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ABSTRACT
Max-stable Processes for Threshold Exceedances in Spatial Extremes

(Under the direction of Richard L. Smith)

The analysis of spatial extremes requires the joint modeling of a spatial process

at a large number of stations. Multivariate extreme value theory can be used to

model the joint extremal behavior of environmental data such as precipitation, snow

depths or daily temperatures. Max-stable processes are the natural generalization

of extremal dependence structures to infinite dimensions arising from the extension

of multivariate extreme value theory. However, there have been few works on the

threshold approach of max-stable processes.

Padoan, Ribatet and Sisson [2010] proposed the maximum composite likelihood

approach for fitting max-stable processes to avoid the complexity and unavailability

of the multivariate density function. We propose the threshold version of max-stable

process estimation and we apply the pairwise composite likelihood method to it.

We assume a strict form of condition, so called the second-order regular variation

condition, for the distribution satisfying the domain of attraction. To obtain the limit

behavior, we also consider the increasing domain structure with stochastic sampling

design based on the setting and conditions in Lahiri [2003] and we then establish

consistency and asymptotic normality of the estimator for dependence parameter in

the threshold method of max-stable processes. The method is studied by simulation

and illustrated by the application of temperature data in North Carolina, United

States.
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5.5 Composite MLE’s for Ẑ generated from Schlather model . . . . . . . . 61

5.6 Fitting max-stable processes for exceedances of daily temperature . . 63

5.7 Summary of the marginal analysis with u = .62738 . . . . . . . . . . . . 63

5.8 Pairs of site with short distance and independence . . . . . . . . . . . . 66

5.9 Pairs of site with long distance and dependence . . . . . . . . . . . . . 66

viii



Chapter 1

Introduction

Extreme value theory and its application are dealing with related methodologies to

understand phenomena of rare events such as flooding, high temperatures and precip-

itations in environmental data. It is well known and widely publicized that extreme

temperatures are relevant to the problem of sudden deaths from heatwaves and also,

extreme levels of air pollution have strong influence on human health outcomes. Ex-

treme environmental data involve in these statistical issues that have arisen in the

study of human health and the application of extreme value analysis can be used to

analyze the problems.

The behavior of rare events requires understanding of the tail distribution of

quantity of interest. Extreme value theory has been studied for the univariate case in

which extremes are observed as a single variable, during a few decades since Fisher

and Tippett [1928] and Leadbetter, Lindgren and Rootzén [1983]. Smith [2003] and

Beirlant et al. [2004] provides statistical methods in the analysis of extremes, and

Coles [2001] is a very useful reference with the introduction of modeling and appli-

cations of extreme values. Multivariate extreme value theory has been developed

to build the modeling of joint extremal behavior. Resnick [1987] reviewed relevant

theories in the view of probability and measure theory for multivariate extremes. In

a spatial context, a single quantity (e.g., sea level) is measured at multiple locations

and the observed data are spatial variables which are distributed across the earth’s



surface. Therefore one ultimately requires the modeling of spatial extremes, and a

spatial dependence among the different locations is of interest. Cooley et al. [2012]

introduces several references which dealt with issues of spatial extremes.

It is natural to consider a stochastic process when the sample maxima are ob-

served at each site of a spatial process. Max-stable processes have been developed

as a class of stochastic processes suitable for studying spatial extremes. The first

general characterization of max-stable processes was by de Haan [1984], and Smith

[1990] has constructed a special case of max-stable processes which provides the useful

interpretation of extreme rainfall models. Statistical techniques based on the Smith’s

max-stable model have been developed by Coles [1993] and Coles and Tawn [1996]

and the well-known classes of max-stable processes are discussed further by Schlather

[2002] and Kabluchko, Schlather and de Haan [2009].

Due to the complexity and unavailability of the full likelihood for the max-stable

model, Padoan, Ribatet and Sisson [2010] developed the maximum composite like-

lihood approach to fit max-stable processes. However, the research on max-stable

processes with exceedances over threshold has hardly been considered.

In this thesis, we are concerned with the development of a threshold approach us-

ing max-stable processes in spatial extremes. We review the background of extreme

value theory, max-stable processes and spatial dependence measure in Chapter 2. In

Chapter 3 we introduce our methodology to model exceedances over threshold using

max-stable processes. Chapter 4 develops a theoretical framework and asymptotic

properties, which are illustrated with a simulation study. In Chapter 5 the proposed

approach is applied to the analysis of temperatures in North Carolina, and the con-

clusion and discussion are drawn in Chapter 6.
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Chapter 2

Background

2.1 Extreme Value Theory

In this section, we outline the background of univariate extreme sequences of indepen-

dent and identically distributed (i.i.d.) random variables. Univariate extreme value

theory can be extended to multivariate extremes. Fundamental theory and practice

of univariate and multivariate extremes have been well-established.

Let X1,⋯,Xn be i.i.d. random variables with the same probability distribution F

and let Mn = max(X1,⋯,Xn) be the maximum. If Mn converges under renormaliza-

tion to some nondegenerate limit, then the limit must be a member of the parametric

family, i.e. there exist suitable normalizing constants an > 0, bn and the distribution

G̃ such that

P{Mn − bn
an

≤ x} = F n(anx + bn)Ð→ G̃(x), as n→∞ (2.1)

where G̃ is a nondegenerate distribution function. The distribution functions G̃ which

are possible limit laws for maxima of i.i.d. sequences form the class of so-called max-

stable distributions. It is said that a nondegenerate function G̃ is max-stable if, there

are constants AN > 0 and BN such that G̃N(x) = G̃(ANx +BN) for each N = 2,3,⋯.

Every max-stable distribution G̃ has one of the following three parametric forms,



called three Extreme Value Distributions (EVD).

Type I (Gumbel): G̃(x) = exp(−e−x), −∞ < x <∞;

Type II (Fréchet): G̃(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x ≤ 0,

exp(−x−α), x > 0, α > 0;

Type III (Weibull): G̃(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

exp (−(−x)α), x ≤ 0, α > 0,

1, x > 0.

The Three Types Theorem was originally stated by Fisher and Tippett [1928] and

derived rigorously by Gnedenko [1943]. Leadbetter, Lindgren and Rootzén [1983]

showed that a distribution function is max-stable if and only if it is of the same type

as one of the three extreme value distributions listed.

The three types of EVD can be represented as G combining into a single para-

metric family distribution, which is called the Generalized Extreme Value (GEV)

distribution:

G(x;µ,ψ, ξ) = exp{ − (1 + ξ x − µ
σ
)
−1/ξ

+
},

where y+ = max(0, y), µ is a location parameter, σ > 0 is a scale parameter and ξ

is a shape parameter which determines the tail behavior. The Generalized Extreme

Value distribution G has a max-stable property: if X1,⋯,XN are i.i.d. from G, then

max(X1,⋯,XN) also has the same distribution, i.e.

GN(x) = G(ANx +BN) for existing constants AN > 0,BN .

The form of the limiting distribution is invariant under monotonic transformation.

Therefore, without loss of generality we can transform the GEV distribution into a
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specific form and consider the Fréchet form for convenience:

P{X ≤ x} = exp(−x−α), x > 0

where α > 0. The case α = 1 is called unit Fréchet. For our current application, we

use the GEV distribution transformed into the unit Fréchet distribution,

P

⎧⎪⎪⎨⎪⎪⎩
(1 + ξMn − µ

σ
)
1/ξ

+
≤ z
⎫⎪⎪⎬⎪⎪⎭
= P (Z ≤ z) = exp(−1/z), z > 0,

and note that the unit Fréchet form is a distribution which has the max-stable prop-

erty.

Multivariate extreme value theory is concerned with the joint distribution of ex-

tremes of two or more random variables. Suppose we have i.i.d. observations from a

K-dimensional random vector (Xi1,⋯,XiK), i = 1,2,⋯, and let Mn = (Mn1,⋯,MnK)

denote theK-dimensional vector of componentwise maxima,Mnk =max(X1k,⋯,Xnk),

k = 1,⋯,K. A limit distribution for Mn is said to exist if there exist ank > 0 and bnk

for k = 1,⋯,K such that

lim
n→∞

P{Mn1 − bn1
an1

≤ x1,⋯,
MnK − bnK

anK
≤ xK} = G(x1,⋯, xK). (2.2)

Then G is a multivariate extreme value distribution and if (2.2) holds, then G is

max-stable if there exist ANk > 0 and BNk, k = 1,⋯,K, for any N > 1 such that

GN(x1,⋯, xK) = G(AN1x1 +BN1,⋯,ANKxK +BNK).

If G is a multivariate EVD, the marginal distribution must be represented by the

GEV distribution and each marginal GEV distribution can be transformed into unit

Fréchet margin, which has the max-stable property.

The finite-dimensional framework of multivariate extreme distribution is extended
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to an infinite-dimensional generalization with spatial processes. The infinite-dimensional

extremes has quite analogous extension to the theory of max-stable random vector.

Let S be a study region and denote s as a location in the study region. If there

exist normalizing sequences an(s) and bn(s) for all s ∈ S such that the sequence of

stochastic processes

max
i=1,⋯,n

Xi(s) − bn(s)
an(s)

DÐ→ Y (s) (2.3)

where Y (s) is non-degenerate for all s, then the limit process Y (s) is a max-stable

process. A finite sample {Y (s1),⋯, Y (sD)} can be concerned as a realization of a

spatial process Y (s) for more realistic setting.

2.2 Dependence of Spatial Extremes: Extremal Coefficient

In the analysis of spatial extremes, one can be interested with measuring spatial

dependence among locations. Quantifying spatial dependence has been studied in

the field of geostatistics and one of metrics is the variogram which is typically used

in the geostatistics. Let Y (s) be a stationary stochastic process and suppose

Var[Y (s) − Y (s′)] = 2γ(s − s′) for all s, s′ ∈ S.

The quantity 2γ(⋅), so-called variogram, depends on the increments s − s′ and γ(⋅)

has been called semivariogram which determines the degree of spatial dependence of

Y (⋅) (see Matheron [1987] and Cressie [1993]). However the (semi-)variogram is an

inadequate tool to analyze spatial dependence of extreme data, since the traditional

geostatistics does not deal with the tail distribution.

In this section, we focus on another metric, extremal coefficient, to characterize

the tail dependence. Suppose a d-dimensional random variable X has the common

marginal distributions F (x). The extremal coefficient θd can be defined by the relation

Pr{max(X1,⋯,Xd) ≤ x} = F θd(x).

6



Assuming the standard form of unit Fréchet distribution on each margin, we can

characterize the dependence among the components of marginal distribution inde-

pendently. Let Z be d-dimensional maxima with unit Fréchet margins and whose

multivariate extreme value distribution is expressed as

Pr{Z1 ≤ z1,⋯, Zd ≤ zd} = exp{−V (z1,⋯, zd)}, (2.4)

where the exponent measure V is a homogeneous function of order −1. Due to the

homogeneity of V , the extremal dependence can be measured by V which implies

complete dependence if V (z1,⋯, zd) =max ( 1
z1
,⋯, 1

zd
),

complete independence if V (z1,⋯, zd) = 1
z1
+⋯ + 1

zd
.

The relationship between the extremal coefficient θd and the exponent measure V is

drawn from

Pr{Z1 ≤ z,⋯, Zd ≤ z} = exp( −
θd
z
), (2.5)

θd = V (1,⋯,1)

where 1 ≤ θd ≤ d with the lower and upper bounds corresponding to complete depen-

dence and complete independence, respectively.

We consider a pairwise extremal coefficient as a special case of (2.5) in the spatial

domain. Let Y (s) be a spatial process with unit Fréchet margin for all s ∈ S and then

extremal dependence between different sites s and s′ is obtained by,

Pr{Y (s) ≤ y, Y (s′) ≤ y} = exp( − θ(s − s
′)

y
).

7



A naive estimator of the pairwise extremal coefficient is proposed by Smith [1990];

θ̂(s − s′) = n

∑ni=1min{Yi(s)−1, Yi(s′)−1}
.

Schlather and Tawn [2003] investigated theoretical properties of the extremal coef-

ficients and proposed self-consistent estimators of θ (i.e. estimators that satisfy the

properties of extremal coefficients) for the multivariate and spatial case.

2.3 Max-stable Processes

2.3.1 Models of Max-stable Processes

Now consider the max-stable processes as an infinite dimensional generalization of

extreme value theory. Suppose X(s), s ∈ S is a stochastic process, where S ⊆ Rd is an

arbitrary index set. We can interpret X(⋅) as a spatial process with an appropriate

generalization of (2.2) as following: for each n ≥ 1, there exist continuous functions

an(s) positive and bn(s) real, for s ∈ S such that

Prn{
X(sj) − bn(sj)

an(sj)
≤ x(sj), j = 1,⋯,K}Ð→ Gs1,⋯,sK(x(s1),⋯, x(sK)). (2.6)

Then Gs1,⋯,sK is a multivariate extreme value distribution and the limiting process

is max-stable if (2.6) holds for all possible subsets s1,⋯, sK ∈ S. Note that this is

equivalent to the expression in equation (2.3).

We are interested in modeling and estimation using max-stable processes for ex-

tremes observed at each site of a spatial process. A general representation of max-

stable processes was first given by de Haan [1984]. The conceptual idea of max-stable

processes can be constructed by two components: a stochastic process {W (s)} and a

Poisson process Π with intensity dζ/ζ2 on (0,∞). If {Wi(s)}i∈N is independent copies

of W (s) with E[W (s)] = 1 for all s and ζi ∈ Π, i ≥ 1, is points of the Poisson process,

8



then

Y (s) =max
i≥1

ζiWi(s), s ∈ S

is a max-stable process with unit Fréchet margins. The joint distribution function for

max-stable processes is given as

P (Y (s) ≤ y(s), s ∈ S) = exp( −E[ sup
s∈S
{W (s)
y(s)

}]), (2.7)

or practically, it can be rewritten to the equivalent equation (2.4) on the set {s1,⋯, sD} ⊂

S, where

V (y1,⋯, yD) = E[ sup
d=1,⋯,D

{W (sd)
y(sd)

}]. (2.8)

The construction of different max-stable processes can be differentiated from different

choices of the W (s) process and the well-known classes of max-stable processes are

discussed by Smith [1990], Schlather [2002] and Kabluchko, Schlather and de Haan

[2009].

The Smith Model

Smith [1990] proposed new max-stable stochastic processes under the following con-

struction. Let {(ζi, si), i ≥ 1} denote the points of a Poisson process on (0,∞) × Rd

with intensity measure ζ−2dζds. Define a non-negative function {f(x)} on Rd such

that ∫ f(x)dx = 1 and

Y (s) =max
i≥1

ζif(s − si).

Then a max-stable process Y (⋅) can be obtained with unit Fréchet margins. The

Smith’s max-stable process proposed a useful interpretation for modeling of rainfall-

storms. Rainfall amounts can be measured by observing the shape of a storm centered

at location si as f , and the magnitude of the storm as ζi. Then the max-stable process

Y (s) represents maximum rainfal amounts taking over all storms for each site in S.

9



Smith considered a specific setting, so-called a Gaussian extreme value process,

where f(x) = (2π)−d∣Σ∣−1/2 exp ( − 1
2x

TΣ−1x) is a multivariate normal density with

covariance matrix Σ. Then the joint distribution at two sites is obtained in a closed

form,

P(Y (s1) ≤ y1, Y (s2) ≤ y2)

= exp
⎧⎪⎪⎨⎪⎪⎩
− 1

y1
Φ
⎛
⎝
a

2
+ 1

a
log

y2
y1

⎞
⎠
− 1

y2
Φ
⎛
⎝
a

2
+ 1

a
log

y1
y2

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
(2.9)

where a =
√
(s1 − s2)TΣ−1(s1 − s2) and Φ is the standard normal cumulative distri-

bution function. The positive value a represents the spatial dependence according to

the distance between two sites. The limits a → 0 and a →∞ correspond to complete

dependence and independence, respectively. One may write out the pairwise extremal

coefficients explicitly as

θ(h) = 2Φ
⎛
⎝

√
(s1 − s2)TΣ−1(s1 − s2)

2

⎞
⎠

where h is the Euclidean distance, ∥s1 − s2∥, between two stations. Realizations of

the Gaussian extreme value process are shown in Figure 2.1.

The Schlather Model

More recently, Schlather [2002] suggested a new class of max-stable processes based

on a stationary random field with finite expectation. Let Wi(s), i = 1,2,⋯ be i.i.d.

stochastic processes on Rd, and let µ = E[max(0,Wi(s))] <∞ and {ζi, i ≥ 1} denote

the points of a Poisson process on (0,∞) with intensity measure µ−1ζ−2dζ. Then a

stationary max-stable process with unit Fréchet margins can be obtained by:

Y (s) =max
i≥1

ζimax(0,Wi(s))

10
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(b) σ11 = σ22 = 9/8 and σ12 = 1

Figure 2.1: Realization of the Smith model with different covariance matrices from
SpatialExtremes R package

where the Wi are i.i.d. copies of W (s) for all i. The max-stable process provides

a more flexible class of max-stable processes by taking a stationary random process

Wi(s) and it also gives the interpretation of spatial storm modeling. The spatial

rainfall events are explained by the structure of spatial dependence but this process

represents more general case than Smith’s model. The shape of storms is deterministic

with f(⋅) in Smith’s model while the storms may have a random shape in Schlather’s

model.

Schlather specified a model for a stationary Gaussian random process. LetWi be a

stationary Gaussian random field with unit variance, correlation ρ(⋅) and µ−1 =
√
2π,

then the process Y (s) is called as an extremal Gaussian process and the bivariate

marginal distributions are given explicitly by

P(Y (s1) ≤ y1, Y (s2) ≤ y2)

= exp
⎧⎪⎪⎨⎪⎪⎩
− 1

2

⎛
⎝
1

y1
+ 1

y2

⎞
⎠
⎛
⎝
1 +
√

1 − 2(ρ(h) + 1) y1y2
(y1 + y2)2

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
(2.10)
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(a) sill=range=smooth=1 (b) sill=smooth=1 and range=1.5

Figure 2.2: Realization of the Schlather model with different correlation functions
from SpatialExtremes R package; (a) Whittle-Matérn correlation and (b) Powered
exponential correlation

where h is the Euclidean distance between station s1 and s2. The pairwise extremal

coefficient is obtained by

θ(h) = 1 + (1 − ρ(h)
2

)
1/2

.

Figure 2.2 shows the realizations of the extremal Gaussian process with different

correlation functions.

The Schlather model cannot attain the case of independence for extremes as the

distance h increases, since the extremal coefficient θ(h) is in the interval [1,1.838].

To overcome the problem, the process Wi(s) can be restricted to a random set B, i.e.,

Y (s) =max
i
ζiWi(s)IBi(s − Si)

where IB is the indicator function of a compact random set B ⊂ S and Si are the points

of a Poisson process. If Wi is a Gaussian process, the bivariate marginal distribution

12



is

P(Y (s1) ≤ y1, Y (s2) ≤ y2)

= exp
⎧⎪⎪⎨⎪⎪⎩
− ( 1

y1
+ 1

y2
)
⎡⎢⎢⎢⎢⎣
1 − α(h)

2

⎛
⎝
1 −
√

1 − 2(ρ(h) + 1) y1y2
(y1 + y2)2

⎞
⎠

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

where α(h) = E{∣B ∩ (h + B)∣}/E(∣B∣) ∈ [0,1]. One possible choice for the set B

is a disc of radius r and it leads to take α(h) ≐ {1 − ∣h∣/(2r)}+, which equals to

0 representing the independence of extremes in the case of ∣h∣ > 2r (see details in

Davison and Gholamrezaee [2012]). The extremal coefficient is

θ(h) = 2 − α(h){1 − (1 − ρ(h)
2

)
1/2

},

which accounts independent extremes by taking any value in the interval [1,2].

The Brown-Resnick Process

The original Brown-Resnick process was introduced with the Brownian motion for

max-stable process by Brown and Resnick [1977]. Kabluchko, Schlather and de Haan

[2009] has constructed a more general class of max-stable processes, so-called the

Brown-Resnick process, by replacing the Brownian motion by other stochastic pro-

cesses.

Kabluchko, Schlather and de Haan [2009] proposed the same basic structure

by Schlather but an alternative specification for the Wi processes. Let Wi(s) =

exp{ei(s) − 1
2σ

2(s)} where ei(s) is a Gaussian process with stationary increments,

assuming a weaker condition than second-order stationarity, and σ2(s) = V ar{e(s)}.

Then the process defined above can be a very general class of max-stable processes

and it takes advantage of the connection with standard geostatistics by allowing the

use of variogram. The bivariate CDF is the same with the Smith model where the

dependence parameter a2 = γ(h) and γ(⋅) is the variogram of e(⋅). The closed form of

13



the bivariate distributions for the Brown-Resnick process associated to the variogram

γ is given by

P(Y (s1) ≤ y1, Y (s2) ≤ y2)

= exp
⎧⎪⎪⎨⎪⎪⎩
− 1

y1
Φ
⎛
⎝

√
γ(h)
2
+ 1√

γ(h)
log

y2
y1

⎞
⎠
− 1

y2
Φ
⎛
⎝

√
γ(h)
2
+ 1√

γ(h)
log

y1
y2

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
(2.11)

where Φ is the standard normal distribution function and h is the Euclidean distance

between location s1 and s2. The pairwise extremal coefficients are given as

θ(h) = 2Φ
⎛
⎝

√
γ(h)
2

⎞
⎠
.

2.3.2 Fitting Max-stable Processes

We are interested with the analysis of spatial extremes at a large number of stations

and the standard methods of estimation, such as MLE and Bayes methods, require

a full likelihood. However the full likelihood for the max-stable processes may not

be available analytically, because there are difficulties to achieve the expression of

differentiation for the joint distribution function (2.7) and to calculate the exponent

measure (2.8) due to the complexity of its analytic form. With the lack of an explicit

form of the joint distribution, Padoan, Ribatet and Sisson [2010] developed a pair-

wise composite likelihood approach to fit max-stable processes, based on a composite

likelihood method by Lindsay [1988].

For a parametric statistical model with density function family {f(y;ψ) ∶ y ∈ Y ⊆

RK , ψ ∈ Ψ ⊆ Rd} and a set of marginal or conditional events {Ik ∶ k ∈ K} subset of

some sigma algebra on Y , the composite log-likelihood is defined by

lC(ψ;y) = ∑
k∈K

wk log f(y ∈ Ik;ψ),

where log f(y ∈ Ik;ψ) is the log-likelihood associated with event Ik and {wk}k∈K are

14



nonnegative weights.

A composite score function DψlC(ψ;y) is defined by first-order partial derivatives

of lC(ψ;y) with respect to ψ and then the maximum composite likelihood estimator

of ψ, if it is unique, is obtained by solving DψlC(ψ̂MCLE;y) = 0. Second-order par-

tial derivatives of the composite score function yield the Hessian matrix HψlC(ψ;y).

Under appropriate conditions based on Lindsay [1988] and Cox and Reid [2004], the

maximum composite likelihood estimator may have consistency and asymptotically

normality as

ψ̂MCLE ∼ N(ψ, Ĩ(ψ)−1) with Ĩ(ψ) =H(ψ)J(ψ)−1H(ψ),

where H(ψ) = E{−HψlC(ψ;Y)} is the expected second order derivatives of the score

function, and the covariance matrix of the score function is J(ψ) = V{DψlC(ψ;Y)},

which are analogues of the expected information matrix and the variance of the score

vector. The maximum composite likelihood estimator may not be asymptotically

efficient in that Ĩ(ψ)−1, the inverse of the Godambe information matrix, may not

attain the Cramér-Rao bound although it can be unbiased.

Pairwise Composite Likelihoods in Spatial Extremes

AssumeM i.i.d. replications of a stochastic process with bivariate densities f(yi, yj;ψ),

1 ≤ i, j ≤ K, in a spatial region with K locations. Then the pairwise composite log-

likelihood is defined by

lP(ψ;Y) =
M

∑
m=1

K−1
∑
i=1

K

∑
j=i+1

wij log f(ymi, ymj;ψ), (2.12)

where (i, j) is a pair of stations and wij is nonnegative weight functions. One may set

the weight as an indicator function, i.e., wij = 1 if ∥ s1−s2 ∥≤ δ, and 0 otherwise. The

maximum pairwise composite likelihood estimator (MCLE), ψ̂, is chosen to maximize

(2.12).
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Padoan, Ribatet and Sisson [2010] stated the asymptotic properties of MCLE

based on the joint estimation, which maximizes the pairwise composite likelihood

instead of the full likelihood. For the estimation, a pairwise composite log-likelihood

is constructed as the form (2.12) and we consider the bijection (Yi, Yj) = g(Zi, Zj),

where g is some monotonic increasing transformation to the unit Fréchet. Then by

change of variables, we represent the bivariate density over GEV margins as the form,

fYi,Yj(yi, yj) = fZi,Zj
[g−1(yi, yj)]∣J(yi, yj)∣,

where fZi,Zj
(zi, zj) denotes the joint density of max-stable processes and the deter-

minant of the Jacobian is given by

∣J(yi, yj)∣ =
1

σiσj
(1 + ξi(yi − µi)

σi
)
1/ξi−1

+
(1 +

ξj(yj − µj)
σj

)
1/ξj−1

+
.

GEV marginal parameters and the dependence parameters can be estimated in a uni-

fied framework by the change of variable technique. Variances of parameter estimates

are provided through the inverse of the Godambe information matrix, with estimates

of the matrices H(ψ) and J(ψ) given by

Ĥ(ψ̂MCLE) = −
M

∑
m=1

K−1
∑
i=1

K

∑
j=i+1

Hψ log f(ymi, ymj; ψ̂MCLE)

and

Ĵ(ψ̂MCLE) =
M

∑
m=1
{
K−1
∑
i=1

K

∑
j=i+1

Dψ log f(ymi, ymj; ψ̂MCLE)}×

{
K−1
∑
i=1

K

∑
j=i+1

Dψ log f(ymi, ymj; ψ̂MCLE)}
T

.

In practice, the matrix Ĥ is obtained through the numerical maximization routine

and the explicit form of Ĵ is also derived [Padoan, Ribatet and Sisson, 2010, Appendix

A.5].
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A general explicit expression of higher-order (p ≥ 3) maximum composite likeli-

hood has not been developed, but a closed form for triple-wise composite likelihood

function of a Gaussian extreme value process was derived by Genton, Ma and Sang

[2011] and the efficiency gain was obtained in inference of triplewise composite like-

lihood comparing with pairwise one in a spatial domain R2.
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Chapter 3

Threshold Approach of Max-stable

Processes

3.1 Introduction to Threshold Approach

Consider the distribution of all observations X over a high threshold u and let Y =

X − u > 0, then

Fu(y) = Pr{Y ≤ y∣Y > 0} =
F (u + y) − F (u)

1 − F (u)
.

As u → x0 = sup{x ∶ F (x) < 1}, we can find a limit H called Generalized Pareto

Distribution (GPD)

Fu(y) ≈H(y;σu, ξ) = 1 − (1 + ξ
y

σu
)
−1/ξ

+
. (3.1)

Smith [1987] described the bias versus variance tradeoff in the choice of threshold

u of univariate case. If the threshold u increases, the variance of estimators will be

high due to small N (number of exceedances) while the estimates are biased due to

the poor approximation of Fu(⋅) by H(⋅) if u is too small. Thus limit theorems on

the threshold approach in the literature are presented as N → ∞ and u ≡ uN → x0

simultaneously.



Pickands [1975] established the rigorous connection between the classical extreme

value theory and the generalized Pareto distribution and proved that the limit of the

form (3.1) exists if and only if there exist normalizing constants and the limiting form

of H such that the classical extreme value limit (2.1) holds. Thus the limit result for

exceedances over thresholds is equivalent to the limit distribution for maxima in this

sense.

As an another statistical approach for threshold exceedances, the Point Process

Approach is introduced by Smith [1989]. This approach considers a process based

on a two dimensional plot of exceedance times and exceedance values, which has

been developed from the point process viewpoints of extreme values by Leadbetter,

Lindgren and Rootzén [1983].

Under the proper normalization, the asymptotic theory of threshold exceedances

proved that the process behaves like a nonhomogeneous Poisson process. A nonho-

mogeneous Poisson process on a domain D is denoted by an intensity λ(x), x ∈ D,

such that if A is a measurable subset of D and N(A) is the number of points in A,

then N(A) has a Poisson distribution with mean

Λ(A) = ∫
A
λ(x)dx.

For the present application, we denote (Ti, Yi) as the time of the ith exceedance of

the threshold and the observed excess value Yi > u, then the probability of observing

an exceedance in an infinitesimal region t < Ti < t + dt, y < Yi < y + dy can be written

as

1

σ
(1 + ξ y − µ

σ
)
−1/ξ−1

+
dydt, y > µ. (3.2)

To fit the model, if a nonhomogeneous process with intensity λ(t, y) is observed on a

domain D and if there are the N observed exceedances over u through a time interval
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of T units, then the likelihood associated with the events (Ti, Yi),1 ≤ i ≤ N , is

N

∏
i=1
λ(Ti, Yi) ⋅ exp{ − ∫

D
λ(t, y)dtdy}

=
N

∏
i=1
{ 1
σ
(1 + ξYi − µ

σ
)
−1/ξ−1

+
} ⋅ exp{ − T(1 + ξ u − µ

σ
)
−1/ξ

} (3.3)

and (3.3) is maximized with respect to unknown parameters (µ,σ, ξ).

For the inhomogeneous case the parameters µ, σ and ξ are all allowed to be

time-dependent, denoted by µt, σt and ξt. Thus (3.2) is extended by the form

1

σt
(1 + ξt

y − µt
σt
)
−1/ξt−1

+
dydt, y > µt.

and if we also allow the threshold ut to depend on time t, the likelihood associated

with (3.3) is now

∏
i

{ 1

σTi
(1 + ξTi

Yi − µTi
σTi

)
−1/ξTi−1

+
} ⋅ exp{ − ∫

T

0
(1 + ξt

ut − µt
σt
)
−1/ξt

dt}.

3.2 Methodology for Exceedances over Threshold

As in the univariate case, the threshold method has been developed in the multivariate

case as well. Let (x0, y0) denote the upper endpoint of F , where (x0, y0) = sup{(x, y) ∶

F (x, y) < 1}, and define the conditional distribution of (X − u,Y − v) given X > u or

Y > v,

Fu,v(x, y) =
F (u + x, v + y) − F (u, v)

1 − F (u, v)
. (3.4)

Then the conditional distribution of bivariate exceedances converges to H where H

is a multivariate generalized Pareto distribution by Rootzén and Tajvidi [2006].

In this dissertation we develop an alternative methodology for threshold exceedances

using max-stable processes with unit Frechét margins. We suggest the modeling of

the bivariate threshold exceedances by assuming that the asymptotic distribution
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holds exactly above a threshold and it leads to a simplified dependence structure for

max-stable processes as we characterize the dependence among the components of

bivariate marginal distribution in (2.9), (2.10) and (2.11).

The likelihood representation for this threshold method is also developed to fit the

model and this has a similar idea by Smith, Tawn and Coles [1997] which establishes

a joint distribution for Markov chains where the bivariate distributions were assumed

to be of bivariate extreme value distribution form above a threshold.

Suppose we have annual maxima {Yt∗s, t∗ = 1,⋯, T ∗, s = 1,⋯,D} where Yt∗s is the

value at site s in year t∗. We assume the vectors {Yt∗s} are independent for different

t∗ with joint densities given by a max-stable process, i.e., an explicit expression for its

bivariate joint distribution is known and the marginal distributions are unit Fréchet

for each t∗ and s. Then the joint bivariate distribution of the annual maxima, FAM

is written by

FAM(yt∗s, yt∗s′ ; θ) = Pr{Yt∗s ≤ yt∗s, Yt∗s′ ≤ yt∗s′ ; θ},

where θ is the dependence parameter which can be estimated by the max-stable model.

Now suppose that the daily data are {Xts, t = 1,⋯, T, s = 1,⋯,D} and the joint

bivariate distribution function is FDA(xts, xts′ ; θ). Assume that the daily data Xts

form i.i.d. random processes and the annual maxima are Yt∗s. Then the relationship

between their bivariate distributions is

FDA(xts, xts′ ; θ) = Pr{Xts ≤ xts,Xts′ ≤ xts′ ; θ}

= FAM(xts, xts′ ; θ)1/M (3.5)

whereM is the number of days in a year. We can have a closed form for FAM from the

max-stable theory and also get an expression for FDA from the above representation.

In practice, we would expect to apply some notion of thresholding. Suppose

we fix the threshold u and we assume that the same threshold for all locations for
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convenience. Then we observe exceedances {Xts} such that Xts > u. Let δs = I(Xts >

u) where I is the indicator function. We can obtain the following joint distribution

of (δs,Xts, δs′ ,Xts′) from four possible regions by including or excluding the interval

over threshold u (see Figure 3.1),

Pr{δs = 0, δs′ = 0} = FDA(u,u)

Pr{δs = 1, δs′ = 0,Xts < xts} = FDA(xts, u)

Pr{δs = 0, δs′ = 1,Xts′ < xts′} = FDA(u,xts′)

Pr{δs = 1, δs′ = 1} = FDA(xts, xts′).

Figure 3.1: Likelihood contribution according to four possible restrictions

We extend the threshold version of max-stable processes and apply the maximum

composite likelihood method on it. The likelihood contribution of the pair (xts, xts′)

derived from the joint bivariate density can be obtained by

L(Xts,Xts′ ;θ,η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FDA(u,u) if xts ≤ u,xts′ ≤ u,
∂

∂xts
FDA(xts, u) if xts > u,xts′ ≤ u,

∂
∂xts′

FDA(u,xts′) if xts ≤ u,xts′ > u,
∂2

∂xts∂xts′
FDA(xts, xts′) if xts > u,xts′ > u.
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where θ is the dependence parameter vector and η is a vector of marginal GEV

parameter. Combining the above likelihood representation with a pairwise likelihood,

we assume T i.i.d. replications of a stochastic process with bivariate densities of the

unit Frechét margins L(Xts,Xts′ ;θ,η),1 ≤ s, s′ ≤ D. Then the pairwise composite

log-likelihood for a thresholded process is

l(θ,η) =
T

∑
t=1

D−1
∑
s=1

D

∑
s′=s+1

wss′ logL(Xts,Xts′ ;θ,η) =
T

∑
t=1
lt(θ,η) (3.6)

where lt(θ,η) = ∑D−1s=1 ∑Ds′=s+1wss′ logL(Xts,Xts′ ;θ,η0), (s, s′) is a pair of different

stations and T is a number of observations. In practice, the marginal parameter η

will be estimated but we let η be the true value η0 to simplify theoretical justification.

Thus we fix the marginal GEV parameters η = η0 and estimate the dependence

parameter θ. A dependence parameter θ can be estimated by maximizing the pairwise

composite likelihood function (3.6) with the known value η0.

Suppose X(t) = (Xts,Xts′) and denote the composite score functions by pairwise

log-likelihood derivatives as

D(θ;X(t)) = ∂lt(θ,η0)
∂θ

,

D(θ;X(1),⋯,X(T )) = Dθ0l(θ,η0;X
(1),⋯,X(T )) =

T

∑
t=1

D(θ;X(t)).

Then the estimating equations

D(θ̂;X(1),⋯,X(T )) = Dθl(θ̂,η0;X
(1),⋯,X(T )) = 0.

The parameter estimator θ̂ is a root to solve above estimating equations and we

now start to describe the theoretical framework with more strict conditions to obtain

asymptotic properties of the estimator in Chapter 4.
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Chapter 4

Asymptotic Behavior of Estimates

for Dependence Parameters

4.1 Theoretical Framework of Threshold Approach

Suppose that (Xi, Yi), i = 1,⋯, n, is a sequence of i.i.d. random vectors and F

be the common distribution of (Xi, Yi) with marginal distributions F1 and F2. A

distribution function F is said to be in the domain of attraction of a distribution

function G, shortly F ∈D(G), if

lim
n→∞

F n(anx + bn, cny + dn) = G(x, y), an, cn > 0 and bn, dn ∈ R (4.1)

for all x and y. The two marginals of G(x,∞) and G(∞, y) are one-dimensional

extreme value distributions satisfying

lim
n→∞

F n
1 (anx + bn) = exp{−(1 + ξ1x)−1/ξ1},

lim
n→∞

F n
2 (cny + dn) = exp{−(1 + ξ2y)−1/ξ2}

where ξ1 and ξ2 are real parameters.

Let (x0, y0) denote the upper endpoint of F (x, y) and the conditional distribution

of (X − u,Y − v) given X > u or Y > v is defined as in (3.4). The equation (4.1) by



taking logarithms can be expressed as

lim
t→∞

t{1 − F (atx + bt, cty + dt)} = − logG(x, y) =∶ Φ(x, y) (4.2)

and it is checked easily that (4.2) implies that

lim
t→∞

Fbt,dt(atx, cty) = limt→∞(1 −
t{1 − F (atx + bt, cty + dt)}

t{1 − F (bt, dt)}
)

= 1 − − logG(x, y)
− logG(0,0)

=∶H(x, y)

where H is a bivariate generalized Pareto distribution. It has been illustrated that

H is a good approximation of Fbt,dt in the sense that

lim
t→∞

sup
0<(atx,cty)<(x0−bt,y0−dt)

∣Fbt,dt(atx, cty) −H(x, y)∣ = 0,

if and only if F is in the maximum domain of attraction of the corresponding extreme

value distribution G (Rootzén and Tajvidi [2006]).

4.1.1 Second-order Regular Variation Condition

To obtain a limiting distribution of Fu,v we assume a strict form of condition, so

called the second-order regular variation condition, for the distribution satisfying the

domain of attraction. The ideas of second-order regular variation have been applied to

the statistics of extremes. Asymptotic properties of estimators in univariate extreme

value theory have been investigated with the second-order regular variation (see Smith

[1987], de Haan and Stadtmüller [1996], and Drees [1998]), and the second-order

regular variation condition was studied for bivariate extremes by de Haan and Ferreira

[2006].
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Definition 1. A function f(x) is regular varying with index τ1 if for some τ1 ∈ R,

lim
t→∞

f(tx)
f(t)

= xτ1 , x > 0.

The function f(x) is second-order regular varying with the first order τ1 and the

second order τ2 if there exists a function q(t)→ 0 as t→∞ such that

lim
t→∞

f(tx)
f(t) − xτ1

q(t)
= xτ2 , x > 0.

Just as in the univariate case, the representation of bivariate regular variation

exists: the function f(x, y) ∶ R2
+ → R+ is regular varying of index τ if

lim
t→∞

f(tx, ty)
f(t, t)

= r(x, y)

where r(λx,λy) = λτr(x, y) for some λ > 0. See Resnick [2007] for the related discus-

sion of multivariate regular variation.

Suppose that the following second-order regular variation condition holds (de Haan

and Ferreira [2006]): there exists a positive or negative function α with limt→∞ α(t) = 0

and a function Q not a multiple of Φ such that

lim
t→∞

t{1 − F (atx + bt, cty + dt)} −Φ(x, y)
α(t)

= Q(x, y) (4.3)

locally uniformly for (x, y) ∈ (0,∞] × (0,∞]. Define Ui as the inverse function of

1/(1 − Fi), i = 1,2 and it is known that for x, y > 0,

lim
t′→∞

U1(t′x) −U1(t′)
a(t′)

= x
γ1 − 1
γ1

,

lim
t′→∞

U2(t′y) −U2(t′)
c(t′)

= y
γ2 − 1
γ2

.

For t ≠ t′, define at, bt, ct and dt such that a(t′) ≡ at, U1(t′) ≡ bt, c(t′) ≡ ct, and
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U2(t′) ≡ dt respectively. Let

xt ∶=
U1(tx) − bt

at
,

yt ∶=
U2(ty) − dt

ct
,

and we could rewrite the form (4.2) as

lim
t→∞

t{1 − F (U1(tx), U2(ty))} = − logG(
xγ1 − 1
γ1

,
yγ2 − 1
γ2
) =∶ Φ0(x, y).

It follows the similar form of the second-order condition (4.3),

lim
t→∞

1−F(U1( x
1−F1(bt)

),U2( y
1−F2(dt)

))
1−F (bt,dt) − Φ0(x,y)

Φ0(1,1)

α( 1
1−F (bt,dt))

= Q(x
γ1 − 1
γ1

,
yγ2 − 1
γ2
). (4.4)

We can rewrite the condition (4.4) and the following second order condition holds for

Fbt,dt .

Condition 1. There exists a positive or negative function A(⋅) such that

Fbt,dt(atx, cty) =H(x, y) +A(t)Ψ(x, y) +Rt(x, y), for all t and x, y > 0 (4.5)

where either

(i) Ψ ≡ 0, A(t) = o(1) and Rt(x, y) = o(A(t)) as t→∞, or

(ii) Ψ is continuous and not a multiple of H, A(t) = o(1) and Rt(x, y) = o(A(t)) as

t→∞.

The second order regular variation condition implements the domain of attraction

condition as a special asymptotic expansion of the conditional distribution Fbt,dt near

infinity. The asymptotic behavior of tail distribution turns out to depend on how the

regular variation condition behaves.
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More precisely, suppose that (X,Y ) are i.i.d. from Fbt,dt , not from bivariate

generalized Pareto distribution H. We can determine a remainder A with the second-

order condition (ii) such that

sup
0<(atx,cty)<(x0−bt,y0−dt)

∣Fbt,dt(atx, cty) −H(x, y)∣ = O(A(t))

where A(t) → 0 as (bt, dt) → (x0, y0). In that case we expect that the remainder

function A will produce a bias in limit distribution.

Suppose N → ∞, (bt, dt) = (b(tN), d(tN)) → (x0, y0), and A(tN) = O( 1√
N
). Then

under some mild conditions, we obtain the limiting distribution of estimator θ̂ of a

dependence parameter,

√
N(θ̂ − θ0)

dÐ→ N(H−1b,H−1VH−1)

for some b where N−1E[−H(θ0)]→ H whose H is analogous of the Hessian matrix, and

N−1E[D(θ0)D(θ0)T ]→ V. If the second-order condition (i) holds and
√
NA(tN)→ 0,

then we will have b = 0 which implies no bias.

In order to obtain asymptotic properties for θ̂, we need to understand the behavior

of ED(θ0) given the second-order regular variation, where D is the score functions of

pairwise composite likelihood. The following defines the statement on how integrals

of the score functions behave corresponding to the second-order condition.

Proposition 1. Let gt(x, y) be any measurable function. Suppose Fbt,dt satisfies the

condition with (i) or (ii) with function A. Define fbt,dt =
d2Fbt,dt

dxdy , h(x, y) = d2H(x,y)
dxdy

and ψ(x, y) = d2Ψ(x,y)
dxdy . If

∣gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣ ≤K(x, y) (4.6)

28



which K(x, y) is integrable, then in case of (i)

∫
E
gt(x, y)dFbt,dt(atx, cty) = ∫

E
gt(x, y)dH(x, y) +O(A(t))

and in case of (ii)

∫
E
gt(x, y)dFbt,dt(atx, cty) = ∫

E
gt(x, y)dH(x, y) +A(t)∫

E
gt(x, y)dΨ(x, y) + o(A(t)).

Proof. As t→∞, we have to prove that

∫
(0,∞]2

gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}dxdy Ð→ 0.

and by dominated convergence theorem, it is sufficient to show that

∣gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣ ≤K(x, y).

where K(x, y) is an integrable function.

Let gt(x, y) be the score functions from the pairwise composite likelihood of a

max-stable process. Note that ∫ gt(x, y)dH(x, y) = 0 since gt(x, y) is the score func-

tion. Limit distribution of estimator for dependence parameter can be determined

by Condition 1 and Proposition 1 implies that condition (4.6) should be satisfied

for the limit behavior. We end this section with an example to demonstrate how

the proposition works. Here we focus on the example with a certain type of gt(x, y),

the score function obtained from the composite likelihood of Brown-Resnick process,

and we intend to show that the condition (4.6) holds assuming that F is a bivariate

normal distribution.

Example (bivariate normal distribution): Suppose that (X,Y ) are i.i.d. from

a bivariate normal distribution F with mean 0, variance 1 and correlation coefficient

ρ. First we would like to prove that bivariate normal distribution satisfies (4.5). We
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consider G in (4.1) as a bivariate extreme value distribution with Gumbel margins

and suppose the limiting form of bivariate normal G(x, y) = exp{−e−x − e−y} in the

case of the independence. A max-stable process with unit Fréchet margins will be

fitted and the transformations X ′ = logX and Y ′ = logY can be made from unit

Fréchet to Gumbel.

Mills ratio for a normal density implies that

1 −Φ(x)
ϕ(x)

∼ {1
x
− 1

x3
+ 1 ⋅ 3
x5
− 1 ⋅ 3 ⋅ 5

x7
+⋯},

P (X > x,Y > y)
ϕ(x, y)

∼ (1 − ρ2)2
(x − ρy)(y − ρx)

×

{1 − (1 − ρ2)( 1

(x − ρy)2
− ρ

(x − ρy)(y − ρx)
+ 1

(y − ρx)2
) +⋯}

(see Ruben [1964] for the bivariate normal density). From the fact that

1 − F (x, y) = 1 −Φ(x) + 1 −Φ(y) − P (X > x,Y > y),

we could set the lower bound and upper bound for 1−F (x,y)
ϕ(x,y) such that

(1 − F (x, y)
ϕ(x, y)

)
L

≤ 1 − F (x, y)
ϕ(x, y)

≤ (1 − F (x, y)
ϕ(x, y)

)
U

,

where (1 − F (x, y)
ϕ(x, y)

)
L

= 1

x
+ 1

y
− 1

x3
− 1

y3
− (1 − ρ2)2
(x − ρy)(y − ρx)

,

(1 − F (x, y)
ϕ(x, y)

)
U

= 1

x
+ 1

y
− (1 − ρ2)2
(x − ρy)(y − ρx)

+ (1 − ρ2)3
(x − ρy)(y − ρx)

×

( 1

(x − ρy)2
− ρ

(x − ρy)(y − ρx)
+ 1

(y − ρx)2
).

From the well-known results of extreme value theory, define bt by 1 − Φ(bt) = 1
t
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and at = 1/bt. Or we might set normalized constants

at =
1√

2 log t

bt =
√
2 log t −

1
2(log log t + log 4π)√

2 log t
.

Conditional distribution of exceedances over threshold is written as

Fbt,dt(atx, cty) = 1 −
t{1 − F (atx + bt, cty + dt)}

t{1 − F (bt, dt)}

and we now concentrate on 1−F (atx+bt,cty+dt)
1−F (bt,dt) ,

1 − F (atx + bt, cty + dt)
1 − F (bt, dt)

= 1 − F (atx + bt, cty + dt)
ϕ(atx + bt, cty + dt)

⋅ ϕ(bt, dt)
1 − F (bt, dt)

⋅ ϕ(atx + bt, cty + dt)
ϕ(bt, dt)

≥ { bt
x + b2t

+ dt
y + d2t

− b3t
(x + b2t )3

− b3t
(y + b2t )3

− (1 − ρ2)2b2t
(x − ρy + b2t (1 − ρ))(y − ρx + b2t (1 − ρ))

}

× { b4t

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

}ϕ(atx + bt, cty + dt)
ϕ(bt, dt)

∼ {2b
2
t − (1 + ρ)2bt − 2

b3t
}{ b4t

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

}ϕ(x/bt + bt, y/bt + bt)
ϕ(bt, bt)

and also,

1 − F (atx + bt, cty + dt)
1 − F (bt, dt)

≤ [ bt
x + b2t

+ dt
y + d2t

− (1 − ρ2)2b2t
(x − ρy + b2t (1 − ρ))(y − ρx + b2t (1 − ρ))

{1 − (1 − ρ2)×

( b2t

(x − ρy + b2t (1 − ρ))
2 +

b2t

(y − ρx + b2t (1 − ρ))
2

− ρb2t
(x − ρy + b2t (1 − ρ))(y − ρx + b2t (1 − ρ))

)}]( b3t
2b2t − (1 + ρ)2bt − 2

)

× ϕ(atx + bt, cty + dt)
ϕ(bt, dt)

∼ {
2b3t − (1 + ρ)2b2t +

(1+ρ)3(2−ρ)
1−ρ

b4t
}{ b3t

2b2t − (1 + ρ)2bt − 2
}ϕ(x/bt + bt, y/bt + bt)

ϕ(bt, bt)
.
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Thus

Fbt,dt(atx, cty) −H(x, y) = −
1 − F (atx + bt, cty + dt)

1 − F (bt, dt)
+ (e−x + e−y)

∼ { − 2b3t − (1 + ρ)2b2t − 2bt
2b3t − (1 + ρ)2b2t +

(1+ρ)3(2−ρ)
1−ρ

+ 1}{ϕ(x/bt + bt, y/bt + bt)
ϕ(bt, bt)

+ e−x + e−y}

and

− 2b3t − (1 + ρ)2b2t − 2bt
2b3t − (1 + ρ)2b2t +

(1+ρ)3(2−ρ)
1−ρ

+ 1 =
2bt + (1+ρ)

3(2−ρ)
1−ρ

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

.

We obtain the formation of (4.5)

lim
t→∞

Fbt,dt(atx, cty) −H(x, y)
A(t)

= Ψ(x, y)

where A(t) = 1
b2t
= 1

2 log t and Ψ(x, y) = exp{ − x+y
1+ρ} + e−x + e−y.

Next,

fbt,dt(atx, cty) =
atct

1 − F (bt, dt)
⋅ 1

2π
√
1 − ρ2

×

exp{ − (atx + bt)
2 + (cty + dt)2 − 2ρ(atx + bt)(cty + dt)

2(1 − ρ2)
}

= atct
ϕ(bt, dt)

1 − F (bt, dt)
⋅ ϕ(atx + bt, cty + dt)

ϕ(bt, dt)
≐ atct

ϕ(bt, dt)
1 − F (bt, dt)

⋅ Vt(x, y) (4.7)

where ϕ(x, y) is a bivariate normal density with correlation ρ.

ϕ(x,y)
1−F (x,y) as a factor of fbt,dt(atx, cty) in the equation (4.7) has the lower and upper

bounds that

( ϕ(x, y)
1 − F (x, y)

)
L

≤ ϕ(x, y)
1 − F (x, y)

≤ ( ϕ(x, y)
1 − F (x, y)

)
U

,
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where

( ϕ(x, y)
1 − F (x, y)

)
L

= {1
x
+ 1

y
− (1 − ρ2)2
(x − ρy)(y − ρx)

+ (1 − ρ2)3
(x − ρy)(y − ρx)

×

( 1

(x − ρy)2
− ρ

(x − ρy)(y − ρx)
+ 1

(y − ρx)2
)}
−1

,

( ϕ(x, y)
1 − F (x, y)

)
U

= {1
x
+ 1

y
− 1

x3
− 1

y3
− (1 − ρ2)2
(x − ρy)(y − ρx)

}
−1

.

Since fbt,dt(atx, cty) = atct
ϕ(bt,dt)

1−F (bt,dt) ⋅ Vt(x, y), using above normalized constants and

assuming bt = dt

atct(
ϕ(bt, dt)

1 − F (bt, dt)
)
L

= b2t

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

atct(
ϕ(bt, dt)

1 − F (bt, dt)
)
U

= bt
2b2t − (1 + ρ)2bt − 2

Vt(x, y) =
ϕ(x/bt + bt, y/bt + bt)

ϕ(bt, bt)
= exp{ − x

2 + y2 − 2ρxy
2(1 − ρ2)b2t

− x + y
1 + ρ

}.

Thus we could get the following form of bounds

fLbt,dt(atx, cty) =
b2t

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

ϕ(x/bt + bt, y/bt + bt)
ϕ(bt, bt)

fUbt,dt(atx, cty) =
bt

2b2t − (1 + ρ)2bt − 2
ϕ(x/bt + bt, y/bt + bt)

ϕ(bt, bt)
.

Meanwhile

h(x, y) = ∂
2H(x, y)
∂x∂y

= − 1

logG(0,0)
⋅ ∂2

∂x∂y
logG(x, y) = 0.
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Therefore

fbt,dt(atx, cty) − h(x, y) ≥ {fbt,dt(atx, cty) − h(x, y)}L

= b2t

2b3t − (1 + ρ)2b2t +
(1+ρ)3(2−ρ)

1−ρ

ϕ(x/bt + bt, y/bt + bt)
ϕ(bt, bt)

,

fbt,dt(atx, cty) − h(x, y) ≤ {fbt,dt(atx, cty) − h(x, y)}U

= bt
2b2t − (1 + ρ)2bt − 2

ϕ(x/bt + bt, y/bt + bt)
ϕ(bt, bt)

.

Define A(t) = 1
2 log t (A(t)→ 0 as t→∞) and ψ(x, y) = − ρ

2(1−ρ2) to satisfy the condition

(4.5). Then we could show that

fbt,dt(atx, cty) − h(x, y)
A(t)

− ψ(x, y) ≥
fbt,dt(atx, cty)L − h(x, y)

1/(2 log t)
− ψ(x, y)

∼ exp( − x + y
1 + ρ

){bt
2
exp( − a2t

x2 + y2 − 2ρxy
2(1 − ρ2)

) − 1

(1 + ρ)2
},

fbt,dt(atx, cty) − h(x, y)
A(t)

− ψ(x, y) ≤
fbt,dt(atx, cty)U − h(x, y)

1/(2 log t)
− ψ(x, y)

∼ exp( − x + y
1 + ρ

){bt
2
exp( − a2t

x2 + y2 − 2ρxy
2(1 − ρ2)

) − 1

(1 + ρ)2
}.

This limit for bounds of
fbt,dt−h
A(t) − ψ(x, y) will be used to prove that the product of a

function gt(x, y) and
fbt,dt−h
A(t) −ψ(x, y) is bounded by an integrable function as shown

in (4.6). Suppose that gt(x, y) = ∂
∂θ log fDA(x, y; θ) where fDA =

∂2FDA(x,y)
∂x∂y . Any max-

stable process can be fitted for modeling annual maxima of data and we can obtain

the score function by our threshold method with the composite likelihood approach.

We arbitrarily choose the Brown-Resnick process with Gumbel margins to obtain the

joint bivariate distribution of annual data, FAM , and a joint bivariate distribution of

daily data, FDA(x, y), is determined by the relation (3.5).

FAM(x, y; θ) = exp{B(x, y; θ)},
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where B(x, y; θ) = { − 1
xΦ(

√
γ(h;θ)
2 + 1√

γ(h;θ)
log y

x) −
1
yΦ(

√
γ(h;θ)
2 + 1√

γ(h;θ)
log x

y)} and

log fDA(x, y; θ) =
1

M
B(x, y; θ) + logJ(x, y; θ),

where J(x, y; θ) = 1
M

∂2B(x,y;θ)
∂x∂y + 1

M2
∂B(x,y;θ)

∂x ⋅ ∂B(x,y;θ)∂y . Therefore,

gt(x, y) =
1

M

∂B(x, y; θ)
∂θ

+ J(x, y; θ)−1(∂J(x, y; θ)
∂θ

) (4.8)

where ∂J(θ)
∂θ =

1
M

∂
∂θ(

∂2B(x,y;θ)
∂x∂y ) + 1

M2
∂
∂θ(

∂B(x,y;θ)
∂x ) ⋅ ∂B(x,y;θ)∂y + 1

M2
∂B(x,y;θ)

∂x ⋅ ∂∂θ(
∂B(x,y;θ)

∂y ).

With some calculations, the derivatives of J(x, y; θ) and B(x, y; θ), shortly J and B,

can be obtained as in Appendix A and the boundness of the product is of interest:

∣gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣

≤ ∣gt(x, y) exp( −
x + y
1 + ρ

){bt
2
exp( − a2t

x2 + y2 − 2ρxy
2(1 − ρ2)

) − 1

(1 + ρ)2
}∣. (4.9)

Case (i): x = y

∂B

∂θ
= (∂γ

∂θ
){ − e−x( 1

2
√
γ
)ϕ(
√
γ

2
)},

J(θ) =
√
γ

M
e−xϕ(

√
γ

2
) + 1

M2
e−2x{Φ2(

√
γ

2
) − 2

γ
ϕ2(
√
γ

2
)},

∂J

∂θ
= (∂γ

∂θ
){ − 1

M
( 1

8
√
γ
+ 1

2
√
γ3
)e−xϕ(

√
γ

2
) + 1

M2
( 1

2
√
γ
)e−2xϕ(

√
γ

2
)Φ(
√
γ

2
)}.

Then

gt(x, y) ≤ (
∂γ

∂θ
){ − 1

M
( 1

2
√
γ
)(1 −

Φ(
√
γ

2
)

√
γϕ(

√
γ

2
) + e−x

M
{Φ2(

√
γ

2
) − 2

γϕ
2(
√
γ

2
)}
)ϕ(
√
γ

2
)}e−x
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and therefore, for some constants Ci

∣gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣

≤ C1(
∂γ

∂θ
)e−xe−

2x
1+ρ{bt exp( −

x2

(1 + ρ)b2t
) − 2

(1 + ρ)2
}

≤ C2ϕ(
√
2x√

1 + ρbt
+ bt(3 + ρ)√

2(1 + ρ)
),

which implies that (4.9) is bounded by an integrable function.

Case (ii): y = x + k and x→∞

Let

√
γ

2
+ 1
√
γ
(y − x) =

√
γ

2
+ k
√
γ
= a,

√
γ

2
+ 1
√
γ
(x − y) =

√
γ

2
− k
√
γ
= b,

1

4
√
γ
− 1

2
√
γ3
(x − y) = 1

2γ
(
√
γ

2
+ y − x√

γ
) = 1

2γ
a,

1

4
√
γ
− 1

2
√
γ3
(y − x) = 1

2γ
(
√
γ

2
+ x − y√

γ
) = 1

2γ
b.

∂B

∂θ
= (∂γ

∂θ
){ − e−x( 1

2γ
)(bϕ(a) + e−kaϕ(b))},

J(θ) = 1

M
e−x(bϕ(a) + e−kaϕ(b))

+ 1

M2
e−2x{e−k(Φ(a)Φ(b) + 1

√
γ
Φ(a)ϕ(b) + 1

√
γ
ϕ(a)Φ(b))

− ϕ(a)√
γ
(Φ(a) + ϕ(a)√

γ
) − e−2kϕ(b)√

γ
(Φ(b) + ϕ(b)√

γ
)},

∂J

∂θ
= (∂γ

∂θ
)[ 1
M
e−x(ϕ(a)k3(k) + e−kϕ(b)k3(−k))

+ e
−2x

M2
{ϕ(a)k1(k) + e−kϕ(b)k2(−k)}{e−k(Φ(b) +

ϕ(b)
√
γ
) − ϕ(a)√

γ
}

+ e
−2x

M2
{ϕ(a)k2(k) + e−kϕ(b)k1(−k)}{(Φ(a) +

ϕ(a)
√
γ
) − e−kϕ(b)√

γ
}],
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where k1, k2 and k3 are defined in Appendix A. Then for some constants Ki,

gt(x, y) ≤ (
∂γ

∂θ
){ − 1

M
( 1

2γ
)(K1bϕ(a) +K2aϕ(b)e−k)}e−x

and therefore, for some constants Ci

∣gt(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣

≤ C1(
∂γ

∂θ
)e−xe−

2x+k
1+ρ ⋅ bt

2
exp{ − 2(1 − ρ)x2 + 2(1 − ρ)kx

2(1 − ρ2)b2t
}

≤ C2ϕ(
2x + (3 + ρ)b2t + k√

2(1 + ρ)bt
)

which implies that (4.9) is bounded by an integrable function.

For the general case of x→∞ and y →∞, the boundness can be obtained. In (4.8),

the first term 1
M

∂B
∂θ consists of the components; −e−xϕ(

√
γ

2 +
y−x√
γ ) and −e−yϕ(

√
γ

2 +
x−y√
γ ).

In the second term of gt(x, y), J(x, y; θ)−1(∂J(x,y;θ)∂θ
) is also dominated by e−xϕ(

√
γ

2 +

y−x√
γ ) and e−yϕ(

√
γ

2 +
x−y√
γ ). Then (4.9) is bounded by a function of ϕ(C1x,C2y) for a

constant Ci, which is integrable.

4.1.2 Spatial Structure and Sampling Design

Asymptotic results have been proved for spatial processes which are observed at

finitely many locations in the sampling region. Central Limit Theorems for spatial

data have been studied on infill domain and increasing domain structure under two

types of sampling designs, a class of fixed (regular) lattice and stochastic (irregu-

lar) designs, in existing literature. Infill domain structure assumes that the sampling

region is bounded and locations of data fill in increasingly and densely, while the

sampling region is unbounded in the increasing domain structure. Lahiri [2003] is

concerned with more complex spatial structure, called mixed asymptotic structure,

as a mixture of infill- and increasing domain assumption. In the mixed asymptotic
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structure, the sampling region is unbounded and sites fill in densely over the region.

Covariance parameters are not always consistently estimable if the spatial domain is

bounded (Zhang [2004]), while the same parameters are estimable under the increas-

ing domain structure (Mardia and Marshall [1984]). Here we focus on the increasing-

domain case under stochastic design based on setting and conditions in Lahiri [2003].

Increasing domain structure takes advantage of dealing with asymptotic properties of

estimators easily rather than the infill asymptotic structure. We could take account

of more realistic setting under the stochastic sampling design than the fixed lattice

design.

Suppose that the stationary random field {Z(s);s ∈ Rd} is observed at many

stations s in the sampling region Rn. Under the increasing domain structure, Rn is

unbounded with n and there is a minimum distance separating any two sites for all

n. We assume that the sampling region Rn is inflated by the factor λn from the set

R0, i.e.,

Rn = λnR0.

For the stochastic designs of sampling sites, we assume that the sampling sites

{s1,⋯,sn} are obtained from a random vectors {x1,⋯,xn} by

si = λnxi, 1 ≤ i ≤ n

where xi is a sequence of i.i.d. random vectors from a continuous probability density

function f(x) and its realization {x1,⋯,xn} are in R0. In this stochastic design, the

sample size n is determined by the growth rate λn by the relation n ∼ Cλdn.

We now consider our threshold approach. Note that we assume the marginal GEV

parameter η is known as the simplest case, though we would like to address the case

η unknown as well. Assuming that η is known as η0, we can rewrite (3.6) and partial
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derivatives with the temporal domain fixed, as

l(θ) =
n−1
∑
i=1

n

∑
j=i+1

T

∑
t=1
wij logL(Xti,Xtj;θ)

=∑
i<j
wij logLij(θ),

∂l(θ)
∂θ

=∑
i<j

wij
Lij(θ)

⋅
∂Lij(θ)
∂θ

,

∂2l(θ)
∂θ∂θT

=∑
i<j

wij
L2
ij(θ)

{
∂2Lij(θ)
∂θ∂θT

⋅Lij(θ) −
∂Lij(θ)
∂θ

(
∂Lij(θ)
∂θ

)
T

}

where wij is the weight function on the (i, j)th pair which does not take any values

outside Rn, Lij = Fij(xi, xj)I{xi>u,xj>u} + Fi(xi, u)I{xi>u,xj≤u} + Fj(u,xj)I{xi≤u,xj>u} +

FDA(u,u)I{xi≤u,xj≤u}, and Fij =
∂2FDA

∂xi∂xj
. Here u is the threshold, not a fixed constant,

which varies as the sample size goes to infinity.

We concentrate on the first term of Lij which is the case that both exceed the

threshold. Let us define notations related with the first term by

QK(θ) =
K

∑
i<j
wij logFij(θ)I{xi>u,xj>u}

∂QK(θ)
∂θ

=
K

∑
i<j

wij
Fij(θ)

⋅
∂Fij(θ)
∂θ

I{xi>u,xj>u}

∂2QK(θ)
∂θ∂θT

=
K

∑
i<j
wij{

1

Fij(θ)
∂2Fij(θ)
∂θ∂θT

− 1

F 2
ij

(
∂Fij(θ)
∂θ

)(
∂Fij(θ)
∂θ

)
T

}I{xi>u,xj>u}

where K is the number of all combination of pairs.

Next we denote the form of the strong mixing assumption to deal with dependence

through pairs. Let X(si) = Z(si)I(Z(si) > un) and F(Gk) be σ-field generated by

{(X(si),X(sj));si,sj ∈ Gk,1 ≤ i, j ≤ n, k = 1,⋯,K}. For any two subsets A and B of

Rd, the mixing condition is defined by

α̃(G1,G2) = sup{∣P (A ∩B) − P (A)P (B)∣ ∶ A ∈ F(G1),B ∈ F(G2)}
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and let

d(G1,G2) = inf{∣s − s′∣ ∶ s ∈ G1,s′ ∈ G2}

which is the minimum distance from element of a pair G1 to element of another pair

G2. Then the strong mixing coefficient is defined as

α(a, b) = sup{α̃(G1,G2) ∶ d(G1,G2) ≥ a, G1,G2 ∈ R3(b)}

where R3(b) ≡ {∪3i=1Di ∶ ∑3
i=1 ∣Di∣ ≤ b}, the the collection of all disjoint unions of three

cubes D1,D2 and D3 in Rd, and it specifies the general form of the sets G1 and G2

that are bounded. Assume that there exist a nonincreasing function α1(⋅) such that

lima→∞ α1(a) = 0 and a nondecreasing function β(⋅) satisfying

α(a, b) ≤ α1(a)β(b), a, b > 0.

In our approach, what we are interested in is the bivariate function,

∂

∂θ
logFij(xi, xj;θ)I(xi > u,xj > u) ≐ gk(X(si),X(sj)) ≐ Zk(sk), (4.10)

where Zk is obviously different from the original process Z. Let σ(⋅) denote the auto

covariance function of the process Zk such that for all si,sj,h1,h2 ∈ Rd,

σ(h) = Cov(Zk, Zl) = Cov[gk(X(si),X(sj)), gl(X(si +h1),X(sj +h2))].

To simplify the notation, let s21K = Ew2
K(λnX1) = ∫ ∫ w2

ij(λnXij)f(xi,xj)dxidxj

where Xij = (xi,xj), Mk = {sup ∣wK(h)∣; h ∈ R2d} and γ21k =
M2

k

s21K
.

We will use the following conditions which are similar with (S.1)-(S.5) in Lahiri

(2003) to prove the asymptotic distribution of process.

(A′1) ∫ ∫ ∣σ(x)∣dx <∞
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(A′2) Let R0 be a Borel set satisfying R∗0 ⊂ R0 ⊂ R̄∗0 and R∗0 be an open connected

subset of (−1/2,1/2]d. The pdf f(x) is continuous, everywhere positive with

support R̄0, the closure of the set R0 ⊂ Rd.

(A′3) Locations xi are i.i.d. from f over R0 and suppose that f(xi,xj) = f(xi)f(xj).

The joint pdf f(xi,xj) ∈ [mf ,Mf ] where mf and Mf are constants in (0,∞).

(A′4)
∫ ∫ wij(λn(xi,xj))wpq(λn(xi,xj)+h)f2(xi,xj)dxidxj

∫ ∫ w2
ij
(λn(xi,xj))f(xi,xj)dxidxj

→ Q1(h) for all i ≠ p, j ≠ q,h ∈ R2d

(A′5)
∫ ∫ wij(λn(xi,xj))wiq(λn(xi,xj)+(0,h))f2(xi,xj)dxidxj

∫ ∫ w2
ij
(λn(xi,xj))f(xi,xj)dxidxj

→ Q2(h) for all i = p, j ≠ q,h ∈

Rd.

(A′6) γ21k =
M2

k

s21K
= O(Ka) for some a ∈ [0,1/8)

(A′7) There exist sequences {λ1n}, {λ2n} with {λ1n} ≥ {λ2n} ≥ log{λn} such that

(i) γ21k(logn)2[
λ1n
λn
+ λ2n
λ1n
] = o(1)

(ii) γ41k(logn)4(
λd1n
λdn
)∑λ1nk=1 k

2d−1α1(k) = o(1)

(iii)
λd1n
λdn
α1(λ2n)β(λdn) = o(1)

(iv) γ21k[λd1nα1(λ2n) +∑∞k=λ1n kd−1α1(k)]β(λd1n) = o(1)

Theorem 1. Assume that conditions (A′1)-(A′7) hold. Suppose that Zk(sk) in (4.10)

is a stationary stochastic process such that E∣Zk(0)∣2+δ <∞ and ∫ td−1α1(t)
δ

2+δ dt <∞

for some δ > 0. If n/λdn → C1 ∈ (0,∞) as n→∞, then

(Ks21K)−1/2
K

∑
k=1

wK(sk)Zk(sk)

dÐ→ N(0, σ(0) +C1∫ σ((0,h))Q2(h)dh +C2
1 ∫ σ(h)Q1(h)dh).

Proof of Theorem 1 is shown in Appendix B.
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4.2 Asymptotic Properties: Asymptotic Normality and Con-

sistency

We use the following regularity conditions to obtain an asymptotic behavior of esti-

mates of dependence parameters.

(A1) The support χ of the bivariate density function of the data does not depend

on θ ∈ Θ and the parameter space Θ is an open subset of Rp with identifiable

parametrization.

(A2) The pairwise composite log likelihood is at least twice continuously differentiable

in θ.

(A3) (smoothness of composite likelihood) QT (θ) exists and is continuous and H(θ)

is also continuous in a neighborhood Θ∗ of θ0.

(A4) For all θ0 ∈ Θ, there exists an integrable function M(x, y) such that

sup
θ∈Θ∗
∣∂

2QT (θ;x, y)
∂θi∂θj

∣ ≤M(x, y), i, j = 1,⋯, p.

(A5) The third partial derivatives of the composite likelihood are bounded by inte-

grable functions.

(A6) (equivalent condition of Proposition 1) The score function of composite likeli-

hood D satisfies that

∣D(x, y){
fbt,dt(atx, cty) − h(x, y)

A(t)
− ψ(x, y)}∣ ≤K(x, y)

which K(x, y) is integrable.

Theorem 2. (Asymptotic Normality) Suppose that condition (4.5) with (i) or (ii) is

satisfied and conditions of Theorem 1 hold. Suppose N →∞, (bk, dk) = (b(k)N , d(k)N)→

42



(x0, y0), and A(kN) = O( 1√
Ns21N

). If

√
Ns21NA(kN)Ð→ λ ∈ [0,∞),

and either λ = 0 and (i) holds, then the the solutions of likelihood equations verify

√
N(s21N)−1/2(θ̂ − θ0)

dÐ→ N(0,H(θ0)−1V(θ0)H(θ0)−1), (4.11)

or (ii) holds, then

√
N(s21N)−1/2(θ̂ − θ0)

dÐ→ N(H(θ0)−1b,H(θ0)−1V(θ0)H(θ0)−1), (4.12)

where H(θ0) = E[−D′(θ0)], b = limN→∞ (Ns21N)
−1/2E{∑Nk=1D(θ0;X(k))} (defined be-

low) and V(θ0) = E[D(θ0)D(θ0)T ].

Proof. Denote that

QT (θ) =
K

∑
i<j
∑
t

wij logLij(θ)

=
K

∑
i<j
∑
t

wij log {Fij(xi, xj)I{xi>u,xj>u} + Fi(xi, u)I{xi>u,xj≤u}

+ Fj(u,xj)I{xi≤u,xj>u} + FDA(u,u)I{xi≤u,xj≤u}}

∶=
K

∑
i<j
∑
t

wij log {L1ij(θ;xi, xj) +L2ij(θ;xi) +L3ij(θ;xj) +L4ij(θ)},

∂QT (θ)
∂θ

=
K

∑
i<j
∑
t

wij
Lij(θ)

⋅
∂Lij(θ)
∂θ

=
K

∑
i<j
∑
t

wij
Lij(θ)

⋅ ∂
∂θ
{L1ij(θ;xi, xj) +L2ij(θ;xi) +L3ij(θ;xj) +L4ij(θ)}

∶=
N

∑
k=1

D(θ; (X(k)ti ,X
(k)
tj )) =

N

∑
k=1
{D1(θ) +D2(θ) +D3(θ) +D4(θ)}
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where

D1(θ) =
K

∑
i<j
∑
t

wij
Lij(θ)

⋅ ∂
∂θ
L1ij(θ;xi, xj),

D2(θ) =
K

∑
i<j
∑
t

wij
Lij(θ)

⋅ ∂
∂θ
L2ij(θ;xi),

D3(θ) =
K

∑
i<j
∑
t

wij
Lij(θ)

⋅ ∂
∂θ
L3ij(θ;xj),

D4(θ) =
K

∑
i<j
∑
t

wij
Lij(θ)

⋅ ∂
∂θ
L4ij(θ),

and K is the number of all combination of pairs. We now consider N the number of

exceedances as a primary role in deriving the asymptotic behavior. By notations and

condition (A2), we have Taylor expansion about θ0 as follows.

0 = ∂QT (θ)
∂θ

∣
θ=θ̂

= ∂QT (θ)
∂θ

∣
θ=θ0

+ (θ̂ − θ0)T
∂2QT (θ)
∂θ2

∣
θ=θ0

+ 1

2
(θ̂ − θ0)T

∂3QT (θ)
∂θ3

∣
θ=θ∗
(θ̂ − θ0)

where θ∗ lies between θ̂ and θ0

=
N

∑
k=1

D(θ0; (X(k)ti ,X
(k)
tj )) + (θ̂ − θ0)T

N

∑
k=1

D′(θ0; (X(k)ti ,X
(k)
tj ))

+ 1

2
(θ̂ − θ0)T

N

∑
k=1

D′′(θ∗; (X(k)ti ,X
(k)
tj ))(θ̂ − θ0)

Then we rewrite the equation as

1√
N

N

∑
k=1

D(θ0;X
(k))

=
⎧⎪⎪⎨⎪⎪⎩
− 1

N

N

∑
k=1

D′(θ0;X
(k)) − 1

2
(θ̂ − θ0)T

1

N

N

∑
k=1

D′′(θ∗;X(k))
⎫⎪⎪⎬⎪⎪⎭

√
N(θ̂ − θ0),
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and then

√
N

s21N
(θ̂ − θ0)

=
⎧⎪⎪⎨⎪⎪⎩
− 1

N

N

∑
k=1

D′(θ0) −
1

2
(θ̂ − θ0)T

1

N

N

∑
k=1

D′′(θ∗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(a)

⎫⎪⎪⎬⎪⎪⎭

−1
1√
Ns21N

N

∑
k=1

D(θ0).

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(b)

(4.13)

We establish the following for separate terms in equation (4.13):

(I) By the consistency of θ̂ and condition (A5), expectation of the last term in

parentheses can be ignored. Since θ̂ is consistent, θ̂ ∈ Θ∗ with Pθ0-probability

1. Let B ⊂ Θ∗ be a closed ball with the center θ0. By the condition (A4),

sup
θ̂∈B
∥∂

2QT (θ0;x, y)
∂θi∂θj

− ∂
2QT (θ̂;x, y)
∂θi∂θj

∥

is bounded and then, for large N ,

lim supN∥
1

N

N

∑
k=1

D′(θ0) −
1

N

N

∑
k=1

D′(θ̂)∥ ≤ ε

in probability (see details in Guyon [1995]). 1
N ∑

N
k=1D

′(θ0) − E[−D′(θ0)] con-

verges to 0 by the law of large numbers, and hence (a) converges to E[−D′(θ0,η0)]

in probability.

(II) First consider that (X(k)ti ,X
(k)
tj ), k = 1,⋯,N are i.i.d. from exact multivariate

GPD distribution H.

ED ∶= E{ 1√
Ns21N

N

∑
k=1

D(θ0;X
(k))}

= 1√
Ns21N

E
N

∑
k=1

∂

∂θ
wij logLij(X(k)ti ,X

(k)
tj ;θ)∣

θ=θ0

= 0 (no bias).
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Then by Theorem 1, (b) converges in distribution to N(0,V(θ0)) where

V(θ0) = E[D(θ0)D(θ0)T ]

= E[(D1 +D2 +D3 +D4)(D1 +D2 +D3 +D4)T ]

= Var[D1D1
T ] +Var[D2D2

T ] +Var[D3D3
T ] +Var[D4D4

T ],

Var[D1D1
T ] = σ(θ0;0) +C1∫ σ(θ0; (0,h))Q2(h)dh +C2

1 ∫ σ(θ0;h)Q1(h)dh

and Var[D2D2
T ], Var[D3D3

T ] and Var[D4D4
T ] have similar forms with the

variance of D1D1
T . Note that the event {xi > u,xj > u} of D1 is uncorrelated

with the event {xi > u,xj ≤ u} of D2, and Cov(Di,Dj) = 0 for i ≠ j.

Now suppose that (X(k)ti ,X
(k)
tj ), k = 1,⋯,N are from Fbk,dk not H. If F ∈D(G),

there exists the exceedance level (bk, dk) such that Fbk,dk converges to H as

(bk, dk) → (x0, y0). The bivariate generalized pareto distribution H preserves

under the suitable change of exceedance levels (Rootzén and Tajvidi [2006]).

The second-order condition (4.5) describes the difference between Fbk,dk and

H with the remainder function A(k), i.e., as k → ∞, with the second order

condition (ii)

lim sup
k→∞

∣Fbk,dk(akxi, ckxj) −H(xi, xj)∣ = O(A(k)).

Proposition 1 (ii) results from the condition (A6), and by the property of

score function

E{ 1√
Ns21N

N

∑
k=1

D(θ0;X
(k))} = 1√

Ns21N
∫ ∑D(θ0;X

(k))dFbk,dk(akxi, ckxj)

=
√
Ns21NA(k) ⋅

1

Ns21N
∫ ∑D(θ0;X

(k))dΨ(xi, xj) + o(A(k))→ λµ,

where µ = limN→∞
1

Ns21N
∫ ∑D(θ0;X(k))dΨ(xi, xj).
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Then for some finite vector b

(Ns21N)
−1/2E{

N

∑
k=1

D(θ0;X
(k))}→ b,

and (b) converges in distribution to N(b,V(θ0)). Therefore the limit distribu-

tion of θ̂, (4.12) follows by Slutsky’s Theorem. If the second-order condition

(i) holds and
√
Ns21NA(kN) → 0, b = 0 which implies no bias and then (4.11)

holds.

To prove consistency, we describe the theorem of Amemiya [1985].

Theorem 3. (Amemiya [1985]) Assume the following:

(B1) Θ is an open subset of Euclidean p-space (the true value θ0 is an interior point

of Θ),

(B2) The criterion function SN(θ) is a measurable function for all θ0 ∈ Θ, and ∇SN

exists and is continuous in an open neighborbood of θ0,

(B3) 1
NSN(θ) converges in probability uniformly to a non-stochastic function S(θ) in

an open neighborhood of θ0, and S(θ) attains a strict local maximum at θ0.

Then there exists a sequence ϵN → 0 such that

P{∃θ∗ such that ∣θ∗ − θ0∣ < ϵN ,∇SN(θ∗) = 0}→ 1, as N →∞.

Theorem 4. (Consistency) Let X
(k)
t = (X(k)ti ,X

(k)
tj ), k = 1,⋯,N be i.i.d. random

variables with bivariate distribution F . Let θ̂ be the maximum pairwise composite

log-likelihood estimator such that

∇SN(θ̂) ∶=
K

∑
i<j

T

∑
t=1
wij

∂

∂θ
logL(Xti,Xtj;θ)∣

θ=θ̂
= 0.
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If the second moment condition of composite score function is satisfied and conditions

(A1), (B1) and (B2) hold, then as N → ∞ and (bk, dk) = (b(k)N , d(k)N) → (x0, y0),

there exists θ̂ such that ∣θ̂ − θ0∣ < ϵN and ∇SN(θ̂) = 0 for any sequence ϵN → 0.

Proof. Assumptions (B1) and (B2) in Theorem 3 are satisfied by our criterion

functions and assumptions. Jensen’s inequality implies

∫ log{ f(x; θ)
f(x; θ0)

}f(x; θ0)dx ≤ log∫ f(x; θ)dx = 0. (4.14)

We rewrite it as

Eθ0[ log
f(x; θ)
f(x; θ0)

] ≤ 0⇔ θ0 = argmax
θ∈Θ

Eθ0[ log
f(x; θ)
f(x; θ0)

].

Here a sum of pairwise log-likelihoods can be considered. Let

SN(θ) =
K

∑
i<j

T

∑
t=1
wijlogL(Xti,Xtj;θ).

We know that by the law of large numbers,

1

N
SN(θ0) =

1

N

N

∑
k=1

w
(k)
ij logL(X(k)ti ,X

(k)
tj ;θ0) =

1

N

N

∑
k=1

w(k) logL(X(k)
t ;θ0)

Ð→Eθ0(w(1) logL(X
(1)
t ;θ0)) =∶ S(θ0).

By the moment condition of ∇SN(θ), we have that E∣∇SN(θ∗)∣2 < C0 for some C0.

Using a Taylor’s expansion,

∣∣( 1
N
SN(θ) − S(θ)) − (

1

N
SN(θ0) − S(θ0))∣∣

2

= ∣∣( 1
N
∇SN(θ∗) −∇SN(θ∗∗))(θ − θ0)∣∣

2

≤ ( 1
N
E∣∇SN(θ∗)∣2 +E∣∇SN(θ∗∗)∣2)∣∣θ − θ0∣∣2

≤ (C0

N
+C0)∣∣θ − θ0∣∣2

Ð→ C0∣∣θ − θ0∣∣2 (4.15)
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for some θ∗ and θ∗∗ between θ0 and θ. By the moment condition of ∇SN(θ), the

right hand side of (4.15) converges to 0 uniformly over a sequence of ∣∣θ − θ0∣∣ < ϵN as

ϵN → 0. Also we have that 1
NSN(θ0) − S(θ0)

pÐ→ 0 by the law of large numbers and

1
NSN(θ) converges in probability uniformly to S(θ) on a neighborhood of θ0.

Now we claim that S(θ) attains a local maximum at θ = θ0. The previous result

(4.14) implies that

Eθ0[ log
∏k L(X

(k)
t ;θ)

∏k L(X
(k)
t ;θ0)

] ≤ logEθ0[
∏k L(X

(k)
t ;θ)

∏k L(X
(k)
t ;θ0)

] = 0

and for any θ,

Eθ0( log∏
k

L(X(k)
t ;θ0)) ≥ Eθ0( log∏

k

L(X(k)
t ;θ)).

where the equality holds with (A1), the identifiability assumption of parameter.

Eθ0[ log
∏k L(X

(k)
t ;θ)

∏k L(X
(k)
t ;θ0)

] ≤ 0 holds for any distribution ofX
(k)
t with finite second moments

of score function, and the maximum of Eθ0[log∏k L(X
(k)
t ;θ)] over θ is attained at

θ = θ0. Thus we prove the (B3) of the Theorem 3.

4.3 Simulation Study

We conduct some simulation studies to illustrate the asymptotic behavior of the

estimators described in Section 4.2. The simulation is examined for the daily max-

stable process with unit Fréchet margins with T = 1000 days during 10 years (i.e.,

M = 100 in equation [3.5]). We consider the Gaussian extreme value processes with

two different spatial dependence structures of the covariance matrix:

Σ =
⎛
⎜⎜
⎝

α β

β γ

⎞
⎟⎟
⎠

(i) the Gaussian extreme value process with Σ1 (α = 2, β = 0 and γ = 3);
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(ii) the Gaussian extreme value process with Σ2 (α = 2, β = 1.5 and γ = 3).

We generate n = 20 stations from the uniform density function f(⋅) over R0 =

(−1/2,1/2]d and determine the growth rate λn =
√
n in case of d = 2 to satisfy the

relation n ∼ Cλdn in the spatial structure and stochastic sampling design of sites. To

adjust the threshold approach based on the pairwise composite likelihood, we consider

a weight function such that for some constant δ0,

w(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if h ≤ δ0

0 if h > δ0.

where h is a distance between two stations. Here δ0 is selected by
√
2n/2, the half

diagonal of sampling region, which satisfies the condition (A′6) on growth rate of

weight function for the asymptotic result.

To illustrate the asymptotic performance of estimates for dependence parameter

θ = (α,β, γ), the averages of the estimators are compared to the asymptotic mean of θ̂.

In each model, the estimation of dependence parameters is based on 500 replications,

and the classical Monte Carlo integration is used to implement the theoretical bias

and variance of the estimators as the number of exceedances N increases.

Theoretical bias and average bias of estimators θ̂ for Smith model (i) are plotted in

Figure 4.1. As the number of exceedances increases, bias of estimators (gray curve)

tends to decrease towards the theoretical bias (solid curve) though each estimator

shows the different slope on the decay. The bias of α̂ goes on with the pattern of

decay of theoretical one, while bias of β̂ and γ̂ decreases as theoretical bias goes up

to the line of zero bias.

This irregular pattern of each dependence parameter estimation might be caused

by the interaction between parameters in estimating them as components of covari-

ance matrix. Now we plot the extremal coefficient curves with the parameter estima-

tors and compare them with those estimated directly. One can expect the problem
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Figure 4.1: Graphical summary of asymptotic behaviors of α̂, β̂ and γ̂ for Smith model
(i) from left to right. Gray curve is the average bias of estimators, gray dashed curves
are the boundary of 95% confidence interval, and black solid curve is the theoretical
bias.

Figure 4.2: Extremal coefficient functions for the Smith model (i). Upper thin color
layer is based on theoretical mean of estimates and lower thick color layer is based on
average estimates. In a layer, each line represent a extremal coefficient curve at each
N and the line changes the color from cyan (N = 1) to magenta (N = 1000). Black
solid line is the true extremal coefficient curve.
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to be reduced when working with the extremal coefficient.

Figure 4.2 shows estimated extremal coefficient functions by θ̂. As the number of

exceedances increases, the color changes from cyan to magenta. Extremal coefficient

by the asymptotic bias overlapped almost with the true coefficient function (black

solid curve). As the number of exceedances increases, The extremal coefficient curve

measured by dependence estimators approximates the theoretical extremal coefficient

curve. However, there still exists a gap between the theoretical extremal coefficient

and estimated one and the gap gets broader as the distance between two locations is

larger.

Theoretical bias and average bias of estimators θ̂ for Smith model (ii) are shown

in Figure 4.3. As the number of exceedances increases, bias of estimates tends to go

towards the pattern of theoretical bias. There is some gaps between theoretical bias

and estimated bias though the estimation of dependence parameter is much more

stable comparing with that in model (i).

Figure 4.4 shows estimated extremal coefficient functions by θ̂. As the number

of exceedances increases, The extremal coefficient curve measured by dependence es-

timators approximates the theoretical extremal coefficient curve. Unlike the gap in

Figure 4.3, the estimated extremal coefficient is catching up with the theoretical one

along by a little gap. However, the quality of asymptotic approximation seems de-

pendent on the degree of correlation β since Figure 4.4 shows the poor approximation

to the true extremal coefficient curve comparing with Figure 4.2.

Suggestion on the choice of the threshold point is discussed further now. For

the simplicity, the threshold can be selected as the value of the 95th percentile of

distribution function in practice. However finding an optimal threshold is another

important issue and we suggest an optimal threshold minimizing the mean squared

error, which incorporates both the bias of the estimator and its variance based on the

asymptotic normality in Section 4.2.
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Figure 4.3: Graphical summary of asymptotic behaviors of α̂, β̂ and γ̂ for Smith model
(ii) from left to right. Gray curve is the average bias of estimators, gray dashed curves
are the boundary of 95% confidence interval, and black solid curve is the theoretical
bias.

Figure 4.4: Extremal coefficient functions for the Smith model (ii). Upper thin color
layer is based on theoretical mean of estimates and lower thick color layer is based on
average estimates. In a layer, each line represent a extremal coefficient curve at each
N and the line changes the color from cyan (N = 1) to magenta (N = 1000). Black
solid line is the true extremal coefficient curve.
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Figure 4.5 shows the mean squared error for each estimator in Smith model (i).

The mean squared errors of α̂, β̂, and γ̂ are decreasing rapidly against N and show

the stability between N = 3500 and N = 5000. As shown in Figure 4.2, the theoretical

extremal coefficient has a nice approximation to the true coefficient function, and

the increases of squared bias seem to be less effective than variance decreases on the

selection of threshold to minimize the MSE.

The mean squared error for each estimator of Smith model (ii) is shown in Figure

4.6. The mean squared errors of α̂, β̂, and γ̂ are decreasing rapidly as N increases

to 1000, and have the minimum between N = 1500 and N = 2000. In Figure 4.4, the

theoretical extremal coefficient shows the poor approximation to the true coefficient

function. Thus calculation of MSE is affected by the increase of bias as number of

exceedances becomes greater than 1500. The threshold point is suggested as the value

between 90th and 95th percentile.
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Figure 4.5: Mean squared error of α̂, β̂ and γ̂ for Smith (i) from left to right

Figure 4.6: Mean squared error of α̂, β̂ and γ̂ for Smith (ii) from left to right

55



Chapter 5

Application

The methods are illustrated by application to temperature data of North Carolina,

U.S. and the modeling procedures are examined via simulation. The different max-

stable models investigated are the following.

(i) Smith model with covariance matrix:

Σ =
⎛
⎜⎜
⎝

α β

β γ

⎞
⎟⎟
⎠

(ii) Brown-Resnick process with power law variogram:

γ(h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if h = 0

a + bhλ if h > 0, a > 0, b > 0,0 ≤ λ < 2

(iii) Schlather model with powered exponential correlation function:

ρ(h) = c exp{ − ( h
R
)κ},0 ≤ c ≤ 1,R > 0,0 < κ ≤ 2

(iv) Schlather model with Matérn correlation function:

ρ(h) = c 2
1−ν

Γ(ν)
( h
R
)
ν

Kν(
h

R
),0 ≤ c ≤ 1,R > 0, ν > 0



We fit max-stable processes to annual maxima of temperature in Section 5.1 and

focus on the threshold approach for daily temperature using max-stable processes in

Section 5.2.

5.1 Max-stable Processes for Annual Maxima of Tempera-

ture

We apply max-stable processes in an analysis of North Carolina temperature data.

Annual maxima of temperature, measured in Fahrenheit, in North Carolina, U.S. are

observed over a period of 52 years, from 1957 to 2008, at 25 stations (see Figure 5.1).

Plots of annual maxima given the time period at each station are shown in Figure 5.2.

We assume that spatial processes of annual maxima of temperature are stationary

from the figure.

Figure 5.1: Map of 25 stations in North Carolina, United States

The GEV parameters for each marginal distribution at a site can be estimated

by MLE and we can transform the marginal distribution into unit Fréchet form.

Then we characterize the dependence structure with max-stable processes. Table

5.1 summarizes the results for the different models. According to the maximum

composite log-likelihood (MCL) criterion, the Brown-Resnick process shows the best

performance, and the Smith model gives relatively poor performance comparing with

other two Schlather’s models. Both Schlather models are also competitive and give

similar values of the MCL though we use two different correlation functions.

The pairwise log likelihood (2.12) by Padoan, Ribatet and Sisson [2010] allows
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Figure 5.2: Annual maximum temperature from 1957 to 2008 at 25 stations

simultaneous estimation of the spatial dependence parameters between pairs of sites

and also the three parameters of GEV marginal distribution at each location. We now

examine the influence of permitting the separate use of GEV marginal parameters and

dependence parameters via simulation studies. For the simulation, the true process

Z is generated from the max-stable process with unit Fréchet margins and Y over

Table 5.1: Fitting max-stable processes and their corresponding maximized composite
log-likelihood

Model Parameter MCL

Smith α̂ ≈ 1.940, β̂ ≈ −0.032, γ̂ ≈ 0.097 -66137.36

Brown-Resnick â ≈ 1.794, b̂ ≈ 0.078, λ̂ ≈ 1.949 -64400.76
(power law)

Schlather ĉ ≈ 0.598, R̂ ≈ 4.270, κ̂ ≈ 1.560 -64499.46
(powered exp.)

Schlather ĉ ≈ 0.601, R̂ ≈ 2.181, ν̂ ≈ 1.296 -64500.29
(Matérn)
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GEV margins is obtained using GEV parameters for each station.

Y = µs + ψs
Zξs − 1
ξs

, s = 1,2,⋯, S

and we can transform Y into Ẑ, which is an estimate of Z, by fitting GEV parameters

to Y . We can fit max-stable processes to the original Z and get a simulation result.

A simulation is also obtained for Ẑ to find MCLE of max-stable processes. We would

check the approximation for the true process, by comparing the result of Z and that

of Ẑ.

Table 5.2 summarizes the performances of max-stable processes for Z, N = 100 at 9

stations which is generated from the Smith model with covariance function (σ11 = 1.5,

σ12 = −0.05, σ22 = 0.1). Table 5.3 shows the simulation result for Ẑ at 9 stations

from the Smith model with the same covariance function. The Smith model fits well

in both simulations because the true model is considered as Smith’s and the Brown-

Resnick process is relatively competitive. Comparing with the simulation for Z and

Ẑ, the mean squared errors of parameters in the Smith model for original observation

Z is always smaller than those for Ẑ. Thus the estimators for Ẑ are more variable

than those of fitted max-stable processes with the true process.

Table 5.4 summarizes the performances of max-stable processes for Z, N = 100

at 9 stations which is generated from the Schlather model with powered exponential

correlation function (sill= 0.5985, range= 1.4309, smooth= 1.5610). Table 5.5 shows

the simulation result for Ẑ at 9 stations from the Schlather model with the same

correlation function. The estimators of range parameter were transformed to the

value by logarithm due to their large variation. The Schlather model fits well in both

simulations of Z and Ẑ because Z is generated from Schlather’s. The Brown-Resnick

process is also relatively competitive. Comparing both simulations, the mean squared

errors of parameters in Schlather model for original observation Z is always smaller
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than those for Ẑ with the interpretation that the estimators for Ẑ have larger varia-

tion than those of the true process.

Table 5.2: Composite MLE’s based on N = 100 simulations for Z generated from
Smith model. Standard deviations (in parentheses) are obtained and mean squared
error (MSE) are reported in bold and parentheses.

Model Parameter MCL
(s.d., MSE)

True σ11 = 1.5, σ12 = −0.05, σ22 = 0.1
Smith α̂ ≈ 1.6870, β̂ ≈ −0.0579, γ̂ ≈ 0.1032 -7457.72

(0.3313) (0.0570) (0.0195)
(0.1447) (0.0033) (0.0004)

Brown-Resnick â ≈ 0.0635, b̂ ≈ 2.5526, λ̂ ≈ 1.4183 -7591.74
(0.0943) (0.4204) (0.2135)

Schlather ĉ ≈ 0.9218, R̂ ≈ 0.9838, κ̂ ≈ 1.8789 -7606.01
(0.0378) (0.1304) (0.1696)

Table 5.3: Composite MLE’s based on N = 100 simulations for Ẑ generated from
Smith model. Standard deviations (in parentheses) are obtained and mean squared
error (MSE) are reported in bold and parentheses.

Model Parameter MCL
(s.d., MSE)

True σ11 = 1.5, σ12 = −0.05, σ22 = 0.1
Smith α̂ ≈ 1.6512, β̂ ≈ −0.0582, γ̂ ≈ 0.0994 -7547.82

(0.5918) (0.0687) (0.0274)
(0.3731) (0.0047) (0.0007)

Brown-Resnick â ≈ 0.0753, b̂ ≈ 2.7170, λ̂ ≈ 1.4082 -7679.79
(0.1189) (0.6257) (0.2127)

Schlather ĉ ≈ 0.9208, R̂ ≈ 0.9611, κ̂ ≈ 1.8812 -7689.91
(0.0425) (0.1617) (0.1612)
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Table 5.4: Composite MLE’s based on N = 100 simulations for Z generated from
Schlather model. Standard deviations (in parentheses) are obtained and mean squared
error (MSE) are reported in bold and parentheses.

Model Parameter MCL
(s.d., MSE)

True sill= 0.5985, log(range)= 1.4309, smooth= 1.5610
Schlather ĉ ≈ 0.6802, log(R̂) ≈ 1.8081, κ̂ ≈ 1.3290 -7546.48

(0.1691) (1.1124) (0.7538)
(0.0353) (1.3796) (0.6221)

Brown-Resnick â ≈ 1.3995, b̂ ≈ 0.9445, λ̂ ≈ 1.0555 -7658.43
(0.8848) (0.8411) (0.8624)

Smith α̂ ≈ 0.3301, β̂ ≈ 0.0323, γ̂ ≈ 0.0877 -7822.61
(0.1205) (0.0582) (0.0317)

Table 5.5: Composite MLE’s based on N = 100 simulations for Ẑ generated from
Schlather model. Standard deviations (in parentheses) are obtained and mean squared
error (MSE) are reported in bold and parentheses.

Model Parameter MCL
(s.d., MSE)

True sill= 0.5985, log(range)= 1.4309, smooth= 1.5610
Schlather ĉ ≈ 0.6883, log(R̂) ≈ 1.7249, κ̂ ≈ 1.1647 -7636.70

(0.2000) (1.3785) (0.7875)
(0.0481) (1.9867) (0.7771)

Brown-Resnick â ≈ 1.5606, b̂ ≈ 0.9070, λ̂ ≈ 1.1820 -7720.98
(0.9470) (0.9719) (0.8461)

Smith α̂ ≈ 0.3164, β̂ ≈ 0.0251, γ̂ ≈ 0.0868 -7884.35
(0.1265) (0.0624) (0.0381)

5.2 Threshold Approach for Daily Temperature

An application of the threshold approach was conducted with the previous North Car-

olina temperature data. The maximum daily temperatures are recorded at 16 stations

through the same period, 1957-2008. The seasonal effect is avoided by restricting the

data to the summer season, which consists of June, July and August. Therefore M
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in the equation (3.5) of the relation between daily data and annual maxima is 92, the

number of days per year in the summer season.

The choice of threshold is made to get approximately the same proportion, for

example 0.05, of exceedances over the threshold in each margin. Thus u = 0.62738

is selected as a fixed threshold through the stations, which is the transformed value

into unit Fréchet. The 16 stations are shown in Figure 5.3.

1

2
3

4

5

6

7

8

9

10

11

12

13
14

15 16

Figure 5.3: Map of 16 stations for the threshold approach

5.2.1 Modeling and Parameter Estimation

The previous models investigated for the annual maxima temperature were used, but

we did not consider Schlather’s model with Matérn correlation function because it

plays a similar role with the powered exponential correlation. Table 5.6 shows the

results of fitting the three different max-stable models. The Brown-Resnick process

gives the best performance, according to the MCL criterion. Note is that the Smith

model for daily temperature fits better than the Schlather’s unlike the previous result

for annual maxima.

5.2.2 Spatial Dependence of Thresholded Exceedances

To ensure proper fitting of the generalized Pareto distribution as the asymptotic

distribution of exceedances over the threshold, a summary of the marginal analysis

is shown in Table 5.7. Approximately the same proportion is kept with 0.05 and

the parameter σj in each margin refers the scale parameter of generalized Pareto
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Table 5.6: Fitting max-stable processes for threshold exceedances of daily tempera-
ture data and their corresponding maximized composite log-likelihood, u = .62738

Model Parameter MCL

Smith α̂ ≈ 4.120, β̂ ≈ −0.066, γ̂ ≈ 0.165 -363081.4

Brown-Resnick â ≈ 0.789, b̂ ≈ 1.483, λ̂ ≈ 0.603 -355808.8
(power law)

Schlather R̂ ≈ 0.651, κ̂ ≈ 0.777 -367309.4
(powered exp.)

Table 5.7: Summary of the marginal analysis with u = .62738. Region where each
station belongs to is identified with a letter among M(mountain), P(piedmont) and
C(costal).

site j region number of proportion of σj
exceedances exceedances (ξj = −0.05, f ixed)

1 Cape Hatteras C 241 0.050 1.178
2 Edenton C 224 0.047 1.425
3 Elizabeth City C 331 0.069 1.648
4 Hendersonville M 367 0.077 1.740
5 Lenoir M 436 0.091 2.054
6 Louisburg P 208 0.043 2.340
7 Marshall M 405 0.085 1.731
8 Monroe P 347 0.073 2.502
9 Morehead City C 206 0.043 2.373
10 Morganton M 372 0.078 2.138
11 Mount Airy M 302 0.063 2.309
12 Smithfield C 311 0.065 1.647
13 Tarboro C 261 0.055 2.489
14 Transou M 313 0.065 1.690
15 Waynesville M 430 0.089 1.454
16 Wilson C 260 0.054 2.360
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distribution. The shape parameters ξj were fixed as −0.05, which is the maximum

likelihood estimator of GPD.

As shown in Figure 5.4, North Carolina is divided into three major geographic

regions: the West or Mountains formed mostly by the Blue Ridge and Great Smoky

Mountains, the Middle or Piedmont Plateau, and the Eastern also known as the

Coastal Plain. The result of Table 5.7 shows different scales which vary at different

sites and several locations with the scale parameter greater than 2 are mostly in the

mountains and coastal region. Those stations are shown in Figure 5.5.

Figure 5.4: Three North Carolina regions: Mountains, Piedmont and Coastal Plain,
(http://thomaslegion.net/threenorthcarolinageographicregionscoastalplain
thepiedmontandthemountainsmaps.html)

Figure 5.5: Numbered stations having the scale parameter such that σj > 2

Now we consider the dependence with the proportion of common exceedances

between two sites. In terms of the common exceedances of two independent sites,

the proportion would be .0025, the product of each marginal proportion (.05) of

exceedances. Thus we expect that the proportion of common exceedances is closer

to .0025 where two sites further apart are considered less dependent than sites closer
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Figure 5.6: Dependence between two sites through the proportion of common ex-
ceedances

together. Figure 5.6 plots the proportion of common exceedances according to the

distance between two sites. All pairs are above .0025 and we can conclude that

the bivariate distributions are dependent. Therefore, it might be suitable to fit a

bivariate distribution with spatial dependence structure and the max-stable processes

we considered would be a possible statistical model. The proportion plot satisfies

the overall pattern that the proportion is also decreasing as the distance of pairs is

increasing. However, some points did not match with the pattern and the pairs of

site according to the points are identified in Table 5.8 and Table 5.9.

The set of sites in Table 5.8 indicates the lower left dots in Figure 5.6 showing

independence even though the pair has a shorter distance. Most points are correlated

with station 9, which is Morehead City, centrally located on North Carolina’s coast.

The city is independent with other sites in the coastal plain region (stations 2, 3, 6,

12, 13 and 16, see Figure 5.3). Station 1 in Cape Hatteras appears independent with

stations 2 and 6. We also conclude that stations located on the coast and stations

in the coastal plain are independent because the area directly on the coast may be

strongly influenced by its proximity to the ocean.
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The upper right points violating the general pattern in Figure 5.6 are identified

in Table 5.9. The points show the dependence but the long distance between two

sites and station 3 is mostly related with this set of sites. Station 3 is Elizabeth City

where its location is at the narrowing of the Pasquotank River and on the Intracoastal

Waterway. It shows dependence with other sites in the mountain region, station 4,

5, 7, 10 and 15 (see Figure 5.3). Thus there might exist some dependence between

several sites in the mountain area and site 3 due to geographical reasons.

Table 5.8: Pairs of site with short distance and independence

site1 1 1 6 9 9 9 9 9 9

site2 6 2 2 2 3 6 12 13 16

Table 5.9: Pairs of site with long distance and dependence

site1 3 3 3 3 3

site2 4 5 7 10 15
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Chapter 6

Discussion

6.1 Conclusion

Our work proposed the threshold version of max-stable process estimation and we

have applied the pairwise composite likelihood method on it. More specifically, we

have suggested the modeling of the bivariate exceedances over threshold and it leads

to a simplified dependence structure for max-stable processes. An important mo-

tivation of this methodology is the possibility of threshold approach to construct

approximation of the joint distribution, by assuming an asymptotic distribution of

exceedances over a given threshold. We have derived our simulation results under

two Smith models to examine the asymptotic property of estimates.

The threshold approach takes advantage of avoiding the loss of information which

is caused when we are concerned with only maxima of data. Our method is expected

to become one promising tool to characterize the dependence structure in spatial

extremes. The proposed approach was successfully applied to the analysis of temper-

atures in North Carolina and the results give us quite meaningful interpretations of

temperature data under North Carolina’s geographical conditions.

Moreover, we have also investigated an optimal threshold to minimize the mean

squared error based on the asymptotic behavior of the estimator for dependence

parameter. The choice of optimal threshold would be an open topic itself for further

research. It provides very valuable information in the field of environmental statistics.



When we are interested in flooding, for example, which may be considered as extreme

events, choosing the adequate threshold to avoid the risk of flooding might be useful

for quantifying the spatial extremal dependence.

6.2 Future research

The issue of “joint” versus “marginal” estimation

Shi, Smith and Coles [1992] presented the issue of “joint” versus “marginal” estima-

tion for bivariate extremes. Bivariate joint distributions are separated from two parts

of parameter estimation; one in the marginal distributions and the other defining the

dependence between variables transformed into unit Fréchet margins. Joint estima-

tion is the approach maximizing the full likelihood with respect to all parameters

in a single optimization. Instead of joint estimation, we have used an alternative

approach which estimates the GEV parameters first and the dependence parameters

separately with fixed GEV parameters (called the marginal estimation). Considering

the margin and dependence parameters seperately, we would like to provide variances

of parameter estimates through the Fisher information matrix by pairwise composite

likelihood as an alternative to full likelihood.

Shi, Smith and Coles [1992] set up a separate notation for the marginal estimation.

Let θ̃ denote the column vector of parameters (θ,α) separating from GEV parameters

and dependence parameters, where θT = (µi, ψi, ξi, µj, ψj, ξj) at two sites i and j, and α

consists of the dependence parameters. Let ln(θ̃) = ln(θ,α) denote the log likelihood

based on n observations, and let l∗n(θ) = ln(θ,α0) denote the log likelihood for θ

assuming Yi and Yj are independent. The marginal estimator θ̂ is the value of θ that

maximizes l∗n(θ) and α̂ maximizes ln(θ̂, α) with respect to α for the fixed θ̂. Then

Cov(θ̂), Cov(θ̂, α̂) and Cov(α̂) are derived from the Fisher information matrix based

on each l∗n and ln. Combining those covariance matrices gives the full asymptotic

covariance matrix of (θ̂, α̂).
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This marginal approach could result in a significant difference with the properties

of the estimation, see Shi, Smith and Coles [1992] and Shi [1995]. The asymptotic

covariance matrix of the estimators under the marginal method can be compared with

the corresponding matrix for the joint method, and simulations supported the result

that the marginal method may be inefficient even though it is simpler computationally.

The same issue of “joint” versus “marginal” estimation arises for the threshold

approach. We would compare two methods via simulations with calculating the in-

formation matrix numerically. Like the simulation of comparison with Z and Ẑ in

Section 3.1, we could also examine the comparison of parameter estimation for true

process over unit Fréchet margins (Z), and that of process (Ẑ), transformed from GEV

margins, permitting the marginal estimation under the different setting of max-stable

processes. Also we consider how to improve the parameter estimation of max-stable

processes for Ẑ without any information about true process Z, as suggested in the

simulation study of Z and Ẑ.

Dependence of more than two sites

We would like to explore the dependence structure of more than two sites, like triple

stations. The optimal way to see the dependence between multiple sites will also be

considered. The dependence from max-stable processes such as Smith and Schlather

model can be examined via simulation, and we will conclude which model better

explains the dependence between sites. If there exists some discrepancy with the

dependence plot in practice, we could draw statistically meaningful results from the

discrepancy.
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Appendix

Appendix A. Example
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2 +
y−x√
γ and b =

√
γ

2 +
x−y√
γ .

J(x, y; θ) = 1

M

∂2B

∂x∂y
+ 1

M2

∂B

∂x
⋅ ∂B
∂y

= 1

M
{e−xϕ(a)b + e−yϕ(b)a}

+ 1

M2
{e−xe−y(Φ(a)Φ(b) + 1

√
γ
Φ(a)ϕ(b) + 1

√
γ
ϕ(a)Φ(b))

− e−2xϕ(a)√
γ
(Φ(a) + ϕ(a)√

γ
) − e−2yϕ(b)√

γ
(Φ(b) + ϕ(b)√

γ
)}.
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∂J

∂θ
= 1

M

∂

∂θ
( ∂

2B

∂x∂y
) + 1

M2

∂

∂θ
(∂B
∂x
) ⋅ ∂B

∂y
+ 1

M2

∂B

∂x
⋅ ∂
∂θ
(∂B
∂y
)

= (∂γ
∂θ
)[ 1

M
{e−xϕ(a)k3(y − x) + e−yϕ(b)k3(x − y)}

+ 1

M2
{e−xϕ(a)k1(y − x) + e−yϕ(b)k2(x − y)}{e−y(Φ(b) +

ϕ(b)
√
γ
) − e−xϕ(a)√

γ
}

+ 1

M2
{e−yϕ(b)k1(x − y) + e−xϕ(a)k2(y − x)}{e−x(Φ(a) +

ϕ(a)
√
γ
) − e−y ϕ(b)√

γ
}].
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Appendix B. Proof of Theorem 1

Proof. WLOG, assume wK = wij((si, sj)) = 0 ∀s ∈ Rc
n.

σ2
K =∑

i

∑
j>i
∑
p
∑
q>p
wij(λn(xi,xj))wpq(λn(xp,xq))σ(λn(xi,xj), λn(xp,xq))

≡∑
i

∑
j>i
∑
p
∑
q>p
hK(Xij,Xpq), Xij = (xi,xj)

Assume that f(xi,xj) = f(xi)f(xj) ∈ [mf ,Mf ] where mf and Mf are constants.

∣∫ ∫
wij(λn(xi,xj))wpq(λn(xi,xj) + h)f 2(xi,xj)dxidxj

∫ ∫ w2
ij(λn(xi,xj))f(xi,xj)dxidxj

∣

≤
M2

f ∫ ∫ wij(λn(xi,xj))wpq(λn(xi,xj) + h)dxidxj
mf ∫ ∫ w2

ij(λn(xi,xj))dxidxj

≤ (
M2

f

mf

)

¿
ÁÁÁÀ∫ ∫

w2
pq(λn(xi,xj) + h)dxidxj

∫ ∫ w2
ij(λn(xi,xj))dxidxj

(by C-S inequality) ≤
M2

f

mf

<∞.

Eσ2
K =K(K − 1)EwK(λnXij)wK(λnXpq)σ(λn(Xij −Xpq)) +KEwK(λnXij)2σ(0)

= n(n − 1)(n − 2)(n − 3)
4

EwK(λnXij)wK(λnXpq)σ(λn(Xij −Xpq))

+ n(n − 1)(n − 2)EwK(λnXij)wK(λnXiq)σ(λn(Xij −Xiq))

+ n(n − 1)
2

EwK(λnXij)2σ(0)

= n(n − 1)(n − 2)(n − 3)
4

λ−2dn ∫ σ(h)∫ wij(λnXij)wpq(λnXij + h)×

f(Xij)f(Xij + λ−1n h)dXijdh

+ n(n − 1)(n − 2)λ−dn ×

∫ σ((0,h))∫ wij(λnXij)wiq(λnXij + (0,h))f(Xij)f(Xij + λ−1n (0,h))dXijdh

+ n(n − 1)
2

EwK(λnXij)2σ(0)
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Ð→Kn2λ−2dn Ew2
K(λnX1)∫ σ(h)Q1(h)dh

+Knλ−dn Ew2
K(λnX1)∫ σ((0,h))Q2(h)dh +KEwK(λnX1)2σ(0)

= (Ks21k)(σ(0) +C1∫ σ((0,h))Q2(h)dh +C2
1 ∫ σ(h)Q1(h)dh),

as n→∞ (K →∞), by (A′4), (A′5) and dominated convergence theorem.

σ2
K =

K

∑
a=1

K

∑
b=1
hK(Xa,Xb),

h1K(x) = EhK(x,X1), x ∈ R2d

(Eq. (5.6), Lahiri (2003)) σ2
K −Eσ2

K =
K

∑
a=1
[hK(Xa,Xa) −EhK(X1,X1)]

+
K−1
∑
b=1
(K − b)[h1K(Xb) −Eh1K(Xb)]

+
K

∑
a=2

a−1
∑
b=1
[hK(Xa,Xb) −EhK(Xb,X1)]

≐D1K +D2K +D3K

∣EhK(x,X1)r∣ = ∣∫ ∫ wK(λnx)rwK(λns)rσr(λnx, λns)f(s)ds∣

≤ (M2
k )rMfλ

−2d
n ∫ ∣σ(s)∣rds, by (A’1).

∣EhK(X1,X2)r∣ ≤ E∣EhK(X1,X2)r∣X1)∣ ≤ C(Mf , σ(⋅))M2r
k λ

−2d
n .

Then

∞
∑
K=1

E(σ2
K −Eσ2

K)
4/(K2λ−2dn Ew2

K(λnX1))
4

≤ C(Mf , σ(⋅),C1)
∞
∑
K=1
(

M2
k

Ew2
K(λnX1)

)
4

(K
6λ−8dn

K8λ−8dn

)

= C(Mf , σ(⋅),C1)
∞
∑
K=1
(γ21K)4(

K6λ−8dn

K8λ−8dn

)

= C(Mf , σ(⋅),C1)
∞
∑
K=1

(γ21K)4
K2

<∞, by (A’6)
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since

ED4
1n ≤ C{KEhK(X1,X1)4 +K2(EhK(X1,X1)2)

2}

≤ Cσ(0)4K2(s21Kγ21k)4λ−4dn ≤ Cσ(0)4KEwK(λnX1)8,

ED4
2n ≤ C[

K

∑
b=1
(K − b)4Eh1K(X1)4 + {

K

∑
a=1
(K − a)2Eh1K(X1)2}

2]

≤ C(Mf , σ(⋅))K6M8
kλ
−8d
n ,

ED4
3n ≤ CK

K

∑
a=2
E{

a−1
∑
b=1
(hK(Xa,Xb) − h1K(Xb))}

4

≤ CK
K

∑
a=2
[E{(a − 1)E[(hK(Xa,X1) − h1K(X1))4∣Xa]

+ ((a − 1)E[(hK(Xa,X1) − h1K(X1))2∣Xa])
2}

+E[(a − 1)(h1K(Xa) −Eh1K(X1))]
4]

≤ C(Mf , σ(⋅))M8
k [K3λ−2dn +K4λ−4dn +K6λ−8dn ]

(see details in Eq. (5.7)-(5.9), Lahiri (2003)). It follows the analogous result by

Lemma 5.2 (i) in Lahiri (2003). If n/λdn → C1 ∈ (0,∞) and (A′1), (A′4) and (A′5)

hold, then

(K ⋅Ew2
K(λnX1))

−1
σ2
K → (σ(0) +C1∫ σ((0,h))Q2(h)dh +C2

1 ∫ σ(h)Q1(h)dh).

Let ξk ≜ ξk(sk) = Zk(sk) −EZk(sk). Define for c > 0,

ηk = ξkI(∣ξk∣ ≤ c) −Eξ0I(∣ξ0∣ ≤ c)

γk = ξkI(∣ξk∣ > c) −Eξ0I(∣ξ0∣ > c)
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where ξ0 = ξk(0). Let S1∗
K = ∑

K
k=1wkηk, S

2∗
K = ∑

K
k=1wkγk, and

σ∗1(x; c) = Cov(ξkI(∣ξk∣ ≤ c), ξ0I(∣ξ0∣ ≤ c)),

σ∗2(x; c) = Cov(ξkI(∣ξk∣ > c), ξ0I(∣ξ0∣ > c)).

We separate the sum of centered processes into two parts,

SK ≡
K

∑
k=1

wk(sk)ξk(sk)

=
K

∑
k=1

wkηk +
K

∑
k=1

wkγk = S1∗
K + S2∗

K .

By the moment condition on Zk(⋅) and the strong mixing condition,

max
j=1,2 ∫ ∫ ∣σ

∗
j (x; c)∣dx ≤ ∫ ∫ (E∣ξk(0)2+δ ∣)

2/(2+δ)
α(∣x∣; 1)δ/(2+δ)dx

≤ C(d, δ,E∣ξk(0)∣2+δ, β(1))∫
∞

0
td−1α1(t)δ/(2+δ)dt <∞

⇒ ∫ ∫ ∣σ∗j (x; c)∣dx <∞ ∀c > 0, j = 1,2. (6.1)

Since ∣Q1(x)∣ ≤ 1, we obtain that for all x and c,

∣∫ ∫ σ(x)Q1(x)dx − ∫ ∫ σ∗1(x; c)Q1(x)dx∣

≤ ∫ ∫ {∣Cov(ξk(x)I(∣ξk(x)∣ > c), ξk(0))∣

+ ∣Cov(ξk(x)I(∣ξk(x)∣ ≤ c), ξk(0)I(∣ξk(0)∣ > c))∣}dx

≤ C(d)(E∣ξk(0)∣2+δ)
1

2+δ (E∣ξk(0)I(∣ξk(0)∣ > c)∣2+δ)
1

2+δ ∫
∞

0
td−1α1(t)δ/(2+δ)dt

Ð→ 0 as c→∞

⇒∫ ∫ σ(x)Q1(x)dx − ∫ ∫ σ∗1(x; c)Q1(x)dx = o(1). (6.2)
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The similar one can be applied to the form with Q2.

P( lim
K→∞

[ES2∗
K (c) − σ̃2

2,K(c)]/(Ks21K) = 0) = 1 (6.3)

where

σ̃2
2,K(c) ≡K(K−1)EwK(λnX1)wK(λnX2)σ∗2(λn(X1−X2); c)+KEw2

K(λnX1)σ∗2(0; c).

From the previous proof of the asymptotic variance, we can obtain the result such

that for any c > 0,

σ̃2
2,K(c) = (Ks21K){C2

1 ∫ σ∗2(h; c)Q1(h)dh +C1∫ σ∗2((0, h); c)Q2(h)dh}

+Ks21Kσ∗2(0; c)

as n →∞. Since ∣ ∫ σ∗2(h; c)Q1(h)dh∣ + ∣ ∫ σ∗2((0, h); c)Q2(h)dh∣ + ∣σ∗2(0; c)∣ = o(1) as

c→∞, then by (6.1),(6.2) and (6.3),

P( lim
c→∞

lim sup
n→∞

ES2∗
K (c)/(Ks21K) = 0) = 1.

Now we apply a classical Bernstein blocking technique for the proof of asymptotic

normality. Notations for the blocking technique of Bernstein are same with those

of Lahiri. Let {λ1n} and {λ2n} be two sequences satisfying the condition (A′6) and

{λ3n} = {λ1n} + {λ2n}. Then the partition of the region Rn is denoted by

Γn(l; ϵ) ≡ I1(ϵ1) ×⋯Id(ϵd), ϵ = (ϵ1,⋯, ϵd)′ ∈ {1,2}d,

where Ij(ϵj) = (ljλ3n, ljλ3n + λ1n], if ϵj = 1 and Ij(ϵj) = (ljλ3n + λ1n, (lj + 1)λ3n, ], if
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ϵj = 2. Note that with q(ϵ) ≡ [{1 ≤ j ≤ d ∶ ϵj = 1}],

∣Γn(l; ϵ)∣ = λq(ϵ)1n λ
d−q(ϵ)
2n

for all l and ϵ. Let ϵ0 = (1,⋯,1)′. Then

∣Γn(l; ϵ)∣ = o(∣Γn(l; ϵ0)∣).

Let L1n = {l ∶ Γn(l;0) ⊂ Rn} be the index set of all hypercubes Γn(l;0) that are

contained in Rn, and let L2n = {l ∶ Γn(l;0) ∩Rn ≠ 0,Γn(l;0) ∩Rc
n ≠ ∅} be the index

set of boundary hypercubes. With the notation above, S1∗
K can be separated into

the sum of big blocks and small blocks and the sum of remaining variables. Here we

consider only the case that station elements i and j are in the same block. If sums

of pair whose elements are in different block, the joint probability of exceeding over

the threshold would be zero as the sampling region is growing. Thus as n→∞, sums

of pair would converge to 0 and it could be negligible in consideration of our sum of

processes.

S1∗
K /σK =

K

∑
k=1

wk(sk)ηk(sk)/σK

= ∑
l∈L1n

S1∗
K (l; ϵ0) + ∑

ϵ≠ϵ0
∑
l∈L1n

S1∗
K (l; ϵ) + ∑

l∈L2n

S1∗
K (l;0)

=
∣L1n∣

∑
q=1
∑
k∈Jq

wkηk/σK +
∣L1n∣

∑
q=1
∑
k∈Hq

wkηk/σK + ∑
k∈L2n

wkηk/σK

≜
∣L1n∣

∑
q=1

S′1Kq +
∣L1n∣

∑
q=1

S′2Kq + ∑
k∈L2n

wkηk/σK

= S′1K + S′2K + S′3K

(big blocks + little blocks + leftover)

where σ2
K = V ar(∑

K
k=1wK(sk)ξk(sk)), S′1Kq = ∑k∈Jq wkηk/σK and S′2Kq = ∑k∈Hq

wkηk/σK .
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Two big blocks Γ(l1; ϵ0) and Γ(l2; ϵ0) are separated by the distance

d(Γ(l1; ϵ0),Γ(l2; ϵ0)) ≥ [(∣l1 − l2∣ − d)+λ3n] + λ2n.

By the strong mixing condition,

∣E exp(itS′1K) − ∏
l∈L1n

E exp (itSK(l; ϵ0))∣ ≤ C ∣L1n∣α(λ2n;λdn).

Therefore the asymptotic behavior can be shown with the independence of S′1Kq.

Using Lemma A.1 in Lahiri(2003), we show that with probability one,

∑
q=1
ES′1Kq

4σ4
K = o([K2λ−2dn s21K]2), (6.4)

V ar(S′2KσK) = o(K2λ−2dn s21K), (6.5)

V ar(S′3KσK) = o(K2λ−2dn s21K). (6.6)

Now we have to show that

∑
q=1
ES′1Kq

2σ2
K − σ2

K = o(K2λ−2dn s21K). (6.7)
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To prove above equation, we use Lemma 5.1 in Lahiri(2003) and (6.4)-(6.6).

∣∑
q=1
ES′1Kq

2σ2
K − σ2

K∣

≤ ∣∑
q=1
ES′1Kq

2σ2
K −E(S′1KσK)2∣

+ 2σ2
K(E(S′2K + S′3K)2)

1/2
E(S′1K

2)1/2 +E(S′2K + S′3K)2σ2
K

≤ C[∑C2
0M

2
n(λ2d1nn2λ−2dn + logn)2α([(∣l1 − l2∣ − d)+λ3n] + λ2n;λd1n)] + o(K2λ−2dn s21K)

≤ C(d,C0)M2
n(λ2d1nn2λ−2dn + logn)2(λn/λ3n)2d×

(α(λ2n;λd1n) +
λn/λ3n
∑
k=1

kd−1α(kλ3n + λ2n;λd1n)) + o(K2λ−2dn s21K)

= o(K2λ−2dn s21K)

Thus we show that the equation (6.7) holds and it is needed only to establish the

Lindeberg condition,

∣L1n∣

∑
q=1

E(S′1Kq)2I(∣S′1Kq ∣>ϵ) Ð→ 0, as n→∞.

Since we have

∣L1n∣

∑
q=1
∫
∣S′1Kq ∣>ϵ

∣S′1Kq ∣2+δdP =
∣L1n∣

∑
q=1
∫∣∑k∈Jq wkηk/σK ∣>ϵ

∣ ∑
k∈Jq

wkηk∣
2+δ

/σ2+δ
K dP

≤ C ∣L1n∣n−d(
2+δ
2
)( 1

σ2
)
(2+δ)/2

∫∣∑k∈Jq wkηk/σK ∣>ϵ
∣ ∑
k∈Jq

wkηk∣
2+δ

dP

≤ C([ n
λ1n
])

d

n−d
( 2+δ

2
)
∫∣∑k∈Jq wkηk/σK ∣>ϵ

∣ ∑
k∈Jq

wkηk∣
2+δ

dP

≤ C(nδ/2λ1n)−dM2
k ∫∣∑k∈Jq wkηk/σK ∣>ϵ

∣ ∑
k∈Jq

ηk∣
2+δ

dP

Ð→ 0 as n→∞,

this implies that the Lindeberg condition holds.
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