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ABSTRACT

Hao Tang : Prioritizing Small molecules for Drug Discovery or Chemical Safety

Assessments using Ligand- and Structure-based Cheminformatics Approaches

(Under the direction of Professor Alexander Tropsha)

Recent growth in the experimental data describing the effects of chemicals at the
molecular, cellular, and organism level has triggered the development of novel computational
approaches for the prediction of a chemical’s effect on an organism. The studies described in
this dissertation research predict chemical activity at three levels of biological complexity:
binding of drugs to a single protein target, selective binding to a family of protein targets, and
systemic toxicity. Optimizing cheminformatics methods that examine diverse sources of
experimental data can lead to novel insight into the therapeutic use and toxicity of chemicals.

In the first study, a combinatorial Quantitative Structure-Activity Relationship
(QSAR) modeling workflow was successfully applied to the discovery of novel bioactive
compound against one specific protein target: histone deacetylase inhibitors (HDACIs). Four
candidate molecules were selected from the virtual screening hits to be tested experimentally,
and three of them were confirmed active against HDAC.

Next, a receptor-based protocol was established and applied to discover target-
selective ligands within a family of proteins. This protocol extended the concept of
protein/ligand interaction-guided pose selection by employing a binary classifier to
discriminate poses of interest from a calibration set. The resulting virtual screening tools

were applied for enriching beta2-adrenergic receptor (B2AR) ligands that are selective

against other subtypes in the PBAR family (i.e. BIAR and B3AR). Moreover, some



computational 3D protein structures used in this study have exhibited comparative or even
better performance in virtual screening than X-ray crystal structures of f2AR, and therefore
computational tools that use these computational structures could complement tools utilizing
experimental structures.

Finally, a two-step hierarchical QSAR modeling approach was developed to estimate
in vivo toxicity effects of small molecules. Besides the chemical structural descriptors, the
developed models utilized additional biological information from in vitro bioassays. The
derived models were more accurate than traditional QSAR models utilizing chemical
descriptors only. Moreover, retrospective analysis of the developed models helped to identify
the most informative bioassays, suggesting potential applicability of this methodology in
guiding future toxicity experiments.

These studies contribute to the development of computational strategies for
comprehensive analysis of small molecules’ biological properties, and have the potential to

be integrated into existing methods for modern rational drug design and discovery.
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Chapter 1. Introduction
1.1. Overview

The famous “central dogma” of molecular biology explains the information flow through
macromolecules from DNA to RNA to proteins. Yet, many essential biological processes cannot
be fulfilled with macromolecules alone. A variety of small molecules, such as transmitters,
hormones, metabolites, and xenobiotics, are essential to understand the big picture of life and are
arguably the “missing link” of the “central dogma” (* Figurel.1). Acquiring good knowledge of
these small molecules and how they interact with biological systems could significantly enhance
our abilities to characterize protein functions, decipher the signaling pathways, and direct the
optimization of drug leads for treatments of diseases. In order to investigate the effects of small
molecules, rapid growing disciplines including chemical biology, chemogenomics, and chemical
genetics have evolved at the interface between chemistry and molecular biology, statistical
modeling and computational sciences **. Despite the diversity and complexity of researches in
these fields, the major themes are perhaps best described as to use small molecules as probes to
study biological functions, with an ambitious goal to comprehensively explore all possible drug
candidates, potential pharmaceutical relevant targets, and the entire drug-target interaction
network .

With the increasing amount of data produced in this field, computational tools are
recently developed to either help with interpretation of the data, or convert the information into
knowledge and predictive tools that can be applied to guide future studies. Many of these

computational tools are derived from conventional cheminformatics and bioinformatics methods



including, for instance, the analysis of small molecule similarity and structure-activity
relationships, the study of ligand-target associations through molecular docking and scoring, or
the construction of target associations through sequence/structure similarity and the ligand-target
interaction network ' (Figure 1.2). A comprehensive overview of computational tools
developed in this field is beyond the scope of this chapter; rather, the focus here is to provide a
brief summary of the cheminformatics and virtual screening tools that have been explored and

evaluated in this dissertation, as well as highlight the contributions of this study.

1.2. Quantitative Structure-Activity Relationships Analysis

The major assumptions underlying any Quantitative structure-activity relationship
(QSAR) analysis is that “similar molecules are most likely to obtain similar properties” (the
Similarity Property Principle), which has shown to be generally valid. Classical QSAR models
attempt to quantitatively relate structure variations of small molecules to changes in their
biological properties, such as binding affinities and inhibition constants. Any QSAR practice can
generally be represented by a mathematical formula: P = k(D;,D,,...,D,)) where P is a
biological property of interest for the molecules; D;, D, ... D, are calculated structural
descriptors that characterize molecules’ physical-chemical properties, and k is some
mathematical transformation to derive the property for the molecule from the descriptors . The
success of a QSAR modeling campaign thus depend on the robustness of the structural
descriptors employed, as well as the statistical learning strategies applied to the construction of
the structure-activity relationships. Recently, there is an increasing emphasis in the QSAR
community to carry out rigorous model validation to afford robust and predictive models, which

can be applied to virtual screening of external compounds with unknown activities ',



Most of the traditional QSAR models assume a single mode of action for the tested small
molecules, as well as a linear relationship between a biological activity and molecular descriptors.
This may be a reasonable approximation for relatively small data sets. However, it is often not
the case for the data from chemical biology, especially when the monitored biological functions
can be phenomenological in nature, and a large set of structurally diverse compounds is
considered. During the past decades, we have witnessed a great interest in using more complex
machine learning techniques, such as the Bayesian Classifier °, k nearest neighbors (kNN) ',

randomForest (RF)"”, and support vector machines (SVM) '*"

, to assist computational modeling
in this field. As it is highly impossible to decide a priori as to which modeling technique could be
most effective, it is usually recommended to use the combi-QSAR approach that explores all
possible combinations of various descriptor types and statistical learning algorithms along with
external model validation. Chapter 2 describes an example that employed the combi-QSAR
approach and rigorous model validation to identify novel histone deacetylase inhibitors.

Despite the increasing complexity and diversity of statistical learning algorithms applied,
it is difficult to develop predictive tools for chemical biology data using most traditional QSAR
models that are based on chemical descriptors alone. There are two major challenges: the
significant structure diversity of the data set on one hand, and the variety of structural features
that can cause similar effect, on the other hand. These challenges are most prominent in the
assessment of environmental chemicals’ toxicological effects, where chemicals were designed
for different reasons with various scaffolds, and can act through multiple mechanisms and hit
various physiologically important targets to cause similar adverse effects **'. On the other hand,

the development of various in vitro toxicity testing methods, such as cell-based and cell-free

HTS techniques, as well as toxicogenomic technologies, offered potential biological basis for



estimating the adverse effects of environmental chemicals **>*

. Therefore, it is intriguing to
develop novel QSAR modeling approaches that can combine traditional chemical descriptors
with the knowledge extracted from the in vitro testing results. Indeed, our recent studies showed
that it is possible to improve QSAR models’ predictivity by including in vitro testing results as

biological descriptors with traditional chemical descriptors *>*°

. However, this approach is not
always effective, partially owing to the overwhelming influence of chemical descriptors when
modeling with hybrid descriptors. Recently, we showed that it is also beneficial to utilize the
correlation between rodent acute toxicity data (in vivo data) and cytotoxicity data (in vitro data)

to enhance the performance of traditional QSAR models with chemical descriptors only S

n
Chapter 5, we illustrated when it is difficult to build predictive models from traditional QSAR
modeling approach using either chemical descriptors or hybrid descriptors (chemical plus
biological descriptors), we can still manage to utilize the in vitro vs. in vivo correlations and a

novel two-step hierarchical QSAR modeling workflow to construct models for three rat

reproductive toxicity endpoints.

1.3. Molecular Docking
Receptor-ligand docking has become a fundamental component of modern drug
discovery process. It consists of two distinct steps: docking and scoring. The docking step
attempts to explore all possible conformations and orientations of a candidate ligand into the
active site. Each solution is named a pose. The scoring step deals with determining the binding
affinity of each pose, and ranks the ligands according to the predicted values. The goal is to find
the most appropriate pose for each ligand and to indentify the ligands with the highest potential

as drug candidates. Following the pioneering work form the first docking-based virtual screening



approaches, namely UCSF Dock, there are currently more than 60 docking programs (e.g. Dock,

9,29

AutoDock, eHiTs, FlexX, Fred, Glide) and more than 30 scoring functions™. To date, structure-

based virtual screening (SBVS) has been successfully applied in numerous studies and enabled

30,31 2

well documented discovery of several approved drugs, e.g. dorzolamide and relenza **.

A docking study provides concomitantly the estimates on small molecule’s binding
pattern and affinity to the target macromolecule. When there is a set of related protein targets,
docking studies would, ideally, provide good estimates on small molecule’s binding selectivity
across these targets (ligand profiling). Compared with ligand-centric methods that use small
molecule information alone, docking represents a promising complementary approach that
include 3D information about the target protein to predict compounds binding selectivity.
Therefore, there is an increasing interest to use docking approaches in both retrospective and

33,34 Nevertheless, due to the inherent

prospective studies of small molecules’ binding selectivity
limitations of docking programs, this is never a trivial task.

Typically, the 3D structures of biomolecules obtained by X-ray crystallography and
NMR spectroscopy are needed for the purpose of SBVS, whose performance is strongly affected
by the quality of biomolecular structure, especially with respect to binding site description.
When no experimentally determined structures are available, theoretical models based on either

homology or de novo modeling approaches are employed instead *>=*

. In principle, the success
of structure models is typically measured by how close the models could reproduce experimental
structures, which implies that the latter are inherently more appropriate choice for SBVS
applications. However, this may not always be true, especially when one takes into account of

the fact that some of the computational models are actually manually refined with known

medicinal chemistry data to reproduce conserved protein-ligand contacts. There have been some



discussions about the accuracy and applicability of theoretical models **** in SBVS. The G-
protein coupled receptors (GPCRs) serves as a good example where theoretical models have
been used widely because of GPCRs’ importance as targets for many drugs, on one hand, and the
lack of experimental structures, on the other hand. Thus, the recent publications of the crystal
structure of human beta-2 adrenergic GPCR ([32AR)45'47 cleared the way for the validation of
previous theoretical models, as well as provided critical guide for building structural models of
other GPCRs. To assess the accuracy and applicability of structure models in SBVS, we have
compared several beta-2 adrenergic receptor (B2AR) structural models versus the 2AR-T4L
crystal structure in terms of both their global similarity and effectiveness of use in search for
B2AR specific agonists and antagonists (Chapter 3).

Another critical issue for using docking as a ligand profiling approach is the inaccuracy
of the predicted binding pose and affinities. While most docking program can reproduce
experimentally resolved binding conformations, those poses are not always picked by the scoring
functions **. The generated scores also do not correlate with the order of measured activities,

thus most docking programs demand further visual inspections of the top-scored poses *°°. T

0
overcome this problem, the scoring functions are constantly modified to enable more accurate
prediction of the binding energy of a small molecule. The developed approaches, however, are
often very computationally intensive, resulting in less pracitical approaches for large scale virutal
screening. Alternative approaches are to use pre- or post-docking filters to eliminate
unreasonable ligand poses or uninterested compounds. The examples of several approaches that
allow pharmacophore constraints during docking runs include Glide *!, Gold **, LIDAEUS™, and

FlexX **. Several other groups aim at selecting only ligand poses that possess known conserved

protein-ligand contacts. Singh and colleagues >>° defined a series of protein-ligand interactions



properties to generated Structural interaction fingerprint (SIFt) at protein-ligand’s binding site.
Virtual screening studies using SIFt revealed superior performance as compared with traditional
scoring functions. Graaf and Rognan et al. showed that a topological scoring function based on
another ligand protein interaction fingerprint (IFPs) was able to selectively identify agonists or
antagonists of the f2AR °7°

Our lab has developed a novel type of four-body statistical descriptor to effectively
represent the protein-ligand interface: the PL/MCT-tess (Protein-Ligand atoms’ pair wise
Maximal Charge Transfer potential based on Delaunay Tessellation) descriptor. A recent study
by Hsieh et al. in our group suggested that QSAR models developed based on PL/MCT-tess
descriptors can effectively distinguish native-like docking poses from decoy poses, thus
dramatically increased the virtual screening performance when combined with the traditional

. . 60,61
force-field based scoring functions”

. Herein, we continue to use the PL/MCT-tess descriptors
as an effective representation of the protein-ligand interface, and explored novel pose-filters that
enable selective exclusion of irrelevant binding poses. The developed pose-filters have been

further customized to learn significant contacts that relate to subtype specificity, and the derived

filters were applied to search for selective ligands within the BAR sub-family (Chapter 4).

1.4. Thesis Outline
This dissertation has aimed to develop and validate computational approaches for the
analysis of small molecules’ toxicity and binding selectivity, both of which have high potential
for application in the fast evolving fields of chemical biology and chemogenomics. A series of
QSAR-based and docking-based computational tools have been developed and customized for

this purpose.



Chapter 2 illustrates the power of combi-QSAR VS as a general approach for the
identification of structurally novel bioactive compounds. Histone deacetylases inhibitors
(HDACIs) have emerged as a new class of drugs for the treatment of human cancers and other
diseases due to their effects on cell growth, differentiation, and apoptosis. To produce predictive
QSAR models, a combi-QSAR approach that employ k& Nearest Neighbor (KNN) and Support
Vector Machines (SVM) QSAR modeling algorithms using both MolConnZ and MOE chemical
descriptors have been employed. The validated QSAR models were used concurrently to screen
large publically and commercially available compound databases totaling over 9.5 million
molecules for novel HDAC inhibitors.

Chapter 3 and Chapter 4 contribute to the development and validation of a target-biased
SBVS approach that can be further tailored to search target selective ligands. Selective small
molecules provide an important library for probing biological functions in the field of chemical
biology. To develop computational tools that are capable of discriminating selective ligands
requires a paradigm shift from the previous single-target focus. The emphasis is on exploring
interactions between individual ligand to a set of (related) protein targets. To perform ligand
profiling based on SBVS requires a priori the 3D structures of all the protein targets, which may
not always have experimentally solved structures available. In these situations, structure models
via homology modeling or de novo design are used instead. This has been a long time debate
whether SBVS using structure models can achieve reasoanble quality and applicability. Studies
in Chapter 4 compare the SBVS applicaility of a set of well established B2AR theoretical models
with that of the recently solved B2AR X-ray crystal structure. Employed both the carefully
selected structural models and the recently solved B2AR X-ray crystal structure, Chapter 5

describes the development and validation of novel target-biased pose filters for selectively enrich



sub-type ligand within the BAR GPCR subfamily. The developed pose filters could not only help
with ligands identification, but are also useful in finding potential binding residues that are
essential for ligand selectivity.

In Chapter 5, traditional QSAR models, as well as the specialized QSAR models that
incorporate biological information from in vitro testing data have been evaluated for their
potential to forecast environmental chemicals’ in vivo toxicity effects. Others’ studies as well as
our previous efforts showed that while it is possible to construct predictive QSAR models using
chemical descriptors alone, it is usually not a simple task for most toxicity endpoints. We
hypothesize that model performance could be improved by including additional information
about how molecules’ can perturb important signaling pathways and interact with the biological
system. The available in vitro testing data could serve as biological probe to predict chemicals’
systemic adverse effects. Therefore, we proposed to develop a novel two-step QSAR approach
that incorporates the in vitro testing results to complement traditional chemical-descriptors-based

QSAR models in predicting compounds’ toxicity effects.
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Figure 1.1. Illustration of the role of small molecules as viewed by a chemical biologist. (Adapted
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Figure 1.2. Contribution of cheminformatics to systems biology. Computational modeling helps with
the prediction of compounds activity against single/multiple targets, while the PBPK models will
provide estimation on compound distribution and accumulation in tissues. (Adapted from )
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Chapter 2. Novel Inhibitors of Human Histone Deacetylase (HDAC)
Identified by QSAR Modeling of Known Inhibitors, Virtual
Screening, and Experimental Validation

(This chapter has been published as Tang, H., et al. J Chem Inf Model, 2009. 49(2): p. 461-76)

2.1. Introduction

The dynamic posttranslational modification of nucleosomal histones plays a critical
role in transcriptional regulation. Hyperacetylation of core histones results in transcriptional
activation, while hypoacetylation leads to expression repression®. This kind of regulation is
considered to be the critical step in normal cell differentiation and chromatin condensation
and is believed to be regulated by the balance between two groups of enzymes: histone
deacetylases (HDACs) and histone acetyltransfereases (HATs) **®. Inhibition of HDACs
represents a novel approach to interfere with cell cycle regulation; therefore, it has a great
therapeutic potential in the treatment of diseases of aberrant cellular proliferation ®. It has
been reported that hyperacetylation of histones and non-histone proteins induced by small
molecule HDACs inhibitors (HDACI) leads to cell growth arrest, cellular differentiation
and/or apoptosis of malignant cells ®"°. For these reasons, HDACI has become a promising
class of chemical agents for the treatment of cancer and other diseases associated with
uncontrolled cell proliferation.

To date, a number of structurally distinct classes of HDACI have been reported,

71,72

including hydroxamates, cyclic peptides, aliphatic acids and benzamides . The natural

product Trichostatin A (TSA) " is the most well-known member of the hydroxamates class;



this compound is considered to be a mimetic of the natural substrate, i.e., histone acetyl
lysine side chain. Extensive structure-activity relationship (SAR) studies have been
conducted for TSA and TSA-like compounds resulting in several potent HDACs inhibitors '+
7. A TSA analog suberoylanilide hydroxamic acid (SAHA) "® was recently approved by the
FDA for the treatment of cutaneous T cell lymphoma (CTCL), stimulating further
investigations of HDACI in the treatment of various diseases .

HDAC:s have been classified so far into four classes (Classes I-IV) depending on the
sequence identity and domain organization. Among the Class I HDACs, HDACs 1,2 and 8
are primarily found in the nucleus, whereas HDAC 3 is found in the nucleus, cytoplasm and
the membrane. In comparison, Class Il HDACs subdivided into ITa (HDAC 4, 5, 7, 9) and IIb
(HDAC 6, 10) are able to shuttle in and out of the nucleus depending on different signals.
Class III HDACs include the SIRTs (sirtuins) or Sir2- related proteins; they are NAD-
dependent * and are insensitive to TSA or other hydroxamate inhibitors. Class IV comprises
of HDAC 11, based on a phylogenetic analysis and is the least characterized to date *'. It has
been considered important in recent years to develop class/subtype selective HDACI.
Considering the number of pathways in which HDACs are involved, the HDACI that act
exclusively on Class I or Class II enzymes are viewed as likely candidates as anticancer
therapeutic agents.

The crystal structures of the histone deacetylase like protein (HDLP) both in the apo
form and in complexes with TSA and SAHA were first published by Finnin et al. in 1999 .
Five years later, Somoza's group and Di Marco's group both solved the x-ray structures of
another class I histone deacetylase, histone deacetylase subtype 8 (HDACS) in complex with

83,84

several small molecule HDACI ™™ The crystallographic structures revealed that both HDLP
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and HDACS contain a conserved tunnel-like binding pocket with the polar active site at the
bottom. In the x-ray structure of the HDLP/TSA complex, the long aliphatic chain of TSA
(linker domain) spans the whole length of the tunnel-like pocket and the hydroxamic acid
moiety interacts with the polar residues at the bottom of the pocket. The chelating atoms of
hydroxamic acid coordinate zinc ion in a bidentate fashion, and form hydrogen bonds with
the His-Asp diad "****. At the other end of the aliphatic chain, the aromatic group of TSA
(surface recognition domain) interacts with the hydrophobic rim of the pocket "2. Thus, SAR
studies have been typically focused on three regions of HDACI: the metal binding group, the
linker domain, and the surface recognition domain "

Because of their potential clinical importance, HDACI have been a subject of several
Quantitative Structure-Activity Relationship (QSAR) modeling studies >"***. The results of
these studies are summarized in Table 2.1. Most of them focused on a series of hydroxamates
and employed 3D QSAR modeling methods. This preference was partially due to the fact
that a number of HDACs crystallographic structures have been solved in recent years and
thus could be used for structural alignment of inhibitors to enable 3D QSAR modeling. The
size of HDACI datasets varied among different reports, ranging from 19 to 124. The best
reported models were characterized by leave-one-out cross-validation (LOO-CV) R? of
0.870 and R? of 0.987. For the test set, the R? was as high as 0.896. It should be pointed out
that none of these earlier studies had employed an independent dataset for model validation,
and none used models for virtual screening of chemical libraries to identify novel hits.

In the present study of HDACI, we have applied the modeling strategy that has been
under development in our laboratory for several years *°. The important feature of our

approach is that it combines validated QSAR modeling of historic data and virtual screening
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of available chemical libraries for the identification of novel active compounds, as illustrated
in Figure 2.1. We have used experimental data for 59 histone deacetylase subtype 1 (HDAC1)
inhibitors that were generated in one of our laboratories. All of the compounds in the dataset
were hydroxamates but incorporated many novel chemical modifications in the three major
domains, i.e., the hydroxamic acid, the linker domain and surface recognition domain. Our
studies resulted in externally predictive QSAR models of HDACI inhibitors. Furthermore,
the application of these models to virtual screening of a large (ca. 9.5 million) collection of
commercially available chemical compounds identified several computational hits, and three

of them were confirmed experimentally as novel active HDACI inhibitors.

2.2. Materials and Methods
2.2.1. Datasets for Model Building and Validation.

59 compounds with known HDACI inhibition activities were employed for the
QSAR study (cf. Appendix I ). All data were generated in the laboratories of Dr. Kozikowski
(chemistry) and Dr. Jung (biology) at the George Washington University and most of them
were reported earlier *' 2. The data for eight compounds, BC-2-87, BC-3-63, BC-3-70, BC-
3-94, BC-4-93, BC-6-30, BC-6-33 and BC-6-34, are reported here for the first time. The half
maximal (50%) inhibitory concentration of a substance (IC50) was measured on HDACI
from HelLa cell extracts. It was then converted to the pIC50 scale (-logIlC50), in which higher
values indicate exponentially greater potency.

Two independent external validation sets of different nature were employed in the
later phase of our modeling workflow (cf. Figure 2.1): one included 9 HDACI1 inhibitors
randomly selected from the original set of 59 compounds, and another comprised 54 diverse

HDACI inhibitors collected from two general reviews on HDACIs "*’*. These external sets
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have covered most chemical classes of known HDACI ">’ Other compounds discussed in
the reviews were excluded either because their HDACI binding affinity data were not
reported or they were duplicates of compounds included in the modeling set. The observed
pIC50 values of 54 compounds ranged between 4.0 and 8.0 which are similar to the activity

range observed for the 50 compounds used for model development.

2.2.2. Libraries for Virtual Screening.

The virtual screening was performed on our in-house collection of ca. 9,500,000
molecules, including the ZINC7.0 database of ca. 6,500,000 compoundsgg, the World Drug
Index (WDI) database of ca. 59,000 compounds *°, the ASINEX Synergy libraries (2006.04)

of ca. 11,000 compounds 100, the InterBioScreen screening libraries (2007.03) of ca. 400,000

101 102

compounds ', the Chemizon Progenitor databases (2006 v1.1) of ca. 3,300 compounds ",
and several other commercial databases. None of the compounds present in the modeling set
were found in the screening libraries. MolConnZ4.09 (MZ4.09) descriptors were calculated

for each compound in the databases and linearly normalized based on the maximum and

minimum values of each descriptor type in the modeling dataset of 59 HDACT inhibitors.

2.2.3. Generation of MolConnZ Descriptors.

The MolConnZ4.05 (MZ4.05) software '®* affords the computation of a wide range
of topological indices (descriptors) of molecular structure such as simple and valence path,
cluster, path/cluster and chain molecular connectivity indices, kappa molecular shape indices,
topological and electrotopological state indices, differential connectivity indices, graph's
radius and diameter, Wiener and Platt indices, Shannon and Bonchev-Trinajsti, information
indices, counts of different vertices, counts of paths and edges between different kinds of

vertices "', Overall, MZ4.05 produces more than 400 different descriptors. In this study,
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only 262 chemically relevant descriptors were eventually used after removing those with zero
value or zero variance. MZ4.05 descriptors were range-scaled because the absolute values of
individual types could differ by orders of magnitude '°. Therefore, range scaling prevents
undesirable overweighting of descriptors with high ranges of values in calculating compound

similarities as part of QSAR modeling procedure.

2.2.4. Generation of MOE Descriptors.

The MOE2006.08 software ''> generates both 2D and 3D descriptors. 2D molecular
descriptors include physical properties, subdivided surface areas, atom counts and bond
counts, Kier and Hall connectivity and kappa shape indices, adjacency and distance matrix
descriptors, pharmacophore feature descriptors, and partial charge descriptors '**10%10%-113-116
3D molecular descriptors include potential energy descriptors, surface area, volume and

shape descriptors, and conformation-dependent charge descriptors ''’. For model generation,

we used 179 MOE descriptors with non-zero value and variance that were range-scaled.

2.2.5. Selection of Training and Test Sets.

The dataset was subdivided into multiple training/test set pairs using the Sphere
Exclusion method developed in our laboratory ''*!'"°. By default, fifty different training/test
set splits were initially tried using probe sphere radii defined by the minimum and maximum
elements, Dmin and Dmax, of the distance matrix D between compound-vectors in the
descriptor space and forty-two splits were ultimately accepted. The number of compounds in
the test set was varied to achieve the largest possible size of the test set, while ensuring that
the training set models were still able to accurately predict the binding affinity of the test set

compounds.
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2.2.6. kNN Regression Method

The k Nearest Neighbor (kNN) QSAR method used in this study employs the kNN
pattern recognition principle '*° and variable selection method. In short, a subset of variables
(descriptors) is selected randomly as a Hypothetical Descriptor Pharmacophore (HDP) ''.
The HDP is validated by LOO-CV, where each compound is eliminated from the training set
and its HDACI inhibition activity is predicted as the weighted average of the activity(ies) of
the k most similar molecules (k varies from 1 to 5). The weighted molecular similarity is
represented by the modified FEuclidean distance between compounds in HDP
multidimensional space as shown in Equations 1 and 2. Essentially, the neighbor with the
smaller distance from a compound is given a higher weight in calculating the predicted
activity.

e di

Wi =5 —n (1)

y=X wy; (2)

where d; is the Euclidean distance between the compounds i and its kth nearest
neighbors; wi is the weight for the kth nearest neighbor; y; is the experimentally measured
activity value for the kth nearest neighbor; and ¥ is the predicted activity value.

Simulated annealing and Metropolis-like acceptance criteria were used to optimize
the variables. Details of the kNN method implementation, including the description of the
simulated annealing procedure used for stochastic sampling of the descriptor space, are given
elsewhere50. The statistical significance of the models were estimated by the LOO-CV q2 in
the training set, a coefficient of determination R02 (Equation 3) and a linear fit predictive R?

for both internal and external test sets.

2(p2Y) = 1 — 20k=Y)*
9°(Ro) =1 =557 )
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Here y;, and y}, are the observed and predicted activities of compound k, respectively,
and ¥ is the average activity of all compounds. Model acceptability cutoffs were g2 >0.60 for
training set and correlation coefficient R? > 0.60 for the internal test set’” All models that

satisfied both criteria were applied to external validation sets.

2.2.7. SVM Regression Method

Support Vector Machines (SVM) was originally developed by Vapnik '** as a general
data modeling methodology where the training set error and the model complexity are
incorporated into a special loss function and simultaneously minimized during model
development. The importance of the prediction error versus the model complexity can be
tuned during the optimization process, in order to generate models with reasonable
complexity and avoid overfitting. SVM was later extended to afford the development of
SVM regression models for datasets with non-integer variables.

We have implemented SVM for QSAR modeling as described earlier '>. In brief,
given a training set of pairs (x;,y;),1 = 1...m, where x; is an array of descriptors of each
compound andy; is its biological activity (e.g., IC50 value), the sought correlation between
structure and activity can be represented as y; = f(x;). For simplicity, we define f(x;) as a
linear function:

flx) =<w;,x; > +b 4)

where w; is the coefficient vector of the linear function and b is the bias. A major
goal of the SVM regression algorithm is to minimize the loss function, which are a
combination of prediction error defined by §; and the magnitude of the coefficient C in the

following equation:

_ lwll

l0SSimin = ==+ C X1 & )
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with the constraint:

ly — (we(x)) + b)| =; (6)

Here the training vectors x; are mappedointo a high dimensional space by a kernel
function ¢. In the end, SVM regression is expected to find a linear correlation between the
actual activity and this high dimensional space ¢ (x;). For this study, we have implemented a
linear kernel. C is a penalty parameter of the error term that controls the weight between two
terms in the SVM optimization process.

In many cases, the biological activity may contain small errors or the kernel function
may not be capable of perfectly representing the training compounds in a simplified manner.
In order to penalize against complex models, we have added a slack variable ¢ to the loss
function '* in addition to the penalty parameter C. It is a threshold of prediction error for any
compound's activity before the algorithm is penalized for the poor prediction. Beyond this
threshold the algorithm is penalized by the value of {; — . When combining the SVM
optimization process defined in Equation 7 with this slack variable, the following loss

function is obtained:

2
The nature of SVM regression requires one to specify the values of C and € a priori
since it is not known beforehand which values may work the best for one particular dataset;
thus, a parameter tuning must be performed. The goal is to identify optimal values of C and ¢
in that the model can give the best prediction for the test set. For this study we have chosen to
use a "grid-search" scheme on C and €. It starts with randomly choosing a training/test set

split of the dataset, conducting a grid-search using those compounds, then fine-tuning the

complete dataset over the parameter value ranges that exhibited the best results. Our coarse
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grid-search of C varied from 50 to 1000 with an increment of 80, and ¢ varied from 0 to 1.5
with an increment of 0.15. Once the best parameter ranges were found, a fine-tuned search
was carried out to search values within 200 and 0.3 units for C and &, with the steps of 5 and

0.05 respectively.

2.2.8. Applicability Domain

Ideally, a QSAR model can predict the target property for any compound for which
chemical descriptors can be calculated. However, since kNN QSAR modeling predicts test
set compound activities by interpolating those of the nearest neighbor compounds in the
training set, a special applicability domain, or similarity threshold, should be introduced to
avoid extreme model extrapolation by making predictions for compounds that are
significantly dissimilar to members of the training set '°. In order to measure similarity, each
compound is represented by a point in the M-dimensional descriptor space (where M is the
total number of descriptors selected in the descriptor pharmacophore) with the
coordinates (X;1, X2, ", X;jy) , Where X;; are the values of individual descriptors for
compound i. The similarity between any two molecules is characterized by the Euclidean
distance between their representative points. The Euclidean distance between two points 1

and j in M-dimensional space can be calculated as follows:

dij = /2 Xire — Xji)? 3

Compounds with the smallest distance between them are considered to have the
highest similarity. The distribution of pair wise compound similarity in the training set is
analyzed to produce an applicability domain threshold, D, as follows:

Dy =y +Zo (9)
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Here, y is the average Euclidean distance d;; of the k nearest neighbors of each
compound within the training set, ¢ is the standard deviation of these Euclidean distances,
and Z is an arbitrary parameter to control the significance level. Based on previous studies in
our lab, we set the default value of Z as 0.5, which formally places the boundary for which
compounds will be predicted at one-half of the standard deviation (assuming a Gaussian
distribution between k nearest neighbor compounds in the training set). Thus, if the distance
of an external compound from at least one of its nearest neighbors in the training set exceeds

this threshold, the prediction is considered unreliable.

2.2.9. External Validation and Y-Randomization Test

It is critical to validate a QSAR model by assessing its prediction accuracy for an
external set which was not used in model building. We have conducted extensive external
validations on both kNN and SVM models using two external datasets as described above. In
both cases, the prediction accuracy had to satisfy the following conditions:

R? > 0.60 (10)

(R* = R%)/R? < 0.10 and 0.85 <k <1.15 (11)

where k is the slope of the regression lines (predicted versus observed activities)
through the origin. The predictions were generated using consensus models and the model
coverage for each external dataset was calculated as well (vide infra).

Our previous experience suggests that more accurate results are obtained by
consensus, i.e., by averaging predictions from multiple QSAR models '*'** Thus, the
consensus QSAR prediction scheme was applied to all validation set compounds found

within individual applicability domains of models used in consensus prediction. The
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averaged predicted activity, the fraction of models that predict the activity and the variance
of the prediction values have been calculated for each compound.

In addition to external validation, Y-randomization test was carried out to establish
model robustness. The test consists of rebuilding models using shuffled activities of the
training set and evaluation of such models’ predictive accuracy in comparison with the
original model. It is expected that models obtained for the training set with randomized
activities should have significantly lower values of statistical parameters such as g2, R?, RZ,
etc. for training and, especially, test sets. Therefore, if most QSAR models generated in the
Y-randomization test exhibit relatively high values of the statistical parameters for both
training and test sets, it implies that a reliable QSAR model cannot be obtained for the given
dataset. This test was applied to all QSAR approaches in this study and was repeated twice

for each division.

2.2.10. OSAR-based Virtual Screening

As illustrated in the workflow of Figure 2.1, the rigorously validated QSAR models
were employed for virtual screening. A global applicability domain was applied first in the
complete descriptor space in order to filter out compounds that differed in their structure
from the modeling set compounds. All 59 known inhibitors were exploited as the probes
during the calculation. During the consensus prediction, the results were accepted only when
the compound was found within the applicability domains of more than 50% of all models
used in consensus prediction and the standard deviation of estimated means across all models
was small. Furthermore, we restricted ourselves to the most conservative applicability

domain for each model using Z ;15 = 0.5.
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2.2.11. Principle Component Analysis (PCA)

The PCA calculations were carried out using the entire set of MolconnZ4.05
descriptors calculated for all compounds in the modeling set, two external validation sets,
and virtual screening hits. The purpose of these calculations was to provide a visual means to
compare relative positioning of the three data sets plus hits in the chemistry (i.e.,

25

multidimensional descriptor) space. The programs in the kernlab package '*° of the latest

version of R2.8.0 '?

were employed. Using PCA, the distribution of compounds in the
original descriptor space could be visualized in a lower dimensional space, normally in the

3D space of the first three principal components.

2.2.12. Experimental Validation of Screening Hits

Recombinant HDACs were purchased from either BIOMOL International (Plymouth
Meeting, PA) or PBS Bioscience (San Diego, CA). The inhibitor activity was determined
using an HDAC Fluorimetric Assay/Drug Discovery Kit from BIOMOL International
according to manufacturer’s protocols. Briefly, reactions were set up in 96-well plates in a
total of 50 uLL HDAC:s assay buffer (50 mM Tris-HCI of pH 8.0, 137 mM NacCl, 2.7 mM KCl,
1 mM MgCl2) containing HDAC1 (or HDACS6), testing compounds, and HDACs substrate.
Trichostatin A served as the positive control and the vehicle, 1% DMSO, was employed as
the negative control. The reaction was initiated by the addition of HDACs substrate at room
temperature and lasted for 30 minutes. The final concentration of HDACs substrate was
around its apparent Km; For HDACI1, 50 uM of substrate was used and for HDAC6, 10 or 30
uM was used. The reaction was then stopped by adding 50 pL of Fluor de Lys (TM) Assay
Developer and the mixture had been incubated for another 15 minutes at room temperature.

The Assay Developer was added to stop the deacetylation reaction and produce fluorophore
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from the deacetylated substrate. The fluorophore can be excited at 360 nm and emits light at
460 nm. The relative fluorescence is read by a FlexStation II plate reader (Molecular Devices,
Sunnyvale, CA). Initial screening concentrations were 100 uM with samples with over 50%
inhibition further tested in dose response assays. The raw data (relative fluorescence units)
were plotted as a function of the molar concentration of test compounds (in logarithm) and
fitted to the three-parameter logistic function to calculate pIC50 by Prism 5.0 (GraphPad
Software, La Jolla, CA). Here the pIC50 is defined as the logarithm of molar concentration of

test compound that inhibits the fluorescence production by 50%.

2.3. Results and Discussion
2.3.1. kNN QSAR Regression Modeling

The statistical results for the 10 best KNN QSAR models using MZ4.05 descriptors
are summarized in Table 2.2. 1385 models, that is, ~50% of the total number of models
generated, were accepted for they had both the LOO-CV g2 values for the training set and
linear fit predictive R? values for the test set greater than 0.60. Seventy models with g?/R?
values exceeding 0.75/0.75 were retained for consensus prediction. As shown in Figure 2.2A,
the most predictive model afforded g2 value of 0.81 for 34 compounds and R? values of 0.80
for 16 compounds (RMSE = 0.38). For models built with MOE descriptors, the best g2 /R?
values were as high as 0.70/0.76 (RMSE = 0.45, cf. Figure 2.2C). The statistics of the top 10
kKNN/MOE models are summarized in Table 2.3. Similarly, thirteen models with q?/R?
values exceeding 0.70/0.70 were employed for consensus prediction. These results suggest
that the intrinsic structure-binding affinity relationships exist for HDACI inhibitors that can

be best described by kNN models using both independent descriptor sets.
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To ensure that the models did not merely capture noise, Y-randomization test was
carried out as described above. As expected, the best models using MZ4.05 descriptors and
shuffled activities only produced training set models with q2 of less than 0.40 (data not
shown). Also the best KNN/MOE models using randomized activity only yielded the q?/R?
values less than 0.40/0.40. These results confirmed that kNN models uncovered non-spurious

correlations between both MolConnZ and MOE descriptors and compound inhibition activity.

2.3.2. SVM QSAR Regression Modeling

The statistical results for top 10 SVM QSAR models using MZ4.05 descriptors are
summarized in Table 2.4. The best g2, R%, R3, values are as high as 0.93, 0.87 and 0.62,
respectively. Figure 2.2B shows the best predictive model with g2 value of 0.94 for 34
compounds and R? values of 0.81 for 16 compounds (RMSE = 0.51). For this model, the
optimum values of C and & were found to be 200 and 0.30, respectively. The value of 0.30 is
reasonable for €, because it is common to observe a 0.30 log unit error in enzyme/inhibition
assays. Seventeen models of SVM/MZ4.05 combination with g?/R? values exceeding
0.70/0.70 were retained for consensus prediction. In comparison, the performance of
SVM/MOE combination was much less satisfactory. The best R? and R value were as low
as 0.64 and 0.53, respectively. Meanwhile, the number of acceptable models was drastically
small. Thus, we did not employ SVM/MOE models for consensus prediction because of their
poor accuracy (RZ < 0.75).

To ensure that our SVM QSAR modeling was based on non-spurious
structure/activity relationship, the inhibition activities were randomly shuffled for the
training set and all calculations were repeated following exactly same protocol. The best

models using randomized data only produced a R? of 0.20 for the test set (data not shown),
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suggesting that the high R? is not due to a chance correlation and our accepted SVM models

were robust.

2.3.3. Model Validation using External Datasets

Both kNN and SVM QSAR models validated by test sets were used to predict the
inhibition activity of two external validation sets (Tables 2.5 and 2.6). For consensus
prediction we have employed 70 best KNN/MolConnZ models and 17 best SVM/MolConnZ
models. For the external validation set 1, the data reported in Table 2.7A-C suggests that both
kNN/MolConnZ and SVM/MolConnZ consensus models afforded reasonable results. Figure
2.3 shows the correlation between experimentally measured and calculated activities of the
external validation set 1 using three types of consensus models. Among the three,
kNN/MolConnZ consensus models showed the best performance, with the R? of 0.87, R3 of
0.78 and RMSE of 0.59 for 8 compounds (BC-2-83 was found to be out of applicability
domain of most kKNN/MolConnZ models, cf. Table 2.7A). For 7 out of these 8 compounds,
the predicted activities were within a reasonable range of 0.5 log unit. However, one
compound corresponding to the black circle in Figure 2.3A was predicted with a large error (>
1.0 log unit). A possible explanation for this observation is that this compound is the only
one that contains two metal binding groups but no aromatic group. The latter is known to be
important for the inhibition activity as suggested by many SAR studiesl5. The
SVM/MolConnZ models performed slightly worse than the kKNN/MolConnZ models, despite
the fact that the SVM/MolConnZ combination had better performance for both training and
test sets. The R? and R3 of consensus prediction by SVM/MolConnZ models was 0.71 and
0.68, respectively, for all 9 compounds (Figure 2.3B). Interestingly, kNN/MOE models

showed much worse statistics for the external set 1: The R? was 0.60 but the R3 was only
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0.25, and the RMSE was as high as 0.84 for 9 compounds (Figure 2.3C). Though satisfying
eq 10, the statistics is not acceptable for kKNN/MOE combination because the value of
(R? — R%)/R? (cf. eq. 11) is too large. Thus, we did not apply this combination to external
validation set 2 and the later virtual screening. These results demonstrate the critical need of
external validation set for evaluating the model robustness as well as illustrate a known
phenomenon that training set accuracy does not necessarily correlate with model
performance for external data sets '*’.

We have used the statistical index R3 ( eq 3) and RMSE to evaluate model robustness
in addition to the correlation coefficient R%. Traditionally, the latter is considered as a good
indicator of predictive power of models. In fact, this coefficient reflects the similarity in
relative ranking of compounds based on actual vs. the calculated activities rather than the
accuracy of the activity prediction. On the other hand, R3 directly compares the actual vs.
predicted activities because it estimates the fitness of the data to the line with the intercept of
zero and the slope of one. It thus gives a better measurement of how well the model predicts
compounds' activities, which is why we advocated its use as an important model accuracy

128129 The above case of KNN/MOE consensus prediction

metric in our previous studies
illustrates the difference between R? and RZ, as underscored by eq 11. This suggests that R3
and RMSE are also important indicators of model robustness especially when the size of the
test set is small.

External validation set 2 contains HDACI1 inhibitors of different chemical scaffolds,
therefore it can be considered as a real test of the predictability of QSAR models. Besides, it

is fully independent from the 59 compounds of modeling set. Among all 54 inhibitors, 41

could be predicted by the majority of consensus models and the results are summarized in
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Table 2.6. For both kKNN/MolConnZ and SVM/MolConnZ models, 28 out of these 41
compounds had the errors of their predicted activities of less than 1.0 log unit. The RMSE
was 0.86 for KNN/MolConnZ models, 0.92 for SVM/MolConnZ models and 0.86 for the
consensus averaged value of all models combined. It was shown in our recent study that
consensus models afford higher prediction accuracy for the external validation data sets with

139 The same

the highest space coverage as compared to individual constituent models
pattern was observed in the present study as well. The RMSE of the consensus score is
superior to constituent SVM/MolConnZ models and on par with constituent kKNN/MolConnZ
models. In addition, there is only one compound with a relatively large margin of error (> 1.5
log unit) when the consensus prediction is used. For individual constituent models, however,
there are three compounds with similarly large errors of prediction with kNN/MolConnZ
models and five compounds with SVM/MolConnZ models. Compounds 6e AE, 17j AE and
17d_AE are among those with a large margin of error (ca. 1.5 log unit). They could be
analyzed to explore the reasons for QSAR prediction errors. It should be noted that both KNN
and SVM methods converged on these three compounds and showed the similar trend of

errors (cf. Table 2.6). It is feasible that these compounds could be the activity outliers

because of experimental errors.

2.3.4. QSAR-based Virtual Screening

Based on the results of model validation in the previous section, only
kNN/MolConnZ and SVM/MolConnZ approaches were used for virtual screening due to
their good performances on both modeling set and two external validation sets. Therefore, 70
kNN/MolConnZ models and 17 SVM/MolConnZ models with defined applicability domains

were applied concurrently towards virtual screening of our chemical libraries. Prior to the
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consensus predictions, our initial filtering using global applicability domain of modeling set
reduced the total number of compounds from ca. 9.5x10° to 3.2 x10°. The predicted activities
from individual models were averaged to yield a consensus pIC50 value. Finally, 45 hits
were selected to be of high predicted activities (6.68-7.43 for KNN/MolConnZ and 5.94-7.77
for SVM/MolConnZ) and structural uniqueness.

As expected, the predicted activities of HDACI inhibitors by two different types of
models were not identical but differed by less than 1.0 log unit in most cases. For each of the
kNN/MolConnZ and SVM/MolConnZ consensus hit, we searched published literature to find
out if any of these compounds was reported independently as HDACT inhibitors. We found
that compounds #34 and #40 have been indeed cited as potential HDACI1 inhibitors (cf.
Table 2.8) *"'#2. Both compounds are structurally similar to SAHA which is a strong
HDACI inhibitor included in the modeling dataset. Furthermore, compounds #2, #28 and
#35 were reported to have anti-inflammatory activity that is commonly associated with
HDACIT inhibition, which may be viewed as indirect evidence in support of the prediction.

In general, as shown in Appendix II, most hit compounds contain long aliphatic chain
that permits the chelating group to reach the bottom of the binding pocket and coordinate
with the zinc ion. An aromatic group at the opposite end of the chelating group is supposed to
enhance inhibition through hydrophobic interaction with the capping region of the active site.
These are actually the common structural features known for HDACI inhibitors. Furthermore,
many additional features are also found in the hit compounds, such as triple bonds
(compounds #2, #28) and 3-bromo-4-hydroxy-phenyl group (compounds #11, #14), which
exist in HDACI inhibitors such as Oxamflatin and Psammaplin A >**. It should be pointed

out that these functional groups were not present in the original modeling dataset, which
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demonstrates the ability of QSAR-based virtual screening to uncover computational hits with
novel chemical features. The existence of unsaturated bonds in the linker region between the
chelating group and the cap region has been observed frequently among many screening hits.
However, this feature is only found in TSA (that was included in the training set), which has
the highest inhibitory activity (pIC50) of 8.46. Since this feature is not often seen in other
known inhibitors, this observation should be additionally explored for lead optimization in
future studies. The unsaturated bonds in the linker region likely restraint the conformational
freedom of the long aliphatic chain, which could help decrease the unfavorable entropy
change during the inhibitor binding.

In recent years, our group has explored the hit identification strategy that combines
rigorously validated QSAR models and virtual screening '*>'***7_ It has been shown that our
current workflow is capable of identifying potent compounds of novel chemical scaffolds as
compared to modeling set compounds, especially in the cases of anticonvulsant agents '** and

D1 dopaminergic antagonists '*

. There are several aspects of our current protocol for QSAR
based virtual screening that need to be highlighted. First, models built using variable
selection approaches only include a subset of all descriptors, i.e., those identified as
significant in the process of model optimization. This feature of individual models coupled
with the applicability domain threshold could result in mis-annotation of some structurally
diverse molecules in the virtual screening databases as inactives. Consensus prediction
scheme provides a viable solution to this problem because each model has its own limitations
but the ensemble of models covers much greater chemical feature space and consequently,

could identify putatively active compounds of greater chemical diversity. Second, the

dependent variable in the current dataset is the continuous value of inhibition potency.

30



During model building, all descriptors with constant values have been eliminated and only
the descriptor types that are used in predictive QSAR models were retained. Obviously,
descriptors with the same values for all compounds in the training set could not contribute to
the QSAR model that always correlates changes in chemical structure to changes in
biological activity. However, there is a possibility that some of these eliminated descriptors
(that apparently describe chemical features common to all inhibitors) are essential for
discriminating inhibitors from non-binders. Thus, if these descriptors are not considered in
virtual screening there is a probability of identifying false positives. To circumvent this
problem, we have applied global applicability domain in the preliminary screening step to
filter out compounds that are generally structurally dissimilar from the modeling set

compounds.

2.3.5. Experimental Validation

Four structurally diverse hits with moderate to high predicted activity were selected
from the 45 consensus virtual screening hits for experimental validation taking into account
commercial availability. To our satisfaction, compounds #2, #28 and #35 were confirmed to
be pM inhibitors against HDACI1 (Figure 2.4 and Table 2.8). Among them, compound #28
showed the best inhibitory activity with pIC50 values of 6.00. The fourth compound, #47, did
not inhibit HDACI1 at the concentration of 300 uM. However, interestingly enough this
compound was later identified by us as a selective inhibitor for HDACS6, a class II HDACs
enzyme. At the concentration of 30 uM, #47 inhibited about 42.6% of HDAC6 activity,
while other three compounds (#2, #28 and #35) showed 105%, 101%, and 99% inhibition,
respectively. Moreover, it is of notice that the chelating functional group in #47 is unique

compared to other hits. This observation could be further explored for rational design of

31



class/subtype selective HDACI. Our current screening libraries include the WDI database,
which contains approximately 59,000 approved or investigational drugs in the world. It has
become a practical strategy to screen this database during the early phase of drug
development. The hits identified in this library could be placed on the fast track and avoid the
risk and length of preclinical/clinical studies. In our study, two hits that were submitted for
experimental validation were actually identified from the WDI database. Compound #35 is
Bufexamac, a marketed drug used for joint and muscular pain while the compound #47 is
Roxatidine, a widely used competitive H2 receptor antagonist for the treatment of peptic
ulcer. These two hits will enrich the candidates pool of HDACI and potentially facilitate the

pipeline of drug development—a strategy known as repurposing **.

2.4. Conclusions

We have employed a combinatorial QSAR approach to generate models for 59
chemically diverse compounds tested for their inhibitory activity against HDAC1. The SVM
and kNN QSAR methods were used in combination with MolConnZ and MOE descriptors
independently to identify the best approach with the highest external predictive power.
Highly predictive QSAR models were generated with kKNN/MolconnZ and SVM/MolconnZ
approaches. Rigorously validated QSAR models were then used to screen our in-house
database collection of a total of over 9.5 million compounds. This study resulted in 45
consensus hits that were predicted to be potent HDACT inhibitors. Two hit compounds that
were not present in the original dataset were nevertheless reported recently as HDACI

. 1 131,132
inhibitors 7

. Four hit compounds with interesting chemical features were purchased and
experimentally validated. Three of them were confirmed to have inhibitory activities to

HDACI1 (Class I HDACs) and the best activity obtained was IC50 of 1.00 uM. The fourth
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compound was later identified to be a selective inhibitor to HDAC6, a Class II HDACs.
Moreover, two of the confirmed hits are marketed drugs which could potentially expedite
their development as anticancer drugs acting via HDACI inhibition. This study illustrates
that validated QSAR models have the ability of identifying novel structurally diverse hits by
the means of virtual screening. We believe that the technology described in this study could
be used for data analysis and hypothesis generation in many computational drug discovery

studies.
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Tables and Figures
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Figure 2.1 The workflow of QSAR model building, validation and virtual screening as applied to
HDACI inhibitors. The specific data for kKNN/MolConnZ modeling are used for illustration purpose.
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Figure 2.2 Comparison of actual vs. predicted inhibition efficiency (p/C50) values for the best QSAR

model for each combination of statistical modeling approach and descriptor type. A. For

kNN/MolConnZ method (g2 = 0.81, R? = 0.80). The training set contains 34 compounds (dark circles)
and test set contains 16 compounds (empty circles). B. For SVM/MolConnZ method (g% = 0.94, R? =

0.81). The training set contains 34 compounds (dark circles) and test set contains 16 compounds

(empty circles). C. For kNN/MOE models (g?= 0.70, R? = 0.76). The training set contains 35

compounds (dark circles) and test set contains 15 compounds (empty circles).
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Figure 2.3. Comparison of actual vs. predicted inhibition efficiency (p/C50) values for the best QSAR
model as applied to the external validation set 1. A. For the kANN/MolConnZ method (R%= 0.87, 8
compounds). The compound with the black circle is the possible structural outlier that has been
discussed in the results. B. For the SVM/MolConnZ method (R? = 0.71, 9 compounds). C. For the

KNN/MOE method (R? = 0.60, 9 compounds).
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Figure 2.4. The full dose response curve for hit compounds #2 and #28 in human HDAC] inhibition

assay.
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Table 2.2. The Statistics for Ten Best KNN Models for All Test Sets Using MolConnZ Descriptors.

Training Test

q2

R2

R3

RMSE

Rj/lgdel Sgt S_et ﬁgscriptor m:%rssér No (Training  (Test (Test (Test
' Size Size ' " Set) Set) Set) Set)
1 45 5 22 1 0.80 0.87 0.69 0.27
2 41 9 20 2 0.80 0.81 0.77 049
3 34 16 14 1 0.81 0.80 0.76  0.38
4 35 15 12 2 0.82 0.79 0.70 048
5 42 8 14 1 0.81 0.79 0.73 0.35
6 34 16 26 1 0.80 0.79 0.78 0.37
7 28 22 36 1 0.83 0.77 0.67 042
8 40 10 12 2 0.81 0.77 0.77 043
9 29 21 20 1 0.79 0.77 0.76 047
10 34 16 16 1 0.79 0.76 0.74 040

Table 2.3. The Statistics for Ten Best kNN Models for All Test Sets Using MOE Descriptors.

ini 2 2 2

'\N"gf’e' ;:;mmg gfzset Set Bg_scriptor Eiiﬁér (Training (T(fst (Tel;(’: ?rl\gs?tE

Size No. Set) Set) Set) Set)
1 35 15 14 1 0.70 076 076  0.45
2 35 15 12 1 0.73 075 075  0.46
3 35 15 30 1 0.73 075 075 047
4 32 18 18 1 0.81 074 063 049
5 35 15 16 1 0.72 0.74 074 048
6 35 15 18 1 0.71 074 073 048
7 35 15 24 1 0.72 073 073 048
8 31 19 22 1 0.70 072 069 053
9 35 15 14 1 0.77 071 070 051
10 28 22 12 1 0.79 070 070 051

40



Table 2.4. The Statistics for Ten Best SVM Models for All Test Sets Using MolConnZ Descriptors.

MI\(I)del Training Set  Test Set c B (Trgifling (ﬁ; ) R} RMSE
0. Size Size Set) Set) (Test Set) (Test Set)
1 37 13 200 0.40 0.93 0.87 0.62 0.36
2 37 13 200 0.50 0.91 0.86 0.66 0.34
3 37 13 200 0.35 0.94 0.85 0.59 0.38
4 37 13 200 0.55 0.90 0.85 0.67 0.34
5 37 13 200 0.60 0.89 0.84 0.68 0.33
6 34 16 200 0.30 0.94 0.81 0.76 0.51
7 35 15 200 0.30 0.95 0.72 0.66 0.49
8 39 11 200 0.30 0.94 0.72 0.71 0.51
9 29 21 200 0.30 0.96 0.71 0.66 0.49
10 35 15 200 0.35 0.94 0.71 0.66 0.49
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Table 2.7Consensus Predictions for the External Validation Set 1 by A) kNN/MolConnZ B)
SVM/MolConnZ, and C) kNN/MOE models

A. c Experimentally Total modelsConsensus std. of
omp.ID - -
measured used prediction prediction
BC-4-86 5.33 70/70 5.38 0.65
BC-6-38 6.40 70/70 6.54 0.29
BC-2-48 4.00 70/70 4.42 0.25
YChdac0457.52 67/70 7.08 0.22
Yc-11-88  8.10 70/70 7.64 0.35
BC-4-56 5.96 70/70 6.44 0.27
BC-4-4 5.30 69/70 6.14 0.30
BC-4-2 5.00 50/70 6.13 0.12
BC-2-83* 6.00 N/A N/A N/A
RMSE 0.59
R? 0.87
R2 0.78
*This compound was found to be out of applicability domain of kKNN/MolConnZ models.
B. C Experimentally Total modelsConsensus std. of
omp.ID L -
measured used prediction prediction
Ag-b-57 7.10 17/17 7.19 0.20
'gg'b'ph' 7.10 1717 6.68 0.14
ﬁg'b'ph' 5.52 17117 5.74 0.10
BC-2-45 4.00 17117 4.61 0.13
BC-3-22 6.38 17117 5.54 0.19
BC-4-84 6.10 17117 6.16 0.14
BC-4-86 5.33 17117 5.73 0.13
BC-5-44 6.05 17117 6.83 0.19
YC-03065 6.52 17/17 7.09 0.15
RMSE 0.52
R? 0.71
R 0.68
C. c Experimentally Total modelsConsensus std. of
omp.ID L -
measured used prediction prediction
AG-biph-087.10 13/13 7.36 0.27
Yc-11-84  7.26 13/13 7.10 0.00
BC-1-30-2 4.00 13/13 4.15 0.38
BC-4-54 6.26 13/13 5.00 0.41
BC-4-55 6.70 13/13 5.45 0.42
BC-4-93 5.77 13/13 5.96 0.45
BC-6-26 7.30 13/13 5.93 0.67
BC-6-38 6.40 12/13 5.76 0.57
BC-6-40 6.60 13/13 5.77 0.54
RMSE 0.84
R? 0.60
R3 0.25
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Chapter 3. Comparative Studies of the Structural Models versus the X-
ray Crystal Structures of Human 32 Adrenergic GPCR in terms of
applications to virtual screening

(This chapter has been submitted to Proc Natl Acad Sci)
3.1. Introduction

Structure based drug discovery (SBDD) has become a major strategy in identifying
novel leads for important biological targets. SBDD enabled well documented discovery of
several approved drugs, e.g. dorzolamide and imatinib. Typically, the 3D structures of
biomolecules obtained by the means of X-ray crystallography and NMR spectroscopy are
needed for the purpose of virtual screening (VS), whose performance is strongly affected by
the quality of biomolecular structure, especially with respect to binding site description.
When no experimentally determined structures are available, theoretical models based on
either homology or de novo modeling approaches are employed instead *>*. However, there
were some debates about the accuracy and applicability of theoretical models **** in SBDD.
In principle, the success of homology modeling is typically measured by how close the
models could reproduce experimental structures, which implies that the latter are inherently
more appropriate choice for SBDD applications.

G-protein coupled receptors (GPCRs) is a protein family where theoretical models
have been used widely because of GPCRs’ importance as targets for many drugs, on one
hand, and the lack of experimental structures, until recently, on the other hand. The
experimental effort to characterize the 3D structure of GPCRs were seriously hindered by

membrane related issues '"°. A large number of theoretical models have been employed in



the past decades '""'® for VS often yielding reasonable results '*'"'**

. However, it was fully
expected that the availability of the experimental structure of any GPCR would substantially
enhance the efficacy of SBDD efforts. Thus, the recent publications of the crystal structure of
human beta-2 adrenergic GPCR ([32AR)45'47 cleared the way for the validation of previous
theoretical models, as well as provided critical data for building homology based models of
other GPCRs as the most obvious structural template.

It has been shown that human B2AR features a structurally conserved rhodopsin-like
7TM core, but there exist novel structural features that had not been identified previously. It
remained unclear as to whether these structural divergences would affect the outcome of VS
studies. Dissimilarity of computational models relative to the crystal structure should lead to
relatively poorer performance of the former in docking and scoring of known ligands;
however, this general expectation should not necessarily be regarded as a law. One should
take into account that some of the computational models are actually manually refined with
known medicinal chemistry data and therefore, there is at least a possibility that theoretical
models may be even more suitable for drug discovery by VS than the crystal structure.

In this study, we have addressed this, both scientifically and pragmatically, important
question directly. We have compared the x-ray structure of B2AR vs. several previously built
theoretical models in terms of their respective ability to recover known 2AR ligands (both
agonists and antagonists) from a large external compound library in VS experiments. None of
these models were generated in our group to ensure objective and unbiased comparisons.

185 .
and virtual

Furthermore, although our group has developed both scoring functions
screening protocols '*°, for the same reasons we restricted ourselves to using several popular

commercial docking and scoring tools developed elsewhere. Thus, by design, this study
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lacked any user biases concerning preferred homology models or most familiar
computational tools to emulate the situation that is most commonly faced by the majority of
molecular modeling practitioners both in academia and industry.

There have been previous studies on comparing homology models among themselves
or even with the crystal structure but to the best of our knowledge nobody asked the question
poised herein as directly as we did. For instance, Bissantz et al ** employed three human
GPCRs models derived from rhodopsin for virtual screening using multiple docking
programs and scoring functions. Their work proved that homology models are suitable for
VS but there was no comparison to the crystal structure. After the crystal structure of human
B2AR was published, Costanzi reported a pioneering study '*” where carazolol was docked
both into two rhodopsin-based homology models of human B2AR as well as into the X-ray
structure. The models afforded high accuracy of the docking poses, especially after
incorporating the biochemical data to adjust the orientation of the binding pocket residues.
However, this study was limited to the pose prediction only using in-house models. Most
recently, Fan et al *° reported that for 27 out of the 38 protein targets, the consensus
enrichment for multiple homology models was better than or comparable to that of both the
holo- and the apo- X-ray structures. However, that study was focused on soluble protein
targets and used a single homology model building tool that employed x-ray characterized
structural templates. In contrast, all models employed herein were built before the B2AR
crystal structure became available as possible template.

We have carried out a systematic study on a large collection of published human
B2AR theoretical models and evaluated their structural accuracies and virtual screening

performances in comparison with two crystal structures, i.e., 2RH1 (released by the RCSB
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Protein Data Bank (PDB) on Oct. 30, 2007) and the latest, 3D4S (released by RCSB PDB on
Jun. 17, 2008). Two other structures, 2R4R and 2R4S, were not employed because they came
from the same source as 2RH1 but with lower resolutions. As shown in Table 3.1, we
collected eight independently published theoretical models of human B2AR including both
apo and holo structures. Both agonist and antagonist bound models were included to account
for any structural features associated with functional activity.

Surprisingly, we found that some of the theoretical models displayed better VS
performances than the x-ray structure. This study by no means undermines the extreme

significance of the x-ray structure of B2AR as well as other GPCRs *>!#%-192

in understanding
the intricate details of GPCR structure in relation to its function nor in the significance of x-
ray structures for SBDD. Nevertheless, it most certainly testifies to the importance of

intelligent homology modeling approaches especially those incorporating comprehensive

medicinal chemistry knowledge of receptor ligands for structure based virtual screening.

3.2. Methods
3.2.1. Structural Similarity Analysis.

In addition to 2RH1, the crystal structure of bovine rhodopsin (PDB ID: 1U19) chain
B was also included in the analysis since it was used as major template for all f2AR
homology models. The structural similarity was assessed in three aspects, i.e. the accuracy of
the boundary definitions for each transmembrane (TM) helixes, the backbone root-mean-
square-deviation (RMSD) for TM regions, and the Ca RMSD of the binding pocket residues.
The numbering of amino acids followed the conventions set by Weinstein et al '*. The
highly conserved residues embedded in each TM region were used as anchors for the

alignment. Each theoretical model was structurally aligned against 2RH1 or 1U19 by
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individual TM helix as well as the whole TM bundle. The RMSDs were calculated using the

entire lengths of the corresponding segments of 2RH1.

3.2.2. Molecular Docking Calculation.

To compile the screening database, we used 58 known antagonists of human f2AR
reported in DrugBank '** and GLIDA'” databases as seeds (cf. Table 3.3 of Supporting
Information). All antagonists have sub-micromolar potency and can be found in additional
external databases, such as PDSP Ki 196, PubChem (PubChem, 2007) and KEGG Y7 A few
of them are B2AR specific (e.g. butoxamine and aminoflisopolol) while others can act on
both BIAR and B2AR. For comparison, thirteen agonists of human B2AR found in the
DrugBank database were used in virtual screening experiments as well. In order to establish a
reasonable decoy dataset for virtual screening, the World Drug Index (WDI) database **
(version 2004) was used since most its entries are drug-like compounds. The original
collection of 59,000 molecules was first cleaned by removing metals, salts and fragments,
then filtered to eliminate unqualified compounds according to Lipinski's rule of five and later

. . 198
extensions of this rule

. The remaining collection of ca. 38,000 compounds was further
reduced to a diverse subset of 374 compounds using MOE2007.09. In addition, 12 binding
decoys with similar chemical scaffolds but poor binding affinity (Ki > 10uM) were selected
from the PDSP Ki database and merged into the WDI diverse subset. In the end, 58 human
B2AR antagonists and 13 agonists were seeded amongst 386 decoys separately to constitute
two different screening databases.

We employed three popular docking programs, i.e. Glide4.01, AutoDock4.0 and

eHiTS6.2, to evaluate the screening performance of structural models. The calculations by

Glide version 4.01 '*° was carried out using Schrodinger Suite 2007. The targeted protein and
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theoretical models were prepared through Protein Preparation module with the default setting
and assigned with the OPLS 2001 force field atom types and partial charges. The screening
databases were prepared within the LigPrep module and the ionization states of each
molecule were calculated as to be compatible with the pH value of 7.0+£2.0. All molecules
were subjected to energy minimization with MMFFs force field before the docking
computation. For x-ray structure and holo models, the center of the grid box was selected as
the center of bound ligands. For apo models, their binding pockets were first aligned to that
of 2RH1 and the center of co-crystallized carazolol was chosen. The proper size of the
enclosing box was not set to be fixed but determined by the extent of the bound ligand. The
Glide SP scoring function was used to rank the docking poses and the top-ranked poses for
each database molecule were saved for post-docking analysis.

We prepared the targeted protein and docking parameters for AutoDock version 4.0
200201 y1sing the AutoDockTools graphic interface. Explicit hydrogen atoms were added to the
receptor structures while atom types and partial charges were assigned to generate the pdbqt
receptor files. The database molecules were prepared using the ‘prepare ligand4.py’ script to
merge non-polar hydrogen atoms and define flexible torsions. The center and dimension of
the enclosing boxes were defined to include the whole binding pockets, similar to those in the
Glide docking. The genetic algorithm were employed during the docking with a start
population size of 150 individuals and 20 runs combined with a maximum number of
12,500,000 energy evaluation for each molecule. Other parameters for genetic algorithm
were kept by the default value.

The eHiTS version 6.2 *** was used through the CheVi user interface. Protein

preparations, such as protonation state determination for residues, hydrogen atoms addition
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and partial charge assignment, were actually not needed since eHiTS’ docking and scoring
are based on the prior training data of its knowledge base of 97 protein families. The grid box
was assigned automatically using the bound ligand’s SDF file as the CLIP file. We employed
the default settings for eHiTS docking and ranked the database molecule based on its lowest
eHiTS score.

In addition, we added eight more scoring functions of different types by rescoring the

top-ranked poses generated by Glide4.01. The multiple scoring functions in Sybyl8.0 **

CScore module and OpenEye ***

FRED 2.2.4 were applied, including Chemscore, D_score,
Gold _score, PMF, Chemgauss3, PLP, Screenscore and Shapegauss. The consensus scores

were also used for the above scoring functions through the rank by rank strategy.

3.2.3. Assessment of Virtual Screening Performance

To measure the efficiency of virtual screening we used the following conventional
parameters: the enrichment factor and the receiver operating characteristic (ROC) curve that
characterizes the ability if a method to recover known ligands among the top-scored
screening molecules. The enrichment factor follows the most popular definition as to how
many more seed compounds (i.e., known ligands) were found within a defined “early
recognition” fraction of the ranked list relative to a random distribution:

EF = Hger/Hior X Dyor/Diser (1)

where Hg is the number of target-specific seeds recovered at a specific % level of
the database; Hi, is the total number of seeds for the target; Dy, is the number of
compounds screened at a specific % level of the database; Dy is the total number of
compounds of the database. The ROC curve is generated by plotting the sensitivity (Se) vs.
(1 — specificity (Sp)) for a binary classifier system as its discrimination threshold is varied. In
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the case of virtual screening for recovering the ith known active from the inactive decoys, the

Se; and Sp; are defined as follows:

Se = Hscr/Htot ()
(Dtot_Htot)—(Dscr_Hscr)

Sp = 3

p Dtot—Htot ( )

The area under the ROC curve (AUC) is the metric that is widely accepted for
assessing the likelihood that a screening method assigns a higher rank to known actives than
to inactive compounds. The AUC values at a specific percentage of the ranked database are
calculated from the following equation:

AUC = XL, [Se;(Spi+1 — Spi)] 4)

Here n is the total number of known actives in the screening database. One additional
parameter, the yield, is also employed as the percentage of true hits retrieved by the virtual
screening method:

Yield = H. /Hior X 100 (5)

Cluster Analysis of Binding Profiles.

To closely evaluate the key receptor/ligand interaction patterns, we employed the
LigX module *” in MOE2007.09 to analyze the crystal structure of f2AR/carazolol complex
and the docking poses generated by Glide4.01. For each antagonist, the top-ranked docking
pose with the highest score was selected. Two major types of interactions that contribute to
protein/ligand binding affinities were considered, i.e. hydrogen bonds (donor or acceptor)
and non-bonded weak interactions. The score to assess the hydrogen bond is based on a scale
of 0 to 100% that indicates the probability of being a geometrically perfect hydrogen bond

while the score for non-bonded weak interaction is the pair wise distance between residue

and ligand atoms. In our studies, we took the default parameters in which 4.5 angstrom is the
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cutoff for weak interactions and 2.5 angstrom is the closest distance between any
residue/ligand atom pairs. The original score was normalized; thus, the values of the
modified scores were between 0 and 1, which is proportional to the interaction intensities. To
better visualize the binding patterns of docked poses for each theoretical models and crystal
structures, the LigX scores were transformed into heat maps and clustered using the R

statistical package *°

. We applied the hierarchical clustering with the Ward linkage
algorithm; thus, the patterns of interaction between 58 human 2AR antagonists and residues
in the active sites of three different structural models would be expected to be similar if the
respective clusters are similar (cf. Figure 3.3).

In addition, we have exploited the Protein Ligand Interaction Fingerprints (PLIF, also
available in MOE2007.09) for the same purpose (cf. Figure 3.6 of Supporting Information).
PLIF can identify and score major protein/ligand interactions, including hydrogen acceptor
from side chain, hydrogen donor to side chain, hydrogen acceptor from backbone, hydrogen
donor to backbone, ionic attractions and surface contacts. For each docking pose, the PLIF
fingerprints ranging from 30 to 50 bits were generated. The relative frequencies of each

identified fingerprint can be then used to produce fingerprint significance chart, which is

based on the hypothesis that ‘if the bit is set, then the compound is active’.

3.3. Results and discussion
3.3.1. Comparison of Theoretical Models and the X-ray Structure of f2AR for
Their Overall Structures and Protein Segments That are Critical for Ligand
Binding
Prior to VS experiments, we analyzed the similarity between theoretical models and

two x-ray structures, i.e. 2RH1 and 1U19 deposited to the Protein Data Bank 2. All

theoretical models used in this study are listed in Table 3.1; each model was aligned against
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the x-ray structures to evaluate relative definitions of transmembrane (TM) helices, their
conformations, and relative orientation. The x-ray structure of bovine rhodopsin (1U19) was
also included in addition to B2AR because the former had been used as a common template
for GPCR homology modeling. In doing so, we were interested to explore if the failure to
predict the structural conservation and/or divergence from the template structure may cause
poor VS results for the theoretical models.

Our initial efforts focused on evaluating the accuracy of TM helical boundaries as
defined by models vs. x-ray structures. For this purpose we have employed MOE 2007.09
software 2*® to annotate the secondary structural elements in the 3D structures. We found (cf.
Table 3.3 of Supporting Information) that the MOE module assigned boundaries either at
exact positions or only one amino acid apart to over 90% of the TM segments of 2RH1 and
1U19 in comparison to those in the PDB header. Thus, the MOE software was deemed
reliable in identifying the helical boundaries; the results of applying MOE to the six
theoretical models and two crystal structures (2RH1 and 1U19) are summarized in Figure
3.1a. From the alignment of the eight structures, it can be seen that the apo models (AM1-
AM3) perform better than the holo models (CM1-CM3) in terms of accuracy of TM
assignment. The location and length of the TM helixes for all three AM models are
consistently close to those in the rhodopsin structure (1U19), with the only exception that
TM6 and TM7 in the AM1 model are shorter than the corresponding helices in the crystal
structures. This observation can be easily rationalized since AM1 and AM2 models are solely
based on homology modeling whereas AM3 is a hybrid model developed with a
combination of both threading and ab initio methods. In all cases, the crystal structures of

bovine rhodopsin were used as a template for model building. Furthermore, we have
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concluded that individual TM helixes were very close in terms of helical length and relative
orientation when compared to crystal structures of bovine rhodopsin and human B2AR .
Thus, not surprisingly, given the methods used for model building, the secondary structural
elements for all three AM models were found to be assigned very accurately as compared to
their homologous experimental structures.

The accuracies of TM helix boundaries assignments for CM models were less
satisfactory. In general, seven TM helices in all three CM models were shorter than expected
with the largest disagreements located at TM1, TM4 and TMS (Figure 3.1a). The CM3
model gave the largest deviation in terms of the percentage of correctly defined TM helical
boundaries. Moreover, it had the shortest lengths for individual TM helices. For instance, it
was eight residues shorter for TM1, fourteen for TM3 and eleven for both TM5 and TM6 in
comparison to the B2AR crystal structure. One possible explanation is that all three CMs are
de novo models, generated without any template structure. Both the Lybrand (CM1, 2) and
the Goddard (CM3, 4) groups employed the standard alpha helix as a starting point and
calculated the intrinsic tilt/kink and relative orientation of the TM helical bundle purely
based on the physical considerations. If the rhodopsin structure is not employed as a
reference, the secondary structure assignments could be affected by many factors, such as the
type of phospholipids used in the MD simulations employed as part of model refinement in
studies by the Goddard group '"7*%.

It should be noted that the engineered modification of the wild type protein using a
segment of T4 lysozyme to replace most residues of IL3 introduced an artifact in the crystal
structure (2RH1) of human B2AR. This modification led to altering the boundaries of IL3,

thus affecting the correct locations of both the TMS5 terminus and the start of the TM6. The
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accurate definition of these two boundaries is less important in the comparison of structural
similarities between theoretical models and the crystal structure. However, the accuracy of
predicting the TM4 terminus and the beginning of TMS is critical considering the functional
roles of EL2 in both rhodopsin and human B2AR *'®?''. As can be seen from Figure 3.1a and
Table 3.4 of the Supporting Information among the three AM models, AM3 has the highest
accuracy (1 residue error) for the segment between TM4 and TMS5 (EL2) followed by AM2
and AM1. CM3 model is comparable to AM2 while CM1 and CM2 had much larger errors
with respect to TM helix assignments.

The seven TM helices of each theoretical model were superimposed onto respective
helices of B2AR as well as the rhodopsin structure, and the backbone pair wise RMSD of
individual respective TM helices was calculated (Figures 3.1b, 3.1c and Table 3.4 of
Supporting Information). As expected, the homology models (AMs) are generally more
similar to the rhodopsin structure than to the f2AR structure. The RMSDs of most helices in
AMI1-3 range from 0.30 A 10 1.00 A as compared to bovine rhodopsin where the RMSDs are
as big as 1.60 A 10 3.80 A when aligned against the human f2AR. For the whole TMs bundle,
the RMSDs are 1.15 A to 1.88 A with respect to rhodopsin and 2.25 A t03.19 A with respect
to B2AR. In comparison, the de novo models (CMs) deviate more significantly from both
crystal structures. The RMSDs of most helixes in CM1/CM2 are in the same range of 2.00 A
- 5.50 A when aligned against both rhodopsin and B2AR. For CM3, the RMSD increases to
2.60 A and 7.00 A, respectively. Similarly, the RMSDs of TMs bundle for CM1 are 3.20 A
when aligned against the rhodopsin and 3.59 A for B2AR. For CM3, the corresponding

RMSDs are 3.83 A and 4.41 A (cf. Table 3.4 of Supporting Information).
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Consistently, the AMs models were observed to be aligned well to the rhodopsin
structure (cf. AM2 in Figure 3.1b as an illustrative example). They deviated from the B2AR
structure with the noticeable shifts for TM1, TM3 and TMS5, although the secondary structure
assignment for these regions was relatively accurate. The large RMSD differences for these
three TMHs were obviously due to the differences between rhodopsin and B2AR crystal
structures (7TMs backbone RMSD of 2RH1 vs. 1U19 is 1.85 A). It was indeed reported in
the original publication on B2AR crystal structure ** that there is a noticeable shift in TM1 of
B2AR relative to bovine rhodopsin, primarily at the extracellular portion which tilts away

446 The long N-terminal fragment could

from the TM bundle compared to bovine rhodopsin
not be observed in both crystal structures, but it could cause large flexibility/variation in the
assignment of TM1 boundaries, especially in the upper helical region. TMS5 has a proline-
induced kink at conserved positions along the transmembrane segments, which is believed to
be responsible for the structural rearrangements required for the GPCR activation '**'%215,
The subtle difference in the activation status of the current f2AR structure (2RH1, bound to
an inverse agonist carazolol) may lead to the structural diversification at the kink region, in
terms of the amplitude of motion and rotation degree. Notably TM3 and TMS5 form half of
the binding pockets for the co-crystallized carazolol ** (Figure 3.1b).

Unlike AM models, three CMs deviate from both bovine rhodopsin and B2AR in a
similar way (cf. CM1 in Figure 3.1c as the representative case). A large discrepancy can be
found at TM1, 4, 6 and 7 for CM1/CM2 and TM1, 3, 5 and 6 for CM3. Here the similar
reasoning used in the analysis of AMs can be applied to TM1 because the N-terminal

fragment was not considered as part of model building and optimization. Interestingly, the

RMSD of CM1’s TM4 is as large as 5.00 A with respect to rhodopsin and 5.21 A when
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aligned against B2AR. It is surprising since TM4 seems the easiest one to model. Among all
seven TMs, TM4 is the shortest and the most orthogonal to the plane of the phospholipid
membrane. This observation indicates the limitation of computational protocols employed in
developing the CM models in their ability to reproduce the conformation of this ‘anchor’
helix in the TM bundle. For TMS5, 6 and 7, one of the common shared features is the proline-
induced kink. The comparison between B2AR models and the crystal structure highlights the

difficulty associated with the accurate modeling of this unique structural feature of GPCRs.

3.3.2. Comparison of VS Performance for Theoretical Models and X-ray Structure
of f2AR.

Figure 3.2 compares the virtual screening performances on discriminating 58 known
B2AR antagonists against decoys by three docking methods. Both the enrichment factor plot
(a,c,e) and ROC curves (b,d,f) were included for each method. The yield plot is shown in
Figure 3.4 (a,c,e) of the Supporting Information since it essentially delivers the same
information as the ROC curves. The detailed statistical parameters characterizing the VS
performance, such as the maximum EF (EFmax), ROC AUC and the recently proposed
Boltzmann-Enhanced Discrimination of ROC (BEDROC) *'**!"| are summarized in Table
3.2. All four holo models as well as the f2AR structure were used in the VS study. The data
for only two apo models (AM1 and AM3) are included in the plots because of these models’
generally poor performance during virtual screening. In many cases, such as AM1 in Figures
3.2d and 3.2f, the ROC curve is close to the random expectation (the diagonal line). It is
understandable because the side chain rotamers of binding pocket residues in the AM models
had not been optimized in the way it was done for holo models.

Among all four CMs models, those from the Lybrand group (CM1, CM2) achieved

better enrichment than the models from the Goddard group (CM3, CM4). In most cases, the
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CM2 model yielded comparable results to the f2AR crystal structure. In the screening by
Glide4.01, CM2 model gave higher EF at the very early phase (0% - 2% of ranked database,
cf. Figure 3.2a and Table 3.2) After that, it remained up to one unit lower than the crystal
structure until converging with the latter at the 22% of ranked database. In terms of ROC
AUC, CM2 reached the value of 0.86, close to AUC of 0.88 for the crystal structure. Based
on the BEDROC metric, CM2 was similar to 2RH1 when a weak emphasis or weight was put
on early enrichment (tuning parameter a=20), while showing better performance when the
emphasis increases (tuning parameter 0=53.6 or 100).

We note that Glide4.01 gave better VS results in this study compared to AutoDock4.0
and eHiTS6.2. Thus, we placed more emphasis on the screening data/docking poses
generated by Glide4.01. Nevertheless, the results obtained with both AutoDock4.0 and
eHiTS6.2 highlighted the impressive performance of CM2. As demonstrated by both types of
plots in Figures 3.2c-f and most criteria in Table 3.2, the CM2 afforded VS results superior to
the crystal structure when using these two docking programs. Therefore, practically speaking,
these results suggest that the use of crystal structure is not advantageous in terms of VS
performance when the scoring function is not highly accurate. As mentioned above, CM3
and CM4 had poorer performance than CM1 and CM2 but were comparable to AM1 and
AM3 models in this case.

The crystal structure of f2AR represents an inactive state of the receptor because it is
bound to the inverse agonist, carazolol ***'*. Thus, it may be considered unfair to compare
the crystal structure of B2AR with theoretical models as applied to agonist screening,
especially when the models were created to capture known data on agonists. However, for

comparison purposes, we did explore the possible utility of 2RH1 for screening for agonists.
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The screening results are summarized in Figures 3.5a,b and Table 3.5 of the Supporting
Information. As expected, the CM2 model showed the best performance to enrich for thirteen
B2AR agonists. With Glide4.01 method, the CM2 model could recover 100% of seed
agonists at the 15% of ranked databases and its maximum EF could be as high as 36.09. Thus,
it excelled over 2RH1 greatly in terms of these two parameters of VS performance. Taking
into account the data for the antagonist virtual screening, we shall conclude that CM2 model
demonstrated remarkable performance as a model of choice for virtual screening for both
agonists and antagonists.

The possible explanation for the better performance of CM1/CM2 models is that

Lybrand et al '"®'"

exploited many site-directed mutagenesis data during the model
optimization. The important receptor/ligand interactions had been turned into the distance
restraints that were applied explicitly to specific atoms of both the receptor and its ligands

during molecular dynamics simulations '™

. In comparison, CM3 and CM4 models from
Goddard et al "% did not employ such information; their models were built by optimizing
the target/ligand interaction using physical force field. Obviously, the differences in the type
of data utilized for theoretical model building and optimization can largely affect the
accuracy of binding pocket modeling, and consequently, the model performance in virtual
screening experiments. In order to evaluate the similarity between binding pockets of
individual models, we superimposed Ca atoms of key residues inside the pocket with their
counterparts in 2RH1. The binding pocket was defined by residues found within 4 A of the
co-crystallized carazolol. Carazolol was merged into the binding sites of all models as

defined by the alignment. As shown in Figure 3.2a-g, the CM2 binding pocket (Figure 3.2b)

is most similar to that of 2RH1 with respect to both the ligand pose and the position of
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residues interacting with the ligand. The RMSD for its Ca atoms was 2.40A while the one for
CM1 was 2.33A (cf. Table 3.4 of Supporting Information). These two models also
reproduced the contacts of carazolol with residues Ser203°42 | Asn3127-3° and Phe193 .
For three AMs models, the RMSDs ranged from 3.39A to 3.71A. CM3 and CM4 models had
the largest deviation (RMSD = 5.642\), as can also be seen in Figures 3.2c and 3.2d.

Furthermore, the close inspection of the top-ranked docking poses of all seed
antagonists showed that the interactions between the antagonists and the binding site of the
CM2 model were largely in agreement with the site-directed mutagenesis data. The
protonated nitrogen in most P2AR antagonists formed salt bridges with Asp113332 and
Asn312739 ; the amide hydroxyl group formed hydrogen bonds with Ser203>42 |
Ser204°43 or Ser207°4% . Another important interaction was formed between antagonists
and Phe193 of EL2, i.e., the residue that was also found to interact with carazolol within the
crystallographic structure of B2AR ***!'"® It should be pointed out that CM2/CM1 models
include both extracellular and intracellular loops, whereas CM3/CM4 and AM1 models did
not incorporate these regions **'”’.

To elucidate the molecular basis for dissimilar virtual screening performance of
different CM2 and CM3 models in comparison with 2RH1 we have conducted the cluster
analysis of the binding profiles of all 58 antagonists docked to the respective binding sites.
Binding profiles reflected the strengths of interaction between antagonists and active site
residues. Importantly, there were significant differences in the weak interaction patterns of
CM2 (Figure 3.3b) and CM3 (Figure 3.3c) in comparison to 2RH1 (Figure 3.3a). The major
clusters formed by CM2 in the region of conserved residues matched well to those found in

2RHI1, suggesting a critical role of weak interactions between binding site and antagonists. In
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comparison, clusters formed by CM3 were scarce and many key interactions were missing,
especially for residues Trp2866.48, Phe2896.51, Phe2906.52 and Asn2936.55 of the binding
pocket. This analysis indicates that the binding pocket of CM2 was well-organized and
similar to that of 2RH1 whereas the CM3 binding pocket was formed by somewhat different
residues, with the key residues found in the binding site of the x-ray structure were
inaccessible to the bound antagonists. The cluster profile of hydrogen bonding pattern was

less informative as some prominent patterns at 2RH1 such as the ones with Asn3127-39

were
absent at both CM2 and CM3. Notably, Ser204°43 and Ser207°4¢ of CM2 were found to
be hydrogen bonded to ca. 15 antagonists, but the same pattern was not observed with either
CM3 or 2RHI.

During the course of our studies, the Kobilka et al. experimentally characterized two
new structures of B2AR, one in a nanobody-stabilized active state and another in complex
with an irreversible agonist. Compare with the inactive state B2AR structure, the agonist-
binding pockets have fairly subtle changes, with the major differences at the hydrogen
bonding contacts with Ser203°%2 and Ser207°%% . To determine whether these minor
changes will increase receptor’s selectivity toward agonists, we carried out structure-based
virtual screening studies using the nanobody-stabilized structure (PDB 3P0G), and compared
its performances with the inactive state crystal structure as well as the collected theoretical
structural models. As expected, the active state crystal structure showed better performances
than the inactive state crystal structure in enriching the 13 agonists, and inferior
performances in enriching the 58 antagonists (Figure 3.2 and supplementary Figure 3.5).

With Glide4.01 method, the active state crystal structure could recover 100% of seed

agonists at the 25% of ranked databases and its maximum EF could be as high as 30.69. On
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the other hand, the performance of active state structure model CM2 showed relatively
comparable performances to the active state crystal structure in terms of EF and AUC. (Table
3.2, supplementary Table 3.5) As mentioned above, the theoretical model CM2 captured the

346 This piece of evidence illustrated further that

critical agonist-protein interaction at Ser207
properly optimized theoretical models can provide a sensible picture for the active-state
binding pocket, and can be employed for structure-based virtual screening of B2AR agonists.
To summarize our observations, we have established that theoretical models of
GPCRs generated with knowledge-based approaches can achieve similar if not better VS
performance as structural models based on x-ray crystallographic studies. This somewhat

surprising observation is reassuring with respect to using carefully developed theoretical

models of protein structures for SBDD.

3.4. Conclusions

In this study we have addressed the long-standing debate about the structural
accuracy and applicability of theoretical models vs. x-ray structures of proteins for SBDD.
We have carried out a systematic study on a large collection of historical human B2AR
theoretical models and evaluated their structural accuracies and screening performances in
comparison with two recent crystal structures. We have shown that there exists a discrepancy
between global structural accuracies of P2AR theoretical models and their screening
performances. In general, B2AR theoretical models differ largely from the crystal structure in
terms of TMHs definition and global packing while many can achieve the same performance

18 .. .
7, pose predictions. Our analysis

in virtual screening and as demonstrated elsewhere
indicates that the binding pockets of models showing the best performance are well-

organized and they also align well to active sites in the crystal structures. The key
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interactions of residues in the active site with the bound antagonists were found to be
preserved in models that were built and refined taking into account the site-directed
mutagenesis and other experimental data. Our results emphasize that knowledge-based
approaches result in structural models that can achieve the same or even better performance
in virtual screening as those built with x-ray crystallographic data. At the same time, we must
stress that our studies address very specific and pragmatic question concerning the use of
protein models vs. experimental structures for virtual screening. They by no means
undermine the critical importance of experimental structures for understanding protein
structure-function relationships as well as the role that crystal structures serve as a critical

reference for evaluating the accuracy of predicted protein/ligand interactions.
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Tables and Figures
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Figure 3.1. The structural similarity analysis of theoretical models in comparison with crystal structures. (a) The
secondary structure assignment for TM segments of six theoretical models and two crystal structures (2RH1 and
1U19). The numbers and their corresponding structures are coded by 1:2RH1, 2:AM1, 3:AM2, 4:AM3, 5:CM1,
6:CM2, 7:CM3, 8:1U19. The remaining two models, i.e., AM4 and CM4, share similar backbone structures to
CM3 with pair wise RMSD of TMs less than 0.4 A. Therefore only CM3 is included in the sequence alignment
plot. The red bars indicate the helical structure elements identified by MOE. (b) The structural superposition of
the theoretical models AM2 (rendered in pink) to 2RH]1 (rendered in dark green) and 1U19 (rendered in blue).
Note that the most structurally divergent TM regions are indicated. (¢) The structural superposition of the
theoretical models CM1 (rendered in pink) to 2RH1 (rendered in dark green) and 1U19 (rendered in blue). Note
that the most structurally divergent TM regions are indicated.
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Table 3.1. The synonym of eight human B2AR theoretical models employed in this study.

Apo model Source Holo model Source
By G. Vriend, a homology ByT. Ly%ﬁ?gd’ a de novo
model*'® based on the model ™" bound by
AM1 . Ccwm1 aminoflisopolol (32AR
crystal structure of bovine ;
. antagonist)
rhodopsin
By A. Sali, a homology By T. Lybrand, a de novo
AM2 model**° based on the CM2 model'"®""® bound by
crystal structure of bovine TA2005 (B2AR agonist)
rhodopsin
By J. Skolnick, a hybrid By W. Goddard, a de novo
AM3 model'®® combined CM3 model'””?*® bound by
threading and ab initio butoxamine (B2AR
methods antagonist)
By W. Goddard, a de novo By W. Goddard, a de novo
AM4 model'”” based on first CcCM4 model'”?*° bound by

principles methods

salbutamol (B2AR agonist)
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Supplementary Material
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Figure 3.4. The yields of 58 known P2AR antagonists during the screening by three docking methods versus the
crystal structure and six theoretical models. The annotations are (a) Glide4.01 (b) AutoDock4.0 and (c)
eHiTS6.2.
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Figure 3.5.. The enrichments and ROC curves of 13 known B2AR agonists during the screening by
three docking methods versus the crystal structure and six theoretical models. The annotations are (a)
Glide4.01 (b) AutoDock4.0 and (c) eHiTS6.2.
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Figure 3.6. The significance chart for PLIF fingerprints generated from docking poses against (a)
B2AR crystal structure, (b) CM2 model and (c) CM3 model. The higher the bar (individual
fingerprint bit) is, more frequently this type of interaction occurs in the dataset and of higher
probability it contributes to the activities. The shade of the color indicates the significance of the
particular bit to the actives, which is based on the hypothesis that ‘if the bit is set, then the compound
is active’. The residues are randomly colored and several bars of the same residue indicate that they
have different types of contacts.
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Table 3.8. The actual number of compounds used for calculating EF and AUC metrics.

Structure/Model “Antagonists Num. "Nonbinders Num.
2RH1 29 272
CM1 29 272
CM2 30 245
CM3 28 307
CM4 30 307
AM1 30 303
AM3 30 205
D-SS 30 374
F-SS 30 374

*The bound ligand for 2RH1 and CM1~CM4 were excluded from the calculation.
°A number of decoys were filtered by Glide before the refinement stage. They thus did not have a
Glide score and were treated to be at the end of the ranked database.
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Chapter 4. Development, Validation and Application of Target-
specific Pose Filters in Structure-Based Virtual Screening of

Subtype Selective Ligands
4.1. Introduction

Traditional drug discovery and development approaches were generally applied for
searching novel active compounds and optimizing compounds’ potency with a specific drug
target in mind. Recent fast developments in proteomics and chemogenomics studies,
however, have triggered a paradigm shift from this focus toward a more comprehensive
analysis of the entire ligand space and target space and to explore all prospective drug-target

. . 221,222
interactions ****!"

. The role of small molecules are no longer limited to a inhibitor or active
compound that can be promoted to drug candidates, but more as a probe to understand
biological functions through perturbing cellular circuits and pathways. Despite the increasing
complexity and diversity of research evolved from this new field, the major questions could
be generally categorized into two themes, for an interested organic compound with certain
observed phenotype, how to identify the responsible biological target (target fishing); and
what is the selectivity profiles of a known organic compound across all relevant targets
(ligand profiling)***.

The success of computational approaches, including structure-based drug design and
Quantitative Structure-Activity Relationship (QSAR) analysis, has been well recognized in
the field of rational drug design and discovery*>. However, the rapid growing research in the

area of chemogenomics and chemical biology propose new requests for the development of

computational methods. There are already a number of reviews discussing possible



computational strategies that can be applied in this field ****. A main theme emerged from
this area relates to prediction of small molecule’s selectivity profile at different levels, for
instances, within a target family, or subfamily. Several previous studies have explored the
effectiveness of using ligand-based approaches such as two-dimensional fingerprints and
Quantitative Structure-Selectivity Relationship (QSSR) models in “selectivity searching”. It
was shown that carefully designed fingerprints and QSSR models are capable of enriching
subtype-selective ligands in small to medium size data sets *******°_ Several other groups
aimed at structure-based approaches by incorporating information from predicted protein-
ligand contacts. Singh and colleagues >>° defined a series of protein-ligand interaction
properties to generated Structural interaction fingerprint (SIFt) at protein-ligand’s binding
site. Virtual screening studies using SIFt revealed superior performance as compared with
traditional scoring functions. Graaf and Rognan et al. showed that a topological scoring
function based on their ligand protein interaction fingerprint (IFPs) was able to selectively

57-59 o .
. In addition, there is an

identify agonists or antagonists of the beta2 adrenergic receptor
increasing interest in the computational drug discovery community to build target-specific
scoring functions, which have a straightforward application in exploring ligand’s binding
profiles 961226227
Our lab has developed a novel type of four-body descriptor to effectively represent
the protein-ligand interface: the PL/MCT-tess (Protein-Ligand atoms’ pair wise Maximal
Charge Transfer potential based on Delaunay Tessellation) descriptor. Application of this
descriptor to our routine QSAR modeling workflow resulted in predictive models for protein

ligand binding affinity®’. A recent study by Hsieh et al. in our group suggested that QSAR

models developed based on multiple docking poses from a single cognate ligand can
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effectively distinguish native-like docking poses from decoy poses, thus dramatically
increased the virtual screening performance when combined with the traditional force-field

. . 60,61
based scoring functions™

. Herein, we continue to use the PL/MCT-tess descriptors as an
effective representation of the protein-ligand interface, and explored other pose-filters that
explicitly account for small molecules’ subtype binding selectivity. In order to do this, a
reference PL/MCT-tess profile (normally from the X-ray protein-ligand complex) was
initially used to partition a training set of known actives’ docking poses into reference-
similar versus dissimilar class. Then a binary classifier was developed that can distinguish
reference-similar poses from all available poses of known nonselective/inactive compounds.
By changing the reference ligand type (non-selective or subtype selective ligand) and the
calibration pool included in target-specific pose filter (treat inactive compounds only as
decoys or include also non-selective compounds as decoys), we hope to direct the proposed
pose-filters to selectively enriching subtype-biased ligands.

As proof of concept, we first assessed the capabilities of the proposed pose filters to
identify known active compounds using 13 subsets from the Directory of Useful Decoys
(DUD). Compared with the traditional scoring function, namely Chemgauss3, from Fred, we
found that our approach showed better performance for 10 out of 13 data sets, and similar
performance for the remaining 3 receptor targets. The best data set provides an increase in
the enrichment from 18- to 57-fold over random at a false positive rate of 1%. We further
challenged our approaches on a data set of 189 compounds with known binding data of the
beta adrenergic receptors (BAR) GPCR subfamily. The BARs belong to the extensively

explored Class A Rhodopsin like GPCRs, and a plethora of experimental data is available for

model evaluation and validation. The three most explored subtypes in the BAR family are
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designated B1AR, B2AR, and B3AR. They are widely distributed and play critical biological
functions on several tissues. The B1AR subtype is expressed predominantly in mammalian
heart, while the B2AR is the major subtype in most vascular and bronchial smooth muscle
cells, the B3AR is mostly located in adipose tissues “****°. The PAR mediated signaling
pathways play a critical role in regulating cardiac function, and BAR mediated relaxation of
the smooth muscle also has essential therapeutic values in treating asthma **%%',
Identification of BAR ligands with the desired selectivity and activity patterns may lead to
better drug candidates as the f1-stimmulating-effects of several f2-agonists determines their
cardiac side effects in treating asthma. Similarly, the B2-activity of f1-antagonists may exert
harmful effects when used in the treatment of heart diseases. With recent publication of the

human B2AR and Turkey B1AR crystal structures 232234

, applying structure-based approach
to explore ligand’s subtype selectivity has attracted further attention for the AR sub-family.
On the other hand, the sequence similarity among these three subtypes is quite high,
especially near the ligand binding regions, making them challenging targets to elucidate
ligand binding specificities. Herein, we reported the performance of a novel subtype biased
scoring protocol in searching for selective ligands. Furthermore, by analyzing the derived
computational tools for highly weighted PL/MCT-tess descriptors, we also proposed

prospective protein-ligand contacts that may contribute to the ligands’ subtype specificity

within the BAR family.

4.2. Pilot Study
4.2.1. Data Sets Selection ( the DUD Data Set)

The structures were directly downloaded from the Directory of Useful Decoys (DUD)

data sets: http://dud.docking.org **°. The DUD has been recently compiled by the Schoichet
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group, specifically for benchmarking the performance of docking methods. The data sets
contain a diverse set of 40 interesting protein targets, as well as a list of known ligands and
decoys for each target. On average, 36 decoys were chosen for each active compound
structure from the free ZINC database of commercially-available compounds. To minimize
the physical bias in benchmarking docking methods, the decoys were chosen specifically to
match the physical properties but topologically dissimilar to the known active structures. A
number of criteria were explicitly considered such as molecular weight, cLogP, number of
hydrogen bonding partners, and number of rotatable bonds. Recently, Good et al. carried out
additional refinements of the DUD actives by applying a lead-likeness filter (AloP <4.5, MW
<450) and clustering analysis. To be comparable with other virtual screening methods, we
have also used the 13 data sets that contain at least 15 clusters. (see Table 4.1 for details) In
total, there are six members of the kinase protein family (cdk, egfr, p38, pdgfrb, src, and
vegfr2), two members of metalloenzymes (ace, pde5), one serine protease (fxa), and several
other enzymes. To employ the proposed virtual screening methods, the original DUD
protein-ligand crystal structures were used as the reference during pose filter training. For
vegfr2 and pdgfrb where no co-crystallized ligand is provided, the top-scored pose from
docking a known ligand to the apo protein structure was used. The data set was collected and

cleaned by previous lab member, Dr. Jui-hua Hsieh.

4.2.2. Methods

Docking Methods for Pose Generation

Each protein target were prepared using the Molprobity server to add hydrogen atoms
and assign partial charge, as well as correcting potential structure problems including missing

atoms, potentially transposed heavy atoms in asparagine, glutamine, and histidine side chains.
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The co-crystallized water molecules were removed in order to reduce bias during pose
generation. On the other hand, the cofactors or metal atoms were preserved in cases where
they are known to be critical for protein function or involved in ligand binding. The DUD
actives and decoys were used directly from download, but ionized and converted to three-

>% ysing the default parameters. The

dimensional conformers with Omega (version 2.2.1)
Fred docking software (version 2.2.5)*° from OpenEye Scientific was then employed to
generate docking poses for each conformer from the derived library. We employed the
default settings for Fred docking except for changing to a larger number of preserved poses.
For each molecule, the top 30 poses selected by the Fred’s default scoring function,
Chemgauss3, were kept for post-docking analysis. For the 6 kinase protein targets, additional
restraints were applied to preserve the canonical protein-ligand interactions at the hinge
region . The final data of the docking poses and calculated Chemgauss3 scores were
provided by previous lab member, Dr. Jui-hua, Hsieh.

Novel Descriptors of the Protein-Ligand Interface Based on Conceptual DFT

Our group recently developed a set of simple yet effective geometrical descriptors,
the ENTess descriptors, to describe the physicalchemical properties at the protein-ligand
interface. It utilizes the Pauling electronegativity (EN) to annotate atom types and uses
Delaunay Tesselation (Tess) to characterize the geometrical property at the interface. Briefly,
for each protein-ligand complex, Delaunay Tessellation was first used to partition the space
into an ensemble of tetrahedrons. Only interfacial tetrahedrons that are formed by both
protein and ligand atoms were kept to define the protein ligand interface. Furthermore, a

distance cutoff of 8A (distance for physically meaningful interactions) was used to exclude

Delaunay quadruplets with long edges between atom vertices. Theoretically, a total of 554
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types of Delaunay quadruplets were defined by their unique four-atom composition,
including the atom types and the origins (receptor atom or ligand atom). The descriptor value
was calculated by summing up the electronegativity values of the composing vertices/atoms.
In our previous studies, we have successfully built quantitative structure-binding affinity
relationship models for a data set of 264 x-ray crystallized protein-ligand complexes using
the ENTess descriptors and a standard QSAR modeling workflow >,

More recently, our group improved the original ENTess descriptors by assigning a
more physic-chemically rigorous property to be the descriptor values. Instead of using atom’s
electronegativity values, pair wise atomic potentials for the protein-ligand complexes (PL)
based on maximal charge transfer (MCT) were used to derive the novel PL/MCT-tess

29 to determine the maximal

descriptors. The MCT 1is based upon the conceptual DFT
electron flow between the donor and acceptor atoms. Assuming that the total energy of the
system is perturbed by the charge transfer up to the second order: The MCT is calculated as
follows,

AE = uAN + 1/2nAN? (2)

where AE and AN are energy change and charge transfer, respectively. When the total
energy is minimized with respect to the charge transfer, i.e. dAE / dAN = 0, we have

ANpax = —u/n = MCT 3)

hereu = (0E/AN), , n = (0°E/0?N),, , are the chemical potential (negative of
electronegativity) and the chemical hardness, respectively. v represents the external potential
formed by the framework of atomic nuclei.

The values for a specific tetrahedron type m can be calculated from the following

equation:
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PL/MCT — tess,, = Xioq (X5 X1 MCT, X MCT;/dp,), (4)

where n is the number of occurrences of this tetrahedron type in a given protein-
ligand complex. For a specific tetrahedron £, p iterates through all vertices belong to the
protein, while / iterates through all vertices belong to the ligand, and d,,; is the distance
between the considered pair of protein and ligand atoms. It should be noted that we are only
interested in the interfacial Delaunay tetrahedrons; therefore for each tetrahedron it contains
at maximum of three protein atoms (p) or ligand atoms (/).

The described descriptors were successfully employed in our previous studies to
derive classification models that can differentiate native-like docking poses (showing low
RMSD to the co-crystallized pose) versus non-native like decoy poses (showing high RMSD
to the co-crystallized pose). After a rigorous validation using the 13 DUD datasets, it was
shown to significantly improve the traditional physical force field-based hit scoring functions
by combining the pose scoring from the classification models ®. These studies justified the
application of PL/MCT-tess descriptors to explore the protein-ligand interface.

Target Specific Classification Models for Discriminating Irrelevant Ligand
Docking Pose

A number of recent studies showed that inaccuracy of the scoring functions have
become one of the largest obstacles in applying molecular docking in structure-based virtual
screening. It is not uncommon to find that the traditional scoring functions cannot identify
the native-like ligand pose from the decoy poses, which have comparable binding energies
but depicting irrelevant protein-ligand interactions. Figure 4.1A shows the RMSD to the co-
crystallized ligand pose versus the energy-based docking scores for 1000 poses of the

cognate ligand generated by the Fred program. In Figure 4.1B, 4.1C, 4.1D, five different
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beta2-adrenergic receptor inhibitors (including the cognate ligand, noted in red) were docked
to a single protein structure (PDB: 2RH1) 233 using the Glide program >'. The RMSD were
then calculated between the docked poses of each ligand with the corresponding co-
crystallized pose (PDB: 3D4S, 3NYA, 3NY8, 3NY9) *****!. No relationships could be
identified between the RMSD to the native-pose and the docking score. (Figure 4.1a, 4.1c)
When evaluating the relationship between the RMSD to the x-ray pose and the similarities to
the x-ray pose in terms of Euclidean distance in the PL/MCT-tess descriptor space, we
observed stronger correlations (r=0.62 versus 0.38 for Glide scores, Figure 4.1d, 4.1c). By
analyzing the average RMSD to X-ray poses against distances in the PL/MCT-tess descriptor
space suggested that those docking poses with normalized PL/MCT-tess distance lower than
-1 are highly likely to be within 4A RMSD to their corresponding x-ray pose. The 4A
threshold is usually considered a reasonable indicator to quantify if a ligand pose is located

242 Therefore, in this

inside its x-ray binding pocket with a roughly correct global orientation
study, we define the native-like binding pose as those having similar binding mode to the
target protein-ligand complex (i.e. with normalized distance to target ligand in PL/MCT-tess
descriptor space lower than -1), and thus are potentially showing low RMSD to their own x-
ray binding pose. Furthermore, all the docking poses generated by known binding decoys, no
matter how close they are to the co-crystallized ligand in the PL/MCT-tess descriptor space,
are considered non-native like poses. By such definition, the problem of separating native-
like poses versus other decoy poses can be learned through training a standard classification

model based on their PL/MCT-tess descriptors. The detailed workflow for selecting the

native-like and decoy poses for model’s training set is described in Figure 4.2. Because there
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is no cognate ligand with the vegfr2 and pdgfrb protein targets, the pose with the lowest
MedusaScore was utilized as the native pose **.

To develop the classification model that can distinguish native-like poses from other
irrelevant poses, we used the RandomForest correlation algorithm implemented in the freely-
available R package randomForest '’. RandomForest was known for its excellent prediction
accuracy and efficiency at large data sets. It has an internal unbiased estimate of the
generalization error during the growth of the forest, thus no additional model validation is
necessary. In addition, it provides reasonable flexibility in dealing with imbalanced class
ratio by imposing higher penalties on misclassification of the minority class. For details of
the RandomForest algorithm, the parameters used, and the evaluating metrics see methods in
Chapter 5.

Virtual Screening Protocols Using Post-docking Pose Filters

As described above, the 13 DUD data sets were docked to their corresponding protein
target using the Fred docking program, and the default Chemgauss3 scoring function were
used to select 30 poses per ligand for further analysis. We therefore calculated the PL/MCT-
tess descriptors for each preserved pose to describe its contacts with the protein residues.
Three different approaches were used to assign the fitness score of each compound in the
final ranking list: (Figure 4.3)

i (PL/MCT-dist) All the poses for the same compound were ranked by its similarity
to the cognate ligand’s pose in terms of distance in the PL/MCT-tess descriptor
space. The distance for the most similar pose was used as the final score of this
compound in the ranking list. This approach purely uses the information from the

PL/MCT-tess descriptors to select pose and rank the compound, thus providing a
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ii.

iil.

direct evaluation on how this descriptors can distinguish ligands from decoys by
its own.

(PL/MCT-similarityFilter) In this approach, a pose filter is first developed to
exclude poses that are too dissimilar to the cognate ligand’s pose in terms of
distance in the PL/MCT-tess descriptor space. The cutoff for pose similarity is
determined by using all the poses for the binding decoys that were in the
randomly selected 10% hold-out data. Assuming the distance between the decoy
pose to the native pose follows a normal distribution, we defined the distance
cutoff as follows: Dr =y + Zoc where Yy is the average Euclidean distance
between each pose to the native pose, and Z is an arbitrary parameter to control
the significance level. Here, we set the default value of Z as -0.5 to obtain
reasonable pose coverage. The final score of each compound is then determined
by the best Chemgauss3 score for the remaining poses.

(PL/MCT-RFFilter) This approach is similar to PL/MCT-similarityFilter
approach in that both approaches use a pose filter to exclude irrelevant poses of a
compound and then rank compounds based on their best Chemgauss3 scored
poses. The difference in PL/MCT-RFFilter is that it employs both the known
active and decoys docking poses from the previously excluded 10% hold-out data
to derive the pose filter, as described above. By using the machine learning
algorithm random Forest, we are thus able to calibrate the contribution of each

PL/MCT-tess descriptor type in the resulting pose filter.

Assessment of Virtual Screening Performance
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The conventional receiver operating characteristic (ROC) curve was used in this
study to evaluate virtual screening protocol’s ability to recover known ligands from the top-
ranked screening library. In addition to report the area under the ROC curve (AUC) as an
indicator for model performance across the entire screening library (see Chapter 3, methods),
we used another metric, the ROC Enrichment (ROCE), to quantify model performance at the
early stage. ROCE is defined as the ratio of true positive rate to the false positive rate, at a

24 This metric is similar to the conventional

given percentage of recovered known decoys
Enrichment Factor metric but is independent of the ratio of decoys to actives in evaluated
screening library. We report ROCE values at 1%, 2%, and 5% as recommended in previous
publications. To ensure fair comparison, any compound with missing scores, either from
removal of all its poses by pose filter or by docking error, were placed at the bottom of the
ranked list. To estimate errors, we did 100 independent runs, and then reported the average
and standard deviations to approximate the errors. In each run, 10% of the data was randomly
selected and used to train the filter, which will later be applied to rank the remaining 90%
data. (Figure 4.3)

Randomization Test

To examine the robustness of the proposed pose filters, we generated two random
pose filters and compared their performance with the corresponding real pose filters. The first
test resembles the Y-randomization test, where we scrambled the activity labels before
training the pose filters. While in the second test we keep the activity labels, but randomly
shuffling the PL/MCT-tess descriptor profiles. The active to decoy ratio was preserved in

both cases. In short, the PL/MCT-RFFilter calculations were repeated with the randomized

activities or descriptor profiles of the training set. The estimated prediction error from the
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developed randomForest models and their virtual screening performance were compared with

models generated from real data, and see if there are significant difference.

4.2.3. Results and Discussion

Before applying the virtual screening protocol for any real analysis, I used the
benchmarked DUD data sets to assess the performance of the proposed approach. Thirteen
datasets with diverse chemical features were selected in this case. For each data set, 10% of
decoys and known actives were excluded randomly at each calculation, and used as the
calibration set to determine the pose filter as described (methods).

The average number of poses used in the pose filter construction and the estimated
prediction errors are shown in Table 4.2. The sensitivity, specificity and CCR were
calculated based on the out of bag (OOB) estimates during model generation '"'%. The
results show that the overall accuracy in terms of CCR exceeds 0.80 for all data sets except
ace, ache and fxa data sets. The sensitivities are generally lower than specificities, most
probably due to the extreme imbalance of the training set. It would be interesting as a future
study to implement different sampling approaches to down-size the decoy set before training
the randomForest classifier, and see if that improves models’ performance. The successful
construction of randomForest classifiers for most data sets in part demonstrated that our
definition of native-like poses is practically reasonable.

The ROC curves of the individual 13 DUD datasets using Chemgauss3, PL/MCT-dist,
PL/MCT-similarityFilter, and PL/MCT-RFFilter were compared in Figure 4.4. The data in
Figure 4.4 took the results from one of the 100 repeated studies as an example. Figure 4.5
and 4.6 illustrates model performances in terms of overall ROC-AUC, ROCE at 1%, 2% and

5%. It is obvious from the plots that the PL/MCT-RFFilter performs best compared to other
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approaches, showing good performance in both overall ranking and early enrichments. For
all data set except cdk2 and hivrt, the PL/MCT-RFFilter approach gives AUC higher than
ranking by the empirical scoring function Chemgauss3 score. On the contrary, we did not
observe consistent improvements in terms of ROC-AUC after applying the PL/MCT-dist and
PL/MCT-similarityFilter approach. It is in fact within our expectation that the PL/MCT-dist
should show inconsistent performance across different data sets. The assumption behind the
PL/MCT-dist protocol is simple and most often too optimistic: it uses the similarity of a
ligand’s docking pose to the x-ray crystallized conformation as the only indicator of this
pose’s fitness in the protein binding pocket. Any other favorable contacts that could lead to
gain of energy are underestimated in this case. In compare with the PL/MCT-RFFilter, the
PL/MCT-similarityFilter ignores the set of pre-excluded known actives when generating pose
filter and does not acknowledge the distinct importance of each interaction descriptor type
for classifying irrelevant versus native-like poses. Therefore, the PL/MCT-similarityFilter
achieved better performance than using the Chemgauss3 scoring functions for a number of
data sets, such as the ache, cox2, and pde5, with the best case of 32.3 fold enrichment at 1%
of FPR. But in other cases, PL/MCT-similarityFilter has similar or even worse performance.
Therefore, we could conclude that the relative better performance of PL/MCT-RFFilter can
be attributed to its inclusion of more information during pose filter generation stage, which
has been extensively discussed in a number of previous publications ***2#%7,

In virtual screening, early recognition is a very critical criterion for evaluating model
performances, because only the top fraction of ranked list will be subjected to further
experimental validation in practice. The PL/MCT-RFFilter approach also showed clear better

performance when early enrichment is considered, with the best example (cox2) giving an
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enrichment of 56.9 fold at the false positive rate of 1%. Across all the evaluated data sets, the
PL/MCT-RFFilter approach gives a substantially higher number of data sets with ROCE
higher than 15 (10 out of 13 data sets) compared to using docking scores alone (6 out of 13
data sets, Table 4.3 ). This further demonstrates the advantages of using PL/MCT-RFFilter
approach, and the implementation of this interaction will be useful. Furthermore, the
PL/MCT-dist method performs better than using Chemgauss3 scores in five data sets in terms
of ROCE at 1% of false positive rate, especially for difficult cases like ache, pde5, and
pdgfrb. This demonstrates that the statistical information contained in the protein ligand
interaction descriptors alone can be informative in certain cases. It needs to be noted that the
native-pose for pdgfrb and vegfr2 were not from experimentally solved x-ray complex
structure, and that the receptor structure for pdgfrb is a homology model. So it is not
surprising that the Chemgauss3 scoring function did not give good results for these two
targets. The PL/MCT-RFFilter approach, however, gives good enrichment of 24.9 and 32.3
fold, respectively, at the false positive rate of 1%. This result suggests that a reasonable
prediction of the native-like ligand pose and including the knowledge of the critical protein-
ligand contacts can rescue virtual screening performance for likely inaccurate receptor
structural models.

To demonstrate the virtual screening results from PL/MCT-RFFilter approach is not
by chance, we applied two types of fake pose filters during virtual screening and compared
their performances with the pose filters constructed from the real data. These two artificial
sets differ in whether the descriptor profiles are randomly shuffled or the activity labels are
randomly shuffled. The pose filter trained from randomized descriptor or activity profile

showed close to random classification accuracy, practically put every instance to the
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dominant class, the decoy class. As shown in Figure 4.7, the virtual screening performance
derived from scrambling the activity files will result in inseparable class distributions,
leading to a pose filter that will classify any pose as decoys and eliminate them from further
evaluation. On the other hand, the pose filter generated from randomly shuffled the
descriptor files is able to derive a tentative pose filter, but this information is not relevant to
the selection of native-like poses. As illustrated in Figure 4.7, this filter excluded
indiscriminately of a fraction of the entire collection of poses, resulting in a similar or worse
virtual screening performance as using the docking scores alone. In summary, this
randomization test showed that the information extracted by the filter is not spurious, and
could effectively guide the selection of native-like pose during virtual screening.
4.3. Virtual Screening of Subtype Selective Ligands for the Beta Adrenoceptor Protein
Family
The major focus for this study is to evaluate whether the information from PL/MCT
descriptors are capable of improving virtual screening of subtypes selective ligands. For the
BAR protein family, there have been extensive studies on putative recognition sites in the
binding pocket that can differentiate the binding propensities of a small molecule ***".
General docking programs that evaluate ligands fitness solely based on energy considerations
thus have difficult to discriminate these types of interactions. Imposing a number of
intermolecular or pharmacophoric constraints can partially solve the problem, but is often too
restrictive and yield few interesting hits. The PL/MCT-tess descriptors provide an option to
include ligand information automatically during training the pose filter, for example, by
including interfacial descriptors for non-selective ligands in the calibration set. However, it

should be employed with great cautious, since it represents a much challenging task than
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differentiate binding decoys or geometrical decoys from the active compounds, and requires
discerning more delicate preferences of the different protein-ligand contacts. We have carried
out a systematic study on a large collection of published human B1AR, B2AR, and B3AR
structural models as well as two B2AR crystal structures, i.e., 2RH1 (released by the RCSB
Protein Data Bank (PDB) on Oct. 30, 2007) and the latest, 3P0G (released by RCSB PDB on
Jan. 19, 2011) (Table 4.4). The de novo designed structural models were collected from the
same group whose P2AR model has shown a comparable or better virtual screening
performance to the X-ray structures (Chapter 3). The five homology models were retrieved
from the well-recognized modeling server ModWeb *** and GPCRDB **°. Both agonist and
antagonist bound models were included when possible to account for any structural features

associated with functional activity.

4.3.1. Small Molecule Data Set

To perform any meaningful evaluations of the virtual screening performance for
subtype selective binders within the beta adrenergic receptors family, we will need a
reasonably large and accurate dataset representing different types of compounds targeting the
beta-adrenergic receptor family. A dataset of 207 compounds were collected from the
ChEMBL database, incorporating the data published from 1996 through 2009. Although the
binding data were extracted from multiple sources, the protocols for binding assay were kept
similar. Among all the binding data, only measurements using I-CYP as the radio-labeled
ligand were considered. For purpose of identify subtype selective ligands, the compounds
included in the final data set are mostly tested against two of three or all three subtypes of
adrenergic receptors. (Exceptions were made for 11 compounds that are f2AR non-binders.

They were included later during the QSAR modeling process to improve models’
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classification accuracy). In summary (Figure 4.8), for each subtype of BAR, there are 196
compounds in B1AR data set (Ki from 0.017nM to 1mM) ; 207 compounds in B2AR data set
( Ki from 0.14nM to 0.1mM ) ; and 166 compounds in B3AR data set (Ki from 1.1 nM to
0.15mM). To simplify the situation, we did not distinguish between agonist, inverse agonist,
and neutral antagonist within binders. This is also a legitimate approximation, because as
shown in our previous studies, as well as in others’ work, the crystal structures represent a
putative early activation stage, and is capable of retrieving both agonists and antagonists
38230232 11y addition, data for function assays often varies in experimental settings, making it
difficult for a direct comparison. However, it would be definitely interesting in the future to
explore the applicability of the described approach in predicting the overall complex
pharmacological profiles of B adrenoceptor ligands.

To date, NC-IUPHAR (International Union of Basic and Clinical Pharmacology
Committee on Receptor Nomenclature and Drug Classification) has not published any
recommendations to define a compound as selective ligand for a given receptor subtype
within the protein family. However, although the selectivity varies based on the receptor
types in consideration, a compound can be considered selective if its ratio of binding affinity

is higher than 100 times **

. Here, due to the limited data sources for highly selective BAR
ligands, we define a compound as selective if it has a modest selectivity and binding affinity:
difference in pKi >1.5, and pKi >=6 for the desired subtype. By this definition, there are 20
B1AR selective ligands, 8 B2AR selective ligands, and 12 B3AR selective ligands. We should

note that the available B2 selective ligands are generally in a lower activity range, it

represents a difficult case in this task.

97



4.3.2. Methods

Drug-like Decoys Set:

A standard decoy set was downloaded from Schrodinger’s website. It contains 1000
decoys with drug-like properties. Unlike the DUD data sets where the decoys were specially
designed to challenge the docking algorithms, the compounds from this decoy set resemble
more of a real virtual screening campaign, where non target-specific, drug-like compounds
were used.

Protein Set Up and Docking Programs

The protein structures were prepared with Glide protein preparation wizard to add
missing hydrogen and assign partial charges (see Chapter 3). We used two different popular
docking programs, the Glide (methods in Chapter 3) and Fred (see above in Pilot study).
Both of the implemented scoring functions (Chemgauss3 and GlideScore) belong to the class
of empirical scoring functions. Because Glide docking pose with GlideScore showed
consistent better performance (0~5 fold better in ROCE at 1% of specificity) than
Chemgauss3, I only report here the results from Glide docking.

Assessment of Virtual Screening Performance

Same performance evaluation metrics were used as in the pilot study.

4.3.3. Results and Discussion

Virtual Screening Using Pose Filters Generated from Known Inactives

Initially, we tested whether the proposed approaches are able to identify active
ligands from known inactives as well as drug-like decoys. To generate the pose filters, the
binding pose of a co-crystallized ligands (for 2Xtal;, B2Xtal,), the binding pose derived

from a simulation study (for B1EPI,, B2TA, B3A],), or the top Glide-score pose of a selected
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potent ligand (for B1GPCRDB;, f1ModWeb;, f1ModWeb,, B3GPCRDB;, B3ModWeb;) was
employed as the reference pose, while the known inactives for each receptor type were
utilized as the calibration set to derive the pose filters. Because the Glide docking was
observed with good fidelity in pose predictions with our previous studies as well as other’s
published work, it is reasonably safe to use the top-scored binding pose of the reference
ligand from Glide docking to set the reference descriptors. Table 4.5 listed the information of
the number of seeds and decoys used for each receptor model. Figure 4.9 shows the model
performance using the default empirical scoring function GlideScore, versus the PL/MCT-
dist approach, PL/MCT-similarityFilter approach, and the PL/MCT-RFFilter approach as
defined in the pilot study. The improvements from applying PL/MCT-similarityFilter or
PL/MCT-RFFilter, however, were only marginal for most receptors, with the best case of
B1ModWeb, where the PL/MCT-RFFilter increases the ROCE at 1% from 4-fold to 8-fold
compared with the Glide scores. There are several possible reasons for this marginal
improvement in compare with those observed in the pilot study. First the poses selected via
Glide score could be generally more native-like than the poses selected via Chemgauss3
score ****** thus the improvements from applying a native-like pose classifier (pose filter)
would be less prominent. This is highly likely the major cause, because we observed
consistently better virtual screening performance of Glide score versus Chemgauss3 (up to
200% increase in ROCE at 1%, data not shown). This is consistent to our previous
observations ®, suggesting that the outcomes of applying the target-specific pose filter is
dependent on the parent scoring function used. Second, we used a set of known inactives to
generate the pose filter, instead of using the “putative inactive” decoys as in the pilot study.

This is good in a sense that those compounds are true inactives, so all the docking poses

99



generated from this set can be safely put into the class of irrelevant binding poses. However,
this set consists of relatively small number of chemical scaffolds, leading to a more biased
calibration set and pose filters with less general applicability domain.

Besides evaluating proposed approaches’ ability at identifying active compounds, we
also evaluated how good they can enrich selective ligands at early stage. As we expected, all
structural models except for f2Xtal, showed no preference for subtype selective ligands. The
virtual screening results showed a much lower enrichment factor on selective ligands versus
all known actives. Similarly, because the pose filters were not designed to differentiate
subtype selective ligands, neither of the PL/MCT-similarityFilter and PL/MCT-RFFilter help
to enrich subtype selective ligands. On the other hand, the PL/MCT-dist approach showed
surprisingly good virtual screening performance on enriching selective ligands when using
B1GPCRDB;, f1ModWeb;, and B2Xtal; models. This suggests that for certain receptor model
and reference ligand combinations, the simple distance calculation between a docking pose
and the reference pose could provide reasonable judgment as how likely the pose represents a
selective ligand. More detailed discussions on how the selection of reference ligand could
influence the virtual screening performance are provided in the next section.

Virtual Screening of Selective Ligands using Subtype-biased Pose Filters

In this study, we evaluated the possibility of selectivity biased pose filter by using the
subtype selective ligand as reference and including the non-selective ligands into the
calibration set when deduce the pose filters (Figure 4.2). Similar to what have been described
in the previous section, the PL/MCT-tess descriptors derived from the top GlideScore pose of
the reference ligand was used to define the native-like pose during the pose-filter training

stage. Here, the two classes employed to derive randomForest models become putative
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native-like poses of known selective ligand versus all poses of known non-selective and
inactives. It should be emphasized again that all the pose information used during model
training come from the hold-out set, which has been excluded from later model evaluation.
As an example, Figure 4.10 showed the wvirtual screening performance using
B1ModWeb;, B2Xtal,, and B2TA, receptor models. Comparing Figure 4.10F with Figure
4.9B on the performance using f2TA model, it is clear that the virtual screening protocol of
PL/MCT-similarityFilter and PL/MCT-RFFilter in combination with the subtype-biased
setting (Figure 4.9 B) has the best ability to enrich B2 selective ligands. The two approach
enabled a favorable ROCE reaching approximately 16-fold and 8-fold, respectively, over
random at a false positive rate of 1%. Considering the fact that the reference ligand (B2
selective agonist TA2005) used are same between these two tests, the different results
suggest that using the subtype biased pose-filters are indeed helpful in discriminating non-
selective ligands from selective ones. The performance on enriching overall 2 active ligands
did not change very much between these two experiments, showing that the employed pose-
filters only focus on the desired subset of ligand types. In addition to the implementation of a
subtype biased pose-filter, the choice of reference ligand is also essential on the virtual
screening results. When f1ModWeb; receptor structure model was used for docking and the
non-selective Bl active compound Cyanopindolol was used as the reference, there is
negligible difference between using the non-biased and subtype-biased pose filter (Figure
4.10A versus Figure 4.9A). To further explore the influence of the choice of reference
ligands, we used a B2 selective binder TA-2005 in combination with f2Xtal,, and repeated

the pose filtering and scoring protocol (Figure 4.10D versus 4.10E). Both PL/MCT-
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similarityFilter and PL/MCT-RFFilter showed over 50% increase in early enrichment of 32
selective ligands.

As observed in Chapter 3, the structure models derived directly from homology
modeling are usually having a suboptimal set of conformation of its binding pocket residues,
making it difficult to establish favorable contact between receptor and known ligands.
Although for each homology model (B1GPCRDB;, f1ModWeb;, f1ModWeb,, B3GPCRDB;,
B3ModWeb;) we already adapted the receptor side chain conformations to a known potent
ligand through the protein preparation wizard in Glide, their virtual screening outcomes are
still unsatisfactory. There have been plenty studies trying to optimize structure models after
homology modeling in order to promote ligand binding ****'***#>%7 I this study, we did
not change the global packing of the trans-membrane regions or their relative orientations,
but performed induced fit docking with selected ligands in hope of deriving receptor binding
pocket models that are more appropriate for ligand binding. Briefly, the homology models
and ligands tested were f1ModWeb; (with B1 selective ligand IC189406), B1ModWeb, (with
B1 selective ligand Dobutamine) and B3ModWeb, (with B3 selective ligand AJ-9677). The
derived top-scored 10 receptor-ligand complexes were manually inspected and one protein-
ligand complex was selected for further virtual screening analysis. Structure conservation on
those experimentally confirmed receptor-ligand interactions such as the Aspl13*** and
Asn3127* were closely examined. As a result, the shape of the selected binding pocket and
the orientation of key residues are adapted to a known potent and subtype selective ligand. It
should be noted that we only use induced fit docking in preparing the receptors and that the
receptor side chains were kept rigid during the process of virtual screening. Take the

B1ModWeb; refined model for example (Figure 4.10C GlideScore versus Figure 4.10B,
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GlideScore), the customized binding pocket showed better recognition for B1 active as well
as selective ligands, with an increased enrichment (ROCE at 1%) from 1.5 to 12.5 for actives
and 0 to 15.1 for selective ligands. Applying the PL/MCT-dist, PL/MCT-similarityFilter and
PL/MCT-RFFilter protocols on the docking poses further augmented the enrichment of
selective ligands to 25.0-fold , 25.1-fold and 20.7-fold over random, respectively.

The Molecular Basis of Subtype Selectivity from Identified Important PL/MCT-
tess Descriptors

Using the RandomForest pose filter allows a systematic analysis of the importance of
each protein-ligand interaction descriptors. We then counted the frequency of descriptors out
of the 100 runs for their occurrence at the top 20 important descriptors. As an example we
showed in Figure 4.11 for three most frequently observed descriptor types when using the
combination of B2Xtal,receptor models with the f2-selective ligand TA2005. The ligand
TA-2005 has a selectivity ratio of ~50 and ~150 for B2- versus Bl and B3 receptors,

245258 Three of the frequent observed PL/MCT-tess descriptors observed for

respectively
TA-2005 are CINIOIOr, CIOINtOr, and CICIOINr (Figure 4.11). The CINIOIOr descriptor
depicted the salt bridge between TA-2005 with Asn312"°°, and the hydrogen bonds formed
with Ser203°42 and Ser204543 . These residues have been shown to be important in binding
b2AR agonists. The CIOINrOr descriptor highlighted two other critical protein ligand
interactions with Tyr308’> and Asn293°°, both of which are believed to be involved in

determining ligand selectivity **®

. The CICIOINr descriptor mapped an interesting contact
between the N-substituent of the ligand with Lys305. This residue is an aspartic acid
(Asp356) in B1, and a glycine (Gly325) in B3. These three residues are significantly different

in size, and charge state, thus could have potential impact on subtype selectivity.
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4.3.4. Conclusions

In summary, we have proposed a general pose filter using the DFT derived protein-
ligand interaction descriptors (PL/MCT-tess) in structure-based virtual screening. The pose
filter was validated with the 13 benchmarked DUD datasets with Fred docking program. The
pose filter enables consistent improvement over using the default scoring functions by Fred
for up to 6 fold in terms of ROCE at 1% of false positive rate. We further challenged the pose
filter to identify subtype selective beta-adrenergic ligands. The results showed that it is
possible to achieve reasonable results with carefully designed subtype biased pose filters,
preferably using a selective ligand as the reference and a calibration set including both
known nonselective and inactive molecules. In addition, we found that the homology models
showed poor virtual screening performance in general, but can be further improved with an
optimized conformation of the binding site residues. For instance, after optimize the binding
pocket of the homology model f1ModWeb; with a selective B1AR ligand ICI89406, we
observed an increase of ROCE from 0 to 15 fold over random at a false positive rate of 1%. It
should be noted that the success of the proposed approach is heavily dependent on the
previous knowledge, especially the selection of proper reference ligands to guide the
structure modeling as well as docking pose selection. In future studies, it would be interesting
to see how additional knowledge about the receptors, such as the conformational flexibility
of the binding pockets can be employed into structure-based docking, and affect the virtual

screening performance.
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Figure 4.1. The distribution of docking poses” RMS deviation from the X-ray pose versus similarity
of PL/MCT-tess descriptors calculated by Euclidean distances. A) for pdgfrb homology model and B-
D) for PDB 2RH1. A) The pose with the best MedusaScore is served as the reference to calculate the
RMSD value of poses. The plot shows the pose distribution based on RMSD values (y-axis) versus Z-
score values of MedusaScore (x-axis, Z-score is calculated based on MedusaScore distribution of the
decoy sets). B) Average RMSD and standard deviation values for increasing distance to the reference
pose in PL/MCT-descriptor space. A total of 1000 poses from 5 X-ray co-crystallized ligands were
used. The distances are converted to Z-scores based on distribution of distances calculated by a drug-
like decoy set to the X-ray pose of PDB 2RH1. (see Table 4.5 for detail information of the decoy set).
C) The pose distribution based on Z-score values of GlideScore (x-axis) vs. RMSD values (y-axis). D)
The pose distribution based on Z-score values of distance to the native pose in PL/MCT-tess
descriptor space (x-axis) vs. RMSD values (y-axis). The data points for the cognate ligand in PDB
2RH]1 is indicated with red circles. Plot A. adapted from Hsieh et al.".
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Figure 4.2. Flowchart of pose selection in training the proposed target-specific pose filter, PL/MCT-
RFFilter.
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Figure 4.3. Flowchart of using the three described PL/MCT-dist, PL/MCT-similarityFilter, and
PL/MCT-RFFilter approaches in structure-based virtual screening.

106



100 ace 100 ache 100 cdk2
G
/
!
/

% TPR
% TPR

% TPR
% TPR

% TPR
% TPR

% FPR % FPR

pdgfrb

% TPR
% TPR

1 10 100

% TPR
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Figure 4.6. ROC enrichment for each of the 13 DUD data set using Chemgauss3 scores (dark red),
PL/MCT-dist (orange), PL/MCT-similarityFilter approach (yellow), and PL/MCT-RFFilter approach
(green).
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Figure 4.7. The ROC-AUC metric and ROC enrichment (ROCE) for each of the DUD data set with
randomized activity/descriptor profiles. The results using Chemgauss3 scores (dark red) and
PL/MCT-dist (orange) based on non-randomized profiles were regenerated from Figure 4.5, Figure
4.6 for comparison. Yellow bars represent PL/MCT-RFFilter approach with scrambled activities.
Green bars represent PL/MCT-RFFilter approach with scramble descriptor profiles.
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Figure 4.10. The ROC-AUC metric and ROC enrichment (ROCE) for each of the BAR receptor type
and structure model with subtype biased pose filters.
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Table 4.1. Summary of benchmark data sets used for pilot studies. Table adapted from ®

Target Function PDB #ofligands # of decoys # of clusters
ace metallopeptidase 1086 46 1726 19
ache acetylcholine esterase leve 99 3631 19
cdk2 serine/threonine kinase Ickp 47 1776 32
cox2 cyclooxygenase Icx2 212 11841 44
egfr tyrosine kinase Im17 365 14516 40
fxa serine protease 110r 64 1888 19
hivrt  HIV reverse transcriptase Irti 34 1415 17
inha enoyl ACP reductase 1p44 57 2501 23
p38 serine/threonine kinase 1kv2 137 6230 20
pdes phosphodiesterase 1xp0 26 1562 22
pdgfrb tyrosine kinase modela 124 5265 22
src tyrosine kinase 2src 98 5216 21
vegfr2 tyrosine kinase 1vr2b 48 2479 31

*: protein structure is homology model, the ligand structure is taken from the DUD website
®: apo structure, the ligand structure is taken from DUD website
HIV: Human Immunodeficiency Virus; ACP: Acyl Carrier Protein

Table 4.2. Statistics of target-specific pose filter PL/MCT-RFFilter calculated based on out of bag
(OOB) estimates. Data is based on the average statistics derived from 100 runs of 10% randomly
selected hold-out set.

TP FP TN FN SE SP CCR

ace 71.71 1.76  5389.24 7629 048 1.00 0.74
ache 77.04 1.38 7782.62 13796 036 1.00 0.68
cdk2 151.74 150 6180.30 54.16 0.73 1.00 0.86
cox2 107098 7.72 39844.28 208.02 0.84 1.00 0.92
egfr 19124 120 4797220 79.11 0.70 1.00 0.85
fxa 209.17  7.01 17150.79 229.83 048 1.00 0.74
hivrt 95.93 0.55 455645 3407 074 1.00 0.87
inha 147.89 1.72 9796.28 90.11 0.62 1.00 0.81
p38 226.89 326 7787.14 41.01 0.83 1.00 0.91
pdeS 21479 1.62 592638 5021 0.79 1.00 0.90
pdgfrb 27452  0.54 13159.06 80.38 0.77 1.00 0.88
sre 35554 1.04 1894426 9536 0.79 1.00 0.89
Vegfr2 198.57 1.69 8699.01 57.43 0.77 1.00 0.88
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Table 4.4. The synonym of ten human BAR structural models employed in this study.

Receptor Models Model type Details
subtype name
P1AR B1EPI, de novo In complex with endogenous BAR agonist epinephrine
model (T. Lybrand group )
BIGPCRDB; Homology Based on the crystal structure of inactive state turkey
model B1AR (PDB 2VT4) (retrieved from GPCRDB website,
constructed in G. Vriend group )
B1ModWeb; Homology Based on the crystal structure of inactive state turkey
model B1AR (PDB 2VT4) (retrieved from ModWeb server,
provided by A. Sali group )
B1ModWeb, Homology Based on the crystal structure of active state turkey
model B1AR (PDB 2Y00) (retrieved from ModWeb server,
provided by A. Sali group )
P2AR B2TA, de novo In complex with selective f2AR agonist TA2005 (T.
model Lybrand group )
B2Xtal; X-ray crystal  Crystal structure of human f2AR (PDB 2RH1) in
structure complex with non-selective antagonist carazolol.
p2Xtal, X-ray crystal  Crystal structure of human f2AR (PDB 3P0G) in
structure complex with non-selective agonist BI-167107.
B3AR B3AJ, de novo In complex with selective p2AR agonist AJ-9677 (T.
model Lybrand group )
B3GPCRDB; Homology Based on the crystal structure of inactive state turkey
model B1AR (PDB 2VT4) (retrieved from GPCRDB website,

constructed in G. Vriend group )
B3ModWeb; Homology Based on the crystal structure of inactive state f2AR
model (PDB 3kj6) (retrieved from ModWeb server, provided by
A. Sali group )
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Table 4.5. The actual number of compounds used for deriving pose filters and calculating ROCE and
AUC metrics.

Structure/Model Reference "Binders *Selective ’Nonbinders
ligand Num. binders Num. Num.
B1EPI, Epinephrine 42 20 32
B1GPCRDB; Cyanopindolol 42 20 32
p1ModWeb; Cyanopindolol 42 20 32
p1ModWeb, Dobutamine 42 20 32
P2TA, TA-2005 45 8 43
p2Xtal; Carazolol 45 8 43
p2Xtal, BI-167107 45 8 43
B3AJ, AJ-9677 58 12 21
B3GPCRDB; Cyanopindolol 58 12 21
B3ModWeb; Cyanopindolol 58 12 21

“The bound ligand for each structure model were excluded from the calculation.

’A number of decoys were filtered by Glide before the refinement stage. They thus did not have a
Glide score and were treated to be at the end of the ranked database.
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Chapter 5. Development of Predictive in vivo toxicity Models from
Combined Knowledge of Chemical Structure Information and the

ToxCastTM in vitro Data
5.1. Introduction

Chemical toxicity is associated with many hazardous biological effects in rodents and
humans, such as gene damage, carcinogenicity, or induction of lethal diseases. It is essential
to evaluate potential toxicities of all commercial chemicals before releasing them into the
market, among which High Production Volume (HPV) compounds and drugs are of highest
priority. However, traditional research in toxicology mostly relies on animal toxicity tests
which are both labor and resource intensive, so only a very limited number of the chemicals
in commerce have been evaluated '*>'**. With the recent ban on using animal for toxicity
testing of cosmetics in the European Union, it becomes more urgent for industry to develop
novel solutions for toxicity assessment *>'*°. In this context, the use of fast computational
toxicology and high-throughput in vitro toxicity assays is gaining widespread interest
because of their promise for supporting reduction, refinement, and/or replacement (the 3Rs)
of the reliance on animal toxicity experiments'*”'*".

However, accurate prediction of in vivo toxicity using computational tools is always
challenging. Although cheminformatics approaches such as Quantitative Structure-Activity
Relationship (QSAR) modeling have been widely used in computational toxicology *"'*%
most existing tools can not generate models that afford reasonable prediction accuracy when
applied to external compounds, resulting in inadequate model applicability for regulatory

153,154

purposes . Possible causes for such unsatisfactory performance are first, small



molecules and their metabolites can act through multiple mechanisms and hit various
physiologically important targets to cause distinct adverse effects **', herein, little variance
in molecular structure could lead to distinct biological outcomes, making it hard to generalize
rational rules from QSAR modeling. Also, the small molecules in the screening database
were designed for different reasons with various scaffolds (e.g. pesticides, food additives,
cosmetic ingredients). Most previous QSAR models were constructed from cogeneric
compounds and had limited extrapolation power to deal with these structurally diverse
compounds. On the other hand, the development of various in vitro toxicity testing methods,
such as cell-based and cell-free HTS techniques, as well as toxicogenomic technologies,
offered potential biological basis for estimating the adverse effects of chemicals®*'*715 1t
is intriguing to incorporate the knowledge from in vitro testing data to improve traditional
QSAR modeling.

In 2007, the U.S. Environmental Protection Agency (U.S. EPA) initiated a chemical
prioritization research program, the ToxCast'" project, to outline future toxicity evaluation in
vivo **. The overall goal of this program is to explore a diverse array of in vitro toxicity
assays, such as cell-based and cell-free HTS techniques, as well as toxicogenomic
technologies, to estimate the adverse effects of environmental chemicals and prioritize
candidates for animal testing in the future. To support ToxCast™’s endeavor of predictive
toxicology, U.S. EPA compiled and curated an array of high-quality historical animal
toxicity data on several hundred chemicals in the Toxicity Reference Database (ToxRefDB)
1% Phase I of ToxCast™ is primarily consisted of chemicals from these available animal
toxicity data, and produced data from ~600 high-throughput and high content in vitro toxicity

assays. Hence, the ToxCast'" program provides a valuable data set that could be used to
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study the relationships between chemical structures, short term in vitro data and long term in
vivo toxicity experiments.

In this study, we endeavored to improve the risk estimates for chemical toxicity
through a series of novel computational approaches. To have an unbiased assessment of the
derived models, these models were all developed and validated with the extensive collection
of data enabled by the ToxCast'™ project. The QSAR modeling workflow developed in-
house for many years has been successfully applied to develop computational models for

158159 In the first

mutagenicity '/, carcinogenicity >, aquatic toxicity *° and acute toxicity
part, we employed a similar workflow to evaluate the possibility to build statistically robust,
validated, and externally predictive QSAR models based on chemical descriptors alone. We
employed multiple machine-learning algorithms, namely Random Forrest (RF), Support
Vector Machines with linear kernel (SVM-linear), and Support Vector Machine with RBF
kernel (SVM-RBF). The modeling results showed that four (two chronic and two
reproductive rat toxicity endpoints) out of the eighteen evaluated in vivo toxicity endpoints
yielded reasonable Correct Classification Rate (CCR) for external sets: consistently above 60%
using all three types of modeling algorithms. In addition, another group member in our lab
demonstrated that by using specific chemical scaffolds to pre-cluster the original data set, we
could further improve the external predictivity of the resulting model. Thus, the results
indicate that the development of externally validated toxicity predictors, while through
careful study design, is feasible for at least some of the ToxRefDB endpoints.

In addition to advancing the traditional QSAR modeling approaches that

depend on the explicit information about chemical structure alone, we have continued to

develop novel Quantitative Structure in vitro-in vivo Relationship (QSIIR) approaches to

121



enable robust and predictive cheminformatic predictors of animal toxicity. Our recent studies
have shown that it is possible to utilize the correlation between rodent acute toxicity data (in
vivo data) and cytotoxicity data (in vitro data) to enhance the performance of traditional

*728 In this project, we further explored our

chemical-descriptors-based QSAR models
methodologies by applying a similar modeling workflow to three rat reproductive toxicity
endpoints for the ToxCast'™ Phase I compounds. The prediction accuracy for the best models
was in the range of (70-71%) for all three in vivo endpoints, while that achieved by
conventional QSAR models was only (57-64%) for the same external set. Furthermore, the
external predictivity of individual models was employed to infer important ToxCast™" in
vitro assays. The validated hierarchical models could be helpful for future toxicity testing by
prioritizing high-risk compounds for animal tests, identifying informative in vitro assays, as
well as providing hypothesis for specific signaling or biochemical pathways that are relevant
to potential disease development and thus have the possibility of going beyond hazard

identification.

5.2. Data Set Overview
The ToxCast'™ phase I study consisted of 320 molecules with diverse chemical
scaffolds. Five duplicates and three triplicates of eight randomly selected compounds were
deliberately included to quantify the reproducibility of the bioassay protocols.'®' In this study,
the eleven replicated compounds were excluded. Furthermore, we excluded all molecules
that cannot be appropriately handled by conventional cheminformatics techniques, e.g.
inorganic and organometallic compounds or mixtures. The final ToxCast'" data set used in

this study contained 291 unique organic compounds.
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The relevant animal toxicity data were obtained from ToxRefDB, developed by the
National Center for Computational Toxicology (NCCT) in partnership with U.S. EPA’s
Office of Pesticide Programs (OPP). The in vivo toxicity endpoints included in ToxRefDB
were based on rat, mouse and rabbit 2-year chronic/cancer, 2-generation reproductive, and
developmental toxicity study. Each of the 291 ToxCast™ compounds has experimental
results for up to 78 different in vivo toxicity endpoints in ToxRefDB. Most of the in vivo
endpoints had few numbers of active responses among all ToxCast™™ compounds and were
not suitable for QSAR modeling. For this reason, we selected 18 (Table 5.1) out of the 78
published in vivo endpoints that had the most experimentally active results. In addition, in the
original ToxRefDB record, toxic compounds were stored with their associated Lowest Effect
Level (LEL) values with units of mg/kg/day. We converted it to binary form, where
compounds’ activities are defined according to NCCT as either active (toxic) or inactive

8 The numbers of ToxCast™ phase I compounds in each toxicity endpoint

(non-toxic)
subset range from 224 to 235, and the active compound ratio ranges from 17.4% to 44.6%
(Table 5.1).

The ToxCast™ Phase I compounds have been tested against 615 various bioassays as
listed in Table 5.2. These in vitro assays aimed to characterize a wide range of chemical
biology interactions through a number of protein function assays, transcriptional reporter
assays, multi-cell analysis, and developmental studies using zebra fish embryos '**. These
assays were developed by different biological companies and have been used for toxicity
screening tests over years. All endpoints were presented as Inhibition Concentration by 50%

(ICsp), Lowest Effect Level (LEL) or Lethal Dose Concentration by 50% (LDsp). Similar to

how we handled the in vivo data above, we converted the experimental values into binary
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form for active/inactive responses. It is noticeable that some bioassays are not informative
due to the low ratio of signals on the 291 compounds. (Table 5.2) To avoid possible
complications introduced by these assays during QSAR modeling process, they were
excluded from the scope of work. Finally, 284 out of 615 assays were selected for which

there are at least 10 active responses for the curated chemical data set.

5.3. Methods:

5.3.1. Generation of Chemical Descriptors

A set of 2,489 theoretical molecular descriptors was initially generated from the
canonical SMILES notation using the software Dragon v.5.5 (version 5.5; Talete SRL,
Milano, Italy). Only OD, 1D and 2D descriptors were considered in this study. We then
removed descriptors that are constant or near constant (all, or all but one value is constant). If
two descriptors are highly correlated (pair wise correlation over 95%), one of them, chosen
randomly, was also deleted. The final set include 1,128 descriptors, and were range scaled to

0~1. A detailed description for descriptor generation and preparation can be found in .

5.3.2. Invitro — In vivo Correlation for Data Classification

The relationship between the results obtained from an in vitro test and a specific in
vivo toxicity endpoint could be summarized as 4 categories. (Figure 5.1) The Class B and C
compounds have consistent results in vivo and in vitro. In this study, we merge them together
into a new class, which is called Group 1; and Class A and D compounds, which have
conflicting results in vivo and in vitro, were combined to be Group 2. Through this way, we
could generate new compound classes based on the in vitro — in vivo correlation between
each in vivo endpoint results in ToxRefDB and every individual ToxCast™ bioassay testing

result.
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5.3.3. OSAR Modeling Workflow and Model Validations

A rigorous modeling workflow was carried out in order to ensure the selected models
are statistically significant and externally predictive. (Figure 5.2) Key steps of the workflow
are described below. Binary classification QSAR models were generated based on the
chemical information only (traditional QSAR workflow) '°, or employing the chemical
information and in vitro vs. in vivo correlation data (novel hierarchical workflow).
Balancing the Dataset

For each toxicity endpoint in this study, there were many more inactives than actives.
This imbalanced class ratio is notorious in skewing the modeling procedure and result in
biased statistics, e.g., much lower sensitivity than specificity of predictions. To address this
bias, the following methodology excluded a considerable fraction of inactive compounds
from the dataset to balance the active/inactive ratio. We used the active compounds from
each endpoint results to create a probe subset and calculated the similarity between each
inactive compound and the probe subset based on the Euclidean distance of all chemical
descriptors between this inactive compound and the most similar active compound. We
selected the inactive compound most similar to the active compounds into the modeling set
and repeated this procedure for each active compound until the ratio of inactives in each
modeling set was between 50% and 55%. This effort resulted in final datasets for all 18
toxicity endpoints for the classification QSAR modeling consisting of 45-50% actives and
50-55% inactive compounds. (Table 5.4)
Modeling Algorithms

Random forest and Support Vector Machines (SVM) algorithms were used in this

163,164

study. In machine learning, a Random Forest (RF) predictor consists of many decision
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trees and calculates a prediction based upon the combined output from individual trees. For
the RF modeling procedure, n samples are randomly drawn from the original data. These
samples are then used to construct » training sets and to build #» trees. For each node of the
tree, m variables are randomly chosen from the descriptor set. The best data split for each
training set was calculated using these m variables. In this study, only the defined parameters
(n =500 and m = 13) were used for the model development '’

The Support vector machine (SVM), developed by Vapnik '®, serves as a general
data modeling methodology where both the training set error and the model complexity are
incorporated into a special loss function that is minimized during model development. SVM
has since become a popular method in statistical learning because of its consistently

166,16 .
167" In brief, an

outstanding performance in many studies and lower risk of over fitting
SVM model finds a separating hyperplane with a maximal margin in the feature space by
minimizing a special-loss function that incorporates both the training set error and the model
complexity. To cope better with different classification tasks, e.g. linear vs. nonlinear
correlations, a handful of kernel functions were developed to map the original descriptor
space to a higher dimensional feature space for modeling purpose.

In this study, we used the SVM implementation in the R package kernlab to build
models with both linear kernels and Radial Basis Function (RBF) kernels. The RBF kernel
was chosen due to its superior performance in a previous research '*. In developing our

models, a hard margin of cost=10 was used, and the RBF kernel parameter y was

automatically estimated with the sigest function in the kernlab package '*.
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Model Applicability Domain

A properly defined applicability domain (AD) of a model was considered critical to
determine if a given query compound can be predicted by this model within a reasonable
error. For each model used in this study, an AD was determined by a threshold distance Dy
between a query compound and its nearest neighbors in the training set, calculated as follows:
Dt =y + Zo Where y is the average Euclidean distance between each compound in the
training set and its k nearest neighbors (here, k=1), ¢ is the standard deviation of these
Euclidean distances, and Z is an arbitrary parameter to control the significance level. Here,
we set the default value of Z as 0.5 to obtain reasonable prediction coverage. Thus, if the
distance of a query compound from any of its k nearest neighbors in the training set exceeds
this threshold, the prediction is considered unreliable and will not be included.
Model Validation

As emphasized in our earlier reports'*, modeling of only training sets is insufficient to
achieve predictive power. For this reason, model validation in this study was carried out in
three levels: 1. 5-fold internal cross validation prediction accuracy for the test set CCRyegt; 2.
5-fold external cross validation prediction accuracy for the external validation set CCRey; 3.
Y-randomization test that consists of rebuilding models using randomly shuffled activity
labels, and subsequent evaluation of their predictive power on the external validation set.
Finally, in the novel hierarchical modeling workflow (Figure 5.2), individual models each
associated with a specific in vitro vs. in vivo correlation will be employed for consensus
prediction of the external set. The new compounds will first be predicted as Group 1 or 2 for
their in vitro — in vivo correlations. The in vitro testing results for the same compounds will

then be used to convert the predicted correlation groups to the predicted in vivo toxicity.
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Finally, the consensus prediction value of any compound from the external set was calculated

1 inAD

0 outofAD For a query

as follows: Yprea = (X521 Y rea Lap)/ (Tt Bap) & Lyp = {
compound, we calculated the mean of the prediction values (yi)red)for this compound from

all of the selected models (j=1~s). Each model has a model specific applicability domain (ILD)
as defined above. The compound will be labeled active or inactive based on the average
prediction value.

To develop models from imbalanced data, the overall classification accuracy is less
objective to evaluate the performance of models. To obtain an unbiased metric for
classification ability, sensitivity and specificity are used to separately monitor the
classification accuracy on two classes, and the CCR is calculated by averaging the prediction

accuracies.

o TP . TN (Sensitivity + Specificity)
Sensitivity = TP-}-—FN; Specificity = m; CCR = >

where TP and FP represent the numbers of predicted true and false positive
compounds, and TN and FN represent the number of predicted true and false negative
compounds, respectively. A permutation test (10,000 permutations) was developed to
identify hierarchical models with significant better CCRe in comparison with the
corresponding traditional QSAR models utilizing chemical descriptors only. If the
differences between the real pair of CCR¢y fell within the upper 95th percentile (p < 0.05) of
the permuted data, then the corresponding hierarchical model was considered statistically
superior than traditional QSAR models. The permuted CCRey percentile values for all
hierarchical models were then employed to rank the importance of the corresponding in vitro

assays for a specific in vivo toxicity effect.
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5.4. Results
5.4.1. Traditional QSAR Modeling with chemical descritors only

For each individual in vivo endpoint, we first evaluated the performance of predictors
developed by conventional QSAR modeling approaches. All 18 in vivo toxicity subsets were
compiled based on the 291 ToxCast™ compounds and their toxicity data in ToxRefDB. The
QSAR toxicity models were developed for each in vivo endpoint subset using the Dragon
descriptors of the relevant compounds. We employed RF, SVM-linear, and SVM-RBF
algorithms with default parameters and five-fold internal/external cross validation for model
training and testing. Therefore, we developed fifteen individual models for each toxicity
endpoint, five models for each modeling algorithms. External cross-validation predictions
were characterized by Correct Classification Rate (CCR.y), sensitivity, and specificity, and
are summarized in Figure 5.3A, 5.3B and 5.3C, respectively. The bean plots in Figure 5.3
simultaneously show the distribution of the 15 cross-validation predictions, and the mean of
the performance evaluation metrics for each in vivo endpoint, grouped by the choice of
applicability domain. Models for two (ChrRatCholinesteraselnhib and MgrRatLiver) of these
eighteen toxicity endpoints demonstrated CCR above 60% for all three types of QSAR
models. After implementing the applicability domain for each individual model, four toxicity
endpoints, including two chronic (ChrRatCholinesteraselnhib and ChrMouseTumorigen) and
two reproductive rat toxicity endpoints (MgrRatLiver and MgrRatKidney), were shown to
have CCR over 0.60 (Figure 5.3, Table 5.3). However, in general, there is no consistent
enhancement in models’ external predictivity after the application of model AD. In fact, the
CCRs of four toxicity endpoints, namely ChrRatLiverhypertrophy,

DevRabbitPregEmbryoFetalLoss, DevRabbitPregMaternalPregl.oss, and MgrRatLiver were
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reduced after AD application. Therefore, we showed that we can achieve moderate
improvement for some but not all toxicity models by using AD.

In addition, the models typically had poor prediction performance on the minority
class (less than 0.4 in sensitivity for 14 toxicity endpoints), which is common when dealing
with imbalanced data sets. Although we only selected the endpoints which were relatively
rich in toxic signal, the curated data still had considerably more non-toxic than toxic
chemicals for each toxicity endpoint subset. To address this bias, we balanced each modeling
set by excluding non-toxic chemicals that are dissimilar to the toxic set. In summary, up to
70 % of non-toxic compounds were excluded to achieve a relatively balanced data sets (with
class ratio in the range of 1~1.2). Classification QSAR models were then re-trained only on
compounds remaining in the balanced modeling set, and their predictive power was
estimated using the unmodified external sets. With this procedure, we made it more
challenging to attain predictive QSAR model as it has to discriminate toxic chemicals from
most chemically similar non-toxic chemicals.

As expected, balanced datasets afforded improved prediction accuracy for the toxic
class (Figure 5.4, Table 5.4). The sensitivity increased by 0.15 in most cases. Models for six
out of eighteen endpoints showed reasonable accuracy for the toxic class with sensitivities
higher than 0.6. However, the overall external prediction accuracy in CCR showed only
moderate improvements due to a decrease in specificity after such data modification. The
best external predictivity was achieved for ChrRatCholinesteraselnhib endpoint using
SVM_Rbf and SVM_Linear models with CCR 0.88; ChrRatLiverhypertrophy endpoints
using all three models with CCR 0.61; MgrRatKidney endpoint using RF models with CCR

0.67; and MgrRatLiver endpoint using RF and SVM_rbf models with CCR 0.62. It should be
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noted that differ from the rest endpoints, the ChrRatCholinesteraselnhib endpoint was
derived from single-target focused assays, which measure compounds’ inhibition rates on
Cholinesterase. So it represents an “easy” case for QSAR modeling, and was used as a
positive control in this study. These results suggest that employing traditional QSAR
modeling with chemical descriptors alone; it is possible to develop externally validated

toxicity predictors for several of the ToxRefDB toxicity endpoints.

5.4.2. Evaluation of the Activity Landscapes of Toxicity Data Sets

The failure of conventional QSAR models to achieve statistically significant models
for most in vivo toxicity endpoints may be due to lack of sufficient chemical space coverage
and inability of chemical descriptors to account for the toxicity mechanisms involved with
the relevant endpoints. To visualize the level of activity landscape discontinuity in the dataset,
we plotted pair wise similarities between compounds of the same (i.e. both toxic, or both
non-toxic) and different (i.e. one toxic and another non-toxic) in vivo toxicity labels. Figure
5.5 illustrated such visualization for the rat toxicity endpoint measured on kidney
microscopic and gross pathologies (MgrRatKidney). We found a large proportion of pairs
with divergent toxicity effects which are chemically and/or biologically similar when
measured with Dragon chemical descriptors, and ToxCast'" assays, respectively. The
comparison of Metolachlor and its nearest neighbor in chemical space, Acetochlor, may
serve as a good example for such discontinuity (so called “activity cliff”'®®). Since
Acetochlor and Metolachlor are chemically similar (with the Tanimoto similarity coefficient
of 0.82 calculated using MACCS keys), they are expected to have similar biological
activities. However, their toxicity profiles in three rodent reproductive toxicity endpoints are

remarkably different; they only have similar effects for MGR_Rar Viability endpoint (Figure
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5.5B). Although there are examples where small changes to key molecular features give rise
to significant changes in activity, existence of a large number of such conflicting pairs in the
database lowers its generalization power during modeling and, as a result, make it difficult to
achieve externally predictive models. On the other hand, Acetochlor and Metolachlor can be
viewed as quite dissimilar when, instead of structural features, they are compared by their
results in in vitro assays (Figure 5.5B). Therefore, we tried to rebuild QSAR modeling using
the in vitro assay results as the biological descriptors or using the hybrid descriptors by
combining chemical descriptors and biological descriptors. Depite previous successful

application of these protocols**'”’

, we could not achieve significant improvents using either
one for the ToxCast data. Possible causes could be that the available in vitro assays have low
informative signals for the concerned in vivo endpoints, especially when compared with the
influence from the chemical descriptors. These observations suggest that it is, indeed,
challenging to develop robust QSAR models with either chemical descriptors or biological
descriptors alone. However, as shown in the Figure 5.5A, most chemical-similar pairs of
compounds with conflicting toxicity lables can be differentiated in the biological space, and
vice versa. It is reasonable to expect that the additional knowledge embedded in the in vitro

biological profiles could be useful to differentiate pairs of chemically similar compounds that

have different toxicity profiles.

5.4.3. Hierarchical QSAR Modeling Using in vivo versus in vitro Correlations

It is well known that in vitro testing results, especially those obtained from HTS
bioassays, have unsatisfactory correlations with systemic toxicity endpoints when any
relatively large set of compounds is considered. The ToxCast™ bioassay data is no exception.

There is no direct correlation between most ToxCast™ bioassay and any ToxRefDB in vivo
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endpoint results (e.g. 1.5% of assay-in vivo toxicity endpoints pairs showed p-value of less
than 0.01, calculated with fisher’s exact test). As expected, no significant improvements in
the model accuracies were observed whether using the in vitro assay alone as descriptors, or
using the hybrid descriptors that directly combine the chemical and in vitro biological
descriptors. How to extract relevant information from the ToxCast'" bioassay data and to
apply it for QSAR modeling became a critical question. In this study, we extended the
concept of “in vitro vs. in vivo correlation” that has been successfully employed to utilize

158

information from cytotoxicity bioassays to predict rodent acute toxicity Similar

. 169
approaches were reviewed elsewhere

. Using this criterion, for each of the reproductive
toxicity data set, we can first select one in vitro assay as the basis and then partition the
ToxCast™ compounds into two groups: Group 1, in which compound’s in vivo toxicity
agrees with the in vitro results of the ToxCast™™ bioassay; and Group 2, if otherwise (Figure
5.2). Picking a different ToxCast assay as a basis, partitioning can be redefined. As a result,
multiple assay-specific QSAR models were developed to classify compounds into assay-
specific partitions, instead of directly predicting compounds’ in vivo toxicities. The derived
QSAR models were then used to assign compounds in an external dataset to one of the in
vitro vs. in vivo correlation groups (i.e. group 1 or group 2). The group membership was
converted into the associated in vivo toxicity based on the known in vitro response of the
assay used as a basis.

To demonstrate the effectiveness of this hierarchical workflow, we applied it to three
rodent reproductive endpoints: 1) Multigeneration Reproductive Rat Kidney toxicity

(MgrRatKidney); 2) Multigeneration Reproductive Rat Liver toxicity (MgrRatLiver); and 3)

Multigeneration Reproductive Rat Endpoint for Viability Index (MgrRatViabilityPND4).
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After processed the original data with the above described procedure, the size ratio of the
created partitions was again balanced with the same down-sampling approach, until it
reached a balanced ratio in the range of 1~1.2. We applied the hierarchical modeling
workflow for each of the 284 ToxCast™ in vitro assays and, therefore, 284 individual QSAR
models of one type (RF, SVM linear or SVM rbf) were generated for each reproductive
toxicity endpoint. Next, the consensus prediction results were derived by averaging all
predictions from the 284 models.

Compared to their conventional QSAR model counterparts, only marginal
improvement seems to have been achieved by using the consensus hierarchical models.
Considering the fact that there are many irrelevant bioassays included for consensus
prediction, it is possible that the models based on such bioassays would only contribute noise
and thus lower the accuracy of the final consensus estimation. Indeed, we observed similar
prediction accuracies by using hierarchical models only from a subset of the bioassays (Table
5.5). The subset of assays was selected based on their active ratio for the compounds in the
modeling set. For each modeling set, a different list of assays with the highest active ratio
was collected, and the predictions from their associated hierarchical models were employed
for consensus prediction of the independent external set. While using a very small number of
assays was shown to weaken the predictive power by consensus prediction (data not shown),
we observed comparable model performance by including a number of 80 top-ranked
bioassays. This result suggests that current consensus hierarchical models could be improved
with a rational selection of the relevant bioassays, such as by incorporating the knowledge of
the toxicity pathways to identify essential ToxCast'™ assays. On the other hand, considering

the fact that the bioassays are not entirely independent, generally, with multiple assays
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targeting the same signaling pathways, or even the same macromolecular targets, consensus
predictions can be biased towards pathways that have been tested more often than the others.
To reduce such artificial noise, instead of using individual assays, it might be helpful to
employ “composite” assays, for instance, merge all signals from nuclear receptor assays to
one. Then build hierarchical QSAR models and calculate consens predictions based on those
composite assays.

Here, we employed another solution to reduce the influence of irrelevant bioassays is
to exclude a fraction of compounds whose consensus scores did not reach certain level.
Ideally, the distribution of predicted values for the toxic and non-toxic compounds should
yield clear separation (Figure 5.6B). Irrelevent predictions tend to blur the boundaries of the
consensus values, but the prediction confidence increases as the consensus score reaches a
higher level. For instance, we can arbitrarily defined a compound as “toxic” if more than 70%
of individual models predicted it to be toxic and as “non-toxic” if more than 90% of
individual models predicted it as non-toxic. Predictions for compounds that did not satisfy
these two confidence levels were excluded as “inconclusive”. Using this definition, the
external predictivity of all the models for the three rodent endpoints was improved (up to
0.08 increase in average CCRext) at the cost of reduced prediction coverage (27% to 45%
decrease; Table 5.5). Figures 5.7A, 5.7C and 5.7E show the relationship between external
CCR and different toxic/non-toxic confidence breakpoints for MGR Rat Liver models. It
should be noted that all three types of models for this specific endpoint have the highest
external predictivity when the confidence breakpoints for toxic compounds are between 60-
90% and the confidence breakpoints for non-toxic compounds are between 80-95%. The

performance of RF and SVM-RBF models were relatively insensitive to different breakpoint
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values, whereas the external accuracy of the SVM-linear model strongly depended on the
breakpoint values being used. In addition to external cross-validation, we also tried to assess
model robustness by Y randomization test, where QSAR models were rebuilt using modeling
sets with shuffled toxicity data. The prediction accuracy of shuffled models was close to

random (Figures 5.7B, 5.7D and 5.7F).

5.4.4. The Relationship between Individual ToxCastTM Bioassays and the
Reproductive Toxicity Endpoints

We observed significant variation in prediction performance of hierarchical models
based various bioassays. By analyzing hierarchical models with high external predictivity
(CCRey) values, we expected to identify critical bioassays that are informative of in vivo
toxicity effects. Therefore, we performed a permutation test (10,000 times) to evaluate each
model’s performance in compariaon to the conventional chemical-descriptors-only QSAR
model. Table 5.6 lists the top 20 best-performing ToxCast™ bioassays for each multi-
generation reproductive toxicity endpoint. Many of these assays were targeting genes in the
family of cytochrome P450 enzymes, which are involved with the xenobiotic metabolism
pathways. Several conjugating—enzymes that are active in placental xenobiotic metabolism
are also identified: glutathione S-transferase (GSTA2), uridine 5’-diphosphate-
glucuronosyltransferase (UGT1A), and sulfotransferase (SULT2A1). During pregnancy, the
mothers are exposed to a wide variety of environmental chemicals. Placental xenobiotic-
metabolizing enzymes will respond to those foreign chemicals, and can either reactivate or

detoxify those compounds '"*'"!

. Those metabolites were observed, at least partially, to cross
the placenta into the fetal circulation'’. Therefore, understanding how placenta xenobiotic
metabolizing enzymes react to the environmental hazards could provide the basis for

predicting and analyzing reproductive and developmental toxicity. Estrogen receptor alpha

136



(ATG_ERa TRANS) and estrogen-related receptor gamma (ATG ERRg TRANS) were
also shown to be informative for estimating reproductive toxicity, especially on early
offspring survival. Environmental chemicals are believed to interfere with the endocrine
system by acting through estrogen receptors, thus generating adverse reproductive effects,

'3 In addition, our results also showed

including decreased fertility and implantation loss
high relevance of multigenerational reproductive toxicity to assays targeting serotonin
receptors (HTR4, HTR6, and HTR7) and nuclear receptors (human pregnane X receptor
(NR112), NR113). Thus, based on current understanding of mechanisms of toxicity, these

data suggest that our methods are capable of selecting physiologically relevant assays, and

thus can also be applied to guide potential mode-of-action analysis for future toxicity testing.

5.5. Discussion

A great number of computational technologies such as QSAR are increasingly
involved in all aspects of risk assessment of environmental chemicals. Many of such
approaches, however, were initially developed for use in drug discovery, which differs from

174 For example, chemical diversity of

toxicity evaluation in a number of important ways
environmental toxicants is usually higher than in case of drug candidates, making it a
challenging task to derive statistically robust models. In addition, unlike drug candidates that
are developed with specific targets in mind, and have optimized physicochemical properties
for proper absorption, distribution, metabolism, and excretion, environmental chemicals do
not have uniform and well understood mechanisms behind their toxicity effects. The
requirements to the QSAR models for regulatory purpose are also different from that for drug

design. Accurately predicting “toxic” class (i.e. high recovery rate) and not so accurate

prediction of “non-toxic” class is preferred for regulatory purpose, because predicted as non-
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toxic would label compounds for low-priority in experimental tests, so toxic compounds
predicted as “non-toxic” falsely would not be tested. The opposite may be desired in drug
design, where the emphasis is to identify drug candidates with minimus experimental effort
(high hit rate). Large number of false positives, inactive compounds predicted as active, will
thus not favored. In sum, it is crucial to take into account of these differences during model
development.

The compounds included in Phase I data of ToxCastTM project are also quite
structurally diverse, as indicated by the distribution of Tanimoto coefficient (MACCS key)
calculated for each compound to its most chemical similar counterpart. Around 30% of the
ToxCastTM compound pairs have Tanimoto coefficients lower than 0.7, the cutoff
commonly used to define structurally similar compounds. In comparison, the 644 compounds
in the aquatic toxicity dataset'>° are much more structurally similar. Only 10% of compound
pairs in the aquatic toxicity data set have Tanimoto less than 0.7, and over 44% of compound
pairs have Tanimoto over 0.9. To evaluate the correlation of structural similarity/diversity
with the performance of our models, we calculated the average Euclidean distances between
each toxic compound and its most similar toxic compound for the 18 data sets. The dragon
descriptors were used here for distance calculation because they were employed during
model development. Our results showed that the toxic compounds are most similar to each
other in the best chemical-descriptors-based QSAR model, the
ChrRatCholinesteraseinhibition model. Thus, it indicates that the structural eclements
responsible for in vivo toxicity may not be sufficiently present in the ToxCast™ compounds
to afford their statistical identification/generalization. Additional experiments for a diverse

set of chemicals should be beneficial for the development of robust predictors.
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It is understandably challenging to establish, for large and diverse data sets, direct
correlation between chemical structures and their observed effects in biological systems.
Chemical compounds and their metabolites can elicit similar toxicity effect through different
mode-of-actions and perturbing different biological pathways. Indeed, we could only derive
reasonably predictive QSAR models for four out of the eighteen in vivo toxicity endpoints.
One of the endpoints ChrRatCholinelnhibitor showed exceptionally high accuracy at CCR
over 0.80, primarily because this toxicity response was measured on the interaction with a
specific target, unlike the rest toxicity endpoints. As described above, a marginal structural
variation from Metolachlor to Acetochlor leads to very different in vivo toxicity profiles for
these two compounds. On the other hand, test results from a wide series of in vitro assays in
ToxCast'™ could provide preliminary information on how chemicals interact with various
toxicity pathways, and thus are expected to be useful for predictive models. To unite these
two sources of information most effectively, we propose a novel hierarchical workflow to
incorporate data from in vitro assays and chemical structure information into the prediction
of systemic toxicity effects observed in animal tests. The rationale of the hierarchical
modeling described in this chapter is that by grouping compounds exhibiting the same
agreement between selected in vitro and in vivo responses, we are in a better position to
identify and generalize those factors affecting in vitro to in vivo extrapolation (i.e. similar
patterns of metabolism or modes of action). In our studies, the models derived from
hierarchical modeling workflow has best prediction accuracy in the range of (0.70~0.71) in
comparison to traditional QSAR models (0.57~0.64). However, predictions from general
consensus of the hierarchical models are not always optimal; we can achieve comparable

modeling performance with 80 in vitro assays with the highest signal contesnts. Due to the
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fact that many irrelevant in vitro assays may contribute noise to the consensus predictions,
we expect to see an increase in model performance if those assays could be identified and
removed from consideration. Indeed, another group member, Liying Zhang, showed that by
pre-clustering the in vitro assays according to known biological pathways, and using only the
assays that fall into several biologically relevant pathways could enhance the model
performance in certain cases. To better test capability of this modeling workflow, it would be

interesting to apply it to other ToxCast'" data sets.

5.6. Conclusions

In conclusion, we have examined the utility of the chemical structure descriptors and
the ToxCast' ™ bioassay data for predicting in vivo toxicity of environmental chemicals using
QSAR modeling approaches. Our results indicate that the conventional QSAR models using
chemical descriptors alone and the ToxCast'" bioassay results individually have limited
predictive power. For some endpoints, e.g. MGRRatLiver, it is possible to use conventional
QSAR models to achieve good predictivity for a subset of compounds with restricted
scaffolds. Furthermore, although the ToxCast™ bioassay data have low correlations with in
vivo toxicity data, they can still be useful for improving the predictive power of QSAR
models when implemented within the novel two step hierarchical QSAR modeling workflow.
This hierarchical QSAR modeling workflow, although dependent on availability of in vitro
data, can help to identify relevant in vitro toxicity assays for particular in vivo endpoints and
thus could be a helpful tool for elucidating mechanisms of toxicity. Overall, the derived
models could be used to guide future toxicity studies by choosing in vitro assays and by

prioritizing compounds for in vivo toxicity evaluation.
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Tables and Figures

Groupl: invivo/ invitro agree
Group2: invivo/ invitro disagree

Figure 5.1. Data set partitioning based on the in vivo and in vitro toxicity responses. Class 1 consists
of compounds whose in vitro and in vivo responses agree: toxic in vivo and in vitro, or non-toxic in
vivo and in vitro; Class 2 consists of compounds whose in vitro and in vivo responses disagree: toxic
in vivo but non-toxic in vitro, or non-toxic in vivo but toxic in vitro.
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Figure 5.2. Modeling workflow. (A) Preparation of the target data set. (B) Modeling procedure for
the data set.(C) external prediction procedure

142



/%@/7 2O o0
@/7/@ o %@Jw 2 A
ot o 2 28 o S
o V%%m@%%&w/%@% %e%ﬁc%%e%,%oo/ % oe%v%w%p%%w@%@o
’ R @ of O o
| | | _/®/ @mo\/ wmox//®z®WO%@%@WA/@/&@%@M@V%@9&/&“@9@&0@ W/Qvooamuz./yo o 1%90 0 R
< D @ A 3 \ 3 2
| I e = mo)/ax )/077/@ %A&v@dw ov%@? ®7A/x® /oc,OJMN NS 0 W
S 0 WO AN AR PN W o™ ot
| Mw /y&@. @/VO/.&& OOv/v@ ®®®v®/® /VVA/ V\QWOO /\/&090/7 ®7/)®®9
b o ¥ o™ e
| I | W/ RER: ovochv\ 60@0\&//0
| I >
|
........................... L 00
| « — — 20
— 0
avum [l )
’ av inoyy
mOd 90
3s
o9
e
Jwymz& e
N a o 20 20
/.//%/. N 2 0@& /®4v X 20
40;&%9 Z)/@/wv@ //QWVO/Z /&&@/@:v ov\%m./z ov\\vowvw QO@O/Q/W 20 //O,%JV_/ %&7@0 120
I _v® - T&/vo. @ QuA/@/& O)@Ow&/@ @ WOTvQ /@/0 W/&v « @.//99@& ®/®/70@vw \W@&v%o, O//O,O,@/W mm m
T S ! B S o Nl
AN ° mmo)zo? oy ey M oA P \%&Vpo R
av yu | e 5\ o> &F e o o e
IM . avin | | \ 2 m..o)/ )/077 /w%/vv 0«% Q/A// O/yOz Nl @) Y
1noyy >>D ] | ° P O@@/.VO O/@&\/x// /V&OT/YV 0/&@6/7 mA/OAkv s o ®®9O/7
| o (8 /%/%9 co,%% o %o_,«./
| _ o %o‘ mvo,%v oo/mo&/./
] | &
|
............ — 00
L 20
L 40
............ — 90
o ko)
L 50
L 01

H00 VY

143



a8e10A0) ((Q) pue ‘Aoyg1o0adg (D) ‘A1ARISULg

() 40D (V) :syutodpua oaza ur g1 10§ Sppowt AOIx0} YVSO IAI-IAS PUB TeSUI-]NAS ‘4 JO SHNSI UOHEPI[EA SSOI0 P[OJ-9AL] "¢'S dInSIg

20 o0 0
20 eC o0 o T e
B o AP A 8 O
A o o WO o oD N >
S0 00§20 o8 (0" 400 90 @ (o G (0% (O WP )%%/z
¥ on et ,7@@& @%@z& Z%Vx\v =\ %mz.% s%az@ Co,cv\w —\ &,%,yo V%QZ 1207/\.// 2 ombozz )&%o %@7/
S\ ) O! ) O X X (o) N X )
W?/y/. )/@/% o zanw,z /90/ )006/ \//azww )/OZ// < /s/o/o )@06/ )/sza\v \o.@Z// /vo,vvov\ m&&& S vv&o /om,@v@ voowow\ovévvo_/ m&)«&o
AO/k RN SFY 07 80T 0T Y 0T 0T P o ot T,yo %yo RESIR S N S
| | | | | | | | | | | | | | | | | |
— 00
— ¢'0
— 70
— 90
.‘. “\ * * % w % A*w IWV I”l M w * \”I * -
* M . — 80
— 0’}
abeianon -Q
20 oG o0
20 o0 ey @/W_/ o /W_/@
@/%/ @@7 /W_/ /99 99@ 99@ ) vzyO vzy\u
PRV-AIRE g LT CRPRY. R i SR SRt )
/7./®/Wv0¢é 0/7 @/@&7&”@/@/}@@9@&0& W/@v&zv& .499@&7@/@/}0“9@&@& W/@v@zv@ /WV/VO Ww&Zm//@/@&Z&@/W@/V//O/VOMOO/ZV/VO@@A/OA?V v&—zﬂ/@&
oM 3G v N N v @ WO R (o X &
e @,%o/z I I P P R
O/kw o T@%Q, a/,z/ mo)o IV T @%A/ m,o)o OV W o (o T/yooov //yo/a @@/.vo vocvov R
X ¥ N2 S S S N2 S S S ¥ B o & S o
| | | | | | | | | | | | | | | | | |
av uim [l avinounm ] — 00
—20
» — v0
................ - - o
i | i T I JAN | I A I

ALAEANCINNS

144



oW
o
do¢w@.// o
| vozwo.s,% o
a 108%@,% .
L _ | P A/@,%,@@,% s%o&,@,w_éo
. av _/ . mmo).@&vW/@/va/ T«Q/vv\Wmv&v%,&/W?@O
e _ mmo)/@/o X @ o,&o/@/w&o
i moo\o.mvz//&%\vc 5%&7@0 &7@0
@%%/%,7@/. @999%%%.9% &_@O
mmo)ogw/ 9&0@%@% )
........... e \//®/® VOTvO, R V/@@G&O&Xyﬁr@?&
...... i’ )/oz// %v/@,%o
- oo@co Voz)/a/%yo
oo,ma)y/@w : sl%,yo
..... o %yvo_/«./z o
....... T,yoo WP o oo@&zm&@@QOz@:%
o™ . 5
) ooocoeov»moo? o/zv,yo
%)%o g
mvoovovv : vwz)omooiv
mco/m@)«//ovw |
N
8,7/@%
AO/@@». o
| 674.4@1% ¢
T@%ﬂ%.@:% .
- _ @4%/%,7%% og%,v_,@o
m [l | _/ mmo)@o&/@o&/@% 6\%«9%@&7@0
i _ mmo)/azo\vozny ° \V/@v@ooo/?w_éo
G _ moo\o.@i//@ 017@// 99@&7&0 %IW_&O s
_ /&M‘,A/&v.@/ > @65/&/709%.9 ®1W7®O
| m,mO\/O@vW/ Tvavv\W@&v%vO,Q ;
............ } _ mmo)/@/s B o ®/®\V/®V®¢®0499®4v7
| — m,mO\// ?/ OVA/VMQJWXYO N
....... _ oo@.yo o&éz\//@&v
- _ mo%a)? . o
- @of%z.% .
4 _ _79%2 %/%9982965% e 3S
[\ v .
it | co@.vo%ovomooi )om%?v,yo m
> ocx/vvwz. omoozzv,yo
| ¥y ov%&_//)
El | @/VO/@@\/M/V |
i
{7l _
\.
| |
__ H. 00
3 -
_ ¢0
b2 — ¥°0
-+ 90
B o
oo 20
— 0’1

400 'V

145



da3eraa0) (@) pue :Anoyroadg (D) Ananisuas (g) DD
(V) :syutodpua oaza u1 g1 pasue[eq ay 10J s[apowt £1191x01 YVSO AA-INAS PUe ‘Teaul]-INAS ‘A JO SINSAI UONBPI[BA SSOIO P[OJ-9AL] "{'G 2In31,]

(¢} A A
S o0 L0 RO
2P @ 2 € e o ) Nel
o o o WO (oY o o) o Y
o O _§° g0 0 /w%o 20 o o za,%,y B 901@& o0 o om%?
/Za/w/z o o 69@?@%@ 3 @./9% cvozazz Z%V\w 3" o %@7,) o o ot & %&7/\./
e X N\ \2 0! A AN O! A X o> N O & (\§ o>
WO @ a0 (& o W 00l 2 P o 0T O o ey (T A
B N A I N D R N g g
O ¥ I T OV O O b OV OV 0T O 0P (00 oY (Y o
¥ ¥ \ 5 & 5 \ = 5 5 N 9 N [\ W S 2
| | | | | | | | | | | | | | | | | |
— 00
w — 20
“ . — ¥°0
— 90
**+‘- -ﬁg “w\ﬁ‘ ﬁ*' abeianon
— 80
— 0L
abesanod °Q
Q (o) o
S o0 L0 RO
AP o 0% @0 0 oo
/Q/W e o N o o ) W 3
o 20 0@6 owvv/ ) &7@0 2° oav%v G@O& /@,%,y al%,yo O%\Jv e ?«90 @%97
> 27 oW 0 o (fP oV ¢ o8 oD oW (T (0 W oS
a/_//@ W o lrmz@,w ocva/@ Tv%w a\vxev ,7@/09 @%o/@ Tv%v a\vxsv /al%,y vwvav.fzyvov/. m@&& am% /)omo 6@7
O OV o % \ PV N @ \ P T o a0 W oY @™ O
O¢v?¢®z\//®¢¢ooo% @%A/@/o @o)oovwmo)/e/a oo%@ﬂ%&@a mo)@o&m,o)/@/o oo%oz,/v%ooov oo/,%\of%o2@9%/%@%@%6 vo,%vv oo,..,uo&
X o A\ ) S S N\ S S S ) . S: S
| | I | l | | | | ] | | ] | | | | |
av uim [l avinouum ] — 00
—c0
y | — 0
— 90
ds
— 80
— 0L
dS O

146



S
(@]
w o 7]
O
(2]
g
a <« _]
) o
2
S ~
SR
S
8 o _
S o
@
.
©
£
m < | o °
o [+]
| | | | T |
2 4 6 8 10 12
Euclidean distance (chemical descriptors)
B.
O O
o L I o N e
0 - N 07N
o
c
>
o
o
£
o
© Metolachlor NN1-Acetochlor
) MGR_Rat_Kidney 0 1
g MGR_Rat_Liver 0 1
= * MGR_Rar_Viability 0 0
ACEA_IC50 0 1
ATG_AHR_CIS 0 0
o CELLLOSS_24HR 0 1
&S P53ACT_24HR 0 1
: NVS_ADME_RCYP3A2 1 0
= SOLIDUS P450 0 1

*1: toxic or active; 0: non-toxic or inactive.

Figure 5.5. Illustration of activity discontinuities in the chemical and biological space. A. Pair wise
distance map with data pairs color-coded by in vivo toxicity class measured for MGR Rat Kidney
(black, pairs of nontoxic compounds; green, pairs of toxic compound; red, pairs of toxic and nontoxic
compound.) The arrow indicates the pair of compounds: Metolachlor and Acetochlor. B. /n vivo and
in vitro toxicity profiles of Metolachlor, and its nearest neighbor in chemical descriptor space, NN1-
Acetochlor.
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Figure 5.6. Distribution of predictions of the ideal case (A) and the hierarchical QSAR models

(RandomForest approach) for MgrRatLiver endpoint (B). As can be seen better separation of two
experimental categories is achieved by using two breakpoints at 0.10 and 0.70 (such classification

would correspond to CCR=0.70 and Coverage~37%).
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Figure 5.7. Heatmap illustration of CCR. for MGR Rat Liver endpoint when different breakpoints
values are used to define toxic or non-toxic compounds.
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Table 5.6. The top 20 ToxCast™ bioassays for each reproductive toxicity endpoint based on the
prediction accuracy of their associated hierarchical models.

A. MGR_Rat_Kidney

Assay Gene Gene name/ Description
polypeptide 1
BSK_3C_Vis_down® HUVEC (IL-1b+TNFa+IFN-g): Visual
BSK 4H Eotaxin3 down® CCL26 chemokine (C-C motif) ligand 26
: a selectin P (granule membrane protein
BSK_4H_Pselectin_down SELP 140kDa, antigen CD62)
BSK_BE3C_hLADR_up® HLA-DRA ggzrlphrgtocompatlbnlty complex, class I,
BSK hDFCGF EGFR up® EGFR epidermal growth factor receptor
BSK KF3CT IL1a down® IL1A interleukin 1, alpha
BSK_KF3CT IP10 down’ CXCL10  chemokine (C-X-C motif) ligand 10
BSK LPS VCAM1 down® VCAMA1 vascular cell adhesion molecule 1
BSK_SAg_CD40_up® CD40 CD40 molecule, TNF receptor superfamily
member 5
BSK_SAg_PBMCCytotoxicity down® HUVEC/PBMC (TCR): Cytotoxicity
CLM_MicrotubuleCSK_Destabilizer 24hr® HCS Microtubule Destabilization
CLM p53Act 1hr® TP53 tumor protein p53
CLM p53Act 72hr? TP53 tumor protein p53
a ATP-binding cassette, sub-family B
CLzZD_ABCB11_48 ABCB11 (MDR/TAP), member 11
CLZD_GSTA2 24° GSTA2 glutathione S-transferase alpha 2
sulfotransferase family, cytosolic, 2A,
CLZD_SULT2A1_24° SULT2A1 dehydroepiandrosterone (DHEA)-preferring,
member 1
NCGC_PXR_Agonist_human? NR1I2 nuclear receptor subfamily 1, group I,
member 2
NVS GPCR g5HT4® HTR4 5 hydroxytryptamine (serotonin) receptor 4
NVS GPCR h5HT6® HTR6 5-hydroxytryptamine (serotonin) receptor 6
B. MGR_Rat_Liver
Assay Gene Gene name/ Description
ATG_ERRg TRANS® ESRRG estrogen-related receptor gamma
ATG_HIF1a_CIS HIF1A hypqma |qdu0|ble fagtor 1, alpha_ subunit
(basic helix-loop-helix transcription factor)
ATG Pax6 CIS PAX6 paired box 6
BSK 4H VCAM1 down VCAM1 vascular cell adhesion molecule 1
BSK_hDFCGF_Collagenlll up? COL3A1 collagen, type lll, alpha 1
BSK_KF3CT IL1a_down® IL1A interleukin 1, alpha
BSK LPS MPC1 down CCL2 chemokine (C-C motif) ligand 2
CLM_ Hepat CellLoss_1hr® Cellumen Hepat CellLoss
CLM_Hepat_NuclearSize_48hr? Eatus . Cellumen_Hepat_NuclearSize
orvegicus
CLM_MicrotubuleCSK_Destabilizer 24hr® HCS Microtubule Destabilization
NCGC ERalpha_Agonist® ESR1 estrogen receptor 1
NVS ADME hCYP1A2 CYP1A2 cytochrome P450, family 1, subfamily A,
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polypeptide 2

cytochrome P450, family 2, subfamily C,

NVS_ADME_hCYP2C8® CYP2C8 :
polypeptide 8
NVS ADME rCYP2A2 CYP2A2 cytochro_me P450, subfamily  2A,
— — polypeptide 1
NVS ADME rCYP2C6° CYP2C6 cytochrome P450, subfamily 11IC6
NVS_GPCR_g5HT4° HTR4 i hydroxytryptamine (serotonin) receptor
NVS GPCR_hOpiate mu® OPRM1 opioid receptor, mu 1
NVS NR_bPR® PGR
NVS NR hCAR'™ NR1I3 nuclear receptor subfamily 1, group |,
- = member 3
NVS_NR_hPPARg PPARG peroxisome proliferator-activated receptor

gamma

C. MGR_Rat_Viability

Assay Gene Gene name/ Description
ATG ERa TRANS® ESR1 estrogen receptor 1
ATG ERRg TRANS® ESRRG estrogen-related receptor gamma

THRA thyroid hormone receptor, alpha (erythroblastic
ATG_THRa1 TRANS® leukemia viral (v-erb-a) oncogene homolog, avian)
BSK_3C_uPAR_down” PLAUR
BSK_3C Vis_down® HUVEC (IL-1b+TNFa+IFN-g): Visual

HLA- major histocompatibility complex, class Il, DR alpha
BSK BE3C hLADR up® DRA
BSK_hDFCGF_MIG_down® CXCL9 chemokine (C-X-C moitif) ligand 9
BSK KF3CT ICAM1 down ICAM1 intercellular adhesion molecule 1
BSK_KF3CT MMP9 down® MMP9
BSK LPS PGE2 down® PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa
BSK_LPS PGE2 up® PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa

HUVEC/Primary Human Vascular Smooth Muscle

BSK_SM3C_Proliferation_down?® Cells (IL-1b+TNF-a+IFN-g): Proliferation
CLZD GSTA2 48 GSTA2 glutathione S-transferase alpha 2
CLZD UGT1A1 6° UGT1A1 UDP glucuronosyltransferase 1 family, polypeptide A1
NVS ADME_hCYP2C9° CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9
NVS ADME_hCYP3A5° CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5
NVS ADME_rCYP2C6" Cyp2c6 cytochrome P450, subfamily 11IC6
NVS ENZ rAChE® Ache acetylcholinesterase

HTR7 5-hydroxytryptamine (serotonin) receptor 7 (adenylate
NVS GPCR_h5HT7? cyclase-coupled)
NVS GPCR hDRD1 DRD1 dopamine receptor D1
a. Assays considered to be related with in vivo test results, based on permutation test (p<0.05,
10,000 times) to show statistically better external predictivity CCR., than conventional QSAR model.
b. Assays that showed high correlation with in vivo test results based on association analysis

using Fisher’'s exact test (p<0.05) , in addition to better external predictivity than conventional QSAR

model in permutation test.
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Chapter 6. Conclusions and Future Studies
6.1. Combi-QSAR Modeling Approach and Virtual Screening for Novel Inhibitors of
Human Histone Deacetylase (HDAC)

Histone deacetylases inhibitors (HDACIs) have emerged as a new class of drugs for
the treatment of human cancers and other diseases due to their effects on cell growth,
differentiation, and apoptosis. In chapter 2, we have employed a combinatorial QSAR
approach to generate models for 59 chemically diverse compounds tested for their inhibitory
activity against HDAC1. The SVM and ANN QSAR methods were used in combination with
MolConnZ and MOE descriptors independently to identify the best approach with the highest
external predictive power. Rigously validated QSAR models were used to screen our in-
house database collection of a total of over 9.5 million compounds. This study resulted in 45
consensus hits that were predicted to be potent HDACI inhibitors. Two hit compounds that
were not present in the original dataset were nevertheless reported recently as HDACI
inhibitors *"'*?. Four hit compounds with interesting chemical features were purchased and
experimentally validated. Three of them were confirmed to have inhibitory activities to
HDACI (Class I HDACs) and the best activity obtained was ICsy of 1.00 uM. The fourth
compound was later identified to be a selective inhibitor to HDACG6, a Class II HDACsS.
Moreover, two of the confirmed hits are marketed drugs which could potentially expedite
their development as anticancer drugs acting via HDACI1 inhibition. We believe that the

technologies described in this study could be used for data analysis and hit identification for

other drug discovery studies.



6.2. Development, Validation and Application of Target-specific Pose Filters in
Structure-based Virtual Screening of Subtype Selective Ligands

In Chapter 3and 4, we have proposed a general pose filter using the DFT derived
protein-ligand interaction descriptors (PL/MCT-tess) in structure-based virtual screening.
The pose filter was validated with the 13 benchmarked DUD datasets and FRED2.2.5
docking program. The pose filter enables a constant improvement over using the default Fred
scoring functions for active compounds. We further challenged the pose filter to identify
subtype selective beta-adrenergic ligands. The results showed that it is possible to achieve
reasonable early enrichment with carefully designed subtype biased pose filters, preferably
using a selective ligand as the reference and a calibration set including both known
nonselective and inactive molecules. It should be noted that the success of the proposed
approach is heavily dependent on the previous knowledge, especially the selection of proper
reference ligands to guide the structure modeling as well as docking pose selection.

For future studies, it would be interesting to see how additional knowledge about the
receptors, such as the conformational flexibility of the binding pockets can be employed into
structure-based docking, and affect the virtual screening performance. It is believed that the
binding sites of GPCRs are very flexible in the absence of a bound ligand. Therefore, virtual
screening with one static binding pocket from individual structure models or X-ray crystal
structure may not be able to capture the real binding mode of some ligands. One possible
solution is to include a set of experimentally solved structures, or in case of PAR, a set of
representative structures extracted from molecular dynamic simulation study, to perform
virtual screening in parallel, and combine the derived ranking lists for a consensus rank. In
addition, the current pose filter does not explicitly apply any kind of model applicability

domain. It is expected that small molecules with larger molecular volume could form more
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non-specific contacts with receptor side-chains, and contribute to the false positive class. It
should be beneficial to filter out or penalize those molecules from the ranking list. However,
preliminary studies on applying a QSAR-like applicability domain for the pose filter did not
show significant benefits for virtual screening performance. Further studies are needed to
explore this issue.
6.3. Development of Predictive in vivo Toxicity Models from Combined Knowledge of
Chemical Structure Information and the ToxCast™ in vitro Data
In Chapter 5, we have examined the utility of the chemical structure descriptors and
the ToxCast'™ bioassay data for predicting in vivo toxicity of environmental chemicals. Our
results indicate that the conventional QSAR models using chemical descriptors alone and the
ToxCast™ bioassay results individually have limited predictive power. For some endpoints,
e.g. MGRRatLiver, it is possible to use conventional QSAR models to achieve good
predictivity for a subset of compounds with restricted scaffolds. On the other hand, although
the ToxCast™ bioassay data have low correlations with in vivo toxicity data, they can still be
useful for improving the predictive power of QSAR models when implemented within the
novel two step hierarchical QSAR modeling workflow. This novel hierarchical QSAR
modeling workflow can also help to estimate possible mechanisms of the toxicity pathways
by evaluating the in vitro toxicity assays associated with top-ranked models. The derived
models thus could be used to guide the future toxicity studies by choosing in vitro assays,
prioritizing compounds for in vivo toxicity evaluation, as well as directing potential mode-of-
action analysis by evaluation of the molecular targets and pathways of the most predictive in

Vitro assays.
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As shown from our studies, the proposed QSAR modeling workflow can improve
toxicity predictions with a reduced applicability domain. The coming phase II ToxCast™
data that was tested against an additional 1000 compounds would provide an objective test
set to evaluate models’ applicability as well as prediction accuracy. In addition, it is well
known that the toxicity effects are dose-dependent. For current studies, the toxicity
observations as well as the bioassay responses have been simplified into active (toxic) or
inactive (non-toxic) classes. It would be interesting if we can include the dose-response data
in the QSAR modeling, and test whether we can achieve better performance. Indeed, a recent

publication by Sedykh et al.*

showed that it is possible to use the concentration-response
data in the prediction of rodent acute toxicity. Furthermore, it would be beneficial to combine

the prediction results with the results from bioinformatics analysis of the inherent

connections between protein targets and bioassays.
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APPENDICES
Appendix [: Structure and p/Cs of fifty-nine HDAClinhibitors used for model building and

validation.
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