when 

Pten+/- or Pten-/- was added to combined mutations of T121 and K-RasG12D, necrosis 

surrounded with pseudopallisading cells was a typical phenotype. The difference cannot be 

attributable to the mouse stain effects, since they are in similar backgrounds (see method). 

Although, Pten loss is likely responsible for the necrosis phenotype, it is not known that if 

this correlation needs to be in the context of T121 or/and K-RasG12D mutations. In earlier 

reports, it is suggested that Ras and Akt pathways collaborate to the necrogenesis, in a way 

that Ras promotes the cell death, which is achieved through necrosis due to the blockage of 

apoptosis by Akt. This is possible, since Pten loss did contribute to the reduced apoptosis in 
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this system and in our earlier report (Fig. 25; Xiao et al., 2006). However, conclusion could 

not been made since necrosis was also observed in the T121;K-RasG12D;Pten+/- background, in 

which the general level of apoptosis is relatively higher than  inT121;K-RasG12D;Pten-/- 

background (data not shown). It is not clear if local LOH of Pten occurs in the necrotic 

regions. Although the exact mechanism is not known yet, Pten’s involvement in the 

necrogenesis could have significant implication for the clinic, since necrosis is correlated to 

worse prognosis of patients. 

Preclinical uses of the model 

       Since conventional treatments have little effect on the outcome of malignant glioma 

patients, it is particularly intriguing to use applicable targeted molecular therapies. The model 

generated in this study mimicked the most common genetic mutations in human glioblastoma 

and in turn, mice developed brain tumors with human GBM features. Thus, it offers a very 

promising system for preclinical drug testing, particularly targeted molecular therapies. 

Multiple pathways can be tested based on the availability of inhibitors, such as RTK-Ras 

pathway and Pten-Akt pathway. In recent reports, it is suggested that inhibitors that 

counteract both EGFR overexpression and Pten loss could result in a positive response of 

patients (Mellinghoff et al., 2005). Our mouse model offers a system, in which the 

underlying mechanism can be explored. We also showed the value of MRA studies to 

monitor tumor growth and malignancy based on the vessel turtuosity (Fig. 23e-f) (Watanabe 

et al., 1997).  
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Materials and methods 

Experimental mice. GZT121 conditional transgenic mice were maintained by crossing to 

BDF1 mice (Xiao et al, 2002). K-RasG12D conditional knock-in mice (Jackson et al, 2001), 

Ptenf/f (Suzuki A. et al, 2001) and GFAP-CreERTM (McCarthy K, unpublished) mice were 

maintained by crossing to B6 mice. The mice with the genotypes of GZT121, K-RasG12D, and 

GFAP-CreERTM were at about 83.6% B6 and 12.5% D2 background. The mice with the 

genotypes of GZT121, K-RasG12D, Ptenf/f and GFAP-CreER were at about 90% B6 and 6% D2 

background. 

4-OHT treatments. 4-OH Tamoxifen (Sigma) was suspended in 100% ethanol, then mixed 

with sunflower oil for a final concentration of 1mg 4-OHT per 100ul. 4-OHT was dissolved 

in 10% ethanol/90% sunflower oil by ultrasound sonification for 5-10 minutes until mixed 

solution was clear. An intraperiton injection of the fresh solution was administered to 3 

months old mice 1mg per day for 5 consecutive days.  

Histopathology. Mice were dissected at about 2 weeks, 2 months and the terminal stage or 

13months~18months after 4-OHT treatment. Brains including olfactory bulb were removed 

and fixed in 10% formalin for 20-24 hours before transferred to 70% ethanol. Brains were 

embedded in paraffin and sectioned with a sagittal orientation at 5um. Hematoxylin and eosin 

staining were performed as described previously in Chapter 2. 

Immunodetection. Paraffin sections were used for immunohistochemistry staining as 

described (Chen et al, 1992). For antigen retrieval, slides were either boiled in citrate buffer 

(pH 6.0) for 10 minutes or treated by proteinase K 5-15 minutes. For IHC staining, mouse 

anti-SV40 T antigen (N-terminal-specific monoclonal Ab2, 1:300 for single staining and 

1:100 for double staining, Oncogene, Cambridge, MA) was used; goat anti-Ki67 (1:1500, 
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polyclonal M-19, Santa Cruz Biotechnology, Santa Cruz, CA) was used; rabbit anti-GFAP 

(1:500, Z0334, DAKO,) was used; rabbit anti-S100 (1:100, Z0311, DAKO) was used; rabbit 

anti-Synaptophysin (1:50, A0010, DAKO) was used; rabbit anti-phospho-Akt Ser 473 (1:50, 

9277, Cell signaling) and rabbit anti-phospho-Erk1,2Thr202/Tyr204 (1:50, 9101, Cell signaling) 

were used. To detect the substrate conjugated to secondary antibody, Vector’s ABC elite kit 

and Vector’s RovaRED kit was used.  

Paraffin sections were used for immunofluorescence double staining. After deparaffinized, 

rehydrated and antigen retrieval, brain sections were blocked with 5% goat serum in 

PBS/0.05% Tween 20 first, then incubated with first primary antibody. Sections were washed 

with PBS/T and blocked with 5% goat serum again before incubated with second primary 

antibody. Sections were incubated with ALEXA FLUOR 488 goat anti-rabbit and ALEXA 

FLUOR 543 goat anti-mouse secondary antibody (1:200 for each) at 4oC for 45 minutes. 

After wash, sections were counter stained and mounted with vector’s VectaShield Hardset 

with DAPI. 

PCR for the deletion of stop elements. To prepare DNA, cells were scratched from 5um 

paraffin embedded, formalin fixed brain sections. The cells were incubated in 30ul of 

solution A (25mM NaOH/0.2mM EDTA) at 68°C 24h. Then 30ul of solution B (40mM Tris-

HCl) was added. The mixed solution was vortexed and centrifuged 10 minutes at 2000rpm. 

For PCR testing the deletion of LoxP sites in the T121 transgenic allele, primers were 5’ – 

TGA TCA GAA CCA TCA TG – 3’ and 5’ – GTT GAC CAG AGT GGC GTA GG – 3’. 

PCR condition was 94 oC 5’; 94 oC 1’, 55 oC 1’, 72 oC 1’ 35 cycles.  For PCR testing the 

deletion of LoxP sites in the K-RasG12D knock-in allele, primers were 5’ – GGG TAG GTG 

TTG GGA TAG CTG – 3’ and 5’ – TCC GAA TTC AGT GAC TAC AGA TGT ACA GAG 
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– 3’. PCR condition was 98 oC 5’; 98 oC 30’’, 58 oC 30’’, 72 oC 30’’ 35 cycles. DNA samples 

were collected from brain paraffin sections about 2 months after 4-OHT treatment. Primer 

sets detected the fragments after recombination of loxP sites.  

Apoptosis assay. To test the apoptosis level, two weeks post-4-OHT, two months post-4-

OHT and terminal tumor paraffin sections were used. Apoptotic cells were labeled by 

modifying genomic DNA utilizing terminal deoxynucleotidyl transferase (TdT) (TUNEL 

assay) using ApopTag In Situ Apoptosis Detection Kits (Intergen Company). 

Quantification of cells. Five random fields in same area of brain for each sample were taken 

for cell quantification. For two months brain analysis, adjacent sections were used for Ki67 

staining, T121 staining and tunel assay. Cell numbers were counted using Image J program 

(NIH).  

 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER FIVE 

EGFR PATHWAY ACTIVATION IN THE INDUCIBLE GBM MOUSE MODELS 

AND FUTURE DIRECTIONS 

 
Chapter 4 reports the generation of a highly penetrant (100%) inducible model of human 

glioblastoma (GBM) in genetically engineered mice (GEM). Since, to our knowledge, this 

model is the first fully penetrant and regulatable spontaneous model of GBM, we propose to 

develop it to use in preclinical testing. Therapy using EGFR inhibitors has been proven 

effective in human cancers including GBMs. However, the role of EGFR in human GBMs is 

not clear. Although previous studies have established a signal transduction pathway from 

EGFR to Ras, it has also been reported that EGFR responds to signals from Ras in cancers, 

possible due to the activation of EGFR ligands. To test the latter possibility, we examine 

EGFR signal activation by Ras. In addition, the impact of EGFR loss will be directly tested 

in this model by breeding mice to a conditional EGFR knock out. If the results prove the 

involvement of EGFR in GBM formation in this system, we will test EGFR inhibitors for 

GBM treatment. These results will be confirmed using a Magnetic Resonance Angiography 

(MRA) vessel analysis technique. At the same time, this model potentially has multiple other 

uses in mechanistic studies and therapeutic tests. 
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Introduction 

       Chapter 4 has described the development of an inducible GEM mouse model of human 

glioblastoma by targeting common mutations observed in human cases, including disruption 

of Rb pathway, activation of K-Ras and Pten loss. This model is very promising for further 

uses in mechanistic studies and therapeutic tests since it is highly penetrant, inducible, and 

similar to human GBM in regard to genetic changes and morphologies. EGFR is an 

intriguing target based on two aspects of this receptor. First, EGFR is frequently mutated in 

human GBMs and this mutation is associated with an abnormal Ras pathway (Guha et al., 

1997;Kleihues and Cavenee 2000), however, how they interact with each other in GBMs is 

not clear. Though EGFR signaling to Ras is a well-established pathway, it has also been 

suggested that EGFR is not necessarily upstream of Ras in their associations in oncogenic 

functions (Dlugosz et al., 1997). In contrast, Ras is able to signal to EGFR by inducing the 

secretion of EGFR ligands (Gangarosa et al., 1997). A recent study showed that EGFR 

promotes cell survival independent of Ras, but this effect was required for oncogenic 

transformation by Ras signals in skin tumors (Wagner EF et al., 2000), suggesting Ras is 

upstream of EGFR and/or there is parallel cooperation of the two molecules. This model can 

be used to test the multiple possibilities for interaction between EGFR and Ras. Second, 

clinical trails using EGFR inhibitors have proven their limited benefits in treatment of several 

human cancers, including glioblastoma (Mellinghoff et al., 2005). If it is proven that the 

EGFR pathway contributes to GBM formation in our system, we will test EGFR inhibitors in 

this model.  

       EGFR is a cell membrane protein containing an extracellular ligand binding domain, a 

transmembrane domain and an intracellular tyrosine kinase domain with multiple 
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phosphorylation sites in the C-terminal tail (Singh and Harris, 2005). Upon binding to 

extracellular ligands, EGFR activates its kinase, which phosphorylates EGFR itself and other 

downstream signals. In this model, the activation of EGFR to Stat3 (signal transducer and 

activator of transcription 3), one of its downstream targets, was identified. At the same time, 

direct involvement of EGFR in GBM formation was tested by crossing the T121;K-

RasG12D;CreER mice to  floxed EGFR knock out mice. This chapter will describe some 

preliminary data about EGFR pathway activation in our GEM, and the future uses of this 

model.  

 

Results 

EGFR activation after induction of T121 and K-RasG12D by 4-OHT 

       To test if the EGFR pathway is activated in astrocytes after the induction of oncogenic 

events, EGFR expression was examined in astrocytoma cells by performing EGFR staining 

by immunohistochemistry (IHC). Positive staining was observed in the tumor cells of mice 

with the genotype of T121;K-RasG12D two months after 4-hydroxy-tamoxifen (4-OHT) 

treatment (Fig. 26). EGFR levels were much lower in T121 only tumor cells, which received 

the same treatment. The staining pattern observed in the brain of a mouse with K-RasG12D 

mutation only was similar to the control (Fig. 26 A-F). Since EGFR was not expressed in 

normal astrocytes, the presence of positive staining in tumor cells suggests that its presence is 

related to oncogenic events, specifically K-RasG12D activation. EGFR expression could 

possibly be related to the microenvironment, as EGFR was not expressed in a tumor located 

in the brain stem, but was expressed at high levels in a tumor from the frontal brain (Fig. 

26G-J).  
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       Since EGFR was expressed in tumor cells, it is interesting to know if EGFR was 

activated acutely after 4-OHT treatment. Thus, a western blot was performed using 

antibodies to phosphorylated EGFR (p-EGFR) for multiple sites, including tyrosine 845, 992 

and 1045 (Fig. 27). To test the acute effect caused by K-RasG12D or T121, brains were 

collected two weeks after 4-OHT treatment. Levels of p-EGFR (Tyr 992) and (Tyr 1068) 

were found increased in both T121 and T121;K-RasG12D brains. However, no obvious 

difference in p-EGFR levels was observed between T121 and T121;K-RasG12D brains, 

suggesting the increase in EGFR levels is caused by T121 but not K-RasG12D at this stage. This 

result is consistent with previous observations that K-RasG12D has no apparent effect on the 

early stages of tumorigenesis as addressed in Chapter 4.  

       Then the activations of downstream targets of EGFR were tested, including Ras/ERK, 

PI3K/Akt as well as STATS pathways (Jorissen et al., 2003). Since ERK or Akt pathway is 

also downstream of Ras activation independent of EGFR (Campbell and Der, 2004), STATS 

activation was used as an indicator of EGFR pathway activation. The acute activation of p-

STAT3 (Fig. 28A), but not p-STAT5 (data not shown), was observed in T121 and T121;K-

RasG12D brains two weeks after 4-OHT treatment. Similar to the findings for p-EGFR, no 

obvious difference was observed between T121 and T121;K-RasG12D brains at this stage. Two 

months after 4-OHT treatment, the overall level of p-STAT3 was too low to examine by 

IHC. The level of p-STAT3 was higher in T121;K-RasG12D than in T121 (Fig. 28B-C), but since 

the number of tumor cells also increased, the association of K-RasG12D with p-STAT3 level is 

inconclusive. In the solid tumor, p-STAT3 was highly activated as indicated by the 

abundance of IHC staining (Fig. 28D).  
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       To test if activated K-Ras pathway affected the expression of ligands, quantitative RT-

PCR was performed to examine their mRNA level (Fig. 29). EGFR has seven ligands: 

epidermal growth factor (EGF), heparin-binding EGF-like growth factor (HB-EGF), 

amphiregulin (Areg), transforming growth factor-a (TGFa), epiregulin (Epgn), and 

betacellulin (Btc) (Harris et al., 2003). Neuregulin-1 (Nrg1), which is a ligand of EGFR 

family members including Erb2, Erb3 and Erb4 (Falls, 2003), was also tested since it is 

expressed in glial cells and associated gliomas (Raabe et al., 1998;Westphal et al., 1997; 

Ritch et al., 2003). There was no significant change in most ligands, except for HB-Egf, 

which was decreased about 30% in both T121 and T121;K-RasG12D brains. Interestingly, the 

levels of Nrg1 were about 3.5 fold higher (p=0.0392) than the control in T121 brain and 1.3 

fold (p=0.182) higher than the control in T121;K-RasG12D brain.  
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Figure 26. EGFR expression after induction of oncogenic events. 

Total EGFR levels were tested by IHC staining of brain sections from mice with various 

genotypes taken 2 months (B-F) after 4-OHT treatment and in solid tumors (G-J) which 

developed in T121; K-RasG12D;GFAP-CreER. Some tumors were immunoreactive to EGFR (G 

and H) and some tumors were not (I and J).  

Arrows point to the positive brown staining of EGFR. The blue color is counter staining 

using hematoxylin. A is a brain section of T121; K-RasG12D;GFAP-CreER without EGFR 

antibody treatment, used as a control for staining.   

Scale bar in A-F is 100µm. Scale bars of panels G-J are as listed. 
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Figure 27. Activation of EGFR by phosphorylation in multiple sites shortly after 4-

OHT treatment. 

Levels of total and phosphorylated EGFR were tested by western immunoblot using a brain 

lysate prepared from mice with various geneotypes taken 2 weeks after 4-OHT injection (A) 

using EGFR and p-EGFR antibodies (phosphorylated sites in: 845, 992, and 1045). Western 

immunoblotting to GAPDH, a housekeeping gene, was used as a control for equal loading of 

proteins. Increased levels of p-EGFR are emphasized by red dashed-line box. This result was 

confirmed by several repeated experiments using different animals.  
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Figure 28. Activation of p-Stat3 in the short and long term after 4-OHT induction. 

p-Stat3 level was tested by western immunoblot with brain lysates taken from mice 2 weeks 

after 4-OHT injection (A) using a p-Stat 3 antibody (phosphorylated in sites:Tyr705). The 

GAPDH western blot is used as a control for equal loading of proteins. p-Stat3 IHC staining 

was performed on brain sections from mice sacrified 2 months after 4-OHT treatment (B,C) 

and from a solid tumor (D). Weak staining is seen in the tumor cells expressing T121. (B) 

Staining is slightly stronger in T121;K-RasG12D tumor cells (C). Staining is much stronger in 

the solid tumors as represented by panel D.  Positive control is 293 cells with EGF treatment 

and negative control is 293 cells without EGF treatment. Scale bar in B-D is 100um.  
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Figure 29. Acute activation of the EGF receptor family ligands. 

 The levels of ligands of EGFR and Nrg1, the latter being the ligand of Erb2, were tested in 

brains from mice taken two weeks after 4-OHT treatment by quantitative RT-PCR. The 

control bar was normalized to 1 and the other bars are relative values of experimental 

samples compared to the control (function: 2-(∆∆G)). Three mice in each genotype were used 

to generate data. Control was from GFAP-CreER and T121;K-RasG12D;GFAP-CreER oil 

treated mice. *: p<0.001, **: p<0.05, and ***: p<0.01 
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Discussions 

       Our preliminary data suggest that the EGFR pathway is activated in the brain after 

combined mutations of T121 and K-RasG12D or T121 only. However, in brains from mice taken 

two weeks after 4-OHT treatment, the level of EGFR pathway activation was the same 

between T121 and K-Ras+/G12D;T121, suggesting the changes were caused by T121 instead of K-

Ras+/G12D in early stages. The scenario could be that T121 is upstream of K-RasG12D, and 

signals through EGFR to activate K-RasG12D; or T121 activates K-RasG12D directly and 

thereafter activates EGFR, which is less likely due to the fact that levels of EGFR activation 

in T121 and K-Ras+/G12D;T121 brains are the same. Alternatively the K-Ras pathway was not 

completely activated two weeks post 4-OHT treatment, based on the indistinguishable 

morphology between T121 and T121;K-Ras+/G12D brains. An analysis of a later stage will be 

more informative. Since no increased level of EGFR ligands was found in early stages, it will 

be interesting to elucidate the variation in ligands after K-RasG12D is fully activated (if this is 

indeed the case). Thus, more experiments are needed to address the role of K-Ras mutation in 

the regulation of the EGFR pathway. 

       Some T121;K-Ras+/G12D mice have been crossed to EGFRf/f mice but they have not been 

fully characterized. Preliminary data indicates that the absence of EGFR did not reduce 

tumorigenesis dramatically. In a cohort of mice with T121;K-Ras+/G12D;EGFRf/+, solid tumors 

were observed within 5 months. However, the tumors were much smaller than those found in 

T121;K-Ras+/G12D mice. Moreover, the most frequent location of tumors in T121;K-

Ras+/G12D;EGFRf/+ mice was in the cerebellum instead of in the frontal brain as in T121;K-

Ras+/G12D mice. The onset of tumor formation was usually about 5 months after 4-OHT 

treatment in T121;K-Ras+/G12D;EGFRf/+ mice, which is a little longer than in T121;K-Ras+/G12D 
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mice. Because of difference in genetic backgrounds of mice (T121;K-Ras+/G12D is about 86% 

B6 and T121;K-Ras+/G12D;EGFRf/+ is about 21% B6, 3% D2 and 75% unknown),  the timing 

of tumor formation could be caused by these differences in background strains. For T121;K-

Ras+/G12D;EGFRf/f mice, a collection of samples and their analysis are under way. Two of 

these mice have died from thymic lymphoma in about 4 months, and the cellularity of the 

brains was similar to that of T121;K-Ras+/G12D, but without a big tumor mass. It is possible 

that EGFR affects tumorigenesis at a later stage, and that this affects the formation of the 

tumor. More mice have been induced with 4-OHT to initiated tumorigenesis and it will be 

interesting to discover if EGFR will reduce or delay tumorigenesis.  

       In this model, if EGFR proves to be involved in tumorigenesis, EGFR inhibitors will be 

tested to assess their benefit for GBM treatment. Since mono-therapy using EGFR inhibitors 

has limited benefits to GBM patients (Rich et al., 2004;Mellinghoff et al., 2005), combined 

therapy of EGFR inhibitors and other treatments could improve the patient responses. Recent 

clinical trials have reported that the positive impact of EGFR inhibitor on GBM patients is 

dependent on the presence of both the EGFR mutation (EGFRvIII) and Pten expression 

(Mellinghoff et al., 2005). Our model provides a good system to test the hypothesis that 

blockage of both EGFR and Pten pathways is critical for response to treatment, since these 

two pathways are interrupted in this system. Because tumors developed both with and 

without Pten loss, in this model can be used to study how EGFR inhibitors contribute to the 

response of GBM with/without Pten. If EGFR has been proven not to be involved in 

tumorigenesis in this system, we then can use inhibitors of other components in the Ras 

pathway, such as raf inhibitors, and do further studies. Overall, this model mimics multiple 
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common mutations in human GBMs, thus offering several target sites for either drug testing 

or mechanistic studies. 

 

Materials and methods 

Immunohistochemistry. A detailed procedure of immunohistochemistry is described in 

Chapter 2. Antibodies used were anti-EGFR (1:50, rabbit polyclonal, Cell Signaling), p-Stat3 

(1:50, rabbit polyclonal, Cell Signaling). Slides were treated by citrate buffer (pH 6.0) for 

antigen retrieval.  

Western immunoblotting. Brains were harvested from mice 2 weeks after 4-OHT injection. 

Brain tissue was homogenized in lysis buffer at 4oC. The lysed tissue was rotated for 30 

minutes in the cold room, spun at 13,000rpm for 10min. Extracted proteins were heated at 

95-100oC for 5 minutes and then loaded on a SDS-PAGE gel (7.5% or 4-20% gradient ready 

gel, Bio-Rad). Samples were electrophoresed  at 100v for 30-60 minutes, and electro-

transferred onto nitrocellulose membrane. The membrane was washed with PBS buffer and 

incubated in blocking buffer (5% milk in PBS-T) for 1 hour. After three washes with PBS-T 

buffer, the membrane was incubated with primary antibody diluted in 5% BSA/PBS-T buffer 

with gentle agitation overnight at 4oC. After three washes with PBS-T buffer, membrane was 

incubated with HRP-conjugated secondary antibody (1:2000) with gentle agitation at room 

temperature for 1 hour. After three washes with PBS-T buffer, the membrane was incubated 

with ECL detection reagent for 1 minute, and then exposed to X-ray film. The antibodies 

used here were anti-EGFR (1:1000, rabbit polyclonal, Cell Signaling), anti-pEGFR845 

(1:1000, rabbit polyclonal, Cell Signaling), anti-pEGFR992 (1:1000, rabbit polyclonal, Cell 

Signaling), anti-pEGFR1068 (1:1000, rabbit polyclonal, Cell signaling), anti-pStat3 (1:1000, 
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rabbit polyclonal, Cell Signaling) and anti-GAPDH (1:1000, rabbit polyclonal, Novus 

Biologicals). 

Real time RT-PCR. To isolate RNA, liquid N2 cooled brain tissue was powered in a cooled 

homogenize. The tissue was transferred to Tri-reagent for 10 minutes until tissue was 

dissolved. 100µl of BCP was added to the tissue, and the mixture was vortexed and kept at 

room temperature for 15 minutes. The mixture was spun at 14,000 rpm at 4oC for 15 minutes 

and 500µl of isopropanol was added. After through mixing, the solution was kept at room 

temperature for 15 minutes and spun again. Precipitate was washed 3 times with 70% ice-

cold ethanol. 40µl of Rnase free water was added and incubated at 56oC for better dissolving. 

The concentration of RNA was measured and diluted to 0.21µg/µl. Running an agarose gel 

checked the quality of RNA. For reverse transcription, 9.5µl RNA was added to the RT 

master mix solution (Invitrogen) and incubated at 37oC for 1 hour. The reaction was stopped 

at 95oC for 2 minutes and 80µl of water was added to the reaction. To perform real time 

PCR, 20 ul of the RT reaction (10µl ABSolute QPCR ROX mix (AB gene), 1µl 20x primer 

mix (Τaqman PCR, Applied Biosystems), 5ul H2O and 4 ul cDNA), was prepared in 384-

well plate and run in the 7900 real time PCR machine (Applied Biosystems).  
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