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ABSTRACT 

 

SHAWN DANIEL BROWN:  Case Studies on Optimizing Algorithms for GPU Architectures 

(Under the direction of Jack Snoeyink) 

 

Modern GPUs are complex, massively multi-threaded, and high-performance.  

Programmers naturally gravitate towards taking advantage of this high performance for achieving 

faster results.  However, in order to do so successfully, programmers must first understand and 

then master a new set of skills – writing parallel code, using different types of parallelism, 

adapting to GPU architectural features, and understanding issues that limit performance. 

To help GPU programmers become productive more quickly, this dissertation introduces 

three data access skeletons (DASks) – Block, Column, and Row -- and two block access 

skeletons (BASks) – Block-By-Block and Warp-by-Warp.  Each “skeleton” provides a high-

performance implementation framework that partitions data arrays into data blocks and then 

iterates over those blocks.  Programmers must still write “body” methods on individual data 

blocks to solve their specific problem.  These skeletons provide efficient machine dependent data 

access patterns for use on GPUs.  DASks group n data elements into m fixed size data blocks.  

These m data block are then partitioned across p thread blocks using a 1D or 2D layout pattern.  

Generic programming techniques are applied to the fixed size data blocks to enable performance 

experiments for different types of parallelism – instruction-level parallelism (ILP), data-level 

parallelism (DLP), and thread-level parallelism (TLP). 

These different DASks and BASks are introduced using a simple memory I/O (Copy) 

case study.  Three additional case studies – Reduce/Scan, Histogram, and Radix Sort -- 

demonstrate DASks and BASks in action on parallel primitives and also provide more valuable 

performance lessons.  
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   bh    Block Height, AKA blockDim.y 

   bl    Block Length, AKA blockDim.z 

   bx    Position within [0, gw), AKA blockIdx.x 

   by    Position within [0, gh), AKA blockIdx.y 

   bz    Position within [0, gl), AKA blockIdx.z 

   tx    Position within [0, bw), AKA threadIdx.x 

   ty    Position within [0, bh), AKA threadIdx.y 

   tz    Position within [0, bl), AKA threadIdx.z 

CTA 

params 

Derived parameters from the CTA layout parameters, these 

are usually computed as runtime parameters. 

   b    Block Size, assumes block is 1D and small (b ≤ 1024),  

   Typically taken directly from blockDim.x 

   g    Grid Size, assumes grid is 1D and small (g ≤1000), 
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   Taken directly from either gridDim.x or *.y 

   bid    Unique 1D block ID (thread block within a grid), derived  

   (mapped) from ‹gw,gh,1› and ‹bx,by,bz› 

   tid    Unique 1D thread ID (thread within a thread block),  

   derived (mapped) from ‹bw,bh,bl› and ‹tx,ty,tz› 

   warpCol    Relative thread position within current thread warp in range     

   [0, WarpSize) = [0, 31).  Computed as  

   warpCol = tid % WarpSize = tid % 32 or alternately as     

   warpCol = tid & (WarpSize-1) = tid & 31. 

   warpRow    Relative warp position within current thread block in range  

   [0, nWarps).  Computed as  

   warpRow = tid / WarpSize = tid/32 or alternately as  

   warpRow = tid >> log2(WarpSize) = tid>>5. 

𝑑 Number of dimensions for 𝑑-dimensional points 

𝑑 Digit, represents a small fixed-size numeric range [0, d).  A 

number is represented by a string of digits (Radix Sort). 

d Number of bin counters (Count Histogram, Radix Sort) 

𝐷(𝑛), 𝐷 Depth, Steps, Number of parallel stages for 𝑛 data elements 

DBS Data Block Size, AKA Data (Work) per block, computed as  

DBS = nWork*nWarps*WarpSize (= nWork*TBS). 

dist(p,q) A distance metric between two points, Euclidean distance as 

dist(p,q)=√(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2 

dv Digit value, specific number taken from range [0, d).  A 

specific number is represented by a string of 1 or more 

specific digit values from most to least significant. 

DWord 32-bit data-element (4 bytes, 2 words) 

𝑓 Fanout in a circuit (hardware adders) 

G Cycles to transfer data between global memory and registers 

(400-800 cycles on Fermi, 200-400 on Kepler) 

hi The ith bin count (matching the sub-range ri) 
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𝕀 
Identity element, i.e., 𝕀 is a data element under some binary 

operator ⨁ such that 𝑎 = 𝑎⨁𝕀 = 𝕀⨁𝑎 for all 𝑎 ∈ 𝕌 

IS 
The linear ideal speedup of a parallel computation, computed 

as IS = W(n)/p. 

𝑘 
Pipelined instruction-length (18-22 cycles on Fermi, 9-11 

cycles on Kepler) 

𝑘 Number of nearest neighbors to find (𝑘NN search) 

𝑘 Number of work items per-thread 

𝑘 Number of thread collisions in a k-way bank conflict. 

𝑘 Number of binning passes (Radix Sort) 

𝑘 The maximum number of digits in a key (Radix Sort), 

computed as k = ⌈log𝑑 𝑚⌉ 

𝑙 Logic levels in a circuit (hardware adders) 

𝑛 Number of data elements in a run, warp, or array 

𝑛 Number of points (objects) in a search set (S) 

nWarps C++ parallelism parameter that tracks the number of thread 

warps per thread block, typically set in the range [1-8] but 

can go as large as 32 warps on current GPU architectures. 

nWork C++ parallelism parameter that tracks the number of work-

items (data elements) assigned to each thread, typically set in 

the range [1-8] but can go larger as needed. 

𝑚 Number of bins (frequency counts in histogram) 

𝑚 Number of data blocks, 𝑚 = ⌈
𝑛

𝐷𝐵𝑆
⌉ 

𝑚 Number of points (objects) in a query set (Q). 

𝑚 Maximum number value taken from a large fixed-size 

numeric range [0, m). 

𝑂(𝑛) Big “O” Notation, Asymptotic complexity of an algorithm 

ℙ 
Parallelism (work over depth), ℙ =

𝑾(𝒏)

𝑫(𝒏)
 

𝑝 Number of parallel processors (multi-cores) 

𝑝 Number of parallel threads  

point A d-dimensional point (optionally representing an object) as  
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‹x,y,…› 

Q Query set, set of points (objects) to find closest neighbors to 

QR Query region, a set of regions QRi (typically d-dimensional 

hyperboxes or hyperspheres) to find points (objects) that are 

contained in or covered by the query regions. 

R Range R = [min, max] or R = [min, max) 

R Number of rows, if the number of columns (C) is fixed it can 

be computed as 𝑅 = ⌈𝑚/𝐶⌉ 

ri The ith sub-range, ri = [ai, ai+1) from a larger range R 

ri The ith row from p rows in a partitioned data set 

ri The ith run from p runs in a partitioned data block 

ri The ith digit run, where the chosen digit from each key in the 

run matches the digit value i in the range [0, d) (Radix Sort) 

𝑟𝑙 Run length, typically in range [1-8]. 

S Cycles to transfer data between shared memory and registers 

(40-80 on Fermi, 20-40 on Kepler) 

S Search set, set of points (objects) to be searched 

𝑆(𝑛), 𝑆 Steps, Number of parallel stages for 𝑛 data elements 

Equivalent to concept of 𝐷𝑒𝑝𝑡ℎ =  𝐷(𝑛)  =  𝐷 

si The ith run start, taken from [0,d) bins in a start histogram 

(Radix Sort). 

Speedup Speedup, computed as 𝑆 =
𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝑇𝑖𝑚𝑒𝑛𝑒𝑤
 

…Serial    Serial Speedup, computed as 𝑆𝑆 =
𝑇𝑖𝑚𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑖𝑚𝑒𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑
 

   Parallel    Parallel Speedup, computed as 𝑆𝑆 =
𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 

SR‹n› A Serial Reduce on a run of length n 

SS‹n› A Serial Scan on a run of length n 

SU‹n› A Serial Update on a run of length n (add prefix to run) 

t Number of threads 

t Number of search results (NN searches) 

T Wire tracks in a circuit (hardware adders) 
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𝑇1 Parallel running time on one processor for a parallel 

algorithm, equivalent to the concept of 𝑊𝑜𝑟𝑘 =  𝑊(𝑛)  =
 𝑊 

TBS Thread Block Size, AKA threads per block, computed as 

TBS=nWarps*WarpSize 

𝑇𝐶 Total Cycles, computed as 𝑇𝐶 = 𝐼𝐼/𝐼𝑃𝐶. 

𝑇𝐶𝑃𝑈 Serial running time on one processor for serial algorithm 

𝑇𝑝 Parallel running time for a fixed number of 𝑝 processors 

bounded by Brent’s Theorem:  𝑚𝑎𝑥 (
𝑊

𝑝
, 𝐷) ≤ 𝑇𝑝 ≤

𝑊

𝑝
+ 𝐷  

𝑇∞ Parallel running time for an infinite number of processors, 

equivalent to the concept of 𝐷𝑒𝑝𝑡ℎ =  𝐷(𝑛)  =  𝐷 

WarpSize C++ parallelism parameter, used to track threads per thread 

warp.  This value is currently fixed at 32 on current GPU 

architectures, but could change in future architectures. 

𝑊(𝑛), 𝑊 Work, Total parallel work across 𝑝 processors for 𝑛 elements 

Limit of running time for 1 processor 

WR‹n› A Warp Reduce on a data run of length n = [2, 4, …, 32]. 

WR‹n› A Warp Scan on a data run of length n = [2, 4, …, 32] 
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1.0 Introduction 

Someone who wants to adapt a sequential program to a graphics processing unit (GPU) 

for better performance must learn to deal with a number of challenging problems quickly and 

without much training.  In order to ease this process and help GPU programmers become 

productive more quickly, I have developed several skeletons that can be modified to fit their 

environment without having to come up with new code on their own.  This thesis explains what 

these skeletons are and how they can be modified to solve real-life challenges. However, before I 

can explain how they help address those challenges, I must explain what those challenges are. 

The next section attempts to explain in a nutshell why GPU programming is hard.  New 

terminology employed in this section will be explained later on in context as this thesis unfolds. 

1.1 The GPU Performance Challenge: 

The Challenge:  GPU programmers are faced with several, complex challenges that 

directly affect performance.  They must first understand and select serial algorithms that they can 

depend upon to solve their specific problems.  They then must convert each single-threaded serial 

algorithm into an equivalent massively multi-threaded parallel algorithm1 that is both correct and 

robust.  They must carefully implement their multi-threaded solutions to prevent resource 

contention between threads that prevents problems such as race conditions, dead-lock, live-lock, 

starvation, etc.  If the programmer is not careful, the overhead required to prevent resource 

contention can overwhelm the amount of useful work, bottlenecking performance. 

                                                      
1  Parallel algorithms are discussed in the following books and papers (Atallah et al, 2010;  Blelloch and 

Maggs, 1996;  Dongarra et al, 2003;  Hillis and Steele, 1986;  Hwu, editor, 2011 and 2012;  Miller and 

Boxer, 2013;  Rauber and Rünger, 2010) 
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In order to achieve high performance, GPU programmers must understand GPU 

architecture2:  how the 2-level compute system operates, how batches of threads are mapped onto 

batches of simple cores, how the memory hierarchy consists of many memory types and 

behaviors, and so forth.  They also need to understand the resource issues imposed by the GPU 

architecture and the trade-offs needed in order to avoid bottlenecks.  Since the hardware supports 

pipelining, they must understand Instruction-level parallelism (ILP) and how to rewrite code to 

unlock ILP performance.  Since the hardware supports single-instruction-multiple-data (SIMD)3, 

they must understand Data-level parallelism (DLP), data partitioning, coalescence, and load-

balancing.  Since the hardware supports multi-threading, they must understand Thread-level 

parallelism (TLP), latency, warps in flight, occupancy, and related resource limitations.  They 

must worry about how to transfer data efficiently between the central processing unit (CPU) and 

GPU.  Given a large parameter space of apparently equal and valid choices, they must explore 

these many choices to help select the best parameters for optimal balanced performance on a 

particular GPU device.  Most of all, GPU programmers must be creative and willing to re-design 

and re-implement their solutions in order to achieve their desired performance goals. 

Rising to the Challenge:  Even though achieving high performance GPU algorithms 

for non-trivial algorithms is hard, solving complex scientific problems on massive data sets is 

worth the extra effort.  The payoff is seeing solutions that used to take hours or days of 

computing time now finish in seconds or minutes. 

Solid performance on the GPU is achieved by  

1) Picking good algorithms 

2) Using parallel programming concepts 

3) Adapting to the GPU architecture 

4) Eliminating performance issues 

                                                      
2  GPU architecture is discussed in the following books and papers (Buck et al, 2004;  Garland and Kirk, 

2010;  Göddeke et al, 2011;  Hennessey and Patterson, 2012;  Hwu, editor; 2011 & 2012;  Nickoos and 

Dally, 2010;  NVIDIA 2010 Fermi;  NVIDIA, 2012 Kepler;  Owens et al, 2007;  Patterson, 2009). 
3  As introduced in Flynn’s Taxonomy (Flynn, 1972). 
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Finally, the programmer must then iterate on the previous four concepts until satisfied 

with performance as measured by some metric against baseline performance as shown in the 

following five case studies: Memory I/O; Scan/Reduce; 𝑘d-tree; Histogram; and Radix Sort. 

1.1.1 Good algorithms 

The entire point of computer science has been to solve big real-world problems by 

developing great data structures and solid algorithms  Experienced programmers are well of 

broad paradigms4 like Divide and Conquer, Recursion, Greedy Algorithms, Dynamic 

Programming, Reductions, Randomized algorithms, etc.  The main point of these approaches is to 

minimize the real-world resource consumption (time, space, etc.) of algorithms using a concept 

called Asymptotic Growth, also known as “big-O” notation.  “Big-O” notation allows 

programmers to broadly compare different solutions to the same problem.  For example, an 

algorithm that takes linear time O(n) is generally considered better than an algorithm that takes 

log-linear time O(n log n) or even quadratic time O(n2). 

Experienced programmers have many data structures and algorithms in their tool-belt that 

allows them to creatively solve real-world problems with their many competing demands and 

constraints.  Great programmers take their solutions a step further by making sure their code is 

efficient often achieving up to a ten-fold increase in performance over an algorithm as found in a 

class, book, or on the internet.  There are many books, papers, lectures, and other resources that 

describe these efficient data structures or algorithms.  Such a topic is outside the realm of this 

thesis.  I will assume my readers have already found and picked good algorithms for their specific 

problem-space and are now struggling with getting their code working on a GPU.  And that after 

they get their code working correctly, they will then want to write efficient code that achieves 

high performance. 

                                                      
4  As described in various books on algorithms (Cormen et al, 2009; Edmonds, 2008; Miller and Boxer, 

2013; Sedgewick, 1998; Skiena, 2008). 
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1.1.2 Key concepts for Parallel Computation in GPUs 

 GPU’s achieve high performance by massive parallelism.  Modern GPUs, like the GTX 

580, 680 and Titan5, contain hundreds, even thousands of processing cores.  The GPU 

architecture supports multiple forms of parallelism6: instruction-level parallelism, thread-level 

parallelism, task-level parallelism, and data-level parallelism.  ILP seeks to extract multiple 

independent instructions from sequential instruction streams, which can then be executed in 

parallel on multiple processing stages within each processing core.  A single instruction stream is 

typically executed via a single thread on a multi-threaded CPU.  TLP attempts to keep processors 

busy by rapidly switching between multiple instruction streams whenever the current thread stalls 

waiting on some other resource.  TLP, also known as multi-threading, supports both task-level 

parallelism and data-level parallelism.  For task-level parallelism, work is defined as an abstract 

unit of useful computation, functionality refers to useful functions, modules, sub-programs which 

can be grouped by common tasks such as graphics, audio, user-interface, etc..  Task-Level 

Parallelism divides work by functionality across multiple threads of execution with each subtask 

being mapped onto its own thread.  Because of the heterogeneous nature of the subtasks, this 

form of parallelism works best on multi-core CPUs.  For data-level parallelism (DLP), work is 

defined as by how many data elements (work items) are processed by each individual thread.  

DLP partitions a data array into smaller chunks with each thread being assigned its own 

individual chunk of data to process according to some data parallel function, kernel, or program.  

Each thread executes the same set of instructions but on different pieces of data.  Because data-

parallel code is largely homogenous across threads, DLP strongly favors GPUs with their massive 

number of simple cores arranged in SIMD layout.  These different types of parallelism (ILP, TLP, 

and DLP) will be discussed in more detail in “Chapter 2 – Parallelism”. 

                                                      
5  As described by NVIDIA (NVIDIA, 2010 Fermi; NVIDIA, 2012 Kepler; NVIDIA, 2012, GTX 680) 
6  See the book Computer Architecture (Hennessey and Patterson, 2012) for more details on the various 

types of parallelism. 
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1.1.3 GPU Architecture 

Adapting algorithms to GPU architectures is a challenge because of the many choices for 

thread organization, register assignment, memory layout, and synchronization.  In this thesis I 

consider some of these choices using several case studies (memcopy, scan/reduce, 𝑘d-tree, 

histogram, and RadixSort) for processing massive amounts of data at throughputs rates that 

approach the hardware limits.  In my experience, the paucity of choices for synchronization 

drives the initial design decisions.  In addition, the memory layout determines what can be 

processed efficiently in parallel.  Finally, there are many choices for processor organization that 

can be experimented with to approach peak performance.  GPU architectures will be discussed in 

more detail in “Chapter 2 – Parallelism”. 

1.1.4 GPU Performance Issues 

GPU architectures focus on maximizing throughput across tens of thousands of threads, 

while CPU architectures concentrate on minimizing latency for a single task.  Thus, there are 

many differences between these two architectures--including parallelism, multi-threading, and 

memory hierarchy.  GPU programmers need to be aware of these differences to increase parallel 

throughput in their own GPU implementations.  Although, some GPU hardware features can help 

performance, other GPU hardware features can hinder performance.  Many of these performance 

issues related to GPU hardware will be discussed in more detail in “Chapter 3- Performance and 

Issues”. 

1.2 Data Access Skeletons 

 I have written many versions of GPU kernels over the past several years and in so doing 

have learned many lessons about how to improve performance.  The four main lessons I have 

learned include the following: 

 Hardware support for instruction-level pipelining can be taken advantage of by increasing 

the work per thread via instruction-level parallelism. 
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 Hardware support for SIMD can be taken advantage of by partitioning data into runs and 

data blocks via data-level parallelism. 

 Hardware support for multi-threading can be taken advantage of by increasing the 

number of threads launched via thread-level parallelism. 

 Hardware features that can either help or hinder throughput performance.  

 I have generalized these performance lessons from my own GPU programming into 

frameworks, which I call data access skeletons (DASks) and block access skeletons (BASks).  

These DASks and BASks provide three main benefits: 

 They support efficient access patterns into memory. 

  They support experiments on instruction-level and thread-level parallelism to find the 

optimal balance between the two for high throughput. 

 They provide a working framework that hides much of the complexity of writing GPU 

kernels with high performance. 

 

 In general, higher performing code is more complex, and this is certainly true for these 

skeletons.  When writing high performance GPU algorithms, a programmer must first get a 

correct and working implementation up and running.  So, first I introduce a simple GPU copy 

kernel in Chapter 4 before introducing higher performing but more complex DASk versions of 

Copy in Chapter 5. 

Partitioning:  My DASks group n data elements into m fixed-size data blocks.  These m data 

blocks are then load-balanced across p thread blocks using different memory access patterns.  

There are five important benefits to this approach: 

 Parallel Processing:  By design, my DASks are built to efficiently support the 2-level 

cooperative thread array (CTA) hierarchy used for parallel processing on modern GPUs. 

 Data Coherence:  Coherent data allows efficient near-peak input/output (I/O) throughput 

into memory.  My DASks support high coherence by working with blocks of data. 

 Sequential Ordering:  My Row DASk supports sequential ordering for those algorithms 

that require it for correct behavior (such as Scan and Radix Sort). 

 Deterministic Execution:  All my case study algorithms are implemented in a lock-free 

deterministic manner that does not require mutual exclusion (with one exception7). 

                                                      
7   The one exception is the use of barrier synchronization, which makes all threads wait at the 

synchronization point until all threads arrive before all threads are allowed to proceed execution again.  I 
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 Data Independence:  Most of my case study algorithms are data independent8. 

 

There are three main DASks --Block, Column, and Row-- and two main BASks --Block-

by-Block and Warp-By-Warp.  At a high level, these all represent different access patterns (or 

layouts) into global memory.  The GPU architecture supports parallel performance using a 2-level 

parallel hierarchy.  The three DASks support efficient access patterns across thread blocks within 

a parallel grid when accessing the entire data set.  The two BASks support efficient access 

patterns by individual threads within a single data block when accessing a single data block.  

These DASks and BASks are introduced and discussed in more detail in “Chapter 5 – Data 

Access Skeletons”. 

 

1.3 Case Studies 

Many issues become evident when working with parallelism on GPU hardware.  These 

issues are a result of adapting serial algorithms into parallel algorithms and mapping parallel 

concepts onto specific GPU architectures.  GPU programmers must learn how to take advantage 

of beneficial hardware features while mitigating harmful hardware features in order to unlock 

high performance.  GPU programmers must learn about using parallelism (instruction-level, data-

level, thread-level, bit-level) to increase performance.  In order to make these abstract lessons 

more concrete, I implemented algorithms on GPUs.  While implementing these algorithms, I of 

course use my DASks and BASks9 to speed up my own development time and provide a high 

performing framework.  Of course each case study implementation has additional valuable 

                                                      
use the syncthread() method for barriers within a thread block and barriers between GPU kernels happens 

automatically. 
8  My kd-tree case study algorithm is data dependent.  Since each thread represents a single query point, 

each thread branches down its own unique path through the search tree.  However, there are 32 threads per 

warp that move in lock-step through the code.  Consequently, performance varies with data as CUDA 

serializes instructions from threads on different branches. 
9  One exception, my kd-tree case study was written before I generalized the concept of DASks and BASks 

and I have not yet rewritten that code on top of one of these skeletons. 
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lessons about performance.   I showcase many of the lessons in GPU programming via five 

different case studies: Memory I/O via Copy, kd-trees, Reduce/Scan, Histogram, and Radix Sort. 

1.3.1 Memory I/O via Copy: 

The primary focus of my Memory I/O case study is on demonstrating all three of my 

DASks and both of my BASks via the Copy primitive.  The Copy primitive copies n inputs onto n 

outputs.  The secondary focus is on showing how my DASks can achieve a high percentage of 

peak I/O throughput on GPUs.  To this end, I implement the Copy primitive in four different 

ways:  Simple, Block, Column, and Row.  Getting the simple copy kernel up and running 

correctly is described in more detail in Chapter 4 – Case Study Memory IO”.  The other more 

complex and higher performing versions of Copy based on my three data access skeletons (Block, 

Column, and Row) are described in more detail in “Chapter 5 - Data Access Skeletons”.  I 

conduct experiments on all four versions of Copy to find the best performing balance between 

ILP and TLP and achieve up to 30%, 82%, 77%, and 77% of peak I/O throughput, respectively. 

1.3.2 kd-tree for Nearest Neighbor Searches: 

In the kd-tree case study, I implement GPU kernels for nearest neighbor search10 using a 

kd-tree11.  With a nearest neighbor search, the goal is to find the closest point (or k points) within 

a search set of n points for each of m points in a query set.  Note: Unlike my other case studies, 

this case study does not use any of my DASks. 

My first exposure to GPU programming was implementing a kd-tree for use on nearest 

neighbor searches.  I intended to use this nearest neighbor search as part of a terrain visualization 

problem on LIDAR data.  My solution took much longer than I had originally budgeted.  

However, eventually I got it working and in time achieved a 25× speedup in performance over the 

                                                      
10  Nearest neighbor searches are discussed in the following books and papers (Bentley, 1975;  Bustos et al, 

2006; Mount and Aray, 2010;  Shakhnarovich et al, 2005). 
11  kd-trees are a type of spatial searching data structure created by Bentley (Bentley, 1975). 
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equivalent single-threaded CPU code.  I was proud of this result at the time.  However, looking 

back with the benefit of more experience, I see that my original implementation was naïve.  It did 

not take advantage of many GPU hardware features and ran head on into several hardware 

limitations that constrain parallel performance.  This kd-tree implementation is described in more 

detail in “Chapter 7 – Case Study kd-tree”. 

1.3.3 Reduce/Scan: 

In my Reduce/Scan case study, I use my Row DASk to implement high performance 

parallel Reduce and Scan GPU primitives12.  Reduce produces a total sum by accumulating n 

inputs into a single final sum.  Scan (Prefix Sum) produces a running sum by accumulating n 

inputs into n outputs, where the ith output element is the cumulative sum of the first i (or i-1) input 

elements.  Reduce and Scan have similar implementations.  Both primitives are almost trivial (3-5 

lines of code) to implement on a serial CPU.  However, the parallel GPU implementations are 

much more complex.  This complexity is a direct result of data being load-balanced across tens of 

thousands of threads and the requirement for partial per-thread sums to be hierarchically 

combined and redistributed for correct final results.  The Scan primitive requires that inputs be 

processed in sequential order for correct scanned results.  Although the Reduce primitive does not 

require sequential ordering, I choose to implement it the same way as Scan. 

As will be seen, I perform experiments on both ILP and TLP to find the optimal balance 

for best performance.  My Reduce and Scan primitive achieve up to 89% and 85% of peak I/O 

throughput on the GTX 580 (and up to 76% of peak I/O throughput on the GTX Titan).  My 

Reduce/Scan primitives are described in further detail in Chapter 6. 

                                                      
12  For more details about the Reduce and Scan primitives, see the following papers (Blelloch, 1989 and 

1990;  Blelloch and Maggs, 1996; Chatterjee, 1990; Harris et al, 2008;  Hillis and Steel, 1986;  Merrill and 

Grimshaw, 2010 Parallel Scan). 
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1.3.4 Histogram: 

 In my Histogram case study, I use my Column DASk to implement a parallel 8-bit 

histogram primitive on the GPU.  A histogram13 summarizes the frequency distribution of an 

entire data set via a much smaller table of counts.  In a nutshell, n input elements are counted into 

m bins.  The resulting m frequency counts form the histogram output.  Each of the n inputs is 

assumed to be taken from a range, R = [min, max).  Each of the m bins represents a sub-range ri 

of R.  (These sub-ranges uniquely partition and fully cover the original range R).  Counting 

proceeds by selecting the matching sub-range for each input element and incrementing that bins 

counter. 

An 8-bit histogram can be implemented using a simple indexing operation on 8-bit data.  

The serial CPU implementation is trivial (5-8 lines of code).  Although histograms are 

straightforward to implement on a sequential CPU, they have proven difficult to adapt for use on 

GPUs with low performance results in prior GPU histogram implementations.  I ran into similar 

performance issues since my GPU Histogram only achieves up to 21% of Peak throughput on the 

GTX 580.  Nevertheless, my GPU Histogram still runs up to 50% faster than prior GPU 

histogram methods for random data and up to 2-4× faster for image data.  My 8-bit GPU 

histogram is described in further detail in Chapter 8. 

1.3.5 Radix Sort: 

 In my Radix Sort case study, I use my Row DASk to implement a parallel Radix Sort on 

the GPU.  Even though a serial radix sort14 is straightforward to implement (as a 3-step Counting 

Sort pass over each r-bit digit within a numeric key), the corresponding CPU/GPU hybrid radix 

sort is much more complex.  This complexity arises due to the need to load-balance data across 

tens of thousands of threads, hierarchically scan counts into starts, compress/decompress data, 

                                                      
13  Histograms were created by Pearson (Pearson, 1895). 
14  Radix Sort algorithms are discussed in the following books (Cormen et al, 2009; Sedgewick, 1998). 
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and many other complex actions required to overcome hardware limitations.  My hybrid solution 

has the CPU implement the radix sort as multiple passes over 4-bit digits within each 32-bit 

numeric key and then invoke three GPU kernels (GPU_CountKeys, GPU_ScanCounts, and 

GPU_DistributeKeys) to do a full counting sort on each chosen digit in each pass. 

As will be seen, I perform experiments on both ILP and TLP to find the optimal balance 

for best performance.  My GPU radix sort can sort up to 717 and 836 million ‹key/value› pairs per 

second on the GTX 580 and GTX Titan respectively, which I estimate15 are about (59% and 46%) 

of peak data throughput rates respectively.  My Radix Sort is described in further detail in 

Chapter 9. 

  

                                                      
15  Given 32-bit keys and 32-bit values with a 4-bit digit, the radix sort requires 8 passes (=32/4) to fully 

sort the data.  Given these assumptions, I estimate that the maximum data throughput rate is 1205 million 

and 1802 million ‹key/value› pairs per second on the GTX 580 and GTX Titan respectively. 
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1.4 Summary: 

 As will be demonstrated in my various case studies, my DASks and BASks help 

programmers take advantage of the massive amounts of parallel processing power available on 

modern GPUs.  Even though writing GPU data parallel code that is both correct and high 

performance is quite difficult, my three DASks help solve many of the issues that GPU 

programmers must grapple with and eases the burden of implementing their own GPU programs.  

These DASks use generic programming techniques to enable experiments on both ILP and TLP 

techniques, in order to find the optimal balance between the two for best performance. 
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2.0 Parallelism 

As mentioned previously, graphics processing units (GPUs)1 achieve high levels of 

performance mainly through their massive use of parallelism. A thorough knowledge of the types 

of parallelism available is vital for anyone programming for a GPU. I therefore in this chapter 

review the common types of parallelism used by GPUs—Flynns taxonomy, machine models, and 

memory models—as well as go over the the Fermi and Kepler architectures, which are 

particularly helpful in my case studies.  

2.1 Types of Parallelism 

Parallelism is the simultaneous processing of several tasks or multiple data items on 

multiple hardware processing units.  These units are called cores2 or, in recent parlance, multi-

cores to distinguish them from the simple single-core CPU3 architectures of older computers.  

Each processing core is assumed to work on its own independent instruction stream to perform 

useful computations to accomplish a task. Typically each task involves transforming input data 

streams into output result streams. 

Parallel processing4 often requires communication and coordination between cores to 

accomplish the original task.  Granularity is a qualitative measure of the amount of computations 

done compared to the communications done.  Coarse-grained parallelism implies that large 

amounts of computations are done between communication / coordination events.  Fine-grained 

                                                      
1 Recall that GPU stands for graphics processing unit, GPUs are massively parallel processing machines. 
2 Also known as processors. 
3 Recall that CPU stands for central processing unit, CPUs are thought of as serial processing machines 

even though modern CPUs are actually multi-threaded multi-core devices that typically support multiple 

forms of parallelism. 
4 As described in the book Computer Architecture (Hennessey and Patterson, 2012). 
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parallelism implies that small amounts of computations are done between communication / 

coordination events.  Parallel overhead is the total amount of time required to communicate and 

coordinate work between parallel tasks, as opposed to doing useful work solving the original 

problem. 

2.1.1 Flynn’s Taxonomy  

Flynn’s taxonomy (Flynn 1972) offers a popular high-level way of categorizing the 

different types of parallelism and shows the fundamental differences between CPU and GPU 

architectures.  In fact, by imagining an evolution of a CPU core into a GPU core, we will see 

differences in machine models, memory hierarchies, and the way to think about mapping parallel 

computation onto the underlying architecture. 

Flynn’s Taxonomy groups serial and parallel models into 4 broad groups, either single or 

multiple along two axes (instructions and data):  Single-Instruction Single-Data (SISD), Multi-

Instruction Single-Data (MISD), Multi-Instruction Multi-Data (MIMD) and Single-Instruction 

Multi-Data (SIMD).  These groups are useful in categorizing parallel hardware, software, and 

models.  For example, Figure 2.1 shows the four types of parallelism used in my case studies:  

instruction-level parallelism (ILP), thread-level parallelism (TLP), task-level parallelism, and 

data-level parallelism (DLP). 
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Figure 2.1:  I categorize Instruction, Thread, Task, and Data-level Parallelism using Flynn’s Taxonomy 

(SISD, MISD, MIMD, and SIMD).  (Less importantly, I also categorize Vector- and Bit-level 

parallelism.) 

Instruction-Level parallelism (ILP) executes instructions on multiple processing cores to 

increase the instruction throughput of a serial instruction stream.  On CPUs, ILP has a huge effect 

on the underlying architecture, but thanks to the heroic efforts of hardware architects and 

compiler writers, most programmers see little effect on the common programming model, and can 

continue to think of and work with modern CPUs as if they were simple von Neumann SISD 

computers instead of the complex MIMD systems on a chip (SoC) that they have become. 

Thread-level parallelism (TLP), also known as multi-threading, maps multiple streams of 

execution onto multiple cores.  Initially, multi-threading appears to be clearly in the MIMD 

category for both the architecture and the programming model.  In fact, some of the first uses of 

TLP was to hide latency on SISD CPU architectures by switching from stalled threads to other 

active threads to continue doing useful work.  On SIMD processors, batches of threads (known as 

warps on NVIDIA GPUs) are mapped onto batches of simple processing cores. 

TLP enables task-level and data-level parallelism.  Task-level parallelism divides one 

large task into several smaller subtasks and maps each subtask onto its own thread or warp.  

Data-level parallelism (DLP) partitions a large data set into smaller runs of data and also maps 
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each run onto its own thread or warp.  I also show two other types of parallelism (bit-level 

parallelism (BLP) and vector-level parallelism (VP) that will I will revisit in my case study on 

Histograms (chapter 8). 

See the book Computer Architecture5 (Hennessey and Patterson, 2012), for a more in-

depth description of each type of parallelism above (as well as other types of parallelism). 

2.1.2 Machine Models, Memory Models, and the Memory Hierarchy 

Serial Model 

von Neumann Machine 

 

Parallel Model 

The Multi-computer 

 

Figure 2.2:  Serial machine model vs. Parallel machine model.  The classic serial von Neumann model 

abstracts a sequential CPU plus a load/store memory that contains both instructions and data.  The Multi-

computer model abstracts parallelism by connecting multiple serial computers together via a network 

and adding support for remote message passing and remote memory access. 

Flynn’s taxonomy includes data and instruction streams but does not cover types of 

memory access.  Yet as we will see in my case studies, useful models of memory access are also 

important to GPU programmers in order to achieve take advantage of the performance 

characteristics and features of the GPU memory hardware.  Two machine models for thinking 

about instruction, data, and access parallelism are the von Neumann computer (von Neumann, 

1945) and the multicomputer, shown in Figure 2.2.  Machine models abstract hardware for 

programmers so that they can focus on high-level algorithms, data-structures, and 

implementations without getting mired in the technical details of each machine’s specific 

architecture. 

                                                      
5 For more information about different types of parallelism, see the book Computer Architecture: A 

Quantative Approach, 5th Edition by Hennessey and Patterson. 
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The original machine model is the von Neumann computer, which consists of one CPU 

performing serial computations.  The CPU connects to a storage unit called memory.  All 

programs and data are stored in memory.  Instructions and data are transferred between CPU 

registers and memory using load/store operations.  The CPU executes a program containing a 

sequence of instructions to transform input data into output results. 

The multi-computer contains a number of simple von Neumann computers called nodes 

that are linked to each other over an interconnection network.  Each node executes its own 

program.  Each program may access its own local memory directly.  Each node may 

communicate and coordinate with other nodes over the network by sending and receiving 

messages.  These simple abstract models have performed well for over sixty years by allowing 

advances in software to proceed independently from advances in hardware. 

Under Flynn’s Taxonomy, a von Neumann machine is SISD, and the multicomputer is 

MIMD.  For serial programming, programmers follow the random access memory (RAM) model 

and assume memory access costs are fixed regardless of the machine’s physical location. 

For parallel programming, there are two main memory models: distributed memory and 

shared memory6.  For distributed memory, programmers explicitly use remote message passing 

over the interconnect network to communicate and coordinate parallel CPU nodes.  In the ideal 

distributed model, message costs are proportional to message length.  However, in practical 

models, message costs are impacted by three factors: 1) the topological layout of the network 

(meaning, cube, star, ring, etc.), 2) the physical distance between nodes, and 3) the number of 

messages competing for concurrent use of the interconnect network. 

For the shared memory model, a large shared memory pool replaces the interconnect 

network.  This model supports a concurrent RAM model.  With it, every node has a direct 

                                                      
6  Shared memory is a general term in the parallel programming community for accessing memory in 

parallel across multiple cores.  Unfortunately, NVIDIA also uses the same phrase to indicate a specific type 

of memory on GPU cores.  This may result in some confusion for the reader. 
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connection to the shared memory pool that all nodes share.  Each node also has direct access to its 

own attached local memory pool.  Because of communication overhead, access to other nodes 

shared memory is slower than direct access to its own local memory.  The number of nodes 

involved in this model tends to be small, often  2 to 8, because the all-to-all communication 

required to support concurrent coherent access to shared memory grows geometrically as node 

are added. 

In this shared memory context, coherent access implies that all changes to memory by 

any node are visible to all other nodes in the multicomputer.  Programmers can implicitly use 

shared memory to communicate data and coordinate execution across parallel nodes.  The 

concurrent RAM model is easy for most programmers to understand since it is most similar to the 

RAM model they are already familiar with.  However, concurrency implies that multiple nodes 

can update the same memory locations at the same time leading to resource competition.  

Programmers must prevent or manage resource competition between nodes to avoid serious 

problems, such as incorrect results and crashes. 

Computer architects design and build memory architectures that are far more complex 

than the simple abstract models (RAM and concurrent RAM) programmers use to understand 

them.  Because different memory technologies have many orders of magnitude differences in how 

they make trade-offs between cost, speed, and capacity, architects build large memory 

hierarchies, both architects and compiler writers try to hide the hierarchy and simulate the simpler 

memory models for the average programmer.  Because, in my case studies, the memory hierarchy 

of the GPU has a large effect on the techniques to improve performance, I want to review some of 

the terminology and issues in modern memory architectures.  

Architects divide the memory system into multiple levels (Hennessey and Patterson, 

2012), with each level containing its own memory type with its own unique characteristics—the 

primary focus is on speed, size, and cost.  The entire memory system achieves high transfer 

speeds by exploiting locality (both spatial and temporal).  If an algorithm asks for a variable 



19 

 

stored in a slower memory level, move and store that variable into a faster memory level, a 

process called caching.  Caching is effective because if an algorithm just accessed a memory 

location, that algorithm is likely to access the same location again soon, a concept called temporal 

locality.  While the memory system is transferring data, it should also go ahead and grab a small 

fixed size neighborhood of memory around the requested memory location and cache that as well.  

Because if an algorithm just accessed a memory location, then that algorithm is likely to access 

that location’s neighbors as well, a concept called spatial locality.  Frequently accessed memory 

ends up being cached in higher speed memory closer to the CPU resulting in better I/O 

throughput.  In this locality context, coherent memory accesses mean repeated memory accesses 

clump up close to each other either in time and/or space.  Coherent memory accesses run close to 

the speed of the fastest memory layer involved.  While random or incoherent memory accesses 

run close to the speed of the slowest memory layer involved.  This is because coherent memory 

accesses are well localized (across time or space), which caching exploits. 
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Figure 2.3 Memory Hierarchy with 4 broad tiers – very fast CPU registers, fast on-chip cache, 

medium speed off-chip RAM, and slow external file-based storage.  Memory is typically sorted 

by access speed with fast memory kept close to the CPU and slow memory kept more distant.  

Architects use a memory hierarchy, caching, and the principle of locality to support fast 

average access speeds at a reasonable total cost. 

Architects design modern computer memory in a hierarchical manner, as shown in Figure 

2.3, to provide fast memory access at low cost.  A typical memory system consists of four broad 

layers.  The CPU layer consists of registers used to store input operands and output results.  This 

memory is very fast but very expensive so designers keep it very small.  The on-chip multi-level 

cache layer exploits locality by temporarily storing larger fixed size chunks of instructions and 

data.  This memory is fast but expensive so it is kept small.  The off-chip main memory layer 

consists of large amounts of random access memory (RAM) shared across all cores on the chip.  

This memory is reasonably fast, and affordable so it is kept large [1-32 GB].  Finally, the storage 

layer typically consists of file-system based hardware stored externally in devices such as USB 

keys, SSDs, DVDs, and hard drives.  This memory is slow but cheap so designers can afford huge 

amounts of storage. 

In theory, the RAM model treats memory access as having a fixed cost to make it easier 

to develop new algorithms.  CPU architects and compiler writers put in great efforts to provide an 
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environment that most programmers can see as following the RAM model (at least if they respect 

some heuristics about accessing data with good locality, and partitioning drives wisely).  

However, serial CPU programmers for whom performance is crucial may need to know much 

more about the memory hierarchy and may even circumvent some of the architects’ efforts by 

memory mapping or by using other tricks that operate on lower levels of abstraction.  Currently, 

GPUs have less architecture and compiler support for the concurrent RAM model.  So, in 

practice, parallel GPU programmers have to much more aware of the memory hierarchy, memory 

types, and varying costs for accessing memory at each level. 

2.1.3 Deriving a GPU core from a CPU core 

The following diagrams shows the broad differences between CPU and GPU 

architectures, it summarizes a PPAM7 tutorial by Göddeke (Göddeke et al, 2011).  It shows how 

to evolve a CPU into a GPU in four steps: simplify, replicate, re-organize, and warp-thread..  I 

place these in their categories in Flynn’s taxonomy in Figure 2.4. 

At a high level, CPUs contain a few (2-8) large and complex ILP focused cores that favor 

coarse-grained Task-Level parallelism, whereas GPUs contain hundreds of simple TLP focused 

cores that favor fine-grained data-Level parallelism.  This differentiation can be seen as arising 

naturally from the following steps. 

 

                                                      
7 This summary is based on a Parallel Processing and Applied Mathematics (PPAM 2011) tutorial session 

on “Scientific Computing on GPUs” by Göddeke et al.  
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Figure 2.4:  Conceptual differences between a CPU core and a GPU core in broad themes.  Based on a 

talk by Göddeke (Göddeke et al, 2011). Start with a complex CPU ILP-focused core.  1) Simplify:  

Remove complex ILP and large data caches to get a simple processing core.  2) Replicate:  Repeat that 

simple core many times on the GPU chip to support massive parallelism.  3) Re-organize:  Combine 

control logic for many simple cores into one larger single vectorized SIMD core.  4) Warp-thread:  

Support multi-threading at a group level, provide large context pools and hardware support for rapid 

context switching between groups of threads called warps.  Finally, arrive at a GPU TLP-focused core. 

Simplify:  The CPU is conceptually reduced to its essential functions for executing 

programs, keeping the fetch/decode control logic, an arithmetic logic unit (ALU) for 

computation, and some execution context pools to support multi-threading. What is eliminated to 

save transistors is the large on-chip caches and most of the complex logic used to implement 

instruction-level parallelism (ILP) techniques. These simple cores will of course run slower than 

modern CPUs as they do not exploit serial parallelism or memory locality. 

Replicate:  The saved transistors are then spent on creating many parallel simple cores 

on a single chip.  To support parallel processing properly, control logic to schedule multiple 

threads onto multiple cores would also need to be added.  This MIMD approach can support both 
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task-level and data-level parallelism.  Algorithms that divide tasks or data across multiple cores 

will see a large performance gain due to parallelism. 

Reorganize:  The core architecture is redesigned by reorganizing all of the ALU cores 

and their execution contexts into larger resource pools.  To simplify yet further, a single instance 

of the instruction, control, and scheduling logic is shared across all the pooled ALU cores.  This 

reduces the total transistor count at the cost of requiring all simple cores to move in lock-step 

through the same instruction stream. This approach is similar to vector-parallel computing and is 

at the heart of SIMD processing.  For now, I will call this larger pooled core a SIMD core. This 

approach reduces system overhead by amortizing the cost of managing the instruction stream 

across many simple cores.  Each simple core within the larger SIMD core works on the same 

instruction but on different data values, which strongly favors data-parallel algorithms. 

Warp-thread:  Support is added for a large number of execution contexts for multi-

threading in batches of threads.  Using NVIDIA’s terminology, this batch of threads is known as 

a warp.  Warp-threading allows the GPU to store a large number of dynamic warps and the 

associated state (or context) for each individual thread within each warp and additional context at 

the warp level.  Each warp context corresponds to a batch of contexts (one per simple core) on the 

SIMD core.  Think of warp-threading as multi-threading that occurs at the SIMD core level, not 

at the ALU core level with each warp-thread acting as a fat bundle of smaller threads (one per 

ALU core) that all move in lock-step through the instruction stream.  All simple threads within a 

warp thread share a single warp context, including a program counter and other related resources 

(such as instruction cache or assigned shared memory) to march through the same instruction 

stream as a group. 

Next, imagine adding support for a fast fine-grained multi-threaded (multi-warp) 

scheduler to rapidly switch between warp contexts as individual warps stall during execution.  

NVIDIA calls this thread manager a warp scheduler. Individual warps may stall, however, if this 
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happens, the warp scheduler will rapidly switch the SIMD core to another active warp and keep 

all the simple cores within each SIMD core doing useful work.  In this way, the warp scheduler 

keeps the SIMD core busy by hiding latency and increasing overall instruction throughput. 

After simplifying, replicating, re-organizing, and warp-threading, we arrive at a 

convenient abstraction of a modern GPU architecture. 

2.2 GPU Architecture 

A modern GPU core, as found on the GTX 580, as shown in Figure 2.5, is a result of 

combining the broad concepts from section 2.1.3 into silicon.  In NVIDIA terminology, A 

replicated, re-organized, and warp-threaded SIMD core is called a streaming multi-processor 

(SM).  Each SM contains multiple scalar processors (SP) similar in concept to simple ALU 

processing cores.  Warp-threading is supported using warps of 32 threads that in turn are mapped 

onto the physical SPs.  The instruction (fetch/decode), control and warp scheduling logic are 

shared across all the SPs on the SM. 

The resulting GPU architecture supports data-level parallelism via both ILP and TLP 

concepts.  ILP is supported in hardware by pipelining and scoreboarding on each SM core.  TLP 

is supported by warp level multi-threading across lots of SP cores.  GPUs take the replicate 

concept one step further by replicating each SM multi-core across the chip multiple times to 

achieve the massively parallel computing devices known as GPUs. 
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Simple Core SIMD Core Modern GPU 

 

Figure 2.5:  A modern GPU core:  The Fermi multi-processor core implements massive parallelism by 

simplifying, replicating, re-organizing, and multi-threading.  On the left, is a simple pipelined SP-core 

(scalar processor).  In the center, 32 SP cores are replicated and then re-organized with shared 

instruction, control, and scheduling logic into a SIMD core called a SM-core (Streaming Multi-

processor).  The on-core warp scheduler supports rapid context switches between up to 48 different 

warps, containing 32 parallel threads each, for a total of up to 1,536 threads in 48 independent warps of 

execution.  NVIDIA replicates again putting 16 SM cores onto each GTX 580 GPU card for a total of 

512 simple cores per card.  NVIDIA also adds support for an intra-core thread scheduler, 3D graphics, a 

memory hierarchy, 6 memory controllers and an I/O controller. 

So, in a broad sense, CPUs spend silicon on advanced ILP techniques and large data 

caches to speed up the performance of serial algorithms.  GPUs spend silicon on warp-based 

multi-threading and massive numbers of simple cores to speed up the performance of data-

parallel algorithms. 

 Hardware architects and compiler designers have done an excellent job hiding the actual 

parallel complexity of modern CPUs from programmers.  Most programmers can safely assume a 

RAM memory model on top of a von Neumann machine and achieve solid results.  However, 

GPU chips and the CUDA8 platform (NVIDIA, 2010, What is CUDA) are not as evolved and 

programmers must put in greater efforts to understand the underlying GPU architecture and issues 

entailed in order to make their kernels run correctly, robustly, and with high performance.  To 

help with that deeper understanding, I will drill down on the GPU architecture in greater detail in 

this section. 

                                                      
8  CUDA is an abbreviation that stands for Compute Unified Device Architecture as defined by NVIDIA. 
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A GPU supports high-performance parallel computing by combining together these three 

elements: 

1. A hybrid (MIMD/SIMD) hardware model for data-level parallelism 

2. A massive multi-threaded two-level scheduler for thread-level parallelism 

3. Simple programming language extensions for ease of parallel programming 

GPUs support incredible processing rates for massive data sets that can be adapted to 

their models of processing, memory, and communications.  This adaptation is not easy, because 

these are complex, interacting models, with unexpected limitations imposed by hardware.  I 

suggest that, because the hardware architects have focused on implementing a data-parallel 

processor model, have given flexibility for the memory model, and have spent less effort on the 

communication model, the programmer may wish to consider these in reverse order:  first making 

algorithm selections based on communication constraints, secondly choosing parameters based on 

memory hierarchies, and then implementing kernels using parallel thread groups (or warps). 

Now, that we have a high-level understanding of how GPU’s differ from CPU’s, I will 

next explore the GPU architecture from several different points of view:   

1. Processing and memory,  

2. Warp-threading and scheduling 

3. Communication and coordination 

Any parallel computation devices must provide mechanisms for instruction dispatching 

and processing, memory storage and retrieval, thread scheduling and management, and 

communication/synchronization.  GPUs were designed for fast processing in graphics pipelines, 

in which the same computation (viewing transformation, illumination, z-buffering, texture-

mapping) can be performed in parallel on a large amount of data.  Thus, the GPU hardware 

architects have created a fixed hierarchy of processors, a flexible hierarchy of memory, two levels 

of multi-threaded schedulers, and a limited set of primitives for communication / coordination 
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across threads.  I will overview the NVIDIA Fermi GTX 580 card and Kepler GTX 680 cards as 

specific examples of these high-level design concepts. 

2.2.1 Hardware Processor and Memory Hierarchies 

Current GPU architectures use a two-level hierarchy of processing cores.  Consider, as 

examples, NVIDIA’s Fermi and Kepler architectures,  The GTX 580 GPU (NVIDA, 2010, 

Fermi) contains 16 SMs, each containing 32 SPs for a total of 512 cores with an aggregate 1.58 

Tera-FLOPs of single-precision peak compute capacity.  The GTX 680 (NVIDIA, 2012, GTX 

680) contains 8 SMXs, each with 192 SPs for a total of 1,536 cores with an aggregate 3.10 Tera-

FLOPs of single-precision peak compute throughput.  On both the GTX 580 and GTX 680, 

double-precision peak throughput drops to only 197 and 129 Giga-FLOPS, an 8-fold and 24-fold 

decrease, respectively, instead of the expected two-fold, because only a few of the FPUs can 

handle 64-bit doubles. 

Both processors execute hierarchically organized threads, which are best considered as 

single-instruction/multiple-data (SIMD) processes, as we will describe shortly in section 2.2.3. 

Memory Types:  Each GPU has support for many different types of memory (NVIDIA, 

2012 Programming Guide) --Registers, Shared, Global Memory, Cache, Surface, Texture, 

Constant, and Local, as shown in Table 2.1.  The Surface, Texture, and Local memory are just 

special forms of global memory with extra functionality and/or behavior.  From a performance 

point of view, Registers are the fastest form of memory, followed by Shared memory (L1 Cache), 

L2 Cache, and finally Global Memory.  There is also even slower access to Host CPU RAM via 

DMA transfer.  I will briefly overview each type of memory in this section. 
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Registers 
Shared Memory 

(L1 Cache) 

Global  Memory 

(L2 Cache) 

• 32K registers per SM 

• Each register is 32-bit (4 bytes) 

• 128KB per SM • 2048KB 

aggregate total 

• At least 8 TB/s peak aggregate 

compute throughput 

• 48KB shared 

• 16K L1 cache 

• or (16K/48K) 

• 32 banks (4 bytes per bank) 

• Bank conflicts  

• 1.43 TB/s peak aggregate I/O 

throughput 

• 1.5 GB capacity 

• 6 memory controllers 

• 768 KB L2 cache shared across all 

SM’s 

• 4-8 GB/s data transfer GPU ↔ 

CPU 

• 192.4 GB/s peak aggregate I/O 

throughput. 

Constant Memory 

(CUDA API) 

Texture Memory 

(CUDA API) 

Local Memory 

• Read-only memory 

• 64 KB 

• 2KB cache per SM 

• Use Broadcast mode otherwise 

access is serialized. 

• Can be as fast as registers. 

• Declare variables/arrays as 

constant to use. 

• Intended to support textures for 2D 

and 3D graphics 

• Read-only memory 

• Must be properly initialized before 

using.  Created out of global memory. 

• Has own separate texture cache 

• Supports a variety of pixel formats. 

• Supports filtering/interpolation 

• Supports addressing operations 

(clamping, tiling, mirroring) 

• Not really a memory type but a 

platform behavior to deal with 

Register Spill. 

• Local variables that exceed the 

number of assigned registers per-

thread are stored in global memory. 

• These variables are said to be in 

Local memory. 

• These variables run at global 

memory speeds impacting 

performance. 

Table 2.1 - GPU Memory Types:  High level summary of the main GPU memory types. 

Registers:  Each SM (or SMX) has a large pool of registers.  The registers can be 

flexibly assigned to individual threads.  The registers (4-bytes each) can be partitioned and 

directly assigned across all concurrent threads scheduled on each SM.  On the GTX 580, each SM 

has 32K of 32-bit registers with an estimated peak aggregate throughput of up to ~9.5 TB/s for 

the Fused Multiply Add (FMA) instruction.  On the GTX 680, each SMX has 64K of 32-bit 

registers with an estimated peak aggregate throughput of up to ~18.5 TB/s for the FMA 

instruction.  Most other ISA9 instructions tend to run at about half of these peak FMA rates, so 

~4.7 TB/s and ~9.2 TB/s respectively is more typical. 

Shared Memory:  Each SM (or SMX) has another pool of local memory.  The pool of 

local memory, currently 64KB on both the GTX 580 and 680, can be split between two 

                                                      
9  Recall that ISA stands for instruction set architecture, i.e. the various processing operations (arithmetic, 

logic, shifts, conditionals) that a specific chip architecture supports. 
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categories: L1 cache and shared memory.  The local memory split can be either 16/48, 48/16 or 

32/32 KB (the last grouping on Kepler class cards only) (NVIDIA, 2012, Kepler GK110).  The 

L1 cache memory speeds up read-only access to global memory via temporal and spatial locality.  

The cache-line size, also known as a warp-line, is 128 bytes (or 32 32-bit elements).  This local 

memory is called shared memory by NVIDIA since it is shared by all SPs on each SM (or SMX).   

Shared memory is available as a programmable scratch pad to store local variables and 

arrays.  This scratch pad memory allows limited communication and coordination across threads 

and can help speed-up overall performance.  The programmer has direct control over how much 

memory to request out of the shared memory on each SM for each thread block.  However, up to 

8 (or 16) concurrent thread blocks per SM (or SMX) need to share the same pool of shared 

memory.  The programmer designates the amount of shared memory as local arrays assigned to 

each thread block.  The CUDA platform figures out how many concurrent thread blocks can run 

at the same time based on the amount of memory the programmer requested and the amount of 

shared memory available.  CUDA then partitions the shared memory across the concurrent thread 

blocks per SM.  For example:  If the programmer declared a memory array of 2,000 32-bit 

elements in shared memory, this would require 8,000 bytes.  CUDA would decide that it could 

run at most 6 concurrent blocks (6 =  ⌈49,152/8,000⌉ bytes, where 49,152 = 48KB).  CUDA 

could decide to layout the 6 blocks of shared memory at starting local offsets of [0; 8,000; 

16,000; 24,000; 32,000; and 40,000] respectively. 

To increase throughput, shared memory is divided into 32 memory banks with a width of 

4 bytes per bank.  The GTX 680 also supports another addressing mode with a width of 8 bytes 

per bank.  To prevent contention, if more than one concurrent thread accesses the same bank at 

the same time, then there is a bank conflict, and the hardware stalls threads on the SM (SMX) to 

serialize access and enforce correct behavior.  On the GTX 580 and GTX 680, the peak aggregate 

throughput of shared memory is 1.58 TB/s and 1.03 TB/s respectively. 
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Global Memory:  All processors have access to a large global memory on the GPU 

card.  The GTX 580 and GTX 680 have total memory of 1.5 Gigabytes and 2.0 Gigabytes 

respectively. (Thus, this is really “shared memory,” as that term is normally used in parallel 

programming circles, see chapter 2.1.2, although not in GPU terminology.)  Scatter/Gather 

operations are supported on each SM (SMX) between registers and global memory.  On the GTX 

580, six memory controllers manage 768KB of read/write L2 cache that is shared among all SMs 

and can provide an aggregate 192.4 GB/s of peak memory I/O throughput.  On each SM, there is 

also 16KB (or 48 KB) of read-only L1 cache that is banked in the same manner as shared 

memory.  On the GTX 680, four memory controllers manage 512KB of read/write L2 cache that 

is shared among all SMXs and can provide an aggregate 192.2 GB/s of peak memory I/O.  On 

each SMX, the read-only L1 cache is typically 16 KB (but can also be setup as 48 or 32 KB). 

There are three other types of memory found on GPU cards, which I briefly describe:  

constant, texture, and local memory.  Other than these brief overviews, I intend not to discuss 

these three specialized memory types further in my thesis. 

Constant Memory:  Constant memory is a small read-only memory with its own small 

cache that can be used to store constant variables, which can be declared at compile time or via 

the CUDA API.  Access to these constants must be done in broadcast mode (IE all threads within 

a warp access the exact same constant address at the same time) otherwise access is serialized 

impacting performance. 

Texture Memory:  Texture memory is intended for use in the 3D graphics rendering 

pipeline.  Texture memory is read-only and supports many pixel formats, plus a lot of special 

functionality including addressing modes, filtering/interpolation, etc. that can be applied to pixel-

data when reading from texture memory.  Since the silicon for this extra functionality has already 

been built into the chip to support 3D graphics, using this extra functionality for compute 

purposes is effectively free.  Even though textures are actually stored in global memory, texturing 
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uses its own separate cache, independent of the L1 cache used for compute operations reading 

from global memory.  Access to texture memory is via a CUDA specific API.   

Local memory is not really a memory type but a platform behavior to deal with register 

spill.  Register spill is when the number of local variables assigned to a thread by the compiler 

exceeds the number of physically available hardware registers.  NVIDIA’s solution is to store the 

over-flow variables in global memory.  Read/write access to these “Local” variables runs at 

global memory speeds impacting performance.  The L1 cache can help defray the access cost but 

only for read-only variables.   

Memory Hierarchy:  Similar to a modern CPU memory architecture, the GPU memory 

architecture is arranged into a complex hierarchy of Registers, L1 Cache, Shared Memory, L2 

Cache, GPU RAM, and CPU RAM.  CPU cache memory is typically hidden from the CPU 

programmer.  However, GPU shared memory is accessible to the GPU programmer and can be 

used for caching frequently re-used data or to communicate data or coordinate behavior across the 

threads within a thread block.  The peak throughput estimates (Volkov, 2010) above for the 3 

main types of memory (registers, shared, global) suggest that on the GTX 580 using registers can 

be up to 6.0× faster than shared memory, which in turn can be up to 8.2× faster than global 

memory.  On the GTX 680, registers can be up to 6.0× faster than shared memory, which in turn 

can be up to 5.4× faster than global memory.  Based on these results, programmers should favor 

performing computations in registers over shared memory and performing computations in shared 

memory over global memory.  Memory transfers between CPU and GPU memory run at a slower 

4-8 GB/s peak throughput as compared to the ~192 GB/s peak throughput of global memory.  

Programmers should minimize transfers between the CPU and GPU as a result. 
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2.2.2 Warp-Threading and Scheduling 

GPU data-parallel programming is accomplished using one of several API platforms:  

OpenCL (Khronos Group, 2012 OpenCL), Thrust (NVIDIA, 2012 Thrust; Bell and Hoberock, 

2012), Microsoft’s C++ AMP (Microsoft, 2012 C++ AMP), and NVIDIA’s CUDA (NVIDIA 

2012, What is CUDA).  These API platforms unlock access to the massive parallelism available 

on modern GPU hardware.  All current API’s support the C++ language and typically enhance 

their respective C++ platforms by adding new syntax, keywords, data types, libraries, and API 

functions.  These platforms also provide a compiler, linker and dynamic loader that allow GPU 

parallel kernels to be compiled, linked, loaded, and invoked from a CPU host. 

CUDA:  Since, I have only passing familiarity with the other platforms; I will focus on 

CUDA (NVIDIA 2012, Best Practices) in the following discussion.  CUDA (formerly called the 

Compute Unified Device Architecture) is a high level language and parallel computing platform 

created at NVIDIA.  The language is based on C++ and version 5.0 of CUDA uses the popular 

Low Level Virtual Machine (LLVM) compiler infrastructure to compile, link, and generate run-

time GPU code from CUDA kernel programs.  The CUDA language includes several C++ 

extensions to express parallelism, data locality, memory usage, and to manage thousands of 

threads.  The two-level thread schedulers work with grids of thread blocks, called co-operative 

thread arrays (CTA) by NVIDIA.  Thread blocks are scheduled onto individual SMs by the top-

level Giga-engine scheduler.  Concurrent warps of threads from thread blocks on each SM are 

managed by the warp scheduler built into each SM. 

The LLVM compiler driver (nvcc.exe) translates the high level CUDA C++ into a lower 

level PTX (Parallel Thread Execution) assembly code like intermediate language meant to be 

consumed by a virtual machine.  PTX is a stable Instruction Set Architecture (ISA) intended to 

span multiple GPU hardware generations.  PTX is a machine independent ISA for language 

compilers to target.  The PTX ISA has high-level support for integer arithmetic, floating point 
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arithmetic, comparisons, Boolean arithmetic, data movement, data conversion, video, textures, 

surfaces, parallel synchronization, parallel communication, and control flow.  A PTX optimizing 

assembler (ptxas.exe) converts the PTX into actual machine code for the target GPU device using 

a Just-in-Time (JIT) virtual machine.  PTX supports predicated execution of any instruction in the 

ISA. 

Hardware Threading Scheduling 

SP core 

  

SP:  Threads are executed by SPs. 

• Thread state is maintained in 

assigned registers. 

• Threads only exist as part of a larger 

warp and block. 

SM core 

 

 

SM:  One kernel per SM at a time. 

• SIMD execution across all SP’s on 

SM 

• Kernels are executed via thread 

Blocks 

• Blocks are mapped onto SM’s 

• Up to 8 (16) concurrent blocks per 

SM. 

• Up to 48 (64) active warps per SM. 

• Fine-grained scheduling. 

• Can switch as often as once per cycle 

From stalled to active warps. 

• SM schedules executing warps from 

pool of active warps. 

• Execution is one Warp per scheduler 

• Barrier Synchronization within 

blocks is supported 

GPU 

  

GPU:  A kernel is launched onto a 

CTA (Grid of Blocks) 

• Coarse grained scheduling 

• GPU waits until current set of blocks 

are finished before scheduling next set 

of blocks onto SMs. 

• Communication via shared or global 

memory  

• Coordination via atomics, barrier 

synchronization, or kernel termination. 

Table 2.2 - GPU Threading and Scheduling Model:  High level overview of the GPU threading and 

scheduling model. 

Parallel programming on a GPU uses a “Single-Program, Multi-thread” (SPMT) model, 

as shown in Table 2.2, similar to a Single-program multi-data (SPMD) model.  A single program, 

called a kernel, is loaded onto each SM (SMX) and then the kernel is executed in parallel across 
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Thread
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…

…

…

Grid of Blocks



34 

 

all threads scheduled onto that SM.  At every instruction issue, the SM selects an active warp, a 

bundle of threads, which is ready to execute and issues the next instruction to the active threads 

of that warp.  Each warp can be thought of as a fat thread, where all 32 threads in each warp 

execute in lock step as they march through the instructions of a kernel program.  Each thread 

within each warp executes the exact same instructions but on different data values stored in 

thread local registers.  This SIMD model approach strongly favors data-level parallelism (DLP).  

Each unique warp processes its own independent instruction stream, so the SPMT model supports 

the multi-threaded programming model but at the warp level instead of the thread level.  This 

approach is called the SIMT (Single Instruction, Multi-Threaded) model and is conceptually 

halfway between SIMD and full SMT (Simultaneous Multi-Threading) programming.  As we will 

see in chapter 3, warp-level instruction processing impacts performance for conditional branches 

and loops. 

CTA:  Since a GPU is a two-level processing device, two levels of multi-threading are 

needed to fully expose the underlying hardware functionality.  On the GPU, threads are organized 

into a cooperative thread array (CTA), a 2 level thread hierarchy that maps onto the physical 2 

level processor hierarchy of SMs (including SMXs) and SPs.  Typically several GPU kernels are 

coordinated by a host CPU function to accomplish a single task or algorithm.  In each kernel, 

threads are organized into a fixed CTA.  Each CTA grid is a 1D or 2D layout of thread blocks.  

Each thread block is a 1D, 2D, or 3D layout of up to 1,024 threads.  All thread blocks in a grid 

must have the same layout ‹size, shape› and number of threads.  A high level thread manager, 

called the GigaThreads Engine, at the GPU device level supports coarse-grained scheduling of 

individual blocks in the grid onto the physical SM’s to keep them all busy.  Each SM (SMX) 

contains a warp scheduler, which supports fine-grained parallelism across the SPs on each SM by 

scheduling active warps within each concurrent block for execution on their own instruction 

stream.  The warp scheduler supports light weight thread creation, zero-overhead thread 

scheduling, and intra-block barrier synchronization. 
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Warps:  As noted before, threads are grouped (or divided) into virtual groups of 32 

threads called warps.  (If there are less than 32 threads in a block than multiple blocks are 

combined into a single warp.  If there are more than 32 threads in a block than the block is sub-

divided into multiple warps.)  Each warp within a thread block is executed independently from all 

other warps, each warp can be thought of as fat thread in a traditional multi-threaded 

programming model.  In other words, multi-threading occurs at the warp level not at the 

individual SP thread level in the SIMT model.  Each warp in a thread block is analogous to a 

vector-parallel architecture with a vector length of 32. 

Scheduling Constraints:  The GigaThreads scheduler handles thread blocks within 

each grid.  The scheduler only supports grids with a 1D or 2D thread block layouts with a 

maximum of 65,535 blocks per dimensions.  A warp scheduler on each SM (SMX) handles 

scheduling warps from a pool of up to 8 (16) concurrent thread blocks.  The warp pool hides 

execution latency by frequent switching of warps as necessary to mitigate long I/O requests and 

shorter stalls caused by data dependencies.   

On the GTX 580, Each SM can schedule up to 8 thread blocks containing an aggregate 

total of up to 48 warps (1,536 threads) concurrently, provided enough resources exist to support 

the necessary assigned registers on a per-thread basis and shared memory on a per-block basis.  

On the GTX 680, Each SMX can schedule up to 16 thread blocks containing an aggregate total of 

up to 64 warps (2,048 threads) concurrently. 

This means that the modern GPU cards can support thousands of threads running in a 

warp-threaded manner – up to 24,576 and 16,384 threads on the GTX 580 and 680 respectively.  

GPUs support TLP on a truly massive scale. 

Latency Hiding:  As mentioned in chapter 2.1.1, Multi-threading is a well-known TLP 

paradigm for increasing system throughput.  GPUs rely heavily on warp-threading to hide latency 

caused by I/O, serialization, or dependencies.  Long term I/O latency is caused by memory 
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accesses.  The hardware can cause short-term latency via serialization when managing concurrent 

access.  Short term compute latency can also be caused by pipeline stalls due to instruction 

dependencies.  With enough concurrent warps, latencies can be hidden by switching from stalled 

warps to active warps that keeps the SPs busy doing useful work. 

The SM (SMX) cores include fine-grained instruction, control and scheduling logic.  The 

SM (SMX) cores also include large resource pools of registers (32K or 64K), shared memory 

(48KB), and warp context tables (up to 48 or 64) to support warp-threading of concurrent thread 

blocks (up to 8 or 16) on each SM.  Unlike CPU’s, Multi-threading and scheduling on a GPU 

occur at the warp level not at the level of individual threads.  Just like CPU multi-threading, the 

SM warp scheduler rapidly switches between warp contexts as the running warp context stalls on 

short pipe-line hazards or long I/O operations.  Rapid context switches between stalled and active 

warps can occur as frequently as once each cycle.  This allows each SM (SMX) to hide latency 

due to stalls by massive fine-grained scheduling across all active warps. 

Warp Registers:  Each individual thread within a warp bundle is a true thread in the 

sense that it is executed on its own unique SP core and each thread contains its own unique state 

(registers) that allows it to work on its own individual data.  However they are not as general as 

threads (POSIX) as we are used to normally thinking of them on regular CPUs.  This is because 

all thread creation, execution, and scheduling occurs in lock step at the warp level not the thread 

level.  Special registers including a program counter (PC) are stored on a per warp basis.  Some 

of these special registers keep track of the CTA layout (size and shape) and the starting block id 

(bid) and thread id (tid) for use in computing access indices into data arrays.  Other special 

hardware register masks are used to track active/inactive individual threads within each warp to 

support concepts such as serialization, partially full warps, conditional branching (different 

threads taking different branch paths) and individual threads taking differing amounts of 

processing time to finish execution for certain algorithms.  
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Threading and Memory:  Threads may access data from multiple memory spaces 

during their execution including registers, shared memory (local scratch-pad), constant memory, 

texture memory, surface memory, local memory, and global memory.  Registers are readable and 

writable but not indexable.  Shared memory typically takes 18-22 machine cycles to access and is 

readable and writeable and indexable.  Global memory corresponds to the DDR3 (or DDR5) 

DRAM on the GPU device itself and typically takes 400-800 cycles to access and is readable and 

writeable and indexable.  A small read-only L1 cache exists on each SM (SMX) and is used to 

speed-up transfers between global memory and registers.  Another larger read-write L2 cache 

exists between global and shared memory.  Constant and texture memory are read-only.  Surface-

memory is readable and writable.  Local memory as mentioned before is a platform behavior to 

handle register spills. 

High performance API calls are available to transfer data arrays between CPU RAM and 

GPU RAM using direct memory access (DMA).  Current maximum transfer speeds range from 4 

– 8 GB/s based on the underlying host CPU/Memory architecture.  These transfers can be done 

synchronously or asynchronously. 

Although GPUs can support the main parallel programming models (task parallelism, 

pipelining, and data parallelism) they are especially well-suited to problems that can be expressed 

as data-parallel computations.  Data-level parallelism partitions the data domain and then maps 

those partitions onto parallel processing threads.  On GPUs, these processing threads are in turn 

are mapped onto SPs.  Each parallel thread plus its associated state (registers) represent the 

smallest unit of execution on the GPU. 
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2.2.3 Parallel Coordination 

GPU architects have provided only limited support for coordination between threads.  

Coordination is the behavioral cooperation across threads of a parallel algorithm needed to 

achieve correct results.  Coordination includes the concept of communicating intermediate and 

final data results between threads.  Typically on GPUs, coordination is only supported between 

threads belonging to the same thread block.  The coordination mechanisms between threads are as 

follows -- memory, atomics, voting intrinsics, and barrier synchronization. 

Memory:  Although GPUs support multiple types of memory including registers, shared 

memory, and global memory.  As we will see shortly, shared memory is the best fit for 

coordination/communication between threads.  Registers:  Each thread is only allowed to access 

registers that have been assigned to it by the CUDA compiler and GPU hardware.  In addition, 

registers are not addressable, in other words, thread registers cannot be accessed using index 

operations.  As a result, registers cannot be used to coordinate threads.  Note:  The new CC 3.5 

Kepler architecture has support for a new PTX “shuffle” command that allows the threads within 

a single warp to move registers values between threads.  Shared Memory:  Unlike registers, 

shared memory is addressable and accessible by all threads within the same thread block.  Shared 

memory can be used to coordinate threads by storing common results or behavioral state.  

However, coordination/communication across thread blocks within a grid cannot be done using 

shared memory. Since shared memory is visible to all warps belonging to the same thread block 

and concurrently running warps can compete to access the same memory resources, programmers 

need to ensure mutual exclusion between different warps for correct parallel behavior.  Global 

Memory:  Although global memory can be used to store common results or state for all threads 

within a thread block, it runs much slower than shared memory.  Similar to shared memory, 

programmers need to ensure mutual exclusion between different warps and blocks when 

accessing global memory used for communication/coordination.  It is difficult to coordinate 
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behavior across thread blocks within a grid using global memory due to two main factors 1) the 

non-deterministic thread block schedule generated by the giga-engine scheduler 2) New thread 

blocks are not scheduled onto SMs until currently running thread blocks have completed.  As a 

result, using global memory to coordinate thread blocks across a grid is not recommended. 

Atomics:  An atomic operation is a small group of hardware instructions guaranteed to 

appear as if the entire group was executed as a single indivisible instruction by the rest of the 

system.  Once an atomic operation has started other threads cannot interrupt the current thread 

until the atomic operation has successfully completed.  As a result, atomic operations can be used 

to ensure mutual-exclusion when accessing common resources in shared or global memory by 

multiple threads (warps or blocks).  However, the GPU hardware serializes thread access, which 

negatively impacts parallel performance.  Consider, tens of thousands of threads competing to 

update the exact same memory address using atomics.  Instead of tens of thousands of threads 

executing concurrently, they all now must execute sequentially.  As a result, using atomics must 

be done carefully to avoid degrading performance due to the massive parallel overhead caused by 

hardware serialization.  Note:  Atomic operations on the Kepler architecture execute faster than 

on the Fermi architecture. 

Voting Intrinsics:  The GPU implements serialization by predication hardware that 

supports gathering Boolean predicates across all 32 threads within a warp into a single 32-bit 

mask.  That predicate mask is then shared across all threads within a warp.  NVIDIA has exposed 

this hardware functionality to programmers as voting intrinsics in the ISA.  This allows the 

threads within each warp to communicate the results of simple predicate {true, false} tests with 

each other across registers in a single instruction without first needing to store that information in 

slower shared memory. 

Barriers:  The CUDA platform supports single-instruction barrier commands that force 

all warps within a thread block to be synchronized (coordinated) at a single check-point before 
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any warp starts back up doing useful work.  This synchronization helps support correct behavior 

of algorithms using multiple warps per-thread block.  The parallel threads within a single warp do 

not need any barrier synchronization for correct behavior since they already move in lock-step 

according to their SIMD vector-parallel design. 

Each GPU card supports moderate ILP, large DLP, massive TLP, and a complex memory 

hierarchy.  ILP is supported via a 2-level MIMD/SIMD processing cores.  The SM warp cores 

support pipelining, scoreboarding (Fermi Only), and multi-issue.  DLP is supported via SP core 

replication within each SM core and then SM core replication within the GPU card.  TLP is 

supported by 2-level warp-threading.  The memory hierarchy in decreasing access speed is 

registers, shared memory, global memory, and CPU RAM.  Fixed sizes on memory and execution 

contexts put constraints on how programmers exploit data-level parallelism in their algorithms.  

All this complexity plus constraints results in many issues that make it hard for GPU 

programmers to write correct, robust, and fast code.  In the next chapter, I will present some of 

the main issues that GPU programmers should be concerned about. 
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3.0 Performance and Issues Hindering Performance 

In my case studies, I will show how the contrast between the CPUs latency focus and the 

GPUs throughput focus (Garland and Kirk, 2010) leads to different choices for programmers as 

they maps tasks onto these different architectures.  CPUs were originally designed to solve a 

general set of computing tasks, often with direct user interaction. Consequently, CPU design has 

concentrated on reducing latency, which is the time duration between a user request and computer 

response.  In contrast, GPUs were originally designed to take a large stream of geometric data 

elements, perform essentially the same computation on each element (for example, rotate, 

illuminate, clip, project, or rasterize it), and produce 30-60 rendered frames per second.  In other 

words, GPU design has focused on maximizing throughput, which is the ratio of the number of 

work items processed over some period of time (for example, triangles rendered per second). 

 Programmers need to be aware of this throughput design focus on GPUs, in order to 

achieve high performance with GPU programming.  So, in this chapter, I first describe various 

performance metrics that I use for measuring throughput.  After that, I categorize the main issues 

affecting throughput that crop up in my case studies into three broad groups:  Parallel 

Performance Issues, GPU Architecture Issues, and GPU Memory Issues. 

3.1 Measuring Performance Throughput 

To understand throughput and performance bottlenecks, we first need to be able to 

measure performance accurately.  The GPU platform provides machine counters, from which 

metrics for speedup and throughput can be derived.  In my case studies, I concentrate on three 

throughput metrics: instruction, I/O, and data throughput.  Other performance metrics (such as 
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total cycles, speedup, and work and depth analysis) will also be used in my case studies but will 

not be the focus. 

To understand what are the bottleneck issues affecting performance, programmers start 

with certain known values, then take experimental measurements to derive metrics that provide 

insight.  Values known by programmers include the input size (n) and output size (m).  The 

CUDA profiler or hardware timers record useful measurements such as timings (time), number of 

parallel cores (p), and total threads (t).  NVidia GPUs also provide various machine counters for 

profiling performance, including instructions issued (II) and the average instructions retired per 

machine cycle (IPC).  From these basic values and measurements, I compute derived metrics such 

as total cycles, TC = II/IPC, which measures the total number of machine cycles to complete a 

section of code, algorithm, or an entire program.   

 

3.1.1. Throughput Metrics 

In my case studies, I consistently use three throughput metrics to gauge algorithmic 

performance.  Instruction throughput (MI/s or GI/s, meaning mega- or giga- instructions executed 

per second, over all threads) tracks algorithmic performance.  I/O throughput (MB/s or GB/s, 

meaning mega-bytes or giga-bytes transferred per second) tracks memory transfer performance.  

Data throughput (M*/s or G*/s, meaning mega-units or giga-units handled per second) tracks 

algorithmic performance in data units most germane to the problem space.  Note that each of the 

three is a simple ratio of basic measurements. 

A typical throughput graph, as seen in Figure 3.1, plots throughput on the 𝑦-axis as a 

function of input size (𝑛) on the 𝑥-axis (usually in log-scale). 
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Like Figure 3.1, most GPU throughput graphs have sigmoidal (“S” shaped) curves for 

increasing values of input sizes (𝑛). The throughput performance curve starts off flat for small 

input sizes (n ≤ 103), grows rapidly for medium input sizes (103 < n ≤ 106), and then levels off at 

some fraction of the hardware’s peak throughput for large input sizes, (106 < n).  For small input 

sizes, there is not enough data to use the parallel hardware efficiently or to amortize the heavy 

GPU kernel launch costs.  For large data sizes, there is enough data to parallelize work across 

tens of thousands of threads and the initial kernel launch costs are amortized across millions of 

data elements decreasing launch costs to a negligible fraction of total performance.  For medium 

data sizes, throughput performance transitions from the inefficient to efficient case as the input 

size increases. 

3.1.2 Parallel Speedup and Work and Depth Analysis 

In addition to throughput metrics, there are two other traditional notions of performance 

for parallel computation that I use in my case studies: parallel speedup and work and depth 

analysis (Hennessey and Patterson, 2010).  Let me introduce them by analogy to their serial 

equivalents: serial speedup and asymptotic runtime analysis. 

The concept of speedup, 𝑆 = (
𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝑇𝑖𝑚𝑒𝑛𝑒𝑤
), allows us to compare the performance of two 

similar programs, algorithms, or sections of code using simple timings, with one timing for the 
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old code and one timing for the new code.  Serial speedup (SS) is the ratio of the amount of time 

it takes to complete a task using an improved program versus a baseline program, 𝑆𝑆 =

𝑇𝑖𝑚𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑖𝑚𝑒𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑
.  Parallel speedup (PS) is the ratio of the time to complete a task using a serial 

computation versus the time to complete the same task using a parallel computation, 𝑃𝑆 =

𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
. 

Often a serial algorithm cannot be fully parallelized due to unavoidable dependencies 

between sections of code.  Amdahl’s Law (Amdahl, 1967) predicts the theoretical maximum 

parallel speedup on p processors for a specific problem for which a fraction of the program 𝛼 ∈

[0,1] is inherently sequential and the rest of the program (1 − 𝛼) is parallelizable:  𝑆(𝛼, 𝑝) =

 (
1

𝛼+
1−𝛼

𝑝

).    Even given an infinite number of parallel processors, total performance cannot 

exceed (
1

∝
).  In other words, total performance is constrained by the serial portion of the program.  

Amdahl’s law, which can be derived from parallel speedup by normalizing serial time to one, 

suggests that programmers focused on latency can solve a fixed-sized problem in the shortest 

period of time by removing serial constraints. 

As a counterpoint, Gustafson observes that end-users often exploit the maximum 

computing power available to them to solve ever larger problems over some practical time period 

(minutes, hours, days).  Gustafson's Law (Gustafson, 1988) as 𝑆(𝛼, 𝑝) = 𝛼 + (1 − 𝛼)𝑝 suggests 

that programmers focused on throughput issues can push more work through the system using 

massive parallelism.  Gustafson’s law can be derived from scaled parallel speedup by normalizing 

parallel time to one. 

Asymptotic analysis, also known as “Big ‘O’ notation”, shows how the running time (or 

resource usage) of an algorithm grows with the input size (n).  The growth-rate function is 

reported using asymptotic notation to suppress implementation-dependent constants and to 

simplify expressions.  If these hidden constants are reasonable, then 𝑶(log 𝑛) ≪ 𝑶(𝑛) ≪
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𝑶(𝑛 log 𝑛) ≪ 𝑶(𝑛2).  In words, a logarithmic growth-rate algorithm is preferred to a linear 

growth-rate, a linear growth-rate is preferred to a log-linear growth-rate, and log-linear growth-

rate is preferred to a quadratic growth-rate algorithm. 

Work + Depth Analysis:  For a parallel 

computation, work efficiency W(n), is defined as the 

total number of instructions executed across all parallel 

cores.  The ratio of work to the number of cores (p) 

results in the linear ideal speedup (
𝑊(𝑛)

𝑝
) of a parallel 

computation.  However, there are usually dependent 

steps, either inherent in the algorithm itself or with the 

coordination required between parallel cores, which 

limit this ideal speedup.  The longest dependent chain 

of executed steps on any core is defined as an algorithm’s depth efficiency D(n).  Figure 3.2 

illustrates work and depth for summation, in both serial and parallel forms. 

 

Work efficiency and depth efficiency are related by Brent’s Theorem (Gustafson, 2011), 

which says that any parallel algorithm runs in 
𝑊(𝑛)

𝑝
+ 𝐷(𝑛) time, in fact: 𝑚𝑎𝑥 (

𝑊(𝑛)

𝑝
, 𝐷(𝑛)) ≤

𝑇𝑖𝑚𝑒 ≤
𝑊(𝑛)

𝑝
+ 𝐷(𝑛).  Four useful implications from Brent’s Theorem are  

 A parallel algorithm cannot run faster than its depth efficiency, D(n). 

 A parallel algorithm that requires coordination across p cores cannot run faster 

than O(log p). 

 It is inefficient to use more parallel cores than you need to solve an algorithm.  

The concept of Parallelism (
𝑊(𝑛)

𝐷(𝑛)
) roughly captures how many parallel cores an 

algorithm can efficiently use. 

Figure 3.2:  An example of work 

and depth efficiency for the simple 

summation of 8 values for both the 

serial and parallel cases. 

Serial Sum

Work: 7 adds
Depth: 7 steps 

Work: 7 adds
Depth: 3 steps 

Parallel Sum
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 If the number of processors and input size are fixed or known ahead of time than 

try to do at least D(n) work on each processor for the best parallel efficiency. 

3.2 Parallel Performance Issues 

Metrics are useful in measuring performance and understanding the issues that impact 

performance.  There are three main issues that impact parallel performance: scalability, parallel 

overhead, and load balancing. 

3.2.1 Scalability 

A system is scalable if adding parallel resources (such as computers, GPUs, cores, and 

threads) increases parallel performance.  Users prefer systems that are scalable because they can 

simply add more hardware resources over time to deal with increasing computational demands. In 

my case studies, we will see that I prefer data-level parallelism almost exclusively over task-level 

parallelism because the former scales readily for increasing data sizes. 

3.2.2 Parallel Overhead 

Programmers should minimize coordination costs across parallel threads to achieve better 

performance.  Parallel overhead is the ratio of the time spent coordinating parallel work between 

threads versus the total time it takes to solve the original problem.  A system has low parallel 

overhead if the amount of time spent coordinating algorithmic behavior across parallel threads is 

small.  A system has high parallel overhead if the amount of time spent coordinating across 

threads is large.  For better parallel throughput, programmers should minimize parallel overhead.  

As mentioned in Section 2.2.3, “Parallel Coordination,” for GPU architectures, there is only 

limited hardware support for coordination mechanisms between threads. 

3.2.3 Load Balancing 

Programmers often seek to take full advantage of the hundreds of processing cores 

available on a GPU card by keeping them all busy.  Parallel utilization is a measure of how many 
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parallel cores out of all cores in a system are busy doing useful work at any given time.  Keeping 

cores busy can be accomplished by load-balancing work evenly across hundreds or thousands of 

threads.  A system has poor load-balancing if many cores are kept idle for long periods of time or 

if many cores finish early while some cores still have considerable work to do.  A system has 

good load balancing if most of the cores are kept busy most of the time and all the cores finish 

executing at approximately the same time. 

Although there are many techniques to achieve optimal load-balancing,1 in my thesis, I 

focus exclusively on equal partitioning, an approach which divides (n) data elements across (p) 

threads into approximately equal sized runs ⌈𝑛 𝑝⁄ ⌉.  Equal partitioning works well because it 

supports SIMD processing on GPUs, recall that all SPs on each SM move in lock-step through a 

single instruction stream.  Since GPUs use a more complicated 2-level thread hierarchy for 

scheduling (as we will see in my case studies), I adapt equal partitioning as equal-sized runs on 

fixed-size data blocks. 

Since, GPU programmers often assign one thread per work item for simplicity.  For better 

performance, it is often useful to go even further and use multiple work-items per-thread (over-

decomposition) and multiple thread warps per core (over-subscription) to help hide stalls on each 

core that would otherwise decrease parallel throughput.  In my case studies, you will see that load 

balancing is readily achieved via data-level parallelism by using a large enough input array to 

saturate the processing resources. 

3.3 GPU Architecture Issues 

Five GPU architecture issues also impact parallel performance:  CTA partitioning, GPU 

scheduling—stalls and hazards, GPU scheduling—constraints and occupancy, multi-issue 

dispatch, and branch divergence. 

                                                      
1  Such as dynamic work assignment, work stealing, or equal partitioning 
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3.3.1 CTA Partitioning 

Recall that a cooperative thread array (CTA) is a 2-level hierarchy (thread blocks within 

a grid and threads within a thread block.)  In order to take advantage of the massive data-level 

parallelism via threads on a GPU, GPU programmers need a way to specify the desired thread 

structure and thread to data mapping.  This is done with a 2-step process that I call CTA 

partitioning. 

1) For each GPU kernel launch, GPU programmers must structure the desired shape and 

size of the CTA layout using two 3D parameters (grid and block) both specified as 3-

tuples ‹x,y,z›. 

2) Inside each GPU kernel, GPU programmers must map CTA layout parameters that 

represent unique threads onto actual data locations.  The CTA layout parameters are 

available to programmers inside each GPU kernel via four global read-only 3D 

parameters (gridDim, blockDim, blockIdx, threadIdx) as 3-tuples ‹x,y,z›. 

When I was first introduced to GPU programming, I found the CTA layout and mapping 

steps confusing, so, I present more details on how to perform the CTA layout and mapping steps 

below. 

CTA layout:  CUDA requires that the CTA layout must be specified as part of each GPU kernel 

launch.  The grid and block CTA layout parameters are specified as 3-tuples ‹x,y,z› that represent 

the ‹width, height, length› of a 3D grid or thread block layout.  To refer to both the grid and block 

dimensions as one unit, I combine both as a 6-tuple denoted as ‹gw,gh,gl, bw,bh,bl›.  Various 

constraints on the maximum size and shape of these grid and block CTA layout parameters must 

be taken into consideration.  Each tuple value is specified as a 32-bit signed integer.  Zero and 

negative values do not make physical sense. Therefore, the valid range for any tuple value is 

[1,231-1).  Programmers can eliminate unwanted dimensions by specifying a default value of one 

(1) for the unused value. This specification enables 1D, 2D, and 3D layouts, as desired.  CUDA 
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currently does not use the gl (grid.z) CTA dimension value in any way. Consequently, the actual 

CTA layout is effectively ‹gw,gh,1, bw,bh,bl›.  The Fermi architecture only supports a maximum 

value of 65,535 (216-1) for any dimension for the grid parameter. As a result, the valid range is 

limited to [1,216-1), whereas the Kepler architecture supports the full range [1,231-1).  For Fermi, 

this limitation means that if more than 65,535 thread blocks within a grid are needed, then a 2D 

grid layout is the only solution to fully cover all the desired thread blocks.  CUDA currently 

limits the thread block size (TBS) to 1,024 threads per-block or less (bw·bh·bl ≤ 1,024).  Since 

thread processing is actually done in warp-sized batches, the TBS should be a multiple of the 

warp size (meaning, 0 == TBS % 32). Processing thread blocks in warp sized batches helps keep 

threads busy (as well as the SP cores that execute them) within each thread block.  The grid 

CTA layout parameter supports 1D and 2D layouts (thread blocks within a grid), while the block 

CTA layout parameter supports 1D, 2D, and 3D layouts (individual threads within a thread 

block).  Once specified (at launch time), the grid and thread block layouts remain fixed for the 

entire execution of a specific GPU kernel. 

CTA mapping:  Inside of each GPU kernel, programmers must map individual threads onto data 

locations.  To help with this mapping process, CUDA provides four global read-only CTA 

parameters as 3-tuples (gridDim, blockIdx, blockDim, threadIdx).  These CUDA variables 

are always available for use by the code anywhere inside the CUDA kernel, including nested 

function calls.  The gridDim and blockDim parameters refer back to the original CTA layout 

(size and shape) parameters specified at kernel launch, with the ‹x,y,z› dimension values meaing 

‹width, height, length›, respectively.  For convenience, I represent both the gridDim and 

blockDim variables as a single unit, ‹gw,gh,1, bw,bh,bl›. The blockIdx and threadIdx 

parameters uniquely identify the currently running thread block (within the current grid) and the 

currently running thread (within the current thread block).  The blockIdx and threadIdx can 

be thought of as a multi-dimensional block ID (bid) and thread ID (tid), respectively. These 
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variables uniquely identify the location of each individual thread within the structured thread 

hierarchy.  Again, for convenience, I represent both the blockIdx and threadIdx parameters 

as a single 6-tuple as ‹bx,by,bz, tx,ty,tx›.  All four CTA parameters help GPU programmers map 

individual threads onto their corresponding data items. 

As an example, Figure 3.3 contains a code snippet that shows a full 5-dimensional CTA 

mapping down onto a single unique thread index.   

 

// Map Block ID (bid) from <gridDims, blockIdx> 
 gW = gridDims.x     gH = gridDims.y    // gL = gridDims.z (not used) 
 bX = blockIdx.x     bY = blockIdx.y    // bZ = blockIdx.z (not used) 
bid = (gW*bY) + bX     // 2D to 1D mapping 

// Map Thread ID (tid) from <blockDims, threadIdx> 
 bW = blockDims.y   bH = blockDims.y   bL = blockDims.z 
 tX = threadIdx.x   tY = threadIdx.y   tZ = threadIdx.z 
tid = (bH*bW*tZ) + (bW*tY) + tX  // 3D to 1D mapping 

// Map Thread Index from <bid, tid> 
 TBS = bH*bW*bL        // Thread Block Size 
tIdx = (bid*TBS)+tid   // 2D to 1D mapping 

// Map Data Offset from <tIdx> 
dataOff = ...          // Problem Domain Specific 

Figure 3.3:  A simple mapping from the four CTA layout parameters onto unique block and thread IDs that 

in turn are mapped onto a unique thread index.  Note:  This is only one of many possible ways to map CTA 

layout parameters onto a unique thread index within the CTA. 

The code snippet, as shown in Figure 3.3, has four main steps:  First, it maps the 2D grid 

layout onto a unique block ID (bid) within the grid.  Second, it maps the 3D block layout onto a 

unique thread ID (tid) within the thread block.  Third, it maps the bid and tid onto a unique thread 

index (tIdx) within the entire CTA.  Finally, it maps the thread index onto the specific data offset 

that needs to be processed by this thread.  This step is not shown as this must be defined by the 

GPU programmer for their specific problem.  CTA layout configurations that use fewer 

dimensions require less total operations in order to do the mapping. 

Flexibility in specifying the CTA partitioning (layout and map) allows programmers to 

choose data layouts that best fit their problem domain: 1D, 2D, or 3D.  This freedom of choice 

becomes a burden; however. Before programmers can begin to code, they are forced to make 
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choices on how to structure the CTA layout, how to partition data across the threads, and how to 

map threads onto data inside of each kernel. These choices have big effects on performance, but 

whether these effects will be positive or negative is initially unclear.  In my case studies, my data 

access skeletons help me explore choices for CTA partitioning and their effects (see Chapter 5 

“Data Access Skeletons” for more details). 

3.3.2 GPU Scheduler — Stalls and Hazards 

Since GPUs are throughput oriented programming devices, our goal is to keep the 

hundreds of processors on each GPU device as busy as possible.  Processor stalls, where the 

processors sit idle instead of doing useful work, are to be avoided.  GPU programmers should 

realize that in a GPU almost every instruction fetch, register, or memory access is slower than a 

processor cycle. The latency of these operations causes an instruction stall while each instruction 

waits on its input.  During this instruction stall, the compiler and scheduler together try to ensure 

that a thread warp has other useful work to do in order to avoid a thread stall.  Thread stalls are 

frequent; so the GPU scheduler has many tricks to quickly swap in another thread warp to execute 

in order to avoid a more grievous processor stall. 

GPU programmers aiming for high throughput need to write code that the compiler and 

scheduler can exploit to avoid processor stalls.  GPU Programmers also need to provide massive 

numbers of threads so that the processors can switch to other thread warps to avoid processor 

stalls.  So, let’s focus on preventing thread stalls. It helps to know that there are two main types of 

thread stalls – short term and long term. 

Short terms stalls of just a few cycles typically come from compiler- or scheduler-

induced delays2 inserted to avoid structural, control, or data hazards that otherwise could 

jeopardize correct program behavior. Structural hazards occur when two or more stages in a 

pipelined or out-of-order instruction architecture compete for the same functional units, such as 

                                                      
2 These delays are often handled by inserting several wasteful no operation (NOP) commands into the 

instruction stream before inserting the delayed instruction that does useful work.  
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adders or loaders.  These hazards are typically resolved by chip architects using replication, such 

as putting a full adder in each competing pipelined execution stage.  Control hazards occur when 

the code executes branch or loop instructions.  In these situations, the scheduler needs to choose 

between two paths {true, false} but does not know which path to take until the branch outcome is 

known.  Picking a branch outcome leads to a branch delay, which is the number of machine 

cycles it takes from starting the original branch instruction until the actual branch outcome true or 

false is known.  Data hazards occur when one instruction accesses a register that another 

concurrently running instruction also needs to access.  Ignoring data hazards can lead to incorrect 

program results. 

There are three main types of data hazards: read-after-write (RAW), write-after-read 

(WAR), and write-after-write (WAW)3.  WAR and WAW dependencies, where two instructions 

happen to use the same register (aliasing), can be resolved by assigning different registers to the 

competing variable names in order to remove the dependency4.  A RAW dependency means that 

one instruction consumes the output of a prior instruction as input and thus must wait until the 

prior instruction completes.  The RAW dependency is real and must be honored for correct 

program behavior. 

Short term stalls can be avoided by the compiler and scheduler if they can find other 

independent instructions in the same warp’s instruction stream that can be safely executed as the 

current instruction stalls.  Programmers can help by writing code with good Instruction-level 

Parallelism (ILP). 

Long term stalls of hundreds of cycles typically come from servicing I/O transfer 

requests. When this kind of stall occurs, the hardware scheduler on each SM can hide latency by 

rapidly switching, up to once per cycle, a stalled thread warp for another thread warp that is ready 

                                                      
3 These RAW, WAR, WAW data hazards are also known as true-, anti-, and output-dependencies 

respectively. 
4  Register renaming is the original term used by Tomasulo (Hennessey and Patterson, 2012) to describe 

how to remove WAR and WAW data hazards caused by aliasing different variables on the same register. 
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to execute.  Programmers can help by writing code that launches thousands of concurrent threads 

to support Thread-level Parallelism (TLP).  To better understand how switching can hide latency 

via TLP techniques, assume one load instruction issued per warp and that loading a value from 

shared memory has a latency of twenty machine cycles (a reasonable rule of thumb on Kepler).  

Under these conditions, a GPU programmer would need to schedule at least twenty warps per 

core to have enough in-flight load commands to keep each core fully busy.  NVIDIA measures 

this with occupancy, which is discussed later on in this chapter. Alternatively, programmers could 

hide the same latency using ILP, by scheduling at least three thread warps per core and then 

having each warp issue eight independent load commands. This approach would result in 24 in-

flight loads, which would completely engage each SM core.  So, scheduling more thread warps 

hides stall latency via TLP, and doing more work per thread hides stall latency via ILP. 

NVidia defines the term occupancy, which I think of as a rough measure of the potential 

for using TLP to hide latency. In general, kernels with higher occupancy tend to have better 

performance because, when a current warp stalls, they give the SM warp scheduler more active 

warps to choose from.  Because ILP can also hide latency, as just illustrated in my switching 

example, Volkov (Volkov, 2010) advises that performance of some kernels can actually decrease 

as occupancy increases above 50%.  My case studies will show that experiments are needed to 

balance contributions from ILP and TLP and achieve best performance. 

 

3.3.3 GPU Scheduler — Constraints on Occupancy 

NVIDIA defines occupancy for a kernel as the ratio of the number of active thread warps 

scheduled on an SM to the direct limit of active warps for that SM type.  Although a GPU 

programmer’s CTA layout may specify tens of thousands of thread blocks (and thread warps), 

each on-chip SM scheduler can track and process only a small batch of active thread blocks at 
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any time.  The SM scheduler not only has direct limits5 on the number of active blocks and warps, 

but it also has indirect limits on them due to constraints on register and shared memory pool sizes. 

Register Pool Size Constraints:  Each SM has a limited pool of 32-bit registers to 

distribute across all active threads6.  This register pool size is 32 K on Fermi architectures and 64 

K on Kepler.  These pools may seem large until each pool is divided across hundreds of active 

threads.  The SM warp scheduler cannot exceed the register pool size and will throttle back the 

number of thread blocks that it makes active (i.e. allows to be concurrent at any given time on 

each SM). For instance, suppose that the GPU programmer chooses to have 128 threads per 

block, and the CUDA compiler decides that the code needs 37 registers per active thread.  On the 

Fermi architecture, the scheduler can make at most six thread blocks active since (32K)/(128∙37)= 

6.91, which limits Fermi occupancy to 50%, since (4 warps×6 blocks)/48 max. = 24/48.  On the 

Kepler architecture, the scheduler can make no more than 13 thread blocks active, since 

(64K)/(128∙37) = 13.84, which limits Kepler occupancy to 81.25%. 

Shared Memory Pool Size Constraints:  Each SM has a limited pool of shared memory 

spread across all active thread blocks.  This pool has a maximum limit of 48 KB on both Fermi 

and Kepler architectures. Again, 48 KB seems large until you divide it across all active thread 

blocks.  (In fact, the programmer can also choose to trade the shared memory pool size in 16KB 

increments for L1 cache size.)  The scheduler cannot exceed the shared memory pool size and 

will decrease the number of thread blocks that it makes active. Suppose for example, that a GPU 

programmer writes a kernel that consumes 10 KB of shared memory for a thread block of 128 

threads.  On both the Fermi and Kepler architectures, the scheduler can make active no more than 

four active thread blocks, since 4 = (48 KB per SM / 10 KB per block = 4.8), limiting occupancy 

to 33% (16/48) on Fermi and 25% (16/64) on Kepler respectively. 

                                                      
5 On Fermi, MaxBlocks = 8 and MaxWarps = 48; on Kepler, 16 and 64.  CTA parameters determine which 

of the direct limits, MaxWarps or MaxBlocks, serves as the hard limit on the SM warp scheduler, as we will 

see in case studies. 
6  Fermi and Kepler architectures further limit the maximum number of registers allowed per thread to 63; 

The GTX Titan architecture extends this to 255 (NVIDIA, 2012, CUDA Programming Guide). 
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Constraints on Occupancy (Fermi) Bytes Bytes 

Chosen 

Threads/block 

Max.Occu-

pancy % 

Max. 

Blocks 

Max. 

Warps 

Max. 

Threads 

Max regs 

/thread 

Max 

Sh.Mem. 

/block 

Max 

Sh.Mem. 

/thread 
32 .17  8* 8 256 63* 6,144 192 

64 .33 8* 16 512 63* 6,144 96 

128 .67 8* 32 1,024 32 6,144 48 

256 1.00 6 48 1,536 21 8,192 32 

512 1.00 3 48 1,536 21 16,384 32 

1,024 .67 1* 32 1,024 32 49,152 48 

Constraints on Occupancy (Kepler) Bytes Bytes 

Chosen 

Threads/block 

Max.Occu-

pancy % 

Max. 

Blocks 

Max. 

Warps 

Max. 

Threads 

Max regs 

/thread 

Max 

Sh.Mem. 

/block 

Max 

Sh.Mem. 

/thread 
32 .25  16* 16 512 63* 3,072 96 

64 .50 16* 32 1,024 63* 3,072 48 

128 1.00 16 64 2,048 32 3,072 24 

256 1.00 8 64 2,048 32 6,144 24 

512 1.00 4 64 2,048 32 12,288 24 

1,024 1.00 2 64 2,048 32 24,576 24 

Table 3.1:  Constraints on Occupancy (for both Fermi and Kepler architectures). 

Table 3.1 shows the maximum occupancy possible given a chosen number of threads per 

thread block for Fermi and Kepler architectures.  It also shows the maximum registers per-thread 

and maximum shared memory usage per thread block to achieve maximum occupancy.  Data 

layout and kernel implementation often make it difficult to stay under these resource limits. 

As we will see in the Reduce/Scan case study in Chapter 6, GPU programmers must 

consider constraints on occupancy when choosing the initial CTA thread block and grid sizes in 

order to balance active thread blocks evenly across the available SMs on each GPU card. 

3.3.4 Multi-issue Dispatch 

Recall that both the Fermi and Kepler architectures support multi-issue dispatch7, 

meaning the idea that one SM core can dispatch up to k simultaneous instructions per clock cycle 

in parallel from k separate thread warps.  The k independent instructions are dispatched and 

executed in parallel on multiple redundant function processing units (many ALUs and FPUs per 

                                                      
7  Also known as simultaneous multi-threading (SMT).  This is a form of thread level parallelism. 
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SM core).  Multi-issue dispatch is much like having multiple assembly lines running on one 

factory floor at the same time. 

On Fermi architectures, such as the GTX 580, each SM core supports dual issue. This 

means that each SM can schedule and execute up to two thread warps concurrently as long as 

there are no dependencies between the two warps.  On Kepler architectures, such the GTX Titan, 

each SMX core supports quad issue, meaning each SMX can schedule and execute up to four 

thread warps concurrently.  In addition, Each Kepler SMX warp scheduler is designed to issue up 

to two independent instructions per cycle from each warps instruction stream8. 

Because of the way these architectures schedule and issue warps, programmers, for better 

efficiency, should aim to schedule at least two warps on Fermi per SM or four concurrent warps 

on Kepler per SMX.  Since Kepler architectures can also issue up to two independent instructions 

per cycle, there is a strong incentive for programmers to write code that mitigates data 

dependencies between instructions so that the SMX warp scheduler can fully exploit the multi-

issue feature on each core. 

3.3.5 Branch Divergence 

GPU programmers should seek to reduce the number of branches and loops used in GPU 

kernels. Because all threads within a warp step through a single instruction stream in lockstep, 

branch divergence can occur when some threads within a warp take the true branch path and the 

rest of the threads take the false branch path.  GPU hardware currently solves branch divergence 

via serialization by predication. 

Serialization means that all code from the true path and all code from the false path are 

executed sequentially, the code from the true path being processed first and the code from the 

false path second.  Predication means that each warp maintains a 32-bit predicate mask of 

Booleans that represents the branch outcomes for the individual threads within the warp.  Each 

                                                      
8  A chip architecture that is able to issue up to k parallel instructions from one instruction stream is known 

as superscalar.  This is a form of instruction level parallelism. 
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thread with a predicate mask value of true executes instructions only from the true branch path 

while each thread with a predicate mask value of false executes instructions only from the false 

branch path. 

Serialization by predication can decrease performance by reducing parallelism.  From a 

thread’s perspective, a given branch instruction in a CPU needs fetch instructions only for the 

taken branch path (true or false); whereas, a GPU thread must fetch instructions for both branch 

paths (true and false).  Each nested branch may degrade performance by another factor of two as 

threads in a warp continue to diverge.  In the worst case where branches are nested five levels 

deep, there could be up to 32 individual sub-branch paths that are executed serially, one for each 

thread in the warp. This approach results in up to 32× slower performance. 

To help avoid some of the performance loss due to branch divergence, each SM 

scheduler detects when the predicate mask is set to {all-true} or {all-false}, and it will then 

behave like a CPU branch instruction, executing only the taken path.  Fully efficient warp 

branching is achieved only when there is no branch divergence within a warp, when all threads 

within each warp follow the exact same branch path through the code. 

On both CPUs and GPUs, avoiding or reducing branches and loops is important to 

prevent control hazards. On GPUs, avoiding or reducing branches and loops also prevents branch 

divergence. In my “kd-tree” case study (Chapter 7), we will see the negative impact of high 

branch divergence on processor utilization. 

3.4 GPU Memory Issues 

Memory constraints, register spills, coalescence, and bank conflicts are all GPU memory 

architecture issues that impact performance. 
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3.4.1 Memory Constraints 

GPU programmers aiming for high performance must understand several concepts related 

to memory: access times, limited capacity, and cache constraints. As discussed in Chapter 2, GPU 

memory is a multi-level hierarchy of registers, shared memory, and global memory.  The GPU 

memory architecture includes hardware support for L1 and L2 caching and as well as for 

specialized types of memory, such as constant, texture, and local.  There is also support to 

transfer data to and from host memory (CPU RAM) using DMA. 

Access Speeds:  The consecutive levels of memory have access times that differ by an 

order of magnitude:  Registers ≪ Shared memory ≪ Global Memory ≪ CPU RAM.  

According to Volkov (Volkov 2010), on the GTX 480 registers are 6× faster than shared 

memory, which in turn is 7.6× faster than global memory, which in turn is 11.1×  faster 

than CPU RAM9. 

Limited Capacity:  Registers are a scarce resource. Fermi architectures support a pool of 

only 32 K registers; Kepler, a pool of 64 K.  Furthermore, both architectures allow a 

maximum of 63 registers per thread10. GPU programmers should expect their programs to 

have between 21–63 registers available per thread on Fermi and [32-63] registers per 

thread on Kepler, depending on the number of threads scheduled.  Shared memory is also 

scarce since only 16, 32, or 48 KB is available on each SM (or SMX), and it must be 

shared across all thread blocks concurrently running on each SM11.  Global memory 

                                                      
9 Vasiley Volkov in a talk called “Better Performance at Lower Occupancy” given at the GPU Technology 

Conference in 2010 (Volkov, 2010) compared the bandwidths of registers (8 TB/s), shared memory (1.3 

TB/s), and global memory (177 GB/s) on the GTX 480.  This results in speedups of 6× (registers over 

shared memory) and 7.6× (shared memory over global memory).  CPU RAM from the same generation of 

PC’s had a quoted maximum throughput of 16 GB/s resulting in the claimed speedup of 11.1× (global 

memory over CPU RAM). 
10  Most Kepler devices (CC 3.0) support a maximum of 63 registers per thread, whereas the GTX Titan 

(CC 3.5) supports a maximum of 255 registers per thread. 
11 Each SM can have up to eight concurrent thread blocks per SM running at the same time. Each SMX can 

have up to sixteen. 
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capacities, on the other hand, vary between 1 and 6 GB, depending on the specific GPU 

card. 

Cache Constraints:  Fermi and Kepler GPU architectures both support caching but for a 

limited number of memory controllers and small caches.  The number of memory 

controllers per GPU varies across different cards, but it is fixed for each specific card and 

is typically in the range of one to six memory controllers per card.  The L1 and L2 cache 

sizes are also limited, with the read-only L1 cache having [16, 32, or 48 KB] per SM and 

the read/write L2 cache only having 64-128 KB per memory controller.  Since there are 

up to 16 SMs on Fermi class cards and up to 14 SMXs on Kepler class cards but only 2-6 

memory controllers per card, the SMs must compete to use the memory controllers.  As a 

result, data in GPU caches gets evicted much more frequently data in CPU caches.  GPU 

programmers should not depend on their data staying in either GPU cache for long.  They 

may therefore wish to migrate essential data into registers, shared memory, or both. 

 

3.4.2 Register Spills 

Although programmers often write code as if they have unlimited registers, real CPUs 

and GPUs have a limited number of registers available for each thread.  On GPUs, the maximum 

number of registers available is set up at kernel launch time based on the register pool size (32 K 

on Fermi or 64 K on Kepler) and the number of concurrent threads running on each SM (SMX) 

core.  Compilers dictate the number of registers a kernel needs; register spills occur when the 

need exceeds what is available.  CPU compilers often store spilled variables onto stack or heap 

memory. The GPU CUDA compiler stores spilled variables into local memory, which is a 

reserved area of global memory, which gives orders of magnitude slower access.  In some case 

studies, I hand-code key routines just to avoid expensive spills. 
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3.4.3 Coalescence 

When the 32 threads in a warp request to access global memory, the GPU memory 

controller must transfer the requested data to or from registers in the SM that are assigned to the 

respective threads.  The memory controller does this transfer in units of data warps (128 bytes). 

This means that if each thread in a warp requests a distinct four bytes and these 128 total bytes 

are contiguous and aligned to a data warp boundary, the memory controller can satisfy all 

requests with one transfer. This condition is called coalescence.  This is similar to the way a CPU 

makes efficient use of an entire cache-line, therefore, I call each coalesced data warp a warp-line. 

As we will see in all of my case studies, coalescence is crucial for a GPU to achieve peak 

throughput. So, a programmer will need to ensure that transferred data are the correct size 

(multiples of 128 bytes), aligned (respecting data warp boundaries), coherent (threads of a warp 

request distinct but contiguous data bytes), and fully used (all warp data is consumed by the 

threads before another warp line is transferred).  

Alignment requires attention primarily for short runs, since warp lines behave like cache 

lines, meaning unaligned data takes one more data transfer than unaligned data, the extra transfer 

cost can of course be amortized across a long run of data. For example, while misaligned runs of 

128 bytes take two transfers rather than one, capping coalescence efficiency at 50%, and runs of 

1024 bytes take nine transfers rather than eight, capping efficiency at 89%, randomly accessing 

misaligned runs of 16 bytes transfer 128 bytes 7/8th of the time and 256 bytes 1/8th of the time, 

capping efficiency at 11.1%! 

Distinctness can be relaxed, but several threads competing for the same memory address 

can lead to “race conditions,” where one thread overwrites a competing thread’s data.  It is up to 

programmers to prevent race conditions in global memory by either partitioning or using costly 

atomics.  The hardware will prevent race conditions in shared memory at the cost of serializing 

access for competing threads within a warp (see bank conflicts next). 
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3.4.4 Bank Conflicts 

Bank conflicts occur when multiple threads within the same thread warp access the same 

memory bank within shared memory at the same time.  The GPU hardware serializes access by 

competing threads to ensure correct behavior, but at the cost of reduced I/O throughput.  Memory 

accesses involving k threads accessing the same bank at the same time are called k-way bank 

conflicts. When a warp has up to (and including) k-way conflicts, the scheduler must replay the 

conflicting instruction k times. This approach, if done consistently, reduces throughput by a factor 

of k. In the worst case, k can be the minimum of the number of banks or the threads per warp 

(both are 32 on Fermi and Kepler hardware.)  Bank conflicts can be avoided if each thread in a 

warp accesses its own unique bank in shared memory, but this can be subtle.  For example, for 

64-bit data type (doubles, longlong integers) on Fermi, 32 threads each loading an element of a 

consecutive run results in at least a two-way bank conflict, since each loads the low order bytes 

from even banks before the high order bytes from odd banks12. 

                                                      
12 Kepler-class hardware has a new shared memory access mode that avoids 2-way bank conflicts for 64-bit 

data types. 
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4.0  Case Study:  Memory I/O 

Programmers wishing to migrate CPU code onto a GPU must learn how to do several 

tasks in the GPU architecture (NVIDIA, 2012, Programming Guide).  This chapter demonstrates 

four of the most basic of these tasks: 

 Write GPU data-parallel code for each thread  

 Map individual threads onto data elements 

 Launch thousands of parallel threads running a GPU kernel 

 Set up GPU kernels from within a CPU host program 

 

Programmers should be aware that the first two tasks occur on the GPU and can be 

written using enhanced CUDA C++ with differences to support data parallelism. The last two 

tasks occur on the CPU and can be done using normal idioms, semantics, and syntax with some 

differences to support launching GPU kernels with thousands of threads.  

Chapter 5 introduces the concept of Data Access Skeletons (DASks) and demonstrates two more 

tasks to attain high performance: 

 Write code that has efficient memory access patterns.  

 Determine a balance of Instruction- and Thread-level parallelism (ILP and TLP) 

giving high performance. 

My case study in both this chapter and Chapter 5 is the simple Copy primitive, which 

copies data from a source array into a separate, non-overlapping destination array.  Copy is an 

instance of a map pattern, a parallel programming pattern that transforms a source array, S, of n 

independent data items into a separate destination array, D, of the same size, and applies a unary 

transform operator, ⊙, to each data item in the input array; that is, for all 𝑖 in [0,n) with si ∈ S, 

compute output di = ⊙(si).   



63 

 

For copy, the parallel threads do not need to communicate or coordinate. This 

independence makes map patterns a good starting point to learn how to program on the GPU.  

Although I focus on Copy, the general map pattern can then be easily adapted for other 

independent operations such as Fill, Gather, or Scatter. 

In this chapter, I answer the four questions in the next four sections, then show 

performance results for the resulting simple Copy kernel. 

 How can one setup and launch a GPU kernel?  In Section 4.1, I show how programmers 

can launch their GPU kernels from within a CPU host program.  The CPU Host pattern 

sets up the template, CTA layout, and kernel parameters, all of which are necessary to 

launch a GPU kernel. I choose to explain how to launch a kernel before getting into the 

details of writing a kernel.   

 How can one launch a kernel with thousands of threads?  In section 4.2, since this is at 

the heart of achieving high throughput on GPUs by using massive numbers of parallel 

threads, I show how programmers can specify thousands of parallel threads for each 

kernel launch using NVidia’s CTA layout parameters. 

 How can one map threads onto data elements?  In Section 4.3, I show how programmers 

can advantage of these thousands of parallel threads by mapping each unique thread 

specified by CUDA’s built-in CTA parameters onto a data element. 

 How can one write GPU data parallel code?  In Section 4.4, I show how programmers 

can convert a CPU copy using sequential iteration into a thread-based GPU kernel using 

data-parallel programming.  The key insight is that the hardware does the parallel 

scheduling, so the GPU programmer need focus on code for only a single thread. 

4.1 How does one setup and launch a GPU Kernel? 

Even if the program is “Hello, world,” to run it on the GPU, a programmer must write 

CPU scaffolding code that sets up and launches the GPU kernel from the CPU host, and receives 
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the result. So assuming that we have a simple GPU kernel for copying data in parallel (the actual 

kernel is in Section 4.4), how do we launch it from a serial CPU program?  To launch a GPU 

kernel, the CPU host must allocate resources, transfer inputs onto the GPU, set up kernel CTA 

layout parameters, launch kernels, transfer outputs back from the GPU, and clean up allocated 

resources.  I use a CPU host function that also includes extra validation, profiling, and debugging 

code in to ensure the final versions of my GPU kernels are correct, robust, and fast.  Although 

beyond the scope of this thesis, the host function can be extended to support asynchronous 

streaming and launch parallel algorithms on multiple GPUs.  Figure 4.1 summarizes the pattern of 

my CPU host functions. 

CPU Host Pattern: launches GPU kernel(s) from a CPU host 
Input:     Varies as needed, for example:  𝑛 input data items (for copy) 

Output:  Varies as needed, for example:  𝑛 output results (for copy) 

   // CPU Host Pattern 
1. <Optional> – Choose & set up GPU device 
2. Set up CTA layout (grid of thread blocks) for each kernel  
3. Allocate memory resources on CPU & GPU 
4. <Optional> – Initialize / Set up CPU arrays 
5. Transfer inputs onto GPU from CPU 
6. Launch GPU kernel(s) with parameters (Template, CTA, Kernel) 
7. Transfer outputs from GPU onto CPU 
8. Tear down memory resources 

Optional Variations: 

1. Validation support (launch CPU method, verify CPU vs. GPU results) 

2. Profiling support (create/destroy timers, start/stop timers, output performance results) 

3. Debugging support (create/transfer intermediate arrays, add verification methods, etc.)  

4. Asynchronous streaming (create/destroy streams, overlap transfer/computation). 

5. Multiple GPU support (partition inputs across GPUs, merge outputs from GPUs). 

Figure 4.1:  A high level overview of CPU Host pattern. 

Figure 4.2 presents a specific instance of the CPU host pattern using simplified source 

code from a CPU host function that wraps one of my GPU Copy kernels (shown later in Section 

4.4). 
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CPU_Host_Copy( h_input, h_output, nElems ) 

   // 1. Optionally - Choose GPU device 
   ... 

   // 2. Set up Launch Parameters (Template, CTA, and Kernel) 
   typedef U32 valT;      // Underlying ‘value’ type 
   U32 nWork       = 4u;  // 4, Work items per-thread 
   U32 logBankSize = 5u;  // log<2>(32), Channels per-bank 
   U32 logWarpSize = 5u;  // log<2>(32), Threads per-warp 
   U32 BlockSize =  64u;  // 64, Threads per-block 
   U32 GridSize  = (nElems+(BlockSize-1))/BlockSize;  // Vary 1D grid with n 
   dim3 Block(BlockSize, 1, 1); // Block Layout (1D shape & fixed size) 
   dim3 Grid(GridSize,  1, 1);  // Grid Layout  (1D shape & varying size) 

   // 3. Allocate Memory on GPU 
   U32 mem_size_values = nElems * sizeof(valT); 
   valT * d_input  = nullptr; 
   valT * d_output = nullptr; 
   cudaMalloc( (void**)&d_input, mem_size_values ); 
   cudaMalloc( (void**)&d_output, mem_size_values ); 

   // 4. Optionally – Setup Host input arrays 
   ... 

   // 5. Copy 'inputs' onto GPU 
   cudaMemcpy( d_input, h_input,  
               mem_size_values, cudaMemcpyHostToDevice ); 

   // 6. Launch Copy Kernel 
   HC_Copy_RowByRow 
   <  
      // C++ Template parameters 
      valT, logWarpSize, logBankSize, BlockSize, nWork 
   > 
   <<<  
      // CTA Layout parameters (Grid of Thread Blocks)  
      Grid, Block 
   >>> 
   (  
      // Kernel parameters 
      d_output, d_input, 0, nElems - 1 
   );    

   // 7. Copy 'outputs' from GPU to CPU 
   cudaMemcpy( (void *)h_output, (void *)d_output,            
               mem_size_values, cudaMemcpyDeviceToHost ); 

   // 8. Cleanup resources 
   cudaFree( d_output ); 
   cudaFree( d_input ); 

end CPU_Host_COPY 

Figure 4.2:  Example usage of the CPU Host pattern to launch a GPU Copy kernel. 

As is apparent in Figure 4.2, the code that launches GPU kernels from a CPU host can be 

confusing because the programmer must work with up to three separate sets of parameters: 

 Kernel parameters, which are the normal function parameters passed into the 

code, like the number of data elements n 

T 

C 
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 CTA layout parameters, which structure the threads into blocks and grids.  This 

will be explained in more detail in Section 4.2. 

 Optional C++ template parameters, which simplify the setup of optimization 

experiments. 

I first specify these template parameters in C++ using single angle brackets (< … >).  

Next, the CTA layout parameters are used to structure the parallel threads as a grid of thread 

blocks for each GPU kernel.  The CTA layout parameters are specified in CUDA using triple 

angle-brackets (<<< … >>>).  (I will discuss in Section 4.2.1 how to choose appropriate CTA 

layout parameters up front.)  Finally, the normal kernel parameters passed into the GPU kernel 

are specified in C++, as in most programming languages, using single parentheses. 

Figure 4.2 shows, as a specific example, the parameters for my GPU copy invocation.  

The glyph marks where the launch code for the copy kernel in this example starts.  The 

glyphs respectively represent the three sets of parameters: template, CTA, and 

kernel.  (I have spread the three sets of parameters across multiple lines to make them more 

visible. Most programmers would use a more terse syntax.)  As shown in Figure 4.2, the CPU 

host pattern mostly sets up and cleans up necessary resources around a set of GPU kernel 

launches.  The CTA layout parameters structure thread parallelism and are unique to GPU data-

parallel programming.  Section 4.2, which follows, goes into greater detail about how to structure 

the thread hierarchy in CUDA for each GPU kernel using the 2-level CTA layout parameters. 

4.2 How does one launch a kernel with thousands of threads? 

One obstacle to programming a GPU kernel is the need to specify up front a thread layout 

structure, the cooperative thread array (CTA), which the GPU hardware uses to schedule the tens 

of thousands of threads onto hundreds of processing cores.  Each kernel, no matter how simple, 

requires a CTA layout, but choosing good sizes and shapes for the CTA layout requires the 

programmer to develop some intuition for what thread layouts work well, and optimal sizes and 

C 

T L K 
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shapes require many experiments within the specific application.  Here are the technical details 

for specifying layouts. 

Recall from Section 3.3 that threads on a GPU are structured in a four-level hierarchy. 

Each individual thread belongs to a thread warp, which belongs to a thread block, which belongs 

to a grid.  In order to launch kernels with thousands of threads, NVidia requires that programmers 

must specify, at GPU kernel launch, two triples ‹x,y,z› the 2D grid of blocks and a 3D array of 

threads in the blocks. To aid my own understanding, I use a 6-tuple ‹gw, gh, 1, bw, bh, bl› to 

represent the grid and block layout parameters as a single unit.  However, CUDA actually uses a 

triple angle-bracket syntax (<<<grid, block, …>>>). I also use the 6-tuple ‹bx, by, bz, tx, ty, 

tz› to indicate the unique thread location of each individual thread within the CTA layout. 

To specify the CTA layout up front, the GPU programmer must plan how to partition the 

data and how to map individual threads onto the data elements.  The programmer can simply 

specify a 1D grid and a 1D thread block layout, with two CTA layout parameters ‹gw,1,1,bw,1,1›, 

but the option of having multiple CTA layout parameters allows programmers the flexibility to 

treat the underlying data as 1D, 2D or 3D, as appropriate for their problem space.  Most of the 

GPU kernels in my case studies are 1D, but large, so I typically use 2-3 CTA parameters per 

kernel as a 1D or 2D  grid and a 1D block as ‹gw,gh,1,bw,1,1›. 

The code in Figure 4.3 shows a 2-3 parameter CTA layout for a 1D data set [0,n). 
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template<TBS, gridRS, nWork> // Input Size, Row Size(m*c),  
                                      Work per-thread 
Layout_1D( n, Grid, Block )        // Input Size, Grid layout, Block Layout 
  DBS = nWork*TBS;           // Fixed, Data Block Size 
  nBlocks = ⌈𝑛/𝐷𝐵𝑆⌉;         // Varies, Cover data with data blocks 

  if (nBlocks <= 65534)     // 1D or 2D Grid Layout? 
    gridW = nBlocks; 
    gridH = 1; 
  else 

    mSQ = ⌈√𝑛𝐵𝑙𝑜𝑐𝑘𝑠⌉;        // Start with a square layout 

    gridW = ⌈𝑚𝑆𝑄/𝑔𝑟𝑖𝑑𝑅𝑆⌉ ∙ 𝑔𝑟𝑖𝑑𝑅𝑆;  // nCols is a multiple of ‘Row Size’ Hint 
    gridH = ⌈𝑛𝐵𝑙𝑜𝑐𝑘𝑠/𝑔𝑟𝑖𝑑𝑊⌉;       // nRows needs to cover data 
  end if 

  Block = dim3( TBS, 1, 1 );       // Block layout (1D) 
  Grid  = dim3( gridW, gridH, 1 ); // Grid layout (2D or 1D) 
end Layout_1D 
 
// Example Usage 
... 
TBS   = 128;                 // 128, Pick a fixed 1D thread block layout 
nWork = 4;                   //   4, Amortize costs across work-items 
nSMs  = 14;                  //  14, number of SMX’s on a GTX Titan 
nConBlocks = 16;             //  16, expected number of concurrent blocks per SMX 
gridRS = nSMs * nConBlocks;  // 224, A good starting row size for my grid 

Layout_1D<TBS,gridRS,nWork>( n, Grid, Block ); // Compute my CTA Layout 

Figure 4.3:  Compute a CTA layout.   In this example, I pick a fixed block size and a fixed number of 

columns per grid and then allow the number of rows per grid to vary as needed to cover the data.  

As shown in Figure 4.3, the user picks a fixed-size thread-block size (TBS) and a fixed 

size amount of work per-thread (nWork) from which the code computes a fixed-size data block 

size (DBS = nWork·TBS).  From the fixed size data block size, I compute the number of data 

blocks (m=⌈𝑛/𝐷𝐵𝑆⌉) needed to fully cover the data set [0,n).  Fully covering the data with data 

blocks implies that the last data block may only be partially full and thus my GPU kernels will 

require range checking to avoid data access errors.  Initially, I used a one-to-one mapping 

between thread and data blocks.  Recall that Fermi architectures limit their grid dimension values 

to the range [1,216).  As a result, my layout function determines if a 1D or 2D grid layout is 

needed to cover all the data blocks (test:  m ≥ 65,534).  If a 2D grid layout is needed, I start with 

the square root of m as a good first approximation (√𝑚 × √𝑚). I then modify that number by a 

fixed-size row hint (gridRS) to get the final 2D layout (rows×cols), which creates a 2D layout of 

data blocks needed to fully cover all the data.  Unfortunately, computing the 2D grid layout as 
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described usually results in some over-coverage because the last data row is usually only partially 

full (implying that there are some thread blocks where the corresponding fixed-size data blocks 

are completely out of range). Thus range checking in my kernels is required to prevent data 

access errors. 

CTA Layout Guidelines:  Using fewer CTA layout parameters results in fewer mapping 

operations (as will be shown later in Figure 4.6.)  Consequently, I prefer 1D layouts over 2D 

layouts, and 2D layouts over 3D layouts.  Since thread scheduling on each SM multi-core is 

warp-based, I also prefer that the thread block width (bw) parameter be a multiple of the 

WarpSize (32), in order to fully utilize all the SP processing cores on each SM.  To support the 

multi-issue GPU hardware capability, I prefer to have at least two or four thread warps per-thread 

block (64 or 128 threads per thread-block).  I generally prefer fixed sized constants for most of 

my CTA parameters—the only exception being the one that I allow to vary with input size (either 

the grid rows or grid columns -- gw, gh).  I recommend including the fixed-size CTA parameters 

as part of the kernel’s C++ template parameters. This approach supports experimentation while 

still allowing the GPU kernels to know the actual CTA layout at compile time for better 

performance. 

4.3 How does one map threads onto data? 

To process all data, GPU programmers must map individual threads onto unique data 

locations in the data set.  In addition, all threads collectively must fully cover all data in the data 

set.  Therefore, the programmer must combine these CTA layout parameters (2-5 variables) with 

the current thread’s unique identifying parameters in order to map the thread’s access request 

onto a single data location. 
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To support mapping at runtime, CUDA provides four CTA layout parameters.  Each of 

these four parameters are global1, built-in, and read-only 3-tuples as ‹x,y,z›.  They are named 

gridDim, blockDim, blockIdx, and threadIdx respectively. The gridDim and blockDim 

layout tuples refer to the original CTA layout parameters. (This means that gridDim.‹xyz› and 

blockDim.‹xyz› together are equivalent to ‹gw, gh, 1, bw, bh, bl› in my nomenclature).  The 

threadIdx and blockIdx tuples uniquely identify the current running thread within the current 

thread block within the grid. (Together they are equivalent to ‹bx, by, 1, tx, ty, tz›, in my 

nomenclature.)  Each threadIdx and blockIdx parameter value ‹x,y,z› is upper-bounded by a 

corresponding blockDim and gridDim value.  For example, given threadIdx.x (tx) and 

blockDim.x (bw), then tx will be bounded above by bw, i.e. 𝑡𝑥 ∈ [0, 𝑏𝑥).  All four built-in CTA 

layout parameters are therefore used to map individual threads onto their corresponding data 

items. This approach is similar to mapping multi-dimensional arrays onto 1D memory layouts.  

Mapping the blockIdx or threadIdx onto a single unique block or thread ID (bid or tid) 

involves computing 3D slabs, 2D rows, and 1D columns and adding them all up. 

Table 4.1 shows code snippets that can be used to map the CTA layout variables onto a 

single per-thread data location using a 1D or a 2D grid vs. a 1D, 2D or 3D block layout.   

  

                                                      
1  This means that these four CTA layout parameters can always be accessed and used at anytime from 

anywhere within kernel code and invoked function code without any need to pass them through as kernel or 

function parameters.   
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 1D Block <bw,1,1> 2D Block <bw,bh,1> 3D Block <bw,bh,bl> 

1D Grid 

<gw,1,1> 
bid=blockIdx.x; 

tid=threadIdx.x; 

TBS=blockDim.x; 

DBS=WPT*TBS; 

dataOff=(bid*DBS) 

         +tid; 

 

 

bid=blockIdx.x; 

tX=threadIdx.x; 

tY=threadIdx.y; 

bW=blockDim.x; 

bH=blockDim.y; 

tid=(bW*tY)+tX; 

TBS=bW*bH; 

DBS=WPT*TBS; 

dataOff=(bid*DBS) 

        +tid; 

bid=blockIdx.x; 

tX=threadIdx.x; 

tY=threadIdx.y; 

tZ=threadIdx.z; 

bW=blockDim.x; 

bH=blockDim.y; 

bL=blockDim.z; 

slab=bW*bH; 

tid=(slab*tZ)+ 

    (bW*tY)+tX; 

TBS=slab*bL; 

DBS=WPT*TBS; 

dataOff=(bid*DBS) 

        +tid; 

Runtime Ops 5 9 13 
Template Ops 3 5 7 
2D Grid 

<gw,gh,1> 
bX=blockIdx.x; 

bY=blockIdx.y; 

gW=gridDim.x; 

bid=(gW*bY)+bX; 

tid=threadIdx.x; 

TBS=blockDim.x; 

DBS=WPT*TBS; 

dataOff=(bid*DBS) 

        +tid; 

bX=blockIdx.x; 

bY=blockIdx.y; 

gW=gridDim.x; 

bid=(gW*bY)+bX; 

tX=threadIdx.x; 

tY=threadIdx.y; 

bW=blockDim.x; 

bH=blockDim.y; 

tid=(bW*tY)+tX; 

TBS=bW*bH; 

DBS=WPT*TBS; 

dataOff=(bid*DBS) 

        +tid; 

bX=blockIdx.x; 

bY=blockIdx.y; 

gW=gridDim.x; 

bid=(gW*bY)+bX; 

tX=threadIdx.x; 

tY=threadIdx.y; 

tZ=threadIdx.z; 

bW=blockDim.x; 

bH=blockDim.y; 

bL=blockDim.z; 

slab=bW*bH; 

tid=(slab*tZ)+ 

    (bW*tY)+tX; 

TBS=Slab*BL; 

DS=WPT*TBS; 

dataOff=(bid*DBS) 

        +tid; 

Runtime Ops 8 12 16 

Template Ops 5 7 9 

Table 4.1:  This table shows code snippets for mapping 2-5 CTA parameters down onto a single per-

thread data location used to access data in global memory.  Grid dimensions (1D & 2D) and block 

dimensions (1D, 2D, and 3D) are on the vertical and horizontal axes respectively. The lighter grey color 

indicates lines of code that get compiled away as constants when using C++ template parameters to 

redundantly pass in the corresponding fixed-size CTA layout parameters. 
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The mapping between threads and data can be simple and straightforward, but because 

the current CUDA documentation does not actually show how to do this mapping, I have 

included my code for six different block and grid dimensions in Table 4.1.  (There are many other 

possible ways to map these variables.)  My mapping for each of the six code snippets is computed 

in four steps: 

1. The block ID (bid) for a thread block within a grid is first computed from the 

blockIdx and gridDim parameters. 

2. The thread ID (tid) for a thread within a thread block is then computed from the 

threadIdx and blockDim parameters. 

3. Next, the fixed-size DBS can be computed from fixed-size C++ template 

parameters (nWork and TBS) or from the blockDim parameter. 

4. Finally, the per-thread data location is computed from the bid, tid and DBS. 

Also included in Figure 4.4 are my best estimates of how many operations CUDA takes 

to perform each mapping via the corresponding code snippet.  As you can see from the code, the 

more CTA parameters involved in the mapping, the more operations it takes.  The “Runtime Ops” 

rows show the total number of operations required to perform the mapping when it directly 

accesses the CUDA layout variables.  In contrast, the “Template Ops” rows show the reduced 

number of operations expected when redundantly passing some of the CUDA layout parameters 

as fixed-size C++ template parameters into the kernels. In Figure 4.4, I have also grayed out the 

lines of code that the compiler elides when using C++ template variables. 

Each mapping code snippet consists of simple loads, multiplies, and adds.  Any required 

CUDA CTA layout parameters (gridDim, blockIdx, blockDim, threadIdx) must first be 

loaded from special constant read-only registers into normal registers before they can be used.  

For Fermi and CUDA architectures, the CUDA platform compiler will often replace a multiply 

operation that is followed by an add operation with a single fused-multiply-and-add (FMA).  In  

The code snippets in Figure 4.4 have many read-after-write (RAW) data dependencies, 

which reduce opportunities for the SM warp schedulers to hide stalls.  For fewer instructions and 

stalls, GPU programmers should prefer 1D over 2D mappings and 2D over 3D mappings.  
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4.4 How can one write GPU data parallel code? 

Now that we have some initial ideas about how to setup and launch a GPU kernel from a 

CPU host, and how to launch a kernel with thousands of parallel threads, and how to map those 

threads onto data elements, it’s time to actually drill down on the task of writing a GPU kernel 

that supports data-level parallelism. 

For a serial solution, many programmers, when given a large data set that needs to be 

processed, naturally draw upon the “iteration pattern” from their programmer’s tool box.  A 

nested loop structure that iterates over all data values easily processes all data in a large dataset.  

The loop instructions therefore simplify a programmer’s life by reducing the amount of code that 

needs to be written while also dynamically supporting any input size (n).  However, as useful as 

loop instructions are in increasing programmer productivity, what is really important are the 

actual transform instructions that convert a single input into a single output in order to solve the 

problem at hand.  These important transform instructions are typically found as the innermost 

block of code within the nested looping structure. 

For a parallel solution, such as on a multi-computer, one natural way to solve these 

problems is to parallelize the loops themselves, creating one thread per loop iteration to process 

the data from each iteration. Such an approach lets the machine handle scheduling of iteration 

instances onto threads and then onto cores.  With n iterations, n data items can be covered.  Of 

course, for a multi-computer there must be some way to specify parallelism.  Parallelism is often 

specified in parallel programming platforms, like MPI or Clik, using a parallel_for 

instruction. In these instances, the framework creates parallel threads, schedules threads, maps 

data items onto threads, executes threads, and retires threads.  Given these advantages for typical 

multi-computer parallel solutions, I would rewrite my loops as parallel looping structures. 

For a GPU specific solution, the CUDA framework supports a data parallel view of data 

with one thread per data item.  However, the nested loop structures in software are replaced by a 
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two-level cooperative thread array (CTA), which groups threads into thread blocks and thread 

blocks into a grid.  The hardware giga-thread scheduler schedules thread blocks onto SMs, and 

each SM warp scheduler schedules thread warps onto SPs.  Since looping has effectively been 

moved out of software and onto the hardware schedulers, each thread needs to uniquely identify 

itself within the CTA hierarchy in order to know which data item to work on.  As before, the 

same transform instructions that I would loop over in my serial solution becomes the core of my 

GPU data parallel solution. 

The CUDA programming platform enhances the C++ language with a few extensions to 

express and support data parallel programming.  Each GPU kernel is written from the point of 

view of a single generic thread (within the CTA).  Each GPU data parallel kernel then typically 

consists of the following six steps: 

Step 1: Mapping Data:  During this step, programmers write code that uniquely 

identifies the current thread and maps the current thread ID onto a specific data 

location (input and output).  This important step was discussed previously in 

Section 4.3. 

Step 2: Setting Up:  An optional step where programmers write code that can allocate, 

load, or create any necessary variables to support algorithm state and context. 

Step 3: Loading Input:  During this step, programmers write code that loads a single data 

item as input from the computed input location.  Range checks may be required 

to prevent out-of-range memory accesses. 

Step 4: Transforming Data:  During this important step, programmers write code that 

transforms the input data item into an output result. 

Step 5: Storing Output: During this step, programmers write code that stores the result 

item as output to the computed output location.  Again, range checks may be 

required. 
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Step 6: Cleaning Up:  An optional step where programmers write code to clean up any 

allocated resources from the “Setting Up” step. 

The “Transforming Data” step (Step 4) is the important payoff step where the original 

problem gets solved.  Just as the loop instructions are necessary and useful overhead for solving a 

large problem in a serial environment, the other steps above (1-3, 5-6) are also necessary and 

useful overhead to solve a large massively multi-threaded problem in a GPU data parallel 

environment.  I call the important transforming data step the “Body,” and the rest of the 

supporting framework steps the “Skeleton” of the GPU kernel. 

I just described three different approaches for transforming input into output.  The CPU 

serial looping, multi-computer loop parallel, and GPU data parallel versions of Copy are all 

shown as pseudo-code in Figure 4.4. 
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Serial Copy 

  Copy_Serial( n, D, S 
) 
    // Iterate over 
data 
1: for i in [0..n) 
     // Copy data elem 

2:    
3:  end for 
4:end copy_serial 

Parallel Copy 

  Copy_Parallel( D, S ) 
   // Grab thread ID 
1: tid = ...; 

   // Copy data elem  

2:  
3:end copy_parallel 

GPU Copy 

  Copy_GPU_Simple( n, D, S ) 
    // Map CTA thread onto data 
 1: bX   = blockIdx.x; 
 2: bY   = blockIdx.y; 
 3: gW   = gridDim.x; 
 4: bid  = (gW*bY)+bX; 
 5: tid  = threadIdx.x; 
 6: dOff = (bid*32)+tid; 

    // Copy data elem 
 7: if (dOff < n) // Range 
check  

 8:    
 9: end if 
10:end Copy_GPU_Simple 

// Launch CPU function 
1: Copy_Serial(n, D, 
S); 

  // Launch n kernels 
1:parallel for i in 1..n 
2:  Copy_Parallel( D, S 
); 
3:end parallel for 

    // Get CTA layout params 
 1: dim3 grid, block; 
 2: Layout_1D<32, 112, 1> 
    ( n, grid, block ); 

    // Launch GPU kernel 
 3: Copy_GPU_Simple 
      // CTA Params 
    <<< grid, block >>> 
      // Kernel Params 
    ( n, D, S ); 

Figure 4.4:  Top Row, Left Panel:  A simple serial CPU program to copy n elements from source to 

destination using a loop.  Top Row, Middle Panel:  An equivalent data-parallel kernel would copy n 

elements using n threads.  Top Row, Right Panel:  An actual GPU kernel instance to copy n elements 

using n threads.  Bottom Row (all three panels):  Examples of how to invoke the function and kernels.  

With all three functions, the shaded boxes contain the useful payoff code (Body) that the GPU 

programmer implements (in this case: copying).  The rest of the code is the necessary framework code 

(Skeleton) in order to iterate over n elements or process n elements in parallel. 

As can be seen in Figure 4.4, all three versions have their assignment operations boxed 

because they provide us with our first examples of DASks. By replacing the “Body” code inside 

the shaded boxes at source line “2” or “8,” a number of programs based on the map pattern can be 

generated from the above “Skeletons”, such as Copy, Fill, Count, and Find.  For Fill, a 

programmer could replace the copy statement at source line 2 (or 8) by a fill statement D[tid] = 

fillVal;. 

As also can be seen from Figure 4.5 (left vs. right panel), the loop overhead of the CPU 

serial function has been replaced by the CTA layout and mapping overhead of the GPU data-

parallel kernel.  The resulting parallel GPU copy is conceptually the same as the parallel multi-

D[i] = S[i]; 

D[tid] = S[tid]; 

D[dOff] = S[dOff]; 
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computer kernel in Figure 4.5; however, the extra complexity comes from having to map the 2-

level CTA layout kernel parameters that represent a single thread down onto a single data 

location.  This simple GPU copy works correctly for valid input, but its performance runs at only 

~25% of peak I/O throughput for large input sizes (see Figure 4.7). 

To support massive parallelism via threads, GPU programmers also must make some up-

front decisions about the CTA layout before coding a simple GPU kernel such as Copy.  To do 

this, GPU programmers must first set up the initial thread structure using the CTA layout 

parameters (grid, block). This setup appears in Figure 4.1 (bottom row, right panel, source line 3) 

as an extra line of kernel launch parameters (<<< grid, block >>>).  Later, when they are 

coding the GPU kernel, GPU programmers must map the CTA layout (as four built-in kernel 

parameters) for each individual thread down onto a single data location. This mapping code 

shows up in Figure 4.1 (top row, right panel) as source lines 1-6.  I present more details on this 

two-step process for launching parallel kernels and mapping threads onto data in Section 4.3. 

As will be seen in Chapter 5, I will present three DASks for efficiently accessing 

memory.  I developed these DASks with two main goals:  to help hide the complexities of GPU 

programming so that the GPU programmer can focus on solving their problems via their 

algorithms; and to achieve solid parallel performance on GPU hardware. 

Otherwise, GPU programmers must expend a great deal of effort to learn the 

complexities of the GPU hardware that can help or hinder performance.  For example, in order to 

increase performance via TLP, GPU programmers need to be aware of the underlying hierarchical 

thread structure in hardware.  I initially suggested that GPU programmers should think about their 

parallel programs from the point of view of a single thread. It is vital that they should not lose 

sight of the underlying four-level hierarchical thread structure:  A thread belongs to a thread 

warp, which belongs to a thread block, which belongs to a grid.  When executing a kernel, the 

GPU schedules thread blocks within each grid onto SMs.  Each SM’s warp-scheduler then 

schedules concurrently running thread warps from thread blocks onto the SPs within each SM.  
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As each thread block completes execution, the GPU schedules additional thread blocks onto the 

SMs until all thread blocks within the grid have been processed. 

To support data parallelism in my GPU programs, I at one time wrote my own GPU 

kernels in ten rough stages as follows: 

1. Understand Structure:  Conceptually, I would look at the actual serial algorithm 

to adapt (or I would think of how could write this kernel as a serial program 

using some looping structure that iterates over the n elements in the input data 

set). 

2. Find “Body”:  I found (or thought about) the innermost code in the actual (or 

conceptualized) looping structure.  This is the important code that transforms one 

input element into one output result.  This innermost transform code forms the 

core of my GPU kernel. 

3. Write Core:  Based on the innermost transform code, I wrote the core of GPU 

kernel that loads, transforms, and stores a single data work-item. 

4. Map Threads:  I added code that maps each individual thread into a unique data 

work-item.  I also usually had to go back and add range checks around any load 

or store instructions to prevent access errors. 

5. Serial Test:  I verified my kernel with exactly one thread on one data item. 

6. Increase parallelism to one Thread Warp:  I verified that my code works for all 

threads within a single warp.  Meaning, I set my CTA layout to a single thread 

warp (32 threads) and tested my code on a single data warp (32 data items). 

7. Coordinate Threads:  I considered how the threads within a thread block might 

need to communicate and coordinate with other threads to ensure correct parallel 

behavior.  I shared data across threads using arrays in shared memory.  I also 

might need to insert barriers instructions or use atomics to ensure that all threads 
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are reading or writing correct data without conflicts.  I then rewrote my code to 

support the desired communication or coordination across threads. 

8. Increase parallelism to one Thread Block: I verified that my code works for all 

threads within a single thread block (128 threads per thread block is a good 

starting case) on a single data block (128 data elements). 

9. Increase parallelism to an entire Grid of thread blocks:  I verified that my code 

works correctly for all threads in a large grid of thread blocks. 

10. Complete Algorithm:  The kernel should now be working correctly. If this kernel 

is just one stage of a larger algorithm, I also needed to verify that this stage 

interacts correctly with the other stages preceding and following it. 

However, after inventing my various Data Access Skeletons (DASks), I now do things 

differently.  I take one of my working DASks (as discussed in Chapter 5) that best fits my 

problem and replace the “Body” sections (shaded boxes) with my desired transform data code and 

then start verifying.  Of course, I still need to think about how to communicate and coordinate 

partial results across threads within a thread block and between kernels in a multi-kernel parallel 

algorithm.  However, the main result of jump starting my kernel development with my DASks is 

that I am more productive. 

 

4.5 Simple Copy Results 

Figure 4.5 shows the initial throughput (in gigabytes per second) for increasing input 

sizes (n) of my simple Copy kernel (code shown in Figure 4.4, right panel). 
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Figure 4.5:  Simple throughput for increasing n.   All tests run on a GTX Titan. 

This simple kernel works correctly but disappointingly achieves only about 25% of 

maximum peak throughput available on the GTX Titan and is about 2.7× slower than the built-in 

CUDA library function cudaMemCopy.  As we will see in Chapter 5, this is because this simple 

kernel does not take full advantage of either TLP or ILP. 

4.6 Conclusion 

In this chapter, I have introduced the four main tasks—writing CPU host functions to 

launch GPU kernels, launching thousands of parallel threads using the CTA layout, mapping each 

parallel thread within the CTA onto a data work-item, and writing thread centric code for data 

parallel kernels—that GPU programmers should learn in order to get a GPU kernel up and 

running.  I demonstrated these four tasks on a simple Copy primitive. Even though the resulting 

kernel works correctly, it has disappointing performance (only 25% of peak throughput). 

To improve performance, in Chapter 5, I will introduce three data access skeletons 

(DASks) and two block access skeletons (BASks).  These skeletal frameworks provide three main 

benefits:   

1) They support efficient access patterns into memory 
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2) They support experiments on balancing ILP and TLP to find the best throughput 

performance. 

3) They provide an already working framework that hides much of the complexity of 

writing GPU kernels with high performance. 

My DASk and BASk kernel frameworks allow me to get a jump start on writing new 

GPU code which makes me more productive.  The underlying framework code forming the 

skeletons has already been tested, works correctly, and achieves high throughput.  Each DASk 

contains replaceable “body” sections (that I show throughout this thesis as shaded boxes) that are 

intended to be replaced with new code to solve new problems.  So, the programmer can replace 

these “body” sections with their own code to solve their own problem with high confidence that 

the resulting kernels are close to working correctly.  Of course, this approach doesn’t solve 

everything, the programmer still needs to think about how to structure their CTA layout on 

launch, and how to best write their code to best deal with GPU hardware issues.  To that end, my 

case studies will demonstrate various ways that I have dealt with those issues using my DASks 

and BASks. 
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5.0 Data Access Skeletons (DASks) 

In this chapter, I continue my case study using the Copy primitive to learn how to aim for 

high performance on the GPU.  In Chapter 4, the focus was on coding a simple Copy that works 

correctly on a GPU by learning four main tasks: launch a GPU kernel from a CPU host; launch 

thousands of parallel threads for each kernel; map each thread onto a data work-item; and write 

GPU thread-centric data-parallel code;.  The final kernel was correct but had poor throughput as 

compared to the peak throughput available on cards like the GTX 580 and GTX Titan. 

In this chapter, I focus on improving the Copy primitive’s performance on the GPU by 

introducing two additional tasks. 

1) Write code that has efficient memory access patterns. 

2) Determine a balance of Instruction-level and Thread-level parallelism (ILP and TLP). 

To help support both performance tasks, I introduce three Data Access Skeletons 

(DASks)--:  Block, Column, and Row. And two Block Access Skeletons (BASks) – Block by Block 

and Warp by Warp.  In addition to supporting efficient memory access patterns and supporting 

ILP and TLP, these skeletal frameworks provide also provide an already working framework that 

helps hide much of the complexity of writing GPU kernels with high performance. 

The underlying framework code forming these skeletons has already been tested, works 

correctly, and achieves high throughput.  Each DASk contains replaceable “body” sections (that I 

show throughout this thesis as shaded boxes) that are intended to be replaced with new code to 

solve new problems.  So, the programmer can replace these “body” sections with their own code 

to solve their own problem with high confidence that the resulting kernels are close to working 

correctly. 
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To support my DASks and BASks in the context of actual algorithms for my case studies, 

I implement my GPU kernels using C++ templates for generic programming and better 

performance.  Generic programming1 (Alexandrescu, 2001) helps support many data types with 

only one function, helps to eliminate hard-coded magic numbers from inside my kernels, and, 

most importantly, permits me to try many different CTA layout configurations without the need 

to tweak the underlying GPU kernel code for each new configuration.  Better performance occurs 

because many C++ template parameters are treated as hard-coded constants that the compiler can 

use to optimize instructions (or elide away) at compile time instead of runtime. 

Returning to the three types of DASks, The Block DASk is a generalization of the simple 

GPU copy (see Figure 4.1, right panel, in Chapter 4) and supports both ILP and TLP for better 

overall performance.  The Column DASk assumes a 1D block and a 2D grid with a fixed number 

of grid columns where the number of grid rows varies dynamically with the input size.  The Row 

DASk also assumes a 1D block and 2D grid where with the number of rows are fixed and the 

number of columns are allowed to vary dynamically with the input size. 

All three DASks support experiments on both ILP and TLP via C++ template parameters2 

‹nWarps, nWork›.  The parameters exist in each DASk, the programmer should take advantage of 

them.  The nWarps parameter allows the programmer to experiment with TLP by varying the 

number of threads per thread block.  The nWarps parameter is actually redundant information to 

the existing CTA layout but by making it a compiler constant, performance can be increased in 

the kernel code.  The nWork parameter allows the programmer to experiment with ILP by varying 

the number of data elements (work-items) per thread in their code.  Even though the parameter is 

there, the programmer must write code in their “body” sections to support up to k work-items and 

then set the nWork parameter to the desired amount of work per-thread. 

                                                      
1  As described in the book “Modern C++ Design” (Alexandrescu, 2001). 
2  As described in the book “The C++ Programming Language, 4th edition” (Stroustrup, 2013). 
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To whet your appetite for the results of using these skeletons, here are the throughputs as 

a function of input size (n) for my copy implementations of each of my three data access 

skeletons (Block, Column, Row), along with results of a simple copy implementation and 

NVidia’s built-in copy primitive, cudaMemCopy.  The simple implementation falls behind at 

n =  214 , but all the rest are competitive with NVidia’s cudaMemCopy, as seen in Figure 5.1. (So 

if you are just copying plain old data types, use cudaMemCopy.) 

 

Figure 5.1:  Copy Performance -- I/O Throughput (y-axis) for increasing 𝑛 (x-axis, log-scale) for my three 

Data Access Skeletons (Block, Column, and Row).  Performance of a simple (one thread per data item) copy 

degrades around N=215, but cudaMemCopy method can be used over the entire range. 

 

5.1 Block DASk 

The Block DASk (see Figure 5.2) is based on the simple Copy kernel (see Figure 4.1, 

right panel in Chapter 4) but generalized with additional C++ template parameters that support 

performance experiments on both ILP and TLP.  For ILP, I use software pipelining on multiple 

work items (data elements) per-thread per data block, the amount of work per thread is specified 

210 213 216 219 225 228
0

50

100

150

200

250

222

N = number of Elements (log scale)

I/
O

 T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Copy -- I/O Throughput for increasing N
288.4

Simple

cudaMemCopy

Column DASk

Row DASk

Block DASk



85 

 

via a work-per-thread (nWork) C++ template parameter.  For TLP, I support massive thread 

parallelism via a dynamic CTA layout for fixed 1D block sizes and for 2D grids (meaning, fixed 

columns and varying rows), the static CTA layout parameters are also specified as C++ template 

parameters: threads per thread block (TBS) and block columns per grid (GridCols).  By turning 

the Block DASk into a C++ template kernel, a programmer can experiment with different 

configurations (work per thread, CTA layout) by simply changing template parameters instead of 

tweaking hard-coded magic numbers.  With the Block DASk, the data is divided into m fixed size 

blocks and organized into a 2D or 1D grid, depending on the number of thread blocks needed to 

fully cover all the data (using the Layout_1D function, shown in Figure 4.5 in Chapter 4). 

 

Figure 5.2:  The Block DASk.  1) Pick a fixed-size thread block, fixed-size work per-thread 

(nWork), and compute the corresponding fixed-size data block.  2) Partition the data array into m 

fixed-size data blocks that fully cover the data range [0, n).  3) Launch one thread block per data 

block.  4) Inside each kernel, map each thread block onto its corresponding data block.  5)  Each 

thread within the thread block processes its assigned work (transforms ‹copies› input into output). 

As will be seen later in Section 5.16, I experimented with both automatic and manual 

loop unrolling to support ILP across multiple work items.  The Block DASk also supports 

experiments on TLP by the initial choices for the CTA layout, For Example:  BlockSize = 

DB1 DB2 …

TB1 TB2 … TBm

Thread 
Blocks

Input
Data

Blocks

DBm

DB1 DB2 … DBm
Output

…Transform

𝑛 = # Data Elements

   

Block size (   )

Grid size ( )

Computations: 
𝑛 = Number of data elements 
nWork = Pick Work per-thread  
  𝑆 = Pick Thread Block Size 

 

CTA Layout: 

L1:  Compute Data Block Size 
        DBS = nWork*TBS 
L2:  Compute 1D Grid Size 

  = Data blocks per-grid  

         =  𝑛/𝐷 𝑆  

 

Map: thread block onto data block 

bid = (grid.y*grid.w) + grid.x 

tid = block.x 

dataOffset = (bid*DBS)+tid 
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‹128,1,1› and GridSize = ‹224,1,1›.  To make the Block DASk more efficient, I pick a fixed 

thread block size (TBS), and a fixed amount of work per-thread (nWork), typically in the range 

[1..4].  From this, the fixed data block size (DBS) can be computed as DBS=nWork∙TBS.  Once, 

the data block size is known, the number of data blocks (m) needed to cover the entire data set 

can be computed as  =  𝑛/𝐷 𝑆 .  A one-to-one mapping between thread and data blocks 

makes it relatively easy to compute where the corresponding data block starts as blockOff = 

(bid∙DBS).  For a 1D grid, the block ID (bid) can be computed as bid = blockIdx.x and for a 2D 

grid, bid = (blockIdx.y∙gridDim.x) + blockIdx.x. 

Of course to get higher performance with the Block DASk, I used two main ideas. 

 Coalescence within a data block:  All DASks mainly deal with efficient mapping 

of thread blocks onto data blocks.  This corresponds to the first level of the CTA 

hierarchy (grid of thread blocks).  However, an efficient mapping for the second 

level of the CTA hierarchy (threads within a thread block) is also needed.  I 

introduce two BASks – Block by Block, and Warp by Warp that support 

coalescence for high throughput. 

 Amortizing costs across multiple work items:  To increase performance, decrease 

the amount of instructions.  One common technique to reduce instructions is to 

amortize shared costs across multiple work items.  I amortize in two different 

ways in the Block DASk – amortized range checking and amortized pointer 

indexing. 

5.1.1 Block Access Skeletons (Block by Block vs. Warp by Warp): 

My Block DASk (all my DASks) provide a framework for the GPU programmer that 

maps thread blocks onto data blocks, the first level of the CTA hierarchy.  To map threads warps 

onto data warps within each data block, the second level of the CTA, I introduce two Block 

Access Skeletons (BASks) – Block by Block and Warp by Warp.  The Block by Block BASk is 

straightforward, in fact, it is the way most GPU programmers immediately think of writing code 

that supports coalescence, assigning one thread per data element sequentially and then striding 

(stride = TBS) to the next row of data within the data block as needed.  The Warp by Warp BASk, 

which also supports coalescence, assigns each thread warp its own fixed size subchunk of work 
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within the data block and moves each thread warp to its starting offset, and then strides (stride = 

WarpSize) through the subchunk of work warp by warp. 

 
 

Access Trace (Block By Block) 

 

Access Trace (Warp by Warp) 

 

// Map (block within grid) 

... 

blockOffset = bid*DBS; 

... 

// Map (thread within block) 

tid = threadIdx.x; 

currIdx = blockOffset + tid; 

// Do work (Access data) 

// Unroll for better performance 

for (i = 0; i<nWork; ++i) 

   out[currIdx] = in[currIdx]; 

   // Move to next block of data 

   currIdx += ThreadBlockSize; 

end for 

// Map (block within grid) 

... 

// Map (thread within warp within block) 

nWarps = ThreadBlockSize/WarpSize; 

WPW = nWork*WarpSize;   // Work per Warp 

warpRow = tid / WarpSize; 

warpCol = tid % WarpSize; 

localOffset = (warpRow*WPW)+warpCol; 

currIdx = blockOffset + localOffset; 

// Do Work (Access data) 

// Unroll for better performance 

for (i = 0; i<nWork; ++i) 

   out[currIdx] = in[currIdx];    

   // Move to next warp of data 

   currIdx += WarpSize; 

end for 

Figure 5.3:  Block Access Skeletons (BASks):  The left and right columns represent the Block by Block and Warp by 

Warp BASKs respectively.  The top, middle, and bottom panels represent conceptual layouts, data access traces and 

corresponding code snippets for both BASks respectively. 
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 In Figure 5.3, I highlight the main differences between the Block by Block and Warp by 

Warp BASks.  For a fixed size thread block of size TBS, each thread is responsible for processing 

(copying) exactly nWork work items, which fully covers the DBS data elements in the current 

data block. 

The Block by Block memory access pattern strides through the data block cooperatively 

by all threads in the thread block.  Conceptually, the Block by Block BASk can be thought of as a 

vertical access pattern on a 2D block, where the number of rows is equal to nWork and the length 

of each data row is equal to TBS.  Each thread within the thread block is assigned a single column 

and then strides to the next assigned row of data elements (stride = TBS) in a block-by-block 

manner. 

The Warp by Warp BASk assigns a fixed-size data sub-chunk of work to each individual 

thread warp, with the work per warp (WPW) computed as WPW = nWork∙WarpSize.  

Conceptually, the Warp by Warp BASk can be thought of as a horizontal access pattern on a 2D 

block layout, where the number of data rows is equal to the number of warps per thread block  

computed as nRows=TBS/WarpSize, and the length of each data row is equal to WPW.  Each 

thread warp is assigned one data row and strides through its row one data warp at a time (stride = 

WarpSize = 32). 

When using the Warp by Warp BASk, the GPU programmer needs to know the warp that 

each thread belongs to.  This information is not directly available but can be derived easily from 

the thread’s ID (tid).  For 1D fixed-size thread blocks, I compute the warpRow, warpCol from the 

thread ID as (warpRow = tid/32, warpCol = tid%32) respectively, where 32 represents the 

number of threads per warp (WarpSize).  To avoid magic numbers in my GPU kernels, I convert 

the WarpSize into a fixed-size C++ template parameter as well.  Since WarpSize is a power of 

two, the more expensive modulus and division operations can be replaced with simpler bit shift 

and mask operations instead as (warpRow = tid>>logWarpSize, warpCol = tid&WarpMask), 

where logWarpSize and WarpMask are computed as logWarpSize = log2(WarpSize) = 5 and 
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WarpMask =  WarpSize-1 = 31 respectively.  An even simpler alternative is to define the fixed-

size thread block layout as 2D instead of 1D (meaning, Block = ‹32, nWarps, 1› where nWarps is 

the number of warps in the thread block). For example, an 1D thread block of 128 threads could 

be represented in 2D as ‹32,4,1›.  This allows the warp row and column to be read directly from 

the threadIdx CTA parameter as warpCol = threadIdx.x and warpRow = threadIdx.y. 

Figure 5.3 (middle row) shows memory traces that reveal differences in the access 

patterns of these two BASks.  The specific experiment generating these traces used two warps 

(TBS=64) and 6 work items per thread (nWork = 6) per data block.  Each warp is represented by 

eight small plus signs per warp. 

The Block by Block BASk (middle row, left panel), ping-pongs as the two warps stride 

through their respective six data elements;  the Warp by Warp BASk (middle row, right panel) 

has a more sequential trace layout for each warp’s assigned sub-chunk of work. Though both 

BASks work well, most GPU programmers gravitate towards the Block by Block BASk as it is 

simpler, easier to code and easier to reason about.  I personally prefer the Warp by Warp BASk in 

my code for three reasons:  

 The data access pattern is slightly more localized, which can result in a modest 

increase in I/O throughput (1-2% faster) over the Block by Block BASK despite the 

extra setup and indexing overhead. 

 Each individual warp can proceed on its assigned subchunk of work independent of 

any other warp in the thread block.  With the Block by Block BASk often each warp 

must wait for all warps to complete transferring data before useful processing work 

can proceed. 

 Barrier Synchronization is often needed for correct communication and coordination 

across the threads in a thread block.  The Warp by Warp pattern BASk typically 

requires fewer barriers then the Block by Block BASk for correct behavior.  This is a 
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direct result of each warp being able to start working on its assigned subchunk of 

work independently of other warps.  Only when intermediate results need to be 

shared across the entire thread block does a barrier need to be inserted into the code. 

5.1.2 Amortized Range Checking: 

Recall that the simple Copy kernel (from Chapter 4) must range-check all data accesses 

because the last data block (for 1D grids) and last data row (for 2D grids) may only be partially 

full of data. The Block DASk either needs to range check or pad the data to block boundaries; I 

have experimented with both. 

// CTA Mapping 

... 

blockStart = bid*DBS; 

... 

// Range check (entire data block) 

inRange  = ((blockStart+DBS) < n); 

outRange = (blockStart >= n); 

if (inRange) 

  // In range, process entire block (no further range checks needed) 

  ... 

else if (outRange) 

  // Out of range, Exit kernel (nothing to do) 

  ... 

else 

  // Overlaps, process block (with careful range checks on each access) 

  ... 

end if 

Figure 5.4:  Amortized range checking for Block DASk. 

Because the Block DASk can process several consecutive work items per thread it can 

amortize range checks across all (nWork) work items per thread within each data block.  As 

shown in figure 5.4, there are three cases for range checking consecutive work items (in-range, 

out-of-range, and overlap): 
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 In-range:  The entire data block is inside the valid data range [0,n).  To decide if the 

entire data block is in-range, I perform the following test, (blockStart+DBS) < n.  If in-

range, all nWork data elements per thread can be transferred with no further range checks. 

 Out-of-range:  The entire data block is outside of the valid data range [0,n).  To decide if 

the entire data block is out-of-range, I perform the following test, blockStart ≥ n.  If out-

of-range, the code can safely exit the kernel without doing any more unnecessary work. 

 Overlap:  One data block may partially overlap the range, requiring more fine-grained per 

work-item range checks.  If a specific data block is neither in-range nor out-of-range, it 

must partially overlap one of the range boundaries.  Consequently, each of the nWork 

data transfers must be carefully range-checked before being allowed to proceed.  This 

overlap case often results in branch divergence but only for this single overlapping data 

block.  Given enough other data blocks, the higher cost of range-checking this single 

overlapped block gets amortized away. 

Padded Access:  If the input and output arrays are under the programmers control then data can 

be padded (filled) to data block or data row boundary with extra sentinel (meaning “do not care”) 

values.  By construction, the padded input size is now evenly divisible by the fixed-size data 

block (or fixed size data row), so no range checks are needed inside the GPU kernel code.  I call 

this approach padded access.  Amortized range checking reduces range checks, padded access 

completely eliminates the need for them.  There are two main issues with padded access. 

First, padded access has costs.  The GPU programmer still needs to compute the padded 

array sizes, allocate padded memory arrays, move data from the original input arrays into the 

padded input arrays, process the padded array, move the padded outputs back into the original 

output array (while ignoring outputs outside the original valid range), and then de-allocate any 

padded arrays.  These overhead costs may outweigh any savings obtained by completely 

eliminating range checking from the GPU kernel(s). 
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Second, padded access negatively impacts modularity.  It requires tight coupling between 

the GPU kernel and its corresponding CPU host function.  For correct behavior, both the GPU 

kernel and CPU host function must compute data block sizes, and data block (or data row) 

boundaries based on the original input size (n) and CTA layout parameters and then pad the 

input/output arrays up to these boundaries.  This tight coupling between the CPU function and 

GPU kernel means that a padded access GPU kernel cannot safely be reused in some other 

context without also porting over the corresponding CPU host code as well. 

As a result of the extra overhead costs and tight coupling, I do not recommend using 

padded access to eliminate range checking. 

5.1.3 Amortized Pointer Indexing: 

 For a minor performance boost and better ILP, I also amortize the cost of pointer setup 

and indexing across multiple work items within each thread.  For the simple Copy kernel (in 

Chapter 4), I used absolute addressing, where a single index per work item is computed and is 

then used to directly index into the source (S) or destination (D) arrays.  Starting with the BLock 

DASk, I switch to base plus offset addressing, where a single base index is computed, a single 

base pointer is computed, and then a constant offset per work item is included as each thread 

accesses the source and destination base pointers for each work item. 
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As shown in Figure 5.5, amortizing pointer setup and indexing across multiple work 

items using base+offset addressing requires fewer instructions overall.  In addition, there are far 

fewer read-after-write (RAW) dependencies between instructions in the amortized code than with 

the non-amortized code, and fewer dependencies also results in better ILP performance. 

Non-Amortized Pointers 

Uses Absolute Addressing 

// Compute 4 indices 
w1 = dataOff + (0u*WarpSize); 
w2 = dataOff + (1u*WarpSize); 
w3 = dataOff + (2u*WarpSize); 
w4 = dataOff + (3u*WarpSize); 
... 
 
// Access ‘source’ pointer with 4 indices 
v1 = S[w1]; 
v2 = S[w2]; 
v3 = S[w3]; 
v4 = S[w4]; 
... 

Amortized Pointers 

Uses Base + Offset Addressing 

// Compute starting pointer 
const valT * in  = &(S[dataOff]); 
... 
// Access pointer with 4 constant offsets 
v1 = in[(0u*WarpSize)]; 
v2 = in[(1u*WarpSize)]; 
v3 = in[(2u*WarpSize)]; 
v4 = in[(3u*WarpSize)]; 
... 

Generated PTX code 

mul.wide.u32  %w1_64, w1, 4; 
add.s64  %in1, %dataOff, %w1_64; 
ld.global.u32  %v1, [%in1]; 

mul.wide.u32  %w2_64, w2, 4; 
add.s64  %in2, %dataOff, %w2_64; 
ld.global.u32  %v2, [%in2]; 

mul.wide.u32  %w3_64, w3, 4; 
add.s64  %in3, %dataOff, %w3_64; 
ld.global.u32  %v3, [%in3]; 

mul.wide.u32  %w4_64, w4, 4; 
add.s64  %in4, %dataOff, %w4_64; 
ld.global.u32  %v4, [%in4]; 
... 

Generated PTX code 

// Compute starting pointer 
mul.wide.u32  %dOff_64, dataOff, 4; 
add.s64  %in, %S, %dOff_64; 
... 

// Access pointer with 4 constant offsets 
ld.global.u32  %v1, [%in+0]; 
ld.global.u32  %v2, [%in+128]; 
ld.global.u32  %v3, [%in+256]; 
ld.global.u32  %v4, [%in+384]; 
... 

 
 
 

Figure 5.5 Amortized pointer indexing.  The left panel doesn’t amortize pointer indexing and uses 

absolute addressing.  The right panel amortizes pointer indexing across multiple work items and uses 

base+offset addressing.  The equivalent generated .PTX for each is included in the lower panels.   

In some of my other case studies on earlier versions of the CUDA platform, rewriting 

code to amortize pointer indexing made a noticeable difference in performance.  However, the 

actual performance improvements I saw for the Copy primitive using CUDA 5.5 were very 

modest, for n=224 on a GTX Titan, The non-amortized absolute addressing Copy_Block kernel 

runs at ~234 GB/s, and the amortized base+offset addressing kernel runs at ~235 GB/s.  This tells 

me that the CUDA compiler has matured in the past couple of versions. 
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5.1.4 Block DASk Code 

 The Block DASk enhances the simple copy I/O kernel with C++ template parameters, 

multiple work items per thread, amortized range checking, amortized pointer indexing, and 

manual loop unrolling, as shown in Figure 5.6. 

template < valT, logWarpSize, BlockSize, nWork > 
__global__ void Copy_Block( D, S, start, stop ) { 
  // Compiler-Time Variables (become constants at run-time) 
  const U32 WarpSize = 1u << logWarpSize; // Threads per Warp (32) 
  const U32 WarpMask = WarpSize – 1u;     // Warp Mask (31 = 32-1) 
  const U32 DBS      = nWork*BlockSize;     // Data per Block (512 = 4*128) 
  const U32 DWS      = nWork*WarpSize;      // Data per Warp  (128 = 4*32) 
  const U32 DB_LAST  = DBS-1u;            // Last item in data block (511) 
  const U32 DW_LAST  = DWS-1u;            // Last item in data warp  (127) 

  // Map CTA parameters onto data offsets 
  U32 bid = (blockIdx.y * gridDim.x) + blockIdx.x;  // Block ID (bid) 
  U32 tid = threadIdx.x;            // Thread ID (tid) 
  U32 warpRow = tid >> logWarpSize; // tid / WarpSize 
  U32 warpCol = tid & WarpMask;     // tid % WarpSize 
  U32 warpOff  = (warpRow * DWS) + warpCol; // starting warp  offset 
  U32 blockOff = (bid * DBS) + start;       // starting block offset  
  U32 dataOff  = blockOff + warpOff;        // starting data offset   
  U32 blockStart = blockOff; 
  U32 blockStop  = blockOff + DB_LAST; 

  // Get start pointers (input & output) 
  const valT * in  = &(S[dataOff]); 
        valT * out = &(D[dataOff]); 

  // *data block range checks* against [start, stop] 
  bool inRange  = (blockStop <= stop); 
  bool outRange = (stop < blockStart); 
  if (inRange) { 

     

  } else if (outRange) { 

     

  }  

 

 

 

// #2) Out of Range, Exit Kernel (nothing to do) 

// #1) In Range, process entire block (with *NO* range checking) 
valT v1, v2, v3, v4; 

// Load values 
if (nWork >=  1u) { v1 = in[( 0u*WarpSize)]; } 
if (nWork >=  2u) { v2 = in[( 1u*WarpSize)]; } 
if (nWork >=  3u) { v3 = in[( 2u*WarpSize)]; } 
if (nWork >=  4u) { v4 = in[( 3u*WarpSize)]; } 

// Store values 
if (nWork >=  1u) { out[( 0u*WarpSize)] = v1; } 
if (nWork >=  2u) { out[( 1u*WarpSize)] = v2; } 
if (nWork >=  3u) { out[( 2u*WarpSize)] = v3; } 
if (nWork >=  4u) { out[( 3u*WarpSize)] = v4; } 
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  else { // Overlaps case 

     

  } // end *data block range checks* 
} // end Copy_Block 

Figure 5.6:  My Block DASk for the Copy primitive.  The code outside the three shaded boxes makes 

up the scaffolding for data access.  The code inside the shaded boxes (#1, #3) would be replaced by 

equivalent code to support the GPU programmers own algorithm. 

 There are five things that I note from reviewing my Block DASk code. 

First, the kernel is a combination of a framework skeleton and the GPU programmer’s 

body to perform the desired Copy operation.  The code (outside of the shaded boxes) provides the 

DASk framework that supports efficient data access patterns on the GPU.  The body representing 

the GPU programmer’s code is contained (in the shaded boxes in Figure 5.6 and throughout my 

code figures in this thesis).  The programmer can easily change the code in the shaded boxes to 

support different algorithms such as (Fill, Gather, Scatter). 

Second, even though this DASk is more complicated than the simple copy kernel, it is not 

overly complex.  Some of the additional lines of code support the amortized range checking 

// #3) Overlaps Case, process block (with careful range checking) 
U32  D1, D2, D3, D4; 
bool T1, T2, T3, T4; 
valT v1, v2, v3, v4; 

// Get data offsets 
if (nWork >= 1u) { D1 = (0u*WarpSize) + dataOff; } 
if (nWork >= 2u) { D2 = (1u*WarpSize) + dataOff; } 
if (nWork >= 3u) { D3 = (2u*WarpSize) + dataOff; } 
if (nWork >= 4u) { D4 = (3u*WarpSize) + dataOff; } 

// Range Check (each data offset) 
if (nWork >= 1u) { T1 = (D1 <= stop; } 
if (nWork >= 2u) { T2 = (D2 <= stop; } 
if (nWork >= 3u) { T3 = (D3 <= stop; } 
if (nWork >= 4u) { T4 = (D4 <= stop; } 

// Load values (with range checking) 
if (nWork >=  1u) { if (T1) { v1 = in[(0u*WarpSize)]; } } 
if (nWork >=  2u) { if (T2) { v2 = in[(1u*WarpSize)]; } } 
if (nWork >=  3u) { if (T3) { v3 = in[(2u*WarpSize)]; } } 
if (nWork >=  4u) { if (T4) { v4 = in[(3u*WarpSize)]; } } 

// Store values (with range checking) 
if (nWork >=  1u) { if (T1) { out[(0u*WarpSize)] = v1; } } 
if (nWork >=  2u) { if (T2) { out[(1u*WarpSize)] = v2; } } 
if (nWork >=  3u) { if (T3) { out[(2u*WarpSize)] = v3; } } 
if (nWork >=  4u) { if (T4) { out[(3u*WarpSize)] = v4; } } 
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pattern on each data block.  Others use manual loop unrolling to support multiple work items per 

thread. 

Third, amortized range checking increases the number of shaded boxes for the GPU 

programmer to fill in since there are three cases (in-range, out-of-range, and overlap), two of 

which require code: in-range copies nWork items without range checking, and overlap copies 

nWork items with careful range checking. 

Fourth, this example kernel code supports only 1-4 work items per thread.  My actual 

kernel is even longer because, although I use this same DASk, I increase manual loop unrolling 

by replicating code within the shaded box to support up to 16 work items per thread in batches of 

four work items to control register pressure.  

Fifth, the if statements based on the constant template parameter nWork are evaluated at 

compile time, so only one assignment v1=in[…]; is compiled. 

5.1.5 Improving Copy Performance using ILP and TLP 

As we saw in chapter 4, my simple Copy kernel had poor performance.  In this section, I 

seek to improve Copy performance by hiding stalls in the GPU hardware, such as waiting on long 

I/O operations (transfers between registers and global memory takes between 400-800 cycles) or 

waiting on the previous instruction’s output (RAW dependency takes up to 8-11 cycles).  I hide 

stalls using a combination of ILP and TLP to keep the SPs on each SM as busy as possible.   

Increasing ILP means increasing the work done per-thread.  To test ILP, I wrote code that 

tested both automatic and manual loop unrolling.  As will be seen shortly, manual loop unrolling, 

also known as software pipelining, gives better performance.  

Increasing TLP means increasing the threads-per-block. This increases opportunities for 

the warp scheduler to hide stalls using independent instructions from other concurrent warps. 

Since my simple Copy kernel did not take advantage of either ILP or TLP, it achieved 

only 25% of the maximum peak throughput and was about 2.7x slower than the build-in CUDA 
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library function cudaMemcopy.  Contrast this with Figure 5.1 where each of my three Copy 

DASks achieves throughput performance comparable to cudaMemcopy. 

 

Increasing ILP:  In this section, the programmer will learn how to use manual loop unrolling in 

their own kernels, I demonstrate this using my Block DASk for the Copy primitive.  For this 

Block Copy kernel, Manual loop unrolling results in up to 17% better performance than my 

simple Copy kernel from Chapter 4. 

Loop Unrolling:  Loops are the classic programming technique to handle multiple work items in 

CPU serial code.  Loop unrolling3 hides stalls caused by dependences between instructions and 

between loop iterations by rewriting the loop to process more independent data elements inside of 

each loop iteration.  Loop unrolling amortizes loop overhead across 𝑘 elements and also 

amortizes the cost of indexing and pointer computations.  This technique can either be 

implemented automatically via a compiler or manually by the programmer.  As each independent 

work item may require registers to track execution state, I suggest unrolling data in small batches 

of 2-8 work items to avoid exceeding the number of registers and spilling into local memory.   

Processing more work items per thread is the GPU kernel equivalent of loop unrolling.  

Loop unrolling is just one of a family of optimization techniques (Wadleigh and Crawford, 2000) 

used to improve the performance of loops.  These include loop fission, loop fusion, loop 

interchange, loop invariant code motion, loop unrolling, loop reversal, and loop unswitching.  

Almost the entire family of serial loop optimizations can be repurposed and rebranded as GPU 

kernel optimizations for parallel programming.  Recall in Chapter 4.1 that we related serial 

iteration to data parallelism (meaning that the innermost body of statements within some nested 

loop structure where the looping of n iterations across n data elements is replaced by hardware 

scheduling of n parallel threads onto n data elements.) 

                                                      
3  As described in the book Software Optimization for High Performance Computing (Wadleigh and 

Crawford, 2000). 
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Automatic Loop Unrolling:  A specific example of automatic loop unrolling is given in Figure 

5.7.  This code would be used in the GPU Programmers shaded boxes in Figure 5.6 to replace the 

current software pipelined copy code shown.  The CUDA compiler supports a #pragma unroll 

directive that takes an optional batch size parameter to specify the number of iterations to unroll 

the loop (see the line occurring before source line #7 for an example). 

     // Copy assigned work items (nWork) 
     #pragma unroll 4 
 1:  for (i=0; i<nWork; ++i) 

 2:    wOff = (i*TBS)+dOff; // Work Item Offset 

       // Range check [start, stop] 
 3:    inRange = (start ≤ wOff) & (wOff ≤ stop); 
 4:    if (inRange) 
 5:      D[wOff] = S[wOff]; // Copy Work Item from input to output  
 6:    end if 

 7:  end for 

Figure 5.7:  Automatic Loop unrolling example: The #pragma unroll 4 directive (in lighter grey) 

around a looping structure requests CUDA to automatically unroll the wrapped code (k=4) times  

For my loop unrolling example, I rewrote my Block DASk do the loop unrolling using 

the #pragma unroll directive.  All necessary changes to support loop unrolling replace the 

code found in the shaded boxes in Figure 5.6.  The shaded box represents the user’s portion of 

this simple DASk, in other words, the code that another GPU programmer would change to 

support a different algorithm. 

After testing the automatic loop unrolled copy, I found that this approach resulted in only 

a modest improvement in throughput as compared to a baseline of one work-item (see Figure 

5.8). The change was barely noticeable on the GTX 580 (+0.25% in the best case) and not much 

better on the GTX Titan (+8.8% in the best case).  As can be seen from the graph, only [2-3] 

work items per thread results in a minor throughput performance boost, which drops off gradually 

after four work items per thread.  Also note that the automatic unrolled kernel’s throughput (~61 

GB/s) is actually well short of the original simple Copy kernel’s throughput (~81 GB/S) on the 
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GTX Titan.  This decreased throughput is caused by a poor memory access pattern that I will 

explain later in this section. 

 

 

Figure 5.8:  Automatic Loop unrolling vs. Manual Loop Unrolling test throughput: Given a fixed input size 

n=224, fixed grid row size = 224, fixed block size = 32, I/O throughput (in GB/s) is shown on the y-axis and 

the amount of work per thread, nWork = [1-16], is shown on the x-axis.  The upper & lower panels show 

throughput results on the GTX 580 (Fermi) and GTX Titan (Kepler) GPUs respectively.  The cyan/blue 

lines represent manual loop unrolling and the tan/red lines represent automatic loop unrolling   Batching for 

both automatic and manual loop unrolling was tested in batches of [2,4,8,16] respectively. 
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Manual Loop Unrolling:  Next, I loop unrolled my code by hand, I interleaved k instructions 

from k work items to decrease RAW dependencies.  The main idea here is that, while a particular 

instruction for the ith work item may stall, similar instructions from the other k-1 work items can 

be scheduled as replacements to hide the stall and keep each processing core busy doing useful 

work.  This form of manual loop unrolling is also known as software pipelining4.  More 

independent work items increases register pressure which in term may limit occupancy, so I 

experimented with manual unrolling (on up to 16 work items) in batches of [2, 4, 8, or 16]. Figure 

5.9, shows Copy code that range-checks multiple work items using manual loop unrolling. This is 

the type of code that a GPU programmer would insert into the shaded boxes of Figure 5.6 to 

support the Copy primitive. 

  

                                                      
4  As described in the book Software Optimization for High Performance Computing (Wadleigh and 

Crawford, 2000). 
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// Process work items [1-4] 
  // Get work offsets 
 1:  if (nWork≥1) { w1 = (0*TBS)+dOff; } 
 2:  if (nWork≥2) { w2 = (1*TBS)+dOff; } 
 3:  if (nWork≥3) { w3 = (2*TBS)+dOff; } 
 4:  if (nWork≥4) { w4 = (3*TBS)+dOff; } 

  // Range check [start, stop] 
 5:  if (nWork≥1) { t1 = (start ≤ w1) & (w1 ≤ stop); } 
 6:  if (nWork≥2) { t2 = (start ≤ w2) & (w2 ≤ stop); } 
 7:  if (nWork≥3) { t3 = (start ≤ w3) & (w3 ≤ stop); } 
 8:  if (nWork≥4) { t4 = (start ≤ w4) & (w4 ≤ stop); } 

  // Load data 
 9:  if (nWork≥1) { if (t1) { v1 = D[w1]; } } 
10:  if (nWork≥2) { if (t2) { v2 = D[w2]; } } 
11:  if (nWork≥3) { if (t3) { v3 = D[w3]; } } 
12:  if (nWork≥4) { if (t4) { v4 = D[w4]; } } 

  // Store data 
13:  if (nWork≥1) { if (t1) { S[w1] = v1; } } 
14:  if (nWork≥2) { if (t2) { S[w2] = v2; } } 
15:  if (nWork≥3) { if (t3) { S[w3] = v3; } } 
16:  if (nWork≥4) { if (t4) { S[w4] = v4; } } 

Figure 5.9:  Manual Loop Unrolling example, showing how to copy multiple work items using careful 

range checking.  This example assumes at most four work items per thread.  Notice how the similar 

instructions are batched together in groups of 4 in an interleaved manner.  The lighter grey if (nWork ≥ 
?) { … } statement wrappers get elided away at compile time by the CUDA compiler. 

The if (nWork≥*) {…} wrappers are resolved at compile time. Hand unrolled code is 

more verbose, harder to read, and harder to understand.  In addition, the up to k× as many 

generated instructions may also use k× as many registers. 

Loop Unrolling Results:  Tests on both automatic and loop unrolling are shown in figure 5.8.  

To stay in the stable upper portion of the s-shaded throughput curves, a fixed input size of n=224 

was chosen.  To show the impact of multiple work items on performance, nWork was increased 

from 1-16.  To show the impact of register pressure, work items were batched into groups of  

[2,4,8, and 16].  All throughput numbers presented are averages of one hundred runs.  

Figure 5.8 shows four surprising things. 

First, there is a large difference in starting throughput for the baseline case (nWork = 1) 

for the automatic vs. manual loop unrolling.  This difference in starting throughput is the result of 

the different memory access patterns used by the two different methods.  For the automatic loop 
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unrolled kernel, I wrote each C++ copy instruction as if (inRange) { S[wOff] = D[wOff] }.  

This line of code performs two memory accesses: one load from input and one store to output and 

is then repeated k times, in other words, the memory access pattern ping-pongs back and forth 

between the input and output arrays.  However, in the manually unrolled kernel, the code batches 

the loads and stores separately as two different instruction clusters (k inputs followed by k 

outputs).  To verify that the performance difference was indeed a result of these two different 

memory access patterns, I rewrote my manually unrolled kernel as a set of if (t1) { S[w1] = 

D[w1]; } statements. This approach resulted in a large decrease in throughput similar to the 

automatically unrolled code kernel.  So it seems clear that batching up several warps of data 

accesses (input or output) in close proximity to each other results in better system throughput 

from the memory controllers than interleaving access to different parts of memory (input and 

output).  Such a conclusion makes sense since better locality improves L1 and L2 cache usage by 

each GPU memory controller. 

 Second, the automatic loop unrolling batch curves separate one work item sooner than I 

expected.  For example, for both automatic and manual loop unrolling I would expect the nWork 

throughput curve for batching in groups of 4, 8, and 16 to be exactly the same up to nWork = 4 

and then begin to separate from each other at nWork = 5 and nWork = 9.  This expected behavior 

is observed in the manual loop unrolling throughput curves.  However, the separation for loop 

unrolling occurs sooner at nWork = 4 and nWork = 8 for the automatic loop unrolling throughput 

curves.  I speculate that there could be an “off by one” bug in the CUDA compiler in this case. 

Third, the performance curves drop off throughput more rapidly than I was expecting.  I 

was expecting that lower performance due to lower occupancy caused by increased register usage 

wouldn’t show up until 8+ work items per thread.  The register pressure effect can be seen for the 

Batch = 16 manually unrolled curve which has the worst performance for large work loads 

(nWork > 8), whereas the Batch = 4 and Batch = 8 manually unrolled curves have better 

performance for (nWork > 8). But, throughput drops off quickly after only 4 work items per 
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thread with the largest drop occurring between nWork = 5 and 6.  I suspect that there is also some 

memory controller queue length or caching issue coming into play here.  Surprisingly, for the 

automatic unrolled throughput curves, The Batch = 16 curves have some of the best performance 

for nWork = 16.  For instance, a single warp loading 4 work items would fetch 4 warp lines (512 

bytes) of data.  It could be that the combined combination of 14 SM’s each with 16 thread blocks 

of 128 threads (4 warps) requesting 6 work items per warp (5,376 warp line requests in 

aggregate) is overflowing the internal request queues in the six memory controllers (896 requests 

per controller on average) for each set of active concurrent thread blocks on each SM).  

Fourth, manual unrolling results in better throughput than automatic unrolling.  Since the 

results for loop unrolling and software pipelining have different starting throughputs, I decided to 

use the nWork = 1 case as a baseline for both cases.  Comparing the throughput results to their 

respective baselines reveals that software pipelining improves throughput more than loop 

unrolling.  As the following table shows, the maximal throughput increase when manual unrolling 

was used was substantially greater for both GPUs than when automatic unrolling was used. 

Throughput Increase Loop Unrolling Software Pipelining 

GTX 580 0.25% 17% 

GTX Titan 7% 14% 

Table 5.1:  Loop Unrolling vs. Software Pipelining Performance 

This makes sense since my manually unrolled code batches similar instructions into 

groups to reduce data dependencies (grouping and interleaving instructions from k work items).  

This organization provides plenty of independent instructions for the static compiler or dynamic 

warp scheduler to exploit in order to hide stalls.  As the CUDA platform continues to mature, 

loop unrolling should eventually done automatically by the compiler instead of manually by the 

programmer.  For now, it pays off for the GPU programmer to manually unroll and batch their 

instructions for up to 3-4 work items. 
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Increasing ILP is not the only way to hide stalls, as we will see next. TLP techniques 

work even better. 

Increasing TLP:  Another way to hide stalls uses TLP to recycle instructions from other 

independent and concurrent warps of execution.  Fermi supports up to 48 warps (1,536 threads) 

per SM and Kepler supports up to 64 warps (2,048 threads) per SMX.  In this section, I show how 

increasing the amount of threads per thread block can increase throughput up to 216 GB/s (2.67× 

faster than the simple Copy from chapter 4).   

One of the main reasons that the simple Copy in Chapter 4 had poor throughput is that 

the code naively did not take advantage of the massive parallelism via TLP available on GPU 

architectures.  The simple Copy only launched with a CTA layout of only 32 threads (TBS=32) 

only achieving an occupancy of 16.67% (8/48) and 25% (16/64) on the GTX 580 and GTX Titan 

respectively.   I already discussed Occupancy and constraints in Chapter 3.3., recall that 

occupancy is a simple ratio between the number of thread warps that actually concurrently run on 

each SM for a given GPU kernel vs. the theoretical maximum number of warps that could 

concurrently run on a given architecture. 

Varying the number of warps on each SM is actually tricky since the programmer has no 

direct control over the number of concurrent warps that are actually scheduled on each SM.  The 

GPU programmer can directly specify the number of threads per block as part of the CTA layout. 

However, the CUDA platform schedules as many concurrent thread blocks as it can while staying 

within various resource constraints.   

Thus a GPU programmer can request a certain number of threads per thread block (TBS) 

and a certain number of thread blocks per grid (GridSize) but the actually occupancy is 

determined by the SM scheduler based on the maximum warps, maximum blocks, register per 

thread usage, and shared memory per block usage.  Since, my Grid-based Copy kernels do not 

use any shared memory and is relatively simple code, requiring just a few registers, CUDA will 

launch as many concurrent thread blocks on each SM as allowed by the maximum warps 
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constraint.  For full processor utilization, I want all SMs running with as many concurrent thread 

blocks as reasonably possible. This means that I should request my grid size (blocks per grid) to 

be a multiple of (#SMs × #Blocks), where #SMs is the number of SMs (or SMXs) on a specific 

GPU card and #Blocks is the number of concurrent thread blocks that I expect the CUDA 

platform to schedule onto each SM. 

However, all the SMs also share a limited number of memory controllers on each GPU 

card (6 on the GTX 580 and 4 on the GTX Titan). Therefore, too many I/O requests may overload 

the memory controllers, cause cache thrashing, and actually slow down overall throughput. So, 

my experiments vary the number of warps per thread block and also varying the number of 

concurrent thread blocks per SM in order to find an optimal balance between thread concurrency 

and memory controller throughput.  To stabilize performance in the upper part of the s-shaped 

throughput curves, a fixed input size of n=224 data elements is used for all of the following 

experiments. 

To make it easier to experiment with varying the number of threads, My Block DASk for 

the Copy kernel supports the following four C++ template parameters.  The valT template 

parameter specifies the underlying data type of the data and gives me generic type support for 

different data types other than just 32-bit unsigned integers.  The BlockCols and BlockRows 

parameters specify the fixed number of columns and rows in the thread block, while the 

GridCols parameter specifies the fixed number of columns in the corresponding CTA grid.  

These three fixed size CTA template parameters allows me to vary the CTA layout without 

having to rewrite my copy kernel for each new configuration. 

Figure 5.10 shows the impact on throughput of my modified Copy kernel as I increase the 

number of threads per thread block from [32-1024] in multiples of the WarpSize (32).   
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Figure 5.10:  Copy throughput for fixed n=224 and increasing block size (threads per block) [32-1024].  

The top panel shows throughput for a given block size [32-1024] with the orange blocks showing 

throughput for cudaMemCopy and the gray blocks showing throughput for our TLP copy kernel.  All 

measurements are taken as the average of a 100 runs on a GTX Titan.  The bottom panel shows the number 

of concurrent thread blocks per SMX for each matching block size, from [16-2].  Lighter colors are used to 

show locations where the thread block size divides the maximum threads per SMX exactly. 

Throughput from cudaMemCopy (orange bars) is also included for comparison, which 

achieves about 231 GB/s throughput this experiment and remains consistently clustered around 

this number.  However, my modified Copy kernel (gray bars) quickly grows to a peak of 216 

GB/s (at 128 threads per block) and then goes into an up and down, saw tooth pattern, where 

performance drops off a small throughput cliff and gradually climbs back up in increasingly 

longer runs before dropping off another cliff.  Each small cliff corresponds to a drop in the 

number of concurrent thread blocks that can execute at the same time on each SMX due to the 

maximum warps per SMX constraint.  Only some of the block sizes (32, 64, 128, 256, 512, 1024) 

actually divide evenly (lighter bars) into the maximum number of threads (2,048) per SMX on a 

Kepler card such as the GTX Titan.  On a Fermi card such as the GTX 580, I would expect a 

similar pattern with cliffs occurring at 32, 64, 96, 128, 192, 256, 384, 512 since these are the 

block sizes that evenly divide the 1,536 maximum threads per SM on a Fermi card.  That each 

new performance peak is slightly lower than the previous peak is likely due to locality effects in 
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memory.  In other words, as we get more data items per data block each thread warp accesses 

data warps that are more spread out across each data block in memory.  The net result is 

decreased locality. 

In Figure 5.11, I show what happens when I artificially constrain the number of 

concurrent blocks per SMX in the range [1-16] on the GTX Titan (Kepler architecture).  This is 

done by declaring an unused shared memory array of an appropriate size to restrict the allocated 

number of concurrent thread blocks per SMX down to the desired number.  I had to modify the 

copy kernel by using an extra Boolean input parameter and an if statement using the Boolean 

input parameter wrapping an unused assignment statement in order to trick the CUDA compiler 

into keeping the effectively unused shared memory array code around at runtime to constrain 

concurrency.  I also vary the requested columns per grid as a multiple of the number of SMXs 

times the number of concurrent blocks per SMX (workLoad = nSMs × nConBlocks), so that all 

the thread blocks are load balanced across the SMXs evenly. 

 

Figure 5.11:  Copy throughput for fixed input size n=224 and fixed block size TBS = 128, and an increasing 

number of concurrent blocks per SMX [1-16].  Again orange & gray bars represent I/O throughput for 

cudaMemCopy and our TLP copy kernel respectively. 
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The overall throughput ranges from a low of ~20 GB/s for one concurrent thread block 

per SMX to a high of ~214 GB/s for sixteen concurrent thread blocks per SMX.  Recall that 

Fermi-based cards only support a maximum of 8 concurrent thread blocks per SM.  As easily 

seen, the overall trend is increasing throughput as the number of concurrent thread blocks 

increase. 

Choosing at least 4 warps per thread block (TBS = 128) results in full occupancy and 

provides the best throughput.  This makes sense, as there lots of thread warps for the SM 

scheduler to switch between in order to hide stalls. 

5.1.6 Block DASk Conclusion 

 The Block DASk is correct, robust, and has solid I/O throughput.  As can be seen from 

Figure 5.1, the copy implementation using a Block DASk has the best I/O throughput, 

approaching 81% of peak performance in the best case on the GTX Titan GPU card.  The Block 

DASk can easily be adapted to work with 1D runs, 2D tiles, or 3D blocks, depending on the GPU 

programmer’s problem domain.  The Block DASk is extremely suitable for any algorithm that 

follows the map pattern.  However for problems that have a dependency ordering between 

adjacent neighbors, a more advanced DASk, such as the Row DASk, may be more suited. 

5.2 More MAP Primitives 

Recall that the Copy primitive is just one example of a map pattern.  Table 5.2 shows 

how to adapt my DASks for other primitives such as Fill, Gather, and Scatter by having the GPU 

programmer simply change the “body” (= shaded boxes) in my Copy DASks.  The code shown is 

obviously a short hand for performing a single transform to convert a single input into a single 

output.  The programmer will have to write code using loop unrolling or software pipelining to 

support multiple work items per thread. 
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Fill_Block( D, n, toFill ) 

DASk Changes: 

Eliminate unused source array S from 

Copy_Grid DASk. 

User Code Change: 

 

 

Copy_Block( S, D, n ) 

DASk Changes:  Use as is 

User Code Change: 

 
 

Scatter_Block( S, D, n, map ) 

DASk Changes: 

Add new map array parameter. 

User Code Change: 

  

Gather_Block( S, D, n, map ) 

DASk Changes: 

Add new map array parameter. 

User Code: 

 
 

 

Table 5.2:  Modifications to my Block DASk to support Fill, Copy, Scatter, and Gather primitives 
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D[w1] = toFill; 
... 

D[w1] = S[w1]; 
... 

D[map[w1]] = S[w1]; 
... 

D[w1] = S[map[w1]]; 
... 
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Fill: fills a destination array D of n elements with a single data value. 

Copy: copies a source array S of n elements into a destination array D; no overlap 

allowed. 

Scatter: scatters elements from a small array into a large array using an index map. 

Gather: gathers elements from a large array into a small array using an index map. 

All these primitives can use the Copy_Block DASk (see Figure 5.6) as a starting 

framework.  I have only made minor changes to each primitive’s kernel to make them perform 

their different functions.  The changes to the DASk code are mainly to support removing or 

adding additional kernel parameters.  The user changes are mainly to alter the underlying map 

transform operators for each primitive.  For instance, the scatter and gather operations both 

require double indexing through an additional map look-up parameter, which is added to the 

kernels list of parameters. 

The throughput performance for all map primitives should be proportional to O(𝑛/𝑝), 

where n is the input data set size and p is the number of threads (processors).  The Fill primitive 

should be the fastest of the four because it has the best locality (meaning, it only uses a single 

output array and thus there is no ping-ponging between input and output). Furthermore, since this 

primitive can be written to use only a single coalesced I/O per data warp, parallel throughput 

performance should be proportional to O(⌈
𝑛

32𝑝
⌉).  The second fastest primitive should be the Copy 

primitive, whose locality ping-pongs back and forth between the two arrays (input and output). 

Since this primitive can be written to use only two coalesced I/Os per data warp, parallel 

throughput performance should be proportional to O(⌈
2𝑛

32𝑝
⌉).  The Scatter and Gather primitives 

should be the slowest primitives. They switch locality between three arrays (input, map, output). 

They can be written to perform two of the three I/Os (scatter → input & map; gather → map & 

output) in a coalesced manner on each data warp.  However, the third I/O (scatter → output; 
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gather → input) disperses memory accesses across unpredictable memory locations for each 

individual thread and thus the entire data warps memory accesses are non-coalesced.  For both 

Scatter and Gather, worst-case parallel throughput performance should be proportional to 

O(⌈
2𝑛

32𝑝
⌉ + ⌈

𝑛

𝑝
⌉), or equivalently to O(⌈

34𝑛

32𝑝
⌉).  The main reason the Fill and Copy map primitives 

can approach peak throughput on the GPUs is because they fully support coalescence.  Whereas, 

because one I/O out of three in the Scatter and Gather primitives do not support coalescence, 

these primitives can run much slower (up to 17× slower than Copy). 

5.3 Column DASk 

The Block DASk is only one of many possible ways to coordinate thousands of threads to 

access data in global memory.  The layout used for the Block DASk is fundamentally one 

dimensional.  In this section, I present a fundamentally two dimensional data access pattern (of 

rows and columns), which I call the Column DASk.  For the Column DASk, the input data (n) is 

divided into m fixed-size data blocks (DBS) with the data blocks being laid out on a 2D grid, with 

the total number of blocks (m) needed to cover data computed as m =  𝑛/𝐷 𝑆 .  The number of 

columns is chosen ahead of time by the GPU programmer as a static fixed size constant (C= 

grid.width).  The number of rows (R = data blocks per column) is allowed to vary with n in order 

to fully over all input data and can be computed as R =   /𝐶 .  The last row may only be 

partially full requiring careful range checking to avoid out-of-range data accesses.  However, the 

rest of the full rows require no range checking.  The Column DASk maps one thread block onto 

each data column, with each thread block being responsible for processing all data blocks along 

its assigned column. 

Figure 5.12 shows how the Column DASk for mapping blocks onto a grid is conceptually 

setup and is quite similar to the Block by Block BASk for mapping thread warps onto a data 

block (see Section 5.1.2 for a more detailed description of the Block by Block BASk). 
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Figure 5.12:  Column DASk layout.  The input dataset (n) is divided into m fixed size data blocks.  The 

m data blocks are tiled into a 2D grid with C fixed-size columns and R rows per column (which varies as 

needed to cover all data).  Each thread block is assigned one data column and is responsible for 

processing all data blocks along its assigned data column.  The last data block in each data column may 

require careful range checking, but the first R-1 data blocks require no range checking. 

Since the C and DBS are both fixed, then the size of one data row is equal to 

rowSize=C∙DBS.  The number of grid rows (R) can be computed as R = (n+(rowSize-1))/rowSize.  

I assign one thread block to each data column and then have all the column thread blocks 

cooperatively stride through the entire data set one row at a time (stride = rowSize).  Similar to 

the way I coded the Block DASk, I use template parameters, multiple work items per thread, 

amortized range checking (across rows then within data blocks), and software pipelining for the 

Column DASk to achieve better performance. 

5.3.1 Column DASk Code 

A simplified version of the Column DASk for the Copy primitive is shown in Figure 

5.13.  My implementation of the Column DASk uses a while loop to iterate over all the full rows 

that require no range checking, requiring the usual loop overhead.  Recall that the last row may 

only be partially full, which implies range checking.  Consequently, I repeat the amortized range 

check pattern from the Block DASk here (see Section 5.1.2).  This results in four shaded boxes 
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that need to be filled in by the GPU programmer to adapt the Column DASk for their own 

algorithm.  The code in the first two shaded boxes are the same since both require no range 

checking.  The code in the third shaded box deliberately does nothing (as the entire data block is 

out-of-range), and the code in the fourth shaded box basically repeats the code in the first shaded 

box but with more careful range checking.  Just to demonstrate its usage, I use the Block by 

Block BASk for mapping thread warps onto data inside each data block, in my own actual code, I 

use the Warp by Warp BASk instead.  My Histogram case study in Chapter 8 uses the Column 

DASk as its underlying framework. 
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template < valT, logWarpSize, TBS, GridCols, nWork > 
__global__ void Copy_Column( D, S, start, stop ) { 
  // Compiler-Time Variables (become constants at run-time) 
  const U32 DBS     = nWork*TBS;            // Data Block Size (512 = 4*128) 
  const U32 TPR     = BlockSize * GridCols; // Threads per Row (across grid) 
  const U32 rowSize = nWork * TPR;          // Data per Row (across grid) 

  // Map CTA parameters onto data offsets 
  U32 bid = (blockIdx.y * gridDim.x) + blockIdx.x;  // Block ID (bid) 
  U32 tid = threadIdx.x;                  // Thread ID (tid) 
  U32 dataOff = (bid * DBS) + tid;        // starting data offset 

  // Compute Row Info 
  U32 nElems = stop – start + 1; 
  U32 nFullRows  = nElems / rowSize; 
  U32 nFullElems = nFullRows * rowSize; 
  U32 nLeftOver  = nElems – nFullElems; 
  U32 startIdx = start + dataOff; 
  U32 stopIdx  = (nFullRows * rowSize) + startIdx; 
  U32 currIdx  = startIdx; 

  // Get start I/O pointers  
  const U32 * in  = &(S[currIdx]); 
        U32 * out = &(D[currIdx]); 

  // Process all full rows (*NO* range checking needed) 
  while (currIdx < stopIdx) { 

     

    // Move to next data row 
    currIdx += rowSize; 
    in  += rowSize; 
    out += rowSize; 
  } // end while 

  if (nLeftOver) { // Leftover row (with range checking) 

    // Compute Last Row & Data Block Info 
    U32 nSkipFull  = nFullRows * rowSize;   // Skip past full rows 
    U32 startIdx   = start + nSkipFull + dataOff; 
    U32 currIdx    = startIdx + tid;        // Get data offset  
    U32 blockOff   = (bid * DBS) + start;   // starting block offset  
    U32 blockStart = start + blockOff; 
    U32 blockStop  = blockStop + DB_LAST; 

    const U32 * in  = &(S[currIdx]); 
          U32 * out = &(D[currIdx]); 

     // *data block range checks* against [start, stop] 
     bool inRange  = (blockStop <= stop); 
     bool outRange = (stop < blockStart); 
     if (inRange) { 

// #1) Copy Data Block (copies entire data row across all blocks) 
valT v1, v2, v3, v4; 

// Load values 
if (nWork >=  1u) { v1 = in[(0u*TBS)]; } 
if (nWork >=  2u) { v2 = in[(1u*TBS)]; } 
if (nWork >=  3u) { v3 = in[(2u*TBS)]; } 
if (nWork >=  4u) { v4 = in[(3u*TBS)]; } 

// Store values 
if (nWork >=  1u) { out[(0u*TBS)] = v1; } 
if (nWork >=  2u) { out[(1u*TBS)] = v2; } 
if (nWork >=  3u) { out[(2u*TBS)] = v3; } 
if (nWork >=  4u) { out[(3u*TBS)] = v4; } 
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    } else if (outRange) { 

       

    } else { 

       

    } // end *data block range checks*  
  } // end *Left Over Row* 
} // end Copy_Column 

Figure 5.13:  My Column DASk for the Copy primitive.  The code outside the four shaded boxes 

makes up the scaffolding for data access using the Column DASk.  The code inside the four shaded 

boxes (#1-#4) would be replaced by code to support your own algorithm.  All the full rows require no 

range checking, the left-over partial row repeats the amortized range checking pattern from the Block 

DASk.  The lighter grey if {…} wrapper statements get elided away at compile time. 

 

  

// #4) Overlaps Case, process block (with careful range checking) 
U32  D1, D2, D3, D4; 
bool T1, T2, T3, T4; 
valT v1, v2, v3, v4; 

// Get data offsets 
if (nWork >= 1u) { D1 = (0u*TBS) + currIdx; } 
if (nWork >= 2u) { D2 = (1u*TBS) + currIdx; } 
if (nWork >= 3u) { D3 = (2u*TBS) + currIdx; } 
if (nWork >= 4u) { D4 = (3u*TBS) + currIdx; } 

// Range Check (each data access) 
if (nWork >= 1u) { T1 = (D1 <= stop; } 
if (nWork >= 2u) { T2 = (D2 <= stop; } 
if (nWork >= 3u) { T3 = (D3 <= stop; } 
if (nWork >= 4u) { T4 = (D4 <= stop; } 

// Load values (with range checking) 
if (nWork >=  1u) { if (T1) { v1 = in[( 0u*TBS)]; } } 
if (nWork >=  2u) { if (T2) { v2 = in[( 1u*TBS)]; } } 
if (nWork >=  3u) { if (T3) { v3 = in[( 2u*TBS)]; } } 
if (nWork >=  4u) { if (T4) { v4 = in[( 3u*TBS)]; } } 

// Store values (with range checking) 
if (nWork >=  1u) { if (T1) { out[( 0u*TBS)] = v1; } } 
if (nWork >=  2u) { if (T1) { out[( 1u*TBS)] = v2; } } 
if (nWork >=  3u) { if (T1) { out[( 2u*TBS)] = v3; } } 
if (nWork >=  4u) { if (T1) { out[( 3u*TBS)] = v4; } } 

// #3) Out of Range, Exit Kernel (nothing to do) 

// #2) In Range, copy data block (with *NO* range checking) 
...  // <Code is the same as shaded box #1 above> 
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5.3.2 Column DASk Conclusion 

My Column DASk has several benefits and several limitations that I discuss next. 

Three main Benefits: 

 Supports proper range checking of all data [start, stop] while only doing range checking 

on the last row of data.  The cost of doing the range check on the last row of data is 

amortized across the other data blocks in the column. 

 Supports an efficient access pattern into memory using a 2D grid layout. 

 Works well when accumulating data in a dataset but the order in which the data is 

accumulated does not matter. 

Five main Disadvantages: 

 The GPU programmer needs to write two slightly different version of the same code to 

handle the three different range check cases {in-range, out-of-range, overlap}.  This can 

also lead to cut and paste errors, if the programmer is not careful when fixing bugs. 

 Increased register pressure to set up the range check variables used by this DASk. 

 Extra branching to handle looping and range checks.  In particular the while loop used to 

loop over the full rows of data gets called once per data block.  Fortunately, my DASk 

implementation was written to avoid divergent branching. 

 Performance sensitivity to the initial grid size.  If the chosen grid size by the programmer 

is not an even multiple of the actual workLoad (#SMs * #Blocks), then performance 

suffers as some SMs process a few extra rows while the rest of the SMs idle. 

 The cooperative stride across all data blocks results in each new data block being a full 

data row apart from the previous data block which is not well localized and hinders 

caching by the memory controllers when moving between data blocks. 
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5.4 Row DASk 

The Row DASk is also uses a two dimensional grid layout similar to the Column DASk 

but with the rows and columns reversed.  For the Row DASk, the original input data (n) is 

divided into m fixed-size data blocks (DBS) with the data blocks being laid out on a 2D grid, with 

the total number of blocks (m) needed to cover data computed as m =  𝑛/𝐷 𝑆 .  The number of 

rows  is chosen ahead of time by the GPU programmer as a static fixed size constant (R= 

grid.height).  The number of columns (C = data blocks per row) is allowed to vary with n in order 

to fully over all input data and can be initially computed as C =   /𝑅 , however, as will be seen 

shortly to better support load balancing of work across thread blocks, my actual computation of 

the number of columns per row is more complex.  The Row DASk maps one thread block onto 

each data row, with each thread block being responsible for processing all data blocks along its 

assigned row. 

As shown in Figure 5.14, the Row DASk is similar to the Column DASk.  There are 

several main differences between these two DASks: layout, alignment, range checking, and load 

balancing.  To better support coalescence, I warp align the input data to a data warp boundary 

before marching down the first row (The Block and Column DASks do not warp align data, so 

performance may suffer if the user passes in unaligned data arrays).  Supporting warp-aligned 

data implies that the first data warp in the first data block in the first row may be partially empty, 

requiring range checking. Similarly, one of the data blocks in the last row may also be partially 

empty and also may requiring careful range checking as well. 
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Figure 5.14:  Row DASk layout 

Returning to the idea of load-balancing, consider a simple but naïve load-balancing 

scheme, where all rows but the last row would be full with the last row being only partially full.  

The thread block assigned to this last row would complete much more quickly than the other 

thread blocks assigned to full rows underutilizing our processing resources.  To help avoid 

underutilization, I have created a more complex load-balancing scheme to distribute the data 

blocks approximately equally across all the thread blocks representing data rows.  This results in 

a difference of at most one data block of work between any two thread block on their assigned 

rows.  Because, range checking is more expensive than not range checking, I seek to avoid 

assigning extra data blocks to rows that require range checking.  The first row may require some 

range checking on its first data warp, and one other thread block (row) may have the last partially 

full data block in its row (typically the last data row but not always), which also requires range 

checking.  As a result, I have written my load balancing code to deliberately bias against 

assigning a left-over data block to either the first or last row (meaning the thread block with the 

last data block in its row) unless there is no other choice (in other words, m is divided evenly by 

R). 

I use the Row DASk as the underlying framework for my case studies for Scan (Chapter 

6) and RadixSort (Chapter 9).  In the next few sub-sections, I show how I actually warp align my 
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data (Section 5.4.1), introduce a new range checking pattern (Section 5.4.2), and load balance 

data blocks across thread blocks (Section 5.4.3). 

5.4.1 Warp Alignment 

Experienced CPU programmers know that aligning memory accesses to start on cache-

line boundaries (0, 64, 128, 192, or 256 bytes) makes overall memory throughput faster.  There is 

a similar throughput advantage when aligning global memory accesses on GPUs to warp-line 

boundaries (128 bytes).  To align a data pointer or index to a warp line boundary, I find the first 

multiple of 128 bytes that starts just before the requested starting pointer or index -- for instance, 

alignIdx = (idx/128)*128.  Since 128 is a power of two, the same result can be achieved 

using less expensive bit masking: alignIdx = idx & ~127.  Here is the snippet of code (see 

Figure 5.15) I use to align 32-bit data elements to a warp-line memory boundary: 

  // Compiler Variables 
  U32 WarpSize = 1 << logWarpSize; // 32 threads per warp 
  U32 WarpMask = WarpSize – 1;     // 31 = 0x1F = bitmask<00011111> 
  ... 
  // Align <src, dest> to a warp boundary 
  U32 src_Pad = start & WarpMask;        // (start % WarpSize) 
  U32 src_AlignPos = start & ~WarpMask;  // (start/WarpSize)*WarpSize 
  U32 dst_AlignPos = startDest – src_Pad; 

Figure 5.15:  Warp Aligning Data Access. 

Warp aligning data (see Figure 5.15) access may result in some threads accessing 

memory locations before the true data start. Careful range checking on the first data warp (or first 

data block) is therefore essential to avoid out of range access errors. 

5.4.2 ‹FIRST?› ‹MIDDLE*›‹LAST?› Range Check Pattern: 

 Range checking for the Row DASk is sufficiently different from the previous DASks that 

I created a new that I call the ‹FIRST?› ‹MIDDLE*› ‹LAST? › or ‹BOTH› range check pattern to 

avoid out-of-range memory accesses.  The goal here is to push any range checking out to the 

‹FIRST?› and ‹LAST?› data blocks leaving the large ‹MIDDLE*› section of data blocks without 



120 

 

a need to do any range checking.  I use regular expression notation to indicate how many data 

blocks are involved in each group, where the question mark (?) means zero or one data blocks, 

and the asterisk means (*) means zero or more data blocks. 

I assume all input, and output, data is located in a range [start, stop].  So, lets briefly 

discuss the range check requirements of each of the four groups. 

 ‹FIRST?›:  As a result of warp-aligning the input data to a warp boundary, the 

first data block may require partial [start, …) range checking when accessing 

data elements in the first data warp.  If the data already was passed in warp 

aligned (meaning the start parameter on a multiple of the WarpSize, i.e. [0, 32, 

64, …]), then there is no need to range check the first data block. 

 ‹LAST?›:  As a result of using fixed size data blocks, the last data block most 

likely is only partially full and thus may require partial (…, stop] range checking 

when accessing data elements in this last block.  If the ‘stop’ parameter happens 

to fall exactly on a multiple of the fixed block size (DBS) after accounting for 

warp-alignment, then there is no need to range check the last data block. 

 ‹MIDDLE*›: All the other in-between data blocks require no range checking. 

 ‹BOTH?›:I include this case for completeness.  It is possible that the input dataset 

is small enough so that both the ‹FIRST? › and ‹LAST?› data blocks are one and 

the same.  This case requires full [start, stop] range checking unless the dataset is 

both warp-aligned and this single data block contains exactly DBS elements. 

Given enough data, any range checks for both the ‹FIRST?› and ‹LAST?› blocks are 

amortized across the rest of the ‹MIDDLE*› data blocks.  Even though the abstract concept of 

range checking is orthogonal from other concepts like warp alignment, load balancing and CTA 

layout, my actual DASk code intermingles these concepts.   
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The code for the <FIRST?> <MIDDLE*> <LAST?> or <BOTH?> range checking pattern is 

shown in Figure 5.16.  The shaded boxes represent the GPU programmer’s code that would be 

replaced for other algorithms while still range checking. 

// Get Alignment Info 
... 

// Load Balance (Data blocks across rows (thread blocks)) 
... 

// Get Row Info 
U32 IsStartAligned = ((start == src_AlignPos) ? 1u : 0u); 
U32 src_StartPos = (rowBlockStart * DBS) + src_AlignPos; 
U32 dst_StartPos = (rowBlockStart * DBS) + dst_AlignPos; 
U32 isFirstRow   = (rowBlockStart == 0u); 
U32 src_StopPos  = (rowBlockCount * DBS) + src_StartPos; 

// Range Check Setup 
U32 rcFirst = (isFirstRow && !IsStartAligned); 
U32 rcLast  = isLastRow & (!isStopAligned); 
U32 rcBoth  = isFirst & rcLast & singleDataBlockRow; 
... 

if (rcBoth) { // <BOTH> 

   
} // end <BOTH>  
 
if (rcFirst) { // <FIRST> 

   
} // end <FIRST>  

while (src_Base < src_StopPos) { // <MIDDLE> 

// #2) Copy Data Block (range check on [start, ...) for data accesses) 
d1 = ...; 
... 
bool T1 = (start <= d1); // Range Checks 
... 
if (nWork>=1) { if (T1) { v1 = in[d1];  }} // Load values 
... 
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values 
... 

// #1) Copy Data block (range check on [start, stop]) 
d1 = ...; 
d2 = ...; 
... 
bool T1 = (start <= d1) & (d1 <= stop); // Range Checks 
bool T2 = (start <= d2) & (d2 <= stop); 
... 
if (nWork>=1) { if (T1) { v1 = in[d1];  }} // Load values 
if (nWork>=2) { if (T2) { v2 = in[d2];  }} 
... 
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values 
if (nWork>=2) { if (T2) { out[d2] = v2; }} 
... 
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  // Move to next data block (along row)  
  src_Base += DBS; 
  dst_Base += DBS; 
  in  += DBS; 
  out += DBS; 
} // end <MIDDLE>  

if (rcLast) { // <LAST> 

   

} // end <LAST>  

Figure 5.16:  A quick sketch of my Row DASk with the primary focus on the ‹FIRST?› ‹MIDDLE*› 

‹LAST? › or ‹BOTH› range check pattern.  The code outside the four shaded boxes makes up the 

scaffolding for data access.  The code in the four shaded boxes (#1-#4) would be replaced by GPU 

Programmers own code.  The third shaded box corresponds to the ‹MIDDLE*› pattern that requires no 

range checking, the other three shaded boxes correspond to the ‹BOTH›, ‹FIRST? ›, and ‹LAST? › 

groups that require range checking over the ranges [start, stop] or [start, …) or (…, stop] respectively 

to avoid data access errors. 

 

  

// #4) Copy Data Block (range check on (..., stop] for data accesses) 
d1 = ...; 
... 
bool T1 = (d1 <= stop); // Range Checks 
... 
if (nWork>=1) { if (T1) { v1 = in[d1];  }} // Load values 
... 
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values 
... 

// #3) Copy Data Block (*NO* range checks) 
d1 = ...; 
d2 = ...; 
... 

if (nWork>=1) { v1 = in[d1];  } // Load values 
if (nWork>=2) { v2 = in[d2];  } 
... 

if (nWork>=1) { out[d1] = v1; } // Store Values 
if (nWork>=2) { out[d2] = v2; } 
... 
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5.4.3 Load Balancing 

To load-balance data blocks across rows, I conceptually use a 2D grid of data rows (one 

row per thread block) that covers all the data blocks (see Table 5.3).  I categorize the rows into 

three types: First Row, Middle Row, and Last Row.   

 Column Types (Data Blocks) 

Row Types Full  Left Over 

<First Row?> <First Block?><Blocks*> <Extra Block?> 

<Middle Rows*>               <Blocks*> <Extra Block?> 

<Last Row?>               <Blocks*><Last Block?> N/A 

Table 5.3:  Load balancing data blocks across rows (thread blocks) for Row DASk. 

The First Row is the only row that can have a First Block. This first data block may 

require [start, …) range checking as a result of warp-alignment.  The Last Row is the only row 

that may have a Last Block. This last block most likely will require (…, stop] range checking as a 

result of using fixed size data blocks.  All other data blocks require no range checking because 

they are guaranteed to be fully contained in the range [start, stop], which implies that all Middle 

Rows require no range checking as well.  Each row can optionally have one extra data block 

{0|1}, this extra data block is used to spread out any left-over data blocks across all the rows 

(thread blocks) as evenly as possible.  Since the first row and last row may do more work overall 

as a result of range checking than the other middle rows, my load-balancing code biases against 

adding an extra data block into the first and last rows unless there is no other choice.  The last 

row only gets an extra data block if and only if the number of rows (R) divides evenly into the 

number of data blocks (m), meaning that 0 = mod(m, R).  Similarly, the first row only gets an 

extra data block if and only if the number of left-over extra blocks is equal to the number of rows 

(R) minus one. 
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As shown in Figure 5.17, my code for load balancing works as follows:   

1) Get total number of data blocks. 

2) Divide data blocks evenly across rows. 

3) Compute any extra data blocks. 

4) Distribute the extra blocks across as many rows (thread blocks) as needed to 

cover them all, biasing against adding extra blocks to the first and last rows. 

 

__device__ __forceinline__ 
void LoadBalance 
( 
  U32 & rowBlockCount,    // OUT – data blocks assigned to this row 
  U32 & rowBlockStart,    // OUT - starting block for this row 
  U32 nRows,              // IN - nRows 
  U32 nBlocks,            // IN – Total Blocks  
  U32 currRow             // IN – current Row represented by this thread block 
) 
{ 
  // Compute 'Blocks per Row' 
  U32 nFullBPR = nBlocks / nRows;  
  U32 leftOver = nBlocks - (nFullBPR * nRows); 

  // Compute number of rows & row length 
  // for each section <First><Full><Extra> 
  U32 blockInFirstRow  = nFullBPR; 
  U32 blocksInPartRows = nFullBPR; 
  U32 extra     = ((leftOver == 0) ? 0 : 1u); 
  U32 nFullRows = ((leftOver == 0) ? nRows : leftOver); 
  U32 nPartRows = nRows - nFullRows; 
  U32 blocksInFullRows = nFullBPR + extra; 

  // Is it safe to bias against the first row ? 
  U32 nFirstRow = 0u; 
  if (nPartRows >= 2u) { 
    if (nFullCPR > 0u) { 
       nFirstRow  = 1u; 
       nPartRows -= 1u; 
    } 
  } 

  // Get Row Counts & Row Starts 
  U32 rowCount = 0u; 
  U32 startSum = 0u; 

  // Move from 'zero'-based to 'one'-based indexing 
  currRow = currRow + 1u; 

  // Process first row section 
  if (nFirstRow > 0u) { 
    // First Row section 
    rowCount  = blocksInFirstRow; 
    currRow  -= 1u; 
  } 

  // Process 'full' row section 
  if (currRow > 0u) { 
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    U32 fullCnt = ((currRow >= nFullRows) ? nFullRows : currRow); 
    startSum = rowCount + ((fullCnt - 1u) * blocksInFullRows); 
    rowCount = blocksInFullRows; 
    currRow -= fullCnt; 
  } 

  // Process 'Partial' row section 
  if (currRow > 0u) { 
    // Part Row Section 
    rowCount  = blocksInPartRows;  
    startSum += blocksInFullRows             // Add in last row in full section 
                + ((currRow - 1u) * blocksInPartRows);    // Add in partial rows 
  } 

  // Output 'Load Balanced' row count & row starts 
  rowBlockCount = rowCount; 
  rowBlockStart = startSum; 
} // end LoadBalance 

Figure 5.17:  The LoadBalance code for my Row DASk.  The code works in 3 sections as 1) compute 

data blocks in first row, 2) compute blocks in full rows, 3) compute blocks in partial rows. 

To compute the starting block for each row, I basically add up row counts for up to three 

groups {first, full, partial}.  First, I determine the number of blocks in the first row.  Second, I 

determine the number of full rows (rows that receive an extra block),  Third, I determine the 

number of partial rows (rows without an extra block).  Next, I determine for the current row 

whether it is the first row, in the second group of full rows, or in the third group of partial rows.  

Then I add up the contributions from each group that precedes the current row or the partial 

contribution of the group that the current row is in to arrive at the starting offset.  The group type 

that the current row belongs to also determines the number of data blocks for this row. 

 As a simple example, assume that there are five rows and 23 data blocks.  Distributing 

the data blocks across the rows results in four full data-blocks per row (4 =  23/5 ) plus three 

extra data blocks (3 = mod(23, 5)).  Since there are fewer than 4 (5-1) data blocks, I don’t put an 

extra block in the first row, and my full group will be three rows long, my partial group will be 

one row long 1 = 2-1.  So, my load balancing code would assign ‹4,5,5,5,4› data blocks, 

respectively, to each of the five rows. 

As can be seen in Figure 5.17, the load-balancing code is complicated with lots of 

divisions, multiplications, and RAW dependencies between instructions.  Despite the many 

branches in the code, branch divergence does not become a significant factor because all the 
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threads in each warp belong to the same thread block (or data row). They therefore each follow 

the same branch path through this function.  The load balancing code does result in extra 

overhead, however this cost is amortized across all the data blocks assigned to the row {R | R-1}. 

5.4.4  Row DASk conclusion 

My Row DASk has several benefits and several limitations that I discuss next. 

Five main Benefits: 

 To better support coalescence, this DASk aligns the starting warp of the input dataset to a 

warp boundary [0, 32, 64, …]. 

 For better processor utilization, this DASk load balances work as evenly as possible 

across thread blocks (rows). 

 Supports proper range checking of all data [start, stop] while pushing range checks into 

the first and last data blocks, thus allowing the range check costs of at most one data 

block to be amortized across all R data blocks in each row. 

 This DASk can support a sequential ordering for the data parallel algorithm as each 

thread block marches along its data row, block by block.  The GPU programmer still 

needs to preserve a sequential order for data blocks when accessing short runs of data by 

each thread in the thread block (See my Reduce and Scan case study in Chapter 6 for a 

good example of one way to handle this). 

 Supports an efficient access pattern into memory using a 2D grid layout. 

Five main Disadvantages: 

 High setup costs (warp alignment, load balancing, range checking, …) that need to be 

amortized across lots of data blocks in each row. 

 The GPU programmer needs to write four slight different version of the same code to 

handle the four different range check cases {Both, First, Middle, Last}.  This can also 

lead to cut and paste errors, if the programmer is not careful when fixing bugs. 

 Increased register pressure to set up and use the load balancing and range check variables 

used by this DASk. 

 Extra branches to handle the four range check cases {BOTH, FIRST, MIDDLE, LAST}.  

In particular the while loop used for the ‹MIDDLE*› case gets called once per data block.  

Fortunately, my DASk implementation was written to avoid divergent branching. 

 Performance sensitivity to the initial grid size.  If the chosen grid size by the programmer 

is not an even multiple of the actual workLoad (workLoad = nSMs × nConBlocks), then 

performance suffers as some SMs process a few extra rows while the rest of the SMs idle.  

This is actually a problem with the Block DASk as well but that DASk tends to launch 

thousands of thread blocks so the problem effectively gets amortized away.  The Grid 

size for this DASk tends to be a lot smaller so the problem is much more noticeable. 
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5.5 Lessons Learned from this Copy case study 

There are several lessons learned from both Chapter 4 and Chapter 5. 

 Use both ILP + TLP for better performance 

o For better ILP 

 Support multiple work items per thread (nWork=4). 

 To reduce register pressure, batch work items in groups of 4. 

 Group k similar instructions from k work items to reduce RAW 

dependencies between instructions. 

 Prefer manual over automatic loop unrolling. 

 2-4 work items per thread is a good starting point. 

o For better TLP 

 For block size, 128 threads is a good starting point (TBS = 128). 

 For grid size, pick a multiple of the work load (workLoad = nSMs × 

nConBlocks) as a good starting point (GS = 224 = 14 SMXs * 16 

concurrent blocks on GTX Titan). 

o Prefer increasing TLP over increasing ILP. 

 Increasing TLP resulted in up to 2.85× faster performance. 

 Increasing ILP resulted in up to 1.09× faster performance. 

 These approaches are orthogonal, so increase both TLP and ILP for best 

performance. 

 Amortize setup costs across multiple work items for better performance 

o Range check once per thread instead of once per work-item 

o Setup pointers once per thread instead of once per work-item. 

 Understand GPU memory for better performance 

o Registers are faster than shared memory which is faster than global memory 

which is faster than CPU RAM. 

o Respect coalescence for peak throughput.  Access 32-bit data elements in global 

memory using a warp-aligned, warp-sequential fully used data access pattern. 

o For better performance, cluster similar memory accesses together in small 

batches of k work items (k loads followed by k stores).  This results in better 

performance than interleaving memory accesses (in, out, in, out) from different 

memory arrays or types of memory. 

Better 

Cluster similar memory accesses into batches 
Worse 

Interleave different memory accesses 
v1=D[w1]; v2=D[w2]; v3=D[w3]; // In batch 
... 
S[w1]=v1; S[w2]=v2; S[w3]=v3; // Out batch 

D[w1]=S[w1]; // Input & Output 
D[w2]=S[w2]; // ditto 
D[w3]=S[w3]; // ditto 

Table 5.4:  Batching vs. Interleaving Memory access. 

 

 

 Use Block Access Skeletons (BASks) to jump start efficient memory access within 

each data block. 
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o Block by Block BASk 

 Pros:  Supports coalescence, less setup, easier to code, easier to reason 

about 

 Cons:  Ping-Pong access pattern is slightly less localized, may require 

more barrier synchronization. 

o Warp by Warp BASk 

 Pros:  Supports coalescence, slightly more localized sequential access 

pattern, Warps can start work independently, may require less barrier 

synchronization. 

 Cons:  More indexing setup, harder to code, harder to reason about. 

 Use Data Access Skeletons (DASks) to jump start efficient memory access across all 

elements in a large data set. 

o Pros: 

 Supports Genericity (general data types, warp sizes, CTA layouts, …) 

 Framework code is already written, tested, and working 

 Framework code uses efficient memory access patterns. 

 Body code (shaded boxes) can be replaced by the GPU programmer for 

specific problem spaces. 

 Supports experiments on both ILP and TLP to find the best performing 

configuration. 

 TLP is supported directly by framework. 

o Cons: 

 More complex than simple kernels. 

 Similar code across multiple shaded boxes can result in cut and paste 

errors. 

 ILP is mostly controlled by GPU programmer as manual loop unrolling 

to support multiple work items must be implemented directly within each 

shaded box. 

 Higher register pressure may result from setup overhead and range 

checking. 

o Block DASk: 

 Pros:    Simplest DASk 

 Cons:  Assumes input is already warp-aligned.  Requires range checking 

on each data block. 

 Example:  See Copy (this Chapter). 

o Column DASk: 

 Pros:   Only requires range checking on last partially full data row. 

 Cons:  Assumes input is already warp-aligned, memory access pattern is 

less localized (all thread blocks stride across one data row).  Small grid 

sizes result in poor performance when grid size is not evenly divisible by 

the workLoad. 

 Example:  See Histogram (Chapter 8). 

o Row DASk: 
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 Pros:  Automatically warp-aligns input data, supports load balancing 

across thread blocks.  Supports access patterns where order matters.  

Only requires range checking on first and last data blocks. 

 Cons:  High startup overhead (load balancing and range checking).  

Small grid sizes results in poor performance when grid size is not evenly 

divisible by the workLoad. 

 Example:  See Scan (Chapter 6), Radix Sort (Chapter 9). 
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6.0 Case Study:  Reduce and Scan on the GPU 

In this chapter, I demonstrate my Row data access skeleton (DASk) on two useful parallel 

primitives, Reduce and Scan.  The Reduce primitive produces a total sum by accumulating n input 

elements into a single final sum.  The terms “sum” and “accumulate” refer not only to addition but to any 

associative operation, such as multiplication, maximum, or average.  The name “Reduce” comes from 

Map/Reduce, which is a popular paradigm for distributed computing at very large scales.  The Scan 

primitive, sometimes called Prefix Sum, produces a running sum by accumulating n input elements into n 

output elements, where the ith output element is either the inclusive {1 ... i} or exclusive {1 ... i-1} prefix 

sum of the first i input elements. 

I have chosen to base both my Reduce and Scan primitives only on the associative property 

{a+(b+c) = (a+b)+c}, so that I can also support non-commutative “summation-like” operations, such as 

matrix multiplication. My algorithms may regroup, but not reorder; all sub-problems must work with 

sequential runs of consecutive data. 

To support the GPU’s 2-level cooperative thread array (CTA), I think of data as sequential blocks 

containing sequential runs. Since the CTA is 2-level, I use a 2-part solution. 1) The Row DASk at CTA 

level 1 coordinates thread blocks within a grid for sequential access to data blocks.  2) Using a similar 

mechanism at CTA level 2 coordinates individual threads within a block for sequential access within each 

data block. To keep throughput high in my implementations, I use both thread-level parallelism (TLP) 

and instruction-level parallelism (ILP).  To support experiments on TLP and ILP, I parameterize my 

kernels by the number of warps per thread block ‹nWarps› and by the number of work items per thread 

‹nWork›. 

In this case study, three main issues hinder throughput:  
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1) Finding a global memory access pattern that supports both coalescence (stride = 32) and 

sequential access (stride = 1).  Both access patterns use different strides and therefore are 

mutually exclusive. 

2) Avoiding serialized instruction replays caused by k-way bank conflicts when accessing 

shared memory. 

3) Avoiding reduced TLP caused by various resource constraints on occupancy. 

6.1 Introduction 

Reduce primitive Computes the total sum of a sequence A containing n elements. 

Input:   binary associative operator ⨁ with identity 𝕀, and sequence A = [a1, a2, ⋯ , an], 

Output:   𝑠𝑢𝑚 = 𝕀⨁𝑎1⨁𝑎1⨁⋯⨁𝑎𝑛   where sum is a singleton result. 

Scan primitive creates the prefix sum of a sequence A containing n elements. 

Input:   A binary associative operator ⨁ with identity 𝕀, and sequence A = [a1, a2, ⋯ , an], 

Output:  A scanned sequence S = [s1, s2, ⋯ , sn], 

                   where 𝑠𝑖 = 𝕀⨁𝑎1⨁𝑎2⨁⋯⨁𝑎𝑖−1  for exclusive scan 

                         or 𝑠𝑖 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑖  for inclusive scan. 

Reduce and Scan primitives are basic building blocks for many parallel algorithms (Blelloch 1989 

and 1990; Blelloch and Maggs, 1996; Hillis and Steele, 1986).  Each takes as input an associative, but not 

necessarily commutative, binary summation operator ⨁, its identity 𝕀, and a sequence A = [a1, a2, …, an].  

The Reduce primitive (Harris and Sutherland, 2003), also known as “Fold” or “Total-sum”, returns sum = 

𝕀⨁𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛. The Scan primitive (Blelloch, 1989), also known as “Prefix-sum”, returns either 

an inclusive prefix-sum sequence, in which s1=a1 and, for i > 1, si = si-1⊕ai, or an exclusive prefix-sum 

sequence, in which s1=𝕀 and, for i > 1, si = si-1⊕ai-1. 

In my own GPU algorithms, I use Reduce to produce summation results for performance metrics, 

such as minimums, maximums, totals, averages.  I use Scan to implement data partitioning schemes like 

counting sort.  Scanning can count data elements to determine starting locations so that each individual 

thread knows where to safely access its assigned data without competing for access with other 

concurrently running parallel threads. 

As Table 6.1 shows the binary operator ⊕ can represent not only addition, but also product, max, 

min, “and,” and “or”.  I assume that ⊕ is associative {(a⨁b)⨁c = a⨁(b⨁c)}, but not commutative 
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{(a⨁b) = (b⨁a)}. The fact that data can be regrouped but not reordered complicates the GPU 

implementations for both block and thread levels of the CTA hierarchy. 

 

Operator {⨁} Identity {𝕀} Math Code 

Sum {+} 0 𝑐 = 𝑎 + 𝑏 c=a+b; 

Floating point** 

Sum {+} 
0.0 𝑐 = 𝑓𝑙(𝑎 + 𝑏) c=a+b;** 

Product {×} 1 𝑐 = 𝑎 × 𝑏 c=a*b; 

Floating point** 

Product {×} 
1.0 𝑐 = 𝑓𝑙(𝑎 × 𝑏) c=a*b;** 

Matrix Multiply {×} 

Non-commutative 
I 𝐶 = 𝐴𝐵  

3-level 

nested loop 

Minimum {𝑚𝑖𝑛} +∞ 𝑐 = {
𝑎 𝑖𝑓 𝑎 ≤ 𝑏
𝑏 𝑖𝑓 𝑏 < 𝑎

 c=(a<=b)?a:b; 

Maximum {𝑚𝑎𝑥} −∞ 𝑐 = {
𝑎 𝑖𝑓 𝑎 ≥ 𝑏
𝑏 𝑖𝑓 𝑏 > 𝑎

 c=(a>=b)?a:b; 

Logical AND {∧} True 𝑐 = 𝑎 ∧ 𝑏 c=a&b; 

Logical OR {∨} False 𝑐 = 𝑎 ∨ 𝑏 c=a|b; 

Table 6.1:  Common Reduce and Scan binary operators.  **Floating point operators are 

not fully-associative due to truncation and round-off errors. 

Floating Point Associativity:  Programmers should be aware that floating point arithmetic operators 

are not fully associative since outputs have errors as floating point operations truncate and round-off the 

results to fit within the fixed-size data types1 (Press et al, 2007).  As a result, CPU serial primitives and 

GPU parallel primitives on floating point data runs can give slightly different sums.  Reordering and 

regrouping on long runs of data containing large variations in exponents can change outputs.  One 

possible advantage of forbidding commutativity (reordering) and relying on associativity (regrouping) 

alone is that floating point evaluations are a bit more stable2. 

                                                      
1 Floating point issues are described in much greater detail in the book “Numerical Recipes …” (Press et al, 20007). 
2 There are techniques that provide even more stability, such as storing values in a min heap on absolute value and 

repeatedly summing the two values nearest zero. Unfortunately this approach has too many data dependencies to 

work well on GPUs. 
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Overflow:  Programmers should ensure that sums (especially of long data runs) do not overflow the 

underlying data type’s maximal (or minimal) value.  For instance, adding a billion 32-bit unsigned 

integers may require storing intermediate and final sums as 64-bit unsigned integers. 

Diagrams:  Data organization and access patterns are necessary to improve Reduce and Scan 

performance, and these are often easier to grasp from diagrams.  Table 6.2 introduces symbols that I use 

in my diagrams throughout this chapter. 

Name Abbr. Description Symbol 

Run  An input sequence of n data elements. 
 

Sum ⨁ 

An associative binary operation that accumulates two inputs into an 

output.  c = a⨁b. 

Arrow color indicates access to the current entry (black) and reach 

back (blue) or reach forward (purple) one or more entries.  

Identity 𝕀 
The identity element for operator ⨁, i.e. a = 𝕀⨁a for all a ∈ 𝕌  (zero 

for addition, one for multiplication).  

Serial 

Reduce 
SRn 

In serial, reduce an input short run of size n ∈ [2-32] into a final-sum 

output.  ~One I/O per element, plus one for output.  

Serial 

Scan 
SSn 

In serial, scan an input short run of size n ∈ [2-32] into a prefix-sum 

output run.  The scan output can either be inclusive or exclusive.  

~Two I/Os per element (one on input, one on output.) 

 

Table 6.2:  Basic nomenclature and symbols for the Reduce and Scan primitives. 
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36 36
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CPU Serial Implementations:  The serial implementations of the Reduce and Scan primitives on a 

von Neumann CPU are similar (see Table 6.3). 

Serial Reduce 

 

Serial Scan (Inclusive) 

 

Serial Scan (Exclusive) 

 

Reduce( sum, A, n, ⨁, 𝕀 ) 

sum = 𝕀;  // Identity 

// Reduce 
for i in 1..n 
  sum = sum ⨁ A[i]; 
end for 

Scan_Inclusive( S,A,⨁,𝕀 ) 

sum = 𝕀;  // Identity 

// Inclusive Scan 
for (i = 0; i < n; ++i) 
  sum  = sum⨁A[i]; 
  S[i] = sum; 
end for 

Scan_Exclusive( S,A,⨁,𝕀 ) 

sum = 𝕀;  // Identity 

// Exclusive Scan 
for (i = 0; i < n; ++i) 
  S[i] = sum; 
  sum  = sum⨁A[i]; 
end for 

Input:  +, 0, [1 2 3 4 5 6 7 8] 

[0+1+2+3+…+8] 

Output:  [36] 

Input:  +, 0, [1 2 3 4 5 6 7 8] 

[1, 1+2, 1+2+3, ⋯, 1+2+…+8] 

Output:  [1 3 6 10 15 21 28 36] 

Input:  +, 0, [1 2 3 4 5 6 7 8] 

[0, 0+1, 0+1+2, ⋯, 0+1+2+…+7] 

Output:  [0 1 3 6 10 15 21 28] 36 

Table 6.3:  Serial Reduce and Inclusive & Exclusive Serial Scan.  All three procedures initialize a 

running sum to identity, then traverse the input array and accumulate new values.  Reduce returns the 

final sum as its output.  Both versions of scan output the current running sum for each input.  The 

exclusive scan is effectively shifted over one element to the left of the inclusive scan.  The top, middle, 

and bottom rows give symbolic depictions, pseudo-code, and examples for each of the three operations. 

As shown in Table 6.3, Both Reduce and Scan initialize an accumulator to identity and then, as 

the code sequentially traverses the data, accumulate the running sum.  Reduce writes out the final sum 

only; whereas Scan writes out the current running sum (inclusive or exclusive) for each input element.  

The exclusive scan is easy to obtain from the inclusive scan by prepending the identity, reaching back one 

entry, and dropping the total sum, or final value. 

GPU Parallel Implementations:  As will be seen in this case study, GPU parallel implementations to 

achieve high throughput are more complex than CPU serial implementations.  My main performance goal 

was to achieve a solid percentage of peak throughput for both primitives.  I achieved solid throughput 

performance for Reduce and Scan in four main ways: 

1) I support TLP via multiple thread warps ‹nWarps› per thread block, respecting constraints on 

occupancy. 

Data

Work:  𝑛 = 𝑛
Depth:  𝑛 = 𝑛

Initial
Sum

Final
Sum

𝕀

…

...

...

Output:

Inclusive Scan

Input:

Total
Sum ...

...

Output:

Exclusive Scan

Input:
Total
SumIdentity
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2) I support ILP via multiple work items ‹nWork› per thread. 

3) I support coalescence, transferring 32 data elements in a single I/O instruction, for data in main 

memory. 

4) I mitigate bank conflicts for transfers between shared memory and registers. 

Throughput Results:  Since this chapter is quite long, I give the initial throughput results here to whet 

your appetite for the details of the rest of this chapter.  The main takeaway of this chapter is that my Row 

DASk provides an excellent starting point for implementing these Reduce and Scan primitives.  Of course 

since the Reduce and Scan primitives are more complex than the simple Copy primitive from Chapters 4 

and 5, I also had to overcome some performance hindering issues and use some cleverness in my 

implementations.  The results speak for themselves.  Figure 6.4 shows that the Reduce and Scan 

primitives can achieve nearly the same peak throughput of the simple Copy primitive. 

Throughput 
GTX 580 

(Fermi) 

GTX Titan 

(Kepler) 

 Reduce Scan Copy Reduce Scan Copy 

Baseline (GB/s) 24.2 33.6 49.4 40.0 53.7 86.0 

Best (GB/s) 172.7 164.8 175.0 227.0 225.0 236.3 

Speedup 7.1× 4.9× 4.4× 5.7× 4.2× 2.75× 

Table 6.4:  Best throughputs (in gigabytes per second) for Reduce and Scan on the GTX 

580 and GTX Titan respectively, and speedups over baseline throughputs.  Copy 

throughputs using the Grid DASk from Chapter 4 are also included for comparison. 

The performance results for Reduce and Scan also show that choosing the right ILP and TLP 

parameters based on extensive experiments results in much better throughput than naively implementing 

the sequential algorithm on the GPU.  For example, the Reduce primitive is up to 7.1× faster than the 

baseline on the Fermi architecture (GTX 580) and the Scan primitive is up to 4.2× faster than the baseline 

on the Kepler architecture (GTX Titan)). 

Moreover, the four plots in Figure 6.5 show how TLP, ILP, and two different approaches to 

handling bank conflicts (mitigate or avoid) all contribute to improving throughput.  Each plot contains 

five curves, described briefly in the next paragraph. 
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The easy way to experiment with ILP is to vary the number of work items per thread (nWork), in 

the range 1-8.  The easy way to experiment with TLP is to vary the number of thread warps per block 

(nWarps), also in the range 1-8.  Varying these (and other data access parameters, described later) gives 

the five curves in each plot:  The Baseline ‹nWarps=1, nWork=1 › curve has no extra ILP or TLP; The 

ILP-Focused ‹1, varies› curve increases the work per thread; The TLP-Focused ‹varies, 1› increases the 

warps per thread block. The Mitigates Bank Conflicts curve increases both ILP and TLP and allows bank 

conflicts. However, it uses simple code, which allows CUDA to mitigate the impact of serialized replays. 

The Avoid Bank Conflicts curve, on the other hand, also increases ILP and TLP, but it uses complex code, 

which allows it to completely avoid bank conflicts.  As can be seen from the plots in Figure 6.1, 

increasing both ILP and TLP achieves the best throughput. 
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GTX 580 full Reduce 
Throughput (GB/s) vs. Input size (n) 

 

GTX Titan full Reduce 
Throughput (GB/s) vs. Input size (n) 

 

GTX 580 full Scan 

 

GTX Titan full Scan 

 

 x-axis:  Input size (n) for increasing powers of two (logarithmic scale) 

Figure 6.1:  Full Reduce and full Scan throughput results (y-axis: gigabytes per second (GB/s)) as a function of 

input size (x-axis; log scale) on the GTX 580 {Fermi architecture} (left column) and GTX Titan {Kepler 

architecture} (right-column) GPUs. 
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6.2 Issues affecting GPU Performance of Reduce and Scan 

 For this case study, I measure GPU performance using two metrics – I/O throughput (in giga-

bytes per second) and Total Cycles3 (TC). 

Adapting algorithms to the GPU is a challenge because of the many choices for thread 

organization, register assignment, memory layout, and synchronization.  The three main GPU issues for 

this case study are converting between conflicting memory views, mitigating bank conflicts, and handling 

constraints on occupancy. 

Converting between conflicting memory views:  My decision to use associativity but to forbid 

commutativity in my implementations requires working with short runs of consecutive sequences.  

However, for better throughput, I must access data in global memory in a way that respects coalescence--

recall from Chapter 3.4, that for data that is aligned, coherent, and fully used, coalescence means that the 

32 threads in a thread warp can read or write up to 32 data values at the cost of a single I/O. 

Consider two examples of global-memory access patterns: a warp-strided access pattern, in which 

each thread in a warp accesses a unique element in the data warp and then strides to the next data warp 

(stride = WarpSize = 32), can run at near peak I/O throughput.  In contrast, A sequential, per-thread 

access pattern (stride = 1) can decrease throughput by up to 32×.  As we will see later in this case study, 

to improve performance, I use a coalesced view of data to load from global memory, but convert in shared 

memory to a sequential view of data that can be placed in registers. 

Bank conflicts:  A k-way bank conflict occurs when k threads within the same thread warp access the 

same bank of shared memory at the same time.  The GPU hardware serializes access requests as k replays 

from conflicting threads to ensure correct sequential behavior and in so doing decreases throughput k-

fold. 

                                                      
3 Recall from Chapter 3 that total cycles (TC) can be computed from two GPU hardware counters as TC=II/IPC, 

where II = total instructions issued, and IPC = average instructions retired per cycle. 
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Constraints on occupancy:  Recall from Chapter 3.3, that I consider NVidia’s occupancy 

(ActiveWarps / MaxWarps) metric as a rough measure of the potential for hiding latency using TLP.  In 

general, kernels with higher occupancy tend to have better performance. 

Occupancy is initially limited by the programmer’s choice of the CTA parameters (thread block 

& grid sizes), and register and shared memory usage within a kernel may further limit occupancy.  For 

best throughput, GPU programmers should also balance the CTA grid size evenly across the SMs. 

6.3 Related Work 

The Reduce and Scan primitives come to GPUs originally from the computer hardware 

community.  For small input sequences (or runs), Reduce and Scan can be implemented via the same 

techniques used by hardware adders for fast binary addition, with the hardware adders becoming software 

prefix sums. 

Hardware Adders:  Charles Babbage (Ladner and Fischer, 1980) developed the first linear adders 

(ripple-carry and carry-add) for his mechanical difference engine.  Modern CPU architects later created 

hierarchical prefix adders that improved performance from linear O(n) to logarithmic O(log n).  David 

Harris (Harris and Sutherland, 2003) grouped hardware prefix adders into three categories—Sklansky, 

Kogge-Stone, and Brent-Krung (Sklansky, 1960; Kogge and Stone, 1973; Hillis and Steele, 1986; Brent 

and Krung, 1982 respectively) —with three hybrid categories—Ladner-Fischer, Han-Carlson, and 

Knowles4 (Ladner and Fischer, 1980; Han and Carlson, 1987; and Knowles, 1999 respectively).  The 

Sklansky, Kogge-Stone, and Brent-Krung adders are also known in the software community as 

“Upper/Lower”, “Doubling” and “Even/Odd” prefix-sums respectively. 

  

                                                      
4  Knowles style adders use special kill-bit hardware and in general cannot be implemented directly in software.   
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Table 6.5 summarizes the information about each adder type.  According to Harris’s taxonomy 

(Harris and Sutherland, 2003), adders are differentiated in terms of three numbers <l, f, t>, where l = 

Logic levels (log n + l), f = Fanout (2f + 1) and t = Wire Tracks (2t).  Most hardware adders consist of bit-

adder nodes (add two bits and a carry), wires that carry the binary inputs into the nodes, and buffers that 

store temporary results.  In general, parallel adders with low depth tend to be fastest.  Adders with low 

work (nodes) tend to use less silicon and power. 

Hardware 

Name 

Other 

Names 

Fanout Tracks Work: 

(#Nodes) 
Depth: 

(#Logic Levels) 

Ripple-Carry Linear 1 1 = n-1 = n-1 

Sklansky Upper/Lower n/2 1 = (n/2) log n = log n 

Kogge-Stone Doubling 2 n/2 ≤ n log n = log n 

Brent-Kung  2 1 ≤ 2n = (2 log n) - 1 

Ladner-Fischer  n/4 1 ≤ 4n = log n + 1 

Han-Carlson  2 n/4 ≤ (n/2) log n = log n + 1 

Knowles  varies 1 ≤ n log n = log n 

Table 6.5:  Adder Summary - Area & power is proportional to work.  Parallel performance is 

proportional to depth. Blue is best in category (asymptotically, for Work & Depth). 
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Figure 6.2 presents a graphical layout of each adder type for a run of length 16.  As will be seen 

later in the case study, for short sequential scans (Serial-Scans), the Sklansky layout performs best on 

short runs ((n ≤ 16) and the Brent-Kung layout performs best for longer runs (n > 16).  For parallel scans 

across all the threads in warp (Warp-Scans), the Kogge-Stone layout performs best for short runs (n ≤ 32) 

and a nested hybrid scan method work best for longer runs (n > 32). 

Sklansky, 1960 

 

Kogge-Stone, 1973 

 

Ladner-Fischer Scan, 1980 

 

Han-Carlson Scan, 1987 

 

Knowles5, 1999 

 

Brent-Kung, 1982 

 

Figure 6.2:  Hardware adder diagrams that can be adapted into software reduce and scan (prefix sum) 

methods.  Blue (reach back) and Black arrow pairs represent sum operations.  Shades of green represent 

different levels of partial completion.  Blue-Grey boxes represent final results with red outlines containing 

the total sum. 

 

                                                      
5   Knowles adders represent an entire family of layouts of which this is just one instance.  This particular layout 

happens to work correctly as a prefix sum in software, most Knowles layouts do not support prefix sums in software 

due to the presence of special kill-bit hardware. 
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GPU Reduce and Scan:  Previous work on GPUs include work by Mark Harris (Harris, 2007), who 

took a naïve GPU reduce for large data sets, and iteratively improved it through a series of eight rewrites, 

increasing throughput 30×.  Though Dr. Harris’s final solution is elegant, it is not generic (hardcoded for 

unsigned integers) and requires commutative summations because he reorders the data layout.  Dr. Harris 

(Harris et al, 2008) later adapted Blelloch’s prefix-sum (Blelloch, 1990) for a GPU Scan primitive that, 

despite being both depth-efficient and work-efficient, maps poorly onto GPU hardware and therefore 

produces poor throughput. 

Duane Merrill (Merrill and Grimshaw, 2010, Parallel Scan) used high-level parallel patterns 

(Reduce-then-Reduce; Scan-then-Fan; and Reduce-then-Scan) and an improved low-level Warp-Scan 

based on the Hillis-Steele variant  of the Kogge-Stone prefix sum ((Hillis and Steele, 1986; and Kogge 

and Stone, 1973 respectively) to produce better mappings of Reduce and Scan onto GPUs.  Several other 

of Dr. Merrill’s clever ideas include storing arrays in registers, scanning data blocks using a 3-level local 

hierarchy, accessing memory using efficient I/O skeletons, and inlining massive amounts of code using 

C++ templates.  I use many of Dr. Merrill’s ideas in my own implementations. 

6.4 Parallel Patterns 

Improvements in Reduce and Scan throughput are also obtained by combining common parallel 

patterns for each primitive. 

6.4.1 Reduce Parallel Patterns 

For the Reduce primitive, the singleton output sum depends on all input values. Figure 6.3 

illustrates two natural parallel patterns to reduce n elements using p threads: Tree Reduce and Run 

Reduce (AKA Reduce then Reduce) (Merrill and Grimshaw, 2010, Parallel Scan).  I use both patterns at 

different levels of my nested Reduce GPU implementation. 
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Tree Reduce

 

Run Reduce 

 

Figure 6.3: Parallel Reduce Patterns. This figure Illustrates two parallel patterns to reduce n elements 

using p threads.  In the left panel is a tree reduce pattern of 16 elements in 4 = log2(16) stages.  In the right 

panel is a Run Reduce pattern of 16 elements in two stages (serially reduce 4 element runs into run sums 

using 4 threads, serially reduce 4 run sums into a final sum using 1 thread). 

The Tree Reduce pattern (see Figure 6.3, left panel), a fine-grained reduction, is easy to visualize 

and implement.  It reduces two input elements per thread to one output sum at each stage and, in so doing, 

takes log2(n) stages in total to fully reduce n elements down to one final sum.  Total work is linear = 2n = 

n+n/2+n/4+…+2+1.  Total depth is logarithmic = log2(n).  Total I/Os is linear = 3n (or 2n). 

Tree Reduce, however, has three distinct disadvantages: 

 Its relatively high kernel launch costs, since log2(n) stages are required 

 Its suboptimal processor utilization, since each stage launches half the threads of the 

previous stage 

 Its relatively high I/O transfer costs, since intermediate sums from each stage must be 

transferred to the next using 3n I/Os if all sums are stored and 2n I/Os if continuing 

threads keep their sums 

The Run Reduce pattern (see Figure 6.8 right panel), a coarse-grained reduction, is even easier to 

visualize and implement.  It partitions the n data elements across p threads (cores) into even runs (run 

length=⌈𝑛/𝑝⌉).  In the first reduce stage, each thread serially reduces its assigned run, producing p run-
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sums (one per run). In the second reduce stage, the p run-sums are serially reduced by a single thread 

(core) to a final sum.  Total work is linear = n+p.  Total depth is linear = ⌈𝑛 𝑝⁄ ⌉+p.  Total I/Os is linear = 

n+p+1.  Choosing p =√𝑛, results in minimum depth = 2√𝑛 and work = n+√𝑛. 

As described, the second stage of Run Reduce has essentially the worst possible processor 

utilization: only one thread is active.  As a result, in my actual GPU implementation, I replace the second 

stage’s serial reduce by a nested run-reduce and tree-reduce to involve more parallel threads. 

6.4.2 Scan Parallel Patterns 

Like Reduce, Scan looks at all data values. Unlike Reduce, Scan must output a prefix sum for 

each input data value that depends either on all previous data values or on some previous data values or 

sums.  There are two natural Scan patterns (see Figure 6.4), Scan-then-Fan and Reduce-then-Scan.  With 

both Scan patterns, the input data is partitioned evenly into per-thread runs.  For my own GPU Scan 

implementation, I use both patterns at different levels of the CTA hierarchy. 

  

Figure 6.4:  Two Parallel Scan patterns 1) Scan-then-Fan (Top panel), and 2) Reduce-then-Scan (Bottom panel). 

Scan-then-Fan:  Scan-then-Fan (see Figure 6.4, left panel) is similar to the Run-Reduce pattern and 

takes five stages: 

1. Scan Run: Each thread serially scans its assigned run.  Each run is locally correct but is 

missing a prefix sum from all preceding thread runs. 

2. Store Run-Sums: Per-thread run-sums from stage 1 are stored in another array. 

3. Scan Run-Sums: The per-thread run-sums from stage 1 are inclusively scanned. 
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4. Reach Back: The missing prefix-sums needed in stage 1 are found as the exclusive scan 

of the stage 1 run-sums, which were obtained from the inclusive scan by reaching back 

one entry. 

5. Run Update (AKA fan): The missing prefix-sum for each thread is accumulated into all 

locally scanned elements in each per-thread run to generate the final scanned results.  

This stage is also known as a fan. 

The Scan-then-Fan pattern takes ~ 4 I/Os per data element, since both stage 1 and stage 5 must 

read and write each element.  The Scan-then-Fan pattern with input size n and p threads uses linear Work 

= 2n+2p, linear Depth = 2[n/p]+2p, and linear Total I/Os = 4n+4p. 

Reduce-then-Scan:  The Reduce-then-Scan pattern (Figure 6.9, right panel) is derived from the Scan-

then-Fan pattern.  In stage 1, Scan Run, the serial Scan is replaced by a serial Reduce to compute the 

stage 1 run-sums, and in stage 5, Fan, the run update becomes a serial Scan initialized with the missing 

prefix-sums from stage 4.  This scan pattern decreases the total I/Os per element since the first stage now 

writes a single run sum instead of an entire run.  The Reduce-then-Scan pattern with input size n and p 

threads uses linear Work = 2n+2p, linear Depth = 2[n/p]+2p, and Total I/Os = 3n+4p. 

6.5 Reduce and Scan Overview 

For correctness and for good GPU throughput, both of the Reduce and Scan primitives need to do 

the following: 

 Map their parallel patterns onto the GPU’s 2-level CTA hierarchy 

 Support consecutive access for non-commutative summation 

 Support both ILP & TLP 

 Mitigate GPU issues of converting between warp and sequential views, bank conflicts, and 

constraints on occupancy 

At a high level, My GPU Reduce primitive is based on the Run-Reduce pattern and is 

implemented using two GPU kernels — GPU_Reduce and GPU_SumRows.  My GPU Scan primitive is 
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based on the Reduce-then-Scan pattern and is implemented using three GPU kernels — GPU_Reduce, 

GPU_SumsToStarts, and GPU_Scan.  The GPU_Reduce and GPU_Scan kernels do most of the work 

for each primitive. 

The basic idea behind these two implementations, as with so many algorithms, is to divide the 

large Reduce and Scan problems into smaller instances and apply recursion.  This division, however, is 

complicated by the need to work with the GPUs 2-level CTA hierarchy (grid of thread blocks, threads 

within a thread block).  To support sequential access within the 2-level CTA, I implement the following 

two-part solution: 

CTA Level 1 (grid of thread blocks):  For consecutive data access at the first CTA level, 

both GPU_Reduce and GPU_Scan use my Row DASk, described in Chapter 5.  This DASk 

partitions data into fixed-size data blocks, which it then distributes across a fixed number r of 

rows, resulting in c columns.  It then assigns each of the r data rows to a thread block in the grid.  

Each thread block subsequently works along its assigned data row sequentially, data block by 

block. 

CTA Level 2 (threads within a thread block):  Consecutive access within the data block by 

each thread in the thread block is handled by the BlockReduce and BlockScan methods.  Both 

methods take as input a full fixed-size data block.  The 3-level nested BlockReduce method 

reduces the entire data block to a single block-sum, which is then accumulated into the current 

row-sum.  The 3-level nested BlockScan method sequentially6 scans the entire input block into a 

scanned prefix sum (inclusive or exclusive as requested), which is updated with the current row-

start (missing row prefix). The block of scanned results is then output. 

Reduce Overview:  With the GPU_Reduce kernel, each thread block initializes a row-sum to identity 

and then marches along its assigned data row, block by block, calling BlockReduce on each data block.  

                                                      
6  I would have liked to have skeletonized these methods as sequential block access skeletons (BASks), but because 

both methods depend on pass-through parameters from my Row DASk as well as parameters for ILP, TLP, 

occupancy, and bank conflict mitigation, both methods are too unwieldy to generalize. 
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After each BlockReduce call, each thread block accumulates the resulting block-sum into the current 

row-sum.  The GPU_Reduce kernel generates r row-sums as output that still need to be reduced to the 

final total-sum. 

Since the GPU_Reduce kernel outputs r row-sums to be consumed as input by the GPU_SumRows 

kernel, I deliberately choose my fixed number of rows (r) to be small (r ≤ 1,000).  This allows 

GPU_SumRows to reduce the r row-sums to the final sum as output using a single instance of the 

BlockReduce method with a single thread block (GridSize =1).  Calling the GPU_Reduce kernel 

followed by the matching GPU_SumRows kernel implements the full GPU Reduce primitive. 

Efficient I/O access for Reduce:  Given r rows and n input values and assuming r is much less than n 

(r ≪ n),, then the Reduce primitive needs only a little over one global memory transfer per data warp on 

average.  The GPU_Reduce kernel reads each input exactly once from global memory to reduce n inputs 

to r row-sums GPU_SumsRows reduces those r row sums into the final sum.  Coalescence is respected by 

using the warp-by-warp BASk to load input. This arrangement means that I only need one transfer per 

data warp (32 data elements), which results in ⌈
𝑛

32
⌉ total data transfers.  Combining transfers from both 

kernels results in ⌈
𝑛

32
⌉+r+⌈

𝑟

32
⌉+1=  (𝑛 + 𝑟) total I/Os for the GPU Reduce primitive. 

Scan Overview:  For the GPU Scan primitive, I must generate the missing row prefixes for each data 

row before locally scanning each data block along each data row.  The GPU_Reduce kernel generates r 

row-sums.  The GPU_SumsToStarts kernel exclusively scans the r row-sums as input into r row-starts 

as output using a single instance of the BlockScan method with a single thread block (GridSize = 1).  

These r row-starts provide the missing row prefixes for globally correct scan results along each data row. 

Finally, with the GPU_Scan kernel each thread block loads its missing row-start (row prefix) from the 

row-starts array and then marches along its assigned data row, block by block, locally scanning each data 

block by calling BlockScan.  The current row-start is also accumulated as a prefix into the local scanned 

results to generate global scanned results that are then output.  After each data block is scanned, the 
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resulting block-sum is accumulated into the current row-start to prepare for the next data block along the 

row. Calling all three scan kernels in order (GPU_Reduce, GPU_SumsToStarts, and GPU_Scan) 

implements the full GPU Scan primitive. 

Efficient I/O access for Scan:  Given r rows and n input values and assuming r is much less than n (r 

≪ n), then the GPU Scan primitive needs a little over three global memory transfers per data warp on 

average.  GPU_Reduce reads each input exactly once to reduce n inputs to r row-sums; 

GPU_SumsToStarts exclusively scans these r row-sums into r row-starts; and GPU_Scan reads each 

row-start.  GPU_Scan then reads a data block, combines the row-start with the scan of the data block, and 

writes out the final prefix sum.  I respect coalescence in my GPU_Reduce and GPU_Scan kernels by 

loading input and storing output using a warp-by-warp view of global memory. This approach means that 

I only need one transfer per data warp (32 data elements) and results in ⌈
3𝑛

32
⌉ total data transfers across 

both kernels (GPU_Reduce and GPU_Scan).  Combining transfers from all three kernels results in 

⌈
3𝑛

32
⌉+2r+⌈

2𝑟

32
⌉ =  (𝑛 + 𝑟) total I/Os for the GPU Scan primitive. 

6.6 Reduce and Scan Implementation Details 

To implement Reduce and Scan, I present several helper methods in a bottom-up manner.  

 6.6.1 Run Load/Store:  Each thread transfers a short run of data between memory and registers. 

 6.6.2 Serial Reduce/Serial Scan:  Each thread serially reduces or scans a short run of data kept in 

registers. 

 6.6.3 Warp Reduce/Warp Scan:  All threads in one thread warp cooperatively scan a single data warp 

kept in shared memory.  The final-sum is found in the last column after the scan completes. 

 6.6.4 Run Update:  Each thread sums a common prefix into a short run of data in registers. 

 6.6.5 Block Reduce/Scan:  The Run Load/Store, Serial Reduce/Scan, Warp Reduce/Scan, and Run 

Update methods are nested to recursively reduce or scan an entire data block. 
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 6.6.6 Reduce/Scan primitives:  The full Reduce primitive on a GPU is implemented using two GPU 

kernels— GPU_Reduce, and GPU_SumRows—which follow the Run-Reduce pattern.  The full Scan 

primitive is implemented using three GPU kernels— GPU_Reduce, GPU_SumsToStarts, and 

GPU_Scan—which together follow the Reduce-then-Scan pattern. 

I show a high-level overview of both Reduce and Scan in Figure 6.5.  I aim for my Reduce and 

Scan primitives to be correct, generic, and fast.  I verify correctness by comparison against baseline CPU 

methods.  Genericity is supported by C++ template parameters (Alexandrescu, 2001).  Throughput 

experiments on TLP and ILP are supported by two template parameters, ‹nWarps, nWork›, each in the 

range {1-8}. 

 

Figure 6.5:  High level overview of Reduce in two steps (purple lines) and Scan in three steps (blue lines).  Reduce:  

1) The reduce rows step reduces n data items to r row sums.  2) The reduce row sums step reduces r row sums to the 

final sum.  Scan:  1) The reduce rows step was already discussed. 2) The sums to starts step exclusively scans r row 

sums into r row starts.  3) The scan rows step scans n data elements into n scanned prefix sums using the r row starts 

as starting prefix sums for each row.  Both the reduce rows and scan rows steps use my Row DASk to have each 

thread block march down its assigned data row, processing data in parallel, data block by block.  Row sums are 

carried along each row accumulating block sums after scanning each data block. 

 

 

…

…

…

 

…

…
…

…
…

…

Data
Block1

Data
Block2

…

…Thread
Block2

 

…
Thread
Block1

…
Thread
Blockr

 

…

3. Scan Rows1. Reduce Rows 2. Sums to Starts

2. Reduce Row SumsOut(1)
Final Sum

In(r)
RowSums

In(n)
Data

Out(r)
RowSums

In(r)
Row Starts

Thread
Block1

Thread
Block2

Thread
Blockr

 

Data
Block1

Data
Block2

Data
Blockc

…



 

149 

 

6.6.1 RunLoad and RunStore Methods 

The RunLoad and RunStore methods transfer short sequential runs between memory (global or 

shared) and registers.  These methods support both sequential and strided access.  I briefly discuss these 

methods in terms of parameters, range checking, total cycles, and issues. 

Parameters:  Both RunLoad and RunStore require C++ template parameters.  The RunLoad method 

requires three template parameters -- valT, WorkStride, nWork. The RunStore method requires four 

template parameters -- the same three as RunLoad plus Identity (𝕀).  The valT parameter is simply a 

generic placeholder for different data types.  The nWork parameter specifies how many data elements 

each thread loads (stores) per data block, usually {1-8}.  Using more elements increases ILP efficiency 

via software pipelining at the cost of more registers.  WorkStride specifies the stride between adjacent 

memory accesses per thread. Consequently, a stride of 1 is sequential access, a stride of 32 supports warp-

by-warp access, and a padded stride of 33 (32+1) can help avoid bank conflicts.  The Identity (𝕀) 

parameter is used as a default value for out of range loads in RunLoad.  Since these template parameters 

are compile time constants, only relevant instructions are compiled into the GPU kernel. 

Range Checking:  Recall that the Row DASk requires that the programmer implement four body 

templates: one without range checking *_RC_NONE (…), and three range-checked versions, 

*_RC_START, *_RC_STOP, *_RC_BOTH, that check individual loads (stores) against the ranges [start 

…), (… stop] and [start, stop], respectively. Figure 6.6 shows implementations for two of the range 

intervals, the open (…) and closed [start, stop] intervals. The implementations for the two half-open 

intervals [start, …) and (…, stop] and the family of four RunStore methods are similar. 
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template< valT, WorkStride, nWork > 
RunLoad_RC_NONE( S, v1, v2, v3, … )  // *NO* range check 

  // Load Run  
     // All “if (nWork >= *) { … }” wrapper statements  
     // disappear at compile time, leaving just the inner … statement. 
     // Any unused statements based on the nWork size also 
     // disappear at compile time. 
  if (nWork >= 1) { v1 = S[(0*WorkStride)]; } 
  if (nWork >= 2) { v2 = S[(1*WorkStride)]; } 
  if (nWork >= 3) { v3 = S[(2*WorkStride)]; } 
  if (nWork >= 4) { v4 = S[(3*WorkStride)]; } 
  ... 

end RunLoad 

template< valT, WorkStride, nWork, 𝕀 >  // Range check [start, stop] 
RunLoad_RC_BOTH( A, dataOff, start, stop, v1, v2, v3, ... ) 

  S = (valT *)&(A[dataOff]);     // Get starting pointer 

  // Get offsets 
  if (nWork >= 1) { GI_1 = dataOff + (0*WorkStride); } 
  if (nWork >= 2) { GI_2 = dataOff + (1*WorkStride); } 
  if (nWork >= 3) { GI_3 = dataOff + (2*WorkStride); } 
  ... 

  // Range Check offsets against [start, stop] 
  if (nWork >= 1) { T1 = (start <= GI_1) & (GI_1 <= stop); } 
  if (nWork >= 2) { T2 = (start <= GI_2) & (GI_2 <= stop); } 
  if (nWork >= 3) { T3 = (start <= GI_3) & (GI_3 <= stop); } 
  ... 

  // Load Run (range check accesses) 
  if (nWork >= 1) { v1 = 𝕀; }  // Default to Identity (if out of range) 
  if (nWork >= 2) { v2 = 𝕀; } 
  if (nWork >= 3) { v3 = 𝕀; } 
  ... 
  if (nWork >= 1) { if (T1) { v1 = S[(0*WorkStride)]; } } 
  if (nWork >= 2) { if (T2) { v2 = S[(1*WorkStride)]; } } 
  if (nWork >= 3) { if (T3) { v3 = S[(2*WorkStride)]; } } 
  ... 

end RunLoad_RC_BOTH 

Figure 6.6:  The RunLoad_RC_NONE template method (upper panel) loads a short run from memory 

into registers without any range checking.  The RunLoad_RC_BOTH template method (lower panel) is 

similar but does more work to prevent out of range memory accesses against the range [start, stop].  

Code in light grey gets elided away at compile time. 

Total Cycles:  In this section, I introduce formulas for how many machine cycles these methods take to 

run.  Assume n = run length to load; G & S are the number of cycles to transfer a data value between 

global memory (G) or shared memory (S) and registers respectively; and k is the number of cycles it takes 

for an instruction to traverse the instruction pipeline.  If so, then the total cycles for RunLoad or RunStore 
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to transfer a data run is (G + k + n-1) for global memory transfers, and (S + k + n-1) for shared memory 

transfers. 

Load/Store Issues:  While writing these Load/Store methods, I dealt with two main issues -- first, 

accessing global memory requires coalescence for good throughput; second, accessing shared memory 

can lead to bank conflicts.  I discuss both issues in more detail in Section 6.7. 

6.6.2 SerialReduce (SRn) and SerialScan (SSn) Methods 

The SerialReduce and SerialScan methods reduce or scan short data runs of length n, one 

serial run per thread.  The short runs are kept in registers for each thread in a thread block (or thread 

warp).  (I denote these methods as SRn or SSn, meaning SR8 or SS8 for n = 8).  Obviously, one could 

directly apply a sequential reduce or sequential scan on the run kept in registers (as shown in Table 6.3), 

but such an approach creates RAW dependencies since the output from each sum becomes the input for 

the next sequential sum and therefore each dependent summation must stall for the length of the GPU 

instruction pipeline, k.  Instead, for short runs, I use tree-based adders, which chip architects use to 

parallelize binary addition, in order to improve ILP for both SerialReduce and SerialScan.  Tree-

based adders, such as Sklansky’s adder (as shown in Figure 6.2) have dependencies from one tree stage to 

the next but no dependencies within a stage.  Each thread can sum stage by stage and increase ILP by 

decreasing stalls within stages.  A conservative estimate of the total cycles for these serial methods is 

nSums + k∙nStages. 

For both serial reduce and serial scan, I base my code on the Sklansky adder (see Figure 6.2).  

The serial reduce (left panel) drops sums that do not contribute to the final sum and takes up to (n-1) + 

k∙log2(n) total cycles.  This approach is always faster than sequential reduce.  The serial scan (right panel) 

uses all sums in all stages and takes up to (n/2)∙log2n+k∙log2n total cycles.   
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Serial Reduce 

template< valT, sumT, rL >  
SerialReduce( runSum, ⨁, v1, v2, … ) 

// Sklansky Tree-Reduce 
if (rL >  2) { v2 = v1⨁v2; } //S1 
if (rL >= 4) { v4 = v3⨁v4; } 
if (rL >= 6) { v6 = v5⨁v6; } 
if (rL >= 8) { v8 = v7⨁v8; } 
if (rL >  4) { v4 = v2⨁v4; } //S2 
if (rL == 7) { v7 = v6⨁v7; } 
if (rL >= 8) { v8 = v6⨁v8; } 

// Run Sum (select on run length) 
if (rL == 8) { runSum = v4⨁v8; }//S3 

if (rL == 7) { runSum = v4⨁v7; } 
if (rL == 6) { runSum = v4⨁v6; } 
if (rL == 5) { runSum = v4⨁v5; } 
if (rL == 4) { runSum = v2⨁v4; } 
if (rL == 3) { runSum = v2⨁v3; } 
if (rL == 2) { runSum = v1⨁v2; } 
if (rL == 1) { runSum = v1; } 

end SerialReduce 

Serial Scan 

template< valT, sumOp, rL >  
SerialScan( ⨁, v1, v2, v3, v4, … ) 

// Sklansky Scan 
  if (rL >= 2) { v2=v1⨁v2; } //S1 
  if (rL >= 4) { v4=v3⨁v4; } 
  if (rL >= 6) { v6=v5⨁v6; } 
  if (rL >= 8) { v8=v7⨁v8; } 

  if (rL >= 3) { v3=v2⨁v3; } //S2 
  if (rL >= 4) { v4=v2⨁v4; } 
  if (rL >= 7) { v7=v6⨁v7; } 
  if (rL >= 8) { v8=v6⨁v8; } 

  if (rL >= 5) { v5=v4⨁v5; } //S3 
  if (rL >= 6) { v6=v4⨁v6; } 
  if (rL >= 7) { v7=v4⨁v7; } 
  if (rL >= 8) { v8=v4⨁v8; } 

end SerialScan 

Figure 6.7:  Serial Reduce and Serial Scan for an 8 element run [v1-v8] in 3 stages (log28).  Code in 

light grey gets elided away at compile time. 

For serial scan, I tested the Sklansky, Kogge-Stone, and Brent-Kung adders (see Figure 6.8), and 

found that Sklansky is fastest for scans on short runs (n ≤ 16) and for n ≤ 64 it is faster than sequential 

scan. Brent-Kung is fastest on longer runs (n > 16) and will always be faster than a sequential scan. For 

both serial reduce and serial scan the number of registers grows linearly in n, so I recommend keeping 

sequential runs short (n ≤ 8) to avoid undue register pressure.  Being pragmatic, this means that there is 

no need for the Brent-Kung version of serial scan on current GPU architectures. 
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Figure 6.8:  Serial Scan Total cycles – Total cycles usage by Sequential (in regs), Kogge-Stone, Sklansky, and 

Brent-Kung methods for increasing run lengths, n in [2..32].  Note:  Not shown Sequential (in shared memory) 

was about 5.3× slower (1684.4/315.4) than Sequential (in regs) in the worst case (n=32).  For n = 8, Sklansky is 

about 9.2× faster [445.5/48.3] than Sequential (in shared memory) and about 1.77× faster [85.7/48.3] than 

Sequential (in regs). 

Parameters:  SerialReduce and SerialScan both take three template parameters -- valT, sumT, and 

rL. The valT parameter provides a generic place holder for different data types to scan. The sumT 

parameter is the data type of the sum operator (typically as a functor). The rL parameter is the run length 

of the data run in registers to be scanned.  These methods also have function parameters, up to eight input 

register values [v1..v8] to scan (all of type valT), a sum operator (⨁) of type sumT, and either outputs the 

runSum for serial reduce or outputs the inclusive scan in those same 8 registers [v1..v8]. 

Total Cycles:  Assume n is the length of the short run to scan and k is the total number of cycles it takes 

for an instruction to traverse the instruction pipeline.  If so , the total cycles (TC) these Sklansky tree-

based SerialReduce and SerialScan methods take are TC ≤ (n-1) + k∙log2n  and TC ≤ 

(n/2)∙log2n+k∙log2n respectively.  For short runs, these results compare favorably with the more 

obviousSequential Serial Reduce and Scan, which both take TC = k(n-1) cycles.  On the GTX Titan 

(Kepler) for a run length of 8, my tree-based serial scan is 9.2× faster than a sequential scan in shared 
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memory (48.3 vs. 446.0 total cycles) and 1.77× faster than a sequential scan in registers (48.3 vs. 85.7 

average total cycles). 

As written, my tree-based SerialReduce and SerialScan code should take exactly n registers 

and emit exactly n-1 and (n/2)∙log2n sum instructions respectively.  Unfortunately, the CUDA compiler, 

in an attempted optimization, reorders the code, resulting in extra register use and unnecessary stalls that 

take up to 10% more cycles.  I circumvent this by overloading the sum operator to emit .PTX assembly 

(shown in Figure 6.9). 

// Generic ADD functors 
template < typename valT > 
struct CPU_Add 
{ 
  __host__ __forceinline__ 
  valT operator()( valT a, valT b )  
    { 
        return (a+b); 
    }  
}; 

template < typename valT > 
struct GPU_Add 
{ 
  __device__ __forceinline__ 
  valT operator()( valT a, valT b )  
    { 
        return (a+b); 
    }  
}; 

// Overload via Partial Specialization 
template <> 
struct GPU_Add< U32 > 
{ 
  __device__ __forceinline__ 
  U32 operator()( U32 a, U32 b ) 
    { 
      U32 c; 
      asm volatile ( 
        "add.u32 %0,%1,%2;\r\n" 
        : "=r"(c) : "r"(a), "r"(b) ); 
      return c; 
    } 
}; 

template <> 
struct GPU_Add< U64 > 
{ 
  __device__ __forceinline__ 
  U64 operator()( U64 a, U64 b ) 
    { 
      U32 c; 
      asm volatile ( 
        "add.u64 %0,%1,%2;\r\n" 
        : "=l"(c) : "l"(a), "l"(b) ); 
      return c; 
    } 
}; 

Figure 6.9:  Add functors for CPU & GPU (left panel) and overloaded ADD functors for the GPU (right panel) that 

emit .PTX assembly to mitigate the de-optimization issue.  The volatile keyword in the asm context requests 

that the CUDA compiler should avoid optimizing the wrapped .PTX assembly instructions. 

(The volatile modifier on the asm keyword requests that the CUDA compiler should avoid 

optimizing the wrapped .PTX assembly instructions, which effectively prevents CUDA from reordering 

the summation chain.)  Of course, such an approach means that the CPU and GPU versions of my sum 

functors need to be separated for correct compilation.  All in all, this work-around avoids the unwanted 

stalls. However, it unfortunately does not prevent CUDA from generating extra registers. 
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6.6.3 WarpReduce (WRn) and WarpScan (WSn) methods 

Duane Merrill’s [Merrill 2010] efficient WarpScan method (denoted as WSn, meaning, WS8 for n = 

8) cooperatively scans an entire data warp using one thread warp (see Figure 6.10). 

 

Figure 6.10:  Dr. Merrill’s Warp-Scan based on the Hillis-Steele variant of the 

Kogge-Stone adder.  Orange elements represent identity (𝕀) values. 

Dr. Merrill’s fixed-size GPU algorithm is based on the Hillis-Steele parallel algorithm (Hillis and 

Steele, 1986), which is based on the Kogge-Stone adder (Kogge and Stone, 1973).  The Hillis-Steele 

algorithm trades an extra half-warp of pad columns to eliminate branching (leftmost 8 columns of orange 

identity elements in Figure 6.10).  After the scan, the last element in the warp array contains the total sum. 

Therefore, this WarpScan method can also implement WarpReduce (denoted as WRn ie WR8 for n = 8). 

For my WarpScan and WarpReduce experiments, I implemented parallel scan code based on 

Kogge-Stone, Sklansky and Brent-Kung adders but Kogge-Stone was the clear performance winner (see 

Figure 6.11).  Both Sklansky and Brent-Kung require extra branching operations and more registers.  

Brent-Kung also requires twice as many logarithmic stages, 2∙log2(n)–1 vs. log2(n). 
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Figure 6.11:  Warp Scan Total cycles – Total cycles used by Kogge-Stone, Sklansky, and Brent-Kung Warp-Scan 

methods for increasing run lengths, n in [2..32] as powers of two on the GTX Titan, All three methods use shared 

memory to communicate results across threads.  Also shown is an alternate Kogge-Stone method (dashed line) that 

uses registers to communicate results across threads via the .PTX SHUFFLE command resulting in fewer cycles. 

 Figure 6.12 shows two implementations of Warp-Scan based on the Kogge-Stone adder layout.  

The left panel shows unrolled code that shares intermediate prefix sums across using shared memory.  

The first iteration reaches back one column (-1), each subsequent iteration doubles the number of columns 

to reach back.  After five iterations (5 = log2(32)) the exclusive prefix sum for the entire data warp has 

been computed.  The last valid data column contains the total sum (warp-sum) that is needed for Warp-

Reduce.  This implementation will work for both Fermi and Kepler architectures.  The right panel shows 

.PTX code that shares intermediate prefix sums across threads using registers via the new Kepler specific 

“Shuffle” command.  The “Shuffle” warp-scan is faster and avoids having to use shared memory at a loss 

of generality as the desired sum operator (⨁) must be hard-coded.  WarpReduce is the exact same 

function as WarpScan, except the focus is on extracting the total-sum from the last data column in shared 

memory (or from the last thread for the shuffle version). 
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Template <valT, 𝕀, fill> 
WarpReduce_ShMem( fSum,rSum, ⨁, WS ) 

if (fill) 
  WS[-16] = 𝕀;  // Zero out pads 
  WS[0] = rSum; // Set input to scan 
else 
  rSum = WS[0]; // Get initial scan 
end if 

// Warp-Scan (Kogge-Stone layout) 
WS[0] = rSum = WS[ -1]⨁rSum; 
WS[0] = rSum = WS[ -2]⨁rSum; 
WS[0] = rSum = WS[ -4]⨁rSum; 
WS[0] = rSum = WS[ -8]⨁rSum; 
WS[0] = rSum = WS[-16]⨁rSum; 

fSum = sm_S3[S3_last]; // Final Sum 

end WarpReduce_ShMem 

U32 WarpScan_Regs_AddU32( U32 inVal ) 
  U32 outVal = inVal; 
  asm volatile 
  ( 
  "{\n\t"   // Local Scope (start) 
  ".reg .u32 RB;\n\t" // Reach Back 
  ".reg .pred P0;\n\t"// Active(T/F) 
  "shfl.up.b32 RB|P0, %0,0x1,0x0;\n\t" 
  "@P0 add.u32 %0, RB, %0;\n\t" 
  "shfl.up.b32 RB|P0, %0,0x2,0x0;\n\t" 
  "@P0 add.u32 %0, RB, %0;\n\t" 
  "shfl.up.b32 RB|P0, %0,0x4,0x0;\n\t" 
  "@P0 add.u32 %0, RB, %0;\n\t" 
  "shfl.up.b32 RB|P0, %0,0x8,0x0;\n\t" 
  "@P0 add.u32 %0, RB, %0;\n\t" 
  "shfl.up.b32 RB|P0,%0,0x10,0x0;\n\t" 
  "@P0 add.u32 %0, RB, %0;\n\t" 
  "}\n\t"  // Local Scope (stop) 
  : "+r"(outVal)  // ASM operands 
  ); 
  return outVal; 
end WarpScan_Regs_AddU32 

Figure 6.12:  WarpReduce and WarpScan methods: These methods are implemented using the Kogge-

Stone adder, Hillis-Steele variant.  The left panel contains code that shares results across threads using 

shared memory.  The right panel contains Kepler-only code that shares results across threads using 

registers via the .PTX shuffle command.  Note: The volatile key word used when declaring the warp-

scan array pointer into shared memory is very important for correct behavior.  Without it, the CUDA 

compiler will optimize away some of the required instructions. 

WarpScan and WarpReduce are the fastest known GPU methods for scanning and reducing an 

entire data warp in parallel.  Their high performance comes from having low depth (5 stages = log2(32)), 

from having few instructions per stage (3 for the shared memory version, 2 for the shuffle version), and 

by avoiding branching via reach-back padding.  Unfortunately, there is a RAW dependency between each 

pair of instructions in the instruction chain that makes it hard for the SM scheduler to exploit ILP in order 

to hide stalls.  On the other hand, providing multiple parallel thread warps for the SM scheduler to exploit 

TLP does work to hide stalls. 

Total Cycles:  Assume n is the run length, S is the amount of time to transfer data between shared 

memory and registers, and k is the instruction pipeline length.  Then, the shared memory version of 

WarpScan takes [(2S+k)∙log2n + 2S] total cycles  and the shuffle version of WarpScan takes [2k∙log2n + 

k] total cycles. 
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6.6.4 RunUpdate (RUn) method 

The RunUpdate method (denoted as RUn, i.e. RU8 for n = 8; this is also known as Fan) updates 

a short run of n elements (n ∈ [2..32]) with a common prefix, which is accumulated into each and every 

run value.  My RunUpdate implementation is fairly straightforward (see Figure 6.13).  Since each 

individual update is independent of all other updates, there are no RAW dependencies between 

instructions, so this method has strong support for hiding stalls via ILP.  This method takes O(n) = k + n-1 

total cycles.  The ScanUpdate method is not shown (denoted as SUn, i.e. SU8 for n=8). However, it 

basically follows a SerialScan immediately with a RunUpdate on the same short run. 

template< valT, sumT, rL > 
RunUpdate( prefix, ⨁, v1, v2, v3, v4, … ) // Add prefix into run 

  if (rL >= 1) { v1 = prefix⨁v1; } 
  if (rL >= 2) { v2 = prefix⨁v2; } 
  if (rL >= 3) { v3 = prefix⨁v3; } 
  if (rL >= 4) { v4 = prefix⨁v4; } 
  if (rL >= 5) { v5 = prefix⨁v5; } 
  if (rL >= 6) { v6 = prefix⨁v6; } 
  if (rL >= 7) { v7 = prefix⨁v7; } 
  if (rL >= 8) { v8 = prefix⨁v8; } 

end RunUpdate 

Figure 6.13:  The RunUpdate method for short runs (n ≤ 8).  Code in light grey gets elided away at 

compile time. 

 

6.6.5 BlockReduce and BlockScan Methods 

I use the RunLoad, RunStore, SerialReduce, SerialScan, WarpScan, and RunUpdate 

methods as building blocks to implement a 3-level nested reduce or scan over an entire data block.  The 

BlockScan method consists of seven stages (Input, S1-S5, and Output).  For BlockScan, the input is 

one data block of data (DBS elements), and the output is one data block of {inclusive | exclusive} scanned 

results.  The stages are paired as Input and Output, S1 and S5, S2 and S4.  The stage S3 is nested within 

the pair S2 and S4, and stages S2 and S4 are nested within the pair S1 and S5 and the Input and Output 

stages wrap the rest of the stages S1-S5.  The BlockReduce method uses only the first four stages (Input, 

S1-S3) from BlockScan with the SerialReduce and WarpReduce methods replaced by the 

corresponding SerialScan and WarpScan methods.  For BlockReduce, the input is one data block of 
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data (DBS elements), and the output is a single block-sum.  For BlockReduce, stage S3 is nested from 

stage S2 which in turn is nested from stage S1 and the input stage loads the original DBS data elements to 

be reduced before stage S1 begins its work.  To support the sharing of intermediate sums and prefixes 

across the stages and across the threads, there are also three arrays (S1-S3) kept in shared memory. 

Input:  For all threads in the thread block, each thread loads a short sequential run of ‹nWork› 

items from memory into registers.  The entire thread block (TBS) loads DBS data elements from 

global memory (DBS = nWork∙TBS). 

S1 (SerialScan #1):  For all threads in the thread block, each thread serially scans, or reduces, 

its ‹nWork› run to a single S2 run-sum.  Each thread then stores its S2 run-sum into the S2 array.  

The entire thread block stores TBS S2 run-sums into shared memory (TBS = nWarps∙WarpSize). 

S2 (SerialScan #2):  For the first thread warp of each thread block (all other warps idle), each 

thread loads and inclusively scans, or reduces, a short sequential run of ‹nWarps› S2 run-sums to 

a single S3 run-sum.  Each thread in the active thread warp stores its S3 run-sum into the S3 

array.  The active thread warp stores WarpSize (32) S3 run-sums. 

S3 (WarpScan):  All the threads in the first (active) thread warp then cooperatively warp-scan 

the S3 run-sums into an inclusive S3 prefix sum.  The final block-sum is the last entry of this 

scanned S3 array. 

S4 (RunUpdate #1):  This stage effectively unwinds the nesting of stage S2, each active S2 

thread retrieves its missing prefix-sum from stage S3 by reaching back one entry in the scanned 

S3 array.  This exclusive prefix-sum is then accumulated into all the scanned S2 run-sums, and 

the updated S2 run-sums are stored back into the S2 array as an exclusive run (by reaching back 

one register entry on output).  The active thread warp stores TBS updated S2 run-sums into the S2 

array. 

S5 (RunUpdate #2):  This stage effectively unwinds the nesting of stage S1, All threads in the 

thread block load their missing exclusive prefix-sums from the S2 array, as computed in stage S4.  
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The S2 prefix is first accumulated with the current row-start (missing data row prefix).  This 

common prefix is accumulated into the locally scanned S1 run to achieve globally correct scan 

results.  The final block-sum is then accumulated into the current row-start to prepare for the next 

data block along the row.  The resulting {inclusive | exclusive} scanned run is then stored back 

into the S1 array based on the requested type of scan.  The entire thread block stores DBS results. 

Output:  This stage is paired with the input stage.  For all threads in the thread block, each thread 

stores its short-scanned run of ‹nWork› results from registers back into global memory.  The 

entire thread block stores DBS scanned results into global memory. 

 

BlockScan Register Optimization:  For block scans, I preserve the ‹nWork› and ‹nWarps› runs in 

registers between the paired stages S1 and S5 as well as between the paired stages S2 and S4, respectively. 

This approach decreases the required I/Os of the nested Scan-then-Fan pattern used in BlockScan from 

four to two and improves performance at the cost of increased register pressure. 

 

My four-stage BlockReduce implementation for the *NO* range checking 

(BlockReduce_RC_NONE) case is shown in Figure 6.14.  The code for my other three range checked 

versions of BlockReduce (*_RC_START, *_RC_STOP, and *_RC_BOTH) as required by my Row 

DASk are not shown.  The code is quite similar with only minor differences in the RunLoad and 

RunStore methods to support range checking. 
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BlockReduce Method 
template< valT, sumT, … , nWarps, nWork, 𝕀 > 
BlockReduce_RC_NONE( blockSum, inPtr, tid, ⨁ 
                     S1_store, S1_run, S2_store, S2_run, S3_base ) 

  // In parallel across all threads in entire thread block 

  // INPUT: Load short sequential <nWork> run 
     // Convert between warp & sequential view 
  RunLoad_RC_NONE<valT, WarpSize, 0, nWork >( inPtr, S1_v1, S1_v2, ... ); 
  RunStore_RC_NONE<valT,S1_warpPad,0u,nWork>( S1_store, S1_v1, S1_v2, ... ); 
  RunLoad_RC_NONE<valT, 1u, 0u, nWork>( S1_run, S1_v1, S1_v2, ... ); 

  // S1: Serial Reduce <nWork> run 
  SerialReduce<valT, sumT, nWork>( S1_runSum, ⨁, S1_v1, S1_v2, ... ); 
  S2_store[0] = S1_runSum;  // Store S1 runSum in S2 array 

  if (nWarps >= 2u) { __syncthreads(); } // Barrier 

  if (tid <= WarpSize)  // In parallel across all threads in first warp 
    // S2: Load & Serial Reduce <nWarps> run of S1 run-sums 
    RunLoad_RC_NONE<valT, 1u, 0u, nWork>( S2_run, S2_v1, S2_v2, ... ); 
    SerialReduce<valT, sumT, nWork>( S2_runSum, ⨁, S2_v1, S2_v2, ... ); 

    // S3: Load & Warp-Reduce S2 run sums 
    volatile valT * S3_warpPtr = (volatile valT *)&(S3_base[S3_first+tid]); 
    WarpReduce<valT,sumT,𝕀,WarpSize,true,true>( S3_warpPtr, S2_runSum, ⨁ ); 

  end if 

  if (nWarps >= 2u) { __syncthreads(); } // Barrier 

  // In parallel across all threads in entire thread block 

  // Grab final block-sum 
  blockSum = S3_base[S3_last]; 
end BlockReduce 

Figure 6.14:  BlockReduce code outline.  The BlockReduce (bottom panel) is done in four stages.  INPUT) 

Each thread loads a run of ‹nWork› data elements.  S1 – Each thread serial reduces its run.  S2 – Each 

thread in the first warp loads and serial reduce a run of ‹nWarps› S1 run-sums.  S3 – The first warp 

cooperatively Warp-Reduces the data warp of S2 run-sums down to the final block sum. 

My seven-stage BlockScan implementation for the *NO* range checking 

(BlockReduce_RC_NONE) case is shown in Figure 6.15.  As before, the other 3 range checked versions 

are not shown.  Figure 6.15 consists of two panels.  The upper panel shows how to setup various 

constants, pointer and indices that represent the three shared memory arrays (S1-S3) used by BlockScan.  

The lower panel contains the actual code for the seven-stage BlockScan method. 
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Scan Setup 

// Constants 
TBS = nWarps*WarpSize;             DBS = nWork*TBS;      DWS = nWork*WarpSize; 
S1_Stride = S1_PAD+WarpSize;       S1_size = …; 
S2_Stride = S2_PAD+WarpSize;       S2_size = …; 
HalfPad = WarpSize/2;              S3_First = 1u + HalfPad; 
S3_Stride = S3_First + WarpSize; 
S3_Last  = S3_Stride-1u;           S3_size = …; 
S1_base = 0u;  S2_base = S1_size;  S3_base = (S1_size+S2_size); 

// S1-S3 Arrays (in Shared Memory) 
__shared__ valT sm_S1[(S1_size+S2_size+S3_size)];  

warpRow = threadIdx.y;    // Which Warp in thread block 
warpCol = threadIdx.x;    // Which thread in warp 
tid     = (warpRow*WarpSize) + warpCol; // Unique Thread ID in thread block 

// Zero S1-S3 arrays to identity 
SetWarpArrayFixed< … >( sm_S1, 𝕀, warpRow, warpCol ); 

// Load initial row-start (prefix) 
rowStart = rowStarts[blockIdx.y]; 

// Setup S1-S3 offsets & pointers 
IO_off      = (warpRow*DWS) + (S1_base+warpCol); 
S1_storeOff = S1_base + RakePow2<WarpSize, 1     , S1_PAD>( IO_off ); 
S1_runOff   = S1_base + RakePow2<WarpSize, nWork , S1_PAD>( nWork*tid ); 
S2_storeOff = S2_base + RakePow2<WarpSize, 1     , S2_PAD>( tid ); 
S2_runOff   = S2_base + RakePow2<WarpSize, nWarps, S2_PAD>( nWarps*tid ); 
S3_warpOff  = (warpRow*S3_stride)+(S3_base+S3_first+warpCol); 

S1_store = &(sm_S1[S1_storeOff]); 
S1_run   = &(sm_S1[S1_runOff]); 
S2_run   = &(sm_S1[S2_runOff]); 
S3_warp  = (volatile valT *)&(sm_S1[S3_warpOff]); 

... 

... 

BlockScan Method 
template< valT, sumOp, BlockSize, WarpSize, WPT,  𝕀 > 
BlockScan( out, in, rowStart, tid, ⨁, … ) // … → S1-S3 offsets & pointers 

  // In parallel across all threads in entire thread block 

  // INPUT: Load run of <nWork> data from global memory 
      // Convert from coalesced warp by warp layout to sequential layout 
  RunLoad <valT, WarpSize,  nWork>( in, S1_v1, S1_v2, S1_v3, ... ); 
  RunStore<valT, S1_stride, nWork>( S1_store, S1_v1, S1_v2, S1_v3, ... ); 
  RunLoad <valT, 1,         nWork>( S1_run, S1_v1, S1_v2, S1_v3, ... ); 

  // S1: Serial Scan short run of nWork elements 
  SerialScan<valT, sumOp, nWork>( ⨁, S1_v1, S1_v2, S1_v3, ... ); 
  S1_runSum = …;                  // Save S1 run-sum 

  sm_S1[S2_storeOff] = S1_runSum; // Store S1 run-sum in S2 array 

  if (nWarps >= 2u) { __syncthreads(); } // BARRIER 

  if (tid < WarpSize)  // In parallel across all threads in first warp 
    // S2: Load & Serial Scan short run of nWarps S1 run-sums 
    RunLoad< valT, 1, nWarps >( S2_run, S2_v1, S2_v2, S2_v3, ... ); 
    SerialScan<valT, sumOp, nWarps>( ⨁, S2_v1, S2_v2, S2_v3, ...); 
    S2_runSum = …;                  // Save S2 run-sum 

    // S3: Warp Scan (scan S2 run-sums) 
    WarpScan<valT, 𝕀, true>( S2_runSum, ⨁, S3_warp ); 
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    // S4: Run Update S2 run with S3 prefix 
    S3_prefix = S3_warp[-1]; // Grab S2 prefix (Reach Back) 
    RunUpdate<valT,runLen>( S3_prefix, ⨁, S2_v1, S2_v2, S2_v3, ... ); 
       // Store exclusive scanned results in S2 array 
    RunStore< valT, 1, nWarps >( S2_run, S3_prefix, S2_v1, S2_v2, … ); 
  end if 

  if (nWarps >= 2u) { __syncthreads(); } // BARRIER 

  // In parallel across all threads in entire thread block 

  // S5: Run Update S1 run with S3 prefix (& current rowStart) 
    // Carry: Also sum final block-sum into current row-start 
  blockSum = S3_warp[S3_Last]; 
  S2_prefix = rowStart⨁sm_S1[S2_storeOff]; 
  rowStart = rowStart⨁blockSum; 
  RunUpdate<valT, sumOp, nWork>( S2_prefix, ⨁, S1_v1, S1_v2, S1_v3, ... );   

    // Store {exclusive | inclusive} scanned results in S1 array 
  if (bExclusive) 
    RunStore<valT, 1, nWork>( S1_run, S2_prefix, S1_v1, S1_v2, ... ); 
  else 
    RunStore<valT, 1, nWork>( S1_run, S1_v1, S1_v2, S1_v3, ... ); 
  end if 

  // OUTPUT: Store scanned run of nWork results 
      // Convert from sequential to coalesced view 
  RunLoad <valT, S1_stride, nWork>( S1_store, S1_v1, S1_v2, ... ); 
  RunStore<valT, WarpSize,  nWork>( out, S1_v1, S1_v2, S1_v3, ... ); 

end BlockScan 

Figure 6.15:  The BlockScan (bottom panel) uses a nested Scan then Fan pattern in registers to scan an 

entire data block in 7 stages.  The Top Panel shows how I setup & pre-compute the S1-S3 view offsets & 

pointers to support the BlockScan method.  The Bottom Panel contains the pseudo-code for BlockScan. 

Total Cycles:  The resulting total cycle’s formula for both BlockReduce and BlockScan are quite 

complex. They basically sum up all the cycles used by each helper method across all 4 or 7 stages while 

including some extra cycles required for additional transition instructions to transfer intermediate results 

between stages.  I summarize the total cycles required for BlockReduce and BlockScan moving forward as 

BRDBS‹nWarps, nWork› and BSDBS‹nWarps,nWork›, respectively. 

BlockReduce and BlockScan Issues:  Implementing both methods resulted in the discovery of the 

following four issues: 

1) Each of the S1–S3 arrays require two views into its data (store = warp, run = sequential). 

2) Each stage of the nested method [S1-S3] requires its own shared memory array for 

communicating results between threads in the thread blocks which may constrain occupancy. 

3) Accessing shared memory sequentially may result in k-way bank conflicts. 
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4) Barrier synchronization is required for correct results when sharing data across multiple thread 

warps. 

See Section 6.7 for more details on issues 1-3; issue 4 is discussed in the next section. 

Barrier Synchronization: Both BlockReduce and BlockScan need to communicate and coordinate 

data across warps within each thread block.  For instance, the input to stage S2 is the S1 run-sums from 

multiple warps.  Since the order in which the SM hardware scheduler can call each thread warp is not 

deterministic, a barrier (syncthreads; see Section 2.2.3) is needed after stage S1 to force each thread 

warp to wait for all other thread warps to complete.  Similarly, I need another barrier after stage S3 before 

all warps can safely extract the final block-sum from the last column in the S3 array. 

Constraints on Occupancy:  Both methods preserve runs in registers across stages and communicate 

run-sums between warps in shared memory.  Because these methods consume a lot of registers and shared 

memory, both architectures, Fermi and Kepler, quickly reach constraints on occupancy.  For better 

performance, the programmer must take these constraints into account when choosing the initial CTA 

grid-size launch parameters.  If the grid work load does not evenly divide the number of SMs on the 

current GPU, then left-over SMs must work on their data rows while the rest sit idle, this hurts 

performance.  I discuss this issue more fully in Section 6.7.3. 

Benefits:  My BlockReduce and BlockScan methods support sequential access at the second CTA 

level of threads within a thread block and do this by partitioning a data block into short sequential runs 

and distributing those runs across all threads.  Both methods are implemented using a three level nested 

pattern in seven (or four) stagesin seven (or four) stages [S1-S3] based on divide and conquer recursion.  

The BlockReduce method reduces the entire data block to a single block-sum.  The BlockScan method 

scans the entire data block into a local prefix sum.  Both methods supports experiments on finding an 

optimal combination of TLP and ILP using the nWarps and nWork template parameters.  Both parameters 

are created as part of initializing and launching the GPU_Reduce and GPU_Scan kernels and then passed 

through into the BlockReduce and BlockScan methods.  The nWork parameter controls the amount of 
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work per thread in each data block, this shows up in the code as the manual loop unrolling of multiple 

data elements that the GPU programmer must write to support the desired reduce or scan behavior for the 

Input (and Output) and S1 (and S5) stages.  The nWarps parameter controls the amount of thread warps 

per thread block, this shows up in the code when initializing the S1-S3 storage array pointers for each 

thread and then the manually loop unrolling for the S2 (and S4) stages.  For better performance, both 

methods need to mitigate issues related to coalescence, bank conflicts, and constraints on occupancy, as is 

described in Section 6.7. 

Limitations:  Both my BlockReduce and BlockScan methods consume many per-thread registers 

and shared memory resources. Such high consumption can constrain occupancy, limit TLP, and reduce 

the scheduler’s ability to hide latency.  Furthermore, both methods use two barriers per data block, which 

can also slow performance and create ILP scheduling bottlenecks.  Both methods are quite complex and 

specific to reduce and scan operations and thus are not easily reused for other GPU kernels when solving 

other problems. 

6.6.6 GPU Reduce and Scan Primitives 

 In this section, I give a high level overview of the implementations for the Reduce and Scan 

primitives and the kernels that make up each primitive, and then I explain how to use my Row DASk as 

part of implementing those GPU kernels. 

Reduce:  My Reduce primitive on the GPU follows the Run-Reduce parallel pattern using two kernels: 

GPU_Reduce and GPU_SumRows.  My GPU_Reduce kernel does most of the work by reducing n inputs 

to r row-sums, row by row and block by block, using the BlockReduce method on each data block.  The 

kernel then accumulates the resulting block-sums for each data block into a row-sum.  The GPU_SumRows 

kernel reduces the r row-sums to the final-sum using a single instance of BlockReduce on a single 

thread block.  The reduce primitive across both kernels results in ⌈
𝑛

32
⌉+r+⌈

𝑟

32
⌉+1 = O(n+r) total I/Os.  If 
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we assume r is much less than n (r ≪ n,), then the Reduce primitive requires a little bit more than one 

global I/O transfer per data warp. 

Scan:  My Scan primitive on the GPU follows the Reduce-than-Scan parallel pattern using three 

kernels:GPU_Reduce, GPU_SumsToStarts, and GPU_Scan.  The GPU_Reduce and 

GPU_SumsToStarts kernels are used together to generate missing row-prefixes for each data row. These 

row-prefixes, which I call row-starts, are then consumed by the GPU_Scan kernel to generate globally 

correct scan results.  The GPU_Reduce (described in the previous paragraph) does about one-third of the 

total work involved in running the Scan primitive.  The GPU_SumsToStarts kernel exclusively scans r 

row-sums into r row-starts using a single instance of BlockScan on a single thread block.  My 

GPU_Scan kernel does about two-thirds of the work by partitioning n inputs into r data-rows and then 

scanning each row, data block by data block, using the BlockScan method.  BlockScan generates a 

block of locally scanned results. The missing row-start (row-prefix) is then summed into each local result, 

and the globally correct scan results thus obtained are then output.  After each data block has been 

scanned, the resulting block-sum is accumulated into the current row-start to make the row-start correct 

for the next data block along the row.  The Scan primitive across all three kernels results in ⌈
3𝑛

32
⌉+2r +⌈

2𝑟

32
⌉ 

= O(n+r) total I/Os.  If we assume that r is much less than n (r ≪ n), then the Scan primitive requires a 

little bit more than three global I/Os per data warp on average. 

Matching Data Rows Issue:  Since the GPU_Scan kernel consumes scanned row-starts (as row-

prefixes) that were originally generated as row-sums by the GPU_Reduce kernel, then both kernels must 

process the exact same data rows for correct results.  To ensure these data rows match up across kernels, I 

use the same underlying Row DASk for both kernels, and I also use the exact same CTA layout 

parameters across both kernels. 

Row DASk:  I use my high-level Row DASk (introduced in Chapter 5) for both the GPU_Reduce and 

GPU_Scan kernels as it supports data partitioning into data rows and data blocks and processes blocks 
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sequentially along each row.  This DASk also supports warp-alignment and automatic load balancing of 

data across the grid rows.  This DASk also provides setup and support for a range-check pattern 

[‹FIRST?›, ‹MIDDLE*›, ‹LAST?›], which pushes expensive range checks out of the middle section and 

into the first and last data blocks. This approach amortizes the range check costs over the large middle 

section.  The initial setup also helps support full coalescence by aligning the input array to a data warp 

boundary. 

There are three main downsides to using my Row by Row DASk: 

1) There are higher one-time setup costs that need to be amortized across large numbers of data 

blocks. Thus, this skeleton tends to be slower for small input sizes (n < 106) than other 

simpler GPU kernels.   

2) The programmer needs to generate four very similar but slightly different versions of the 

BlockReduce and BlockScan methods to support the four different range checking interval 

types. Generating these increases the likelihood of cut and paste style errors.   

3) The small grid sizes used (r < 1,000) tend to make performance sensitive to whether the 

workLoad represented by the grid evenly divides across the SMs on the GPU card. 
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 A high-level outline of my GPU_Scan method on the Row DASk is shown in Figure 6.16.  

template< valT, sumT, 𝕀, bExclusive, logWarpSize 
          BlockX, nWarps, nRows, nWork, S1_PAD, S2_PAD > 
GPU_Scan( outVals, inVals, inRowStarts, start, stop, startDest, ⨁ ) 

  // Setup Row by Row Skeleton 
  ...  // bid, tid, TBS, DBS, dataOff, startRun, stopRun, rowStride, ... 

  LoadBalance<…>( … ); 
  SetRangePattern<…>( … );  // <FIRST?><MIDDLE*><LAST?> or <BOTH?> 

  

 

  if (rcBoth) // <BOTH?> case => Range check [start, stop] 

    

 

  end if 

  if (rcFirst) // <FIRST?> case => Range check [start, …) 

    

 

    dataOff = dataOff + DBS;  // Move to next block along row 

  end if 

  // Scan all safe data blocks in row (in parallel across all threads) 
  while (dataOff < stopRun)  // <MIDDLE*> case => No range checking 

    

  

    dataOff = dataOff + DBS;  // Move to next block along row 
  end while 

  if (rcLast) // <LAST?> case => range check (…, Stop] 

    

inPtr  = inVals[dataOff+IO_idx]; 
outPtr = outVals[dataOff+IO_idx]; 

BlockScan_RC_NONE< valT, sumT, DBS, WarpSize, nWarps, nWork > 
  (  
    outPtr, inPtr, rowStart, tid, ⨁, 
    S1_storeOff, S2_storeOff, 
    S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr 
  ); 

BlockScan_RC_START< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 > 
  (  
    outVals, inVals, rowStart, tid, ⨁, dataOff, start, 
    S1_storeOff, S2_storeOff, 
    S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr 
  ); 

BlockScan_RC_BOTH< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 > 
  ( 
    outVals, inVals, rowStart, tid, ⨁, dataOff, start, stop, 
    S1_storeOff, S2_storeOff, 
    S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr 

  ); 

User Setup (Setup S1-S3 offsets & pointers) 
… // See figure 6.18 (Top Panel) 
… 
// Initialize Row Start prefix 
rowStart = inRowStarts[bid]; 
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  end if 

end GPU_Scan 

Figure 6.16:  GPU_Scan code outline.  Changes from the Copy_Row DASk shown in purple.  

There are 4 different user snippets (BlockScan_*) but they are all the same except for range 

checks on loads and stores between global memory and registers. 

 

 My GPU_Reduce method (not shown) is similar to the GPU_Scan code but with four main differences. 

1) The GPU_Reduce kernel function interface replaces the outVals and inRowStarts parameters with 

an outRowSums parameter.   

2) On Initialization, each thread block sets its row-sum to identity. 

3) All calls to BlockScan methods are replaced by equivalent calls to BlockReduce methods, 

followed by a simple sum statement to accumulate the block-sum into the current row-sum. 

4) On finalization, the first thread in the thread block writes out the final row-sum to the row-sums 

array. 

  

BlockScan_RC_STOP< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 > 
  (  
    Out, In, rowStart, tid, ⨁, dataOff, stop,  
    S1_storeOff, S2_storeOff,  
    S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr  
  ); 
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Template Parameters:  The following template parameters (see Table 6.6) are used to support 

genericity and experimentation: 

Parameter Explanation 

valT This parameter is a place holder for the underlying data type to reduce or scan 

(U32 for instance).   

sumT This parameter declares the type of the binary operator ⨁ used for summation 

(usually as a C++ functor).   

𝕀 This parameter is the identify value for the sum operator and is also used as a 

default value for out of range loads. 

bExclusive This parameter defines whether an exclusive {true} or inclusive {false} scan is 

wanted. 

logWarpSize This parameter is the base 2 logarithm of the fixed number of threads per warp, 

5 = log2(32).   

BlockX and nWarps These parameters specify the fixed number threads per thread block as a 2D 

layout (TBS=BlockX∙nWarps) (TBS=128).  I always set BlockX = WarpSize 

(32), so that nWarps correctly refers to the number of warps per thread block.   

nRows This parameter is the fixed number of data rows (r) from the previous 

discussion and is also the fixed number of thread blocks in the 1D CTA grid 

{aka GridSize.y}. 

nWork This parameter is the fixed amount of data elements per thread to load and 

scan (or reduce) in each fixed-size data block.   

S1_PAD and 

S2_PAD 

These parameters specify whether the “pad and rake” technique (see section 

6.7.2) to avoid bank conflicts needs to be done for the stages S1 & S2 

respectively.  Both pads are set to a value of {0|1}, Zero (0) indicates no 

padding and raking is needed, One (1) indicates that the appropriate S1 or S2 

store & run pointers should be padded and raked to avoid bank conflicts. 

Table 6.6:  GPU_Reduce / GPU_Scan Template Parameters 
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 Function Parameters:  The following function parameters (see Table 6.7) are used to reduce or scan 

the input array into an output array of r column sums or n scanned results respectively:  

Parameter Explanation 

outVals (Scan only) This parameter is the output array that receives n scanned results.   

outRowSums (Reduce only)This parameter is the output array that receives r row-sums. 

inVals (Scan and Reduce) This parameter is the input array containing the data 

elements. 

inRowStarts (Scan only)This parameter is the input array containing the missing row 

prefixes for each data row for globally correct scan results.   

[start, stop] These parameters identify the range of the input array inVals to scan or reduce.  

The input size (n) can be computed from the range as n=stop-start +1. 

⨁ This parameter is the binary operator (functor) used to sum data. 

Table 6.7:  GPU_Reduce / GPU_Scan Function Parameters 

 

CTA Parameters:  The following Grid and Block layout parameters are chosen to support TLP: 

Parameter Explanation 

Thread Block Size 

(TBS) 

  This parameter is chosen as a 2D block of threads [128=‹32,4,1›] to take 

advantage of Thread Level Parallelism (TLP) and support multi-issue on each 

SM. 

Grid Size (GS) This parameter is chosen as a 1D grid ‹1,224,1› (for a GTX Titan, 224 = 14 

SMs per GPU times 16 concurrent blocks per SM to keep each SM busy and to 

load balance the concurrently running thread blocks evenly across all the SMs 

on the GPU card. 

Table 6.8:  GPU_Reduce / GPU_Scan CTA Parameters 

 

Total Cycles:  I can express total cycles in terms of previously defined quantities: r data rows (and 

thread blocks), c data blocks per row, DBS = Data Block Size, TBS = Thread Block Size.  I assume that 

each BlockReduce and BlockScan takes BRDBS‹nWarps, nWork› and BSDBS‹nWarps, nWork› total 

cycles respectively. 

For the Reduce primitive, the GPU_Reduce kernel using p SM cores takes ⌈𝑟/

𝑝⌉(c∙BRDBS‹nWarps, nWork›) total cycles, and the GPU_SumRows kernel using only one SM core takes 
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BRDBS‹nWarps, nWork› total cycles.  For the Scan primitive, the GPU_Reduce kernel is as above, the 

GPU_SumsToStarts kernel using only one SM core takes BSDBS‹nWarps, nWork› total cycles, and the 

GPU_Scan kernel using p SM cores takes ⌈𝑟/𝑝⌉(c∙BSDBS‹nWarps, nWork›) total cycles. 

Benefits:  My full Reduce and Scan implementations inherit all of the following benefits of the Row 

DASk: 

 Achieves I/O throughput similar to the Copy kernel despite the increased complexity of the 

Reduce and Scan kernels. 

 Partitions data into data blocks and then automatically load balances the data blocks across the r 

data rows in the grid with support for range checking. 

 Properly range checks all data against the range [start, stop] while pushing and amortizing range 

checks into the first and last data blocks. 

 Warp aligns starting data offsets [0, 32, 64, …] to support coalescence. 

In addition, The Reduce and Scan primitives have the following benefits: 

 Supports generic data types and value types 

 Supports experiments on TLP and ILP via the nWarps and nWork parameters; 

 Avoids or mitigates bank conflicts using the S1_PAD and S2_PAD template parameters (see 

Section 6.7.2) 

Limitations:  As one would expect, my Reduce and Scan implementations also inherit the limitations of 

the Row DASk, including the following: 

 High setup costs (load balancing, range checking, zeroing arrays) that need to be amortized across 

lots of data blocks 

 Having to write four slightly different versions of code to handle the four different range checks  

 Increased register pressure (load balancing, range checking variables).   

 Extra branches to handle the four range check cases [‹FIRST?›, ‹MIDDLE*›, ‹LAST?› or 

‹BOTH?›].  This is especially true for the while loop for the ‹MIDDLE*› case gets called once 

per data block.  Fortunately, my Row DASk implementation was written to avoid divergent 

branching. 

 The 3-level Reduce and Scan kernels, with nested BlockReduce and BlockScan methods, have 

additional disadvantages: 

 High register use due to multiple work items per thread 

 High shared memory use for conversion and stage arrays (S1, S2, S3.)   

 Constraints on occupancy caused by register and shared memory limits 

 Lots of template parameters, which can confuse the programmer.  For example, once the nWork 

and nWarps parameters have been chosen, the programmer still needs to correctly pick the 
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corresponding S1_PAD & S2_PAD template values if they want to avoid bank conflicts when 

loading short sequential runs from shared memory. 

6.7 Reduce and Scan Implementation Issues 

In this section, I show how to mitigate issues of conversion between warp and sequential views, k-way 

bank conflicts, and constraints on occupancy. 

6.7.1 Conversion between Warp and Sequential Views 

For high throughput to global memory, coalescence must be used, which requires a warp by warp 

access pattern, and thus a thread wants to access data with a stride equal to one warp (stride = 32).  

However, to support non-commutative summation, consecutive elements cannot be reordered since 

reordering implies a sequential access pattern, and thus a thread needs to access data with a stride equal to 

one element (stride = 1).  To resolve this apparent conflict, I convert back and forth between these two 

different views of data using a shared memory array.  This is a classic space versus. time trade-off. 

Table 6.9 shows how to setup offsets and pointers into the shared memory conversion array for 

each view (warp and sequential). 

Warp View 
nWork=4, BankSize=32, Stride=32 
-------------------------------- 
00000000000000000000000000000000 
11111111111111111111111111111111 
22222222222222222222222222222222 
33333333333333333333333333333333 

Sequential View 

nWork=4, BankSize=32, Stride=1 
-------------------------------- 
01230123012301230123012301230123 
01230123012301230123012301230123 
01230123012301230123012301230123 
01230123012301230123012301230123 

Results in 4-way bank conflicts 

DWS = nWork*WarpSize; // Data Warp Size 

// Store pointer (Warp view) 
S1_storeOff = (warpRow*DWS)+warpCol; 
S1_storePtr = &(sm_S1[S1_storeOff]); 

DWS = nWork*WarpSize; // Data Warp Size 

// Run pointer (Sequential view) 
S1_runOff = (warpRow*DWS)+(nWork*warpCol); 
S1_runPtr = &(sm_S1[S1_runoff]); 

// IN: Convert between Warp & Seq. Views 
RunLoad<…,Stride=32>(in,inOff,v1,v2, …); 
RunStore<…,Stride={32|33}>(S1_storePtr, …); 
RunLoad<…,Stride=1>(S1_runPtr,v1,v2, …); 

// OUT: Convert between Seq. & Warp Views 
RunStore<…,Stride=1>(S1_runPtr,v1,v2, …); 
RunLoad<…,Stride={32|33}>(S1_storePtr,…); 
RunStore<…,Stride=32>(out,outOff,v1,v2,…); 

Table 6.9: Convert between Warp & Sequential views using a shared memory array. Alternating colors 

indicate alternating threads and their matching sequence of 4 work elements [0123] for each view. 

For input, there are three steps required to convert between the warp and sequential views: 
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1) ‹nWork› data warps are loaded from global memory into registers using the warp by warp 

view (stride = 32) of data for high coalesced throughput.   

2) ‹nWork› data warps are stored from registers into the shared memory array using the warp by 

warp view (stride = {32|33}, 33 to avoid bank conflicts). 

3) A short sequential run of ‹nWork› elements is loaded from shared memory into registers 

using the sequential view (stride = 1). 

For output, converting between sequential and warp views is similar, just reverse the input 

sequence and swap loads with stores. 

Converting between the two views supports fully coalesced throughput to global memory as well 

as sequential access for non-commutative summation.  The conversion comes at the performance cost of 

two extra shared memory accesses (on input and again on output.)  This conversion requires a shared 

memory storage cost equal to the number of elements in the fixed-size data block, O(DBS), where DBS = 

nWork∙TBS.  Combining this with the memory used by the other stages results in a total shared memory 

requirement for BlockReduce and BlockScan of O(DBS+TBS+49).  (The magic number “49” 

represents the size of the S3 array used in stage S3, to support a warp-reduce or warp-scan on a single 

data warp using the Kogge-Stone adder, Hillis-Steele variant.)  This conversion is just for the outermost 

level of the 3-level nested reduce or scan (AKA the Input and Output stages).  Unfortunately, using 

shared memory to transfer short sequential per-thread runs between shared memory and registers (or vice 

versa) can result in k-way bank conflicts, which I discuss next. 

6.7.2 Mitigating Bank Conflicts 

Transferring short sequential runs of n elements between shared memory and registers can cause 

k-way bank conflicts (1 ≤ k ≤ n).  Look at the sequential view panel in Figure 6.22 again.  Note that the 

individual threads start their respective runs at offsets [0, 4, 8, …, 124].  However, since there are only 32 

physical memory banks, the starting bank is equal to mod(offset,32).  Look at the first column with four 

zeros. The four threads with warp columns equal to [0, 8, 16, 24] respectively all start on the same bank in 
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shared memory [0=(0*8)%32, 0=(8*4)%32, 0=(16*4)%32, 0=(24*4)%32]. This resulting in a four-way 

bank conflict.  This conflict will be serialized (replaying the load or store instruction 3 more times) for 

each transfer, increasing total cycles and slowing down performance. 

Not all sequential runs result in k-way bank conflicts. Only those where the run length and the 

WarpSize (32) are not relatively prime to each other do so.  As shown in Table 6.10, all odd numbered run 

lengths will not encounter bank conflicts on transfers. 

RL k-way Pad RL k-way Pad RL k-way Pad RL k-way Pad 
1 0 0 9 0 0 17 0 0 25 0 0 

2 2 1 10 2 3 18 2 3 26 2 1 

3 0 0 11 0 0 19 0 0 27 0 0 

4 4 1 12 4 3 20 4 3 28 4 1 

5 0 0 13 0 0 21 0 0 29 0 0 

6 2 3 14 2 3 22 2 3 30 2 7 

7 0 0 15 0 0 23 0 0 31 0 0 

8 8 1 16 16 1 24 8 1 32 32 1 

Table 6.10:  Padding needed for a given run length (RL).  The k-way columns show the number of bank 

conflicts that occur without padding.  The Pad columns show the minimal amount of padding needed to 

avoid bank conflicts.  Pad numbers in bold red have an additional issue with some runs being cut in half 

by the pad columns. 

There are four solutions to mitigate bank conflicts, three that I tried, and one that I discovered that 

CUDA applied on my behalf – 1) live with the conflicts; 2) use run-lengths that are odd numbers; 3) use 

the Pad & Rake technique on run lengths that are powers of two; or 4) apply CUDA’s aligned vector2 or 

vector4 optimization on run lengths that are exactly [2, 4, 8] in length. 

Live with the bank conflicts:  Since potential solutions may cost more operations than the serialized 

replay instructions caused by the bank conflicts themselves, for some runs it may be faster to just live 

with the k-way bank conflict (especially if k is small).  This is the solution, I use for runs of length 6. 

Doing nothing results in one two-way bank conflict per transfer and thus a total of six extra transfer 

replays per run (where 6 = 6 work items∙(2 replays – 1 original transfer)). 

Use odd-numbered run-lengths:  Since odd numbered run lengths are always relatively prime to the 

WarpSize (32), using odd numbered run lengths will avoid all bank conflicts.  This is an easy solution. 
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Use Pad & Rake on run lengths that are a power of two:  For run lengths that are a power of two [2, 4, 

8, …], I use the Pad and Rake technique due to Blelloch (Blelloch, 1995) to avoid any bank conflicts.  

The pad and rake technique is shown in Figure 6.17 and described in the two paragraphs that follow.  This 

technique will not work with even run lengths that are not powers of two due to a cut-in-half issue (where 

at least one sequential run is cut in half by the extra pad columns), which breaks sequential access. 

Pad (with 1 extra column) 

-------------------------------- 
*0123012301230123012301230123012 
3*012301230123012301230123012301 
23*01230123012301230123012301230 
123*0123012301230123012301230123 
0123............................ 

Shift thread runs over one column 

No bank conflicts 

Rake 
// Constants 
BankSize = 32; // Num. of Memory Banks 
PAD = 1; 
... 
// Rake run offset 
runIdx = nWork*tid; 
rRow = runIdx/BankSize;     // idx/32 
rCol = runIdx & (BankSize-1); // idx % 32 

outIdx = rRow*(PAD+WarpSize))+(PAD+rCol); 

Figure 6.17:  The Pad and Rake technique to avoid bank conflicts for a run of length 4.  The extra 

pad column per data warp is shown as a red asterisk.  Alternating colors indicate alternating threads 

within the warp and their matching runs of 4 work elements [0123] each. 

Pad:  The shared memory arrays are padded with extra unused memory columns.  Consider the 

32 threads within a thread warp (WarpSize = 32), these extra pad columns shift each thread’s 

access pattern over just enough so that each thread’s sequential run starts on a different bank in 

memory and therefor avoids bank conflicts. 

Rake:  Raking is the process of re-indexing to skip over the extra pad columns.  Conceptually, 

raking works by switching from the original 1D index without padding to a 2D index (rows, cols) 

and then back to a 1D index with the extra pad columns accounted for.   

All in all, the Pad & Rake technique is tricky to get right and requires more operations, but fortunately the 

raked offsets can be pre-computed and folded into my view conversion pointer initialization. 

Apply CUDA’ Aligned Vector2 or Vector Optimization: For run lengths that are exactly 2, 4, or 8, 

CUDA partially mitigate the bank conflicts using an aligned vector2 or vector4 optimization.  For these 

run lengths, CUDA’s low-level SASS compiler will optimize two or four 32-bit load (or store) 

instructions into a single 64-bit or 128-bit load (or store) instruction.  This decreases the number of 
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instructions and bank conflicts by 4× (as instructions that never get executed do not cause bank conflicts).  

This optimization only gets applied when the shared memory access is sequential, aligned to a 64-bit or 

128-bit boundary, and run lengths are exactly 2, 4, or 8.  Because the data must be aligned to a proper 64-

bit or 128-bit boundary, this aligned vector4 optimization and the Pad & Rake technique are mutually 

exclusive. 

As we will see in the results section (6.??), This aligned vector4 optimization is faster than Pad & 

Rake on the GTX Titan (Kepler) but slower on the GTX 580 (Fermi).  The results section will also show 

that living with a high number of non-aligned bank conflicts results in poor performance due to the high 

number of serialized replays for transfer instructions.  For loading sequential runs (length = k) that happen 

to be powers of two, the number of serialized replays caused by the resulting k-way bank conflicts grows 

quadratically O(k) = k2 = k(k-1) ={ 0 = 1∙0, 2 = 2∙1, 12=4∙3, 56 = 8∙7, … }. 

6.7.3 Constraints on Occupancy 

In this section, I want to pick my CTA grid size (r = nRows) to achieve good performance.  Recall 

from chapter 5.?? That I define workLoad as workLoad = nSMs∙nConBlocks, where nSMs is the actual 

number of SMs (or SMXs) on a given GPU card and nConBlocks is the expected number of concurrent 

thread blocks that can be concurrently running on each SM at the same time while running a given GPU 

kernel.  I want to pick my CTA grid size to be a multiple of the workLoad so that all thread blocks in the 

grid divide evenly across all the SM’s with no left-over thread blocks (rows).  A partially full last 

workLoad set means that some SM’s continue to work while the rest SM’s idle.  Given a very large 

gridsize, the poor performance of the last partially full workLoad can be amortized across all the full 

workLoads.  This means that the Block DASk can effectively ignore this issue for large grids.  However, 

Since I am deliberately keeping the number of rows small (r ≤ 1000) so that GPU_SumRows or 

GPU_SumsToStarts kernel can complete using a single thread block (GS = 1), I need to compute the 

correct workLoad and make my grid size a multiple of this work load for best performance.   
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Unfortunately, computing the number of concurrent blocks per SM is complicated by various 

constraints on occupancy (see Section 3.3).  Recall that the number of concurrent thread blocks and active 

thread warps on a GPU are limited not only by direct hardware constraints (‹8, 48› on Fermi, and ‹16, 64› 

on Kepler) but also by the register pool size (32K on Fermi and 64K on Kepler) and shared memory pool 

size (48 KB on both Fermi and Kepler) on each SM.  With some effort, shared memory use can be 

predicted ahead of time.  Register use by the CUDA compiler is not easily predicted, however. It requires 

experiments with the “–verbose” output compiler flag turned on. 

To maximize performance, I iterate on a six-step process in order to choose an initial CTA grid size 

that respects constraints on occupancy and results in a workLoad that evenly divides thread blocks across 

the number of SMs on each GPU: 

1) I compile my kernels with the CUDA “–verbose” output flag run on, which reports the expected 

registers per thread (count) and shared memory (in bytes) used per block.  Note:  these results are 

estimates; the runtime hardware may actually use more or fewer registers. 

2) From these compiler outputs, I compute the excepted number of concurrent thread blocks that can 

run at the same time nExpectBlocks = min( regBlocks, shareBlocks, {8|16} ).  {8|16} comes from 

the max concurrent blocks per SM.  The register pool size limits blocks as regBlocks = floor( 

{32K|64K}/(TBS*RPT) ), where{32K|64K} is the register pool size (Fermi or Kepler), TBS = 

threads per block, and RPT = registers per thread (from verbose output).  The shared memory 

pool limits blocks as shareBlocks = floor( {16 | 32 | 48KB }/SBB ), where {16 | 32 | 48 KB } is 

the size of the shared memory pool and SBB = shared bytes per block (from verbose output). 

3) From the expected concurrent blocks, I compute my initial work load as workLoad = 

nSMs∙nExpectBlocks, where the number of SM or SMX cores is GPU card specific.  The work 

load is the minimum number of thread blocks needed to evenly divide the grid of thread blocks 

across all SM cores on the current GPU device. 

4) I choose my actual grid size as a multiple of the workLoad to load balance work evenly across the 

SMs on the current GPU card. 

5) I run the code using the chosen CTA (grid size, thread block size) and track performance.  If I get 

slow performance, then either I may have miscalculated or the true register use is higher than the 

CUDA compiler originally suggested.  I try reducing the number of concurrent blocks by {1|2} 

concurrent blocks and re-measure. 

6) I repeat steps 1-5 as needed after I rewrite my code, change my data design layout, or modify my 

CTA parameters until I am satisfied with the throughput results. 
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6.8 Results 

I focus in this section on experiments involving ILP and TLP to find the best performance results.  

All tests were performed on a GTX 580 (Fermi) and a GTX Titan (Kepler) using the same host 

environment (as shown in Figure 6.25). 

CPU Hardware:  CPU = i7-4770K@3.50 GHz, RAM=12 GB 

GPU Hardware: 

GTX 580   (16 SMs,       512 SPs, 1.5 GB RAM, 192.4 GB/s peak throughput) 

GTX Titan (14 SMXs, 2,688 SPs, 6.0 GB RAM, 288.4 GB/s peak throughput) 

Software: GPU API = CUDA 5.5, C++, IDE = VS 2010, OS = Windows 7, SP1, Pointers = 64-bit 

Data:  Input size, n = [210 – 228], in increasing powers of two 

Table 6.11:  Reduce/Scan Experiment Environment 

All timings are derived from 101 runs of each test by dropping the first run and averaging the 

timings for the last 100 runs.  I/O throughput is measured in gigabytes per second (GB/s) by counting the 

number of giga-bytes processed and dividing by the average run time in seconds.  Total cycles (TC) are 

computed as TC=II/IPC by grabbing raw counts (Instructions Issued [II], and average Instructions retired 

Per Cycle [IPC]) from NVidia’s NSight Profiler. 

In this results section, I focus on two sets of experiments:  First experiments on finding the best 

throughput by varying TLP and ILP parameters, see Section 6.8.1; Second by running experiments to 

measure the total cycles for some of the more interesting TLP and ILP parameters pairs, see Section 6.8.2. 

6.8.1 Throughput 

At the end of the chapter introduction, Figure 6.4 shows four plots of throughput results by input 

size for Reduce (2 kernels) and Scan (3 kernels) on both the GTX 580 and GTX Titan.  Four main factors 

impact performance:  TLP, ILP, efficient memory access patterns, and mitigating issues, such as 

converting views, k-way bank conflicts, and constraints on occupancy 

I vary both TLP and ILP using template parameters, ‹nWarps, nWork›.  For example, my baseline 

pair ‹nWarps=1, nWork=1› uses a single thread warp per thread block and loads and reduces/scans a 

single work item per thread. I measure throughput for increasing n (as powers of two) for both nWarps 
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and nWork in the range {1..8} resulting in 64 possibilities.  I summarize some of the relevant results 

below. 

Baseline ‹1,1›:  My baseline case experiments shows the performance achieved when no extra TLP or 

ILP is applied via my template parameters.  The best throughputs are taken from each throughput curve 

(typically when the input size (n) = 228).  The throughputs for all four baseline cases (Reduce vs Scan on 

both a GTX 580 and GTX Titan) are summarized in Table 6.12. 

Reduce (GB/s) Scan (GB/s) 

580 Titan 580 Titan 

24.24 40.04 33.57 53.71 

Table 6.12:  Best Case Summary 

TLP-Focused ‹1-8, 1›:  In these experiments (see Table 6.13), I test the impact of TLP by varying the 

template parameter nWarps in the range {1-8} and leaving nWork fixed at {1, no extra ILP} for n = 228.  

On the GTX 580, the best throughput for Reduce and Scan occurs with pair’s ‹6, 1› and ‹5, 1› 

respectively.  On the GTX Titan, the best throughput for both Reduce and Scan occurs with pair ‹4, 1›.  

 Reduce (GB/s) Scan (GB/s) 

nWarps 580 Titan 580 Titan 

1 24.24 40.04 33.57 53.71 

2 40.93 59.29 55.60 77.44 

3 58.49 90.32 76.20 114.06 

4 71.34 107.85 90.47 136.70 

5 84.01 103.71 104.28 130.15 

6 91.51 93.64 94.84 115.39 

7 82.34 102.94 89.26 125.67 

8 77.05 104.68 81.35 128.57 

Table 6.13:  TLP Reduce / Scan Results 

ILP-Focused ‹1, 1-8›:  In these experiments (see Table 6.14), I test the impact of ILP by leaving 

nWarps fixed at {1, no extra TLP} and varying nWork in the range {1-8} for n = 228.  On the GTX 580 

the best throughput occurs with the pair ‹1, 6› for both Reduce and Scan.  On the GTX Titan the best 

throughput occurs with the pair ‹1, 8› for both Reduce and Scan. 
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 Reduce (GB/s) Scan (GB/s) 

nWork 580 Titan 580 Titan 

1 24.24 40.04 33.57 53.71 

2 44.60 72.36 59.84 93.23 

3 63.36 95.83 80.60 123.15 

4 81.25 124.78 97.54 152.11 

5 94.55 122.72 112.45 147.57 

6 108.80 133.27 128.37 151.89 

7 98.67 152.28 118.43 168.00 

8 100.34 164.36 120.08 175.95 

Table 6.14:  ILP Reduce / Scan Results 

Comparing the results from the TLP and ILP experiments, we see that ILP has a bigger impact 

and TLP has a lesser impact.  Even though, with our copy case studies in Chapter 4, the reverse was the 

case.  These results make sense to me. Recall that the way I wrote my 3-level nested BlockReduce and 

BlockScan methods.  The outer most stage (S1) is driven directly by the nWork parameter, with all threads 

in the thread block reducing (or scanning) a short run of nWork elements.  While the two-inner most 

stages (S2 and S3} are driven by the nWarps parameter, reducing (or scanning) a short run of nWarps 

elements and then reducing (or scanning) the final data warp.  Recall also that in stages S2 and S3 and S4 

for Scan) that only a single warp is active, while the rest of the warps in the thread block sit idle.  So, the 

impact of TLP is in effect muted as only one warp out of nWarps is doing useful work in these inner 

stages.  Naturally, the programmer would consider reversing the TLP and ILP (inner and outer stages) 

with the hope of better throughput.  However, I have tried this with disappointing results. 

Best Throughput:  I ran experiments for all 64 combinations of ‹nWarps, nWork›, each in the range 

{1–8}, to find the best overall throughputs for Reduce and Scan on the GTX 580 and GTX Titan GPUs.  

Based on my ILP and TLP test results, I would have predicted the pair’s ‹6, 6› and ‹5, 6› would produce 

the best throughput for Reduce and Scan on the GTX 580. I would have similarly predicted the pair ‹5, 6› 

to have the best throughput for both primitives on the GX Titan.  However, after trying all 64 

combinations, I discovered that this was not the case. Other pairs were faster.  After thinking about this, I 

realized that as I varied the ‹nWarps, nWork› parameters, I also increased register and shared memory 
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usage, which puts constraints on occupancy, making it hard to predict winners.  I had to brute force test 

all combinations to find the best pairs. 

The experimental pairs resulting in the best throughput are summarized in Table 6.15 (with best 

throughputs typically for n = 228.) 

 Reduce (GB/s) Scan (GB/s) 

 580 Titan 580 Titan 

Best Pair ‹3, 6› ‹3, 8› ‹3, 6› ‹5, 4› 

Throughput 172.34 220.30 163.75 220.06 

% of Baseline 711% 550% 488% 410% 

% of Copy 98.5% 93.2% 93.6% 93.1% 

% of Peak 89.6% 76.4% 85.1% 76.3% 

Table 6.15:  Best ‹TLP,ILP› Summary. 

For run lengths that are powers of two {4,8}, I use the Pad and Rake technique to avoid bank 

conflicts.  For run lengths equal to six, I live with the serialized replays caused by the resulting two-way 

bank conflicts.  In the next section, I describe the results from trying various experiments on mitigating 

bank conflicts. 

Bank Conflicts:  In this set of experiments, I explore the impact of bank conflicts (and the resulting 

serialized replay instructions) on throughput.  Figure 6.30 shows GTX Titan Scan throughput results for 

five different ways to handle bank conflicts:  

 Using the Pad and Rake technique, which avoids all bank conflicts 

 Letting CUDA apply its aligned Vector4 optimization on shared memory transfers, which 

decreases the number of transfer instructions and bank conflicts by 4× 

 Using odd-numbered run lengths, which avoids all bank conflicts ‹3, 5›   

 Living with a low number of two-way bank conflicts ‹6, 6›  

 Living with a high number of non-aligned bank conflicts ‹4, 8› {4-way & 8-way bank conflicts}. 
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Figure 6.18: Throughput results for five different ways to handle bank conflicts for a 

full scan on the GTX Titan (Kepler). 

The throughput curves (Figure 6.18 above) and in the summary table (Table 6.16 below) of best 

results capture the throughput results.  As can be seen, the first four methods for dealing with bank 

conflicts are all reasonably good.  However, living with a large number of bank conflicts negatively 

impacts throughput due to the high number of instruction replays caused by serialization.  Living with a 

high number of bank conflicts for the pair ‹4, 8› runs at only about 75% of the throughput of completely 

avoiding them using the Pad and Rake technique. 

BC Results Pad & Rake Align V4 Odd Runs Low BC High BC 

Pair‹nWarps,nWork› ‹4, 8› ‹4, 8› ‹3, 5› ‹6, 6› ‹4, 8› 

Throughput (GB/s) 214.02 220.05 211.90 206.40 163.50 

Table 6.16:  Mitigating Bank Conflict Results 

Recall that the serialized instruction replays caused by bank conflicts for power of two run 

lengths grow at a quadratic rate with the run length (0, 2, 12, 56, …).  Interestingly, at least on the GTX 

Titan (Kepler), CUDA’s Aligned Vector4 optimization is faster than the Pad and Rake technique.  The 

opposite is true on the GTX 580 (Fermi).  As can be seen from the throughput curves and results, 

mitigating bank conflicts is well worth the extra effort for my Reduce and Scan primitives. 
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6.8.2 Total Cycles 

In this section, I gather TC results from the NVidia Compute Visual Profiler (on CUDA 5.5) on 

the GTX Titan for n = 228.  The results are summarized in Table 6.17 below.  The instructions issued (II) 

and TC  columns are measured as millions of instructions or cycles, respectively.  The instructions retired 

per cycle (IPC) column has a maximum value of 5.0 instructions per cycle on the GTX Titan.  The 

Throughput column (for comparison) is measured in Giga-Bytes per second (GB/s).  The type pairs with 

dark red font have bank conflicts (V4 = 4.2M, Low =10.5M, and High = 54.0M), the rest of the rows have 

no bank conflicts. 

Type 

Pair 
II IPC 

TC 

(II/IPC) 

Throughput 

(GB/s) 

Base‹1 1› 364.9M 0.78 467.9M   53.7 

TLP‹4,1› 304.0M 1.59 191.2M 136.7 

ILP‹1,8› 110.1M 0.66 166.9M 176.0 

P&R‹5,4› 133.8M 0.98 136.5M 220.0 

V4‹5,4› 127.7M 0.95 134.4M 224.0 

Odd‹3,5› 126.1M 0.89 141.6M 211.9 

Low‹6,6› 128.4M 0.86 149.3M 206.4 

High‹4,8› 172.2M 1.06 162.5M 163.5 

Table 6.17:  Total Cycle Results 

There are four significant insights that I see in the total cycles data.  First, there appears to be a 

strong inverse correlation between total cycles and throughput.  When total cycles is low, throughput is 

high (and vice versa).  Second, a high number of instruction replays caused by bank conflicts significantly 

increases total cycles and thus decreases throughput performance.  For instance, the High‹4, 8› row issues 

a lot more instructions (including replays) than the P&R, V4, and Odd rows that mitigate or avoid bank 

conflicts.  Third, the combination of both low instructions issued (II) and high instructions retired per 

cycle (IPC) results in the overall throughput winners.  For instance, the TLP‹4, 1› row has great 

instructions retired per cycle (IPC = 1.59) but still performs poorly because it issues so many instructions 

(II = 304 million).  On the other hand, the ILP‹1, 8› row has the smallest number of instructions issued (II 

= 110 million), but still performs poorly because it has the worst instructions retired per cycle (IPC = 
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0.66).  Fourth and finally, the two highest performing rows P&R‹5, 4› (Avoid Bank Conflicts via Pad & 

Rake) and V4‹5, 4› (Mitigate Bank Conflicts via the aligned Vector4 optimization) each have the second 

best instructions issued (II) and the third best instructions retired (IPC) but they result in the lowest total 

cycles and thus the best throughput. 

The formula for total cycles (TC = II/IPC) tells me that there are two ways to attempt to improve 

performance by decreasing TC and thus improving throughput: 

1) Decrease instructions issued (II) by trying different algorithms or simplifying code. 

2) Increase instructions retired, by increasing ILP via software pipelining and increasing TLP 

via higher occupancy, to consume as many instructions per cycle (IPC) as possible. 

To me, the main lesson is to keep our parallel processing cores (SMs and SPs) and memory 

controllers as busy as possible.  TLP supports such an effort by providing lots of active thread warps for 

the SM on-core scheduler to switch to when the currently executing warp stalls.  ILP supports it by 

providing lots of independent instructions for the scheduler to harvest to keep the instruction pipeline as 

full as possible.  Fortunately, both approaches are orthogonal. Therefore, both techniques (TLP and ILP) 

can be used to hide pipeline and I/O stalls and keep the processing cores as busy as possible. 

6.9 Conclusion 

In this chapter, I introduced Reduce and Scan primitives that require only the associative property 

(re-grouping) and forbid the commutative property (re-ordering).  Non-commutativity implies that short 

data runs must be summed or scanned in consecutive order.  To do this in the 2-level CTA hierarchy of 

GPU’s, I used a 2-level access pattern.  At the CTA first level (blocks), I partitioned data using my Row 

DASk that sequentially marches along each data row, block by block.  At the CTA second level (threads), 

for each data block I transferred short runs of consecutive data between global memory and registers 

using a conversion array in shared memory. 

To make this all work, I had to overcome three main issues that hindered performance: 
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1) To respect coalescence for better global memory throughput, I actually transferred data 

between global memory and shared memory using the warp by warp access pattern. I then 

converted data to a sequential access pattern using shared memory. 

2) To avoid bank conflicts when accessing shared memory which can cause serialized replays, I 

discussed and tested several ways of mitigating bank conflicts: using odd length runs, using 

the Pad & Rake technique on power of two length runs, using Aligned Vector4’s so that 

CUDA can decrease bank conflicts by a factor of 2× or 4×, and, finally, just living with a low 

number of serialized replays caused by bank conflicts. 

3) Using the Row DASk results in small grid sizes, which makes my solution sensitive to 

picking a good work load in six steps that evenly divides the thread blocks in the grid across 

the SMs.  Picking a good work load requires that the programmer understands constraints on 

occupancy and picks the initial grid size accordingly. 

By increasing TLP, increasing ILP, using efficient I/O access patterns, and mitigating bank 

conflicts, I improved Reduce and Scan performance over my baseline performance.  The best performing 

throughput for the Reduce primitive was up to 7.1× and 5.8× faster than the baselines on the GTX 580 

and GTX Titan respectively.  The best performing throughput for the Scan primitive was up to 4.9× and 

4.2× faster than the baselines. 

6.9.1 Limitations 

My GPU Reduce and Scan implementations have three main limitations. 

1) Sensitivity to Work Loads:  My method uses small grid sizes (r < 1000) which means that if the 

grid work load is not setup to evenly divide rows across SMs based on the correct number of 

concurrent thread blocks per SM than performance will suffer. 

2) Potential Copy and Paste Errors:  The amortized range checking pattern used by the Row 

DASk means that I had to write the same BlockReduce & BlockScan methods four times with 

minor differences to support different types of range checking NONE, [start, …), (…, stop] and 

[start, stop].  This means if I find and fix bugs in one of my BlockReduce or BlockScan 

methods, I have to remember to make corresponding changes in the other three versions. 
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3) Brute-Force Search of Parameter Space:  Due to varying constraints on occupancy as register 

and shared memory usage increase, searching the parameter space ‹nWarps, nWork› for the best 

throughput is currently brute-force. 

 

6.9.2 Future Directions 

My implementations achieved a solid percentage of peak throughput on both the GTX 580 

(Reduce = 89.8% and Scan = 85.1%)  and GTX Titan (Reduce = 79.7% and Scan = 77.9%), but perhaps 

other clever algorithmic improvements, or a ‹nWarps, nWork› pair outside the range I explored, code 

simplification, or leveraging of other GPU features may lead to further performance gains. 

Overflow Support:  The Reduce and Scan primitives should be rewritten to upscale input data types 

(32-bit) to larger output data types (64-bit) to handle summations on millions or billions of elements. 

Commutative Reduce:  For summations, if the commutative as well as associative property is 

assumed, then the Reduce primitive can be completely rewritten to sum data blocks into per-thread sums 

and then after all the data blocks have been exhausted, block reduce the per-thread sums to a single row-

sum.  Reordering data enables direct use of the warp by warp access pattern, thus eliminating the 

overhead of my current conversion code (between warp and sequential views).  Rewriting also eliminates 

the need for a 3-level nested reduce and barriers.  The resulting simplified commutative Reduce kernels 

should take far fewer instructions, fewer total cycles and thus have higher throughput.  Unfortunately, the 

GPU Scan kernels still requires consecutive access for correct prefix-sum results.  Nevertheless, since the 

GPU_Reduce kernel accounts for about one-third of the total work in the full scan primitive, there will be 

a modest increase in throughput for the Scan primitive when used with a faster commutative 

GPU_Reduce kernel. 

6.10 Lessons Learned from Reduce/Scan 

In this section, I summarize the lessons learned from this case study.  Here is the notation that I 

typically use.  The symbol n is used to represent the run length, the warp size, or the input size depending 

on context.  The symbol k is used to represent two unrelated concepts 1) the pipelined instruction length 
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(18-22 cycles on Fermi, 9-11 cycles on Kepler) or 2) alternately the number of conflicting threads in a k-

way bank conflict.  The symbol S is used to represent the number of cycles to transfer data between 

shared memory and registers (40-80 cycles on Fermi, 20-40 cycles on Kepler).  The symbol G is used to 

represent the number of cycles to transfer data between global memory and registers (400-800 cycles). 

SerialReduce and SerialScan Lessons: 

 For both methods, it is faster to load a short run (length n) into registers and then Reduce or Scan 

on the run stored in registers instead of Reduce or Scan on the run stored in shared or global 

memory.  The in-register based methods take O(n) registers, while the in-memory based methods 

take O(1) registers. 

 Sequential serial reduce or serial scan methods in registers, shared memory, and global memory 

take O(k∙n), O(S∙n) and O(G∙n) cycles respectively and O(1) registers. 

 Serial Reduce:  For better performance on short runs (n ≤ 8), use Sklansky’s adder layout as the 

basis for the SerialReduce method (see Figure 6.12).  This takes O(n + k∙log2n) cycles and 

O(n) registers. 

 Serial Scan:  For better performance on short runs (n ≤ 8), use Sklansky’s adder layout as the 

basis for the SerialScan method (see Figure 6.12).  This takes O([(n/2)+k]∙log2n) cycles and  

O(n) registers. 

 For longer runs (8 ≤ n ≤ 64), consider using a nested serial reduce or serial scan in batches of 4 or 

8 work-items to mitigate register pressure. 

 Overloading the summation operator as shown in figure 6.14 prevents the CUDA compiler from 

de-optimizing away (via unwanted stalls) some of the expected performance. 

WarpScan and WarpReduce Lessons: 

 For best parallel performance, Use the WarpReduce or WarpScan methods to reduce or scan a 

single data warp using a single thread warp (n = 32). 

o On Fermi, use WarpReduce or WarpScan in shared memory.  This takes O(1) = 3 

registers per thread and takes O([2S+k]∙log n +2S) total cycles and also requires 

O(WarpSize) = 49 (1+16+32) storage space per active warp (49 data elements per active 

thread warp for the warp array kept in shared memory).  For both shared memory 

methods, the last column of the warp array contains the final warp-sum. 

o On Kepler, use WarpReduce or WarpScan in registers with the .PTX shuffle command.  

This takes O(1)=3 registers per thread and takes O([2k∙log n]+k) total cycles and requires 

no shared memory.  For both shuffle methods in registers, only the last thread in the warp 

ends up with the final warp-sum. 

 Both methods are expensive due to RAW dependencies between each pair of instructions and the 

higher cost of shared memory accesses (on Fermi).  So only use to reduce or scan the last data 

warp (32) inside a nested reduce or scan. 

BlockReduce and BlockScan Lessons: 
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 To support coalescence and high-global memory throughput on input and output, use a warp-by-

warp BASk. (see Chapter 5.1.1. for details.) 

 To support non-commutative summation, convert the warp-view into a sequential-view to load 

short sequential runs of nWork data elements (see Section 6.7.1. for details on this conversion) 

 Mitigate bank conflicts (see Section 6.7.2. for more details) 

 To coordinate data communication across thread warps, use barriers to synchronize behavior. 

 For increased TLP performance via increased occupancy, write code or design data layouts that 

minimize register and shared memory usage. 

 For increased ILP via reduced total cycles, write code that minimize the total number of 

instructions, and manually unrolls (software pipelines) multiple work items to avoid hardware 

pipeline stalls. 

 For BlockScan: For missing prefixes, reach back one column in shared memory (or in registers) 

to grab inclusive results from an inclusive prefix sum. 

 For BlockScan: use the Scan-then-Fan pattern, and preserve runs in registers between paired 

stages (S1 & S5, S2 & S4) to decrease the total instructions (summations and shared memory 

accesses). 

 Setup two views (pointers) into each of the S1-S3 data arrays.  A store view where a single thread 

stores a single value or run-sum into the array.  And a run view where a single thread loads a 

short sequential run of values from a starting offset or pointer. 

Reduce and Scan Kernel Lessons: 

 For best throughput, support coalescence. 

 For better performance, as part of kernel setup, pre-compute the views (warp-view and 

sequential-view as pointers or indices) used in the BlockReduce and BlockScan methods.  Note: 

storing these view pointers or indices increases register pressure 

 To reduce code overhead, use the Row DASk as a starting point. 

 Under the assumption of non-commutativity, both Reduce and Scan require consecutive access 

within runs for correct results.  So use the Row DASk to implement the GPU_Reduce and 

GPU_Scan kernels.  As the Row DASk supports sequential access along each row for the first 

level of the CTA (thread blocks within a grid). 

 Since, the Row DASk requires four bodies of very similar code to properly support amortized 

range checking, watch out for copy and paste errors in the BlockReduce and BlockScan 

methods.  If you fix a bug in one version, remember to check and fix the other versions as well. 

 To keep the SMs busy and to load balance thread blocks evenly across SMs, pick the number of 

rows (r) to be a multiple of the workLoad = nSMs∙nConBlocks (see section 6.7.3 for details on 

how to compute the work load). 

 For Scan: Make sure the GPU_Reduce and GPU_Scan kernels both use the exact same data rows 

for correct scan results.  My solution is to have both kernels use the same Row DASk, the same 

CTA layout, and the same DBS. 

 For Scan:  For fewer global I/Os (3× instead of 4×), use the Reduce-then-Scan pattern, and avoid 

the Scan-then-Fan pattern.  The Row DASk on both the GPU_Reduce and GPU_Scan kernels 

naturally supports this pattern.  From hard personal experience, I advise programmers to avoid 

using the Block DASk as the base framework for implementing Scan. Using the Block DASk 
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leads to a recursive Scan-then-Fan pattern, which is not only tricky to get working correctly but, 

in my experience, it is also quite slow. 

General Advice: 

 To find the best performance, use both ILP and TLP. 

o For increased TLP, each thread block should contain multiple warps (nWarps). 

o For increased ILP, each thread should load and process multiple work items (nWork). 

 Mitigate bank conflicts in shared memory to avoid costly replays (see section 6.7.2) 

o Avoid bank conflicts using run lengths that are odd numbers. 

o Avoid bank conflicts using the Pad & Rake technique for run lengths that are powers 

of two. 

o Reduce bank conflicts by aligning runs to 64-bit or 128-bit boundaries to let CUDA 

optimize shared memory access using 64-bit or 128-bit load/store commands (aligned 

Vector 2 and Vector 4 optimization. 

o Live with low number of bank conflicts such as 2-way bank conflicts.  Note:  Trying 

to live with high number of bank conflicts (4-way or higher) may negatively impact 

performance due to costly replays. 

 Decrease Total Cycles to increase throughput (TC = II/IPC) 

o Decrease instructions issued (II) by simplifying code, avoiding dependencies 

between instruction, and software pipelining. 

o Increase instructions retired per cycle (IPC) by increasing occupancy, minimizing 

register & shared memory usage. 
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7.0 Case Study:  kd-Tree 

The kd-tree is a spatial partitioning data structure that supports efficient nearest neighbor 

(NN) searches on a CPU.  Although a depth-first search (DFS) kd-tree is not a natural fit for GPU 

implementation, it can still be effective with the right engineering decisions.  In my 

implementation, by bounding the maximum height of the DFS kd-tree, minimizing the memory 

footprint of data structures, and optimizing the GPU kernel code, multi-core GPU NN searches 

with tens of thousands to tens of millions of points run 20-40 times faster than the equivalent 

single-core CPU NN searches even after I rewrote the CPU code with the knowledge gained from 

optimizing the GPU code. 

Be aware that this case study is the first algorithm (DFS kd-tree NN searches) I ever 

adapted to work on a GPU.  As a result, I had not yet invented data access skeletons (DASk), so I 

do not use them in this case study.  Also, I was not as familiar with concepts of coalescence, 

branch divergence, occupancy, and constraints on occupancy and therefore I did not really know 

how these concepts can impact performance.  As a result, most of the parallel performance I do 

achieve in this case study comes from the first level of the CTA (thread blocks within a grid 

mapped onto SMs) and engineering decisions to streamline the kd-tree search algorithm on both 

the CPU and GPU.  For the second level of the CTA (threads within a thread block mapped onto 

SPs), threads within each thread warp diverge down different search paths through the kd-tree.  

Since all threads in each warp move in lock-step through the instruction stream, the slowest 

thread in each warp gates performance for the entire warp. 

Unfortunately, this thread divergence eliminates most of the performance advantage of 

using multiple threads per thread block. As will be seen later in this chapter, experiments show 

that the best performance occurs for small thread blocks sizes (4-16 threads per thread block).  
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All my experiments were done on an older GTX 285 GPU card (30 SMs with 8 SPs per SM, 159 

GB/s peak throughput for global memory).  Since more modern GPUS (GTX 580 and GTX Titan 

vs. GTX 285) have even fewer SMs (16 and 14, respectively, vs. 30) at the first level of the GPU 

core hierarchy, I predict that my NN kd-tree GPU kernels will perform worse if run on these more 

modern GPUs. 

 

7.1 Nearest Neighbor (NN) Problem Definitions 

The NN problem, which finds the closest point in a point cloud to a specified query point, 

is important in many areas of computer science, including computer graphics, machine learning, 

pattern recognition, statistics, and data mining (Shakhnarovich and Indyk, 2005). 

Despite its importance and the frequency of its use, there are several NN search 

problems.  In each NN search, input consists of sets of n searched points, S, and m query points, 

Q, and a distance metric in d dimensions (such as Euclidean, Manhattan, Chebyshev, or 

Mahlanobis distance).  The Euclidean distance between search point p ∈ S and query point q ∈ Q 

is dist(p,q) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2.  Output consists of the km nearest 

points, where k is the number of requested nearest points in the search set S for each query point 

in Q.  I define six common NN searches (see Table 7.1), the first four of which (in black type) I 

implement and test. The last two (in gray), I do not. 

NN Type Abbr. Input Output 

Query Nearest Neighbor QNN S, Q, dist R = m closest points 

k Nearest Neighbor kNN S, Q, k, dist R = km closest points 

All Nearest Neighbor All-NN S (== Q), dist R = n closest points 

All k-Nearest Neighbor All-kNN S (== Q), k, dist R = kn closest points 

Range Query RNN S, QR, dist R = varying list 

Approximate 

Nearest Neighbor 
ANN S, Q, dist R = m closest points 

Table 7.1:  A Table of six common nearest neighbor (NN) searches with typical 

abbreviations, inputs, and outputs. 
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 For the query nearest neighbor (QNN) search, I find the closest point (k=1) in the search 

set S for each query point in Q under the distance metric dist, this produces the output set R 

containing m result points.  For the ‘k’ nearest neighbor (kNN) search, I generalize QNN to find 

the k closest points in the search set S for each query point in Q (producing R containing km 

points).  For the all nearest neighbor searches (All NN and All kNN), I assume that the query set 

Q and search set S are one and the same (Q = S).  Assuming that Q = S results in a new issue 

where I need to carefully exclude zero distance results; otherwise, each query point would return 

itself as part of the search results. 

 There are a couple of other NN searches that kd-trees can support. However, although I 

define them, I will not discuss them further.  In the range query nearest neighbor (RNN) search, I 

find all points from the search set S contained in each individual query region belonging to the 

query set QR(egion).  This approach results in a varying number of result points for each region. 

Consequently, the final output size is indeterminate.  Each individual query region QRi is 

typically a d-dimensional hyperbox or hyperball of radius r.  In the approximate nearest neighbor 

(ANN) search, I find the approximate closest neighbor to each point in Q from S.  Each answer is 

approximately correct with high probability.  There is always a small chance that another point 

(the true solution) is even closer. See Mount’s paper (Mount and Arya, 2010) for more details on 

ANN searches. 
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7.2 Related Work 

In this section, I briefly discuss NN solutions, kd-trees, and related NN work on the GPU. 

7.2.1 NN Solutions 

A brute force QNN search could directly compare the query point to all 

𝑛 points in the search set (see Figure 7.1).  Solving the All-NN problem this 

way takes quadratic O(n2) time. 

However, one can achieve better asymptotic performance using spatial 

data structures, such as fixed grids, Quad-trees, 

BSP Trees, R-Trees, Voronoi Diagrams, and kd-

trees (see Figure 7.2).  Most of these structures 

subdivide the original space containing all the points into smaller 

spatial regions, called cells, and partition the original points into 

these cells.  Many also impose a spatial hierarchy on the cells.  NN 

searches on these data structures use "branch and bound," which 

focuses the effort on the small set of nearby cells that are likely to contain neighbors and trims 

away large groups of cells that are too distant.  The box tree of Vaidya (Vaidya, 1989) is an early 

example of a data structure to solve the All-NN problem in O(n log n) time.  For a review of 

spatial data structures, refer to Samet’s book (Samet, 2006). 

For my NN search solutions, I focus on the kd-tree, a generalized binary tree invented by 

Bentley (Bentley, 1975) and improved by many researchers in the years since.  Arya (Arya and 

Mount, 1993) detailed an efficient nearest neighbor (NN) algorithm using a depth-first search 

(DFS) balanced kd-tree, a priority queue, and a trim optimization to avoid unproductive search 

paths. This approach resulted in O(log n) expected search times for each query point on well 

distributed point sets.  Jensen (Jensen, 2001) implemented a fast and efficient version of Arya's 

Figure 7.1:  Brute 

Force Spatial Search.  

The query point is 

connected by a red line 

to its nearest neighbor 

Figure 7.2:  Spatial Searches 
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NN search in his book on photon mapping.  Jensen's implementation is the basis for my own CPU 

kd-tree algorithm and has informed the development of my GPU NN algorithms. 

7.2.2 kd-tree Review 

The kd-tree is a hierarchical spatial partitioning data structure that is used to organize 

objects in d-dimensional space (see Figure 7.3).  The kd-tree 

partitions points and more complicated objects into axis-aligned cells 

called nodes.  For each internal node of the tree, I pick an axis and 

split value to form a cutting plane.  This cutting plane partitions all 

points at each parent node into left and right child nodes. One or 

more points contained in the cutting plane may be stored at each 

node.  Variations on kd-trees differ in how the cutting plane is picked.  Splitting heuristics include 

median split, empty space maximization, surface area, and voxel volume. 

A kd-tree for a search set S of n d-dimensional points takes O(d∙n) storage and can be 

built in O(d∙n log n) time.  I build the kd-tree on the CPU and then transfer the kd-nodes onto the 

GPU.  (I also implemented a GPU build algorithm, but performance was worse than the CPU 

build algorithm, so I abandoned it.) 

To perform a nearest neighbor search in a kd-tree, one can imagine traversing the entire 

tree, computing the distance of the query to the search points stored at each node while keeping 

track of the nearest neighbor point found thus far. If the method reaches a node whose bounding 

box extent is farther from the query point than the current best candidate, that node and all of its 

children can be skipped.  If the method traverses by first visiting the child on the same side of the 

split as the query point and by visiting the other child only if necessary, then the method will 

prune many nodes.  Search queries (QNN, kNN and RNN) that return t results have been shown 

to take worst-case O(d∙n(1-1/d) + t) time for all search point sets and expected O(log2(n) + t) time 

for well distributed search point sets.  For the 2D All-NN and All-𝑘NN searches, I multiply the 

Figure 7.3:  A kd-tree 
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theoretical cost of a single point query by the number points (n) in my search set, giving 

O(n√𝑛+tn) worst-case time and O(n log2(n) + tn) expected time using a balanced kd-tree 

implementation (Samet, 2006).  In addition to performing NN searches, kd-trees can also solve 

point location, range search, and partial key retrieval problems (Skiena, 2008). 

7.2.3 Related NN work on the GPU 

For GPU solutions, the first NN search solutions were implemented brute force, 

comparing each of the m points in Q to all n points in S.  For each query point qi, the n query to 

search point distance calculations are computed in parallel using p threads, which takes O(n/p) 

time, followed by a parallel reduction to find the minimal distance for that query point, which 

also takes O(n/p) time.  The expected brute-force parallel performance for m query points is 

O((mn)/p), if we assume the query and search sets are the same size (m == n) then this becomes 

O(n2/p) time.  Purcel (Purcell et al, 2003) approximated a NN search for photon gathering using a 

multi-pass algorithm involving a uniform grid and an incrementally growing radius.  Bustos 

(Bustos et al, 2006) stored data as textures and used three fragment programs to compute 

Manhattan distances. He then minimized those distances by reduction.  Rozen (Rozen et al, 2008) 

implemented a bucket sort to partition 3D points into fixed-size grid cells, and he then searched 

brute force in the 3×3×3 cell neighborhood of each query point.  Garcia (Garcia et al, 2008) 

implemented a brute force NN algorithm in CUDA with a 100+ to 1 speedup compared to the 

equivalent algorithm in MATLAB.  All these authors mention that Arya's kd-tree approach is 

more efficient but is difficult to implement on the GPU due to hardware and software limits. 

Zhou (Zhou et al, 2008) built a breadth-first search GPU kd-tree in CUDA with a splitting 

metric that combines empty space splitting and median splitting.  This splitting metric 

approximates either the surface area heuristic (SAH) or the voxel volume heuristic (VVH).   The 

SAH kd-tree accelerated ray-tracing, while the VVH kd-tree accelerated NN searches.  The VVH 

NN search was iterated using a range region search and by increasing the fixed radius of the 



197 

 

search region on each iteration.  The GPU kd-tree built about 9-13 times faster than the CPU kd-

tree.  The GPU kNN search ran 7-10 times faster than the CPU kNN search. 

Qiu (Qiu et al, 2008) developed a GPU ANN search based on Arya's approach with a kd-

tree to assist in solving a 3D registration problem on the GPU.  The kd-tree is built on the host 

CPU and then transferred to the GPU before running ANN.  The ANN search back-tracks to 

candidate nodes using a small fixed length queue.  If the queue is full, new candidate nodes are 

discarded.  Thus final query results are approximate.  According to Qui, GPU registration was 88 

times faster than CPU registration.  Unfortunately, the performance comparison between the GPU 

and CPU ANN searches was not broken out from the overall results. 

7.3 The kd-tree Data Structure 

My NN search algorithm is adapted from Arya’s (Arya and Mount, 1993).  It uses a 

minimal kd-tree, a search stack, and the trim optimization.  I demonstrate this solution for 2D 

points, although later in the paper, I also do performance experiments on 3D and 4D points. 

7.3.1 kd-tree Search Concepts 

To help the reader understand the kd-tree search, I briefly enumerate 

the following six concepts: 

(1) Each kd-node contains a search point ‹x, y, ...›. 

(2) A best distance variable tracks the closest solution found so 

far. 

(3) A 1D interval trim test eliminates non-overlapping sub-trees 

(see Figure 7.5). 

(4) At any level of my search path, the onside node is the left or 

right child containing the query point and the offside node is the remaining node. 

(5) A depth first search (DFS) first explores onside nodes while storing overlapping 

offside nodes in a search stack to revisit later. 

(6) Each element stored on the search stack contains a kd-node index, onside/offside 

status, split axis, and split value. 

Onside Offside 

Trim Test 

Figure 7.4:  kd-tree Trim 

Test 
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7.3.2 kd-tree NN Search 

My kd-tree search algorithm works as follows (see Figure 

7.5).  The root search element (root index, onside, x-axis, ) is 

pushed onto the stack.  While the stack is not empty, the top search 

element is popped off the stack, and the current node index, 

onside/offside status, split axis and split value are extracted from 

it.  If the node is marked as offside, a trim test is applied in order to 

accept or reject the entire offside sub-tree.  The trim test (illustrated in figures 7.5 and 7.6 is a 1D 

interval overlap test of a ball with the offside half-plane, where the ball is centered at the query 

point with radius equal to the best distance and the half-plane is defined by the current split axis 

and split value. If the node is onside (or offside and accepted), the current kd-node is loaded from 

the node index.  Next, if the distance between the query point and the current node’s search point 

is smaller than the current best, my method updates the best distance and best index.  The current 

nodes split axis and value are used to form left and right 1D intervals. The interval containing the 

query point is the onside node; and the remaining interval is the offside node. The trim test is 

applied to the offside node in order to keep or reject it.  If kept, an offside search element is 

pushed onto the search stack.  The onside search element is always pushed onto the search stack.  

When the search stack becomes empty, the best distance and best index indicate the nearest 

neighbor. 

7.4 Hardware Limits and Design Choices 

7.4.1 GPU Hardware Considerations 

In this section, I discuss GPU hardware limitations and the engineering decisions made in 

response to these limitations.  All my NN kernels were implemented using the CUDA 2.3 API 

and tested on the NVIDIA GTX 285 GPU.  Some of these limitations include the following seven 

Figure 7.5:  kd-tree Search 
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concepts – floating point data, memory hierarchy access speeds, memory hierarchy capacities, 

memory alignment, coalescence, thread block size, and divergent branching. 

Floats:  Modern GPUs support both 32-bit and 64-bit floating point data.  I focus only 

on 32-bit floating point data since 64-bit doubles take twice the space and are a factor of 8 slower 

on the GTX 285 GPU1.  Floating point support on the GTX 285 is not fully IEEE 754 compliant, 

and, in a handful of queries, my GPU and CPU NN searches returned slightly different neighbors.  

In all cases that I investigated, the resulting nearest neighbor distances turned out to be identical. 

Therefore, the different results were all valid solutions. 

Memory Hierarchy:  Recall from Chapter 3.4 that the GPU memory hierarchy access 

speeds, from fastest to slowest, are registers, shared memory, constant memory, and global 

memory (RAM).  For better performance, I put local variables in registers, simple indexed data 

structures in shared memory, and keep points and kd-tree nodes in global memory.  Note:  I tried 

storing indexed structures directly in registers; however, CUDA stored them in local memory 

(AKA a special partition in global memory) instead, which slowed the overall search time by a 

factor of three. 

I minimized the number of data transfers from slower RAM into faster shared memory.  

The NN search code contains a single read per loop.  The total reads per query is O(log n) 

expected or O(d∙n(1-1/d)) worst case.  For example, in a QNN search containing 1 million search 

and query points, each query visits about 40-80 kd-nodes (one read per node) to find the exact 

answer. 

Memory Capacity:  Since the GTX 285 has only one GB of fixed memory limiting 

data storage; I sought to minimize the size of my data structures in GPU memory.  I compressed 

kd-nodes from eight down to two fields for 2D points. So the 2D QNN search needs only seven 

                                                      
1  The ratio of double precision to single-precision performance varies across the different Fermi and 

Kepler GPU cards.  For instance, on the GTX 580 double precision (64-bit) is 8× slower than single-

precision (32-bit); On the GTX 680, double precision is 24× slower; and on the GTX Titan, double 

precision is 3× slower.  Ideally, double precision should be only 2× slower than single precision. 
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32-bit elements per 2D point to store query points, kd-nodes, and final search results. This 

approach allowed the QNN search to process up to 36+ million 2D points on the GTX 285. 

Memory Alignment:  Data structures aligned on 4, 8, or 16 byte memory boundaries 

perform faster than unaligned data.  I saw a 37% speed improvement by aligning my data 

structures2. 

Coalescence:  The GPU coalesces memory accesses only if they are sequential.  With a 

NN depth first search (DFS) through the kd-tree, all threads within a thread warp start their 

searches at the root node but then quickly diverge to different unpredictable sub-trees (based on 

their individual query point) within the kd-tree and thus different parts of memory.  NN searches 

on a DFS kd-tree tend not to result in sequential reads across the data warp and thus do not 

support coalescence. Consequently, I ignore this GPU hardware property at this time. 

Latency:  The GPU programmer hides latency via TLP by scheduling a large grid of 

thread blocks; however block performance is limited by the slowest thread in each block (or 

thread warp).  Both grids and thread blocks can be 1D or 2D in shape.  A 1D or 2D thread block 

shape has little effect on performance. So, I excluded my 2D thread block results.  The grid can 

support a maximum of 65,535 thread blocks3 in any dimension.  Each thread block can contain a 

maximum of 5124 threads.  For the GTX 285, the thread manager maps thread blocks onto 15 

SMs each containing 16 SPs.  I setup my NN searches to use one thread per query point.  I use 

padded access (as described in Chapter 5.1.2) to pad my queries up to the next multiple of the 

thread block size by repeating the first query as needed; this approach avoids a range check 

comparison that would increase divergence across the threads within the thread warp. 

                                                      
2  I aligned my various kd-tree search data structures using the CUDA __align__ macro.  See the CUDA 

programmers guide for more details. 
3  This maximum of 216-1 (65,535) threads per grid in any dimension is a hard constraint of both the Telsa 

and Fermi architectures, the Kepler architecture raises this maximum limit to 232-1 threads per dimension. 
4   512 threads is the maximum number of threads per thread block allowed on Telsa architectures 

(including the GTX 285 card).  Both Fermi and Kepler architectures increase this limit to 1,024 threads per 

thread block. 
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Thread Block Size (TBS):  Each GPU core is limited to 16 KB of shared memory and 

8 K of 32-bit registers.  My current NN searches require about 24-32 registers for temporary 

variables, which limits the maximum number of threads per SM to 2565, at most.  The QNN and 

All-NN searches require 192–240 bytes of shared memory for data structures including a 20–28 

element deep stack. This shared memory constraint limits the maximum number of threads per 

SM to at most 64–806.  My performance experiments revealed that the optimal thread block size 

for my DFS kd-tree NN searches is 4–16 threads per-block, depending on the search type and the 

size of the input data. 

Divergent Branching:  On the GPU, branch divergence degrades performance (see 

Chapter 3.3).  If at least two threads in a thread block diverge at a conditional branch, then both 

the "if" and "else" branch paths must be executed by all threads in the thread block.  So, I 

eliminated as many branches as possible from my code. The remaining conditional logic is 

necessary for correct behavior, for which I accept the performance hit due to divergence.  I 

process the All-NN and All-kNN searches in sequential kd-tree order to increase the coherence of 

all threads in the thread block.  This results in a modest 4–5% performance improvement for the 

All-NN search over the QNN search. However, the trade-off is that the All-kNN search performs 

slightly worse than the kNN search. 

7.4.2 kd-tree Design Choices 

Based on the GPU hardware limits, I sought to efficiently use GPU memory resources.  

Such a goal suggests bounding the kd-tree height and reducing the size of data structures in 

memory. 

                                                      
5  Since the Fermi and Kepler architectures increase the register pool size to 32 K and 64 K respectively, 

the maximum number of threads per SM on these GPU architectures would be raised to 1,024 and 2,048 

threads respectively. 
6  Since both the Fermi and Kepler architectures increase the shared memory pool size to 48 KB, the 

maximum number of threads per SM on both these GPU architectures would be raised to 208-256 threads. 
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Bounding kd-tree Height:  Shared memory is the target for my NN search stack.  

There is only 16KB of shared memory across all threads in each GPU core on the GTX 285.  If I 

use 64 threads per-thread-block, then I have at most 256 bytes available for all data structures.  

Since my data structures must include a DFS search stack for performing the NN searches, this 

shared memory constraint bounds the stack size to 20-28 elements, at most.  Since my stack size 

is bounded, I also must bound the length of any kd-tree search path to prevent overflowing the 

stack.  One way to prevent this overflow is to bound the maximum height of the kd-tree search 

tree. Bounding the height implies that the 𝑘d-tree should be both balanced and static.  For faster 

index calculation, I store the kd-tree in an efficient array layout.  I describe the concepts of 

balanced, static, and efficient array layout as follows: 

Balanced kd-tree:  A balanced kd-tree of maximum height ⌈𝑂(log2 𝑛)⌉, with a 

difference of at most one level across all leaf nodes, is built by setting the cutting plane 

through the median point of each sub-tree. 

Static 𝑘d-tree:  A dynamic kd-tree can handle insertions, deletions, and modifications, 

but it can quickly become unbalanced, and exceed my bound on height.  When all points 

are known a priori, I can build the kd-tree all at once and never change it.  A static tree 

also enables a left-balanced binary tree layout order for the kd-tree that supports fast 

index operations. 

Array Layout:  For faster indexing, I store the kd-nodes in an array as a left-balanced 

binary tree.  kd-nodes are stored in the range [1..n] using one-based indexing.  The root is 

always stored at index one.  Given a node at index i, its parent is found at ⌊𝑖/2⌋, and its 

left and right children are found at 2i and 2i+1 respectively. Any child indices greater 

than n are invalid.  Leaf nodes have both invalid left and right child indices. The kd-nodes 

are first built as a left-balanced median kd-tree and then converted into a left balanced 



203 

 

binary tree as part of the build process.  The left-balanced median position (LBMpos) for 

splitting a partition containing n nodes can be found in 3 steps as follows: 

(1) h = ⌈log2(𝑛 + 1)⌉ 

(2) half = 2(h-2) 

(3) LBMpos = half + min(half, n-2*half+1). 

Basis Step:  The above formulas do not work correctly for small partitions (n ≤ 3), so the 

correct LBMPos for n=1, 2, 3 are 1, 2, 2 respectively. 

Reducing Memory Foot-print:  To maximize the number of points in GPU RAM 

memory, I minimize the size of the kd-tree data structure.   A maximal set of kd-node fields might 

include: child pointers, parent pointer, split axis, split value, cell bounding box, and stored point. 

d-Dimensionality:  I use points with 2-4 dimensions ‹x, y, ...› in these NN searches, 

which reduces the data stored on the GPU.  The searches can be extended to higher 

dimensions as well; however, since kd-tree worst-case performance is no better than a 

brute-force search for higher dimensions, I recommend not using kd-tree based NN 

searches for points with high dimensionality (d > 16). 

Eliminating fields:  The parent pointer can be avoided by using the search stack in the 

NN search to back-track.  The split axis can be implicit in a cyclic kd-tree if that tree 

splits ‹x, y, x, y, ...› and the split value is implied by the stored d-dimensional point.  Cell 

bounding boxes are not needed for NN search.  Child pointers can be eliminated by 

computing them directly from the left binary tree layout (2i, 2i+1).  Such a computation 

results in a fully minimal kd-tree, where each kd-node contains just the original points 

rearranged into a left-balanced binary tree order.  Note:  I also need to store a remapping 

array of size O(n) for converting rearranged node indices back into the original point 

indices to obtain the final search results. 
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Final Design:  I implement my DFS kd-tree data structure as a 2D, 3D, or 4D static 

balanced cyclical kd-tree with a single left-balanced median point stored at each node (internal or 

leaf).  The nodes of the kd-tree are stored as a left-balanced binary tree array.  The NN search is 

implemented using a depth first search using a stack for back-tracking.  This design bounds the 

height of the kd-tree for predictable stack sizes, minimizes the footprint of the kd-tree and search 

nodes in memory. It also reduces the number of transfers to and from slower global memory. 

7.5 Building the kd-tree 

In this section, I describe how to build the minimal kd-tree from the search points.  I 

construct the kd-tree on the CPU and then transfer it to the GPU for the GPU NN search.  A high-

level overview is found in Figure 7.6 (left panel). 
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As shown in Figure 7.6 (left panel), I compute the minimum and maximum bounds of the 

search points.  The root of the kd-tree is conceptually associated with these min-max bounds and 

the sequence [1, n] of original points.  A split value is picked along one of the dimensional axes.  

The split value is chosen to optimize the results according to some measure.  All points are 

partitioned into the two smaller left and right boxes based on the splitting value.  Each child node 

procedure BuildKDTree(d, points, lbm kd-nodes) 
// Initialize kd-tree nodes 
n ← |𝑝𝑜𝑖𝑛𝑡𝑠| 
Allocate memory for n median kd-nodes 
Allocate memory for n left balanced median 
(lbm) kd-nodes 
for all in points 
  medianNodes[idx].xy ← points[idx].xy 
  medianNodes[idx].pointIdx ← idx 
  medianNodes[idx].nodeIdx ← INVALID 
// Add root build item  
top ← 0 
build ← { [0,n-1], x-axis, 1 } 
buildStack[top++] ← build; 
// Build kd-Tree 
while buildStack not empty do 
  // Get current build item  
  currItem ← buildStack[top--] 
  [low,high] ← currItem.sequence 
  currAxis ← currItem.splitAxis 
  currIdx ← currItem.location 
  N ← (high-low)+1 
  M ← low + LBMpos(N)  // Left bal. Median 
  L ← (low+M-1)/2 
  R ← (M+1+high)/2 
  left  ← 2*currIdx; 
  right ← left+1; 
  nextAxis = (currAxis+1) % d  
  // Partition via Median Selection  
  Partition(medianNodes, M) into sub-seqs. 
    Left{low,M-1}, Median{M}, and 
    Right{M+1,high} 
  mNode ← medianNodes[M] 
  lbmNode[currIdx] ←     
    {mNode.xy,mNode.pointIdx,M} 
  // Add right build item to stack 
  rightItem ← {[low+M+1,high],nextAxis,right} 
  buildStack[top++] ← rightItem 
  // Add left build item to stack 
  leftItem ← {[low,low+M-1],nextAxis,left} 
  buildStack[top++] ← rightItem 
end while 
// Cleanup 
Free memory associated with median kd-nodes 
return lbm kd-nodes 

procedure QNNsearch(d, qp, kd-nodes, remap) 
// Initialize search 
root ← kd-nodes[1] 
bestIdx ← 1  
bestDist ← Huge Value (Infinity) 
// Add root search element 
top ←0 
rootElem ← {1, onside, x-axis, Infinity} 
searchStack[top++] = rootElem; 
// Find Nearest Neighbor 
while searchStack not empty do 
  currElem ← searchStack[top--]; 
  if currElem.state == offside,  
    result ← trimtest(bestDist,  
             currElem.splitValue ) 
    if result == rejected 
      return to top of loop // while (search) 
    end if 
  end if 
  // Update Best Distance 
  currNode ← kd-nodes[currElem.nodeIdx] 
  left ← 2 * currElem.nodeIdx 
  right ← left+1 
  currDist ← distance( qp.xy, currNode.xy )  
  if currDist < bestDist 
      bestDist ← currDist 
      bestIdx ← nodeIdx 
  end if 
  currAxis ← currElem.splitAxis 
  nextAxis ← (currAxis + 1) % d 
  splitValue ← currElem.xy[currAxis]; 
  determine onside and offside nodes  
    from qp, splitAxis, splitValue  
  // Add offside node 
  diff2 ← (qp.xy[currAxis] - 
           currNode.xy[currAxis])^2 
  result ← trimtest( bestDist, diff2 ) 
  if result == accepted  
    offElem←{offIdx,offside,nextAxis,splitValue} 
    searchStack[top++] ← offElem 
  end if 
  // Add onside node 
  onElem ← {onIdx,onside,nextAxis,splitValue} 
  searchStack[top++] ← onElem;  
end while 
bestIdx ← remap[bestIdx] // map node into pntIdx 
return bestIdx and bestDist. 

Figure 7.6:  Build & Search Methods 

The kd-tree build algorithm from a list of search points (left panel).  And the kd-tree search algorithm from 

the point of view of a single query point (right panel). 
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is associated with its bounding box and partitioned sequence of points.  The kd-tree is recursively 

refined by splitting each child sub-tree, the associated boxes, as well as associated point 

sequences until some stopping criteria is reached.  In general, there are many possible ways in 

which the splitting plane can be chosen.  For my kd-tree, I always choose the left-balanced 

median point as the splitting plane along the current cyclical axis ‹x, y, x, y, ...›, as the tree is 

descended.  The left-balanced median point is found using the quickmedian selection algorithm 

(Sedgewick, 1998).  Recursion is converted into iteration by means of a build stack for tracking 

work yet to be done. 

Quickmedian Selection Algorithm: 

The quickmedian algorithm used for selection is similar to the quicksort algorithm 

used for sorting and uses the same partition sub-routine.  Each selection iteration runs in two 

phases: pivoting and partitioning. 

Pivot phase:  The algorithm picks a candidate pivot value p using the median of three 

technique. 

Partition Phase: The pivot value is then used to partition the points into three data sets 

{Left: points less than p, Middle: all points equal to the pivot value7, and Right:  all points 

greater than or equal to p.}.  If the true median position is equal to the current pivot 

position, the algorithm stops and returns the pivot point as the median. Otherwise, the 

algorithm iterates into the child data set (left or right) which contains the true median 

position.  This approach takes quadratic O(n2) time in the worst case but its expected 

performance is linear O(n) (Sedgewick, 1998).  In practice, this approach is fast and 

reliable. 

                                                      
7  Though not required, if desired, points that are equal to the pivot value can then be compared on a 

secondary key such as index offset or pointer address to preserve stability (meaning that if the point a 

precedes point b in the array and both a and b match the pivot point c then after partitioning a will still 

precede b in the middle partition, in other words their relative orders in the original array are preserved). 
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7.6 Searching the kd-tree 

All my NN search solutions are based on the kd-tree search solution, already described in 

Section 7.3.  This same search solution can be simplified and adapted to solve the Point Location 

problem as described in section 7.6.1.  I give more details on a CPU Host function for the QNN 

and All-NN search solutions in section 7.6.2.  The kNN and All-kNN search solutions must track 

the k closest points, so I introduce more details on how to handle these k points in 7.6.3.  The data 

structure used to track the k closest points also uses shared memory, I talk about how this impacts 

shared memory resource usage in 7.6.4. 

7.6.1 Point Location Problem: 

I can quickly find items in a kd-tree by traversing down the tree until the cell of interest is 

found and then by searching for the point of interest within that cell.  This approach is easily 

implemented using the search algorithm described previously in Figure 7.7 (right panel) by 

simply eliminating the stack and back-tracking code.  While traversing the kd-tree, the code 

always chooses the onside node (left or right sub-tree) whose 1D interval contains the query point 

until arriving at the leaf node which locates the query point. 

NN Search Remapping Issue:  To solve any NN search problem such as QNN, I 

directly convert the 𝑘d-tree NN search algorithm into code. However, one minor change is also 

required.  Since the NN search algorithm actually returns the index of the nearest kd-node from 

the constructed median array layout, but, what is needed is the index of the nearest point from the 

original search set, then I solve this problem by creating an additional remap array of original 

indices stored in median array order and then using the median index as a lookup into the remap 

array to get the original search index.  This is a simple straight forward solution but adds another 

level of indirection and another non-coalesced I/O to the total cost of performing NN searches on 

GPUs. 
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7.6.2 QNN and All-NN Search Algorithms 

A brief high level overview of the QNN search algorithm is presented in this section.  

Both the GPU and CPU code are implemented using this algorithm for a fair comparison, see 

Figure 7.7 (right panel) for more details.  For the CPU code, a CPU NN search algorithm is called 

for each query point in turn.  For the GPU kernel, a CPU host function does the following: 

(1) Allocates host and device memory for the search points, query points, kd-tree 

nodes, and final results 

(2) Sets up the thread blocks for the GPU 

(3) Transfers the inputs onto the GPU  

(4) Invokes the parallel GPU NN kernel 

(5) Transfers the output results back onto the CPU 

7.6.3 𝒌NN and All-𝒌NN Search 

The kNN and All-kNN searches are based on the QNN and All-NN searches.  Two 

simple changes enable these searches.  First, the k neighbors are tracked by a closest heap data 

structure and, secondly, the trim distance test is changed to work with k points instead of a single 

closest point. 

Closest Heap Data Structure:  The k nearest neighbors are stored in a closest heap 

data structure (Jensen, 2001), which acts first like an array and then later like a heap.  Array 

Behavior: While visiting the first k-1 search nodes in the kd-tree, these nodes are appended to the 

end of the array.  Each append takes constant O(1) time.  Heap Behavior:  After adding the kth 

search node into the array, the array is converted into a max-distance heap (Sedgewick, 1998) 

using the make-heap method, which takes O(k) time to run.  From then on the NN search treats 

the closest heap data structure as a true heap.  For each subsequent node in the kd-tree that is 

encountered during the NN search, the corresponding search point is compared to the top element 

of the closest heap.  If the distance from the new point to the query point is less than the distance 

on top of the heap, the top of the heap is replaced with the new point.  The correct heap ordering 

is then restored via the demote method, which takes logarithmic O(log k) worst case time to run.  
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Unfortunately, the closest heap data structure results in many more instructions and more 

opportunities for branch divergence across the threads within each thread warp thus slowing 

down performance (as compared to the QNN and All-NN searches). 

During the processing of a NN search, a logarithmic O(log n) number of  nodes will be 

visited.  The worst case time to process the NN search using the closest heap data structure is the 

time to append the first k points. The time to run make-heap when the closest heap becomes full 

is O(k), and the time to compare and insert the last log2(n) - k nodes into the closest heap which 

takes O(log k) time per demote.  Summing these different operations, I arrive at a total of k∙O(1) 

+ O(k) + [log2n – k]∙O(log k) worst case time, for which the linear term O(k) dominates.  Each 

individual kNN search thus takes O(log n + k) expected time.  Given p cores, the 2D kNN and 

All-kNN search algorithms should take O((m log n+mk)/p) and O((n log n+nk)/p) expected time 

respectively for well distributed point sets. 

Adjusting Trim Distance:  The current trim test must also be adjusted to account for 

the k nearest neighbors:  The initial huge or infinite starting best distance value is not allowed to 

change for the first k-1 insertions into the closest point heap data structure.  After the kth 

insertion, the trim distance is changed to match the maximum best distance from the top of the 

closest heap data structure in constant O(1) time.  Any time the algorithm decides to change the 

top of the heap (and demote) then the current best trim distance must also change to match the 

resulting new maximum best distance.  This has the effect of making the kNN and All-kNN 

searches run slower (than the QNN and All-NN searches) due to a slower ramp-up time, as they 

must completely fill the closest heap with k search nodes before then being able to successfully 

trim away portions of the search tree using the trim test. 

7.6.4 GPU Resource constraints for kNN and All-kNN search 

The same two memory constraints apply with the kNN and All-kNN searches: global 

memory and shared memory.  First, I need to save the k search results for each of the n query 
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points.  This means the final result structure takes O(kn) space. There is a maximum of 1 GB of 

RAM memory on the GTX 285 card.  This extra constraint on memory limits the searches to 

about n = one million and k = 32 in the worst case.  Another possible configuration is n = 10 

million and k = 8.  Second, in order to support kNN on the GPU, I need to carve out space for the 

closest heap data structure from the same shared memory that I use for the search stack.  I assume 

k will never end up being larger than a maximum stack size of 32 elements.  This implies that the 

kNN and All-kNN searches can be done using about half as many threads as I used for the 

singleton QNN and All-NN searches. 

7.7 Performance Results 

In this section, I compare parallel NN search performance on the GPU to serial NN 

search performance on the CPU.  All performance tests were conducted on a GTX 285 (Tesla) 

using a desktop computer configured as below (see Table 7.2). 

CPU Hardware:  CPU = i7-920@2.67 GHz, RAM=12 GB 

GPU Hardware: 

2× GTX 285   (30 SMs, 240 total SPs, 1.0 GB RAM, 159.0 GB/s peak throughput) 

Software: GPU API = CUDA 2.3, C++, IDE = VS 2008, OS = Windows 7, SP1, Pointers = 64-bit 

Data:  Input size, n = [100 – 107], in increasing powers of ten. 

Table 7.2:  NN Search Experiment Environment 

As part of these performance experiments:  I show the cost to build the kd-tree on the 

CPU, see Section 7.71; TLP experiments to find the best thread block size (TBS) for each NN 

search type, see section 7.7.2; and experiments to show the resulting performance for increasing 

input sizes (n) and increasing search sizes (k), see section 7.7.3. 
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7.7.1 Building the kd-tree on CPU 

Table 7.3 shows the CPU cost of building the kd-tree for different numbers of 2D points.  

𝒏, # of points 1 10 102 103 104 105 106 107 

Build Time (in ms) 0.019 0.045 0.151 2.43 22.74 192.52 2,165.31 24,491.28 

Time/Pnt (ms/pnt) .014 .0043 .00165 .00165 .00214 .00163 .00179 .00202 

Table 7.3:  CPU Build Performance 

As the previous figure shows, the amortized time per point to build the kd-tree initially 

decreases and then surprisingly levels off after 100 points.  I expected the time per point to 

increase, matching the theoretical O(n∙log n) performance.  My best guess for this surprising 

result is that some CPU caching effects came into play. 

7.7.2 Finding the optimal thread block size 

A complicated set of trade-offs determine the optimal number of threads per-thread 

block.  On the one hand, more threads means more parallel work gets done, and therefore there 

are more opportunities to hide latency stalls, On the other hand, more threads means more 

competition for resources, increased chances for slower threads to stall the entire thread warp, and 

more branch divergence. 

To find the optimal thread block size on the GTX 285 GPU, I manually tried thread 

blocks sizes containing between 1 and 80 threads for each of my NN searches.  Shown in Figure 

7.7 (panels a-c) are 2D QNN, All-NN, kNN, All-kNN results for data sets containing 1 million 

and 10 million search points, respectively.  For QNN of 1 million search points, the optimal 

thread block was 10x1 with a speedup of 46.4.  For 10 million points, it was 7x1 with a speedup 

of 43.6.  For All-NN of 1 million points the optimal thread block was 10x1 with a speedup of 

35.9.  For 10 million points, it was 10x1 with a speedup of 36.8.  For kNN using 1 million search 

points and k = 32, the optimal thread block was 4x1 with a speedup of 18.1.  For All-kNN search 

using 1 million points and k = 32, the optimal thread block was 4x1 with a speedup of 15.7.  
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a) 2D QNN, All-NN searches 

        (𝒏 = 106 points) 

b) 2D kNN, All-𝒌NN searches 

     (𝒏 = 106 points, 𝒌=32) 

  

c)  2D QNN, All-NN searches (𝒏 = 107 points) d) 2D 𝒌NN, All-𝒌NN, Increasing 𝒏 (TB=4x1, 𝒌=32) 

  

e) 2D QNN, All-NN, Increasing 𝒏  (TB = 10x1) f) 2D 𝒌NN, All-𝒌NN, Increasing 𝒌  (n=106,TB=4x1) 

  

Figure 7.7 kd-tree Search Results 

a) This chart plots the GPU/CPU speedup for 2D QNN, All-NN searches for increasing thread block sizes 

with a fixed-size search and query data set of 1 million points.  b) This chart is the same but for the 2D 

kNN and All-kNN searches.  c) This chart plots the 2D QNN, All-NN speedups for 10 million points.  d) 

This chart tracks 2D kNN and All-kNN speedups for increasing values of n.  e) This chart tracks 2D QNN 

and All-NN speedups for increasing values of n.  f) This chart tracks 2D kNN and All-kNN speedups for 

increasing values of k from 1-32. 
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7.7.4 Performance for increasing n and k 

In panels d-f in Figure 7.7, I increased, n, the total number of search points across several orders 

of magnitude using the optimal thread block size for each type of NN search.  I keep the number 

of query points equal to the number of search points in these tests.  I plot the four 2D searches in 

two pairs—QNN and All-NN; kNN and All-kNN—since they have similar algorithms and results.  

For the kNN searches, I also test performance for increasing values of k from 1-32. 

Increasing n:  For 2D QNN, I see speed-ups in the range [20 - 41.5]; the maximum 

speed-up occurs for n = 10 million.  For All-NN, I see similar results: the speedups in the range 

[20 - 36.8]; the maximum again at 10 million points.  For both searches, if n ≤ 100 points, it is 

better to use a CPU or brute force solution. 

For 2D kNN and All-kNN, I set k = 32.  For kNN, I see speedups in the range [14 - 18] 

with the maximum at 1 million points.  There is enough memory to run a query with 10 million 

points, but I then have to decrease k = 8 in order for both the search stack and closest heap to fit 

into shared memory.   When I decrease, I see a speedup of 23.4.  For All-kNN, I see speed-ups in 

the range [12 - 15.7] with the maximum again at 1 million points.   Again, for n ≤ 100, it is better 

to use a CPU or a brute force solution. 

Increasing k:  for the 2D searches, I set n = 106 and vary k from 1 - 32.   In both cases, 

the speed-ups appear to follow a shallow inverse quadratic curve.   For the kNN search, all the 

speed-ups are in the range [17.9 - 22.7] with the maximum at k = 6. For the All-kNN search, the 

results are similar with speedups in the range [15.7 - 18.4] with the maximum at k = 3. 

7.8 Conclusion 

The demonstrated QNN, kNN, All-NN, and All-kNN search algorithms are based on a 

DFS minimal kd-tree.  The minimal kd-tree design is static, balanced, cyclical, using all nodes 

(internal and leaf) each storing a single point corresponding to the left-balanced median split 

along the current axis.  This kd-tree design allows us to handle more points with higher 
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performance by efficient memory utilization.  Not only is it possible to support nearest neighbor 

searches on the GPU using a minimal kd-tree but there is a large performance gain from doing so. 

7.8.1 2D Performance Summary 

The GPU parallel NN searches can handle up to 36+ million 2D points and run faster 

than the equivalent CPU serial NN search algorithms.  The multi-core GPU QNN search runs 20-

44 times faster than the equivalent single core CPU search QNN.  The GPU All-NN search runs 

10-40 times faster than the CPU All-NN search.  The GPU kNN search runs 13-18 times faster 

than the CPU kNN search.  The GPU All-kNN search runs 8 - 17 times faster than the CPU ALL-

kNN search. 

7.8.2 3D Performance Summary 

The GPU parallel NN searches can handle up to 22+ million 3D points and ran faster than 

the equivalent CPU serial NN search algorithms.  The multi-core GPU QNN search runs 10-30 

times faster than the equivalent single core CPU search QNN.  The GPU All-NN search runs 10-

29 times faster than the CPU All-NN search.  The GPU kNN search runs 7-16 times faster than 

the CPU kNN search.  The GPU All-kNN search runs 7 - 14 times faster than the CPU ALL-kNN 

search. 

7.2.3 4D Performance Summary 

The GPU parallel NN searches can also handle up to 22+ million 4D points and run faster 

than the equivalent CPU serial NN searches.  The multi-core GPU QNN search runs 8-22 times 

faster than the equivalent single core CPU search QNN.  The GPU All-NN search runs 11-21 

times faster than the CPU All-NN search.  The GPU 𝑘NN search runs 6-14 times faster than the 

CPU 𝑘NN search.  The GPU All-𝑘NN search runs 6 - 13 times faster than the CPU ALL-𝑘NN 

search. 
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7.9 Future Directions 

GPU Build:  I actually implemented a GPU algorithm to build the kd-tree directly on the GPU.  

Unfortunately, it was actually slower than building the kd-tree on the CPU. At some point, I 

would like to revisit this GPU build algorithm and see if it can be improved. 

BFS kd-tree:  I implemented my DFS minimal kd-tree before I understood the GPU hardware 

and hardware issues that constrain performance—issues such as coalescence, branch divergence, 

bank conflicts, etc.  If I were to re-implement my NN search kernels today, I would try a breadth 

first search (BFS) kd-tree algorithm instead in order to respect coalescence and to help reduce 

search divergence across threads within each thread warp. 
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8.0 Case Study:  A GPU Histogram 

In this case study, I demonstrate my Column data access skeleton (DASk) on a 256-bin 

histogram over byte data.  My histogram implementation is called TRISH1 and is a deterministic 

algorithm that avoids atomic operations and gives performance that is data independent.  TRISH 

is higher performing than previous GPU histograms, with a focus on reducing the algorithm’s 

total cycle counts.  Reducing the cycles comes from improving thread level parallelism (TLP), 

instruction level parallelism (ILP) and bit-level parallelism (BLP).  TLP improves performance 

by increasing occupancy from two to three thread blocks, which is achieved by compacting “per-

thread” histograms in shared memory and by using register arrays.  ILP improves performance by 

increasing independent instructions via loop unrolling by a factor of 𝑘 =  [1. .63] and by 

batching operations in groups of four.  BLP improves performance by compacting bin counts into 

four 8-bit quads per 32-bit element.  BLP also improves performance by reducing binning and by 

accumulating instructions by working with 32-bit elements as overlapping 16-bit pairs instead of 

four individual bytes.  TRISH runs up to 50% faster than previous GPU histogram methods for 

random data and 2 to 4× faster for image data. 

8.1 Introduction 

Histograms, first defined by Karl Pearson (Pearson, 1895), summarize the frequency 

distribution of a data set.  Given an input array V with n data values, with an associated data range 

R = [min; max) and m bins to count the data values into, the histogram algorithm outputs the 

histogram as m frequency counts hi, one for each bin.  The actual counting is done using a find 

                                                      
1  TRISH is an acronym for the “threaded registers independent strided histogram.” method 
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function f(v) that maps each data value into one of sub-ranges2 ri = [ai, bi), which are known as 

bins, all sub-ranges ri collectively cover the original range R without overlap.  The m sub-ranges 

are chosen to be equal-sized as this enables a linear algorithm O(n), as each of n values can be 

mapped onto its matching sub-range in constant time O(1) using numeric calculations.  More 

complex histograms can support varying size sub-ranges but then require more costly logarithmic 

O(log n) or linear O(n) searches in order to map each of n values into its matching sub-range.  

These more complex histograms thus result in log-linear O(n∙log n) or quadratic O(n2) asymptotic 

performance.  These more complex histograms will not be discussed further in this dissertation. 

The histogram method works in four broad steps: 

Step 1) Subdivide Ranges partitions the original range R into m equal-sized sub-ranges3 

(known as bins), ri  = [ai; ai+1), all sub-ranges ri collectively cover the original range R 

without overlap. 

Step 2) Distribute Values maps each of n data values from V into one of the m sub-

ranges, ri. 

Step 3) Count Bins maintains bin counts hi for the number of data values that fall into 

each bin ri. 

Step 4) Output Histogram outputs the m frequency counts (hi) that collectively make up 

the histogram. 

The resulting histogram is often graphically rendered as a bar-chart of these counts.  The 

shape of the chart gives information about the frequency distribution of the data. 

The histogram methods discussed in this chapter focus on the special case of 256-bin 

histograms for (8-bit) byte data, which are useful for image processing, text processing, and other 

applications.  The advantage of using 256-bin histograms on byte data is that computing ranges 

and distributing values into bins can be replaced by simpler indexing operations for faster 

                                                      
2  There are m subranges ri = [ai, ai+1) with each of the (m+1) partition values ai typically computed as  

ai = min + i∙[(max-min)/m)].  
3  There are m subranges ri = [ai, ai+1) with each of the (m+1) partition values ai typically computed as  

ai = min + i∙[(max-min)/m)].  
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performance.  Figure 8.1 shows code for a simple 256-bin CPU histogram method for counting 

byte values. 

 

Input:       𝑉 = array of 𝑛 bytes to be binned 
Output:    bins = array of 𝑚 = 256 bin counts 

integer bins[256] = 0;   // Zero counts 

foreach idx in [0..n-1]  // Count bytes 
  bins[V[idx]]++; 
end idx 

Figure 8.1: A 256-bin CPU histogram method. 

 Although histogram methods are straightforward to implement on a sequential CPU they 

have proven difficult to adapt for use on many-core processors such as GPUs.  Prior researcher’s 

GPU histogram implementations generate correct results but achieve only 6–15% of the 

theoretical peak throughput of modern GPU hardware, such as NVIDIA Fermi or Tesla cards.  

My TRISH method improves modestly on previous results, achieving ~21% of peak throughput. 

8.1.1 Parallelism improves Performance 

Readers are already aware of the benefits of using instruction-level parallelism (ILP), 

data-level parallelism, and thread-level parallelism (TLP).  In this chapter, I introduce Bit-level 

parallelism (BLP) which can also improve performance. 

Bit-Level Parallelism:  Bit-level parallelism (BLP) is an older form of parallelism (Wadleigh 

and Crawford, 2000) and is a special case of vector-parallelism4.  BLP processes multiple small 

data types at once using a single ISA instruction on larger data types.  A shown in Figure 8.2, if 

the native machine word size is 32-bit then the programmer can choose to work with four 8-bit 

bytes, or two 16-bit words, or one 32-bit double-word (DWORD) using 32-bit ISA instructions.  

                                                      
4  Bit-Level parallelism is also sometimes referred to as “SIMD within a Word” (SWAR). 
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Working with 8-bit bytes or 16-bit words on such an architecture using BLP can result in 

speedups up to 4× or 2× respectively. 

 

Figure 8.2:  Bit-Level Parallelism 

The trade-off with BLP, is that programmers also pay overhead in the form of extra 

instructions to compress and decompress multiple small data values into or from the larger data 

type registers.  A performance increase thus depends on whether the instructions saved by BLP is 

more than the overhead incurred compressing values and decompressing results. 

Performance: 

To improve parallel performance, I take advantage of these 4 types of parallelism -- ILP, 

data-level, TLP, and BLP. 

To achieve good GPU performance, I use coalescence, avoid bank conflicts, and 

minimize branch divergence.  For measuring GPU performance, I use the concepts of I/O 

throughput (GB/s) and Total Cycles (TC = II/IPC) from Chapter 3.  Using the TC metric, I seek 

to improve performance by either reducing the total instructions issued (II) or by increasing the 

instructions retired per cycle (IPC). 

To achieve better GPU performance in my TRISH histogram, I also use a couple of ideas 

from other sources.  First, Dr. Micikevicius (Micikevicius, 2010 both papers) explained how to 

find and remove GPU performance bottlenecks by carefully measuring and analyzing 

performance.  Second, Dr. Merrill (Merrill and Grimshaw, 2010 both papers) used register arrays 

for better performance and memory utilization by partitioning array elements across the registers 

of multiple threads in a thread block. 

I aim for my GPU histogram methods to be correct, fast, and predictable.  I verify 

correctness by comparison against a baseline CPU method.  I achieve faster performance by 

porting my original CPU methods onto GPUs via data-level parallelism and by seeking to 

8-bit 8-bit 8-bit 8-bit

16-bit 16-bit

32-bit
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minimize the total cycles that my GPU method takes to complete.  I also seek predictable 

methods where performance is not influenced by the underlying data distribution. 

8.2 Related Work 

Since my work is related to two prior GPU Histogram implementations, I will briefly 

describe those two prior GPU histograms from Podlozhnyuk (Section 8.2.1) and Nugteren 

(Section 8.2.2).  There is also a third GPU histogram implementation, by Yang (Yang et al, 

2008), but his histogram method is slow (~ 0.7 GB/s throughput on G80 class GPUs). 

8.2.1 Podlozhnyuk’s Histogram Method 

NVidia provides 64-bin and 256-bin histogram methods in the most recent CUDA 

software development kit (NVIDIA, 2012, C++ Programming Guide).  These methods5 were 

created by Victor Podlozhnyuk (Podlozhnyuk, 2007).  These methods target older GPUs with 16 

KB of shared memory per streaming multi-core (SM).  Thus, 64-bin histograms can be created in 

shared memory for each thread.  Since 256-bin histograms for each thread would not fit into 

shared memory, Podlozhnyuk uses a novel “per warp” method, in which thread blocks with six 

warps of 32 threads each create six histograms in shared memory.  After scanning the data, he 

then accumulates these per-thread or per-warp histograms into the final histogram.  Using this 

“per warp” memory layout, all 32 threads in each warp must compete to increment and update 

shared histogram bins.  In order to maintain correct behavior during collisions between threads, 

the method must use either hardware atomics or the author's novel software tagging scheme. In 

this scheme, the top five bits of a counter are reserved for a thread ID (thread offset within the 

warp), which each thread sets as it tries to increment a bin count.  Since hardware guarantees that 

a single thread will always win despite collisions, each thread must check the winning tag to 

ensure that its own increment occurred or try again.  Of course, this means that worst-case 

                                                      
5  Shams (Shams and Kennedy, 2007) has generalized Podlozhnyuk's method to support 32-bit inputs and a 

range of bin sizes. 
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behavior (many thread collisions) can be 8–32× times slower than best-case behavior (no thread 

collisions).  However, this method uses 192 threads per-block with eight concurrent blocks per 

SM and thus achieves full occupancy (100% = 1536/1536).  Most of this histogram’s 

performance comes from TLP, but performance is limited by the need to resolve intra-warp 

thread collisions. 

Unfortunately, Podlozhnyuk’s 256-bin method performs at only 15.0% of peak 

throughput on modern GPUs (GTX 580) for random, uniformly distributed data.  Moreover, 

performance is data dependent: the data distribution determines the number of thread collisions 

within each warp, which gates overall performance.  As my experiments show, performance can 

indeed degrade by factors of  > 30. 

8.2.2 Nugteren’s Histogram Method 

Nugteren (Nugteren et al, 2007) reported a histogram method for fixed-size images 

(2048×2048 bytes) that is independent of the data distribution.  They claimed that on a GTX 470 

they achieved 56% better throughput than Podlozhnyuk's method. Nevertheless, I have not seen 

consistent improvements in my tests on the more modern GTX 580, 480, and 560M.  Two factors 

may explain this.  First, in my tests I replace Podlozhnyuk's older software tagging with newer 

hardware atomics for a 50% speedup of his algorithm, and, secondly, Podlozhnyuk’s data 

dependent method will perform better on the uniform distribution that forms my main test case 

than on images with correlated pixel values that were probably used by Nugteren.  Our 

experimental results (as seen in Figure 8.7) are consistent if both factors are taken into account. 

Nugteren use the larger shared memory (48 KB) of modern GPUs to implement “per-

thread” histograms.  Histogram bin counts are compressed by storing two 16-bit bins per 32-bit 

DWORD. Therefore, 128 DWORDs suffice to store an entire 256-bin histogram.  With 32 

threads per-thread block, 16 KB of shared memory is also sufficient to store individual 

histograms for each thread block.  This compression enables three thread blocks (of 32 threads 
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each) per SM to run concurrently.  Unfortunately, the large amount of shared memory used 

results in low occupancy (6.25%= 96/1536), and therefore Nugteren’s method does not fully 

utilize the GPU pipelines. 

Nugteren’s histogram GPU kernel works in a straightforward way. First, the data is 

partitioned across all the threads in a cooperative thread array (CTA). Next each thread bins and 

counts all its assigned data.  After all input data has been binned, the per-thread histograms are 

then summed to create a per-block histogram in global memory.  A tail GPU kernel is then 

executed to sum the per-block histograms into the final histogram. 

In my experiments, Nugteren's code achieved about 5.4% of peak throughput on the GTX 

580 for a fixed image size of 2048×2048 bytes.  Performance for this method is predictable, since 

the method is deterministic and not influenced by the underlying data distribution. 

8.3 My TRISH Method 

Like Podlozhnyuk’s and Nugteren’s methods, my GPU histogram method supports 

coalesced memory accesses for efficient I/O, stores intermediate results in shared memory, and 

uses simple indexing.  My “threaded registers independent strided histogram” (TRISH) method is 

similar to Nugteren's method with several simple ideas that improve overall performance.  Where 

possible, I report the improvements in throughput (GB/s) afforded by each idea to indicate their 

contributions to overall performance.  I defer the description of the experimental setup to Section 

8.4. 

For my TRISH Histogram case-study, I use these ideas to achieve better throughput: 

 Reduce the total cycles required to complete my method (𝑇𝐶 = 𝐼𝐼/𝐼𝑃𝐶) 

 Improve pipelining, as measured by instructions retired per cycle (IPC), via a 

combination of thread- and instruction level parallelism (TLP and ILP)  

 Reduce instructions issued (II) by simplifying code and applying vector 

processing (VP) ideas 

 Build compact per-thread histograms in shared memory to achieve Better TLP  

 Increase independent instructions by loop unrolling and batching operations into 

groups of four to achieve better ILP 
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 Work with 16-bit pairs or 8-bit quads as single 32-bit elements instead of 

separately as 8-bit bytes to achieve better BLP  

 

Like Nugteren's method, I use a deterministic per-thread histogram algorithm and 

therefore have no need for tagging or atomics to resolve intra-warp thread collisions as in 

Podlozhnyuk's method.  Thus my method is data independent and faster. 

8.3.1 Improving TLP 

One way to improve GPU performance is to increase TLP.  I increase TLP for my TRISH 

method by building compact “per-thread” histograms in shared memory.  This improves thread-

level parallelism at the cost of more frequent accumulation passes. 

Compacting Histograms: I compact my TRISH histogram by storing four 8-bit bin 

counters per 32-bit word.  Since each bin counter is a single byte, 64 DWORDs suffice to store an 

entire histogram for a thread (see Figure 8.3). 

 

Figure 8.3  TRISH Layout: – In TRISH, each thread has a 256-bin histogram 

stored as a column of 64 DWORDs (four 8-bit bin counts per DWORD).  Each 

Thread also maintains four 32-bit registers for the per-block register array. 

As can be seen in Figure 8.3, I choose to use 64 threads per-thread block, thus 16 KB of 

memory suffices to store all per-thread histograms for each thread block.  Recall from Chapter 2 
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that each Fermi and Kepler class SM has 48 KB of on-chip shared memory, this specific data 

layout in shared memory enables three concurrent thread blocks per SM (3 = 48/16), achieving a 

thread occupancy rate of 12.5% (192/1536).  As a result, TRISH has a much lower occupancy 

than Podlozhnyuk's method but double the occupancy of Nugteren's method.  Furthermore, 

having two or more warps per SM enables the dual issue feature on Fermi class GPU cards and 

therefore enables the scheduling of two warps of instructions at a time onto GPU pipelines. 

The small range [0..255] of bytes as bin counters means that TRISH must act earlier to 

prevent overflow.  Thus, I accumulate per-thread histograms into a per-block histogram on a 

regular basis. The per-block histogram uses 32-bit bin counters, and so overflow within the per-

block histogram is not a concern.  For faster performance via BLP, I treat data elements as 32-bit 

DWORDs instead of individual 8-bit bytes, meaning each 32-bit DWORD contains four 8-bit 

data values.  To always avoid overflow within the per-thread histograms, I accumulate my per-

thread results after binning at most 63 32-bit DWORDs per-thread.  That means that I 

conservatively assume all 252 bytes in those 63 DWORDs will bin into the same counter. 

Per-thread histograms are accumulated into the per-block row sum histograms by simply 

reducing (linear serial scan) the bin counts. As part of the reduction, I reset the per-thread bin 

counts to zero.  Since there are 256 bins but only 64 threads per-thread block, each thread must 

accumulate four bins. 

Direct indexing during the `per-block' row sum accumulation would result in a 32-way 

bank conflict per warp, which would hurt performance. Consequently, I stagger starting indices 

by thread ID and index modulo block size (circular indexing).  The staggered start ensures that 

each thread within a thread warp starts on a unique memory bank within shared memory thus 

avoiding bank conflicts.  Circular indexing ensures that the code wraps around correctly to 

accumulate the 64 DWORDs along each row that will be accumulated into the per-block 

histogram.  Figure 8.4 shows how I implement staggered start and circular indexing. 
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// Staggered Start 
currIdx = threadID; 
… 
// Circular Indexing 
nextIdx = mod(currIdx+1, BlockSize); 

Figure 8.4 Staggered Start / Circular Indexing:  To help avoid bank conflicts, I use a staggered 

start along with circular indexing so each thread refers to a different memory bank in shared 

memory. 

 

Register Arrays:  Since each bin counter is completely independent, I can safely store 

the entire per-block histogram as a register array.  I partition the entire 256-bin histogram across 

all the 64 threads in each thread block.  Each thread maintains its four per-block bin counters in 

registers. 

8.3.2 Improving ILP 

Since my method results in low occupancy (12.5%), I cannot take full advantage of TLP 

to keep the hardware pipelines busy.  Instead, I fall back on well-known ILP techniques of loop 

unrolling ,software-pipelining and batching four runs of independent instructions. 

Loop Unrolling:  I define work per-thread, 𝑘, as the number of 32-bit words that each 

thread counts in bins before looping to the next chunk of work and repeating.  To prevent possible 

overflow in the 8-bit per-thread counters, I should bin and count at most 63 DWORDs (252 

bytes) of input values before accumulating my per-thread counts into my per-block counts. 

Consequently, I pick 𝑘 in the range [1. .63].  Larger values of 𝑘 amortize the cost of loop 

overhead across multiple elements and increase the pool of independent instructions that the 

compiler and the hardware can potentially harvest during instruction pipeline scheduling. 

Software Pipelining:  To decrease pipeline stalls and improve ILP performance, I 

group and reorder batches of instructions from k independent work-items.  However, unrolling a 
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loop of k work-items, could result in up to k× as many sets of registers, greatly increasing register 

pressure on each thread. 

Batching Instructions:  To decrease register pressure, I batch software pipelining into 

smaller fixed-size groups of [2-4] work items per batch.  In other words, instead of software 

pipelining all k work-items at once, I group the k work-items into smaller batches of four work-

items at a time (1-4, 5-8, 9-12, …, 57-60, 61-63) and then software pipeline each individual batch 

of four work-items separately.  Batching software pipelining in this manner reduces the registers 

required from O(k) down to O(4).  Batching thus provides a good compromise between ILP 

performance and high register pressure.  For GPU programming, I recommend batching a large 

group of k work-items into smaller batches of [2-4] work-items each as a good initial starting 

point until you have a feel for how many registers are being consumed by your algorithm. 

Even with batching, my unrolling and software pipelining of k work-items increases 

register pressure on my TRISH kernels; Using CUDA 4.0, my TRISH method uses 36 registers 

per-thread (between Podlozhnyuk's 18, and Nugteren's, which spills out of 42 registers.)  Since 

thread occupancy is already limited by shared memory constraints, any reduced occupancy due to 

high register usage effectively goes unnoticed. 

8.3.3 Improving Bit-Level Parallelism 

As much as possible I handle the input data and initial count arrays either as 32-bit quads 

of bytes or as two alternating pairs of bytes. Such an approach reduces the arithmetic operations 

involved by up to factors of four or two, respectively (Wadleigh and Crawford, 2000).  There are 

two main places where I take advantage of bit-level parallelism (BLP) to improve performance – 

when accumulating per thread counts into per block counts, and when binning four 8-bit values 

into their respective bins. 
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Accumulation Optimizations:  One normally thinks of the four 8-bit bins in a 32-bit 

word as a quad layout [3,2,1,0] as shown in Figure 8.5 (top). 

 

Figure 8.5 Optimizing via BLP:  Processing 2 or 4 

bytes simultaneously using 32-bit instructions. 

If we extract each 8-bit value individually as a singleton and then accumulate, then this 

approach can take up to 4× as many instructions as accumulating the 32-bit DWORD directly as 

shown in Figure 8.5 (left).  Due to overflow issues across bytes within the 32-bit DWORD, it is 

not always possible to accumulate the 32-bit DWORD directly6.  However, one can also consider 

the same 32-bit layout [3,2,1,0] as two alternating pairs [*,2,*,0] and [3,*,1,*] as shown in Figure 

8.5 (right).  Using this alternate layout, I can extract and work with these alternating pairs using 

bit shift and mask operations to upscale the arithmetic range from 8-bits to 16-bits before 

overflow becomes a problem.  Changing my accumulation code to work with pairs instead of 

singletons during the per-block row sum operations improved throughput performance by about 

5% on the GTX 580 (from 38.1 GB/s to 40.3 GB/s). 

Binning Optimizations:  It is common to extract individual bin indices by multiplying 

the byte value by the thread block size and then adding in the thread offset.  However, using bit 

manipulation, I can multiply alternating pairs of bytes, and, assuming fixed powers of 2 for my 

histogram table sizes, I can replace expensive multiplies and divides by bit shift and mask 

operations. This approach not only saves instructions via BLP but also uses less expensive bit 

                                                      
6  As an alternative, one could mask away the high order bit in each byte before accumulating and then 

restore them after accumulating.  However, the number of overall instructions involved may not change for 

the better (The number of additions decreases but at the cost of increased mask operations). 
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operations.  I also realized that by using BLP that I could also combine multiple shifts into a 

single instruction.  See Figure 8.6 for an example of my binning code which bins four 8-bit values 

stored as a single 32-bit DWORD. 

   template < ColSize, nWarps > 
   Bin4_None(cntPtr, val32, currWarp ) 

     // Masks (lane and shift) 
01:  const U32 maskRow13 = 0x07E007E0u; 
02:  const U32 maskCol   = 0x03030303u; 

     // Get Lane Info [0..3]=bin[0..255] % 4 
03:  laneCol = val32 & maskCol; 
04:  LI_13 = laneRow13 & maskRow13; 
05:  LI_24 = laneRow24 & maskRow13; 

     // Get Shifts [0,8,16,24] = [0,1,2,3]*8 
06:  shift = laneCol << 3u; 

     // Get Local Indices 
07:  LI_4 = LI_24 >> 16u; 
08:  LI_3 = LI_13 >> 16u; 
09:  LI_2 = LI_24 & 0xFFFFu; 
10:  LI_1 = LI_13 & 0xFFFFu; 

     // Get Shifts 
11:  S4 = (shift >> 24u); 
12:  S3 = (shift >> 16u); 
13:  S2 = (shift >>  8u); 
14:  S1 = (shift & 0xFFu); 
15:  S3 = s3 & 0xFFu; 
16:  S2 = s2 & 0xFFu; 

     … // Continued on next column 

    … // Continued from prior column 

     // Get Increments 
17:  inc4 = 1u << S4; 
18:  inc3 = 1u << S3; 
19:  inc2 = 1u << S2; 
20:  inc1 = 1u << S1; 

     // Increment bins 
21:  oldCnt = cntPtr[LI_4]; 
22:  newCnt = oldCnt + inc4; 
22:  cntPtr[LI_4] = newCnt; 

23:  oldCnt = cntPtr[LI_3]; 
24:  newCnt = oldCnt + inc3; 
25:  cntPtr[LI_3] = newCnt; 

26:  oldCnt = cntPtr[LI_2]; 
27:  newCnt = oldCnt + inc2; 
28:  cntPtr[LI_2] = newCnt; 

29:  oldCnt = cntPtr[LI_1]; 
30:  newCnt = oldCnt + inc1; 
31:  cntPtr[LI_1] = newCnt; 

   end Bin4_None 

Figure 8.6  Binning Code: This code bins four 8-bit values compacts in a single 32-bit 

DWORD.  The code uses unrolling (group of 4) and interleaving for increased ILP.  The code 

also uses bit masks and shifts tricks for increased BLP. 

 As shown in Figure 8.6, my binning algorithm depends on knowing the data layout in 

advance.  The data layout is one histogram per thread with each histogram consisting of 64 rows 

and each row consisting of four 8-bit counters stored as a single 32-bit DWORD.  Since there are 

64 threads per thread block, there are 64 columns of histograms.  Each 8-bit value to be binned is 

turned into a row [0-63] and shift increment value [0, 8, 16, 24] within each row.  Since the data 

layout is known and fixed, I can use bit tricks via masks and shifts to eliminate multiplies and 

modulus and use some BLP tricks to reduce total operations.  Using the row indices and shift 

increments, the per-thread histogram bin counts are then incremented, one at a time.  

Incrementing is by far the slowest part of the binning algorithm due to shared memory accesses 
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and dependencies between instructions within this section of code for each bin operation.  I 

attempted several rewrites to improve performance by interleaving the “increment bins” 

operations to increase ILP.  However, these rewrites failed as they caused incorrect results (two 

or more work-items colliding on the same bin results in some increments getting lost). 

8.3.4 Picking the best 𝒌 value 

What k-value (work per-thread) in the range [1..63] gives the best performance?  Recall 

that 63 is the maximum number of elements that can be safely processed before overflow 

becomes a possibility.  Picking the best k-value is complicated by several limitations: loop 

overhead, ILP, and the row-sum efficiency ratio. 

Loop Overhead: The TRISH method amortizes the cost of loop overhead across the 

work of binning 𝑘 elements per loop.  This suggests that TRISH should favor larger values of 𝑘. 

ILP: At low values of 𝑘, the method does not unroll the loop enough to unlock sufficient 

independent instructions for the warp schedulers to exploit to hide latency during instruction 

scheduling (see Figure 8.7, for 𝑘 =  [1. .4]).  This suggests that TRISH should favor larger values 

of 𝑘 for improved ILP. 
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Figure 8.7 Row-Sum Efficiency:  Upper: Impact of work per-thread on I/O throughput for k ∈ [1, 

63].  Best results are for k=31 and k=63.  Lower:  Bins per row-sum efficiency for k ∈ [1, 63].  Max 

Efficiency = 1.0 (63 elements binned per row-sum) occurs at k = 1,3,7,9,21, and 63.  

Row-Sum Efficiency: See Figure 8.7, In order to avoid overflow, TRISH frequently 

accumulates all per-thread counts into per-block counts and resets the per-thread counts to zero.  

This accumulation operation, which I call a row-sum, is expensive but fortunately is amortized 

across the cost of binning k DWORD values.  Since, 63 DWORDs (252 bytes) is the most the 

method can safely bin before accumulating, the ideal bins per row-sum efficiency ratio (bins/row-

sum) would be 63 binning operations per row-sum operation.  However, since TRISH tests for 

overflow only at the top of each loop of k work-items, the actual bins per row-sum efficiency 

ratio becomes the maximum number of iterations before overflow becomes possible, which is 

computed as Efficiency = (⌊63/𝑘⌋𝑘)/63. 

Consider the case, k = 32 (red bar in Figure 8.7), TRISH processes and bins one loop 

iteration of 32 elements (128 bytes).  In the worst case, all 32 elements could end up in one bin 
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counter (bin count = 128).  Thinking about what could happen on the next loop, one realizes that 

overflow is now possible, since (32+32) > 63 or alternately (128+128 > 252).  This means that a 

row-sum operation must be performed on the current iteration to avoid this potential overflow on 

the next iteration. This results in an efficiency of only 32/63 = 0.508, which turns out to be the 

worst case bins per row-sum efficiency.  Now consider the case k = 31 (the green bar in Figure 

8.7). With this value, TRISH processes 31 elements (124 bytes) and, on the next loop, can 

process another 31 elements (124 bytes) before having to perform a row-sum at the top of the 

third loop, since (31+31) ≤ 63.  This case achieves an efficiency of (2×31)/63 = 0.984.  

Contrasting these two cases, TRISH must accumulate row-sums almost twice as often for k = 32 

than for k = 31.  The ideal bins per row-sum efficiency ratio of 1.0 = (63/63) is consequently 

achieved at the values k = 1, 3, 9, 21, and 63, which are the values of k that divide 63 evenly. 

As shown in figure 8.5 (upper graph), I tested all values of k = [1..63] to see how these 

limiting factors combine.  For low values of k (k ≤ 4), throughput was poor because of high loop 

overhead and the low potential for increasing ILP. For example, at k = 1 throughput was only 

18.92 GB/s.  At higher values of k, there is a strong correlation between the bins per row-sum 

efficiency and I/O throughput as the row-sum operation is expensive.  I found that k =  31 and 

k  =  63 give the best throughput results at 40.91 GB/s and 41.86 GB/s, respectively.  At 𝑘 = 32, 

performance drops to 35.44 GB/s due to the increased frequency of row-sum. 

Although throughput for k =  31 is slightly slower than for k =  63, I recommend k =  31 

as the better overall choice because it is is faster overall for small to medium input sizes (n). 

8.3.5 TRISH Method Summary 

Here is a brief high-level summary of my 256-bin TRISH code. A CPU host function (not 

shown) implements my TRISH method by dealing with setup, invoking the GPU kernels, and 

cleaning up resources. 
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The actual GPU histogram method is a two-step process using two GPU kernels, a Count 

kernel and a BlockSum kernel.  I briefly describe the BlockSum kernel first as it is so simple.  

The BlockSum kernel simply sums the results of all the individual per-block histograms 

generated by the Count kernel to obtain the final histogram. 

The Count kernel (see Figure 8.8) implements the Column DASk (see Section 5.3), 

which groups the data into multiple fixed-size data blocks and partitions the data blocks across a 

fixed number of columns.  Each thread block then cooperatively strides through its assigned data 

along the column (row by row).  A last partially full row must range check to avoid access errors. 

Count Kernel 
Inputs:   ⌊𝑛/𝑛𝐵𝑙𝑜𝑐𝑘𝑠⌋+[0,1]  32-bit values to bin & count 
Outputs:  per-block counts (256 ×nBlocks) 

I/O Summary: 
⌈𝑛/32⌉ coalesced reads of input values 
⌈(256 × 𝑛𝐵𝑙𝑜𝑐𝑘𝑠)/32⌉ coalesced writes of per-block counts 

Algorithm:     (In Parallel, 64 threads) 
                                        // 1. Set-up 

 

while (more ‘full’ rows)                // 2. Main loop 

   
end while 

if (‘left-over’ row)                   // 3. Partial Row 

   
end if 
                                       // 4. Wrap-up 

 

Figure 8.8 GPU Count Kernel – Computes per-block histograms for each thread block 

if (overflowCount > 0) 
  row-sum( … )  // Accumulate block counts 
end if 
Write out block counts 
 
 

 … Similar to “main loop” plus “range checks” 
 

if (overflowCount ≥ (63 – K)) 
  row-sum( … )  // Accumulate block counts 
  overflowCount = 0; 
end if 
repeat K times  // fixed K in [1..63] 
  Read 32-bit DWORD of data 
  Bin 32-bit DWORD as 4 bytes 
end repeat 
overflowCount += K; 
move to next data block along column (next row) 
 

Compute # of ‘full’ rows & ‘left over’ partial row 
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As shown in Figure 8.8, each thread block computes its own per-block histogram for its 

assigned data elements.  Following the Column DASk template, this code has four main sections:  

(Set-up, main loop, partial row, and wrap-up) 

Section 1) Setup:  The set up code figures out how many fixed size rows (via the stride) 

to process in the main loop and checks if we have any leftover data that needs to be 

processed with careful range checks. 

Section 2) Main-Loop:  In the main loop, each thread in a warp (of 32 threads) processes 

k work-items in each data block.  For the kth work-item, each thread reads in a 32-

DWORD from global memory in a coalesced manner and then bins each of the four bytes 

within that DWORD into the per-thread histogram array kept in shared memory.  An 

overflow counter is incremented after each inner loop of 𝑘 elements is processed. On 

detecting possible overflow, the code launches the row-sum operation to accumulate per-

thread counts into the per-block histogram stored as a register array, the per-thread counts 

are reset to zero as part of the row-sum.  The row-sum function treats 32-bit quads as 

two alternating pairs for better performance via BLP. 

Section 3) Partial-Row:  The Column DASk pushes any range checking into the last row 

only, which most likely is only partially full.  This section of code is almost exactly the 

same as the main-loop code with the addition of extra required range-checks when 

loading data from global memory.  Since the last partially full row contains one row of 

fixed-size data blocks and each data block contains k work-items.  I actually use a 

telescoping “divide and conquer” tree on k to reduce the actual number of range checks 

required from O(k) to O(log k)7 at the cost of more verbose and confusing code. 

Section 4) Wrap-Up:  The wrap up code then accumulates any left-over per-thread 

counts and writes out the final per-block histograms to global memory in a coalesced 

manner. 

8.4 Performance Results 

In this section, I report the performance results of three different sets of experiments.  In 

the first set of experiments, I directly compare my TRISH histogram method to Podlozhynuk’s 

and Nugutern’s histogram methods on both synthetic data sets and image data sets.  In the second 

set of experiments, I deliberately turn off some of my optimizations to see the degraded 

                                                      
7  Telescoping means that I do my range check first on a group of 32 work-items, then 16 work-items, then 

8, then 4, then 2, then 1.  This requires log2(k) range checks per data block instead of k range checks per 

data block (one per work-item). 
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performance that results.  In the third set of experiments, I collect useful performance metrics 

from some the hardware profile counters on the GPU card. 

Hardware CPU = i7-920 @ 2.66 GHz, RAM = 12 GB, GPU = GTX 580 (16 SMs, 512 

SPs, 1.5 GB memory, 192.4 GB/s peak throughput). 

Software GPU API = CUDA 4.0 (64-bit), LANG = C++, IDE = VS 2010 (64-bit), OS = 

Windows 7, SP1 (64-bit) 

Data Size n = [8192 – 268,435,456], in increasing powers of 2. 

Table 8.1:  Histogram Experiment Environment 

All tests were performed on a GTX 580 using the exact same computational environment 

(shown in Table 8.1).  Timings are averages derived by using 100 runs of each test.  I/O 

throughput is measured in gigabytes per second (GB/s) by counting the number of bytes 

processed in billions and dividing by the average time to process in seconds. 

8.4.1 Direct Comparison 

In this section, I directly compare my TRISH method to Podlozhnyuk’s and Nugteren’s 

methods. 

  



235 

 

 

Figure 8.9 Synthetic Data Throughput:  Throughput for Podlozhnyuk’s (POD), Nugteren’s (NUG), and 

my TRISH methods on three synthetic datasets -- all zeros, uniform random, and linear.  I base 

comparisons on uniform random results, although these will be optimistic for POD.  Performance 

measurements were taken on a GTX 580 card, all software was built using the CUDA 4.0 platform; 

results on other tested platforms were similar. 

Because Podlozhnyuk's method is data dependent, Figure 8.9 shows results for three 

different data sets: 

 All zeros:  A worst-case dataset of “all zeros,” which for Podlozhynuk’s method 

causes all threads in each data warp to collide. 

 Linear:  A best-case linear dataset, carefully constructed to prevent any thread 

collisions in Podlozhynuk’s method. 

 Uniform Random:  A uniform random dataset, where each data warp should 

cause a unpredictable number of thread collisions in Podlozhynyuk’s method, 

which according to Raab (Raab and Steger, 1998) should average around 3 

collisions per data warp (2.79 = ln(32)/ ln(ln(32)). 

The performance results for TRISH and Nugteren’s methods on these three different 

datasets cannot be easily distinguished, confirming their data independence. 

Test Conditions:  For Podlozhnyuk's method I enabled hardware atomics, which 

improved performance by 50% over his original software tagging approach.  Nugteren's original 
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method is statically compiled for a fixed 2048×2048 image size.  I tweaked Nugteren’s code 

slightly to also allow sizes that are 4, 16, or 64 times larger.  Generalizing the code further would 

require range checks that would decrease Nugteren’s throughput.  The TRISH method bins 31 

elements per-thread (k = 31) before looping, for a cooperative stride factor of 95,232 data 

elements across all 48 thread blocks in the CTA.  The grid size was set to 48 to give 3 concurrent 

blocks per SM on all 16 SMs on the GTX 580.  My experiments (not shown) on larger grid sizes 

resulted in a larger last row size, more range checking, and slightly slower overall performance. 

Data Results:  The TRISH method has better throughput than the previous methods for 

large 𝑛.  For example for 𝑛 =  67,108,864, TRISH achieves 40.53 GB/s.  Nugteren's method 

achieves 11.25 GB/s.  Unlike the other two, Podlozhnyuk's method is highly data dependent: for 

best-case, uniform random, and worst-case datasets achieves 43.61 GB/s, 27.43 GB/s and 0.48 

GB/s, respectively.  For uniform random data, TRISH is 3.6× and 1.48× faster than Nugteren's 

and Podlozhnyuk's methods, respectively. 

Image Experiments:  In Figure 8.11, I compared all three methods on three standard 

grey-scale images (Lena, Raft, MRI) obtained from 

scien.stanford.edu/pages/labsite/scien_test_images_videos.php.   

http://scien.stanford.edu/pages/labsite/scien_test_images_videos.php
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Figure 8.10 Image Data Throughput:  Throughput for Podlozhnyuk's (POD), Nugteren's (NUG) and my 

TRISH methods on 3 greyscale images (Lena, Raft, MRI) and one RGBA image (Raft). Each is tiled to 

sizes 2562 - 40962.  Performance measurements were taken on a GTX 580 card, software built on the 

CUDA 4.0 platform. 

As shown in Figure 8.10, Images are tiled to make sizes from 2562 through 40962.  I 

included an RGB Raft image for comparison, which was actually stored as RGBA with the alpha 

channel set to all zeros (a near worst case for Podlozhnyuk's method.)  For all images, the 

coherence of nearby pixel values hurts the throughput of Podlozhnyuk's method but does not 

affect the other two. These results indicate that my synthetic uniform random experiment was 

overly optimistic for Podlozhynuk’s practical performance. 

I found that my TRISH method was from 1.05× to 4.4× times faster than Podlozhnyuk's 

method for black and white images, depending on the image and image size.  The TRISH method 

was 2-3× faster than Nugteren's method for the images and image sizes tested.  The RGB results 

underscore the potential danger of using a data dependent histogram method. 
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8.4.2 Degraded Self-Comparison 

I ran three degraded performance tests to determine the impact of ILP and TLP on the 

overall performance of TRISH. 

 Turn off Row-Sums:  In the first test, I turned off accumulation (row-sums) 

completely, which makes the results incorrect, but gives an upper bound on 

performance if one could reduce the frequency of accumulation.  Performance 

increased about ~20% (from 40.9 to 49.4 GB/s, a difference of 8.6). 

 

 Decrease per-thread Work: In the second test, I degraded ILP by reducing the 

amount of work per-thread (𝑘).  I measured 18.9 and 40.9 GB/s for 𝑘 = 1 and 

𝑘 = 31 respectively.  To do this comparison correctly, one must ignore the cost 

of accumulation.  Adding in the accumulation difference of 8.6 from the first 

degraded test result, I obtained 27.5 and 49.5 GB/s respectively, so TRISH’s use 

of ILP makes the code run roughly two times as fast (49.5/27.5). 

 

 Decrease Concurrent Thread Blocks:  In the final test, I degraded TLP by 

reducing the number of concurrent thread blocks per SM from 3 thread blocks 

per SM to 2 to 1 by padding shared memory.  I measured 40.9, 28.5, and 14.6 

GB/s for 3, 2, and 1 concurrent blocks per SM, respectively.  Consequently, 

TRISH use of TLP makes the code run roughly three times8 as fast (40.9/14.6). 

8.4.3 Profiler Comparison 

I also ran all three methods (POD = Podlozhnyuk, NUG = Nugteren, TRISH = my 

method) under the NVIDIA Compute Visual Profiler (CUDA 4.0) on a GTX 580 card with n = 

67,108,864 on uniform random data to gather performance metrics.  The results are summarized 

in Table 8.2. 

  

                                                      
8   I expect TRISH could run even faster if there was enough shared memory to support even more 

concurrent thread blocks per SM – Fermi and Kepler support up to 8 and 16 maximum concurrent thread 

blocks per SM 
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Time 

(ns) 

Through 

put (GB/s) 

Through 

Put Perf. 

Ratio 

Registers 
Shared 

Mem. 
Occupancy 

Warps/ 

Cycles 

Ins./ 

Bytes 

TRISH 6,545.41 40.02 1.00 36 16,384 192/1536 5.94 11.71 

POD 9745.44 27.03 1.48 18 6,144 1536/1536 44.47 23.71 

NUG 22,631.2

0 

11.25 3.56 42 16,384 96/1536 2.98 6.11 

 

IPC 

(2.0 

Max) 

II Bank 

Conflicts 

Cycles 

II/IPC 

Ratio 

Cycles 

Perf. 

Ratio 

Branches Divergent 

Branches 

Instruct 

Replays 

TRISH 1.18 6,140,046 0 5,203,429 1.00 8,844 0 0.00% 

POD 1.58 12,292,604 2,469,684 7,780,130 1.50 1,663,119 940,361 20.09% 

NUG 0.34 6,039,095 7,680 17,762,045 3.41 1,677 0 8.32% 

Table 8.2:  CUDA Profiler Results for TRISH, Podlozhnyuk’s(POD) and Nugteren’s (NUG) 

As seen in Table 8.2, all three histogram methods are compute-bound with an 

instruction:byte ratio (Ins/Byte) above the 4.00:1 balanced instructions per byte ratio 

recommended for a GTX 580 (Micikevicius, 2010, Analysis-Driven Optimization). 

This figure shows that Podlozhnyuk's method excels at TLP. With low register and 

shared memory usage and 192 threads per-block, this method achieves full occupancy of 48 

warps (100% = 1536/1536) threads per SM.  Such a high occupancy allows the hardware to 

keep the instruction pipelines busy, retiring 1.58 IPC on average (compared to a hardware 

maximum of 2.0).  However on the negative side, the code in this method issues many more 

instructions, has many unavoidable bank conflicts, and is involved in a great deal of divergent 

branching—all of which slow down overall performance dramatically.  These performance issues 

are all directly a result of the intra-warp thread collisions which are resolved using atomics. 

Nugteren's straight-forward code issues only half as many total instructions as 

Podlozhnyuk's.  However, Nugteren's method does a poor job keeping the hardware pipelines 

busy, with only 0.34 IPC, due to small number of bank conflicts, but primarily due to poor TLP 

caused by low occupancy (6.25% = 96/1536). 

Although the TRISH method also has poor TLP due to low occupancy 

(12.5%=192/1536), it is double that of Nugteren's method.  Nonetheless, by taking advantage of 
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ILP via loop unrolling and batching, TRISH manages to retire 1.18 IPC.  This result is not quite 

as good as Podlozhnyuk's method but is about 3.5× times better than Nugteren's.  Despite the 

extra overhead of having to accumulate regularly, the total instructions issued (II) is competitive 

with Nugteren's method, due to streamlining code and using some BLP to reduce the number of 

arithmetic operations.  In summary, the TRISH method runs efficiently with no bank conflicts or 

divergent branching requiring instruction replays. 

Total Cycles:  So why is the TRISH method faster overall despite being in second place 

for both for IPC and II?  Although it is not immediate apparent, this is because the total cycles 

required to complete the TRISH method is much lower than either Podlozhnyuk’s or Nugteren’s 

methods.  Recall that total cycles is computed as TC = II/IPC.  As discussed back in Chapter 6 

(Case Study on Reduce/Scan), there is an inverse relationship between total cycles and 

throughput, so a lower total cycles implies a higher throughput result. 

The TRISH method beats the Nugteren method by using about twice the TLP and 

increased ILP to keep the hardware pipeline busy, as captured by the IPC counter. This usage 

allows TRISH to retire 3.5× more instructions per cycle.  The TRISH method beats 

Podlozhnyuk's method by simply issuing many fewer instructions, as captured by the II counter.  

This reduced II result is mainly because there are no thread collisions causing instruction replays.  

Also, I reduced overall computations via bit-level parallelism. 

8.5 Conclusion 

The 256-bin GPU histogram TRISH method presented here outperforms prior GPU 

histogram methods, Podlozhnyuk’s and Nugteren’s, which focused on minimizing I/O via 

coalesced memory accesses, on storing bin counts in shared memory, and on using simple straight 

forward binning code.  The TRISH method improves compute performance by reducing the total 

cycles required, by increasing instructions retired per cycle (IPC), by increasing occupancy (TLP) 

via data compression and register arrays, and by reducing instructions issued (II) via a 
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combination of TLP and BLP.  ILP is increased by using k work-items per thread.  BLP is 

increased by treating 4 bytes stored as a DWORD as two alternating pairs instead of four 

singletons. 

The final best results of the GPU TRISH method are up to 3.6× times faster than Cedric 

Nugteren's per-thread method and up to 1.5× times faster than Victor Podlozhnyuk's per warp 

method for uniform random data. And the results are up to 4× and 3× faster than Podlozhnyuk's 

and Nugteren's methods, respectively, for image data.  Note also like Nugteren’s method, the 

TRISH method is data independent. 

In summary, GPU TRISH is a data independent 256-bin histogram method that achieves 

a throughput of up to 41.87 billion bytes binned per second (GB/s) on the GTX 580. 

8.5.1 Future Directions 

My TRISH method falls well short of peak I/O throughput (~21%). Consequently, clever 

algorithmic improvements, better I/O access patterns, or leveraging of other GPU hardware 

features can lead to yet more performance gains.  Three improvements I have thought about are  

generalizing TRISH, increasing IPC, and leveraging FPU’s on each SP core. 

Generalizing:  My TRISH method is hardcoded for 256-bin histograms on 8-bit data.  It 

should be possible to generalize it for smaller numbers of bins [1..254] and to support different 

data types (for instance floats) at an additional arithmetic cost required to distribute values into 

bins.  However, because of shared memory pressure, it will be difficult to generalize the TRISH 

method to support larger numbers of bins (>256). 

Improving IPC:..Different versions of the binning and accumulating code could 

improve ILP even further and achieve a higher IPC—perhaps even equaling or exceeding 

Podlozhnyuk's IPC of 1.58.  If so, overall performance could be increased by up to 33% or more. 

Leveraging FPU:  Each Fermi SM contains 16 used ALUs and 16 unused FPUs 

representing the SPs on each SM core.  It may be possible to use the currently unused FPU 
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hardware for accomplishing additional work during binning and accumulation.  For example, 

binning four additional counts using floats (on FPUs) per 16 counts binned using integers (on 

ALUs). 

8.6 Acknowledgements 

I thank the reviewers of my original TRISH paper (Brown and Snoeyink, 2012) for their 

helpful comments on presentation and suggestions for additional experiments.  One reviewer in 

particular helped me find a copy/paste error that artificially restricted throughput of 

Podlozhnyuk’s method in my initial analysis. 

My thanks to NVIDIA, Victor Podlozhnyuk, and Cedric Nugteren for providing their 

histogram source code online.  In that same spirit, I provide a link to my source code below. 

TRISH source code:  https://github.com/shawndb/demoTRISH 
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9.0 Case Study:  Radix Sort on the GPU 

In this chapter, I demonstrate my Row data access skeleton (DASk) on a least-significant 

digit (LSD) Radix Sort.  A radix sort produces a sorted output sequence from an unsorted input 

sequence of n keys, which are numbers in some base or radix.  My hybrid CPU/GPU LSD radix 

sort implementation assumes 32-bit keys with 4-bit radices.  The CPU implements the main radix 

sort loop in k = 8 (=32/4) passes on the digits which make up each key (one pass per digit).  For 

each pass, the GPU distributes the n keys into sixteen sorted runs using a stable Counting Sort 

implemented as three GPU kernels.  Achieving solid performance on all three kernels is one of 

my main goals in this case study. 

Knuth (Knuth, 1998) credits Herman Hollerith with inventing radix sort to conduct the 

1890 United States census (Hollerith, 1889).  Individual census records were represented by 

punch cards, each with a fixed number of columns (k), where each column was represented by a 

single digit in a small range [0, d).  Hollerith’s radix sort fully sorted the final card stack by 

proceeding in k binning passes from the least to the most significant column.  In each of k binning 

passes, Hollerith’s tabulating machine distributed the card stack into d runs by directing each 

card to the bin for the digit value in the currently selected column.  At this point a human operator 

collated the card runs from the bins in monotonically increasing order, reloaded them into the 

machine, and advanced the machine to the next column to prepare for the next binning pass.  

After k passes, the card stack was fully sorted.  A more modern presentation of the serial LSD 

Radix Sort algorithm is found in on the book “Introduction to Algorithms” (Cormen et al, 2009).  

In general, LSD radix sort loops over digit positions, from least to most significant, and applies a 

stable sort comparing that digit in all keys.  (Recall that a sort is stable if elements with equal 

keys are kept in the same relative order.) 
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There is also a most-significant-digit (MSD) radix sort, which bins the card stack on the 

most significant digit into sub-stacks and then recursively bins each sub-stack separately on the 

next-most significant digit, and so on.  MSD radix sort fragments each stack into many smaller 

sub-stacks with as many as Θ(dk-1) sub-stacks after k passes on d digits.  Since LSD Radix sort 

setup and storage costs are linear1 in k, rather than exponential, LSD is more suitable than MSD 

radix sort for parallel applications aiming for high throughput. 

Here follows some useful definitions of common radix sort terms.  A key is a numeric 

value taken from a large fixed-size numeric range [0, m).  In my GPU radix sort example in this 

chapter, the n keys are 32-bit unsigned integers in the range [0, 232); so it may be more convenient 

to work with the number of bits B = 32 = ⌈log2𝑚⌉.  A key is written in a base, or radix, as a 

string of digits, where each specific digit value is taken from a small fixed-size numeric range 

[0, d).  Typically, the chosen radix is much smaller than the key’s range, d ‹‹ m.  Again, with my 

chosen radix d = 16, it may be more convenient to call it b = 4-bits.  The maximum number of 

digits in a key is k = ⌈log𝑑𝑚⌉, or, when m and d are both powers of two, k = ⌈
𝐵

𝑏
⌉.  In my example, 

there are at most   32/4 = 8 digits in each key.  The maximum number of digits, k, is also the 

number of binning passes required in a LSD radix sort.  In the jth pass (0  j < k), the chosen digit 

is the jth digit within the key used to perform the current pass’s Counting Sort to bin n keys into d 

runs.  Within each binning pass, a run ri is a sequence of keys where the chosen digit has the 

value i, with i ∈ [0,  𝑑).  In my example, the r5 run contains all keys where the chosen digit was 

equal to 5. 

 LSD radix sort has often been implemented as a hybrid CPU/GPU algorithm, with a main 

radix sort loop implemented on the CPU and a stable sorting sub-routine (typically Counting 

                                                      
1 For a serial LSD radix sort, the total fixed setup cost is O(k∙d) to zero out and scan the count histogram on 

each Counting Sort pass, where k is the number of digits within the key and d is the number of digits in the 

radix.  The total storage cost is O(n+d) to store the input and output arrays of n elements plus an additional 

array of d counts to hold the count histogram. 
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Sort) implemented using multiple GPU kernels (Harris et al, 2008;  Ha et al, 2009; Merrill and 

Grimshaw, 2010 Revisiting Sorting). 

Counting Sort sorts numbers into runs in three steps, using primitives that generalize 

those in my previous case studies: 

Step 1) Count Keys partitions the n keys into d bins on a chosen digit, by accumulating 

each digit into its corresponding bin as a count.  The d bin counters collectively form a 

count histogram.  This counting step is similar to Reduce (see Section 6.1) but generates 

d bin counts instead of a single total sum. 

Step 2) Scan Runs exclusively scans the histogram of d counts into d starts.  Each count 

(ci) represents the length of the ith digit run.  Each start (si) represents the starting run 

position of the ith digit run. 

Step 3) Distribute Keys distributes the n keys into their corresponding digit runs by 

extracting the chosen digit (with value i) from the current key, looking up the current start 

si (run position) at index i in the current start histogram, and then incrementing that start 

(si += 1).  This distribution step is similar to Scan (see Section 6.1) but works on d runs 

instead of a single run representing a prefix sum. 

Steps 1 and 3 take O(n) time, and step 2 takes O(d) time.  Consequently, a complete 

Counting Sort takes O(n+d) time.  Because a simple LSD radix sort with k iterations (one pass 

per digit in the key) invokes a Counting Sort on each pass, the total time to compute a LSD radix 

sort is O(k(n+d)).  When k and d are considered constants, the total time to sort is reported as 

linear, O(n).  By binning digits and concatenating runs, radix sort escapes the well-known Ω(n log 

n) lower bound on comparison-based sorts. 

 My solution implements Counting Sort following the same three-step approach above via 

three matching GPU kernels -- GPU_CountKeys, GPU_ScanRuns, and GPU_DistributeKeys.  

To ensure stable sort results, the GPU_DistributeKeys must preserve sequential access across 

data runs, data blocks, and the entire data input array.  Since my Row DASk supports sequential 

access, I use it for both the GPU_CountKeys and GPU_DistributeKeys kernels.  Using the 

same Row DASk helps ensure that thread blocks in both kernels group and partition data in the 

same way, which keeps data rows in sync between these two kernels.  
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In the previous chapters, readers have already learned to improve performance on GPUs 

by experiments on thread-level parallelism (TLP) via multiple thread warps and on instruction-

level parallelism (ILP) via multiple work items.  Readers have also learned to respect 

coalescence, take advantage of multi-issue, avoid register spills, mitigate bank conflicts, and 

mitigate branch divergence.  Therefore, I say little about these good performance practices and 

drill down on new tips and tricks to improve radix sort performance in a Row DASk, namely 

reducing I/O, reducing instructions, and increasing occupancy. 

9.1 Related Work 

The three broad performance themes of reducing I/O, reducing instructions, and 

increasing occupancy can be found among the details of four papers that influenced my GPU 

parallel radix sort. 

Chatterjee et al.’s Parallel Radix Sort: 

In their paper. Chatterjee (Chatterjee et al, 1990) described how to perform a parallel 

LSD radix sort on a Cray vector computer as a serial/parallel hybrid.  They implemented a loop 

on the serial platform with 32 passes to sort 32-bit integer keys using a 1-bit radix.  In each pass, 

keys were sorted on the current bit using a split operation that first performed a parallel scan on 

the parallel platform using their +-scan primitive on the extracted zero bits then performed 

another +-scan on the extracted one bits.  Each scan returned output offsets that indicate where 

to store the scanned keys within each run.  Finally, keys were distributed into their sorted 

locations based on their current radix value {0|1} and their scan offset within the matching run.  

For fewer I/Os, the authors swap the input and output pointers rather than copying the output 

back onto input for the next sorting pass. 

The authors claim that this parallel radix sort was only 20% slower than a highly 

optimized comparison-based sort implemented on the same vector architecture.  I personally 

expected an O(n) radix sort vs. an O(n log n) comparison sort to be faster, not slower.  However, 
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by using a 1-bit radix, this radix sort maximizes the number of passes (k = 32) required to fully 

sort 32-bit keys.  In addition, since each split operation does two parallel scans and one parallel 

permute to distribute keys, the entire radix sort requires a total of 64 parallel scans and 32 parallel 

permutes.  Since each of these scan and permute operations require memory transfers to load 

inputs and store outputs, this radix sort requires a minimum of at least 192 I/O memory accesses 

per 32-bit key to fully sort.  Better performance might have been obtained by increasing the radix 

size to reduce the total number of passes, operations, and memory accesses required. 

I use a 4-bit radix in my own GPU radix sort implementation primarily to reduce the 

number of passes2 (and associated I/Os) from 32 down to 8.  I also use Chatterjee’s idea of 

swapping input and output array pointers to reduce CPU I/Os. 

 

Govindaraju’s GPU TeraSort: 

 In 2005 Govindaraju  (Govindaraju et al, 2005) won the “Penny Sort Benchmark” contest 

with GPU TeraSort, which sorts 100 byte keys[Sortbenchmark.org] in two steps.  The first step uses a 

hybrid CPU/GPU in-memory sort algorithm to generate sorted runs of data in memory (as much 

data as would fit).  This hybrid sort implements a MSB3 4-byte radix sort on the CPU, which in 

turn invokes a GPU kernel for sorting 4-byte keys.  The GPU kernel cleverly tricked the GPU’s 

graphics rendering pipeline into performing a bitonic sort while rendering 4-byte pixel fragments. 

The second step merges sorted runs using an external, disk-based merge sort algorithm. The 

authors claimed GPU throughputs of 50 GB/s (or 14 giga-operations per second), and that their 

overall results were 4× faster than the previous record holders. 

 

 

                                                      
2 I also implemented two GPU radix sorts using 8-bit radices to reduce the number of passes from 32 to 4.  

However, the performance at 500+ million ‹key,value› sorted pairs per second was simply not as good as 

the 700+ million pairs per second for the 4-bit radix results discussed in this chapter. 
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Harris et al.’s Radix Sort: 

In 2008, Mark Harris (Harris et al, 2008) suggested adapting their parallel GPU Scan 

primitive to implement Chatterjee’s parallel radix sort.  They used a block-level scan, based on 

Blelloch’s work-efficient scan pattern, to sort individual data blocks, and a higher level hybrid 

CPU/GPU parallel scan, based on a recursive scan-then-fan pattern (as described in Section 

6.4.2), to scan large data arrays on the GPU. 

In my experience, this approach to radix sort was difficult to get working correctly and 

had relatively poor performance on the GTX 280 (15+ million pairs/sec) due to a high number of 

passes (using a 1-bit radix), the inefficiency of the recursive scan-then-fan pattern used in each 

pass (as discussed in Section 6.4), and the inefficiency of Blelloch’s scan when used on small 

runs of data. 

 

Ha et al.’s Radix Sort: 

In 2009, Linh Ha (Ha et al, 2009) wrote a fast general LSD Radix sort that was also a 

CPU/GPU hybrid.  The CPU performed the LSD radix sort with a 2-bit radix (digit values [0-3]) 

on 32-bit keys, requiring 16× passes rather than the 32× of Chatterjee’s or Harris’s methods.  A 

Counting Sort on 2-bit keys is implemented using four GPU kernels as follows: 

Kernel 1) An “order checking kernel” performed an “early exit test” on all n inputs in each 

pass.  The authors claim this kernel decreased performance by only 2% and allowed the radix 

sort to exit early if the data was ever found fully sorted.  The remaining three kernels 

followed the two-level scan-then-fan pattern (as described in Section 6.4.2). 

Kernel 2) A “4-way radix count kernel” extracted and binned 2-bit keys into per-thread count 

histograms that were then scanned into per-block starts (using Blelloch’s scan) with an extra 

step to store the four block totals for each scanned data block.  The keys were then shuffled 

(locally sorted) to increase coherence.  The entire locally sorted data block was then written 

back out as well as the per-block sums for the entire data block (4-way starts). 

Kernel 3) A “scan kernel” read and scanned all the per-block sums to generate globally 

correct run positions for each data block. 
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Kernel 4) A “mapping kernel” loaded the 4-way starts for each data block and then reread 

the locally sorted data block and then distributed the locally sorted keys into their globally 

sorted positions. 

The authors claimed throughput performance of 60 million key/value pairs sorted per second 

on the GTX 280.  The authors’ five main contributions are as follows: 

⦁ Increasing the radix to 2 bits, resulting in fewer passes, fewer I/Os, and fewer 

operations to count and distribute keys, and increasing overall performance. 

⦁ Terminating early, if the data became sorted after just a few passes. 

⦁ Scanning an entire data block of 4-way counts using a modified version of Blelloch’s 

scan method. 

⦁ Generalizing data, the authors used C++ templates to support multiple data types and 

also discussed specialized techniques to convert floats into unsigned integers while 

preserving the correct sorting order. 

⦁ Shuffling data (local sorting) in shared memory (kernel 2) before mapping the data 

(global sorting) into its final sorted position in global memory (kernel 4).  This increases 

the coherence in the data stream to increase coalescence on output. 

Early versions of my radix sort code also had support for early termination, which I later 

removed due to performance problems, but my current code contains other ideas from Dr. Ha’s 

paper, including generic programming using C++ templates and shuffling before mapping. 

 

Merrill’s Radix Sort: 

In 2010, Merrill (Merrill and Grimshaw, 2010, Revisiting Sorting) at the University of 

Virginia adapted various efficient strategies for radix sort on the GPU to achieve near-peak 

throughput, up to 480 million key/value sorted pairs per second on the GTX 285.  They also used 

a hybrid method where the LSD radix sort was implemented on the CPU and the three steps of 

counting sort were implemented on the GPU as three kernels.  These three kernels carried out a 

two-level reduce-then-scan pattern (described in Section 6.4.2.) as follows: 
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Step 1) Count:  The “count kernel” creates a histogram for all keys assigned to each thread 

block. The number of thread blocks within a grid is deliberately kept small to ensure that the 

next kernel can use a single thread block. 

Step 2) Scan: The “scan runs kernel” uses the reduce-then-scan pattern (as described in 

Section 6.4) at the kernel level to convert per-thread block counts into per-thread block start 

in three steps.  The authors call this 3-step method a block multi-scan since they are 

effectively scanning sixteen rows of counts at once for a single data block using a single 

thread block in parallel.  The block multi-scan also needs to scan the resulting sixteen row 

counts and update all elements in each of the sixteen scanned rows with the correct row 

prefix for correct per-thread run positions within each data block. 

Step 3) Distribute: The “distribution kernel” uses a nested reduce-then-scan pattern (as 

described in Section 6.4) which calls the block multi-scan method on each data block to 

distribute keys (and values) to their appropriate place in the sorted output arrays. 

Merril and Grimshaw’s approach has the following seven main advantages: 

⦁ It decreases sorting passes by using a larger radix (4-bit = 16 digit values) than previous 

GPU Radix Sorts; this decreases the total number of counting sort passes required from 32× 

to 8×. 

⦁ It decreases I/Os by using A 2-level reduce-then-scan pattern (which decreases I/Os from 

~4 to 3 per data element on each pass, and results in a fixed number of kernel launches O(1) 

= 3) as compared to a recursive scan-then-fan pattern. 

⦁ It scans data block using a block multi-scan method on each fixed-size data block following 

a nested reduce-then-scan pattern. 

⦁ It sorts output locally in shared memory then distributes keys (and values) into global 

memory for increased coherence and thus increased throughput on output4. 

⦁ It compresses data in arrays in shared memory to increase occupancy. 

⦁ It mitigates bank conflicts using the “Pad and Rake” technique (see Section 6.7.2). 

⦁ It stores short arrays in registers to increase occupancy. 

I use many of Dr. Merrill’s ideas in my own implementation: specifically, his idea of a 2-

level reduce-then-scan pattern across my three GPU kernels, a multi-scan on fixed-size data 

blocks, his efficient parallel WarpScan method, compressing data to save space, and the “Pad 

and Rake” technique to avoid bank conflicts. 

                                                      
4  Dr. Merrill calls this “exchange then scatter,” but it is equivalent to Dr. Ha’s “shuffle and map” 

technique. 
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9.2 Serial CPU Implementation 

Because I want to demonstrate the conversion of a CPU sort to an efficient GPU sort 

using my Row DASk, let me be briefly introduce my own CPU serial implementations of 

Counting Sort and LSD Radix Sort, which are described in sections 9.2.1 and 9.2.2. 

9.2.1 Serial CPU Counting Sort: 

 As shown in Figure 9.1, my serial CPU Counting Sort method is implemented in six 

simple steps, with steps 3-5 corresponding to the three kernels of Counting Sort.  Steps 1, 2, and 6 

allocate the count histogram and run positions array, set the initial counters in the count histogram 

to all zeros, and free any allocated resources.  In the code, I assume my key and digits sizes are 

both powers of two, so that I can extract my chosen digit on each pass using simple shift and 

mask operations instead of slower division and modulus operations. 
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CountingSort sorts a sequence A containing n integer elements, where each element is in range [0, d). 

Input:  An unsorted sequence A = [a1,  a2, ⋯, an], and d = range of data elements (nBins). 

Output:  A sorted sequence S = [s1,  s2, ⋯ , sn] (S is a permutation of A), where S satisfies the standard 

ordering of integers such that s1 ≤ s2 ≤ ⋯ ≤ sn-1 ≤ sn,  Note:  Counting Sort is stable. 

Performance:  Total Computations:  O(n+d);    Total I/Os:  O(n+d).   Linear O(n) if d ≤ n. 

Counting Sort 

   CountSort( S, A, n, d, shift, mask ) 

01: counts = allocate d integers;  // Step 1: Setup resources 
02: runs   = allocate d integers; 

03: for j in 1..d                  // Step 2: Zero Counts (in count histogram) 
04:   counts[j] = 0; 
05: end for 

06: for i in 1..n                  // Step 3: Count keys (into bins) 
07:   key = A[i]; 
08:   digit = (key >> shift) & mask;    // Extract chosen digit from key 
09:   counts[digit]++;                  // Update run count 
10: end for 

11: sum = 0;                       // Step 4:  Scan runs (start pos’s from counts) 
12: for j in 1..d 
13:   currCount = counts[j]; 
14:   runs[j] = sum;                 // Save current run’s starting position 
15:   sum = sum + currCount; 
16: end for 

17: for i in 1..n                  // Step 5:  Distribute keys (into runs) 
18:    key = A[i]; 
19:    digit = (key >> shift) & mask;   // Extract chosen digit from key 
20:    S[runs[digit]] = key;            // Store key in its output run 
21:    runs[digit]++;                   // Update run pos for next key in run 
22: end for 

23: free runs;                     // Step 6:  Cleanup resources 
24: free counts; 

   end CountSort 

Figure 9.1 -The serial Counting Sort algorithm:  The top row has a brief overview of the expected 

behavior of counting sort with inputs and outputs. The middle row has the corresponding pseudo-code 

for the serial counting sort algorithm intended to run on a single-core CPU in 6 steps. 

The six main steps of my CPU serial Counting Sort are as follows: 

Step 1) Setup allocates two helper arrays {counts, runs} each of size d. (lines 1-2) 

Step 2) Zero Counts zeros d counters in the count histogram.  (lines 3-5) 

Step 3) Count Keys counts n keys into a count histogram of run lengths.  (lines 6-10) 

Step 4) Scan Runs scans the counted run lengths into starting run positions.  (lines 11-16) 

Step 5) Distribute Keys distributes n keys into d runs forming the sorted output. (lines 17-22) 

Step 6) Cleanup frees the two helper arrays {counts, runs}.  (lines 23-24) 

Steps 1 and 6 each take constant O(1) time, steps 2 and 4 each take O(d) time, and steps 3 

and 5 each take O(n) time for a total linear performance cost, with O(n+d) = 2n+2d+2.  The 

stability of my Counting Sort method results directly from my implementation of steps 4 and 5 
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above, where all d run lengths are scanned sequentially and then all n input keys are distributed 

sequentially.  This sequential processing preserves the relative order of keys with the same digit 

value within the resulting sorted runs. 

9.2.2 Serial CPU LSD Radix Sort: 

As shown in figure 9.2, my LSD radix sort algorithm loops over k passes of Counting 

Sort, where k is the number of digits in the maximum key value (computed as k = ⌈log𝑑𝑚⌉ or k = 

⌈
𝐵

𝑏
⌉).  The iteration proceeds from the least significant to the most significant digit.  All n keys are 

counted and then redistributed on each digit’s pass. 

Radix Sort primitive  Sorts an unordered integer sequence A containing n integer elements in k passes, 

where k = ⌈log𝑑𝑚⌉ or 𝑘 = ⌈
𝐵

𝑏
⌉, with B = the maximum bits per integer in a fixed-size range [0, m), and b 

= the maximum bits per radix in a range [0, d).  Note:  we assume d ≤ m. 

Input:  An unsorted integer sequence A = [a1,⋯, an ]. 

Output:  A sorted sequence S = [s1, s2, ⋯, sn ] (S is a permutation of A) under the standard ordering of 

integers such that  s1 ≤ s2 ≤ ⋯≤ sn,  Note:  Radix Sort never uses any direct comparison operators. 

Performance:  Total Computations:  O(k(n+d)).    Total I/Os:  O(k(n+d)).    Linear O(n) if d ≤ n. 

   LSD_RadixSort<B, b>( S, A, n ) 

   // B = #bits in key, b = #bits in radix, A = input array, n = length of input 
 1:  d = 2b; mask = d-1; 
 2:  k = nPasses = ceil(B/b); 

     // Allocate resources 
 3:  counts[] = allocate d integers; 
 4:  starts[] = allocate d integers; 
 5:   in[] = allocate n keys; 
 6:  out[] = allocate n keys; 
 7:  Copy( in, A, n ); 

     // Setup Ping-Pong pointers 
 8:  ping = in;  pong = out; 
 9:  if (isEven(nPasses)  
10:     Swap( ping, pong ); 
11:  end if 

     // Loop over digits in keys (k passes) 
12:  for (pass = 0; pass < k; ++pass) 

13:    shift = b*(pass-1); 

14:    CountSort( pong, ping, n, d, counts, starts, shift, mask ); 

       // Move to next digit (pass) 
15:    Swap( ping, pong ); // Ping-Pong 

16:  end for (k passes) 

     // Cleanup resources (return results) 
17:  Copy( S, out, n ); 
18:  deallocate (counts, starts, in, and out) 

   end LSD_RadixSort 

Figure 9.2 LSD Radix Sort:  The top row has a brief overview of the expected behavior of LSD radix 

sort with inputs and outputs. The middle row has the corresponding pseudo-code for the serial LSD 

radix sort algorithm, which iterates over k passes of Counting Sort. 
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 As can be seen in Figure 9.2, the actual code is a main loop over the k passes of Counting 

Sort with some additional setup and cleanup code.  Since each Counting Sort pass takes linear 

O(n+d) time and there are k passes, the total time is also linear, with O(n) = O(k(n+d)).  Since 

there are at most k passes and since the underlying Counting Sort is stable, the entire LSD radix 

sort is also stable and correctly sorts numeric keys. 

Input-output array swapping:  Similar to Chatterjee’s radix sort, my Counting Sort interface 

takes both input and output pointers.  My LSD radix sort uses two extra pointers (ping, pong) to 

track the current input and output arrays for each pass.  The code swaps the input and output 

pointers after each Counting Sort pass (see line 15).  The partially sorted output from the current 

pass becomes the new input on the next pass.  This simple pointer swap avoids unnecessary array 

copies, which would otherwise be required to move the output back onto the input.  To make sure 

the output array always ends up with the correct sorted values on the final pass, I swap the ping-

pong pointers one extra time during setup if the number of passes is even (see lines 8-11). 

Adapting for the GPU:  My CPU serial LSD radix sort implementation is easily adapted to 

work as part of a hybrid CPU/GPU radix sort.  There are four required changes: 

⦁ The temporary in, out arrays of n elements are allocated and freed on the GPU instead of 

on the CPU (lines 5-6 and line 18). 

⦁ The CPU copy methods (on lines 7 and 17) are replaced with equivalent cudaMemCopy 

calls to transfer data between the CPU and GPU as needed. 

⦁ The single invocation of the CPU Counting Sort (line 14) is replaced by three GPU kernel 

invocations for the three kernels that make up my GPU Counting Sort. 

⦁ The CTA launch parameters {grid, block} for each GPU kernel are initialized and setup 

(between lines 11 and 12). 

To save space and to avoid redundancy, I do not show my actual CPU host code with these 

changes. 



255 

 

9.3 Parallel GPU Implementation 

As mentioned, a LSD radix sort only works correctly if the Counting Sort sub-method is 

stable.  Sequentially counting and then distributing keys is one way to ensure this stability.  Thus, 

my GPU Counting Sort implementation uses my Row DASk, since it supports sequential access 

of data rows and data blocks along each row.  Within each data block, my code partitions data 

into short per-thread runs and then enforces sequential access within runs and across runs on 

input.  The keys within each run are binned into per-thread counts, which are then hierarchically 

scanned into per-thread starts.  Prefixes from prior runs, blocks, and rows are all hierarchically 

accumulated into each final per-thread start to ensure stable sorted results on output. 

My Row DASk, discussed in Section 5.4,  also supports warp-alignment and automatic 

load-balances data across the grid rows.  In addition, it provides setup and support for a range-

check pattern [‹FIRST?›, ‹MIDDLE*›, ‹LAST?›], which pushes expensive range checks out of 

the middle section and into the first and last data blocks.  This approach amortizes the range 

check costs over the large middle section.  The initial setup also helps support full coalescence by 

aligning the input array to a data warp boundary. 

Building upon the serial CPU Counting Sort and LSD radix sort algorithms (as described 

in section 9.2), my GPU radix sort is implemented as a hybrid CPU/GPU solution in which the 

CPU-based radix sort iterates over the GPU Counting Sort in k passes.  Each Counting Sort is 

implemented as three separate kernels on the GPU, one kernel per major step of the Counting 

Sort algorithm (count keys; scan runs; and distribute keys).  For this particular example, I choose 

32-bit unsigned integers as my keys and a 4-bit radix (d = 16 = 24), which requires k = 8 (=32/4) 

passes to sort.  Since the CPU host algorithm is almost exactly the code of Figure 9.2 with the 

four GPU changes already described, I focus on the details of my GPU Counting Sort. 
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GPU Counting Sort 

 

Figure 9.3:  My GPU Counting Sort is implemented as 3 kernels (GPU_CountKeys, GPU_ScanRuns, 

and GPU_DistributeKeys), which correspond to the three main steps of the already described in the 

CPU Counting Sort (count keys, scan runs, distribute keys).  Both the GPU_CountKeys and 

GPU_DistributeKeys kernels are based on my Row DASk. 

In my GPU Counting Sort, depicted in Figure 9.3, the three counting sort GPU kernels 

(GPU_CountKeys, GPU_ScanRuns, and GPU_DistributeKeys) are based on the two-level 

reduce-then-scan pattern.  (This is similar to how my Scan primitive is implemented using three 

GPU kernels, see Section 6.5.)  The main kernels (the first, GPU_CountsKeys, and last, 

GPU_DistributeKeys) are implemented using my Row data access skeleton (DASk) from 

Section 5.4.  As before, I choose a small fixed grid size (g < 1000 blocks) so that the middle 

kernel (GPU_ScanRuns) can convert row-counts into row-starts using a single-thread block. 

 The GPU_CountKeys kernel (Figure 9.3, left side) generates a total of k (=dp) row 

counts from n keys using p thread blocks (each thread block generates one count histogram with d 

row-counts).  This kernel uses my Row DASk to group n keys into m fixed-size data blocks 

(m = ⌈𝑛/𝐷𝐵𝑆⌉) and then partitions the m data blocks across the p thread blocks.  This operation 

initially produces c data blocks per row (c = ⌈𝑚/𝑝⌉).  Then, each thread block marches down its 

assigned data row, block by block, counting keys within each thread block into per-thread count 
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histograms.  After all the data within each row has been counted, the per-thread histograms are 

reduced to a single per-block count histogram (resulting in one row-count histogram per row). 

 The GPU_ScanRuns kernel (Figure 9.3, middle) follows the reduce-then-scan pattern but 

works on d = 16 rows of data at once.  This kernel exclusively scans the k (=dp) row-counts into k 

row-starts in three main steps using a single thread block.  First, the kernel reduces the sixteen 

rows (of p elements each) down to sixteen final run-counts.  Second, the kernel exclusively scans 

the sixteen run-counts into sixteen run-starts, where each run-start (ri) is the starting run position 

of the ith sorted digit run in the output array.  Finally, the kernel scans the k (=dp) row-counts into 

k row-starts.  Note: This final scan also adds in matching run-starts to the row-starts as prefixes. 

 The GPU_DistributeKeys kernel (see Figure 9.3, right side) distributes keys into their 

final sorted position in the output array.  This kernel uses my Row DASk to group n keys into m 

fixed-size data blocks (m  =  ⌈𝑛/𝐷𝐵𝑆⌉) and then partitions the m data blocks across the p thread 

blocks.  This partitioning results in c blocks per row (c  =  ⌈𝑚/𝑝⌉).  Each thread block marches 

down its assigned data row, data block by data block, distributing keys to their final sorted 

positions.  Note:  If the programmer is sorting ‹key, value› pairs instead of just keys, then after 

distributing a data block of keys, the code also distributes the corresponding data block of values 

to their final sorted positions. 

Both the GPU_CountKeys and GPU_DistributeKeys kernels must guarantee that 

each thread block partitions the same data along each data row in order to generate correct results.  

The easiest way is to use the same Row DASks and CTA launch layouts for both kernels. 

In the next subsections, I delve into implementation details for my three GPU kernels. 

9.3.1 GPU_CountKeys Kernel Implementation Details 

The code in Figure 9.4 for my GPU_CountKeys kernel (left panel) clearly follows my 

Row DASk, where data is grouped into blocks and partitioned across rows (one row per thread 

block).  As each thread block moves along its assigned data row, data block by data block, it 
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counts keys into per-thread histograms using the BlockCount method (middle panel).  After 

counting all keys in the data row, the kernel accumulates all those per-thread count histograms 

into a single per-block count histogram using the BlockReduce method (right panel). 

This is conceptually similar to my GPU_Reduce kernel (from Section 6.5), but rather 

than computing a single total-sum, the GPU_CountKeys kernel accumulates multiple counters 

(one counter per digit value, d =16= 24) at the same time.  Because addition is commutative and 

associative, the code can safely reorder and regroup elements for better I/O throughput. 

GPU_CountKeys Kernel 

Row DASk Setup 

// Body Setup 

 
for each data block along row 

    
  Move to next data block 
end for each block 

// Body Cleanup 

 
end GPU_CountKeys 

BlockCount Method 

Each thread reads ‹nWork› keys 

Each thread bins ‹nWork› keys 

  Extract chosen digit from key 

  Compute count index 

  Compute increment 

  Increment counter 

end bin keys 

end BlockCount 

BlockReduce Method 

warpRow = threadID % WarpSize; 

fullRows = 16/nWarps; 

leftover = 16 – (fullRows*nWarps); 
start = warpRow*nDigs; 

// Process Full Rows 

for each row in [startRow, 

stopRow] 

  Reduce ‹nWarp› run 

  Store run-sum in warp array 

  WarpReduce run-sums 

  Save per-row count (last column) 

end for each digit row 

// Process Left-Over Rows 

if (leftOver) 

  if (warpRow < leftOver) 

     Same as reducing full row above 

  end if  
end if 

end BlockReduce 

Figure 9.4:  My GPU_CountKeys kernel (left panel) follows my Row DASk to group n keys into m 

fixed-size data blocks and then partitions the m blocks across p rows (one thread block per row).  Each 

thread block bins keys into per-thread count histograms for all data blocks along its assigned row using 

my BlockCount method (middle panel).  After exhausting all keys in the data row, it reduces all the 

per-thread histograms down to a single per-row count histogram using my BlockReduce method (Right 

panel).  The final per-row count histogram is then output to an array of row-counts. 

In this kernel, my data layout stores per-thread count histograms (d = 16 counters per 

thread) in shared memory.  (Registers would be faster, but they do not support the necessary 

indexing.)  These histograms are used by the BlockCount method to partition work (keys) 

across all the threads in each thread-block by accumulating intermediate counts.  An additional 

per-block count histogram (d = 16 counters) is kept in shared memory for use by the 

BlockReduce method, which reduces the per-thread count histograms to a single per-block 

BlockReduce( … ) 
Output per-row counts 

 

BlockCount( … ) 

Zero all counts 
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count histogram after counting all keys in the current row.  This per-block count histogram is 

output to the row-counts array. 

My GPU_CountKeys method requires three types of parameters -- template, function, 

and CTA launch -- which are described next. 

 

Template Parameters:  The following ten template parameters (as shown in Table 9.1) support 

genericity and experimentation. 

Parameter Explanation 

keyT This parameter is a generic place holder for the underlying data types used to 

represent keys during the radix sort (U32, for instance). 

mapT This parameter represents a mapping function (or functor) type to convert the actual 

key types into 32-bit unsigned integers that are consumed by the actual kernel code 

(for example, floats need to be carefully transformed). 

WarpSize This parameter represents the threads per warp.  This value has remained fixed at 32 

threads per warp for the past several generations of GPU hardware. 

nWarps This parameter in the range [1-8] specifies how many thread warps per thread block 

are used.  My code only supports values within this range despite the fact that 

current GPU hardware can actually support up to 32 warps per thread block. 

nWork This parameter in the range [1-16] specifies how many ‹keys› or ‹key, value› pairs 

are assigned to each thread inside each thread block while counting. 

bMap This Boolean parameter {true|false} controls whether the mapOp transform operator 

should be applied or not to transform actual keys into 32-bit unsigned integers. 

bShift, 

bMask 

These Boolean parameters control whether shifting and masking operations 

respectively are required to extract 4-bit digits from the 32-bit keys. 

Counts 

PerLane 

This parameter was originally intended to experiments using different levels of 

compression for Bit-level parallelism:  However, the value {2} should be hardcoded 

for now, as it is the only tested and working version. 

S1_pad This flag parameter {0|1} controls whether the “Pad & Rake” technique will be 

turned on to help mitigate bank conflicts inside the BlockReduce method.  Since 

the cost of BlockReduce is amortized across all data in the row, this optimization 

has a negligible performance impact, thus I tend to leave it set to {0} all the time. 

Table 9.1:  GPU_CountKeys C++ template parameters. 
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Function Parameters:  The following function parameters (as shown in Table 9.2) are used to 

count the unsorted keys into a collection of count histograms (one histogram per thread-block): 

Parameter Explanation 

outRowCounts This parameter is a pointer to the output array that receives one histogram of 

row-counts per thread block (data row).  Each count histogram contains 16 row-

counts (one for each digit value induced by a 4-bit radix, d = [0-15]).  Each row-

count indicates the total count of keys that match the ith digit value along the 

current data row, where i ∈ [0, d). 

inKeys This parameter is a pointer to the input array of unsorted keys to be counted as 

part of the current counting sort pass on the chosen LSD 4-bit digit. 

[start, stop] These two parameters identify the range of the input array (inKeys) to count.  

The input size (n) can be computed from this range as n=stop-start +1. 

keyShift This parameter indicates how much to shift each key within the transformed 32-

bit unsigned key in order to extract the chosen 4-bit digit for the current LSD 

counting sort pass. 

Table 9.2:  GPU_CountKeys function parameters. 

 

CTA Parameters:  The following Grid and Block layout parameters (as shown in Table 9.3) 

are chosen to support thread-level parallelism (TLP): 

Parameter Explanation 

Thread Block Size 

(BS) 

This parameter is chosen as a 2D block of threads to take advantage of TLP and 

multi-issue within each SM core. 

For example: ‹32,4,1› means 4 warps of 32 threads each. 

Grid Size (GS) This parameter is chosen as a 1D grid to load balance the concurrent work load of 

thread blocks evenly across all the SM cores on the GPU card. 

For example: ‹1,112,1›). Assume occupancy allows 8 concurrent thread blocks 

per SM core, then on a GTX Titan, a work load of 112 thread blocks per grid 

divides 14 SMX cores evenly into 8 concurrent thread blocks each. 

Table 9.3:  GPU_CountKeys CTA parameters. 

 For the GPU_CountKeys kernel, all of the actual counting and reduction work is done by 

the BlockCount and BlockReduce methods, which are described in sections 9.3.1.1 and 

9.3.1.2. 



261 

 

9.3.1.1 BlockCount Method: 

The GPU_Count kernel invokes my BlockCount method on each data block to do all of the 

actual work of counting keys into histograms.  The BlockCount method (as shown in Figure 9.6, 

middle panel) has three main steps: 

Step 1) Loading: Each thread loads ‹nWork=[1-8]› keys belonging to the current data block 

following the warp-by-warp access pattern from Section 5.1.1. 

Step 2) Extracting: Each thread extracts the chosen digit from each key.  Digit extraction is 

done using simple binary shift and mask operations. 

Step 3) Counting: For each extracted digit, the thread increments the correct counter in its 

per-thread count histogram, kept in shared memory. 

Since counting (addition) is commutative, sequential counting is not required for correct 

results.  Consequently, the warp-by-warp access block access skeleton (BASk) can be used 

directly on each data block for maximum coalescence and better throughput (there is no need to 

convert between a warp-by-warp layout and then a sequential layout within each data block). 

Generalizing my GPU_CountKeys kernel via template parameters results in various trade-

offs.  The three main parameters causing trade-offs include:  ‹nWarps› causing “increased 

memory use”, ‹nWork› causing a “counting pipeline bottleneck”, and ‹CountsPerLane› causing 

“potential overflow”. 

‹nWarps› causes “Increased Memory Use”: 

As the number of threads is increased via the ‹nWarps› parameter, the amount of shared 

memory required to store per-thread histograms increases linearly.  This memory increase 

eventually exhausts all memory in the shared memory pool, requiring CUDA to decrease the 

number of concurrent blocks (and thus warps) per SM core.  Once this happens, TLP 

performance most likely will decrease due to reduced occupancy, negatively impacting 

throughput. 
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‹nWork› causes “Counting Pipeline Bottleneck”: 

As the amount of keys per thread being counted is increased via the ‹nWork› parameter, the 

number of RAW stalls caused by counter increments increases linearly.  Recall that a simple C++ 

increment operation requires a read-modify-write resulting in three separate machine instructions.  

There are RAW dependency between instructions that increment the same counter, which causes 

pipeline stalls.  Trying to remove the stalls via software pipelining causes concurrency bugs, as k 

keys that collide on the same counter should increment that counter by +k but instead only 

increment by +1.  Unfortunately, which keys will increment which counters cannot be predicted, 

so collisions between competing work items (digits) on the same counter within the hardware 

pipeline are inevitable.  ILP performance is decreased due to these RAW stalls.  The code shown 

in Figure 9.5 illustrates this issue. 

… 

// Get indices from digits 
LI_1 = (D1*CountSize) + countOff; 
LI_2 = (D2*CountSize) + countOff; 
… 

// Increment counts   
// Sequential,  
// Correct results but causes RAW stalls 
sm_Counts[LI_1]++; 
sm_Counts[LI_2]++; 
… 

… 

// Get indices from digits 
LI_1 = (D1*CountSize) + countOff; 
LI_2 = (D2*CountSize) + countOff; 
… 

// Increment counts   
// Pipelined, fewer stalls but causes 
// Incorrect counts, if LI_1==LI_2* 
C1 = sm_Counts[LI_1]; 
C2 = sm_Counts[LI_2]; 
… 
C1++; 
C2++; 
… 
sm_Counts[LI_1] = C1; 
sm_Counts[LI_2] = C2; 
… 

Figure 9.5:  Comparing sequential vs. pipelined counting.  The left panel shows the sequential method code which is 

correct but slow due to RAW dependencies hidden within each individual increment.  The right panel shows a 

pipelined method, which is faster but causes incorrect counts due to collisions between keys on the same counter. 

 

‹CountsPerLane› causes “Potential Overflow”: 

I originally intended to enable performance experiments on Bit-level parallelism using 

the ‹CountsPerLane = {1, 2, or 4}›” template parameter.  The idea was to support one 32-bit 

counter per lane, two 16-bit counters per lane (the current default), or four 8-bit counters per lane.  

This would allow the per-thread count histograms to be compressed saving shared memory 
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(decreasing memory by 1×, 2× or 4× respectively) at the cost of more instructions to 

compress/decompress counters and the need to prevent overflow when counting.  Decreasing 

shared memory usage enables increased occupancy and thus better TLP performance.  Although I 

have written code for all three approaches, I have only tested the middle case (two 16-bit counters 

per lane). So, that is what should be used for now. 

The actual count histograms are stored as eight lanes of 32-bit values with two 16-bit 

counters per lane.  A 16-bit counter can overflow if it is incremented past 65,535 (=216-1).  So, 

the code needs to detect and guard against this overflow.  My current, potentially unsafe, solution 

assumes that 16-bit overflow cannot actually occur with my current CTA layout and data set sizes 

(this assumption limits5 my input sizes to n < 227).  A safer and more general solution, shown in 

figure 9.6, would be to accumulate per-thread histograms into a per-block histogram on a regular 

basis using the already existing BlockReduce method. 

// Handle overflow … 
currWork = 0; 
maxWorkBeforeOverflow = (216-nWork);  // Note: use 28 instead for 8-bit overflow 
while (more data blocks) 
  // Overflow possible? (conservative test) 
  if (currWork >= maxWorkBeforeOverflow) 
    BlockReduce( … );  // Accumulate thread histograms into single block histogram 
    Zero ‘per-thread’ histograms 
  end if 

  ... 
  BlockCount( … ); 
  ... 

  currWork += nWork; 
  Move to next data block 
end while (data) 

Figure 9.6:  Handle potential Overflow by reducing per thread histograms down to a per-block histogram just 

before 16-bit overflow (or 8-bit overflow) can happen. 

                                                      
5  I assume the original maximum input size (n) is 32-bits (0xFFFFFFFFu).  I assume both keys and values 

are 32-bit integers and require both input and output arrays.  Since global memory is stored on byte 

boundaries, this reduces n from 32 to 28 (=32-log(4 arrays *4 bytes)) bits.  Furthermore, I assume that data 

is partitioned evenly across all threads.  Assuming at least one thread warp per thread block (32 threads) 

and a minimum grid size of 128 thread blocks, results in a minimum of at least 4096 threads (=32*128), 

which reduces the maximum elements assigned to each individual thread from 28 to 16 bits (=28-

log(4096)), which almost fits in a 16-bit counter (in the worst case, 65,536 = 216 counts is one value too 

large for 216-1), decreasing the maximum input size to n=227-1 bits avoids overflow under these 

assumptions.  
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As may be apparent, this code, after calling BlockReduce, would also need to reset all 

the per-count histograms to zero.  The word “regular” means that the code conservatively tests for 

potential overflow of a loop counter against a maximum overflow variable, where even a single 

additional iteration would cause the 16-bit counter to potentially overflow.  This conservative 

approach assumes the worst case, where all increments always end up in the exact same counter6. 

9.3.1.2 BlockReduce Method: 

The GPU_CountKeys kernel uses my BlockReduce method to reduce multiple per-

thread count histograms down to a single per-block (row-count) histogram.  The goal is to reduce 

16 rows of counters (with TBS entries in each row) down to 16 final row-counts in parallel.  My 

code load-balances the row-counts across ‹nWarp›  thread warps within each thread block, so that 

each thread warp processes fullRows, where fullRows = ⌈
16

𝑛𝑊𝑎𝑟𝑝𝑠
⌉.  If the number of warps does 

not divide evenly into the number of histogram entries (d = 16), then extra code is also required to 

reduce the partial leftover rows (leftOver = 16-(fullRows*nWarps)).  For each full work row of 

counters, each thread warp loads and reduces ‹nWarp› counts per row down to a single count. The 

single count is then stored in an intermediate array, and subsequently the WarpReduce method 

(see Section 6.6.3) is invoked to reduce 32 single counts using all 32 threads in the warp down to 

a final row-count.  Note: The final row-count is found in the last column of each warp reduced 

array.  Next, each final row-count is extracted and stored in another per-block row-count 

histogram in shared memory.  Finally, the resulting 16 final row-counts are output to an 

intermediate array in global memory, which corresponds to this data row (thread block).  The 

BlockReduce method is called rarely to prevent 16-bit overflow, currently only once per data 

row. So, the performance costs are amortized across all the data blocks along each data row. 

 

                                                      
6  For example, an array of input keys that were all set to zero could cause this behavior. 
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Memory Reuse:  There is really only one general issue with my BlockReduce method:  

reducing shared memory usage to mitigate constraints on occupancy.  My solution is to reuse 

memory:  My code allows two different arrays to share the same memory buffer (the per-thread 

count histograms from BlockCount and the warp-reduce arrays from BlockReduce).  These 

two methods do not overlap in time, since BlockReduce is not invoked until after all data blocks 

have been counted using BlockCount.  This allows the code to safely overlap these two different 

arrays within the same memory space, which is the larger of these two different arrays (spaceReq 

= max( sizeArray( thread-counts), sizeArray(warp-reduce) ). 

9.3.2 GPU_ScanRuns Kernel 

My GPU_ScanRuns kernel (as shown in Figure 9.7) is used to scan row-counts into row-

startsthat will later be used as starting prefixes for storing sorted runs of keys (and values) by my 

GPU_DistributeKeys kernel.  The GPU_ScanRuns kernel is conceptually similar to my 

GPU_SumsToStarts kernel, used in my Scan primitive (see Section 6.5).  The pseudo-code for 

my GPU_ScanRuns kernel follows the 2-level reduce-then-scan pattern (described in Section 6.4) 

but scans 16 different rows of row-counts instead of just one row. 

To support the 2-level scan pattern used across all 3 kernels making up my GPU 

Counting Sort, the GPU_ScanRuns kernel is launched using a single-thread block of TBS 

threads(gridsize = 1). This means the grid size for both the GPU_CountKeys and 

GPU_DistributeKeys kernels must be kept reasonably small (p ≤ 1000).  My GPU_ScanRuns 

has three main steps: reducing to final counts, scanning final counts, and scanning row counts:  
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GPU_ScanRuns Kernel 
 1:  Row DASk Setup 

 2:  Zero local arrays (including TBS counters) 

     // Step 1) Reduce (p*d) row-counts down to (d) final counts 
 3:  for all row-counts  // in parallel across TBS threads 

 4:    Read TBS row counts 

 5:    Accumulate TBS row counts into TBS counters 

 6:    Move to next data block (+TBS) 

 7:  end for 

 8:  Reduce TBS individual counters down to (d) final counts 

     // Step 2) Exclusively Scan final counts into final starts  // in parallel across d threads 

 9:  Scan (d) final counts 

10:  Reach back one column to get exclusive results 

11:  Save d scanned counts as d start prefixes 

     // Step 3) Exclusively Scan row-counts into row-starts 

12:  for all row-counts  // in parallel across TBS threads 

13:    Read DBS row counts 

14:    d-way multi-scan on DBS row counts 

15:    Save d block-sums 

16:    Write DBS scanned row starts (+ count prefix) 

17:    Update count prefixes (count prefixes +=block-sums for i in 0..d-1) 

18:    Move to next data block (+DBS) 

19:  end for 

Figure 9.7:  GPU_ScanRuns Kernel pseudo-code.  The GPU_ScanRuns kernel follows the reduce-then-scan 

pattern but performs a d-way multi-scan on the d entries in p count histograms to generate starting run positions for 

each of p thread blocks.  This partitions the keys (and values) output locations safely across p concurrent thread 

blocks. 

  

Step 1) Reduce to final counts:  This first step (Figure 9.7, lines 3-8) reduces all k (=dp) 

row-counts to d = 16 final counts.  The thread block size (TBS) is chosen to be a multiple of 

the number of digit values (d).  For instance, 256 threads is evenly divisible by d = 16 = 24 for 

a 4-bit radix.  Before accumulating any row-counts, the code first calculates the number of 

full-rows (nRows = k/TBS) and the presence of a last partial row (leftOver = k – (nRows∙TBS) 

assigned to each thread.  The full-rows do not require any range checking. The last partially 

full row requires careful range checks.  Each thread then loads and accumulates all assigned 

row-counts from the full-rows and the last partially full row (if it exists).  After accumulating 

all assigned row counts into intermediate thread-counts, the TBS thread-counts need to be 

reduced to d = 16 final counts.  This is done by storing all TBS thread-counts in a shared 

memory array and then using d = 16 threads to serially accumulate (TBS/d) partial sums each, 

with a stride of d = 16 elements between each row.  This step produces d = 16 final run-

counts. 

Step 2) Scan final counts:  This middle step (Figure 9.7, lines 9-11) is trivial, where d = 16 

threads inclusively scan d = 16 run-counts into d = 16 run-starts by invoking the parallel 

WarpScan method.  Recall that WarpScan also requires a half-array (8 columns) of identity 

elements (zeros).  However, exclusive (not inclusive) scan results are needed for correct run-

starts.  Consequently, the code reads exclusive final-starts from the inclusively scanned 

results by reaching back one column in the warp array.  These d = 16 final run-starts indicate 
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the starting location of each sorted digit run in the sorted output array and are used as run 

prefixes to generate correct per-block row-starts in the next step. 

Step 3) Scan row counts:  This last step (Figure 9.7, lines 12-19) scans k (=dp) row-starts 

into k row-starts.  A Row BASk access pattern is then applied.  Given a fixed data block size 

(DBS = TBS*nWork), the code groups the k row-starts into m (=⌈𝑘/𝐷𝐵𝑆⌉ fixed-size data 

blocks, and the single thread block marches along this single data row, data block by data 

block, scanning each data block in turn from DBS row-starts into DBS row-starts.  The first 

m-1 data blocks require no range checks, while the last partially full data block may require 

careful range checks.  For each data block, the code performs a d-way inclusive multi-scan on 

the DBS row-counts, adds in the correct run-start prefix from step 2, and then outputs the d-

way exclusive scan results as DBS row-starts.  After each data block is scanned, the resulting 

d = 16 block totals are accumulated into the current d = 16 run prefixes from step 2 to prepare 

for the next data block along the row. 

After scanning, the “row-starts” array contains valid block-starts within each sorted run for 

each individual thread-block. These block-starts safely partition the sorted output array across all 

thread blocks (with one set of d=16 block-starts for each thread block).  The row-starts enable the 

GPU_DistributeKeys kernel to independently distribute its keys (and values) into sorted runs 

without conflicting with other thread blocks concurrently distributing data at the same time.  The 

GPU_ScanRuns kernel has one performance issue in step 3, which is 2-way bank conflicts as 

described next. 

Multi-scan 2-way Bank Conflicts:  In Step 3 above, each thread warp is responsible for 

scanning (2 = d/nWarps = 16/8) row-counts within each data block.  Since 32 threads in a warp 

can store two sets of d values (32/16), a modified WarpScan method (Section 6.6.3) is used, 

which actually performs two 16-element scans at once.  Unfortunately, adding an 8-element pad 

section before each 16-element scan section immediately results in 2-way bank conflicts between 

all threads in the same warp.  To avoid bank conflicts, I tried re-orienting the data layout and 

using an extra level of indirection to access the data during the scan7.  However, this solution was 

                                                      
7  I tried 2 different solutions, both with poor results:  1) I moved all zeros into the first data warp and then 

had all scans referenced the sub-set of zeros that resulted in no bank conflicts, an extra level of indexing 

was required to make this approach work correctly.  Unfortunately, this extra level of indirection hurt 

overall performance.  2) I tried re-using my 3-step conversion method to move data into a new data layout 

where bank conflicts could not happen.  Unfortunately, this required 3× as much memory and 3× as many 

shared memory accesses, which hurt overall performance. 
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more computationally expensive than the bank conflicts themselves.  Consequently, my current 

code just lives with the 2-way bank conflicts. 

9.3.3 GPU_DistributeKeys Kernel 

My GPU_DistributeKeys kernel (as shown in Figure 9.8) distributes keys (and values) 

into sorted runs based on the current chosen digit.  The GPU_DistributeKeys kernel is based 

on the GPU_ScanRuns kernel used in my Scan primitive (in Section 6.5).  The main difference is 

GPU_DistributeKeys must do a lot more work than just scanning (as in GPU_ScanRuns) to 

correctly support the distribute phase of my GPU Counting Sort.  As already discussed, the code 

for this kernel uses my Row DASk for sequential processing of data to support stable sorts.  As 

per the Row DASk access pattern, this kernel groups n input keys into m fixed size data blocks (m 

= ⌈
𝑛

𝐷𝐵𝑆
⌉).  The kernel then load-balances the m data blocks evenly across the p thread blocks in 

the CTA grid (nBlocks = ⌈
𝑚

𝑝
⌉).  Each thread block finally marches down its assigned data row, 

data block by data block, calling the BlockDistribute method on each fixed-size data block of 

keys (and values) in sequence. 

 My BlockDistribute method does a local counting sort in parallel on each data block to 

determine local offsets (within the current data block) and then adds in matching row-starts to get 

global offsets before distributing the locally sorted data into their final sorted positions  After 

distributing one block of keys (and values) into d = 16 sorted runs, the d = 16 row-starts are 

incremented by the matching d = 16 block-sums from the current data block to prepare to 

distribute the next data block along the row. 
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GPU_DistributeKeys Kernel 

GPU_DistributeKeys 

// Distribute all ‹key, value› pairs into sorted runs. 

Row DASk Setup 

 
if (rc.Both) 

    
end if 

if (rc.Start) 

    
end if 

for each data block along row 

    
end for 

if (rc.Stop) 

    
end if 

BlockDistribute_RC_*  ② 

// Distribute one data block of ‹k,v› pairs into sorted runs. 

  Pre-computed constants 

    // Bin Keys 

  STEP 1.0:  LoadKeys (with range checks) 
  STEP 2.0:  ExtractDigits 
  STEP 3.0:  CountKeys 

    // Scan counts (into starts) 

  STEP 4.0:  ScanWarps 
  STEP 5.0:  ScanBlocks 
  STEP 6.0:  UpdateKeyStarts 

    // Sort Keys 

  STEP 7.0:  ShuffleKeys 
  STEP 8.0:  MapKeys (with range checks) 

    // Sort Values (Optional) 

  STEP 9.0:  LoadValues (with range checks) 
  STEP 10.0:  ShuffleValues 
  STEP 11.0:  MapValues (with range checks) 

    // Move to next data block (along row) 

  STEP 12.0: UpdateRunStarts 

end BlockDistribute 

STEP 1.0: LoadKeys_RC_NONE 

// Load short run of nWork keys [1-8] into registers. 

Setups “load”, “store”, and “run” pointers. 

1.1: Loads nWork keys [1-8] from loadPtr. 

1.2: Stores nWork keys [1-8] into storePtr. 

1.3: Loads nWork keys [1-8] from runPtr. 

LoadKeys_RC_BOTH 
Also range checks array accesses against [start, stop]. 

LoadKeys_RC_START 
Also range checks array accesses against [start, …). 

LoadKeys_RC_STOP 
Also range checks array accesses against (…, stop]. 

STEP 2.0: ExtractDigits 

// Extract digits [0-15] from keys [1-8]. 

2.1: (Optional) Map keys into 32-bit unsigned integers 

2.2: Extract digits from keys (shift & mask) 

2.3: Compress digits into single 32-bit register 

STEP 3.0: CountKeys 

// Count Keys (into ‘per thread’ histograms.) 

3.1: Zero counts array 

3.2: Compute lane indices 

3.3: Compute shifts and increments 

3.4: Accumulate counts (save initial starts) 

3.5: Compress initial starts into 32-bit register 

STEP 4.0: ScanWarps 

// Scan ‘per warp’ counts into ‘per warp’ starts 

Setups “S1”scan and “S3” store pointers. 

4.1: S1:SS‹4›, each thread in warp serially scans a short run 

of 4 lane counters. (4 8-bit counters per 32-bit lane). 

4.2: S2:SS‹8›, each active thread (4 per warp) serially scans a 

short run of 8 S1 run sums.  Also stores final S2 run sums into 
S3 scan array. 

4.3: S1:SU‹4›, each thread updates short run of 4 scanned 
results with S2 prefix (from Step 4.2)  

STEP 5.0: ScanBlocks 

// Scans ‘block’ counts into ‘block’ starts 

Setups “S3”scan and “S4” pointers. 

5.1: S3:SS‹8›, each active thread (8) serially scans a run of 8 
lane counters. (2 16-bit counters per 32-bit lane). 

5.2: S4:WS‹8›, all active threads (8 total) warp scan 16 block 
sums into 16 block starts. 

5.3: S3:SU‹8›, each active thread (8) updates run of 8 
scanned results with S4 prefix (from Step 5.2)  

STEP 6.0: UpdateKeyStarts 

// Grab final ‘per key’ starts 

Setups “S1”scan and “S3” pointers. 

5.1: Grabs [1-8] per key starts from compressed reg. 

5.2: Adds in correct S1 prefixes (from Step 4.3). 

5.3: Adds in correct S3 prefixes (from Step 5.3). 

STEP 7.0: ShuffleKeys 
// Sort Keys into shared memory array (Local Sort) 

STEP 8.0: MapKeys (range checks like STEP 1.0) 

// Sort Keys into outKeys array (Global Sort) 

STEPS 9.0, 10, & 11:  Sort Values 
Similar to Steps 1.0 (Load), 7.0 (Shuffle), and 8.0 

(Map) respectively but with “values” instead of 

“keys”. 

STEP 12.0: Update Run Starts 
// Add current block sums [1-16] into run starts [1-16]. 

BlockDistribute_RC_STOP( … ) ② 

BlockDistribute_RC_NONE( … ) ② 

BlockDistribute_RC_START( … ) ② 

BlockDistribute_RC_BOTH( … ) ② 

Zero local arrays  // Distribute Setup 

Load initial run-starts[0-15] 
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Figure 9.8 GPU_DistributeKeys Kernel:  This kernel follows my Row DASk.  n keys are grouped into m data 

blocks that are partitioned across p thread blocks.  Each thread block marches down its data row, calling 

BlockDistribute on each assigned data block in turn.  BlockDistribute loads and bins keys into counts 

(Steps 1-3), scans counts into starts (Steps 4-6), sorts keys (Steps 7-8), optionally sorts values (Steps 9-11), and then 
gets ready for the next data block (Step 12). 

 Since my GPU_DistributeKeys kernel follows the Row DASk, there is a setup stage at 

the beginning of the kernel, which initializes the desired Row DASk behavior and also initializes 

the local arrays used by this kernel.  This setup step has four main sub-steps: 

Sub-Step 1) Load Balance:  the kernel computes the nBlocks (m) assigned to this data row 

using biased load-balancing, as described in section 5.6.3. 

Sub-Step 2) Range Check:  the kernel initializes the variables used with the ‹FIRST?, 

MIDDLE*, LAST?› range check pattern, as described in section 5.6.2. 

Sub-Step 3) Zero Arrays:  the kernel allocates and zeros intermediate arrays in shared 

memory, which are used by the BlockDistribute method. 

Sub-Step 4) Load row-starts:  the kernel loads the d = 16 row-starts that indicate where each 

thread block can safely output its sorted data within each output run without conflicting with 

other concurrent thread blocks outputting data at the same time.  These row-starts (starting 

block run positions) were computed by the GPU_ScanRuns kernel. 

My GPU_DistributeKeys method requires 3 types of parameters--template, function, and 

CTA launch--which are described next. 
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Template Parameters:  The following twelve template parameters (as shown in Table 9.4) are 

used to support genericity and experimentation for this kernel. 

Parameter Explanation 

keyT, valT These parameters are generic placeholders for the different key and value types used 

to represent the ‹key, value› pairs (‹U32, U32› for instance). 

mapT This parameter represents a mapping function (or functor) type to convert the actual 

keys into 32-bit unsigned integers that are consumed by the actual kernel code (for 

example, floats need to be transformed). 

WarpSize This parameter represents the threads per warp.  This value has remained fixed at 32 

threads per warp for the past several generations of GPU hardware. 

nWarps This parameter in the range [1-8] specifies how many thread warps per thread block 

are used.  My code only supports values in this range, despite the fact that current 

GPU hardware can support up to 32 warps per thread block. 

nWork This parameter in the range [1-8] specifies how many ‹keys› or ‹key, value› pairs are 

assigned to each thread inside each thread block while sorting. 

bMap This Boolean parameter {true|false} controls whether or not the mapOp transform 

operator should be applied to transform actual keys into 32-bit unsigned integers. 

bShift, bMask These Boolean parameters control whether shifting and masking operations 

respectively are required to extract 4-bit digits from the 32-bit keys. 

bHasValues This Boolean parameter controls whether to sort ‹key, value› pairs {true} or ‹key› 

singletons only {false}.  

IO_pad, S1_pad These parameters control whether the “Pad & Rake” technique will be turned on to 

help mitigate bank conflicts {1} or left turned off {0}.  The IO_pad should only be 

set to {1} when the nWork parameter is a power of 2 other than one [2,4,8], 

otherwise it should be set to zero.  Invalid use can lead to kernel crashes or incorrect 

results. 

Table 9.4:  GPU_DistributeKeys C++ template parameters. 

 

Function Parameters:  The following eight function parameters (as shown in Table 9.5) are used 

to distribute the unsorted input arrays into output arrays containing sixteen sorted runs (one run 

per digit value): 
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Parameter Explanation 

outKeys, 

outVals 

These parameters represent the output arrays that receive the sorted keys and 

values as part of the current counting sort pass on a chosen LSD digit. 

inKeys, inVals These parameters represent the unsorted input arrays (keys and values) that need 

to be sorted on the chosen LSD digit as part of the current counting sort pass. 

inRowStarts The inRowStarts parameter is a pointer to the scanned row-starts from the 

GPU_ScanRuns kernel. There are sixteen entries per thread block (one for each 

digit value, d = [0-15]).  Each row-start indicates the unique starting position for 

the current thread block to output its sorted output data within the dth sorted run 

without conflicting with other concurrent thread blocks outputing data at the 

same time. 

[start, stop] These parameters identify the range of the input arrays (inKeys, inVals) to sort 

by distributing into runs.  The input size (n) can be computed from this range as 

n=stop-start +1.   

Note:  The output arrays are also assumed to use the same range. 

nWork This parameter in the range [1-8] specifies how many ‹keys› or ‹key, value› pairs 

are assigned to each thread inside each thread block while sorting. 

bMap This Boolean parameter {true|false} controls whether the mapOp transform 

operator should be applied or not to transform actual keys into 32-bit unsigned 

integers. 

bShift, bMask These Boolean parameters control whether shifting and masking operations 

respectively are required to extract 4-bit digits from the 32-bit keys. 

bHasValues This Boolean parameter controls whether to sort ‹key, value› pairs {true} or 

‹key› singletons only {false}.  

keyShift This parameter indicates how much to shift each key within the transformed 32-

bit unsigned key in order to extract the chosen 4-bit digit for the current LSD 

counting sort pass. 

Table 9.5:  GPU_DistributeKeys function parameters. 

 

CTA Parameters:  The following Grid and Block layout parameters (as shown in Table 9.6) 

are chosen to support thread-level parallelism (TLP): 
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Parameter Explanation 

Thread Block Size 

(BS) 

This parameter is chosen as a 2D block of threads to take advantage of TLP and 

multi-issue within each SM core. 

For example: ‹32,4,1› means 4 thread warps of 32 threads each. 

Grid Size (GS) This parameter is chosen as a 1D grid to load balance the concurrent work load of 

thread blocks evenly across all the SM cores on the GPU card. 

For example: ‹1,112,1›). Assume occupancy allows 8 concurrent thread blocks 

per SM core, then on a GTX Titan, a work load of 112 thread blocks divides 14 

SMX cores evenly into 8 concurrent thread blocks each. 

Table 9.6:  GPU_DistributeKeys CTA parameters. 

 For the GPU_DistributeKeys method, all the actual work of distributing keys (and 

values) into sorted runs is done by the BlockDistribute method (a method overview and the 

12 individual steps of this complex method are described in section 9.4.3.3).  Also, there are 

several general performance issues associated with this method, which are described first in 

section 9.4.3.1.  Other issues unique to each step, are described within each individual step.  

Some general solutions to these general performance issues are described in section 9.4.3.2.  

Other solutions unique to each step, are described within each step. 

9.3.3.1 BlockDistribute Issues: 

There are three general issues with BlockDistribute – bank conflicts, register pressure, 

and shared memory pressure. 

Bank Conflicts:  Since each thread works with short sequential runs [1-8] in shared memory, 

bank conflicts during shared memory accesses become a performance issue.  As discussed in 

section 6.7.2, odd-length runs [1, 3, 5, 7] will not cause any bank conflicts, but even length runs 

[2, 4, 6, 8] can result in [2-way, 4-way, 2-way, and 8-way] bank conflicts costing [1, 3, 1, or 7] 

extra machine cycles per shared memory access, respectively.  For run lengths that are powers of 

two [2, 4, 8], the “Pad and Rake” technique can be used to eliminate bank conflicts at the cost of 

an extra pad column in memory and extra rake instructions to skip over the pad column.  Users 

can, of course, choose to live with the performance costs due to extra cycles caused by the bank 
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conflicts (for example, for runs of length [6]).  If you choose to live with the bank conflicts, 

CUDA’s low level SASS compiler may decide to optimize an aligned sequence of two or four 32-

bit load (or store) instructions as a single Vector2 (64-bit) or Vector4 (128-bit) instruction.  This 

optimization decreases the total number of instructions and bank conflicts by 2× or 4×, 

respectively, since instructions that never get executed do not cause bank conflicts 

Register Pressure:  My code takes advantage of each GPU core’s support for instruction 

pipelining to improve ILP performance by having each thread work on multiple (k=[1-8]) work-

items at once and then grouping and reordering instructions using software pipelining.  Linearly 

increasing the amount of work per thread by k× increases the number of registers per thread 

needed O(k) to keep track of multiple keys, counts, starts, etc. throughout the code.  

Consequently, more work means more registers. 

My code also takes advantage of the GPU’s support for massive multi-threading to improve 

TLP performance by launching multiple thread blocks with multiple thread warps (w=[1-8]) 

within each thread block, with each warp containing 32 threads.  However, each individual thread 

needs its own unique set of independent registers to ensure correct behavior.  More threads means 

more registers. 

Recall that each SM core contains only a fixed pool of registers (32K or 64K), that are shared 

across all active thread warps (up to 48 or 64 thread warps per SM).  Too much work or too many 

warps can constrain occupancy due to register pressure, which decreases TLP performance. My 

BlockDistribute method keeps both the supported amount of work ‹nWork› and the supported 

number of thread warps ‹nWarps› small (≤ 8) for my experiments. 

Shared Memory Pressure:  The BlockDistribute method needs several different memory 

arrays stored, which are kept in shared memory.  For instance, shared memory is needed to 

convert between data warps in global memory (stride = 32) and short sequential runs of keys (and 

values) kept in registers (stride = 1).  Several different memory arrays are also needed to count 
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keys into per-thread count histograms and later to scan those counts into starts (local sorted 

offsets).  Finally, shared memory arrays are needed to sort keys (and values) locally before 

distributing them globally into sorted runs.  Larger data block sizes (DBS) results in larger arrays.  

Large arrays reduce occupancy due to shared memory pressure, which hurts TLP performance.  

My solution reuses the same memory buffer for multiple arrays, which is discussed more fully in 

section 9.4.3.2, Step 12 (Move to next Block). 

9.3.3.2 BlockDistribute Solutions: 

 To handle bank conflicts, I apply different techniques from section 6.7.2 to different steps 

in this BlockDistribute method.  To decrease register pressure, I batch my software 

pipelining into small groups.  To decrease shared memory pressure, I reuse memory to save 

space. 

Handling Bank Conflicts:  As already discussed in Section 6.7.2, there are multiple ways to deal 

with bank conflicts 1) Live with the performance hit; 2) Use runs whose length is odd; 3) Use the 

Pad and Rake technique on runs whose length is a power of two; 4) Enable the SASS compiler 

Vector2/Vector 4 optimization by aligning data to a 16-byte boundary.  Almost all of the twelve 

steps in this method result in bank conflicts.8 Sometimes I live with the performance hit; 

sometimes I use the “Pad and Rake” technique.  I try to align my data arrays in shared memory to 

16 byte boundaries to enable the Vector2/Vector4 optimization by the SASS compiler, adding 

extra pad columns where necessary.  Note:  The “Pad and Rake” technique prevents the Vector4 

optimization by the SASS compiler.   

                                                      
8  For many of these individual steps, I have tried multiple solutions to mitigate bank conflicts.  For 

instance, early versions of my radix sort code used my 3-step conversion technique from LoadKeys over 

and over again between steps to eliminate as many bank conflicts as possible.  However, one of my primary 

goals is to increase throughput by decreasing total cycles.  So, I only kept solutions which increase data 

throughput.  As a result, the 3-step conversion technique got dropped as it was usually more expensive then 

living with the bank conflicts it removed. 
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One interesting wrinkle is that avoiding bank conflicts in one step may cause them in 

another step.  For instance, step 3 (CountKeys), step 4 (ScanThreads), and step 6 

(AccumulateLocalStarts) access the same memory buffer using two different views.  In this 

case, I try it both ways and see which way has the best performance. 

Another wrinkle is that some bank conflicts are simply unavoidable.  For instance, Step 7 

(ShuffleKeys) results in an unpredictable number of bank conflicts, since the algorithm cannot 

predict ahead of time which bank column in shared memory each key will be stored into.  Based 

on a 32 balls into 32 bins simulation on 10,000 runs on uniform random data, the average number 

of bank conflicts is about 3.4 on each memory access per thread warp. 

Compression:  To save registers, instructions, and shared memory, I compress data.  For 

instance, I compress up to eight digits into a single 32-bit register, which reduces register storage 

costs by a factor of 8×.  Also, when counting, I compress four 8-bit counters within a single 32-

bit lane, which reduces the number of registers and shared memory required to store per-thread 

count histograms by a factor of 4×.  However, there is a trade-off here, since many more 

instructions and temporary registers are also required to correctly compress and later decompress 

these values as needed.  Where possible, bit-level parallelism is taken advantage of to decrease 

the number of total instructions required.  For example when scanning, the code can scan four (or 

two) compressed runs at the same time using one set of serial Sklansky scan instructions, 

reducing the number of scan instructions required by a factor of 4× (or 2×). 

Batched Software Pipelining decreases Register Pressure:  Software pipelining k work items 

increases the number of required registers by k×.  Range checked I/O steps (such as steps 1.0, 8.0, 

9.0, and 11.0) require extra registers for the checks.  Other steps (such as 3.0, 4.0, 5.0, and 6.0) 

require complex logic to implement correctly, which also tends to increase the number of 

registers required.  For these complex steps, one solution is to batch the software pipelining into 

smaller groups of [2-4] work items at a time.  For complex steps, my code may batch [1-8] work 

items in groups of four work items, resulting in up to two different instruction groups [1-4] and 
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[5-8], where each instruction group is software pipelined independently. This decreases the 

number of registers from 8× to 4×.  For complex steps that also require range checks, my code 

may batch in groups of two work items, resulting in up to four instruction groups [1-2], [3-4], [5-

6], and [7-8]. This decreases the number of registers from 8× to 2×.  Although batching software 

pipelining in small groups of [2-4] work items decreases register pressure, it may also decrease 

ILP performance since the hardware scheduler now has fewer independent instructions to choose 

from. 

Memory Reuse decreases Shared Memory Pressure:  To save shared memory space, a single 

large memory buffer per thread block is used, which is partitioned into smaller per-warp and per-

block buffers.  Each per-warp buffer is then reused for multiple different purposes (loading keys, 

counting digits, scanning starts, extracting warp starts, etc.) during the various steps that make up 

my BlockDistribute method.  The larger total memory buffer is used for sorting keys (and 

values) locally.  In addition, there is a small per-block buffer used to store the S3 and S4 arrays.  

Since the twelve steps are sequential and do not overlap in time (for instance, scanning counts 

into starts does not begin until counting digits is completely finished), these two different uses of 

the same memory can safely reuse the same memory space for these different purposes.  

Practically speaking, I need to allocate each per-warp memory buffer as the largest of all these 

different warp arrays (warpSpaceReq = max( sizeArray( warp-keys), sizeArray( thread-counts), 

sizeArray( thread-starts), sizeArray( warp-values ), … ). I then need to allocate the entire 

memory buffer as the larger of either the aggregate of the warp arrays or the local sort buffers, 

also adding in the per block memory use (spaceReq = max( sizeArray( nWarps*warpSpaceReq, 

block-keys, block-values) + sizeArray( S3 + S4 )). 

Memory Alignment:  To enable the possibility of the compiler applying the Vector4 

optimization to mitigate both load/store instructions and bank conflicts by a factor of 4×, I try to 

align the start of each block-array and warp-array in memory to a Vector4 boundary (16 bytes = 

4*4) with extra pad columns where necessary. 
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9.4.3.2 BlockDistribute method: 

 My BlockDistribute method (see Figure 9.8) distributes an entire block of ‹key, 

value› pairs (or ‹key› singletons) into their final sorted runs.  This method is invoked on each data 

block by the GPU_DistributeKeys kernel as it marches down each data row, block by block.  

This method basically performs a local counting sort on a single data block to locally sort keys 

(and values) into sorted runs.  It then globally distributes the locally sorted keys (and values) into 

their final sorted run positions. 

This is complex method, which and it took me a long time to get it working correctly, so I 

apologize that the overview may also be complex. The twelve steps of this method are organized 

into five broad processing groups: Count Keys, Scan Counts, Sort Keys, Sort Values, and Move 

to next Block. After the overview, each individual step is discussed in depth. 

Group) Count Keys:  In this group, all keys are counted into thread-counts (16 counters 

per-thread histogram).  In Step 1 (LoadKeys), each thread loads a short sequential run of 

‹nWork=[1-8]› keys from the unsorted input array.  In Step 2 (ExtractDigits), each 

thread extracts the current chosen digit from each key and stores the resulting [1-8] digits 

in a single compressed register.  Finally in Step 3 (CountDigits), each thread bins its 

[1-8] digits into its matching count histogram of thread-counts.  A single compressed 

register (called regStarts) of [1-8] key-starts is also created in Step 3.  Each key-start is a 

collision-free starting offset for each key relative to the other keys assigned to this thread.  

These key-starts are needed to uniquely offset keys, when two or more keys from the 

same work run collide on the same digit value. 

Group) Scan Counts:  This group is the most complex, so I will explain the general 

problem needing to be solved before I overview the individual steps.  To enable sort, the 

local starts (unique sorted offsets within the fixed-size data block) for each key (and 
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value) are needed.  The main point of generating these starts is that each thread can then 

safely store all its assigned keys into the sorted array without colliding with other threads 

concurrently storing data at the same time.  To generate these local starts, a hierarchical 

set of three relative starts (warp-starts, across warps within a thread block; thread-starts, 

across threads within a warp; and key-starts, across keys within a thread) are built and 

then accumulated.  These three relative starts are built using a hierarchy of scans from the 

count histograms.  Note: The key-starts were already built by step 3 (in group 1), while 

the thread-starts and warp-starts will be built by steps 4 and 5 (in this group). 

In Step 4 (ScanThreads), the entire thread warp scans assigned thread-counts 

into thread-starts.  Each thread-start is a collision-free starting offset for sorted data runs 

relative to the other threads within the same warp.  Step 4 also generates and stores a 

single histogram of sixteen warp-sums for use in the next step.  In Step 5 (ScanWarps), 

eight active threads scan the warp-sums from Step 4 into warp-starts.  Each warp-start is 

a collision-free starting offset for sorted data runs relative to the other warps within the 

same thread block.  Step 5 also generates a final histogram of sixteen block-sums (total 

run counts) and sixteen block-starts (starting run offsets) across the entire data block.  In 

Step 6.0 (AccumulateStarts), the local starts [1-8] are built by accumulating warp-

starts (Step 5), thread-starts (Step 4), and key-starts (Step 3). 

Group) Sort Keys:  With local-starts now built, the keys can be safely distributed into 

sorted runs.  In step 7 (ShuffleKeys), each thread shuffles (locally sorts) its assigned 

keys into sorted runs (kept in a local shared memory array).  Local sorting increases 

overall performance by increasing run coherence, which reduces the number of “stores” 

required to distribute the keys into sorted runs in the next step.  In Step 8 (MapKeys), 

each thread loads and maps (globally sorts) a short sequential run of [1-8] locally sorted 

keys into global memory.  The global offsets are created by accumulating row-starts with 
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relative run offsets from the start of each sorted local run. Each row-start is a collision-

free starting offset for sorted data runs within the entire data set relative to other thread-

blocks within the entire grid (CTA). 

Group) Sort Values:  Optionally, the values also need to be distributed into sorted runs.  

If sorting ‹key, value› pairs instead of just ‹key› singletons, then the methods 

corresponding to Steps 9 – 11 need to be invoked.  Otherwise, the BlockDistribute 

method can safely skip over to Step 12.  In Step 9 (LoadValues), each thread loads a 

short sequential run of ‹nWork=[1-8]› values.  In Step 10.0 (ShuffleValues), each 

thread shuffles (locally sorts) its assigned values (reusing the local starts from Step 6).   

In Step 11 (MapValues), each thread loads and maps (globally sorts) a short sequential 

run of [1-8] locally sorted values into global memory (reusing the global offsets from step 

8). 

Group) Move to Next Block:  In step 12 (UpdateRowStarts), the thread block prepares 

to distribute the next data block along the current data row by adding the final block-

sums (from Step 5) into the current row-starts.  This safely skips past the just distributed 

keys (and values) for the current data block. 

Now that a broad overview of the BlockDistribute method has been presented, next follows 

an in depth discussion of each of the twelve steps. 

STEP 1) LoadKeys method: 

The LoadKeys method takes as input the inKeys parameter and produces as output a 

short run of ‹nWork=[1-8]› sequential keys stored in registers.  For better performance, I reuse the 

3-step conversion described in section 6.7.1 to convert between a warp-by-warp layout (that 

respects coalescence) kept in global memory into a sequential layout (required for correct results) 



281 

 

kept in registers.  These three sub-steps quickly cycle through three different views of memory 

(via three pointers) as summarized in Figure 9.9. 

Sub-step 1.1) Each thread warp loads its own assigned section of [1-8] data warps of 

keys from the current data block in the inKeys array kept in global memory.  These [1-8] 

keys are temporarily stored in registers. 

Sub-step 1.2) Each thread warp stores its [1-8] keys as data warps into a conversion array 

kept in shared memory, each data warp may have an optional pad column to avoid bank 

conflicts using the “Pad and Rake” technique described in section 6.7.2. 

Sub-step 1.3) Each individual thread within the thread warp loads a short sequential run 

of [1-8] keys from its assigned section of the conversion array kept in shared memory. 

 

Step 1.1 Load Keys

 

Step 1.2 Store Keys

 

Step 1.3 Load Run (No Pad) 

Load Run of 3 (Per Thread) 

-------------------------------- 
01201201201201201201201201201201 
20120120120120120120120120120120 
12012012012012012012012012012012 
................................ 

Step 1.3 Load Run (With Pad) 

Load Run of 4 (Per Thread) 
-------------------------------- 
*0123012301230123012301230123012 
3*012301230123012301230123012301 
23*01230123012301230123012301230 
123*0123012301230123012301230123 
0123............................ 

Figure 9.9:  Four views of memory required to Load Keys efficiently.  For Sub-step 1.1) the upper-left panel shows 

a warp by warp layout of the inKeys arrays as a single fixed-size data block, with each thread warp being assigned 

[1-8] sequential data warps.  For Sub-step 1.2) the upper-right panel shows a warp by warp layout of the same data 

warps into shared memory with optional padding to help mitigate bank conflicts.  For Sub-step 1.3) Both lower 

panels show how the short runs would be assigned to all 32 threads for a run of size 3 (without padding) and for a 

run of size 4 (with padding), where the extra pad column mitigates 4-way bank conflicts. 

There are 3 main issues associated with this LoadKeys method – bank conflicts, 

converting between views, and range checks. 
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Mitigating Bank Conflicts:  Bank conflicts caused by loading short sequential runs can be 

mitigated using the “Pad and Rake” technique (as described in section 6.7.2) via this kernel’s 

IO_pad template parameter, as shown in Table 9.7. 

nWork 1 2 3 4 5 6 7 8 

k-Way BC 0 2 0 4 0 2 0 8 

Extra Cycles 0 1 0 3 0 1 0 7 

IO_pad 0 1 0 1 0 0* 0 1 

Table 9.7:  Bank Conflicts for increasing run length. 

In this table, the nWork row shows the run length [1-8] to load; the k-Way BC row shows 

the expected number of bank conflicts per memory access [0,2,4,8]; the Extra Cycles row shows 

the cost in extra machine cycles per shared memory access; and the IO_pad row shows whether 

to turn on {1} or off {0} the “Pad and Rake” technique to avoid these k-way bank conflicts.  

Recall that the “Pad and Rake” technique only works for run lengths that are powers of two. So I 

only set IO_pad = {1} for ‹nWork=[2,4,8]›.  In the outlier case of a run of length 6, it is cheaper 

to live with the resulting 2-way bank conflicts then to fix the problem. 

Conversion between Views:  For a stable Counting Sort, each thread needs to load a short 

sequential run of keys (stride =1).  However, for best I/O performance via coalescence, keys 

should be loaded using the warp-by-warp BASk pattern (stride = 32).  This problem was solved 

using the 3-step conversion process already described. 

Range Checks Issue:  My ROW DASk requires four similar versions of code when transferring 

I/O between global memory and registers, which supports the [‹FIRST?›, ‹MIDDLE*›, ‹LAST?›] 

range check pattern.  Since this method loads keys from the inKeys array, four different range 

checked versions of this method are also required:  

LoadKeys_RC_BOTH does [start, stop] range checks, which is typically only needed for a 

input range smaller than a single fixed-size data block (n ‹ DBS). 

LoadKeys_RC_START does [start, …) range checks, which is typically only needed if the 

start offset is not warp aligned to a warp boundary [0, 32, 64, …]. 

LoadKeys_RC_STOP does (…, stop] range checks, which is only needed by the very last 

partially covered data block in the data set. 



283 

 

LoadKeys_RC_NONE does *NO* range checks, the vast majority of data blocks should end 

up calling the ‘NONE’ version, which is another reason to use my Row DASk. 

In all four versions of LoadKeys, instructions are regrouped and reordered using software 

pipelining.  This results in better ILP performance.  The three range-checked LoadKeys 

functions support software pipelining using smaller batches of [2-4] keys at a time to reduce 

register pressure.  The LoadKeys_RC_NONE function software pipelines all eight keys as a single 

batch of [1-8] work items. 

STEP 2) ExtractDigits method: 

The ExtractDigits method takes [1-8] keys as inputs and produces a single compressed 

32-bit value containing [1-8] digits.  Each chosen digit is extracted from its corresponding key by 

(optionally) transforming the key into a 32-bit unsigned integer and then shifting and masking off 

the chosen digit (4-bits) from this 32-bit key.  The resulting 4-bit digits [1-8] are then compressed 

into a single 32-bit register called regDigits.  The layout of 4-bit digits within this register is 

[8462 7351] instead of the more typical [8765 4321].  This specific layout pattern supports bit-

level parallelism by allowing quads and pairs to be easily extracted using fewer shifts and masks.  

Also, type upscaling from 4-bits to 8-bits or 16-bits respectively basically costs nothing extra 

when extracting these quads and pairs.  Instructions are software pipelined and reordered in 

batches of [2-4] keys to increase ILP performance.  The ExtractDigits method is illustrated in 

Figure 9.10. 
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Figure 9.10 - Extract Digits from Keys:  Each individual key is optionally transformed into a 32-bit integer.  Then 

a chosen digit is extracted from the 32-bit key by shifting and masking.  Then the resulting [1-8] digits are 

compressed and reordered into a single 32-bit integer with each 4-bit nibble representing a single digit.  The 

reordered layout of 4-bit digits within the 32-bit register is [8462 7351]. 

 

STEP 3) CountDigits method: 

The CountDigits method takes [1-8] compressed digits (stored in regDigits) and counts the 

digits into a per thread counts histogram containing 16 bins (one bin per possible digit value [0-

15]).  For each digit in regDigits, it extracts the current digit, bins the digit, and increments the 

corresponding counter in the histogram.  The bins in each count histogram are represented by 

sixteen 8-bit counters, which are compressed and stored in four 32-bit lane counters in order to 

save shared memory space.  Since each thread counts at most eight digits per counter, any 

overflow of 8-bit counters is not yet possible.  Before counting any digits in any thread, all counts 

are reset to zero to ensure correct final counts in each histogram.  Counting instructions are 

reordered using software pipelining in batches of [2-4] digits at a time to increase ILP. 

The memory layout for CountDigits is shown in Figure 9.12.  As can be seen in this figure, 

there are a total of four rows (one for each 32-bit lane) and 32 columns (one for each thread in the 

warp).  Optionally, the Kernel’s “S1_pad” template parameter can be used to turn on the “Pad and 
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Rake” technique for use in step 4.0 (ScanWarps). This adds a single pad column to the end of 

each lane row.  The total number of 32-bit values required for counting in each individual warp is 

thus 128 (or 132 with pad). 

There are two main issues with this counting step: 

Counting Bottleneck Issue:  Incrementing [1-8] per-thread counters cannot be safely software 

pipelined due to possible collisions between concurrently executing increment instructions. 

Consequently, the method must live with the stalls caused by the RAW dependencies between the 

load, increment, and store instructions associated with each count operation.  This issue was 

previously described in Section 9.3.1.1. 

Bank Conflict Issue:  Unfortunately, there is a conflict between Step 3.0 CountDigits and 

Step 4.0 ScanWarps.  To mitigate bank conflicts when loading and storing runs in Step 4, the 

“Pad and Rake” technique can add a single pad column per lane.  This pad column impacts the 

data layout for both steps 3 and 4, as shown in Figure 9.12. 

 

Figure 9.12 - CountDigits Memory Layout:  Each thread in a thread warp has its own unique histogram of 

sixteen 8-bit counters compressed intofour4 32-bit lanes.  Across all threads in a warp, there are four rows of 32 

columns (+ optional pad column) resulting in a total of 128 (or 132) 32-bit lane values. Each thread warp is assigned 

its own unique memory array used for counting.  Step 3 accesses per-thread count histograms in columns 

(vertically).  However, Step 4 accesses short runs of 4 lane counters across each row (horizontally). 
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 Adding the pad column can avoid bank conflicts when scanning runs in step 4.  However, 

adding the pad column also negatively impacts step 3, which uses the same memory layout but 

with a different view of the data.  Adding the pad column to the shared memory layout in Step 3 

shifts each per-thread count histogram from being a straight vertical line on one bank column into 

a diagonal line spread over multiple bank columns.  This shift results in an unpredictable number 

of bank conflicts on each shared memory access. Assuming a uniform random distribution of 

digits into counters results in a rough estimate9 of 3.4 bank conflicts per shared memory access on 

average across the entire thread warp.  Since there are up to sixteen shared memory accesses to 

count [8] digits, this approach results in up to 54.4 extra cycles due to bank conflicts in Step 3.  

On the other hand, not adding the pad column results in a guaranteed four-way bank conflict for 

each shared memory access in Step 4.  Since there are a total of 25 shared memory accesses to 

scan all four data warps, not padding results in 100 extra cycles due to bank conflicts in Step 4.  

Since 54.4 < 100, I have found it best for overall performance to always set S1_pad = 1 to turn on 

the “Pad and Rake” technique in Step 4 even though it causes unavoidable bank conflicts in Step 

3. 

STEP 4) ScanWarps method: 

The ScanWarps method exclusively scans thread-counts into thread-starts for a single 

thread warp.  Recall that there are sixteen rows of 8-bit counters compressed into four 32-bit 

lanes.  This results in a total of 128 32-bit values (132 with optional pad) that need to be scanned.  

Compressing four 8-bit counters per lane decreases work via bit-level parallelism (BLP), by 

allowing the code to scan four rows of 8-bit counters at once by scanning 32-bit lane values 

instead.  Scanning each row of lane values also results in sixteen warp-sums (one per counter 

                                                      
9 Given 4 rows, each thread in the warp can now potentially collide with 3 other threads on each shared 

memory access.  Assuming a uniform random distribution of digits into counters, the chances of [1,2,3,4]-

way collision for each thread are then [27/64, 27/64, 9/64, 1/64], respectively.  Across all 32 threads in a 

warp, the chances of [1-4]-way conflicts become [1.01×10-12, 0.22%, 60.29%, 39.59%] respectively, which 

leads to an average bank conflict of 3.39. 
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row), which are stored in the S3 block array as eight lanes per warp (2 16–bit sums per 32-bit lane 

value).  These S3 warp-sums will finish being hierarchically scanned in Step 5 (ScanBlocks). 

The memory layout for Step 4 is the same as in Step 3 (4 lanes × {32|33} columns). 

However, the pointer used to scan the data uses a row orientation instead of a column orientation 

(as in Step 3).  The actual ScanWarps method uses a hierarchical set of scans on short runs and 

follows the scan-then-san parallel scan pattern (as described in Section 6.4.2).  Individual runs are 

kept in registers to decrease shared memory accesses and to enable the Sklansky serial scan (as 

described in section 6.6.2).  The method proceeds in three sub-steps, as shown in Figure 9.13: 1) 

S1:SS‹4›, 2) S2:SS‹8›, 3) S1:SU‹4›. 

 

Figure 9.13 – ScanWarps:  The ScanWarps method hierarchically scans warp-counts into warp-starts in 3 steps.  

In step 4.1 (S1:SS‹4›), each thread loads and scans a sequential run of 4 warp-counts.  The resulting S1 run-sums are 

stored in the S2 array.  In step 4.2 (S2:SS‹8›), each active thread [0,8,16,24] loads and scans a sequential run of 8 S1 

run-sums.  The resulting upscaled 16-bit S2 run-sums are stored in the S3 array.  The exclusive S2 scan results are 

stored in the S2 array.  In step 4.3 (S1:SU‹4›), each thread accumulates an S2 prefix into its S1 run.  The exclusive 

S1 scan results are stored in the S1 array to generate the final warp-starts. 

Sub-step 4.1 (S1:SS‹4›):  Each thread in the warp loads a short sequential run of four counters 

(lane values) from the S1 array and then inclusively scans the run (in registers) using Sklansky’s 
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serial scan (see section 6.6.2).  The resulting run-sum (Sum[1-4]) is stored back into the S1 array 

(which is also the S2 array) for further hierarchical scanning in sub-step 4.2. 

Note:  Since the entire “S1 run” is currently stored in registers, it is safe to reuse S1’s memory for 

scanning the S2 array.  Reusing memory saves space. 

Sub-step 4.2 (S2:SS‹8›):  Four active threads [0,8,16,24] in the current thread warp each load a 

sequential run of eight S1 run-sums from the S1 array and then they inclusively scan the run (in 

registers) using Sklansky’s serial scan (see section 6.6.2).  The resulting S2 run-sums are then 

upscaled and stored into the S3 array.  Upscaling converts four 8-bit counters (stored in one 32-

bit lane) into four 16-bit counters (stored in two 32-bit lanes) to avoid 8-bit overflow.  The 

exclusive S2 scan results are then stored back into the S1 array to be used as prefixes in sub-step 

4.3.  Recall that an inclusive scanned run can be converted into an exclusive scanned run by 

reaching back one column and pre-pending the identity (𝕀).  The identity is zero (∅) for addition.  

Given an inclusive scanned run represented as [s1, s2, … , s8], the exclusive scanned run should 

be stored as [∅, s1, … , s7]. 

Sub-step 4.3 (S2:SS‹8›):  Each thread in the warp loads the correct S2 prefix from Sub-step 4.2 

and accumulates that prefix into its current inclusive S1 run (stored in registers).  The exclusive 

S1 scan results are then stored back into the S1 array as thread-starts for reuse in Step 6.2.  Figure 

9.13 shows the pseudo-code for all three steps (4.1-4.3). 
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Step 4.1: S1:SS‹4› 
All threads 

... 

Load S1 run 
S1_1 = S1[0] 
S1_2 = S1[1] 
S1_3 = S1[2] 
S1_4 = S1[3] 

Scan S1 run Inc. 
  // Stage 1 
S1_2 = S1_1+S1_2 
S1_4 = S1_3+S1_4 

  // Stage 2 
S1_3 = S1_2+S1_3 
S1_4 = S1_2+S1_4 

Store S1 run sum 
S1[3] = S1_4 

... 

Step 4.2: S2:SS‹8› 
4 active threads 

bActive = (0==tid%8) 
if (bActive) 

  Load S2 run 
  //S1_4 = S1[3] 
  S2_2 = S1[ 7] 
  S2_3 = S1[11] 
  ... 
  S2_8 = S1[31] 

  Scan S2 run Inc. 
    // Stage 1 
  S2_2 = S1_4+S2_2 
  S2_4 = S2_3+S2_4 
  S2_6 = S2_5+S2_6 
  S2_8 = S2_7+S2_8 

    // Stage 2 
  S2_3 = S2_2+S2_3 
  S2_4 = S2_2+S2_4 
  S2_7 = S2_6+S2_7 
  S2_8 = S2_6+S2_8 

Step 4.2: Cont… 
    // Stage 3 
  S2_5 = S2_4+S2_5 
  S2_6 = S2_4+S2_6 
  S2_7 = S2_4+S2_7 
  S2_8 = S2_4+S2_8 

  Upscale 
  S8_12=… // 8[1-2] 
  S8_34=… // 8[3-4] 

  Store S2 run sums 
  S3[…] = S8_12 
  S3[…] = S8_34 

  Store S2 Exclusive 
  S1[ 3] = 0 
  S1[ 7] = S1_4 
  S1[11] = S2_2 
  ... 
  S1[27] = S2_6 
  S1[31] = S2_7 
end (bActive) 

Step 4.3: S1:SU‹4› 
All threads 

Load S2 prefix 
pre = S1[3] 

Update S1 run 
S1_1 = pre+S1_1 
S1_2 = pre+S1_2 
S1_3 = pre+S1_3 

Store S1 Exclusive 
S1[0] = 0 
S1[1] = S1_1 
S1[2] = S1_2 
S1[3] = S1_3 

Figure 9.13:  ScanWarp code:  Step 4.1 (S1 scan) inclusively scans a run of 4 counters.  Step 4.2 (S2 scan) 

inclusively scans a run of 8 S1 run-sums then stores the exclusive scan results.  Step 4.3 (S1 update) adds the 
matching S2 prefix into each inclusive S1 run (from step 4.1) and then stores the exclusive scan results. 

Performance Analysis:  My ScanWarps code scans four data warps of warp-counts into four 

data warps of warp-starts using a single thread warp (32 threads).  This code also generates as 

output the warp-sums required for Step 5.0 (ScanBlocks) to generate block-starts.  The code 

was carefully written10 to take advantage of ILP via software pipelining for increased 

performance. 

The code was also purposefully written to overlap the S1 and S2 arrays in memory.  This 

overlap was enabled by storing both the S1 and S2 runs in registers.  My 32-element hierarchical 

scan provides five advantages: 

 It enables reordering the load and scan operations to increase performance via ILP. 

 It enables Sklansky’s serial scan (in registers) for scanning both the S1 and S2 runs. 

 It overlaps the S1 and S2 arrays in memory saving space (The S2 array size would 

otherwise require space equal to ¼ the size of the S1 array). 

 It saves one register pointer (by reusing the S1 array pointer instead of creating an S2 

pointer) and also saves the cost in instructions to setup the S2 pointer. 

                                                      
10  I tried many different ways to scan four data warps using a single thread warp.  This hierarchical method 

(S1:SS‹4›, SS‹8›, S3:SU‹4›) was the fastest (taking about 315 machine cycles).  Compare this with an 

interleaved WarpScan (in shared memory) (WS‹32›) over four data warps (taking about 503 machine 

cycles).  A modified interleaved WarpScan (in registers, .PTX shuffle) (WS‹32›) should be even faster 

(taking about 280 machine cycles) but only works on the GTX Titan or newer GPU architectures. 
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 It turns out by construction that the final S1 run-sum (S1_4) and the first entry in the S2 

run (S2_1) are one and the same value. This insight saves one load instruction and one 

register in the final code. 

My scan also has five disadvantages: 

 A branch test, bActive = ((0==(tid%8)), is required to determine the four threads that are 

active during Sub-step 4.2 (S2:SS‹8›).  The CUDA compiler generates three PTX 

instructions with RAW dependencies between each other, slowing ILP performance. 

 Loading the S1 and S2 runs sequentially can result in four-way bank conflicts on (25 out 

of 27) shared memory accesses for a loss of at least 100 machine cycles to bank 

conflicts.  Bank conflicts can be mitigated by using the “Pad & Rake” technique by 

turning on the (S1_pad=1) template parameter.  Unfortunately, as already explained, 

avoiding bank conflicts in step 4.0 causes unavoidable bank conflicts in step 3.0. 

 Storing both the S1 and S2 runs in registers increases register pressure.  At least thirteen 

registers are required: two for the 64-bit S1 run pointer, four for the S1 run, seven (=8-1) 

for the S2 run, and two for upscaling from 8-bit to 16-bit. 

 The CUDA LLVM compiler de-optimizes my scan code by reordering the loads and 

adding and using more registers than actually required.  The only work-around I have 

found so far is to carefully rewrite the code in .PTX assembly. Unfortunately, this makes 

the resulting code much less general. 

 There is a potential overflow issue on the final summation in the S2 scan (in Sub-step 

4.2).  How I deal with this is discussed next. 

Overflow Issue:  Recall that to save space and scan work, my code compressed sixteen 8-bit 

counters into four 32-bit lane counters.  This means that overflow is now a distinct possibility.  

Although unlikely, if nWork =8, then all eight digits for all 32 threads could get binned into the 

same counter, with a maximum count of 256 (=8∙32).  This maximum count would overflow an 

8-bit counter.  However, if nWork = [1-7] then overflow cannot happen (7*32 < 255). 

However, in step 5.0 (ScanBlocks), overflow becomes very likely.  Consequently, the 

code handles overflow by upscaling four 8-bit counters stored in one 32-bit lane counter into four 

16-bit counters stored as two 32-bit lane counters.  The upscaled pair of lane values (four 16-bit 

counters) are stored in the S3 array.  If overflow is not a possibility (nWork = [1-7]), then the 

code adds first and then upscales second before storing the final results.  If overflow is a 

possibility (nWork = 8), then the code upscales the 8-bit counters into 16-bit counters first and 
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then perform sthe final add before storing the final results in the S3 array.  The two different 

approaches to handle overflow by upscaling are shown in Figure 9.14. 

 

Figure 9.14 - Handle overflow by upscaling:  In the top graphic, overflow is not possible, so the code 

adds first, upscales second, and then stores the final 16-bit counters.  In the bottom graphic, overflow is 

possible, so the code upscales first, then adds second, and then stores the final 16-bit counters. 

STEP 5) ScanBlocks method: 

The ScanBlocks method exclusively scans warp-sums into block-starts using eight 

active threads.  Recall that there are ‹nWarps=[1-8]› thread warps as specified by the kernel 

template parameter.  During Step 4.0, ScanWarps scans the thread counts into thread starts and 

stores a complete histogram of sixteen upscaled warp-sums in the S3 array, where each warp-sum 

is the sum of all thread counts along each row of 32 threads.  For better performance, the code 

scanned using stored four 8-bit counters per 32-bit lane. To avoid potential overflow, the code 

upscaled from four 8-bit counters to four 16-bit counters just before storing the sums into the S3 

array.  Thus, the sixteen warp-sums are stored as eight rows of lane values with two 16-bit 

counters per 32-bit lane value.  Each individual thread warp generates its own per-warp count 

histogram stored as a column of eight lane values.  As a result, the size of the resulting S3 array is 
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8*nWarps([1-8]).  This S3 array will be scanned into a final per-block count histogram of sixteen 

block-sums, which will be stored in the S4 array. 

The S4 array layout (as shown in Figure 9.16) has a fixed array size with four different 

sub-arrays that are used for different purposes: 

 Row-starts:  The row-starts sub-array contains sixteen row-starts, which track the 

current start of each globally sorted array within the output. 

 Block-starts:  The block-starts array tracks the start of each locally sorted run within 

the current data block.  This array includes an extra hard-coded “zero” value that is used 

for grabbing exclusive results by reaching back one column.  Consequently, this array 

contains seventeen values (one zero + sixteen inclusively scanned block-starts). 

 Block-start-pairs:  The block-start-pairs array is used to scan the final block-sums into 

final block-starts.  The 16 block-sums are compressed into 8 lane counters (2 16-bit 

counters per lane).  The first four elements of this array are hard-coded to zero to 

eliminate branching during parallel WarpScan (See Section 6.6.3).  Consequently, this 

array contains 12 values (4 zeros + 8 compressed lane counters). 

 Block-sum-pairs:  The block-sum-pairs array contains eight elements, representing the 

compressed final block-sums for the entire data block.  This array is used in step 12.0 to 

update the row-starts to skip past the just sorted current data block. 

An additional unused three pad elements are added to the end of the S4 array. Consequently, 

the final array size is 56 elements, which is a multiple of eight.  The memory layout for the S3 

and S4 arrays are shown in Figure 9.15. 
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Figure 9.15 - ScanBlocks Memory Layout.  The S4 array contains 16 row-starts, 17 block-starts (+1 pad column 

for exclusive results), 12 compressed block-start-pairs (+4 pad columns for parallel WarpScan) and 8 compressed 

block-sum-pairs.  Finally, 3 unused pad columns are used to align the S4 array to an 8-element boundary, resulting 

in 56 (32-bit) elements in total.  The S3 array contains 16 warp-sums per thread warp, stored as 8 rows of 

compressed lane values (2 16-bit counters per lane) with one column of warp-sums/block-starts per thread warp 

(nWarps = [1-8]).  The S3 array is thus already aligned to an 8-element boundary with a minimum and maximum 

size of 8 (8*1) and 64 (8*8) elements, respectively. 

Because the overall scan is hierarchical, the warp-starts generated in the ScanWarps method 

are missing the correct prefixes for the thread-warps (and their counters). These missing prefixes 

represent the total sum of all counters, which would normally precede the current warp-starts (as 

in a serial sequential scan).  The ScanBlocks method provides these missing prefixes by 

scanning the warp-sums into block-starts.  The actual ScanWarps method, as shown in Figure 

9.16, proceeds in three main sub-steps: S3:SS‹nWarps›, S4:WS‹8›, and S3:SU‹8›. 
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Figure 9.16:  The ScanBlocks method scans warp-sums into warp-starts in three steps.  In step 5.1 

(S3:SS‹nWarps›), 8 active threads ([0-7]), each loads and scans a short sequential run of ‹nWarps=[1-8]› warp-

sums.  The resulting S3 run-sums are stored into both the S4 Block-Sum-Pairs and Block-Start-Pairs arrays.  In step 

5.2 (S4:WS‹8›), 8 active threads ([0-7]) cooperatively WarpScan the 16 block-sums into 16 block-starts.  The 

resulting inclusive pairs are decompressed and stored in the S4 block-starts array and then reloaded and 

recompressed as an exclusive scanned run.  In step 5.3 (S3:SU‹nWarps›), each thread adds an S4 prefix into its S3 

run.  The exclusive S3 scan results are stored in the S3 array to generate the final warp-starts. 

Sub-step 5.1 (S3:SS‹nWarps›):  Eight active threads [0-7] in the first warp each loads a short 

sequential run of ‹nWarps=[1-8]› warp-sums (lane values) from the S3 array and then inclusively 

scans the run in registers.  The resulting block-sum (Sum[1-nWarps]) is stored into both the S4 

block-sum-pairs array (for use in Step 12.0) and the S4 block-start-pairs array (to be scanned in 

sub-step 5.2). 

Sub-step 5.2 (S4:WS‹8›):  Eight active threads [0-7] in the first warp cooperate to WarpScan the 

elements stored in the S4 block-start-pairs array from block sums into block starts.  The parallel 

WarpScan method generates an inclusive run of block-starts, but exclusive results are needed in 

Step 5.3.  To unpack/repack the compressed pairs properly, the code uses a 5-step solution: 

Step 1) It decompresses the eight scanned lane values into sixteen block starts. 

Step 2) It stores the sixteen block starts in the S4 block-starts array. 

Step 3) It has each thread load an exclusive pair of two block-starts by reaching back one 

column in the S4 block-starts array. 
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Step 4) It compresses the sixteen exclusive pairs into eight lane values. 

Step 5) It stores the compressed lane values back into the S4 block-start-pairs array for 

use as prefixes in Sub-step 5.3. 

Sub-step 5.3 (S3:SU‹8›):  Eight active threads [0-7] in the first warp each load the correct prefix 

from sub-step 5.3 (in the S4 block-start-pairs array) and adds that prefix into its current S3 run 

(stored in registers).  The exclusive S3 scan results are then stored back into the S3 array for use 

as warp-start prefixes in Sub-step 6.3. 

Issues: There are two main problems with this step: Barrier synchronization and Idle threads 

Barrier Issue:  All warp-sums for each thread warp must be generated before this step 

can safely scan those warp-sums into block-starts.  One easy solution is to insert a barrier 

(syncthreads) before and after this step.  These barriers are necessary11 for correct 

parallel behavior between multiple warps within a thread block. 

Idle Threads Issue:  Only eight threads are active in the first warp during the entire 

execution of the ScanBlocks method.  This means the other 24 threads in the first 

thread warp do no useful work during this time and the other [2-8] thread warps are 

inactive until all thread warps reach the second barrier. 

STEP 6) AccumulateLocalStarts method: 

The AccumulateLocalStarts method generates the local starts needed to correctly sort 

each key (and value).  These local starts allow each thread to safely store all its assigned keys into 

a local keys array (in shared memory) without colliding with other parallel threads concurrently 

storing data.  Recall that the local starts are built by accumulating: warp-starts, thread-starts, and 

key-starts, as depicted in Figure 9.17. 

                                                      
11  Note: a thread block containing only a single warp does not need barriers for correct parallel behavior, as 

all threads within a thread warp move in lock-step through the code. 
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Figure 9.17:  Local Start = Warp-Start + Thread-Start + Key-Start.  The original start for each key was split and generated 

hierarchically in Steps 3, 4, and 5.  The local start is the accumulation of the other 3 starts.  Key-starts (Lower-Left panel) are 

extracted from a compressed “regStarts” register using shift & mask operations.  Thread-starts (Upper-Right panel) are extracted 

from the S1 array using the thread id and digit to identify the row ([0-3]) and column ([0-31]), respectively.  Warp-Starts (Upper-

left panel) are extracted from the S3 array using the thread id and digit to identify the row [0-7] and column [0-nWarps-1].  One 

example (Lower-Right panel) of how one run (digit = 9) is divide into warp-starts, thread-starts, and the final start is shown.  The 

example assumes 4 thread warps per block, threadId = 72, and the 7th key in a run of 8 keys. 

 

 Warp-starts:  The warp-starts (Figure 9.17, upper-left panel, stored in the S3 array 

and built in Step 5.3) provide the missing prefix sums from preceding warps within 
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 Thread-starts:  The thread-starts (Figure 9.17, upper-right panel, stored in the S1 

array and built in Step 4.3) provide the missing prefix sums from preceding threads 

within the same warp. 

 Key-starts:  The key-starts (Figure 9.17, lower-left panel, stored in the compressed 

regStarts register and built in Step 3) provide the correct prefix-sums for the 

‹nWork=[1-8]› sequential keys assigned to each thread (in case 2 or more keys share 

the same digit value). 

The local start for each key is the sum of the corresponding warp-start, thread-start, and key-

start for the unique ‹warp [0-7], thread [0-31], key [0-7]› triplet.   

In the lower-right panel of Figure 9.18, I show how a local start is built for a specific triplet 

for a specific data block, with ‹warp, thread, key› = ‹2,8,7›.  Note that the actual key has a chosen 

digit value of 9 in this example.  The local data block stores 1,024 keys.  The block-start shows 

the starting offset (630) of the entire 9th digit value’s run. The warp-start (+665) shows the 

starting offset (665) for the 2nd warps sub-run within the 9th digit run.  The thread-start (+8) shows 

the starting offset (673 = 665+8) for the threads sub-run within the warps run. This run belongs to 

the 72nd thread in the thread block (which is also the 8th thread within the 2nd warp).  Finally, since 

the 72nd  thread had two keys that collided on the 9th digit value, the key-start (+1) shifts the 7th 

key by one to account for that prior key in the same work run, resulting in the final local-start 

value of 674 (= 665+8+1). 

This method proceeds in three main sub-steps: Extract Key-starts, Accumulate Thread-Starts, 

Accumulate Warp-Starts: 

Sub-step 6.1) Extract Key-Starts:  Each thread extracts ‹nWork=[1-8]› key-starts from the 

compressed “regStarts” register, which was created in Step 3.0.  This is done using simple bit-

logic “shift & mask.” 

Sub-step 6.2) Accumulate Thread-Starts:  For each of i= [1-8] keys assigned to the thread, the 

thread extracts the correct thread-start from the S1 array.  The ith thread-start is then accumulated 

into the ith key-start.  Since the thread-start is a prefix of the key-start, the addition is done as 

keyStart = threadStart + keyStart.  The memory layout is shown in Figure 9.18 (upper-right 
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panel), with four compressed lanes in four rows and 32 columns (one per thread in the warp).  

Each 32-bit lane value contains four 8-bit thread starts.  So, additional work (shift & mask) must 

be done to extract the correct 8-bit start from each lane.  This method basically works in six steps: 

Step 1) It extracts the ith 4-bit digit from the compressed regDigits register. 

Step 2) It computes the lane offset of the correct lane value in the S1 array (warpCol = 

tid%32;  laneRow = digit/4;  laneOff = (laneRow*S1_rowSize)+warpCol).  Note: S1_rowSize 

is either {32|33} depending on whether the “Pad and Rake” technique is turned on using the 

S1_pad template parameter. 

Step 3) It computes the shift and mask values (for [0-3] = digit%4) required to extract the 

correct 8-bit start from the 32-bit lane value.Step 4) Load the lane value from the S1 array 

(using the lane offset from step 2). 

Step 5) It cxtracts the thread-start from the lane value (using the shift and mask from step 3). 

Step 6) It accumulates the thread-start into the key-start (keyStart = threadstart + keyStart). 

The instructions for extracting S1 thread-starts are grouped and reordered using software 

pipelining in batches of [2-4] starts at a time to increase ILP.  As already discussed in Step 3.0, 

this sub-step can cause bank conflicts when using the “Pad & Rake” technique, which can result 

in an unpredictable number of bank conflicts, typically costing ~3.4 extra machine cycles per 

shared memory access. 

Sub-step 6.3) Accumulate Warp-Starts:  For each of the i = [1-8] keys assigned to the thread, 

the thread extracts the correct warp-start from the S3 array.  The S3 memory layout is shown in 

figure 9.18 (upper-left panel), with eight compressed lanes in eight rows and ‹nWarp=[1-8]› 

columns (one per warp in the thread-block).  Each 32-bit lane value contains two 16-bit thread 

starts.  So, additional work (shift & mask) must be done to extract the correct 16-bit start from 

each lane.  This method basically follows the same six main steps as sub-step 6.2 with some 

minor differences to account for the different memory layout.  There is a minor issue with bank 

conflicts in this sub-step; however, because of the small size of the S3 array ([8-64] elements), 

there will be at most 2-way bank conflicts on each access. 
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STEP 7) ShuffleKeys (Local Sort) method: 

 The ShuffleKeys method distributes keys from the current data block into sorted runs 

into a local array kept in shared memory.  The implementation of this method is straightforward. 

The [1-8] original keys from Step 1.0 (LoadKeys) are stored directly into the local array at the 

positions indicated by the corresponding [1-8] local starts from Step 6.  Since there are sixteen 

possible values for each digit [0-15] extracted from each key, the sorted keys (or values) ends up 

sorted into sixteen contiguous runs.  The relative order of input keys (within the current data 

block) with the same digit value [0-15] is preserved in the final order of each sorted digit run.  

Thus, this local sort is stable.  This stability is a direct result of the code carefully preserving 

sequential sequences during loads and scans. 

There are two main issues associated with sorting keys (and values):  bank conflicts and 

efficient use of coalescence. 

Bank Conflict Issue:  Shuffling keys into shared memory is unpredictable as it is unknown 

ahead of time which keys will end up in which memory banks.  As a result, there will be an 

unpredictable number of bank conflicts within each data warp being sorted.  This is a classic 

“balls into bins” problem: assume a uniform random distribution of keys across memory banks., 

The problem is to find the expected maximum keys per bank (or in other words the maximum 

height of any bin).  My own simulations on 100 thousand runs (32 balls into 32 bins) show the 

average bin height (expected number of bank conflicts) is about four (4-way bank conflicts on 

average), which would cost an extra three machine cycles per memory access on average.  All the 

workaround solutions I have tried require many instructions and therefore decrease performance 

further.  Therefore, in this case the best solution is to just live with the resulting bank conflicts. 

Coalesced Memory Efficiency Issue:  This local sort is clearly optional, so why do it?  There is 

enough information to build global starts to distribute keys into sorted runs immediately available 

after step 6.0.  So, why not just output each key to its final sorted position in the output array?  

The answer (as demonstrated by Dr. Ha’s shuffle and map technique) is coherence.  Coherence 
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impacts output performance.  As Figure 9.18 illustrates, unsorted keys have low coherence and 

require many uncoalesced stores to write into multiple output runs; sorted keys have high 

coherence and require fewer coalesced stores to write into the same runs.  

 

Figure 9:18 - ShuffleKeys (Local Sort):  1024 keys (32 rows × 32 columns) represented by their digit values [0-

15] as 16 different colors.  The left grid represents 1024 unsorted input keys assuming a uniform random 

distribution.  The right grid shows the same keys locally sorted into 16 digit runs.  Sorting the left grid (unsorted) 

directly into global memory requires 441 stores total (512 maximum in the worst case).  However, the right grid 

(locally sorted) requires at most 47 stores (32 warps + 15 transitions) to sort into global memory.  

To help measure how coherence impacts coalescence, I created a metric called Coalesced 

I/O efficiency, which is a percentage measure of the ratio of the average data elements transferred 

versus the maximum possible elements transferred (32) given a coherent run of data containing n 

elements.  “Coherent” in this case means that all the data within this run is being written to the 

same output array.  One easy way to achieve 100% coalesced I/O efficiency is to warp-align data 

transfers and to access data sequentially within a thread warp (meaning that the kth thread within a 

warp accesses the kth data offset within the data warp, k ∈ [0-31]).  This is exactly how Step 1.0 

loads keys from global memory into registers. 
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If the initial data start is not warp-aligned but is random or unpredictable, then the length 

of the data run helps determine the coalesced I/O efficiency.  Typically, longer sequences of 

elements have larger aggregate increases in I/O throughput.  Coalesced I/O efficiency ranges 

from a minimum of 3.125% (only one data element transferred per I/O operation) up to a 

maximum of 100.0% (32 data elements transferred per I/O operation).  I/O sequences that are 

short or unaligned can only partially take advantage of coalescence.  On the other hand, I/O 

sequences that are long and warp-aligned can fully take advantage of coalescence. 

The following table (shown in Table 9.8) shows what happens to coalesced I/O efficiency 

as the data block size (DBS), alternately known as keys per block, is increased from 32 to 2048 in 

powers of two. 

DBS 32 64 128 256 512 1024 2048 ∞ 

Avg. Run Length 2 4 8 16 32 64 128 n/a 

Max. Stores 16 17 19 23 31 47 79 n/a 

Avg. Keys per Store 2.00 3.76 6.74 11.13 16.52 21.79 25.92 32 

Coalesced I/O 

Efficiency 
6.25% 11.75% 21.00% 34.78 51.63% 68.09% 81.00% 100.00% 

Table 9.8:  Coalesced I/O efficiency as the DBS increases in size from 32 to 2048 in powers of two. 

For this specific example of 4-bit radix sort, the maximum number of stores (Max. 

Stores) can be computed from the DBS as (DBS/32)+15, since there is at least one store required 

per data warp (32) and a maximum of 15 transitions (16 data runs – 1) across the entire sorted 

data block.  The Average Keys per Store is computed by dividing the DBS by the maximum 

stores.  Finally, the coalesced I/O efficiency is computed by dividing the Average Keys per Store 

by the maximum coalesced transfer rate (32 keys per store).  As can be seen from the table, 

coalesced output becomes more efficient as the average run length increases, which in turn 

depends on the DBS.  Therefore, throughput performance can be improved by increasing the 

work per thread and warps per block via the ‹nWork, nWarps› template parameters. 
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STEP 8) MapKeys (Global Sort) method: 

The MapKeys method distributes keys into sorted runs in the output array in global 

memory.  This method’s implementation is straightforward and takes 4-5 sub-steps: 

Sub-step 1)  Each thread loads a short sequential run of ‹nWork=[1-8]› keys from the 

sorted local array of keys in shared memory (from Step 7). 

Sub-step 2) The chosen digits [0-7] are extracted from the keys using the same 

transform, shift, and mask process as described in Step 2 (ExtractDigits). 

Sub-step 3) A local index (LI[0-7]) is computed from the keys.  The local index is 

computed as LI[0-7] = (tid*nWork)+[0-7], where [0-7] is the current key [1-8]-1 being 

processed. 

Sub-step 4) For each key, a global index (GI) is computed.  Optionally, a range check 

may also need to be applied to each global index to avoid writing keys that are out of 

bounds.  When range checks are not required, sub-steps 3 and 4 are combined into a 

single sub-step.  The global index is computed as GI[0-7] = LI[0-7] – 

blockStarts[digits[0-7]] + rowStarts[digits[0-7]].  The blockStarts array indicates the start 

of each of the sixteen sorted runs in the local array.  The rowStarts array indicates the 

start of each of the sixteen sorted runs in the global array for the current thread block. 

Sub-step 5) Each thread outputs its run of keys [1-8] to global memory at the specified 

global index (GI[0-7]). 

Within this method, instructions are software pipelined and reordered in batches of [2-4] 

work-items at a time to increase ILP performance.  After this method completes, the entire 

current fixed-size data block of keys has been distributed to their unique sorted locations as 

sixteen digit runs in global memory. 

If the radix sort is sorting ‹key, value› pairs instead of ‹key› singletons, then optional steps 

9.0-11.0 also need to be invoked to sort the fixed-size data block of values corresponding to the 

just sorted block of keys.  Otherwise, the algorithm can safely skip to Step 12.0. 

 There is are two main issues: bank conflicts and range checks. 

Bank Conflict Issue:  I did not add code to “Pad & Rake” when loading the runs to mitigate 

bank conflicts since this would needlessly complicate the computation of the correct local 

index (as well as needlessly complicate storing the shuffled keys in Step 7.0).  As a result, 

runs of length nWork=[2,4,6,8] will experience [2-way, 4-way, 2-way, and 8-way] bank 



303 

 

conflicts respectively and will add [1, 3, 1, 7] extra cycles on each shared memory access 

when loading the run.  My current non-solution is just to live with any resulting bank 

conflicts. 

However, as discussed in section 6.7.2, for runs of length [2,4, or 8], CUDA’s low-level 

SASS compiler can optimize a sequence of two or four aligned sequential 32-bit load 

instructions into a single Vector2 (64-bit) or Vector4 (128-bit) load instruction.  If this 

optimization is applied, then the number of load instructions and bank conflicts are both 

reduced by a factor of 2× or 4× since instructions that do not get executed do not cause bank 

conflicts. 

Range Checks Issue:  Since this MapKeys step stores sorted keys to the output array, four 

versions of this method are required to support the [‹FIRST?› ‹MIDDLE*› ‹LAST?›] range check 

pattern as part of my Row DASk: 

MapKeys_RC_BOTH does [start, stop] range checks, which is typically only needed for a 

input range smaller than a single fixed-size data block (n ‹ DBS). 

MapKeys_RC_START does [start, …) range checks, which is typically only needed if the 

start offset is not warp aligned to a warp boundary [0, 32, 64, …]. 

MapKeys_RC_STOP does (…, stop] range checks which is only needed by the very last 

partially covered data block in the data set. 

MapKeys_RC_NONE does *NO* range checks, the vast majority of data blocks should 

end up calling the ‘NONE’ version, which is another reason to use my Row DASk. 

STEP 9) LoadValues method: 

 The optional LoadValues method takes as input the inValues parameter and produces as 

output a short run of ‹nWork=[1-8]› sequential values stored in registers.  This method is the same 

as the LoadKeys method from Step 1, except it works on values instead of keys. 

STEP 10) ShuffleValues (Local Sort) method: 

 The optional ShuffleValues method distributes values from the current data block into 

sorted runs into a local array kept in shared memory.  This method is almost the same as the 
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ShuffleKeys method from Step 7, except it works on values instead of keys and reuses the 

local starts already computed in Step 6. 

STEP 11) MapValues (Global Sort) method: 

The optional MapValues method distributes values into sorted runs in the output array 

kept in global memory.  This method is almost the same as the MapKeys method from Step 8, 

except it works on values instead of keys, and it also reuses the global output offsets already 

computed in Step 8. 

 

STEP 12) UpdateRowStarts method: 

The UpdateRowStarts method accumulates d = 16 current block-sums [0-15] into the 

current row-starts [0-15] using sixteen active threads.  After distributing all keys (and values) 

within the current fixed-size data block into their respective sorted runs in global memory, this 

method moves the current row-starts (global run positions) just past the distributed local data runs 

to get ready for sorting the next data block along the current data row assigned to this thread 

block. 

9.4 Experiment Results 

For my GPU Radix Sort, I focus in this section on experiments exploring the trade-offs 

for  ILP and TLP to find the best performance results.  All tests were performed on a GTX 580 

(Fermi) and a GTX Titan (Kepler) using the host environment in Table 9.9. 

CPU Hardware:  CPU = i7-4770K@3.50 GHz, RAM=12 GB 

GPU Hardware: 

GTX 580   (16 SMs,       512 SPs, 1.5 GB RAM, 192.4 GB/s peak throughput) 

GTX Titan (14 SMXs, 2,688 SPs, 6.0 GB RAM, 288.4 GB/s peak throughput) 

Software: GPU API = CUDA 5.5, C++, IDE = VS 2010, OS = Windows 7, SP1, Pointers = 64-bit 

Data:  Input size, n = [210 – 227], in increasing powers of two 

Table 9.9:  Radix Sort Experiment Environment 
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For these experiments, I measured performance using data throughput across the entire 

GPU radix sort. In other words, how many ‹key, value› pairs can my algorithm sort per second.  

Data throughput was measured in mega-pairs per second (Mpairs/s) by counting the number of 

pairs to be sorted (n, in millions) and dividing by the average run time for the entire radix sort to 

complete in seconds.  My experiments found the best data throughput by varying the TLP and 

ILP parameters (similar to Section 6.8.1). 

9.4.1 Data Throughput 

To find the optimal data throughput, I varied both TLP and ILP using two template 

parameters, ‹nWarps›, ‹nWork›, respectively.  For example, my baseline pair ‹nWarps=1, 

nWork=1› uses a single thread warp per thread block and sorts a single ‹key, value› pair per 

thread.  I measured data throughput for increasing n (as powers of two) for both nWarps and 

nWork in the range {1..8} resulting in 64 (=8*8) possibilities.  Tables 9.10 And 9.11 show the 

maximum data throughput for all 64 cases for the GTX 580 and the GTX Titan, respectively. 

GTX 

580 

nWork = [1-8] 

1 2 3 4 5 6 7 8 

n
W

a
rp

s 
=

 [
1

-8
] 

1 119.07 249.06 274.72 371.26 401.65 407.98 475.46 452.24 

2 207.95 419.51 451.64 596.04 597.75 648.21 661.97 717.63 

3 260.80 499.40 475.27 638.06 618.00 597.88 615.29 675.42 

4 253.20 489.02 499.11 564.30 574.42 618.15 639.34 666.62 

5 164.75 475.98 450.68 526.99 513.80 547.83 566.93 623.60 

6 237.06 427.36 430.48 569.12 545.91 489.82 507.17 560.36 

7 217.85 440.49 372.64 494.13 478.96 516.81 527.33 585.38 

8 186.05 373.60 388.09 509.72 488.57 521.47 539.36 588.19 

Table 9.10:  Maximum Data throughput on the GTX 580 for each of 64 experiments.  Data 

throughput is measured in millions of pairs per second (Mpairs/sec). 
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GTX 

Titan 

nWork = [1-8] 

1 2 3 4 5 6 7 8 

n
W

a
rp

s 
=

 [
1

-8
] 

1 186.28 318.43 357.07 444.94 427.02 452.97 475.46 489.76 

2 311.28 521.35 599.50 690.68 672.38 707.42 727.32 742.07 

3 361.29 435.26 468.89 774.77 742.07 768.04 774.61 799.95 

4 378.04 452.31 690.67 795.61 763.38 811.04 816.93 835.34 

5 375.99 451.45 468.74 750.61 735.52 738.38 749.25 766.26 

6 367.21 432.03 480.62 776.51 732.82 730.98 743.97 767.88 

7 361.19 413.66 622.15 727.36 707.05 710.47 712.71 744.02 

8 357.29 587.34 595.09 702.68 796.31 755.37 763.20 795.74 

Table 9.11:  Maximum Data throughput on the GTX Titan for each of 64 experiments.  Data 

throughput is measured in millions of pairs per second (Mpairs/sec). 

For both tables, each of the 64 ‹nWork, nWarps› pairs represents the maximum data 

throughput observed from a set of performance measurements that varies the input size of n = 

{28-227} in increasing powers of two.  The first entry ‹1,1› represents baseline performance.  The 

first row captures ILP performance by varying nWork in the range {1-8} and leaving nWarps 

fixed at {1}.  The first column captures TLP performance by varying nWarps in the range {1-8} 

and leaving nWork fixed at {1}.  The rest of the pairs represent the combined performance effect 

of both ILP and TLP in varying amounts. 

Comparing the first columns and first rows, which capture TLP and ILP experiments, it is 

clear that ILP has a bigger impact than TLP.  This makes sense, since most of the actual work is 

done in the GPU_DistributeKeys kernel and most of the work in that kernel occurs in locally 

counting and scanning keys (to prepare for a shuffle and map on each data block).  Recall that 

scanning occurs hierarchically across four stages (S1:SS‹4›, S2:SS‹4›, S3:SS‹nWarps›, and 

S4:WS‹8›).  Only in the first stage (S1) are all threads in the thread block participating.  In stage 2 

(S2), only four threads per thread warp are active, and in the last two stages (S3 and S4) only 

eight threads per thread block are active.  So, the impact of TLP is lessened since only a few 

threads are doing useful work in these inner stages, while the rest of the threads are idle.  On the 



307 

 

other hand, ILP techniques can be applied across all twelve steps of the BlockDistribute 

method. 

Best Throughput Experiments:  I ran experiments for all 64 combinations of 

‹nWarps, nWork›, each in the range {1–8}, to find the best overall data throughputs for Radix 

Sort were  717.63 for ‹2, 8› on the GTX 580 and 835.34 for ‹3, 8› on the GTX Titan. As discussed 

in Chapter 6, predicting winners on the GPU is difficult because of various constraints on 

occupancy caused by register and shared memory usage; based on my ILP and TLP test results, I 

would have predicted ‹3, 7› and ‹4, 8›, respectively.  Figure 9.19 plots the data throughput results 

for four representative pairs for both the GTX 580 and GTX Titan. 

GTX 580 Full RadixSort 

Data Throughput (Mpairs/sec) vs. Input Size (n).

 

GTX Titan Full RadixSort 
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Figure 9.19:  Full Radix Sort data throughput results (y-axis: millions of sorted pairs per second (Mpairs/s)) as a 

function of input size (x-axis; log-scale) on the GTX 580 {Fermi architecture} (top panel) and GTX Titan {Kepler 

architecture} (bottom panel) GPUs. 

 

In both graphs, I chose the four pairs as the baseline: best ILP performance, best TLP 

performance, and best overall performance. 

 

9.4.2 Total Cycles 

In this section, I gather Total Cycle (TC) results from the NVidia Compute Visual 

Profiler (on CUDA 5.5) on the GTX Titan for n = 227 for both the GPU_CountKeys and the 

GPU_DistributeKeys kernels.  The results are summarized in Tables 9.12 and 9.13 below. 

Type 

Pair 

Issued 

II 

Issued 

IPC 

T. Cycles 

(II/IPC) 

II/IPC 

Ratios 
Grid WI Eff. 

(None) 
WI Eff  

(≥ 1) 
Occupancy 

Baseline‹1,1› 83M 0.59 140M 1.00 224 90.61% 9.39% 13/64 

TLP‹4,1› 91M 1.80 51M 2.76 168 69.84% 30.16% 40/64 

ILP‹1,8› 63M 0.55 114M 1.24 224 92.80% 7.20% 8/64 

Best‹4,8› 65M 1.38 47M 2.98 112 76.86% 23.14% 32/64 

Table 9.12:  Total Cycles (TC) performance from instructions issued (II) and average instructions 

retired per cycle (IPC) for the GPU_CountKeys kernel. 
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Type 

Pair 

Issued 

II 

Issued 

IPC 

T. 

Cycles 

(II/IPC) 

II/IPC 

Ratios 

Thput 

(KV 

MP/s) 

Coalesced 

I/O 

efficiency 

Bank 

Conflicts 
Occupancy 

Baseline‹1,1› 1,189M 0.76 1,565M 1.00 186.28 6.75% 104M 16/64 

TLP‹4,1› 766M 1.62 473M 3.31 378.04 18.15% 25M 48/64 

ILP‹1,8› 399M 1.34 298M 5.25 489.76 26.81% 29M 16/64 

Best‹4,8› 396M 1.71 231M 6.77 835.34 41.49% 38M 32/64 

Table 9.13:  Total Cycles (TC) performance from instructions issued (II) and average instructions retired 

per cycle (IPC) for the GPU_DistributeKeys kernel. 

These two tables (9.12 and 9.13) measure the total cycles (TC) to complete a single 

Counting Sort pass within my Radix Sort for both the GPU_CountKeys and 

GPU_DistributeKeys kernels12.  Recall that the total cycles can be computed from instructions 

issued (II) and average instructions retired per cycle (IPC) as TC = II/IPC (as discussed in 

Sections 3.1 and 6.8.2).  Some notes about these tables are summarized below. 

⦁ The instructions issued (II), total cycles (TC), and bank conflict columns are measured 

in millions of instructions, cycles, or bank conflicts, respectively. 

⦁ The throughput column is measured in millions of sorted ‹key,value› pairs per second 

(MP/s).  Note:  These throughput results are for the entire radix sort (8 passes of counting 

sort on all three kernels) and thus shouldn’t be compared directly to the total cycle 

performance results for each individual kernel. 

⦁ The II/IPC ratios column shows the relative speed-up of the other performance pairs 

(TLP, ILP, and Best) versus the baseline pair. 

⦁ The Grid column shows how many thread blocks are scheduled per kernel, this value is 

the same for both kernels.  NOTE:  These values are deliberately divisible by 14, which is 

the number of physical SMX cores on a GTX Titan. 

⦁ The Warp Issue Efficiency columns (WI Eff.) shows how often there were no active 

thread warps that could be scheduled onto the GPU SP cores (none) versus how often 

there were one or more (≥ 1) active thread warps that could be scheduled.  These columns 

are not shown for the K3_DistributeKeys kernel to save space but the results are 

similar. 

⦁ The Occupancy columns show how many active warps were scheduled to run 

concurrently vs. the maximum of 64 thread warps that could be scheduled on a GTX 

Titan. 

                                                      
12 My K3_ScanRuns kernel was also profiled but the results are not included as this kernel takes a trivial 

amount of time to complete compared to the other two kernels.  The main interesting insight from the 

profile results for this kernel is that it is inefficient at taking advantage of GPU parallelism.  
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⦁ The instructions retired per cycle (IPC) column has a maximum value of 5.0 on the 

GTX Titan.  This value is impacted by both ILP and TLP. 

⦁ The bank conflicts column shows how many total bank conflicts are generated 

accessing shared memory.  Note:  Bank conflicts is not shown for the GPU_CountKeys 

kernel as they are measured in the hundreds not millions and do not significantly impact 

performance. 

There are six significant insights that I see in the total cycles data. 

⦁ First, There appears to be a strong inverse correlation between total cycles and overall 

throughput.  When total cycles is low, throughput is high (and vice versa).  The 

comparison needs to be done carefully as throughput is aggregated across all 3 kernels. 

⦁ Second, in the GPU_DistributeKeys kernel, a high number of instruction replays 

caused by bank conflicts significantly increases total cycles and thus decreases 

throughput performance.  Despite this, the Best‹4, 8› row still manages to have the best 

overall performance despite having 33% more bank conflicts than the ILP‹4, 1› row due 

to increased TLP parallelism. 

⦁ Third, the combination of both low instructions issued (II) and high instructions retired 

per cycle (IPC) results in the overall throughput winners.  For instance in the 

GPU_DistributeKeys kernel, the TLP‹4, 1› row has great instructions retired per cycle 

(IPC = 1.62), but it still performs poorly because it issues so many instructions (II = 766 

million).  On the other hand, the ILP‹1, 8› row has a small number of instructions issued 

(II = 399 million), but it also performs poorly because it has the smaller instructions 

retired per cycle (IPC = 1.34).  The Best‹4, 8› row has the best overall performance 

because it issues the fewest instructions (II= 396 million) and also retires the most 

instructions per cycle (IPC = 1.71). 

⦁ Fourth, Larger data blocks result in longer coherent runs on output which results in 

increased Coalesced I/O efficiency, fewer replays, and thus higher throughput.  The data 

block size is not shown to save table space but for the four rows [baseline, TLP, ILP, and 

Best] is [32, 128, 256, and 1024] respectively.  In the baseline case, each sorted data warp 

only successfully outputs about 6.75% of a data warp, which means about 14.8 stores are 

required on average to store each sorted data warp.  Whereas in the Best case, each sorted 

successfully outputs about 41.50% of a data warp, which only requires about 2.4 stores 

on average per sorted data warp. 

⦁ Fifth, Both ILP and TLP help increase the number of active thread warps for the 

scheduler (GPU Hardware or CUDA software) to choose between to keep the SP cores 

busy doing useful work.  However, even in the best case on the GPU_CountKeys kernel, 

we are only keeping the cores busy about 25% of the time, meaning that 75% of the time 

the scheduler must stall instead of issue a useful instruction to the SP cores.  Similarly on 

the GPU_DistributeKeys kernel the Warp Issue Efficiency (One or more) percentages are 
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is [16.12, 34.55, 24.97, and 32.46] respectively.  So, even in the best case we are only 

keeping the cores busy ~35% of the time.  This means there is an opportunity for better 

performance by rewriting code to do a better job avoiding stalls. 

⦁ Sixth and finally,  The GPU_DistributeKeys kernel easily takes the most time.  For 

example in the Best case, The GPU_CountKeys kernel costs about 47 million total 

cycles, while the GPU_DistributeKeys kernel costs 231 million cycles.  Thus to improve 

overall Radix Sort performance, the primary focus should be on speeding up the 

GPU_DistributeKeys kernel.   

The formula for total cycles (TC = II/IPC) tells me that there are two ways to attempt to 

improve performance by decreasing TC and thus improving throughput: 

 Decrease instructions issued (II) by trying different algorithms or simplifying code 

 Increase instructions retired, by increasing ILP via software pipelining and increasing 

TLP via higher occupancy, to consume as many instructions per cycle (IPC) as 

possible 

To me, the main lesson is to keep parallel processing cores (SMs and SPs) and memory 

controllers as busy as possible.  TLP keeps the processing cores busy by providing lots of active 

thread warps for the SM on-core scheduler to switch to when the currently executing warp stalls.  

ILP keeps the processing cores busy by providing lots of independent instructions for the 

scheduler to harvest to keep the instruction pipeline as full as possible.  Fortunately, both 

approaches are orthogonal.  Therefore, both techniques (TLP and ILP) can be used to hide 

pipeline and I/O stalls and keep the processing cores as busy as possible.  The low percentages in 

the warp efficiency column tells me there is still lots of headroom for further improvement on my 

current performance results. 

9.5 Conclusion 

In summary, My Radix sort is a hybrid CPU/GPU sort.  At the top level, the CPU iterates 

over multiple counting-sort passes (one per 4-digit radix) in LSD order to execute a full radix 

sort.  Each counting-sort pass is implemented on the GPU using three kernels (GPU_CountKeys, 

GPU_ScanRuns, and GPU_DistributeKeys), which mirrors the same pattern as my Scan 
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primitive (section 6.5).  Both the GPU_CountKeys and GPU_DistributeKeys kernels are built 

using my ROW DASk. 

The key idea is to partition keys into hierarchically sorted runs (at the thread-block level, 

at the thread-warp level, and at the individual thread level) with one sorted run per digit value.  

This partitioning allows each block, warp, and thread in the hierarchy to safely distribute their 

assigned ‹key, value› pairs into their final sorted positions without colliding with other blocks, 

warps, and threads concurrently distributing at the same time. 

With the GPU_CountKeys kernel, each thread block marches along its assigned data 

row, data block by data block, counting all the keys along each row into a per-row count 

histogram containing (d = 16) row-counts.  With the GPU_ScanRuns kernel, a single thread 

block scans all the row-counts into row-starts.  This action not only partitions the output range 

[start, stop] into sixteen sorted runs (one per digit value) but also sub-partitions each sorted run 

into r smaller per-row runs (one per thread block).  The resulting scanned row-starts allow each 

thread block to safely distribute its assigned data into its own individual block-runs.  Finally, with 

the GPU_DistributeKeys kernel, each thread-block marches along its assigned data row, data 

block by data block, distributing ‹key, value› pairs into sorted runs using the complex twelve-step 

BlockDistribute method on each data block in turn.  This BlockDistribute method counts 

keys, hierarchically scans counts into starts, and then distributes keys (and values) into sorted 

runs. 

To make this all work, I had to deal with several issues that hindered performance: 

coalescence, bank conflicts, grid size, register pressure, and shared memory pressure 

 Coalescence:  To respect coalescence for better global memory throughput, I needed 

two different solutions: one for input and one for output.  For input, I transferred data 

between global memory and registers using the warp by warp access pattern.  I then 

converted data into a sequential access pattern using shared memory in two more 
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steps.  For output, I shuffled (locally sorted) the data in shared memory first to 

increase run coherence.  This extra shuffle step reduced the number of store 

operations required to distribute the local sorted runs into their final sorted positions.  

However, the impact of this local sort, as measured by my “coalesced I/O efficiency” 

metric, depends on the average local run length depends on the data block size (DBS) 

and the number of digit values (d=24), with runLength = DBS/d.  In general, I found 

that the longer the coherent run being output, the more efficient coalescence is and 

the fewer stores operations are required to distribute the run into global memory. 

 Bank Conflicts:  To avoid bank conflicts when accessing shared memory (which can 

cause serialized replays), I tried using odd length runs, utilizing the “Pad & Rake” 

technique on power of two length runs; aligning Vector4’s so that CUDA can 

decrease bank conflicts by a factor of 2× or 4×; and, finally, just living with a low 

number of serialized replays caused by bank conflicts. 

 Grid Size:  My Row DASk requires small grid sizes, which makes my solution 

sensitive to picking a good work load (as described in section 6.7.3), which evenly 

divides the thread blocks in the work load across the SM cores on each GPU card.  

Picking a good work load requires that the programmer understands constraints on 

occupancy and picks the initial grid size accordingly. 

 Register Pressure:  My current code multi-scans sixteen sets of counts into sixteen 

sets of starts.  I compressed four 8-bit counters per 32-bit lane to help decrease this 

scan pressure somewhat.  However, compressed data requires decompression to 

access. Decompression increases the number of instructions and registers in other 

ways.  In addition, I used software pipelining in batches of [2,3,4 or 8] throughout my 

code to increase ILP performance.  Both multi-scan and ILP techniques increase 

register pressure.  My current code takes anywhere between 38 and 63 (+10) registers 

as nWork varies between [1-8], where the (+10) refers to additional spill registers 
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(using global memory to store extra registers which negatively impacts performance).  

This register pressure negatively impacts occupancy reducing the number of thread-

blocks that can run concurrently. 

 Shared Memory Pressure:  I have written many different versions of Radix Sort 

seeking to improve performance.  Almost all of my earlier solutions used 2-3× as 

much shared memory as my current solution.  This caused my shared memory usage 

to constrain occupancy (more than register pressure).  I made three main changes to 

decrease shared memory usage.  First, I transitioned from a block-share pattern to a 

warp-share pattern.  In the block-share pattern, I treated memory arrays as accessible 

by every thread in the block all the time.  In the warp-share pattern, I divided 

memory into individual per-warp sub-buffers, where each warp can work on its 

assigned memory sub-buffer independently.  This allows memory use to grow 

dynamically with the nWarps parameter as it varies between [1-8].  Second, I figured 

out how to overlap the S1 and S2 scan arrays during my scan which reduced the total 

size of my scan arrays by 25%.  Third, and most importantly, I carefully reused the 

same memory for different purposes at different times in my algorithms. 

By increasing TLP, increasing ILP, using efficient I/O access patterns, mitigating bank 

conflicts, and reducing memory space, I improved Radix Sort performance over my baseline 

performance.  The best performing throughput for my Radix Sort primitive was up to 6.1× and 

4.4× faster than the baselines on the GTX 580 and GTX Titan, respectively. 
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9.6 Future Directions 

 I estimate that the maximum peak rates13 of sorting 32-bit ‹key, values› pairs on the GTX 

580 and GTX Titan are 1205 million and 1802 million pairs per second, respectively.  My GPU 

radix sort implementations achieved 59.5% and 46.3% of peak data throughput on the GTX 580 

and GTX Titan, respectively. 

These performance results are solid but fall well short of the maximum throughput rates 

possible on these architectures.  In other words, my Radix Sort method still has limitations that 

decrease performance.  My method has high register pressure, which constrains occupancy.  It 

performs many compression/decompression operations to save registers but which increases the 

total number of instructions.  Perhaps a different approach may lead to greater performance gains.  

I have four ideas for future investigation: specializing code, rewriting code to take full advantage 

of the Vector4 optimization, decreasing passes using a larger radix, and writing a specialized 

WarpScan using the PTX Shuffle command. 

Specialize Code:  My current code was written in a generalized way to support experiments on 

‹nWarps, nWork› pairs, both in the range [1-8].  My experiments show that that the best 

performance for the GTX 580 and GTX Titan occurs on the pairs ‹2,8› and ‹4,8›, respectively.  

Rewriting hard-coded specific versions of code for these specific pairs may allow various short-

cuts to be taken, which should result in lower register use and fewer instructions required, 

unlocking more peak performance. 

Shared Memory access using Vector4:  My code could be optimized to use Vector4 access into 

shared memory as much as possible.  This replaces four sequential shared memory accesses 

(loads/stores) with a single Vector4 (128-bits) instruction instead and therefore reduces memory 

                                                      
13 Given a peak I/O throughput of 192.4 and 288.4 GB/s for the GTX 580 and 288.4 respectively.  A 32-bit 

key (and value) each take up 4 bytes each.  32-bit keys also requires a total of 8 sorting passes (8=32/4) for 

a 4-bit radix.  Assuming 5 I/Os per pass to sort (1 read to count + 1 read/write per key to distribute + 1 

read/write per value to distribute).  Then I compute the maximum sorting rate for the GTX 580 as (192.4/(4 

bytes * 8 passes * 5 I/Os per pass), which results in 1205 million pairs per second.  A similar calculation 

for the GTX Titan (288.4/(4*8*5) results in 1802 million pairs per second. 
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access instructions and bank conflicts by a factor of 4×, wherever this optimization is applied..  

To leverage this optimization, shared memory accesses must be aligned to Vector4 boundaries 

(128-bits).  This optimization means that the “Pad and Rake” technique cannot be used to 

mitigate bank conflicts.  Note:  Based on my own painful experiences with poor I/O throughput, 

the Vector4 optimization should not be applied when accessing global memory. 

Reduce the number of Counting Sort Passes:  In order to sort 32-bit keys, my code currently 

needs to sort in eight passes (=32/4).  CPU Radix Sort code typically uses 8-bit radices in order to 

fully sort data in only four passes (=32/8), greatly reducing the total number of I/Os required.  (I 

wrote two completely different versions of GPU Radix Sort that used 8-bit radices to sort. 

Unfortunately, due to high pressure on registers and shared memory, both versions were 

compute-bound, taking 24-32 complex steps to distribute and my best performance was around 

500 million pairs per second). 

Use PTX “Shuffle” Command:  Recent GPU architectures (CC ≥ 3.5) like the GTX Titan (CC ≥ 

3.5) support the new “SHUFFLE (SHFL)” PTX command, which allows warp-scans across all 

threads of a thread-warp.  My ScanWarps step could be rewritten to scan four data warps at once 

taking advantage of the SHUFFLE command for potentially better performance. 

 

9.7 Lessons Learned 

Future directions includes ideas about how to improve radix sort performance.  However, 

there are many practical lessons I learned from my experiments on radix sort using my Row 

DASk.  This section summarizes many of these lessons. 

RadixSort Lessons: 

 To support sequential processing 

o Use my Row DASk to support sequential processing across thread blocks, which 

is required by the “Distribute” step in Counting Sort. 

o Group n keys into m fixed-size data blocks, m = ⌈𝑛/𝐷𝐵𝑆⌉ 
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o Partition the m data blocks across r rows, where r is picked by the programmer 

based on the expected work load, resulting in c columns, c = ⌈𝑚/𝑟⌉. 

o Partition fixed-size data blocks into short sequential per-thread runs to support 

sequential processing within thread blocks (across warps, across threads). 

Note:  Hierarchal operations within each “distributed” data block should avoid 

reordering count, scan, and distribute operations within data blocks, and thread 

runs as the commutative property cannot be safely assumed. 

 To increase performance via ILP 

o Work on multiple [2-8] work items per thread.  This is similar to loop unrolling 

on CPUs.  Note:  This approach increases register pressure, since k work-items 

require k× as many registers. 

o Use software pipelining to regroup and reorder instructions from multiple work 

items.  Note:  Watch out for code that cannot be software pipelined safely (like 

incrementing counters within a histogram by multiple work items). 

 To increase performance via SIMD 

o Launch thread-blocks that are a multiple of the WarpSize [32, 64, …, 1024], 

since the GPU SIMD hardware is designed to efficiently support warp-level 

processing. 

o Launch [2-4] thread warps per thread block, since the hardware supports multi-

issue dispatch. 

 To increase performance via TLP 

o Launch as many thread blocks as possible. 

o Pick the number of thread blocks, rows (r), to be a multiple of the work load (see 

section 6.7.3) to evenly divide thread blocks across SM cores. 

o Maximize occupancy given current constraints on occupancy (hardware limits, 

register pressure, and shared memory pressure). 

o Decrease occupancy constraints (reduce register & shared memory pressure) 

 Rewrite code to decrease registers. 

 Software pipeline in batches of [2-4] work items to decrease registers. 

 Redesign memory layouts to decrease shared memory use 

 Divide memory into per-warp and per-block buffers. 

 Reuse memory (same buffer for many purposes). 

 Same per-warp memory buffer for count, scan, and distribute. 

 Reuse the S1 scan array for both the S1 & S2 scans. 

 Compress data in registers and shared memory.  Note:  This increases 

code complexity in order to compress/decompress required values. 

 In my radix sort, register pressure is the main constraint on occupancy. 

 To increase I/O throughput via Coalescence 

o Load input data using my warp-by-warp BASk (see section 5.1.1.) in warp-

aligned runs of 32 data elements for 100% coalesced I/O efficiency. 

o Convert between a warp-by-warp view of global memory and a sequential view 

of data required for a stable counting sort using a three-step conversion method 

(see section 6.7.1). 
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o Store output data in long runs of coherent data.  The longer the data run, the 

higher the “coalesced I/O efficiency” on output. 

 Mitigate bank conflicts in shared memory to avoid lost cycles due to serialized replays 

o Use odd-numbered run lengths [1,3,5,7]. 

o Use the “Pad & Rake” technique for run lengths that are powers of 2 [2,4,8]. 

o Take advantage of the Vector4 optimization to reduce bank conflicts by 4×. 

o Live with the resulting bank conflicts (run length = [6]). 

Note: Some bank conflicts are unavoidable (unpredictable access patterns) 

Note:  Whack-a-mole (when multi-step methods have different views of the same 

memory in different steps then mitigating bank conflicts in one step may cause 

them to pop up in another step.)  

 To increase Scan performance 

o Use a hierarchical multi-level nested multi-scan to scan an entire data block (For 

instance: S1:SS‹4›, S2:SS‹8›, S3:SS‹nWarps›, S4:WS‹16›).  NOTE: this results in 

idle threads and warps at higher levels of the hierarchy. 

o Use the scan-then-fan pattern (see section 6.4), and preserve short runs in registers 

between stages to decrease the total summations and shared memory accesses 

required. 

o Serially scan short runs in registers using Sklansky’s method (Section 6.6.2). 

o Cooperatively scan across threads using the WarpScan method (Section 6.6.3). 

o Scan inclusive then store exclusive.  Exclusive scans can be built from inclusive 

scans by reaching back one column. 

o Compress data, so multiple counts can be scanned using bit-level parallelism.  

Note:  Overflow can result requiring code that upscales data before summing. 

 To increase performance via the Total Cycles (TC = II/IPC) metric 

o Minimize the number of instructions issued (II). 

 Eliminate unnecessary instructions 

 Rewrite code to simplify complex calculations 

o Maximize the average instructions retired per cycle (IPC). 

 Software pipeline multiple work items to increase ILP. 

 Rewrite code to decrease instruction dependencies and hardware stalls. 

 Launch many concurrent thread blocks (and warps) to increase TLP. 

 Mitigate constraints on occupancy to increase TLP. 

 Miscellaneous Lessons 

o To coordinate data communication across thread warps, use barrier 

synchronization (syncthreads).  Note: This is the only mutual exclusion 

primitive needed for correct parallel behavior in my GPU radix sort. 

o For better performance, as part of kernel setup, pre-compute some view indices 

or pointers (warp-view and sequential-view) used in the BlockCount and 

BlockDistribute methods.  This amortizes the higher cost of “Raking.”  

Note: storing these pre-computed indices or pointers increases register pressure. 

o Since the Row DASk requires four sets of very similar code to properly support 

amortized range checking, watch out for copy and paste errors in the various 
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BlockDistribute methods.  If fixing a bug in one version, remember to check 

and fix the other versions as well. 

o For GPU Counting Sort, the GPU_CountKeys and GPU_DistributeKeys 

kernels both must use the same data rows for correct scan results.  My solution is 

to have both kernels use the same Row DASk, the same CTA layout, and the 

same DBS. 

o For GPU Counting Sort:  For fewer global I/Os (3× instead of 4×) at the kernel 

level, follow the reduce-then-scan pattern, and avoid the scan-then-fan pattern 

(see section 6.4).  Using the Row DASk on both the GPU_CountKeys and 

GPU_DistributeKeys kernels naturally supports this pattern. 

o For CPU radix sort, swap between input and output pointers (ping-pong) to avoid 

unnecessary memory copies after each Counting Sort pass. 
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10.0 Conclusion 

 Programmers have many data structures and algorithms to choose from when they solve a 

real-world problem.  Experienced programmers select their algorithm by balancing between 

competing demands and constraints of the problem.  Great programmers also understand the 

underlying hardware and select the algorithm and implementation to take advantage of beneficial 

hardware features while avoiding hardware constraints.  I have seen great programmers achieve 

ten-fold increases in performance over a straight-forward implementations of an algorithm. 

 The many competing constraints make GPU parallel programming hard, even for the 

most experienced programmers.  They typically begin with a good single-threaded serial 

algorithm and convert it into a massively multi-threaded parallel algorithm that is both correct 

and robust.  GPU programming is made more difficult, since programmers must decide how to 

map millions of data elements onto tens of thousands of threads, represented by a complex two-

level parallel hierarchy called a cooperative thread array (CTA).  Increasing the burden yet 

further, programmers need to understand the complex GPU memory model to maximize data and 

I/O throughput.  Picking the right memory access pattern to enable peak throughput can be 

difficult, but, if done right, it can result in a massive parallel performance increase. 

To increase parallel performance, programmers must understand the GPU’s model of 

data-level parallelism (SIMD), pipelining and instruction-level parallelism (ILP), and multi-

threading and thread-level parallelism (TLP).  For high-performance GPU implementations, 

programmers need to understand the resource trade-offs imposed by GPU architecture--with its 

multi-level memory hierarchy, the two-level cooperative thread array (CTA) parallel hierarchy, 

and other GPU hardware issues such as coalescence, bank conflicts, and occupancy constraints.  

GPU programmers must also be able to conduct experiments to find the best performing set of 
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parameters on a particular GPU device.  In other words, a beginning GPU programmer must 

master a daunting set of skills to become great. 

 To help facilitate this mastery, I have developed memory layout and access frameworks 

that provide GPU programmers with a starting point for developing their own specific parallel 

implementations to solve general problems on the GPU.  I call these frameworks data access 

skeletons (DASks) and block access skeletons (BASks).  These frameworks provide a strong 

starting points for converting single-threaded serial algorithms into high-performance parallel 

implementations on GPU machines. 

10.1: DASks and BASks 

As discussed in Section 2.2.1 and Section 3.3.1, modern GPU architectures use a 2-level 

parallel hierarchy: a set of MIMD SM cores, each containing a set of SIMD SP cores.  Parallel 

warp-threading also has a 2-level hierarchy: thread blocks within a grid, threads within each 

thread block. Memory has a configurable hierarchy as well.  In addition to global memory, 

programmers can choose how to allocate shared memory and registers, subject to hardware 

constraints.  Threads and memory interact in complex ways in these hierarchies.  To reduce the 

complexity that programmers must consider, I produced three data access skeletons (DASks) and 

two block access skeletons (BASks), as discussed in Chapter 5.  These skeletal frameworks are 

higher level abstractions for memory access patterns that map well onto the GPU.  The DASks 

partition data arrays (input and output) into fixed-size data blocks then load-balance these data 

blocks across thread blocks using different layout patterns.  The BASks are generalized memory 

access patterns for efficient coalesced I/O throughput at the thread-block level. 

The skeletal frameworks are next parameterized to support experiments on the best 

combinations of instruction and thread-level parallelism as well as to create the best balance 

between shared memory and registers.  This dissertation has demonstrated such experiments in 

several case studies.  As shown in my case studies, each DASk provides the general skeleton for 
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parallel processing over data blocks, and I, as the GPU programmer, then provide a “body” 

method to solve a specific problem (such as Copy, Reduce, Radix Sort) on a fixed-size data 

block.  GPU programmers can then take my existing “body” sections and replace them with code 

to solve their own problems with high confidence since the underlying framework code forming 

the skeletons has already been tested, works correctly, and achieves high throughput. 

I report many implementation details for the case studies of the previous chapters. 

Therefore, in this conclusion, I highlight two broad insights that might have gotten lost among 

those details: partitioning and fixed-size data blocks. 

Partitioning: 

 As discussed in Chapter 5, partitioning1 is where my DASks group n data elements into m 

fixed size data blocks.  These m data blocks are then load-balanced across p thread blocks using 

different memory access patterns.  My DASks provide the “skeleton” for accessing data blocks 

according to a 1D or 2D layout.  GPU programmers then provide the “body” methods for 

processing individual data elements within each data block.  Unfortunately, correct use of 

partitioning requires that all data is known a priori before executing the GPU algorithm and that 

the input set remains static during the course of executing the GPU algorithm.  Consequently, 

algorithms on unknown, streaming, or dynamically varying data sets will require a different 

approach.  There are five important benefits to partitioning: parallel processing, data coherence, 

sequential ordering, data independence, and deterministic algorithms. 

Parallel Processing:  By design, my DASks are built to efficiently support the 2-level 

cooperative thread array (CTA) hierarchy (thread blocks within a grid and threads within a thread 

block).  This enables programmers to take advantage of the tens of thousands of threads on each 

GPU for massive parallel performance. 

                                                      
1  What I describe as “partitioning” is also known as “data decomposition” or “geometric decomposition”. 
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Data Coherence:  By grouping data into fixed size data blocks, data elements are kept localized 

within each data block, resulting in high coherence.  Loading warp-aligned input elements within 

each data block via the Block-by-Block or Warp-by-Warp BASk can take full advantage of 

coalescence for 100% coalesced I/O efficiency and peak I/O throughput.  When possible (as in 

Scan from Chapter 6), outputting coherent data blocks of results allows peak I/O throughput as 

well.  When not possible (as in Radix Sort from Chapter 9), outputting longer runs of coherent 

results increases coalesced I/O efficiency and allows for a solid fraction of peak I/O throughput. 

Sequential Ordering:  For algorithms (such as Scan and Radix Sort) that require data to be 

processed in a sequential order for correct behavior, my Row DASk supports sequential ordering 

at the data block level.  Within each data block, GPU programmers can load and convert k data 

warps per thread warp into per-thread sequential runs of k elements using my 3-step conversion 

process, as described in section 6.7.1. 

Data Independence:  With one exception2, all my case study algorithms are data independent.  

In other words, for a given fixed input size (n), changing the values of data within the input data 

set has no noticeable impact on performance. 

Deterministic Algorithms:  All of the GPU primitives implemented in my case studies are 

deterministic algorithms.  They are lock-free and avoid all atomic operations.  For correct parallel 

coordination, the only mutual exclusion primitive actually used is barrier synchronization3 across 

all threads within a thread block (as discussed in Section 2.2.3).  As a result, there are no parallel 

communication slow-downs4 due to waiting on locks or atomics, which can serialize parallel 

performance.  Also, there are no concurrency side effects, such as incorrect results, deadlocks, or 

                                                      
2  The one exception is my nearest neighbor kd-tree case study from Chapter 7, this primitive unfortunately 

is data dependent.  The location of query data points within the search tree causes different amounts of 

branch divergence within each thread warp, which causes overall performance to fluctuate as data elements 

vary within the data set. 
3  My barrier synchronization uses the CUDA syncthreads method. 
4 Barriers are not a complete panacea, as barriers still can result in idle cycles by finished thread warps 

which must wait on other thread warps to complete. 
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starvation, which often require complex code to carefully resolve.  This is a direct result of my 

decision to base my DASks on partitioning data across the 2-level CTA hierarchy.  Once all 

threads have identified the unique locations required to load its inputs and store its outputs, each 

thread can then proceed at full speed without needing to coordinate with the other tens of 

thousands of parallel threads each processing their own data at the same time. 

Fixed-Size Data Blocks: 

Fixed-size data blocks are a fundamental unit of work for efficient GPU data parallel 

programming.  By construction both my BASks and DASks first organize data into short fixed-

size runs, each processed by a single thread.  These runs are then organized into fixed-size data 

blocks, each processed in parallel by a fixed-size thread block of multiple thread warps.  This 

organization allows all levels of the GPU parallel hierarchy to avoid idle time:  The SP cores 

process a warp of threads at a time, the SM warp schedulers have many warps to switch between 

on stalls for I/O or memory access, and the individual threads have enough computation between 

memory accesses to make progress. 

The block sizes are determined by three parameters: WarpSize, nWarps, and nWork.  At 

the bottom level of the GPU parallel hierarchy, the SP cores process a warp of WarpSize (=32) 

threads to take full advantage of SIMD.  My DASks enable programmers to boost TLP on the 

SMs (and hide memory latency) by choosing the number of warps in a small range, ‹nWarps=[1-

8]› to get the fixed thread block size, TBS = nWarps*WarpSize.  My DASks also enable 

programmers to increase ILP by choosing the amount of work per thread in a small range, 

‹nWork=[1-8]›, to get the fixed data block size, DBS = nWork*TBS.  Consequently, the data block 

size varies as a function of the ‹nWarps, nWork› template parameters chosen at compile time.  

Generic programming techniques (C++ templates, inlining, etc.) allow the resulting compiled 
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code to adapt to the chosen template pair ‹nWarps, nWork›.  This ‹nWarps, nWork› template pair5 

enables experiments on parallel performance (ILP and TLP) to find the best performing DBS for 

a given problem, as shown in the case studies for Copy in Chapter 5, Reduce/Scan in Chapter 6, 

and Radix Sort in Chapter 9. 

10.1.1 Block Access Skeletons (BASks): 

To improve I/O performance within each fixed-size data block, I produced the Block-By-

Block and Warp-By-Warp block-access skeletons (BASks) (shown in Figure 10.1) to transfer data 

between global memory and registers. 

 
 

Figure 10.1:  The Block by Block and Warp by Warp BASk layouts respectively. 

As discussed in Section 5.1.1 and shown in Figure 10.1 (left panel), the Block-By-Block 

access pattern strides through the data block cooperatively, using all threads in the thread block.  

In other words, each thread within the block accesses its own unique data element within the 

current group of TBS elements and then strides (stride = TBS) to the next group of TBS data 

elements within the data block to access.  As also discussed in Section 5.1.1 and shown in Figure 

10.1 (right panel), the Warp-by-Warp access pattern assigns each thread warp its own unique 

                                                      
5  WarpSize is also specified as a C++ template parameter to allow for future changes but for all current 

generations of modern GPU architectures I have worked on (Tesla, Fermi, Kepler, Maxwell) it has 

remained fixed at 32 threads per warp. 
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chunk of data within the data block, and then each thread warp strides through its assigned data 

chunk one data warp at a time (stride = WarpSize = 32). 

Although the Block-By-Block pattern is simple, easy to code, and easy to reason about, I 

prefer the more complex Warp-by-Warp for three main reasons: 

 Coherence: The underlying access pattern is slightly more coherent (localized), 

which can result in a modest increase in I/O throughput (1-2% faster) despite the 

extra instructions required for setup and indexing. 

 Warp independence: Each individual thread warp can proceed to work on its 

assigned chunk of data independent of any other warp in the thread block. 

 Less synchronization: The Warp-by-Warp pattern avoids extra Barrier instructions 

that would be required for correct parallel results in the Block-by-Block pattern. 

The main take-away for programmers is to use fixed-size data blocks that are multiples of 

the desired work and warps for a given problem and to use a Warp-by-Warp access pattern into 

global memory when processing each data block. 

10.1.2 Data-Access Skeletons (DASks): 

 To take advantage of the top layer of the CTA parallel hierarchy, I produced three data 

access skeletons (DASks):  Block, Column, and Row DASks.  All three of these DASks partition 

by first grouping n data elements into m fixed-size data blocks and then load-balancing the m data 

blocks across p thread blocks.  As discussed in Section 6.7.3, for better performance, 

programmers should be careful to choose the initial grid size so that it balances work loads of 

concurrently running thread blocks evenly across the all the SM (or SMX) cores on a GPU card. 
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Block DASk: 

 As discussed in Section 5.1, my Block DASk (shown in Figure 10.2) follows a simple 1D 

layout pattern, where m data blocks are mapped onto m thread blocks. 

 

Figure 10.2:  The Block DASk layout. 

My Block DASk (shown in Figure 10.2) enhances the simple Copy I/O kernel (from 

Chapter 4) with C++ template parameters, multiple work items per thread, amortized range 

checking, amortized pointer indexing, and manual loop unrolling.  The Block DASk follows a 1D 

layout pattern on input (and output) arrays by grouping n data elements into m fixed size data 

blocks and then assigning one thread block per data block to process data.  The last fixed-size 

data block in the input array may only be partially full, requiring range checks to avoid out-of-

range memory accesses.  Using multiple work items per thread allows programmers to amortize 

the costs of range-checks and pointer setup across all ‹nWork=[1-16]› work items in each data 

block, which decreases the total number of range checks required by (1/nWork).  

Experiments reported in Section 5.1.6 suggest that for simple kernels, like Copy, TLP has 

a much more pronounced impact on increasing throughput than ILP.  TLP experiments for thread 
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block sizes (TBS) in the range [32-1024] reveal the significant effect of occupancy constraints on 

the number of concurrently running thread blocks.  The best performing thread blocks were found 

at TBS=[128, 256, 512, and 1024] with TBS=128 (four warps). These had the best overall 

performance.  Experiments on ILP reveal that software pipelining has greater potential to increase 

throughput than simple loop unrolling, which is not unexpected.  My Block DASk is 

recommended for simple transformation kernels (such as Fill, Copy, Gather, and Scatter) on 

linear arrays, since the setup costs are low. 

Column DASk: 

 My Column DASk (shown in Figure 10.3) follows a 2D layout where m thread blocks are 

load balanced across c fixed columns into r rows. 

 

Figure 10.3:  The Column DASk layout. 

As discussed in Section 5.3, the Column DASk uses a two dimensional data access 

pattern.  The input data (n) is grouped into m fixed-size data blocks (DBS) with the data blocks 

being laid out on a 2D grid, with m = ⌈ /𝐷 𝑆⌉.  The number of columns (C = grid.width) is fixed 

and chosen ahead of time by the GPU programmer.  The number of rows (R = data blocks per 

column) varies with m (and thus n) in order to fully cover all input data, with R = ⌈ /𝐶⌉.  The last 

row may be partially full, requiring range checks to prevent out-of-range data access.  The full 
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rows require no range checks.  The Column DASk maps one thread block onto each data column, 

with each thread block being responsible for processing all data blocks along its assigned data 

column.  All thread blocks cooperatively stride through the entire data set, one row at a time.  The 

Column DASk is conceptually similar to the Block-by-Block DASk but works across the entire 

data set, rather than just on one fixed-size data block. 

 The column DASk has three main benefits and five main limitations. 

Benefits: 

 It supports proper range checking of all data [start, stop] while only requiring range 

checks on the last row of data; the cost of doing the range check on the last row of data is 

amortized across the other full data rows within the column. 

 It supports an efficient access pattern into memory using a 2D grid layout. 

 Is works well when processing data where the underlying data order doesn’t matter 

(example: Reduce, Histogram). 

 

Limitations: 

 GPU programmers need to write two slightly different versions of the same code to 

handle the three different range check cases {in-range, out-of-range, overlap}.  Different 

versions of code can lead to cut and paste errors if programmers are not careful when 

fixing bugs. 

 Register pressure is increased due to range check variables required by this DASk. 

 Extra branches are required to handle loops and range checks.  In particular, the while 

loop used to loop over the full rows of data is called once per data block.  Fortunately, my 

DASk implementation is written to avoid divergent branching. 

 Performance is sensitive to the initial grid size.  If the grid size chosen by the 

programmer is not an even multiple of the actual workLoad (#SMs * #Blocks), then 

performance suffers as a few SM cores process the extra rows while the rest of the SM 

cores sit idle. 

 Coherence is reduced since the cooperative stride across all data blocks results in each 

new data block being a full data row apart from the previous data block.  This hinders 

caching by the memory controllers when moving row to row. 
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Row DASk: 

 My Row DASk (shown in Figure 10.4) follows a 2D layout where m thread blocks are 

load balanced across r fixed rows into c columns. 

 

Figure 10.4:  The Row DASk layout. 

 As discussed in Section 5.4, the Row DASk is quite similar to the Column DASk.  It also 

uses a two dimensional grid layout.  However, the rows and columns are reversed.  For the Row 

DASk, the original input data (n) is grouped into m fixed-size data blocks (DBS) with the data 

blocks being laid out on a 2D grid, with m = ⌈ /𝐷 𝑆⌉.  The number of rows (R= grid.height) is 

chosen ahead of time by GPU programmers as a static fixed-size constant.  The number of 

columns (C = data blocks per row) varies with m (and thus n) in order to fully cover all input 

data, with C = ⌈ /𝑅⌉.  However, for better load balancing of work across thread blocks, my 

actual computation of the number of columns per row is more complex (see Section 5.6.3).  The 

Row DASk maps one thread block onto each data row, with each thread block being responsible 

for processing all data blocks along its assigned row. 

 The orientation change induces several other differences between the Row and Column 

DASk in alignment, range checks, and load balancing.  To better support coalescence, as 

discussed in Section 5.6.1,  my Row DASk aligns the input data to a data warp boundary before 

marching down the first row (the Block and Column DASks do not warp align data; so I/O 
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performance may suffer if the user passes in unaligned data arrays).  Supporting warp-aligned 

data implies that the first data warp in the first data block in the first row may be partially empty, 

which requires careful range checks. Similarly, the last data block in the last data row may also be 

partially empty, which also requires careful range checks.  To help mitigate underutilization, I use 

a complex load-balancing scheme, as discussed in Section 5.6.3, to distribute the data blocks 

approximately evenly across the thread blocks representing each data row.  With a difference of 

at most one data block in length between any two given rows.  I bias the load balancing against 

the thread blocks (rows) containing the first data block and last data block as they may require 

more expensive range checks when processing those data blocks. 

As discussed in Section 5.6.2, I also introduced the ‹FIRST?› ‹MIDDLE*› ‹LAST?› 

range check pattern for use with the Row DASk.  I use regular expression notation to indicate 

how many data blocks are involved in each group (? = zero or one data blocks, * means zero or 

more data blocks).  This pattern removes range checks out of the large excluded middle and 

pushes required range checks into only the first and last data blocks.  There is also a special case 

‹BOTH› for when the first and last data blocks are one and the same.  This approach amortizes 

the required per-element range checks in the first and last data blocks across the entire data set of 

m data blocks. 

 ‹FIRST?›:  As a result of warp-aligning the data array to a warp boundary, the first data 

block may require partial [start, …) range checks on the first data warp. 

 ‹LAST?›:  As a result of using fixed size data blocks, the very last data block may be 

only partially full and thus require partial (…, stop] range checks on all data warps. 

 ‹MIDDLE*›:  The data blocks in the vast excluded middle do not require range checks. 

 ‹BOTH?›:  For very small data sets, it is possible that the ‹FIRST? › and ‹LAST?› data 

blocks are one and the same.  This case requires full [start, stop] range checks. 

My Row DASk has five main benefits and five limitations. 

Benefits: 

 To better support coalescence, this DASk warp-aligns data access (input/output) to a 

warp boundary [0, 32, 64, …]. 
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 For better SM core processor utilization, this DASk load balances work as evenly as 

possible across thread blocks (rows) while also biasing against the first and last range 

checked blocks. 

 For better performance, this DASk amortizes range checks using the ‹FIRST?› 

‹MIDDLE*› ‹LAST?› pattern, which pushes range checks into the first and last data 

blocks and allows any required range checks to be amortized across the entire data row. 

 This DASk can support algorithms that require ordered data for correct results by 

supporting a sequential access pattern as each thread block marches along its data row, 

block by block.  However, GPU programmers still need to ensure sequential access 

within each data block for correct overall behavior. 

 For better throughput, this DASk supports an efficient access pattern into memory, using 

a 2D grid layout. 

Disadvantages: 

 High setup costs (warp alignment, load balancing, range checks, …) need to be amortized 

across R data blocks along each row. 

 GPU programmers need to write four slightly different versions of the same code to 

handle the four different range check cases {Both, First, Middle, Last}.  These different 

versions of code can lead to cut and paste errors if programmers are not careful when 

fixing bugs. 

 This DASk can increase register pressure due to setup costs, load balancing and range 

check variables used by this DASk. 

 Extra branches are needed to handle the four range check cases {BOTH, FIRST, 

MIDDLE, LAST}.  In particular, the while loop used for the ‹MIDDLE*› case gets called 

once per data block.  Fortunately, my DASk implementation was written to avoid 

divergent branching. 

 Performance is sensitive to the initial grid size.  If the grid size chosen by the 

programmer is not an even multiple of the actual workLoad (= nSMs × nConBlocks), then 

performance suffers as some SMs process a few extra data blocks along the row while the 

rest of the SMs idle. 

DASk Summary: 

All three DASks support high performance parallel programming.  The Copy case study in 

Chapter 4 and 5 showcases the Block DASk.  The Histogram case study in Chapter 8 showcases 

the Column DASk.  The Reduce/Scan case studies in Chapter 6 and the Radix Sort case study in 

Chapter 9 showcases the Row DASk. 

Taking advantage of both instruction-level parallelism and thread-level parallelism on GPUs 

is essential to unlocking high performance.  All three DASks are written to take two template 

parameters ‹nWarps, nWork› which allow experiments on ILP and TLP.  This approach allows 
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programmers to find the optimal balance of ILP and TLP for best performance for a given 

problem. 

 

10.2 Summary and Lessons Learned: 

 GPUs unlock massive amounts of parallelism for programmers to take advantage of.  

Writing parallel code that is correct and high performing is quite difficult.  My three data access 

skeletons help solve many of the issues that GPU programmers must grapple with and eases the 

burden of implementing their own GPU programs.  These issues include mapping threads onto 

data using the 2-level CTA hierarchy, coalescence, bank conflicts, and multi-issue.  To achieve 

high performance, GPU programmers also need to take advantage of ILP and TLP techniques.  

My various case studies show useful GPU primitives implemented on top of my three DASks.  

These primitives achieve high performance results using varying amounts of ILP and TLP. 
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Lessons Learned: 

Summarized here are some of the key lessons on high performance GPU programming 

that my dissertation has presented. 

 Use my three data access skeletons (Block, Column, or Row) as starting points to speed-

up the writing of your own GPU kernels. 

o The 1D Block DASk is a good choice for simple kernels such as Map operations 

(such as Fill, Copy, Scatter, Gather, …) due to its simplicity and coherent access 

pattern. 

o The 2D Column DASk is a good choice for complex operations on unordered 

data (such as Histogram, Reduce, …). 

o The 2D Row DASk is a good choice for complex operations on ordered data 

(such as Scan, Radix Sort, …). 

 Partition data across the 2-level CTA hierarchy 

o Partitioning can be implemented in a deterministic lock-free manner provided 

that the data is known a priori and remains static during the algorithm. 

o Programmers should partition data into m fixed-size data blocks 

 TBS = nWarps*WarpSize 

 DBS = nWork*TBS 

 m = ⌈ /𝐷 𝑆⌉ 

o Data blocks represent the bottom level of the CTA hierarchy (threads within a 

thread block). 

 BASks (Block-by-Block and Warp-by-Warp) are a good starting point 

for loading inputs and storing outputs for processing each data block 

 Programmers still need to design data layout and write kernel code that 

solves their specific problem. 

o DASks handle the top level of the CTA hierarchy (thread blocks within a grid). 

 Block DASk – one thread block per data block (GridSize = m) 

 1D layout 

 Last block may be partially full requiring range checks 

 Column DASk – distribute m data blocks evenly across C columns 

 2D layout 

 C = GridSize.y (picked by programmer), C ≤ 1000. 

 R = ⌈ /𝐶⌉ = number of blocks per column 

 Each of C thread blocks processes R data blocks along its 

assigned data column 

 Last row may be partially full requiring range checks. 

 Row DAsk – distribute m data blocks evenly across R rows 

 2D layout 

 R = GridSize.x (picked by programmer), R ≤ 1000. 

 C = ⌈ /𝑅⌉ = number of blocks per row 
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 Each of R thread blocks processes C data blocks along its 

assigned data row. 

 First and last data blocks may be partially full requiring range 

checks. 

 Use ILP and TLP techniques to increase parallel performance 

o Unlock pipelined performance via ILP by working on ‹nWork=[1-8]› work items 

per thread.  Regroup and reorder instructions using loop unrolling and software 

pipelining to mitigate instruction dependencies and reduce pipeline stalls. 

o Unlock multi-threaded parallel performance by launching ‹nWarps=[1-8]› thread 

warps per thread block. 

o Perform experiments on ‹nWarps, nWork› pairs to find the optimal performance. 

o The optimal balance between ILP and TLP varies across problems, 

implementations, and platforms due to varying constraints on occupancy. 

 Mitigate constraints on occupancy to increase parallel performance. 

o Redesign memory layouts to reduce shared memory usage to increase occupancy 

o Rewrite code to reduce register usage to increase occupancy. 

o Choose a grid size that is a multiple of the concurrent work load so that thread 

blocks divide evenly into the number of SM cores on a specific GPU card. 
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APPENDIX A:  GLOSSARY 

Absolute speedup:  Speedup in which the time to run the best parallel solution is compared to the time 

to run the best serial solution to the same problem, even if they are using different algorithms. 

Abstract Data type:  An abstract data type (ADT) is a model for data structures or data types that can be 

described by their behavior or semantics.  An abstract data type is defined only by the operations that may 

be performed on it; pre-conditions on the inputs to those operations; post-conditions on the outputs from 

those operations; and possible descriptions of the required time or space complexity of those operations 

using asymptotic notation.  For example:  A stack can be defined by 3 operations – push, pop, and top, 

each taking constant O(1) time.  See also object-oriented programming. 

Abstraction:  In computer science, abstraction manages complexity.  A certain level of complexity is 

established on how a person interacts with the computing system, while more complex details below the 

current level are suppressed.  Thus a programmer works with an idealized well-defined interface and can 

add more levels of functionality later that would otherwise be too complex to handle.  There are two main 

types of abstraction – control and data.  Control abstraction involves using sub-programs or sub-routines to 

manage the control flow through a program.  Data abstraction allows the grouping of data bits into 

meaningful chunks, i.e. data types, records, structures, etc.  Object-oriented classes combine abstractions of 

both functionality and data. 

Algebraic Simplification:  A data-flow optimization technique that uses algebraic laws to simplify or 

re-order instructions for better performance.  See also constant folding, code fusion, and strength reduction. 

Algorithm:  An algorithm is a step-by-step recipe to perform a task that solves a problem – an 

unambiguous set of instructions that performs the task by operating on input and producing output.  An 

algorithm is typically expressed using language-agnostic pseudo-code, which can be implemented in any 

programming language. 

Algorithmic Skeleton:  Synonym for pattern, specifically the subclass of patterns having to do with 

algorithms. 
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Algorithm strategy pattern:  A class of patterns that emphasize the parallelization of the internal 

workings of algorithms. 

Aliasing:  Two similar definitions:  1) When two pointers (or expressions that resolve to memory 

addresses) refer to overlapping memory locations.  For example, if pointers 𝑝, 𝑞 both point to the exact 

same location, then 𝑝[0] and 𝑞[0] alias each other.  2)  When two different variables are mapped onto the 

same physical register by scheduling (static compiler or dynamic hardware).  This can result in write after 

read (WAR) or write after write (WAW) dependencies through the aliased register. 

Alignment:  With alignment, data starts on some fixed boundary, where the boundary is a multiple of 

some integer number, usually measured in bytes.  For instance 64-bit integers are aligned to start on 8 byte 

boundaries within memory (0, 8, 16, 24, …).  See also data alignment, cache-line alignment, warp-line 

alignment and coalescence. 

All-kNN:  See All k-Nearest Neighbor. 

All k-Nearest Neighbor:  A type of Nearest Neighbor Search (All-kNN) where each query point in a 

query set Q is matched to the k closest points in a search set S under some distance metric.  In this search, 

the query set Q and search set S are one and the same (Q == S).  See also kd-tree. 

All-NN:  See All Nearest Neighbor. 

All Nearest Neighbor:  A type of Nearest Neighbor Search (All-NN) where each query point in a query 

set Q is matched to the closest point (k = 1) in a search set S under some distance metric.  In this search, the 

query set Q and search set S are one and the same (Q == S).  See also kd-tree. 

All-to-All:  A special case of a mapping relationship where every source object is related to every 

destination object in a set, table, or array of parallel objects.  See also cardinality. 

ALU:  An ALU (arithmetic logic unit) is a small processing unit which can perform simple computations 

such as addition or multiplication on integer data. 

Amdahl’s Law:  Speedup is limited by the serial portion of the total work.  Given 𝛼 and 𝑝, where  𝛼 ∈

[0,1] is the percentage of the program which is serial and 𝑝 is the number of parallel processing cores used 
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to process the parallel portion of the program.  Then the maximum speedup according to Amdahl’s Law is 

𝑆(𝛼, 𝑃) =  
1

𝛼+
1−𝛼

𝑝

.  Compare with Work+Depth Analysis or Gustafon’s Law. 

AMP:  Microsoft’s C++ Accelerated Massive Parallelism (AMP) is a native programming model that 

extends the C++ programming language and its associated runtime library to enable data-parallel programs 

on data-parallel hardware, such as GPUs. 

ANN:  See Approximate Nearest Neighbor. 

Anti-Dependency:  See write after read (WAR). 

Analysis of Algorithms:  See Asymptotic Analysis. 

Application Programming Interface (API):  An interface is the set of function calls, operators, 

and/or classes through which an application developer accesses a predefined module or library to 

accomplish some useful task(s).  Ideally information hiding is used to hide the implementation details of 

the module while allowing functionality to be accessed through the API’s interface. 

Approximate Nearest Neighbor:  A type of Nearest Neighbor Search (ANN) where each query point 

in a query set Q is approximately matched to the closest point in a search set S under some distance metric.  

In ANN searches, each answer is approximately correct with high probability.  However, there is always a 

small chance that another point (the true solution) is even closer.  ANN searches usually run faster than 

other types of NN searches, but at the cost of some incorrect answers in the search results. 

Arithmetic Intensity:  The ratio of computational to communication operations in a program.  

Comparing the programs arithmetic intensity with the hardware’s theoretical arithmetic intensity helps 

decide whether computation or communication limits performance. 

Arithmetic Logic Unit:  See ALU. 

Array of Structures (AoS):  A data layout for collections of data elements where all of the 

heterogeneous data fields for a single element are stored in adjacent physical memory locations.  Compare 

with Structure of Arrays (SoA). 
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Associative Cache:  A k-way cache organization in which different data from different locations in main 

memory are mapped onto the same small subset of physical locations within a cache (4 cache-lines are 

shared in a 4-way associative cache).  A fully associative cache allows data from anywhere in main 

memory to be stored anywhere in cache memory.  Older data only needs to be evicted from cache when the 

entire associate k-way set (or entire cache for fully associative) becomes full.  Contrast with direct mapped 

cache. 

Associative Operation:  An operation ⊗ is associative, if (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐) for all 𝑎, 𝑏, and 

𝑐 in its domain.  Associative operations allow data to be re-grouped but no re-ordered.  Integer addition is 

associative for both mathematics and computation.  However, even though mathematical addition for reals 

is associative, floating-point addition on a computer is not due to truncation and round-off errors (Press et 

al, 2007).  If these small errors can be lived with then floating-point math can be considered approximately 

associative (pseudo-associative).  Some techniques for parallelizing scans and other ordered operations 

require associativity for correct results. 

Asynchronous Coordination:  Involves multiple threads (or tasks) trying to communicate data or 

coordinate work between themselves.  Asynchronous coordination allows threads to transfer data 

independently from each other.  One thread can start a data transfer and then start doing other useful work 

while waiting for the data transfer to complete.  Interleaving computation with coordination between 

threads allows latency hiding to improve overall performance.  Contrast with synchronous coordination. 

Asymptotic Analysis:  AKA Analysis of algorithms - Measures the overall intrinsic efficiency of 

algorithms without getting bogged down in the actual details of hardware, software, or implementation.  

Two main principles are used 1) Ignore machine-dependent or implementation-dependent constants; 2) 

Look at the overall growth rate of resources (time, space, etc.) as the input size (n) goes to infinity (n → ∞).  

See also Asympotic Complexity. 

Asymptotic Complexity:  A limit on resource usage, including work, time and space but also for ratios 

such as speedup and efficiency.  See also Big ‘O’ notation, Big ‘omega’ notation, Big ‘theta’ notation, Little 

‘O’ notation, and little ‘omega’ notation. 
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Asymptotic Running Time Description 

𝜃(1) Constant Time 

𝜃(log 𝑛) Logarithmic Time 

𝜃(log𝑘 𝑛) Polylogarithmic Time 

𝜃(𝑛) Linear Time 

𝜃(𝑛 log 𝑛) Log-Linear or Linearithmic Time 

𝜃(𝑛2) Quadratic Time 

𝜃(𝑛𝑘), k > 1 Polynomial Time 

𝜃(𝑘𝑛), 𝑘 > 1 Exponential Time 

 

Asymptotic Efficiency:  An asymptotic complexity measure for efficiency. 

Asymptotic Speedup:  An asymptotic complexity measure for speedup. 

Atomic Instruction:  See atomic operation. 

Atomic Operation:  A small set of instructions guaranteed to appear as if it occurred as a single 

indivisible instruction by the rest of the system.  Once the atomic operation has started other threads cannot 

interrupt the current thread until the atomic operation has completed.  See also lock, thread-safe, mutual 

exclusion, non-blocking algorithm, lock-free algorithm, and wait-free algorithm. 

Atomics:  The set of atomic operations supported on a specific machine architecture.  Modern atomic 

operations are based on compare-and-swap semantics.  Older architectures used test-and-set, or fetch-and-

add semantics. 

Atomic Scatter Pattern:  A non-deterministic data pattern in which multiple competing writers to a 

single memory location result in exactly one value being written and all other values being discarded.  The 

value written is chosen non-deterministically from the multiple competing sources.  The only guarantee is 

that the final written value will belong to at least one of the competing writers.  See also the PRAM 

machine model. 
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Auto-tuning:  Auto-tuning is an automated process which adjusts and selects parameters in parameterized 

code in order to find the set of parameters which result in the best performance. 

Back-Tracking:  Backtracking is a general algorithmic approach used to find all (or some) solutions to 

computational problems.  Typically a tree or graph is explored or built as part of finding these solutions.  

The back-tracking algorithm incrementally builds partial solutions and stores other possible candidate 

solutions (unexplored paths) encountered along the way in some simple data structure (queue or stack).  It 

abandons each partial solutions as soon as it determines that they cannot possibly be part of the valid 

solution set.  It then backtracks to any other candidate solutions kept in storage until all possible candidates 

(solution paths) have been exhausted (the storage data structure is empty). 

Balanced:  A balanced tree with n nodes has a maximum tree height of ⌈log2 𝑛⌉, in other words, there is a 

difference in path length from the root to any leaf node of at most one level across all leaf nodes. 

Bandwidth:  The rate at which information is transferred.  This can be between the CPU and memory or 

over some other communications channel.  The amount of data that is communicated per unit of time, 

usually measured in megabytes per second (MB/s) or gigabytes per second (GB/s).  See also throughput. 

Bank Conflicts:  A bank conflict occurs when multiple threads attempt to access different data elements 

stored in the same memory bank at the same time.  The GPU hardware scheduler solves this resource 

contention by serializing access to the memory bank which negatively impacts I/O performance. 

Banked Memory:  With banked memory, also known as interleaved memory, we have multiple parallel 

sections of memory with each bank represented by its own memory chip (or separate section on a chip).  

Memory accesses return k values from k banks in parallel increasing memory throughput by a factor of k 

for coherent memory accesses.  Banked memory is one way to compensate for the relatively slow speed of 

RAM memory compared to CPU registers.  GPU hardware uses banked memory for both shared and global 

memory to greatly increase aggregate memory throughput. 

Banking:  Increases memory transfer throughput by having multiple banks of memory that are accessed in 

parallel.  Banks usually work modulo the bank size.  A memory system with k banks can be up to k× faster 

than the equivalent non-banked memory solution. 
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Barrier:  A check-point that each thread must wait at until all threads reach this check-point before any 

thread proceeds past the check-point.  This allows the coordination of execution across threads within a 

thread block on GPUs. 

Barrier Synchronization:  A multi-threaded computation is often divided into multiple phases.  Often 

all threads must complete one phase fully before any thread is allowed to move onto the next phase for 

correct program behavior.  A barrier is a form of synchronization that ensures this behavior.  Threads 

arriving at the barrier wait there until all threads have arrived, at which point all threads are allowed to 

continue.  Barriers can be implemented using atomic operations.  Barriers do serialize thread behavior 

which slows parallel performance. 

BASk:  See block access skeleton. 

Batching:  Batching helps reduce register pressure in GPU kernels by grouping partially unrolled work 

items into fixed sized batches.  Typically the amount of batched work is in the range of [2..4] work items. 

BFS:  See Breadth-First-Search. 

Big ‘O’ Notation:  Complexity notation that denotes an asymptotic upper bound on resource usage; 

written as O(g(n)).  Big ‘O’ notation is useful for comparing the algorithmic efficiency of different 

algorithms.  O(g(n)) = {f(n) : there exist positive constants c and n0  such that 0 ≤ f(n) ≤ c∙g(n) for all n ≥ n0  

}.  See also asymptotic complexity, little ‘o’ notation, big ‘omega’ notation, little ‘omega’ notation, and big 

‘theta’ notation. 

Big ‘Omega’ Notation:  Complexity notation that denotes an asymptotic lower bound on resource 

usage; written as Ω(g(n)).  Big ‘Omega’ notation is useful for comparing the algorithmic efficiency of 

different algorithms.  Ω(g(n)) = {f(n) : there exist positive constants c and n0  such that 0 ≤ c∙g(n) ≤ f(n) for 

all n ≥ n0  }.  See also asymptotic complexity, big ‘O’ notation, little ‘o’ notation, little ‘omega’ notation, 

and big ‘theta’ notation. 

Big ‘Theta’ Notation:  Complexity notation that denotes an asymptotic upper and lower bound on 

resource usage; written as Θ(g(n)).  Big ‘Theta’ notation is useful for comparing the algorithmic efficiency 

of different algorithms.  Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0  such that 0 ≤ c1∙g(n) ≤ 



 

343 

 

f(n) ≤ c2∙g(n) for all n ≥ n0  }.  See also asymptotic complexity, big ‘O’ notation, little ‘o’ notation, big 

‘Omega’ notation, and little ‘omega’ notation. 

Binary Tree:  A tree data structure composed of binary nodes where each node contains a data element 

with at most two child links {left, right} which point to the left and right child nodes in the tree. 

Binary Heap:  A binary heap is a complete binary tree which satisfies the heap ordering property.  Either 

min-heap (The key value of each node is greater than or equal to the value of its parent, with the minimum-

key element kept at the root) or max-heap (the key value of each node is less than or equal to the value of 

its parent, with the maximum key element kept at the root). 

Binning:  The process of partitioning labeled data into a collection of labelled sub-collections.  Each 

labelled sub-collection only contains data belonging to that specific label. 

Bin Pattern:  A generalized version of the split pattern, which in turn is a generalization of the pack 

pattern.  The bin pattern takes as input a collection of data and a collection of labels to go with every 

element of that collection.  This pattern reorganizes data into labelled sub-categories (bins) for every 

unique label in the input.  The deterministic version of this pattern is stable, in that it preserves the original 

order of the input for data with the same label.  Typically used in radix sort and other binning algorithms. 

Bit-Level Parallelism:  Bit-level parallelism is a well-known programming technique for increasing 

performance which can be thought of as a special form of vector-level parallelism.  Bit-level parallelism, 

also known as word parallelism and SWAR (SIMD within a Register), works on multiple small data types 

in parallel using a single large word instruction (typically in the machines native hardware word size).  For 

instance, a 32-bit hardware register can store four 8-bit bytes, two 16-bit words, or one 32-bit dword.  

Programmers that work conceptually with bytes or words but process data using 32-bit instructions can 

potentially work on four or two data items at once using standard machine instructions.  This allows a 

potential speed-up of 4× or 2× respectively. 

Block:  Three definitions:  1) A state in which a thread cannot proceed while it waits on some other system 

resource or synchronization event.  2)  A 3D sub-region of memory from a larger data collection, see also 

run and tile.  3) A CUDA thread block of a fixed shape (1D, 2D, or 3D) and size.  See also CTA. 
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Block Access Skeleton:  A block access skeleton (BASk) is a machine dependent memory access pattern 

(or algorithm) for GPUs.  For instance, the Block by Block BASk accesses and covers an entire data block 

by supporting the bottom level of the 2-level CTA mapping.  See also data access skeleton, Block-by-Block 

and Warp-by-Warp BASks. 

Block-by-Block BASk:  An efficient access pattern at the bottom level of the 2-level CTA mapping that 

supports coalescence.  Each thread within a thread block of size TBS accesses its own unique data element 

within the current group of TBS elements and then strides (stride = TBS) to the next group of TBS data 

elements within the data block to access.  See also block access skeleton.  Compare with the Warp-by-Warp 

BASk. 

Branch and Bound Pattern:  A non-deterministic pattern meant to find one satisfactory answer when 

many possible answers exist.  The term branch refers to using concurrency.  The term bound refers to 

limiting the computation in some manner.  This pattern is often used to implement an efficient search 

pattern. 

Branch Condition:  An expression that resolves to a {true, false} predicate which is then used to choose 

between two paths of execution within a section of code, function, or program. 

Branch Divergence:  Because all threads within a thread warp step through an instruction stream in 

lockstep, branch divergence occurs when some threads within a warp take the true branch path and the rest 

of the threads take the false branch path.  GPU hardware currently handles branch divergence via 

“serialization by predication”.  Serialization mean that the code for both branch paths are executed by all 

threads.  Predication means that individual threads within each warp are enabled/disabled via predicate bit 

masks as appropriate for the code represented by each branch.  This solution guarantees correct per-thread 

branch outcomes at the cost of reduced performance.  In the worst case, where branches are nested five 

levels deep, with each thread taking its own unique path, branch divergence can cause parallel threads to 

run up to 32× slower than equivalent single-threaded code which follows only one taken path through the 

branch tree. 

Branch Prediction:  Branch prediction is an entire family of ILP optimization techniques meant to 

reduce the branch delay caused by control hazards.  Branch prediction uses special logical circuitry to try 
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to predict which branch {true, false} a given branch will take and will either start pre-fetching instructions 

from the predicted path or start executing speculative instructions from the predicted path.  If the guess is 

correct than the core starts executing the prefetched instructions which reduces the cost of branch delays or 

commits the speculative instructions which avoids the cost of branch delays.  If the guess is incorrect than 

either the pre-fetched instructions are ignored or the speculative instructions and any side effects from the 

incorrect path need to be canceled and the instruction counter reset to the correct path.  See also Branch 

Speculation. 

Branch Selection:  see selection pattern. 

Branch Speculation:  Branch speculation is an entire family of ILP techniques meant to reduce the 

branch delays caused by control hazards.  With branch speculation, the architecture has enough functional 

resources to execute speculative instructions from both paths {true, false}.  Once the branch outcome is 

known the incorrect path’s speculative instructions & any side effects must be canceled and the correct 

path’s instructions are committed.  This approach avoids branch delays at the cost of extra functional units 

and extra control logic to commit or cancel speculative instructions.  Nested branch instructions can still 

cause branch delays as it is infeasible in practice to speculate along all possible branching sub-paths.  See 

also Branch prediction. 

Breadth-First-Search:  An algorithm for searching a tree or graph data structure.  The algorithm starts 

at the root (or an arbitrary starting node) and explores all neighbor nodes first before moving to the next 

level of neighbors (neighbors of neighbors).  Nodes to be visited are typically stored using a Deque in 

FIFO order.  See also Depth-First-Search. 

Broadcast Model:  A coordination model, where one thread (or task) sends the same message to all 

other threads (or tasks) in the same group.  See also remote message passing. 

Brute-Force Search:  A geometric search where each point in a query set Q (with m points) is compared 

to all points in a search set S (with n points) to find the k closest neighbors.  This typically takes O(mn) 

time, or quadratic time O(n2) time if S == Q.  See also nearest neighbor search. 

BSP Tree:  A binary space partitioning (BSP) tree is a hierarchal spatial partitioning data structure used 

to speed up geometric searches.  Each tree node typically has two children.  BSP trees typically are used to 
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partition d-dimensional space by recursively dividing the starting bounding object into 2 smaller geometric 

regions separated by a d-dimensional hyperplane.  See also BSP tree, octree, and kd-tree. 

Buffering:  A buffer is a fixed-size region of memory storage used to temporarily store data while it is 

being moved from a producer to a consumer.  Buffering is often used to move data between RAM memory 

and files on disk drives.  Buffering is often used when moving data between processes within a computer, 

for instance when implementing the pipeline pattern or a producer-consumer relationship.  Buffering 

introduces issues with stalling the producer when the buffer is full and stalling the consumer when the 

buffer is empty. 

Busy Waiting:  A form of mutual exclusion, where the current thread tries repeatedly to acquire a lock, 

this busy waiting is typically done inside a small tight loop (such as a spin-lock).  The assumption with this 

style of programming is that there is not much resource contention for the lock and that the code/data 

protected by the lock will be processed quickly by the primary thread that successfully acquires the lock. 

By Pointer:  A parameter to a function that is passed in indirectly as a memory address which needs to be 

dereferenced in order to access the true value.  Allows the original value to be changed as part of the 

functions execution.  For good or bad, the pointer address can be manipulated to access data elements other 

than the one originally pointed to.  See also by reference, by value, and parameter. 

By Reference:  A parameter to a function that acts exactly as if it were the original location passed into 

the function.  Allows read/write access to the original element only.  The original element must exist before 

passing the reference into a function.  See also by pointer, by value, and parameter. 

By Value:  A parameter to a function that is a copy of the original value passed into the function.  The 

original value will remain unchanged regardless of what changes are made to the copy’s value during the 

functions execution.  See also by pointer, by reference, and parameter. 

Bypassing:  An ILP optimization technique where extra shortcut circuitry is added into the instruction 

pipeline to get intermediate output results from one stage into another stage where the results are needed as 

inputs.  Bypassing reduces the instruction delay (number of stalls) between two dependent instructions in 

the pipeline at the cost of a more complex processing core. 
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Byte Stream:  A byte stream is a stream of data in which the individual machine bits are grouped into 

units of 8-bits called bytes.  Byte streams are also used as a basic abstraction for how to communicate data 

between two processing units.  One unit writes bytes into the communications channel and the other unit 

reads them.  Byte streams are often used to connect producers with consumers (see producer-consumer 

relationship) as used in the pipeline pattern.  Buffering is often used to smooth out performance differences 

between the producer and consumer.  On most operating systems, access to any file is done as a byte 

stream. 

Cache:  A part of the memory system that stores copies of data temporarily in faster memory so that future 

requests for that same data can be handled more quickly.  Caches are typically implemented in hardware 

with support from the operating system and thus hidden from the programmer.  Caches are designed to 

enhance average memory access speeds by exploiting temporal and spatial locality.  Caches in modern 

computers are multi-level.  Cache coherence is required to avoid data errors when caching.  See also cache-

aware and cache-oblivious programming. 

Cache-Aware Programming:  Programs that are written to take advantage of the multi-level memory 

hierarchy on a specific machine architecture for better I/O performance.  Programmers learn the actual 

details of cache-line sizes and page sizes for a specific memory architecture.  Programmers then use that 

knowledge to write code that transfers data in an aligned, coherent, and fully-loaded manner that uses 

memory more efficiently.  Since cache-aware programs are tied to a specific memory architecture, they are 

not portable and need to be carefully tweaked on different machines in order to run well.  Contrast with 

cache-oblivious programming and streaming algorithms. 

Cache Alignment:  When memory accesses are aligned to start on cache-line boundaries (0, 64, 128, 

192, 256), memory accesses tend to run faster. 

Cache Coherence:  A mechanism for keeping multiple copies of the same data stored in different caches 

consistent.  In other words, all threads accessing the same original memory location will see the same value 

despite there being multiple copies scattered throughout the multi-level cache system. 

Cache Coherent Architecture:  Refers to the consistency of data stored in multiple separate caches for 

parallel computing units.  A multi-core system may have a L1 cache that is private to each core but an L2 
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cache or RAM main memory that is shared across all the cores in the system.  As data is accessed, each 

core may cache its own copy of an original data element in its L1 cache.  When one core updates its copy 

of data then all other cores will have stale copies (incorrect) in their caches.  A cache coherent memory 

architecture will ensure that all processors receive the most up-to-data version of any data regardless of 

where it is stored (L1 cache, L2 cache, RAM memory). 

Cache-conflict:  When multiple locations in memory are mapped onto the same location in cache 

memory only a subset of them can be kept in cache. 

Cache Fusion:  A memory access optimization where data is partitioned into small tiles and vector 

operations are executed on each tile so that intermediate values can be kept in cache for better performance. 

Cache Line:  The fixed unit sizes in which data is retrieved and held by a cache; the cache line size is 

typically 8-64 bytes on CPU architectures and typically 128 bytes on modern GPU architectures.  Larger 

cache lines allow for more efficient bulk transfers but also increase the inefficiency of incoherent memory 

accesses. 

Cache Miss:  A cache miss is caused when a requested instruction or data operand(s) is not immediately 

available from the fastest level of a memory hierarchy and the entire instruction processing pipeline must 

suspend operation until the cache memory is filled with the requested instructions or data via memory I/O 

and then resumes operation.  There are four main types of cache misses – Compulsory, Capacity, Conflict, 

and Coherency.  Capacity, Conflict, and Coherency misses can lead to cache thrashing. 

Cache Miss Rate:  The fraction of memory cache accesses that result in a cache miss. 

Cache-Oblivious programming:  Refers to writing programs that have good cache behavior without 

knowing the actual size or design of a specific memory architecture (caching system) in advance.  This is 

typically accomplished by recursively partitioning data into smaller and smaller processing chunks until at 

some point a chunk becomes small enough to fit into a single cache-line or page at some level of the 

memory hierarchy.  Cache-oblivious algorithms are portable across different memory architectures as they 

do not depend on any particular memory details.  Contrast with cache-aware and Byte stream 

programming. 
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Cache Thrashing:  Cache thrashing is when a sequential (or parallel program) spends most of its time 

reloading cache blocks into the cache and waiting on the cache loads to occur instead of getting useful 

work done.  This is caused because a small working set of cache blocks all get mapped onto the same cache 

line in cache memory and the system keeps evicting and then reloading these competing cache blocks as 

the program progresses.  Capacity, conflict, and coherency cache misses are the typical cause of cache 

thrashing. 

Caching:  A memory organization that exploits temporal and spatial locality in instructions and data for 

better amortized memory access speeds for frequently reused instructions or data. 

Cancellation:  Two definitions: 1) Refers to hardware invalidating all instructions currently in the 

instruction pipeline after the cancelled instruction in response to a hardware exception, speculative 

execution, or other event.  Cancelled instructions are similar in behavior to NOP instructions.  2)  The 

ability to stop a running task (thread) from another task (thread). 

Capacity Cache Miss:  A capacity miss occurs when a cache simply cannot contain all the cache blocks 

needed during the full execution of a program.  Cache blocks need to be discarded from the cache to make 

room for other cache blocks needed by the program.  The discarded cache blocks may themselves need to 

be reloaded later as the program continues to execute. 

Cardinality:  A mapping relationship between two different sets, tables, or arrays of parallel objects.  For 

instance data and processing cores.  The main relationship types are one-to-one, one-to-many, many-to-one, 

and many-to-many.  With some special case relationships such as all-to-all, one-to-several and several-to-

one. 

Category Reduction Pattern:  A combination of search and segmented reduction, each data input has a 

label and reduction occurs only between elements with the same label.  The output is a set of reduced 

results for each label.  The map-reduce model is the classic example of this pattern. 

Ceiling Function:  Given any real number x, there exists a unique integer n such that n < x ≤ n+1.  We 

say that n+1 is the ceiling of x, often denoted as ⌈𝑥⌉ = n+1.  See also floor function. 
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Chosen Digit:  For Radix Sort, Given a key taken from a large numeric range [0, m) represented by a 

string of up to k digits, with each digit from a small range [0, d) then the radix sort will take k sorting 

passes.  Each pass uses a stable sort such as Counting Sort to distribute n keys into d sorted runs.  The 

number of digits (or sorting passes) can be computed as k = ⌈log𝑑 𝑚⌉.  The chosen digit represents the 

current digit, j ∈ [0, k), within the key used to perform the current pass’s stable sort.  The k passes proceed 

from the least to most significant digit in the key for a LSD radix sort. 

Cilk:  Cilk (and Cilk++ and Cilk Plus) are general purpose programming languages designed for multi-

threaded parallel computing.  They extend the C and C++ programming languages with constructs to 

express parallel loops and the fork-join parallel pattern.  Originally developed by MIT and currently owned 

by Intel. 

Class:  A class is an expanded concept of a data structure; instead of holding only data, it can hold both 

data and the functions intended to manipulate that data.  An object is a specific concrete instantiation of a 

class.  See also object-oriented programming. 

Cloud:  A set of computers, typically kept in a data center that can be allocated dynamically and accessed 

remotely.  Unlike a cluster, cloud computers are typically managed by a third party and may host multiple 

applications from different, unrelated users. 

Cluster:  A set of computers with distributed memory communicating over a high-speed interconnect.  

The individual computers within a cluster are often called nodes. 

Coarse-Grained Multi-threading:  With coarse-grained multi-threading, context switches between 

active threads only happen when the current thread is likely to stall for a long time or a large time-slice 

(measured in milli-seconds) has gone by.  Thread contexts tend to be heavy-weight.  As a result, this 

approach cannot hide latency for short term pipeline stalls caused by various hazards. 

Coarse-Grained Parallelism:  With coarse-grained parallelism, the ratio of coordination to 

computation events in a parallel algorithm is quite large.  In other words, coordination & communication 

events occur infrequently. 
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Code Fusion:  2 similar definitions:  1) An optimization for a sequence of operations on parallel data 

each with their own separate input/output phases into a single fused operation with a single input/output 

phase.  This optimization reduces the total number of I/Os required to process data.  2) This data-flow 

optimization technique combines several operations with one simpler equivalent operation. 

Copy:  A type of map primitive, which copies a source array S of n elements into a destination array D, 

with no overlap allowed.  Also see Fill, Scatter, and Gather. 

Closest Heap Data Structure:  A special compound data structure used with kNN and All-kNN nearest 

neighbor searches to return the k nearest neighbors.  This compound data structure first acts like a simple 

array of k elements and then later like a fixed-size binary heap of k elements.  The first k-1 search results 

are appended into the array.  After adding the kth search node into the array, the array is converted into a 

max-distance heap, taking O(k) time to run.  Subsequent search point results encountered during the NN 

search are then compared against the top point in this closest heap data structure.  If the new distance is 

closer, the top is replaced by the new point.  The correct heap ordering is then restored by demoting the 

new top which takes logarithmic time O(log k) in the worst case to run. 

Coalescence:  With coalescence, The GPU memory controllers support accessing an entire warp (32 

threads) of 32 (32-bit) data elements (128 bytes) in parallel.  In fact, 128 bytes is the standard I/O access 

size.  Thus each memory controller can read or write up to 32 elements in parallel for the cost of a single 

I/O.  Similar to CPU cache-lines, the aggregate data access must be aligned to a warp-line boundary (some 

multiple of 128 bytes).  The memory controller has native “gather” support so each thread can access any 

relative index [0..31] within a warp-line at no extra cost.  However, each thread’s access index must be 

unique otherwise the hardware will serialize access across threads competing for the same address.  This 

means the memory access pattern used to access data can impact performance.  A sequential access pattern 

could run at near peak I/O throughput speeds.  On the other hand, a random access pattern might access a 

different warp-line in memory for each individual thread within a thread warp, requiring 32 separate I/Os 

and wasting work (by loading 31 unused data elements per I/O request). 
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Coalescence:  A single transfer operation (load, store) is fully coalesced, if a single data warp is accessed 

by a single thread warp in a single operation.  Otherwise, if the data is spread out across multiple data 

warps, then the hardware must replay the transfer multiple times in order to access all the requested data. 

Coalesced Access:  See Coalescence. 

Coalesced I/O Efficiency:  A percentage measure of how efficiently coalescence is being taken 

advantage of.  The percentage is the number of average data elements transferred per transfer divided by 

the maximum number of elements that could be transferred (k = 32).  For example, if on average 16 out of 

32 data elements are accessed on each store, then the Coalesced I/O efficiency is said to be 50% (=16/32).  

This efficiency metric has a minimum and maximum value of 3.125% (1/32) and 100% (32/32) 

respectively.  Typically longer coherent data runs tend to require fewer transfer operations than shorter runs 

resulting in greater I/O throughput. 

Coherence:  see data coherence, locality or coalescence. 

Coherency Cache Miss:  An aliasing problem caused by virtual memory management where multiple 

virtual addresses all map onto the same physical address.  A physical cache block may need to be evicted to 

make room for a new virtual address and then later retrieved as the program continues to execute. 

Coherent Memory Access:  Refers to memory accesses which support spatial locality, in other words, a 

group of memory accesses are typically within the same small neighborhood of memory as the first 

memory access.  Sequential memory access (serial or parallel) is a perfect example of coherent Memory 

Access.  Coherent memory accesses result in good I/O throughput as they support caching in modern 

memory architectures. 

Coherent Masks:  With SIMD warp branching, the situation where the branch masks across all 

processing cores in the warp contain either all zeros or all ones. 

Collective Coordination:  Multiple threads cooperate to communicate data and coordinate work with 

each other.  Common coordination models include broadcast model, scatter model, gather model, and the 

reduction model. 
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Collective Operation:  An operation, such as a reduction or a scan, that acts on the collection of data as 

a whole. 

Collision:  In the scatter pattern, or when using random writes from parallel tasks, a collision occurs when 

two or more parallel threads (or tasks) try to write to the same location at the same time.  The result is 

typically non-deterministic since it depends on the timing of the parallel writes.  In the worst case, 

unexpected garbage is written into the location impacting the correctness of the entire program. 

Common Sub-expression Elimination:  A data-flow optimization technique where a sub-expression 

that is computed two or more times in the original code but doesn’t change values is only calculated once 

and then reused in the compiled code.  See also code fusion, constant folding, and strength reduction. 

Communication:  Any exchange of data between parallel software tasks or threads.  See also 

coordination. 

Communication Avoiding Algorithm:  An algorithm that avoids communication between tasks or 

threads, even it if results in additional or redundant computations. 

Commutative Operation:  A commutative operation ⊕ satisfies the equation 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 for all 𝑎 

and 𝑏 in its domain.  Commutative operations allow data to be re-ordered but not re-grouped.  Some 

techniques for parallelizing reductions and other operations require commutatively for correct results.  See 

also associative operation. 

Compare-and-Swap:  Compare and swap (CAS) is an atomic operation used to synchronize 

concurrency issues and prevent incorrect multi-threaded behavior.  It compares the contents of a memory 

location to a specific value, and if and only if they are the same, it then swaps the contents of the memory 

location with a given new value.  Even though this actually requires several instructions in hardware, it 

appears as a single atomic operation to the rest of the threads, i.e. no other thread can interrupt the CAS 

once it has begun and until it has finished.  Most modern CPU architectures implement one or more 

variations of Compare-and-Swap as atomic operations.  CAS is often used to implement lock-free and/or 

wait-free algorithms and data structures.  See also fetch-and-add and test-and set which CAS replaces. 
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Composability:  The ability to use two components with each other.  Can refer to system features, 

programming models, or software modules.  If the two components can easily be made to work together 

than they are said to be composable, otherwise they are not. 

Compulsory Cache Miss:  The very first memory access to a memory block cannot be in the cache, so 

the cache block must be brought into the cache.  Compulsory misses would occur even if the memory 

architecture contained an infinitely sized cache. 

Complete:  A complete binary tree is both a full binary tree and a left-balanced binary tree.  In other 

words, all nodes (except leaf nodes) has two children; all levels except the last are completely filled, and on 

the last level all nodes are as far left as possible. 

Concurrent:  Logically happening simultaneously.  Two or more threads (or tasks) that appear to all be 

logically active at some point in time are considered to be concurrent.  Older multi-threading systems used 

pre-emptive multi-tasking on a single CPU to give the illusion of multiple tasks executing concurrently 

despite the reality that only a single instruction could execute at a time on the CPU.  Contrast with parallel. 

Concurrency Issues:  The collection of issues associated with moving from serial to parallel execution.  

See also non-deterministic, mutual exclusion, collision, deadlock, livelock, and starvation. 

Conflict Cache Miss:  If the cache block placement policy is not fully associative, conflicts misses occur 

because multiple different memory blocks get mapped onto the same specific block in the cache and the 

current block in the cache needs to be evicted to make room for the currently requested block.  The evicted 

block may need to be retrieved later as the program accesses it. 

Constant Folding:  A data-flow optimization technique that replaces a complex expression made up of 

only constant values with a single specific constant value that represents the entire complex expression.  

See also strength reduction. 

Contention Issues:  The collection of issues associated with multiple parallel threads (or cores) 

competing for access to shared resources.  See also non-deterministic, mutual exclusion, collision, 

deadlock, livelock, and starvation. 
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Context Switch:  With a context switch, A processing core 𝑝 replaces one thread (or warp) 𝑠 with 

another thread (or warp) 𝑡.  𝑠’s state switches to active (or blocked, inactive) and 𝑡’s state switches to 

executing (or running).  This happens by pausing 𝑠 on 𝑝, storing 𝑠’s context, reloading 𝑡’s context and re-

starting execution of 𝑡 on 𝑝.  Context switches are done for two reasons 1) To keep processor cores busy by 

latency hiding and 2) To ensure each thread (or warp) gets a fair slice of processing time to make forward 

progress. 

Control Dependency:  A dependency between two tasks where whether or not a task executes depends 

on the result computed by another task. 

Control Hazard:  Control hazards, also known as branching hazards, are a direct result of branching on a 

pipelined architecture.  Given that there are two distinct instruction paths {true, false} as a result of a 

branch, the instruction scheduler (hardware or software) doesn’t know which set of instructions to start 

fetching & scheduling from until the branch condition outcome is actually known.  Stalling is the original 

solution to this problem -- Wasteful NOPs are inserted into the instruction pipeline until the branch 

outcome is known and the program counter (PC) can be updated to start scheduling from the correct branch 

path.  A branch delay is the number of stages (machine cycles) lost due to waiting on the outcome.  Branch 

prediction and branch speculation are entire families of ILP optimization techniques intended to help 

reduce to number of stalls caused by control hazards. 

Convergent Memory Access:  When memory accesses by threads in a warp (or block) access adjacent 

memory locations.  Actually the memory locations can be somewhat scattered as long as all accesses by an 

entire warp are constrained to a cache-line (warp-line) they can be in any order within the cache-line 

without causing a performance hit.  See divergent memory access. 

Cooperative Multi-tasking:  With cooperative multi-tasking, also known as cooperative scheduling, the 

thread scheduling system allows threads to decide for themselves when to give up control of the CPU core 

to another thread.  This approach is vulnerable to poorly written programs hogging most of the system 

resources for themselves leading to starvation for the rest of the better behaving applications. 

Coordination:  The synchronization of behavior between parallel software tasks or threads.  See also 

communication. 
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Coordination Issues:  The collection of issues associated with coordinating the behavior or 

communicating the exchange of data across multiple parallel threads (or cores).  See communication and 

coordination. 

Cooperative Thread Array (CTA):  With a GPU running CUDA, a cooperative thread array (CTA) is 

the batch of threads launched by a GPU kernel to execute a parallel program.  The CTA is organized as a 

grid of thread blocks.  There are hardware constraints that limit the number of concurrent thread blocks that 

can execute on each individual SM core.  But in aggregate it is potentially possible to run tens of thousands 

of threads concurrently on each GPU device. 

Core:  An individual processor within a multicore processor.  Each core should be able to support at least 

one thread of execution. 

Counting Sort:  A Counting Sort sorts an unordered sequence A into an ordered sequence S.  A contains 

n elements, where each element is represented by a numeric key in the range [0, d).  (d is typically a small 

number, with d ‹‹ n).  These keys are used to distribute the n keys directly into d sorted runs using 

counting, indexing, and table lookup.  The d runs are then concatenated to produce the final sorted output.  

By distributing keys using indexing and then concatenating runs, counting sort escapes the well-known 

Ω(n∙log n) lower bound on comparison-based sorts.  Counting Sort is often used as a subroutine within 

Radix Sort. 

CPI:  Cycles per instruction (CPI), the number of machine cycles it takes to execute a particular 

instruction on a core. 

CPU:  A central processing unit (CPU) is also known as a core, processor, or socket.  Originally, a CPU 

was the single computation unit on a computer.  Modern CPUs may actually contain multiple redundant 

processing cores which can be accessed in a pipelined or parallel manner.  Multiple CPUs may be bundled 

together on a single motherboard to form a computer node. 

CPU Time:  The amount of time it takes a CPU to implement a program, task, method, or set of 

instructions.  𝐶𝑃𝑈𝑡𝑖𝑚𝑒 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 × 𝐴𝑣𝑔 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒 

Critical Path:  The longest chain of tasks (or instructions) ordered by dependencies in a program. 
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CTA:  See cooperative thread array. 

CUDA:  CUDA (formerly called the Compute Unified Device Architecture) is a high level language and 

parallel computing platform created at NVIDIA.  The language is based on C++ and version 5.0 of CUDA 

uses the well-known Low Level Virtual Machine (LLVM) compiler infrastructure to compile, link, and 

generate run-time GPU code from CUDA kernel programs.  The CUDA language includes several C++ 

extensions to express parallelism, data locality, memory usage, and to manage thousands of threads.  The 

CUDA API supports many libraries for supporting kernel invocation, synchronization, memory allocation, 

memory transfers, numeric processing, random number generation, and exposing the rich parallel 

functionality available on each GPU device. 

Cutting Plane:  An axis-aligned hyperplane used to separate a set of n d-dimensional points (objects) 

from a parent node into two child nodes {left, right} as part of building a spatial portioning data structure 

such as a kd-tree. 

Cycles per Instruction:  See CPI 

Cyclical:  A cyclical kd-tree is one in which the d-dimensions are used as cutting planes in repeated 

cyclical order as often as necessary when building the kd-tree.  For instance given 3D points with axes 

{x,y,z}.  The cyclical cutting plane order would be {x,y,z,x,y,z, …} as often as required until the tree is fully 

built. 

DASk:  See data access skeleton. 

Data Access Skeleton:  A data access skeleton (DASk) is a machine independent data access pattern (or 

algorithm) adapted to run on a specific architecture like a GPU.  DASks group n data elements into m fixed 

size data blocks.  These m data blocks are then load balanced across p thread blocks according to a 1D or 

2D layout.  For instance, the Row DASk enables the parallel partition pattern on a GPU by supporting the 

top level of the 2-level CTA mapping while also preserving sequential ordering to support parallel patterns 

like reduce & scan.  See also block access skeleton, Block-, Column-, and Row-DASks. 

Data Alignment:  When basic data-types or data structures are aligned to start on machine-word 

boundaries (32-bit or 64-bit), memory accesses tend to run much faster. 
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Data Block:  A fixed-size unit of data elements that is meant to be processed in parallel by a matching 

thread block.  With a Data Access Skeleton, an array of n data elements is grouped into m data blocks, each 

of size DBS and distributed across p thread blocks.  The data block size (DBS) is typically parameterized 

using three template parameters -- nWork, nWarps, and WarpSize.  These three parameters represent three 

different types of parallelism – Instruction-level Parallelism, Thread-level Parallelism, and Data-level 

Parallelism. 

Data Block Size:  A fixed-size data block which contains DBS elements, where DBS is typically 

computed as DBS = nWork*nWarps*WarpSize.  See also Thread Block Size. 

Data Coherence:  A concept of how close data elements within a group are to each other.  Data elements 

that are close to each other are said to have high coherence.  Data elements that are far apart from each 

other are said to have low coherence.  See also locality. 

Data Compression:  Data compression encodes information using fewer bits than the original 

representation.  Compressing data can potentially improve performance by reducing processing 

instructions, transmission bandwidth and disk storage.  However compressing and decompressing data can 

take a lot of computation which may slow-down performance. 

Data Dependency:  Two similar definitions 1) A dependency between two tasks where one task requires 

as its input data the output data from another prior task.  2) A dependency between multiple instructions 

where one instruction requires as its input operand(s) the output result(s) from prior instruction(s).  See also 

dependencies and data hazard. 

Data Dependent:  See data independent. 

Data-flow optimization:  A family of optimization techniques (often done by a compiler) that seeks to 

improve performance by first analyzing then second reducing, replacing, or reordering instructions for 

better performance.  See also algebraic simplification, code fusion, common-subexpression elimination, 

constant folding, dead code elimination, and strength reduction. 

Data Hazard:  Data hazards occur when multiple instructions in an instruction stream have dependencies 

on each other.  Ignoring data hazards in out-of-order instruction pipelined architectures can result in race 
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conditions which lead to incorrect program results.  There are 3 main types of data hazards – read after 

write (RAW), write after read (WAR), and write after write (WAW) which are also known as true-, anti-, 

and output-dependencies respectively.  Schedulers (hardware & software) must detect and handle data 

dependencies for correct program results.  Typically this is done using stalling or out-of-order scheduling. 

Data Independent:  Given an algorithm with input data set of fixed-size n, if varying the data elements 

which makes up the input set has no noticeable impact on total performance, then the algorithm is said to 

be data independent.  On the other hand, if varying the input data causes total performance to vary greatly 

than the algorithm is said to be data dependent.  If varying the data set causes only minor performance 

fluctuations (say within 10% of the best), then the algorithm is said to be partially data dependent.  For 

instance, in a histogram algorithm, replace a random data set by a set of all zeros, if the zero data set is 10× 

slower than the random data set than the algorithm is clearly data dependent. 

Data-Level Parallelism (DLP):  A type of parallelism.  With data-level parallelism, a set of n data 

elements is partitioned (decomposed) into m runs that are then mapped onto p cores to execute in parallel.  

With a equal balanced partitioning, each core is responsible for processing O(n/p) elements as a 1D run, 

2D tile, or 3D block.  Data-level parallelism scales easily to handle more data or more parallel cores.  See 

also instruction-level parallelism and thread-level parallelism. 

Data Parallel Programming:  With data parallel programming, programmers implement their parallel 

algorithms to take advantage of data-level parallelism on top of SIMD vector-parallel and/or multi-

threaded hardware.  The main idea is that each unique thread is assigned its own unique data element (or 

data run) to work on independently from every other thread concurrently working on its assigned data. 

Data Structures:  A data structure is a particular way of organizing data in a computer so that it can be 

used consistently and efficiently.  Associated with each data structure is a set of procedures that create, 

delete, update, and manipulate specific instances of that data structure.  Some typical examples of data 

structures include arrays, records, sets, lists, trees, graphs, and objects.  See also abstract data types and 

object-oriented programming. 
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Data Throughput:  The number of data elements processed per second during the execution of some 

program, algorithm, function, or section of code.  Typically measured in mega-elements per second (ME/s) 

or giga-elements per second (GE/s). 

Data Type:  A data type is a classification identifying one of many specific types of data such as integer, 

floating point, Boolean, character, string, etc.  The actual data type defines the values of that type; how that 

data should be interpreted; how many bits are required to represent that data type; and how that data should 

be stored in memory. 

Data Warp:  A collection of WarpSize (=32) data elements that are transformed from input into output by 

an algorithm implemented as one or more GPU kernels.  Each data warp is associated with a matching 

thread warp and is executed by a set of multiple SP cores within each SM core.  Data Warps naturally 

support Data-level Parallelism via data parallel programming to take advantage of SIMD hardware on a 

GPU.  See also Data Block, Thread Warp, and Thread Block. 

DBS:  See data block size. 

Dead Code Elimination:  A data-flow optimization technique that detects and eliminates dead code, 

redundant code, or useless operations from the output code.  For example, a complex calculation that is 

stored in a variable which is subsequently never used can be safely eliminated.  See also strength reduction. 

Deadlock:  A concurrency issue that occurs when at least two tasks (or threads) circularly wait on each 

other to complete and each task (thread) will not resume execution until the other task (thread) proceeds.  

This error occurs frequently with code that uses locks for mutual exclusion.  See also livelock and 

starvation. 

Dependencies:  A relationship among tasks, threads, or instructions that results in an ordering constraint.  

Dependencies are important to understand because they can inhibit parallel performance. 

Depth:  Depth, also known as span, is how long a program would take to execute on an idealized machine 

with an infinite number of parallel processors.  The depth of an algorithm can be seen as the critical path in 

its task dependency graph. 
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Depth Complexity:  Depth complexity, also known as step-, circuit-, and span-complexity, is an 

asymptotic measure of complexity in a parallel algorithm based on its depth.  Informally, if we are willing 

to use more resources in parallel to solve a problem, we can often reduce the time required to solve that 

problem.  Depth complexity, D(n,p), measures how much time it takes for a given input size (n) and given 

number of parallel cores or threads(p).  For the work+depth analysis of parallel algorithms, this measure is 

equally as important as work complexity. 

Depth-First-Search:  An algorithm for searching a tree or graph data structure.  The algorithm starts at 

the root (or an arbitrary starting node) and explores as far as possible along each branch path before 

backtracking to other branch paths.  Nodes to be visited are typically stored using a Stack in LIFO order.  

See also Breadth-First-Search. 

Deque:  A double-ended queue.  Elements can inserted and removed from both the front and the back of 

the Deque. 

Design Pattern:  1) A general term for pattern that includes not only algorithm strategy patterns but 

patterns related to overall code organization.  2) A general reusable solution to a commonly occurring 

problem in a given context.  Design patterns are formalized best practices that the programmer must still 

implement themselves in a program.  Algorithms and design patterns are orthogonal and can both be used at 

the same time. 

Deterministic:  A deterministic algorithm is an algorithm that behaves predictably.  Given a specific 

input, a deterministic algorithm will always produce the same output no matter how many times it is run.   

Parallel floating-point algorithms may have small differences in output compared to the equivalent serial 

floating-point algorithms due to the different order in which the parallel algorithm groups floating-point 

data and operations compared to the serial algorithms and the fact that floating-point operations have small 

errors due to truncation and round-offs.  However, in practice, concurrency is the main cause for non-

deterministic results.  Programmers need to use sequential semantics and eliminate all race conditions in 

order to convert non-deterministic algorithms into deterministic algorithms with the exception of non-

determinism caused by “rounding” differences for floating point algorithms. 
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Device Processor:  A device processor, also known as a co-processor, is a secondary computational unit 

that is under the control of a primary host processor.  The device responds to requests from the host to do 

useful computations.  GPUs are co-processor devices that can do massive parallel computation under the 

direction of a CPU host processor. 

DFS:  See Depth-First-Search. 

Digit:  A small numeric range specified by the radix (or base).  For instance, a base 10 radix allows digits 

in the range [0,9].  See also Key. 

Digit Value:  A specific value taken from a digits numeric range.  For instance, 5 is a specific digit value 

from the range [0-9]. 

Directed Acyclic Graph (DAG):  A graph that defines a partial order so that nodes can be sorted into a 

linear sequence with references only going in one direction.  A directed acyclic graph has, as its name 

suggests, only directed edges and no cycles. 

Direct Memory Access (DMA):  The ability of one processing unit to access another processing unit’s 

memory with involving the other processing unit in the transfer. 

Direct-Mapped cache:  A cache organization in which data from multiple disjoint locations in main 

memory are mapped onto the same physical cache-line in the cache.  Typically this direct mapping uses a 

modulo function of the original address.  Older data needs to be evicted from cache anytime newer data is 

mapped onto the same cache line, which can lead to cache thrashing in some cases.  Contrast with 

associative cache. 

Distributed Memory:  2 Definitions:  1) Memory which is located in multiple physical locations.  

Accessing data from a remote location typically has higher latency and possibly lower bandwidth than 

accessing local memory.  2)  Memory that is physically located in separate computers.  An indirect 

interface such as remote message passing, is required to access memory on remote computers, while local 

memory can be accessed directly.  Distributed memory is typically supported by clusters of computers. 

Divergent Memory Access:  When memory accesses by adjacent threads in a warp (or block) access 

scattered (non-adjacent) memory locations.  See convergent memory access. 



 

363 

 

Divide and Conquer Pattern:  Recursive decomposition of a problem.  Can often be parallelized with 

the fork-join pattern. 

Domain-Specific Language (DSL):  A language with specialized features suitable for a specific 

application.  For Example:  MATLAB is a domain specific language for Matrix processing & Numerics. 

DRAM:  Dynamic Random Access Memory.  See RAM. 

Dynamic:  A dynamic algorithm (or data structure) allows insertions, deletions, or other modifications to 

the original input data set (or data structure) as the algorithm proceeds.  Contrast with Static. 

Dynamic Scheduling:  With dynamic scheduling, the thread scheduler (hardware or software) maps 

active threads onto available processing cores using pre-emption.  The scheduler adapts to changing 

circumstances to try to optimize overall processor utilization by skipping stalled (or inactive) threads, 

waking up completed threads, blocking threads waiting on long running transfers of I/O resources, etc. 

Dynamic Work Assignment:  Dynamic work assignment is a technique for load balancing work across 

parallel threads (or cores).  An array of n data elements is initially divided into m fixed-size chunks which 

are then assigned into a work queue.  Each parallel core grabs a chunk of work from the queue and 

processes it until the work queue is empty.  As new work is generated, it is also subdivided and added into 

the work queue.  This approach works best when the total amount of work is variable or unpredictable.  

Preventing resource competition across threads when accessing or updating the work queue data structure 

can itself become a potential performance bottleneck.  See also equal partitioning and work stealing. 

Efficiency:  Efficiency measures the return on investment in using additional hardware to operate in 

parallel. 

Encapsulation:  Three related definitions – 1) Encapsulation is the packing of data and functions into a 

single component.  2) A programming language mechanism for restricting access to some of the object’s 

components, which is useful for information hiding.  3) A programming language mechanism for bundling 

data with the methods operating on that data.  See also object-oriented programming. 

Exceptions:  Exceptions are the unusual situations that result from hardware instructions being presented 

with incorrect data that could result in incorrect system behavior if not handled properly.  Hardware 
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exceptions include overflow, divide by zero, translate look-ahead buffer miss for virtual memory, etc.  

Exceptions are usually handed off to special system software exception handlers to be dealt with properly.  

Handling exceptions often impacts program performance as the exception handlers often take hundreds or 

thousands of machine cycles to execute. 

Elemental Functions:  A function used in a map pattern.  An elemental function acts on single item 

inputs.  In other words each transformation from an input data element into an output data element has no 

dependencies on other data.  An elemental function can be easily vectorized by replicating the computation 

it specifies across multiple SIMD lanes.  See embarrassingly parallel algorithms. 

Embarrassingly Parallel Algorithms:  With embarrassingly parallel algorithms, the depth efficiency 

is constant, D(n) ≈ O(1), in other words the number of parallel steps required is fixed, small, and 

independent of the input size.  These algorithms process each data element completely independently from 

all other data elements so no communication or coordination across cores is required.  The actual code 

tends to follow the map pattern and is often trivial. 

Equal Partitioning:  Is a technique for doing load balancing across parallel cores.  Given n data 

elements or operations.  Each of the p parallel cores is assigned to process equal sized chunks ⌈𝑛 𝑝⁄ ⌉ of 

work (elements or operations).  This approach works best when the amount of work is known a priori (in 

advance) and the data or operations are uniformly sized.  See also dynamic work assignment and work 

stealing. 

Exclusive Scan:  A type of scan where the ith output element (si) is the total sum of the first (i-1) 

elements from an input array A under some binary associative operator ⨁ with identity 𝕀, in other words 

𝑠𝑖 = 𝕀 + ∑ 𝑎𝑗
𝑖−1
𝑗=1 .  Compare with Inclusive Scan. 

Expand Pattern:  A pattern in which each element of a map pattern can output zero or more data 

elements, which are then assembled into a single (possibly segmented) array.  Compare to the pack pattern. 

False Sharing:  Two separate tasks in two separate cores may write to separate locations in memory, but 

if those memory locations happen to be allocated into the same cache line, the cache coherence hardware 
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will attempt to keep the cache lines coherent, resulting in extra communication and reduced performance, 

even though the tasks are not actually sharing data. 

Faster:  An improved method S is said to be x times faster than a baseline method T, which is expressed 

using the following formula. 

𝑥 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑛𝑒𝑤

=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑇

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆

 

Fetch-and-Add:  fetch and add is an atomic operation used to synchronize concurrency issues and 

prevent incorrect multi-threaded behavior.  It adds a new value to a value in a memory location and then 

returns the old value from the same memory location. Even though this actually requires several 

instructions in hardware, it appears as a single atomic operation to the rest of the system, i.e. no other 

thread can interrupt the CAS once it has begun and until it has finished.  This atomic operation has been 

replaced by compare-and-swap semantics on modern architectures.  See also test-and-set. 

Fiber:  A very lightweight unit of execution.  Similar to a thread, but fibers use co-operative multi-tasking 

while threads use pre-emptive multi-tasking. 

Fibonacci Numbers:  The Fibonacci numbers are defined by a linear recurrence and are often used as 

examples of recursion in computer science.  The two base cases are defined as F(0) = 0 and F(1) = 1 with 

the recursive induction step, F(N)  = F(N-1) + F(N-2). The integer sequence grows as 

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …}. 

FIFO:  Abbreviation for first-in, first-out.  For instance a single line of customers in a book store are 

typically handled in FIFO order.  The first customer to enter the service queue is the first customer to reach 

a cash register and check out.  Contrast with LIFO. 

Fill:  A type of map primitive, which fills a destination array D of n elements with a single data value.  For 

example:  setting an entire array to all zeros is a form of fill.  Also see Copy, Scatter, and Gather. 

Fine-Grained Locking:  Locks used to protect small parts of a larger data structure from race 

conditions.  Such locks avoid locking the entirety of the large data structure during parallel accesses. 
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Fine-Grained Parallelism:  A level of parallelism with very small units of parallel work per unit of 

coordination (communication).  Care must be taken to reduce the cost of coordination (communication) 

otherwise parallel overhead will dominate performance costs and reduce parallel efficiency. 

Fine-Grained Multi-threading:  With fined-grained multi-threading, the scheduler can and does 

switch between active threads on a core every few cycles (even as often as once per cycle).  Thread 

contexts must be light-weight.  The thread scheduler can adapt to short-term stalls in execution by pausing 

threads (warps) and switching to other active threads. 

Floating-Point Data:  Modern GPUs support both 32-bit and 64-bit floating point data types to 

approximate real numbers and associated arithmetic operations as specified in the IEEE 754 specification. 

Floating-Point Unit:  See FPU. 

Floor Function:  Given any real number x, there exists a unique integer n such that n ≤ x < n+1.  We say 

that n is the floor of x, often denoted as ⌊𝑥⌋ = n.  See also ceiling function. 

Flynn’s Taxonomy:  A well-known categorization of parallel processing into four groups {SISD, SIMD, 

MISD, and MIMD} based on parallel instruction handling {single, multiple} and parallel data handling 

{single, multiple}. 

Fold:  An operation on a collection of data in which every output is a function of all previous outputs and 

all inputs in a sequence up to the current index.  A fold is based on a successor function that computes a 

new output value and new state for the fold from the previous state and each new input value.  A scan is a 

special parallelizable case of a fold where the successor function is associative. 

Fork:  The creation of a new thread or task from an original thread.  The original thread or task continues 

executing in parallel with the forked thread or task.  See also spawn or join. 

Fork-Join Pattern:  A parallel pattern of computation in which new (potential) parallel flows of 

execution are created/split using forks and terminated/merged with joins. 

Fork Point:  A point in the code where a fork takes place. 
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FPU:  An FPU (floating-point unit) is a small processing unit which can perform simple computations 

such as addition or multiplication on floating-point data.  See also ALU. 

Frequency Scaling:  A way to increase computational throughput (performance) by increasing the 

frequency at which transistors are run.  As transistors get smaller, it gets easier to run them faster.  

However, faster running chips also generate more heat.  If chips get too hot they will burn out.  So 

frequency scaling requires careful cooling.  Modern chips can’t run much faster than ~4 GHz on air-flow 

cooling (fans) without risk of burn out.  More exotic forms of cooling like water, oil, liquid nitrogen, etc. 

can be used to raise this maximum frequency. 

Frequency Scaling Era:  The time period from roughly 1965-2004 where the primary way to increase 

integrated chip performance was to increase the frequency at which transistors ran.  In 2004, chip 

architectures hit a power wall where running chips faster than ~4 GHz generated more heat than air-flow 

cooling (fans) were capable of removing from the chip risking burn out.  In 2005 chip designs moved into 

the Multi-core era. 

Full:  A Full binary tree is a binary tree in which every node other than leaf nodes has two children. 

Fully Loaded:  A fully loaded memory access pattern uses all the data in each cache-line before 

accessing data that would result in another cache line being loaded into cache.  A sequential access pattern 

over a large array results in one I/O per cache line and all the data in each cache line being used fully 

before moving onto the next cache line.  This is true for all cache lines, except for possibly the first and last 

cache lines which might only be partially full with data due to alignment issues.  Whereas, a random access 

pattern loads an entire cache line but only accesses a single data element.  That cache line is highly likely to 

be evicted from cache before being randomly accessed again resulting in lots of I/O and poor utilization of 

the caching architecture.  See also coherence, coalescence and alignment. 

Functional Decomposition:  Task-level parallelism where the original task is divided into smaller sub-

tasks and each sub-task is then run on its own thread.  A directed acyclic graph (DAG) is often used to 

model the flow of data through the sub-tasks.  This approach is difficult to scale beyond a small number of 

threads. 
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Functional Unit:  A hardware processing unit that can perform simple computations such as addition or 

multiplication.  See also ALU and FPU. 

Function:  A function typically consists of a function-call interface used to invoke the function from 

elsewhere in the program and the body of the function which is the actual sequence of instructions that 

perform some specific task for which the function was written.  In C++, the function-call interface is called 

a declaration and the function body is called the definition.  Each function has one or more input and output 

parameters.  Functions enable code reuse and modular programming. 

Function Overloading:  Function overloading (or method overloading) is a type of polymorphism that 

creates multiple methods with the same name but with possibly different implementations for different data 

types.  For instance:  One could create a swap function for exchanging two integers, and another for 

swapping two strings.  The integer swap could take constant time O(1), while the string swap could require 

linear time O(n). 

Functor:  A class which supports a function-call interface.  They behave similarly to C or C++ callback 

functions and can be used in the same manner.  However, functors are also objects and can hold state and 

support additional class interfaces for modifying that state.  Functors can often be optimized by compilers 

(typically removing the function invocation overhead) often resulting in better performance than an 

equivalent callback function. 

Fusion:  An optimization in which two or more things with similar forms are combined to reduce 

overhead.  See loop fusion, cache fusion, and code fusion. 

Gather:  A type of map primitive, which gathers elements from a large source array S into a small 

destination array D using an index map.  Also see Copy, Fill, and Scatter. 

Gather Model:  A collective coordination model, where all threads (but one) send a message to a single 

primary thread.  The primary thread then composes the messages together. 

Gather Pattern:  A set of parallel random reads from memory.  A gather takes a collection of memory 

addresses and outputs a collection of data read from those memory addresses.  Gathers are equivalent to 

random reads inside a map pattern.  Given an input array of size n, and an output array of size m, and an 
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index array of size m, typically with n ≥ m.  Each element of the output array comes from some element in 

the input array at the given index.  Output[i] = Input[index[i]] for all i ∈ [0, m).  The scatter pattern is the 

inverse of the gather pattern. 

Generic Programming:  A style of programming in which algorithms can be written in terms of generic 

abstract types which are then instantiated later as the specific data types needed by a specific 

implementation.  C++ templates are a mechanism for supporting generic programming.  Data access 

skeletons use generic programming techniques to enable performance experiments with three template 

parameters – nWork, nWarps, and WarpSize representing three types of parallelism – instruction-level 

parallelism, thread-level parallelism, and data-level parallelism. 

Geometric Decomposition Pattern:  A pattern that decomposes a data domain for an algorithm into a 

set of possibly overlapping sub-domains.  A special case is the partition pattern, which is when the sub-

domains do not overlap. 

GPU:  A GPU (graphics processing unit) was originally developed to accelerate graphics computations but 

now is sufficiently evolved to support arbitrary computations.  GPUs are especially good at massively 

parallel, fine-grained data-parallel algorithms.  They typically use multi-threading, hyper-threading, SIMD 

threads, and extensive use of latency hiding. 

GPU Kernel:  A GPU kernel is a program that runs in parallel on a GPU device.  A GPU kernel looks 

like a serial program written to run on a single thread.  However, the GPU device will run the kernel on 

many threads in parallel. 

GPU Programming Model:  A programming model where parallel computation is run on a GPU co-

processor device using a CTA (a 2-level grid of thread blocks).  The parallel computation is done under the 

direction of a CPU host core.  This model supports limited communication and synchronization between 

different threads within the same thread block.  But assumes no communication or synchronization between 

different thread blocks in the same grid.  This model makes no assumptions about what order thread blocks 

in a grid are scheduled onto the SM (SMX’s) processing cores by the GPU.  A coarse level of 

synchronization is supported via kernel termination in that all thread blocks in a grid are guaranteed to have 

completed when the kernel terminates. 
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Grain:  A unit of work to be run serially on a single core.  See granularity. 

Grain Size:  The amount of work in a grain. 

Granularity:  Granularity is a qualitative measure of the ratio of computation to coordination 

(communication) in a parallel algorithm.  The amount of decomposition applied to the parallelization of an 

algorithm, and the grain size of that decomposition.  Coarse granularity implies large amounts of 

computations are done between communication events.  Fine granularity implies that small amounts of 

computations are done between communication events.  If the granularity is too coarse, then there won’t be 

enough parallel threads (or tasks) to keep all the parallel cores busy (under-utilization) or poor latency 

hiding.  If the granularity is too fine, then the coordination required between parallel threads may dominate 

the resulting performance.  See also parallel overhead. 

Graphics Accelerator:  A co-processor specialized for handling graphics workloads, typically used for 

real-time graphics.  APIs such as Direct3D and OpenGL are typically used to send graphic commands to 

the hardware.  See also GPU. 

Graph Rewriting:  A computational pattern where nodes of a graph are matched against templates and 

substitutions made with other sub-graphs.  When applied to directed acyclic graphs (DAGs), this is known 

as term graph rewriting and is equivalent to the lambda calculus, except that it also explicitly represents 

memory sharing. 

Greedy Scheduling:  A scheduling strategy in which no worker idles if there is work to be done. 

Grid:  Two different definitions:  1) A distributed set of computers that can be allocated dynamically and 

accessed remotely.  A Grid is distinguished from a cloud in that a grid may be supported by multiple 

organizations and is usually more heterogeneous and physically distributed.  2) A batch of thread blocks 

meant to be concurrently executed on a GPU to carry out a GPU kernel program.  Typically a grid is 1D or 

2D in shape.  See also CTA. 

Gustafson’s Law:  A different view from Amdahl’s Law that factors in the fact that as problem sizes 

grow the serial portion of computations tend to shrink as an overall percentage of the total work to be done.  

Given 𝛼 and 𝑃, where 𝛼 ∈ [0,1] is the percentage of the program which is serial and 𝑃 is the number of 
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processing cores used to parallelize a program.  Then the speedup according to Gustafson’s Law is 

𝑆(𝛼, 𝑃) = 𝑃 − 𝛼 ∙ (𝑃 − 1).  Compare and Contrast with Amdahl’s law and Work+Depth analysis. 

Halo:  In the implementation of the stencil pattern on distributed memory, each thread often needs to 

access nearby neighbors outside of its initial assigned data partition.  The halo is the set of boundary 

elements surrounding each partition that are replicated on different worker threads to allow each partition to 

be computed in parallel. 

Hash Lookup:  A hash function is a well-defined procedure or mathematical function that converts a 

large amount of data (variable or fixed) into a small datum.  This datum can be turn be used as an index to 

speedup searching, sorting, or table-lookups.  If the resulting datum is small enough, a “trivial hash 

function” can be used to provide constant time searches at almost zero cost.  See also indexing, table-

lookup. 

Hazard:  A hazard is any parallel computing approach which could end up producing incorrect results 

compared to an equivalent serial approach.  The main types of hazards include structural hazards, control 

hazards, and data hazards. 

Heap:  Two definitions 1) An abstract data structure for loosely ordering data in a conceptual tree, this 

data structure can be used for priority queues and sorting.  2) The physical memory used for storing 

allocation requests made using heap allocation, this is also known as the free store or dynamic memory. 

Heap Allocation:  An allocation mechanism, also known as free storage or dynamic memory allocation, 

that supports unstructured memory allocations of different sizes and at arbitrary times during a program’s 

execution.  Compare with stack allocation. 

Heavy-weight Context:  A heavy-weight thread (or warp) context typically contains 1K or more of 

execution state can take hundreds of machine cycles or more to transfer into/out-of virtual memory during a 

context switch.  Heavy-weight contexts implies the use of coarse-grained parallelism due to the large 

overhead of heavy-weight context switches. 

Heterogeneous Computer:  A computer which supports multiple processing cores, with each core 

having its own unique specialized capabilities and/or performance characteristics. 
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High Performance Computing:  High performance computing (HPC), also known as super-

computing, uses the world’s fastest and largest computers to solve massive and complex problems.  

Modern supercomputers typically use thousands of GPUs and CPUs in parallel. 

Histogram:  A histogram summarizes the frequency distribution of an entire data set via a much smaller 

table of counts.  In a nutshell, n input elements are counted into m bins.  The resulting m frequency counters 

form the histogram.  A bar chart is often used to visualize the histogram.  All n inputs are assumed to be 

taken from a range R = [min, max).  Each of the m bins represents a sub-range ri from R.  (These sub-ranges 

uniquely partition and fully cover the original range R).  Counting proceeds by selecting the sub-range that 

contains each input element and incrementing the corresponding bin’s counter. 

Host Pattern:  A simple programming pattern for launching GPU kernel(s) from a CPU host program.  

The pattern involves 1) allocating GPU & CPU resources 2) transferring data from the CPU onto the GPU 

3) launching the GPU kernel(s) 4) transferring results from the GPU to the CPU and 5) deallocating 

resources. 

Host Processor:  2 different definitions:  1) The main control processor in a system as opposed to any co-

processors or GPUs also in the system.  The host processor is responsible for booting and running the 

operating system.  2) The CPU processor that coordinates running a parallel algorithm using one or more 

GPUs. 

HPC:  See High performance computing. 

Hybrid Parallelism:  A type of parallelism that combines two or more other types of parallelism to 

support parallel processing in a parallel system. 

Hyperplane:  An arbitrarily oriented d-1 dimensional plane used to separate a set of n d-dimensional 

points (objects) from a parent node into two child nodes {left, right} as part of building a spatial portioning 

data structure such as a BSP tree.  See also cutting plane. 

Hyper-threading:  Multi-threading on a single processor core.  With hyper-threading, also known as 

simultaneous multi-threading (SMT), one core draws instructions from multiple threads to fill multi-issue 

instruction pipelines. 
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Identity:  An identity element, 𝕀, is a data element under some binary operator ⨁ such that 𝑎 = 𝑎⨁𝕀 =

𝕀⨁𝑎 for all 𝑎 ∈ 𝕌.  For instance, one is an identity element for multiplication, any number times one 

returns itself.  See also Reduce and Scan. 

Idle Cycle:  any machine cycle where a processing core is not doing useful work.  When a program is 

running, there are multiple causes (ramp-up/ramp-down time, hazards, cancellations …) which lead to idle 

cycles.  See also stalls. 

ILP:  See instruction-level parallelism. 

ILP Wall:  The limits to automatic parallelism given by the amount of parallelism naturally available at 

the instruction level in serial programs.  This wall was effectively reached in the early 2000’s when new 

ILP features that gave at best a 1-3% performance gain over existing ILP approaches cost significant 

amounts of silicon real estate to implement in hardware. 

Information Hiding:  Information hiding segregates the design decisions about the interface for using an 

algorithm from the actual implementation of that algorithm.  The goal is to provide a stable interface 

(which seldom changes) for other programmers to use a specific function, class, module, or program while 

hiding the implementation details from those programmers (this allows the underlying implementation to 

change more frequently as needed to fix bugs and improve performance).  In other words, the details of the 

implementation becomes a black box from the point of view of the user, all that matters is the interface 

which allows access to the desired behavior.  Encapsulation is often used to enforce information hiding and 

these two terms are often used interchangeably.  See also object-oriented programming. 

Implementation:  A specific section of code, function, module, or program that realizes a software 

design to solve a problem.  The implementation is written by a programmer in a specific programming 

language and then compiled and linked into an executable program.  The program solves the problem when 

given correct inputs and run.  The implementation may use various algorithms, design patterns, and idioms 

in solving the problem.  Some implementations are better than others.  A good implementation should be 

correct, robust, and fast.  Correct means the code solves the original problem as intended.  Robust means 

that the code doesn’t crash even when given incorrect inputs.  Fast means the code runs with sufficient 



 

374 

 

performance that an end user is willing to wait for the output results (the code return results in seconds, 

minutes, or hours not after months, years or decades). 

Implementation Pattern:  A pattern that is specific to efficient implementation using specific hardware 

mechanisms. 

Incoherent Memory Access:  Refers to memory accesses which don’t support (or only weakly support) 

spatial locality.  In other words, a batch of memory accesses will tend to be scattered across the memory 

address space.  Each memory access will tend to bring in an entire cache-line into cache just to read one 

data item (or byte).  Randomly picking data from a data set is a good example of incoherent memory 

access.  Incoherent memory access results in poor I/O throughput as it under-utilizes caching which is 

based on spatial locality. 

Inclusive Scan:  A type of scan where the ith output element (si) is the total sum of the first i elements 

from an input array A under some binary associative operator ⨁ with identity 𝕀, in other words 𝑠𝑖 = 𝕀 +

∑ 𝑎𝑗
𝑖
𝑗=1 .  Compare with Exclusive Scan. 

Indexing:  Is an optimization technique that represents a large data object by a simple index often called a 

key to improve the performance of searches, sorts, and table lookup.  Indexing usually assumes a trivial 

function for computing the index from the original data object.  Often the index (or key) is stored as part of 

the original data object.  See hash look-up. 

Induction:  When proving a statement true, the principle of mathematical induction is often used.  For 

proving computer science algorithms correct based on induction, a third requirement of Termination is 

added to the Basis and Inductive Steps.  The Termination step needs to prove that the algorithm will 

actually end after a finite number (n) of steps.  To implement an algorithm based on induction, the iteration 

pattern is often used. 

Inheritance:  In object-oriented programming, inheritance is when one object or class called the child 

class is based on (derived from) another object or class called the parent class and inherits the same default 

behavior (interface and methods) from the parent class.  However, certain “virtual” methods may be 

specified as polymorphic – there is a default implementation in the parent class and a possibly different 
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(overloaded) implementation in the child sub-class.  For instance, a draw method in a parent shape class 

may do nothing but the overloaded draw method in a child “box” class might know how to draw a rectangle 

based on the specific attributes of that object (width, height, color).  See also object-oriented programming. 

Inlining:  Inlining, also known as inline expansion, is an optimization technique implemented by a 

programmer or compiler to replace a relatively short function call with the entire function body instead.  

This optimization often may improve runtime performance by reducing function call overhead and giving 

optimizing compilers more opportunities for optimizations without being stopped by function boundaries.  

On the negative side, the resulting application binaries are often larger and the larger instruction sizes may 

result in more instruction cache misses which slow down performance. 

In-Order Execution:  With in-order execution, the hardware executes a program (instruction stream) 

sequentially in the exact same order that the instructions were laid out in the original program.  Contrast 

with out-of-order execution. 

Instance:  In a map pattern one invocation of the elemental function on one data element of the map. 

Instruction-Level Parallelism (ILP):  A type of parallelism.  Instruction-level parallelism (ILP) 

exploits parallelism found in a sequential instruction stream by re-ordering, grouping, and executing 

independent instructions in parallel without changing the actual program results (as compared to a simple 

serial computer). 

Interleaved Scheduling:  With interleaved scheduling, the thread scheduler (hardware or software) 

switches between threads every few cycles (as often as once per cycle).  All active threads (or warps) are 

executed in turn, typically in a round-robin fashion.  As an optimization, stalled (or blocked) threads are 

skipped over.  This schedule is inherently fair but may result in under-utilization of the processing core. 

Intrinsics:  Special function wrappers which allow direct access to a hardware’s specific instructions.  

They appear to programmers as normal functions but are replaced by the compiler by a short sequence of 

assembly instructions that map directly into the desired hardware instructions.  See also instruction-set 

architecture (ISA). 
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Instruction-Set Architecture (ISA):  An Instruction Set Architecture (ISA) is a set of operations 

(arithmetic, logic, control, data transfer, etc.) exposed by the hardware for performing computations.  

Programmers commonly access the ISA indirectly via a compiler which transforms instructions from a 

high-level language (such as C++) into machine language instructions for a specific hardware architecture 

(such as PTX for NVIDIA GPUs).  The ISA can also be accessed directly by a programmer using 

intrinsics. 

Instruction Throughput:  The average number of instructions processed per second over the duration 

of a program, algorithm, or function.  Typically measured in mega-instructions per second (Mi/S) or giga-

instructions per second (Gi/S). 

Instructions per Cycle (IPC):  Instructions per cycle (IPC) is the average number of instructions 

retired per cycle on a particular computer hardware architecture.  See also multi-issue. 

I/O Throughput:  The number of bytes transferred per second during the execution of a program, 

algorithm, or function.  Typically measured in mega-bytes per second (MB/s) or giga-bytes per second 

(GB/s). 

Irregular Parallelism:  Parallelism using heterogeneous tasks or different sized data runs across threads.  

Irregular work makes load balancing work across threads more difficult. 

Iteration Pattern:  A serial pattern where the same set of instructions is executed repeatedly and in 

sequence. 

Join:  A join is where multiple threads of execution are merged into a single thread of execution which 

continues on from the join point.  All other threads (in the join) are terminated or re-used for other 

purposes.  See also fork. 

Join Point:  The point in the code where a join takes place. 

kd-Tree:  A kd-tree is a hierarchical spatial partitioning data structure that is used to organize points (or 

other geometric objects) in d-dimensional space for faster geometric searches.  A kd-tree can be built in 

O(n∙log n) time, takes O(d∙n) storage, and can find the closest point to a query point in O(d∙n(1-1/d)) worst-

case time, with an expected time of O(d∙log n).  See also BSP Tree, octree, and nearest neighbor search. 
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kNN:  See k-Nearest Neighbor. 

k-Nearest Neighbor:  A type of Nearest Neighbor Search (kNN) where each query point in a query set 

Q is matched to the k closest points in a search set S under some distance metric.  See also kd-tree. 

Kernel:  3 definitions:  1) Key code sequence for an algorithm 2) Small section of code that performs the 

crucial portion of an algorithm.  3) On GPUs, a Kernel is the official name for functions launched by the 

CPU host but executed on the GPU device to implement a data-parallel algorithm. 

Kernel Termination:  Kernel termination is waiting until a GPU kernel has fully completed execution 

before launching the next GPU kernel as part of a larger parallel algorithm.  This allows a very coarse-

grained form of parallel coordination or barrier synchronization across all the threads in a CTA. 

Key:  For comparison-based sorts, a key is the primary value used to compare two objects to determine 

their relative sorted order (less than, equal, or greater than).  For Radix Sort, A key is a numeric value taken 

from a large fixed-size numeric range [0, m).  A key is written in a base, or radix, as a string of digits, 

where each specific digit value is taken from a small fixed-size numeric range [0, d).  Typically, the radix is 

much smaller than the keys range, d ‹‹ m.  For Example:  A 32-bit number using a base 16 radix would 

require at most a string of 8 hexadecimal digits (=⌈log16 232⌉) to represent. 

Lambda Expression:  An expression that returns a lambda function. 

Lambda Function:  A lambda function is an anonymous function.  This feature has been part of 

languages like LISP for a long time but was only recently added to C++ per the C++11 standard.  A lambda 

function enables a fragment of code to be treated as a function parameter and passed into another function 

without having to write a separately named function or functor for this purpose. 

Lane:  A lane is the idea of focusing on a single item within some larger group of which it is a part, similar 

to a lane within a road.  Three similar definitions:  1) A single SP core within a SM(X) core is sometimes 

called a lane.  2) A single thread within a thread warp or thread block is sometimes called a lane.  3) A 

single data element(s) being worked on by a single thread within a thread warp or block is often called a 

lane. 
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Latency:  The duration of time it takes to issue a request until its corresponding response is received.  

Latency is measured using units of time such as machine cycles, nano-seconds, seconds, days, etc.  Latency 

stalls on computers can be long (hundreds of machine cycles) often caused by waiting on I/O operations or 

other system resources, or short (20 cycles or less) often caused by hardware schedulers issuing NO-OP 

commands to overcome hazards that would otherwise jeopardize correct behavior.  CPUs are sometimes 

described as latency-focused architectures as the goal is to minimize the total running time of a single 

application. 

Latency Hiding:  On older architectures, when a thread of execution would stall waiting on some 

response, the core would often idle doing no useful work.  Modern GPU hardware schedulers can avoid 

unnecessary idling by 1) switching from the stalled thread warp to another active warp (aka Thread-Level 

Parallelism TLP; or by 2) finding other independent instructions that can be executed now safely (aka 

Instruction-Level Parallelism – ILP).  The process of keeping cores busy in the presence of latency stalls 

via TLP (other warps) or ILP (other instructions) is known as latency hiding.  Latency hiding increases 

processing throughput. 

Left-Balanced:  A balanced binary tree in which the left sub-tree of each node is filled before the right 

sub-tree is filled.  Informally, leaf nodes only occupy the leftmost positions in the last level of the tree. 

Left-Balanced Median Position:  Given n points in a parent node, the left-balanced median position 

(LBMpos) is the point which would split the parent node into two child nodes {left, right} which eventually 

would form an entire left-balanced tree.  The LBMpos can be found in 3 steps as follows:  1) ℎ =

 ⌈log2(𝑛 + 1)⌉  2) ℎ𝑎𝑙𝑓 = 2(ℎ−2)  3) 𝐿𝐵𝑀𝑝𝑜𝑠 = ℎ𝑎𝑙𝑓 + min (ℎ𝑎𝑙𝑓, 𝑛 − 2 ∗ ℎ𝑎𝑙𝑓 + 1).  Note:  The above 

formulas do not work correctly for small values (n ≤ 3).  The correct LBMPos for n = {1, 2, 3} are {1, 2, 2} 

respectively. 

LIFO:  Abbreviation for last-in, first-out.  For instance a group of people using an elevator typically do so 

in LIFO order.  The first people to enter the elevator move to the back to make room for others and are 

typically the last ones off the elevator when reaching the destination floor.  Contrast with FIFO. 
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Light-weight context:  A light-weight thread (or warp) context contains just a few items (typically 32 

registers or less) and can be context switched quickly by a hardware scheduler (in just a few machine 

cycles).  Light-weight contexts support fine-grained parallelism. 

Little ‘o’ Notation:  Complexity notation that denotes an asymptotic strict upper bound on resource 

usage; written as o(g(n)).  Little ‘o’ notation is useful for comparing the algorithmic efficiency of different 

algorithms.  o(g(n)) = {f(n) : there exist positive constants c and n0  such that 0 ≤ f(n) < c∙g(n) for all n ≥ n0  

}.  See also asymptotic complexity, big ‘O’ notation, big ‘omega’ notation, little ‘omega’ notation, and big 

‘theta’ notation. 

Little ‘omega’ Notation:  Complexity notation that denotes an asymptotic strict lower bound on 

resource usage; written as ω(g(n)).  Little ‘omega’ notation is useful for comparing the algorithmic 

efficiency of different algorithms.  ω(g(n))= {f(n) : there exist positive constants c and n0  such that 0 ≤ 

c∙g(n) < f(n)  for all n ≥ n0  }.  See also asymptotic complexity, big ‘O’ notation, Little ‘o’ notation, big 

‘omega’ notation, and big ‘theta’ notation. 

Linear Speedup:  Speedup where performance improves in direct proportion to the computation 

resources used to solve the problem.  Achieving a linear speedup is considered optimal for parallel 

programming. 

Little’s Law:  A formula relating parallelism, concurrency, and latency.  This theorem by John Little 

comes originally from queuing theory.  Reinterpreted for parallel processing, in a parallel system that has 

reached steady-state equilibrium, it ties the average request rate (𝜆), the average time each request takes to 

be processed (W), and the number of concurrent requests pending in the system (L) as follows:  𝐿 = 𝜆𝑊. 

Live-Lock:  A concurrency issue where multiple threads (or tasks) are active yet cooperate to block each 

other from making forward progress towards work completion.  Similar to two people trying to pass each 

other in a hallway but they both keep stepping into each other’s way.  See also deadlock and starvation. 

Load Balancing:  Refers to the practice of distributing work among multiple threads (or tasks) so that all 

threads (or tasks) are kept busy most of the time.  Load balancing can be done using equal partitioning, 

dynamic work assignment, and work stealing. 
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Load Imbalance:  A situation where distributing uneven sizes of tasks or runs onto worker threads 

results in some threads finishing early and then idling while waiting for other threads to complete the larger 

tasks or runs. 

Locality:  The notion that a data value in storage (or nearby values) will be frequently accessed during the 

course of an executing program.  Systems with strong locality are good candidates for optimizations which 

exploit locality, such as caching, pre-fetching, pipelining, branch prediction, etc.  There are two main types 

of locality – temporal locality and spatial locality. 

Local memory:  Local memory is a CUDA technique where register spills (extra variables) are put into 

global memory and accessed at global memory speeds.  This enables kernel compilation for complex 

algorithms at the cost of relatively slow I/O for the affected variables. 

Lock:  A generic term for objects used to ensure mutual exclusion between multiple parallel threads (or 

tasks).  Only one thread (or task) at a time may own the lock.  Other threads (or task) may attempt to 

acquire the lock but must wait until the owning thread (or task) releases the lock. 

Lock-Free Algorithm:  A non-blocking algorithm is lock-free if there is guaranteed system-wide 

progress across all threads.  See also wait-free algorithm. 

Loop:  A sequence of code which implements the iteration pattern.  Common loops include while 

(test) {…} statements, do {…} while (test) statements, and for (setup; test; 

increment) {…} statements. 

Loop-carried dependency:  A dependency that exists between multiple iterations of a sequence of code 

implementing the iteration pattern. 

Loop Fission:  A loop optimization technique where a single loop with a complex body is broken into 

two or more loops with simple bodies.  The goal with this technique is to improve locality when accessing 

I/O arrays for better performance.  Contrast with loop fusion. 

Loop Fusion:  A loop optimization technique where two or more loops with compatible indexing 

executed in sequence are rewritten and merged into a single loop.  This technique can help reduce loop 

overhead and the total I/Os into input & output arrays.  Contrast with loop fission. 
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Loop Interchange:  A loop optimization technique where a compiler or a programmer exchanges the 

order of a set of nested loops (inner-outer ↔ outer-inner) for better I/O performance.  Typically the change 

is made to better align the data access pattern into memory with the underlying cached memory architecture 

layout. 

Loop Invariant Code Motion:  If a value is computed inside a loop during every loop iteration but yet 

has the same value on each loop iteration.  Performance can be improved greatly by moving the value’s 

calculation outside the loop, where it is computed just once, stored in a register, and then reused as needed 

inside the loop. 

Loop Optimizations:  Loop optimizations are a family of implementation optimization techniques 

targeted at increasing program performance by reducing the overhead of loops.  Since loops are frequently 

used and executed repeatedly, they are good targets for optimization.  Loop optimizations include – loop 

fission, loop fusion, loop interchange, loop invariant code motion, loop reversal, loop unrolling, and loop 

unswitching.  See also the related concepts software pipelining and tiling. 

Loop Overhead:  The necessary instructions (increments, branch tests, etc.) needed to iterate repeated 

over a loop which implements the iteration pattern. 

Loop Reversal:  A subtle loop optimization technique which reverses the order in which values are 

assigned to the index variable.  This technique can sometimes eliminate loop carried dependencies and 

enable other loop optimizations. 

Loop Unrolling:  A loop optimization technique performed manually by a programmer or automatically 

by a compiler to improve performance by reducing loop overhead.  With loop unrolling, instead of 

processing one array element per loop iteration, we process k array elements per iteration, this reduces 

pointer arithmetic and amortizes the cost of loop overhead across k elements.  This increases register usage 

from O(1) to O(k).  Care must be taken to deal with the last few left-over data elements [1..k-1] which don’t 

fit into a single loop iteration.  See also software pipelining. 

Loop Unswitching:  A loop optimization technique where a conditional inside a loop is moved outside of 

the loop by duplicating and rewriting the loop twice once each for the {true} and {false} clauses. 



 

382 

 

Many-Core:  A processor with tens, hundreds, or even thousands of parallel processing cores. 

Many-to-One:  A mapping relationship where many source objects are related to one destination object 

in a set, table, or array of parallel objects.  See also cardinality, one-to-one, one-to-many, and many-to-

many. 

Many-to-Many:  A mapping relationship where many source objects are related to many destination 

objects in a set, table, or array of parallel objects.  See also cardinality, one-to-one, one-to-many, and many-

to-one. 

Map Pattern:  With a map pattern, a single elemental function is applied to all the data elements in an 

array.  The data elements are mapped in parallel onto multiple processing threads (or cores).  The elemental 

function requires no coordination between parallel threads resulting in embarrassingly parallel 

performance. 

Masking:  Two definitions: 1) Bit-level technique for retrieving only the desired bits from a larger 

machine word of bits.  2) Another term for how GPUs implement vectorized branching across a warp of 

threads using serialization and predication.  See also Branch Divergence. 

Massively Parallel:  Refers to hardware that comprises a parallel system having many processing cores.  

The meaning of “many” keeps increasing, but currently, means hundreds, thousands, or even hundreds of 

thousands. 

Mathematical Induction:  See Principle of Mathematical Induction. 

Median of Three:  Quicksort tends to slow down to quadratic time O(n2) when encountering sorted 

(reverse sorted) or nearly sorted input data.  The problem is that each pivot results in a degenerate parition, 

a trivial set with only one (or a few) item(s) and another large set with all the remaining items, eventually 

requiring a linear number of partitions O(n) to sort the data.  The median of three technique helps speed up 

Quicksort back to log linear time O(n log n) for these situations.  It works by picking 3 random pivot values 

from the current partition range and then choosing the median of these 3 values as the actual pivot.  This 

greatly increases the probability that each pivot will partition the data into two large sets, resulting in a 

logarithmic number of partitions. 
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Median Tree:  A left-balanced kd-tree in which the the n points belonging to a parent node are split 

almost exactly in half between the two child nodes.  Given a current splitting axis, the median point is 

found, whose associated cutting plane separates the left and right child nodes into having ⌈𝑛/2⌉ and 

⌊𝑛/2⌋ = 𝑛 − ⌈𝑛/2⌉ points respectively.  Informally, at most there is a difference in size of one point 

between the left and right child nodes. 

Member Function:  A function associated with an object-oriented class that is used to access or 

manipulate the objects specific data. 

Memory Alignment:  See alignment. 

Memory Constraints:  Various hardware limits on sizes, access speeds, transfer rates, cache-line sizes, 

etc. for each specific type of memory in a specific memory architecture. 

Memory Hierarchy:  A memory hierarchy in computer storage is a multi-level storage scheme which 

distinguishes each level in the hierarchy by its access speed.  Each type of memory has many properties and 

performance characteristics of which the three most important are speed, size and price.  Modern memory 

hierarchies typically have four main levels which themselves are often sub-divided into smaller hierarchies.  

1) Registers 2) On-Chip Cache 3) On-line Main Memory (RAM), 4) Off-line file-based storage (hard 

drives).  The top most level is usually the fastest, smallest, and most expensive.  Each subsequent level is 

usually slower, larger, and less expensive than the previous level.  The overall goal is to provide a memory 

system with amortized memory access speeds almost as fast as the fastest level but with an amortized cost 

per byte almost as low as the cheapest level of the hierarchy. 

Memory Sub-system:  The portion of a computer system (or chip) responsible for moving instructions 

and data between memory and the computational processing cores.  Modern memory sub-systems often 

include connections to I/O devices such as graphics cards, disk drives, and networks.  Modern memory sub-

systems are typically implemented as a memory hierarchy which includes support for caching. 

Memory Wall:  A limit on parallel scalability.  Memory bandwidth (and more generally communication 

bandwidth) and latency is not scaling at the same rate as computational bandwidth.  See also power wall. 
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Metaprogramming:  The use of one program to analyze, generate, manipulate, and/or transform other 

programs.  See also generic programming and template metaprogramming. 

Message Passing:  See remote message passing. 

Message Passing Interface:  The message passing interface (MPI) is a standardized and portable 

remote message-passing system designed to function on a wide variety of parallel computers.  The standard 

defines the syntax and semantics of a core of library routines useful to a wide range of users writing parallel 

programs based on remote message-passing in different computer programming languages such as Fortran, 

C, C++, and Java.  This standard has fostered the development of a parallel software industry, and 

encourage development of portable and salable large-scale parallel applications. 

Method:  See member function. 

MIMD:  A category in Flynn’s taxonomy where processing occurs using multiple data streams and 

multiple instruction streams in parallel.  This model supports task-level parallelism.  MIMD is inherently 

more flexible than SIMD and thus more generally applicable to any algorithm.  But MIMD is also 

inherently more expensive than SIMD as well.  Beowulf clusters, Clouds, and Grids are all examples of 

MIMD computers that exploit request-level parallelism. 

Minimal kd-tree:  A minimal kd-tree uses exactly n points re-ordered as kd-tree search nodes to 

represent the n points contained in a search set S.  Note: This doesn’t use a linear O(n) amount of points but 

exactly n points. 

MISD:  A category in Flynn’s taxonomy where a single data stream is executed in parallel on multiple 

instruction streams.  This category is seldom used.  No commercial architecture has been built using this 

model to date.  The only partially related example I can think of is that the Space Shuttle executes three 

similar programs on three different computers which then vote (majority wins) in order to hopefully avoid a 

catastrophic software or hardware bug in any one system crashing the shuttle. 

Monoid:  An associative operator in some domain that has an identity element. 

Moore’s Law:  Describes a long-term trend that the number of transistors that can be incorporated 

inexpensively on an integrated circuit chip appears to double approximately every 2 years.  It is named for 
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Intel co-founder Gordon Moore who first described this trend in a 1965 paper.  This law is often loosely 

(and incorrectly) used to describe any form of computational improvement that appears to grow 

exponentially over time. 

Motif:  Sometimes used as a synonym for pattern. 

MPI:  See message passing interface. 

Multi-computer Machine Model:  An abstract model of a parallel computer architecture for 

programmers.  Under this model, a parallel computer is composed of several smaller computers.  This 

model generally refers to an architecture in which each processor has its own stand-a-lone memory as 

compared to multiple processors with a shared memory.  Contrast with the von Neumann machine model.  

See also multi-core, the RAM machine model and the PRAM machine model. 

Multi-Core:  A processor with multiple parallel cores.  Each core supports execution of at least one 

hardware thread.  Typically these multiple cores have a shared memory. 

Multi-Core Era:  Time period after which chip designs shifted away from frequency scaling and shifted 

into adding more parallel cores onto each chip.  This era started in 2005 after chip architectures hit a power 

wall in 2004.  See also Frequency scaling era. 

Multi-Issue Execution:  A type of ILP, also known as super-scalar, where each core can dispatch more 

than one instruction per clock cycle.  Multiple independent instructions are dispatched and executed in 

parallel on multiple redundant functional processing units (ALU’s & FPU’s).  This is similar in concept to 

having multiple assembly lines on one factory floor.  The instruction scheduler must be able to detect 

dependencies between instructions and only schedule multiple independent instructions when safe to do so.  

See also pipelining, out-of-order execution and simultaneous multi-threading. 

Multi-ported Memory:  Multi-ported memory allows multiple reads/writes to occur in parallel when 

accessing the memory system for faster access and transfer speeds. 

Multi-threading:  With multi-threading, also known as thread-level parallelism, multiple active threads 

from a pool of thread are mapped onto and executed on multiple cores in parallel.  Multi-threading can also 

be executed on a single-core system using time-slice multiplexing (multi-tasking) to switch between 
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threads frequently.  This results in logical concurrency not true parallelism but if the switching is fast 

enough it will appear to an end-user that multiple applications are running in parallel on the machine.  

Multi-threading with more threads than cores enables latency hiding for better system performance by 

avoiding idle waiting. 

Mutex:  Three similar definitions:  1) Short-hand for /mutual exclusion/.  2) Synonym for a lock object.  

3) A specific type of lock object. 

Mutual Exclusion:  With Mutual exclusion, Gate keeper objects serialize access to a section of code 

and/or data objects.  Mutual exclusion includes objects such as Mutex’s, semaphores, and atomic 

instructions.  Protected code must be carefully written to ensure serialized access across parallel threads 

while avoiding concurrency problems like deadlock, livelock, and resource starvation. 

Nearest Neighbor Search:  With a nearest neighbor (NN) search, each query point is matched to the 

closest point (object) in a point cloud under some distance metric (such as Euclidean distance).  This is an 

important problem for many different areas of computer science, including computer graphics, machine 

learning, pattern recognition, statics, and data mining.  Specific types of NN searches include Query 

Nearest Neighbor (QNN), k Nearest Neighbor (kNN), All Nearest Neighbor (All-NN), All k-nearest 

neighbors (All-kNN), Range Query Nearest Neighbor (RNN), and Approximate Nearest Neighbor (ANN). 

Nesting Pattern:  A pattern that supports the ability to hierarchically compose other patterns. 

Nested Reduce:  A GPU implementation pattern that combines Serial Reduce & Warp Reduce building 

blocks in a nested manner to reduce a large run of n elements to a single total sum. 

Nested Scan:  A GPU implementation pattern that combines Serial Scan, Warp Scan, & Run Update 

building blocks in a nested manner to scan a large run of n elements. 

NN:  See Nearest Neighbor Search. 

Node:  3 different definitions:  1) A node is a stand-a-lone “computer in a box”.  Each node usually 

consists of multiple processing cores, accelerators (GPUs), storage, and network support.  Nodes are often 

networked together to comprise a cluster, cloud, grid, or super computer.  2) A node is a data structure 

containing a data element plus one or more links (pointers or references).  A node can be used to create 
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lists, trees, and graphs.  3) An axis-aligned geometric cell used within a spatial partitioning data structure, 

such as a kd-tree. 

Non-blocking Algorithm:  A non-blocking algorithm ensures that threads competing for a shared 

resource do not have their execution indefinitely postponed by mutual exclusion.  In modern usage, an 

algorithm is non-blocking if the suspension of one or more threads does not stop the progress of the 

remaining threads.  These algorithms are often designed to avoid using lock’s and often use simple atomic 

operations, such as compare-and-swap, instead.  See also lock-free and wait-free algorithms. 

Non-deterministic:  Exhibiting a lack of deterministic behavior or ordering.  So output results can vary 

from run to run of a non-deterministic program using the same input each time.  Contrast with 

deterministic. 

Non-Uniform Memory Access (NUMA):  A multi-level memory system where different levels of the 

memory sub-system have different access rates.  This results in varying performance for a program 

depending on where the data is physically located.  Most modern computers are NUMA. 

NO-OP:  See NOP. 

NOP:  A NOP, or NO-OP, is a special do-nothing instruction.  The instruction proceeds through an 

instruction processing unit (pipelined, out-of-order, multi-issue, multi-threaded, …) without doing any 

useful work or causing any side-effects.  This type of instruction is useful as it is often used by hardware 

(or compiler) schedulers to delay execution (by stalling) for correct execution behavior in the presence of 

various hazards caused by parallel instruction processing.  However, each NOP issued wastes a machine 

cycle which results in core under-utilization. 

nWarps:  The ‹nWarps› template parameter represents thread-level parallelism on warp-threaded 

hardware.  This parameter allows experiments on TLP to find the best performance.  The programmer must 

use generic programming techniques to support a differing number of thread warps in a small range, 

typically ‹nWarps=[1-8]›, See also nWork, WarpSize, and data block. 

nWork:  The ‹nWork› template parameter represents instruction-level parallelism on warp-threaded 

hardware.  This parameter allows experiments on ILP to find the best performance.  The programmer must 
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use generic programming techniques to support a differing number of work items per thread in a small 

range, typically ‹nWork=[1-8]›, See also nWarps, WarpSize, and data block. 

Objects:  Objects are a language construct that associate a group of data fields with the corresponding 

code (functions) intended to act on and manage that group of data.  Multiple functions may be associated 

with an object and those functions are called the methods (or member functions) of that object.  Objects are 

considered to be members of a class of objects.  And classes in turn can be arranged in a hierarchy in which 

subclasses inherit and extend the features of superclasses.  That state of an object may or may not be 

directly accessible; in many cases access to an objects data fields may only be permitted through its 

methods. 

Object-Oriented Programming:  Object-oriented programming (OOP) is a programming paradigm based 

on objects, which contain both state (data described by data structures) and behavior (methods implemented 

as code).  Each object is a specific instance of a class which describes both the data structure and methods.  

A class is an abstract data type with support for polymorphism, inheritance, encapsulation, and 

information hiding. 

Observed Speedup:  The speedup of parallel code over the equivalent serial code for solving the same 

problem, which is defined as 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

 

Occupancy:  The ratio of actual thread warps (known as active warps) that are tracked and scheduled on 

an SM(X) core to the theoretical maximum number of thread warps that could be tracked and scheduled on 

an SM(X) core for a given GPU architecture and GPU Kernel.  Occupancy = (#ActiveWarps / #MaxWarps). 

Occupancy Constraints:  Various hardware constraints (number of registers, shared memory 

allocations, etc.) that limit the number of active warps on an SM(X) core, thus limiting occupancy. 

Octree:  An octree is a hierarchal spatial partitioning data structure used to speed up geometric searches.  

Each tree node has exactly eight children.  Octree typically are used to partition 3D space by recursively 

dividing the starting bounding cube into 8 octant cubes.  See also BSP tree, quad-tree, and kd-tree. 

Offload:  Placing part of a programs computation on an attached device such as a GPU or co-processor. 
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Offline:  An algorithm which runs independently of the main CPU.  For instance on an accelerator such as 

a GPU or co-processor. 

Offside Node:  In a kd-tree nearest neighbor search, the offside node is the left or right child node that 

does not contain the current query point of interest.  Contrast with onside node. 

One-to-One:  A mapping relationship where a source object is related to only one destination object in a 

set, table, or array of parallel objects.  See also cardinality, one-to-many, many-to-one, and many-to-many. 

One-to-Many:  A mapping relationship where a source object is related to many destination objects in a 

set, table, or array of parallel objects.  See also cardinality, one-to-one, many-to-one, and many-to-many. 

One-to-Several:  A special case of a mapping relationship where a source object is related to a small 

number of destination objects in a set, table, or array of parallel objects.  See also cardinality. 

Online:  An algorithm which can begin executing before all of its input data has been read. 

Onside Node:  In a kd-tree nearest neighbor search, the onside node is the left or right child node that 

contains the current query point of interest.  Contrast with offside node. 

OpenACC:  Open Accelerators (OpenACC) is a programing standard for parallel computing developed 

by Cray, CAPS, Nvidia, and PGI.  The standard is designed to simplify parallel programming of 

heterogeneous CPU/GPU systems.  OpenACC is similar to OpenMP and will be merged into a future 

release of OpenMP. 

OpenCL:  Open Computing Language (OpenCL) was originally a standard defined by the Khronos group 

for supporting parallel and vectorized computations on graphics processors and attached co-processors.  

However, OpenCL has also been extended to specify parallel and vectorized computations on multicore 

host processors as well. 

OpenMP:  Open Multi-Processing (OpenMP) is an API that supports multi-platform shared memory 

multi-processing programming in the C, C++ and Fortran programming languages.  It is available on most 

processor architectures and operating systems (Solaris, AIX, HP-UX, Linux, Max OS X, and Windows).  It 

consists of a set of compiler directives, library routines, and environment variables that influence run-time 

behavior.  OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface 
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for developing parallel applications for platforms ranging from the standard desktop computer to the 

supercomputer.  OpenMP is run as a nonprofit technology consortium that includes many major computer 

hardware and software vendors (including AMD, IBM, Intel, Cray, HP, Fujitsu, NVIDIA, NEC, Red hat, 

TI, Oracle, and more…). 

Optimization Techniques:  A collection of programming (or compiler) techniques meant to improve 

the performance of a section of code, a function, a class, a module, or an entire program.  See also loop 

optimizations, data-flow optimizations, and inlining. 

Out-of-order Execution:  With out-of-order execution, the hardware is allowed to re-organize the 

original program (instruction stream) order.  This is allowed as long as re-arranging the order of 

instructions will not change the correct behavior of the program as compared to an in-order execution.  

Advanced hardware ILP techniques such as score-boarding and Tomasulo’s method implement out-of-

order execution for more efficient utilization of the processing cores.  Software compilers can build 

instruction dependency graphs as DAGs and then perform a topological sort to find valid instruction re-

orderings for better ILP performance.  Contrast with in-order execution.  See also pipelining, multi-issue 

execution, and simultaneous multi-threading. 

Output-Dependency:  See write after write (WAW). 

Over-decomposition:  A parallel programming style where many more tasks, work-items, or data runs 

are specified than there are worker threads to execute them.  On the positive side, this can benefit load 

balancing and latency hiding.  On the negative side, this can result in increased parallel overhead. 

Over-subscription:  A parallel programming style where many more threads (or warps) are scheduled to 

run than there than there are processing cores to support them.  On the positive side, this can help with 

latency hiding as individual threads (warps) stall.  On the negative side, this can result in increased parallel 

overhead. 

Pack Pattern:  A data management pattern where certain elements of an array are discarded and the 

remaining elements are placed in a contiguous sequence, maintaining the relative order of the original 

sequence.  Compare with the expand pattern. 
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Pad and Rake:  A technique for mitigating bank conflicts.  Warp Padding adds an extra data element 

(column) before or after each data warp (32 elements).  This works well for sequential data runs that are a 

power of two in length, k=[2,4,8,16,32].  Run padding adds an extra data element (column) before or after 

each individual per-thread run.  This works well for sequential data runs that are even in length, 

k=[6,10,12,14,18,20,…,30].  Raking changes indices to skip over the extra pad columns during indexing 

operations.  Note:  Sequential runs which are odd in run length, k=[1,3,5,7,9,11,…,31] do not cause bank 

conflicts and thus do not require the Pad and Rake technique.. 

Padding:  Extra unused pad columns are inserted into shared memory arrays to prevent bank conflicts 

when loading short sequential runs for each thread in a warp.  This works quite well for runs that are 

powers of two [2,4,8,…,32].  Padding requires raking to skip over the extra pad columns during indexing 

operations.  See run padding and warp padding. 

Page: The granularity at which virtual to physical address mapping is done in virtual memory 

management.  Within a page, the mapping of virtual to physical memory addresses is continuous. 

Page Thrashing:  Page thrashing, also known as TLB Thrashing, occurs when a program spends most of 

its time loading and reloading virtual pages into physical memory instead of getting useful work done.  

This is typically caused by a large program (larger than can fit into physical memory) with a frequently 

accessed working set of active pages which get mapped from their own unique virtual addresses onto the 

same physical addresses.  The O.S. keeps ping-ponging between evicting and reloading a small set of 2 or 

more logical pages onto the same physical page when instructions (or data) in each individual page are 

referenced. 

Parallel:  Physically happening simultaneously.  Two or more threads (or tasks) that are all actually doing 

work that overlaps at some point in time are considered to be operating in parallel.  When a distinction is 

made between concurrent and parallel, the key is whether at any point in time the work was done 

simultaneously.  Multi-tasking operating systems have supported concurrency for decades via multi-

threading even when simultaneous execution was impossible because there was only one processing core. 
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Parallel Algorithm:  With Parallel Algorithms, the depth efficiency is logarithmic, D(n) ≈ O(log n).  The 

programmer typically deals with a divide and conquer type problem where there is a need to coordinate 

work across parallel threads during the individual steps of the parallel algorithm. 

Parallelism:  With parallelism, a programmer or system uses multiple resources concurrently to solve 

problems to increase performance and/or throughput.  There are many types of parallelism including 

Instruction-, Thread-, Task-, and Data-Level parallelism. 

Parallelization:  The act of transforming serial code into parallel code.  The parallelization of a program 

allows at least parts of it to execute in parallel. 

Parallel Overhead:  The amount of time spent coordinating parallel threads (or tasks) as opposed to 

doing useful work solving the original problem.  Parallel overhead can be caused by factors such as 

creating threads, data communications between threads, synchronizing execution between threads, and 

terminating threads.  In addition, extra overhead can be imposed by parallel compilers, libraries tools, 

operating system, etc. 

Parallel Data Management Patterns:  Parallel programming patterns for managing data.  Examples 

of parallel data management patterns include – gather, scatter, pack, pipeline, and geometric decomposition 

including (stencil, partition).  See also serial data management pattern. 

Parallel Pattern:  Programming patterns arising specifically in support of parallel computations.  

Examples of parallel patterns include the map pattern, the reduction pattern, the scan pattern, the fork-join 

pattern, and the partition pattern. 

Parallel Program:  A parallel program consists of multiple work-items (tasks or runs of data) executing 

in parallel on multiple cores. 

Parallel Slack:  The amount of “extra” parallelism available above the minimum necessary to use all the 

available parallel computing resources.  See also over-decomposition and over-subscription. 

Parameter:  A value, reference to a value, or a pointer to a value(s) that is passed into a function, 

procedure, subroutine, command or program that represent input element(s) that need to be processed; 
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represent control elements that signal how other parameter(s) should be processed; and/or represent output 

element(s) where processed results should be stored.  See also by value, by pointer, and by reference. 

Partition Method:  A sub-routine method used by both Quickmedian and Quicksort.  Given an input set 

with a sub range [a, b], and a pivot value (pv) randomly chosen from the range of input elements.  The 

partition method distributes all the elements in the range [a, b] into three data sets {Left:  all elements less 

than pv, Middle: all elements equal to pv, and Right: all elements greater than pv }.  This method takes 

linear time O(n). 

Partition Pattern:  A pattern that decomposes the computational data domain for an algorithm into a set 

of non-overlapping subdomains called runs, tiles, or blocks.  Runs are typically 1D, tiles are typically 2D, 

and blocks are typically 3D.  Input data and output results may use different partition patterns as 

appropriate.  See also the geometric decomposition pattern which is similar but allows overlap between 

sub-domains. 

Pass:  For Radix Sort, given data elements represented by numeric keys from a range [0, m), with a fixed-

size radix with digits in the range [0, d), then the full radix sort will take k = ⌈log𝑑 𝑚⌉ passes to fully sort, 

where each sorting pass (one pass per digit in the key) is done using a stable sort such as Counting Sort. 

Pattern:  A pattern is a recurring combination of data and task management, separate and distinct from 

any specific algorithm or data structure.  Patterns are universal in they apply to and can be used in any 

programming system.  Patterns are also known as dwarfs, motifs, and algorithmic skeletons.  Patterns are 

not necessarily tied to any hardware architecture, programming language, or operating system.  Though 

features of the architecture, language, or OS may make implementing patterns easier in that specific 

environment.  See also parallel pattern. 

PCIe bus:  A peripheral bus supporting relatively high bandwidth and DMA, often used for attaching 

specialized co-processors such as GPUs and NICs to the motherboard. 

Peak Performance:  The performance level (throughput, bandwidth) that a computer is guaranteed never 

to exceed because of hardware limitations. 
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Permutation Scatter Pattern:  A form of the scatter pattern in which multiple parallel writes to a 

single storage location are disallowed.  This form of scatter is deterministic but can only be considered safe 

if collision are checked for and prevented. 

Pipeline Delays:  Short stalls in instruction processing caused by various pipeline hazards.  The most 

common delay is caused by instruction dependencies (RAW). 

Pipeline Parallel Pattern:  A set of data processing stages connected in series, generally the output of 

one stage becomes the input of the next stage in the sequence.  Each stage of the pipeline can be scheduled 

onto its own thread allowing the data elements in different stages of the pipeline to be processed 

concurrently.  FIFO queues can be used to help smooth out performance differences between different 

stages of the pipeline.  Many algorithms can be quite naturally described as simple pipelines.  A pipeline 

with only k stages only scales naturally up to k threads.  To scale beyond the number of pipeline stages, it is 

necessary to exploit other forms of parallelism within each pipeline stage. 

Pipelining:  Two definitions:  1) Pipelining divides tasks (or instructions) into multiple sequential stages.  

Work items are processing sequentially with the output from one stage becoming the input into the next 

stage similar to an assembly line.  2) Pipelining is a form of instruction-level parallelism.  With pipelining, 

the chip architects breaks each computational instruction into multiple processing stages.  Each 

heterogeneous stage is performed by different processing units.  The data operands stream through the 

hardware pipeline much like an assembly line. 

Pipelined Processor:  A pipelined processor can execute up to k instructions in parallel using k 

instruction processing stages laid out in a sequential pipeline where the output of each stage becomes the 

input to the next stage.  This is similar in concept to a factory assembly line.  The MIPS architecture is a 

well-known example architecture with 5 heterogeneous instruction processing stages: Instruction Fetch, 

Instruction Decode, Execute, Memory, and Write-Back often abbreviated as IF, ID, EX, MEM, WB. 

Pivot Value:  Part of the partition method (used in quickmedian and quicksort), where an arbitrary value 

from the current partition range [min, max] is chosen as the pivot.  The rest of the elements in the current 

partition range are then distributed into three data sets those less-than the pivot value, those equal to the 

pivot value, and those greater than the pivot value. 
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Point to Point Coordination:  Involves two threads (or tasks) communicating with each other with one 

thread acting as the producer of data and the other thread acting as the consumer of data. 

Point Location Problem:  Given a spatial partitioning data structure, and a query point (q) to search 

for, the point location problem wants to find the geometric region (cell or node) within the data structure 

which actually contains q.  This is a simpler search problem then nearest neighbor search. 

Polymorphism:  A polymorphic data type or object-oriented class is one whose operations (or methods) 

can also be applied to the data values of other different but semantically compatible data types or classes.  

There are many different ways of achieving polymorphism including function overloading, generic 

programming, and inheritance between parent and child classes.  See also object-oriented programming. 

POSIX Threads:  POSIX threads, often referred to as Pthreads, is a POSIX standard API for creating 

and managing threads as well as creating and managing locks to manage concurrency issues.  

Implementations are available on many Unix-compatible operating systems such as FreeBSD, NetBSD, 

OpenBSD, Linux, Max OS X, Solaris.  DOS and Microsoft Windows implementations also exist. 

Power Wall:  A limit to the practical clock rate (frequency) of serial processors caused by the non-linear 

relationship between power and switching speed which limits parallel scalability.  Computational 

performance (throughput) doubled approximately every 2 years from frequency scaling alone until chip 

architectures hit a power wall around 2004.  This power wall means that running transistors faster than ~4 

GHz generates more heat than simple air flow cooling (IE fans) can safely dissipate.  Since 2004, most 

processors run between [1..4] GHz as a maximum upper bound on frequency to avoid overheating.  See 

also memory wall, frequency scaling era, and multi-core era. 

PRAM Machine Model:  An abstract extension of the serial RAM machine model to support parallel 

programming.  Under this model, one assumes that parallel random access to any data element in memory 

(storage) can be done in a constant amount of time.  Four variations model whether parallel reads and 

writes from/into memory are exclusive or concurrent, only 3 variations are actually used in practice – 1) 

Exclusive Read Exclusive Write (EREW), 2) Concurrent Read Exclusive Write (CREW), 3) Concurrent 

Read Concurrent Write (CRCW). 
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Pragma:  A form of program markup used to give hints or directions to a compiler but not change the 

semantics of a program written in a particular programming language.  Also known as a compiler directive. 

Precise Exception:  In a pipelined (or parallel) instruction processing architecture, A precise exception 

means that a hardware exception has just occurred and all instructions in the stream before the exception 

have been successfully executed and all instructions after the instruction that caused the exception have not 

yet been executed.  Modern processing cores require support for precise exceptions to support virtual 

memory.  To handle precise exceptions, the processing core must commit changes in the original sequential 

program order.  Many pipelined architectures make exceptions precise by cancellation. 

Precision:  The detail to which a number (typically floating point) is expressed.  Lack of precision is the 

source of rounding errors in computations.  The fixed and finite number of bits used to store a number 

requires some approximation of the true underlying value.  These errors accumulate as multiple 

computations are made to the data in operations such as reductions and scans.  Precision is measured in 

term of the number of digits that contain meaningful data, known as significant digits.  Significant digits in 

computer science are often measured in bits because most floating-point arithmetic is done in radix-2.  

Radix-10 arithmetic should be expressed in terms of decimal digits when used. 

Pre-computation:  Precomputation is an optimization pattern where the programmer writes code that 

precomputes a value (or range of values) ahead of time which can then be stored in a look-up table and then 

reused at runtime for faster performance.  For example, one might precompute the cosine of an angle at 100 

separate angles between [0, 𝜋/2) and then linearly interpolate between two bounding angles around the 

requested angle to get a close approximation to the actual results.  This is a classic time-space trade-off and 

also a performance-accuracy tradeoff. 

Predication:  GPUs support conditional branching across thread warps using serialization via 

predication.  Predication supports a special active/inactive flag across all 32 threads in a warp for all ISA 

instructions.  Only active threads will actually execute the predicated instruction.  Inactive threads will 

suppress any hardware results, effectively treating the instruction as a NOP instead.  Branch outcomes 

{true, false} are used to set the predicate warp flags on a per-thread basis when executing the {true} and 

{false} sections of code associated with a branch condition. 
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Pre-emptive Multi-tasking:  With pre-emptive multi-tasking, The scheduler (hardware or software) 

tries to guarantee each thread a regular “slice” of processing time in order for each thread to make forward 

progress on its own execution.  The system scheduler may pre-empt any thread at any time by pausing it, 

and context switching to another active thread of execution.  Pre-emption is usually done using an interrupt 

mechanism supported by the hardware (and/or operating system).  Most modern operating systems support 

pre-emptive multi-tasking for multi-threading.  See also cooperative multi-tasking and time-slice. 

Pre-fetching:  A programming optimization technique for increasing memory or I/O performance by 

fetching data shortly before the code actually needs it so that it will already be in faster cache memory 

when we actually do need it.  This is a form of latency hiding.  Pre-fetching requires a predictable access 

pattern for programmers to take advantage of.  Care must be taken not to pre-fetch too much data otherwise 

it may be evicted by the time we actually try to use it.  Too much pre-fetching could even lead to decreased 

performance due to cache thrashing. 

Principle of Locality:  See locality.  

Principle of Mathematical Induction:  Proving a predicate true for all cases can be done using the 

principle of mathematical induction as follows:  Let P(n) be a predicate, where n is an arbitrary positive 

integer.  Suppose we can prove the following two statements.  1) Base Case:  P(n) is true for all n ≤ n0, 

where n0 is a small integer (typically one).  2) Inductive Step:  Whenever P(k) is true, it follows that P(k+1) 

is also true.  Then it follows that P(n) is true for all positive integers n.  See also induction. 

Priority Scatter Pattern:  A deterministic form of the scatter pattern in which an attempt to write 

multiple values in parallel to a single storage location results in one value (and only one value) being stored 

in the location.  The value picked is based on some priority function, with all other values being discarded.  

The unique priority given to each parallel write in a priority scatter can be assigned in such a way that the 

result is deterministic and equivalent to a serial implementation. 

Problem:  A question, statement, or matter which seeks some solution.  The problem is often uncertain or 

difficult.  For mathematical problems, the solution is provided using a step by step application of 

mathematical operations resulting in a set of concrete numbers or an abstract formula.  For software 

problems, the problem is often described in terms of transforming some set of input data into another set of 
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output results.  The software solution is provided using step by step computations encapsulated as a 

program.  See also algorithms, design patterns, and implementation. 

Process:  An application-level unit of parallel work.  A process has its own thread of control is typically 

managed by the operating system.  Usually, unless special coordination logic is written into each program, 

a process cannot access the memory of other processes. 

Producer-Consumer:  A relationship where the producer creates data to pass to the consumer which 

consumes it in order to do further processing.  If data is not consumed immediately on production, it must 

be buffered.  See also point to point coordination. 

Program:  A program, also called an executable or binary, is a sequence of machine instructions, written 

to perform some specified task to solve a problem using a computer.  The program is usually written by 

programmers as human readable source code in some higher level language and then compiled and linked 

into the actual machine language program targeted at a specific computer architecture.  The program can 

then be run on a computer to solve the original problem.  See also ISA, solution, algorithm, design pattern. 

Programming:  Computer programming -- also known as coding, software development, or software 

engineering -- is the iterative process of writing and editing source code to solve some set of tasks or 

problems.  The process involves designing, writing, testing, debugging, profiling, and maintaining the 

source code for computer programs.  Designing and writing source code often requires expertise in 

programming languages, formal logic, algorithms, data structures, and specialized knowledge of the 

application domain.  Good programmers follow fundamental design properties when developing their code.  

These properties include – correctness, robustness, usability, readability, portability, maintainability, and 

efficiency. 

Pseudo-code:  Pseudo-code is an informal language-agnostic high-level description in English of an 

algorithm, this description can then be used to implement the algorithm in any programming language.  It 

uses the structural conventions of a programming language (selection, iteration, sequences, etc.) but is 

intended for human reading and understanding.  Pseudo-code often omits minor details such as variable 

declarations, parameter lists, sub-routine listings, etc.  Pseudo-code often substitutes brief one line 

descriptions of what the code should do instead of the actual code.  For example:  “Set array to zero”. 
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Pthreads:  see POSIX threads. 

Pure Function:  A function whose output depends only on its input and that does not modify any other 

system state (I.E. the function doesn’t cause any side effects). 

QNN:  See Query Nearest Neighbor. 

Quadtree:  A quadtree is a hierarchal spatial partitioning data structure used to speed up geometric 

searches.  Each tree node has exactly four children.  Quadtrees typically are used to partition 2D space by 

recursively dividing the starting bounding rectangle into 4 quadrant child rectangles.  See also spatial 

partitioning data structure, octree, and kd-tree. 

Query Nearest Neighbor:  A type of Nearest Neighbor Search (NN) where each query point in a query 

set Q is matched to the closest point (k=1) in a search set S under some distance metric.  See also kd-tree. 

Query Point:  A specific d-dimensional point for which to find the closest k neighboring points from 

some search set S containing n points.  A spatial portioning data structure is often used to speed up the 

geometric search.  See also Nearest Neighbor Search. 

Query Set:  A set Q containing m query points for which to find the closest k neighboring points from 

some search set S containing n points.  A spatial partitioning data structure is often used to speed up the 

geometric search.  See also Nearest Neighbor Search. 

Queue:  A basic data structure that stores data elements (commands, objects) as nodes in a list.  Elements 

(nodes) are typically inserted at the back of the list and removed from the front of the list resulting in an 

FIFO processing order for data elements in the queue.  See also Deque and Stack. 

Quickmedian:  A selection algorithm used to choose the kth ordered point from a set of n unordered 

points.  This is implemented using the partition sub-routine from quicksort.  The entire algorithm takes 

linear time O(n) on average and quadratic time O(n2) in the worst-case. 

Quicksort:  An comparison-based sorting algorithm to efficiently sort unordered data.  This is 

implemented using a partition sub-routine, the entire algorithm takes log-linear time O(n log n) on average 

and quadratic time O(n2) in the worst case. 
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Race Condition:  Non-deterministic behavior in a parallel program that is generally considered a 

programming error.  A race condition occurs when parallel tasks perform operations at the same time on 

the same memory location and at least one of the operations is a write.  Code with a race condition may 

often operate correctly then mysteriously fail in unpredictable ways.  Programmers can prevent race 

conditions by using locks to serialize access to the memory locations in contention.  See also concurrency 

issues. 

Radix:  The base of a system of numeration.  For example:  a base 10 radix allows digits in the range [0,9) 

whereas a base 16 radix allows digits in the range [0,15).  See also Radix Sort. 

Radix Sort:  With radix sort, an unordered integer sequence A is sorted into an ordered integer sequence S 

in k passes (with one pass per digit in the maximum key).  There are two types of Radix Sort, least-

significant-digit (LSD) and most-significant-digit (MSD).  With LSD radix sort, on each pass, the n keys 

are counted and distributed into d sorted runs based on the current digit from each key.  The d runs are then 

collated in monotonically increasing digit order, each pass is usually implemented using Counting Sort.  

Given m is the maximum key size, and d is the maximum digit value of the radix (typically d is much 

smaller than m, d ≤ m) then the number of passes can be computed as k = ⌈log𝑑 𝑚⌉ or 𝑘 = ⌈
𝐵

𝑏
⌉, with B = the 

maximum bits per integer in a fixed-size range [0, m), and b = the maximum bits per radix in a range [0, d). 

Raking:  Raking is an indexing technique to skip over unused pad columns (see padding) inserted to 

prevent bank conflicts when working with short sequential per-thread data runs.  The basic idea is to 

convert from a 1D index without padding (stride = WarpSize [32]) to a 2D index (warps & rows) and then 

convert back to a 1D index with padding (stride = (WarpSize+PAD) [33]). 

Range Query Nearest Neighbor:  A type of Nearest Neighbor Search (RNN) which returns all points 

from a search set S which are covered by each individual query region QRi belonging to a query set QR (for 

Query Region).  This causes a varying number of search results for each query region.  Each individual 

query region is typically defined as a d-dimensional hyperbox or hyperball (of radius ri). 
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RAM:  Random-access memory is a form of computer data storage.  A random-access device allows 

stored data to be accessed directly in any random order.  Modern DRAM actually supports reading not as 

random machine words but in small parallel chunks called bursts. 

RAM Machine Model:  An abstract extension of the von Neumann machine model for programmers.  

Under this model, one assumes that random access to any data element in memory (which contains M 

elements) can be done in a constant amount of time Θ(1).  Actual architectures take O(k + log M) time to 

access a sequential run of k elements in memory and O(log log M) time to execute individual instructions in 

registers.  To complicate matters further, modern computers actually use a multi-level memory hierarchy 

with varying access costs at each level and with support for caching at higher levels.  Nevertheless, the 

constant time assumptions on memory access and instruction execution are standard and useful fictions for 

reasoning about algorithms on von Neumann machines.  See also the Multi-computer machine model and 

the PRAM machine model. 

Ramp-Down Time:  Idling which happens when an instruction pipeline finishes up by draining out the 

last few instructions in the pipeline.  See also ramp-up time and idle cycles. 

Ramp-Up Time:  Idling which happens when an instruction pipeline first starts filling up.  An k stage 

pipeline takes at least k cycles to fill up fully.  See also ramp-down time and idle cycles. 

Reach-Back:  An inclusive scan can be converted into an exclusive scan by reaching back one column in 

the scan results.  For the first element in the inclusive scan (which has no previous column), the identity 

element (𝕀) should be substituted instead.  For example, the inclusive scan under simple addition with 

identity {𝕀 = 0} resulting in {1,3,6,10} can be converted into the corresponding exclusive scan as {𝕀 = 

0}+{1,3,6} = {0,1,3,6} 

Recurrence Pattern:  A sequence defined by a recursive equation.  In a recursive equation, one or more 

initial terms are given and each further term of the sequence is defined as a function of the preceding terms.  

Implementing recurrences with recursion is often inefficient since the recursion tends to re-compute 

intermediate solutions that have already been computed on other recursion chains.  A loop with 

dependencies between iterations can also be described as a recurrence.  In the case of a single loop, if the 

dependence is associative, it can be parallelized using the scan pattern.  If the dependence is inside a multi-
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dimensional set of nested loops with dimension n, the entire nested loop can always be parallelized over n-

1 dimensions using a hyperplane sweep.  In addition nested loops can often be parallelized using the fork-

join pattern. 

Recursion:  The act of a function being re-entered while an instance of the function is still active in the 

same thread of execution.  In the most common case, a function directly calls itself.  Recursion is often 

supported by storing function state for each function instance on a stack.  Bounding the depth of the 

recursion is important to avoid infinite recursion and unbounded stack growth.  See Recursion. 

Reduce:  An operation applied to a collection of values to merge all values down to a single value.  A 

simple example is computing a total sum on n numbers.  This can be done in serial or parallel. 

Reduce-than-Scan:  A 3-level GPU implementation pattern on n elements where 1) Do a serial reduce 

on short runs of [n/p] elements per thread in parallel to generate run sums 2) Do an inclusive scan on the 

run sums and then reach back one column to get inclusive prefix sums for each run.  3) Do a scan on each 

run from step 1 and also do a run update by adding in the missing run prefixes from step 2 to each element 

in the run.  This pattern requires 3 I/Os per data element on average to fully scan the data (1 read for the 

reduce (step 1), 2 (1 R + 1 W) for the scan (step 3).  This parallel scan pattern is typically implemented 

using a hierarchical or nested scan. 

Reduction Pattern:  A collective coordination model, where all threads (or tasks) cooperate to merge 𝑛 

results down to a single result.  The merging is typically done using binary operations to combine values in 

pairs.  The binary merging operation should be associative in order to allow parallelization of the process.  

It is often also useful if the binary operation is commutative, which allows data re-ordering.  Integer 

addition and multiplication is both associative and commutative.  Floating-point addition and 

multiplication, however is not due to truncation and round-off errors.  Using the reduction pattern on 

floating-point data may lead to non-deterministic results for parallel algorithms and different results 

between the serial and parallel implementations of the same algorithm.  Though still useful, the user must 

be aware that the floating-point reductions are approximate and not exact. 
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Reduction Variable:  A variable that appears in a loop for combining the results of many different loop 

iterations.  For example, a variable that represents the total sum for a loop that computes the total sum of 𝑛 

values. 

Re-entrancy:  A re-entrant function is a function 𝑓 that can be paused at any point in its execution, switch 

to another thread (which may or may not call the same function), and eventually resume execution and 

complete correctly.  This means all function state (function parameters, stack variables, etc.) are thread-

local and can be correctly stored/loaded through context switching.  A re-entrant function should avoid 

static variables, global variables, or any other type of non-local state.  Alternately, non-local data can be 

made re-entrant if all access to this data is protected using mutual exclusion. 

Refactoring:  Reorganizing code to clean it up, generalize it, or make it better suited for some new design 

purpose, such as enabling cross-platform compatibility or parallelization. 

Registers:  A very fast but usually very-small on-core set of memory locations meant to be used directly 

by each processing core for maximum speed.  Registers can typically be read and written in a single 

machine cycle.  Input operands and output results are temporarily stored in registers while being processed 

by machine instructions.  Data is transferred between the core registers and memory storage using 

load/store instructions. 

Register Pressure:  The programmer has the illusion of allocating as many variables as they want as they 

write code.  However during compilation, the compiler must decide how to allocate these variables onto a 

small finite set of registers.  Register pressure is the term used when there are much fewer hardware 

registers available than would have been optimal to schedule all variables without any conflicts.  Register 

pressure means that register reloads and register spills must be used to deal with the scheduling conflicts 

between conflicting variables resulting in lower performance than optimal. 

Register Renaming:  A technique for handling WAR and WAW data hazards caused by aliasing, which 

is the unnecessary sharing of a destination (register, memory) across multiple instructions in a pipelined 

architecture.  This solution uses different destinations (registers) for the instructions in competition.  

Tomasulo’s method eliminates both WAR & WAR hazards in hardware using dynamic register renaming. 
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Register Spills:  Programs with too many variables may exceed the maximum number of registers 

allocated per-thread in concurrent thread blocks on each SM for a specific kernel on a GPU device.  CUDA 

works around having register spills by using Local memory.  Local memory is a technique where the extra 

variables are put into global memory and accessed at global memory speeds.  This enables kernel 

compilation at the cost of relatively slow I/O for the affected variables. 

Relative Speedup:  Speedup in which a parallel solution to a problem is compared to a serialization of 

the same parallel solution.  For instance, the parallel algorithm might be restricted to only using a single 

thread to serialize performance. 

Remapping Array:  Given an input array S with n points that has been re-ordered as S’ (by sorting for 

instance).  Create a secondary array I as the original indices [0, 1, 2, …, n-1] of S.  Create a remapping 

array I’ by re-ordering I in the exact same manner as S’.  This allows original elements in S to be looked up 

from search results found in S’ via the remapping array I’. 

Rematerialization:  Rematerialization is an implementation optimization, also known as re-calculating, 

where the programmer recomputes intermediate results from original inputs as often as needed.  This 

optimization pattern assumes that recomputing the intermediate results from the original input is faster than 

computing it once, storing the result, and reloading it as needed.  Contrast with Precomputation and 

reusing. 

Remote Message Passing:  A communication model where distributed memory is partitioned across 

different cores (or computer nodes) and the best way to access data on other cores (or nodes) is remotely 

using messages sent across a network.  The message transfer speed is dependent on the distance between 

nodes, network topology, and the size of the message.  Large messages are often broken into a set of 

smaller fixed size messages. 

Replicate:  Two definitions 1) To solve structural hazards in pipelined micro-architectures, architects 

often replicate functional units on a chip, IE make extra copies of functional units to eliminate competition 

between stages.  2) To increase parallelism, architects make many copies of simple chips distributed across 

a larger chip. 
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Request-Level Parallelism:  A type of parallelism which divides mostly independent read-only requests 

across multiple computing nodes.  Each request (task) is routed onto a node (server) which fulfills the 

request.  Request-Level parallelism exploits parallelism among largely decoupled tasks specified by the 

programmer or the operating system.  This type of parallelism is typical of webservers rendering webpages 

for customers surfing a company’s web-site. 

Resource Contention:  Resource contention occurs when multiple parallel threads (or tasks) all attempt 

to access the same data element, memory address, or system object at the exact same time.  Resource 

contention can result in race conditions.  Resource contention can be solved by mutual exclusion or by 

careful partitioning. 

Response Time:  The time between when a request is made and when the response is received. 

Re-using:  Re-using is an implementation optimization technique where the programmer computes an 

intermediate result once, stores it in registers (or memory) and reloads it as needed for future re-use.  This 

optimization pattern assumes that the stored value will be frequently reused (to take advantage of temporal 

locality) and that reloading the value is faster than recomputing it.  Contrast with rematerialization. 

RNN:  see Range Query Nearest Neighbor. 

Rotate Pattern:  A special case of the shift pattern that handles boundary conditions by moving data that 

moves out of range on one side back around to the other side. 

Run:  Two different definitions:  1) A single execution of a program on a computer is often called a run.  

2) A 1D sub-range of data from a larger data array.  Each 1D run is typically contiguous and sequential.  

All runs typically partition the original array using the partition pattern.  The set of runs are mapped onto 

an executed in parallel on multiple processing cores.  The processing cores typically execute the same 

program when processing the data runs.  See also block, data-level parallelism, parallel program, and tile. 

Run Padding:  With run padding, a single unused pad column is added after (before) each short data run 

to mitigate bank conflicts in shared memory.  It works on runs with even run lengths {6, 10, 12, 14, 18, 20, 

22, 24, 26, 28, 30} by effectively treating them as runs with odd run lengths instead.  Runs with even 

lengths that happen to also be a power of two {2, 4, 8, 16, 32} should use warp padding instead as it 
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requires less total padding (one pad column per data warp).  Run indices must be raked (see Pad and Rake) 

to skip over unused pad columns. 

Run Reduce:  Run Reduce, also known as reduce-reduce, is a parallel pattern for reducing a long run of n 

elements to a single sum in two parallel stages.  The reduction is done by combining pairs of elements 

using a binary sum operator.  In the first stage, n elements are partitioned across p threads into runs of ⌈
𝑛

𝑝
⌉ 

elements each.  Each of p threads then serially reduces its assigned run to a single run-sum.  In the second 

stage, a single thread serially reduces p run-sums to a single final sum.  Compare with Tree-reduce. 

Run Update:  A building block for GPU Scan used to update a short run of n =[2-32] elements with a 

common prefix value under some associative binary summation operator.  See also Serial Reduce, Serial 

Scan, Warp Reduce, and Warp Scan. 

Safety:  A system property that automatically guards against certain classes of programmer errors, such as 

race conditions. 

Saturation:  Saturation arithmetic has maximum and minimum values that utilized instead of the logical 

results when the logical results would be higher or lower respectively than the max/min values.  Numerical 

representations on computers always are limited in precision and range.  Saturation arithmetic is one way to 

ensure computations do not exceed a computers precision and range.  Saturation arithmetic for signed 

values is not associative.  Contrast with wrap-around arithmetic. 

Scalability:  A measure of the performance increase in a system as more and more parallel resources are 

added into the system. 

Scalable:  A program (or system) is scalable if its performance increases when additional parallel 

computing resources are added into the system.  In the ideal case, a parallel program will demonstrate a 

linear speedup as more parallel computing resources are added into the system.  Programs (and systems) 

often fail to achieve linear speedup due to parallel overhead or under-utilization of parallel resources. 

Scalar Processor:  Each instruction is executed one at a time on a single processing core.  This is the 

essence of the SISD processing model. 
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Scalar Promotion:  When a scalar and a vector of size n are combined under some operation, the scalar 

is automatically treated as a vector with n elements, with all elements set to the original scalar value. This 

approach allows the original operation to proceed as intended. 

Scatter Model:  A collective coordination model, where one thread (or task) sends different messages to 

all other threads (or tasks).  The messages are typically data decomposed. 

Scan:  With scan, also known as prefix sum, an output sequence S = [s1, s2, ⋯ , sn] is generated from the 

input sequence A = [a1, a2, ⋯ , an], where 𝑠𝑖 = 𝕀⨁𝑎1⨁𝑎2⨁ ⋯ ⨁𝑎𝑖−1  for exclusive scan,  

or 𝑠𝑖 = 𝑎1⨁𝑎2⨁ ⋯ ⨁𝑎𝑖   for inclusive scan.  In other words, the ith output element is the total sum of the 

first i (or i-1) elements from A.  The scan is done using a binary associative operator ⨁ with identity 𝕀.  A 

simple example is computing a prefix sum on 𝑛 numbers under addition with zero as the identity.  The scan 

can be done in serial or parallel.  See also Reduce. 

Scan Pattern:  Pattern arising from a 1D recurrence relationship on some computation.  This often arises 

as a loop-carried dependency where the computation of one iteration depends on the results from the 

previous iteration.  Such loops can still be parallelized if the underlying dependency can be expressed using 

an associative operation. 

Scan-than-Fan:  A 3-level GPU implementation pattern on n elements where 1) Do a serial scan on 

short runs of [n/p] elements per thread in parallel to generate prefix sums and a run sum per run.  2) Do an 

inclusive scan on the run sums and then reach back one column to get inclusive prefix sums for each run.  

3) Do a run update on each run from step 1 by adding in the run prefixes from step 2 to each element in the 

run.  This pattern requires 4 I/Os per data element on average to fully scan the data 2 (1 R + 1 W) for the 

scan (step 1) and 2 (1 R + 1 W) for the run update (step 3).  This parallel pattern is typically implemented 

using a hierarchical or nested scan. 

Scan Update:  A building block for GPU Scan used to scan a short run of n =[2-32] elements into a 

prefix sum under some associative binary summation operator and the update the entire run with a common 

prefix.  Basically a Serial Scan is combined with a Run Update. 
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Scatter:  A type of map primitive, which scatters elements from a small source array S into a large 

destination array D using an index map.  Also see Copy, Fill, and Gather. 

Scatter Pattern:  A set of parallel random writes into memory.  A scatter takes a collection of memory 

addresses and overwrites data at those memory addresses.  Scatters are equivalent to random writes inside a 

map pattern.  Given an input array of size m, an index array of size m, and an output array of size n, 

typically with n ≥ m, each element of the input array overwrites some element in the output array at the 

given index.  Output[Index[i]] = Input[i] for all i ∈ [0, n).  The scatter pattern is the inverse of the gather 

pattern.  Unlike gathers, scatters must deal with collisions which occur when multiple input elements being 

processed in parallel all map onto the same output index.  There are 4 common ways to resolve collisions -- 

permutation scatter, atomic scatter, priority scatter, and merge scatter. 

Scoreboarding:  A type of hardware ILP architecture that supports parallel out-of-order execution of 

instructions in an instruction stream.  A scoreboard is a table maintained in the hardware that tracks all 

active instructions (status, assigned resources, registers, etc).  The scoreboard is used to dynamically and 

safely schedule each instruction as soon as there are no conflicts and as soon as functional computing units 

(ALU’s or FPU’s ) are available to take the instruction. 

Search Pattern:  A pattern than finds data from a larger collection that meets some criteria. 

Search Set:  A set S containing n search points that need to be searched for a closest points to a query set 

Q containing m query points.  A spatial partitioning data structure is often used to speed up the geometric 

search.  See also Nearest Neighbor Search. 

Segmentation:  A representation of a collection of data which is divided into non-overlapping 

subdomains.  Typically, the various subdomains vary in size.  Reduction and scan patterns can be 

generalized to operate over the segments of a collection independently while still being parallelized and 

load balanced across the original large domain. 

Selection Pattern:  A serial pattern in which one of two flows of execution are chosen based on a 

Boolean test predicate {true, false}.  Contrast with Speculative Execution. 
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Separating Hyperplane:  A n-1 dimensional plane that can be used to determine the sweep order for 

executing a n-dimensional recurrence in parallel. 

Sequence Pattern:  A serial pattern in which tasks are executed sequentially in-order one after the other.  

Each task completes before the next task starts.  In some sense, this is the most fundamental programming 

pattern. 

Sequential Consistency:  Sequential consistency is a memory consistency model where every task in a 

concurrent system sees all memory writes happen in the exact same order, and an individual tasks own 

writes occur in the original order that the task specified. 

Serial:  A program, task, or system that is neither concurrent nor parallel.  Typically there is a single 

processing core that executes a single program (instruction stream) sequentially in-order as it was original 

written. 

Serial Bottleneck:  A region of an otherwise parallel program that runs serially. 

Serial Consistency:  A parallel program that produces the same output results from the same input data 

as an equivalent serial program. 

Serial Illusion:  The apparent serial execution order of machine language instructions on a computer.  In 

fact, modern processing cores support various hardware ILP techniques which run instructions in parallel 

and often re-order instructions for better performance.  See out-of-order. 

Serial Data Management Patterns:  Serial programming patterns for managing data (allocation, 

sharing, reading, writing, copying, etc.).  Examples of these serial data manage patterns include – Random 

access, Stack Allocation, Heap allocation, Closures, and Objects.  See also parallel data management 

patterns. 

Serial Patterns:  Common programming patterns arising in support of serial computations.  Examples of 

serial patterns include – sequence, selection, iteration, recursion, and nesting.  See also parallel patterns. 

Serial Reduce:  A building block for GPU Reduce & GPU Scan used to reduce a short run of n =[2-32] 

elements down to a single total sum value under some associative binary summation operator.  See also 

Serial Scan, Warp Reduce, and Warp Scan. 
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Serial Scan:  A building block for GPU Scan used to scan a short run of n =[2-32] elements into a prefix 

sum under some associative binary summation operator. 

Serial Update:  Another name for Run Update. 

Serial Trap:  A serial trap is a programming construct that semantically requires serial execution for 

correct results.  Even though a specific problem might be over-constrained with respect to concurrency by 

such semantics.  The term “trap” acknowledges how such constructs can easily escape the attention of 

programmers as barriers to parallelism.  In part, because these constructs are common and were not 

intentionally designed to prevent parallelism.  For example, the for statement in the C language, has 

semantics that dictate the order of iterations by allowing each iteration to assume that all prior iterations 

have already been fully executed.  These semantics make it harder for parallel compilers to extract natural 

parallelism from these for loops.  Many loop constructs actually do not need to assume anything about the 

execution order of prior loop iterations for correct behavior.  Unfortunately, most programmers use the for 

statement as a matter of course when writing loops in C or C++. 

Serialization:  Three definitions: 1) Refers to when the potentially parallel tasks in a parallel program are 

actually executed in a specific serial order.  This is typically caused by resource constraints or locking 

mechanisms used in the program to prevent parallel resource contention.  2) A hardware scheduler may 

serialize access to a shared resource, such as memory, by parallel threads (cores) to ensure correct program 

behavior.  3) On GPUs, warp branching is supported by serialization, which means the program will 

execute both the {true} and {false} paths sequentially inactivating those threads for which the branch test 

doesn’t apply.  See also branch divergence and predication. 

Set Associative Cache:  A cache organization in which a particular location in main memory can be 

stored in a (small) number of different locations in the cache. 

Several-to-one:  A special case of a mapping relationship where a small number of source objects are 

related to a single destination object in a set, table, or array of parallel objects.  See also cardinality. 

Shared Address Space:  Even if parallel processing cores do not share a common physical memory, 

they may agree on conventions that allow a single unified set of addresses to be used when addressing all 
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memory.  For example, one range of addresses could always refer to memory on the host CPU processor, 

while another range could refer to memory on a specific co-processor such as a GPU.  The use of unified 

addresses simplifies memory management. 

Shared Memory:  Two different definitions:  1) A memory model where each parallel processing core 

has access to a shared bank of memory common to all cores.  As a result of the all point-to-point 

connections required and the complex hardware required to maintain cache coherence across parallel cores 

this model typically is limited to 2-8 cores per shared memory bank.  Programmers need to use some form 

of synchronization to prevent resource contention between parallel threads (or cores).  2) A specific form of 

GPU scratchpad memory local to each SM core used to store intermediate results for better algorithmic 

performance. 

Shift Pattern:  A special case of the gather pattern.  The shift pattern translates (or offsets) the location 

of each element in the array by a fixed index offset.  The basic shift pattern ignores (drops) values that are 

out of range.  While the rotate pattern wraps out of range indices around to the other side of the array and 

stores them there. 

SIMD:  A category in Flynn’s taxonomy where processing occurs using multiple data streams all sharing a 

single instruction stream in parallel.  Intel’s MMX instructions and GPUs are examples of SIMD 

computers.  See also MIMD. 

Simultaneous Multi-Threading (SMT):  A form of ILP.  SMT improves on multi-issue and out-of-

order execution ILP techniques by adding direct support for multi-threading into the processing core 

scheduler.  Instructions from more than one executing thread can be scheduled onto the multi-issue 

processing units on any given machine cycle.  Since instructions from different threads are guaranteed to be 

independent this multi-threading scheduling helps each core stay busy doing useful work.  See also latency 

hiding. 

SISD:  A category in Flynn’s taxonomy where processing occurs using a single data stream and a single 

instruction stream.  Most programmers think of this as the standard sequential computer as in the von 

Neumann model even though modern CPUs actually support both ILP and TLP. 
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SIMT:  Single-Instruction Multiple-Threads.  A variation on SIMD that also supports multi-threading in 

addition to vectorized instruction processing (SIMD). 

Skeleton:  Two Definitions:  1) A parallel implementation pattern.  2) A code framework, AKA as a stub, 

that compiles and runs but does no useful work.  A programmer must fill in the missing details to solve a 

specific problem.  The skeleton is meant as a good starting point for programmers.  See data access 

skeleton (DASK) and block access skeleton (BASK). 

SMT:  See simultaneous multi-threading. 

SoC:  System on a chip (SoC).  As CPU cores gain more transistors more and more functionality that used 

to be handled by specialized co-processors have been moved back onto the chip itself.  This includes 

support for items such as Compression, Graphics, Audio, I/O protocols, Networks, etc. 

Software Pipelining:  Software pipelining is a loop optimization technique.  Software pipelining is a 

type of out-of-order execution except the reordering is done by a compiler or a programmer instead of by 

ILP hardware.  Here is a simple example: 

  for i=1 to n { 

    A(i); B(i); C(i); 

  }  

where C depends on B which depends on A.  This loop can be rewritten as a software pipeline in batches of 

3 as follows: 

  nBatches = n/3;  nLeftover = mod(n,3); 

  for (i=1; i<nBatches, i+=3) { 

    A(i); A(i+1); A(i+2);  // Execute 3 A commands  

    B(i); B(i+1); B(i+2);  // Execute 3 B commands 

    C(i); C(i+1); C(i+2);  // Execute 3 C commands 

  } 

  // Handle [0-2] leftover data items here … 
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This technique reduces loop overhead and reduces data dependencies for better ILP.  Special care must be 

taken to handle any partially left-over data items at the end of the loop. See also loop unrolling and 

batching. 

Software Thread:  A software thread is a virtual hardware thread – Multiple software threads are 

mapped onto a single hardware thread (or processing core) by the thread scheduler (hardware or software).  

Typically there are more software threads than there are processing cores.  Fine-grained context switching 

is used to switch between software threads on each core to support latency hiding. 

Solution:  Four definitions:  1) The act of solving a problem, question, etc.  2) The answer to a problem, 

question, etc.  3) In mathematics, a step-by-step series of operations that solves a problem.  4) In 

computers, a section of code, function, module, or program that solves a problem. 

Space Complexity:  A complexity measure for the amount of memory (or storage) used by an algorithm 

as a function of problem size.  See also asymptotic analysis or big “O’ notation. 

Span:  See Depth. 

Span Complexity:  See Depth Complexity. 

Spatial Locality:  The frequent access of data elements which are relatively close to the original location 

of the first access into memory storage.  See also locality and temporal locality. 

Spatial Partitioning Data Structure:  A data structure (typically hierarchical) used to organize points 

(or objects) in d-dimensional geometric space for faster search algorithms.  See also kd-tree and octree. 

Spawn:  The creation of a new thread (or task) from within an existing thread (or task).  See also fork and 

join. 

Speculative Execution:  A parallel form of the selection pattern.  Where both paths in a conditional 

branch are executed in parallel using redundant processing units and once the branch condition outcome 

{true, false} is successfully known then the instructions from the invalid path are cancelled. 

Speedup:  Speedup is the ratio between the time it takes to solve a problem using a single processing core 

vs. the time for solving the same problem using n parallel processing cores. 
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Split Pattern:  A generalized version of the pack pattern that takes an input collection and a set of 

Boolean labels {true, false} that go with every data element in that collection.  It re-organizes the data so 

all elements marked with {false} are stored in one output sub-group (typically at the front) and all elements 

marked with {true} are stored in another sub-group (typically at the back).  The deterministic version of 

this pattern is stable, so it preserves the same relative order of data elements form the original collection in 

each output sub-group. 

SPMD:  Single-Program, Multiple-Data,  A program that runs a single function on multiple processing 

cores, but allows each function instance to follow different control flow paths during execution. 

Stable Sort:  A sort is stable if elements with equal keys maintain the same relative order.  A more 

descriptive way of saying this is as follows:  Given any two elements (ai, bj) with equal keys (ai.key == 

b.key), such that a precedes b in the unsorted input (i < j) then after the sort is done, then a still precedes b 

in the sorted output (i’ < j’).  An unstable sort does not preserve the relative ordering of elements with 

equal keys. 

Stack:  A basic data structure where data elements are kept in a list (representing a pile of objects).  

Elements are both inserted and removed from the top of the list resulting in a LIFO processing order for 

elements kept on a stack.  See also Deque and Queue. 

Stall:  Two related definitions:  1) A processing core which does nothing useful for many cycles is said to 

be stalled.  2) Each machine cycle where the instruction scheduler issues NOP “do nothing” command to 

prevent hazards from causing incorrect behavior is known as a stall. 

Stalling:  An ILP technique, also known as bubbling, for handling various hazards in a pipelined micro-

architecture.  With stalling, the scheduler (hardware or software) inserts NOP’s (do nothing instructions) 

into the pipeline until the hazard is resolved.  This gives correct results at the cost of under-utilizing the 

processing core. 

Standard Library:  The C++ standard library is a collection of classes, algorithms, and functions.  The 

C++ standard library provides generic containers; functions to use and manage those containers; function 

objects; generic strings; I/O streams; and many other useful algorithms and tasks.  The C++ standard 



 

415 

 

library currently follows conventions introduced by the original Standard Template Library (STL) and has 

been influenced by research in generic programming.  The C+ standard library and STL overlap in many 

features and functionality but neither is a strict superset of each other. 

Standard Template Library:  The C++ Standard Template Library (STL) is a software library for the 

C++ programming language that provides four main components – algorithms, containers, functional, and 

iterators.  The STL achieves all of its components through the use of C++ templates.  This provides 

compile-time polymorphism that is much more efficient than traditional run-time polymorphism.  The four 

main ideas behind the STL are – generic programming, abstractions without loss of efficiency, the von 

Neumann computation model, and value semantics. 

Starvation:  A concurrency issue where one or more threads fail to make forward progress towards 

completion because they are perpetually denied necessary system resources.  Without those resources, the 

thread can never finish its assigned task.  This is typically caused in a multi-threaded environment where 

the thread manager (or scheduler) implements priority pre-emption incorrectly.  See also deadlock and 

livelock. 

Static:  A static algorithm (or data structure) does not allow any insertions, deletions, or any other 

modifications to the original input data set (or data structure once built) until the algorithm has completed.  

Contrast with Dynamic. 

Static Scheduling:  With static scheduling, the thread scheduler (typically software) pre-computes a 

thread schedule before executing a program and then sticks to the thread schedule during the entire 

execution of the program.  This is typically implemented as part of a compiler.  This approach can result in 

poor overall performance as the compiler must be strictly conservative in how it assumes pointers alias 

memory accesses.  Often threads idle waiting for their turn, get woken up only to promptly go back to sleep 

while waiting on slow I/O resources to complete. 

Stencil Pattern:  A regular input data access pattern based on a set of fixed offsets relative to an output 

location.  The stencil over the input is repeated for every output position in the output grid.  This pattern 

can be seen as combine the map pattern with a local gather over a small neighborhood in a fixed pattern of 

offsets.  Some care must be taken at the boundaries of the grid for how to deal with out of range offset 
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indices.  Stencil patterns are common in algorithms that deal with regular grids of data, as in image 

convolution. 

Step:  A single step in a chain of processing steps that make up the critical path through a task dependency 

graph for a parallel program.  The depth is a measure of how many steps are in this critical path.   

Step Complexity:  See depth complexity. 

Strangled Scaling:  A programming error in a parallel program where performance is poor due to high 

resource contention between threads or high parallel overhead.  The performance may be so bad that the 

parallel algorithm may underperform the serial version of the same algorithm. 

Stream:  A sequence of data elements made available over time.  A stream can be thought of as a 

conveyor belt that allows data elements to be processed one a time sequentially instead of in larger batches. 

Streaming Algorithms:  Streaming algorithms are algorithms for processing data streams in which the 

input is presented as a sequence of data elements which can only be examined in a few passes (typically 

just one).  Streaming algorithms are usually constrained by the access pattern, memory, and time.  The 

access pattern is typically sequential, in other words, the data elements must be processed one at a time as 

they are received.  These algorithms typically have limited memory available to use for processing data 

(typically much less than the actual input size) and also limited processing time per data item in the stream.  

These constraints mean that streaming algorithms are often used to create summaries or smaller datasets 

which approximate the full data stream.  See also BYTE stream, RAM model, map pattern, pipeline pattern, 

producer-consumer relationship. 

Stream Processing:  A paradigm for computer programming for SIMD architectures.  Given a set of 

data (the stream), a series of operations (elemental functions) is applied to each element in the stream.  

These elemental functions are often arranged in a pipelined manner.  To reduce I/O operations these 

pipelined functions are often fused into one larger uniform function.  Stream processing works best for 

programs that exhibit three characteristics – High Compute intensity, Data Independence, and Data 

locality.  Compute Intensity means that the ratio of computations to communications is quite high.  Data 

Independence in this context means that each data element can be processed independently from any other 

element.  Data locality means that data is produced (typically only once), read once (or twice) during the 
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processing, optionally output (again typically only once) and never accessed again.  GPUs are examples of 

high throughput stream processors.  See also Map Pattern. 

Strength Reduction:  Strength reduction is a data-flow optimization where expensive (or slow) 

operations are replaced with equivalent less expensive (or faster) operations.  For instance computing an 

index inside a loop for array access using “strong” multiplication can be replaced by “weaker” addition 

instead.  Another example, replacing division by a constant by multiplication using its reciprocal.  See also 

constant folding, code fusion, and dead code elimination. 

Strip-Mining:  When implementing a stencil or map pattern, an optimization that groups instances in a 

way that avoids unnecessary and redundant memory accesses and aligns memory accesses with the vector 

lanes of the SIMD cores. 

Strong Scalability:  A form of scalability that measures how performance increases when adding in 

additional parallel processing resources but leaves the original problem size fixed. 

Strongly Serial Algorithm:  With Strongly Serial algorithms, the depth efficiency is linear, D(n) ≈ O(n).  

With these algorithms, there is no obvious way for a programmer to divide work across multiple parallel 

cores, the entire algorithm is almost entirely one long chain of dependent steps. 

Structural Hazard:  A structural hazard occurs when a specific part of the processor’s hardware needs 

to be used by two or more stages of an instruction pipeline concurrently. For example, A pipelined 

architecture might only have a single memory unit that is used both in the fetch stage to retrieve 

instructions from memory and also in the memory stage where data needs to be transferred (read/write) 

between registers and memory.  Architects often solve structural hazards by replication -- creating multiple 

redundant processing units (one per stage) to eliminate competition. 

Structure-of-Arrays (SoA):  A data layout for collections of data elements where each data element is 

a structure made up of heterogeneous fields.  For data storage, all the data for the first field in each data 

element is stored in one contiguous array and all the data for the second field in each data element is then 

stored in another contiguous array.  This contiguous storage layout is repeated for all fields in data 

structure.  Compare with array-of-structures (AoS). 
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Successor Function:  In a fold, the function that computes a new state given the old state and a new 

input data item. 

Supercomputing:  See high performance computing. 

Superlinear speedup:  Speedup where performance grows at a rate greater than the new parallel 

processing resources are added into the system.  Since linear speedup is optimal for parallel algorithms, the 

superlinear speedup is usually the result of some additional performance optimization coming into play as a 

result of the new parallel layout of the algorithm (better caching opportunities, reduced branching, etc.) 

Super-Scalar:  See Multi-issue. 

Super-Scalar Processor:  A super-scalar processor executes more than one instruction per clock cycle 

by simultaneously dispatching multiple independent instructions across multiple redundant functional units 

(ALU’s, FPU’s) on each processing core. 

Superscalar dependency pattern:  A sequence of tasks (instructions) ordered only by true data 

dependencies rather than a sequential ordering of the tasks.  This allows the parallel execution (multi-issue 

& out-of-order) of tasks (instructions) that have no dependencies on each other. 

Switch-on-event Multithreading:  A technique that supports the execution of multiple threads on a 

single core by context switching to another thread on long-latency events such as cache misses when 

transferring data between main memory and registers. 

Symmetric Multi-processor (SMP):  A hardware architecture where multiple typically homogenous 

processing cores share a single address space and access to all system resources.  See shared memory 

computing. 

Synchronization:  The coordination of parallel threads (or tasks) in real time to ensure the correct 

behavior of a parallel algorithm across all threads (or tasks).  This is often implemented by establishing a 

synchronization point within the code where a thread (or task) must wait until all other threads (tasks) in 

the same group (warp or block) reach the same synchronization point.  Synchronization usually involves 

waiting by one or more threads (or tasks) and can thus slow parallel performance. 
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Synchronous Coordination:  Involves multiple threads (or tasks) trying to communicate data or 

coordinate work between themselves.  Threads are now dependent on each other while doing coordination.  

All threads involved in transferring data must wait until the transfer is complete before proceeding on to 

other work.  This results in gaps of idle work spent waiting instead of doing useful computations.  Contrast 

with asynchronous coordination. 

Table Lookup:  Table lookup is an implementation optimization that can make many algorithms run 

more efficiently.  A lookup table is an array that replaces runtime computation with a simple array indexing 

operation.  The tables can be precomputed and stored in static storage.  This pattern assumes a reasonable 

amount of reuse and that array lookup is faster than computing the value as needed. 

Tail Recursion:  A form of recursion where a result of the recursive call is returned immediately without 

modification to the parent function.  Such forms of recursion can be rewritten to use an iteration pattern 

instead. 

Target Processor:  A specialized co-processor to which work can be offloaded.  See also host processor. 

Task:  A logically discrete chunk of computational work.  A task is typically a program or program-like 

set of instructions that is executed by a single processing core.  See also task-level parallelism and parallel 

program. 

Task-Level Parallelism:  A type of parallelism.  With task-level parallelism, also known as function 

parallelism or control parallelism, a programmer decomposes an algorithm into multiple sub-tasks 

(typically heterogeneous) and assigns each sub-task to its own parallel thread.  A DAG is typically used to 

model the flow of data through the network of sub-tasks.  Task-level parallelism doesn’t scale well as it is 

difficult for programmers to decompose a program into more than just a few parallel sub-tasks. 

TBS:  See Thread Block Size. 

Template Metaprogramming:  The use of generic programing techniques to manipulate and optimize 

source code before it is compiled.  The template rewriting rules in C++ can be interpreted as a functional 

language for manipulating C++ source code.  These rules can be used to generate high performance 

optimized code at compile time instead of run-time.  See also metaprogramming. 
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Temporal Locality:  The frequent re-use of the same data element within a small period of time.  See 

also locality and spatial locality. 

Test-and-Set:  test and set is an atomic operation used to synchronize concurrency issues and prevent 

incorrect multi-threaded behavior.  It writes a new value to a memory location and then returns the old 

value from the same memory location. Even though this actually requires several instructions in hardware, 

it appears as a single atomic operation to the rest of the system, i.e. no other thread can interrupt the CAS 

once it has begun and until it has finished.  This has been replaced by compare-and-swap semantics in most 

modern architectures.  See also fetch-and-add. 

Thread:  The smallest unit of execution that can be scheduled on a single processing core.  Each thread 

maintains thread state (registers, instruction pointer, …) for correct execution.  See also Thread Warp and 

Thread Block. 

Thread Block:  A CUDA thread block of a fixed shape (1D, 2D, or 3D) and size.  Each thread block is 

eventually scheduled to run concurrently on a SM to execute a parallel GPU kernel algorithm.  For best 

performance, each thread block is made up of one or more thread warps.  Although, thread blocks which 

are not a multiple of the WarpSize (=32) are supported, they tend to have poor performance as one or more 

SP cores are underutilized.  Each thread block is typically assigned one or more matching data blocks to 

process.  See also CTA, Thread Warp, and Data Warp. 

Thread Block Size:  A fixed-size thread block which contains TBS elements, where TBS is typically 

computed as TBS = nWarps*WarpSize.  See also Data Block Size. 

Thread Constraints:  Various hardware constraints that limit the size (and shape) of threads on a CPU 

(or GPU). 

Thread Context:  The state information (registers, instruction pointer, etc.) about the executable state of 

a thread which is needed to correctly resume execution after a thread has been paused or blocked. 

Thread-Level Parallelism (TLP):  A type of parallelism.  With Thread-Level Parallelism (TLP), also 

known as multi-threading, work is sub-divided and executed on multiple independent threads of execution 
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in parallel.  Typically a thread scheduler maps a pool of 𝑚 threads onto 𝑝 cores (with 𝑚 ≥ 𝑝).  TLP enables 

task- and data-level parallelism. 

Thread Lifecycle:  A state machine diagram that captures common thread states and what behavior 

moves a thread between the various thread states.  See also thread state. 

Thread-Local Storage:  With thread-local storage, each thread has its own private copy of local data 

(variables, stacks, registers, program counter, etc.).  These variables retain their values across sub-routine 

and other code boundaries are thread-safe since they uniquely belong to each individual thread.  Parallel 

threads may end up executing the same code yet all threads still refer to their own unique local data. 

Thread Manager:  A thread manager is responsible for creating, tracking, managing, and destroying 

threads in a multi-threading system.  Threads are a mechanism for running concurrent tasks using a single 

core or multiple parallel tasks using multiple cores.  A thread manager can be implemented in hardware 

and/or software.  See also thread, multi-threading. 

Thread-Safe:  A program (or section of code) is said to be thread-safe if the algorithm manages data 

structures in a way that guarantees correct execution by multiple threads in parallel.  In other words, the 

multi-threaded parallel program gives the same results as an equivalent single-threaded serial program.  A 

program can be made thread-safe by 1) partitioning data into independent per-thread runs, 2) supporting 

re-entrancy, mutual exclusion, and thread-local storage or 3) by using lock-free or wait-free algorithms and 

data structures. 

Thread Scheduler:  See thread manager. 

Thread State:  The various states that a thread can be in over the course of its lifetime from creation to 

termination.  A running thread is the thread that is currently executing on the processor core.  An active 

thread (or blocked thread) is one that is waiting to resume execution on the core.  A stalled thread is one 

that is waiting to wake-up or for a long I/O operation on which it depends to complete.  An aborted thread 

is a thread which has been requested to be terminated but is not yet terminated. 

Thread Warp:  The smallest unit of vectorized execution that can be scheduled on a single streaming 

multi-processor (SM) by being mapped onto multiple SP cores and other functional processing units.  Each 
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warp also maintains associated warp state for correct execution.  On modern GPUs, each thread warp 

consists of WarpSize (=32) threads.  See also Data Warp and Thread Block. 

Throughput:  A measure of performance where we count the number of units of work completed per unit 

of time, typically this is measured as work per second, mega-items per second, or giga-items per second.  

GPUs are throughput focused devices, IE, GPUs process hundreds (or thousands) of instructions in parallel 

using hundreds (or thousands) of simple processing cores.  A throughput device (or program) might put up 

with higher latency for an individual computation if it still resulted in faster throughput overall.  Contrast 

with latency.  See also data-, instruction- and I/O-throughput. 

Thrust:  NVIDIA’s thrust is a C++ template library of data-parallel algorithms and data-parallel data 

structures.  Thrust is intended to eventually have the same kind of relationship to C++ for data-parallel 

algorithms on GPUs that the C++ standard template library has for serial algorithms on CPUs.  It currently 

supports GPU accelerated algorithms for sort, scan, transform, and reduce. 

Tile:  A region of memory which is part of some larger collection. Typically each tile is 2D.  Tiles might 

result from applying the partition pattern to data which is inherently 2D.  See also run and block 

Tiling:  With tiling, also known as blocking, a loop is divided into a set of parallel tasks of a suitable 

granularity.  In general, tiling consists of applying multiple steps on a smaller part of a problem instead of 

running each step on the whole problem one after the other.  The main purpose of tiling is to increase the 

reuse of data in caches for better performance.  For example, with parallel matrix multiplication 𝑪 = 𝑨 ×

𝑩, we might divide the original 𝑨, 𝑩, 𝑪 matrices into a collection of 2D tiles small enough so that three 

subtiles 𝑨𝒊𝒌, 𝑩𝒌𝒋, and 𝑪𝒊𝒋 fit into cached (or shared) memory all at the same time and then run the parallel 

matrix multiplication in terms of these sub-tiles.  Contrast the tiled access pattern with the usual row-by-

row vs. column-by-column serial solution for matrix multiplication. 

Time Complexity:  A complexity measure for the amount of time used by an algorithm as a function of 

problem size.  See also space complexity and asymptotic analysis. 

Time Elapsed:  A measure of the duration of time from the start to the end of some program, function, or 

section of code.  See also latency. 
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Time Slice:  A time slice is a short period of time (typically counted in machine cycles) for which a 

thread is allowed to execute before being pre-empted by the scheduler (hardware or software) in favor of 

another active thread. 

TLB:  A translation lookaside buffer (TLB) is a specialized cache used to hold translations of virtual to 

physical page addresses.  The number of elements in the TLB determines how many pages of memory can 

be accessed simultaneously with reasonable efficiency.  Accessing a page not already in the TLB will cause 

a TLB miss.  A TLB miss causes a trap (system interrupt) to the operating system to load the requested page 

into memory and to update the TLB.  The TLB enables virtual memory management. 

TLB miss:  Occurs when a virtual memory page access is made for which the page translation is not 

already in the TLB. 

TLP:  See thread-level parallelism or multi-threading. 

Tomasulo’s Method:  A type of ILP hardware architecture which enables out-of-order execution of 

instructions.  Tomasulo’s method improves on scoreboarding by adding support for register renaming 

(aliasing), reservation stations (queues), a re-order buffer, and a command data bus (CDB) for broadcasting 

updated data values to all compute stations.  Tomasulo’s method reduces pipeline stalls by directly 

resolving false resource conflicts (WAW & WAR hazards) through registers by register renaming. 

Topological Sort:  A topological sort of a directed acyclic graph (DAG) is a linear re-ordering of the 

graphs vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the 

ordering.  Often used for imposing a valid ordering on a dependency graph, although there are frequently 

many different but all equally valid orderings.  Topological sorts can be computed in linear time, O(n). 

Transaction:  An atomic update to a data element.  Each data element is assumed to consist of multiple 

fields where some or all fields might be potentially changed as part of the update.  Atomic means that the 

results of all the individual field updates are either seen in their entirety or none of the individual field 

updates are seen when looking at the data element, in other words, any data changes are seen by the rest of 

the system as all or nothing. 
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Transactional Memory:  A way of accessing memory such that a collection of memory updates, called 

a transaction will be visible to other threads (or tasks) either all or nothing.  Transactional memory is an 

alternate approach to handling resource competition which is different from mutual exclusion. 

Translation Lookaside Buffer:  see TLB. 

Transpose Pattern:  A special case of a gather and scatter pattern.  Where we transform 2D data stored 

in a row-major order into a column-major order or vice versa. 

Tree-Reduce:  Tree Reduce is a parallel pattern that reduces two input elements per thread to one output 

sum at each stage and, in so doing, takes a logarithmic O(log2 n) number of stages to fully reduce n 

elements down to one final sum.  Each pair-wise reduction uses an associative binary operator which has an 

associated identity element.  The first stage requires 𝑝 = ⌈𝑛/2⌉ threads.  Each subsequent stage uses half as 

many threads.  Compare with Run-Reduce. 

Trim Test:  A simple 1D interval test used to eliminate non-overlapping sub-trees during a kd-tree search 

algorithm and thus speed up nearest-neighbor searches. 

True-Dependency:  See read after write (RAW). 

Under-Utilization:  A processing core is said to be underutilized when it could be doing useful work but 

is instead sitting idle.  ILP and TLP techniques in a broad sense are trying to increase the utilization of all 

parallel processing cores on a machine. 

Uniform Parameter:  A constant parameter to the map pattern that is broadcast to all instances of the 

map’s elemental function.  See also varying parameter. 

Unpack Pattern:  The inverse of the pack pattern, this operation scatters data from a smaller packed 

array back into a larger unpacked array.  This pattern may optionally fill in a default value for missing data. 

Unsplit Pattern:  The inverse of the split pattern, this operation scatters data back into its original 

location.  Unlike the case with the unpack pattern, there is no missing data to worry about. 

Unstable Sort:  See stable sort. 
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Unswitching:  Unswitching is a loop optimization where a conditional inside a loop is moved outside of 

the loop by duplicating the loop twice once each for the {true} and {false} clauses. 

Unzip pattern:  The inverse of the zip pattern, this operation deinterleaves data and can be used to 

convert from an array-of-structures (AoS) to a structure-of-arrays (SoA). 

Varying Parameter:  A parameter to the map pattern that delivers a different parameter to each instance 

of the map’s elemental function.  See also uniform parameter. 

Vector Intrinsic:  An intrinsic used to specify a vector-parallel operation. 

Vector-parallel operation:  A low-level operation that can act on multiple data elements at once in 

SIMD fashion. 

Vector-Level Parallelism:  A type of parallelism.  Vector-level Parallelism, also known as 

vectorization, applies a single instruction to an array of data in parallel using an array of processing cores.  

This is the heart of the SIMD parallel model. 

Vectorization:  Reorganizing code to support vector-level parallelism. 

Vector Processor:  Multiple data is executed in parallel using an array of 1D simple cores and 

corresponding data registers called a vector register.  Typically all vectors move in lock-step through the 

same instruction stream.  This is the essence of the SIMD parallel processing model. 

Virtual Memory:  Virtual memory decouples the address used by software from the physical address 

where data is stored in physical memory.  The translation from virtual addresses to physical addresses is 

done in hardware which is managed by the operating system. 

Virtual Memory Management (VMM):  A memory management technique developed for multi-

tasking operating systems which decouples logical memory addresses from physical memory address.  The 

O.S. with hardware support translates the logical addresses into physical addresses at runtime.  This 

technique hides the complexity of actual memory hierarchies from programmers so they can continue to 

write programs using the much simpler RAM memory model. 
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VLIW (Very Large Instruction Word):  A processor architecture that explicitly supports processing 

multiple instructions in parallel which are stored in a single VLIW.  See Vectorization. 

Von Neumann Model:  An abstract model of a serial computer architecture for programmers.  Under 

this model, a computer consists of a CPU, a load/store memory and a bus to transfer data between the CPU 

and memory.  The memory stores both programs (as sequential streams of instructions) and data (both input 

and output).  The CPU fetches instructions sequential in-order from the program, decodes, and executes the 

instructions.  Data is transferred between CPU registers and memory using simple load/store commands.  

The CPU performs all the basic computations.  I/O is used to get data (and programs) into the computer 

memory from other computers, devices, or human operators.  See also the RAM machine model, the PRAM 

machine model, and the multi-computer machine model. 

Voronoi Diagram:  A voronoi diagram is a spatial partitioning data structure used to speed up 

geometric searches.  The set of generating points (called seeds) is specified a-priori, and for each seed point 

there is a corresponding geometric region (typically as a polygon) consisting of all points closer to that seed 

point than to any other seed point.  See also BSP tree, octree, and kd-tree. 

Voting Intrinsics:  Special voting instructions on a GPU that allow all threads in a warp to share per-

thread predicate test results with all other threads in a warp in a single instruction.  These Voting 

instructions are also used internally by the GPU hardware to implement barriers. 

Wait-free algorithm:  A non-blocking algorithm is also wait-free if there is guaranteed per-thread 

progress.  See also lock-free algorithm. 

Warp:  The smallest unit of vectorized execution that can be scheduled on a single streaming multi-

processor (SM) by being mapped onto the SP cores and other functional processing units.  Each warp also 

maintains associated warp state for correct execution.  See also Data Warp and Thread Warp. 

Warp-by-Warp BASk:  An efficient access pattern at the bottom level of the 2-level CTA mapping that 

supports coalescence.  Each thread warp of size WarpSize within the thread block is assigned its own 

unique chunk of data within the data block of size (nWork*WarpSize).  Each thread within the thread warp 

accesses its own unique data element within the current group of WarpSize elements and then strides (stride 
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= WarpSize) to the next group of WarpSize data elements within the data chunk to access.  This approach is 

more coherent and requires less barrier synchronization than the Block-By-Block BASk.  Most importantly, 

each individual thread warp has Warp Independence and thus can proceed to work on its own assigned 

chunk of data without concern to other concurrent thread warps doing the same.  See also block access 

skeleton.  Compare with the Block-by-Block BASk. 

Warp Context:  The state information (instruction pointer, etc.) about the executable state of a warp 

which is needed to correctly resume execution after a warp has been paused. 

Warp Independence:  With warp independence, each individual thread warp within a thread block can 

proceed to work on its own assigned data chunk independent of any other concurrently executing thread 

warp.  See also Warp-by-Warp BASk. 

Warp Lifecycle:  A state machine diagram that captures common warp states and what behavior moves a 

warp between the various warp states. 

Warp Padding:  With warp padding, the pad and rake technique is used to mitigate bank conflicts for 

runs that are a power of two {2, 4, 8, …} in length.  It works by padding a single unused pad column after 

(or before) each data warp (effectively turning an even run of 32 elements into an odd run of 33 elements).  

Indexing must be raked to skip over the pad columns.  See also run padding. 

Warp Reduce:  A building block for GPU Reduce/Scan that cooperatively reduces n = [2,4,8,16,32] 

elements down to a total sum using n threads in parallel.  The reduction is done using a binary associative 

summation operator.  See also Serial Reduce, Serial Scan, and Warp Scan. 

Warp Scan:  A building block for GPU Reduce/Scan that cooperatively scans n = [2,4,8,16,32] elements 

into a prefix sum using n threads in parallel.  The scan is done using a binary associative summation 

operator.  See also Serial Reduce, Serial Scan, Warp Reduce, and Run Update. 

Warp State:  The various states that a warp can be in over the course of its lifetime from creation to 

termination.  An executing warp is the warp that is currently running on the SP cores that make up an 

SM(X) core.  An active warp is a warp that could be running but is currently waiting to be scheduled onto 
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the SP cores.  An inactive warp is a warp that is currently stalled on a short-term instruction dependency or 

waiting on a long-term I/O operation to complete before it is again ready to resume execution. 

WarpSize:  Two related definitions:  1) A group of k=32 threads that collectively execute the same 

instruction stream in lockstep, but on different data elements.  Modern GPU architectures are designed to 

support SIMD efficiently via data-level parallelism using thread blocks made of up of thread warps where 

each thread warp is of size 32.  2) The WarpSize parameter represents Data-level parallelism on SIMD 

hardware.  This parameter allows experiments with data-level parallelism to find the best performance.  

The programmer must use generic programming techniques to support parallel processing one thread warp 

at a time.  Unlike the nWork and nWarps parameters, this parameter is typically fixed at k=32, as this is 

what modern GPUs efficiently support. 

Weak Scalability:  A form of scalability that measures how performance increases when adding in 

additional parallel computing resources while increasing the problem size at the same rate. 

Weakly Parallel Algorithm:  With Weakly Parallel algorithms, the depth efficiency is approximately 

D(n) ≈ 𝑂 (
𝑛

log 𝑛
).  The algorithm usually has significant section(s) of the code which cannot be parallelized 

easily so Amdahl’s Law bounds performance.  Alternately, the weakly parallel algorithm requires so much 

coordination (communication) between parallel cores that the resulting parallel overhead overwhelms most 

of the advantage of using parallel processing cores. 

Work:  Three definitions:  1) the part of a parallel program which actually spends time solving the original 

problem for which the program was written instead of time spent coordinating (or communicating) with 

other threads (tasks).  See also parallel overhead.  2) A measure of how many data elements get processed 

per-thread on each function (or kernel) invocation.  3) An abstract unit of useful computations.  See also 

work-depth analysis. 

Work Complexity:  The asymptotic total number of operations, W(n,p), required by a parallel algorithm 

to run across all parallel threads (p) as a function of problem size (n).  Work complexity is essentially 

equivalent to asymptotic analysis for serial programs (p=1).  If the work complexity of a parallel algorithm 

is asymptotically the same as an equivalent serial algorithm (i.e. both require linear work, O(n)) then the 
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parallel algorithm is said to be work-efficient.  If the parallel algorithm is asymptotically more expensive 

(log-linear, O(n log n) vs. linear work O(n)), then the parallel algorithm is said to be work-inefficient.  In 

order for speedup ratios to be computed, it is often better to use Big “Theta” notation instead of Big “O” 

notation.  See also depth complexity. 

Work+Depth Analysis:  A model for analyzing the performance of parallel programs that can be used 

to compute both upper and lower bounds on parallel speedup.  See also depth complexity and work 

complexity. 

Work-Span:  See Work+Depth analysis. 

Workpile Pattern:  An extension to the map pattern that allows new work items to be dynamically 

generated and added to the workpile during the execution of each elemental function.  If the map pattern 

can be thought of as a parallel generalization of the for statement then the workpile pattern can be thought 

of as a parallel generalization of the while statement. 

Work Stealing:  A scheduling model where each thread (or task) has it’s own local work queue.  The 

initial work load is load balanced across all threads and stored in each threads local queue.  As new 

dynamic work gets generated by each thread (or task), each thread adds it onto its own local queue.  What a 

specific thread runs out of work in its own queue, it will randomly steal work from another thread’s work 

queue.  When all local queues are empty, then the task is typically complete.  This model greatly reduces 

resource competition for the work queue data structures themselves which reduces parallel overhead.  Load 

balancing though not perfect tends to be quite well across all threads. 

Wrap-around Arithmetic:  Computers usually use fixed size data types which have a specific numeric 

precision and range.  When computers perform simple computations such as addition or multiplication 

there needs to be a solution when the resulting computed value is logically outside the allowed for that data 

type.  One solution is simply to allow the values to wrap around naturally to the other end of the range.  For 

instance, with unsigned 8-bit integers with a range [0..255].  Adding 250 + 20 = 270 which is outside the 

allowed range, with wrap-around arithmetic the actual stored result would become 15 = 270 % 255.  

Contrast with saturation arithmetic. 
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Write after Read (WAR):  A type of data hazard.  With WAR, one instruction tries to write to a 

destination (register, memory) before a prior instruction has had a chance to read from the same 

destination.  Unless this hazard is prevented the read instruction may pick up an incorrect value.  A WAR 

dependency can be handled by stalling or register renaming. 

Write after Write (WAW):  A type of data hazard.  Where one instruction tries to write to a 

destination (register, memory) before a prior instruction has had a chance to write to the same destination.  

The WAW data hazard will only cause problems if writing to the destination generates side-effects or if 

some parallel processing unit actually depends on the first write value (IE is reading).  A WAR dependency 

can be handled by stalling or register renaming. 

Zip Pattern:  A special case of the gather pattern that interleaves elements from multiple arrays (or 

collections).  This can be used to convert from a structure-of-arrays (SoA) to an array-of-structures (AoS). 
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