
 
 

Prioritizing Small Molecules for Drug Discovery or Chemical 
Safety Assessments using Ligand- and Structure-based 

Cheminformatics Approaches  

Hao Tang 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the  

Department of Biochemistry and Biophysics 

Chapel Hill 
2011 

 
 

Approved by 

Advisor:  Alexander Tropsha, Ph.D. 

Reader: Matthew Redinbo, Ph.D. 

Reader: Brian Kuhlman, Ph.D. 

Reader: Andrew Lee, Ph.D. 

Reader: Yufeng Liu, Ph.D. 

 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2011 
Hao Tang 

ALL RIGHTS RESERVED 
 
 
 
 
 



iii 
 

ABSTRACT 
 

Hao Tang : Prioritizing Small molecules for Drug Discovery or Chemical Safety 
Assessments using Ligand- and Structure-based Cheminformatics Approaches 

(Under the direction of Professor Alexander Tropsha) 
 

Recent growth in the experimental data describing the effects of chemicals at the 

molecular, cellular, and organism level has triggered the development of novel computational 

approaches for the prediction of a chemical’s effect on an organism.  The studies described in 

this dissertation research predict chemical activity at three levels of biological complexity:  

binding of drugs to a single protein target, selective binding to a family of protein targets, and 

systemic toxicity. Optimizing cheminformatics methods that examine diverse sources of 

experimental data can lead to novel insight into the therapeutic use and toxicity of chemicals.   

In the first study, a combinatorial Quantitative Structure-Activity Relationship 

(QSAR) modeling workflow was successfully applied to the discovery of novel bioactive 

compound against one specific protein target: histone deacetylase inhibitors (HDACIs). Four 

candidate molecules were selected from the virtual screening hits to be tested experimentally, 

and three of them were confirmed active against HDAC.  

Next, a receptor-based protocol was established and applied to discover target-

selective ligands within a family of proteins. This protocol extended the concept of 

protein/ligand interaction-guided pose selection by employing a binary classifier to 

discriminate poses of interest from a calibration set. The resulting virtual screening tools 

were applied for enriching beta2-adrenergic receptor (β2AR) ligands that are selective 

against other subtypes in the βAR family (i.e. β1AR and β3AR). Moreover, some 
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computational 3D protein structures used in this study have exhibited comparative or even 

better performance in virtual screening than X-ray crystal structures of β2AR, and therefore 

computational tools that use these computational structures could complement tools utilizing 

experimental structures. 

Finally, a two-step hierarchical QSAR modeling approach was developed to estimate 

in vivo toxicity effects of small molecules. Besides the chemical structural descriptors, the 

developed models utilized additional biological information from in vitro bioassays. The 

derived models were more accurate than traditional QSAR models utilizing chemical 

descriptors only. Moreover, retrospective analysis of the developed models helped to identify 

the most informative bioassays, suggesting potential applicability of this methodology in 

guiding future toxicity experiments. 

These studies contribute to the development of computational strategies for 

comprehensive analysis of small molecules’ biological properties, and have the potential to 

be integrated into existing methods for modern rational drug design and discovery. 
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Chapter 1. Introduction 
1.1. Overview 

The famous “central dogma” of molecular biology explains the information flow through 

macromolecules from DNA to RNA to proteins. Yet, many essential biological processes cannot 

be fulfilled with macromolecules alone. A variety of small molecules, such as transmitters, 

hormones, metabolites, and xenobiotics, are essential to understand the big picture of life and are 

arguably the “missing link” of the “central dogma” (1 Figure1.1). Acquiring good knowledge of 

these small molecules and how they interact with biological systems could significantly enhance 

our abilities to characterize protein functions, decipher the signaling pathways, and direct the 

optimization of drug leads for treatments of diseases.  In order to investigate the effects of small 

molecules, rapid growing disciplines including chemical biology, chemogenomics, and chemical 

genetics have evolved at the interface between chemistry and molecular biology, statistical 

modeling and computational sciences 2-4. Despite the diversity and complexity of researches in 

these fields, the major themes are perhaps best described as to use small molecules as probes to 

study biological functions, with an ambitious goal to comprehensively explore all possible drug 

candidates, potential pharmaceutical relevant targets, and the entire drug-target interaction 

network 5,6.  

With the increasing amount of data produced in this field, computational tools are 

recently developed to either help with interpretation of the data, or convert the information into 

knowledge and predictive tools that can be applied to guide future studies. Many of these 

computational tools are derived from conventional cheminformatics and bioinformatics methods 
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including, for instance, the analysis of small molecule similarity and structure-activity 

relationships, the study of ligand-target associations through molecular docking and scoring, or 

the construction of target associations through sequence/structure similarity and the ligand-target 

interaction network 7-9 (Figure 1.2). A comprehensive overview of computational tools 

developed in this field is beyond the scope of this chapter; rather, the focus here is to provide a 

brief summary of the cheminformatics and virtual screening tools that have been explored and 

evaluated in this dissertation, as well as highlight the contributions of  this study.     

1.2. Quantitative Structure-Activity Relationships Analysis 

The major assumptions underlying any Quantitative structure-activity relationship 

(QSAR) analysis is that “similar molecules are most likely to obtain similar properties” (the 

Similarity Property Principle), which has shown to be generally valid. Classical QSAR models 

attempt to quantitatively relate structure variations of small molecules to changes in their 

biological properties, such as binding affinities and inhibition constants. Any QSAR practice can 

generally be represented by a mathematical formula: , , … ,   where P is a 

biological property of interest for the molecules; , …  are calculated structural 

descriptors that characterize molecules’ physical-chemical properties, and  is some 

mathematical transformation to derive the property for the molecule from the descriptors 10. The 

success of a QSAR modeling campaign thus depend on the robustness of the structural 

descriptors employed, as well as the statistical learning strategies applied to the construction of 

the structure-activity relationships. Recently, there is an increasing emphasis in the QSAR 

community to carry out rigorous model validation to afford robust and predictive models, which 

can be applied to virtual screening of external compounds with unknown activities 10-14.  
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Most of the traditional QSAR models assume a single mode of action for the tested small 

molecules, as well as a linear relationship between a biological activity and molecular descriptors. 

This may be a reasonable approximation for relatively small data sets. However, it is often not 

the case for the data from chemical biology, especially when the monitored biological functions 

can be phenomenological in nature, and a large set of structurally diverse compounds is 

considered. During the past decades, we have witnessed a great interest in using more complex 

machine learning techniques, such as the Bayesian Classifier 15, k nearest neighbors (kNN) 16, 

randomForest (RF)17, and support vector machines (SVM) 18,19, to assist computational modeling 

in this field. As it is highly impossible to decide a priori as to which modeling technique could be 

most effective, it is usually recommended to use the combi-QSAR approach that explores all 

possible combinations of various descriptor types and statistical learning algorithms along with 

external model validation. Chapter 2 describes an example that employed the combi-QSAR 

approach and rigorous model validation to identify novel histone deacetylase inhibitors.  

Despite the increasing complexity and diversity of statistical learning algorithms applied, 

it is difficult to develop predictive tools for chemical biology data using most traditional QSAR 

models that are based on chemical descriptors alone. There are two major challenges: the 

significant structure diversity of the data set on one hand, and the variety of structural features 

that can cause similar effect, on the other hand. These challenges are most prominent in the 

assessment of environmental chemicals’ toxicological effects, where chemicals were designed 

for different reasons with various scaffolds, and can act through multiple mechanisms and hit 

various physiologically important targets to cause similar adverse effects 20,21. On the other hand, 

the development of various in vitro toxicity testing methods, such as cell-based and cell-free 

HTS techniques, as well as toxicogenomic technologies, offered potential biological basis for 
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estimating the adverse effects of environmental chemicals 22-24. Therefore, it is intriguing to 

develop novel QSAR modeling approaches that can combine traditional chemical descriptors 

with the knowledge extracted from the in vitro testing results. Indeed, our recent studies showed 

that it is possible to improve QSAR models’ predictivity by including in vitro testing results as 

biological descriptors with traditional chemical descriptors 25,26. However, this approach is not 

always effective, partially owing to the overwhelming influence of chemical descriptors when 

modeling with hybrid descriptors. Recently, we showed that it is also beneficial to utilize the 

correlation between rodent acute toxicity data (in vivo data) and cytotoxicity data (in vitro data) 

to enhance the performance of traditional QSAR models with chemical descriptors only 27,28. In 

Chapter 5, we illustrated when it is difficult to build predictive models from traditional QSAR 

modeling approach using either chemical descriptors or hybrid descriptors (chemical plus 

biological descriptors), we can still manage to utilize the in vitro vs. in vivo correlations and a 

novel two-step hierarchical QSAR modeling workflow to construct models for three rat 

reproductive toxicity endpoints.  

1.3. Molecular Docking 

Receptor-ligand docking has become a fundamental component of modern drug 

discovery process. It consists of two distinct steps: docking and scoring. The docking step 

attempts to explore all possible conformations and orientations of a candidate ligand into the 

active site. Each solution is named a pose. The scoring step deals with determining the binding 

affinity of each pose, and ranks the ligands according to the predicted values. The goal is to find 

the most appropriate pose for each ligand and to indentify the ligands with the highest potential 

as drug candidates. Following the pioneering work form the first docking-based virtual screening 
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approaches, namely UCSF Dock, there are currently more than 60 docking programs (e.g. Dock, 

AutoDock, eHiTs, FlexX, Fred, Glide) and more than 30 scoring functions9,29. To date, structure-

based virtual screening (SBVS) has been successfully applied in numerous studies and enabled 

well documented discovery of several approved drugs, e.g. dorzolamide 30,31 and relenza 32.  

A docking study provides concomitantly the estimates on small molecule’s binding 

pattern and affinity to the target macromolecule. When there is a set of related protein targets, 

docking studies would, ideally, provide good estimates on small molecule’s binding selectivity 

across these targets (ligand profiling). Compared with ligand-centric methods that use small 

molecule information alone, docking represents a promising complementary approach that 

include 3D information about the target protein to predict compounds binding selectivity. 

Therefore, there is an increasing interest to use docking approaches in both retrospective and 

prospective studies of small molecules’ binding selectivity33,34. Nevertheless, due to the inherent 

limitations of docking programs, this is never a trivial task. 

Typically, the 3D structures of biomolecules obtained by X-ray crystallography and 

NMR spectroscopy are needed for the purpose of SBVS, whose performance is strongly affected 

by the quality of biomolecular structure, especially with respect to binding site description. 

When no experimentally determined structures are available, theoretical models based on either 

homology or de novo modeling approaches are employed instead 35-38. In principle, the success 

of structure models is typically measured by how close the models could reproduce experimental 

structures, which implies that the latter are inherently more appropriate choice for SBVS 

applications. However, this may not always be true, especially when one takes into account of 

the fact that some of the computational models are actually manually refined with known 

medicinal chemistry data to reproduce conserved protein-ligand contacts. There have been some 
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discussions about the accuracy and applicability of theoretical models 38-44 in SBVS. The G-

protein coupled receptors (GPCRs) serves as a good example where theoretical models have 

been used widely because of GPCRs’ importance as targets for many drugs, on one hand, and the 

lack of experimental structures, on the other hand. Thus, the recent publications of the crystal 

structure of human beta-2 adrenergic GPCR (β2AR)45-47 cleared the way for the validation of 

previous theoretical models, as well as provided critical guide for building structural models of 

other GPCRs. To assess the accuracy and applicability of structure models in SBVS, we have 

compared several beta-2 adrenergic receptor (β2AR) structural models versus the β2AR-T4L 

crystal structure in terms of both their global similarity and effectiveness of use in search for 

β2AR specific agonists and antagonists (Chapter 3). 

Another critical issue for using docking as a ligand profiling approach is the inaccuracy 

of the predicted binding pose and affinities. While most docking program can reproduce 

experimentally resolved binding conformations, those poses are not always picked by the scoring 

functions 48. The generated scores also do not correlate with the order of measured activities, 

thus most docking programs demand further visual inspections of the top-scored poses 49,50. To 

overcome this problem, the scoring functions are constantly modified to enable more accurate 

prediction of the binding energy of a small molecule. The developed approaches, however, are 

often very computationally intensive, resulting in less pracitical approaches for large scale virutal 

screening. Alternative approaches are to use pre- or post-docking filters to eliminate 

unreasonable ligand poses or uninterested compounds. The examples of several approaches that 

allow pharmacophore constraints during docking runs include Glide 51, Gold 52, LIDAEUS53, and 

FlexX 54.  Several other groups aim at selecting only ligand poses that possess known conserved 

protein-ligand contacts. Singh and colleagues 55,56 defined a series of protein-ligand interactions 
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properties to generated Structural interaction fingerprint (SIFt) at protein-ligand’s binding site. 

Virtual screening studies using SIFt revealed superior performance as compared with traditional 

scoring functions. Graaf and Rognan et al. showed that a topological scoring function based on 

another ligand protein interaction fingerprint (IFPs) was able to selectively identify agonists or 

antagonists of the β2AR 57-59.  

Our lab has developed a novel type of four-body statistical descriptor to effectively 

represent the protein-ligand interface: the PL/MCT-tess (Protein-Ligand atoms’ pair wise 

Maximal Charge Transfer potential based on Delaunay Tessellation) descriptor. A recent study 

by Hsieh et al. in our group suggested that QSAR models developed based on PL/MCT-tess 

descriptors can effectively distinguish native-like docking poses from decoy poses, thus 

dramatically increased the virtual screening performance when combined with the traditional 

force-field based scoring functions60,61. Herein, we continue to use the PL/MCT-tess descriptors 

as an effective representation of the protein-ligand interface, and explored novel pose-filters that 

enable selective exclusion of irrelevant binding poses. The developed pose-filters have been 

further customized to learn significant contacts that relate to subtype specificity, and the derived 

filters were applied to search for selective ligands within the βAR sub-family (Chapter 4).  

1.4. Thesis Outline 

This dissertation has aimed to develop and validate computational approaches for the 

analysis of small molecules’ toxicity and binding selectivity, both of which have high potential 

for application in the fast evolving fields of chemical biology and chemogenomics. A series of 

QSAR-based and docking-based computational tools have been developed and customized for 

this purpose.  
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Chapter 2 illustrates the power of combi-QSAR VS as a general approach for the 

identification of structurally novel bioactive compounds. Histone deacetylases inhibitors 

(HDACIs) have emerged as a new class of drugs for the treatment of human cancers and other 

diseases due to their effects on cell growth, differentiation, and apoptosis. To produce predictive 

QSAR models, a combi-QSAR approach that employ k Nearest Neighbor (kNN) and Support 

Vector Machines (SVM) QSAR modeling algorithms using both MolConnZ and MOE chemical 

descriptors have been employed. The validated QSAR models were used concurrently to screen 

large publically and commercially available compound databases totaling over 9.5 million 

molecules for novel HDAC inhibitors.   

Chapter 3 and Chapter 4 contribute to the development and validation of a target-biased 

SBVS approach that can be further tailored to search target selective ligands. Selective small 

molecules provide an important library for probing biological functions in the field of chemical 

biology. To develop computational tools that are capable of discriminating selective ligands 

requires a paradigm shift from the previous single-target focus. The emphasis is on exploring 

interactions between individual ligand to a set of (related) protein targets. To perform ligand 

profiling based on SBVS requires a priori the 3D structures of all the protein targets, which may 

not always have experimentally solved structures available. In these situations, structure models 

via homology modeling or de novo design are used instead. This has been a long time debate 

whether SBVS using structure models can achieve reasoanble quality and applicability. Studies 

in Chapter 4 compare the SBVS applicaility of a set of well established β2AR theoretical models 

with that of the recently solved β2AR X-ray crystal structure. Employed both the carefully 

selected structural models and the recently solved β2AR X-ray crystal structure, Chapter 5 

describes the development and validation of novel target-biased pose filters for selectively enrich 
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sub-type ligand within the βAR GPCR subfamily. The developed pose filters could not only help 

with ligands identification, but are also useful in finding potential binding residues that are 

essential for ligand selectivity.  

In Chapter 5, traditional QSAR models, as well as the specialized QSAR models that 

incorporate biological information from in vitro testing data have been evaluated for their 

potential to forecast environmental chemicals’ in vivo toxicity effects. Others’ studies as well as 

our previous efforts showed that while it is possible to construct predictive QSAR models using 

chemical descriptors alone, it is usually not a simple task for most toxicity endpoints. We 

hypothesize that model performance could be improved by including additional information 

about how molecules’ can perturb important signaling pathways and interact with the biological 

system. The available in vitro testing data could serve as biological probe to predict chemicals’ 

systemic adverse effects. Therefore, we proposed to develop a novel two-step QSAR approach 

that incorporates the in vitro testing results to complement traditional chemical-descriptors-based 

QSAR models in predicting compounds’ toxicity effects.  
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Figures and Tables 

 

Figure 1.1.  Illustration of the role of small molecules as viewed by a chemical biologist. (Adapted 
from 1) 

 

 

Figure 1.2. Contribution of cheminformatics to systems biology. Computational modeling helps with 
the prediction of compounds activity against single/multiple targets, while the PBPK models will 
provide estimation on compound distribution and accumulation in tissues. (Adapted from 62) 



 
 

Chapter 2.  Novel Inhibitors of Human Histone Deacetylase (HDAC) 
Identified by QSAR Modeling of Known Inhibitors, Virtual 

Screening, and Experimental Validation 

(This chapter has been published as Tang, H., et al. J Chem Inf Model, 2009. 49(2): p. 461-76) 
 

2.1. Introduction 

The dynamic posttranslational modification of nucleosomal histones plays a critical 

role in transcriptional regulation. Hyperacetylation of core histones results in transcriptional 

activation, while hypoacetylation leads to expression repression63. This kind of regulation is 

considered to be the critical step in normal cell differentiation and chromatin condensation 

and is believed to be regulated by the balance between two groups of enzymes: histone 

deacetylases (HDACs) and histone acetyltransfereases (HATs) 64,65. Inhibition of HDACs 

represents a novel approach to interfere with cell cycle regulation; therefore, it has a great 

therapeutic potential in the treatment of diseases of aberrant cellular proliferation 66. It has 

been reported that hyperacetylation of histones and non-histone proteins induced by small 

molecule HDACs inhibitors (HDACI) leads to cell growth arrest, cellular differentiation 

and/or apoptosis of malignant cells 67-70. For these reasons, HDACI has become a promising 

class of chemical agents for the treatment of cancer and other diseases associated with 

uncontrolled cell proliferation.  

To date, a number of structurally distinct classes of HDACI have been reported, 

including hydroxamates, cyclic peptides, aliphatic acids and benzamides 71,72. The natural 

product Trichostatin A (TSA) 73 is the most well-known member of the hydroxamates class; 
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this compound is considered to be a mimetic of the natural substrate, i.e., histone acetyl 

lysine side chain. Extensive structure-activity relationship (SAR) studies have been 

conducted for TSA and TSA-like compounds resulting in several potent HDACs inhibitors 74-

77. A TSA analog suberoylanilide hydroxamic acid (SAHA) 78 was recently approved by the 

FDA for the treatment of cutaneous T cell lymphoma (CTCL), stimulating further 

investigations of HDACI in the treatment of various diseases 79.  

HDACs have been classified so far into four classes (Classes I-IV) depending on the 

sequence identity and domain organization. Among the Class I HDACs, HDACs 1,2 and 8 

are primarily found in the nucleus, whereas HDAC 3 is found in the nucleus, cytoplasm and 

the membrane. In comparison, Class II HDACs subdivided into IIa (HDAC 4, 5, 7, 9) and IIb 

(HDAC 6, 10) are able to shuttle in and out of the nucleus depending on different signals. 

Class III HDACs include the SIRTs (sirtuins) or Sir2- related proteins; they are NAD-

dependent 80 and are insensitive to TSA or other hydroxamate inhibitors. Class IV comprises 

of HDAC 11, based on a phylogenetic analysis and is the least characterized to date 81. It has 

been considered important in recent years to develop class/subtype selective HDACI. 

Considering the number of pathways in which HDACs are involved, the HDACI that act 

exclusively on Class I or Class II enzymes are viewed as likely candidates as anticancer 

therapeutic agents.  

The crystal structures of the histone deacetylase like protein (HDLP) both in the apo 

form and in complexes with TSA and SAHA were first published by Finnin et al. in 1999 82. 

Five years later, Somoza's group and Di Marco's group both solved the x-ray structures of 

another class I histone deacetylase, histone deacetylase subtype 8 (HDAC8) in complex with 

several small molecule HDACI 83,84. The crystallographic structures revealed that both HDLP 
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and HDAC8 contain a conserved tunnel-like binding pocket with the polar active site at the 

bottom. In the x-ray structure of the HDLP/TSA complex, the long aliphatic chain of TSA 

(linker domain) spans the whole length of the tunnel-like pocket and the hydroxamic acid 

moiety interacts with the polar residues at the bottom of the pocket. The chelating atoms of 

hydroxamic acid coordinate zinc ion in a bidentate fashion, and form hydrogen bonds with 

the His-Asp diad 72,82,84. At the other end of the aliphatic chain, the aromatic group of TSA 

(surface recognition domain) interacts with the hydrophobic rim of the pocket 72. Thus, SAR 

studies have been typically focused on three regions of HDACI: the metal binding group, the 

linker domain, and the surface recognition domain 77. 

Because of their potential clinical importance, HDACI have been a subject of several 

Quantitative Structure-Activity Relationship (QSAR) modeling studies 75,76,85. The results of 

these studies are summarized in Table 2.1. Most of them focused on a series of hydroxamates 

and employed 3D QSAR modeling methods. This preference was partially due to the fact 

that a number of HDACs crystallographic structures have been solved in recent years and 

thus could be used for structural alignment of inhibitors to enable 3D QSAR modeling. The 

size of HDACI datasets varied among different reports, ranging from 19 to 124. The best 

reported models were characterized by leave-one-out cross-validation (LOO-CV)  of 

0.870 and  of 0.987. For the test set, the   was as high as 0.896. It should be pointed out 

that none of these earlier studies had employed an independent dataset for model validation, 

and none used models for virtual screening of chemical libraries to identify novel hits.  

In the present study of HDACI, we have applied the modeling strategy that has been 

under development in our laboratory for several years 86. The important feature of our 

approach is that it combines validated QSAR modeling of historic data and virtual screening 
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of available chemical libraries for the identification of novel active compounds, as illustrated 

in Figure 2.1. We have used experimental data for 59 histone deacetylase subtype 1 (HDAC1) 

inhibitors that were generated in one of our laboratories. All of the compounds in the dataset 

were hydroxamates but incorporated many novel chemical modifications in the three major 

domains, i.e., the hydroxamic acid, the linker domain and surface recognition domain. Our 

studies resulted in externally predictive QSAR models of HDAC1 inhibitors. Furthermore, 

the application of these models to virtual screening of a large (ca. 9.5 million) collection of 

commercially available chemical compounds identified several computational hits, and three 

of them were confirmed experimentally as novel active HDAC1 inhibitors. 

2.2. Materials and Methods 

2.2.1. Datasets for Model Building and Validation. 

 59 compounds with known HDAC1 inhibition activities were employed for the 

QSAR study (cf. Appendix I ). All data were generated in the laboratories of Dr. Kozikowski 

(chemistry) and Dr. Jung (biology) at the George Washington University and most of them 

were reported earlier 87-92. The data for eight compounds, BC-2-87, BC-3-63, BC-3-70, BC-

3-94, BC-4-93, BC-6-30, BC-6-33 and BC-6-34, are reported here for the first time. The half 

maximal (50%) inhibitory concentration of a substance (IC50) was measured on HDAC1 

from HeLa cell extracts. It was then converted to the pIC50 scale (-logIC50), in which higher 

values indicate exponentially greater potency.  

Two independent external validation sets of different nature were employed in the 

later phase of our modeling workflow (cf. Figure 2.1): one included 9 HDAC1 inhibitors 

randomly selected from the original set of 59 compounds, and another comprised 54 diverse 

HDAC1 inhibitors collected from two general reviews on HDACIs 72,74. These external sets 
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have covered most chemical classes of known HDACI 77,93-97. Other compounds discussed in 

the reviews were excluded either because their HDAC1 binding affinity data were not 

reported or they were duplicates of compounds included in the modeling set. The observed 

pIC50 values of 54 compounds ranged between 4.0 and 8.0 which are similar to the activity 

range observed for the 50 compounds used for model development. 

2.2.2. Libraries for Virtual Screening.  

The virtual screening was performed on our in-house collection of ca. 9,500,000 

molecules, including the ZINC7.0 database of ca. 6,500,000 compounds98, the World Drug 

Index (WDI) database of ca. 59,000 compounds 99, the ASINEX Synergy libraries (2006.04) 

of ca. 11,000 compounds 100, the InterBioScreen screening libraries (2007.03) of ca. 400,000 

compounds 101, the Chemizon Progenitor databases (2006 v1.1) of ca. 3,300 compounds 102, 

and several other commercial databases. None of the compounds present in the modeling set 

were found in the screening libraries. MolConnZ4.09 (MZ4.09) descriptors were calculated 

for each compound in the databases and linearly normalized based on the maximum and 

minimum values of each descriptor type in the modeling dataset of 59 HDAC1 inhibitors. 

2.2.3. Generation of MolConnZ Descriptors. 

 The MolConnZ4.05 (MZ4.05) software 103 affords the computation of a wide range 

of topological indices (descriptors) of molecular structure such as simple and valence path, 

cluster, path/cluster and chain molecular connectivity indices, kappa molecular shape indices, 

topological and electrotopological state indices, differential connectivity indices, graph's 

radius and diameter, Wiener and Platt indices, Shannon and Bonchev-Trinajsti, information 

indices, counts of different vertices, counts of paths and edges between different kinds of 

vertices 104-111. Overall, MZ4.05 produces more than 400 different descriptors. In this study, 
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only 262 chemically relevant descriptors were eventually used after removing those with zero 

value or zero variance. MZ4.05 descriptors were range-scaled because the absolute values of 

individual types could differ by orders of magnitude 16. Therefore, range scaling prevents 

undesirable overweighting of descriptors with high ranges of values in calculating compound 

similarities as part of QSAR modeling procedure. 

2.2.4. Generation of MOE Descriptors.  

The MOE2006.08 software 112 generates both 2D and 3D descriptors. 2D molecular 

descriptors include physical properties, subdivided surface areas, atom counts and bond 

counts, Kier and Hall connectivity and kappa shape indices, adjacency and distance matrix 

descriptors, pharmacophore feature descriptors, and partial charge descriptors 104,108,109,113-116. 

3D molecular descriptors include potential energy descriptors, surface area, volume and 

shape descriptors, and conformation-dependent charge descriptors 117. For model generation, 

we used 179 MOE descriptors with non-zero value and variance that were range-scaled. 

2.2.5. Selection of Training and Test Sets.  

The dataset was subdivided into multiple training/test set pairs using the Sphere 

Exclusion method developed in our laboratory 118,119. By default, fifty different training/test 

set splits were initially tried using probe sphere radii defined by the minimum and maximum 

elements, Dmin and Dmax, of the distance matrix D between compound-vectors in the 

descriptor space and forty-two splits were ultimately accepted. The number of compounds in 

the test set was varied to achieve the largest possible size of the test set, while ensuring that 

the training set models were still able to accurately predict the binding affinity of the test set 

compounds. 
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2.2.6. kNN Regression Method 

The k Nearest Neighbor (kNN) QSAR method used in this study employs the kNN 

pattern recognition principle 120 and variable selection method. In short, a subset of variables 

(descriptors) is selected randomly as a Hypothetical Descriptor Pharmacophore (HDP) 121. 

The HDP is validated by LOO-CV, where each compound is eliminated from the training set 

and its HDAC1 inhibition activity is predicted as the weighted average of the activity(ies) of 

the k most similar molecules (k varies from 1 to 5). The weighted molecular similarity is 

represented by the modified Euclidean distance between compounds in HDP 

multidimensional space as shown in Equations 1 and 2. Essentially, the neighbor with the 

smaller distance from a compound is given a higher weight in calculating the predicted 

activity. 

    
∑

                        (1) 

    ∑                        (2) 

where  is the Euclidean distance between the compounds i and its kth nearest 

neighbors; wi is the weight for the kth nearest neighbor;  is the experimentally measured 

activity value for the kth nearest neighbor; and  is the predicted activity value. 

Simulated annealing and Metropolis-like acceptance criteria were used to optimize 

the variables. Details of the kNN method implementation, including the description of the 

simulated annealing procedure used for stochastic sampling of the descriptor space, are given 

elsewhere50. The statistical significance of the models were estimated by the LOO-CV q2 in 

the training set, a coefficient of determination R02 (Equation 3) and a linear fit predictive  

for both internal and external test sets. 

1
∑

∑
 (3) 
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Here  and  are the observed and predicted activities of compound k, respectively, 

and  is the average activity of all compounds. Model acceptability cutoffs were  >0.60 for 

training set and correlation coefficient  > 0.60 for the internal test set57. All models that 

satisfied both criteria were applied to external validation sets. 

2.2.7. SVM Regression Method 

Support Vector Machines (SVM) was originally developed by Vapnik 122 as a general 

data modeling methodology where the training set error and the model complexity are 

incorporated into a special loss function and simultaneously minimized during model 

development. The importance of the prediction error versus the model complexity can be 

tuned during the optimization process, in order to generate models with reasonable 

complexity and avoid overfitting. SVM was later extended to afford the development of 

SVM regression models for datasets with non-integer variables.  

We have implemented SVM for QSAR modeling as described earlier 123. In brief, 

given a training set of pairs ( , , i 1…m, where x  is an array of descriptors of each 

compound andy   is its biological activity (e.g., IC50 value), the sought correlation between 

structure and activity can be represented as . For simplicity, we define  as a 

linear function: 

,      (4) 

where  is the coefficient vector of the linear function and  is the bias. A major 

goal of the SVM regression algorithm is to minimize the loss function, which are a 

combination of prediction error defined by  and the magnitude of the coefficient C in the 

following equation: 

∑               (5) 
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with the constraint: 

| |    (6) 

Here the training vectors  are mappedointo a high dimensional space by a kernel 

function  . In the end, SVM regression is expected to find a linear correlation between the 

actual activity and this high dimensional space  . For this study, we have implemented a 

linear kernel. C is a penalty parameter of the error term that controls the weight between two 

terms in the SVM optimization process. 

In many cases, the biological activity may contain small errors or the kernel function 

may not be capable of perfectly representing the training compounds in a simplified manner. 

In order to penalize against complex models, we have added a slack variable   to the loss 

function 123 in addition to the penalty parameter C. It is a threshold of prediction error for any 

compound's activity before the algorithm is penalized for the poor prediction. Beyond this 

threshold the algorithm is penalized by the value of . When combining the SVM 

optimization process defined in Equation 7 with this slack variable, the following loss 

function is obtained: 

∑
0    

      (7) 

The nature of SVM regression requires one to specify the values of C and   a priori 

since it is not known beforehand which values may work the best for one particular dataset; 

thus, a parameter tuning must be performed. The goal is to identify optimal values of C and  

in that the model can give the best prediction for the test set. For this study we have chosen to 

use a "grid-search" scheme on C and  . It starts with randomly choosing a training/test set 

split of the dataset, conducting a grid-search using those compounds, then fine-tuning the 

complete dataset over the parameter value ranges that exhibited the best results. Our coarse 
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grid-search of C varied from 50 to 1000 with an increment of 80, and  varied from 0 to 1.5 

with an increment of 0.15. Once the best parameter ranges were found, a fine-tuned search 

was carried out to search values within 200 and 0.3 units for C and , with the steps of 5 and 

0.05 respectively. 

2.2.8. Applicability Domain 

Ideally, a QSAR model can predict the target property for any compound for which 

chemical descriptors can be calculated. However, since kNN QSAR modeling predicts test 

set compound activities by interpolating those of the nearest neighbor compounds in the 

training set, a special applicability domain, or similarity threshold, should be introduced to 

avoid extreme model extrapolation by making predictions for compounds that are 

significantly dissimilar to members of the training set 16. In order to measure similarity, each 

compound is represented by a point in the M-dimensional descriptor space (where M is the 

total number of descriptors selected in the descriptor pharmacophore) with the 

coordinates , , , , where  are the values of individual descriptors for 

compound i. The similarity between any two molecules is characterized by the Euclidean 

distance between their representative points. The Euclidean distance between two points i 

and j in M-dimensional space can be calculated as follows: 

∑   (8) 

Compounds with the smallest distance between them are considered to have the 

highest similarity. The distribution of pair wise compound similarity in the training set is 

analyzed to produce an applicability domain threshold, , as follows: 

     (9) 
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Here,  is the average Euclidean distance  of the k nearest neighbors of each 

compound within the training set, σ is the standard deviation of these Euclidean distances, 

and  is an arbitrary parameter to control the significance level. Based on previous studies in 

our lab, we set the default value of  as 0.5, which formally places the boundary for which 

compounds will be predicted at one-half of the standard deviation (assuming a Gaussian 

distribution between k nearest neighbor compounds in the training set). Thus, if the distance 

of an external compound from at least one of its nearest neighbors in the training set exceeds 

this threshold, the prediction is considered unreliable. 

2.2.9. External Validation and Y-Randomization Test  

It is critical to validate a QSAR model by assessing its prediction accuracy for an 

external set which was not used in model building. We have conducted extensive external 

validations on both kNN and SVM models using two external datasets as described above. In 

both cases, the prediction accuracy had to satisfy the following conditions: 

0.60                  (10) 

/ 0.10  and 0.85 < k < 1.15   (11) 

where  is the slope of the regression lines (predicted versus observed activities) 

through the origin. The predictions were generated using consensus models and the model 

coverage for each external dataset was calculated as well (vide infra). 

Our previous experience suggests that more accurate results are obtained by 

consensus, i.e., by averaging predictions from multiple QSAR models 123,124 Thus, the 

consensus QSAR prediction scheme was applied to all validation set compounds found 

within individual applicability domains of models used in consensus prediction. The 
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averaged predicted activity, the fraction of models that predict the activity and the variance 

of the prediction values have been calculated for each compound. 

In addition to external validation, Y-randomization test was carried out to establish 

model robustness. The test consists of rebuilding models using shuffled activities of the 

training set and evaluation of such models’ predictive accuracy in comparison with the 

original model. It is expected that models obtained for the training set with randomized 

activities should have significantly lower values of statistical parameters such as , ,  , 

etc. for training and, especially, test sets. Therefore, if most QSAR models generated in the 

Y-randomization test exhibit relatively high values of the statistical parameters for both 

training and test sets, it implies that a reliable QSAR model cannot be obtained for the given 

dataset. This test was applied to all QSAR approaches in this study and was repeated twice 

for each division. 

2.2.10. QSAR-based Virtual Screening  

As illustrated in the workflow of Figure 2.1, the rigorously validated QSAR models 

were employed for virtual screening. A global applicability domain was applied first in the 

complete descriptor space in order to filter out compounds that differed in their structure 

from the modeling set compounds. All 59 known inhibitors were exploited as the probes 

during the calculation. During the consensus prediction, the results were accepted only when 

the compound was found within the applicability domains of more than 50% of all models 

used in consensus prediction and the standard deviation of estimated means across all models 

was small. Furthermore, we restricted ourselves to the most conservative applicability 

domain for each model using 0.5. 
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2.2.11. Principle Component Analysis (PCA) 

The PCA calculations were carried out using the entire set of MolconnZ4.05 

descriptors calculated for all compounds in the modeling set, two external validation sets, 

and virtual screening hits. The purpose of these calculations was to provide a visual means to 

compare relative positioning of the three data sets plus hits in the chemistry (i.e., 

multidimensional descriptor) space. The programs in the kernlab package 125 of the latest 

version of R2.8.0 126 were employed. Using PCA, the distribution of compounds in the 

original descriptor space could be visualized in a lower dimensional space, normally in the 

3D space of the first three principal components. 

2.2.12. Experimental Validation of Screening Hits 

Recombinant HDACs were purchased from either BIOMOL International (Plymouth 

Meeting, PA) or PBS Bioscience (San Diego, CA). The inhibitor activity was determined 

using an HDAC Fluorimetric Assay/Drug Discovery Kit from BIOMOL International 

according to manufacturer’s protocols. Briefly, reactions were set up in 96-well plates in a 

total of 50 μL HDACs assay buffer (50 mM Tris-HCl of pH 8.0, 137 mM NaCl, 2.7 mM KCl, 

1 mM MgCl2) containing HDAC1 (or HDAC6), testing compounds, and HDACs substrate. 

Trichostatin A served as the positive control and the vehicle, 1% DMSO, was employed as 

the negative control. The reaction was initiated by the addition of HDACs substrate at room 

temperature and lasted for 30 minutes. The final concentration of HDACs substrate was 

around its apparent Km; For HDAC1, 50 μM of substrate was used and for HDAC6, 10 or 30 

μM was used. The reaction was then stopped by adding 50 μL of Fluor de Lys (TM) Assay 

Developer and the mixture had been incubated for another 15 minutes at room temperature. 

The Assay Developer was added to stop the deacetylation reaction and produce fluorophore 
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from the deacetylated substrate. The fluorophore can be excited at 360 nm and emits light at 

460 nm. The relative fluorescence is read by a FlexStation II plate reader (Molecular Devices, 

Sunnyvale, CA). Initial screening concentrations were 100 uM with samples with over 50% 

inhibition further tested in dose response assays. The raw data (relative fluorescence units) 

were plotted as a function of the molar concentration of test compounds (in logarithm) and 

fitted to the three-parameter logistic function to calculate pIC50 by Prism 5.0 (GraphPad 

Software, La Jolla, CA). Here the pIC50 is defined as the logarithm of molar concentration of 

test compound that inhibits the fluorescence production by 50%. 

2.3. Results and Discussion 

2.3.1. kNN QSAR Regression Modeling 

The statistical results for the 10 best kNN QSAR models using MZ4.05 descriptors 

are summarized in Table 2.2. 1385 models, that is, ~50% of the total number of models 

generated, were accepted for they had both the LOO-CV q2 values for the training set and 

linear fit predictive  values for the test set greater than 0.60. Seventy models with /  

values exceeding 0.75/0.75 were retained for consensus prediction. As shown in Figure 2.2A, 

the most predictive model afforded  value of 0.81 for 34 compounds and  values of 0.80 

for 16 compounds (RMSE = 0.38). For models built with MOE descriptors, the best /  

values were as high as 0.70/0.76 (RMSE = 0.45, cf. Figure 2.2C). The statistics of the top 10 

kNN/MOE models are summarized in Table 2.3. Similarly, thirteen models with /  

values exceeding 0.70/0.70 were employed for consensus prediction. These results suggest 

that the intrinsic structure-binding affinity relationships exist for HDAC1 inhibitors that can 

be best described by kNN models using both independent descriptor sets. 
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To ensure that the models did not merely capture noise, Y-randomization test was 

carried out as described above. As expected, the best models using MZ4.05 descriptors and 

shuffled activities only produced training set models with q2 of less than 0.40 (data not 

shown). Also the best kNN/MOE models using randomized activity only yielded the /  

values less than 0.40/0.40. These results confirmed that kNN models uncovered non-spurious 

correlations between both MolConnZ and MOE descriptors and compound inhibition activity. 

2.3.2. SVM QSAR Regression Modeling 

The statistical results for top 10 SVM QSAR models using MZ4.05 descriptors are 

summarized in Table 2.4. The best , , , values are as high as 0.93, 0.87 and 0.62, 

respectively. Figure 2.2B shows the best predictive model with  value of 0.94 for 34 

compounds and  values of 0.81 for 16 compounds (RMSE = 0.51). For this model, the 

optimum values of C and ε were found to be 200 and 0.30, respectively. The value of 0.30 is 

reasonable for ε, because it is common to observe a 0.30 log unit error in enzyme/inhibition 

assays. Seventeen models of SVM/MZ4.05 combination with / values exceeding 

0.70/0.70 were retained for consensus prediction. In comparison, the performance of 

SVM/MOE combination was much less satisfactory. The best  and  value were as low 

as 0.64 and 0.53, respectively. Meanwhile, the number of acceptable models was drastically 

small. Thus, we did not employ SVM/MOE models for consensus prediction because of their 

poor accuracy ( 0.75). 

To ensure that our SVM QSAR modeling was based on non-spurious 

structure/activity relationship, the inhibition activities were randomly shuffled for the 

training set and all calculations were repeated following exactly same protocol. The best 

models using randomized data only produced a   of 0.20 for the test set (data not shown), 
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suggesting that the high  is not due to a chance correlation and our accepted SVM models 

were robust. 

2.3.3. Model Validation using External Datasets 

Both kNN and SVM QSAR models validated by test sets were used to predict the 

inhibition activity of two external validation sets (Tables 2.5 and 2.6). For consensus 

prediction we have employed 70 best kNN/MolConnZ models and 17 best SVM/MolConnZ 

models. For the external validation set 1, the data reported in Table 2.7A-C suggests that both 

kNN/MolConnZ and SVM/MolConnZ consensus models afforded reasonable results. Figure 

2.3 shows the correlation between experimentally measured and calculated activities of the 

external validation set 1 using three types of consensus models. Among the three, 

kNN/MolConnZ consensus models showed the best performance, with the  of 0.87,  of 

0.78 and RMSE of 0.59 for 8 compounds (BC-2-83 was found to be out of applicability 

domain of most kNN/MolConnZ models, cf. Table 2.7A). For 7 out of these 8 compounds, 

the predicted activities were within a reasonable range of 0.5 log unit. However, one 

compound corresponding to the black circle in Figure 2.3A was predicted with a large error (> 

1.0 log unit). A possible explanation for this observation is that this compound is the only 

one that contains two metal binding groups but no aromatic group. The latter is known to be 

important for the inhibition activity as suggested by many SAR studies15. The 

SVM/MolConnZ models performed slightly worse than the kNN/MolConnZ models, despite 

the fact that the SVM/MolConnZ combination had better performance for both training and 

test sets. The  and  of consensus prediction by SVM/MolConnZ models was 0.71 and 

0.68, respectively, for all 9 compounds (Figure 2.3B). Interestingly, kNN/MOE models 

showed much worse statistics for the external set 1: The   was 0.60 but the  was only 
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0.25, and the RMSE was as high as 0.84 for 9 compounds (Figure 2.3C). Though satisfying 

eq 10, the statistics is not acceptable for kNN/MOE combination because the value of 

/  (cf. eq. 11) is too large. Thus, we did not apply this combination to external 

validation set 2 and the later virtual screening. These results demonstrate the critical need of 

external validation set for evaluating the model robustness as well as illustrate a known 

phenomenon that training set accuracy does not necessarily correlate with model 

performance for external data sets 127.  

We have used the statistical index  ( eq 3) and RMSE to evaluate model robustness 

in addition to the correlation coefficient . Traditionally, the latter is considered as a good 

indicator of predictive power of models. In fact, this coefficient reflects the similarity in 

relative ranking of compounds based on actual vs. the calculated activities rather than the 

accuracy of the activity prediction. On the other hand,  directly compares the actual vs. 

predicted activities because it estimates the fitness of the data to the line with the intercept of 

zero and the slope of one. It thus gives a better measurement of how well the model predicts 

compounds' activities, which is why we advocated its use as an important model accuracy 

metric in our previous studies 128,129. The above case of kNN/MOE consensus prediction 

illustrates the difference between   and , as underscored by eq 11. This suggests that  

and RMSE are also important indicators of model robustness especially when the size of the 

test set is small. 

External validation set 2 contains HDAC1 inhibitors of different chemical scaffolds, 

therefore it can be considered as a real test of the predictability of QSAR models. Besides, it 

is fully independent from the 59 compounds of modeling set. Among all 54 inhibitors, 41 

could be predicted by the majority of consensus models and the results are summarized in 
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Table 2.6. For both kNN/MolConnZ and SVM/MolConnZ models, 28 out of these 41 

compounds had the errors of their predicted activities of less than 1.0 log unit. The RMSE 

was 0.86 for kNN/MolConnZ models, 0.92 for SVM/MolConnZ models and 0.86 for the 

consensus averaged value of all models combined. It was shown in our recent study that 

consensus models afford higher prediction accuracy for the external validation data sets with 

the highest space coverage as compared to individual constituent models 130. The same 

pattern was observed in the present study as well. The RMSE of the consensus score is 

superior to constituent SVM/MolConnZ models and on par with constituent kNN/MolConnZ 

models. In addition, there is only one compound with a relatively large margin of error (> 1.5 

log unit) when the consensus prediction is used. For individual constituent models, however, 

there are three compounds with similarly large errors of prediction with kNN/MolConnZ 

models and five compounds with SVM/MolConnZ models. Compounds 6e_AE, 17j_AE and 

17d_AE are among those with a large margin of error (ca. 1.5 log unit). They could be 

analyzed to explore the reasons for QSAR prediction errors. It should be noted that both kNN 

and SVM methods converged on these three compounds and showed the similar trend of 

errors (cf. Table 2.6). It is feasible that these compounds could be the activity outliers 

because of experimental errors. 

2.3.4. QSAR-based Virtual Screening 

Based on the results of model validation in the previous section, only 

kNN/MolConnZ and SVM/MolConnZ approaches were used for virtual screening due to 

their good performances on both modeling set and two external validation sets. Therefore, 70 

kNN/MolConnZ models and 17 SVM/MolConnZ models with defined applicability domains 

were applied concurrently towards virtual screening of our chemical libraries. Prior to the 
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consensus predictions, our initial filtering using global applicability domain of modeling set 

reduced the total number of compounds from ca. 9.5×106 to 3.2 ×103. The predicted activities 

from individual models were averaged to yield a consensus pIC50 value. Finally, 45 hits 

were selected to be of high predicted activities (6.68-7.43 for kNN/MolConnZ and 5.94-7.77 

for SVM/MolConnZ) and structural uniqueness. 

As expected, the predicted activities of HDAC1 inhibitors by two different types of 

models were not identical but differed by less than 1.0 log unit in most cases. For each of the 

kNN/MolConnZ and SVM/MolConnZ consensus hit, we searched published literature to find 

out if any of these compounds was reported independently as HDAC1 inhibitors. We found 

that compounds #34 and #40 have been indeed cited as potential HDAC1 inhibitors (cf. 

Table 2.8) 131,132. Both compounds are structurally similar to SAHA which is a strong 

HDAC1 inhibitor included in the modeling dataset. Furthermore, compounds #2, #28 and 

#35 were reported to have anti-inflammatory activity that is commonly associated with 

HDAC1 inhibition, which may be viewed as indirect evidence in support of the prediction. 

In general, as shown in Appendix II, most hit compounds contain long aliphatic chain 

that permits the chelating group to reach the bottom of the binding pocket and coordinate 

with the zinc ion. An aromatic group at the opposite end of the chelating group is supposed to 

enhance inhibition through hydrophobic interaction with the capping region of the active site. 

These are actually the common structural features known for HDAC1 inhibitors. Furthermore, 

many additional features are also found in the hit compounds, such as triple bonds 

(compounds #2, #28) and 3-bromo-4-hydroxy-phenyl group (compounds #11, #14), which 

exist in HDAC1 inhibitors such as Oxamflatin and Psammaplin A 72,93. It should be pointed 

out that these functional groups were not present in the original modeling dataset, which 
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demonstrates the ability of QSAR-based virtual screening to uncover computational hits with 

novel chemical features. The existence of unsaturated bonds in the linker region between the 

chelating group and the cap region has been observed frequently among many screening hits. 

However, this feature is only found in TSA (that was included in the training set), which has 

the highest inhibitory activity (pIC50) of 8.46. Since this feature is not often seen in other 

known inhibitors, this observation should be additionally explored for lead optimization in 

future studies. The unsaturated bonds in the linker region likely restraint the conformational 

freedom of the long aliphatic chain, which could help decrease the unfavorable entropy 

change during the inhibitor binding. 

In recent years, our group has explored the hit identification strategy that combines 

rigorously validated QSAR models and virtual screening 123,133-137. It has been shown that our 

current workflow is capable of identifying potent compounds of novel chemical scaffolds as 

compared to modeling set compounds, especially in the cases of anticonvulsant agents 124 and 

D1 dopaminergic antagonists 123. There are several aspects of our current protocol for QSAR 

based virtual screening that need to be highlighted. First, models built using variable 

selection approaches only include a subset of all descriptors, i.e., those identified as 

significant in the process of model optimization. This feature of individual models coupled 

with the applicability domain threshold could result in mis-annotation of some structurally 

diverse molecules in the virtual screening databases as inactives. Consensus prediction 

scheme provides a viable solution to this problem because each model has its own limitations 

but the ensemble of models covers much greater chemical feature space and consequently, 

could identify putatively active compounds of greater chemical diversity. Second, the 

dependent variable in the current dataset is the continuous value of inhibition potency. 
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During model building, all descriptors with constant values have been eliminated and only 

the descriptor types that are used in predictive QSAR models were retained. Obviously, 

descriptors with the same values for all compounds in the training set could not contribute to 

the QSAR model that always correlates changes in chemical structure to changes in 

biological activity. However, there is a possibility that some of these eliminated descriptors 

(that apparently describe chemical features common to all inhibitors) are essential for 

discriminating inhibitors from non-binders. Thus, if these descriptors are not considered in 

virtual screening there is a probability of identifying false positives. To circumvent this 

problem, we have applied global applicability domain in the preliminary screening step to 

filter out compounds that are generally structurally dissimilar from the modeling set 

compounds. 

2.3.5. Experimental Validation 

Four structurally diverse hits with moderate to high predicted activity were selected 

from the 45 consensus virtual screening hits for experimental validation taking into account 

commercial availability. To our satisfaction, compounds #2, #28 and #35 were confirmed to 

be μM inhibitors against HDAC1 (Figure 2.4 and Table 2.8). Among them, compound #28 

showed the best inhibitory activity with pIC50 values of 6.00. The fourth compound, #47, did 

not inhibit HDAC1 at the concentration of 300 μM. However, interestingly enough this 

compound was later identified by us as a selective inhibitor for HDAC6, a class II HDACs 

enzyme. At the concentration of 30 μM, #47 inhibited about 42.6% of HDAC6 activity, 

while other three compounds (#2, #28 and #35) showed 105%, 101%, and 99% inhibition, 

respectively. Moreover, it is of notice that the chelating functional group in #47 is unique 

compared to other hits. This observation could be further explored for rational design of 
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class/subtype selective HDACI. Our current screening libraries include the WDI database, 

which contains approximately 59,000 approved or investigational drugs in the world. It has 

become a practical strategy to screen this database during the early phase of drug 

development. The hits identified in this library could be placed on the fast track and avoid the 

risk and length of preclinical/clinical studies. In our study, two hits that were submitted for 

experimental validation were actually identified from the WDI database. Compound #35 is 

Bufexamac, a marketed drug used for joint and muscular pain while the compound #47 is 

Roxatidine, a widely used competitive H2 receptor antagonist for the treatment of peptic 

ulcer. These two hits will enrich the candidates pool of HDACI and potentially facilitate the 

pipeline of drug development—a strategy known as repurposing 138. 

2.4. Conclusions 

We have employed a combinatorial QSAR approach to generate models for 59 

chemically diverse compounds tested for their inhibitory activity against HDAC1. The SVM 

and kNN QSAR methods were used in combination with MolConnZ and MOE descriptors 

independently to identify the best approach with the highest external predictive power. 

Highly predictive QSAR models were generated with kNN/MolconnZ and SVM/MolconnZ 

approaches. Rigorously validated QSAR models were then used to screen our in-house 

database collection of a total of over 9.5 million compounds. This study resulted in 45 

consensus hits that were predicted to be potent HDAC1 inhibitors. Two hit compounds that 

were not present in the original dataset were nevertheless reported recently as HDAC1 

inhibitors 131,132. Four hit compounds with interesting chemical features were purchased and 

experimentally validated. Three of them were confirmed to have inhibitory activities to 

HDAC1 (Class I HDACs) and the best activity obtained was IC50 of 1.00 μM. The fourth 
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compound was later identified to be a selective inhibitor to HDAC6, a Class II HDACs. 

Moreover, two of the confirmed hits are marketed drugs which could potentially expedite 

their development as anticancer drugs acting via HDAC1 inhibition. This study illustrates 

that validated QSAR models have the ability of identifying novel structurally diverse hits by 

the means of virtual screening. We believe that the technology described in this study could 

be used for data analysis and hypothesis generation in many computational drug discovery 

studies. 
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Tables and Figures 

 

 

Figure 2.1 The workflow of QSAR model building, validation and virtual screening as applied to 
HDAC1 inhibitors. The specific data for kNN/MolConnZ modeling are used for illustration purpose. 
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Figure 2.2 Comparison of actual vs. predicted inhibition efficiency (pIC50) values for the best QSAR 
model for each combination of statistical modeling approach and descriptor type. A. For 
kNN/MolConnZ method (  = 0.81,  = 0.80). The training set contains 34 compounds (dark circles) 
and test set contains 16 compounds (empty circles). B. For SVM/MolConnZ method (  = 0.94,  = 
0.81). The training set contains 34 compounds (dark circles) and test set contains 16 compounds 
(empty circles). C. For kNN/MOE models ( = 0.70,  = 0.76). The training set contains 35 
compounds (dark circles) and test set contains 15 compounds (empty circles). 
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Figure 2.3. Comparison of actual vs. predicted inhibition efficiency (pIC50) values for the best QSAR 
model as applied to the external validation set 1. A. For the kNN/MolConnZ method ( = 0.87, 8 
compounds). The compound with the black circle is the possible structural outlier that has been 
discussed in the results. B. For the SVM/MolConnZ method (  = 0.71, 9 compounds). C. For the 
kNN/MOE method (  = 0.60, 9 compounds). 
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Figure 2.4. The full dose response curve for hit compounds #2 and #28 in human HDAC1 inhibition 
assay. 
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Table 2.2. The Statistics for Ten Best kNN Models for All Test Sets Using MolConnZ Descriptors. 

Model 
No. 

Training 
Set 
Size 

Test 
Set 
Size 

Descriptor
No. 

Nearest 
Neighbor No. 

 
(Training 
Set) 

 
 (Test 
Set) 

 
(Test 
Set) 

RMSE 
(Test 
Set) 

1 45 5 22 1 0.80 0.87 0.69 0.27 

2 41 9 20 2 0.80 0.81 0.77 0.49 

3 34 16 14 1 0.81 0.80 0.76 0.38 

4 35 15 12 2 0.82 0.79 0.70 0.48 

5 42 8 14 1 0.81 0.79 0.73 0.35 

6 34 16 26 1 0.80 0.79 0.78 0.37 

7 28 22 36 1 0.83 0.77 0.67 0.42 

8 40 10 12 2 0.81 0.77 0.77 0.43 

9 29 21 20 1 0.79 0.77 0.76 0.47 

10 34 16 16 1 0.79 0.76 0.74 0.40 

 

Table 2.3. The Statistics for Ten Best kNN Models for All Test Sets Using MOE Descriptors. 

Model 
No. 

Training 
Set 
Size 

Test Set 
Size 

Descriptor
No. 

Nearest 
Neighbor 
No. 

 
(Training 
Set) 

 
 (Test 
Set) 

 
(Test 
Set) 

RMSE 
(Test 
Set) 

1 35 15 14 1 0.70 0.76 0.76 0.45 

2 35 15 12 1 0.73 0.75 0.75 0.46 

3 35 15 30 1 0.73 0.75 0.75 0.47 

4 32 18 18 1 0.81 0.74 0.63 0.49 

5 35 15 16 1 0.72 0.74 0.74 0.48 

6 35 15 18 1 0.71 0.74 0.73 0.48 

7 35 15 24 1 0.72 0.73 0.73 0.48 

8 31 19 22 1 0.70 0.72 0.69 0.53 

9 35 15 14 1 0.77 0.71 0.70 0.51 

10 28 22 12 1 0.79 0.70 0.70 0.51 
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Table 2.4. The Statistics for Ten Best SVM Models for All Test Sets Using MolConnZ Descriptors. 

Model 
No. 

Training Set 
Size 

Test Set 
Size 

C Ε 
 

(Training 
Set) 

 
 (Test 
Set) 

 
(Test Set) 

RMSE 
(Test Set)

1 37 13 200 0.40 0.93 0.87 0.62 0.36 

2 37 13 200 0.50 0.91 0.86 0.66 0.34 

3 37 13 200 0.35 0.94 0.85 0.59 0.38 

4 37 13 200 0.55 0.90 0.85 0.67 0.34 

5 37 13 200 0.60 0.89 0.84 0.68 0.33 

6 34 16 200 0.30 0.94 0.81 0.76 0.51 

7 35 15 200 0.30 0.95 0.72 0.66 0.49 

8 39 11 200 0.30 0.94 0.72 0.71 0.51 

9 29 21 200 0.30 0.96 0.71 0.66 0.49 

10 35 15 200 0.35 0.94 0.71 0.66 0.49 
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Table 2.7Consensus Predictions for the External Validation Set 1 by A) kNN/MolConnZ B) 
SVM/MolConnZ, and C) kNN/MOE models 

A. 
Comp.ID 

Experimentally 
measured 

Total models 
used 

Consensus 
prediction 

std. of 
prediction 

BC-4-86 5.33  70/70 5.38  0.65  
BC-6-38 6.40  70/70 6.54  0.29  
BC-2-48 4.00  70/70 4.42  0.25  
YChdac0457.52  67/70 7.08  0.22  
Yc-II-88 8.10  70/70 7.64  0.35  
BC-4-56 5.96  70/70 6.44  0.27  
BC-4-4 5.30  69/70 6.14  0.30  
BC-4-2 5.00  50/70 6.13  0.12  
BC-2-83* 6.00  N/A N/A N/A  
RMSE 0.59        

 0.87    
 0.78       

*This compound was found to be out of applicability domain of kNN/MolConnZ models. 

B. 
Comp.ID 

Experimentally 
measured 

Total models
used 

Consensus 
prediction 

std. of 
prediction 

Ag-b-57 7.10  17/17 7.19  0.20  
AG-biph-
38 

7.10  17/17 6.68  0.14  

AG-biph-
40 

5.52  17/17 5.74  0.10  

BC-2-45 4.00  17/17 4.61  0.13  
BC-3-22 6.38  17/17 5.54  0.19  
BC-4-84 6.10  17/17 6.16  0.14  
BC-4-86 5.33  17/17 5.73  0.13  
BC-5-44 6.05  17/17 6.83  0.19  
YC-03065 6.52  17/17 7.09  0.15  
RMSE 0.52       

R  0.71   
R  0.68       

 

C. 
Comp.ID 

Experimentally 
measured 

Total models 
used 

Consensus 
prediction 

std. of 
prediction 

AG-biph-08 7.10 13/13 7.36 0.27 
Yc-II-84 7.26 13/13 7.10 0.00 
BC-1-30-2 4.00 13/13 4.15 0.38 
BC-4-54 6.26 13/13 5.00 0.41 
BC-4-55 6.70 13/13 5.45 0.42 
BC-4-93 5.77 13/13 5.96 0.45 
BC-6-26 7.30 13/13 5.93 0.67 
BC-6-38 6.40  12/13 5.76 0.57 
BC-6-40 6.60 13/13 5.77 0.54 
RMSE 0.84       

 0.60   
 0.25       
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Chapter 3. Comparative Studies of the Structural Models versus the X
ray Crystal Structures of Human β2 Adrenergic GPCR in terms of 

applications to virtual screening 

(This chapter has been submitted to Proc Natl Acad Sci) 

3.1. Introduction  

Structure based drug discovery (SBDD) has become a major strategy in identifying 

novel leads for important biological targets. SBDD enabled well documented discovery of 

several approved drugs, e.g. dorzolamide and imatinib. Typically, the 3D structures of 

biomolecules obtained by the means of X-ray crystallography and NMR spectroscopy are 

needed for the purpose of virtual screening (VS), whose performance is strongly affected by 

the quality of biomolecular structure, especially with respect to binding site description. 

When no experimentally determined structures are available, theoretical models based on 

either homology or de novo modeling approaches are employed instead 35-38. However, there 

were some debates about the accuracy and applicability of theoretical models 38-44 in SBDD. 

In principle, the success of homology modeling is typically measured by how close the 

models could reproduce experimental structures, which implies that the latter are inherently 

more appropriate choice for SBDD applications. 

G-protein coupled receptors (GPCRs) is a protein family where theoretical models 

have been used widely because of GPCRs’ importance as targets for many drugs, on one 

hand, and the lack of experimental structures, until recently, on the other hand. The 

experimental effort to characterize the 3D structure of GPCRs were seriously hindered by 

membrane related issues 176. A large number of theoretical models have been employed in 
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the past decades 177-180 for VS often yielding reasonable results 181-184. However, it was fully 

expected that the availability of the experimental structure of any GPCR would substantially 

enhance the efficacy of SBDD efforts. Thus, the recent publications of the crystal structure of 

human beta-2 adrenergic GPCR (β2AR)45-47 cleared the way for the validation of previous 

theoretical models, as well as provided critical data for building homology based models of 

other GPCRs as the most obvious structural template.  

It has been shown that human β2AR features a structurally conserved rhodopsin-like 

7TM core, but there exist novel structural features that had not been identified previously. It 

remained unclear as to whether these structural divergences would affect the outcome of VS 

studies. Dissimilarity of computational models relative to the crystal structure should lead to 

relatively poorer performance of the former in docking and scoring of known ligands; 

however, this general expectation should not necessarily be regarded as a law. One should 

take into account that some of the computational models are actually manually refined with 

known medicinal chemistry data and therefore, there is at least a possibility that theoretical 

models may be even more suitable for drug discovery by VS than the crystal structure. 

In this study, we have addressed this, both scientifically and pragmatically, important 

question directly. We have compared the x-ray structure of β2AR vs. several previously built 

theoretical models in terms of their respective ability to recover known β2AR ligands (both 

agonists and antagonists) from a large external compound library in VS experiments. None of 

these models were generated in our group to ensure objective and unbiased comparisons. 

Furthermore, although our group has developed both scoring functions 185 and virtual 

screening protocols 186, for the same reasons we restricted ourselves to using several popular 

commercial docking and scoring tools developed elsewhere. Thus, by design, this study 
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lacked any user biases concerning preferred homology models or most familiar 

computational tools to emulate the situation that is most commonly faced by the majority of 

molecular modeling practitioners both in academia and industry.  

There have been previous studies on comparing homology models among themselves 

or even with the crystal structure but to the best of our knowledge nobody asked the question 

poised herein as directly as we did.  For instance, Bissantz et al 40 employed three human 

GPCRs models derived from rhodopsin for virtual screening using multiple docking 

programs and scoring functions.  Their work proved that homology models are suitable for 

VS but there was no comparison to the crystal structure. After the crystal structure of human 

β2AR was published, Costanzi reported a pioneering study 187 where carazolol was docked 

both into two rhodopsin-based homology models of human β2AR as well as into the X-ray 

structure. The models afforded high accuracy of the docking poses, especially after 

incorporating the biochemical data to adjust the orientation of the binding pocket residues. 

However, this study was limited to the pose prediction only using in-house models. Most 

recently, Fan et al 39 reported that for 27 out of the 38 protein targets, the consensus 

enrichment for multiple homology models was better than or comparable to that of both the 

holo- and the apo- X-ray structures. However, that study was focused on soluble protein 

targets and used a single homology model building tool that employed x-ray characterized 

structural templates. In contrast, all models employed herein were built before the β2AR 

crystal structure became available as possible template. 

We have carried out a systematic study on a large collection of published human 

β2AR theoretical models and evaluated their structural accuracies and virtual screening 

performances in comparison with two crystal structures, i.e., 2RH1 (released by the RCSB 
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Protein Data Bank (PDB) on Oct. 30, 2007) and the latest, 3D4S (released by RCSB PDB on 

Jun. 17, 2008). Two other structures, 2R4R and 2R4S, were not employed because they came 

from the same source as 2RH1 but with lower resolutions. As shown in Table 3.1, we 

collected eight independently published theoretical models of human β2AR including both 

apo and holo structures. Both agonist and antagonist bound models were included to account 

for any structural features associated with functional activity. 

Surprisingly, we found that some of the theoretical models displayed better VS 

performances than the x-ray structure. This study by no means undermines the extreme 

significance of the x-ray structure of β2AR as well as other GPCRs 45,188-192 in understanding 

the intricate details of GPCR structure in relation to its function nor in the significance of x-

ray structures for SBDD. Nevertheless, it most certainly testifies to the importance of 

intelligent homology modeling approaches especially those incorporating comprehensive 

medicinal chemistry knowledge of receptor ligands for structure based virtual screening. 

3.2. Methods 

3.2.1. Structural Similarity Analysis. 

 In addition to 2RH1, the crystal structure of bovine rhodopsin (PDB ID: 1U19) chain 

B was also included in the analysis since it was used as major template for all β2AR 

homology models. The structural similarity was assessed in three aspects, i.e. the accuracy of 

the boundary definitions for each transmembrane (TM) helixes, the backbone root-mean-

square-deviation (RMSD) for TM regions, and the Cα RMSD of the binding pocket residues. 

The numbering of amino acids followed the conventions set by Weinstein et al 193. The 

highly conserved residues embedded in each TM region were used as anchors for the 

alignment. Each theoretical model was structurally aligned against 2RH1 or 1U19 by 
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individual TM helix as well as the whole TM bundle. The RMSDs were calculated using the 

entire lengths of the corresponding segments of 2RH1. 

3.2.2. Molecular Docking Calculation.  

To compile the screening database, we used 58 known antagonists of human β2AR 

reported in DrugBank 194 and GLIDA195 databases as seeds (cf. Table 3.3 of Supporting 

Information). All antagonists have sub-micromolar potency and can be found in additional 

external databases, such as PDSP Ki 196, PubChem (PubChem, 2007) and KEGG 197. A few 

of them are β2AR specific (e.g. butoxamine and aminoflisopolol) while others can act on 

both β1AR and β2AR. For comparison, thirteen agonists of human β2AR found in the 

DrugBank database were used in virtual screening experiments as well. In order to establish a 

reasonable decoy dataset for virtual screening, the World Drug Index (WDI) database 98 

(version 2004) was used since most its entries are drug-like compounds. The original 

collection  of 59,000 molecules was first cleaned by removing metals, salts and fragments, 

then filtered to eliminate unqualified compounds according to Lipinski's rule of five and later 

extensions of this rule 198. The remaining collection of ca. 38,000 compounds was further 

reduced to a diverse subset of 374 compounds using MOE2007.09. In addition, 12 binding 

decoys with similar chemical scaffolds but poor binding affinity (Ki > 10µM) were selected 

from the PDSP Ki database and merged into the WDI diverse subset. In the end, 58 human 

β2AR antagonists and 13 agonists were seeded amongst 386 decoys separately to constitute 

two different screening databases. 

We employed three popular docking programs, i.e. Glide4.01, AutoDock4.0 and 

eHiTS6.2, to evaluate the screening performance of structural models. The calculations by 

Glide version 4.01 199 was carried out using Schrodinger Suite 2007. The targeted protein and 
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theoretical models were prepared through Protein Preparation module with the default setting 

and assigned with the OPLS 2001 force field atom types and partial charges. The screening 

databases were prepared within the LigPrep module and the ionization states of each 

molecule were calculated as to be compatible with the pH value of 7.0±2.0. All molecules 

were subjected to energy minimization with MMFFs force field before the docking 

computation. For x-ray structure and holo models, the center of the grid box was selected as 

the center of bound ligands. For apo models, their binding pockets were first aligned to that 

of 2RH1 and the center of co-crystallized carazolol was chosen. The proper size of the 

enclosing box was not set to be fixed but determined by the extent of the bound ligand. The 

Glide SP scoring function was used to rank the docking poses and the top-ranked poses for 

each database molecule were saved for post-docking analysis. 

We prepared the targeted protein and docking parameters for AutoDock version 4.0 

200,201 using the AutoDockTools graphic interface. Explicit hydrogen atoms were added to the 

receptor structures while atom types and partial charges were assigned to generate the pdbqt 

receptor files. The database molecules were prepared using the ‘prepare_ligand4.py’ script to 

merge non-polar hydrogen atoms and define flexible torsions. The center and dimension of 

the enclosing boxes were defined to include the whole binding pockets, similar to those in the 

Glide docking. The genetic algorithm were employed during the docking with a start 

population size of 150 individuals and 20 runs combined with a maximum number of 

12,500,000 energy evaluation for each molecule. Other parameters for genetic algorithm 

were kept by the default value. 

The eHiTS version 6.2 202 was used through the CheVi user interface. Protein 

preparations, such as protonation state determination for residues, hydrogen atoms addition 
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and partial charge assignment, were actually not needed since eHiTS’ docking and scoring 

are based on the prior training data of its knowledge base of 97 protein families. The grid box 

was assigned automatically using the bound ligand’s SDF file as the CLIP file. We employed 

the default settings for eHiTS docking and ranked the database molecule based on its lowest 

eHiTS score. 

In addition, we added eight more scoring functions of different types by rescoring the 

top-ranked poses generated by Glide4.01. The multiple scoring functions in Sybyl8.0 203 

CScore module and OpenEye 204  FRED 2.2.4 were applied, including Chemscore, D_score, 

Gold_score, PMF, Chemgauss3, PLP, Screenscore and Shapegauss. The consensus scores 

were also used for the above scoring functions through the rank by rank strategy. 

3.2.3. Assessment of Virtual Screening Performance 

To measure the efficiency of virtual screening we used the following conventional 

parameters: the enrichment factor and the receiver operating characteristic (ROC) curve that 

characterizes the ability if a method to recover known ligands among the top-scored 

screening molecules. The enrichment factor follows the most popular definition as to how 

many more seed compounds (i.e., known ligands) were found within a defined “early 

recognition” fraction of the ranked list relative to a random distribution: 

⁄ ⁄    (1) 

where H  is the number of target-specific seeds recovered at a specific % level of 

the database; H  is the total number of seeds for the target; D    is the number of 

compounds screened at a specific % level of the database; D  is the total number of 

compounds of the database. The ROC curve is generated by plotting the sensitivity (Se) vs. 

(1 – specificity (Sp)) for a binary classifier system as its discrimination threshold is varied. In 
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the case of virtual screening for recovering the ith known active from the inactive decoys, the 

Se  and Sp  are defined as follows: 

⁄    (2)  

   (3)  

The area under the ROC curve (AUC) is the metric that is widely accepted for 

assessing the likelihood that a screening method assigns a higher rank to known actives than 

to inactive compounds. The AUC values at a specific percentage of the ranked database are 

calculated from the following equation: 

∑     (4) 

Here n is the total number of known actives in the screening database. One additional 

parameter, the yield, is also employed as the percentage of true hits retrieved by the virtual 

screening method: 

⁄ 100     (5) 

Cluster Analysis of Binding Profiles.  

To closely evaluate the key receptor/ligand interaction patterns, we employed the 

LigX module 205 in MOE2007.09 to analyze the crystal structure of β2AR/carazolol complex 

and the docking poses generated by Glide4.01. For each antagonist, the top-ranked docking 

pose with the highest score was selected. Two major types of interactions that contribute to 

protein/ligand binding affinities were considered, i.e. hydrogen bonds (donor or acceptor) 

and non-bonded weak interactions. The score to assess the hydrogen bond is based on a scale 

of 0 to 100% that indicates the probability of being a geometrically perfect hydrogen bond 

while the score for non-bonded weak interaction is the pair wise distance between residue 

and ligand atoms. In our studies, we took the default parameters in which 4.5 angstrom is the 
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cutoff for weak interactions and 2.5 angstrom is the closest distance between any 

residue/ligand atom pairs. The original score was normalized; thus, the values of the 

modified scores were between 0 and 1, which is proportional to the interaction intensities. To 

better visualize the binding patterns of docked poses for each theoretical models and crystal 

structures, the LigX scores were transformed into heat maps and clustered using the R 

statistical package 206. We applied the hierarchical clustering with the Ward linkage 

algorithm; thus, the patterns of interaction between 58 human β2AR antagonists and residues 

in the active sites of three different structural models would be expected to be similar if the 

respective clusters are similar (cf. Figure 3.3). 

In addition, we have exploited the Protein Ligand Interaction Fingerprints (PLIF, also 

available in MOE2007.09) for the same purpose (cf. Figure 3.6 of Supporting Information). 

PLIF can identify and score major protein/ligand interactions, including hydrogen acceptor 

from side chain, hydrogen donor to side chain, hydrogen acceptor from backbone, hydrogen 

donor to backbone, ionic attractions and surface contacts.  For each docking pose, the PLIF 

fingerprints ranging from 30 to 50 bits were generated. The relative frequencies of each 

identified fingerprint can be then used to produce fingerprint significance chart, which is 

based on the hypothesis that ‘if the bit is set, then the compound is active’. 

3.3. Results and discussion 

3.3.1. Comparison of Theoretical Models and the X-ray Structure of β2AR for 
Their Overall Structures and Protein Segments That are Critical for Ligand 
Binding 

 Prior to VS experiments, we analyzed the similarity between theoretical models and 

two x-ray structures, i.e. 2RH1 and 1U19 deposited to the Protein Data Bank 207. All 

theoretical models used in this study are listed in Table 3.1; each model was aligned against 
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the x-ray structures to evaluate relative definitions of transmembrane (TM) helices, their 

conformations, and relative orientation. The x-ray structure of bovine rhodopsin (1U19) was 

also included in addition to β2AR because the former had been used as a common template 

for GPCR homology modeling. In doing so, we were interested to explore if the failure to 

predict the structural conservation and/or divergence from the template structure may cause 

poor VS results for the theoretical models. 

Our initial efforts focused on evaluating the accuracy of TM helical boundaries as 

defined by models vs. x-ray structures. For this purpose we have employed MOE 2007.09 

software 208 to annotate the secondary structural elements in the 3D structures. We found (cf. 

Table 3.3 of Supporting Information) that the MOE module assigned boundaries either at 

exact positions or only one amino acid apart to over 90% of the TM segments of 2RH1 and 

1U19 in comparison to those in the PDB header. Thus, the MOE software was deemed 

reliable in identifying the helical boundaries; the results of applying MOE to the six 

theoretical models and two crystal structures (2RH1 and 1U19) are summarized in Figure 

3.1a. From the alignment of the eight structures, it can be seen that the apo models (AM1-

AM3) perform better than the holo models (CM1-CM3) in terms of accuracy of TM 

assignment. The location and length of the TM helixes for all three AM models are 

consistently close to those in the rhodopsin structure (1U19), with the only exception that 

TM6 and TM7 in the AM1 model are shorter than the corresponding helices in the crystal 

structures. This observation can be easily rationalized since AM1 and AM2 models are solely 

based on homology modeling whereas AM3 is a hybrid model developed with a  

combination of both threading and ab initio methods. In all cases, the crystal structures of 

bovine rhodopsin were used as a template for model building. Furthermore, we have 
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concluded that individual TM helixes were very close in terms of helical length and relative 

orientation when compared to crystal structures of bovine rhodopsin and human β2AR 45. 

Thus, not surprisingly, given the methods used for model building, the secondary structural 

elements for all three AM models were found to be assigned very accurately as compared to 

their homologous experimental structures. 

The accuracies of TM helix boundaries assignments for CM models were less 

satisfactory. In general, seven TM helices in all three CM models were shorter than expected 

with the largest disagreements located at TM1, TM4 and TM5 (Figure 3.1a). The CM3 

model gave the largest deviation in terms of the percentage of correctly defined TM helical 

boundaries. Moreover, it had the shortest lengths for individual TM helices. For instance, it 

was eight residues shorter for TM1, fourteen for TM3 and eleven for both TM5 and TM6 in 

comparison to the β2AR crystal structure. One possible explanation is that all three CMs are 

de novo models, generated without any template structure. Both the Lybrand (CM1, 2) and 

the Goddard (CM3, 4) groups employed the standard alpha helix as a starting point and 

calculated the intrinsic tilt/kink and relative orientation of the TM helical bundle purely 

based on the physical considerations. If the rhodopsin structure is not employed as a 

reference, the secondary structure assignments could be affected by many factors, such as the 

type of phospholipids used in the MD simulations employed as part of model refinement in 

studies by the Goddard group 177,209. 

It should be noted that the engineered modification of the wild type protein using a 

segment of T4 lysozyme to replace most residues of IL3 introduced an artifact in the crystal 

structure (2RH1) of human β2AR. This modification led to altering the boundaries of IL3, 

thus affecting the correct locations of both the TM5 terminus and the start of the TM6. The 
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accurate definition of these two boundaries is less important in the comparison of structural 

similarities between theoretical models and the crystal structure. However, the accuracy of 

predicting the TM4 terminus and the beginning of TM5 is critical considering the functional 

roles of EL2 in both rhodopsin and human β2AR 210,211. As can be seen from Figure 3.1a and 

Table 3.4 of the Supporting Information among the three AM models, AM3 has the highest 

accuracy (1 residue error) for the segment between TM4 and TM5 (EL2) followed by AM2 

and AM1. CM3 model is comparable to AM2 while CM1 and CM2 had much larger errors 

with respect to TM helix assignments. 

The seven TM helices of each theoretical model were superimposed onto respective 

helices of β2AR as well as the rhodopsin structure, and the backbone pair wise RMSD of 

individual respective TM helices was calculated (Figures 3.1b, 3.1c and Table 3.4 of 

Supporting Information). As expected, the homology models (AMs) are generally more 

similar to the rhodopsin structure than to the β2AR structure. The RMSDs of most helices in 

AM1-3 range from 0.30 Ǻ to 1.00 Ǻ as compared to bovine rhodopsin where the RMSDs are 

as big as 1.60 Ǻ to 3.80 Ǻ when aligned against the human β2AR. For the whole TMs bundle, 

the RMSDs are 1.15 Ǻ to 1.88 Ǻ with respect to rhodopsin and 2.25 Ǻ to 3.19 Ǻ with respect 

to β2AR. In comparison, the de novo models (CMs) deviate more significantly from both 

crystal structures. The RMSDs of most helixes in CM1/CM2 are in the same range of 2.00 Ǻ 

- 5.50 Ǻ when aligned against both rhodopsin and β2AR. For CM3, the RMSD increases to 

2.60 Ǻ and 7.00 Ǻ, respectively. Similarly, the RMSDs of TMs bundle for CM1 are 3.20 Ǻ 

when aligned against the rhodopsin and 3.59 Ǻ for β2AR. For CM3, the corresponding 

RMSDs are 3.83 Ǻ and 4.41 Ǻ (cf. Table 3.4 of Supporting Information). 
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Consistently, the AMs models were observed to be aligned well to the rhodopsin 

structure (cf. AM2 in Figure 3.1b as an illustrative example). They deviated from the β2AR 

structure with the noticeable shifts for TM1, TM3 and TM5, although the secondary structure 

assignment for these regions was relatively accurate. The large RMSD differences for these 

three TMHs were obviously due to the differences between rhodopsin and β2AR crystal 

structures (7TMs backbone RMSD of 2RH1 vs. 1U19 is 1.85 Å). It was indeed reported in 

the original publication on β2AR crystal structure 45 that there is a noticeable shift in TM1 of 

β2AR relative to bovine rhodopsin, primarily at the extracellular portion which tilts away 

from the TM bundle compared to bovine rhodopsin 45,46. The long N-terminal fragment could 

not be observed in both crystal structures, but it could cause large flexibility/variation in the 

assignment of TM1 boundaries, especially in the upper helical region. TM5 has a proline-

induced kink at conserved positions along the transmembrane segments, which is believed to 

be responsible for the structural rearrangements required for the GPCR activation 193,212-215. 

The subtle difference in the activation status of the current β2AR structure (2RH1, bound to 

an inverse agonist carazolol) may lead to the structural diversification at the kink region, in 

terms of the amplitude of motion and rotation degree. Notably TM3 and TM5 form half of 

the binding pockets for the co-crystallized carazolol 45 (Figure 3.1b). 

Unlike AM models, three CMs deviate from both bovine rhodopsin and β2AR in a 

similar way (cf. CM1 in Figure 3.1c as the representative case). A large discrepancy can be 

found at TM1, 4, 6 and 7 for CM1/CM2 and TM1, 3, 5 and 6 for CM3. Here the similar 

reasoning used in the analysis of AMs can be applied to TM1 because the N-terminal 

fragment was not considered as part of model building and optimization. Interestingly, the 

RMSD of CM1’s TM4 is as large as 5.00 Ǻ with respect to rhodopsin and 5.21 Ǻ when 
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aligned against β2AR. It is surprising since TM4 seems the easiest one to model. Among all 

seven TMs, TM4 is the shortest and the most orthogonal to the plane of the phospholipid 

membrane. This observation indicates the limitation of computational protocols employed in 

developing the CM models in their ability to reproduce the conformation of this ‘anchor’ 

helix in the TM bundle. For TM5, 6 and 7, one of the common shared features is the proline-

induced kink. The comparison between β2AR models and the crystal structure highlights the 

difficulty associated with the accurate modeling of this unique structural feature of GPCRs. 

3.3.2. Comparison of VS Performance for Theoretical Models and X-ray Structure 
of β2AR.  

Figure 3.2 compares the virtual screening performances on discriminating 58 known 

β2AR antagonists against decoys by three docking methods. Both the enrichment factor plot 

(a,c,e) and ROC curves (b,d,f) were included for each method. The yield plot is shown in 

Figure 3.4 (a,c,e) of the Supporting Information since it essentially delivers the same 

information as the ROC curves. The detailed statistical parameters characterizing the VS 

performance, such as the maximum EF (EFmax), ROC AUC and the recently proposed 

Boltzmann-Enhanced Discrimination of ROC (BEDROC) 216,217, are summarized in Table 

3.2. All four holo models as well as the β2AR structure were used in the VS study. The data 

for only two apo models (AM1 and AM3) are included in the plots because of these models’ 

generally poor performance during virtual screening. In many cases, such as AM1 in Figures 

3.2d and 3.2f, the ROC curve is close to the random expectation (the diagonal line). It is 

understandable because the side chain rotamers of binding pocket residues in the AM models 

had not been optimized in the way it was done for holo models.  

Among all four CMs models, those from the Lybrand group (CM1, CM2) achieved 

better enrichment than the models from the Goddard group (CM3, CM4). In most cases, the 
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CM2 model yielded comparable results to the β2AR crystal structure. In the screening by 

Glide4.01, CM2 model gave higher EF at the very early phase (0% - 2% of ranked database, 

cf. Figure 3.2a and Table 3.2) After that, it remained up to one unit lower than the crystal 

structure until converging with the latter at the 22% of ranked database. In terms of ROC 

AUC, CM2 reached the value of 0.86, close to AUC of 0.88 for the crystal structure. Based 

on the BEDROC metric, CM2 was similar to 2RH1 when a weak emphasis or weight was put 

on early enrichment (tuning parameter α=20), while showing better performance when the 

emphasis increases (tuning parameter α=53.6 or 100).  

We note that Glide4.01 gave better VS results in this study compared to AutoDock4.0 

and eHiTS6.2. Thus, we placed more emphasis on the screening data/docking poses 

generated by Glide4.01. Nevertheless, the results obtained with both AutoDock4.0 and 

eHiTS6.2 highlighted the impressive performance of CM2. As demonstrated by both types of 

plots in Figures 3.2c-f and most criteria in Table 3.2, the CM2 afforded VS results superior to 

the crystal structure when using these two docking programs. Therefore, practically speaking, 

these results suggest that the use of crystal structure is not advantageous in terms of VS 

performance when the scoring function is not highly accurate. As mentioned above, CM3 

and CM4 had poorer performance than CM1 and CM2 but were comparable to AM1 and 

AM3 models in this case. 

The crystal structure of β2AR represents an inactive state of the receptor because it is 

bound to the inverse agonist, carazolol 45,218. Thus, it may be considered unfair to compare 

the crystal structure of β2AR with theoretical models as applied to agonist screening, 

especially when the models were created to capture known data on agonists. However, for 

comparison purposes, we did explore the possible utility of 2RH1 for screening for agonists. 
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The screening results are summarized in Figures 3.5a,b and Table 3.5 of the Supporting 

Information. As expected, the CM2 model showed the best performance to enrich for thirteen 

β2AR agonists. With Glide4.01 method, the CM2 model could recover 100% of seed 

agonists at the 15% of ranked databases and its maximum EF could be as high as 36.09. Thus, 

it excelled over 2RH1 greatly in terms of these two parameters of VS performance. Taking 

into account the data for the antagonist virtual screening, we shall conclude that CM2 model 

demonstrated remarkable performance as a model of choice for virtual screening for both 

agonists and antagonists. 

The possible explanation for the better performance of CM1/CM2 models is that 

Lybrand et al 178,179 exploited many site-directed mutagenesis data during the model 

optimization. The important receptor/ligand interactions had been turned into the distance 

restraints that were applied explicitly to specific atoms of both the receptor and its ligands 

during molecular dynamics simulations 178. In comparison, CM3 and CM4 models from 

Goddard et al 177,209 did not employ such information; their models were built by optimizing 

the target/ligand interaction using physical force field. Obviously, the differences in the type 

of data utilized for theoretical model building and optimization can largely affect the 

accuracy of binding pocket modeling, and consequently, the model performance in virtual 

screening experiments. In order to evaluate the similarity between binding pockets of 

individual models, we superimposed Ca atoms of key residues inside the pocket with their 

counterparts in 2RH1. The binding pocket was defined by residues found within 4 Å of the 

co-crystallized carazolol. Carazolol was merged into the binding sites of all models as 

defined by the alignment. As shown in Figure 3.2a-g, the CM2 binding pocket (Figure 3.2b) 

is most similar to that of 2RH1 with respect to both the ligand pose and the position of 
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residues interacting with the ligand. The RMSD for its Cα atoms was 2.40Ǻ while the one for 

CM1 was 2.33Ǻ (cf. Table 3.4 of Supporting Information). These two models also 

reproduced the contacts of carazolol with residues Ser203 .   , Asn312 .    and Phe193 . 

For three AMs models, the RMSDs ranged from 3.39Ǻ to 3.71Ǻ. CM3 and CM4 models had 

the largest deviation (RMSD = 5.64Ǻ), as can also be seen in Figures 3.2c and 3.2d. 

Furthermore, the close inspection of the top-ranked docking poses of all seed 

antagonists showed that the interactions between the antagonists and the binding site of the 

CM2 model were largely in agreement with the site-directed mutagenesis data. The 

protonated nitrogen in most β2AR antagonists formed salt bridges with Asp113 .  and 

Asn312 .   ; the amide hydroxyl group formed hydrogen bonds with Ser203 .   , 

Ser204 .  or Ser207 .   . Another important interaction was formed between antagonists 

and Phe193 of EL2, i.e., the residue that was also found to interact with carazolol within the 

crystallographic structure of β2AR 45,46,178 . It should be pointed out that CM2/CM1 models 

include both extracellular and intracellular loops, whereas CM3/CM4 and AM1 models did 

not incorporate these regions 46,177. 

To elucidate the molecular basis for dissimilar virtual screening performance of 

different CM2 and CM3 models in comparison with 2RH1 we have conducted the cluster 

analysis of the binding profiles of all 58 antagonists docked to the respective binding sites. 

Binding profiles reflected the strengths of interaction between antagonists and active site 

residues. Importantly, there were significant differences in the weak interaction patterns of 

CM2 (Figure 3.3b) and CM3 (Figure 3.3c) in comparison to 2RH1 (Figure 3.3a). The major 

clusters formed by CM2 in the region of conserved residues matched well to those found in 

2RH1, suggesting a critical role of weak interactions between binding site and antagonists. In 
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comparison, clusters formed by CM3 were scarce and many key interactions were missing, 

especially for residues Trp2866.48, Phe2896.51, Phe2906.52 and Asn2936.55 of the binding 

pocket. This analysis indicates that the binding pocket of CM2 was well-organized and 

similar to that of 2RH1 whereas the CM3 binding pocket was formed by somewhat different 

residues, with the key residues found in the binding site of the x-ray structure were 

inaccessible to the bound antagonists. The cluster profile of hydrogen bonding pattern was 

less informative as some prominent patterns at 2RH1 such as the ones with Asn312 .   were 

absent at both CM2 and CM3. Notably, Ser204 .   and Ser207 .   of CM2 were found to 

be hydrogen bonded to ca. 15 antagonists, but the same pattern was not observed with either 

CM3 or 2RH1. 

During the course of our studies, the Kobilka et al. experimentally characterized two 

new structures of β2AR, one in a nanobody-stabilized active state and another in complex 

with an irreversible agonist. Compare with the inactive state β2AR structure, the agonist-

binding pockets have fairly subtle changes, with the major differences at the hydrogen 

bonding contacts with Ser203 .   and Ser207 .   . To determine whether these minor 

changes will increase receptor’s selectivity toward agonists, we carried out structure-based 

virtual screening studies using the nanobody-stabilized structure (PDB 3P0G), and compared 

its performances with the inactive state crystal structure as well as the collected theoretical 

structural models. As expected, the active state crystal structure showed better performances 

than the inactive state crystal structure in enriching the 13 agonists, and inferior 

performances in enriching the 58 antagonists (Figure 3.2 and supplementary Figure 3.5). 

With Glide4.01 method, the active state crystal structure could recover 100% of seed 

agonists at the 25% of ranked databases and its maximum EF could be as high as 30.69. On 
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the other hand, the performance of active state structure model CM2 showed relatively 

comparable performances to the active state crystal structure in terms of EF and AUC. (Table 

3.2, supplementary Table 3.5) As mentioned above, the theoretical model CM2 captured the 

critical agonist-protein interaction at Ser2075.46. This piece of evidence illustrated further that 

properly optimized theoretical models can provide a sensible picture for the active-state 

binding pocket, and can be employed for structure-based virtual screening of β2AR agonists.  

To summarize our observations, we have established that theoretical models of 

GPCRs generated with knowledge-based approaches can achieve similar if not better VS 

performance as structural models based on x-ray crystallographic studies. This somewhat 

surprising observation is reassuring with respect to using carefully developed theoretical 

models of protein structures for SBDD. 

3.4. Conclusions 

In this study we have addressed the long-standing debate about the structural 

accuracy and applicability of theoretical models vs. x-ray structures of proteins for SBDD. 

We have carried out a systematic study on a large collection of historical human β2AR 

theoretical models and evaluated their structural accuracies and screening performances in 

comparison with two recent crystal structures. We have shown that there exists a discrepancy 

between global structural accuracies of β2AR theoretical models and their screening 

performances. In general, β2AR theoretical models differ largely from the crystal structure in 

terms of TMHs definition and global packing while many can achieve the same performance 

in virtual screening and as demonstrated elsewhere 187, pose predictions. Our analysis 

indicates that the binding pockets of models showing the best performance are well-

organized and they also align well to active sites in the crystal structures. The key 
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interactions of residues in the active site with the bound antagonists were found to be 

preserved in models that were built and refined taking into account the site-directed 

mutagenesis and other experimental data. Our results emphasize that knowledge-based 

approaches result in structural models that can achieve the same or even better performance 

in virtual screening as those built with x-ray crystallographic data. At the same time, we must 

stress that our studies address very specific and pragmatic question concerning the use of 

protein models vs. experimental structures for virtual screening. They by no means 

undermine the critical importance of experimental structures for understanding protein 

structure-function relationships as well as the role that crystal structures serve as a critical 

reference for evaluating the accuracy of predicted protein/ligand interactions. 
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Tables and Figures 

 

Figure 3.1. The structural similarity analysis of theoretical models in comparison with crystal structures. (a) The 
secondary structure assignment for TM segments of six theoretical models and two crystal structures (2RH1 and 
1U19). The numbers and their corresponding structures are coded by 1:2RH1, 2:AM1, 3:AM2, 4:AM3, 5:CM1, 
6:CM2, 7:CM3, 8:1U19. The remaining two models, i.e., AM4 and CM4, share similar backbone structures to 
CM3 with pair wise RMSD of TMs less than 0.4 Ǻ. Therefore only CM3 is included in the sequence alignment 
plot. The red bars indicate the helical structure elements identified by MOE. (b) The structural superposition of 
the theoretical models AM2 (rendered in pink) to 2RH1 (rendered in dark green) and 1U19 (rendered in blue). 
Note that the most structurally divergent TM regions are indicated. (c) The structural superposition of the 
theoretical models CM1 (rendered in pink) to 2RH1 (rendered in dark green) and 1U19 (rendered in blue). Note 
that the most structurally divergent TM regions are indicated. 
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Table 3.1. The synonym of eight human β2AR theoretical models employed in this study. 

Apo model Source Holo model Source 

AM1 

By G. Vriend, a homology 
model219 based on the 

crystal structure of bovine 
rhodopsin 

CM1 

By T. Lybrand, a de novo 
model178,179 bound by 
aminoflisopolol (β2AR 

antagonist) 
 

AM2 

By A. Sali, a homology 
model220 based on the 

crystal structure of bovine 
rhodopsin 

CM2 

By T. Lybrand, a de novo 
model178,179 bound by 

TA2005 (β2AR agonist) 
 

AM3 

By J. Skolnick, a hybrid 
model180 combined 

threading and ab initio 
methods 

CM3 

By W. Goddard, a de novo 
model177,209 bound by 

butoxamine (β2AR 
antagonist) 

AM4 
By W. Goddard, a de novo 

model177 based on first 
principles methods 

CM4 
By W. Goddard, a de novo 

model177,209 bound by 
salbutamol (β2AR agonist) 
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Supplementary Material 

 

a  

b 

c 

 

Figure 3.4. The yields of 58 known β2AR antagonists during the screening by three docking methods versus the 
crystal structure and six theoretical models. The annotations are (a) Glide4.01 (b) AutoDock4.0 and (c) 
eHiTS6.2. 
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a  b 

 
c d 

e f 

 

Figure 3.5.. The enrichments and ROC curves of 13 known β2AR agonists during the screening by 
three docking methods versus the crystal structure and six theoretical models. The annotations are (a) 
Glide4.01 (b) AutoDock4.0 and (c) eHiTS6.2. 
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Figure 3.6. The significance chart for PLIF fingerprints generated from docking poses against (a) 
β2AR crystal structure, (b) CM2 model and (c) CM3 model. The higher the bar (individual 
fingerprint bit) is, more frequently this type of interaction occurs in the dataset and of higher 
probability it contributes to the activities. The shade of the color indicates the significance of the 
particular bit to the actives, which is based on the hypothesis that ‘if the bit is set, then the compound 
is active’. The residues are randomly colored and several bars of the same residue indicate that they 
have different types of contacts. 

b 

a 

c 



 

 
 

75

T
ab

le
 3

.3
. T

he
 b

ou
nd

ar
y 

de
fi

ni
ti

on
 o

f 
se

ve
n 

T
M

 h
el

ic
es

 in
 1

U
19

 a
nd

 2
R

H
1 

by
 P

D
B

 h
ea

de
r 

an
d 

M
O

E
 a

nn
ot

at
io

n.
 T

he
 e

xa
ct

 m
at

ch
es

 a
re

 m
ar

ke
d 

in
 

bo
ld

 w
hi

le
 th

e 
m

is
m

at
ch

es
 b

y 
tw

o 
re

si
du

es
 a

re
 s

ho
w

n 
in

 it
al

ic
. 

 

C
ry

st
al

 s
tr

. 
A

nn
ot

at
io

n 
T

M
I 

T
M

II 
T

M
III

 
T

M
IV

 
T

M
V

 
T

M
V

I 
T

M
V

II 
st

ar
t

en
d 

st
ar

t
en

d 
st

ar
t

en
d 

st
ar

t
en

d 
st

ar
t

en
d 

st
ar

t
en

d 
st

ar
t

en
d 

1U
19

 
P

D
B

 h
ea

de
r 

1.
28

1.
60

2.
38

2.
68

3.
20

3.
55

4.
38

4.
62

 
5.

30
5.

61
6.

24
6.

60
7.

31
7.

57
 

 
M

O
E

 a
nn

ot
. 

1.
29

1.
59

2.
38

2.
67

3.
21

3.
54

4.
39

4.
62

 
5.

31
5.

62
6.

25
6.

59
7.

32
7.

55
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

2R
H

1 
P

D
B

 h
ea

de
r 

1.
28

 
1.

59
2.

38
2.

67
3.

22
3.

55
4.

39
4.

63
 

5.
36

5.
68

6.
29

6.
60

7.
32

7.
55

 
M

O
E

 a
nn

ot
. 

1.
30

 
1.

59
2.

38
2.

67
3.

21
3.

55
4.

39
4.

62
 

5.
36

5.
68

6.
29

6.
60

7.
32

7.
55

             



 

 
 

76

T
ab

le
 3

.4
. 

C
om

pa
ri

so
ns

 f
or

 s
ix

 β
2A

R
 t

he
or

et
ic

al
 m

od
el

s 
ve

rs
us

 t
w

o 
cr

ys
ta

l 
st

ru
ct

ur
es

 i
n 

te
rm

s 
of

 T
M

 h
el

ic
al

 b
ou

nd
ar

ie
s 

an
d 

R
M

S
D

. 
T

he
 

bo
rd

er
in

g 
re

si
du

es
 f

or
 e

ac
h 

T
M

 r
eg

io
n 

ar
e 

id
en

ti
fi

ed
 b

y 
M

O
E

 a
nd

 a
nn

ot
at

ed
 u

si
ng

 a
 s

pe
ci

al
iz

ed
 n

um
be

ri
ng

 r
ul

e.
 T

he
 R

M
S

D
s 

fo
r 

ea
ch

 m
od

el
’s

 
T

M
 w

er
e 

ca
lc

ul
at

ed
 u

si
ng

 th
e 

tr
ue

 le
ng

th
 o

f 
th

e 
co

rr
es

po
nd

in
g 

se
gm

en
ts

 o
f 

2R
H

1 
an

d 
1U

19
 (

in
 it

al
ic

).
 

S
eg

m
en

t 
2R

H
1

 
A

M
1

 
A

M
2

 
A

M
3

 
C

M
1 

C
M

2 
C

M
3 

1U
19

 
st

ar
t/e

nd
 

R
M

S
D

 
st

ar
t/

en
d 

R
M

S
D

 
st

ar
t/

en
d 

R
M

S
D

 
st

ar
t/

en
d 

R
M

S
D

 
st

ar
t/e

nd
 

R
M

S
D

 
st

ar
t/e

nd
 

R
M

S
D

 
T

M
I 

1.
30

/1
.5

9 
1.

29
/1

.6
0 

2.
77
Ǻ

 
1.

29
/1

.5
9 

3.
02
Ǻ

  
1.

28
/1

.5
9 

3.
01
Ǻ

  
1.

31
/1

.5
9 

3.
18
Ǻ

  
1.

32
/1

.5
8 

3.
19
Ǻ

 
1.

35
/1

.5
6 

5.
12
Ǻ

  
 

1.
29

/1
.5

9 
 

0.
30
Ǻ

 
 

0.
30
Ǻ

 
 

0.
83
Ǻ

 
 

2.
93
Ǻ

 
 

3.
03
Ǻ

 
 

6.
90
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
II 

2.
38

/2
.6

7 
2.

38
/2

.6
7 

1.
76
Ǻ

 
2.

38
/2

.6
7 

1.
59
Ǻ

  
2.

38
/2

.6
7 

1.
90
Ǻ

  
2.

37
/2

.6
5 

3.
19
Ǻ

  
2.

37
/2

.6
5 

3.
09
Ǻ

 
2.

45
/2

.6
4 

4.
38
Ǻ

  
 

2.
38

/2
.6

7 
 

0.
32
Ǻ

 
 

0.
37
Ǻ

 
 

0.
68
Ǻ

 
 

2.
40
Ǻ

 
 

2.
36
Ǻ

 
 

4.
31
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
III

 
3.

21
/3

.5
5 

3.
22

/3
.5

5 
4.

32
Ǻ

 
3.

22
/3

.5
4 

2.
09
Ǻ

  
3.

23
/3

.5
4 

1.
67
Ǻ

  
3.

22
/3

.5
5 

2.
57
Ǻ

  
3.

23
/3

.5
5 

2.
56
Ǻ

 
3.

27
/3

.4
7 

6.
99
Ǻ

  
 

3.
21

/3
.5

4 
 

0.
34
Ǻ

 
 

0.
37
Ǻ

 
 

1.
08
Ǻ

 
 

2.
21
Ǻ

 
 

2.
25
Ǻ

 
 

5.
00
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
IV

 
4.

39
/4

.6
2 

N
/A

 
1.

95
Ǻ

 
4.

39
/4

.6
1 

1.
94
Ǻ

  
4.

39
/4

.6
2 

1.
67
Ǻ

  
4.

40
/4

.5
7 

5.
21
Ǻ

  
4.

41
/4

.5
7 

5.
43
Ǻ

 
4.

38
/4

.6
8 

3.
47
Ǻ

  
 

4.
39

/4
.6

2 
 

0.
32
Ǻ

 
 

0.
49
Ǻ

 
 

1.
06
Ǻ

 
 

5.
00
Ǻ

 
 

5.
02
Ǻ

 
 

4.
60
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
V

 
5.

36
/5

.6
8 

5.
34

/5
.6

2 
2.

37
Ǻ

 
5.

35
/5

.6
2 

3.
48
Ǻ

  
5.

35
/5

.7
0 

2.
76
Ǻ

  
5.

41
/5

.6
7 

2.
17
Ǻ

  
5.

41
/5

.6
7 

2.
13
Ǻ

 
5.

37
/5

.5
8 

6.
85
Ǻ

  
 

5.
31

/5
.6

2 
 

0.
43
Ǻ

 
 

0.
38
Ǻ

 
 

1.
00
Ǻ

 
 

2.
04
Ǻ

 
 

2.
06
Ǻ

 
 

3.
59
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
V

I 
6.

29
/6

.6
0 

6.
33

/6
.6

0 
1.

67
Ǻ

 
6.

33
/6

.5
9 

3.
80
Ǻ

  
6.

27
/6

.6
0 

1.
96
Ǻ

  
6.

28
/6

.5
9 

4.
24
Ǻ

  
6.

28
/6

.5
9 

4.
21
Ǻ

 
6.

38
/6

.5
9 

8.
12
Ǻ

  
 

6.
25

/6
.5

9 
 

0.
32
Ǻ

 
 

9.
11
Ǻ

 
 

0.
80
Ǻ

 
 

3.
63
Ǻ

 
 

3.
69
Ǻ

 
 

12
.5

4Ǻ
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

T
M

V
II 

7.
32

/7
.5

5 
7.

38
/7

.5
6 

3.
82
Ǻ

 
7.

32
/7

.5
1 

1.
65
Ǻ

  
7.

33
/7

.5
5 

2.
35
Ǻ

  
7.

32
/7

.5
5 

4.
08
Ǻ

  
7.

32
/7

.5
5 

4.
20
Ǻ

 
7.

34
/7

.5
5 

3.
93
Ǻ

  
 

7.
32

/7
.5

5 
 

0.
38
Ǻ

 
 

1.
01
Ǻ

 
 

1.
37
Ǻ

 
 

3.
34
Ǻ

 
 

3.
42
Ǻ

 
 

2.
64
Ǻ

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
T

M
I-

 
 

 
2.

47
Ǻ

 
 

3.
19
Ǻ

 
 

2.
25
Ǻ

 
 

3.
59
Ǻ

 
 

N
/A

 
 

4.
41
Ǻ

  
V

II
 

 
 

1.
15
Ǻ

 
 

1.
88
Ǻ

 
 

1.
38
Ǻ

 
 

3.
20
Ǻ

 
 

N
/A

 
 

3.
83
Ǻ

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
E

C
LI

I 
 

 
N

/A
 

 
13

.4
3Ǻ

 
 

13
.1

9Ǻ
 

 
7.

00
Ǻ

  
 

7.
18
Ǻ

 
 

19
.0

0Ǻ
 

 
 

 
N

/A
 

 
1.

32
Ǻ

 
 

1.
81
Ǻ

 
 

13
.7

2Ǻ
 

 
13

.9
6Ǻ

 
 

19
.7

0Ǻ
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

B
in

di
ng

 
po

ck
et

 
 

 
3.

71
Ǻ

 
 

3.
39
Ǻ

 
 

3.
58
Ǻ

 
 

2.
33
Ǻ

 
 

2.
40
Ǻ

 
 

5.
64
Ǻ

 



 

 
 

77

T
ab

le
 3

.5
. T

he
 e

nr
ic

hm
en

t f
ac

to
rs

 (
E

F
) 

an
d 

yi
el

ds
 o

f 
13

 k
no

w
n 
β2

A
R

 a
go

ni
st

s 
by

 s
ix

 th
eo

re
ti

ca
l m

od
el

s 
ve

rs
us

 th
e 

cr
ys

ta
l s

tr
uc

tu
re

 2
R

H
1.

 

S
tr

uc
tu

re
 

/M
od

el
 

D
oc

ki
ng

 m
et

ho
d 

%
 d

b 
to

  
fin

d 
25

%
 

ag
on

is
ts

 

E
F

 
at

 2
5%

 d
b 

Y
ie

ld
  

at
 2

5%
 

db
 

M
ax

. 
E

F
 

%
 d

b 
E

F
m

a
x 

oc
cu

rr
ed

 
A

U
C

 
A

U
C

 a
t 

25
%

 d
b 

2R
H

1 
G

lid
e4

.0
1 

3.
01

 
3.

38
 

84
.6

2 
15

.3
5 

0.
50

 
0.

90
 

0.
15

 
 

A
ut

oD
oc

k4
.0

 
18

.5
5 

1.
53

 
38

.4
6 

1.
97

 
19

.5
5 

0.
63

 
0.

03
 

 
eH

iT
S

6.
2 

13
.7

8 
2.

46
 

61
.5

4 
2.

92
 

21
.0

5 
0.

79
 

0.
06

 
 

 
 

 
 

 
 

 
 

C
M

1 
G

lid
e4

.0
1 

3.
77

 
3.

65
 

91
.6

7 
11

.0
6 

0.
75

 
0.

91
 

0.
15

 
 

A
ut

oD
oc

k4
.0

 
12

.3
1 

1.
99

 
50

.0
0 

2.
03

 
12

.3
1 

0.
70

 
0.

04
 

 
eH

iT
S

6.
2 

23
.3

7 
1.

33
 

33
.3

3 
2.

27
 

40
.4

5 
0.

70
 

0.
02

 
 

 
 

 
 

 
 

 
 

C
M

2 
G

lid
e4

.0
1 

1.
51

 
3.

97
 

10
0.

00
 

36
.0

9 
0.

25
 

0.
96

 
0.

20
 

 
A

ut
oD

oc
k4

.0
 

11
.0

8 
2.

53
 

63
.6

4 
3.

47
 

13
.1

0 
0.

77
 

0.
08

 
 

eH
iT

S
6.

2 
14

.6
1 

1.
08

 
27

.2
7 

1.
87

 
53

.4
0 

0.
66

 
0.

03
 

 
 

 
 

 
 

 
 

 
C

M
3 

G
lid

e4
.0

1 
7.

77
 

3.
07

 
76

.9
2 

15
.3

5 
0.

50
 

0.
86

 
0.

11
 

 
A

ut
oD

oc
k4

.0
 

15
.0

4 
1.

53
 

38
.4

6 
2.

48
 

15
.5

4 
0.

69
 

0.
06

 
 

eH
iT

S
6.

2 
19

.3
0 

1.
23

 
30

.7
7 

1.
83

 
33

.5
8 

0.
66

 
0.

03
 

 
 

 
 

 
 

 
 

 
C

M
4 

G
lid

e4
.0

1 
12

.3
1 

2.
32

 
58

.3
3 

3.
26

 
15

.3
3 

0.
75

 
0.

07
 

 
A

ut
oD

oc
k4

.0
 

26
.1

3 
2.

32
 

58
.3

3 
2.

83
 

20
.6

0 
0.

74
 

0.
05

 
 

eH
iT

S
6.

2 
15

.3
3 

1.
99

 
50

.0
0 

2.
21

 
18

.8
4 

0.
72

 
0.

05
 

 
 

 
 

 
 

 
 

 
A

M
1 

G
lid

e4
.0

1 
17

.0
4 

2.
46

 
61

.5
4 

2.
48

 
24

.8
1 

0.
69

 
0.

05
 

 
A

ut
oD

oc
k4

.0
 

44
.1

1 
0.

31
 

7.
69

 
1.

27
 

72
.6

8 
0.

44
 

0.
00

 
 

eH
iT

S
6.

2 
30

.0
8 

0.
61

 
15

.3
8 

2.
02

 
41

.8
5 

0.
66

 
0.

02
 

 
 

 
 

 
 

 
 

 
A

M
3 

G
lid

e4
.0

1 
7.

27
 

3.
07

 
76

.9
2 

4.
23

 
7.

27
 

0.
83

 
0.

10
 

 
A

ut
oD

oc
k4

.0
 

31
.3

3 
0.

31
 

7.
69

 
1.

87
 

41
.1

0 
0.

64
 

0.
00

 
 

eH
iT

S
6.

2 
15

.7
9 

2.
76

 
69

.2
3 

3.
11

 
19

.8
0 

0.
78

 
0.

05
 

  
 



 

 
 

78

T
ab

le
 3

.6
. T

he
 r

es
co

ri
ng

 r
es

ul
ts

 u
si

ng
 S

yb
yl

8.
0 

C
S

co
re

 m
od

ul
e 

on
 th

e 
po

se
s 

ge
ne

ra
te

d 
by

 G
li

de
4.

01
. T

he
 b

es
t m

et
ri

cs
 u

nd
er

 e
ac

h 
sc

or
in

g 
fu

nc
ti

on
 

is
 h

ig
hl

ig
ht

ed
 b

y 
bo

ld
/i

ta
lic

. *
G

S
: 

G
li

de
 s

co
re

; 
C

S
: 

C
on

se
ns

us
 s

co
re

 o
f 

th
e 

fo
ur

 s
co

ri
ng

 f
un

ct
io

ns
 t

hr
ou

gh
 r

an
k 

by
 r

an
k 

st
ra

te
gy

; 
C

H
: 

C
he

m
sc

or
e;

 
D

: D
_s

co
re

; G
: G

_s
co

re
; P

S
: P

M
F

_s
co

re
. 

 
E

F
 a

t 5
%

 d
b 

E
F

 a
t 2

5%
 d

b 
A

U
C

 
*G

S
 

C
S

 
C

H
 

D
 

G
 

P
S

 
G

S
 

C
S

 
C

H
 

D
 

G
 

P
S

 
G

S
 

C
S

 
C

H
 

D
 

G
 

P
S

 
R

H
 

6.
08

 
0.

71
 

1.
41

 
2.

83
0.

71
0.

71
3.

08
1.

13
1.

70
3.

11
2.

12
 

1.
98

0.
88

0.
66

0.
77

0.
88

0.
78

0.
79

C
1 

3.
72

 
1.

06
 

1.
06

 
1.

41
1.

77
0.

71
2.

80
1.

84
2.

68
2.

47
1.

48
 

2.
26

0.
83

0.
71

0.
82

0.
82

0.
72

0.
80

C
2 

4.
52

 
1.

39
 

1.
39

 
2.

09
1.

39
0.

70
2.

90
2.

14
1.

86
3.

03
2.

28
 

2.
28

0.
86

0.
76

0.
76

0.
84

0.
78

0.
78

C
3 

1.
41

 
1.

06
 

0.
00

 
0.

35
0.

35
1.

06
1.

54
0.

92
0.

28
1.

20
0.

64
 

1.
27

0.
61

0.
54

0.
50

0.
57

0.
51

0.
63

C
4 

1.
39

 
2.

09
 

1.
39

 
1.

39
1.

04
1.

04
2.

90
1.

93
1.

66
2.

21
2.

55
 

1.
31

0.
82

0.
71

0.
74

0.
78

0.
82

0.
69

A
1 

0.
70

 
1.

39
 

1.
39

 
0.

70
0.

70
0.

35
1.

31
1.

38
1.

38
1.

72
1.

38
 

1.
45

0.
65

0.
66

0.
72

0.
74

0.
70

0.
70

A
3 

2.
44

 
1.

74
 

1.
39

 
3.

13
1.

74
0.

35
2.

07
1.

86
2.

28
3.

03
2.

76
 

3.
03

0.
72

0.
71

0.
74

0.
80

0.
78

0.
77

D
S

 
6.

66
 

2.
44

 
1.

39
 

3.
13

1.
04

1.
04

3.
17

2.
28

1.
86

3.
17

2.
21

 
2.

07
0.

89
0.

77
0.

77
0.

89
0.

78
0.

79

 T
ab

le
 3

.7
. 

 T
he

 r
es

co
ri

ng
 r

es
ul

ts
 u

si
ng

 O
pe

nE
ye

 F
R

E
D

2.
2.

4 
sc

or
in

g 
fu

nc
ti

on
s 

on
 t

he
 p

os
es

 g
en

er
at

ed
 b

y 
G

li
de

4.
01

. 
T

he
 b

es
t 

m
et

ri
cs

 u
nd

er
 e

ac
h 

sc
or

in
g 

fu
nc

tio
n 

is
 h

ig
hl

ig
ht

ed
 b

y 
bo

ld
/i

ta
li

c.
 *

C
S

: C
on

se
ns

us
 s

co
re

 o
f 

fi
ve

 s
co

ri
ng

 f
un

ct
io

ns
 th

ro
ug

h 
ra

nk
 b

y 
ra

nk
 s

tr
at

eg
y;

 C
G

: C
he

m
ga

us
s3

; C
H

: 
C

he
m

sc
or

e;
 S

S
: S

cr
ee

ns
co

re
; S

G
: S

ha
pe

ga
us

s.
 

 
 

E
F

 a
t 5

%
 d

b 
E

F
 a

t 2
5%

 d
b 

A
U

C
 

 
*C

S
 

C
G

 
C

H
 

P
LP

 
S

S
 

S
G

 
C

S
 

C
G

 
C

H
 

P
LP

 
S

S
 

S
G

 
C

S
 

C
G

 
C

H
 

P
LP

 
S

S
 

S
G

 
R

H
 

3.
18

 
3.

89
 

4.
95

 
2.

47
3.

18
2.

47
2.

90
3.

11
3.

25
2.

83
2.

47
 

1.
41

0.
85

0.
89

0.
91

0.
85

0.
81

0.
35

C
1 

3.
18

 
3.

18
 

2.
83

 
2.

83
3.

18
2.

47
2.

47
1.

98
2.

90
2.

05
2.

26
 

1.
41

0.
82

0.
79

0.
86

0.
77

0.
79

0.
70

C
2 

3.
48

 
2.

78
 

3.
13

 
2.

78
3.

13
1.

74
2.

97
3.

24
2.

90
2.

69
2.

83
 

1.
52

0.
84

0.
85

0.
87

0.
79

0.
80

0.
73

C
3 

0.
35

 
0.

00
 

0.
35

 
0.

00
0.

00
0.

00
0.

57
0.

57
1.

20
0.

78
0.

64
 

0.
21

0.
56

0.
57

0.
58

0.
54

0.
55

0.
59

C
4 

1.
74

 
2.

44
 

1.
74

 
1.

39
2.

09
1.

74
2.

34
2.

90
2.

55
2.

07
1.

86
 

1.
24

0.
82

0.
85

0.
82

0.
75

0.
75

0.
69

A
1 

1.
39

 
1.

39
 

1.
04

 
1.

39
0.

70
0.

35
1.

86
1.

93
1.

86
1.

38
1.

38
 

1.
17

0.
72

0.
75

0.
74

0.
64

0.
65

0.
66

A
3 

4.
52

 
1.

74
 

3.
13

 
3.

48
3.

13
1.

39
2.

76
2.

69
3.

17
1.

59
1.

72
 

2.
62

0.
78

0.
75

0.
81

0.
71

0.
71

0.
75

D
S

 
2.

44
 

3.
83

 
5.

57
 

3.
13

2.
44

2.
09

2.
83

3.
24

3.
45

2.
76

2.
55

 
1.

38
0.

86
0.

89
0.

92
0.

85
0.

83
0.

72
 



 

79 
 

Table 3.8. The actual number of compounds used for calculating EF and AUC metrics. 

 
Structure/Model aAntagonists Num. bNonbinders Num. 

2RH1 29 272 
CM1 29 272 
CM2 30 245 
CM3 28 307 
CM4 30 307 
AM1 30 303 
AM3 30 205 
D-SS 30 374 
F-SS 30 374 

aThe bound ligand for 2RH1 and CM1~CM4  were excluded from the calculation. 
bA number of decoys were filtered by Glide before the refinement stage. They thus did not have a 
Glide score and were treated to be at the end of the ranked database. 

 
 

 
 



 
 

Chapter 4. Development, Validation and Application of Target
specific Pose Filters in StructureBased Virtual Screening of 

Subtype Selective Ligands  
4.1.  Introduction 

Traditional drug discovery and development approaches were generally applied for 

searching novel active compounds and optimizing compounds’ potency with a specific drug 

target in mind. Recent fast developments in proteomics and chemogenomics studies, 

however, have triggered a paradigm shift from this focus toward a more comprehensive 

analysis of the entire ligand space and target space and to explore all prospective drug-target 

interactions 3,8,221,222. The role of small molecules are no longer limited to a inhibitor or active 

compound that can be promoted to drug candidates, but more as a probe to understand 

biological functions through perturbing cellular circuits and pathways. Despite the increasing 

complexity and diversity of research evolved from this new field, the major questions could 

be generally categorized into two themes, for an interested organic compound with certain 

observed phenotype, how to identify the responsible biological target (target fishing); and 

what is the selectivity profiles of a known organic compound across all relevant targets 

(ligand profiling)4,5,33.  

The success of computational approaches, including structure-based drug design and 

Quantitative Structure-Activity Relationship (QSAR) analysis, has been well recognized in 

the field of rational drug design and discovery223. However, the rapid growing research in the 

area of chemogenomics and chemical biology propose new requests for the development of 

computational methods. There are already a number of reviews discussing possible 
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computational strategies that can be applied in this field 8,33,62. A main theme emerged from 

this area relates to prediction of small molecule’s selectivity profile at different levels, for 

instances, within a target family, or subfamily. Several previous studies have explored the 

effectiveness of using ligand-based approaches such as two-dimensional fingerprints and 

Quantitative Structure-Selectivity Relationship (QSSR) models in “selectivity searching”. It 

was shown that carefully designed fingerprints and QSSR models are capable of enriching 

subtype-selective ligands in small to medium size data sets 136,224,225. Several other groups 

aimed at structure-based approaches by incorporating information from predicted protein-

ligand contacts. Singh and colleagues 55,56 defined a series of protein-ligand interaction 

properties to generated Structural interaction fingerprint (SIFt) at protein-ligand’s binding 

site. Virtual screening studies using SIFt revealed superior performance as compared with 

traditional scoring functions.  Graaf and Rognan et al. showed that a topological scoring 

function based on their ligand protein interaction fingerprint (IFPs) was able to selectively 

identify agonists or antagonists of the beta2 adrenergic receptor 57-59. In addition, there is an 

increasing interest in the computational drug discovery community to build target-specific 

scoring functions, which have a straightforward application in exploring ligand’s binding 

profiles 60,61,226,227. 

Our lab has developed a novel type of four-body descriptor to effectively represent 

the protein-ligand interface: the PL/MCT-tess (Protein-Ligand atoms’ pair wise Maximal 

Charge Transfer potential based on Delaunay Tessellation) descriptor. Application of this 

descriptor to our routine QSAR modeling workflow resulted in predictive models for protein 

ligand binding affinity61. A recent study by Hsieh et al. in our group suggested that QSAR 

models developed based on multiple docking poses from a single cognate ligand can 



 

82 
 

effectively distinguish native-like docking poses from decoy poses, thus dramatically 

increased the virtual screening performance when combined with the traditional force-field 

based scoring functions60,61. Herein, we continue to use the PL/MCT-tess descriptors as an 

effective representation of the protein-ligand interface, and explored other pose-filters that 

explicitly account for small molecules’ subtype binding selectivity. In order to do this, a 

reference PL/MCT-tess profile (normally from the X-ray protein-ligand complex) was 

initially used to partition a training set of known actives’ docking poses into reference-

similar versus dissimilar class. Then a binary classifier was developed that can distinguish 

reference-similar poses from all available poses of known nonselective/inactive compounds. 

By changing the reference ligand type (non-selective or subtype selective ligand) and the 

calibration pool included in target-specific pose filter (treat inactive compounds only as 

decoys or include also non-selective compounds as decoys), we hope to direct the proposed 

pose-filters to selectively enriching subtype-biased ligands.  

As proof of concept, we first assessed the capabilities of the proposed pose filters to 

identify known active compounds using 13 subsets from the Directory of Useful Decoys 

(DUD). Compared with the traditional scoring function, namely Chemgauss3, from Fred, we 

found that our approach showed better performance for 10 out of 13 data sets, and similar 

performance for the remaining 3 receptor targets. The best data set provides an increase in 

the enrichment from 18- to 57-fold over random at a false positive rate of 1%. We further 

challenged our approaches on a data set of 189 compounds with known binding data of the 

beta adrenergic receptors (βAR) GPCR subfamily. The βARs belong to the extensively 

explored Class A Rhodopsin like GPCRs, and a plethora of experimental data is available for 

model evaluation and validation. The three most explored subtypes in the βAR family are 
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designated β1AR, β2AR, and β3AR. They are widely distributed and play critical biological 

functions on several tissues. The β1AR subtype is expressed predominantly in mammalian 

heart, while the β2AR is the major subtype in most vascular and bronchial smooth muscle 

cells, the β3AR is mostly located in adipose tissues 228,229. The βAR mediated signaling 

pathways play a critical role in regulating cardiac function, and βAR mediated relaxation of 

the smooth muscle also has essential therapeutic values in treating asthma 228-231. 

Identification of βAR ligands with the desired selectivity and activity patterns may lead to 

better drug candidates as the β1-stimmulating-effects of several β2-agonists determines their 

cardiac side effects in treating asthma. Similarly, the β2-activity of β1-antagonists may exert 

harmful effects when used in the treatment of heart diseases. With recent publication of the 

human β2AR and Turkey β1AR crystal structures 232-234, applying structure-based approach 

to explore ligand’s subtype selectivity has attracted further attention for the βAR sub-family. 

On the other hand, the sequence similarity among these three subtypes is quite high, 

especially near the ligand binding regions, making them challenging targets to elucidate 

ligand binding specificities. Herein, we reported the performance of a novel subtype biased 

scoring protocol in searching for selective ligands. Furthermore, by analyzing the derived 

computational tools for highly weighted PL/MCT-tess descriptors, we also proposed 

prospective protein-ligand contacts that may contribute to the ligands’ subtype specificity 

within the βAR family.  

4.2.  Pilot Study 

4.2.1.  Data Sets Selection ( the DUD Data Set) 

The structures were directly downloaded from the Directory of Useful Decoys (DUD) 

data sets: http://dud.docking.org 235. The DUD has been recently compiled by the Schoichet 
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group, specifically for benchmarking the performance of docking methods. The data sets 

contain a diverse set of 40 interesting protein targets, as well as a list of known ligands and 

decoys for each target. On average, 36 decoys were chosen for each active compound 

structure from the free ZINC database of commercially-available compounds. To minimize 

the physical bias in benchmarking docking methods, the decoys were chosen specifically to 

match the physical properties but topologically dissimilar to the known active structures. A 

number of criteria were explicitly considered such as molecular weight, cLogP, number of 

hydrogen bonding partners, and number of rotatable bonds. Recently, Good et al. carried out 

additional refinements of the DUD actives by applying a lead-likeness filter (AloP <4.5, MW 

<450) and clustering analysis. To be comparable with other virtual screening methods, we 

have also used the 13 data sets that contain at least 15 clusters. (see Table 4.1 for details) In 

total, there are six members of the kinase protein family (cdk, egfr, p38, pdgfrb, src, and 

vegfr2), two members of metalloenzymes (ace, pde5), one serine protease (fxa), and several 

other enzymes. To employ the proposed virtual screening methods, the original DUD 

protein-ligand crystal structures were used as the reference during pose filter training. For 

vegfr2 and pdgfrb where no co-crystallized ligand is provided, the top-scored pose from 

docking a known ligand to the apo protein structure was used. The data set was collected and 

cleaned by previous lab member, Dr. Jui-hua Hsieh.  

4.2.2.  Methods 

Docking Methods for Pose Generation 

Each protein target were prepared using the Molprobity server to add hydrogen atoms 

and assign partial charge, as well as correcting potential structure problems including missing 

atoms, potentially transposed heavy atoms in asparagine, glutamine, and histidine side chains. 
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The co-crystallized water molecules were removed in order to reduce bias during pose 

generation. On the other hand, the cofactors or metal atoms were preserved in cases where 

they are known to be critical for protein function or involved in ligand binding. The DUD 

actives and decoys were used directly from download, but ionized and converted to three-

dimensional conformers with Omega (version 2.2.1)236 using the default parameters. The 

Fred docking software (version 2.2.5)236 from OpenEye Scientific was then employed to 

generate docking poses for each conformer from the derived library. We employed the 

default settings for Fred docking except for changing to a larger number of preserved poses. 

For each molecule, the top 30 poses selected by the Fred’s default scoring function, 

Chemgauss3, were kept for post-docking analysis. For the 6 kinase protein targets, additional 

restraints were applied to preserve the canonical protein-ligand interactions at the hinge 

region 237. The final data of the docking poses and calculated Chemgauss3 scores were 

provided by previous lab member, Dr. Jui-hua, Hsieh. 

 Novel Descriptors of the Protein-Ligand Interface Based on Conceptual DFT 

Our group recently developed a set of simple yet effective geometrical descriptors, 

the ENTess descriptors, to describe the physicalchemical properties at the protein-ligand 

interface. It utilizes the Pauling electronegativity (EN) to annotate atom types and uses 

Delaunay Tesselation (Tess) to characterize the geometrical property at the interface. Briefly, 

for each protein-ligand complex, Delaunay Tessellation was first used to partition the space 

into an ensemble of tetrahedrons. Only interfacial tetrahedrons that are formed by both 

protein and ligand atoms were kept to define the protein ligand interface. Furthermore, a 

distance cutoff of 8A (distance for physically meaningful interactions) was used to exclude 

Delaunay quadruplets with long edges between atom vertices. Theoretically, a total of 554 
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types of Delaunay quadruplets were defined by their unique four-atom composition, 

including the atom types and the origins (receptor atom or ligand atom). The descriptor value 

was calculated by summing up the electronegativity values of the composing vertices/atoms. 

In our previous studies, we have successfully built quantitative structure-binding affinity 

relationship models for a data set of 264 x-ray crystallized protein-ligand complexes using 

the ENTess descriptors and a standard QSAR modeling workflow 238.  

More recently, our group improved the original ENTess descriptors by assigning a 

more physic-chemically rigorous property to be the descriptor values. Instead of using atom’s 

electronegativity values, pair wise atomic potentials for the protein-ligand complexes (PL) 

based on maximal charge transfer (MCT) were used to derive the novel PL/MCT-tess 

descriptors. The MCT is based upon the conceptual DFT 239 to determine the maximal 

electron flow between the donor and acceptor atoms. Assuming that the total energy of the 

system is perturbed by the charge transfer up to the second order: The MCT is calculated as 

follows, 

∆ ∆ 1/2 Δ     (2) 

where ∆E and ∆N are energy change and charge transfer, respectively. When the total 

energy is minimized with respect to the charge transfer, i.e. ∆
∆ 0, we have 

∆ /    (3) 

here /   ,    /    , are the chemical potential (negative of 

electronegativity) and the chemical hardness, respectively.  represents the external potential 

formed by the framework of atomic nuclei. 

The values for a specific tetrahedron type  can be calculated from the following 

equation:  



 

87 
 

PL MCT⁄ tess ∑ ∑ ∑ MCT MCT /    (4) 

 where n is the number of occurrences of this tetrahedron type in a given protein-

ligand complex. For a specific tetrahedron k, p iterates through all vertices belong to the 

protein, while l iterates through all vertices belong to the ligand, and  is the distance 

between the considered pair of protein and ligand atoms. It should be noted that we are only 

interested in the interfacial Delaunay tetrahedrons; therefore for each tetrahedron it contains 

at maximum of three protein atoms (p) or ligand atoms (l).  

The described descriptors were successfully employed in our previous studies to 

derive classification models that can differentiate native-like docking poses (showing low 

RMSD to the co-crystallized pose) versus non-native like decoy poses (showing high RMSD 

to the co-crystallized pose). After a rigorous validation using the 13 DUD datasets, it was 

shown to significantly improve the traditional physical force field-based hit scoring functions 

by combining the pose scoring from the classification models 60. These studies justified the 

application of PL/MCT-tess descriptors to explore the protein-ligand interface.  

Target Specific Classification Models for Discriminating Irrelevant Ligand 

Docking Pose  

 A number of recent studies showed that inaccuracy of the scoring functions have 

become one of the largest obstacles in applying molecular docking in structure-based virtual 

screening. It is not uncommon to find that the traditional scoring functions cannot identify 

the native-like ligand pose from the decoy poses, which have comparable binding energies 

but depicting irrelevant protein-ligand interactions. Figure 4.1A shows the RMSD to the co-

crystallized ligand pose versus the energy-based docking scores for 1000 poses of the 

cognate ligand generated by the Fred program. In Figure 4.1B, 4.1C, 4.1D, five different 
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beta2-adrenergic receptor inhibitors (including the cognate ligand, noted in red) were docked 

to a single protein structure (PDB: 2RH1) 233 using the Glide program 51. The RMSD were 

then calculated between the docked poses of each ligand with the corresponding co-

crystallized pose (PDB: 3D4S, 3NYA, 3NY8, 3NY9) 240,241. No relationships could be 

identified between the RMSD to the native-pose and the docking score. (Figure 4.1a, 4.1c) 

When evaluating the relationship between the RMSD to the x-ray pose and the similarities to 

the x-ray pose in terms of Euclidean distance in the PL/MCT-tess descriptor space, we 

observed stronger correlations (r=0.62 versus 0.38 for Glide scores, Figure 4.1d, 4.1c). By 

analyzing the average RMSD to X-ray poses against distances in the PL/MCT-tess descriptor 

space suggested that those docking poses with normalized PL/MCT-tess distance lower than 

-1 are highly likely to be within 4A RMSD to their corresponding x-ray pose. The 4A 

threshold is usually considered a reasonable indicator to quantify if a ligand pose is located 

inside its x-ray binding pocket with a roughly correct global orientation 242. Therefore, in this 

study, we define the native-like binding pose as those having similar binding mode to the 

target protein-ligand complex (i.e. with normalized distance to target ligand in PL/MCT-tess 

descriptor space lower than -1), and thus are potentially showing low RMSD to their own x-

ray binding pose. Furthermore, all the docking poses generated by known binding decoys, no 

matter how close they are to the co-crystallized ligand in the PL/MCT-tess descriptor space, 

are considered non-native like poses. By such definition, the problem of separating native-

like poses versus other decoy poses can be learned through training a standard classification 

model based on their PL/MCT-tess descriptors. The detailed workflow for selecting the 

native-like and decoy poses for model’s training set is described in Figure 4.2. Because there 
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is no cognate ligand with the vegfr2 and pdgfrb protein targets, the pose with the lowest 

MedusaScore was utilized as the native pose 243.  

To develop the classification model that can distinguish native-like poses from other 

irrelevant poses, we used the RandomForest correlation algorithm implemented in the freely-

available R package randomForest 17. RandomForest was known for its excellent prediction 

accuracy and efficiency at large data sets. It has an internal unbiased estimate of the 

generalization error during the growth of the forest, thus no additional model validation is 

necessary. In addition, it provides reasonable flexibility in dealing with imbalanced class 

ratio by imposing higher penalties on misclassification of the minority class. For details of 

the RandomForest algorithm, the parameters used, and the evaluating metrics see methods in 

Chapter 5.  

Virtual Screening Protocols Using Post-docking Pose Filters 

As described above, the 13 DUD data sets were docked to their corresponding protein 

target using the Fred docking program, and the default Chemgauss3 scoring function were 

used to select 30 poses per ligand for further analysis. We therefore calculated the PL/MCT-

tess descriptors for each preserved pose to describe its contacts with the protein residues. 

Three different approaches were used to assign the fitness score of each compound in the 

final ranking list: (Figure 4.3) 

i. (PL/MCT-dist) All the poses for the same compound were ranked by its similarity 

to the cognate ligand’s pose in terms of distance in the PL/MCT-tess descriptor 

space. The distance for the most similar pose was used as the final score of this 

compound in the ranking list. This approach purely uses the information from the 

PL/MCT-tess descriptors to select pose and rank the compound, thus providing a 
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direct evaluation on how this descriptors can distinguish ligands from decoys by 

its own. 

ii. (PL/MCT-similarityFilter) In this approach, a pose filter is first developed to 

exclude poses that are too dissimilar to the cognate ligand’s pose in terms of 

distance in the PL/MCT-tess descriptor space.  The cutoff for pose similarity is 

determined by using all the poses for the binding decoys that were in the 

randomly selected 10% hold-out data. Assuming the distance between the decoy 

pose to the native pose follows a normal distribution, we defined the distance 

cutoff as follows:  DT y Zσ   where   is the average Euclidean distance 

between each pose to the native pose, and Z is an arbitrary parameter to control 

the significance level. Here, we set the default value of Z  as -0.5 to obtain 

reasonable pose coverage. The final score of each compound is then determined 

by the best Chemgauss3 score for the remaining poses. 

iii. (PL/MCT-RFFilter) This approach is similar to PL/MCT-similarityFilter 

approach in that both approaches use a pose filter to exclude irrelevant poses of a 

compound and then rank compounds based on their best Chemgauss3 scored 

poses. The difference in PL/MCT-RFFilter is that it employs both the known 

active and decoys docking poses from the previously excluded 10% hold-out data 

to derive the pose filter, as described above. By using the machine learning 

algorithm random Forest, we are thus able to calibrate the contribution of each 

PL/MCT-tess descriptor type in the resulting pose filter.  

Assessment of Virtual Screening Performance 
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The conventional receiver operating characteristic (ROC) curve was used in this 

study to evaluate virtual screening protocol’s ability to recover known ligands from the top-

ranked screening library. In addition to report the area under the ROC curve (AUC) as an 

indicator for model performance across the entire screening library (see Chapter 3, methods), 

we used another metric, the ROC Enrichment (ROCE), to quantify model performance at the 

early stage. ROCE is defined as the ratio of true positive rate to the false positive rate, at a 

given percentage of recovered known decoys 244. This metric is similar to the conventional 

Enrichment Factor metric but is independent of the ratio of decoys to actives in evaluated 

screening library. We report ROCE values at 1%, 2%, and 5% as recommended in previous 

publications. To ensure fair comparison, any compound with missing scores, either from 

removal of all its poses by pose filter or by docking error, were placed at the bottom of the 

ranked list. To estimate errors, we did 100 independent runs, and then reported the average 

and standard deviations to approximate the errors. In each run, 10% of the data was randomly 

selected and used to train the filter, which will later be applied to rank the remaining 90% 

data. (Figure 4.3)  

Randomization Test 

To examine the robustness of the proposed pose filters, we generated two random 

pose filters and compared their performance with the corresponding real pose filters. The first 

test resembles the Y-randomization test, where we scrambled the activity labels before 

training the pose filters. While in the second test we keep the activity labels, but randomly 

shuffling the PL/MCT-tess descriptor profiles. The active to decoy ratio was preserved in 

both cases. In short, the PL/MCT-RFFilter calculations were repeated with the randomized 

activities or descriptor profiles of the training set.  The estimated prediction error from the 



 

92 
 

developed randomForest models and their virtual screening performance were compared with 

models generated from real data, and see if there are significant difference.  

4.2.3.  Results and Discussion 

Before applying the virtual screening protocol for any real analysis, I used the 

benchmarked DUD data sets to assess the performance of the proposed approach. Thirteen 

datasets with diverse chemical features were selected in this case. For each data set, 10% of 

decoys and known actives were excluded randomly at each calculation, and used as the 

calibration set to determine the pose filter as described (methods).   

The average number of poses used in the pose filter construction and the estimated 

prediction errors are shown in Table 4.2. The sensitivity, specificity and CCR were 

calculated based on the out of bag (OOB) estimates during model generation 17,163. The 

results show that the overall accuracy in terms of CCR exceeds 0.80 for all data sets except 

ace, ache and fxa data sets. The sensitivities are generally lower than specificities, most 

probably due to the extreme imbalance of the training set. It would be interesting as a future 

study to implement different sampling approaches to down-size the decoy set before training 

the randomForest classifier, and see if that improves models’ performance. The successful 

construction of randomForest classifiers for most data sets in part demonstrated that our 

definition of native-like poses is practically reasonable.  

The ROC curves of the individual 13 DUD datasets using Chemgauss3, PL/MCT-dist, 

PL/MCT-similarityFilter, and PL/MCT-RFFilter were compared in Figure 4.4. The data in 

Figure 4.4 took the results from one of the 100 repeated studies as an example. Figure 4.5 

and 4.6 illustrates model performances in terms of overall ROC-AUC, ROCE at 1%, 2% and 

5%. It is obvious from the plots that the PL/MCT-RFFilter performs best compared to other 
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approaches, showing good performance in both overall ranking and early enrichments. For 

all data set except cdk2 and hivrt, the PL/MCT-RFFilter approach gives AUC higher than 

ranking by the empirical scoring function Chemgauss3 score. On the contrary, we did not 

observe consistent improvements in terms of ROC-AUC after applying the PL/MCT-dist and 

PL/MCT-similarityFilter approach. It is in fact within our expectation that the PL/MCT-dist 

should show inconsistent performance across different data sets. The assumption behind the 

PL/MCT-dist protocol is simple and most often too optimistic: it uses the similarity of a 

ligand’s docking pose to the x-ray crystallized conformation as the only indicator of this 

pose’s fitness in the protein binding pocket. Any other favorable contacts that could lead to 

gain of energy are underestimated in this case. In compare with the PL/MCT-RFFilter, the 

PL/MCT-similarityFilter ignores the set of pre-excluded known actives when generating pose 

filter and does not acknowledge the distinct importance of each interaction descriptor type 

for classifying irrelevant versus native-like poses. Therefore, the PL/MCT-similarityFilter 

achieved better performance than using the Chemgauss3 scoring functions for a number of 

data sets, such as the ache, cox2, and pde5, with the best case of 32.3 fold enrichment at 1% 

of FPR. But in other cases, PL/MCT-similarityFilter has similar or even worse performance. 

Therefore, we could conclude that the relative better performance of PL/MCT-RFFilter can 

be attributed to its inclusion of more information during pose filter generation stage, which 

has been extensively discussed in a number of previous publications 60,226,227.  

In virtual screening, early recognition is a very critical criterion for evaluating model 

performances, because only the top fraction of ranked list will be subjected to further 

experimental validation in practice. The PL/MCT-RFFilter approach also showed clear better 

performance when early enrichment is considered, with the best example (cox2) giving an 
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enrichment of 56.9 fold at the false positive rate of 1%. Across all the evaluated data sets, the 

PL/MCT-RFFilter approach gives a substantially higher number of data sets with ROCE 

higher than 15 (10 out of 13 data sets) compared to using docking scores alone (6 out of 13 

data sets, Table 4.3 ). This further demonstrates the advantages of using PL/MCT-RFFilter 

approach, and the implementation of this interaction will be useful. Furthermore, the 

PL/MCT-dist method performs better than using Chemgauss3 scores in five data sets in terms 

of ROCE at 1% of false positive rate, especially for difficult cases like ache, pde5, and 

pdgfrb. This demonstrates that the statistical information contained in the protein ligand 

interaction descriptors alone can be informative in certain cases. It needs to be noted that the 

native-pose for pdgfrb and vegfr2 were not from experimentally solved x-ray complex 

structure, and that the receptor structure for pdgfrb is a homology model. So it is not 

surprising that the Chemgauss3 scoring function did not give good results for these two 

targets. The PL/MCT-RFFilter approach, however, gives good enrichment of 24.9 and 32.3 

fold, respectively, at the false positive rate of 1%. This result suggests that a reasonable 

prediction of the native-like ligand pose and including the knowledge of the critical protein-

ligand contacts can rescue virtual screening performance for likely inaccurate receptor 

structural models.  

To demonstrate the virtual screening results from PL/MCT-RFFilter approach is not 

by chance, we applied two types of fake pose filters during virtual screening and compared 

their performances with the pose filters constructed from the real data. These two artificial 

sets differ in whether the descriptor profiles are randomly shuffled or the activity labels are 

randomly shuffled. The pose filter trained from randomized descriptor or activity profile 

showed close to random classification accuracy, practically put every instance to the 
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dominant class, the decoy class. As shown in Figure 4.7, the virtual screening performance 

derived from scrambling the activity files will result in inseparable class distributions, 

leading to a pose filter that will classify any pose as decoys and eliminate them from further 

evaluation. On the other hand, the pose filter generated from randomly shuffled the 

descriptor files is able to derive a tentative pose filter, but this information is not relevant to 

the selection of native-like poses. As illustrated in Figure 4.7, this filter excluded 

indiscriminately of a fraction of the entire collection of poses, resulting in a similar or worse 

virtual screening performance as using the docking scores alone. In summary, this 

randomization test showed that the information extracted by the filter is not spurious, and 

could effectively guide the selection of native-like pose during virtual screening.  

4.3. Virtual Screening of Subtype Selective Ligands for the Beta Adrenoceptor Protein 
Family 

The major focus for this study is to evaluate whether the information from PL/MCT 

descriptors are capable of improving virtual screening of subtypes selective ligands. For the 

βAR protein family, there have been extensive studies on putative recognition sites in the 

binding pocket that can differentiate the binding propensities of a small molecule 245-247. 

General docking programs that evaluate ligands fitness solely based on energy considerations 

thus have difficult to discriminate these types of interactions. Imposing a number of 

intermolecular or pharmacophoric constraints can partially solve the problem, but is often too 

restrictive and yield few interesting hits. The PL/MCT-tess descriptors provide an option to 

include ligand information automatically during training the pose filter, for example, by 

including interfacial descriptors for non-selective ligands in the calibration set. However, it 

should be employed with great cautious, since it represents a much challenging task than 
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differentiate binding decoys or geometrical decoys from the active compounds, and requires 

discerning more delicate preferences of the different protein-ligand contacts. We have carried 

out a systematic study on a large collection of published human β1AR, β2AR, and β3AR 

structural models as well as two β2AR crystal structures, i.e., 2RH1 (released by the RCSB 

Protein Data Bank (PDB) on Oct. 30, 2007) and the latest, 3P0G (released by RCSB PDB on 

Jan. 19, 2011) (Table 4.4). The de novo designed structural models were collected from the 

same group whose β2AR model has shown a comparable or better virtual screening 

performance to the X-ray structures (Chapter 3). The five homology models were retrieved 

from the well-recognized modeling server ModWeb 248 and GPCRDB 249.  Both agonist and 

antagonist bound models were included when possible to account for any structural features 

associated with functional activity. 

4.3.1.  Small Molecule Data Set 

To perform any meaningful evaluations of the virtual screening performance for 

subtype selective binders within the beta adrenergic receptors family, we will need a 

reasonably large and accurate dataset representing different types of compounds targeting the 

beta-adrenergic receptor family. A dataset of 207 compounds were collected from the 

ChEMBL database, incorporating the data published from 1996 through 2009. Although the 

binding data were extracted from multiple sources, the protocols for binding assay were kept 

similar. Among all the binding data, only measurements using I-CYP as the radio-labeled 

ligand were considered. For purpose of identify subtype selective ligands, the compounds 

included in the final data set are mostly tested against two of three or all three subtypes of 

adrenergic receptors. (Exceptions were made for 11 compounds that are β2AR non-binders. 

They were included later during the QSAR modeling process to improve models’ 
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classification accuracy). In summary (Figure 4.8), for each subtype of βAR, there are 196 

compounds in β1AR data set (Ki from 0.017nM to 1mM) ; 207 compounds in β2AR data set 

( Ki from 0.14nM to 0.1mM ) ; and 166 compounds in β3AR data set (Ki from 1.1 nM to 

0.15mM). To simplify the situation, we did not distinguish between agonist, inverse agonist, 

and neutral antagonist within binders. This is also a legitimate approximation, because as 

shown in our previous studies, as well as in others’ work, the crystal structures represent a 

putative early activation stage, and is capable of retrieving both agonists and antagonists 

58,250-252. In addition, data for function assays often varies in experimental settings, making it 

difficult for a direct comparison. However, it would be definitely interesting in the future to 

explore the applicability of the described approach in predicting the overall complex 

pharmacological profiles of β adrenoceptor ligands.  

To date, NC-IUPHAR (International Union of Basic and Clinical Pharmacology 

Committee on Receptor Nomenclature and Drug Classification) has not published any 

recommendations to define a compound as selective ligand for a given receptor subtype 

within the protein family. However, although the selectivity varies based on the receptor 

types in consideration, a compound can be considered selective if its ratio of binding affinity 

is higher than 100 times 253. Here, due to the limited data sources for highly selective βAR 

ligands, we define a compound as selective if it has a modest selectivity and binding affinity:  

difference in pKi ≥1.5, and pKi >=6 for the desired subtype. By this definition, there are 20 

β1AR selective ligands, 8 β2AR selective ligands, and 12 β3AR selective ligands. We should 

note that the available β2 selective ligands are generally in a lower activity range, it 

represents a difficult case in this task.  
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4.3.2. Methods 

Drug-like Decoys Set:  

A standard decoy set was downloaded from Schrodinger’s website. It contains 1000 

decoys with drug-like properties. Unlike the DUD data sets where the decoys were specially 

designed to challenge the docking algorithms, the compounds from this decoy set resemble 

more of a real virtual screening campaign, where non target-specific, drug-like compounds 

were used. 

Protein Set Up and Docking Programs 

The protein structures were prepared with Glide protein preparation wizard to add 

missing hydrogen and assign partial charges (see Chapter 3). We used two different popular 

docking programs, the Glide (methods in Chapter 3) and Fred (see above in Pilot study). 

Both of the implemented scoring functions (Chemgauss3 and GlideScore) belong to the class 

of empirical scoring functions. Because Glide docking pose with GlideScore showed 

consistent better performance (0~5 fold better in ROCE at 1% of specificity) than 

Chemgauss3, I only report here the results from Glide docking.  

Assessment of Virtual Screening Performance 

Same performance evaluation metrics were used as in the pilot study.   

4.3.3. Results and Discussion 

Virtual Screening Using Pose Filters Generated from Known Inactives 

Initially, we tested whether the proposed approaches are able to identify active 

ligands from known inactives as well as drug-like decoys.  To generate the pose filters, the 

binding pose of a co-crystallized ligands (for β2Xtal , β2Xtal ), the binding pose derived 

from a simulation study (for β1EPI , β2TA ,β3AJ ), or the top Glide-score pose of a selected 
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potent ligand (for β1GPCRDB ,  β1ModWeb , β1ModWeb , β3GPCRDB , β3ModWeb )  was 

employed as the reference pose, while the known inactives for each receptor type were 

utilized as the calibration set to derive the pose filters. Because the Glide docking was 

observed with good fidelity in pose predictions with our previous studies as well as other’s 

published work, it is reasonably safe to use the top-scored binding pose of the reference 

ligand from Glide docking to set the reference descriptors. Table 4.5 listed the information of 

the number of seeds and decoys used for each receptor model. Figure 4.9 shows the model 

performance using the default empirical scoring function GlideScore, versus the PL/MCT-

dist approach, PL/MCT-similarityFilter approach, and the PL/MCT-RFFilter approach as 

defined in the pilot study. The improvements from applying PL/MCT-similarityFilter or 

PL/MCT-RFFilter, however, were only marginal for most receptors, with the best case of 

β1ModWeb  where the PL/MCT-RFFilter increases the ROCE at 1% from 4-fold to 8-fold 

compared with the Glide scores. There are several possible reasons for this marginal 

improvement in compare with those observed in the pilot study. First the poses selected via 

Glide score could be generally more native-like than the poses selected via Chemgauss3 

score 242,254, thus the improvements from applying a native-like pose classifier (pose filter) 

would be less prominent. This is highly likely the major cause, because we observed 

consistently better virtual screening performance of Glide score versus Chemgauss3 (up to 

200% increase in ROCE at 1%, data not shown). This is consistent to our previous 

observations 60, suggesting that the outcomes of applying the target-specific pose filter is 

dependent on the parent scoring function used. Second, we used a set of known inactives to 

generate the pose filter, instead of using the “putative inactive” decoys as in the pilot study. 

This is good in a sense that those compounds are true inactives, so all the docking poses 
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generated from this set can be safely put into the class of irrelevant binding poses. However, 

this set consists of relatively small number of chemical scaffolds, leading to a more biased 

calibration set and pose filters with less general applicability domain.   

Besides evaluating proposed approaches’ ability at identifying active compounds, we 

also evaluated how good they can enrich selective ligands at early stage. As we expected, all 

structural models except for β2Xtal  showed no preference for subtype selective ligands. The 

virtual screening results showed a much lower enrichment factor on selective ligands versus 

all known actives. Similarly, because the pose filters were not designed to differentiate 

subtype selective ligands, neither of the PL/MCT-similarityFilter and PL/MCT-RFFilter help 

to enrich subtype selective ligands. On the other hand, the PL/MCT-dist approach showed 

surprisingly good virtual screening performance on enriching selective ligands when using 

β1GPCRDB , β1ModWeb , and β2Xtal  models. This suggests that for certain receptor model 

and reference ligand combinations, the simple distance calculation between a docking pose 

and the reference pose could provide reasonable judgment as how likely the pose represents a 

selective ligand. More detailed discussions on how the selection of reference ligand could 

influence the virtual screening performance are provided in the next section.   

Virtual Screening of Selective Ligands using Subtype-biased Pose Filters 

In this study, we evaluated the possibility of selectivity biased pose filter by using the 

subtype selective ligand as reference and including the non-selective ligands into the 

calibration set when deduce the pose filters (Figure 4.2). Similar to what have been described 

in the previous section, the PL/MCT-tess descriptors derived from the top GlideScore pose of 

the reference ligand was used to define the native-like pose during the pose-filter training 

stage. Here, the two classes employed to derive randomForest models become putative 
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native-like poses of known selective ligand versus all poses of known non-selective and 

inactives. It should be emphasized again that all the pose information used during model 

training come from the hold-out set, which has been excluded from later model evaluation. 

As an example, Figure 4.10 showed the virtual screening performance using 

 β1ModWeb ,  β2Xtal , and β2TA  receptor models. Comparing Figure 4.10F with Figure 

4.9B on the performance using β2TA model, it is clear that the virtual screening protocol of 

PL/MCT-similarityFilter and PL/MCT-RFFilter in combination with the subtype-biased 

setting (Figure 4.9 B) has the best ability to enrich β2 selective ligands. The two approach 

enabled a favorable ROCE reaching approximately 16-fold and 8-fold, respectively, over 

random at a false positive rate of 1%. Considering the fact that the reference ligand (β2 

selective agonist TA2005) used are same between these two tests, the different results 

suggest that using the subtype biased pose-filters are indeed helpful in discriminating non-

selective ligands from selective ones. The performance on enriching overall β2 active ligands 

did not change very much between these two experiments, showing that the employed pose-

filters only focus on the desired subset of ligand types. In addition to the implementation of a 

subtype biased pose-filter, the choice of reference ligand is also essential on the virtual 

screening results. When β1ModWeb  receptor structure model was used for docking and the 

non-selective β1 active compound Cyanopindolol was used as the reference, there is 

negligible difference between using the non-biased and subtype-biased pose filter (Figure 

4.10A versus Figure 4.9A). To further explore the influence of the choice of reference 

ligands, we used a β2 selective binder TA-2005 in combination with β2Xtal , and repeated 

the pose filtering and scoring protocol (Figure 4.10D versus 4.10E). Both PL/MCT-
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similarityFilter and PL/MCT-RFFilter showed over 50% increase in early enrichment of β2 

selective ligands.  

As observed in Chapter 3, the structure models derived directly from homology 

modeling are usually having a suboptimal set of conformation of its binding pocket residues, 

making it difficult to establish favorable contact between receptor and known ligands. 

Although for each homology model (β1GPCRDB ,  β1ModWeb , β1ModWeb , β3GPCRDB , 

β3ModWeb ) we already adapted the receptor side chain conformations to a known potent 

ligand through the protein preparation wizard in Glide, their virtual screening outcomes are 

still unsatisfactory. There have been plenty studies trying to optimize structure models after 

homology modeling in order to promote ligand binding 58,251,252,255-257. In this study, we did 

not change the global packing of the trans-membrane regions or their relative orientations, 

but performed induced fit docking with selected ligands in hope of deriving receptor binding 

pocket models that are more appropriate for ligand binding. Briefly, the homology models 

and ligands tested were β1ModWeb  (with β1 selective ligand ICI89406), β1ModWeb  (with 

β1 selective ligand Dobutamine) and β3ModWeb  (with β3 selective ligand AJ-9677). The 

derived top-scored 10 receptor-ligand complexes were manually inspected and one protein-

ligand complex was selected for further virtual screening analysis. Structure conservation on 

those experimentally confirmed receptor-ligand interactions such as the Asp1133.32 and 

Asn3127.39 were closely examined. As a result, the shape of the selected binding pocket and 

the orientation of key residues are adapted to a known potent and subtype selective ligand. It 

should be noted that we only use induced fit docking in preparing the receptors and that the 

receptor side chains were kept rigid during the process of virtual screening. Take the 

β1ModWeb _refined model for example (Figure 4.10C GlideScore versus Figure 4.10B, 
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GlideScore), the customized binding pocket showed better recognition for β1 active as well 

as selective ligands, with an increased enrichment (ROCE at 1%) from 1.5 to 12.5 for actives 

and 0 to 15.1 for selective ligands. Applying the PL/MCT-dist, PL/MCT-similarityFilter and 

PL/MCT-RFFilter protocols on the docking poses further augmented the enrichment of 

selective ligands to 25.0-fold , 25.1-fold and 20.7-fold over random, respectively. 

The Molecular Basis of Subtype Selectivity from Identified Important PL/MCT-

tess Descriptors  

Using the RandomForest pose filter allows a systematic analysis of the importance of 

each protein-ligand interaction descriptors. We then counted the frequency of descriptors out 

of the 100 runs for their occurrence at the top 20 important descriptors. As an example we 

showed in Figure 4.11 for three most frequently observed descriptor types when using the 

combination of β2Xtal receptor models with the β2-selective ligand TA2005. The ligand 

TA-2005 has a selectivity ratio of ~50 and ~150 for β2- versus β1 and β3 receptors, 

respectively 245,258. Three of the frequent observed PL/MCT-tess descriptors observed for 

TA-2005 are ClNlOlOr, ClOlNrOr, and ClClOlNr (Figure 4.11).  The ClNlOlOr descriptor 

depicted the salt bridge between TA-2005 with Asn3127.39, and the hydrogen bonds formed 

with Ser203 .   and Ser204 .  . These residues have been shown to be important in binding 

b2AR agonists. The ClOlNrOr descriptor highlighted two other critical protein ligand 

interactions with Tyr3087.35 and Asn2936.55, both of which are believed to be involved in 

determining ligand selectivity 246. The ClClOlNr descriptor mapped an interesting contact 

between the N-substituent of the ligand with Lys305. This residue is an aspartic acid 

(Asp356) in β1, and a glycine (Gly325) in β3. These three residues are significantly different 

in size, and charge state, thus could have potential impact on subtype selectivity.   
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4.3.4.  Conclusions 

In summary, we have proposed a general pose filter using the DFT derived protein-

ligand interaction descriptors (PL/MCT-tess) in structure-based virtual screening. The pose 

filter was validated with the 13 benchmarked DUD datasets with Fred docking program. The 

pose filter enables consistent improvement over using the default scoring functions by Fred 

for up to 6 fold in terms of ROCE at 1% of false positive rate. We further challenged the pose 

filter to identify subtype selective beta-adrenergic ligands. The results showed that it is 

possible to achieve reasonable results with carefully designed subtype biased pose filters, 

preferably using a selective ligand as the reference and a calibration set including both 

known nonselective and inactive molecules. In addition, we found that the homology models 

showed poor virtual screening performance in general, but can be further improved with an 

optimized conformation of the binding site residues. For instance, after optimize the binding 

pocket of the homology model β1ModWeb  with a selective β1AR ligand ICI89406, we 

observed an increase of ROCE from 0 to 15 fold over random at a false positive rate of 1%. It 

should be noted that the success of the proposed approach is heavily dependent on the 

previous knowledge, especially the selection of proper reference ligands to guide the 

structure modeling as well as docking pose selection. In future studies, it would be interesting 

to see how additional knowledge about the receptors, such as the conformational flexibility 

of the binding pockets can be employed into structure-based docking, and affect the virtual 

screening performance.  
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Tables and Figures 

 
A.  B.   

 

C.  D.  

 

Figure 4.1. The distribution of docking poses’ RMS deviation from the X-ray pose versus similarity 
of PL/MCT-tess descriptors calculated by Euclidean distances. A) for pdgfrb homology model and B-
D) for PDB 2RH1. A) The pose with the best MedusaScore is served as the reference to calculate the 
RMSD value of poses. The plot shows the pose distribution based on RMSD values (y-axis) versus Z-
score values of MedusaScore (x-axis, Z-score is calculated based on MedusaScore distribution of the 
decoy sets).  B) Average RMSD and standard deviation values for increasing distance to the reference 
pose in PL/MCT-descriptor space. A total of 1000 poses from 5 X-ray co-crystallized ligands were 
used. The distances are converted to Z-scores based on distribution of distances calculated by a drug-
like decoy set to the X-ray pose of PDB 2RH1. (see Table 4.5 for detail information of the decoy set). 
C) The pose distribution based on Z-score values of GlideScore (x-axis) vs. RMSD values (y-axis). D) 
The pose distribution based on Z-score values of distance to the native pose in PL/MCT-tess 
descriptor space (x-axis) vs. RMSD values (y-axis). The data points for the cognate ligand in PDB 
2RH1 is indicated with red circles.  Plot A. adapted from Hsieh et al.61. 
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Figure 4.2.  Flowchart of pose selection in training the proposed target-specific pose filter, PL/MCT-
RFFilter. 

  

 

 

 

Figure 4.3.  Flowchart of using the three described PL/MCT-dist, PL/MCT-similarityFilter, and 
PL/MCT-RFFilter approaches in structure-based virtual screening.  
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Figure 4.4.  ROC enrichment plots for each of the 13 DUD data set. Dark red lines are based on 
Chemgauss3 scores, orange lines are based on PL/MCT-dist score, yellow lines are based on 
PL/MCT-similarityFilter approach, and green lines are based on PL/MCT-RFFilter approach.  
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Figure 4.5. ROC-AUC for each of the 13 DUD data set using Chemgauss3 scores (dark red), 
PL/MCT-dist (orange), PL/MCT-similarityFilter approach (yellow), and PL/MCT-RFFilter approach 
(green).   

 

 

 

 

Figure 4.6.  ROC enrichment for each of the 13 DUD data set using Chemgauss3 scores (dark red), 
PL/MCT-dist (orange), PL/MCT-similarityFilter approach (yellow), and PL/MCT-RFFilter approach 
(green).   

ace ache cdk2 cox2 egfr fxa hivrt inha p38 pde5 pdgfrb src vegfr2

R
O

C
-A

U
C

0

20

40

60

80

100

ROCE@1

ace ache cdk2 cox2 egfr fxa hivrt inha p38 pde5 pdgfrb src vegfr2

R
O

C
E

 a
t 1

%

0

10

20

30

40

50

60

70

ace ache cdk2 cox2 egfr fxa hivrt inha p38 pde5 pdgfrb src vegfr2

R
O

C
E

 a
t 2

%

0

10

20

30

40

ace ache cdk2 cox2 egfr fxa hivrt inha p38 pde5 pdgfrb src vegfr2

R
O

C
E

 a
t 5

%

0

5

10

15

20



 

109 
 

E. ROC-AUC 

F. ROCE at 1% 
  

 

 Figure 4.7.  The ROC-AUC metric and ROC enrichment (ROCE) for each of the DUD data set with 
randomized activity/descriptor profiles. The results using Chemgauss3 scores (dark red) and 
PL/MCT-dist (orange) based on non-randomized profiles were regenerated from Figure 4.5, Figure 
4.6 for comparison. Yellow bars represent PL/MCT-RFFilter approach with scrambled activities. 
Green bars represent PL/MCT-RFFilter approach with scramble descriptor profiles. 
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Figure 4.8.  Activity distributions of the βAR data set. 
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Figure 4.9. The ROC-AUC metric and ROC enrichment (ROCE) for each of the βAR receptor type 
and structure model. 
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Figure 4.10. The ROC-AUC metric and ROC enrichment (ROCE) for each of the βAR receptor type 
and structure model with subtype biased pose filters.  
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A. ClNlOlOr B. ClOlNrOr 

C. ClClOlNr 
 

 

Figure 4.11. Important PL/MCT-tess descriptors summarized from subtype biased PL/MCT-RFFilter using 
β2Xtal  structure model and TA-2005 as the reference ligand. The  β2Xtal  receptor structure is colored in blue, 
while the β2 selective ligand is colored in orange. The tetrahedrons corresponding to the specified PL/MCT-tess 
descriptor are shown in stick. 
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Table 4.1. Summary of benchmark data sets used for pilot studies. Table adapted from 60  

Target Function PDB # of ligands # of decoys # of clusters
ace metallopeptidase 1o86 46 1726 19 

ache acetylcholine esterase 1eve 99 3631 19 
cdk2 serine/threonine kinase 1ckp 47 1776 32 
cox2 cyclooxygenase 1cx2 212 11841 44 
egfr tyrosine kinase 1m17 365 14516 40 
fxa serine protease 1f0r 64 1888 19 

hivrt HIV reverse transcriptase 1rti 34 1415 17 
inha enoyl ACP reductase 1p44 57 2501 23 
p38 serine/threonine kinase 1kv2 137 6230 20 

pde5 phosphodiesterase 1xp0 26 1562 22 
pdgfrb tyrosine kinase modela 124 5265 22 

src tyrosine kinase 2src 98 5216 21 
vegfr2 tyrosine kinase 1vr2b 48 2479 31 

a: protein structure is homology model, the ligand structure is taken from the DUD website 
b: apo structure, the ligand structure is taken from DUD website 
HIV: Human Immunodeficiency Virus; ACP: Acyl Carrier Protein  

 
 
 

Table 4.2. Statistics of target-specific pose filter PL/MCT-RFFilter calculated based on out of bag 
(OOB) estimates. Data is based on the average statistics derived from 100 runs of 10% randomly 
selected hold-out set.  

 TP FP TN FN SE SP CCR 

ace 71.71 1.76 5389.24 76.29 0.48 1.00 0.74 
ache 77.04 1.38 7782.62 137.96 0.36 1.00 0.68 
cdk2 151.74 1.50 6180.30 54.16 0.73 1.00 0.86 
cox2 1070.98 7.72 39844.28 208.02 0.84 1.00 0.92 
egfr 191.24 1.20 47972.20 79.11 0.70 1.00 0.85 
fxa 209.17 7.01 17150.79 229.83 0.48 1.00 0.74 

hivrt 95.93 0.55 4556.45 34.07 0.74 1.00 0.87 
inha 147.89 1.72 9796.28 90.11 0.62 1.00 0.81 
p38 226.89 3.26 7787.14 41.01 0.83 1.00 0.91 

pde5 214.79 1.62 5926.38 50.21 0.79 1.00 0.90 
pdgfrb 274.52 0.54 13159.06 80.38 0.77 1.00 0.88 

src 355.54 1.04 18944.26 95.36 0.79 1.00 0.89 
Vegfr2 198.57 1.69 8699.01 57.43 0.77 1.00 0.88 
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Table 4.4. The synonym of ten human βAR structural models employed in this study. 

Receptor 
subtype 

Models 
name 

Model type Details 

β1AR β1EPIa de novo 
model 

In complex with endogenous βAR agonist epinephrine 
(T. Lybrand group ) 
 

 β1GPCRDBi Homology 
model 

Based on the crystal structure of inactive state turkey  
β1AR (PDB 2VT4) (retrieved from GPCRDB website, 
constructed in G. Vriend group ) 
 

 β1ModWebi Homology 
model 

Based on the crystal structure of inactive state turkey  
β1AR (PDB 2VT4) (retrieved from ModWeb server, 
provided by A. Sali group ) 

 β1ModWeba Homology 
model 

Based on the crystal structure of active state turkey  
β1AR (PDB 2Y00) (retrieved from ModWeb server, 
provided by A. Sali group ) 

β2AR β2TAa de novo 
model 

In complex with selective β2AR agonist TA2005 (T. 
Lybrand group ) 
 

 β2Xtali X-ray crystal 
structure 

Crystal structure of human β2AR (PDB 2RH1) in 
complex with non-selective antagonist carazolol. 
 

 β2Xtala X-ray crystal 
structure 

Crystal structure of human β2AR (PDB 3P0G) in 
complex with non-selective agonist BI-167107. 

β3AR β3AJa de novo 
model 

In complex with selective β2AR agonist AJ-9677 (T. 
Lybrand group ) 
 

 β3GPCRDBi Homology 
model 

Based on the crystal structure of inactive state turkey  
β1AR (PDB 2VT4) (retrieved from GPCRDB website, 
constructed in G. Vriend group ) 

 β3ModWebi Homology 
model 

Based on the crystal structure of inactive state β2AR 
(PDB 3kj6) (retrieved from ModWeb server, provided by 
A. Sali group ) 
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Table 4.5. The actual number of compounds used for deriving pose filters and calculating ROCE and 
AUC metrics. 

 

 

 

 

 

 

 

aThe bound ligand for each structure model  were excluded from the calculation. 

bA number of decoys were filtered by Glide before the refinement stage. They thus did not have a 
Glide score and were treated to be at the end of the ranked database.

Structure/Model Reference 
ligand 

aBinders 
Num. 

aSelective 
binders Num. 

bNonbinders 
Num. 

β1EPIa Epinephrine 42 20 32 
β1GPCRDBi Cyanopindolol 42 20 32 
β1ModWebi Cyanopindolol 42 20 32 
β1ModWeba Dobutamine 42 20 32 
β2TAa TA-2005 45 8 43 
β2Xtali Carazolol 45 8 43 
β2Xtala BI-167107 45 8 43 
β3AJa AJ-9677 58 12 21 
β3GPCRDBi Cyanopindolol 58 12 21 
β3ModWebi Cyanopindolol 58 12 21 



 
 

Chapter 5. Development of Predictive in vivo toxicity Models from 
Combined Knowledge of Chemical Structure Information and the 

ToxCastTM in vitro Data  
5.1.  Introduction 

Chemical toxicity is associated with many hazardous biological effects in rodents and 

humans, such as gene damage, carcinogenicity, or induction of lethal diseases. It is essential 

to evaluate potential toxicities of all commercial chemicals before releasing them into the 

market, among which High Production Volume (HPV) compounds and drugs are of highest 

priority. However, traditional research in toxicology mostly relies on animal toxicity tests 

which are both labor and resource intensive, so only a very limited number of the chemicals 

in commerce have been evaluated 145-148. With the recent ban on using animal for toxicity 

testing of cosmetics in the European Union, it becomes more urgent for industry to develop 

novel solutions for toxicity assessment 23,149. In this context, the use of fast computational 

toxicology and high-throughput in vitro toxicity assays is gaining widespread interest 

because of their promise for supporting reduction, refinement, and/or replacement (the 3Rs) 

of the reliance on animal toxicity experiments147,150.  

However, accurate prediction of in vivo toxicity using computational tools is always 

challenging. Although cheminformatics approaches such as Quantitative Structure-Activity 

Relationship (QSAR) modeling have been widely used in computational toxicology 151,152, 

most existing tools can not generate models that afford reasonable prediction accuracy when 

applied to external compounds, resulting in inadequate model applicability for regulatory 

purposes 153,154. Possible causes for such unsatisfactory performance are first, small 
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molecules and their metabolites can act through multiple mechanisms and hit various 

physiologically important targets to cause distinct adverse effects 20,21, herein, little variance 

in molecular structure could lead to distinct biological outcomes, making it hard to generalize 

rational rules from QSAR modeling. Also, the small molecules in the screening database 

were designed for different reasons with various scaffolds (e.g. pesticides, food additives, 

cosmetic ingredients). Most previous QSAR models were constructed from cogeneric 

compounds and had limited extrapolation power to deal with these structurally diverse 

compounds. On the other hand, the development of various in vitro toxicity testing methods, 

such as cell-based and cell-free HTS techniques, as well as toxicogenomic technologies, 

offered potential biological basis for estimating the adverse effects of chemicals22-24,147,155. It 

is intriguing to incorporate the knowledge from in vitro testing data to improve traditional 

QSAR modeling.  

In 2007, the U.S. Environmental Protection Agency (U.S. EPA) initiated a chemical 

prioritization research program, the ToxCastTM project, to outline future toxicity evaluation in 

vivo 22. The overall goal of this program is to explore a diverse array of in vitro toxicity 

assays, such as cell-based and cell-free HTS techniques, as well as toxicogenomic 

technologies, to estimate the adverse effects of environmental chemicals and prioritize 

candidates for animal testing in the future. To support ToxCastTM’s endeavor of predictive 

toxicology, U.S. EPA compiled and curated an array of high-quality historical animal 

toxicity data on several hundred chemicals in the Toxicity Reference Database (ToxRefDB) 

156. Phase I of ToxCastTM is primarily consisted of chemicals from these available animal 

toxicity data, and produced data from ~600 high-throughput and high content in vitro toxicity 

assays. Hence, the ToxCastTM program provides a valuable data set that could be used to 
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study the relationships between chemical structures, short term in vitro data and long term in 

vivo toxicity experiments.  

In this study, we endeavored to improve the risk estimates for chemical toxicity 

through a series of novel computational approaches. To have an unbiased assessment of the 

derived models, these models were all developed and validated with the extensive collection 

of data enabled by the ToxCastTM project. The QSAR modeling workflow developed in-

house for many years has been successfully applied to develop computational models for 

mutagenicity 157, carcinogenicity 25, aquatic toxicity 130 and acute toxicity158,159. In the first 

part, we employed a similar workflow to evaluate the possibility to build statistically robust, 

validated, and externally predictive QSAR models based on chemical descriptors alone. We 

employed multiple machine-learning algorithms, namely Random Forrest (RF), Support 

Vector Machines with linear kernel (SVM-linear), and Support Vector Machine with RBF 

kernel (SVM-RBF). The modeling results showed that four (two chronic and two 

reproductive rat toxicity endpoints) out of the eighteen evaluated in vivo toxicity endpoints 

yielded reasonable Correct Classification Rate (CCR) for external sets: consistently above 60% 

using all three types of modeling algorithms. In addition, another group member in our lab 

demonstrated that by using specific chemical scaffolds to pre-cluster the original data set, we 

could further improve the external predictivity of the resulting model. Thus, the results 

indicate that the development of externally validated toxicity predictors, while through 

careful study design, is feasible for at least some of the ToxRefDB endpoints.  

              In addition to advancing the traditional QSAR modeling approaches that 

depend on the explicit information about chemical structure alone, we have continued to 

develop novel Quantitative Structure in vitro-in vivo Relationship (QSIIR) approaches to 
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enable robust and predictive cheminformatic predictors of animal toxicity. Our recent studies 

have shown that it is possible to utilize the correlation between rodent acute toxicity data (in 

vivo data) and cytotoxicity data (in vitro data) to enhance the performance of traditional 

chemical-descriptors-based QSAR models 27,28. In this project, we further explored our 

methodologies by applying a similar modeling workflow to three rat reproductive toxicity 

endpoints for the ToxCastTM Phase I compounds. The prediction accuracy for the best models 

was in the range of (70-71%) for all three in vivo endpoints, while that achieved by 

conventional QSAR models was only (57-64%) for the same external set. Furthermore, the 

external predictivity of individual models was employed to infer important ToxCastTM in 

vitro assays. The validated hierarchical models could be helpful for future toxicity testing by 

prioritizing high-risk compounds for animal tests, identifying informative in vitro assays, as 

well as providing hypothesis for specific signaling or biochemical pathways that are relevant 

to potential disease development and thus have the possibility of going beyond hazard 

identification. 160 

5.2.  Data Set Overview 

The ToxCastTM phase I study consisted of 320 molecules with diverse chemical 

scaffolds. Five duplicates and three triplicates of eight randomly selected compounds were 

deliberately included to quantify the reproducibility of the bioassay protocols.161 In this study, 

the eleven replicated compounds were excluded. Furthermore, we excluded all molecules 

that cannot be appropriately handled by conventional cheminformatics techniques, e.g. 

inorganic and organometallic compounds or mixtures. The final ToxCastTM data set used in 

this study contained 291 unique organic compounds.  
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The relevant animal toxicity data were obtained from ToxRefDB, developed by the 

National Center for Computational Toxicology (NCCT) in partnership with U.S. EPA’s 

Office of Pesticide Programs (OPP). The in vivo toxicity endpoints included in ToxRefDB 

were based on rat, mouse and rabbit 2-year chronic/cancer, 2-generation reproductive, and 

developmental toxicity study. Each of the 291 ToxCastTM compounds has experimental 

results for up to 78 different in vivo toxicity endpoints in ToxRefDB. Most of the in vivo 

endpoints had few numbers of active responses among all ToxCastTM compounds and were 

not suitable for QSAR modeling. For this reason, we selected 18 (Table 5.1) out of the 78 

published in vivo endpoints that had the most experimentally active results. In addition, in the 

original ToxRefDB record, toxic compounds were stored with their associated Lowest Effect 

Level (LEL) values with units of mg/kg/day. We converted it to binary form, where 

compounds’ activities are defined according to NCCT as either active (toxic) or inactive 

(non-toxic)148. The numbers of ToxCastTM phase I compounds in each toxicity endpoint 

subset range from 224 to 235, and the active compound ratio ranges from 17.4% to 44.6% 

(Table 5.1). 

The ToxCastTM Phase I compounds have been tested against 615 various bioassays as 

listed in Table 5.2. These in vitro assays aimed to characterize a wide range of chemical 

biology interactions through a number of protein function assays, transcriptional reporter 

assays, multi-cell analysis, and developmental studies using zebra fish embryos 162. These 

assays were developed by different biological companies and have been used for toxicity 

screening tests over years. All endpoints were presented as Inhibition Concentration by 50% 

(IC50), Lowest Effect Level (LEL) or Lethal Dose Concentration by 50% (LD50). Similar to 

how we handled the in vivo data above, we converted the experimental values into binary 
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form for active/inactive responses. It is noticeable that some bioassays are not informative 

due to the low ratio of signals on the 291 compounds. (Table 5.2) To avoid possible 

complications introduced by these assays during QSAR modeling process, they were 

excluded from the scope of work. Finally, 284 out of 615 assays were selected for which 

there are at least 10 active responses for the curated chemical data set. 

5.3. Methods:  

5.3.1. Generation of Chemical Descriptors 

A set of 2,489 theoretical molecular descriptors was initially generated from the 

canonical SMILES notation using the software Dragon v.5.5 (version 5.5; Talete SRL, 

Milano, Italy). Only 0D, 1D and 2D descriptors were considered in this study. We then 

removed descriptors that are constant or near constant (all, or all but one value is constant). If 

two descriptors are highly correlated (pair wise correlation over 95%), one of them, chosen 

randomly, was also deleted. The final set include 1,128 descriptors, and were range scaled to 

0~1. A detailed description for descriptor generation and preparation can be found in 10. 

5.3.2.  In vitro – In vivo Correlation for Data Classification 

The relationship between the results obtained from an in vitro test and a specific in 

vivo toxicity endpoint could be summarized as 4 categories. (Figure 5.1) The Class B and C 

compounds have consistent results in vivo and in vitro. In this study, we merge them together 

into a new class, which is called Group 1; and Class A and D compounds, which have 

conflicting results in vivo and in vitro, were combined to be Group 2.  Through this way, we 

could generate new compound classes based on the in vitro – in vivo correlation between 

each in vivo endpoint results in ToxRefDB and every individual ToxCastTM bioassay testing 

result.  
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5.3.3.  QSAR Modeling Workflow and Model Validations 

A rigorous modeling workflow was carried out in order to ensure the selected models 

are statistically significant and externally predictive. (Figure 5.2) Key steps of the workflow 

are described below. Binary classification QSAR models were generated based on the 

chemical information only (traditional QSAR workflow) 10, or employing the chemical 

information and in vitro vs. in vivo correlation data (novel hierarchical workflow).  

Balancing the Dataset 

For each toxicity endpoint in this study, there were many more inactives than actives. 

This imbalanced class ratio is notorious in skewing the modeling procedure and result in 

biased statistics, e.g., much lower sensitivity than specificity of predictions. To address this 

bias, the following methodology excluded a considerable fraction of inactive compounds 

from the dataset to balance the active/inactive ratio. We used the active compounds from 

each endpoint results to create a probe subset and calculated the similarity between each 

inactive compound and the probe subset based on the Euclidean distance of all chemical 

descriptors between this inactive compound and the most similar active compound. We 

selected the inactive compound most similar to the active compounds into the modeling set 

and repeated this procedure for each active compound until the ratio of inactives in each 

modeling set was between 50% and 55%. This effort resulted in final datasets for all 18 

toxicity endpoints for the classification QSAR modeling consisting of 45-50% actives and 

50-55% inactive compounds. (Table 5.4) 

Modeling Algorithms 

Random forest and Support Vector Machines (SVM) algorithms were used in this 

study. In machine learning, a Random Forest (RF) predictor 163,164 consists of many decision 
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trees and calculates a prediction based upon the combined output from individual trees. For 

the RF modeling procedure, n samples are randomly drawn from the original data. These 

samples are then used to construct n training sets and to build n trees. For each node of the 

tree, m variables are randomly chosen from the descriptor set. The best data split for each 

training set was calculated using these m variables. In this study, only the defined parameters 

(n = 500 and m = 13) were used for the model development 17. 

The Support vector machine (SVM), developed by Vapnik 165, serves as a general 

data modeling methodology where both the training set error and the model complexity are 

incorporated into a special loss function that is minimized during model development. SVM 

has since become a popular method in statistical learning because of its consistently 

outstanding performance in many studies and lower risk of over fitting 166,167 . In brief, an 

SVM model finds a separating hyperplane with a maximal margin in the feature space by 

minimizing a special-loss function that incorporates both the training set error and the model 

complexity. To cope better with different classification tasks, e.g. linear vs. nonlinear 

correlations, a handful of kernel functions were developed to map the original descriptor 

space to a higher dimensional feature space for modeling purpose.   

In this study, we used the SVM implementation in the R package kernlab to build 

models with both linear kernels and Radial Basis Function (RBF) kernels. The RBF kernel 

was chosen due to its superior performance in a previous research 18. In developing our 

models, a hard margin of cost=10 was used, and the RBF kernel parameter γ  was 

automatically estimated with the sigest function in the kernlab package 125. 
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Model Applicability Domain 

 A properly defined applicability domain (AD) of a model was considered critical to 

determine if a given query compound can be predicted by this model within a reasonable 

error. For each model used in this study, an AD was determined by a threshold distance DT 

between a query compound and its nearest neighbors in the training set, calculated as follows:  

DT y Zσ  Where  is the average Euclidean distance between each compound in the 

training set and its k nearest neighbors (here, k=1), σ is the standard deviation of these 

Euclidean distances, and Z is an arbitrary parameter to control the significance level. Here, 

we set the default value of  Z as 0.5 to obtain reasonable prediction coverage. Thus, if the 

distance of a query compound from any of its k nearest neighbors in the training set exceeds 

this threshold, the prediction is considered unreliable and will not be included.  

Model Validation 

As emphasized in our earlier reports14, modeling of only training sets is insufficient to 

achieve predictive power. For this reason, model validation in this study was carried out in 

three levels: 1. 5-fold internal cross validation prediction accuracy for the test set CCRtest; 2. 

5-fold external cross validation prediction accuracy for the external validation set CCRext; 3. 

Y-randomization test that consists of rebuilding models using randomly shuffled activity 

labels, and subsequent evaluation of their predictive power on the external validation set. 

Finally, in the novel hierarchical modeling workflow (Figure 5.2), individual models each 

associated with a specific in vitro vs. in vivo correlation will be employed for consensus 

prediction of the external set. The new compounds will first be predicted as Group 1 or 2 for 

their in vitro – in vivo correlations. The in vitro testing results for the same compounds will 

then be used to convert the predicted correlation groups to the predicted in vivo toxicity. 
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Finally, the consensus prediction value of any compound from the external set was calculated 

as follows: y ∑ y IAD / ∑ IAD  ;  IAD
1 in AD
0 out ofAD

   For a query 

compound, we calculated the mean of the prediction values (y for this compound from 

all of the selected models (j=1~s). Each model has a model specific applicability domain (IAD) 

as defined above. The compound will be labeled active or inactive based on the average 

prediction value.  

To develop models from imbalanced data, the overall classification accuracy is less 

objective to evaluate the performance of models. To obtain an unbiased metric for 

classification ability, sensitivity and specificity are used to separately monitor the 

classification accuracy on two classes, and the CCR is calculated by averaging the prediction 

accuracies.  

;   ;   
2

 

where TP and FP represent the numbers of predicted true and false positive 

compounds, and TN and FN represent the number of predicted true and false negative 

compounds, respectively. A permutation test (10,000 permutations) was developed to 

identify hierarchical models with significant better CCRext in comparison with the 

corresponding traditional QSAR models utilizing chemical descriptors only.  If the 

differences between the real pair of CCRext fell within the upper 95th percentile (p < 0.05) of 

the permuted data, then the corresponding hierarchical model was considered statistically 

superior than traditional QSAR models. The permuted CCRext percentile values for all 

hierarchical models were then employed to rank the importance of the corresponding in vitro 

assays for a specific in vivo toxicity effect.  
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5.4.  Results 

5.4.1. Traditional QSAR Modeling with chemical descritors only 

For each individual in vivo endpoint, we first evaluated the performance of predictors 

developed by conventional QSAR modeling approaches. All 18 in vivo toxicity subsets were 

compiled based on the 291 ToxCastTM compounds and their toxicity data in ToxRefDB. The 

QSAR toxicity models were developed for each in vivo endpoint subset using the Dragon 

descriptors of the relevant compounds.  We employed RF, SVM-linear, and SVM-RBF 

algorithms with default parameters and five-fold internal/external cross validation for model 

training and testing. Therefore, we developed fifteen individual models for each toxicity 

endpoint, five models for each modeling algorithms. External cross-validation predictions 

were characterized by Correct Classification Rate (CCRext), sensitivity, and specificity, and 

are summarized in Figure 5.3A, 5.3B and 5.3C, respectively. The bean plots in Figure 5.3 

simultaneously show the distribution of the 15 cross-validation predictions, and the mean of 

the performance evaluation metrics for each in vivo endpoint, grouped by the choice of 

applicability domain. Models for two (ChrRatCholinesteraseInhib and MgrRatLiver) of these 

eighteen toxicity endpoints demonstrated CCR above 60% for all three types of QSAR 

models. After implementing the applicability domain for each individual model, four toxicity 

endpoints, including two chronic (ChrRatCholinesteraseInhib and ChrMouseTumorigen) and 

two reproductive rat toxicity endpoints (MgrRatLiver and MgrRatKidney), were shown to 

have CCR over 0.60 (Figure 5.3, Table 5.3). However, in general, there is no consistent 

enhancement in models’ external predictivity after the application of model AD. In fact, the 

CCRs of four toxicity endpoints, namely ChrRatLiverhypertrophy, 

DevRabbitPregEmbryoFetalLoss, DevRabbitPregMaternalPregLoss, and MgrRatLiver were 
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reduced after AD application. Therefore, we showed that we can achieve moderate 

improvement for some but not all toxicity models by using AD.  

In addition, the models typically had poor prediction performance on the minority 

class (less than 0.4 in sensitivity for 14 toxicity endpoints), which is common when dealing 

with imbalanced data sets. Although we only selected the endpoints which were relatively 

rich in toxic signal, the curated data still had considerably more non-toxic than toxic 

chemicals for each toxicity endpoint subset. To address this bias, we balanced each modeling 

set by excluding non-toxic chemicals that are dissimilar to the toxic set. In summary, up to 

70 % of non-toxic compounds were excluded to achieve a relatively balanced data sets (with 

class ratio in the range of 1~1.2).  Classification QSAR models were then re-trained only on 

compounds remaining in the balanced modeling set, and their predictive power was 

estimated using the unmodified external sets.  With this procedure, we made it more 

challenging to attain predictive QSAR model as it has to discriminate toxic chemicals from 

most chemically similar non-toxic chemicals.  

As expected, balanced datasets afforded improved prediction accuracy for the toxic 

class (Figure 5.4, Table 5.4). The sensitivity increased by 0.15 in most cases. Models for six 

out of eighteen endpoints showed reasonable accuracy for the toxic class with sensitivities 

higher than 0.6.  However, the overall external prediction accuracy in CCR showed only 

moderate improvements due to a decrease in specificity after such data modification. The 

best external predictivity was achieved for ChrRatCholinesteraseInhib endpoint using 

SVM_Rbf and SVM_Linear models with CCR 0.88; ChrRatLiverhypertrophy endpoints 

using all three models with CCR 0.61; MgrRatKidney endpoint using RF models with CCR 

0.67; and MgrRatLiver endpoint using RF and SVM_rbf models with CCR 0.62. It should be 
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noted that differ from the rest endpoints, the ChrRatCholinesteraseInhib endpoint was 

derived from single-target focused assays, which measure compounds’ inhibition rates on 

Cholinesterase. So it represents an “easy” case for QSAR modeling, and was used as a 

positive control in this study. These results suggest that employing traditional QSAR 

modeling with chemical descriptors alone; it is possible to develop externally validated 

toxicity predictors for several of the ToxRefDB toxicity endpoints.  

5.4.2.  Evaluation of the Activity Landscapes of Toxicity Data Sets  

The failure of conventional QSAR models to achieve statistically significant models 

for most in vivo toxicity endpoints may be due to lack of sufficient chemical space coverage 

and inability of chemical descriptors to account for the toxicity mechanisms involved with 

the relevant endpoints. To visualize the level of activity landscape discontinuity in the dataset, 

we plotted pair wise similarities between compounds of the same (i.e. both toxic, or both 

non-toxic) and different (i.e. one toxic and another non-toxic) in vivo toxicity labels. Figure 

5.5 illustrated such visualization for the rat toxicity endpoint measured on kidney 

microscopic and gross pathologies (MgrRatKidney). We found a large proportion of pairs 

with divergent toxicity effects which are chemically and/or biologically similar when 

measured with Dragon chemical descriptors, and ToxCastTM assays, respectively. The 

comparison of Metolachlor and its nearest neighbor in chemical space, Acetochlor, may 

serve as a good example for such discontinuity (so called “activity cliff”168). Since 

Acetochlor and Metolachlor are chemically similar (with the Tanimoto similarity coefficient 

of 0.82 calculated using MACCS keys), they are expected to have similar biological 

activities. However, their toxicity profiles in three rodent reproductive toxicity endpoints are 

remarkably different; they only have similar effects for MGR_Rar_Viability endpoint (Figure 
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5.5B). Although there are examples where small changes to key molecular features give rise 

to significant changes in activity, existence of a large number of such conflicting pairs in the 

database lowers its generalization power during modeling and, as a result, make it difficult to 

achieve externally predictive models. On the other hand, Acetochlor and Metolachlor can be 

viewed as quite dissimilar when, instead of structural features, they are compared by their 

results in in vitro assays (Figure 5.5B).  Therefore, we tried to rebuild QSAR modeling using 

the in vitro assay results as the biological descriptors or using the hybrid descriptors by 

combining chemical descriptors and biological descriptors. Depite previous successful 

application of these protocols26,159, we could not achieve significant improvents using either 

one for the ToxCast data. Possible causes could be that the available in vitro assays have low 

informative signals for the concerned in vivo endpoints, especially when compared with the 

influence from the chemical descriptors. These observations suggest that it is, indeed, 

challenging to develop robust QSAR models with either chemical descriptors or biological 

descriptors alone. However, as shown in the Figure 5.5A, most chemical-similar pairs of 

compounds with conflicting toxicity lables can be differentiated in the biological space, and 

vice versa. It is reasonable to expect that the additional knowledge embedded in the in vitro 

biological profiles could be useful to differentiate pairs of chemically similar compounds that 

have different toxicity profiles.  

5.4.3.  Hierarchical QSAR Modeling Using in vivo versus in vitro Correlations  

It is well known that in vitro testing results, especially those obtained from HTS 

bioassays, have unsatisfactory correlations with systemic toxicity endpoints when any 

relatively large set of compounds is considered. The ToxCastTM bioassay data is no exception. 

There is no direct correlation between most ToxCastTM bioassay and any ToxRefDB in vivo 
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endpoint results (e.g.  1.5% of assay-in vivo toxicity endpoints pairs showed p-value of less 

than 0.01, calculated with fisher’s exact test). As expected, no significant improvements in 

the model accuracies were observed whether using the in vitro assay alone as descriptors, or 

using the hybrid descriptors that directly combine the chemical and in vitro biological 

descriptors. How to extract relevant information from the ToxCastTM bioassay data and to 

apply it for QSAR modeling became a critical question. In this study, we extended the 

concept of “in vitro vs. in vivo correlation” that has been successfully employed to utilize 

information from cytotoxicity bioassays to predict rodent acute toxicity 158. Similar 

approaches were reviewed elsewhere 169. Using this criterion, for each of the reproductive 

toxicity data set, we can first select one in vitro assay as the basis and then partition the 

ToxCastTM compounds into two groups: Group 1, in which compound’s in vivo toxicity 

agrees with the in vitro results of the ToxCastTM bioassay; and Group 2, if otherwise (Figure 

5.2). Picking a different ToxCast assay as a basis, partitioning can be redefined. As a result, 

multiple assay-specific QSAR models were developed to classify compounds into assay-

specific partitions, instead of directly predicting compounds’ in vivo toxicities. The derived 

QSAR models were then used to assign compounds in an external dataset to one of the in 

vitro vs. in vivo correlation groups (i.e. group 1 or group 2). The group membership was 

converted into the associated in vivo toxicity based on the known in vitro response of the 

assay used as a basis. 

To demonstrate the effectiveness of this hierarchical workflow, we applied it to three 

rodent reproductive endpoints: 1) Multigeneration Reproductive Rat Kidney toxicity 

(MgrRatKidney); 2) Multigeneration Reproductive Rat Liver toxicity (MgrRatLiver); and 3) 

Multigeneration Reproductive Rat Endpoint for Viability Index (MgrRatViabilityPND4). 
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After processed the original data with the above described procedure, the size ratio of the 

created partitions was again balanced with the same down-sampling approach, until it 

reached a balanced ratio in the range of 1~1.2. We applied the hierarchical modeling 

workflow for each of the 284 ToxCastTM in vitro assays and, therefore, 284 individual QSAR 

models of one type (RF, SVM_linear or SVM_rbf) were generated for each reproductive 

toxicity endpoint. Next, the consensus prediction results were derived by averaging all 

predictions from the 284 models.  

Compared to their conventional QSAR model counterparts, only marginal 

improvement seems to have been achieved by using the consensus hierarchical models. 

Considering the fact that there are many irrelevant bioassays included for consensus 

prediction, it is possible that the models based on such bioassays would only contribute noise 

and thus lower the accuracy of the final consensus estimation. Indeed, we observed similar 

prediction accuracies by using hierarchical models only from a subset of the bioassays (Table 

5.5). The subset of assays was selected based on their active ratio for the compounds in the 

modeling set. For each modeling set, a different list of assays with the highest active ratio 

was collected, and the predictions from their associated hierarchical models were employed 

for consensus prediction of the independent external set. While using a very small number of 

assays was shown to weaken the predictive power by consensus prediction (data not shown), 

we observed comparable model performance by including a number of 80 top-ranked 

bioassays. This result suggests that current consensus hierarchical models could be improved 

with a rational selection of the relevant bioassays, such as by incorporating the knowledge of 

the toxicity pathways to identify essential ToxCastTM assays.  On the other hand, considering 

the fact that the bioassays are not entirely independent, generally, with multiple assays 
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targeting the same signaling pathways, or even the same macromolecular targets, consensus 

predictions can be biased towards pathways that have been tested more often than the others.  

To reduce such artificial noise, instead of using individual assays, it might be helpful to 

employ “composite” assays, for instance, merge all signals from nuclear receptor assays to 

one. Then build hierarchical QSAR models and calculate consens predictions based on those 

composite assays.  

Here, we employed another solution to reduce the influence of irrelevant bioassays is 

to exclude a fraction of compounds whose consensus scores did not reach certain level. 

Ideally, the distribution of predicted values for the toxic and non-toxic compounds should 

yield clear separation (Figure 5.6B). Irrelevent predictions tend to blur the boundaries of the 

consensus values, but the prediction confidence increases as the consensus score reaches a 

higher level.  For instance, we can arbitrarily defined a compound as “toxic” if more than 70% 

of individual models predicted it to be toxic and as “non-toxic” if more than 90% of 

individual models predicted it as non-toxic. Predictions for compounds that did not satisfy 

these two confidence levels were excluded as “inconclusive”. Using this definition, the 

external predictivity of all the models for the three rodent endpoints was improved (up to 

0.08 increase in average CCRext) at the cost of reduced prediction coverage (27% to 45% 

decrease; Table 5.5).  Figures 5.7A, 5.7C and 5.7E show the relationship between external 

CCR and different toxic/non-toxic confidence breakpoints for MGR_Rat_Liver models. It 

should be noted that all three types of models for this specific endpoint have the highest 

external predictivity when the confidence breakpoints for toxic compounds are between 60-

90% and the confidence breakpoints for non-toxic compounds are between 80-95%. The 

performance of RF and SVM-RBF models were relatively insensitive to different breakpoint 
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values, whereas the external accuracy of the SVM-linear model strongly depended on the 

breakpoint values being used. In addition to external cross-validation, we also tried to assess 

model robustness by Y randomization test, where QSAR models were rebuilt using modeling 

sets with shuffled toxicity data. The prediction accuracy of shuffled models was close to 

random (Figures 5.7B, 5.7D and 5.7F). 

5.4.4. The Relationship between Individual ToxCastTM Bioassays and the 
Reproductive Toxicity Endpoints 

We observed significant variation in prediction performance of hierarchical models 

based various bioassays. By analyzing hierarchical models with high external predictivity 

(CCRext) values, we expected to identify critical bioassays that are informative of in vivo 

toxicity effects. Therefore, we performed a permutation test (10,000 times) to evaluate each 

model’s performance in compariaon to the conventional chemical-descriptors-only QSAR 

model. Table 5.6 lists the top 20 best-performing ToxCastTM bioassays for each multi-

generation reproductive toxicity endpoint. Many of these assays were targeting genes in the 

family of cytochrome P450 enzymes, which are involved with the xenobiotic metabolism 

pathways. Several conjugating–enzymes that are active in placental xenobiotic metabolism 

are also identified: glutathione S-transferase (GSTA2), uridine 5’-diphosphate-

glucuronosyltransferase (UGT1A), and sulfotransferase (SULT2A1). During pregnancy, the 

mothers are exposed to a wide variety of environmental chemicals. Placental xenobiotic-

metabolizing enzymes will respond to those foreign chemicals, and can either reactivate or 

detoxify those compounds 170,171. Those metabolites were observed, at least partially, to cross 

the placenta into the fetal circulation172. Therefore, understanding how placenta xenobiotic 

metabolizing enzymes react to the environmental hazards could provide the basis for 

predicting and analyzing reproductive and developmental toxicity. Estrogen receptor alpha 
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(ATG_ERa_TRANS) and estrogen-related receptor gamma (ATG_ERRg_TRANS) were 

also shown to be informative for estimating reproductive toxicity, especially on early 

offspring survival. Environmental chemicals are believed to interfere with the endocrine 

system by acting through estrogen receptors, thus generating adverse reproductive effects, 

including decreased fertility and implantation loss 173. In addition, our results also showed 

high relevance of multigenerational reproductive toxicity to assays targeting serotonin 

receptors (HTR4, HTR6, and HTR7) and nuclear receptors (human pregnane X receptor 

(NR112), NR113). Thus, based on current understanding of mechanisms of toxicity, these 

data suggest that our methods are capable of selecting physiologically relevant assays, and 

thus can also be applied to guide potential mode-of-action analysis for future toxicity testing. 

5.5.  Discussion 

A great number of computational technologies such as QSAR are increasingly 

involved in all aspects of risk assessment of environmental chemicals. Many of such 

approaches, however, were initially developed for use in drug discovery, which differs from 

toxicity evaluation in a number of important ways 174. For example, chemical diversity of 

environmental toxicants is usually higher than in case of drug candidates, making it a 

challenging task to derive statistically robust models. In addition, unlike drug candidates that 

are developed with specific targets in mind, and have optimized physicochemical properties 

for proper absorption, distribution, metabolism, and excretion, environmental chemicals do 

not have uniform and well understood mechanisms behind their toxicity effects. The 

requirements to the QSAR models for regulatory purpose are also different from that for drug 

design. Accurately predicting “toxic” class (i.e. high recovery rate) and not so accurate 

prediction of “non-toxic” class is preferred for regulatory purpose, because predicted as non-
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toxic would label compounds for low-priority in experimental tests, so toxic compounds 

predicted as “non-toxic” falsely would not be tested. The opposite may be desired in drug 

design, where the emphasis is to identify drug candidates with minimus experimental effort 

(high hit rate). Large number of false positives, inactive compounds predicted as active, will 

thus not favored. In sum, it is crucial to take into account of these differences during model 

development.  

The compounds included in Phase I data of ToxCastTM project are also quite 

structurally diverse, as indicated by the distribution of Tanimoto coefficient (MACCS key) 

calculated for each compound to its most chemical similar counterpart. Around 30% of the 

ToxCastTM compound pairs have Tanimoto coefficients lower than 0.7, the cutoff 

commonly used to define structurally similar compounds. In comparison, the 644 compounds 

in the aquatic toxicity dataset130 are much more structurally similar. Only 10% of compound 

pairs in the aquatic toxicity data set have Tanimoto less than 0.7, and over 44% of compound 

pairs have Tanimoto over 0.9. To evaluate the correlation of structural similarity/diversity 

with the performance of our models, we calculated the average Euclidean distances between 

each toxic compound and its most similar toxic compound for the 18 data sets. The dragon 

descriptors were used here for distance calculation because they were employed during 

model development. Our results showed that the toxic compounds are most similar to each 

other in the best chemical-descriptors-based QSAR model, the 

ChrRatCholinesteraseinhibition model. Thus, it indicates that the structural elements 

responsible for in vivo toxicity may not be sufficiently present in the ToxCastTM compounds 

to afford their statistical identification/generalization. Additional experiments for a diverse 

set of chemicals should be beneficial for the development of robust predictors.  
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It is understandably challenging to establish, for large and diverse data sets, direct 

correlation between chemical structures and their observed effects in biological systems. 

Chemical compounds and their metabolites can elicit similar toxicity effect through different 

mode-of-actions and perturbing different biological pathways. Indeed, we could only derive 

reasonably predictive QSAR models for four out of the eighteen in vivo toxicity endpoints. 

One of the endpoints ChrRatCholineInhibitor showed exceptionally high accuracy at CCR 

over 0.80, primarily because this toxicity response was measured on the interaction with a 

specific target, unlike the rest toxicity endpoints. As described above, a marginal structural 

variation from Metolachlor to Acetochlor leads to very different in vivo toxicity profiles for 

these two compounds. On the other hand, test results from a wide series of in vitro assays in 

ToxCastTM could provide preliminary information on how chemicals interact with various 

toxicity pathways, and thus are expected to be useful for predictive models. To unite these 

two sources of information most effectively, we propose a novel hierarchical workflow to 

incorporate data from in vitro assays and chemical structure information into the prediction 

of systemic toxicity effects observed in animal tests. The rationale of the hierarchical 

modeling described in this chapter is that by grouping compounds exhibiting the same 

agreement between selected in vitro and in vivo responses, we are in a better position to 

identify and generalize those factors affecting in vitro to in vivo extrapolation (i.e. similar 

patterns of metabolism or modes of action). In our studies, the models derived from 

hierarchical modeling workflow has best prediction accuracy in the range of (0.70~0.71) in 

comparison to traditional QSAR models (0.57~0.64). However, predictions from general 

consensus of the hierarchical models are not always optimal; we can achieve comparable 

modeling performance with 80 in vitro assays with the highest signal contesnts. Due to the 
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fact that many irrelevant in vitro assays may contribute noise to the consensus predictions, 

we expect to see an increase in model performance if those assays could be identified and 

removed from consideration. Indeed, another group member, Liying Zhang, showed that by 

pre-clustering the in vitro assays according to known biological pathways, and using only the 

assays that fall into several biologically relevant pathways could enhance the model 

performance in certain cases. To better test capability of this modeling workflow, it would be 

interesting to apply it to other ToxCastTM data sets.    

5.6. Conclusions 

In conclusion, we have examined the utility of the chemical structure descriptors and 

the ToxCastTM bioassay data for predicting in vivo toxicity of environmental chemicals using 

QSAR modeling approaches. Our results indicate that the conventional QSAR models using 

chemical descriptors alone and the ToxCastTM bioassay results individually have limited 

predictive power. For some endpoints, e.g. MGRRatLiver, it is possible to use conventional 

QSAR models to achieve good predictivity for a subset of compounds with restricted 

scaffolds. Furthermore, although the ToxCastTM bioassay data have low correlations with in 

vivo toxicity data, they can still be useful for improving the predictive power of QSAR 

models when implemented within the novel two step hierarchical QSAR modeling workflow. 

This hierarchical QSAR modeling workflow, although dependent on availability of in vitro 

data, can help to identify relevant in vitro toxicity assays for particular in vivo endpoints and 

thus could be a helpful tool for elucidating mechanisms of toxicity. Overall, the derived 

models could be used to guide future toxicity studies by choosing in vitro assays and by 

prioritizing compounds for in vivo toxicity evaluation.  
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Tables and Figures 

 

Figure 5.1. Data set partitioning based on the in vivo and in vitro toxicity responses. Class 1 consists 
of compounds whose in vitro and in vivo responses agree:  toxic in vivo and in vitro, or non-toxic in 
vivo and in vitro; Class 2 consists of compounds whose in vitro and in vivo responses disagree: toxic 
in vivo but non-toxic in vitro, or non-toxic in vivo but toxic in vitro. 

 

Group1: in vivo/ in vitro agree
Group2: in vivo/ in vitro disagree
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A. 

B. 

C. 

* In the later section, we compared the results for after applying or not the strategies to re-balance 
class ratio of the modeling set 

Figure 5.2. Modeling workflow. (A)  Preparation of the target data set. (B) Modeling procedure for 
the data set.(C) external prediction procedure 
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A. 

B. 

C
o

m
p

o
u

n
d

s 

 

Metolachlor NN1-Acetochlor 

In
 

vi
vo

MGR_Rat_Kidney 0* 1 
MGR_Rat_Liver 0 1 
MGR_Rar_Viability 0 0 

In
 v

it
ro

 

ACEA_IC50 0 1 
ATG_AHR_CIS 0 0 
CELLLOSS_24HR 0 1 
P53ACT_24HR 0 1 
NVS_ADME_RCYP3A2 1 0 
SOLIDUS_P450 0 1 

*1: toxic or active; 0: non-toxic or inactive. 
 

Figure 5.5. Illustration of activity discontinuities in the chemical and biological space. A. Pair wise 
distance map with data pairs color-coded by in vivo toxicity class measured for MGR_Rat_Kidney 
(black, pairs of nontoxic compounds; green, pairs of toxic compound; red, pairs of toxic and nontoxic 
compound.) The arrow indicates the pair of compounds: Metolachlor and Acetochlor. B. In vivo and 
in vitro toxicity profiles of Metolachlor, and its nearest neighbor in chemical descriptor space, NN1-
Acetochlor.  
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A. 

 

B. 

Figure 5.6. Distribution of predictions of the ideal case (A) and the hierarchical QSAR models 
(RandomForest approach) for MgrRatLiver endpoint (B). As can be seen better separation of two 
experimental categories is achieved by using two breakpoints at 0.10 and 0.70 (such classification 
would correspond to CCR=0.70 and Coverage~37%). 

0.0   0.2  0.4  0.6   0.8  1.0

2.0

1.5

1.0

0.5

0.0

Predicted activity

D
en

si
ty

Toxic       Non-toxic

-0.2    0.0    0.2    0.4    0.6    0.8    1.0    1.2

2.0

1.5

1.0

0.5

0.0

Toxic       Non-toxic

Predicted activity
D

en
si

ty



 

149 
 

A. RF B. RF with randomized toxicity data 

C. SVM-linear D. SVM-linear with randomized toxicity data 

E. SVM-RBF F. SVM-RBF with randomized toxicity data 

Figure 5.7. Heatmap illustration of CCRext for MGR_Rat_Liver endpoint when different breakpoints 
values are used to define toxic or non-toxic compounds. 
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Table 5.6. The top 20 ToxCastTM bioassays for each reproductive toxicity endpoint based on the 
prediction accuracy of their associated hierarchical models.    

A. MGR_Rat_Kidney   

Assay Gene Gene name/ Description 

ATG_VDRE_CISa CYP27B1
cytochrome P450, family 27, subfamily B, 
polypeptide 1 

BSK_3C_Vis_downa  HUVEC (IL-1b+TNFa+IFN-g): Visual 
BSK_4H_Eotaxin3_downa CCL26 chemokine (C-C motif) ligand 26 

BSK_4H_Pselectin_downa SELP 
selectin P (granule membrane protein 
140kDa, antigen CD62) 

BSK_BE3C_hLADR_upa HLA-DRA
major histocompatibility complex, class II, 
DR alpha 

BSK_hDFCGF_EGFR_upa EGFR epidermal growth factor receptor 
BSK_KF3CT_IL1a_downa IL1A interleukin 1, alpha 
BSK_KF3CT_IP10_downb CXCL10 chemokine (C-X-C motif) ligand 10 
BSK_LPS_VCAM1_downa VCAM1 vascular cell adhesion molecule 1 

BSK_SAg_CD40_upa CD40 
CD40 molecule, TNF receptor superfamily 
member 5 

BSK_SAg_PBMCCytotoxicity_downa  HUVEC/PBMC (TCR): Cytotoxicity 
CLM_MicrotubuleCSK_Destabilizer_24hra  HCS Microtubule Destabilization 
CLM_p53Act_1hra TP53 tumor protein p53 
CLM_p53Act_72hra TP53 tumor protein p53 

CLZD_ABCB11_48a ABCB11 
ATP-binding cassette, sub-family B 
(MDR/TAP), member 11 

CLZD_GSTA2_24a GSTA2 glutathione S-transferase alpha 2 

CLZD_SULT2A1_24a SULT2A1 
sulfotransferase family, cytosolic, 2A, 
dehydroepiandrosterone (DHEA)-preferring, 
member 1 

NCGC_PXR_Agonist_humana NR1I2 
nuclear receptor subfamily 1, group I, 
member 2 

NVS_GPCR_g5HT4a HTR4 5 hydroxytryptamine (serotonin) receptor 4 
NVS_GPCR_h5HT6a HTR6 5-hydroxytryptamine (serotonin) receptor 6 

 

B. MGR_Rat_Liver 

Assay Gene Gene name/ Description 
ATG_ERRg_TRANSb ESRRG estrogen-related receptor gamma 

ATG_HIF1a_CIS HIF1A 
hypoxia inducible factor 1, alpha subunit 
(basic helix-loop-helix transcription factor) 

ATG_Pax6_CIS PAX6 paired box 6 
BSK_4H_VCAM1_down VCAM1 vascular cell adhesion molecule 1 
BSK_hDFCGF_CollagenIII_upa COL3A1 collagen, type III, alpha 1 
BSK_KF3CT_IL1a_downa IL1A interleukin 1, alpha 
BSK_LPS_MPC1_down CCL2 chemokine (C-C motif) ligand 2 
CLM_Hepat_CellLoss_1hra  Cellumen_Hepat_CellLoss 

CLM_Hepat_NuclearSize_48hra 
Ratus 
Norvegicus 

Cellumen_Hepat_NuclearSize 

CLM_MicrotubuleCSK_Destabilizer_24hra  HCS Microtubule Destabilization 
NCGC_ERalpha_Agonista ESR1 estrogen receptor 1 
NVS_ADME_hCYP1A2 CYP1A2 cytochrome P450, family 1, subfamily A, 
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polypeptide 2 

NVS_ADME_hCYP2C8a CYP2C8 
cytochrome P450, family 2, subfamily C, 
polypeptide 8 

NVS_ADME_rCYP2A2 CYP2A2 
cytochrome P450, subfamily 2A, 
polypeptide 1 

NVS_ADME_rCYP2C6a CYP2C6 cytochrome P450, subfamily IIC6 

NVS_GPCR_g5HT4a HTR4 
5 hydroxytryptamine (serotonin) receptor 
4 

NVS_GPCR_hOpiate_mua OPRM1 opioid receptor, mu 1 
NVS_NR_bPRa PGR  

NVS_NR_hCAR173 NR1I3 
nuclear receptor subfamily 1, group I, 
member 3 

NVS_NR_hPPARg PPARG 
peroxisome proliferator-activated receptor 
gamma 

 

C. MGR_Rat_Viability   
Assay Gene Gene name/ Description 
ATG_ERa_TRANSa ESR1 estrogen receptor 1 
ATG_ERRg_TRANSa ESRRG estrogen-related receptor gamma 

ATG_THRa1_TRANSa 
THRA thyroid hormone receptor, alpha (erythroblastic 

leukemia viral (v-erb-a) oncogene homolog, avian) 
BSK_3C_uPAR_downb PLAUR  
BSK_3C_Vis_downa  HUVEC (IL-1b+TNFa+IFN-g): Visual 

BSK_BE3C_hLADR_upb 
HLA-
DRA 

major histocompatibility complex, class II, DR alpha 

BSK_hDFCGF_MIG_downa CXCL9 chemokine (C-X-C motif) ligand 9 
BSK_KF3CT_ICAM1_down ICAM1 intercellular adhesion molecule 1 
BSK_KF3CT_MMP9_downb MMP9  
BSK_LPS_PGE2_downa PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 
BSK_LPS_PGE2_upb PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 

BSK_SM3C_Proliferation_downa 
 HUVEC/Primary Human Vascular Smooth Muscle 

Cells (IL-1b+TNF-a+IFN-g): Proliferation 
CLZD_GSTA2_48 GSTA2 glutathione S-transferase alpha 2 
CLZD_UGT1A1_6a UGT1A1 UDP glucuronosyltransferase 1 family, polypeptide A1 
NVS_ADME_hCYP2C9b CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 
NVS_ADME_hCYP3A5b CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 
NVS_ADME_rCYP2C6b Cyp2c6 cytochrome P450, subfamily IIC6 
NVS_ENZ_rAChEb Ache acetylcholinesterase 

NVS_GPCR_h5HT7a 
HTR7 5-hydroxytryptamine (serotonin) receptor 7 (adenylate 

cyclase-coupled) 
NVS_GPCR_hDRD1 DRD1 dopamine receptor D1 
a. Assays considered to be related with in vivo test results, based on permutation test (p<0.05, 
10,000 times) to show statistically better external predictivity CCRext than conventional QSAR model.  
b. Assays that showed high correlation with in vivo test results based on association analysis 
using Fisher’s exact test (p<0.05) , in addition to better external predictivity than  conventional QSAR 
model in permutation test. 
 

 

 



 
 

Chapter 6. Conclusions and Future Studies 
6.1. Combi-QSAR Modeling Approach and Virtual Screening for Novel Inhibitors of 

Human Histone Deacetylase (HDAC)  

Histone deacetylases inhibitors (HDACIs) have emerged as a new class of drugs for 

the treatment of human cancers and other diseases due to their effects on cell growth, 

differentiation, and apoptosis. In chapter 2, we have employed a combinatorial QSAR 

approach to generate models for 59 chemically diverse compounds tested for their inhibitory 

activity against HDAC1. The SVM and kNN QSAR methods were used in combination with 

MolConnZ and MOE descriptors independently to identify the best approach with the highest 

external predictive power. Rigously validated QSAR models were used to screen our in-

house database collection of a total of over 9.5 million compounds. This study resulted in 45 

consensus hits that were predicted to be potent HDAC1 inhibitors. Two hit compounds that 

were not present in the original dataset were nevertheless reported recently as HDAC1 

inhibitors 131,132. Four hit compounds with interesting chemical features were purchased and 

experimentally validated. Three of them were confirmed to have inhibitory activities to 

HDAC1 (Class I HDACs) and the best activity obtained was IC50 of 1.00 μM. The fourth 

compound was later identified to be a selective inhibitor to HDAC6, a Class II HDACs. 

Moreover, two of the confirmed hits are marketed drugs which could potentially expedite 

their development as anticancer drugs acting via HDAC1 inhibition. We believe that the 

technologies described in this study could be used for data analysis and hit identification for 

other drug discovery studies. 
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6.2. Development, Validation and Application of Target-specific Pose Filters in 
Structure-based Virtual Screening of Subtype Selective Ligands 

In Chapter 3and 4, we have proposed a general pose filter using the DFT derived 

protein-ligand interaction descriptors (PL/MCT-tess) in structure-based virtual screening. 

The pose filter was validated with the 13 benchmarked DUD datasets and FRED2.2.5 

docking program. The pose filter enables a constant improvement over using the default Fred 

scoring functions for active compounds. We further challenged the pose filter to identify 

subtype selective beta-adrenergic ligands. The results showed that it is possible to achieve 

reasonable early enrichment with carefully designed subtype biased pose filters, preferably 

using a selective ligand as the reference and a calibration set including both known 

nonselective and inactive molecules. It should be noted that the success of the proposed 

approach is heavily dependent on the previous knowledge, especially the selection of proper 

reference ligands to guide the structure modeling as well as docking pose selection. 

 For future studies, it would be interesting to see how additional knowledge about the 

receptors, such as the conformational flexibility of the binding pockets can be employed into 

structure-based docking, and affect the virtual screening performance. It is believed that the 

binding sites of GPCRs are very flexible in the absence of a bound ligand. Therefore, virtual 

screening with one static binding pocket from individual structure models or X-ray crystal 

structure may not be able to capture the real binding mode of some ligands. One possible 

solution is to include a set of experimentally solved structures, or in case of βAR, a set of 

representative structures extracted from molecular dynamic simulation study, to perform 

virtual screening in parallel, and combine the derived ranking lists for a consensus rank. In 

addition, the current pose filter does not explicitly apply any kind of model applicability 

domain.  It is expected that small molecules with larger molecular volume could form more 
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non-specific contacts with receptor side-chains, and contribute to the false positive class. It 

should be beneficial to filter out or penalize those molecules from the ranking list. However, 

preliminary studies on applying a QSAR-like applicability domain for the pose filter did not 

show significant benefits for virtual screening performance. Further studies are needed to 

explore this issue. 

6.3. Development of Predictive in vivo Toxicity Models from Combined Knowledge of 
Chemical Structure Information and the ToxCastTM in vitro Data 

In Chapter 5, we have examined the utility of the chemical structure descriptors and 

the ToxCastTM bioassay data for predicting in vivo toxicity of environmental chemicals. Our 

results indicate that the conventional QSAR models using chemical descriptors alone and the 

ToxCastTM bioassay results individually have limited predictive power. For some endpoints, 

e.g. MGRRatLiver, it is possible to use conventional QSAR models to achieve good 

predictivity for a subset of compounds with restricted scaffolds. On the other hand, although 

the ToxCastTM bioassay data have low correlations with in vivo toxicity data, they can still be 

useful for improving the predictive power of QSAR models when implemented within the 

novel two step hierarchical QSAR modeling workflow. This novel hierarchical QSAR 

modeling workflow can also help to estimate possible mechanisms of the toxicity pathways 

by evaluating the in vitro toxicity assays associated with top-ranked models. The derived 

models thus could be used to guide the future toxicity studies by choosing in vitro assays, 

prioritizing compounds for in vivo toxicity evaluation, as well as directing potential mode-of-

action analysis by evaluation of the molecular targets and pathways of the most predictive in 

vitro assays.  
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As shown from our studies, the proposed QSAR modeling workflow can improve 

toxicity predictions with a reduced applicability domain. The coming phase II ToxCastTM 

data that was tested against an additional 1000 compounds would provide an objective test 

set to evaluate models’ applicability as well as prediction accuracy. In addition, it is well 

known that the toxicity effects are dose-dependent. For current studies, the toxicity 

observations as well as the bioassay responses have been simplified into active (toxic) or 

inactive (non-toxic) classes. It would be interesting if we can include the dose-response data 

in the QSAR modeling, and test whether we can achieve better performance. Indeed, a recent 

publication by Sedykh et al.26 showed that it is possible to use the concentration-response 

data in the prediction of rodent acute toxicity. Furthermore, it would be beneficial to combine 

the prediction results with the results from bioinformatics analysis of the inherent 

connections between protein targets and bioassays.   
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APPENDICES 
Appendix I: Structure and pIC50 of fifty-nine HDAC1inhibitors used for model building and 
validation.  
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