

CASE STUDIES ON OPTIMIZING ALGORITHMS

FOR GPU ARCHITECTURES

Shawn Daniel Brown

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Computer Science in the College of Arts & Sciences.

Chapel Hill

2015

 Approved By:

Anselmo Lastra

Dinesh Manocha

Lars Nyland

Jan Prins

Jack Snoeyink

ii

© 2015

Shawn Daniel Brown

ALL RIGHTS RESERVED

iii

ABSTRACT

SHAWN DANIEL BROWN: Case Studies on Optimizing Algorithms for GPU Architectures

(Under the direction of Jack Snoeyink)

Modern GPUs are complex, massively multi-threaded, and high-performance.

Programmers naturally gravitate towards taking advantage of this high performance for achieving

faster results. However, in order to do so successfully, programmers must first understand and

then master a new set of skills – writing parallel code, using different types of parallelism,

adapting to GPU architectural features, and understanding issues that limit performance.

To help GPU programmers become productive more quickly, this dissertation introduces

three data access skeletons (DASks) – Block, Column, and Row -- and two block access

skeletons (BASks) – Block-By-Block and Warp-by-Warp. Each “skeleton” provides a high-

performance implementation framework that partitions data arrays into data blocks and then

iterates over those blocks. Programmers must still write “body” methods on individual data

blocks to solve their specific problem. These skeletons provide efficient machine dependent data

access patterns for use on GPUs. DASks group n data elements into m fixed size data blocks.

These m data block are then partitioned across p thread blocks using a 1D or 2D layout pattern.

Generic programming techniques are applied to the fixed size data blocks to enable performance

experiments for different types of parallelism – instruction-level parallelism (ILP), data-level

parallelism (DLP), and thread-level parallelism (TLP).

These different DASks and BASks are introduced using a simple memory I/O (Copy)

case study. Three additional case studies – Reduce/Scan, Histogram, and Radix Sort --

demonstrate DASks and BASks in action on parallel primitives and also provide more valuable

performance lessons.

iv

To Helene, my love, my rock, my soul mate your love has helped support and guide me

through these many tough years working on my PhD. You showed great wisdom, love, and

courage during some turbulent times within our family.

Proverbs 31:10-31

“Who can find a virtuous woman? For her price is far above rubies. … She opens her

mouth with wisdom; and in her tongue is the law of kindness. … Her children arise up,

and call her blessed; her husband also, and he praises her.”

v

ACKNOWLEDGMENTS

A PhD is a long hard struggle over many years. It takes a lot of support from others to

make it through the many false starts, failures, and setbacks required to complete such a huge

undertaking. I am very grateful to my mentor, Jack Snoeyink, for his patient guidance, amazing

insights, and unwavering support.

vi

TABLE OF CONTENTS

LIST OF TABLES .. xiv

LIST OF FIGURES ... xvi

LIST OF ABBREVIATIONS .. xx

LIST OF SYMBOLS ... xxiv

1.0 Introduction .. 1

1.1 The GPU Performance Challenge .. 1

1.1.1 Good Algorithms ... 3

1.1.2 Parallel Concepts ... 4

1.1.3 GPU Architecture .. 5

1.1.4 GPU Performance Issues ... 5

1.2 Data Access Skeletons .. 5

1.3 Case Studies.. 7

1.3.1 Memory I/O via Copy .. 8

1.3.2 kd-tree for Nearest Neighbor Searches .. 8

1.3.3 Reduce/Scan .. 9

1.3.4 Histogram .. 10

1.3.5 Radix Sort .. 10

1.4 Summary... 12

2.0 Parallelism .. 13

vii

2.1 Types of Parallelism ... 13

2.1.1 Flynn’s Taxonomy... 14

2.1.2 Machine Models .. 16

2.1.3 Deriving a GPU core from a CPU core ... 21

2.2 GPU Architecture ... 24

2.2.1 Hardware Processor and Memory Hierarchies .. 27

2.2.2 Warp Threading and Scheduling ... 32

2.2.3 Parallel Coordination ... 38

3.0 Performance and issues Hindering Performance .. 41

3.1 Measuring Performance Throughput .. 41

3.1.1 Throughput Metrics ... 42

3.1.2 Parallel Speedup and Work and Depth Analysis ... 43

3.2 Parallel Performance Issues .. 46

3.2.1 Scalability .. 46

3.2.2 Parallel Overhead .. 46

3.2.3 Load Balancing .. 46

3.3 GPU Architecture Issues .. 47

3.3.1 CTA Partitioning ... 47

3.3.2 GPU Scheduler – Stalls and Hazards .. 51

3.3.3 GPU Scheduler – Constraints on Occupancy .. 53

3.3.4 Multi-issue Dispatch .. 55

viii

3.3.5 Branch Divergence .. 56

3.4 GPU Memory Issues ... 57

3.4.1 Memory Constraints .. 58

3.4.2 Register Spills .. 59

3.4.3 Coalescence ... 60

3.3.4 Bank Conflicts ... 61

4.0 Case Study: Memory I/O ... 62

4.1 How does one setup and launch a GPU Kernel? .. 63

4.2 How does one launch a kernel with thousands of threads? .. 66

4.3 How does one map threads onto data? ... 69

4.4 How can one write GPU data parallel code? .. 73

4.5 Simple Copy Results .. 79

4.6 Conclusion .. 80

5.0 Data Access Skeletons (DASks) .. 82

5.1 Block DASk .. 84

5.1.1 Block Access Skeletons (BASks) .. 86

5.1.2 Amortized Range Checking... 90

5.1.3 Amortized Pointer Indexing .. 92

5.1.4 Block DASK Code .. 94

5.1.5 Improving Copy Performance using ILP and TLP .. 96

5.1.6 Block DASk Conclusion ... 108

ix

5.2 More MAP Primitives .. 108

5.3 Column DASk .. 111

5.3.1 Column DASk Code .. 112

5.3.2 Column DASk Conclusion .. 116

5.4 Row DASk .. 117

5.4.1 Warp Alignment .. 119

5.4.2 ‹FIRST?› ‹MIDDLE*› ‹LAST?› Range Check Pattern ... 119

5.4.3 Load Balancing .. 123

5.4.4 Row DASk Conclusion ... 126

5.5 Lessons Learned from the Memory I/O Case Study .. 127

6.0 Case Study: Reduce and Scan on the GPU .. 130

6.1 Introduction .. 131

6.2 Issues affecting GPU Performance of Reduce and Scan .. 137

6.3 Related Work .. 138

6.4 Parallel Patterns .. 141

6.4.1 Reduce Parallel Patterns .. 141

6.4.2 Scan Parallel Patterns .. 143

6.5 Reduce and Scan Overview .. 144

6.6 Reduce and Scan Implementation Details .. 147

6.6.1 RunLoad and RunStore Methods ... 149

6.6.2 SerialReduce and SerialScan Methods .. 151

x

6.6.3 WarpReduce and WarpScan Methods ... 155

6.6.4 RunUpdate Method .. 158

6.6.5 BlockReduce and BlockScan Methods .. 158

6.6.6 GPU Reduce and GPU Scan Primitives .. 165

6.7 Reduce and Scan Implementation Issues .. 173

6.7.1 Conversion between Warp and Sequential Views ... 173

6.7.2 Mitigating Bank Conflicts ... 174

6.7.3 Constraints on Occupancy ... 177

6.8 Results .. 179

6.8.1 Throughput .. 179

6.8.2 Total Cycles ... 184

6.9 Conclusion .. 185

6.9.1 Limitations ... 186

6.9.2 Future Directions ... 187

6.10 Lessons Learned from the Reduce Scan Case Study .. 187

7.0 Case Study: kd-tree for Nearest Neighbor Searches ... 191

7.1 Nearest Neighbor Problem Definitions .. 192

7.2 Related Work .. 194

7.2.1 NN Solutions ... 194

7.2.2 kd-tree Review ... 195

7.2.3 Related NN work on the GPU ... 196

xi

7.3 The kd-tree Data Structure .. 197

7.3.1 kd-tree Search Concepts .. 197

7.3.2 kd-tree NN Search ... 198

7.4 Hardware Limits and Design Choices .. 198

7.4.1 GPU Hardware considerations .. 198

7.4.2 kd-tree Design Choices .. 201

7.5 Building the kd-tree .. 204

7.6 Searching the kd-tree .. 207

7.6.1 Point Location Problem ... 207

7.6.2 QNN and All-NN Search Algorithms ... 208

7.6.3 kNN and All-kNN Search Algorithms ... 208

7.6.4 GPU Resource constraints for kNN and All-kNN ... 209

7.7 Performance Results ... 210

7.7.1 Building the kd-tree ... 211

7.7.2 Finding the optimal thread block size.. 211

7.7.3 Performance for increasing n and k ... 213

7.8 Conclusion .. 213

7.8.1 2D Performance Summary .. 214

7.8.2 3D Performance Summary .. 214

7.8.3 4D Performance Summary .. 214

7.9 Future Directions .. 215

xii

8.0 Case Study: A GPU Histogram ... 216

8.1 Introduction .. 216

8.1.1 Parallelism improves Performance .. 218

8.2 Related Work .. 220

8.2.1 Podlozhnyuk’s Histogram Method .. 220

8.2.2 Nugteren’s Histogram Method .. 221

8.3 My TRISH Method ... 222

8.3.1 Improving TLP .. 223

8.3.2 Improving ILP ... 225

8.3.3 Improving Bit-level Parallelism .. 226

8.3.4 Picking the best k value ... 229

8.3.5 TRISH method summary ... 231

8.4 Performance Results ... 233

8.4.1 Direct Comparison ... 234

8.4.2 Degraded Self-Comparison ... 238

8.4.3 Profiler Results .. 238

8.5 Conclusion .. 240

8.5.1 Future Directions ... 241

8.6 Acknowledgements .. 242

9.0 Case Study: Radix Sort on the GPU .. 243

9.1 Related Work .. 246

xiii

9.2 Serial CPU Implementation .. 251

9.2.1 Serial CPU Counting Sort ... 251

9.2.2 Serial CPU LSD Radix Sort .. 253

9.3 Parallel GPU Implementation ... 255

9.3.1 GPU_CountKeys Kernel ... 257

9.3.2 GPU_ScanRuns Kernel ... 265

9.3.3 GPU_DistributeKeys Kernel .. 268

9.4 Experiment Results ... 304

9.4.1 Data Throughput .. 305

9.4.2 Total Cycles ... 308

9.5 Conclusion .. 311

9.6 Future Directions .. 315

9.7 Lessons Learned ... 316

10.0 Conclusion .. 320

10.1 DASks and BASks ... 321

10.1.1 Block Access Skeletons (BASks) .. 325

10.1.2 Data Access Skeletons (DASks).. 326

10.2 Summary and Lessons Learned .. 333

APPENDIX A: GLOSSARY .. 336

BIBLIOGRAPHY .. 431

xiv

LIST OF TABLES

Table 2.1 GPU Memory Types .. 28

Table 2.2 GPU Threading and Scheduling Model ... 33

Table 3.1 Constraints on Occupancy (Fermi and Kepler) .. 55

Table 4.1 Mapping CTA parameters (Code Snippets) ... 71

Table 5.1 Loop Unrolling vs. Software Pipelining Performance ... 103

Table 5.2 Modifications to the Block DASk to support Fill, Copy, Scatter, and Gather............. 109

Table 5.3 Load balancing data blocks for the ‹FIRST?›‹MIDDLE*›‹LAST?› Pattern 123

Table 5.4 Batching vs. Interleaving Memory Accesses ... 127

Table 6.1 Common Associative Operators ... 132

Table 6.2 Reduce Scan Nomenclature and Symbols .. 133

Table 6.3 Serial Reduce and Inclusive/Exclusive Serial Scan ... 134

Table 6.4 Best Reduce / Scan Throughput Results .. 135

Table 6.5 Adder Summary ... 139

Table 6.6 GPU_Reduce / GPU_Scan Template Parameters ... 170

Table 6.7 GPU_Reduce / GPU_Scan Function Parameters ... 171

Table 6.8 GPU_Reduce / GPU_Scan CTA Parameters .. 171

Table 6.9 Convert between Warp and Sequential data views .. 173

Table 6.10 Padding for a given run length to avoid Bank Conflicts .. 175

Table 6.11 Reduce/Scan Experiment Environment .. 179

Table 6.12 Best Case Reduce/Scan Results.. 180

Table 6.13 TLP Reduce/Scan Results .. 180

Table 6.14 ILP Reduce/Scan Results ... 181

Table 6.15 Best ‹TLP,ILP› Summary ... 182

Table 6.16 Mitigating Bank Conflict Results ... 183

xv

Table 6.17 Total Cycle Results .. 184

Table 7.1 Nearest Neighbor Search Types ... 192

Table 7.2 NN Search Experiment Environment ... 210

Table 7.3 CPU Build Performance ... 211

Table 8.1 Histogram Test Environment ... 234

Table 8.2 CUDA Profiler Results ... 239

Table 9.1 GPU_CountKeys C++ Template Parameters .. 259

Table 9.2 GPU_CountKeys Function Parameters.. 260

Table 9.3 GPU_CountKeys CTA Parameters .. 260

Table 9.4 GPU_DistributeKeys C++ Template Parameters.. 271

Table 9.5 GPU_DistributeKeys Function Parameters ... 272

Table 9.6 GPU_DistributeKeys CTA Parameters ... 273

Table 9.7 Bank Conflicts for Increasing run length ... 282

Table 9.8 Coalesced I/O Efficiency (for increasing DBS) ... 301

Table 9.9 Radix Sort Experiment Environment ... 304

Table 9.10 Maximum Data Throughput (on GTX 580) ... 305

Table 9.11 Maximum Data Throughput (on GTX Titan) ... 306

Table 9.12 Total Cycles (GPU_CountKeys Kernel) .. 308

Table 9.13 Total Cycles (GPU_DistributeKeys Kernel) ... 309

xvi

LIST OF FIGURES

Figure 2.1 Flynn’s Taxonomy .. 15

Figure 2.2 Serial vs. Parallel Machine Models ... 16

Figure 2.3 Memory Hierarchy .. 20

Figure 2.4 CPU vs. GPU core in Broad Themes .. 22

Figure 2.5 Modern GPU core layout .. 25

Figure 3.1 Histogram I/O throughput ... 43

Figure 3.2 Work and Depth Example ... 45

Figure 3.3 Simple CTA mapping ... 50

Figure 4.1 CPU Host Pattern Overview ... 64

Figure 4.2 CPU Host Pattern Example ... 65

Figure 4.3 Computing a CTA layout .. 68

Figure 4.4 Serial, Parallel, and GPU Copy programs ... 76

Figure 4.5 Simple Copy Throughput for Increasing n .. 80

Figure 5.1 Copy Performance ... 84

Figure 5.2 The Block Data Access Skeleton (DASk) ... 85

Figure 5.3 Block Access Skeletons (Block-by-Block vs. Warp-by-Warp) 87

Figure 5.4 Amortized Range Checking (Block DASk) ... 90

Figure 5.5 Amortized Pointer Indexing ... 93

Figure 5.6 Block DASk Code ... 94-95

Figure 5.7 Automatic Loop Unrolling Example ... 98

Figure 5.8 Automatic Loop Unrolling vs. Manual Loop Unrolling Throughput 99

Figure 5.9 Manual Loop Unrolling Example ... 101

Figure 5.10 Copy Throughput for Increasing block size .. 106

Figure 5.11 Copy Throughput for an Increasing number of concurrent blocks per SM 107

Figure 5.12 The Column DASk .. 112

xvii

Figure 5.13 Column DASk Code.. 114-115

Figure 5.14 The Row DASk ... 118

Figure 5.15 Warp Aligning Data Access .. 119

Figure 5.16 Row DASk Code with the ‹FIRST?›‹MIDDLE*›‹LAST?› Pattern 121-122

Figure 5.17 Load Balancing Code for the Row DASk .. 124-125

Figure 6.1 Full Reduce/Scan Throughput Results .. 136

Figure 6.2 Hardware Adder Diagrams ... 140

Figure 6.3 Parallel Reduce Patterns (Tree-Reduce and Run-Reduce) .. 142

Figure 6.4 Parallel Scan Patterns (Scan-then-Fan and Reduce-then-Scan) 143

Figure 6.5 GPU Reduce and Scan (High Level Overview) .. 148

Figure 6.6 RunLoad Method (Code) .. 150

Figure 6.7 SerialReduce and SerialScan Methods (Code) .. 152

Figure 6.8 SerialScan Total Cycles (Comparison) .. 153

Figure 6.9 Overloaded Add Functors (CPU and GPU) .. 154

Figure 6.10 WarpScan Layout Diagram .. 155

Figure 6.11 WarpScan Total Cycles (Comparison) ... 156

Figure 6.12 WarpReduce and WarpScan Methods (Code) .. 157

Figure 6.13 RunUpdate Method (Code) ... 158

Figure 6.14 BlockReduce Method (Code) ... 161

Figure 6.15 BlockScan Method (Code) plus Setup Hints .. 162-163

Figure 6.16 GPU_Scan Kernel (High level Code Overview) ... 168-169

Figure 6.17 Pad and Rake Technique (Overview) ... 176

Figure 6.18 Bank Conflict Comparison .. 183

Figure 7.1 Brute Force Spatial Search .. 194

Figure 7.2 Spatial Searches .. 194

xviii

Figure 7.3 A kd-tree .. 195

Figure 7.4 A kd-tree Trim Test ... 197

Figure 7.5 kd-tree Search .. 198

Figure 7.6 kd-tree Build and Search Methods (Code) .. 205

Figure 7.7 kd-tree Search Results ... 212

Figure 8.1 256-bin CPU Histogram Method (Code) .. 218

Figure 8.2 Bit-Level Parallelism .. 219

Figure 8.3 TRISH Layout ... 223

Figure 8.4 Staggered Start / Circular Indexing (Code Snippets) .. 225

Figure 8.5 BLP Optimization ... 227

Figure 8.6 Binning Code .. 228

Figure 8.7 Row-Sum Efficiency ... 230

Figure 8.8 GPU_Count Kernel ... 232

Figure 8.9 Synthetic Data Throughput ... 235

Figure 8.10 Image Data Throughput .. 237

Figure 9.1 Serial Counting Sort (Code) .. 252

Figure 9.2 Serial LSD Radix Sort (Code) .. 253

Figure 9.3 GPU Counting Sort (3 Kernel Diagram) ... 256

Figure 9.4 GPU_CountKeys Kernel (Code Overview) ... 258

Figure 9.5 Sequential vs. Pipelined Counting Performance Bottleneck (Code Snippets) 262

Figure 9.6 Handling Potential Overflow (Code Snippet) ... 263

Figure 9.7 GPU_ScanRuns Kernel (Code Overview) .. 266

Figure 9.8 GPU_DistributeKeys Kernel (Code Overview) .. 269-270

Figure 9.9 Loading Keys Efficiently .. 281

Figure 9.10 Extract Digits from Keys .. 284

Figure 9.11 CountDigits Memory Layout ... 285

xix

Figure 9.12 ScanWarps Method Overview ... 287

Figure 9.13 ScanWarps Method (Code) ... 289

Figure 9.14 Handle Overflow by Upscaling ... 291

Figure 9.15 ScanBlocks Memory Layout .. 293

Figure 9.16 ScanBlocks Overview .. 294

Figure 9.17 Local Start = warp-start + thread-start + key-start .. 296

Figure 9.18 ShuffleKeys (Sorting Increases Coherence) ... 300

Figure 9.19 Full Radix Sort Data Throughput Results ... 307-308

Figure 10.1 BASks Review (Block-by-Block and Warp-by-Warp) .. 325

Figure 10.2 The Block DASK Review ... 327

Figure 10.3 The Column DASK Review .. 328

Figure 10.4 The Row DASK Review ... 330

xx

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

All-𝑘NN All 𝒌 Nearest Neighbor (search)

All-NN All Nearest Neighbor (Search)

AMP Accelerated Massive Parallelism (Microsoft)

ANN Approximate Nearest Neighbor (Search)

API Application Program Interface

b, B Bit or boolean {0|1} or {true|false}

BASk Block Access Skeleton

BFS Breath First Search

bid block id (uniquely identifies thread block within grid)

BLP Bit-Level Parallelism

BPS Bits Per Second

BSP Binary Space Partition (tree)

BYTE Derived from ‘bit’ and ‘bite’ (8-bits of data)

CC Clock Cycle or Compute Capability

CPI (average) Cycles Per Instruction (for entire algorithm)

CPU Central Processing Unit

CTA Cooperative Thread Array (Grid of Thread Blocks)

CUDA Compute Unified Device Architecture (NVIDIA)

DASk Data Access Skeleton

DBS Data Block Size

DDR Double Data Rate memory type (as in DDR3-RAM)

DFS Depth First Search

DLP Data-Level Parallelism

DMA Direct Memory Access

xxi

DWORD Double Word (32-bits of data, 4 bytes)

EX Execute cycle (classic MIPS pipeline)

FMA Fused Multiply Add instruction (in ISA)

FPU Floating Point Unit

G Giga (one billion)

GB Giga-Byte (one billion bytes)

GM Global Memory

GPU Graphics Processing Unit

HPC High Performance Computing

ID Instruction Decode cycle (classic MIPS pipeline)

IDE Interactive Development Environment

IF Instruction Fetch cycle (classic MIPS pipeline)

II (total) Instructions Issued (for entire algorithm)

ILP Instruction-Level Parallelism

IPC (average) Instructions (retired) Per Cycle

ISA Instruction Set Architecture

K Kilo (one thousand)

KB Kilo-Byte (one thousand bytes)

kd k-Dimensional

kd-tree A generalized binary tree used for spatial searching

𝑘NN 𝒌 Nearest Neighbor (search)

KSHS Kogge-Stone-Hillis-Steele prefix-sum (scan)

LSD Least Significant Digit

M Mega (one million)

MB Mega-Byte (one million bytes)

MEM Memory access cycle (classic MIPS pipeline)

xxii

MISD Multiple-Instruction, Single Data

MIMD Multiple-Instruction, Multiple Data

MIPS Microprocessor (without) Interlocked Pipeline Stages

MPI Message Passing Interface

MPMD Multiple-Program, Multiple-Data

MSD Most Significant Digit

NN Nearest Neighbor (Search)

NOP No Operation

octree A 3D hierarchical spatial searching data structure

OpenCL Open Computing Language (Khronos Group)

PTX Parallel Thread Execution assembly code (NVIDIA)

quadtree A 2D hierarchical spatial searching data structure

QNN Query Nearest Neighbor (search)

QWORD Quad Word (64-bits of data, 8 bytes)

RB Reach Back (convert inclusive to exclusive scan)

RAM Random-Access Memory

RAW Read After Write (data hazard)

RISC Reduced Instruction Set Computer

RNN Range (Nearest Neighbor) Query Search

RAM Random Access Memory

SM Shared Memory

Sh. Mem. Shared Memory

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multi-Threaded

SISD Single-Instruction, Single-Data

SM Streaming Multi-core (Multi-processor)

xxiii

SMX Streaming Multi-core Extended (Multi-processor)

SMP Simultaneous Multi-Processor (machine)

SMT Simultaneous Multi-Threading

SoC System on a Chip (Modern CPUs)

SP Scalar Processor (within SM)

SPMD Single-Program, Multiple-Data

SPMT Single-Program, Multi-Threaded

T Tera (one trillion)

TB Tera-Byte (one trillion bytes)

TBS Thread Block Size

TC Total Cycles (for entire algorithm)

tid thread id (uniquely identifies thread within block)

TLP Thread-Level Parallelism

TRISH Threaded Register Interleaved Strided Histogram

(method)

VP Vector-level Parallelism (Vectorization,

or Vector Processing)

WAR Write After Read (data hazard)

WAW Write After Write (data hazard)

WB Write-Back cycle (classic MIPS pipeline)

WORD Word (16-bits of data, 2 bytes)

xxiv

LIST OF SYMBOLS

⊙ Unary Transform operator, 𝑏 =⊙ 𝑎 =⊙ (𝑎)

⨁ Binary Transform operator, 𝑐 = 𝑎⨁𝑏 = ⨁(𝑎, 𝑏)

𝐴𝑛 Array of 𝑛 data elements

C Number of columns, if the number of rows (R) is fixed it can

be computed as 𝐶 = ⌈𝑚/𝑅⌉

ci The ith bin counter, taken from [0,d) bins in a count histogram

(Radix Sort).

CTA layout Sizes and IDs of CTA grid and thread blocks respectively.

Even though the size parameters can be taken directly from

CTA runtime parameters they are usually indirectly set as

compile-time constants for improved performance and to

support generic programming. The position IDs are always

runtime parameters.

 gw Grid Width, AKA gridDim.x

 gh Grid Height, AKA gridDim.y

 gl Grid Length, AKA gridDim.z (currently unused)

 bw Block Width, AKA blockDim.x

 bh Block Height, AKA blockDim.y

 bl Block Length, AKA blockDim.z

 bx Position within [0, gw), AKA blockIdx.x

 by Position within [0, gh), AKA blockIdx.y

 bz Position within [0, gl), AKA blockIdx.z

 tx Position within [0, bw), AKA threadIdx.x

 ty Position within [0, bh), AKA threadIdx.y

 tz Position within [0, bl), AKA threadIdx.z

CTA

params

Derived parameters from the CTA layout parameters, these

are usually computed as runtime parameters.

 b Block Size, assumes block is 1D and small (b ≤ 1024),

 Typically taken directly from blockDim.x

 g Grid Size, assumes grid is 1D and small (g ≤1000),

xxv

 Taken directly from either gridDim.x or *.y

 bid Unique 1D block ID (thread block within a grid), derived

 (mapped) from ‹gw,gh,1› and ‹bx,by,bz›

 tid Unique 1D thread ID (thread within a thread block),

 derived (mapped) from ‹bw,bh,bl› and ‹tx,ty,tz›

 warpCol Relative thread position within current thread warp in range

 [0, WarpSize) = [0, 31). Computed as

 warpCol = tid % WarpSize = tid % 32 or alternately as

 warpCol = tid & (WarpSize-1) = tid & 31.

 warpRow Relative warp position within current thread block in range

 [0, nWarps). Computed as

 warpRow = tid / WarpSize = tid/32 or alternately as

 warpRow = tid >> log2(WarpSize) = tid>>5.

𝑑 Number of dimensions for 𝑑-dimensional points

𝑑 Digit, represents a small fixed-size numeric range [0, d). A

number is represented by a string of digits (Radix Sort).

d Number of bin counters (Count Histogram, Radix Sort)

𝐷(𝑛), 𝐷 Depth, Steps, Number of parallel stages for 𝑛 data elements

DBS Data Block Size, AKA Data (Work) per block, computed as

DBS = nWork*nWarps*WarpSize (= nWork*TBS).

dist(p,q) A distance metric between two points, Euclidean distance as

dist(p,q)=√(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2

dv Digit value, specific number taken from range [0, d). A

specific number is represented by a string of 1 or more

specific digit values from most to least significant.

DWord 32-bit data-element (4 bytes, 2 words)

𝑓 Fanout in a circuit (hardware adders)

G Cycles to transfer data between global memory and registers

(400-800 cycles on Fermi, 200-400 on Kepler)

hi The ith bin count (matching the sub-range ri)

xxvi

𝕀
Identity element, i.e., 𝕀 is a data element under some binary

operator ⨁ such that 𝑎 = 𝑎⨁𝕀 = 𝕀⨁𝑎 for all 𝑎 ∈ 𝕌

IS
The linear ideal speedup of a parallel computation, computed

as IS = W(n)/p.

𝑘
Pipelined instruction-length (18-22 cycles on Fermi, 9-11

cycles on Kepler)

𝑘 Number of nearest neighbors to find (𝑘NN search)

𝑘 Number of work items per-thread

𝑘 Number of thread collisions in a k-way bank conflict.

𝑘 Number of binning passes (Radix Sort)

𝑘 The maximum number of digits in a key (Radix Sort),

computed as k = ⌈log𝑑 𝑚⌉

𝑙 Logic levels in a circuit (hardware adders)

𝑛 Number of data elements in a run, warp, or array

𝑛 Number of points (objects) in a search set (S)

nWarps C++ parallelism parameter that tracks the number of thread

warps per thread block, typically set in the range [1-8] but

can go as large as 32 warps on current GPU architectures.

nWork C++ parallelism parameter that tracks the number of work-

items (data elements) assigned to each thread, typically set in

the range [1-8] but can go larger as needed.

𝑚 Number of bins (frequency counts in histogram)

𝑚 Number of data blocks, 𝑚 = ⌈
𝑛

𝐷𝐵𝑆
⌉

𝑚 Number of points (objects) in a query set (Q).

𝑚 Maximum number value taken from a large fixed-size

numeric range [0, m).

𝑂(𝑛) Big “O” Notation, Asymptotic complexity of an algorithm

ℙ
Parallelism (work over depth), ℙ =

𝑾(𝒏)

𝑫(𝒏)

𝑝 Number of parallel processors (multi-cores)

𝑝 Number of parallel threads

point A d-dimensional point (optionally representing an object) as

xxvii

‹x,y,…›

Q Query set, set of points (objects) to find closest neighbors to

QR Query region, a set of regions QRi (typically d-dimensional

hyperboxes or hyperspheres) to find points (objects) that are

contained in or covered by the query regions.

R Range R = [min, max] or R = [min, max)

R Number of rows, if the number of columns (C) is fixed it can

be computed as 𝑅 = ⌈𝑚/𝐶⌉

ri The ith sub-range, ri = [ai, ai+1) from a larger range R

ri The ith row from p rows in a partitioned data set

ri The ith run from p runs in a partitioned data block

ri The ith digit run, where the chosen digit from each key in the

run matches the digit value i in the range [0, d) (Radix Sort)

𝑟𝑙 Run length, typically in range [1-8].

S Cycles to transfer data between shared memory and registers

(40-80 on Fermi, 20-40 on Kepler)

S Search set, set of points (objects) to be searched

𝑆(𝑛), 𝑆 Steps, Number of parallel stages for 𝑛 data elements

Equivalent to concept of 𝐷𝑒𝑝𝑡ℎ = 𝐷(𝑛) = 𝐷

si The ith run start, taken from [0,d) bins in a start histogram

(Radix Sort).

Speedup Speedup, computed as 𝑆 =
𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝑇𝑖𝑚𝑒𝑛𝑒𝑤

…Serial Serial Speedup, computed as 𝑆𝑆 =
𝑇𝑖𝑚𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑖𝑚𝑒𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

 Parallel Parallel Speedup, computed as 𝑆𝑆 =
𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

SR‹n› A Serial Reduce on a run of length n

SS‹n› A Serial Scan on a run of length n

SU‹n› A Serial Update on a run of length n (add prefix to run)

t Number of threads

t Number of search results (NN searches)

T Wire tracks in a circuit (hardware adders)

xxviii

𝑇1 Parallel running time on one processor for a parallel

algorithm, equivalent to the concept of 𝑊𝑜𝑟𝑘 = 𝑊(𝑛) =
 𝑊

TBS Thread Block Size, AKA threads per block, computed as

TBS=nWarps*WarpSize

𝑇𝐶 Total Cycles, computed as 𝑇𝐶 = 𝐼𝐼/𝐼𝑃𝐶.

𝑇𝐶𝑃𝑈 Serial running time on one processor for serial algorithm

𝑇𝑝 Parallel running time for a fixed number of 𝑝 processors

bounded by Brent’s Theorem: 𝑚𝑎𝑥 (
𝑊

𝑝
, 𝐷) ≤ 𝑇𝑝 ≤

𝑊

𝑝
+ 𝐷

𝑇∞ Parallel running time for an infinite number of processors,

equivalent to the concept of 𝐷𝑒𝑝𝑡ℎ = 𝐷(𝑛) = 𝐷

WarpSize C++ parallelism parameter, used to track threads per thread

warp. This value is currently fixed at 32 on current GPU

architectures, but could change in future architectures.

𝑊(𝑛), 𝑊 Work, Total parallel work across 𝑝 processors for 𝑛 elements

Limit of running time for 1 processor

WR‹n› A Warp Reduce on a data run of length n = [2, 4, …, 32].

WR‹n› A Warp Scan on a data run of length n = [2, 4, …, 32]

1

1.0 Introduction

Someone who wants to adapt a sequential program to a graphics processing unit (GPU)

for better performance must learn to deal with a number of challenging problems quickly and

without much training. In order to ease this process and help GPU programmers become

productive more quickly, I have developed several skeletons that can be modified to fit their

environment without having to come up with new code on their own. This thesis explains what

these skeletons are and how they can be modified to solve real-life challenges. However, before I

can explain how they help address those challenges, I must explain what those challenges are.

The next section attempts to explain in a nutshell why GPU programming is hard. New

terminology employed in this section will be explained later on in context as this thesis unfolds.

1.1 The GPU Performance Challenge:

The Challenge: GPU programmers are faced with several, complex challenges that

directly affect performance. They must first understand and select serial algorithms that they can

depend upon to solve their specific problems. They then must convert each single-threaded serial

algorithm into an equivalent massively multi-threaded parallel algorithm1 that is both correct and

robust. They must carefully implement their multi-threaded solutions to prevent resource

contention between threads that prevents problems such as race conditions, dead-lock, live-lock,

starvation, etc. If the programmer is not careful, the overhead required to prevent resource

contention can overwhelm the amount of useful work, bottlenecking performance.

1 Parallel algorithms are discussed in the following books and papers (Atallah et al, 2010; Blelloch and

Maggs, 1996; Dongarra et al, 2003; Hillis and Steele, 1986; Hwu, editor, 2011 and 2012; Miller and

Boxer, 2013; Rauber and Rünger, 2010)

2

In order to achieve high performance, GPU programmers must understand GPU

architecture2: how the 2-level compute system operates, how batches of threads are mapped onto

batches of simple cores, how the memory hierarchy consists of many memory types and

behaviors, and so forth. They also need to understand the resource issues imposed by the GPU

architecture and the trade-offs needed in order to avoid bottlenecks. Since the hardware supports

pipelining, they must understand Instruction-level parallelism (ILP) and how to rewrite code to

unlock ILP performance. Since the hardware supports single-instruction-multiple-data (SIMD)3,

they must understand Data-level parallelism (DLP), data partitioning, coalescence, and load-

balancing. Since the hardware supports multi-threading, they must understand Thread-level

parallelism (TLP), latency, warps in flight, occupancy, and related resource limitations. They

must worry about how to transfer data efficiently between the central processing unit (CPU) and

GPU. Given a large parameter space of apparently equal and valid choices, they must explore

these many choices to help select the best parameters for optimal balanced performance on a

particular GPU device. Most of all, GPU programmers must be creative and willing to re-design

and re-implement their solutions in order to achieve their desired performance goals.

Rising to the Challenge: Even though achieving high performance GPU algorithms

for non-trivial algorithms is hard, solving complex scientific problems on massive data sets is

worth the extra effort. The payoff is seeing solutions that used to take hours or days of

computing time now finish in seconds or minutes.

Solid performance on the GPU is achieved by

1) Picking good algorithms

2) Using parallel programming concepts

3) Adapting to the GPU architecture

4) Eliminating performance issues

2 GPU architecture is discussed in the following books and papers (Buck et al, 2004; Garland and Kirk,

2010; Göddeke et al, 2011; Hennessey and Patterson, 2012; Hwu, editor; 2011 & 2012; Nickoos and

Dally, 2010; NVIDIA 2010 Fermi; NVIDIA, 2012 Kepler; Owens et al, 2007; Patterson, 2009).
3 As introduced in Flynn’s Taxonomy (Flynn, 1972).

3

Finally, the programmer must then iterate on the previous four concepts until satisfied

with performance as measured by some metric against baseline performance as shown in the

following five case studies: Memory I/O; Scan/Reduce; 𝑘d-tree; Histogram; and Radix Sort.

1.1.1 Good algorithms

The entire point of computer science has been to solve big real-world problems by

developing great data structures and solid algorithms Experienced programmers are well of

broad paradigms4 like Divide and Conquer, Recursion, Greedy Algorithms, Dynamic

Programming, Reductions, Randomized algorithms, etc. The main point of these approaches is to

minimize the real-world resource consumption (time, space, etc.) of algorithms using a concept

called Asymptotic Growth, also known as “big-O” notation. “Big-O” notation allows

programmers to broadly compare different solutions to the same problem. For example, an

algorithm that takes linear time O(n) is generally considered better than an algorithm that takes

log-linear time O(n log n) or even quadratic time O(n2).

Experienced programmers have many data structures and algorithms in their tool-belt that

allows them to creatively solve real-world problems with their many competing demands and

constraints. Great programmers take their solutions a step further by making sure their code is

efficient often achieving up to a ten-fold increase in performance over an algorithm as found in a

class, book, or on the internet. There are many books, papers, lectures, and other resources that

describe these efficient data structures or algorithms. Such a topic is outside the realm of this

thesis. I will assume my readers have already found and picked good algorithms for their specific

problem-space and are now struggling with getting their code working on a GPU. And that after

they get their code working correctly, they will then want to write efficient code that achieves

high performance.

4 As described in various books on algorithms (Cormen et al, 2009; Edmonds, 2008; Miller and Boxer,

2013; Sedgewick, 1998; Skiena, 2008).

4

1.1.2 Key concepts for Parallel Computation in GPUs

 GPU’s achieve high performance by massive parallelism. Modern GPUs, like the GTX

580, 680 and Titan5, contain hundreds, even thousands of processing cores. The GPU

architecture supports multiple forms of parallelism6: instruction-level parallelism, thread-level

parallelism, task-level parallelism, and data-level parallelism. ILP seeks to extract multiple

independent instructions from sequential instruction streams, which can then be executed in

parallel on multiple processing stages within each processing core. A single instruction stream is

typically executed via a single thread on a multi-threaded CPU. TLP attempts to keep processors

busy by rapidly switching between multiple instruction streams whenever the current thread stalls

waiting on some other resource. TLP, also known as multi-threading, supports both task-level

parallelism and data-level parallelism. For task-level parallelism, work is defined as an abstract

unit of useful computation, functionality refers to useful functions, modules, sub-programs which

can be grouped by common tasks such as graphics, audio, user-interface, etc.. Task-Level

Parallelism divides work by functionality across multiple threads of execution with each subtask

being mapped onto its own thread. Because of the heterogeneous nature of the subtasks, this

form of parallelism works best on multi-core CPUs. For data-level parallelism (DLP), work is

defined as by how many data elements (work items) are processed by each individual thread.

DLP partitions a data array into smaller chunks with each thread being assigned its own

individual chunk of data to process according to some data parallel function, kernel, or program.

Each thread executes the same set of instructions but on different pieces of data. Because data-

parallel code is largely homogenous across threads, DLP strongly favors GPUs with their massive

number of simple cores arranged in SIMD layout. These different types of parallelism (ILP, TLP,

and DLP) will be discussed in more detail in “Chapter 2 – Parallelism”.

5 As described by NVIDIA (NVIDIA, 2010 Fermi; NVIDIA, 2012 Kepler; NVIDIA, 2012, GTX 680)
6 See the book Computer Architecture (Hennessey and Patterson, 2012) for more details on the various

types of parallelism.

5

1.1.3 GPU Architecture

Adapting algorithms to GPU architectures is a challenge because of the many choices for

thread organization, register assignment, memory layout, and synchronization. In this thesis I

consider some of these choices using several case studies (memcopy, scan/reduce, 𝑘d-tree,

histogram, and RadixSort) for processing massive amounts of data at throughputs rates that

approach the hardware limits. In my experience, the paucity of choices for synchronization

drives the initial design decisions. In addition, the memory layout determines what can be

processed efficiently in parallel. Finally, there are many choices for processor organization that

can be experimented with to approach peak performance. GPU architectures will be discussed in

more detail in “Chapter 2 – Parallelism”.

1.1.4 GPU Performance Issues

GPU architectures focus on maximizing throughput across tens of thousands of threads,

while CPU architectures concentrate on minimizing latency for a single task. Thus, there are

many differences between these two architectures--including parallelism, multi-threading, and

memory hierarchy. GPU programmers need to be aware of these differences to increase parallel

throughput in their own GPU implementations. Although, some GPU hardware features can help

performance, other GPU hardware features can hinder performance. Many of these performance

issues related to GPU hardware will be discussed in more detail in “Chapter 3- Performance and

Issues”.

1.2 Data Access Skeletons

 I have written many versions of GPU kernels over the past several years and in so doing

have learned many lessons about how to improve performance. The four main lessons I have

learned include the following:

 Hardware support for instruction-level pipelining can be taken advantage of by increasing

the work per thread via instruction-level parallelism.

6

 Hardware support for SIMD can be taken advantage of by partitioning data into runs and

data blocks via data-level parallelism.

 Hardware support for multi-threading can be taken advantage of by increasing the

number of threads launched via thread-level parallelism.

 Hardware features that can either help or hinder throughput performance.

 I have generalized these performance lessons from my own GPU programming into

frameworks, which I call data access skeletons (DASks) and block access skeletons (BASks).

These DASks and BASks provide three main benefits:

 They support efficient access patterns into memory.

 They support experiments on instruction-level and thread-level parallelism to find the

optimal balance between the two for high throughput.

 They provide a working framework that hides much of the complexity of writing GPU

kernels with high performance.

 In general, higher performing code is more complex, and this is certainly true for these

skeletons. When writing high performance GPU algorithms, a programmer must first get a

correct and working implementation up and running. So, first I introduce a simple GPU copy

kernel in Chapter 4 before introducing higher performing but more complex DASk versions of

Copy in Chapter 5.

Partitioning: My DASks group n data elements into m fixed-size data blocks. These m data

blocks are then load-balanced across p thread blocks using different memory access patterns.

There are five important benefits to this approach:

 Parallel Processing: By design, my DASks are built to efficiently support the 2-level

cooperative thread array (CTA) hierarchy used for parallel processing on modern GPUs.

 Data Coherence: Coherent data allows efficient near-peak input/output (I/O) throughput

into memory. My DASks support high coherence by working with blocks of data.

 Sequential Ordering: My Row DASk supports sequential ordering for those algorithms

that require it for correct behavior (such as Scan and Radix Sort).

 Deterministic Execution: All my case study algorithms are implemented in a lock-free

deterministic manner that does not require mutual exclusion (with one exception7).

7 The one exception is the use of barrier synchronization, which makes all threads wait at the

synchronization point until all threads arrive before all threads are allowed to proceed execution again. I

7

 Data Independence: Most of my case study algorithms are data independent8.

There are three main DASks --Block, Column, and Row-- and two main BASks --Block-

by-Block and Warp-By-Warp. At a high level, these all represent different access patterns (or

layouts) into global memory. The GPU architecture supports parallel performance using a 2-level

parallel hierarchy. The three DASks support efficient access patterns across thread blocks within

a parallel grid when accessing the entire data set. The two BASks support efficient access

patterns by individual threads within a single data block when accessing a single data block.

These DASks and BASks are introduced and discussed in more detail in “Chapter 5 – Data

Access Skeletons”.

1.3 Case Studies

Many issues become evident when working with parallelism on GPU hardware. These

issues are a result of adapting serial algorithms into parallel algorithms and mapping parallel

concepts onto specific GPU architectures. GPU programmers must learn how to take advantage

of beneficial hardware features while mitigating harmful hardware features in order to unlock

high performance. GPU programmers must learn about using parallelism (instruction-level, data-

level, thread-level, bit-level) to increase performance. In order to make these abstract lessons

more concrete, I implemented algorithms on GPUs. While implementing these algorithms, I of

course use my DASks and BASks9 to speed up my own development time and provide a high

performing framework. Of course each case study implementation has additional valuable

use the syncthread() method for barriers within a thread block and barriers between GPU kernels happens

automatically.
8 My kd-tree case study algorithm is data dependent. Since each thread represents a single query point,

each thread branches down its own unique path through the search tree. However, there are 32 threads per

warp that move in lock-step through the code. Consequently, performance varies with data as CUDA

serializes instructions from threads on different branches.
9 One exception, my kd-tree case study was written before I generalized the concept of DASks and BASks

and I have not yet rewritten that code on top of one of these skeletons.

8

lessons about performance. I showcase many of the lessons in GPU programming via five

different case studies: Memory I/O via Copy, kd-trees, Reduce/Scan, Histogram, and Radix Sort.

1.3.1 Memory I/O via Copy:

The primary focus of my Memory I/O case study is on demonstrating all three of my

DASks and both of my BASks via the Copy primitive. The Copy primitive copies n inputs onto n

outputs. The secondary focus is on showing how my DASks can achieve a high percentage of

peak I/O throughput on GPUs. To this end, I implement the Copy primitive in four different

ways: Simple, Block, Column, and Row. Getting the simple copy kernel up and running

correctly is described in more detail in Chapter 4 – Case Study Memory IO”. The other more

complex and higher performing versions of Copy based on my three data access skeletons (Block,

Column, and Row) are described in more detail in “Chapter 5 - Data Access Skeletons”. I

conduct experiments on all four versions of Copy to find the best performing balance between

ILP and TLP and achieve up to 30%, 82%, 77%, and 77% of peak I/O throughput, respectively.

1.3.2 kd-tree for Nearest Neighbor Searches:

In the kd-tree case study, I implement GPU kernels for nearest neighbor search10 using a

kd-tree11. With a nearest neighbor search, the goal is to find the closest point (or k points) within

a search set of n points for each of m points in a query set. Note: Unlike my other case studies,

this case study does not use any of my DASks.

My first exposure to GPU programming was implementing a kd-tree for use on nearest

neighbor searches. I intended to use this nearest neighbor search as part of a terrain visualization

problem on LIDAR data. My solution took much longer than I had originally budgeted.

However, eventually I got it working and in time achieved a 25× speedup in performance over the

10 Nearest neighbor searches are discussed in the following books and papers (Bentley, 1975; Bustos et al,

2006; Mount and Aray, 2010; Shakhnarovich et al, 2005).
11 kd-trees are a type of spatial searching data structure created by Bentley (Bentley, 1975).

9

equivalent single-threaded CPU code. I was proud of this result at the time. However, looking

back with the benefit of more experience, I see that my original implementation was naïve. It did

not take advantage of many GPU hardware features and ran head on into several hardware

limitations that constrain parallel performance. This kd-tree implementation is described in more

detail in “Chapter 7 – Case Study kd-tree”.

1.3.3 Reduce/Scan:

In my Reduce/Scan case study, I use my Row DASk to implement high performance

parallel Reduce and Scan GPU primitives12. Reduce produces a total sum by accumulating n

inputs into a single final sum. Scan (Prefix Sum) produces a running sum by accumulating n

inputs into n outputs, where the ith output element is the cumulative sum of the first i (or i-1) input

elements. Reduce and Scan have similar implementations. Both primitives are almost trivial (3-5

lines of code) to implement on a serial CPU. However, the parallel GPU implementations are

much more complex. This complexity is a direct result of data being load-balanced across tens of

thousands of threads and the requirement for partial per-thread sums to be hierarchically

combined and redistributed for correct final results. The Scan primitive requires that inputs be

processed in sequential order for correct scanned results. Although the Reduce primitive does not

require sequential ordering, I choose to implement it the same way as Scan.

As will be seen, I perform experiments on both ILP and TLP to find the optimal balance

for best performance. My Reduce and Scan primitive achieve up to 89% and 85% of peak I/O

throughput on the GTX 580 (and up to 76% of peak I/O throughput on the GTX Titan). My

Reduce/Scan primitives are described in further detail in Chapter 6.

12 For more details about the Reduce and Scan primitives, see the following papers (Blelloch, 1989 and

1990; Blelloch and Maggs, 1996; Chatterjee, 1990; Harris et al, 2008; Hillis and Steel, 1986; Merrill and

Grimshaw, 2010 Parallel Scan).

10

1.3.4 Histogram:

 In my Histogram case study, I use my Column DASk to implement a parallel 8-bit

histogram primitive on the GPU. A histogram13 summarizes the frequency distribution of an

entire data set via a much smaller table of counts. In a nutshell, n input elements are counted into

m bins. The resulting m frequency counts form the histogram output. Each of the n inputs is

assumed to be taken from a range, R = [min, max). Each of the m bins represents a sub-range ri

of R. (These sub-ranges uniquely partition and fully cover the original range R). Counting

proceeds by selecting the matching sub-range for each input element and incrementing that bins

counter.

An 8-bit histogram can be implemented using a simple indexing operation on 8-bit data.

The serial CPU implementation is trivial (5-8 lines of code). Although histograms are

straightforward to implement on a sequential CPU, they have proven difficult to adapt for use on

GPUs with low performance results in prior GPU histogram implementations. I ran into similar

performance issues since my GPU Histogram only achieves up to 21% of Peak throughput on the

GTX 580. Nevertheless, my GPU Histogram still runs up to 50% faster than prior GPU

histogram methods for random data and up to 2-4× faster for image data. My 8-bit GPU

histogram is described in further detail in Chapter 8.

1.3.5 Radix Sort:

 In my Radix Sort case study, I use my Row DASk to implement a parallel Radix Sort on

the GPU. Even though a serial radix sort14 is straightforward to implement (as a 3-step Counting

Sort pass over each r-bit digit within a numeric key), the corresponding CPU/GPU hybrid radix

sort is much more complex. This complexity arises due to the need to load-balance data across

tens of thousands of threads, hierarchically scan counts into starts, compress/decompress data,

13 Histograms were created by Pearson (Pearson, 1895).
14 Radix Sort algorithms are discussed in the following books (Cormen et al, 2009; Sedgewick, 1998).

11

and many other complex actions required to overcome hardware limitations. My hybrid solution

has the CPU implement the radix sort as multiple passes over 4-bit digits within each 32-bit

numeric key and then invoke three GPU kernels (GPU_CountKeys, GPU_ScanCounts, and

GPU_DistributeKeys) to do a full counting sort on each chosen digit in each pass.

As will be seen, I perform experiments on both ILP and TLP to find the optimal balance

for best performance. My GPU radix sort can sort up to 717 and 836 million ‹key/value› pairs per

second on the GTX 580 and GTX Titan respectively, which I estimate15 are about (59% and 46%)

of peak data throughput rates respectively. My Radix Sort is described in further detail in

Chapter 9.

15 Given 32-bit keys and 32-bit values with a 4-bit digit, the radix sort requires 8 passes (=32/4) to fully

sort the data. Given these assumptions, I estimate that the maximum data throughput rate is 1205 million

and 1802 million ‹key/value› pairs per second on the GTX 580 and GTX Titan respectively.

12

1.4 Summary:

 As will be demonstrated in my various case studies, my DASks and BASks help

programmers take advantage of the massive amounts of parallel processing power available on

modern GPUs. Even though writing GPU data parallel code that is both correct and high

performance is quite difficult, my three DASks help solve many of the issues that GPU

programmers must grapple with and eases the burden of implementing their own GPU programs.

These DASks use generic programming techniques to enable experiments on both ILP and TLP

techniques, in order to find the optimal balance between the two for best performance.

13

2.0 Parallelism

As mentioned previously, graphics processing units (GPUs)1 achieve high levels of

performance mainly through their massive use of parallelism. A thorough knowledge of the types

of parallelism available is vital for anyone programming for a GPU. I therefore in this chapter

review the common types of parallelism used by GPUs—Flynns taxonomy, machine models, and

memory models—as well as go over the the Fermi and Kepler architectures, which are

particularly helpful in my case studies.

2.1 Types of Parallelism

Parallelism is the simultaneous processing of several tasks or multiple data items on

multiple hardware processing units. These units are called cores2 or, in recent parlance, multi-

cores to distinguish them from the simple single-core CPU3 architectures of older computers.

Each processing core is assumed to work on its own independent instruction stream to perform

useful computations to accomplish a task. Typically each task involves transforming input data

streams into output result streams.

Parallel processing4 often requires communication and coordination between cores to

accomplish the original task. Granularity is a qualitative measure of the amount of computations

done compared to the communications done. Coarse-grained parallelism implies that large

amounts of computations are done between communication / coordination events. Fine-grained

1 Recall that GPU stands for graphics processing unit, GPUs are massively parallel processing machines.
2 Also known as processors.
3 Recall that CPU stands for central processing unit, CPUs are thought of as serial processing machines

even though modern CPUs are actually multi-threaded multi-core devices that typically support multiple

forms of parallelism.
4 As described in the book Computer Architecture (Hennessey and Patterson, 2012).

14

parallelism implies that small amounts of computations are done between communication /

coordination events. Parallel overhead is the total amount of time required to communicate and

coordinate work between parallel tasks, as opposed to doing useful work solving the original

problem.

2.1.1 Flynn’s Taxonomy

Flynn’s taxonomy (Flynn 1972) offers a popular high-level way of categorizing the

different types of parallelism and shows the fundamental differences between CPU and GPU

architectures. In fact, by imagining an evolution of a CPU core into a GPU core, we will see

differences in machine models, memory hierarchies, and the way to think about mapping parallel

computation onto the underlying architecture.

Flynn’s Taxonomy groups serial and parallel models into 4 broad groups, either single or

multiple along two axes (instructions and data): Single-Instruction Single-Data (SISD), Multi-

Instruction Single-Data (MISD), Multi-Instruction Multi-Data (MIMD) and Single-Instruction

Multi-Data (SIMD). These groups are useful in categorizing parallel hardware, software, and

models. For example, Figure 2.1 shows the four types of parallelism used in my case studies:

instruction-level parallelism (ILP), thread-level parallelism (TLP), task-level parallelism, and

data-level parallelism (DLP).

15

Figure 2.1: I categorize Instruction, Thread, Task, and Data-level Parallelism using Flynn’s Taxonomy

(SISD, MISD, MIMD, and SIMD). (Less importantly, I also categorize Vector- and Bit-level

parallelism.)

Instruction-Level parallelism (ILP) executes instructions on multiple processing cores to

increase the instruction throughput of a serial instruction stream. On CPUs, ILP has a huge effect

on the underlying architecture, but thanks to the heroic efforts of hardware architects and

compiler writers, most programmers see little effect on the common programming model, and can

continue to think of and work with modern CPUs as if they were simple von Neumann SISD

computers instead of the complex MIMD systems on a chip (SoC) that they have become.

Thread-level parallelism (TLP), also known as multi-threading, maps multiple streams of

execution onto multiple cores. Initially, multi-threading appears to be clearly in the MIMD

category for both the architecture and the programming model. In fact, some of the first uses of

TLP was to hide latency on SISD CPU architectures by switching from stalled threads to other

active threads to continue doing useful work. On SIMD processors, batches of threads (known as

warps on NVIDIA GPUs) are mapped onto batches of simple processing cores.

TLP enables task-level and data-level parallelism. Task-level parallelism divides one

large task into several smaller subtasks and maps each subtask onto its own thread or warp.

Data-level parallelism (DLP) partitions a large data set into smaller runs of data and also maps

MIMD
The Multi-

Computer

Modern CPU

MISD
Rarely

Used

In
st

ru
ct

io
n

s

SISD
Von Neumann

Basic CPU

SIMD
Modern GPU

S
in

g
le

M
u

lt
ip

le

Single

Data

Multiple

Thread
Level

Instruction-Level

Task-Level

Data-Level
Vector-Level

Bit-Level

16

each run onto its own thread or warp. I also show two other types of parallelism (bit-level

parallelism (BLP) and vector-level parallelism (VP) that will I will revisit in my case study on

Histograms (chapter 8).

See the book Computer Architecture5 (Hennessey and Patterson, 2012), for a more in-

depth description of each type of parallelism above (as well as other types of parallelism).

2.1.2 Machine Models, Memory Models, and the Memory Hierarchy

Serial Model

von Neumann Machine

Parallel Model

The Multi-computer

Figure 2.2: Serial machine model vs. Parallel machine model. The classic serial von Neumann model

abstracts a sequential CPU plus a load/store memory that contains both instructions and data. The Multi-

computer model abstracts parallelism by connecting multiple serial computers together via a network

and adding support for remote message passing and remote memory access.

Flynn’s taxonomy includes data and instruction streams but does not cover types of

memory access. Yet as we will see in my case studies, useful models of memory access are also

important to GPU programmers in order to achieve take advantage of the performance

characteristics and features of the GPU memory hardware. Two machine models for thinking

about instruction, data, and access parallelism are the von Neumann computer (von Neumann,

1945) and the multicomputer, shown in Figure 2.2. Machine models abstract hardware for

programmers so that they can focus on high-level algorithms, data-structures, and

implementations without getting mired in the technical details of each machine’s specific

architecture.

5 For more information about different types of parallelism, see the book Computer Architecture: A

Quantative Approach, 5th Edition by Hennessey and Patterson.

CPU

Memory

Input
Zeta

Smith
Hernandez

Brown
…

Output
Allen

Ashton
Barlow
Brown
…

Program

… Machine 1

CPU

Memory

Machine 2

CPU

Memory

…

Machine 8

CPU

Memory

Interconnection Network

…

17

The original machine model is the von Neumann computer, which consists of one CPU

performing serial computations. The CPU connects to a storage unit called memory. All

programs and data are stored in memory. Instructions and data are transferred between CPU

registers and memory using load/store operations. The CPU executes a program containing a

sequence of instructions to transform input data into output results.

The multi-computer contains a number of simple von Neumann computers called nodes

that are linked to each other over an interconnection network. Each node executes its own

program. Each program may access its own local memory directly. Each node may

communicate and coordinate with other nodes over the network by sending and receiving

messages. These simple abstract models have performed well for over sixty years by allowing

advances in software to proceed independently from advances in hardware.

Under Flynn’s Taxonomy, a von Neumann machine is SISD, and the multicomputer is

MIMD. For serial programming, programmers follow the random access memory (RAM) model

and assume memory access costs are fixed regardless of the machine’s physical location.

For parallel programming, there are two main memory models: distributed memory and

shared memory6. For distributed memory, programmers explicitly use remote message passing

over the interconnect network to communicate and coordinate parallel CPU nodes. In the ideal

distributed model, message costs are proportional to message length. However, in practical

models, message costs are impacted by three factors: 1) the topological layout of the network

(meaning, cube, star, ring, etc.), 2) the physical distance between nodes, and 3) the number of

messages competing for concurrent use of the interconnect network.

For the shared memory model, a large shared memory pool replaces the interconnect

network. This model supports a concurrent RAM model. With it, every node has a direct

6 Shared memory is a general term in the parallel programming community for accessing memory in

parallel across multiple cores. Unfortunately, NVIDIA also uses the same phrase to indicate a specific type

of memory on GPU cores. This may result in some confusion for the reader.

18

connection to the shared memory pool that all nodes share. Each node also has direct access to its

own attached local memory pool. Because of communication overhead, access to other nodes

shared memory is slower than direct access to its own local memory. The number of nodes

involved in this model tends to be small, often 2 to 8, because the all-to-all communication

required to support concurrent coherent access to shared memory grows geometrically as node

are added.

In this shared memory context, coherent access implies that all changes to memory by

any node are visible to all other nodes in the multicomputer. Programmers can implicitly use

shared memory to communicate data and coordinate execution across parallel nodes. The

concurrent RAM model is easy for most programmers to understand since it is most similar to the

RAM model they are already familiar with. However, concurrency implies that multiple nodes

can update the same memory locations at the same time leading to resource competition.

Programmers must prevent or manage resource competition between nodes to avoid serious

problems, such as incorrect results and crashes.

Computer architects design and build memory architectures that are far more complex

than the simple abstract models (RAM and concurrent RAM) programmers use to understand

them. Because different memory technologies have many orders of magnitude differences in how

they make trade-offs between cost, speed, and capacity, architects build large memory

hierarchies, both architects and compiler writers try to hide the hierarchy and simulate the simpler

memory models for the average programmer. Because, in my case studies, the memory hierarchy

of the GPU has a large effect on the techniques to improve performance, I want to review some of

the terminology and issues in modern memory architectures.

Architects divide the memory system into multiple levels (Hennessey and Patterson,

2012), with each level containing its own memory type with its own unique characteristics—the

primary focus is on speed, size, and cost. The entire memory system achieves high transfer

speeds by exploiting locality (both spatial and temporal). If an algorithm asks for a variable

19

stored in a slower memory level, move and store that variable into a faster memory level, a

process called caching. Caching is effective because if an algorithm just accessed a memory

location, that algorithm is likely to access the same location again soon, a concept called temporal

locality. While the memory system is transferring data, it should also go ahead and grab a small

fixed size neighborhood of memory around the requested memory location and cache that as well.

Because if an algorithm just accessed a memory location, then that algorithm is likely to access

that location’s neighbors as well, a concept called spatial locality. Frequently accessed memory

ends up being cached in higher speed memory closer to the CPU resulting in better I/O

throughput. In this locality context, coherent memory accesses mean repeated memory accesses

clump up close to each other either in time and/or space. Coherent memory accesses run close to

the speed of the fastest memory layer involved. While random or incoherent memory accesses

run close to the speed of the slowest memory layer involved. This is because coherent memory

accesses are well localized (across time or space), which caching exploits.

20

Figure 2.3 Memory Hierarchy with 4 broad tiers – very fast CPU registers, fast on-chip cache,

medium speed off-chip RAM, and slow external file-based storage. Memory is typically sorted

by access speed with fast memory kept close to the CPU and slow memory kept more distant.

Architects use a memory hierarchy, caching, and the principle of locality to support fast

average access speeds at a reasonable total cost.

Architects design modern computer memory in a hierarchical manner, as shown in Figure

2.3, to provide fast memory access at low cost. A typical memory system consists of four broad

layers. The CPU layer consists of registers used to store input operands and output results. This

memory is very fast but very expensive so designers keep it very small. The on-chip multi-level

cache layer exploits locality by temporarily storing larger fixed size chunks of instructions and

data. This memory is fast but expensive so it is kept small. The off-chip main memory layer

consists of large amounts of random access memory (RAM) shared across all cores on the chip.

This memory is reasonably fast, and affordable so it is kept large [1-32 GB]. Finally, the storage

layer typically consists of file-system based hardware stored externally in devices such as USB

keys, SSDs, DVDs, and hard drives. This memory is slow but cheap so designers can afford huge

amounts of storage.

In theory, the RAM model treats memory access as having a fixed cost to make it easier

to develop new algorithms. CPU architects and compiler writers put in great efforts to provide an

File Based Storage
External

SSD, Hard-drives, DVD, Tape, …

Main Memory
Off-chip

Random-Access Memory (RAM)

Cache
On-Chip

L1, L2, L3, …

CPU
Registers

Fast,
Small,

Expensive

Slow,
Huge,
Cheap

21

environment that most programmers can see as following the RAM model (at least if they respect

some heuristics about accessing data with good locality, and partitioning drives wisely).

However, serial CPU programmers for whom performance is crucial may need to know much

more about the memory hierarchy and may even circumvent some of the architects’ efforts by

memory mapping or by using other tricks that operate on lower levels of abstraction. Currently,

GPUs have less architecture and compiler support for the concurrent RAM model. So, in

practice, parallel GPU programmers have to much more aware of the memory hierarchy, memory

types, and varying costs for accessing memory at each level.

2.1.3 Deriving a GPU core from a CPU core

The following diagrams shows the broad differences between CPU and GPU

architectures, it summarizes a PPAM7 tutorial by Göddeke (Göddeke et al, 2011). It shows how

to evolve a CPU into a GPU in four steps: simplify, replicate, re-organize, and warp-thread.. I

place these in their categories in Flynn’s taxonomy in Figure 2.4.

At a high level, CPUs contain a few (2-8) large and complex ILP focused cores that favor

coarse-grained Task-Level parallelism, whereas GPUs contain hundreds of simple TLP focused

cores that favor fine-grained data-Level parallelism. This differentiation can be seen as arising

naturally from the following steps.

7 This summary is based on a Parallel Processing and Applied Mathematics (PPAM 2011) tutorial session

on “Scientific Computing on GPUs” by Göddeke et al.

22

Figure 2.4: Conceptual differences between a CPU core and a GPU core in broad themes. Based on a

talk by Göddeke (Göddeke et al, 2011). Start with a complex CPU ILP-focused core. 1) Simplify:

Remove complex ILP and large data caches to get a simple processing core. 2) Replicate: Repeat that

simple core many times on the GPU chip to support massive parallelism. 3) Re-organize: Combine

control logic for many simple cores into one larger single vectorized SIMD core. 4) Warp-thread:

Support multi-threading at a group level, provide large context pools and hardware support for rapid

context switching between groups of threads called warps. Finally, arrive at a GPU TLP-focused core.

Simplify: The CPU is conceptually reduced to its essential functions for executing

programs, keeping the fetch/decode control logic, an arithmetic logic unit (ALU) for

computation, and some execution context pools to support multi-threading. What is eliminated to

save transistors is the large on-chip caches and most of the complex logic used to implement

instruction-level parallelism (ILP) techniques. These simple cores will of course run slower than

modern CPUs as they do not exploit serial parallelism or memory locality.

Replicate: The saved transistors are then spent on creating many parallel simple cores

on a single chip. To support parallel processing properly, control logic to schedule multiple

threads onto multiple cores would also need to be added. This MIMD approach can support both

Data

In
st

ru
ct

io
n

s

Single Multiple

S
in

g
le

M
u

lt
ip

le

Fetch/
Decode

ALU
(Execute)

Thread
Context

Data
Cache

Out-Of-Order

Branch Predict

Pre-fetch

Simplify

MISD Replicate MIMD

SISD

1

2

Warp-thread4
Fetch/

Decode

Warp Context
…

…

…

…

…

…
…

1 8

9 p

…

…3 Re-organize

SIMD

Fetch/
Decode

1 8

9 p

…

…

Thread
Context

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

F/D

ALU

TC

23

task-level and data-level parallelism. Algorithms that divide tasks or data across multiple cores

will see a large performance gain due to parallelism.

Reorganize: The core architecture is redesigned by reorganizing all of the ALU cores

and their execution contexts into larger resource pools. To simplify yet further, a single instance

of the instruction, control, and scheduling logic is shared across all the pooled ALU cores. This

reduces the total transistor count at the cost of requiring all simple cores to move in lock-step

through the same instruction stream. This approach is similar to vector-parallel computing and is

at the heart of SIMD processing. For now, I will call this larger pooled core a SIMD core. This

approach reduces system overhead by amortizing the cost of managing the instruction stream

across many simple cores. Each simple core within the larger SIMD core works on the same

instruction but on different data values, which strongly favors data-parallel algorithms.

Warp-thread: Support is added for a large number of execution contexts for multi-

threading in batches of threads. Using NVIDIA’s terminology, this batch of threads is known as

a warp. Warp-threading allows the GPU to store a large number of dynamic warps and the

associated state (or context) for each individual thread within each warp and additional context at

the warp level. Each warp context corresponds to a batch of contexts (one per simple core) on the

SIMD core. Think of warp-threading as multi-threading that occurs at the SIMD core level, not

at the ALU core level with each warp-thread acting as a fat bundle of smaller threads (one per

ALU core) that all move in lock-step through the instruction stream. All simple threads within a

warp thread share a single warp context, including a program counter and other related resources

(such as instruction cache or assigned shared memory) to march through the same instruction

stream as a group.

Next, imagine adding support for a fast fine-grained multi-threaded (multi-warp)

scheduler to rapidly switch between warp contexts as individual warps stall during execution.

NVIDIA calls this thread manager a warp scheduler. Individual warps may stall, however, if this

24

happens, the warp scheduler will rapidly switch the SIMD core to another active warp and keep

all the simple cores within each SIMD core doing useful work. In this way, the warp scheduler

keeps the SIMD core busy by hiding latency and increasing overall instruction throughput.

After simplifying, replicating, re-organizing, and warp-threading, we arrive at a

convenient abstraction of a modern GPU architecture.

2.2 GPU Architecture

A modern GPU core, as found on the GTX 580, as shown in Figure 2.5, is a result of

combining the broad concepts from section 2.1.3 into silicon. In NVIDIA terminology, A

replicated, re-organized, and warp-threaded SIMD core is called a streaming multi-processor

(SM). Each SM contains multiple scalar processors (SP) similar in concept to simple ALU

processing cores. Warp-threading is supported using warps of 32 threads that in turn are mapped

onto the physical SPs. The instruction (fetch/decode), control and warp scheduling logic are

shared across all the SPs on the SM.

The resulting GPU architecture supports data-level parallelism via both ILP and TLP

concepts. ILP is supported in hardware by pipelining and scoreboarding on each SM core. TLP

is supported by warp level multi-threading across lots of SP cores. GPUs take the replicate

concept one step further by replicating each SM multi-core across the chip multiple times to

achieve the massively parallel computing devices known as GPUs.

25

Simple Core SIMD Core Modern GPU

Figure 2.5: A modern GPU core: The Fermi multi-processor core implements massive parallelism by

simplifying, replicating, re-organizing, and multi-threading. On the left, is a simple pipelined SP-core

(scalar processor). In the center, 32 SP cores are replicated and then re-organized with shared

instruction, control, and scheduling logic into a SIMD core called a SM-core (Streaming Multi-

processor). The on-core warp scheduler supports rapid context switches between up to 48 different

warps, containing 32 parallel threads each, for a total of up to 1,536 threads in 48 independent warps of

execution. NVIDIA replicates again putting 16 SM cores onto each GTX 580 GPU card for a total of

512 simple cores per card. NVIDIA also adds support for an intra-core thread scheduler, 3D graphics, a

memory hierarchy, 6 memory controllers and an I/O controller.

So, in a broad sense, CPUs spend silicon on advanced ILP techniques and large data

caches to speed up the performance of serial algorithms. GPUs spend silicon on warp-based

multi-threading and massive numbers of simple cores to speed up the performance of data-

parallel algorithms.

 Hardware architects and compiler designers have done an excellent job hiding the actual

parallel complexity of modern CPUs from programmers. Most programmers can safely assume a

RAM memory model on top of a von Neumann machine and achieve solid results. However,

GPU chips and the CUDA8 platform (NVIDIA, 2010, What is CUDA) are not as evolved and

programmers must put in greater efforts to understand the underlying GPU architecture and issues

entailed in order to make their kernels run correctly, robustly, and with high performance. To

help with that deeper understanding, I will drill down on the GPU architecture in greater detail in

this section.

8 CUDA is an abbreviation that stands for Compute Unified Device Architecture as defined by NVIDIA.

Control/Context

SP Cores
(Execute)

Memory

Interconnect

SM Cores SM Cores

Cache

Memory

Giga-Engine Scheduler

Graphics Graphics

Graphics Graphics

SMs

M
e

m
o

ry
 C

o
n

tr
o

ll
e

rs

I/O Controller

M
e

m
o

ry
 C

o
n

tr
o

ll
e

rs

Dispatch Port

Operand Collector

FPU ALU

Result Queue

SP Core

(Scalar Processor)

SM Core

(Streaming Multi-Processor)

GPU Card

(GTX 580 = Fermi)

26

A GPU supports high-performance parallel computing by combining together these three

elements:

1. A hybrid (MIMD/SIMD) hardware model for data-level parallelism

2. A massive multi-threaded two-level scheduler for thread-level parallelism

3. Simple programming language extensions for ease of parallel programming

GPUs support incredible processing rates for massive data sets that can be adapted to

their models of processing, memory, and communications. This adaptation is not easy, because

these are complex, interacting models, with unexpected limitations imposed by hardware. I

suggest that, because the hardware architects have focused on implementing a data-parallel

processor model, have given flexibility for the memory model, and have spent less effort on the

communication model, the programmer may wish to consider these in reverse order: first making

algorithm selections based on communication constraints, secondly choosing parameters based on

memory hierarchies, and then implementing kernels using parallel thread groups (or warps).

Now, that we have a high-level understanding of how GPU’s differ from CPU’s, I will

next explore the GPU architecture from several different points of view:

1. Processing and memory,

2. Warp-threading and scheduling

3. Communication and coordination

Any parallel computation devices must provide mechanisms for instruction dispatching

and processing, memory storage and retrieval, thread scheduling and management, and

communication/synchronization. GPUs were designed for fast processing in graphics pipelines,

in which the same computation (viewing transformation, illumination, z-buffering, texture-

mapping) can be performed in parallel on a large amount of data. Thus, the GPU hardware

architects have created a fixed hierarchy of processors, a flexible hierarchy of memory, two levels

of multi-threaded schedulers, and a limited set of primitives for communication / coordination

27

across threads. I will overview the NVIDIA Fermi GTX 580 card and Kepler GTX 680 cards as

specific examples of these high-level design concepts.

2.2.1 Hardware Processor and Memory Hierarchies

Current GPU architectures use a two-level hierarchy of processing cores. Consider, as

examples, NVIDIA’s Fermi and Kepler architectures, The GTX 580 GPU (NVIDA, 2010,

Fermi) contains 16 SMs, each containing 32 SPs for a total of 512 cores with an aggregate 1.58

Tera-FLOPs of single-precision peak compute capacity. The GTX 680 (NVIDIA, 2012, GTX

680) contains 8 SMXs, each with 192 SPs for a total of 1,536 cores with an aggregate 3.10 Tera-

FLOPs of single-precision peak compute throughput. On both the GTX 580 and GTX 680,

double-precision peak throughput drops to only 197 and 129 Giga-FLOPS, an 8-fold and 24-fold

decrease, respectively, instead of the expected two-fold, because only a few of the FPUs can

handle 64-bit doubles.

Both processors execute hierarchically organized threads, which are best considered as

single-instruction/multiple-data (SIMD) processes, as we will describe shortly in section 2.2.3.

Memory Types: Each GPU has support for many different types of memory (NVIDIA,

2012 Programming Guide) --Registers, Shared, Global Memory, Cache, Surface, Texture,

Constant, and Local, as shown in Table 2.1. The Surface, Texture, and Local memory are just

special forms of global memory with extra functionality and/or behavior. From a performance

point of view, Registers are the fastest form of memory, followed by Shared memory (L1 Cache),

L2 Cache, and finally Global Memory. There is also even slower access to Host CPU RAM via

DMA transfer. I will briefly overview each type of memory in this section.

28

Registers
Shared Memory

(L1 Cache)

Global Memory

(L2 Cache)

• 32K registers per SM

• Each register is 32-bit (4 bytes)

• 128KB per SM • 2048KB

aggregate total

• At least 8 TB/s peak aggregate

compute throughput

• 48KB shared

• 16K L1 cache

• or (16K/48K)

• 32 banks (4 bytes per bank)

• Bank conflicts

• 1.43 TB/s peak aggregate I/O

throughput

• 1.5 GB capacity

• 6 memory controllers

• 768 KB L2 cache shared across all

SM’s

• 4-8 GB/s data transfer GPU ↔

CPU

• 192.4 GB/s peak aggregate I/O

throughput.

Constant Memory

(CUDA API)

Texture Memory

(CUDA API)

Local Memory

• Read-only memory

• 64 KB

• 2KB cache per SM

• Use Broadcast mode otherwise

access is serialized.

• Can be as fast as registers.

• Declare variables/arrays as

constant to use.

• Intended to support textures for 2D

and 3D graphics

• Read-only memory

• Must be properly initialized before

using. Created out of global memory.

• Has own separate texture cache

• Supports a variety of pixel formats.

• Supports filtering/interpolation

• Supports addressing operations

(clamping, tiling, mirroring)

• Not really a memory type but a

platform behavior to deal with

Register Spill.

• Local variables that exceed the

number of assigned registers per-

thread are stored in global memory.

• These variables are said to be in

Local memory.

• These variables run at global

memory speeds impacting

performance.

Table 2.1 - GPU Memory Types: High level summary of the main GPU memory types.

Registers: Each SM (or SMX) has a large pool of registers. The registers can be

flexibly assigned to individual threads. The registers (4-bytes each) can be partitioned and

directly assigned across all concurrent threads scheduled on each SM. On the GTX 580, each SM

has 32K of 32-bit registers with an estimated peak aggregate throughput of up to ~9.5 TB/s for

the Fused Multiply Add (FMA) instruction. On the GTX 680, each SMX has 64K of 32-bit

registers with an estimated peak aggregate throughput of up to ~18.5 TB/s for the FMA

instruction. Most other ISA9 instructions tend to run at about half of these peak FMA rates, so

~4.7 TB/s and ~9.2 TB/s respectively is more typical.

Shared Memory: Each SM (or SMX) has another pool of local memory. The pool of

local memory, currently 64KB on both the GTX 580 and 680, can be split between two

9 Recall that ISA stands for instruction set architecture, i.e. the various processing operations (arithmetic,

logic, shifts, conditionals) that a specific chip architecture supports.

29

categories: L1 cache and shared memory. The local memory split can be either 16/48, 48/16 or

32/32 KB (the last grouping on Kepler class cards only) (NVIDIA, 2012, Kepler GK110). The

L1 cache memory speeds up read-only access to global memory via temporal and spatial locality.

The cache-line size, also known as a warp-line, is 128 bytes (or 32 32-bit elements). This local

memory is called shared memory by NVIDIA since it is shared by all SPs on each SM (or SMX).

Shared memory is available as a programmable scratch pad to store local variables and

arrays. This scratch pad memory allows limited communication and coordination across threads

and can help speed-up overall performance. The programmer has direct control over how much

memory to request out of the shared memory on each SM for each thread block. However, up to

8 (or 16) concurrent thread blocks per SM (or SMX) need to share the same pool of shared

memory. The programmer designates the amount of shared memory as local arrays assigned to

each thread block. The CUDA platform figures out how many concurrent thread blocks can run

at the same time based on the amount of memory the programmer requested and the amount of

shared memory available. CUDA then partitions the shared memory across the concurrent thread

blocks per SM. For example: If the programmer declared a memory array of 2,000 32-bit

elements in shared memory, this would require 8,000 bytes. CUDA would decide that it could

run at most 6 concurrent blocks (6 = ⌈49,152/8,000⌉ bytes, where 49,152 = 48KB). CUDA

could decide to layout the 6 blocks of shared memory at starting local offsets of [0; 8,000;

16,000; 24,000; 32,000; and 40,000] respectively.

To increase throughput, shared memory is divided into 32 memory banks with a width of

4 bytes per bank. The GTX 680 also supports another addressing mode with a width of 8 bytes

per bank. To prevent contention, if more than one concurrent thread accesses the same bank at

the same time, then there is a bank conflict, and the hardware stalls threads on the SM (SMX) to

serialize access and enforce correct behavior. On the GTX 580 and GTX 680, the peak aggregate

throughput of shared memory is 1.58 TB/s and 1.03 TB/s respectively.

30

Global Memory: All processors have access to a large global memory on the GPU

card. The GTX 580 and GTX 680 have total memory of 1.5 Gigabytes and 2.0 Gigabytes

respectively. (Thus, this is really “shared memory,” as that term is normally used in parallel

programming circles, see chapter 2.1.2, although not in GPU terminology.) Scatter/Gather

operations are supported on each SM (SMX) between registers and global memory. On the GTX

580, six memory controllers manage 768KB of read/write L2 cache that is shared among all SMs

and can provide an aggregate 192.4 GB/s of peak memory I/O throughput. On each SM, there is

also 16KB (or 48 KB) of read-only L1 cache that is banked in the same manner as shared

memory. On the GTX 680, four memory controllers manage 512KB of read/write L2 cache that

is shared among all SMXs and can provide an aggregate 192.2 GB/s of peak memory I/O. On

each SMX, the read-only L1 cache is typically 16 KB (but can also be setup as 48 or 32 KB).

There are three other types of memory found on GPU cards, which I briefly describe:

constant, texture, and local memory. Other than these brief overviews, I intend not to discuss

these three specialized memory types further in my thesis.

Constant Memory: Constant memory is a small read-only memory with its own small

cache that can be used to store constant variables, which can be declared at compile time or via

the CUDA API. Access to these constants must be done in broadcast mode (IE all threads within

a warp access the exact same constant address at the same time) otherwise access is serialized

impacting performance.

Texture Memory: Texture memory is intended for use in the 3D graphics rendering

pipeline. Texture memory is read-only and supports many pixel formats, plus a lot of special

functionality including addressing modes, filtering/interpolation, etc. that can be applied to pixel-

data when reading from texture memory. Since the silicon for this extra functionality has already

been built into the chip to support 3D graphics, using this extra functionality for compute

purposes is effectively free. Even though textures are actually stored in global memory, texturing

31

uses its own separate cache, independent of the L1 cache used for compute operations reading

from global memory. Access to texture memory is via a CUDA specific API.

Local memory is not really a memory type but a platform behavior to deal with register

spill. Register spill is when the number of local variables assigned to a thread by the compiler

exceeds the number of physically available hardware registers. NVIDIA’s solution is to store the

over-flow variables in global memory. Read/write access to these “Local” variables runs at

global memory speeds impacting performance. The L1 cache can help defray the access cost but

only for read-only variables.

Memory Hierarchy: Similar to a modern CPU memory architecture, the GPU memory

architecture is arranged into a complex hierarchy of Registers, L1 Cache, Shared Memory, L2

Cache, GPU RAM, and CPU RAM. CPU cache memory is typically hidden from the CPU

programmer. However, GPU shared memory is accessible to the GPU programmer and can be

used for caching frequently re-used data or to communicate data or coordinate behavior across the

threads within a thread block. The peak throughput estimates (Volkov, 2010) above for the 3

main types of memory (registers, shared, global) suggest that on the GTX 580 using registers can

be up to 6.0× faster than shared memory, which in turn can be up to 8.2× faster than global

memory. On the GTX 680, registers can be up to 6.0× faster than shared memory, which in turn

can be up to 5.4× faster than global memory. Based on these results, programmers should favor

performing computations in registers over shared memory and performing computations in shared

memory over global memory. Memory transfers between CPU and GPU memory run at a slower

4-8 GB/s peak throughput as compared to the ~192 GB/s peak throughput of global memory.

Programmers should minimize transfers between the CPU and GPU as a result.

32

2.2.2 Warp-Threading and Scheduling

GPU data-parallel programming is accomplished using one of several API platforms:

OpenCL (Khronos Group, 2012 OpenCL), Thrust (NVIDIA, 2012 Thrust; Bell and Hoberock,

2012), Microsoft’s C++ AMP (Microsoft, 2012 C++ AMP), and NVIDIA’s CUDA (NVIDIA

2012, What is CUDA). These API platforms unlock access to the massive parallelism available

on modern GPU hardware. All current API’s support the C++ language and typically enhance

their respective C++ platforms by adding new syntax, keywords, data types, libraries, and API

functions. These platforms also provide a compiler, linker and dynamic loader that allow GPU

parallel kernels to be compiled, linked, loaded, and invoked from a CPU host.

CUDA: Since, I have only passing familiarity with the other platforms; I will focus on

CUDA (NVIDIA 2012, Best Practices) in the following discussion. CUDA (formerly called the

Compute Unified Device Architecture) is a high level language and parallel computing platform

created at NVIDIA. The language is based on C++ and version 5.0 of CUDA uses the popular

Low Level Virtual Machine (LLVM) compiler infrastructure to compile, link, and generate run-

time GPU code from CUDA kernel programs. The CUDA language includes several C++

extensions to express parallelism, data locality, memory usage, and to manage thousands of

threads. The two-level thread schedulers work with grids of thread blocks, called co-operative

thread arrays (CTA) by NVIDIA. Thread blocks are scheduled onto individual SMs by the top-

level Giga-engine scheduler. Concurrent warps of threads from thread blocks on each SM are

managed by the warp scheduler built into each SM.

The LLVM compiler driver (nvcc.exe) translates the high level CUDA C++ into a lower

level PTX (Parallel Thread Execution) assembly code like intermediate language meant to be

consumed by a virtual machine. PTX is a stable Instruction Set Architecture (ISA) intended to

span multiple GPU hardware generations. PTX is a machine independent ISA for language

compilers to target. The PTX ISA has high-level support for integer arithmetic, floating point

33

arithmetic, comparisons, Boolean arithmetic, data movement, data conversion, video, textures,

surfaces, parallel synchronization, parallel communication, and control flow. A PTX optimizing

assembler (ptxas.exe) converts the PTX into actual machine code for the target GPU device using

a Just-in-Time (JIT) virtual machine. PTX supports predicated execution of any instruction in the

ISA.

Hardware Threading Scheduling

SP core

SP: Threads are executed by SPs.

• Thread state is maintained in

assigned registers.

• Threads only exist as part of a larger

warp and block.

SM core

SM: One kernel per SM at a time.

• SIMD execution across all SP’s on

SM

• Kernels are executed via thread

Blocks

• Blocks are mapped onto SM’s

• Up to 8 (16) concurrent blocks per

SM.

• Up to 48 (64) active warps per SM.

• Fine-grained scheduling.

• Can switch as often as once per cycle

From stalled to active warps.

• SM schedules executing warps from

pool of active warps.

• Execution is one Warp per scheduler

• Barrier Synchronization within

blocks is supported

GPU

GPU: A kernel is launched onto a

CTA (Grid of Blocks)

• Coarse grained scheduling

• GPU waits until current set of blocks

are finished before scheduling next set

of blocks onto SMs.

• Communication via shared or global

memory

• Coordination via atomics, barrier

synchronization, or kernel termination.

Table 2.2 - GPU Threading and Scheduling Model: High level overview of the GPU threading and

scheduling model.

Parallel programming on a GPU uses a “Single-Program, Multi-thread” (SPMT) model,

as shown in Table 2.2, similar to a Single-program multi-data (SPMD) model. A single program,

called a kernel, is loaded onto each SM (SMX) and then the kernel is executed in parallel across

Dispatch Port

Operand Collector

FPU ALU

Result Queue

Single
Thread

…

…

…

…

…
…

…

Block of Threads (Warps)

Thread Warp (32 threads)

…

…

…

Grid of Blocks

34

all threads scheduled onto that SM. At every instruction issue, the SM selects an active warp, a

bundle of threads, which is ready to execute and issues the next instruction to the active threads

of that warp. Each warp can be thought of as a fat thread, where all 32 threads in each warp

execute in lock step as they march through the instructions of a kernel program. Each thread

within each warp executes the exact same instructions but on different data values stored in

thread local registers. This SIMD model approach strongly favors data-level parallelism (DLP).

Each unique warp processes its own independent instruction stream, so the SPMT model supports

the multi-threaded programming model but at the warp level instead of the thread level. This

approach is called the SIMT (Single Instruction, Multi-Threaded) model and is conceptually

halfway between SIMD and full SMT (Simultaneous Multi-Threading) programming. As we will

see in chapter 3, warp-level instruction processing impacts performance for conditional branches

and loops.

CTA: Since a GPU is a two-level processing device, two levels of multi-threading are

needed to fully expose the underlying hardware functionality. On the GPU, threads are organized

into a cooperative thread array (CTA), a 2 level thread hierarchy that maps onto the physical 2

level processor hierarchy of SMs (including SMXs) and SPs. Typically several GPU kernels are

coordinated by a host CPU function to accomplish a single task or algorithm. In each kernel,

threads are organized into a fixed CTA. Each CTA grid is a 1D or 2D layout of thread blocks.

Each thread block is a 1D, 2D, or 3D layout of up to 1,024 threads. All thread blocks in a grid

must have the same layout ‹size, shape› and number of threads. A high level thread manager,

called the GigaThreads Engine, at the GPU device level supports coarse-grained scheduling of

individual blocks in the grid onto the physical SM’s to keep them all busy. Each SM (SMX)

contains a warp scheduler, which supports fine-grained parallelism across the SPs on each SM by

scheduling active warps within each concurrent block for execution on their own instruction

stream. The warp scheduler supports light weight thread creation, zero-overhead thread

scheduling, and intra-block barrier synchronization.

35

Warps: As noted before, threads are grouped (or divided) into virtual groups of 32

threads called warps. (If there are less than 32 threads in a block than multiple blocks are

combined into a single warp. If there are more than 32 threads in a block than the block is sub-

divided into multiple warps.) Each warp within a thread block is executed independently from all

other warps, each warp can be thought of as fat thread in a traditional multi-threaded

programming model. In other words, multi-threading occurs at the warp level not at the

individual SP thread level in the SIMT model. Each warp in a thread block is analogous to a

vector-parallel architecture with a vector length of 32.

Scheduling Constraints: The GigaThreads scheduler handles thread blocks within

each grid. The scheduler only supports grids with a 1D or 2D thread block layouts with a

maximum of 65,535 blocks per dimensions. A warp scheduler on each SM (SMX) handles

scheduling warps from a pool of up to 8 (16) concurrent thread blocks. The warp pool hides

execution latency by frequent switching of warps as necessary to mitigate long I/O requests and

shorter stalls caused by data dependencies.

On the GTX 580, Each SM can schedule up to 8 thread blocks containing an aggregate

total of up to 48 warps (1,536 threads) concurrently, provided enough resources exist to support

the necessary assigned registers on a per-thread basis and shared memory on a per-block basis.

On the GTX 680, Each SMX can schedule up to 16 thread blocks containing an aggregate total of

up to 64 warps (2,048 threads) concurrently.

This means that the modern GPU cards can support thousands of threads running in a

warp-threaded manner – up to 24,576 and 16,384 threads on the GTX 580 and 680 respectively.

GPUs support TLP on a truly massive scale.

Latency Hiding: As mentioned in chapter 2.1.1, Multi-threading is a well-known TLP

paradigm for increasing system throughput. GPUs rely heavily on warp-threading to hide latency

caused by I/O, serialization, or dependencies. Long term I/O latency is caused by memory

36

accesses. The hardware can cause short-term latency via serialization when managing concurrent

access. Short term compute latency can also be caused by pipeline stalls due to instruction

dependencies. With enough concurrent warps, latencies can be hidden by switching from stalled

warps to active warps that keeps the SPs busy doing useful work.

The SM (SMX) cores include fine-grained instruction, control and scheduling logic. The

SM (SMX) cores also include large resource pools of registers (32K or 64K), shared memory

(48KB), and warp context tables (up to 48 or 64) to support warp-threading of concurrent thread

blocks (up to 8 or 16) on each SM. Unlike CPU’s, Multi-threading and scheduling on a GPU

occur at the warp level not at the level of individual threads. Just like CPU multi-threading, the

SM warp scheduler rapidly switches between warp contexts as the running warp context stalls on

short pipe-line hazards or long I/O operations. Rapid context switches between stalled and active

warps can occur as frequently as once each cycle. This allows each SM (SMX) to hide latency

due to stalls by massive fine-grained scheduling across all active warps.

Warp Registers: Each individual thread within a warp bundle is a true thread in the

sense that it is executed on its own unique SP core and each thread contains its own unique state

(registers) that allows it to work on its own individual data. However they are not as general as

threads (POSIX) as we are used to normally thinking of them on regular CPUs. This is because

all thread creation, execution, and scheduling occurs in lock step at the warp level not the thread

level. Special registers including a program counter (PC) are stored on a per warp basis. Some

of these special registers keep track of the CTA layout (size and shape) and the starting block id

(bid) and thread id (tid) for use in computing access indices into data arrays. Other special

hardware register masks are used to track active/inactive individual threads within each warp to

support concepts such as serialization, partially full warps, conditional branching (different

threads taking different branch paths) and individual threads taking differing amounts of

processing time to finish execution for certain algorithms.

37

Threading and Memory: Threads may access data from multiple memory spaces

during their execution including registers, shared memory (local scratch-pad), constant memory,

texture memory, surface memory, local memory, and global memory. Registers are readable and

writable but not indexable. Shared memory typically takes 18-22 machine cycles to access and is

readable and writeable and indexable. Global memory corresponds to the DDR3 (or DDR5)

DRAM on the GPU device itself and typically takes 400-800 cycles to access and is readable and

writeable and indexable. A small read-only L1 cache exists on each SM (SMX) and is used to

speed-up transfers between global memory and registers. Another larger read-write L2 cache

exists between global and shared memory. Constant and texture memory are read-only. Surface-

memory is readable and writable. Local memory as mentioned before is a platform behavior to

handle register spills.

High performance API calls are available to transfer data arrays between CPU RAM and

GPU RAM using direct memory access (DMA). Current maximum transfer speeds range from 4

– 8 GB/s based on the underlying host CPU/Memory architecture. These transfers can be done

synchronously or asynchronously.

Although GPUs can support the main parallel programming models (task parallelism,

pipelining, and data parallelism) they are especially well-suited to problems that can be expressed

as data-parallel computations. Data-level parallelism partitions the data domain and then maps

those partitions onto parallel processing threads. On GPUs, these processing threads are in turn

are mapped onto SPs. Each parallel thread plus its associated state (registers) represent the

smallest unit of execution on the GPU.

38

2.2.3 Parallel Coordination

GPU architects have provided only limited support for coordination between threads.

Coordination is the behavioral cooperation across threads of a parallel algorithm needed to

achieve correct results. Coordination includes the concept of communicating intermediate and

final data results between threads. Typically on GPUs, coordination is only supported between

threads belonging to the same thread block. The coordination mechanisms between threads are as

follows -- memory, atomics, voting intrinsics, and barrier synchronization.

Memory: Although GPUs support multiple types of memory including registers, shared

memory, and global memory. As we will see shortly, shared memory is the best fit for

coordination/communication between threads. Registers: Each thread is only allowed to access

registers that have been assigned to it by the CUDA compiler and GPU hardware. In addition,

registers are not addressable, in other words, thread registers cannot be accessed using index

operations. As a result, registers cannot be used to coordinate threads. Note: The new CC 3.5

Kepler architecture has support for a new PTX “shuffle” command that allows the threads within

a single warp to move registers values between threads. Shared Memory: Unlike registers,

shared memory is addressable and accessible by all threads within the same thread block. Shared

memory can be used to coordinate threads by storing common results or behavioral state.

However, coordination/communication across thread blocks within a grid cannot be done using

shared memory. Since shared memory is visible to all warps belonging to the same thread block

and concurrently running warps can compete to access the same memory resources, programmers

need to ensure mutual exclusion between different warps for correct parallel behavior. Global

Memory: Although global memory can be used to store common results or state for all threads

within a thread block, it runs much slower than shared memory. Similar to shared memory,

programmers need to ensure mutual exclusion between different warps and blocks when

accessing global memory used for communication/coordination. It is difficult to coordinate

39

behavior across thread blocks within a grid using global memory due to two main factors 1) the

non-deterministic thread block schedule generated by the giga-engine scheduler 2) New thread

blocks are not scheduled onto SMs until currently running thread blocks have completed. As a

result, using global memory to coordinate thread blocks across a grid is not recommended.

Atomics: An atomic operation is a small group of hardware instructions guaranteed to

appear as if the entire group was executed as a single indivisible instruction by the rest of the

system. Once an atomic operation has started other threads cannot interrupt the current thread

until the atomic operation has successfully completed. As a result, atomic operations can be used

to ensure mutual-exclusion when accessing common resources in shared or global memory by

multiple threads (warps or blocks). However, the GPU hardware serializes thread access, which

negatively impacts parallel performance. Consider, tens of thousands of threads competing to

update the exact same memory address using atomics. Instead of tens of thousands of threads

executing concurrently, they all now must execute sequentially. As a result, using atomics must

be done carefully to avoid degrading performance due to the massive parallel overhead caused by

hardware serialization. Note: Atomic operations on the Kepler architecture execute faster than

on the Fermi architecture.

Voting Intrinsics: The GPU implements serialization by predication hardware that

supports gathering Boolean predicates across all 32 threads within a warp into a single 32-bit

mask. That predicate mask is then shared across all threads within a warp. NVIDIA has exposed

this hardware functionality to programmers as voting intrinsics in the ISA. This allows the

threads within each warp to communicate the results of simple predicate {true, false} tests with

each other across registers in a single instruction without first needing to store that information in

slower shared memory.

Barriers: The CUDA platform supports single-instruction barrier commands that force

all warps within a thread block to be synchronized (coordinated) at a single check-point before

40

any warp starts back up doing useful work. This synchronization helps support correct behavior

of algorithms using multiple warps per-thread block. The parallel threads within a single warp do

not need any barrier synchronization for correct behavior since they already move in lock-step

according to their SIMD vector-parallel design.

Each GPU card supports moderate ILP, large DLP, massive TLP, and a complex memory

hierarchy. ILP is supported via a 2-level MIMD/SIMD processing cores. The SM warp cores

support pipelining, scoreboarding (Fermi Only), and multi-issue. DLP is supported via SP core

replication within each SM core and then SM core replication within the GPU card. TLP is

supported by 2-level warp-threading. The memory hierarchy in decreasing access speed is

registers, shared memory, global memory, and CPU RAM. Fixed sizes on memory and execution

contexts put constraints on how programmers exploit data-level parallelism in their algorithms.

All this complexity plus constraints results in many issues that make it hard for GPU

programmers to write correct, robust, and fast code. In the next chapter, I will present some of

the main issues that GPU programmers should be concerned about.

41

3.0 Performance and Issues Hindering Performance

In my case studies, I will show how the contrast between the CPUs latency focus and the

GPUs throughput focus (Garland and Kirk, 2010) leads to different choices for programmers as

they maps tasks onto these different architectures. CPUs were originally designed to solve a

general set of computing tasks, often with direct user interaction. Consequently, CPU design has

concentrated on reducing latency, which is the time duration between a user request and computer

response. In contrast, GPUs were originally designed to take a large stream of geometric data

elements, perform essentially the same computation on each element (for example, rotate,

illuminate, clip, project, or rasterize it), and produce 30-60 rendered frames per second. In other

words, GPU design has focused on maximizing throughput, which is the ratio of the number of

work items processed over some period of time (for example, triangles rendered per second).

 Programmers need to be aware of this throughput design focus on GPUs, in order to

achieve high performance with GPU programming. So, in this chapter, I first describe various

performance metrics that I use for measuring throughput. After that, I categorize the main issues

affecting throughput that crop up in my case studies into three broad groups: Parallel

Performance Issues, GPU Architecture Issues, and GPU Memory Issues.

3.1 Measuring Performance Throughput

To understand throughput and performance bottlenecks, we first need to be able to

measure performance accurately. The GPU platform provides machine counters, from which

metrics for speedup and throughput can be derived. In my case studies, I concentrate on three

throughput metrics: instruction, I/O, and data throughput. Other performance metrics (such as

42

total cycles, speedup, and work and depth analysis) will also be used in my case studies but will

not be the focus.

To understand what are the bottleneck issues affecting performance, programmers start

with certain known values, then take experimental measurements to derive metrics that provide

insight. Values known by programmers include the input size (n) and output size (m). The

CUDA profiler or hardware timers record useful measurements such as timings (time), number of

parallel cores (p), and total threads (t). NVidia GPUs also provide various machine counters for

profiling performance, including instructions issued (II) and the average instructions retired per

machine cycle (IPC). From these basic values and measurements, I compute derived metrics such

as total cycles, TC = II/IPC, which measures the total number of machine cycles to complete a

section of code, algorithm, or an entire program.

3.1.1. Throughput Metrics

In my case studies, I consistently use three throughput metrics to gauge algorithmic

performance. Instruction throughput (MI/s or GI/s, meaning mega- or giga- instructions executed

per second, over all threads) tracks algorithmic performance. I/O throughput (MB/s or GB/s,

meaning mega-bytes or giga-bytes transferred per second) tracks memory transfer performance.

Data throughput (M*/s or G*/s, meaning mega-units or giga-units handled per second) tracks

algorithmic performance in data units most germane to the problem space. Note that each of the

three is a simple ratio of basic measurements.

A typical throughput graph, as seen in Figure 3.1, plots throughput on the 𝑦-axis as a

function of input size (𝑛) on the 𝑥-axis (usually in log-scale).

43

Like Figure 3.1, most GPU throughput graphs have sigmoidal (“S” shaped) curves for

increasing values of input sizes (𝑛). The throughput performance curve starts off flat for small

input sizes (n ≤ 103), grows rapidly for medium input sizes (103 < n ≤ 106), and then levels off at

some fraction of the hardware’s peak throughput for large input sizes, (106 < n). For small input

sizes, there is not enough data to use the parallel hardware efficiently or to amortize the heavy

GPU kernel launch costs. For large data sizes, there is enough data to parallelize work across

tens of thousands of threads and the initial kernel launch costs are amortized across millions of

data elements decreasing launch costs to a negligible fraction of total performance. For medium

data sizes, throughput performance transitions from the inefficient to efficient case as the input

size increases.

3.1.2 Parallel Speedup and Work and Depth Analysis

In addition to throughput metrics, there are two other traditional notions of performance

for parallel computation that I use in my case studies: parallel speedup and work and depth

analysis (Hennessey and Patterson, 2010). Let me introduce them by analogy to their serial

equivalents: serial speedup and asymptotic runtime analysis.

The concept of speedup, 𝑆 = (
𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝑇𝑖𝑚𝑒𝑛𝑒𝑤
), allows us to compare the performance of two

similar programs, algorithms, or sections of code using simple timings, with one timing for the

2^13 2^16 2^19 2^22 2^25 2^28 0

10

20

30

40

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/S

)

n

Figure 3.1: Histogram I/O-throughput

44

old code and one timing for the new code. Serial speedup (SS) is the ratio of the amount of time

it takes to complete a task using an improved program versus a baseline program, 𝑆𝑆 =

𝑇𝑖𝑚𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝑖𝑚𝑒𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑
. Parallel speedup (PS) is the ratio of the time to complete a task using a serial

computation versus the time to complete the same task using a parallel computation, 𝑃𝑆 =

𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
.

Often a serial algorithm cannot be fully parallelized due to unavoidable dependencies

between sections of code. Amdahl’s Law (Amdahl, 1967) predicts the theoretical maximum

parallel speedup on p processors for a specific problem for which a fraction of the program 𝛼 ∈

[0,1] is inherently sequential and the rest of the program (1 − 𝛼) is parallelizable: 𝑆(𝛼, 𝑝) =

 (
1

𝛼+
1−𝛼

𝑝

). Even given an infinite number of parallel processors, total performance cannot

exceed (
1

∝
). In other words, total performance is constrained by the serial portion of the program.

Amdahl’s law, which can be derived from parallel speedup by normalizing serial time to one,

suggests that programmers focused on latency can solve a fixed-sized problem in the shortest

period of time by removing serial constraints.

As a counterpoint, Gustafson observes that end-users often exploit the maximum

computing power available to them to solve ever larger problems over some practical time period

(minutes, hours, days). Gustafson's Law (Gustafson, 1988) as 𝑆(𝛼, 𝑝) = 𝛼 + (1 − 𝛼)𝑝 suggests

that programmers focused on throughput issues can push more work through the system using

massive parallelism. Gustafson’s law can be derived from scaled parallel speedup by normalizing

parallel time to one.

Asymptotic analysis, also known as “Big ‘O’ notation”, shows how the running time (or

resource usage) of an algorithm grows with the input size (n). The growth-rate function is

reported using asymptotic notation to suppress implementation-dependent constants and to

simplify expressions. If these hidden constants are reasonable, then 𝑶(log 𝑛) ≪ 𝑶(𝑛) ≪

45

𝑶(𝑛 log 𝑛) ≪ 𝑶(𝑛2). In words, a logarithmic growth-rate algorithm is preferred to a linear

growth-rate, a linear growth-rate is preferred to a log-linear growth-rate, and log-linear growth-

rate is preferred to a quadratic growth-rate algorithm.

Work + Depth Analysis: For a parallel

computation, work efficiency W(n), is defined as the

total number of instructions executed across all parallel

cores. The ratio of work to the number of cores (p)

results in the linear ideal speedup (
𝑊(𝑛)

𝑝
) of a parallel

computation. However, there are usually dependent

steps, either inherent in the algorithm itself or with the

coordination required between parallel cores, which

limit this ideal speedup. The longest dependent chain

of executed steps on any core is defined as an algorithm’s depth efficiency D(n). Figure 3.2

illustrates work and depth for summation, in both serial and parallel forms.

Work efficiency and depth efficiency are related by Brent’s Theorem (Gustafson, 2011),

which says that any parallel algorithm runs in
𝑊(𝑛)

𝑝
+ 𝐷(𝑛) time, in fact: 𝑚𝑎𝑥 (

𝑊(𝑛)

𝑝
, 𝐷(𝑛)) ≤

𝑇𝑖𝑚𝑒 ≤
𝑊(𝑛)

𝑝
+ 𝐷(𝑛). Four useful implications from Brent’s Theorem are

 A parallel algorithm cannot run faster than its depth efficiency, D(n).

 A parallel algorithm that requires coordination across p cores cannot run faster

than O(log p).

 It is inefficient to use more parallel cores than you need to solve an algorithm.

The concept of Parallelism (
𝑊(𝑛)

𝐷(𝑛)
) roughly captures how many parallel cores an

algorithm can efficiently use.

Figure 3.2: An example of work

and depth efficiency for the simple

summation of 8 values for both the

serial and parallel cases.

Serial Sum

Work: 7 adds
Depth: 7 steps

Work: 7 adds
Depth: 3 steps

Parallel Sum

46

 If the number of processors and input size are fixed or known ahead of time than

try to do at least D(n) work on each processor for the best parallel efficiency.

3.2 Parallel Performance Issues

Metrics are useful in measuring performance and understanding the issues that impact

performance. There are three main issues that impact parallel performance: scalability, parallel

overhead, and load balancing.

3.2.1 Scalability

A system is scalable if adding parallel resources (such as computers, GPUs, cores, and

threads) increases parallel performance. Users prefer systems that are scalable because they can

simply add more hardware resources over time to deal with increasing computational demands. In

my case studies, we will see that I prefer data-level parallelism almost exclusively over task-level

parallelism because the former scales readily for increasing data sizes.

3.2.2 Parallel Overhead

Programmers should minimize coordination costs across parallel threads to achieve better

performance. Parallel overhead is the ratio of the time spent coordinating parallel work between

threads versus the total time it takes to solve the original problem. A system has low parallel

overhead if the amount of time spent coordinating algorithmic behavior across parallel threads is

small. A system has high parallel overhead if the amount of time spent coordinating across

threads is large. For better parallel throughput, programmers should minimize parallel overhead.

As mentioned in Section 2.2.3, “Parallel Coordination,” for GPU architectures, there is only

limited hardware support for coordination mechanisms between threads.

3.2.3 Load Balancing

Programmers often seek to take full advantage of the hundreds of processing cores

available on a GPU card by keeping them all busy. Parallel utilization is a measure of how many

47

parallel cores out of all cores in a system are busy doing useful work at any given time. Keeping

cores busy can be accomplished by load-balancing work evenly across hundreds or thousands of

threads. A system has poor load-balancing if many cores are kept idle for long periods of time or

if many cores finish early while some cores still have considerable work to do. A system has

good load balancing if most of the cores are kept busy most of the time and all the cores finish

executing at approximately the same time.

Although there are many techniques to achieve optimal load-balancing,1 in my thesis, I

focus exclusively on equal partitioning, an approach which divides (n) data elements across (p)

threads into approximately equal sized runs ⌈𝑛 𝑝⁄ ⌉. Equal partitioning works well because it

supports SIMD processing on GPUs, recall that all SPs on each SM move in lock-step through a

single instruction stream. Since GPUs use a more complicated 2-level thread hierarchy for

scheduling (as we will see in my case studies), I adapt equal partitioning as equal-sized runs on

fixed-size data blocks.

Since, GPU programmers often assign one thread per work item for simplicity. For better

performance, it is often useful to go even further and use multiple work-items per-thread (over-

decomposition) and multiple thread warps per core (over-subscription) to help hide stalls on each

core that would otherwise decrease parallel throughput. In my case studies, you will see that load

balancing is readily achieved via data-level parallelism by using a large enough input array to

saturate the processing resources.

3.3 GPU Architecture Issues

Five GPU architecture issues also impact parallel performance: CTA partitioning, GPU

scheduling—stalls and hazards, GPU scheduling—constraints and occupancy, multi-issue

dispatch, and branch divergence.

1 Such as dynamic work assignment, work stealing, or equal partitioning

48

3.3.1 CTA Partitioning

Recall that a cooperative thread array (CTA) is a 2-level hierarchy (thread blocks within

a grid and threads within a thread block.) In order to take advantage of the massive data-level

parallelism via threads on a GPU, GPU programmers need a way to specify the desired thread

structure and thread to data mapping. This is done with a 2-step process that I call CTA

partitioning.

1) For each GPU kernel launch, GPU programmers must structure the desired shape and

size of the CTA layout using two 3D parameters (grid and block) both specified as 3-

tuples ‹x,y,z›.

2) Inside each GPU kernel, GPU programmers must map CTA layout parameters that

represent unique threads onto actual data locations. The CTA layout parameters are

available to programmers inside each GPU kernel via four global read-only 3D

parameters (gridDim, blockDim, blockIdx, threadIdx) as 3-tuples ‹x,y,z›.

When I was first introduced to GPU programming, I found the CTA layout and mapping

steps confusing, so, I present more details on how to perform the CTA layout and mapping steps

below.

CTA layout: CUDA requires that the CTA layout must be specified as part of each GPU kernel

launch. The grid and block CTA layout parameters are specified as 3-tuples ‹x,y,z› that represent

the ‹width, height, length› of a 3D grid or thread block layout. To refer to both the grid and block

dimensions as one unit, I combine both as a 6-tuple denoted as ‹gw,gh,gl, bw,bh,bl›. Various

constraints on the maximum size and shape of these grid and block CTA layout parameters must

be taken into consideration. Each tuple value is specified as a 32-bit signed integer. Zero and

negative values do not make physical sense. Therefore, the valid range for any tuple value is

[1,231-1). Programmers can eliminate unwanted dimensions by specifying a default value of one

(1) for the unused value. This specification enables 1D, 2D, and 3D layouts, as desired. CUDA

49

currently does not use the gl (grid.z) CTA dimension value in any way. Consequently, the actual

CTA layout is effectively ‹gw,gh,1, bw,bh,bl›. The Fermi architecture only supports a maximum

value of 65,535 (216-1) for any dimension for the grid parameter. As a result, the valid range is

limited to [1,216-1), whereas the Kepler architecture supports the full range [1,231-1). For Fermi,

this limitation means that if more than 65,535 thread blocks within a grid are needed, then a 2D

grid layout is the only solution to fully cover all the desired thread blocks. CUDA currently

limits the thread block size (TBS) to 1,024 threads per-block or less (bw·bh·bl ≤ 1,024). Since

thread processing is actually done in warp-sized batches, the TBS should be a multiple of the

warp size (meaning, 0 == TBS % 32). Processing thread blocks in warp sized batches helps keep

threads busy (as well as the SP cores that execute them) within each thread block. The grid

CTA layout parameter supports 1D and 2D layouts (thread blocks within a grid), while the block

CTA layout parameter supports 1D, 2D, and 3D layouts (individual threads within a thread

block). Once specified (at launch time), the grid and thread block layouts remain fixed for the

entire execution of a specific GPU kernel.

CTA mapping: Inside of each GPU kernel, programmers must map individual threads onto data

locations. To help with this mapping process, CUDA provides four global read-only CTA

parameters as 3-tuples (gridDim, blockIdx, blockDim, threadIdx). These CUDA variables

are always available for use by the code anywhere inside the CUDA kernel, including nested

function calls. The gridDim and blockDim parameters refer back to the original CTA layout

(size and shape) parameters specified at kernel launch, with the ‹x,y,z› dimension values meaing

‹width, height, length›, respectively. For convenience, I represent both the gridDim and

blockDim variables as a single unit, ‹gw,gh,1, bw,bh,bl›. The blockIdx and threadIdx

parameters uniquely identify the currently running thread block (within the current grid) and the

currently running thread (within the current thread block). The blockIdx and threadIdx can

be thought of as a multi-dimensional block ID (bid) and thread ID (tid), respectively. These

50

variables uniquely identify the location of each individual thread within the structured thread

hierarchy. Again, for convenience, I represent both the blockIdx and threadIdx parameters

as a single 6-tuple as ‹bx,by,bz, tx,ty,tx›. All four CTA parameters help GPU programmers map

individual threads onto their corresponding data items.

As an example, Figure 3.3 contains a code snippet that shows a full 5-dimensional CTA

mapping down onto a single unique thread index.

// Map Block ID (bid) from <gridDims, blockIdx>
 gW = gridDims.x gH = gridDims.y // gL = gridDims.z (not used)
 bX = blockIdx.x bY = blockIdx.y // bZ = blockIdx.z (not used)
bid = (gW*bY) + bX // 2D to 1D mapping

// Map Thread ID (tid) from <blockDims, threadIdx>
 bW = blockDims.y bH = blockDims.y bL = blockDims.z
 tX = threadIdx.x tY = threadIdx.y tZ = threadIdx.z
tid = (bH*bW*tZ) + (bW*tY) + tX // 3D to 1D mapping

// Map Thread Index from <bid, tid>
 TBS = bH*bW*bL // Thread Block Size
tIdx = (bid*TBS)+tid // 2D to 1D mapping

// Map Data Offset from <tIdx>
dataOff = ... // Problem Domain Specific

Figure 3.3: A simple mapping from the four CTA layout parameters onto unique block and thread IDs that

in turn are mapped onto a unique thread index. Note: This is only one of many possible ways to map CTA

layout parameters onto a unique thread index within the CTA.

The code snippet, as shown in Figure 3.3, has four main steps: First, it maps the 2D grid

layout onto a unique block ID (bid) within the grid. Second, it maps the 3D block layout onto a

unique thread ID (tid) within the thread block. Third, it maps the bid and tid onto a unique thread

index (tIdx) within the entire CTA. Finally, it maps the thread index onto the specific data offset

that needs to be processed by this thread. This step is not shown as this must be defined by the

GPU programmer for their specific problem. CTA layout configurations that use fewer

dimensions require less total operations in order to do the mapping.

Flexibility in specifying the CTA partitioning (layout and map) allows programmers to

choose data layouts that best fit their problem domain: 1D, 2D, or 3D. This freedom of choice

becomes a burden; however. Before programmers can begin to code, they are forced to make

51

choices on how to structure the CTA layout, how to partition data across the threads, and how to

map threads onto data inside of each kernel. These choices have big effects on performance, but

whether these effects will be positive or negative is initially unclear. In my case studies, my data

access skeletons help me explore choices for CTA partitioning and their effects (see Chapter 5

“Data Access Skeletons” for more details).

3.3.2 GPU Scheduler — Stalls and Hazards

Since GPUs are throughput oriented programming devices, our goal is to keep the

hundreds of processors on each GPU device as busy as possible. Processor stalls, where the

processors sit idle instead of doing useful work, are to be avoided. GPU programmers should

realize that in a GPU almost every instruction fetch, register, or memory access is slower than a

processor cycle. The latency of these operations causes an instruction stall while each instruction

waits on its input. During this instruction stall, the compiler and scheduler together try to ensure

that a thread warp has other useful work to do in order to avoid a thread stall. Thread stalls are

frequent; so the GPU scheduler has many tricks to quickly swap in another thread warp to execute

in order to avoid a more grievous processor stall.

GPU programmers aiming for high throughput need to write code that the compiler and

scheduler can exploit to avoid processor stalls. GPU Programmers also need to provide massive

numbers of threads so that the processors can switch to other thread warps to avoid processor

stalls. So, let’s focus on preventing thread stalls. It helps to know that there are two main types of

thread stalls – short term and long term.

Short terms stalls of just a few cycles typically come from compiler- or scheduler-

induced delays2 inserted to avoid structural, control, or data hazards that otherwise could

jeopardize correct program behavior. Structural hazards occur when two or more stages in a

pipelined or out-of-order instruction architecture compete for the same functional units, such as

2 These delays are often handled by inserting several wasteful no operation (NOP) commands into the

instruction stream before inserting the delayed instruction that does useful work.

52

adders or loaders. These hazards are typically resolved by chip architects using replication, such

as putting a full adder in each competing pipelined execution stage. Control hazards occur when

the code executes branch or loop instructions. In these situations, the scheduler needs to choose

between two paths {true, false} but does not know which path to take until the branch outcome is

known. Picking a branch outcome leads to a branch delay, which is the number of machine

cycles it takes from starting the original branch instruction until the actual branch outcome true or

false is known. Data hazards occur when one instruction accesses a register that another

concurrently running instruction also needs to access. Ignoring data hazards can lead to incorrect

program results.

There are three main types of data hazards: read-after-write (RAW), write-after-read

(WAR), and write-after-write (WAW)3. WAR and WAW dependencies, where two instructions

happen to use the same register (aliasing), can be resolved by assigning different registers to the

competing variable names in order to remove the dependency4. A RAW dependency means that

one instruction consumes the output of a prior instruction as input and thus must wait until the

prior instruction completes. The RAW dependency is real and must be honored for correct

program behavior.

Short term stalls can be avoided by the compiler and scheduler if they can find other

independent instructions in the same warp’s instruction stream that can be safely executed as the

current instruction stalls. Programmers can help by writing code with good Instruction-level

Parallelism (ILP).

Long term stalls of hundreds of cycles typically come from servicing I/O transfer

requests. When this kind of stall occurs, the hardware scheduler on each SM can hide latency by

rapidly switching, up to once per cycle, a stalled thread warp for another thread warp that is ready

3 These RAW, WAR, WAW data hazards are also known as true-, anti-, and output-dependencies

respectively.
4 Register renaming is the original term used by Tomasulo (Hennessey and Patterson, 2012) to describe

how to remove WAR and WAW data hazards caused by aliasing different variables on the same register.

53

to execute. Programmers can help by writing code that launches thousands of concurrent threads

to support Thread-level Parallelism (TLP). To better understand how switching can hide latency

via TLP techniques, assume one load instruction issued per warp and that loading a value from

shared memory has a latency of twenty machine cycles (a reasonable rule of thumb on Kepler).

Under these conditions, a GPU programmer would need to schedule at least twenty warps per

core to have enough in-flight load commands to keep each core fully busy. NVIDIA measures

this with occupancy, which is discussed later on in this chapter. Alternatively, programmers could

hide the same latency using ILP, by scheduling at least three thread warps per core and then

having each warp issue eight independent load commands. This approach would result in 24 in-

flight loads, which would completely engage each SM core. So, scheduling more thread warps

hides stall latency via TLP, and doing more work per thread hides stall latency via ILP.

NVidia defines the term occupancy, which I think of as a rough measure of the potential

for using TLP to hide latency. In general, kernels with higher occupancy tend to have better

performance because, when a current warp stalls, they give the SM warp scheduler more active

warps to choose from. Because ILP can also hide latency, as just illustrated in my switching

example, Volkov (Volkov, 2010) advises that performance of some kernels can actually decrease

as occupancy increases above 50%. My case studies will show that experiments are needed to

balance contributions from ILP and TLP and achieve best performance.

3.3.3 GPU Scheduler — Constraints on Occupancy

NVIDIA defines occupancy for a kernel as the ratio of the number of active thread warps

scheduled on an SM to the direct limit of active warps for that SM type. Although a GPU

programmer’s CTA layout may specify tens of thousands of thread blocks (and thread warps),

each on-chip SM scheduler can track and process only a small batch of active thread blocks at

54

any time. The SM scheduler not only has direct limits5 on the number of active blocks and warps,

but it also has indirect limits on them due to constraints on register and shared memory pool sizes.

Register Pool Size Constraints: Each SM has a limited pool of 32-bit registers to

distribute across all active threads6. This register pool size is 32 K on Fermi architectures and 64

K on Kepler. These pools may seem large until each pool is divided across hundreds of active

threads. The SM warp scheduler cannot exceed the register pool size and will throttle back the

number of thread blocks that it makes active (i.e. allows to be concurrent at any given time on

each SM). For instance, suppose that the GPU programmer chooses to have 128 threads per

block, and the CUDA compiler decides that the code needs 37 registers per active thread. On the

Fermi architecture, the scheduler can make at most six thread blocks active since (32K)/(128∙37)=

6.91, which limits Fermi occupancy to 50%, since (4 warps×6 blocks)/48 max. = 24/48. On the

Kepler architecture, the scheduler can make no more than 13 thread blocks active, since

(64K)/(128∙37) = 13.84, which limits Kepler occupancy to 81.25%.

Shared Memory Pool Size Constraints: Each SM has a limited pool of shared memory

spread across all active thread blocks. This pool has a maximum limit of 48 KB on both Fermi

and Kepler architectures. Again, 48 KB seems large until you divide it across all active thread

blocks. (In fact, the programmer can also choose to trade the shared memory pool size in 16KB

increments for L1 cache size.) The scheduler cannot exceed the shared memory pool size and

will decrease the number of thread blocks that it makes active. Suppose for example, that a GPU

programmer writes a kernel that consumes 10 KB of shared memory for a thread block of 128

threads. On both the Fermi and Kepler architectures, the scheduler can make active no more than

four active thread blocks, since 4 = (48 KB per SM / 10 KB per block = 4.8), limiting occupancy

to 33% (16/48) on Fermi and 25% (16/64) on Kepler respectively.

5 On Fermi, MaxBlocks = 8 and MaxWarps = 48; on Kepler, 16 and 64. CTA parameters determine which

of the direct limits, MaxWarps or MaxBlocks, serves as the hard limit on the SM warp scheduler, as we will

see in case studies.
6 Fermi and Kepler architectures further limit the maximum number of registers allowed per thread to 63;

The GTX Titan architecture extends this to 255 (NVIDIA, 2012, CUDA Programming Guide).

55

Constraints on Occupancy (Fermi) Bytes Bytes

Chosen

Threads/block

Max.Occu-

pancy %

Max.

Blocks

Max.

Warps

Max.

Threads

Max regs

/thread

Max

Sh.Mem.

/block

Max

Sh.Mem.

/thread
32 .17 8* 8 256 63* 6,144 192

64 .33 8* 16 512 63* 6,144 96

128 .67 8* 32 1,024 32 6,144 48

256 1.00 6 48 1,536 21 8,192 32

512 1.00 3 48 1,536 21 16,384 32

1,024 .67 1* 32 1,024 32 49,152 48

Constraints on Occupancy (Kepler) Bytes Bytes

Chosen

Threads/block

Max.Occu-

pancy %

Max.

Blocks

Max.

Warps

Max.

Threads

Max regs

/thread

Max

Sh.Mem.

/block

Max

Sh.Mem.

/thread
32 .25 16* 16 512 63* 3,072 96

64 .50 16* 32 1,024 63* 3,072 48

128 1.00 16 64 2,048 32 3,072 24

256 1.00 8 64 2,048 32 6,144 24

512 1.00 4 64 2,048 32 12,288 24

1,024 1.00 2 64 2,048 32 24,576 24

Table 3.1: Constraints on Occupancy (for both Fermi and Kepler architectures).

Table 3.1 shows the maximum occupancy possible given a chosen number of threads per

thread block for Fermi and Kepler architectures. It also shows the maximum registers per-thread

and maximum shared memory usage per thread block to achieve maximum occupancy. Data

layout and kernel implementation often make it difficult to stay under these resource limits.

As we will see in the Reduce/Scan case study in Chapter 6, GPU programmers must

consider constraints on occupancy when choosing the initial CTA thread block and grid sizes in

order to balance active thread blocks evenly across the available SMs on each GPU card.

3.3.4 Multi-issue Dispatch

Recall that both the Fermi and Kepler architectures support multi-issue dispatch7,

meaning the idea that one SM core can dispatch up to k simultaneous instructions per clock cycle

in parallel from k separate thread warps. The k independent instructions are dispatched and

executed in parallel on multiple redundant function processing units (many ALUs and FPUs per

7 Also known as simultaneous multi-threading (SMT). This is a form of thread level parallelism.

56

SM core). Multi-issue dispatch is much like having multiple assembly lines running on one

factory floor at the same time.

On Fermi architectures, such as the GTX 580, each SM core supports dual issue. This

means that each SM can schedule and execute up to two thread warps concurrently as long as

there are no dependencies between the two warps. On Kepler architectures, such the GTX Titan,

each SMX core supports quad issue, meaning each SMX can schedule and execute up to four

thread warps concurrently. In addition, Each Kepler SMX warp scheduler is designed to issue up

to two independent instructions per cycle from each warps instruction stream8.

Because of the way these architectures schedule and issue warps, programmers, for better

efficiency, should aim to schedule at least two warps on Fermi per SM or four concurrent warps

on Kepler per SMX. Since Kepler architectures can also issue up to two independent instructions

per cycle, there is a strong incentive for programmers to write code that mitigates data

dependencies between instructions so that the SMX warp scheduler can fully exploit the multi-

issue feature on each core.

3.3.5 Branch Divergence

GPU programmers should seek to reduce the number of branches and loops used in GPU

kernels. Because all threads within a warp step through a single instruction stream in lockstep,

branch divergence can occur when some threads within a warp take the true branch path and the

rest of the threads take the false branch path. GPU hardware currently solves branch divergence

via serialization by predication.

Serialization means that all code from the true path and all code from the false path are

executed sequentially, the code from the true path being processed first and the code from the

false path second. Predication means that each warp maintains a 32-bit predicate mask of

Booleans that represents the branch outcomes for the individual threads within the warp. Each

8 A chip architecture that is able to issue up to k parallel instructions from one instruction stream is known

as superscalar. This is a form of instruction level parallelism.

57

thread with a predicate mask value of true executes instructions only from the true branch path

while each thread with a predicate mask value of false executes instructions only from the false

branch path.

Serialization by predication can decrease performance by reducing parallelism. From a

thread’s perspective, a given branch instruction in a CPU needs fetch instructions only for the

taken branch path (true or false); whereas, a GPU thread must fetch instructions for both branch

paths (true and false). Each nested branch may degrade performance by another factor of two as

threads in a warp continue to diverge. In the worst case where branches are nested five levels

deep, there could be up to 32 individual sub-branch paths that are executed serially, one for each

thread in the warp. This approach results in up to 32× slower performance.

To help avoid some of the performance loss due to branch divergence, each SM

scheduler detects when the predicate mask is set to {all-true} or {all-false}, and it will then

behave like a CPU branch instruction, executing only the taken path. Fully efficient warp

branching is achieved only when there is no branch divergence within a warp, when all threads

within each warp follow the exact same branch path through the code.

On both CPUs and GPUs, avoiding or reducing branches and loops is important to

prevent control hazards. On GPUs, avoiding or reducing branches and loops also prevents branch

divergence. In my “kd-tree” case study (Chapter 7), we will see the negative impact of high

branch divergence on processor utilization.

3.4 GPU Memory Issues

Memory constraints, register spills, coalescence, and bank conflicts are all GPU memory

architecture issues that impact performance.

58

3.4.1 Memory Constraints

GPU programmers aiming for high performance must understand several concepts related

to memory: access times, limited capacity, and cache constraints. As discussed in Chapter 2, GPU

memory is a multi-level hierarchy of registers, shared memory, and global memory. The GPU

memory architecture includes hardware support for L1 and L2 caching and as well as for

specialized types of memory, such as constant, texture, and local. There is also support to

transfer data to and from host memory (CPU RAM) using DMA.

Access Speeds: The consecutive levels of memory have access times that differ by an

order of magnitude: Registers ≪ Shared memory ≪ Global Memory ≪ CPU RAM.

According to Volkov (Volkov 2010), on the GTX 480 registers are 6× faster than shared

memory, which in turn is 7.6× faster than global memory, which in turn is 11.1× faster

than CPU RAM9.

Limited Capacity: Registers are a scarce resource. Fermi architectures support a pool of

only 32 K registers; Kepler, a pool of 64 K. Furthermore, both architectures allow a

maximum of 63 registers per thread10. GPU programmers should expect their programs to

have between 21–63 registers available per thread on Fermi and [32-63] registers per

thread on Kepler, depending on the number of threads scheduled. Shared memory is also

scarce since only 16, 32, or 48 KB is available on each SM (or SMX), and it must be

shared across all thread blocks concurrently running on each SM11. Global memory

9 Vasiley Volkov in a talk called “Better Performance at Lower Occupancy” given at the GPU Technology

Conference in 2010 (Volkov, 2010) compared the bandwidths of registers (8 TB/s), shared memory (1.3

TB/s), and global memory (177 GB/s) on the GTX 480. This results in speedups of 6× (registers over

shared memory) and 7.6× (shared memory over global memory). CPU RAM from the same generation of

PC’s had a quoted maximum throughput of 16 GB/s resulting in the claimed speedup of 11.1× (global

memory over CPU RAM).
10 Most Kepler devices (CC 3.0) support a maximum of 63 registers per thread, whereas the GTX Titan

(CC 3.5) supports a maximum of 255 registers per thread.
11 Each SM can have up to eight concurrent thread blocks per SM running at the same time. Each SMX can

have up to sixteen.

59

capacities, on the other hand, vary between 1 and 6 GB, depending on the specific GPU

card.

Cache Constraints: Fermi and Kepler GPU architectures both support caching but for a

limited number of memory controllers and small caches. The number of memory

controllers per GPU varies across different cards, but it is fixed for each specific card and

is typically in the range of one to six memory controllers per card. The L1 and L2 cache

sizes are also limited, with the read-only L1 cache having [16, 32, or 48 KB] per SM and

the read/write L2 cache only having 64-128 KB per memory controller. Since there are

up to 16 SMs on Fermi class cards and up to 14 SMXs on Kepler class cards but only 2-6

memory controllers per card, the SMs must compete to use the memory controllers. As a

result, data in GPU caches gets evicted much more frequently data in CPU caches. GPU

programmers should not depend on their data staying in either GPU cache for long. They

may therefore wish to migrate essential data into registers, shared memory, or both.

3.4.2 Register Spills

Although programmers often write code as if they have unlimited registers, real CPUs

and GPUs have a limited number of registers available for each thread. On GPUs, the maximum

number of registers available is set up at kernel launch time based on the register pool size (32 K

on Fermi or 64 K on Kepler) and the number of concurrent threads running on each SM (SMX)

core. Compilers dictate the number of registers a kernel needs; register spills occur when the

need exceeds what is available. CPU compilers often store spilled variables onto stack or heap

memory. The GPU CUDA compiler stores spilled variables into local memory, which is a

reserved area of global memory, which gives orders of magnitude slower access. In some case

studies, I hand-code key routines just to avoid expensive spills.

60

3.4.3 Coalescence

When the 32 threads in a warp request to access global memory, the GPU memory

controller must transfer the requested data to or from registers in the SM that are assigned to the

respective threads. The memory controller does this transfer in units of data warps (128 bytes).

This means that if each thread in a warp requests a distinct four bytes and these 128 total bytes

are contiguous and aligned to a data warp boundary, the memory controller can satisfy all

requests with one transfer. This condition is called coalescence. This is similar to the way a CPU

makes efficient use of an entire cache-line, therefore, I call each coalesced data warp a warp-line.

As we will see in all of my case studies, coalescence is crucial for a GPU to achieve peak

throughput. So, a programmer will need to ensure that transferred data are the correct size

(multiples of 128 bytes), aligned (respecting data warp boundaries), coherent (threads of a warp

request distinct but contiguous data bytes), and fully used (all warp data is consumed by the

threads before another warp line is transferred).

Alignment requires attention primarily for short runs, since warp lines behave like cache

lines, meaning unaligned data takes one more data transfer than unaligned data, the extra transfer

cost can of course be amortized across a long run of data. For example, while misaligned runs of

128 bytes take two transfers rather than one, capping coalescence efficiency at 50%, and runs of

1024 bytes take nine transfers rather than eight, capping efficiency at 89%, randomly accessing

misaligned runs of 16 bytes transfer 128 bytes 7/8th of the time and 256 bytes 1/8th of the time,

capping efficiency at 11.1%!

Distinctness can be relaxed, but several threads competing for the same memory address

can lead to “race conditions,” where one thread overwrites a competing thread’s data. It is up to

programmers to prevent race conditions in global memory by either partitioning or using costly

atomics. The hardware will prevent race conditions in shared memory at the cost of serializing

access for competing threads within a warp (see bank conflicts next).

61

3.4.4 Bank Conflicts

Bank conflicts occur when multiple threads within the same thread warp access the same

memory bank within shared memory at the same time. The GPU hardware serializes access by

competing threads to ensure correct behavior, but at the cost of reduced I/O throughput. Memory

accesses involving k threads accessing the same bank at the same time are called k-way bank

conflicts. When a warp has up to (and including) k-way conflicts, the scheduler must replay the

conflicting instruction k times. This approach, if done consistently, reduces throughput by a factor

of k. In the worst case, k can be the minimum of the number of banks or the threads per warp

(both are 32 on Fermi and Kepler hardware.) Bank conflicts can be avoided if each thread in a

warp accesses its own unique bank in shared memory, but this can be subtle. For example, for

64-bit data type (doubles, longlong integers) on Fermi, 32 threads each loading an element of a

consecutive run results in at least a two-way bank conflict, since each loads the low order bytes

from even banks before the high order bytes from odd banks12.

12 Kepler-class hardware has a new shared memory access mode that avoids 2-way bank conflicts for 64-bit

data types.

62

4.0 Case Study: Memory I/O

Programmers wishing to migrate CPU code onto a GPU must learn how to do several

tasks in the GPU architecture (NVIDIA, 2012, Programming Guide). This chapter demonstrates

four of the most basic of these tasks:

 Write GPU data-parallel code for each thread

 Map individual threads onto data elements

 Launch thousands of parallel threads running a GPU kernel

 Set up GPU kernels from within a CPU host program

Programmers should be aware that the first two tasks occur on the GPU and can be

written using enhanced CUDA C++ with differences to support data parallelism. The last two

tasks occur on the CPU and can be done using normal idioms, semantics, and syntax with some

differences to support launching GPU kernels with thousands of threads.

Chapter 5 introduces the concept of Data Access Skeletons (DASks) and demonstrates two more

tasks to attain high performance:

 Write code that has efficient memory access patterns.

 Determine a balance of Instruction- and Thread-level parallelism (ILP and TLP)

giving high performance.

My case study in both this chapter and Chapter 5 is the simple Copy primitive, which

copies data from a source array into a separate, non-overlapping destination array. Copy is an

instance of a map pattern, a parallel programming pattern that transforms a source array, S, of n

independent data items into a separate destination array, D, of the same size, and applies a unary

transform operator, ⊙, to each data item in the input array; that is, for all 𝑖 in [0,n) with si ∈ S,

compute output di = ⊙(si).

63

For copy, the parallel threads do not need to communicate or coordinate. This

independence makes map patterns a good starting point to learn how to program on the GPU.

Although I focus on Copy, the general map pattern can then be easily adapted for other

independent operations such as Fill, Gather, or Scatter.

In this chapter, I answer the four questions in the next four sections, then show

performance results for the resulting simple Copy kernel.

 How can one setup and launch a GPU kernel? In Section 4.1, I show how programmers

can launch their GPU kernels from within a CPU host program. The CPU Host pattern

sets up the template, CTA layout, and kernel parameters, all of which are necessary to

launch a GPU kernel. I choose to explain how to launch a kernel before getting into the

details of writing a kernel.

 How can one launch a kernel with thousands of threads? In section 4.2, since this is at

the heart of achieving high throughput on GPUs by using massive numbers of parallel

threads, I show how programmers can specify thousands of parallel threads for each

kernel launch using NVidia’s CTA layout parameters.

 How can one map threads onto data elements? In Section 4.3, I show how programmers

can advantage of these thousands of parallel threads by mapping each unique thread

specified by CUDA’s built-in CTA parameters onto a data element.

 How can one write GPU data parallel code? In Section 4.4, I show how programmers

can convert a CPU copy using sequential iteration into a thread-based GPU kernel using

data-parallel programming. The key insight is that the hardware does the parallel

scheduling, so the GPU programmer need focus on code for only a single thread.

4.1 How does one setup and launch a GPU Kernel?

Even if the program is “Hello, world,” to run it on the GPU, a programmer must write

CPU scaffolding code that sets up and launches the GPU kernel from the CPU host, and receives

64

the result. So assuming that we have a simple GPU kernel for copying data in parallel (the actual

kernel is in Section 4.4), how do we launch it from a serial CPU program? To launch a GPU

kernel, the CPU host must allocate resources, transfer inputs onto the GPU, set up kernel CTA

layout parameters, launch kernels, transfer outputs back from the GPU, and clean up allocated

resources. I use a CPU host function that also includes extra validation, profiling, and debugging

code in to ensure the final versions of my GPU kernels are correct, robust, and fast. Although

beyond the scope of this thesis, the host function can be extended to support asynchronous

streaming and launch parallel algorithms on multiple GPUs. Figure 4.1 summarizes the pattern of

my CPU host functions.

CPU Host Pattern: launches GPU kernel(s) from a CPU host
Input: Varies as needed, for example: 𝑛 input data items (for copy)

Output: Varies as needed, for example: 𝑛 output results (for copy)

 // CPU Host Pattern
1. <Optional> – Choose & set up GPU device
2. Set up CTA layout (grid of thread blocks) for each kernel
3. Allocate memory resources on CPU & GPU
4. <Optional> – Initialize / Set up CPU arrays
5. Transfer inputs onto GPU from CPU
6. Launch GPU kernel(s) with parameters (Template, CTA, Kernel)
7. Transfer outputs from GPU onto CPU
8. Tear down memory resources

Optional Variations:

1. Validation support (launch CPU method, verify CPU vs. GPU results)

2. Profiling support (create/destroy timers, start/stop timers, output performance results)

3. Debugging support (create/transfer intermediate arrays, add verification methods, etc.)

4. Asynchronous streaming (create/destroy streams, overlap transfer/computation).

5. Multiple GPU support (partition inputs across GPUs, merge outputs from GPUs).

Figure 4.1: A high level overview of CPU Host pattern.

Figure 4.2 presents a specific instance of the CPU host pattern using simplified source

code from a CPU host function that wraps one of my GPU Copy kernels (shown later in Section

4.4).

65

CPU_Host_Copy(h_input, h_output, nElems)

 // 1. Optionally - Choose GPU device
 ...

 // 2. Set up Launch Parameters (Template, CTA, and Kernel)
 typedef U32 valT; // Underlying ‘value’ type
 U32 nWork = 4u; // 4, Work items per-thread
 U32 logBankSize = 5u; // log<2>(32), Channels per-bank
 U32 logWarpSize = 5u; // log<2>(32), Threads per-warp
 U32 BlockSize = 64u; // 64, Threads per-block
 U32 GridSize = (nElems+(BlockSize-1))/BlockSize; // Vary 1D grid with n
 dim3 Block(BlockSize, 1, 1); // Block Layout (1D shape & fixed size)
 dim3 Grid(GridSize, 1, 1); // Grid Layout (1D shape & varying size)

 // 3. Allocate Memory on GPU
 U32 mem_size_values = nElems * sizeof(valT);
 valT * d_input = nullptr;
 valT * d_output = nullptr;
 cudaMalloc((void**)&d_input, mem_size_values);
 cudaMalloc((void**)&d_output, mem_size_values);

 // 4. Optionally – Setup Host input arrays
 ...

 // 5. Copy 'inputs' onto GPU
 cudaMemcpy(d_input, h_input,
 mem_size_values, cudaMemcpyHostToDevice);

 // 6. Launch Copy Kernel
 HC_Copy_RowByRow
 <
 // C++ Template parameters
 valT, logWarpSize, logBankSize, BlockSize, nWork
 >
 <<<
 // CTA Layout parameters (Grid of Thread Blocks)
 Grid, Block
 >>>
 (
 // Kernel parameters
 d_output, d_input, 0, nElems - 1
);

 // 7. Copy 'outputs' from GPU to CPU
 cudaMemcpy((void *)h_output, (void *)d_output,
 mem_size_values, cudaMemcpyDeviceToHost);

 // 8. Cleanup resources
 cudaFree(d_output);
 cudaFree(d_input);

end CPU_Host_COPY

Figure 4.2: Example usage of the CPU Host pattern to launch a GPU Copy kernel.

As is apparent in Figure 4.2, the code that launches GPU kernels from a CPU host can be

confusing because the programmer must work with up to three separate sets of parameters:

 Kernel parameters, which are the normal function parameters passed into the

code, like the number of data elements n

T

C

L

K

66

 CTA layout parameters, which structure the threads into blocks and grids. This

will be explained in more detail in Section 4.2.

 Optional C++ template parameters, which simplify the setup of optimization

experiments.

I first specify these template parameters in C++ using single angle brackets (< … >).

Next, the CTA layout parameters are used to structure the parallel threads as a grid of thread

blocks for each GPU kernel. The CTA layout parameters are specified in CUDA using triple

angle-brackets (<<< … >>>). (I will discuss in Section 4.2.1 how to choose appropriate CTA

layout parameters up front.) Finally, the normal kernel parameters passed into the GPU kernel

are specified in C++, as in most programming languages, using single parentheses.

Figure 4.2 shows, as a specific example, the parameters for my GPU copy invocation.

The glyph marks where the launch code for the copy kernel in this example starts. The

glyphs respectively represent the three sets of parameters: template, CTA, and

kernel. (I have spread the three sets of parameters across multiple lines to make them more

visible. Most programmers would use a more terse syntax.) As shown in Figure 4.2, the CPU

host pattern mostly sets up and cleans up necessary resources around a set of GPU kernel

launches. The CTA layout parameters structure thread parallelism and are unique to GPU data-

parallel programming. Section 4.2, which follows, goes into greater detail about how to structure

the thread hierarchy in CUDA for each GPU kernel using the 2-level CTA layout parameters.

4.2 How does one launch a kernel with thousands of threads?

One obstacle to programming a GPU kernel is the need to specify up front a thread layout

structure, the cooperative thread array (CTA), which the GPU hardware uses to schedule the tens

of thousands of threads onto hundreds of processing cores. Each kernel, no matter how simple,

requires a CTA layout, but choosing good sizes and shapes for the CTA layout requires the

programmer to develop some intuition for what thread layouts work well, and optimal sizes and

C

T L K

67

shapes require many experiments within the specific application. Here are the technical details

for specifying layouts.

Recall from Section 3.3 that threads on a GPU are structured in a four-level hierarchy.

Each individual thread belongs to a thread warp, which belongs to a thread block, which belongs

to a grid. In order to launch kernels with thousands of threads, NVidia requires that programmers

must specify, at GPU kernel launch, two triples ‹x,y,z› the 2D grid of blocks and a 3D array of

threads in the blocks. To aid my own understanding, I use a 6-tuple ‹gw, gh, 1, bw, bh, bl› to

represent the grid and block layout parameters as a single unit. However, CUDA actually uses a

triple angle-bracket syntax (<<<grid, block, …>>>). I also use the 6-tuple ‹bx, by, bz, tx, ty,

tz› to indicate the unique thread location of each individual thread within the CTA layout.

To specify the CTA layout up front, the GPU programmer must plan how to partition the

data and how to map individual threads onto the data elements. The programmer can simply

specify a 1D grid and a 1D thread block layout, with two CTA layout parameters ‹gw,1,1,bw,1,1›,

but the option of having multiple CTA layout parameters allows programmers the flexibility to

treat the underlying data as 1D, 2D or 3D, as appropriate for their problem space. Most of the

GPU kernels in my case studies are 1D, but large, so I typically use 2-3 CTA parameters per

kernel as a 1D or 2D grid and a 1D block as ‹gw,gh,1,bw,1,1›.

The code in Figure 4.3 shows a 2-3 parameter CTA layout for a 1D data set [0,n).

68

template<TBS, gridRS, nWork> // Input Size, Row Size(m*c),
 Work per-thread
Layout_1D(n, Grid, Block) // Input Size, Grid layout, Block Layout
 DBS = nWork*TBS; // Fixed, Data Block Size
 nBlocks = ⌈𝑛/𝐷𝐵𝑆⌉; // Varies, Cover data with data blocks

 if (nBlocks <= 65534) // 1D or 2D Grid Layout?
 gridW = nBlocks;
 gridH = 1;
 else

 mSQ = ⌈√𝑛𝐵𝑙𝑜𝑐𝑘𝑠⌉; // Start with a square layout

 gridW = ⌈𝑚𝑆𝑄/𝑔𝑟𝑖𝑑𝑅𝑆⌉ ∙ 𝑔𝑟𝑖𝑑𝑅𝑆; // nCols is a multiple of ‘Row Size’ Hint
 gridH = ⌈𝑛𝐵𝑙𝑜𝑐𝑘𝑠/𝑔𝑟𝑖𝑑𝑊⌉; // nRows needs to cover data
 end if

 Block = dim3(TBS, 1, 1); // Block layout (1D)
 Grid = dim3(gridW, gridH, 1); // Grid layout (2D or 1D)
end Layout_1D

// Example Usage
...
TBS = 128; // 128, Pick a fixed 1D thread block layout
nWork = 4; // 4, Amortize costs across work-items
nSMs = 14; // 14, number of SMX’s on a GTX Titan
nConBlocks = 16; // 16, expected number of concurrent blocks per SMX
gridRS = nSMs * nConBlocks; // 224, A good starting row size for my grid

Layout_1D<TBS,gridRS,nWork>(n, Grid, Block); // Compute my CTA Layout

Figure 4.3: Compute a CTA layout. In this example, I pick a fixed block size and a fixed number of

columns per grid and then allow the number of rows per grid to vary as needed to cover the data.

As shown in Figure 4.3, the user picks a fixed-size thread-block size (TBS) and a fixed

size amount of work per-thread (nWork) from which the code computes a fixed-size data block

size (DBS = nWork·TBS). From the fixed size data block size, I compute the number of data

blocks (m=⌈𝑛/𝐷𝐵𝑆⌉) needed to fully cover the data set [0,n). Fully covering the data with data

blocks implies that the last data block may only be partially full and thus my GPU kernels will

require range checking to avoid data access errors. Initially, I used a one-to-one mapping

between thread and data blocks. Recall that Fermi architectures limit their grid dimension values

to the range [1,216). As a result, my layout function determines if a 1D or 2D grid layout is

needed to cover all the data blocks (test: m ≥ 65,534). If a 2D grid layout is needed, I start with

the square root of m as a good first approximation (√𝑚 × √𝑚). I then modify that number by a

fixed-size row hint (gridRS) to get the final 2D layout (rows×cols), which creates a 2D layout of

data blocks needed to fully cover all the data. Unfortunately, computing the 2D grid layout as

69

described usually results in some over-coverage because the last data row is usually only partially

full (implying that there are some thread blocks where the corresponding fixed-size data blocks

are completely out of range). Thus range checking in my kernels is required to prevent data

access errors.

CTA Layout Guidelines: Using fewer CTA layout parameters results in fewer mapping

operations (as will be shown later in Figure 4.6.) Consequently, I prefer 1D layouts over 2D

layouts, and 2D layouts over 3D layouts. Since thread scheduling on each SM multi-core is

warp-based, I also prefer that the thread block width (bw) parameter be a multiple of the

WarpSize (32), in order to fully utilize all the SP processing cores on each SM. To support the

multi-issue GPU hardware capability, I prefer to have at least two or four thread warps per-thread

block (64 or 128 threads per thread-block). I generally prefer fixed sized constants for most of

my CTA parameters—the only exception being the one that I allow to vary with input size (either

the grid rows or grid columns -- gw, gh). I recommend including the fixed-size CTA parameters

as part of the kernel’s C++ template parameters. This approach supports experimentation while

still allowing the GPU kernels to know the actual CTA layout at compile time for better

performance.

4.3 How does one map threads onto data?

To process all data, GPU programmers must map individual threads onto unique data

locations in the data set. In addition, all threads collectively must fully cover all data in the data

set. Therefore, the programmer must combine these CTA layout parameters (2-5 variables) with

the current thread’s unique identifying parameters in order to map the thread’s access request

onto a single data location.

70

To support mapping at runtime, CUDA provides four CTA layout parameters. Each of

these four parameters are global1, built-in, and read-only 3-tuples as ‹x,y,z›. They are named

gridDim, blockDim, blockIdx, and threadIdx respectively. The gridDim and blockDim

layout tuples refer to the original CTA layout parameters. (This means that gridDim.‹xyz› and

blockDim.‹xyz› together are equivalent to ‹gw, gh, 1, bw, bh, bl› in my nomenclature). The

threadIdx and blockIdx tuples uniquely identify the current running thread within the current

thread block within the grid. (Together they are equivalent to ‹bx, by, 1, tx, ty, tz›, in my

nomenclature.) Each threadIdx and blockIdx parameter value ‹x,y,z› is upper-bounded by a

corresponding blockDim and gridDim value. For example, given threadIdx.x (tx) and

blockDim.x (bw), then tx will be bounded above by bw, i.e. 𝑡𝑥 ∈ [0, 𝑏𝑥). All four built-in CTA

layout parameters are therefore used to map individual threads onto their corresponding data

items. This approach is similar to mapping multi-dimensional arrays onto 1D memory layouts.

Mapping the blockIdx or threadIdx onto a single unique block or thread ID (bid or tid)

involves computing 3D slabs, 2D rows, and 1D columns and adding them all up.

Table 4.1 shows code snippets that can be used to map the CTA layout variables onto a

single per-thread data location using a 1D or a 2D grid vs. a 1D, 2D or 3D block layout.

1 This means that these four CTA layout parameters can always be accessed and used at anytime from

anywhere within kernel code and invoked function code without any need to pass them through as kernel or

function parameters.

71

 1D Block <bw,1,1> 2D Block <bw,bh,1> 3D Block <bw,bh,bl>

1D Grid

<gw,1,1>
bid=blockIdx.x;

tid=threadIdx.x;

TBS=blockDim.x;

DBS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

bid=blockIdx.x;

tX=threadIdx.x;

tY=threadIdx.y;

bW=blockDim.x;

bH=blockDim.y;

tid=(bW*tY)+tX;

TBS=bW*bH;

DBS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

bid=blockIdx.x;

tX=threadIdx.x;

tY=threadIdx.y;

tZ=threadIdx.z;

bW=blockDim.x;

bH=blockDim.y;

bL=blockDim.z;

slab=bW*bH;

tid=(slab*tZ)+

 (bW*tY)+tX;

TBS=slab*bL;

DBS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

Runtime Ops 5 9 13
Template Ops 3 5 7
2D Grid

<gw,gh,1>
bX=blockIdx.x;

bY=blockIdx.y;

gW=gridDim.x;

bid=(gW*bY)+bX;

tid=threadIdx.x;

TBS=blockDim.x;

DBS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

bX=blockIdx.x;

bY=blockIdx.y;

gW=gridDim.x;

bid=(gW*bY)+bX;

tX=threadIdx.x;

tY=threadIdx.y;

bW=blockDim.x;

bH=blockDim.y;

tid=(bW*tY)+tX;

TBS=bW*bH;

DBS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

bX=blockIdx.x;

bY=blockIdx.y;

gW=gridDim.x;

bid=(gW*bY)+bX;

tX=threadIdx.x;

tY=threadIdx.y;

tZ=threadIdx.z;

bW=blockDim.x;

bH=blockDim.y;

bL=blockDim.z;

slab=bW*bH;

tid=(slab*tZ)+

 (bW*tY)+tX;

TBS=Slab*BL;

DS=WPT*TBS;

dataOff=(bid*DBS)

 +tid;

Runtime Ops 8 12 16

Template Ops 5 7 9

Table 4.1: This table shows code snippets for mapping 2-5 CTA parameters down onto a single per-

thread data location used to access data in global memory. Grid dimensions (1D & 2D) and block

dimensions (1D, 2D, and 3D) are on the vertical and horizontal axes respectively. The lighter grey color

indicates lines of code that get compiled away as constants when using C++ template parameters to

redundantly pass in the corresponding fixed-size CTA layout parameters.

72

The mapping between threads and data can be simple and straightforward, but because

the current CUDA documentation does not actually show how to do this mapping, I have

included my code for six different block and grid dimensions in Table 4.1. (There are many other

possible ways to map these variables.) My mapping for each of the six code snippets is computed

in four steps:

1. The block ID (bid) for a thread block within a grid is first computed from the

blockIdx and gridDim parameters.

2. The thread ID (tid) for a thread within a thread block is then computed from the

threadIdx and blockDim parameters.

3. Next, the fixed-size DBS can be computed from fixed-size C++ template

parameters (nWork and TBS) or from the blockDim parameter.

4. Finally, the per-thread data location is computed from the bid, tid and DBS.

Also included in Figure 4.4 are my best estimates of how many operations CUDA takes

to perform each mapping via the corresponding code snippet. As you can see from the code, the

more CTA parameters involved in the mapping, the more operations it takes. The “Runtime Ops”

rows show the total number of operations required to perform the mapping when it directly

accesses the CUDA layout variables. In contrast, the “Template Ops” rows show the reduced

number of operations expected when redundantly passing some of the CUDA layout parameters

as fixed-size C++ template parameters into the kernels. In Figure 4.4, I have also grayed out the

lines of code that the compiler elides when using C++ template variables.

Each mapping code snippet consists of simple loads, multiplies, and adds. Any required

CUDA CTA layout parameters (gridDim, blockIdx, blockDim, threadIdx) must first be

loaded from special constant read-only registers into normal registers before they can be used.

For Fermi and CUDA architectures, the CUDA platform compiler will often replace a multiply

operation that is followed by an add operation with a single fused-multiply-and-add (FMA). In

The code snippets in Figure 4.4 have many read-after-write (RAW) data dependencies,

which reduce opportunities for the SM warp schedulers to hide stalls. For fewer instructions and

stalls, GPU programmers should prefer 1D over 2D mappings and 2D over 3D mappings.

73

4.4 How can one write GPU data parallel code?

Now that we have some initial ideas about how to setup and launch a GPU kernel from a

CPU host, and how to launch a kernel with thousands of parallel threads, and how to map those

threads onto data elements, it’s time to actually drill down on the task of writing a GPU kernel

that supports data-level parallelism.

For a serial solution, many programmers, when given a large data set that needs to be

processed, naturally draw upon the “iteration pattern” from their programmer’s tool box. A

nested loop structure that iterates over all data values easily processes all data in a large dataset.

The loop instructions therefore simplify a programmer’s life by reducing the amount of code that

needs to be written while also dynamically supporting any input size (n). However, as useful as

loop instructions are in increasing programmer productivity, what is really important are the

actual transform instructions that convert a single input into a single output in order to solve the

problem at hand. These important transform instructions are typically found as the innermost

block of code within the nested looping structure.

For a parallel solution, such as on a multi-computer, one natural way to solve these

problems is to parallelize the loops themselves, creating one thread per loop iteration to process

the data from each iteration. Such an approach lets the machine handle scheduling of iteration

instances onto threads and then onto cores. With n iterations, n data items can be covered. Of

course, for a multi-computer there must be some way to specify parallelism. Parallelism is often

specified in parallel programming platforms, like MPI or Clik, using a parallel_for

instruction. In these instances, the framework creates parallel threads, schedules threads, maps

data items onto threads, executes threads, and retires threads. Given these advantages for typical

multi-computer parallel solutions, I would rewrite my loops as parallel looping structures.

For a GPU specific solution, the CUDA framework supports a data parallel view of data

with one thread per data item. However, the nested loop structures in software are replaced by a

74

two-level cooperative thread array (CTA), which groups threads into thread blocks and thread

blocks into a grid. The hardware giga-thread scheduler schedules thread blocks onto SMs, and

each SM warp scheduler schedules thread warps onto SPs. Since looping has effectively been

moved out of software and onto the hardware schedulers, each thread needs to uniquely identify

itself within the CTA hierarchy in order to know which data item to work on. As before, the

same transform instructions that I would loop over in my serial solution becomes the core of my

GPU data parallel solution.

The CUDA programming platform enhances the C++ language with a few extensions to

express and support data parallel programming. Each GPU kernel is written from the point of

view of a single generic thread (within the CTA). Each GPU data parallel kernel then typically

consists of the following six steps:

Step 1: Mapping Data: During this step, programmers write code that uniquely

identifies the current thread and maps the current thread ID onto a specific data

location (input and output). This important step was discussed previously in

Section 4.3.

Step 2: Setting Up: An optional step where programmers write code that can allocate,

load, or create any necessary variables to support algorithm state and context.

Step 3: Loading Input: During this step, programmers write code that loads a single data

item as input from the computed input location. Range checks may be required

to prevent out-of-range memory accesses.

Step 4: Transforming Data: During this important step, programmers write code that

transforms the input data item into an output result.

Step 5: Storing Output: During this step, programmers write code that stores the result

item as output to the computed output location. Again, range checks may be

required.

75

Step 6: Cleaning Up: An optional step where programmers write code to clean up any

allocated resources from the “Setting Up” step.

The “Transforming Data” step (Step 4) is the important payoff step where the original

problem gets solved. Just as the loop instructions are necessary and useful overhead for solving a

large problem in a serial environment, the other steps above (1-3, 5-6) are also necessary and

useful overhead to solve a large massively multi-threaded problem in a GPU data parallel

environment. I call the important transforming data step the “Body,” and the rest of the

supporting framework steps the “Skeleton” of the GPU kernel.

I just described three different approaches for transforming input into output. The CPU

serial looping, multi-computer loop parallel, and GPU data parallel versions of Copy are all

shown as pseudo-code in Figure 4.4.

76

Serial Copy

 Copy_Serial(n, D, S
)
 // Iterate over
data
1: for i in [0..n)
 // Copy data elem

2:
3: end for
4:end copy_serial

Parallel Copy

 Copy_Parallel(D, S)
 // Grab thread ID
1: tid = ...;

 // Copy data elem

2:
3:end copy_parallel

GPU Copy

 Copy_GPU_Simple(n, D, S)
 // Map CTA thread onto data
 1: bX = blockIdx.x;
 2: bY = blockIdx.y;
 3: gW = gridDim.x;
 4: bid = (gW*bY)+bX;
 5: tid = threadIdx.x;
 6: dOff = (bid*32)+tid;

 // Copy data elem
 7: if (dOff < n) // Range
check

 8:
 9: end if
10:end Copy_GPU_Simple

// Launch CPU function
1: Copy_Serial(n, D,
S);

 // Launch n kernels
1:parallel for i in 1..n
2: Copy_Parallel(D, S
);
3:end parallel for

 // Get CTA layout params
 1: dim3 grid, block;
 2: Layout_1D<32, 112, 1>
 (n, grid, block);

 // Launch GPU kernel
 3: Copy_GPU_Simple
 // CTA Params
 <<< grid, block >>>
 // Kernel Params
 (n, D, S);

Figure 4.4: Top Row, Left Panel: A simple serial CPU program to copy n elements from source to

destination using a loop. Top Row, Middle Panel: An equivalent data-parallel kernel would copy n

elements using n threads. Top Row, Right Panel: An actual GPU kernel instance to copy n elements

using n threads. Bottom Row (all three panels): Examples of how to invoke the function and kernels.

With all three functions, the shaded boxes contain the useful payoff code (Body) that the GPU

programmer implements (in this case: copying). The rest of the code is the necessary framework code

(Skeleton) in order to iterate over n elements or process n elements in parallel.

As can be seen in Figure 4.4, all three versions have their assignment operations boxed

because they provide us with our first examples of DASks. By replacing the “Body” code inside

the shaded boxes at source line “2” or “8,” a number of programs based on the map pattern can be

generated from the above “Skeletons”, such as Copy, Fill, Count, and Find. For Fill, a

programmer could replace the copy statement at source line 2 (or 8) by a fill statement D[tid] =

fillVal;.

As also can be seen from Figure 4.5 (left vs. right panel), the loop overhead of the CPU

serial function has been replaced by the CTA layout and mapping overhead of the GPU data-

parallel kernel. The resulting parallel GPU copy is conceptually the same as the parallel multi-

D[i] = S[i];

D[tid] = S[tid];

D[dOff] = S[dOff];

77

computer kernel in Figure 4.5; however, the extra complexity comes from having to map the 2-

level CTA layout kernel parameters that represent a single thread down onto a single data

location. This simple GPU copy works correctly for valid input, but its performance runs at only

~25% of peak I/O throughput for large input sizes (see Figure 4.7).

To support massive parallelism via threads, GPU programmers also must make some up-

front decisions about the CTA layout before coding a simple GPU kernel such as Copy. To do

this, GPU programmers must first set up the initial thread structure using the CTA layout

parameters (grid, block). This setup appears in Figure 4.1 (bottom row, right panel, source line 3)

as an extra line of kernel launch parameters (<<< grid, block >>>). Later, when they are

coding the GPU kernel, GPU programmers must map the CTA layout (as four built-in kernel

parameters) for each individual thread down onto a single data location. This mapping code

shows up in Figure 4.1 (top row, right panel) as source lines 1-6. I present more details on this

two-step process for launching parallel kernels and mapping threads onto data in Section 4.3.

As will be seen in Chapter 5, I will present three DASks for efficiently accessing

memory. I developed these DASks with two main goals: to help hide the complexities of GPU

programming so that the GPU programmer can focus on solving their problems via their

algorithms; and to achieve solid parallel performance on GPU hardware.

Otherwise, GPU programmers must expend a great deal of effort to learn the

complexities of the GPU hardware that can help or hinder performance. For example, in order to

increase performance via TLP, GPU programmers need to be aware of the underlying hierarchical

thread structure in hardware. I initially suggested that GPU programmers should think about their

parallel programs from the point of view of a single thread. It is vital that they should not lose

sight of the underlying four-level hierarchical thread structure: A thread belongs to a thread

warp, which belongs to a thread block, which belongs to a grid. When executing a kernel, the

GPU schedules thread blocks within each grid onto SMs. Each SM’s warp-scheduler then

schedules concurrently running thread warps from thread blocks onto the SPs within each SM.

78

As each thread block completes execution, the GPU schedules additional thread blocks onto the

SMs until all thread blocks within the grid have been processed.

To support data parallelism in my GPU programs, I at one time wrote my own GPU

kernels in ten rough stages as follows:

1. Understand Structure: Conceptually, I would look at the actual serial algorithm

to adapt (or I would think of how could write this kernel as a serial program

using some looping structure that iterates over the n elements in the input data

set).

2. Find “Body”: I found (or thought about) the innermost code in the actual (or

conceptualized) looping structure. This is the important code that transforms one

input element into one output result. This innermost transform code forms the

core of my GPU kernel.

3. Write Core: Based on the innermost transform code, I wrote the core of GPU

kernel that loads, transforms, and stores a single data work-item.

4. Map Threads: I added code that maps each individual thread into a unique data

work-item. I also usually had to go back and add range checks around any load

or store instructions to prevent access errors.

5. Serial Test: I verified my kernel with exactly one thread on one data item.

6. Increase parallelism to one Thread Warp: I verified that my code works for all

threads within a single warp. Meaning, I set my CTA layout to a single thread

warp (32 threads) and tested my code on a single data warp (32 data items).

7. Coordinate Threads: I considered how the threads within a thread block might

need to communicate and coordinate with other threads to ensure correct parallel

behavior. I shared data across threads using arrays in shared memory. I also

might need to insert barriers instructions or use atomics to ensure that all threads

79

are reading or writing correct data without conflicts. I then rewrote my code to

support the desired communication or coordination across threads.

8. Increase parallelism to one Thread Block: I verified that my code works for all

threads within a single thread block (128 threads per thread block is a good

starting case) on a single data block (128 data elements).

9. Increase parallelism to an entire Grid of thread blocks: I verified that my code

works correctly for all threads in a large grid of thread blocks.

10. Complete Algorithm: The kernel should now be working correctly. If this kernel

is just one stage of a larger algorithm, I also needed to verify that this stage

interacts correctly with the other stages preceding and following it.

However, after inventing my various Data Access Skeletons (DASks), I now do things

differently. I take one of my working DASks (as discussed in Chapter 5) that best fits my

problem and replace the “Body” sections (shaded boxes) with my desired transform data code and

then start verifying. Of course, I still need to think about how to communicate and coordinate

partial results across threads within a thread block and between kernels in a multi-kernel parallel

algorithm. However, the main result of jump starting my kernel development with my DASks is

that I am more productive.

4.5 Simple Copy Results

Figure 4.5 shows the initial throughput (in gigabytes per second) for increasing input

sizes (n) of my simple Copy kernel (code shown in Figure 4.4, right panel).

80

Figure 4.5: Simple throughput for increasing n. All tests run on a GTX Titan.

This simple kernel works correctly but disappointingly achieves only about 25% of

maximum peak throughput available on the GTX Titan and is about 2.7× slower than the built-in

CUDA library function cudaMemCopy. As we will see in Chapter 5, this is because this simple

kernel does not take full advantage of either TLP or ILP.

4.6 Conclusion

In this chapter, I have introduced the four main tasks—writing CPU host functions to

launch GPU kernels, launching thousands of parallel threads using the CTA layout, mapping each

parallel thread within the CTA onto a data work-item, and writing thread centric code for data

parallel kernels—that GPU programmers should learn in order to get a GPU kernel up and

running. I demonstrated these four tasks on a simple Copy primitive. Even though the resulting

kernel works correctly, it has disappointing performance (only 25% of peak throughput).

To improve performance, in Chapter 5, I will introduce three data access skeletons

(DASks) and two block access skeletons (BASks). These skeletal frameworks provide three main

benefits:

1) They support efficient access patterns into memory

210 212 216 220 224 228
0

50

100

150

200

250

288.4

n = number of elements (log scale)

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

COPY - Throughput for increasing n

Simple Copy

cudaMemCopy

81

2) They support experiments on balancing ILP and TLP to find the best throughput

performance.

3) They provide an already working framework that hides much of the complexity of

writing GPU kernels with high performance.

My DASk and BASk kernel frameworks allow me to get a jump start on writing new

GPU code which makes me more productive. The underlying framework code forming the

skeletons has already been tested, works correctly, and achieves high throughput. Each DASk

contains replaceable “body” sections (that I show throughout this thesis as shaded boxes) that are

intended to be replaced with new code to solve new problems. So, the programmer can replace

these “body” sections with their own code to solve their own problem with high confidence that

the resulting kernels are close to working correctly. Of course, this approach doesn’t solve

everything, the programmer still needs to think about how to structure their CTA layout on

launch, and how to best write their code to best deal with GPU hardware issues. To that end, my

case studies will demonstrate various ways that I have dealt with those issues using my DASks

and BASks.

82

5.0 Data Access Skeletons (DASks)

In this chapter, I continue my case study using the Copy primitive to learn how to aim for

high performance on the GPU. In Chapter 4, the focus was on coding a simple Copy that works

correctly on a GPU by learning four main tasks: launch a GPU kernel from a CPU host; launch

thousands of parallel threads for each kernel; map each thread onto a data work-item; and write

GPU thread-centric data-parallel code;. The final kernel was correct but had poor throughput as

compared to the peak throughput available on cards like the GTX 580 and GTX Titan.

In this chapter, I focus on improving the Copy primitive’s performance on the GPU by

introducing two additional tasks.

1) Write code that has efficient memory access patterns.

2) Determine a balance of Instruction-level and Thread-level parallelism (ILP and TLP).

To help support both performance tasks, I introduce three Data Access Skeletons

(DASks)--: Block, Column, and Row. And two Block Access Skeletons (BASks) – Block by Block

and Warp by Warp. In addition to supporting efficient memory access patterns and supporting

ILP and TLP, these skeletal frameworks provide also provide an already working framework that

helps hide much of the complexity of writing GPU kernels with high performance.

The underlying framework code forming these skeletons has already been tested, works

correctly, and achieves high throughput. Each DASk contains replaceable “body” sections (that I

show throughout this thesis as shaded boxes) that are intended to be replaced with new code to

solve new problems. So, the programmer can replace these “body” sections with their own code

to solve their own problem with high confidence that the resulting kernels are close to working

correctly.

83

To support my DASks and BASks in the context of actual algorithms for my case studies,

I implement my GPU kernels using C++ templates for generic programming and better

performance. Generic programming1 (Alexandrescu, 2001) helps support many data types with

only one function, helps to eliminate hard-coded magic numbers from inside my kernels, and,

most importantly, permits me to try many different CTA layout configurations without the need

to tweak the underlying GPU kernel code for each new configuration. Better performance occurs

because many C++ template parameters are treated as hard-coded constants that the compiler can

use to optimize instructions (or elide away) at compile time instead of runtime.

Returning to the three types of DASks, The Block DASk is a generalization of the simple

GPU copy (see Figure 4.1, right panel, in Chapter 4) and supports both ILP and TLP for better

overall performance. The Column DASk assumes a 1D block and a 2D grid with a fixed number

of grid columns where the number of grid rows varies dynamically with the input size. The Row

DASk also assumes a 1D block and 2D grid where with the number of rows are fixed and the

number of columns are allowed to vary dynamically with the input size.

All three DASks support experiments on both ILP and TLP via C++ template parameters2

‹nWarps, nWork›. The parameters exist in each DASk, the programmer should take advantage of

them. The nWarps parameter allows the programmer to experiment with TLP by varying the

number of threads per thread block. The nWarps parameter is actually redundant information to

the existing CTA layout but by making it a compiler constant, performance can be increased in

the kernel code. The nWork parameter allows the programmer to experiment with ILP by varying

the number of data elements (work-items) per thread in their code. Even though the parameter is

there, the programmer must write code in their “body” sections to support up to k work-items and

then set the nWork parameter to the desired amount of work per-thread.

1 As described in the book “Modern C++ Design” (Alexandrescu, 2001).
2 As described in the book “The C++ Programming Language, 4th edition” (Stroustrup, 2013).

84

To whet your appetite for the results of using these skeletons, here are the throughputs as

a function of input size (n) for my copy implementations of each of my three data access

skeletons (Block, Column, Row), along with results of a simple copy implementation and

NVidia’s built-in copy primitive, cudaMemCopy. The simple implementation falls behind at

n = 214 , but all the rest are competitive with NVidia’s cudaMemCopy, as seen in Figure 5.1. (So

if you are just copying plain old data types, use cudaMemCopy.)

Figure 5.1: Copy Performance -- I/O Throughput (y-axis) for increasing 𝑛 (x-axis, log-scale) for my three

Data Access Skeletons (Block, Column, and Row). Performance of a simple (one thread per data item) copy

degrades around N=215, but cudaMemCopy method can be used over the entire range.

5.1 Block DASk

The Block DASk (see Figure 5.2) is based on the simple Copy kernel (see Figure 4.1,

right panel in Chapter 4) but generalized with additional C++ template parameters that support

performance experiments on both ILP and TLP. For ILP, I use software pipelining on multiple

work items (data elements) per-thread per data block, the amount of work per thread is specified

210 213 216 219 225 228
0

50

100

150

200

250

222

N = number of Elements (log scale)

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Copy -- I/O Throughput for increasing N
288.4

Simple

cudaMemCopy

Column DASk

Row DASk

Block DASk

85

via a work-per-thread (nWork) C++ template parameter. For TLP, I support massive thread

parallelism via a dynamic CTA layout for fixed 1D block sizes and for 2D grids (meaning, fixed

columns and varying rows), the static CTA layout parameters are also specified as C++ template

parameters: threads per thread block (TBS) and block columns per grid (GridCols). By turning

the Block DASk into a C++ template kernel, a programmer can experiment with different

configurations (work per thread, CTA layout) by simply changing template parameters instead of

tweaking hard-coded magic numbers. With the Block DASk, the data is divided into m fixed size

blocks and organized into a 2D or 1D grid, depending on the number of thread blocks needed to

fully cover all the data (using the Layout_1D function, shown in Figure 4.5 in Chapter 4).

Figure 5.2: The Block DASk. 1) Pick a fixed-size thread block, fixed-size work per-thread

(nWork), and compute the corresponding fixed-size data block. 2) Partition the data array into m

fixed-size data blocks that fully cover the data range [0, n). 3) Launch one thread block per data

block. 4) Inside each kernel, map each thread block onto its corresponding data block. 5) Each

thread within the thread block processes its assigned work (transforms ‹copies› input into output).

As will be seen later in Section 5.16, I experimented with both automatic and manual

loop unrolling to support ILP across multiple work items. The Block DASk also supports

experiments on TLP by the initial choices for the CTA layout, For Example: BlockSize =

DB1 DB2 …

TB1 TB2 … TBm

Thread
Blocks

Input
Data

Blocks

DBm

DB1 DB2 … DBm
Output

…Transform

𝑛 = # Data Elements

Block size ()

Grid size ()

Computations:
𝑛 = Number of data elements
nWork = Pick Work per-thread
 𝑆 = Pick Thread Block Size

CTA Layout:

L1: Compute Data Block Size
 DBS = nWork*TBS
L2: Compute 1D Grid Size

 = Data blocks per-grid

 = 𝑛/𝐷 𝑆

Map: thread block onto data block

bid = (grid.y*grid.w) + grid.x

tid = block.x

dataOffset = (bid*DBS)+tid

86

‹128,1,1› and GridSize = ‹224,1,1›. To make the Block DASk more efficient, I pick a fixed

thread block size (TBS), and a fixed amount of work per-thread (nWork), typically in the range

[1..4]. From this, the fixed data block size (DBS) can be computed as DBS=nWork∙TBS. Once,

the data block size is known, the number of data blocks (m) needed to cover the entire data set

can be computed as = 𝑛/𝐷 𝑆 . A one-to-one mapping between thread and data blocks

makes it relatively easy to compute where the corresponding data block starts as blockOff =

(bid∙DBS). For a 1D grid, the block ID (bid) can be computed as bid = blockIdx.x and for a 2D

grid, bid = (blockIdx.y∙gridDim.x) + blockIdx.x.

Of course to get higher performance with the Block DASk, I used two main ideas.

 Coalescence within a data block: All DASks mainly deal with efficient mapping

of thread blocks onto data blocks. This corresponds to the first level of the CTA

hierarchy (grid of thread blocks). However, an efficient mapping for the second

level of the CTA hierarchy (threads within a thread block) is also needed. I

introduce two BASks – Block by Block, and Warp by Warp that support

coalescence for high throughput.

 Amortizing costs across multiple work items: To increase performance, decrease

the amount of instructions. One common technique to reduce instructions is to

amortize shared costs across multiple work items. I amortize in two different

ways in the Block DASk – amortized range checking and amortized pointer

indexing.

5.1.1 Block Access Skeletons (Block by Block vs. Warp by Warp):

My Block DASk (all my DASks) provide a framework for the GPU programmer that

maps thread blocks onto data blocks, the first level of the CTA hierarchy. To map threads warps

onto data warps within each data block, the second level of the CTA, I introduce two Block

Access Skeletons (BASks) – Block by Block and Warp by Warp. The Block by Block BASk is

straightforward, in fact, it is the way most GPU programmers immediately think of writing code

that supports coalescence, assigning one thread per data element sequentially and then striding

(stride = TBS) to the next row of data within the data block as needed. The Warp by Warp BASk,

which also supports coalescence, assigns each thread warp its own fixed size subchunk of work

87

within the data block and moves each thread warp to its starting offset, and then strides (stride =

WarpSize) through the subchunk of work warp by warp.

Access Trace (Block By Block)

Access Trace (Warp by Warp)

// Map (block within grid)

...

blockOffset = bid*DBS;

...

// Map (thread within block)

tid = threadIdx.x;

currIdx = blockOffset + tid;

// Do work (Access data)

// Unroll for better performance

for (i = 0; i<nWork; ++i)

 out[currIdx] = in[currIdx];

 // Move to next block of data

 currIdx += ThreadBlockSize;

end for

// Map (block within grid)

...

// Map (thread within warp within block)

nWarps = ThreadBlockSize/WarpSize;

WPW = nWork*WarpSize; // Work per Warp

warpRow = tid / WarpSize;

warpCol = tid % WarpSize;

localOffset = (warpRow*WPW)+warpCol;

currIdx = blockOffset + localOffset;

// Do Work (Access data)

// Unroll for better performance

for (i = 0; i<nWork; ++i)

 out[currIdx] = in[currIdx];

 // Move to next warp of data

 currIdx += WarpSize;

end for

Figure 5.3: Block Access Skeletons (BASks): The left and right columns represent the Block by Block and Warp by

Warp BASKs respectively. The top, middle, and bottom panels represent conceptual layouts, data access traces and

corresponding code snippets for both BASks respectively.

Block Size (Threads per Block)

Warp1 Warp4…

Work1

Work2

…

WorkWPT

Block by Block

D
at

a
B

lo
ck

 (
Fi
xe

d
)

Work1 Work2 … WorkWPT

Work1 Work2 … WorkWPT

Warp1

Warp2

…

Warp4

Work1 Work2 … WorkWPT

Data Block (Fixed)

B
lo

ck
 S

iz
e

(T
P

B
)

Warp by Warp

88

 In Figure 5.3, I highlight the main differences between the Block by Block and Warp by

Warp BASks. For a fixed size thread block of size TBS, each thread is responsible for processing

(copying) exactly nWork work items, which fully covers the DBS data elements in the current

data block.

The Block by Block memory access pattern strides through the data block cooperatively

by all threads in the thread block. Conceptually, the Block by Block BASk can be thought of as a

vertical access pattern on a 2D block, where the number of rows is equal to nWork and the length

of each data row is equal to TBS. Each thread within the thread block is assigned a single column

and then strides to the next assigned row of data elements (stride = TBS) in a block-by-block

manner.

The Warp by Warp BASk assigns a fixed-size data sub-chunk of work to each individual

thread warp, with the work per warp (WPW) computed as WPW = nWork∙WarpSize.

Conceptually, the Warp by Warp BASk can be thought of as a horizontal access pattern on a 2D

block layout, where the number of data rows is equal to the number of warps per thread block

computed as nRows=TBS/WarpSize, and the length of each data row is equal to WPW. Each

thread warp is assigned one data row and strides through its row one data warp at a time (stride =

WarpSize = 32).

When using the Warp by Warp BASk, the GPU programmer needs to know the warp that

each thread belongs to. This information is not directly available but can be derived easily from

the thread’s ID (tid). For 1D fixed-size thread blocks, I compute the warpRow, warpCol from the

thread ID as (warpRow = tid/32, warpCol = tid%32) respectively, where 32 represents the

number of threads per warp (WarpSize). To avoid magic numbers in my GPU kernels, I convert

the WarpSize into a fixed-size C++ template parameter as well. Since WarpSize is a power of

two, the more expensive modulus and division operations can be replaced with simpler bit shift

and mask operations instead as (warpRow = tid>>logWarpSize, warpCol = tid&WarpMask),

where logWarpSize and WarpMask are computed as logWarpSize = log2(WarpSize) = 5 and

89

WarpMask = WarpSize-1 = 31 respectively. An even simpler alternative is to define the fixed-

size thread block layout as 2D instead of 1D (meaning, Block = ‹32, nWarps, 1› where nWarps is

the number of warps in the thread block). For example, an 1D thread block of 128 threads could

be represented in 2D as ‹32,4,1›. This allows the warp row and column to be read directly from

the threadIdx CTA parameter as warpCol = threadIdx.x and warpRow = threadIdx.y.

Figure 5.3 (middle row) shows memory traces that reveal differences in the access

patterns of these two BASks. The specific experiment generating these traces used two warps

(TBS=64) and 6 work items per thread (nWork = 6) per data block. Each warp is represented by

eight small plus signs per warp.

The Block by Block BASk (middle row, left panel), ping-pongs as the two warps stride

through their respective six data elements; the Warp by Warp BASk (middle row, right panel)

has a more sequential trace layout for each warp’s assigned sub-chunk of work. Though both

BASks work well, most GPU programmers gravitate towards the Block by Block BASk as it is

simpler, easier to code and easier to reason about. I personally prefer the Warp by Warp BASk in

my code for three reasons:

 The data access pattern is slightly more localized, which can result in a modest

increase in I/O throughput (1-2% faster) over the Block by Block BASK despite the

extra setup and indexing overhead.

 Each individual warp can proceed on its assigned subchunk of work independent of

any other warp in the thread block. With the Block by Block BASk often each warp

must wait for all warps to complete transferring data before useful processing work

can proceed.

 Barrier Synchronization is often needed for correct communication and coordination

across the threads in a thread block. The Warp by Warp pattern BASk typically

requires fewer barriers then the Block by Block BASk for correct behavior. This is a

90

direct result of each warp being able to start working on its assigned subchunk of

work independently of other warps. Only when intermediate results need to be

shared across the entire thread block does a barrier need to be inserted into the code.

5.1.2 Amortized Range Checking:

Recall that the simple Copy kernel (from Chapter 4) must range-check all data accesses

because the last data block (for 1D grids) and last data row (for 2D grids) may only be partially

full of data. The Block DASk either needs to range check or pad the data to block boundaries; I

have experimented with both.

// CTA Mapping

...

blockStart = bid*DBS;

...

// Range check (entire data block)

inRange = ((blockStart+DBS) < n);

outRange = (blockStart >= n);

if (inRange)

 // In range, process entire block (no further range checks needed)

 ...

else if (outRange)

 // Out of range, Exit kernel (nothing to do)

 ...

else

 // Overlaps, process block (with careful range checks on each access)

 ...

end if

Figure 5.4: Amortized range checking for Block DASk.

Because the Block DASk can process several consecutive work items per thread it can

amortize range checks across all (nWork) work items per thread within each data block. As

shown in figure 5.4, there are three cases for range checking consecutive work items (in-range,

out-of-range, and overlap):

91

 In-range: The entire data block is inside the valid data range [0,n). To decide if the

entire data block is in-range, I perform the following test, (blockStart+DBS) < n. If in-

range, all nWork data elements per thread can be transferred with no further range checks.

 Out-of-range: The entire data block is outside of the valid data range [0,n). To decide if

the entire data block is out-of-range, I perform the following test, blockStart ≥ n. If out-

of-range, the code can safely exit the kernel without doing any more unnecessary work.

 Overlap: One data block may partially overlap the range, requiring more fine-grained per

work-item range checks. If a specific data block is neither in-range nor out-of-range, it

must partially overlap one of the range boundaries. Consequently, each of the nWork

data transfers must be carefully range-checked before being allowed to proceed. This

overlap case often results in branch divergence but only for this single overlapping data

block. Given enough other data blocks, the higher cost of range-checking this single

overlapped block gets amortized away.

Padded Access: If the input and output arrays are under the programmers control then data can

be padded (filled) to data block or data row boundary with extra sentinel (meaning “do not care”)

values. By construction, the padded input size is now evenly divisible by the fixed-size data

block (or fixed size data row), so no range checks are needed inside the GPU kernel code. I call

this approach padded access. Amortized range checking reduces range checks, padded access

completely eliminates the need for them. There are two main issues with padded access.

First, padded access has costs. The GPU programmer still needs to compute the padded

array sizes, allocate padded memory arrays, move data from the original input arrays into the

padded input arrays, process the padded array, move the padded outputs back into the original

output array (while ignoring outputs outside the original valid range), and then de-allocate any

padded arrays. These overhead costs may outweigh any savings obtained by completely

eliminating range checking from the GPU kernel(s).

92

Second, padded access negatively impacts modularity. It requires tight coupling between

the GPU kernel and its corresponding CPU host function. For correct behavior, both the GPU

kernel and CPU host function must compute data block sizes, and data block (or data row)

boundaries based on the original input size (n) and CTA layout parameters and then pad the

input/output arrays up to these boundaries. This tight coupling between the CPU function and

GPU kernel means that a padded access GPU kernel cannot safely be reused in some other

context without also porting over the corresponding CPU host code as well.

As a result of the extra overhead costs and tight coupling, I do not recommend using

padded access to eliminate range checking.

5.1.3 Amortized Pointer Indexing:

 For a minor performance boost and better ILP, I also amortize the cost of pointer setup

and indexing across multiple work items within each thread. For the simple Copy kernel (in

Chapter 4), I used absolute addressing, where a single index per work item is computed and is

then used to directly index into the source (S) or destination (D) arrays. Starting with the BLock

DASk, I switch to base plus offset addressing, where a single base index is computed, a single

base pointer is computed, and then a constant offset per work item is included as each thread

accesses the source and destination base pointers for each work item.

93

As shown in Figure 5.5, amortizing pointer setup and indexing across multiple work

items using base+offset addressing requires fewer instructions overall. In addition, there are far

fewer read-after-write (RAW) dependencies between instructions in the amortized code than with

the non-amortized code, and fewer dependencies also results in better ILP performance.

Non-Amortized Pointers

Uses Absolute Addressing

// Compute 4 indices
w1 = dataOff + (0u*WarpSize);
w2 = dataOff + (1u*WarpSize);
w3 = dataOff + (2u*WarpSize);
w4 = dataOff + (3u*WarpSize);
...

// Access ‘source’ pointer with 4 indices
v1 = S[w1];
v2 = S[w2];
v3 = S[w3];
v4 = S[w4];
...

Amortized Pointers

Uses Base + Offset Addressing

// Compute starting pointer
const valT * in = &(S[dataOff]);
...
// Access pointer with 4 constant offsets
v1 = in[(0u*WarpSize)];
v2 = in[(1u*WarpSize)];
v3 = in[(2u*WarpSize)];
v4 = in[(3u*WarpSize)];
...

Generated PTX code

mul.wide.u32 %w1_64, w1, 4;
add.s64 %in1, %dataOff, %w1_64;
ld.global.u32 %v1, [%in1];

mul.wide.u32 %w2_64, w2, 4;
add.s64 %in2, %dataOff, %w2_64;
ld.global.u32 %v2, [%in2];

mul.wide.u32 %w3_64, w3, 4;
add.s64 %in3, %dataOff, %w3_64;
ld.global.u32 %v3, [%in3];

mul.wide.u32 %w4_64, w4, 4;
add.s64 %in4, %dataOff, %w4_64;
ld.global.u32 %v4, [%in4];
...

Generated PTX code

// Compute starting pointer
mul.wide.u32 %dOff_64, dataOff, 4;
add.s64 %in, %S, %dOff_64;
...

// Access pointer with 4 constant offsets
ld.global.u32 %v1, [%in+0];
ld.global.u32 %v2, [%in+128];
ld.global.u32 %v3, [%in+256];
ld.global.u32 %v4, [%in+384];
...

Figure 5.5 Amortized pointer indexing. The left panel doesn’t amortize pointer indexing and uses

absolute addressing. The right panel amortizes pointer indexing across multiple work items and uses

base+offset addressing. The equivalent generated .PTX for each is included in the lower panels.

In some of my other case studies on earlier versions of the CUDA platform, rewriting

code to amortize pointer indexing made a noticeable difference in performance. However, the

actual performance improvements I saw for the Copy primitive using CUDA 5.5 were very

modest, for n=224 on a GTX Titan, The non-amortized absolute addressing Copy_Block kernel

runs at ~234 GB/s, and the amortized base+offset addressing kernel runs at ~235 GB/s. This tells

me that the CUDA compiler has matured in the past couple of versions.

94

5.1.4 Block DASk Code

 The Block DASk enhances the simple copy I/O kernel with C++ template parameters,

multiple work items per thread, amortized range checking, amortized pointer indexing, and

manual loop unrolling, as shown in Figure 5.6.

template < valT, logWarpSize, BlockSize, nWork >
__global__ void Copy_Block(D, S, start, stop) {
 // Compiler-Time Variables (become constants at run-time)
 const U32 WarpSize = 1u << logWarpSize; // Threads per Warp (32)
 const U32 WarpMask = WarpSize – 1u; // Warp Mask (31 = 32-1)
 const U32 DBS = nWork*BlockSize; // Data per Block (512 = 4*128)
 const U32 DWS = nWork*WarpSize; // Data per Warp (128 = 4*32)
 const U32 DB_LAST = DBS-1u; // Last item in data block (511)
 const U32 DW_LAST = DWS-1u; // Last item in data warp (127)

 // Map CTA parameters onto data offsets
 U32 bid = (blockIdx.y * gridDim.x) + blockIdx.x; // Block ID (bid)
 U32 tid = threadIdx.x; // Thread ID (tid)
 U32 warpRow = tid >> logWarpSize; // tid / WarpSize
 U32 warpCol = tid & WarpMask; // tid % WarpSize
 U32 warpOff = (warpRow * DWS) + warpCol; // starting warp offset
 U32 blockOff = (bid * DBS) + start; // starting block offset
 U32 dataOff = blockOff + warpOff; // starting data offset
 U32 blockStart = blockOff;
 U32 blockStop = blockOff + DB_LAST;

 // Get start pointers (input & output)
 const valT * in = &(S[dataOff]);
 valT * out = &(D[dataOff]);

 // *data block range checks* against [start, stop]
 bool inRange = (blockStop <= stop);
 bool outRange = (stop < blockStart);
 if (inRange) {

 } else if (outRange) {

 }

// #2) Out of Range, Exit Kernel (nothing to do)

// #1) In Range, process entire block (with *NO* range checking)
valT v1, v2, v3, v4;

// Load values
if (nWork >= 1u) { v1 = in[(0u*WarpSize)]; }
if (nWork >= 2u) { v2 = in[(1u*WarpSize)]; }
if (nWork >= 3u) { v3 = in[(2u*WarpSize)]; }
if (nWork >= 4u) { v4 = in[(3u*WarpSize)]; }

// Store values
if (nWork >= 1u) { out[(0u*WarpSize)] = v1; }
if (nWork >= 2u) { out[(1u*WarpSize)] = v2; }
if (nWork >= 3u) { out[(2u*WarpSize)] = v3; }
if (nWork >= 4u) { out[(3u*WarpSize)] = v4; }

95

 else { // Overlaps case

 } // end *data block range checks*
} // end Copy_Block

Figure 5.6: My Block DASk for the Copy primitive. The code outside the three shaded boxes makes

up the scaffolding for data access. The code inside the shaded boxes (#1, #3) would be replaced by

equivalent code to support the GPU programmers own algorithm.

 There are five things that I note from reviewing my Block DASk code.

First, the kernel is a combination of a framework skeleton and the GPU programmer’s

body to perform the desired Copy operation. The code (outside of the shaded boxes) provides the

DASk framework that supports efficient data access patterns on the GPU. The body representing

the GPU programmer’s code is contained (in the shaded boxes in Figure 5.6 and throughout my

code figures in this thesis). The programmer can easily change the code in the shaded boxes to

support different algorithms such as (Fill, Gather, Scatter).

Second, even though this DASk is more complicated than the simple copy kernel, it is not

overly complex. Some of the additional lines of code support the amortized range checking

// #3) Overlaps Case, process block (with careful range checking)
U32 D1, D2, D3, D4;
bool T1, T2, T3, T4;
valT v1, v2, v3, v4;

// Get data offsets
if (nWork >= 1u) { D1 = (0u*WarpSize) + dataOff; }
if (nWork >= 2u) { D2 = (1u*WarpSize) + dataOff; }
if (nWork >= 3u) { D3 = (2u*WarpSize) + dataOff; }
if (nWork >= 4u) { D4 = (3u*WarpSize) + dataOff; }

// Range Check (each data offset)
if (nWork >= 1u) { T1 = (D1 <= stop; }
if (nWork >= 2u) { T2 = (D2 <= stop; }
if (nWork >= 3u) { T3 = (D3 <= stop; }
if (nWork >= 4u) { T4 = (D4 <= stop; }

// Load values (with range checking)
if (nWork >= 1u) { if (T1) { v1 = in[(0u*WarpSize)]; } }
if (nWork >= 2u) { if (T2) { v2 = in[(1u*WarpSize)]; } }
if (nWork >= 3u) { if (T3) { v3 = in[(2u*WarpSize)]; } }
if (nWork >= 4u) { if (T4) { v4 = in[(3u*WarpSize)]; } }

// Store values (with range checking)
if (nWork >= 1u) { if (T1) { out[(0u*WarpSize)] = v1; } }
if (nWork >= 2u) { if (T2) { out[(1u*WarpSize)] = v2; } }
if (nWork >= 3u) { if (T3) { out[(2u*WarpSize)] = v3; } }
if (nWork >= 4u) { if (T4) { out[(3u*WarpSize)] = v4; } }

96

pattern on each data block. Others use manual loop unrolling to support multiple work items per

thread.

Third, amortized range checking increases the number of shaded boxes for the GPU

programmer to fill in since there are three cases (in-range, out-of-range, and overlap), two of

which require code: in-range copies nWork items without range checking, and overlap copies

nWork items with careful range checking.

Fourth, this example kernel code supports only 1-4 work items per thread. My actual

kernel is even longer because, although I use this same DASk, I increase manual loop unrolling

by replicating code within the shaded box to support up to 16 work items per thread in batches of

four work items to control register pressure.

Fifth, the if statements based on the constant template parameter nWork are evaluated at

compile time, so only one assignment v1=in[…]; is compiled.

5.1.5 Improving Copy Performance using ILP and TLP

As we saw in chapter 4, my simple Copy kernel had poor performance. In this section, I

seek to improve Copy performance by hiding stalls in the GPU hardware, such as waiting on long

I/O operations (transfers between registers and global memory takes between 400-800 cycles) or

waiting on the previous instruction’s output (RAW dependency takes up to 8-11 cycles). I hide

stalls using a combination of ILP and TLP to keep the SPs on each SM as busy as possible.

Increasing ILP means increasing the work done per-thread. To test ILP, I wrote code that

tested both automatic and manual loop unrolling. As will be seen shortly, manual loop unrolling,

also known as software pipelining, gives better performance.

Increasing TLP means increasing the threads-per-block. This increases opportunities for

the warp scheduler to hide stalls using independent instructions from other concurrent warps.

Since my simple Copy kernel did not take advantage of either ILP or TLP, it achieved

only 25% of the maximum peak throughput and was about 2.7x slower than the build-in CUDA

97

library function cudaMemcopy. Contrast this with Figure 5.1 where each of my three Copy

DASks achieves throughput performance comparable to cudaMemcopy.

Increasing ILP: In this section, the programmer will learn how to use manual loop unrolling in

their own kernels, I demonstrate this using my Block DASk for the Copy primitive. For this

Block Copy kernel, Manual loop unrolling results in up to 17% better performance than my

simple Copy kernel from Chapter 4.

Loop Unrolling: Loops are the classic programming technique to handle multiple work items in

CPU serial code. Loop unrolling3 hides stalls caused by dependences between instructions and

between loop iterations by rewriting the loop to process more independent data elements inside of

each loop iteration. Loop unrolling amortizes loop overhead across 𝑘 elements and also

amortizes the cost of indexing and pointer computations. This technique can either be

implemented automatically via a compiler or manually by the programmer. As each independent

work item may require registers to track execution state, I suggest unrolling data in small batches

of 2-8 work items to avoid exceeding the number of registers and spilling into local memory.

Processing more work items per thread is the GPU kernel equivalent of loop unrolling.

Loop unrolling is just one of a family of optimization techniques (Wadleigh and Crawford, 2000)

used to improve the performance of loops. These include loop fission, loop fusion, loop

interchange, loop invariant code motion, loop unrolling, loop reversal, and loop unswitching.

Almost the entire family of serial loop optimizations can be repurposed and rebranded as GPU

kernel optimizations for parallel programming. Recall in Chapter 4.1 that we related serial

iteration to data parallelism (meaning that the innermost body of statements within some nested

loop structure where the looping of n iterations across n data elements is replaced by hardware

scheduling of n parallel threads onto n data elements.)

3 As described in the book Software Optimization for High Performance Computing (Wadleigh and

Crawford, 2000).

98

Automatic Loop Unrolling: A specific example of automatic loop unrolling is given in Figure

5.7. This code would be used in the GPU Programmers shaded boxes in Figure 5.6 to replace the

current software pipelined copy code shown. The CUDA compiler supports a #pragma unroll

directive that takes an optional batch size parameter to specify the number of iterations to unroll

the loop (see the line occurring before source line #7 for an example).

 // Copy assigned work items (nWork)
 #pragma unroll 4
 1: for (i=0; i<nWork; ++i)

 2: wOff = (i*TBS)+dOff; // Work Item Offset

 // Range check [start, stop]
 3: inRange = (start ≤ wOff) & (wOff ≤ stop);
 4: if (inRange)
 5: D[wOff] = S[wOff]; // Copy Work Item from input to output
 6: end if

 7: end for

Figure 5.7: Automatic Loop unrolling example: The #pragma unroll 4 directive (in lighter grey)

around a looping structure requests CUDA to automatically unroll the wrapped code (k=4) times

For my loop unrolling example, I rewrote my Block DASk do the loop unrolling using

the #pragma unroll directive. All necessary changes to support loop unrolling replace the

code found in the shaded boxes in Figure 5.6. The shaded box represents the user’s portion of

this simple DASk, in other words, the code that another GPU programmer would change to

support a different algorithm.

After testing the automatic loop unrolled copy, I found that this approach resulted in only

a modest improvement in throughput as compared to a baseline of one work-item (see Figure

5.8). The change was barely noticeable on the GTX 580 (+0.25% in the best case) and not much

better on the GTX Titan (+8.8% in the best case). As can be seen from the graph, only [2-3]

work items per thread results in a minor throughput performance boost, which drops off gradually

after four work items per thread. Also note that the automatic unrolled kernel’s throughput (~61

GB/s) is actually well short of the original simple Copy kernel’s throughput (~81 GB/S) on the

99

GTX Titan. This decreased throughput is caused by a poor memory access pattern that I will

explain later in this section.

Figure 5.8: Automatic Loop unrolling vs. Manual Loop Unrolling test throughput: Given a fixed input size

n=224, fixed grid row size = 224, fixed block size = 32, I/O throughput (in GB/s) is shown on the y-axis and

the amount of work per thread, nWork = [1-16], is shown on the x-axis. The upper & lower panels show

throughput results on the GTX 580 (Fermi) and GTX Titan (Kepler) GPUs respectively. The cyan/blue

lines represent manual loop unrolling and the tan/red lines represent automatic loop unrolling Batching for

both automatic and manual loop unrolling was tested in batches of [2,4,8,16] respectively.

1 4 8 12 16
10

20

30

40

50

60

w = Work per Thread

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

GTX 580- Throughput for increasing Work

Pipeline Base

Software Pipeline B16

Software Pipeline B8

Software Pipeline B4
Software Pipeline B2

Unroll Base

Unroll Batch 16

Unroll Batch 8

Unroll Batch 4

Unroll Batch 2

1 4 8 12 16
20

40

60

80

100

w = Work per Thread

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

GTX Titan - Throughput for increasing Work

Pipeline Base

Software Pipeline B16

Software Pipeline B8

Software Pipeline B4
Software Pipeline B2

Unroll Base

Unroll Batch 16

Unroll Batch 8

Unroll Batch 4

Unroll Batch 2

100

Manual Loop Unrolling: Next, I loop unrolled my code by hand, I interleaved k instructions

from k work items to decrease RAW dependencies. The main idea here is that, while a particular

instruction for the ith work item may stall, similar instructions from the other k-1 work items can

be scheduled as replacements to hide the stall and keep each processing core busy doing useful

work. This form of manual loop unrolling is also known as software pipelining4. More

independent work items increases register pressure which in term may limit occupancy, so I

experimented with manual unrolling (on up to 16 work items) in batches of [2, 4, 8, or 16]. Figure

5.9, shows Copy code that range-checks multiple work items using manual loop unrolling. This is

the type of code that a GPU programmer would insert into the shaded boxes of Figure 5.6 to

support the Copy primitive.

4 As described in the book Software Optimization for High Performance Computing (Wadleigh and

Crawford, 2000).

101

// Process work items [1-4]
 // Get work offsets
 1: if (nWork≥1) { w1 = (0*TBS)+dOff; }
 2: if (nWork≥2) { w2 = (1*TBS)+dOff; }
 3: if (nWork≥3) { w3 = (2*TBS)+dOff; }
 4: if (nWork≥4) { w4 = (3*TBS)+dOff; }

 // Range check [start, stop]
 5: if (nWork≥1) { t1 = (start ≤ w1) & (w1 ≤ stop); }
 6: if (nWork≥2) { t2 = (start ≤ w2) & (w2 ≤ stop); }
 7: if (nWork≥3) { t3 = (start ≤ w3) & (w3 ≤ stop); }
 8: if (nWork≥4) { t4 = (start ≤ w4) & (w4 ≤ stop); }

 // Load data
 9: if (nWork≥1) { if (t1) { v1 = D[w1]; } }
10: if (nWork≥2) { if (t2) { v2 = D[w2]; } }
11: if (nWork≥3) { if (t3) { v3 = D[w3]; } }
12: if (nWork≥4) { if (t4) { v4 = D[w4]; } }

 // Store data
13: if (nWork≥1) { if (t1) { S[w1] = v1; } }
14: if (nWork≥2) { if (t2) { S[w2] = v2; } }
15: if (nWork≥3) { if (t3) { S[w3] = v3; } }
16: if (nWork≥4) { if (t4) { S[w4] = v4; } }

Figure 5.9: Manual Loop Unrolling example, showing how to copy multiple work items using careful

range checking. This example assumes at most four work items per thread. Notice how the similar

instructions are batched together in groups of 4 in an interleaved manner. The lighter grey if (nWork ≥
?) { … } statement wrappers get elided away at compile time by the CUDA compiler.

The if (nWork≥*) {…} wrappers are resolved at compile time. Hand unrolled code is

more verbose, harder to read, and harder to understand. In addition, the up to k× as many

generated instructions may also use k× as many registers.

Loop Unrolling Results: Tests on both automatic and loop unrolling are shown in figure 5.8.

To stay in the stable upper portion of the s-shaded throughput curves, a fixed input size of n=224

was chosen. To show the impact of multiple work items on performance, nWork was increased

from 1-16. To show the impact of register pressure, work items were batched into groups of

[2,4,8, and 16]. All throughput numbers presented are averages of one hundred runs.

Figure 5.8 shows four surprising things.

First, there is a large difference in starting throughput for the baseline case (nWork = 1)

for the automatic vs. manual loop unrolling. This difference in starting throughput is the result of

the different memory access patterns used by the two different methods. For the automatic loop

102

unrolled kernel, I wrote each C++ copy instruction as if (inRange) { S[wOff] = D[wOff] }.

This line of code performs two memory accesses: one load from input and one store to output and

is then repeated k times, in other words, the memory access pattern ping-pongs back and forth

between the input and output arrays. However, in the manually unrolled kernel, the code batches

the loads and stores separately as two different instruction clusters (k inputs followed by k

outputs). To verify that the performance difference was indeed a result of these two different

memory access patterns, I rewrote my manually unrolled kernel as a set of if (t1) { S[w1] =

D[w1]; } statements. This approach resulted in a large decrease in throughput similar to the

automatically unrolled code kernel. So it seems clear that batching up several warps of data

accesses (input or output) in close proximity to each other results in better system throughput

from the memory controllers than interleaving access to different parts of memory (input and

output). Such a conclusion makes sense since better locality improves L1 and L2 cache usage by

each GPU memory controller.

 Second, the automatic loop unrolling batch curves separate one work item sooner than I

expected. For example, for both automatic and manual loop unrolling I would expect the nWork

throughput curve for batching in groups of 4, 8, and 16 to be exactly the same up to nWork = 4

and then begin to separate from each other at nWork = 5 and nWork = 9. This expected behavior

is observed in the manual loop unrolling throughput curves. However, the separation for loop

unrolling occurs sooner at nWork = 4 and nWork = 8 for the automatic loop unrolling throughput

curves. I speculate that there could be an “off by one” bug in the CUDA compiler in this case.

Third, the performance curves drop off throughput more rapidly than I was expecting. I

was expecting that lower performance due to lower occupancy caused by increased register usage

wouldn’t show up until 8+ work items per thread. The register pressure effect can be seen for the

Batch = 16 manually unrolled curve which has the worst performance for large work loads

(nWork > 8), whereas the Batch = 4 and Batch = 8 manually unrolled curves have better

performance for (nWork > 8). But, throughput drops off quickly after only 4 work items per

103

thread with the largest drop occurring between nWork = 5 and 6. I suspect that there is also some

memory controller queue length or caching issue coming into play here. Surprisingly, for the

automatic unrolled throughput curves, The Batch = 16 curves have some of the best performance

for nWork = 16. For instance, a single warp loading 4 work items would fetch 4 warp lines (512

bytes) of data. It could be that the combined combination of 14 SM’s each with 16 thread blocks

of 128 threads (4 warps) requesting 6 work items per warp (5,376 warp line requests in

aggregate) is overflowing the internal request queues in the six memory controllers (896 requests

per controller on average) for each set of active concurrent thread blocks on each SM).

Fourth, manual unrolling results in better throughput than automatic unrolling. Since the

results for loop unrolling and software pipelining have different starting throughputs, I decided to

use the nWork = 1 case as a baseline for both cases. Comparing the throughput results to their

respective baselines reveals that software pipelining improves throughput more than loop

unrolling. As the following table shows, the maximal throughput increase when manual unrolling

was used was substantially greater for both GPUs than when automatic unrolling was used.

Throughput Increase Loop Unrolling Software Pipelining

GTX 580 0.25% 17%

GTX Titan 7% 14%

Table 5.1: Loop Unrolling vs. Software Pipelining Performance

This makes sense since my manually unrolled code batches similar instructions into

groups to reduce data dependencies (grouping and interleaving instructions from k work items).

This organization provides plenty of independent instructions for the static compiler or dynamic

warp scheduler to exploit in order to hide stalls. As the CUDA platform continues to mature,

loop unrolling should eventually done automatically by the compiler instead of manually by the

programmer. For now, it pays off for the GPU programmer to manually unroll and batch their

instructions for up to 3-4 work items.

104

Increasing ILP is not the only way to hide stalls, as we will see next. TLP techniques

work even better.

Increasing TLP: Another way to hide stalls uses TLP to recycle instructions from other

independent and concurrent warps of execution. Fermi supports up to 48 warps (1,536 threads)

per SM and Kepler supports up to 64 warps (2,048 threads) per SMX. In this section, I show how

increasing the amount of threads per thread block can increase throughput up to 216 GB/s (2.67×

faster than the simple Copy from chapter 4).

One of the main reasons that the simple Copy in Chapter 4 had poor throughput is that

the code naively did not take advantage of the massive parallelism via TLP available on GPU

architectures. The simple Copy only launched with a CTA layout of only 32 threads (TBS=32)

only achieving an occupancy of 16.67% (8/48) and 25% (16/64) on the GTX 580 and GTX Titan

respectively. I already discussed Occupancy and constraints in Chapter 3.3., recall that

occupancy is a simple ratio between the number of thread warps that actually concurrently run on

each SM for a given GPU kernel vs. the theoretical maximum number of warps that could

concurrently run on a given architecture.

Varying the number of warps on each SM is actually tricky since the programmer has no

direct control over the number of concurrent warps that are actually scheduled on each SM. The

GPU programmer can directly specify the number of threads per block as part of the CTA layout.

However, the CUDA platform schedules as many concurrent thread blocks as it can while staying

within various resource constraints.

Thus a GPU programmer can request a certain number of threads per thread block (TBS)

and a certain number of thread blocks per grid (GridSize) but the actually occupancy is

determined by the SM scheduler based on the maximum warps, maximum blocks, register per

thread usage, and shared memory per block usage. Since, my Grid-based Copy kernels do not

use any shared memory and is relatively simple code, requiring just a few registers, CUDA will

launch as many concurrent thread blocks on each SM as allowed by the maximum warps

105

constraint. For full processor utilization, I want all SMs running with as many concurrent thread

blocks as reasonably possible. This means that I should request my grid size (blocks per grid) to

be a multiple of (#SMs × #Blocks), where #SMs is the number of SMs (or SMXs) on a specific

GPU card and #Blocks is the number of concurrent thread blocks that I expect the CUDA

platform to schedule onto each SM.

However, all the SMs also share a limited number of memory controllers on each GPU

card (6 on the GTX 580 and 4 on the GTX Titan). Therefore, too many I/O requests may overload

the memory controllers, cause cache thrashing, and actually slow down overall throughput. So,

my experiments vary the number of warps per thread block and also varying the number of

concurrent thread blocks per SM in order to find an optimal balance between thread concurrency

and memory controller throughput. To stabilize performance in the upper part of the s-shaped

throughput curves, a fixed input size of n=224 data elements is used for all of the following

experiments.

To make it easier to experiment with varying the number of threads, My Block DASk for

the Copy kernel supports the following four C++ template parameters. The valT template

parameter specifies the underlying data type of the data and gives me generic type support for

different data types other than just 32-bit unsigned integers. The BlockCols and BlockRows

parameters specify the fixed number of columns and rows in the thread block, while the

GridCols parameter specifies the fixed number of columns in the corresponding CTA grid.

These three fixed size CTA template parameters allows me to vary the CTA layout without

having to rewrite my copy kernel for each new configuration.

Figure 5.10 shows the impact on throughput of my modified Copy kernel as I increase the

number of threads per thread block from [32-1024] in multiples of the WarpSize (32).

106

Figure 5.10: Copy throughput for fixed n=224 and increasing block size (threads per block) [32-1024].

The top panel shows throughput for a given block size [32-1024] with the orange blocks showing

throughput for cudaMemCopy and the gray blocks showing throughput for our TLP copy kernel. All

measurements are taken as the average of a 100 runs on a GTX Titan. The bottom panel shows the number

of concurrent thread blocks per SMX for each matching block size, from [16-2]. Lighter colors are used to

show locations where the thread block size divides the maximum threads per SMX exactly.

Throughput from cudaMemCopy (orange bars) is also included for comparison, which

achieves about 231 GB/s throughput this experiment and remains consistently clustered around

this number. However, my modified Copy kernel (gray bars) quickly grows to a peak of 216

GB/s (at 128 threads per block) and then goes into an up and down, saw tooth pattern, where

performance drops off a small throughput cliff and gradually climbs back up in increasingly

longer runs before dropping off another cliff. Each small cliff corresponds to a drop in the

number of concurrent thread blocks that can execute at the same time on each SMX due to the

maximum warps per SMX constraint. Only some of the block sizes (32, 64, 128, 256, 512, 1024)

actually divide evenly (lighter bars) into the maximum number of threads (2,048) per SMX on a

Kepler card such as the GTX Titan. On a Fermi card such as the GTX 580, I would expect a

similar pattern with cliffs occurring at 32, 64, 96, 128, 192, 256, 384, 512 since these are the

block sizes that evenly divide the 1,536 maximum threads per SM on a Fermi card. That each

new performance peak is slightly lower than the previous peak is likely due to locality effects in

32 128 256 384 512 640 768 896 1024
0

50

100

150

200

250

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

COPY Throughput for increasing Threads (t)

32 128 256 384 512 640 768 896 1024
0
4
8
12

16

t = Number of Threads

#
B

lo
ck

s

cudaMemCpy

Simple

107

memory. In other words, as we get more data items per data block each thread warp accesses

data warps that are more spread out across each data block in memory. The net result is

decreased locality.

In Figure 5.11, I show what happens when I artificially constrain the number of

concurrent blocks per SMX in the range [1-16] on the GTX Titan (Kepler architecture). This is

done by declaring an unused shared memory array of an appropriate size to restrict the allocated

number of concurrent thread blocks per SMX down to the desired number. I had to modify the

copy kernel by using an extra Boolean input parameter and an if statement using the Boolean

input parameter wrapping an unused assignment statement in order to trick the CUDA compiler

into keeping the effectively unused shared memory array code around at runtime to constrain

concurrency. I also vary the requested columns per grid as a multiple of the number of SMXs

times the number of concurrent blocks per SMX (workLoad = nSMs × nConBlocks), so that all

the thread blocks are load balanced across the SMXs evenly.

Figure 5.11: Copy throughput for fixed input size n=224 and fixed block size TBS = 128, and an increasing

number of concurrent blocks per SMX [1-16]. Again orange & gray bars represent I/O throughput for

cudaMemCopy and our TLP copy kernel respectively.

1 4 8 12 16
0

50

100

150

200

250

b = Number of concurrent blocks

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

COPY Throughput for increasing blocks per SMX

cudaMemCpy

Simple

108

The overall throughput ranges from a low of ~20 GB/s for one concurrent thread block

per SMX to a high of ~214 GB/s for sixteen concurrent thread blocks per SMX. Recall that

Fermi-based cards only support a maximum of 8 concurrent thread blocks per SM. As easily

seen, the overall trend is increasing throughput as the number of concurrent thread blocks

increase.

Choosing at least 4 warps per thread block (TBS = 128) results in full occupancy and

provides the best throughput. This makes sense, as there lots of thread warps for the SM

scheduler to switch between in order to hide stalls.

5.1.6 Block DASk Conclusion

 The Block DASk is correct, robust, and has solid I/O throughput. As can be seen from

Figure 5.1, the copy implementation using a Block DASk has the best I/O throughput,

approaching 81% of peak performance in the best case on the GTX Titan GPU card. The Block

DASk can easily be adapted to work with 1D runs, 2D tiles, or 3D blocks, depending on the GPU

programmer’s problem domain. The Block DASk is extremely suitable for any algorithm that

follows the map pattern. However for problems that have a dependency ordering between

adjacent neighbors, a more advanced DASk, such as the Row DASk, may be more suited.

5.2 More MAP Primitives

Recall that the Copy primitive is just one example of a map pattern. Table 5.2 shows

how to adapt my DASks for other primitives such as Fill, Gather, and Scatter by having the GPU

programmer simply change the “body” (= shaded boxes) in my Copy DASks. The code shown is

obviously a short hand for performing a single transform to convert a single input into a single

output. The programmer will have to write code using loop unrolling or software pipelining to

support multiple work items per thread.

109

Fill_Block(D, n, toFill)

DASk Changes:

Eliminate unused source array S from

Copy_Grid DASk.

User Code Change:

Copy_Block(S, D, n)

DASk Changes: Use as is

User Code Change:

Scatter_Block(S, D, n, map)

DASk Changes:

Add new map array parameter.

User Code Change:

Gather_Block(S, D, n, map)

DASk Changes:

Add new map array parameter.

User Code:

Table 5.2: Modifications to my Block DASk to support Fill, Copy, Scatter, and Gather primitives

12 25 81 … 51 02 42 61

61 61 61 … … 61 61 61

Input: 86

61

21

61

…

… …

Output:

12 25 81 … 51 02 42Input: 8621 …

… …

Output: 12 25 81 … 51 02 42 8621 …

Input:

Output:

4 7 1

52 26 73

12 25 81 51 02 42 8621

12 25 51 02 8673 52 26

Din

Dout

map

S

Input:

Output:

4 7 1

12 25 81 51 02 42 8621

D

map

S

81 42 21

D[w1] = toFill;
...

D[w1] = S[w1];
...

D[map[w1]] = S[w1];
...

D[w1] = S[map[w1]];
...

110

Fill: fills a destination array D of n elements with a single data value.

Copy: copies a source array S of n elements into a destination array D; no overlap

allowed.

Scatter: scatters elements from a small array into a large array using an index map.

Gather: gathers elements from a large array into a small array using an index map.

All these primitives can use the Copy_Block DASk (see Figure 5.6) as a starting

framework. I have only made minor changes to each primitive’s kernel to make them perform

their different functions. The changes to the DASk code are mainly to support removing or

adding additional kernel parameters. The user changes are mainly to alter the underlying map

transform operators for each primitive. For instance, the scatter and gather operations both

require double indexing through an additional map look-up parameter, which is added to the

kernels list of parameters.

The throughput performance for all map primitives should be proportional to O(𝑛/𝑝),

where n is the input data set size and p is the number of threads (processors). The Fill primitive

should be the fastest of the four because it has the best locality (meaning, it only uses a single

output array and thus there is no ping-ponging between input and output). Furthermore, since this

primitive can be written to use only a single coalesced I/O per data warp, parallel throughput

performance should be proportional to O(⌈
𝑛

32𝑝
⌉). The second fastest primitive should be the Copy

primitive, whose locality ping-pongs back and forth between the two arrays (input and output).

Since this primitive can be written to use only two coalesced I/Os per data warp, parallel

throughput performance should be proportional to O(⌈
2𝑛

32𝑝
⌉). The Scatter and Gather primitives

should be the slowest primitives. They switch locality between three arrays (input, map, output).

They can be written to perform two of the three I/Os (scatter → input & map; gather → map &

output) in a coalesced manner on each data warp. However, the third I/O (scatter → output;

111

gather → input) disperses memory accesses across unpredictable memory locations for each

individual thread and thus the entire data warps memory accesses are non-coalesced. For both

Scatter and Gather, worst-case parallel throughput performance should be proportional to

O(⌈
2𝑛

32𝑝
⌉ + ⌈

𝑛

𝑝
⌉), or equivalently to O(⌈

34𝑛

32𝑝
⌉). The main reason the Fill and Copy map primitives

can approach peak throughput on the GPUs is because they fully support coalescence. Whereas,

because one I/O out of three in the Scatter and Gather primitives do not support coalescence,

these primitives can run much slower (up to 17× slower than Copy).

5.3 Column DASk

The Block DASk is only one of many possible ways to coordinate thousands of threads to

access data in global memory. The layout used for the Block DASk is fundamentally one

dimensional. In this section, I present a fundamentally two dimensional data access pattern (of

rows and columns), which I call the Column DASk. For the Column DASk, the input data (n) is

divided into m fixed-size data blocks (DBS) with the data blocks being laid out on a 2D grid, with

the total number of blocks (m) needed to cover data computed as m = 𝑛/𝐷 𝑆 . The number of

columns is chosen ahead of time by the GPU programmer as a static fixed size constant (C=

grid.width). The number of rows (R = data blocks per column) is allowed to vary with n in order

to fully over all input data and can be computed as R = /𝐶 . The last row may only be

partially full requiring careful range checking to avoid out-of-range data accesses. However, the

rest of the full rows require no range checking. The Column DASk maps one thread block onto

each data column, with each thread block being responsible for processing all data blocks along

its assigned column.

Figure 5.12 shows how the Column DASk for mapping blocks onto a grid is conceptually

setup and is quite similar to the Block by Block BASk for mapping thread warps onto a data

block (see Section 5.1.2 for a more detailed description of the Block by Block BASk).

112

Figure 5.12: Column DASk layout. The input dataset (n) is divided into m fixed size data blocks. The

m data blocks are tiled into a 2D grid with C fixed-size columns and R rows per column (which varies as

needed to cover all data). Each thread block is assigned one data column and is responsible for

processing all data blocks along its assigned data column. The last data block in each data column may

require careful range checking, but the first R-1 data blocks require no range checking.

Since the C and DBS are both fixed, then the size of one data row is equal to

rowSize=C∙DBS. The number of grid rows (R) can be computed as R = (n+(rowSize-1))/rowSize.

I assign one thread block to each data column and then have all the column thread blocks

cooperatively stride through the entire data set one row at a time (stride = rowSize). Similar to

the way I coded the Block DASk, I use template parameters, multiple work items per thread,

amortized range checking (across rows then within data blocks), and software pipelining for the

Column DASk to achieve better performance.

5.3.1 Column DASk Code

A simplified version of the Column DASk for the Copy primitive is shown in Figure

5.13. My implementation of the Column DASk uses a while loop to iterate over all the full rows

that require no range checking, requiring the usual loop overhead. Recall that the last row may

only be partially full, which implies range checking. Consequently, I repeat the amortized range

check pattern from the Block DASk here (see Section 5.1.2). This results in four shaded boxes

DB1 DB2 … DBm

TB1 TB2 … TBm

Block size ()

Grid size (𝑆)

DB(r-1)m+1 … DBrm

Row1

Rowr

DB1 DB2 … DB2mRow2

DB(r-1)m+2

Input Data Blocks OutputTransform

113

that need to be filled in by the GPU programmer to adapt the Column DASk for their own

algorithm. The code in the first two shaded boxes are the same since both require no range

checking. The code in the third shaded box deliberately does nothing (as the entire data block is

out-of-range), and the code in the fourth shaded box basically repeats the code in the first shaded

box but with more careful range checking. Just to demonstrate its usage, I use the Block by

Block BASk for mapping thread warps onto data inside each data block, in my own actual code, I

use the Warp by Warp BASk instead. My Histogram case study in Chapter 8 uses the Column

DASk as its underlying framework.

114

template < valT, logWarpSize, TBS, GridCols, nWork >
__global__ void Copy_Column(D, S, start, stop) {
 // Compiler-Time Variables (become constants at run-time)
 const U32 DBS = nWork*TBS; // Data Block Size (512 = 4*128)
 const U32 TPR = BlockSize * GridCols; // Threads per Row (across grid)
 const U32 rowSize = nWork * TPR; // Data per Row (across grid)

 // Map CTA parameters onto data offsets
 U32 bid = (blockIdx.y * gridDim.x) + blockIdx.x; // Block ID (bid)
 U32 tid = threadIdx.x; // Thread ID (tid)
 U32 dataOff = (bid * DBS) + tid; // starting data offset

 // Compute Row Info
 U32 nElems = stop – start + 1;
 U32 nFullRows = nElems / rowSize;
 U32 nFullElems = nFullRows * rowSize;
 U32 nLeftOver = nElems – nFullElems;
 U32 startIdx = start + dataOff;
 U32 stopIdx = (nFullRows * rowSize) + startIdx;
 U32 currIdx = startIdx;

 // Get start I/O pointers
 const U32 * in = &(S[currIdx]);
 U32 * out = &(D[currIdx]);

 // Process all full rows (*NO* range checking needed)
 while (currIdx < stopIdx) {

 // Move to next data row
 currIdx += rowSize;
 in += rowSize;
 out += rowSize;
 } // end while

 if (nLeftOver) { // Leftover row (with range checking)

 // Compute Last Row & Data Block Info
 U32 nSkipFull = nFullRows * rowSize; // Skip past full rows
 U32 startIdx = start + nSkipFull + dataOff;
 U32 currIdx = startIdx + tid; // Get data offset
 U32 blockOff = (bid * DBS) + start; // starting block offset
 U32 blockStart = start + blockOff;
 U32 blockStop = blockStop + DB_LAST;

 const U32 * in = &(S[currIdx]);
 U32 * out = &(D[currIdx]);

 // *data block range checks* against [start, stop]
 bool inRange = (blockStop <= stop);
 bool outRange = (stop < blockStart);
 if (inRange) {

// #1) Copy Data Block (copies entire data row across all blocks)
valT v1, v2, v3, v4;

// Load values
if (nWork >= 1u) { v1 = in[(0u*TBS)]; }
if (nWork >= 2u) { v2 = in[(1u*TBS)]; }
if (nWork >= 3u) { v3 = in[(2u*TBS)]; }
if (nWork >= 4u) { v4 = in[(3u*TBS)]; }

// Store values
if (nWork >= 1u) { out[(0u*TBS)] = v1; }
if (nWork >= 2u) { out[(1u*TBS)] = v2; }
if (nWork >= 3u) { out[(2u*TBS)] = v3; }
if (nWork >= 4u) { out[(3u*TBS)] = v4; }

115

 } else if (outRange) {

 } else {

 } // end *data block range checks*
 } // end *Left Over Row*
} // end Copy_Column

Figure 5.13: My Column DASk for the Copy primitive. The code outside the four shaded boxes

makes up the scaffolding for data access using the Column DASk. The code inside the four shaded

boxes (#1-#4) would be replaced by code to support your own algorithm. All the full rows require no

range checking, the left-over partial row repeats the amortized range checking pattern from the Block

DASk. The lighter grey if {…} wrapper statements get elided away at compile time.

// #4) Overlaps Case, process block (with careful range checking)
U32 D1, D2, D3, D4;
bool T1, T2, T3, T4;
valT v1, v2, v3, v4;

// Get data offsets
if (nWork >= 1u) { D1 = (0u*TBS) + currIdx; }
if (nWork >= 2u) { D2 = (1u*TBS) + currIdx; }
if (nWork >= 3u) { D3 = (2u*TBS) + currIdx; }
if (nWork >= 4u) { D4 = (3u*TBS) + currIdx; }

// Range Check (each data access)
if (nWork >= 1u) { T1 = (D1 <= stop; }
if (nWork >= 2u) { T2 = (D2 <= stop; }
if (nWork >= 3u) { T3 = (D3 <= stop; }
if (nWork >= 4u) { T4 = (D4 <= stop; }

// Load values (with range checking)
if (nWork >= 1u) { if (T1) { v1 = in[(0u*TBS)]; } }
if (nWork >= 2u) { if (T2) { v2 = in[(1u*TBS)]; } }
if (nWork >= 3u) { if (T3) { v3 = in[(2u*TBS)]; } }
if (nWork >= 4u) { if (T4) { v4 = in[(3u*TBS)]; } }

// Store values (with range checking)
if (nWork >= 1u) { if (T1) { out[(0u*TBS)] = v1; } }
if (nWork >= 2u) { if (T1) { out[(1u*TBS)] = v2; } }
if (nWork >= 3u) { if (T1) { out[(2u*TBS)] = v3; } }
if (nWork >= 4u) { if (T1) { out[(3u*TBS)] = v4; } }

// #3) Out of Range, Exit Kernel (nothing to do)

// #2) In Range, copy data block (with *NO* range checking)
... // <Code is the same as shaded box #1 above>

116

5.3.2 Column DASk Conclusion

My Column DASk has several benefits and several limitations that I discuss next.

Three main Benefits:

 Supports proper range checking of all data [start, stop] while only doing range checking

on the last row of data. The cost of doing the range check on the last row of data is

amortized across the other data blocks in the column.

 Supports an efficient access pattern into memory using a 2D grid layout.

 Works well when accumulating data in a dataset but the order in which the data is

accumulated does not matter.

Five main Disadvantages:

 The GPU programmer needs to write two slightly different version of the same code to

handle the three different range check cases {in-range, out-of-range, overlap}. This can

also lead to cut and paste errors, if the programmer is not careful when fixing bugs.

 Increased register pressure to set up the range check variables used by this DASk.

 Extra branching to handle looping and range checks. In particular the while loop used to

loop over the full rows of data gets called once per data block. Fortunately, my DASk

implementation was written to avoid divergent branching.

 Performance sensitivity to the initial grid size. If the chosen grid size by the programmer

is not an even multiple of the actual workLoad (#SMs * #Blocks), then performance

suffers as some SMs process a few extra rows while the rest of the SMs idle.

 The cooperative stride across all data blocks results in each new data block being a full

data row apart from the previous data block which is not well localized and hinders

caching by the memory controllers when moving between data blocks.

117

5.4 Row DASk

The Row DASk is also uses a two dimensional grid layout similar to the Column DASk

but with the rows and columns reversed. For the Row DASk, the original input data (n) is

divided into m fixed-size data blocks (DBS) with the data blocks being laid out on a 2D grid, with

the total number of blocks (m) needed to cover data computed as m = 𝑛/𝐷 𝑆 . The number of

rows is chosen ahead of time by the GPU programmer as a static fixed size constant (R=

grid.height). The number of columns (C = data blocks per row) is allowed to vary with n in order

to fully over all input data and can be initially computed as C = /𝑅 , however, as will be seen

shortly to better support load balancing of work across thread blocks, my actual computation of

the number of columns per row is more complex. The Row DASk maps one thread block onto

each data row, with each thread block being responsible for processing all data blocks along its

assigned row.

As shown in Figure 5.14, the Row DASk is similar to the Column DASk. There are

several main differences between these two DASks: layout, alignment, range checking, and load

balancing. To better support coalescence, I warp align the input data to a data warp boundary

before marching down the first row (The Block and Column DASks do not warp align data, so

performance may suffer if the user passes in unaligned data arrays). Supporting warp-aligned

data implies that the first data warp in the first data block in the first row may be partially empty,

requiring range checking. Similarly, one of the data blocks in the last row may also be partially

empty and also may requiring careful range checking as well.

118

Figure 5.14: Row DASk layout

Returning to the idea of load-balancing, consider a simple but naïve load-balancing

scheme, where all rows but the last row would be full with the last row being only partially full.

The thread block assigned to this last row would complete much more quickly than the other

thread blocks assigned to full rows underutilizing our processing resources. To help avoid

underutilization, I have created a more complex load-balancing scheme to distribute the data

blocks approximately equally across all the thread blocks representing data rows. This results in

a difference of at most one data block of work between any two thread block on their assigned

rows. Because, range checking is more expensive than not range checking, I seek to avoid

assigning extra data blocks to rows that require range checking. The first row may require some

range checking on its first data warp, and one other thread block (row) may have the last partially

full data block in its row (typically the last data row but not always), which also requires range

checking. As a result, I have written my load balancing code to deliberately bias against

assigning a left-over data block to either the first or last row (meaning the thread block with the

last data block in its row) unless there is no other choice (in other words, m is divided evenly by

R).

I use the Row DASk as the underlying framework for my case studies for Scan (Chapter

6) and RadixSort (Chapter 9). In the next few sub-sections, I show how I actually warp align my

DB1 DB2 … DBmT
B

1
…

DB(r-1)m+1 … DBrm

Col1

DB1 DB2 … DB2m

Col2

DB(r-1)m+2

Input Data Blocks OutputTransform

Colk

T
B

2
T

B
G

S

G
ri

d
 s

iz
e

(
𝑆

)

119

data (Section 5.4.1), introduce a new range checking pattern (Section 5.4.2), and load balance

data blocks across thread blocks (Section 5.4.3).

5.4.1 Warp Alignment

Experienced CPU programmers know that aligning memory accesses to start on cache-

line boundaries (0, 64, 128, 192, or 256 bytes) makes overall memory throughput faster. There is

a similar throughput advantage when aligning global memory accesses on GPUs to warp-line

boundaries (128 bytes). To align a data pointer or index to a warp line boundary, I find the first

multiple of 128 bytes that starts just before the requested starting pointer or index -- for instance,

alignIdx = (idx/128)*128. Since 128 is a power of two, the same result can be achieved

using less expensive bit masking: alignIdx = idx & ~127. Here is the snippet of code (see

Figure 5.15) I use to align 32-bit data elements to a warp-line memory boundary:

 // Compiler Variables
 U32 WarpSize = 1 << logWarpSize; // 32 threads per warp
 U32 WarpMask = WarpSize – 1; // 31 = 0x1F = bitmask<00011111>
 ...
 // Align <src, dest> to a warp boundary
 U32 src_Pad = start & WarpMask; // (start % WarpSize)
 U32 src_AlignPos = start & ~WarpMask; // (start/WarpSize)*WarpSize
 U32 dst_AlignPos = startDest – src_Pad;

Figure 5.15: Warp Aligning Data Access.

Warp aligning data (see Figure 5.15) access may result in some threads accessing

memory locations before the true data start. Careful range checking on the first data warp (or first

data block) is therefore essential to avoid out of range access errors.

5.4.2 ‹FIRST?› ‹MIDDLE*›‹LAST?› Range Check Pattern:

 Range checking for the Row DASk is sufficiently different from the previous DASks that

I created a new that I call the ‹FIRST?› ‹MIDDLE*› ‹LAST? › or ‹BOTH› range check pattern to

avoid out-of-range memory accesses. The goal here is to push any range checking out to the

‹FIRST?› and ‹LAST?› data blocks leaving the large ‹MIDDLE*› section of data blocks without

120

a need to do any range checking. I use regular expression notation to indicate how many data

blocks are involved in each group, where the question mark (?) means zero or one data blocks,

and the asterisk means (*) means zero or more data blocks.

I assume all input, and output, data is located in a range [start, stop]. So, lets briefly

discuss the range check requirements of each of the four groups.

 ‹FIRST?›: As a result of warp-aligning the input data to a warp boundary, the

first data block may require partial [start, …) range checking when accessing

data elements in the first data warp. If the data already was passed in warp

aligned (meaning the start parameter on a multiple of the WarpSize, i.e. [0, 32,

64, …]), then there is no need to range check the first data block.

 ‹LAST?›: As a result of using fixed size data blocks, the last data block most

likely is only partially full and thus may require partial (…, stop] range checking

when accessing data elements in this last block. If the ‘stop’ parameter happens

to fall exactly on a multiple of the fixed block size (DBS) after accounting for

warp-alignment, then there is no need to range check the last data block.

 ‹MIDDLE*›: All the other in-between data blocks require no range checking.

 ‹BOTH?›:I include this case for completeness. It is possible that the input dataset

is small enough so that both the ‹FIRST? › and ‹LAST?› data blocks are one and

the same. This case requires full [start, stop] range checking unless the dataset is

both warp-aligned and this single data block contains exactly DBS elements.

Given enough data, any range checks for both the ‹FIRST?› and ‹LAST?› blocks are

amortized across the rest of the ‹MIDDLE*› data blocks. Even though the abstract concept of

range checking is orthogonal from other concepts like warp alignment, load balancing and CTA

layout, my actual DASk code intermingles these concepts.

121

The code for the <FIRST?> <MIDDLE*> <LAST?> or <BOTH?> range checking pattern is

shown in Figure 5.16. The shaded boxes represent the GPU programmer’s code that would be

replaced for other algorithms while still range checking.

// Get Alignment Info
...

// Load Balance (Data blocks across rows (thread blocks))
...

// Get Row Info
U32 IsStartAligned = ((start == src_AlignPos) ? 1u : 0u);
U32 src_StartPos = (rowBlockStart * DBS) + src_AlignPos;
U32 dst_StartPos = (rowBlockStart * DBS) + dst_AlignPos;
U32 isFirstRow = (rowBlockStart == 0u);
U32 src_StopPos = (rowBlockCount * DBS) + src_StartPos;

// Range Check Setup
U32 rcFirst = (isFirstRow && !IsStartAligned);
U32 rcLast = isLastRow & (!isStopAligned);
U32 rcBoth = isFirst & rcLast & singleDataBlockRow;
...

if (rcBoth) { // <BOTH>

} // end <BOTH>

if (rcFirst) { // <FIRST>

} // end <FIRST>

while (src_Base < src_StopPos) { // <MIDDLE>

// #2) Copy Data Block (range check on [start, ...) for data accesses)
d1 = ...;
...
bool T1 = (start <= d1); // Range Checks
...
if (nWork>=1) { if (T1) { v1 = in[d1]; }} // Load values
...
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values
...

// #1) Copy Data block (range check on [start, stop])
d1 = ...;
d2 = ...;
...
bool T1 = (start <= d1) & (d1 <= stop); // Range Checks
bool T2 = (start <= d2) & (d2 <= stop);
...
if (nWork>=1) { if (T1) { v1 = in[d1]; }} // Load values
if (nWork>=2) { if (T2) { v2 = in[d2]; }}
...
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values
if (nWork>=2) { if (T2) { out[d2] = v2; }}
...

122

 // Move to next data block (along row)
 src_Base += DBS;
 dst_Base += DBS;
 in += DBS;
 out += DBS;
} // end <MIDDLE>

if (rcLast) { // <LAST>

} // end <LAST>

Figure 5.16: A quick sketch of my Row DASk with the primary focus on the ‹FIRST?› ‹MIDDLE*›

‹LAST? › or ‹BOTH› range check pattern. The code outside the four shaded boxes makes up the

scaffolding for data access. The code in the four shaded boxes (#1-#4) would be replaced by GPU

Programmers own code. The third shaded box corresponds to the ‹MIDDLE*› pattern that requires no

range checking, the other three shaded boxes correspond to the ‹BOTH›, ‹FIRST? ›, and ‹LAST? ›

groups that require range checking over the ranges [start, stop] or [start, …) or (…, stop] respectively

to avoid data access errors.

// #4) Copy Data Block (range check on (..., stop] for data accesses)
d1 = ...;
...
bool T1 = (d1 <= stop); // Range Checks
...
if (nWork>=1) { if (T1) { v1 = in[d1]; }} // Load values
...
if (nWork>=1) { if (T1) { out[d1] = v1; }} // Store Values
...

// #3) Copy Data Block (*NO* range checks)
d1 = ...;
d2 = ...;
...

if (nWork>=1) { v1 = in[d1]; } // Load values
if (nWork>=2) { v2 = in[d2]; }
...

if (nWork>=1) { out[d1] = v1; } // Store Values
if (nWork>=2) { out[d2] = v2; }
...

123

5.4.3 Load Balancing

To load-balance data blocks across rows, I conceptually use a 2D grid of data rows (one

row per thread block) that covers all the data blocks (see Table 5.3). I categorize the rows into

three types: First Row, Middle Row, and Last Row.

 Column Types (Data Blocks)

Row Types Full Left Over

<First Row?> <First Block?><Blocks*> <Extra Block?>

<Middle Rows*> <Blocks*> <Extra Block?>

<Last Row?> <Blocks*><Last Block?> N/A

Table 5.3: Load balancing data blocks across rows (thread blocks) for Row DASk.

The First Row is the only row that can have a First Block. This first data block may

require [start, …) range checking as a result of warp-alignment. The Last Row is the only row

that may have a Last Block. This last block most likely will require (…, stop] range checking as a

result of using fixed size data blocks. All other data blocks require no range checking because

they are guaranteed to be fully contained in the range [start, stop], which implies that all Middle

Rows require no range checking as well. Each row can optionally have one extra data block

{0|1}, this extra data block is used to spread out any left-over data blocks across all the rows

(thread blocks) as evenly as possible. Since the first row and last row may do more work overall

as a result of range checking than the other middle rows, my load-balancing code biases against

adding an extra data block into the first and last rows unless there is no other choice. The last

row only gets an extra data block if and only if the number of rows (R) divides evenly into the

number of data blocks (m), meaning that 0 = mod(m, R). Similarly, the first row only gets an

extra data block if and only if the number of left-over extra blocks is equal to the number of rows

(R) minus one.

124

As shown in Figure 5.17, my code for load balancing works as follows:

1) Get total number of data blocks.

2) Divide data blocks evenly across rows.

3) Compute any extra data blocks.

4) Distribute the extra blocks across as many rows (thread blocks) as needed to

cover them all, biasing against adding extra blocks to the first and last rows.

__device__ __forceinline__
void LoadBalance
(
 U32 & rowBlockCount, // OUT – data blocks assigned to this row
 U32 & rowBlockStart, // OUT - starting block for this row
 U32 nRows, // IN - nRows
 U32 nBlocks, // IN – Total Blocks
 U32 currRow // IN – current Row represented by this thread block
)
{
 // Compute 'Blocks per Row'
 U32 nFullBPR = nBlocks / nRows;
 U32 leftOver = nBlocks - (nFullBPR * nRows);

 // Compute number of rows & row length
 // for each section <First><Full><Extra>
 U32 blockInFirstRow = nFullBPR;
 U32 blocksInPartRows = nFullBPR;
 U32 extra = ((leftOver == 0) ? 0 : 1u);
 U32 nFullRows = ((leftOver == 0) ? nRows : leftOver);
 U32 nPartRows = nRows - nFullRows;
 U32 blocksInFullRows = nFullBPR + extra;

 // Is it safe to bias against the first row ?
 U32 nFirstRow = 0u;
 if (nPartRows >= 2u) {
 if (nFullCPR > 0u) {
 nFirstRow = 1u;
 nPartRows -= 1u;
 }
 }

 // Get Row Counts & Row Starts
 U32 rowCount = 0u;
 U32 startSum = 0u;

 // Move from 'zero'-based to 'one'-based indexing
 currRow = currRow + 1u;

 // Process first row section
 if (nFirstRow > 0u) {
 // First Row section
 rowCount = blocksInFirstRow;
 currRow -= 1u;
 }

 // Process 'full' row section
 if (currRow > 0u) {

125

 U32 fullCnt = ((currRow >= nFullRows) ? nFullRows : currRow);
 startSum = rowCount + ((fullCnt - 1u) * blocksInFullRows);
 rowCount = blocksInFullRows;
 currRow -= fullCnt;
 }

 // Process 'Partial' row section
 if (currRow > 0u) {
 // Part Row Section
 rowCount = blocksInPartRows;
 startSum += blocksInFullRows // Add in last row in full section
 + ((currRow - 1u) * blocksInPartRows); // Add in partial rows
 }

 // Output 'Load Balanced' row count & row starts
 rowBlockCount = rowCount;
 rowBlockStart = startSum;
} // end LoadBalance

Figure 5.17: The LoadBalance code for my Row DASk. The code works in 3 sections as 1) compute

data blocks in first row, 2) compute blocks in full rows, 3) compute blocks in partial rows.

To compute the starting block for each row, I basically add up row counts for up to three

groups {first, full, partial}. First, I determine the number of blocks in the first row. Second, I

determine the number of full rows (rows that receive an extra block), Third, I determine the

number of partial rows (rows without an extra block). Next, I determine for the current row

whether it is the first row, in the second group of full rows, or in the third group of partial rows.

Then I add up the contributions from each group that precedes the current row or the partial

contribution of the group that the current row is in to arrive at the starting offset. The group type

that the current row belongs to also determines the number of data blocks for this row.

 As a simple example, assume that there are five rows and 23 data blocks. Distributing

the data blocks across the rows results in four full data-blocks per row (4 = 23/5) plus three

extra data blocks (3 = mod(23, 5)). Since there are fewer than 4 (5-1) data blocks, I don’t put an

extra block in the first row, and my full group will be three rows long, my partial group will be

one row long 1 = 2-1. So, my load balancing code would assign ‹4,5,5,5,4› data blocks,

respectively, to each of the five rows.

As can be seen in Figure 5.17, the load-balancing code is complicated with lots of

divisions, multiplications, and RAW dependencies between instructions. Despite the many

branches in the code, branch divergence does not become a significant factor because all the

126

threads in each warp belong to the same thread block (or data row). They therefore each follow

the same branch path through this function. The load balancing code does result in extra

overhead, however this cost is amortized across all the data blocks assigned to the row {R | R-1}.

5.4.4 Row DASk conclusion

My Row DASk has several benefits and several limitations that I discuss next.

Five main Benefits:

 To better support coalescence, this DASk aligns the starting warp of the input dataset to a

warp boundary [0, 32, 64, …].

 For better processor utilization, this DASk load balances work as evenly as possible

across thread blocks (rows).

 Supports proper range checking of all data [start, stop] while pushing range checks into

the first and last data blocks, thus allowing the range check costs of at most one data

block to be amortized across all R data blocks in each row.

 This DASk can support a sequential ordering for the data parallel algorithm as each

thread block marches along its data row, block by block. The GPU programmer still

needs to preserve a sequential order for data blocks when accessing short runs of data by

each thread in the thread block (See my Reduce and Scan case study in Chapter 6 for a

good example of one way to handle this).

 Supports an efficient access pattern into memory using a 2D grid layout.

Five main Disadvantages:

 High setup costs (warp alignment, load balancing, range checking, …) that need to be

amortized across lots of data blocks in each row.

 The GPU programmer needs to write four slight different version of the same code to

handle the four different range check cases {Both, First, Middle, Last}. This can also

lead to cut and paste errors, if the programmer is not careful when fixing bugs.

 Increased register pressure to set up and use the load balancing and range check variables

used by this DASk.

 Extra branches to handle the four range check cases {BOTH, FIRST, MIDDLE, LAST}.

In particular the while loop used for the ‹MIDDLE*› case gets called once per data block.

Fortunately, my DASk implementation was written to avoid divergent branching.

 Performance sensitivity to the initial grid size. If the chosen grid size by the programmer

is not an even multiple of the actual workLoad (workLoad = nSMs × nConBlocks), then

performance suffers as some SMs process a few extra rows while the rest of the SMs idle.

This is actually a problem with the Block DASk as well but that DASk tends to launch

thousands of thread blocks so the problem effectively gets amortized away. The Grid

size for this DASk tends to be a lot smaller so the problem is much more noticeable.

127

5.5 Lessons Learned from this Copy case study

There are several lessons learned from both Chapter 4 and Chapter 5.

 Use both ILP + TLP for better performance

o For better ILP

 Support multiple work items per thread (nWork=4).

 To reduce register pressure, batch work items in groups of 4.

 Group k similar instructions from k work items to reduce RAW

dependencies between instructions.

 Prefer manual over automatic loop unrolling.

 2-4 work items per thread is a good starting point.

o For better TLP

 For block size, 128 threads is a good starting point (TBS = 128).

 For grid size, pick a multiple of the work load (workLoad = nSMs ×

nConBlocks) as a good starting point (GS = 224 = 14 SMXs * 16

concurrent blocks on GTX Titan).

o Prefer increasing TLP over increasing ILP.

 Increasing TLP resulted in up to 2.85× faster performance.

 Increasing ILP resulted in up to 1.09× faster performance.

 These approaches are orthogonal, so increase both TLP and ILP for best

performance.

 Amortize setup costs across multiple work items for better performance

o Range check once per thread instead of once per work-item

o Setup pointers once per thread instead of once per work-item.

 Understand GPU memory for better performance

o Registers are faster than shared memory which is faster than global memory

which is faster than CPU RAM.

o Respect coalescence for peak throughput. Access 32-bit data elements in global

memory using a warp-aligned, warp-sequential fully used data access pattern.

o For better performance, cluster similar memory accesses together in small

batches of k work items (k loads followed by k stores). This results in better

performance than interleaving memory accesses (in, out, in, out) from different

memory arrays or types of memory.

Better

Cluster similar memory accesses into batches
Worse

Interleave different memory accesses
v1=D[w1]; v2=D[w2]; v3=D[w3]; // In batch
...
S[w1]=v1; S[w2]=v2; S[w3]=v3; // Out batch

D[w1]=S[w1]; // Input & Output
D[w2]=S[w2]; // ditto
D[w3]=S[w3]; // ditto

Table 5.4: Batching vs. Interleaving Memory access.

 Use Block Access Skeletons (BASks) to jump start efficient memory access within

each data block.

128

o Block by Block BASk

 Pros: Supports coalescence, less setup, easier to code, easier to reason

about

 Cons: Ping-Pong access pattern is slightly less localized, may require

more barrier synchronization.

o Warp by Warp BASk

 Pros: Supports coalescence, slightly more localized sequential access

pattern, Warps can start work independently, may require less barrier

synchronization.

 Cons: More indexing setup, harder to code, harder to reason about.

 Use Data Access Skeletons (DASks) to jump start efficient memory access across all

elements in a large data set.

o Pros:

 Supports Genericity (general data types, warp sizes, CTA layouts, …)

 Framework code is already written, tested, and working

 Framework code uses efficient memory access patterns.

 Body code (shaded boxes) can be replaced by the GPU programmer for

specific problem spaces.

 Supports experiments on both ILP and TLP to find the best performing

configuration.

 TLP is supported directly by framework.

o Cons:

 More complex than simple kernels.

 Similar code across multiple shaded boxes can result in cut and paste

errors.

 ILP is mostly controlled by GPU programmer as manual loop unrolling

to support multiple work items must be implemented directly within each

shaded box.

 Higher register pressure may result from setup overhead and range

checking.

o Block DASk:

 Pros: Simplest DASk

 Cons: Assumes input is already warp-aligned. Requires range checking

on each data block.

 Example: See Copy (this Chapter).

o Column DASk:

 Pros: Only requires range checking on last partially full data row.

 Cons: Assumes input is already warp-aligned, memory access pattern is

less localized (all thread blocks stride across one data row). Small grid

sizes result in poor performance when grid size is not evenly divisible by

the workLoad.

 Example: See Histogram (Chapter 8).

o Row DASk:

129

 Pros: Automatically warp-aligns input data, supports load balancing

across thread blocks. Supports access patterns where order matters.

Only requires range checking on first and last data blocks.

 Cons: High startup overhead (load balancing and range checking).

Small grid sizes results in poor performance when grid size is not evenly

divisible by the workLoad.

 Example: See Scan (Chapter 6), Radix Sort (Chapter 9).

130

6.0 Case Study: Reduce and Scan on the GPU

In this chapter, I demonstrate my Row data access skeleton (DASk) on two useful parallel

primitives, Reduce and Scan. The Reduce primitive produces a total sum by accumulating n input

elements into a single final sum. The terms “sum” and “accumulate” refer not only to addition but to any

associative operation, such as multiplication, maximum, or average. The name “Reduce” comes from

Map/Reduce, which is a popular paradigm for distributed computing at very large scales. The Scan

primitive, sometimes called Prefix Sum, produces a running sum by accumulating n input elements into n

output elements, where the ith output element is either the inclusive {1 ... i} or exclusive {1 ... i-1} prefix

sum of the first i input elements.

I have chosen to base both my Reduce and Scan primitives only on the associative property

{a+(b+c) = (a+b)+c}, so that I can also support non-commutative “summation-like” operations, such as

matrix multiplication. My algorithms may regroup, but not reorder; all sub-problems must work with

sequential runs of consecutive data.

To support the GPU’s 2-level cooperative thread array (CTA), I think of data as sequential blocks

containing sequential runs. Since the CTA is 2-level, I use a 2-part solution. 1) The Row DASk at CTA

level 1 coordinates thread blocks within a grid for sequential access to data blocks. 2) Using a similar

mechanism at CTA level 2 coordinates individual threads within a block for sequential access within each

data block. To keep throughput high in my implementations, I use both thread-level parallelism (TLP)

and instruction-level parallelism (ILP). To support experiments on TLP and ILP, I parameterize my

kernels by the number of warps per thread block ‹nWarps› and by the number of work items per thread

‹nWork›.

In this case study, three main issues hinder throughput:

131

1) Finding a global memory access pattern that supports both coalescence (stride = 32) and

sequential access (stride = 1). Both access patterns use different strides and therefore are

mutually exclusive.

2) Avoiding serialized instruction replays caused by k-way bank conflicts when accessing

shared memory.

3) Avoiding reduced TLP caused by various resource constraints on occupancy.

6.1 Introduction

Reduce primitive Computes the total sum of a sequence A containing n elements.

Input: binary associative operator ⨁ with identity 𝕀, and sequence A = [a1, a2, ⋯ , an],

Output: 𝑠𝑢𝑚 = 𝕀⨁𝑎1⨁𝑎1⨁⋯⨁𝑎𝑛 where sum is a singleton result.

Scan primitive creates the prefix sum of a sequence A containing n elements.

Input: A binary associative operator ⨁ with identity 𝕀, and sequence A = [a1, a2, ⋯ , an],

Output: A scanned sequence S = [s1, s2, ⋯ , sn],

 where 𝑠𝑖 = 𝕀⨁𝑎1⨁𝑎2⨁⋯⨁𝑎𝑖−1 for exclusive scan

 or 𝑠𝑖 = 𝑎1⨁𝑎2⨁⋯⨁𝑎𝑖 for inclusive scan.

Reduce and Scan primitives are basic building blocks for many parallel algorithms (Blelloch 1989

and 1990; Blelloch and Maggs, 1996; Hillis and Steele, 1986). Each takes as input an associative, but not

necessarily commutative, binary summation operator ⨁, its identity 𝕀, and a sequence A = [a1, a2, …, an].

The Reduce primitive (Harris and Sutherland, 2003), also known as “Fold” or “Total-sum”, returns sum =

𝕀⨁𝑎1⨁𝑎2⨁⋯⨁𝑎𝑛. The Scan primitive (Blelloch, 1989), also known as “Prefix-sum”, returns either

an inclusive prefix-sum sequence, in which s1=a1 and, for i > 1, si = si-1⊕ai, or an exclusive prefix-sum

sequence, in which s1=𝕀 and, for i > 1, si = si-1⊕ai-1.

In my own GPU algorithms, I use Reduce to produce summation results for performance metrics,

such as minimums, maximums, totals, averages. I use Scan to implement data partitioning schemes like

counting sort. Scanning can count data elements to determine starting locations so that each individual

thread knows where to safely access its assigned data without competing for access with other

concurrently running parallel threads.

As Table 6.1 shows the binary operator ⊕ can represent not only addition, but also product, max,

min, “and,” and “or”. I assume that ⊕ is associative {(a⨁b)⨁c = a⨁(b⨁c)}, but not commutative

132

{(a⨁b) = (b⨁a)}. The fact that data can be regrouped but not reordered complicates the GPU

implementations for both block and thread levels of the CTA hierarchy.

Operator {⨁} Identity {𝕀} Math Code

Sum {+} 0 𝑐 = 𝑎 + 𝑏 c=a+b;

Floating point**

Sum {+}
0.0 𝑐 = 𝑓𝑙(𝑎 + 𝑏) c=a+b;**

Product {×} 1 𝑐 = 𝑎 × 𝑏 c=a*b;

Floating point**

Product {×}
1.0 𝑐 = 𝑓𝑙(𝑎 × 𝑏) c=a*b;**

Matrix Multiply {×}

Non-commutative
I 𝐶 = 𝐴𝐵

3-level

nested loop

Minimum {𝑚𝑖𝑛} +∞ 𝑐 = {
𝑎 𝑖𝑓 𝑎 ≤ 𝑏
𝑏 𝑖𝑓 𝑏 < 𝑎

 c=(a<=b)?a:b;

Maximum {𝑚𝑎𝑥} −∞ 𝑐 = {
𝑎 𝑖𝑓 𝑎 ≥ 𝑏
𝑏 𝑖𝑓 𝑏 > 𝑎

 c=(a>=b)?a:b;

Logical AND {∧} True 𝑐 = 𝑎 ∧ 𝑏 c=a&b;

Logical OR {∨} False 𝑐 = 𝑎 ∨ 𝑏 c=a|b;

Table 6.1: Common Reduce and Scan binary operators. **Floating point operators are

not fully-associative due to truncation and round-off errors.

Floating Point Associativity: Programmers should be aware that floating point arithmetic operators

are not fully associative since outputs have errors as floating point operations truncate and round-off the

results to fit within the fixed-size data types1 (Press et al, 2007). As a result, CPU serial primitives and

GPU parallel primitives on floating point data runs can give slightly different sums. Reordering and

regrouping on long runs of data containing large variations in exponents can change outputs. One

possible advantage of forbidding commutativity (reordering) and relying on associativity (regrouping)

alone is that floating point evaluations are a bit more stable2.

1 Floating point issues are described in much greater detail in the book “Numerical Recipes …” (Press et al, 20007).
2 There are techniques that provide even more stability, such as storing values in a min heap on absolute value and

repeatedly summing the two values nearest zero. Unfortunately this approach has too many data dependencies to

work well on GPUs.

133

Overflow: Programmers should ensure that sums (especially of long data runs) do not overflow the

underlying data type’s maximal (or minimal) value. For instance, adding a billion 32-bit unsigned

integers may require storing intermediate and final sums as 64-bit unsigned integers.

Diagrams: Data organization and access patterns are necessary to improve Reduce and Scan

performance, and these are often easier to grasp from diagrams. Table 6.2 introduces symbols that I use

in my diagrams throughout this chapter.

Name Abbr. Description Symbol

Run An input sequence of n data elements.

Sum ⨁

An associative binary operation that accumulates two inputs into an

output. c = a⨁b.

Arrow color indicates access to the current entry (black) and reach

back (blue) or reach forward (purple) one or more entries.

Identity 𝕀
The identity element for operator ⨁, i.e. a = 𝕀⨁a for all a ∈ 𝕌 (zero

for addition, one for multiplication).

Serial

Reduce
SRn

In serial, reduce an input short run of size n ∈ [2-32] into a final-sum

output. ~One I/O per element, plus one for output.

Serial

Scan
SSn

In serial, scan an input short run of size n ∈ [2-32] into a prefix-sum

output run. The scan output can either be inclusive or exclusive.

~Two I/Os per element (one on input, one on output.)

Table 6.2: Basic nomenclature and symbols for the Reduce and Scan primitives.

16 20 16 20

36 36

Or

...

...

Out:

Incl.

Excl.

or

...

In:

134

CPU Serial Implementations: The serial implementations of the Reduce and Scan primitives on a

von Neumann CPU are similar (see Table 6.3).

Serial Reduce

Serial Scan (Inclusive)

Serial Scan (Exclusive)

Reduce(sum, A, n, ⨁, 𝕀)

sum = 𝕀; // Identity

// Reduce
for i in 1..n
 sum = sum ⨁ A[i];
end for

Scan_Inclusive(S,A,⨁,𝕀)

sum = 𝕀; // Identity

// Inclusive Scan
for (i = 0; i < n; ++i)
 sum = sum⨁A[i];
 S[i] = sum;
end for

Scan_Exclusive(S,A,⨁,𝕀)

sum = 𝕀; // Identity

// Exclusive Scan
for (i = 0; i < n; ++i)
 S[i] = sum;
 sum = sum⨁A[i];
end for

Input: +, 0, [1 2 3 4 5 6 7 8]

[0+1+2+3+…+8]

Output: [36]

Input: +, 0, [1 2 3 4 5 6 7 8]

[1, 1+2, 1+2+3, ⋯, 1+2+…+8]

Output: [1 3 6 10 15 21 28 36]

Input: +, 0, [1 2 3 4 5 6 7 8]

[0, 0+1, 0+1+2, ⋯, 0+1+2+…+7]

Output: [0 1 3 6 10 15 21 28] 36

Table 6.3: Serial Reduce and Inclusive & Exclusive Serial Scan. All three procedures initialize a

running sum to identity, then traverse the input array and accumulate new values. Reduce returns the

final sum as its output. Both versions of scan output the current running sum for each input. The

exclusive scan is effectively shifted over one element to the left of the inclusive scan. The top, middle,

and bottom rows give symbolic depictions, pseudo-code, and examples for each of the three operations.

As shown in Table 6.3, Both Reduce and Scan initialize an accumulator to identity and then, as

the code sequentially traverses the data, accumulate the running sum. Reduce writes out the final sum

only; whereas Scan writes out the current running sum (inclusive or exclusive) for each input element.

The exclusive scan is easy to obtain from the inclusive scan by prepending the identity, reaching back one

entry, and dropping the total sum, or final value.

GPU Parallel Implementations: As will be seen in this case study, GPU parallel implementations to

achieve high throughput are more complex than CPU serial implementations. My main performance goal

was to achieve a solid percentage of peak throughput for both primitives. I achieved solid throughput

performance for Reduce and Scan in four main ways:

1) I support TLP via multiple thread warps ‹nWarps› per thread block, respecting constraints on

occupancy.

Data

Work: 𝑛 = 𝑛
Depth: 𝑛 = 𝑛

Initial
Sum

Final
Sum

𝕀

…

...

...

Output:

Inclusive Scan

Input:

Total
Sum ...

...

Output:

Exclusive Scan

Input:
Total
SumIdentity

135

2) I support ILP via multiple work items ‹nWork› per thread.

3) I support coalescence, transferring 32 data elements in a single I/O instruction, for data in main

memory.

4) I mitigate bank conflicts for transfers between shared memory and registers.

Throughput Results: Since this chapter is quite long, I give the initial throughput results here to whet

your appetite for the details of the rest of this chapter. The main takeaway of this chapter is that my Row

DASk provides an excellent starting point for implementing these Reduce and Scan primitives. Of course

since the Reduce and Scan primitives are more complex than the simple Copy primitive from Chapters 4

and 5, I also had to overcome some performance hindering issues and use some cleverness in my

implementations. The results speak for themselves. Figure 6.4 shows that the Reduce and Scan

primitives can achieve nearly the same peak throughput of the simple Copy primitive.

Throughput
GTX 580

(Fermi)

GTX Titan

(Kepler)

 Reduce Scan Copy Reduce Scan Copy

Baseline (GB/s) 24.2 33.6 49.4 40.0 53.7 86.0

Best (GB/s) 172.7 164.8 175.0 227.0 225.0 236.3

Speedup 7.1× 4.9× 4.4× 5.7× 4.2× 2.75×

Table 6.4: Best throughputs (in gigabytes per second) for Reduce and Scan on the GTX

580 and GTX Titan respectively, and speedups over baseline throughputs. Copy

throughputs using the Grid DASk from Chapter 4 are also included for comparison.

The performance results for Reduce and Scan also show that choosing the right ILP and TLP

parameters based on extensive experiments results in much better throughput than naively implementing

the sequential algorithm on the GPU. For example, the Reduce primitive is up to 7.1× faster than the

baseline on the Fermi architecture (GTX 580) and the Scan primitive is up to 4.2× faster than the baseline

on the Kepler architecture (GTX Titan)).

Moreover, the four plots in Figure 6.5 show how TLP, ILP, and two different approaches to

handling bank conflicts (mitigate or avoid) all contribute to improving throughput. Each plot contains

five curves, described briefly in the next paragraph.

136

The easy way to experiment with ILP is to vary the number of work items per thread (nWork), in

the range 1-8. The easy way to experiment with TLP is to vary the number of thread warps per block

(nWarps), also in the range 1-8. Varying these (and other data access parameters, described later) gives

the five curves in each plot: The Baseline ‹nWarps=1, nWork=1 › curve has no extra ILP or TLP; The

ILP-Focused ‹1, varies› curve increases the work per thread; The TLP-Focused ‹varies, 1› increases the

warps per thread block. The Mitigates Bank Conflicts curve increases both ILP and TLP and allows bank

conflicts. However, it uses simple code, which allows CUDA to mitigate the impact of serialized replays.

The Avoid Bank Conflicts curve, on the other hand, also increases ILP and TLP, but it uses complex code,

which allows it to completely avoid bank conflicts. As can be seen from the plots in Figure 6.1,

increasing both ILP and TLP achieves the best throughput.

y-
a

x
is

:
 T

h
ro

u
g
h

p
u

t
(G

ig
ab

y
te

s
p
er

 s
ec

o
n
d
)

GTX 580 full Reduce
Throughput (GB/s) vs. Input size (n)

GTX Titan full Reduce
Throughput (GB/s) vs. Input size (n)

GTX 580 full Scan

GTX Titan full Scan

 x-axis: Input size (n) for increasing powers of two (logarithmic scale)

Figure 6.1: Full Reduce and full Scan throughput results (y-axis: gigabytes per second (GB/s)) as a function of

input size (x-axis; log scale) on the GTX 580 {Fermi architecture} (left column) and GTX Titan {Kepler

architecture} (right-column) GPUs.

210 213 216 219 222 225 228
0

20

40

60

80

100

120

140

160

180

192.4

Baseline (Warps=1, Work=1)

Best TLP-Focused (Warps=6, Work=1)

Best ILP-Focused (Warps=1, Work=6)

Best Mitigate BC (Warps=4, Work=4)

Best Avoid BC (Warps=3, Work=8)

210 213 216 219 222 225 228
0

50

100

150

200

250

288.4

Baseline (Warps=1, Work=1)

Best TLP-Focused (Warps=4, Work=1)

Best ILP-Focused (Warps=1, Work=8)

Best Mitigate BC (Warps=4, Work=4)

Best Avoid BC (Warps=5, Work=8)

210 213 216 219 222 225 228
0

20

40

60

80

100

120

140

160

180

192.4

Baseline (Warps=1, Work=1)

Best TLP-Focused (Warps=5, Work=1)

Best ILP-Focused (Warps=1, Work=6)

Best Mitigate BC (Warps=4, Work=4)

Best Avoid BC (Warps=3, Work=6)

210 213 216 219 222 225 228
0

50

100

150

200

250

288.4

Baseline (Warps=1, Work=1)

Best TLP-Focused (Warps=4, Work=1)

Best ILP-Focused (Warps=1, Work=8)

Best Mitigate BC (Warps=5, Work=4)

Best Avoid BC (Warps=5, Work=4)

137

6.2 Issues affecting GPU Performance of Reduce and Scan

 For this case study, I measure GPU performance using two metrics – I/O throughput (in giga-

bytes per second) and Total Cycles3 (TC).

Adapting algorithms to the GPU is a challenge because of the many choices for thread

organization, register assignment, memory layout, and synchronization. The three main GPU issues for

this case study are converting between conflicting memory views, mitigating bank conflicts, and handling

constraints on occupancy.

Converting between conflicting memory views: My decision to use associativity but to forbid

commutativity in my implementations requires working with short runs of consecutive sequences.

However, for better throughput, I must access data in global memory in a way that respects coalescence--

recall from Chapter 3.4, that for data that is aligned, coherent, and fully used, coalescence means that the

32 threads in a thread warp can read or write up to 32 data values at the cost of a single I/O.

Consider two examples of global-memory access patterns: a warp-strided access pattern, in which

each thread in a warp accesses a unique element in the data warp and then strides to the next data warp

(stride = WarpSize = 32), can run at near peak I/O throughput. In contrast, A sequential, per-thread

access pattern (stride = 1) can decrease throughput by up to 32×. As we will see later in this case study,

to improve performance, I use a coalesced view of data to load from global memory, but convert in shared

memory to a sequential view of data that can be placed in registers.

Bank conflicts: A k-way bank conflict occurs when k threads within the same thread warp access the

same bank of shared memory at the same time. The GPU hardware serializes access requests as k replays

from conflicting threads to ensure correct sequential behavior and in so doing decreases throughput k-

fold.

3 Recall from Chapter 3 that total cycles (TC) can be computed from two GPU hardware counters as TC=II/IPC,

where II = total instructions issued, and IPC = average instructions retired per cycle.

138

Constraints on occupancy: Recall from Chapter 3.3, that I consider NVidia’s occupancy

(ActiveWarps / MaxWarps) metric as a rough measure of the potential for hiding latency using TLP. In

general, kernels with higher occupancy tend to have better performance.

Occupancy is initially limited by the programmer’s choice of the CTA parameters (thread block

& grid sizes), and register and shared memory usage within a kernel may further limit occupancy. For

best throughput, GPU programmers should also balance the CTA grid size evenly across the SMs.

6.3 Related Work

The Reduce and Scan primitives come to GPUs originally from the computer hardware

community. For small input sequences (or runs), Reduce and Scan can be implemented via the same

techniques used by hardware adders for fast binary addition, with the hardware adders becoming software

prefix sums.

Hardware Adders: Charles Babbage (Ladner and Fischer, 1980) developed the first linear adders

(ripple-carry and carry-add) for his mechanical difference engine. Modern CPU architects later created

hierarchical prefix adders that improved performance from linear O(n) to logarithmic O(log n). David

Harris (Harris and Sutherland, 2003) grouped hardware prefix adders into three categories—Sklansky,

Kogge-Stone, and Brent-Krung (Sklansky, 1960; Kogge and Stone, 1973; Hillis and Steele, 1986; Brent

and Krung, 1982 respectively) —with three hybrid categories—Ladner-Fischer, Han-Carlson, and

Knowles4 (Ladner and Fischer, 1980; Han and Carlson, 1987; and Knowles, 1999 respectively). The

Sklansky, Kogge-Stone, and Brent-Krung adders are also known in the software community as

“Upper/Lower”, “Doubling” and “Even/Odd” prefix-sums respectively.

4 Knowles style adders use special kill-bit hardware and in general cannot be implemented directly in software.

139

Table 6.5 summarizes the information about each adder type. According to Harris’s taxonomy

(Harris and Sutherland, 2003), adders are differentiated in terms of three numbers <l, f, t>, where l =

Logic levels (log n + l), f = Fanout (2f + 1) and t = Wire Tracks (2t). Most hardware adders consist of bit-

adder nodes (add two bits and a carry), wires that carry the binary inputs into the nodes, and buffers that

store temporary results. In general, parallel adders with low depth tend to be fastest. Adders with low

work (nodes) tend to use less silicon and power.

Hardware

Name

Other

Names

Fanout Tracks Work:

(#Nodes)
Depth:

(#Logic Levels)

Ripple-Carry Linear 1 1 = n-1 = n-1

Sklansky Upper/Lower n/2 1 = (n/2) log n = log n

Kogge-Stone Doubling 2 n/2 ≤ n log n = log n

Brent-Kung 2 1 ≤ 2n = (2 log n) - 1

Ladner-Fischer n/4 1 ≤ 4n = log n + 1

Han-Carlson 2 n/4 ≤ (n/2) log n = log n + 1

Knowles varies 1 ≤ n log n = log n

Table 6.5: Adder Summary - Area & power is proportional to work. Parallel performance is

proportional to depth. Blue is best in category (asymptotically, for Work & Depth).

140

Figure 6.2 presents a graphical layout of each adder type for a run of length 16. As will be seen

later in the case study, for short sequential scans (Serial-Scans), the Sklansky layout performs best on

short runs ((n ≤ 16) and the Brent-Kung layout performs best for longer runs (n > 16). For parallel scans

across all the threads in warp (Warp-Scans), the Kogge-Stone layout performs best for short runs (n ≤ 32)

and a nested hybrid scan method work best for longer runs (n > 32).

Sklansky, 1960

Kogge-Stone, 1973

Ladner-Fischer Scan, 1980

Han-Carlson Scan, 1987

Knowles5, 1999

Brent-Kung, 1982

Figure 6.2: Hardware adder diagrams that can be adapted into software reduce and scan (prefix sum)

methods. Blue (reach back) and Black arrow pairs represent sum operations. Shades of green represent

different levels of partial completion. Blue-Grey boxes represent final results with red outlines containing

the total sum.

5 Knowles adders represent an entire family of layouts of which this is just one instance. This particular layout

happens to work correctly as a prefix sum in software, most Knowles layouts do not support prefix sums in software

due to the presence of special kill-bit hardware.

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 1 5 1 5 3 5 3 6 2 3 1 4 2 4

3 4 5 9 3 6 8 9

3 4 5 9 1 5 8 3 6 8 9 1 4 6 8

3 4 5 9

10

10 14 17 19 19 18 18 17

10 14 17 19 22 25 27 28 29 32 34 36

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 2 5 5 5 7 5 5 6 5 3 2 4 5 4

3 4 5 9

3 4 5 9 7 9 7 7 7 8

3 4 5 9

10 12 10 12 11 10

10 14 17 19 19 21 22 19 19 18 18 17

10 14 17 19 22 25 27 28 29 32 34 36

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 1 5 1 5 3 5 3 6 2 3 1 4 2 4

3 4 1 9 3 3 6 2 9 1 2

3 4 1 9 1 5 3 3 6 2 9 1 4 2 810

1 14 19 13 17

3 4 1 9 1 3 3 2 1 214 19 25 28 32 36

3 4 5 9 10 14 17 19 22 25 27 28 29 32 34 36

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 1 5 1 5 3 5 3 6 2 3 1 4 2 4

3 4 1 9 3 3 2 1 2

3 4 1 9 1 3 3 2 9 1 7 2 810 10 11

1 14 19 21 19 18 17

3 4 1 9 1 3 3 2 1 214 19 25 28 32 36

3 4 5 9 10 14 17 19 22 25 27 28 29 32 34 36

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 1 5 1 5 3 5 3 6 2 3 1 4 2 4

3 4 5 9

3 4 5 9 6 8 8 8 9 4 7 6 8

3 4 5 9

10 10 11

10 14 17 19 18 21 18 19 15 18 15 17

10 14 17 19 22 25 27 28 29 32 34 36

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

3 4 1 5 1 5 3 5 3 6 2 3 1 4 2 4

3 4 1 9 1 5 3 3 2 9 1 4 2 810 6

3 4 1 9 1 5 3 3 6 2 9 1 4 219 17

3 4 1 9 1 5 3 3 6 2 1 4 219 9 36

3 4 5 9 14 17 19 22 25 27 28 29 32 34 3610

3 4 1 9 1 5 3 3 6 2 1 4 2 362819

3 4 1 9 1 3 3 2 1 2 362814 19 25 32

141

GPU Reduce and Scan: Previous work on GPUs include work by Mark Harris (Harris, 2007), who

took a naïve GPU reduce for large data sets, and iteratively improved it through a series of eight rewrites,

increasing throughput 30×. Though Dr. Harris’s final solution is elegant, it is not generic (hardcoded for

unsigned integers) and requires commutative summations because he reorders the data layout. Dr. Harris

(Harris et al, 2008) later adapted Blelloch’s prefix-sum (Blelloch, 1990) for a GPU Scan primitive that,

despite being both depth-efficient and work-efficient, maps poorly onto GPU hardware and therefore

produces poor throughput.

Duane Merrill (Merrill and Grimshaw, 2010, Parallel Scan) used high-level parallel patterns

(Reduce-then-Reduce; Scan-then-Fan; and Reduce-then-Scan) and an improved low-level Warp-Scan

based on the Hillis-Steele variant of the Kogge-Stone prefix sum ((Hillis and Steele, 1986; and Kogge

and Stone, 1973 respectively) to produce better mappings of Reduce and Scan onto GPUs. Several other

of Dr. Merrill’s clever ideas include storing arrays in registers, scanning data blocks using a 3-level local

hierarchy, accessing memory using efficient I/O skeletons, and inlining massive amounts of code using

C++ templates. I use many of Dr. Merrill’s ideas in my own implementations.

6.4 Parallel Patterns

Improvements in Reduce and Scan throughput are also obtained by combining common parallel

patterns for each primitive.

6.4.1 Reduce Parallel Patterns

For the Reduce primitive, the singleton output sum depends on all input values. Figure 6.3

illustrates two natural parallel patterns to reduce n elements using p threads: Tree Reduce and Run

Reduce (AKA Reduce then Reduce) (Merrill and Grimshaw, 2010, Parallel Scan). I use both patterns at

different levels of my nested Reduce GPU implementation.

142

Tree Reduce

Run Reduce

Figure 6.3: Parallel Reduce Patterns. This figure Illustrates two parallel patterns to reduce n elements

using p threads. In the left panel is a tree reduce pattern of 16 elements in 4 = log2(16) stages. In the right

panel is a Run Reduce pattern of 16 elements in two stages (serially reduce 4 element runs into run sums

using 4 threads, serially reduce 4 run sums into a final sum using 1 thread).

The Tree Reduce pattern (see Figure 6.3, left panel), a fine-grained reduction, is easy to visualize

and implement. It reduces two input elements per thread to one output sum at each stage and, in so doing,

takes log2(n) stages in total to fully reduce n elements down to one final sum. Total work is linear = 2n =

n+n/2+n/4+…+2+1. Total depth is logarithmic = log2(n). Total I/Os is linear = 3n (or 2n).

Tree Reduce, however, has three distinct disadvantages:

 Its relatively high kernel launch costs, since log2(n) stages are required

 Its suboptimal processor utilization, since each stage launches half the threads of the

previous stage

 Its relatively high I/O transfer costs, since intermediate sums from each stage must be

transferred to the next using 3n I/Os if all sums are stored and 2n I/Os if continuing

threads keep their sums

The Run Reduce pattern (see Figure 6.8 right panel), a coarse-grained reduction, is even easier to

visualize and implement. It partitions the n data elements across p threads (cores) into even runs (run

length=⌈𝑛/𝑝⌉). In the first reduce stage, each thread serially reduces its assigned run, producing p run-

3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

Data

6 3 4 44 5 5 5

9 10 9 8

19 17

36 Sum

Work: 𝑛 = 𝑛
Depth: 𝑛 = 2 (𝑛)

Work: 𝑛 + 𝑝 = 𝑛 + 𝑝
Depth: 𝑛/𝑝 + 𝑝 = 𝑛/𝑝 + 𝑝

3 1 1 4

1 4 3 2

3 3 2 1

Data

36 Sum1 3 2 2

9

10

p1

p2

p3

p4

9

7

143

sums (one per run). In the second reduce stage, the p run-sums are serially reduced by a single thread

(core) to a final sum. Total work is linear = n+p. Total depth is linear = ⌈𝑛 𝑝⁄ ⌉+p. Total I/Os is linear =

n+p+1. Choosing p =√𝑛, results in minimum depth = 2√𝑛 and work = n+√𝑛.

As described, the second stage of Run Reduce has essentially the worst possible processor

utilization: only one thread is active. As a result, in my actual GPU implementation, I replace the second

stage’s serial reduce by a nested run-reduce and tree-reduce to involve more parallel threads.

6.4.2 Scan Parallel Patterns

Like Reduce, Scan looks at all data values. Unlike Reduce, Scan must output a prefix sum for

each input data value that depends either on all previous data values or on some previous data values or

sums. There are two natural Scan patterns (see Figure 6.4), Scan-then-Fan and Reduce-then-Scan. With

both Scan patterns, the input data is partitioned evenly into per-thread runs. For my own GPU Scan

implementation, I use both patterns at different levels of the CTA hierarchy.

Figure 6.4: Two Parallel Scan patterns 1) Scan-then-Fan (Top panel), and 2) Reduce-then-Scan (Bottom panel).

Scan-then-Fan: Scan-then-Fan (see Figure 6.4, left panel) is similar to the Run-Reduce pattern and

takes five stages:

1. Scan Run: Each thread serially scans its assigned run. Each run is locally correct but is

missing a prefix sum from all preceding thread runs.

2. Store Run-Sums: Per-thread run-sums from stage 1 are stored in another array.

3. Scan Run-Sums: The per-thread run-sums from stage 1 are inclusively scanned.

…

Scan then Fan
T1=Run1 T2=Run2 Tp=Runp…

Identity

Inclusive Scan

Exclusive Scan (Reach Back)

1. Scan Runs

2. Store RunSums

3. Scan RunSums

4. Reach Back

5. Runs Update

Reduce then Scan

…
T1=Run1 T2=Run2 Tp=Runp…

1. Reduce Runs

2. Store RunSums

3. Scan RunSums

4. Reach Back

5. Scan Runs &
Update

Identity

Inclusive Scan

Exclusive Scan (Reach Back)

144

4. Reach Back: The missing prefix-sums needed in stage 1 are found as the exclusive scan

of the stage 1 run-sums, which were obtained from the inclusive scan by reaching back

one entry.

5. Run Update (AKA fan): The missing prefix-sum for each thread is accumulated into all

locally scanned elements in each per-thread run to generate the final scanned results.

This stage is also known as a fan.

The Scan-then-Fan pattern takes ~ 4 I/Os per data element, since both stage 1 and stage 5 must

read and write each element. The Scan-then-Fan pattern with input size n and p threads uses linear Work

= 2n+2p, linear Depth = 2[n/p]+2p, and linear Total I/Os = 4n+4p.

Reduce-then-Scan: The Reduce-then-Scan pattern (Figure 6.9, right panel) is derived from the Scan-

then-Fan pattern. In stage 1, Scan Run, the serial Scan is replaced by a serial Reduce to compute the

stage 1 run-sums, and in stage 5, Fan, the run update becomes a serial Scan initialized with the missing

prefix-sums from stage 4. This scan pattern decreases the total I/Os per element since the first stage now

writes a single run sum instead of an entire run. The Reduce-then-Scan pattern with input size n and p

threads uses linear Work = 2n+2p, linear Depth = 2[n/p]+2p, and Total I/Os = 3n+4p.

6.5 Reduce and Scan Overview

For correctness and for good GPU throughput, both of the Reduce and Scan primitives need to do

the following:

 Map their parallel patterns onto the GPU’s 2-level CTA hierarchy

 Support consecutive access for non-commutative summation

 Support both ILP & TLP

 Mitigate GPU issues of converting between warp and sequential views, bank conflicts, and

constraints on occupancy

At a high level, My GPU Reduce primitive is based on the Run-Reduce pattern and is

implemented using two GPU kernels — GPU_Reduce and GPU_SumRows. My GPU Scan primitive is

145

based on the Reduce-then-Scan pattern and is implemented using three GPU kernels — GPU_Reduce,

GPU_SumsToStarts, and GPU_Scan. The GPU_Reduce and GPU_Scan kernels do most of the work

for each primitive.

The basic idea behind these two implementations, as with so many algorithms, is to divide the

large Reduce and Scan problems into smaller instances and apply recursion. This division, however, is

complicated by the need to work with the GPUs 2-level CTA hierarchy (grid of thread blocks, threads

within a thread block). To support sequential access within the 2-level CTA, I implement the following

two-part solution:

CTA Level 1 (grid of thread blocks): For consecutive data access at the first CTA level,

both GPU_Reduce and GPU_Scan use my Row DASk, described in Chapter 5. This DASk

partitions data into fixed-size data blocks, which it then distributes across a fixed number r of

rows, resulting in c columns. It then assigns each of the r data rows to a thread block in the grid.

Each thread block subsequently works along its assigned data row sequentially, data block by

block.

CTA Level 2 (threads within a thread block): Consecutive access within the data block by

each thread in the thread block is handled by the BlockReduce and BlockScan methods. Both

methods take as input a full fixed-size data block. The 3-level nested BlockReduce method

reduces the entire data block to a single block-sum, which is then accumulated into the current

row-sum. The 3-level nested BlockScan method sequentially6 scans the entire input block into a

scanned prefix sum (inclusive or exclusive as requested), which is updated with the current row-

start (missing row prefix). The block of scanned results is then output.

Reduce Overview: With the GPU_Reduce kernel, each thread block initializes a row-sum to identity

and then marches along its assigned data row, block by block, calling BlockReduce on each data block.

6 I would have liked to have skeletonized these methods as sequential block access skeletons (BASks), but because

both methods depend on pass-through parameters from my Row DASk as well as parameters for ILP, TLP,

occupancy, and bank conflict mitigation, both methods are too unwieldy to generalize.

146

After each BlockReduce call, each thread block accumulates the resulting block-sum into the current

row-sum. The GPU_Reduce kernel generates r row-sums as output that still need to be reduced to the

final total-sum.

Since the GPU_Reduce kernel outputs r row-sums to be consumed as input by the GPU_SumRows

kernel, I deliberately choose my fixed number of rows (r) to be small (r ≤ 1,000). This allows

GPU_SumRows to reduce the r row-sums to the final sum as output using a single instance of the

BlockReduce method with a single thread block (GridSize =1). Calling the GPU_Reduce kernel

followed by the matching GPU_SumRows kernel implements the full GPU Reduce primitive.

Efficient I/O access for Reduce: Given r rows and n input values and assuming r is much less than n

(r ≪ n),, then the Reduce primitive needs only a little over one global memory transfer per data warp on

average. The GPU_Reduce kernel reads each input exactly once from global memory to reduce n inputs

to r row-sums GPU_SumsRows reduces those r row sums into the final sum. Coalescence is respected by

using the warp-by-warp BASk to load input. This arrangement means that I only need one transfer per

data warp (32 data elements), which results in ⌈
𝑛

32
⌉ total data transfers. Combining transfers from both

kernels results in ⌈
𝑛

32
⌉+r+⌈

𝑟

32
⌉+1= (𝑛 + 𝑟) total I/Os for the GPU Reduce primitive.

Scan Overview: For the GPU Scan primitive, I must generate the missing row prefixes for each data

row before locally scanning each data block along each data row. The GPU_Reduce kernel generates r

row-sums. The GPU_SumsToStarts kernel exclusively scans the r row-sums as input into r row-starts

as output using a single instance of the BlockScan method with a single thread block (GridSize = 1).

These r row-starts provide the missing row prefixes for globally correct scan results along each data row.

Finally, with the GPU_Scan kernel each thread block loads its missing row-start (row prefix) from the

row-starts array and then marches along its assigned data row, block by block, locally scanning each data

block by calling BlockScan. The current row-start is also accumulated as a prefix into the local scanned

results to generate global scanned results that are then output. After each data block is scanned, the

147

resulting block-sum is accumulated into the current row-start to prepare for the next data block along the

row. Calling all three scan kernels in order (GPU_Reduce, GPU_SumsToStarts, and GPU_Scan)

implements the full GPU Scan primitive.

Efficient I/O access for Scan: Given r rows and n input values and assuming r is much less than n (r

≪ n), then the GPU Scan primitive needs a little over three global memory transfers per data warp on

average. GPU_Reduce reads each input exactly once to reduce n inputs to r row-sums;

GPU_SumsToStarts exclusively scans these r row-sums into r row-starts; and GPU_Scan reads each

row-start. GPU_Scan then reads a data block, combines the row-start with the scan of the data block, and

writes out the final prefix sum. I respect coalescence in my GPU_Reduce and GPU_Scan kernels by

loading input and storing output using a warp-by-warp view of global memory. This approach means that

I only need one transfer per data warp (32 data elements) and results in ⌈
3𝑛

32
⌉ total data transfers across

both kernels (GPU_Reduce and GPU_Scan). Combining transfers from all three kernels results in

⌈
3𝑛

32
⌉+2r+⌈

2𝑟

32
⌉ = (𝑛 + 𝑟) total I/Os for the GPU Scan primitive.

6.6 Reduce and Scan Implementation Details

To implement Reduce and Scan, I present several helper methods in a bottom-up manner.

 6.6.1 Run Load/Store: Each thread transfers a short run of data between memory and registers.

 6.6.2 Serial Reduce/Serial Scan: Each thread serially reduces or scans a short run of data kept in

registers.

 6.6.3 Warp Reduce/Warp Scan: All threads in one thread warp cooperatively scan a single data warp

kept in shared memory. The final-sum is found in the last column after the scan completes.

 6.6.4 Run Update: Each thread sums a common prefix into a short run of data in registers.

 6.6.5 Block Reduce/Scan: The Run Load/Store, Serial Reduce/Scan, Warp Reduce/Scan, and Run

Update methods are nested to recursively reduce or scan an entire data block.

148

 6.6.6 Reduce/Scan primitives: The full Reduce primitive on a GPU is implemented using two GPU

kernels— GPU_Reduce, and GPU_SumRows—which follow the Run-Reduce pattern. The full Scan

primitive is implemented using three GPU kernels— GPU_Reduce, GPU_SumsToStarts, and

GPU_Scan—which together follow the Reduce-then-Scan pattern.

I show a high-level overview of both Reduce and Scan in Figure 6.5. I aim for my Reduce and

Scan primitives to be correct, generic, and fast. I verify correctness by comparison against baseline CPU

methods. Genericity is supported by C++ template parameters (Alexandrescu, 2001). Throughput

experiments on TLP and ILP are supported by two template parameters, ‹nWarps, nWork›, each in the

range {1-8}.

Figure 6.5: High level overview of Reduce in two steps (purple lines) and Scan in three steps (blue lines). Reduce:

1) The reduce rows step reduces n data items to r row sums. 2) The reduce row sums step reduces r row sums to the

final sum. Scan: 1) The reduce rows step was already discussed. 2) The sums to starts step exclusively scans r row

sums into r row starts. 3) The scan rows step scans n data elements into n scanned prefix sums using the r row starts

as starting prefix sums for each row. Both the reduce rows and scan rows steps use my Row DASk to have each

thread block march down its assigned data row, processing data in parallel, data block by block. Row sums are

carried along each row accumulating block sums after scanning each data block.

…

…

…

…

…
…

…
…

…

Data
Block1

Data
Block2

…

…Thread
Block2

…
Thread
Block1

…
Thread
Blockr

…

3. Scan Rows1. Reduce Rows 2. Sums to Starts

2. Reduce Row SumsOut(1)
Final Sum

In(r)
RowSums

In(n)
Data

Out(r)
RowSums

In(r)
Row Starts

Thread
Block1

Thread
Block2

Thread
Blockr

Data
Block1

Data
Block2

Data
Blockc

…

149

6.6.1 RunLoad and RunStore Methods

The RunLoad and RunStore methods transfer short sequential runs between memory (global or

shared) and registers. These methods support both sequential and strided access. I briefly discuss these

methods in terms of parameters, range checking, total cycles, and issues.

Parameters: Both RunLoad and RunStore require C++ template parameters. The RunLoad method

requires three template parameters -- valT, WorkStride, nWork. The RunStore method requires four

template parameters -- the same three as RunLoad plus Identity (𝕀). The valT parameter is simply a

generic placeholder for different data types. The nWork parameter specifies how many data elements

each thread loads (stores) per data block, usually {1-8}. Using more elements increases ILP efficiency

via software pipelining at the cost of more registers. WorkStride specifies the stride between adjacent

memory accesses per thread. Consequently, a stride of 1 is sequential access, a stride of 32 supports warp-

by-warp access, and a padded stride of 33 (32+1) can help avoid bank conflicts. The Identity (𝕀)

parameter is used as a default value for out of range loads in RunLoad. Since these template parameters

are compile time constants, only relevant instructions are compiled into the GPU kernel.

Range Checking: Recall that the Row DASk requires that the programmer implement four body

templates: one without range checking *_RC_NONE (…), and three range-checked versions,

*_RC_START, *_RC_STOP, *_RC_BOTH, that check individual loads (stores) against the ranges [start

…), (… stop] and [start, stop], respectively. Figure 6.6 shows implementations for two of the range

intervals, the open (…) and closed [start, stop] intervals. The implementations for the two half-open

intervals [start, …) and (…, stop] and the family of four RunStore methods are similar.

150

template< valT, WorkStride, nWork >
RunLoad_RC_NONE(S, v1, v2, v3, …) // *NO* range check

 // Load Run
 // All “if (nWork >= *) { … }” wrapper statements
 // disappear at compile time, leaving just the inner … statement.
 // Any unused statements based on the nWork size also
 // disappear at compile time.
 if (nWork >= 1) { v1 = S[(0*WorkStride)]; }
 if (nWork >= 2) { v2 = S[(1*WorkStride)]; }
 if (nWork >= 3) { v3 = S[(2*WorkStride)]; }
 if (nWork >= 4) { v4 = S[(3*WorkStride)]; }
 ...

end RunLoad

template< valT, WorkStride, nWork, 𝕀 > // Range check [start, stop]
RunLoad_RC_BOTH(A, dataOff, start, stop, v1, v2, v3, ...)

 S = (valT *)&(A[dataOff]); // Get starting pointer

 // Get offsets
 if (nWork >= 1) { GI_1 = dataOff + (0*WorkStride); }
 if (nWork >= 2) { GI_2 = dataOff + (1*WorkStride); }
 if (nWork >= 3) { GI_3 = dataOff + (2*WorkStride); }
 ...

 // Range Check offsets against [start, stop]
 if (nWork >= 1) { T1 = (start <= GI_1) & (GI_1 <= stop); }
 if (nWork >= 2) { T2 = (start <= GI_2) & (GI_2 <= stop); }
 if (nWork >= 3) { T3 = (start <= GI_3) & (GI_3 <= stop); }
 ...

 // Load Run (range check accesses)
 if (nWork >= 1) { v1 = 𝕀; } // Default to Identity (if out of range)
 if (nWork >= 2) { v2 = 𝕀; }
 if (nWork >= 3) { v3 = 𝕀; }
 ...
 if (nWork >= 1) { if (T1) { v1 = S[(0*WorkStride)]; } }
 if (nWork >= 2) { if (T2) { v2 = S[(1*WorkStride)]; } }
 if (nWork >= 3) { if (T3) { v3 = S[(2*WorkStride)]; } }
 ...

end RunLoad_RC_BOTH

Figure 6.6: The RunLoad_RC_NONE template method (upper panel) loads a short run from memory

into registers without any range checking. The RunLoad_RC_BOTH template method (lower panel) is

similar but does more work to prevent out of range memory accesses against the range [start, stop].

Code in light grey gets elided away at compile time.

Total Cycles: In this section, I introduce formulas for how many machine cycles these methods take to

run. Assume n = run length to load; G & S are the number of cycles to transfer a data value between

global memory (G) or shared memory (S) and registers respectively; and k is the number of cycles it takes

for an instruction to traverse the instruction pipeline. If so, then the total cycles for RunLoad or RunStore

151

to transfer a data run is (G + k + n-1) for global memory transfers, and (S + k + n-1) for shared memory

transfers.

Load/Store Issues: While writing these Load/Store methods, I dealt with two main issues -- first,

accessing global memory requires coalescence for good throughput; second, accessing shared memory

can lead to bank conflicts. I discuss both issues in more detail in Section 6.7.

6.6.2 SerialReduce (SRn) and SerialScan (SSn) Methods

The SerialReduce and SerialScan methods reduce or scan short data runs of length n, one

serial run per thread. The short runs are kept in registers for each thread in a thread block (or thread

warp). (I denote these methods as SRn or SSn, meaning SR8 or SS8 for n = 8). Obviously, one could

directly apply a sequential reduce or sequential scan on the run kept in registers (as shown in Table 6.3),

but such an approach creates RAW dependencies since the output from each sum becomes the input for

the next sequential sum and therefore each dependent summation must stall for the length of the GPU

instruction pipeline, k. Instead, for short runs, I use tree-based adders, which chip architects use to

parallelize binary addition, in order to improve ILP for both SerialReduce and SerialScan. Tree-

based adders, such as Sklansky’s adder (as shown in Figure 6.2) have dependencies from one tree stage to

the next but no dependencies within a stage. Each thread can sum stage by stage and increase ILP by

decreasing stalls within stages. A conservative estimate of the total cycles for these serial methods is

nSums + k∙nStages.

For both serial reduce and serial scan, I base my code on the Sklansky adder (see Figure 6.2).

The serial reduce (left panel) drops sums that do not contribute to the final sum and takes up to (n-1) +

k∙log2(n) total cycles. This approach is always faster than sequential reduce. The serial scan (right panel)

uses all sums in all stages and takes up to (n/2)∙log2n+k∙log2n total cycles.

152

Serial Reduce

template< valT, sumT, rL >
SerialReduce(runSum, ⨁, v1, v2, …)

// Sklansky Tree-Reduce
if (rL > 2) { v2 = v1⨁v2; } //S1
if (rL >= 4) { v4 = v3⨁v4; }
if (rL >= 6) { v6 = v5⨁v6; }
if (rL >= 8) { v8 = v7⨁v8; }
if (rL > 4) { v4 = v2⨁v4; } //S2
if (rL == 7) { v7 = v6⨁v7; }
if (rL >= 8) { v8 = v6⨁v8; }

// Run Sum (select on run length)
if (rL == 8) { runSum = v4⨁v8; }//S3

if (rL == 7) { runSum = v4⨁v7; }
if (rL == 6) { runSum = v4⨁v6; }
if (rL == 5) { runSum = v4⨁v5; }
if (rL == 4) { runSum = v2⨁v4; }
if (rL == 3) { runSum = v2⨁v3; }
if (rL == 2) { runSum = v1⨁v2; }
if (rL == 1) { runSum = v1; }

end SerialReduce

Serial Scan

template< valT, sumOp, rL >
SerialScan(⨁, v1, v2, v3, v4, …)

// Sklansky Scan
 if (rL >= 2) { v2=v1⨁v2; } //S1
 if (rL >= 4) { v4=v3⨁v4; }
 if (rL >= 6) { v6=v5⨁v6; }
 if (rL >= 8) { v8=v7⨁v8; }

 if (rL >= 3) { v3=v2⨁v3; } //S2
 if (rL >= 4) { v4=v2⨁v4; }
 if (rL >= 7) { v7=v6⨁v7; }
 if (rL >= 8) { v8=v6⨁v8; }

 if (rL >= 5) { v5=v4⨁v5; } //S3
 if (rL >= 6) { v6=v4⨁v6; }
 if (rL >= 7) { v7=v4⨁v7; }
 if (rL >= 8) { v8=v4⨁v8; }

end SerialScan

Figure 6.7: Serial Reduce and Serial Scan for an 8 element run [v1-v8] in 3 stages (log28). Code in

light grey gets elided away at compile time.

For serial scan, I tested the Sklansky, Kogge-Stone, and Brent-Kung adders (see Figure 6.8), and

found that Sklansky is fastest for scans on short runs (n ≤ 16) and for n ≤ 64 it is faster than sequential

scan. Brent-Kung is fastest on longer runs (n > 16) and will always be faster than a sequential scan. For

both serial reduce and serial scan the number of registers grows linearly in n, so I recommend keeping

sequential runs short (n ≤ 8) to avoid undue register pressure. Being pragmatic, this means that there is

no need for the Brent-Kung version of serial scan on current GPU architectures.

Stage 1

Stage 2

Stage 3

Stage 1

Stage 2

Stage 3

153

Figure 6.8: Serial Scan Total cycles – Total cycles usage by Sequential (in regs), Kogge-Stone, Sklansky, and

Brent-Kung methods for increasing run lengths, n in [2..32]. Note: Not shown Sequential (in shared memory)

was about 5.3× slower (1684.4/315.4) than Sequential (in regs) in the worst case (n=32). For n = 8, Sklansky is

about 9.2× faster [445.5/48.3] than Sequential (in shared memory) and about 1.77× faster [85.7/48.3] than

Sequential (in regs).

Parameters: SerialReduce and SerialScan both take three template parameters -- valT, sumT, and

rL. The valT parameter provides a generic place holder for different data types to scan. The sumT

parameter is the data type of the sum operator (typically as a functor). The rL parameter is the run length

of the data run in registers to be scanned. These methods also have function parameters, up to eight input

register values [v1..v8] to scan (all of type valT), a sum operator (⨁) of type sumT, and either outputs the

runSum for serial reduce or outputs the inclusive scan in those same 8 registers [v1..v8].

Total Cycles: Assume n is the length of the short run to scan and k is the total number of cycles it takes

for an instruction to traverse the instruction pipeline. If so , the total cycles (TC) these Sklansky tree-

based SerialReduce and SerialScan methods take are TC ≤ (n-1) + k∙log2n and TC ≤

(n/2)∙log2n+k∙log2n respectively. For short runs, these results compare favorably with the more

obviousSequential Serial Reduce and Scan, which both take TC = k(n-1) cycles. On the GTX Titan

(Kepler) for a run length of 8, my tree-based serial scan is 9.2× faster than a sequential scan in shared

2 4 8 12 16 20 24 28 32
0

50

100

150

200

250

300

350

N = Run Length

A
v

er
a
g

e
C

y
cl

es
Serial Scan -- Cycles for short runs N=[2-32]

Sequential (Regs)

Kogge-Stone

Sklansky

Brent-Kung

154

memory (48.3 vs. 446.0 total cycles) and 1.77× faster than a sequential scan in registers (48.3 vs. 85.7

average total cycles).

As written, my tree-based SerialReduce and SerialScan code should take exactly n registers

and emit exactly n-1 and (n/2)∙log2n sum instructions respectively. Unfortunately, the CUDA compiler,

in an attempted optimization, reorders the code, resulting in extra register use and unnecessary stalls that

take up to 10% more cycles. I circumvent this by overloading the sum operator to emit .PTX assembly

(shown in Figure 6.9).

// Generic ADD functors
template < typename valT >
struct CPU_Add
{
 __host__ __forceinline__
 valT operator()(valT a, valT b)
 {
 return (a+b);
 }
};

template < typename valT >
struct GPU_Add
{
 __device__ __forceinline__
 valT operator()(valT a, valT b)
 {
 return (a+b);
 }
};

// Overload via Partial Specialization
template <>
struct GPU_Add< U32 >
{
 __device__ __forceinline__
 U32 operator()(U32 a, U32 b)
 {
 U32 c;
 asm volatile (
 "add.u32 %0,%1,%2;\r\n"
 : "=r"(c) : "r"(a), "r"(b));
 return c;
 }
};

template <>
struct GPU_Add< U64 >
{
 __device__ __forceinline__
 U64 operator()(U64 a, U64 b)
 {
 U32 c;
 asm volatile (
 "add.u64 %0,%1,%2;\r\n"
 : "=l"(c) : "l"(a), "l"(b));
 return c;
 }
};

Figure 6.9: Add functors for CPU & GPU (left panel) and overloaded ADD functors for the GPU (right panel) that

emit .PTX assembly to mitigate the de-optimization issue. The volatile keyword in the asm context requests

that the CUDA compiler should avoid optimizing the wrapped .PTX assembly instructions.

(The volatile modifier on the asm keyword requests that the CUDA compiler should avoid

optimizing the wrapped .PTX assembly instructions, which effectively prevents CUDA from reordering

the summation chain.) Of course, such an approach means that the CPU and GPU versions of my sum

functors need to be separated for correct compilation. All in all, this work-around avoids the unwanted

stalls. However, it unfortunately does not prevent CUDA from generating extra registers.

155

6.6.3 WarpReduce (WRn) and WarpScan (WSn) methods

Duane Merrill’s [Merrill 2010] efficient WarpScan method (denoted as WSn, meaning, WS8 for n =

8) cooperatively scans an entire data warp using one thread warp (see Figure 6.10).

Figure 6.10: Dr. Merrill’s Warp-Scan based on the Hillis-Steele variant of the

Kogge-Stone adder. Orange elements represent identity (𝕀) values.

Dr. Merrill’s fixed-size GPU algorithm is based on the Hillis-Steele parallel algorithm (Hillis and

Steele, 1986), which is based on the Kogge-Stone adder (Kogge and Stone, 1973). The Hillis-Steele

algorithm trades an extra half-warp of pad columns to eliminate branching (leftmost 8 columns of orange

identity elements in Figure 6.10). After the scan, the last element in the warp array contains the total sum.

Therefore, this WarpScan method can also implement WarpReduce (denoted as WRn ie WR8 for n = 8).

For my WarpScan and WarpReduce experiments, I implemented parallel scan code based on

Kogge-Stone, Sklansky and Brent-Kung adders but Kogge-Stone was the clear performance winner (see

Figure 6.11). Both Sklansky and Brent-Kung require extra branching operations and more registers.

Brent-Kung also requires twice as many logarithmic stages, 2∙log2(n)–1 vs. log2(n).

Half-Warp Pad
for ‘Reach Back’

Set to Identity value

Data Warp
To Scan

0 0 0 00 0 0 0 3 1 1 4 1 4 3 2 3 3 2 1 1 3 2 2

0 0 0 00 0 0 0 3 4 2 5 5 5 7 5 5 6 5 3 2 4 5 4

0 0 0 00 0 0 0 3 4 5 9

0 0 0 00 0 0 0 3 4 5 9 7 9 7 7 7 8

0 0 0 00 0 0 0 3 4 5 9

10 12 10 12 11 10

10 14 17 19 19 21 22 19 19 18 18 17

10 14 17 19 22 25 27 28 29 32 34 36

S[i] = S[i-1]⨁S[i]

S[i] = S[i-2]⨁S[i]

S[i] = S[i-4]⨁S[i]

S[i] = S[i-8]⨁S[i]

Total Sum

156

Figure 6.11: Warp Scan Total cycles – Total cycles used by Kogge-Stone, Sklansky, and Brent-Kung Warp-Scan

methods for increasing run lengths, n in [2..32] as powers of two on the GTX Titan, All three methods use shared

memory to communicate results across threads. Also shown is an alternate Kogge-Stone method (dashed line) that

uses registers to communicate results across threads via the .PTX SHUFFLE command resulting in fewer cycles.

 Figure 6.12 shows two implementations of Warp-Scan based on the Kogge-Stone adder layout.

The left panel shows unrolled code that shares intermediate prefix sums across using shared memory.

The first iteration reaches back one column (-1), each subsequent iteration doubles the number of columns

to reach back. After five iterations (5 = log2(32)) the exclusive prefix sum for the entire data warp has

been computed. The last valid data column contains the total sum (warp-sum) that is needed for Warp-

Reduce. This implementation will work for both Fermi and Kepler architectures. The right panel shows

.PTX code that shares intermediate prefix sums across threads using registers via the new Kepler specific

“Shuffle” command. The “Shuffle” warp-scan is faster and avoids having to use shared memory at a loss

of generality as the desired sum operator (⨁) must be hard-coded. WarpReduce is the exact same

function as WarpScan, except the focus is on extracting the total-sum from the last data column in shared

memory (or from the last thread for the shuffle version).

2 4 8 12 16 20 24 28 32
0

100

200

300

400

500

600

700

N = Number of Elements [2,4,8,16,32]

A
v
e

ra
g

e
 C

y
c

le
s

WarpScan -- Cycles for small warps (N)

Brent-Kung (Sh.Mem)

Sklansky (Sh.Mem)

Kogge-Stone (Sh.Mem)

Kogge-Stone (Regs)

157

Template <valT, 𝕀, fill>
WarpReduce_ShMem(fSum,rSum, ⨁, WS)

if (fill)
 WS[-16] = 𝕀; // Zero out pads
 WS[0] = rSum; // Set input to scan
else
 rSum = WS[0]; // Get initial scan
end if

// Warp-Scan (Kogge-Stone layout)
WS[0] = rSum = WS[-1]⨁rSum;
WS[0] = rSum = WS[-2]⨁rSum;
WS[0] = rSum = WS[-4]⨁rSum;
WS[0] = rSum = WS[-8]⨁rSum;
WS[0] = rSum = WS[-16]⨁rSum;

fSum = sm_S3[S3_last]; // Final Sum

end WarpReduce_ShMem

U32 WarpScan_Regs_AddU32(U32 inVal)
 U32 outVal = inVal;
 asm volatile
 (
 "{\n\t" // Local Scope (start)
 ".reg .u32 RB;\n\t" // Reach Back
 ".reg .pred P0;\n\t"// Active(T/F)
 "shfl.up.b32 RB|P0, %0,0x1,0x0;\n\t"
 "@P0 add.u32 %0, RB, %0;\n\t"
 "shfl.up.b32 RB|P0, %0,0x2,0x0;\n\t"
 "@P0 add.u32 %0, RB, %0;\n\t"
 "shfl.up.b32 RB|P0, %0,0x4,0x0;\n\t"
 "@P0 add.u32 %0, RB, %0;\n\t"
 "shfl.up.b32 RB|P0, %0,0x8,0x0;\n\t"
 "@P0 add.u32 %0, RB, %0;\n\t"
 "shfl.up.b32 RB|P0,%0,0x10,0x0;\n\t"
 "@P0 add.u32 %0, RB, %0;\n\t"
 "}\n\t" // Local Scope (stop)
 : "+r"(outVal) // ASM operands
);
 return outVal;
end WarpScan_Regs_AddU32

Figure 6.12: WarpReduce and WarpScan methods: These methods are implemented using the Kogge-

Stone adder, Hillis-Steele variant. The left panel contains code that shares results across threads using

shared memory. The right panel contains Kepler-only code that shares results across threads using

registers via the .PTX shuffle command. Note: The volatile key word used when declaring the warp-

scan array pointer into shared memory is very important for correct behavior. Without it, the CUDA

compiler will optimize away some of the required instructions.

WarpScan and WarpReduce are the fastest known GPU methods for scanning and reducing an

entire data warp in parallel. Their high performance comes from having low depth (5 stages = log2(32)),

from having few instructions per stage (3 for the shared memory version, 2 for the shuffle version), and

by avoiding branching via reach-back padding. Unfortunately, there is a RAW dependency between each

pair of instructions in the instruction chain that makes it hard for the SM scheduler to exploit ILP in order

to hide stalls. On the other hand, providing multiple parallel thread warps for the SM scheduler to exploit

TLP does work to hide stalls.

Total Cycles: Assume n is the run length, S is the amount of time to transfer data between shared

memory and registers, and k is the instruction pipeline length. Then, the shared memory version of

WarpScan takes [(2S+k)∙log2n + 2S] total cycles and the shuffle version of WarpScan takes [2k∙log2n +

k] total cycles.

158

6.6.4 RunUpdate (RUn) method

The RunUpdate method (denoted as RUn, i.e. RU8 for n = 8; this is also known as Fan) updates

a short run of n elements (n ∈ [2..32]) with a common prefix, which is accumulated into each and every

run value. My RunUpdate implementation is fairly straightforward (see Figure 6.13). Since each

individual update is independent of all other updates, there are no RAW dependencies between

instructions, so this method has strong support for hiding stalls via ILP. This method takes O(n) = k + n-1

total cycles. The ScanUpdate method is not shown (denoted as SUn, i.e. SU8 for n=8). However, it

basically follows a SerialScan immediately with a RunUpdate on the same short run.

template< valT, sumT, rL >
RunUpdate(prefix, ⨁, v1, v2, v3, v4, …) // Add prefix into run

 if (rL >= 1) { v1 = prefix⨁v1; }
 if (rL >= 2) { v2 = prefix⨁v2; }
 if (rL >= 3) { v3 = prefix⨁v3; }
 if (rL >= 4) { v4 = prefix⨁v4; }
 if (rL >= 5) { v5 = prefix⨁v5; }
 if (rL >= 6) { v6 = prefix⨁v6; }
 if (rL >= 7) { v7 = prefix⨁v7; }
 if (rL >= 8) { v8 = prefix⨁v8; }

end RunUpdate

Figure 6.13: The RunUpdate method for short runs (n ≤ 8). Code in light grey gets elided away at

compile time.

6.6.5 BlockReduce and BlockScan Methods

I use the RunLoad, RunStore, SerialReduce, SerialScan, WarpScan, and RunUpdate

methods as building blocks to implement a 3-level nested reduce or scan over an entire data block. The

BlockScan method consists of seven stages (Input, S1-S5, and Output). For BlockScan, the input is

one data block of data (DBS elements), and the output is one data block of {inclusive | exclusive} scanned

results. The stages are paired as Input and Output, S1 and S5, S2 and S4. The stage S3 is nested within

the pair S2 and S4, and stages S2 and S4 are nested within the pair S1 and S5 and the Input and Output

stages wrap the rest of the stages S1-S5. The BlockReduce method uses only the first four stages (Input,

S1-S3) from BlockScan with the SerialReduce and WarpReduce methods replaced by the

corresponding SerialScan and WarpScan methods. For BlockReduce, the input is one data block of

159

data (DBS elements), and the output is a single block-sum. For BlockReduce, stage S3 is nested from

stage S2 which in turn is nested from stage S1 and the input stage loads the original DBS data elements to

be reduced before stage S1 begins its work. To support the sharing of intermediate sums and prefixes

across the stages and across the threads, there are also three arrays (S1-S3) kept in shared memory.

Input: For all threads in the thread block, each thread loads a short sequential run of ‹nWork›

items from memory into registers. The entire thread block (TBS) loads DBS data elements from

global memory (DBS = nWork∙TBS).

S1 (SerialScan #1): For all threads in the thread block, each thread serially scans, or reduces,

its ‹nWork› run to a single S2 run-sum. Each thread then stores its S2 run-sum into the S2 array.

The entire thread block stores TBS S2 run-sums into shared memory (TBS = nWarps∙WarpSize).

S2 (SerialScan #2): For the first thread warp of each thread block (all other warps idle), each

thread loads and inclusively scans, or reduces, a short sequential run of ‹nWarps› S2 run-sums to

a single S3 run-sum. Each thread in the active thread warp stores its S3 run-sum into the S3

array. The active thread warp stores WarpSize (32) S3 run-sums.

S3 (WarpScan): All the threads in the first (active) thread warp then cooperatively warp-scan

the S3 run-sums into an inclusive S3 prefix sum. The final block-sum is the last entry of this

scanned S3 array.

S4 (RunUpdate #1): This stage effectively unwinds the nesting of stage S2, each active S2

thread retrieves its missing prefix-sum from stage S3 by reaching back one entry in the scanned

S3 array. This exclusive prefix-sum is then accumulated into all the scanned S2 run-sums, and

the updated S2 run-sums are stored back into the S2 array as an exclusive run (by reaching back

one register entry on output). The active thread warp stores TBS updated S2 run-sums into the S2

array.

S5 (RunUpdate #2): This stage effectively unwinds the nesting of stage S1, All threads in the

thread block load their missing exclusive prefix-sums from the S2 array, as computed in stage S4.

160

The S2 prefix is first accumulated with the current row-start (missing data row prefix). This

common prefix is accumulated into the locally scanned S1 run to achieve globally correct scan

results. The final block-sum is then accumulated into the current row-start to prepare for the next

data block along the row. The resulting {inclusive | exclusive} scanned run is then stored back

into the S1 array based on the requested type of scan. The entire thread block stores DBS results.

Output: This stage is paired with the input stage. For all threads in the thread block, each thread

stores its short-scanned run of ‹nWork› results from registers back into global memory. The

entire thread block stores DBS scanned results into global memory.

BlockScan Register Optimization: For block scans, I preserve the ‹nWork› and ‹nWarps› runs in

registers between the paired stages S1 and S5 as well as between the paired stages S2 and S4, respectively.

This approach decreases the required I/Os of the nested Scan-then-Fan pattern used in BlockScan from

four to two and improves performance at the cost of increased register pressure.

My four-stage BlockReduce implementation for the *NO* range checking

(BlockReduce_RC_NONE) case is shown in Figure 6.14. The code for my other three range checked

versions of BlockReduce (*_RC_START, *_RC_STOP, and *_RC_BOTH) as required by my Row

DASk are not shown. The code is quite similar with only minor differences in the RunLoad and

RunStore methods to support range checking.

161

BlockReduce Method
template< valT, sumT, … , nWarps, nWork, 𝕀 >
BlockReduce_RC_NONE(blockSum, inPtr, tid, ⨁
 S1_store, S1_run, S2_store, S2_run, S3_base)

 // In parallel across all threads in entire thread block

 // INPUT: Load short sequential <nWork> run
 // Convert between warp & sequential view
 RunLoad_RC_NONE<valT, WarpSize, 0, nWork >(inPtr, S1_v1, S1_v2, ...);
 RunStore_RC_NONE<valT,S1_warpPad,0u,nWork>(S1_store, S1_v1, S1_v2, ...);
 RunLoad_RC_NONE<valT, 1u, 0u, nWork>(S1_run, S1_v1, S1_v2, ...);

 // S1: Serial Reduce <nWork> run
 SerialReduce<valT, sumT, nWork>(S1_runSum, ⨁, S1_v1, S1_v2, ...);
 S2_store[0] = S1_runSum; // Store S1 runSum in S2 array

 if (nWarps >= 2u) { __syncthreads(); } // Barrier

 if (tid <= WarpSize) // In parallel across all threads in first warp
 // S2: Load & Serial Reduce <nWarps> run of S1 run-sums
 RunLoad_RC_NONE<valT, 1u, 0u, nWork>(S2_run, S2_v1, S2_v2, ...);
 SerialReduce<valT, sumT, nWork>(S2_runSum, ⨁, S2_v1, S2_v2, ...);

 // S3: Load & Warp-Reduce S2 run sums
 volatile valT * S3_warpPtr = (volatile valT *)&(S3_base[S3_first+tid]);
 WarpReduce<valT,sumT,𝕀,WarpSize,true,true>(S3_warpPtr, S2_runSum, ⨁);

 end if

 if (nWarps >= 2u) { __syncthreads(); } // Barrier

 // In parallel across all threads in entire thread block

 // Grab final block-sum
 blockSum = S3_base[S3_last];
end BlockReduce

Figure 6.14: BlockReduce code outline. The BlockReduce (bottom panel) is done in four stages. INPUT)

Each thread loads a run of ‹nWork› data elements. S1 – Each thread serial reduces its run. S2 – Each

thread in the first warp loads and serial reduce a run of ‹nWarps› S1 run-sums. S3 – The first warp

cooperatively Warp-Reduces the data warp of S2 run-sums down to the final block sum.

My seven-stage BlockScan implementation for the *NO* range checking

(BlockReduce_RC_NONE) case is shown in Figure 6.15. As before, the other 3 range checked versions

are not shown. Figure 6.15 consists of two panels. The upper panel shows how to setup various

constants, pointer and indices that represent the three shared memory arrays (S1-S3) used by BlockScan.

The lower panel contains the actual code for the seven-stage BlockScan method.

162

Scan Setup

// Constants
TBS = nWarps*WarpSize; DBS = nWork*TBS; DWS = nWork*WarpSize;
S1_Stride = S1_PAD+WarpSize; S1_size = …;
S2_Stride = S2_PAD+WarpSize; S2_size = …;
HalfPad = WarpSize/2; S3_First = 1u + HalfPad;
S3_Stride = S3_First + WarpSize;
S3_Last = S3_Stride-1u; S3_size = …;
S1_base = 0u; S2_base = S1_size; S3_base = (S1_size+S2_size);

// S1-S3 Arrays (in Shared Memory)
__shared__ valT sm_S1[(S1_size+S2_size+S3_size)];

warpRow = threadIdx.y; // Which Warp in thread block
warpCol = threadIdx.x; // Which thread in warp
tid = (warpRow*WarpSize) + warpCol; // Unique Thread ID in thread block

// Zero S1-S3 arrays to identity
SetWarpArrayFixed< … >(sm_S1, 𝕀, warpRow, warpCol);

// Load initial row-start (prefix)
rowStart = rowStarts[blockIdx.y];

// Setup S1-S3 offsets & pointers
IO_off = (warpRow*DWS) + (S1_base+warpCol);
S1_storeOff = S1_base + RakePow2<WarpSize, 1 , S1_PAD>(IO_off);
S1_runOff = S1_base + RakePow2<WarpSize, nWork , S1_PAD>(nWork*tid);
S2_storeOff = S2_base + RakePow2<WarpSize, 1 , S2_PAD>(tid);
S2_runOff = S2_base + RakePow2<WarpSize, nWarps, S2_PAD>(nWarps*tid);
S3_warpOff = (warpRow*S3_stride)+(S3_base+S3_first+warpCol);

S1_store = &(sm_S1[S1_storeOff]);
S1_run = &(sm_S1[S1_runOff]);
S2_run = &(sm_S1[S2_runOff]);
S3_warp = (volatile valT *)&(sm_S1[S3_warpOff]);

...

...

BlockScan Method
template< valT, sumOp, BlockSize, WarpSize, WPT, 𝕀 >
BlockScan(out, in, rowStart, tid, ⨁, …) // … → S1-S3 offsets & pointers

 // In parallel across all threads in entire thread block

 // INPUT: Load run of <nWork> data from global memory
 // Convert from coalesced warp by warp layout to sequential layout
 RunLoad <valT, WarpSize, nWork>(in, S1_v1, S1_v2, S1_v3, ...);
 RunStore<valT, S1_stride, nWork>(S1_store, S1_v1, S1_v2, S1_v3, ...);
 RunLoad <valT, 1, nWork>(S1_run, S1_v1, S1_v2, S1_v3, ...);

 // S1: Serial Scan short run of nWork elements
 SerialScan<valT, sumOp, nWork>(⨁, S1_v1, S1_v2, S1_v3, ...);
 S1_runSum = …; // Save S1 run-sum

 sm_S1[S2_storeOff] = S1_runSum; // Store S1 run-sum in S2 array

 if (nWarps >= 2u) { __syncthreads(); } // BARRIER

 if (tid < WarpSize) // In parallel across all threads in first warp
 // S2: Load & Serial Scan short run of nWarps S1 run-sums
 RunLoad< valT, 1, nWarps >(S2_run, S2_v1, S2_v2, S2_v3, ...);
 SerialScan<valT, sumOp, nWarps>(⨁, S2_v1, S2_v2, S2_v3, ...);
 S2_runSum = …; // Save S2 run-sum

 // S3: Warp Scan (scan S2 run-sums)
 WarpScan<valT, 𝕀, true>(S2_runSum, ⨁, S3_warp);

163

 // S4: Run Update S2 run with S3 prefix
 S3_prefix = S3_warp[-1]; // Grab S2 prefix (Reach Back)
 RunUpdate<valT,runLen>(S3_prefix, ⨁, S2_v1, S2_v2, S2_v3, ...);
 // Store exclusive scanned results in S2 array
 RunStore< valT, 1, nWarps >(S2_run, S3_prefix, S2_v1, S2_v2, …);
 end if

 if (nWarps >= 2u) { __syncthreads(); } // BARRIER

 // In parallel across all threads in entire thread block

 // S5: Run Update S1 run with S3 prefix (& current rowStart)
 // Carry: Also sum final block-sum into current row-start
 blockSum = S3_warp[S3_Last];
 S2_prefix = rowStart⨁sm_S1[S2_storeOff];
 rowStart = rowStart⨁blockSum;
 RunUpdate<valT, sumOp, nWork>(S2_prefix, ⨁, S1_v1, S1_v2, S1_v3, ...);

 // Store {exclusive | inclusive} scanned results in S1 array
 if (bExclusive)
 RunStore<valT, 1, nWork>(S1_run, S2_prefix, S1_v1, S1_v2, ...);
 else
 RunStore<valT, 1, nWork>(S1_run, S1_v1, S1_v2, S1_v3, ...);
 end if

 // OUTPUT: Store scanned run of nWork results
 // Convert from sequential to coalesced view
 RunLoad <valT, S1_stride, nWork>(S1_store, S1_v1, S1_v2, ...);
 RunStore<valT, WarpSize, nWork>(out, S1_v1, S1_v2, S1_v3, ...);

end BlockScan

Figure 6.15: The BlockScan (bottom panel) uses a nested Scan then Fan pattern in registers to scan an

entire data block in 7 stages. The Top Panel shows how I setup & pre-compute the S1-S3 view offsets &

pointers to support the BlockScan method. The Bottom Panel contains the pseudo-code for BlockScan.

Total Cycles: The resulting total cycle’s formula for both BlockReduce and BlockScan are quite

complex. They basically sum up all the cycles used by each helper method across all 4 or 7 stages while

including some extra cycles required for additional transition instructions to transfer intermediate results

between stages. I summarize the total cycles required for BlockReduce and BlockScan moving forward as

BRDBS‹nWarps, nWork› and BSDBS‹nWarps,nWork›, respectively.

BlockReduce and BlockScan Issues: Implementing both methods resulted in the discovery of the

following four issues:

1) Each of the S1–S3 arrays require two views into its data (store = warp, run = sequential).

2) Each stage of the nested method [S1-S3] requires its own shared memory array for

communicating results between threads in the thread blocks which may constrain occupancy.

3) Accessing shared memory sequentially may result in k-way bank conflicts.

164

4) Barrier synchronization is required for correct results when sharing data across multiple thread

warps.

See Section 6.7 for more details on issues 1-3; issue 4 is discussed in the next section.

Barrier Synchronization: Both BlockReduce and BlockScan need to communicate and coordinate

data across warps within each thread block. For instance, the input to stage S2 is the S1 run-sums from

multiple warps. Since the order in which the SM hardware scheduler can call each thread warp is not

deterministic, a barrier (syncthreads; see Section 2.2.3) is needed after stage S1 to force each thread

warp to wait for all other thread warps to complete. Similarly, I need another barrier after stage S3 before

all warps can safely extract the final block-sum from the last column in the S3 array.

Constraints on Occupancy: Both methods preserve runs in registers across stages and communicate

run-sums between warps in shared memory. Because these methods consume a lot of registers and shared

memory, both architectures, Fermi and Kepler, quickly reach constraints on occupancy. For better

performance, the programmer must take these constraints into account when choosing the initial CTA

grid-size launch parameters. If the grid work load does not evenly divide the number of SMs on the

current GPU, then left-over SMs must work on their data rows while the rest sit idle, this hurts

performance. I discuss this issue more fully in Section 6.7.3.

Benefits: My BlockReduce and BlockScan methods support sequential access at the second CTA

level of threads within a thread block and do this by partitioning a data block into short sequential runs

and distributing those runs across all threads. Both methods are implemented using a three level nested

pattern in seven (or four) stagesin seven (or four) stages [S1-S3] based on divide and conquer recursion.

The BlockReduce method reduces the entire data block to a single block-sum. The BlockScan method

scans the entire data block into a local prefix sum. Both methods supports experiments on finding an

optimal combination of TLP and ILP using the nWarps and nWork template parameters. Both parameters

are created as part of initializing and launching the GPU_Reduce and GPU_Scan kernels and then passed

through into the BlockReduce and BlockScan methods. The nWork parameter controls the amount of

165

work per thread in each data block, this shows up in the code as the manual loop unrolling of multiple

data elements that the GPU programmer must write to support the desired reduce or scan behavior for the

Input (and Output) and S1 (and S5) stages. The nWarps parameter controls the amount of thread warps

per thread block, this shows up in the code when initializing the S1-S3 storage array pointers for each

thread and then the manually loop unrolling for the S2 (and S4) stages. For better performance, both

methods need to mitigate issues related to coalescence, bank conflicts, and constraints on occupancy, as is

described in Section 6.7.

Limitations: Both my BlockReduce and BlockScan methods consume many per-thread registers

and shared memory resources. Such high consumption can constrain occupancy, limit TLP, and reduce

the scheduler’s ability to hide latency. Furthermore, both methods use two barriers per data block, which

can also slow performance and create ILP scheduling bottlenecks. Both methods are quite complex and

specific to reduce and scan operations and thus are not easily reused for other GPU kernels when solving

other problems.

6.6.6 GPU Reduce and Scan Primitives

 In this section, I give a high level overview of the implementations for the Reduce and Scan

primitives and the kernels that make up each primitive, and then I explain how to use my Row DASk as

part of implementing those GPU kernels.

Reduce: My Reduce primitive on the GPU follows the Run-Reduce parallel pattern using two kernels:

GPU_Reduce and GPU_SumRows. My GPU_Reduce kernel does most of the work by reducing n inputs

to r row-sums, row by row and block by block, using the BlockReduce method on each data block. The

kernel then accumulates the resulting block-sums for each data block into a row-sum. The GPU_SumRows

kernel reduces the r row-sums to the final-sum using a single instance of BlockReduce on a single

thread block. The reduce primitive across both kernels results in ⌈
𝑛

32
⌉+r+⌈

𝑟

32
⌉+1 = O(n+r) total I/Os. If

166

we assume r is much less than n (r ≪ n,), then the Reduce primitive requires a little bit more than one

global I/O transfer per data warp.

Scan: My Scan primitive on the GPU follows the Reduce-than-Scan parallel pattern using three

kernels:GPU_Reduce, GPU_SumsToStarts, and GPU_Scan. The GPU_Reduce and

GPU_SumsToStarts kernels are used together to generate missing row-prefixes for each data row. These

row-prefixes, which I call row-starts, are then consumed by the GPU_Scan kernel to generate globally

correct scan results. The GPU_Reduce (described in the previous paragraph) does about one-third of the

total work involved in running the Scan primitive. The GPU_SumsToStarts kernel exclusively scans r

row-sums into r row-starts using a single instance of BlockScan on a single thread block. My

GPU_Scan kernel does about two-thirds of the work by partitioning n inputs into r data-rows and then

scanning each row, data block by data block, using the BlockScan method. BlockScan generates a

block of locally scanned results. The missing row-start (row-prefix) is then summed into each local result,

and the globally correct scan results thus obtained are then output. After each data block has been

scanned, the resulting block-sum is accumulated into the current row-start to make the row-start correct

for the next data block along the row. The Scan primitive across all three kernels results in ⌈
3𝑛

32
⌉+2r +⌈

2𝑟

32
⌉

= O(n+r) total I/Os. If we assume that r is much less than n (r ≪ n), then the Scan primitive requires a

little bit more than three global I/Os per data warp on average.

Matching Data Rows Issue: Since the GPU_Scan kernel consumes scanned row-starts (as row-

prefixes) that were originally generated as row-sums by the GPU_Reduce kernel, then both kernels must

process the exact same data rows for correct results. To ensure these data rows match up across kernels, I

use the same underlying Row DASk for both kernels, and I also use the exact same CTA layout

parameters across both kernels.

Row DASk: I use my high-level Row DASk (introduced in Chapter 5) for both the GPU_Reduce and

GPU_Scan kernels as it supports data partitioning into data rows and data blocks and processes blocks

167

sequentially along each row. This DASk also supports warp-alignment and automatic load balancing of

data across the grid rows. This DASk also provides setup and support for a range-check pattern

[‹FIRST?›, ‹MIDDLE*›, ‹LAST?›], which pushes expensive range checks out of the middle section and

into the first and last data blocks. This approach amortizes the range check costs over the large middle

section. The initial setup also helps support full coalescence by aligning the input array to a data warp

boundary.

There are three main downsides to using my Row by Row DASk:

1) There are higher one-time setup costs that need to be amortized across large numbers of data

blocks. Thus, this skeleton tends to be slower for small input sizes (n < 106) than other

simpler GPU kernels.

2) The programmer needs to generate four very similar but slightly different versions of the

BlockReduce and BlockScan methods to support the four different range checking interval

types. Generating these increases the likelihood of cut and paste style errors.

3) The small grid sizes used (r < 1,000) tend to make performance sensitive to whether the

workLoad represented by the grid evenly divides across the SMs on the GPU card.

168

 A high-level outline of my GPU_Scan method on the Row DASk is shown in Figure 6.16.

template< valT, sumT, 𝕀, bExclusive, logWarpSize
 BlockX, nWarps, nRows, nWork, S1_PAD, S2_PAD >
GPU_Scan(outVals, inVals, inRowStarts, start, stop, startDest, ⨁)

 // Setup Row by Row Skeleton
 ... // bid, tid, TBS, DBS, dataOff, startRun, stopRun, rowStride, ...

 LoadBalance<…>(…);
 SetRangePattern<…>(…); // <FIRST?><MIDDLE*><LAST?> or <BOTH?>

 if (rcBoth) // <BOTH?> case => Range check [start, stop]

 end if

 if (rcFirst) // <FIRST?> case => Range check [start, …)

 dataOff = dataOff + DBS; // Move to next block along row

 end if

 // Scan all safe data blocks in row (in parallel across all threads)
 while (dataOff < stopRun) // <MIDDLE*> case => No range checking

 dataOff = dataOff + DBS; // Move to next block along row
 end while

 if (rcLast) // <LAST?> case => range check (…, Stop]

inPtr = inVals[dataOff+IO_idx];
outPtr = outVals[dataOff+IO_idx];

BlockScan_RC_NONE< valT, sumT, DBS, WarpSize, nWarps, nWork >
 (
 outPtr, inPtr, rowStart, tid, ⨁,
 S1_storeOff, S2_storeOff,
 S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr
);

BlockScan_RC_START< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 >
 (
 outVals, inVals, rowStart, tid, ⨁, dataOff, start,
 S1_storeOff, S2_storeOff,
 S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr
);

BlockScan_RC_BOTH< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 >
 (
 outVals, inVals, rowStart, tid, ⨁, dataOff, start, stop,
 S1_storeOff, S2_storeOff,
 S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr

);

User Setup (Setup S1-S3 offsets & pointers)
… // See figure 6.18 (Top Panel)
…
// Initialize Row Start prefix
rowStart = inRowStarts[bid];

169

 end if

end GPU_Scan

Figure 6.16: GPU_Scan code outline. Changes from the Copy_Row DASk shown in purple.

There are 4 different user snippets (BlockScan_*) but they are all the same except for range

checks on loads and stores between global memory and registers.

 My GPU_Reduce method (not shown) is similar to the GPU_Scan code but with four main differences.

1) The GPU_Reduce kernel function interface replaces the outVals and inRowStarts parameters with

an outRowSums parameter.

2) On Initialization, each thread block sets its row-sum to identity.

3) All calls to BlockScan methods are replaced by equivalent calls to BlockReduce methods,

followed by a simple sum statement to accumulate the block-sum into the current row-sum.

4) On finalization, the first thread in the thread block writes out the final row-sum to the row-sums

array.

BlockScan_RC_STOP< valT, sumT, DBS, WarpSize, nWarps, nWork, 𝕀 >
 (
 Out, In, rowStart, tid, ⨁, dataOff, stop,
 S1_storeOff, S2_storeOff,
 S1_storePtr, S1_runPtr, S2_runPtr, S3_warpPtr
);

170

Template Parameters: The following template parameters (see Table 6.6) are used to support

genericity and experimentation:

Parameter Explanation

valT This parameter is a place holder for the underlying data type to reduce or scan

(U32 for instance).

sumT This parameter declares the type of the binary operator ⨁ used for summation

(usually as a C++ functor).

𝕀 This parameter is the identify value for the sum operator and is also used as a

default value for out of range loads.

bExclusive This parameter defines whether an exclusive {true} or inclusive {false} scan is

wanted.

logWarpSize This parameter is the base 2 logarithm of the fixed number of threads per warp,

5 = log2(32).

BlockX and nWarps These parameters specify the fixed number threads per thread block as a 2D

layout (TBS=BlockX∙nWarps) (TBS=128). I always set BlockX = WarpSize

(32), so that nWarps correctly refers to the number of warps per thread block.

nRows This parameter is the fixed number of data rows (r) from the previous

discussion and is also the fixed number of thread blocks in the 1D CTA grid

{aka GridSize.y}.

nWork This parameter is the fixed amount of data elements per thread to load and

scan (or reduce) in each fixed-size data block.

S1_PAD and

S2_PAD

These parameters specify whether the “pad and rake” technique (see section

6.7.2) to avoid bank conflicts needs to be done for the stages S1 & S2

respectively. Both pads are set to a value of {0|1}, Zero (0) indicates no

padding and raking is needed, One (1) indicates that the appropriate S1 or S2

store & run pointers should be padded and raked to avoid bank conflicts.

Table 6.6: GPU_Reduce / GPU_Scan Template Parameters

171

 Function Parameters: The following function parameters (see Table 6.7) are used to reduce or scan

the input array into an output array of r column sums or n scanned results respectively:

Parameter Explanation

outVals (Scan only) This parameter is the output array that receives n scanned results.

outRowSums (Reduce only)This parameter is the output array that receives r row-sums.

inVals (Scan and Reduce) This parameter is the input array containing the data

elements.

inRowStarts (Scan only)This parameter is the input array containing the missing row

prefixes for each data row for globally correct scan results.

[start, stop] These parameters identify the range of the input array inVals to scan or reduce.

The input size (n) can be computed from the range as n=stop-start +1.

⨁ This parameter is the binary operator (functor) used to sum data.

Table 6.7: GPU_Reduce / GPU_Scan Function Parameters

CTA Parameters: The following Grid and Block layout parameters are chosen to support TLP:

Parameter Explanation

Thread Block Size

(TBS)

 This parameter is chosen as a 2D block of threads [128=‹32,4,1›] to take

advantage of Thread Level Parallelism (TLP) and support multi-issue on each

SM.

Grid Size (GS) This parameter is chosen as a 1D grid ‹1,224,1› (for a GTX Titan, 224 = 14

SMs per GPU times 16 concurrent blocks per SM to keep each SM busy and to

load balance the concurrently running thread blocks evenly across all the SMs

on the GPU card.

Table 6.8: GPU_Reduce / GPU_Scan CTA Parameters

Total Cycles: I can express total cycles in terms of previously defined quantities: r data rows (and

thread blocks), c data blocks per row, DBS = Data Block Size, TBS = Thread Block Size. I assume that

each BlockReduce and BlockScan takes BRDBS‹nWarps, nWork› and BSDBS‹nWarps, nWork› total

cycles respectively.

For the Reduce primitive, the GPU_Reduce kernel using p SM cores takes ⌈𝑟/

𝑝⌉(c∙BRDBS‹nWarps, nWork›) total cycles, and the GPU_SumRows kernel using only one SM core takes

172

BRDBS‹nWarps, nWork› total cycles. For the Scan primitive, the GPU_Reduce kernel is as above, the

GPU_SumsToStarts kernel using only one SM core takes BSDBS‹nWarps, nWork› total cycles, and the

GPU_Scan kernel using p SM cores takes ⌈𝑟/𝑝⌉(c∙BSDBS‹nWarps, nWork›) total cycles.

Benefits: My full Reduce and Scan implementations inherit all of the following benefits of the Row

DASk:

 Achieves I/O throughput similar to the Copy kernel despite the increased complexity of the

Reduce and Scan kernels.

 Partitions data into data blocks and then automatically load balances the data blocks across the r

data rows in the grid with support for range checking.

 Properly range checks all data against the range [start, stop] while pushing and amortizing range

checks into the first and last data blocks.

 Warp aligns starting data offsets [0, 32, 64, …] to support coalescence.

In addition, The Reduce and Scan primitives have the following benefits:

 Supports generic data types and value types

 Supports experiments on TLP and ILP via the nWarps and nWork parameters;

 Avoids or mitigates bank conflicts using the S1_PAD and S2_PAD template parameters (see

Section 6.7.2)

Limitations: As one would expect, my Reduce and Scan implementations also inherit the limitations of

the Row DASk, including the following:

 High setup costs (load balancing, range checking, zeroing arrays) that need to be amortized across

lots of data blocks

 Having to write four slightly different versions of code to handle the four different range checks

 Increased register pressure (load balancing, range checking variables).

 Extra branches to handle the four range check cases [‹FIRST?›, ‹MIDDLE*›, ‹LAST?› or

‹BOTH?›]. This is especially true for the while loop for the ‹MIDDLE*› case gets called once

per data block. Fortunately, my Row DASk implementation was written to avoid divergent

branching.

 The 3-level Reduce and Scan kernels, with nested BlockReduce and BlockScan methods, have

additional disadvantages:

 High register use due to multiple work items per thread

 High shared memory use for conversion and stage arrays (S1, S2, S3.)

 Constraints on occupancy caused by register and shared memory limits

 Lots of template parameters, which can confuse the programmer. For example, once the nWork

and nWarps parameters have been chosen, the programmer still needs to correctly pick the

173

corresponding S1_PAD & S2_PAD template values if they want to avoid bank conflicts when

loading short sequential runs from shared memory.

6.7 Reduce and Scan Implementation Issues

In this section, I show how to mitigate issues of conversion between warp and sequential views, k-way

bank conflicts, and constraints on occupancy.

6.7.1 Conversion between Warp and Sequential Views

For high throughput to global memory, coalescence must be used, which requires a warp by warp

access pattern, and thus a thread wants to access data with a stride equal to one warp (stride = 32).

However, to support non-commutative summation, consecutive elements cannot be reordered since

reordering implies a sequential access pattern, and thus a thread needs to access data with a stride equal to

one element (stride = 1). To resolve this apparent conflict, I convert back and forth between these two

different views of data using a shared memory array. This is a classic space versus. time trade-off.

Table 6.9 shows how to setup offsets and pointers into the shared memory conversion array for

each view (warp and sequential).

Warp View
nWork=4, BankSize=32, Stride=32

00000000000000000000000000000000
11111111111111111111111111111111
22222222222222222222222222222222
33333333333333333333333333333333

Sequential View

nWork=4, BankSize=32, Stride=1

01230123012301230123012301230123
01230123012301230123012301230123
01230123012301230123012301230123
01230123012301230123012301230123

Results in 4-way bank conflicts

DWS = nWork*WarpSize; // Data Warp Size

// Store pointer (Warp view)
S1_storeOff = (warpRow*DWS)+warpCol;
S1_storePtr = &(sm_S1[S1_storeOff]);

DWS = nWork*WarpSize; // Data Warp Size

// Run pointer (Sequential view)
S1_runOff = (warpRow*DWS)+(nWork*warpCol);
S1_runPtr = &(sm_S1[S1_runoff]);

// IN: Convert between Warp & Seq. Views
RunLoad<…,Stride=32>(in,inOff,v1,v2, …);
RunStore<…,Stride={32|33}>(S1_storePtr, …);
RunLoad<…,Stride=1>(S1_runPtr,v1,v2, …);

// OUT: Convert between Seq. & Warp Views
RunStore<…,Stride=1>(S1_runPtr,v1,v2, …);
RunLoad<…,Stride={32|33}>(S1_storePtr,…);
RunStore<…,Stride=32>(out,outOff,v1,v2,…);

Table 6.9: Convert between Warp & Sequential views using a shared memory array. Alternating colors

indicate alternating threads and their matching sequence of 4 work elements [0123] for each view.

For input, there are three steps required to convert between the warp and sequential views:

174

1) ‹nWork› data warps are loaded from global memory into registers using the warp by warp

view (stride = 32) of data for high coalesced throughput.

2) ‹nWork› data warps are stored from registers into the shared memory array using the warp by

warp view (stride = {32|33}, 33 to avoid bank conflicts).

3) A short sequential run of ‹nWork› elements is loaded from shared memory into registers

using the sequential view (stride = 1).

For output, converting between sequential and warp views is similar, just reverse the input

sequence and swap loads with stores.

Converting between the two views supports fully coalesced throughput to global memory as well

as sequential access for non-commutative summation. The conversion comes at the performance cost of

two extra shared memory accesses (on input and again on output.) This conversion requires a shared

memory storage cost equal to the number of elements in the fixed-size data block, O(DBS), where DBS =

nWork∙TBS. Combining this with the memory used by the other stages results in a total shared memory

requirement for BlockReduce and BlockScan of O(DBS+TBS+49). (The magic number “49”

represents the size of the S3 array used in stage S3, to support a warp-reduce or warp-scan on a single

data warp using the Kogge-Stone adder, Hillis-Steele variant.) This conversion is just for the outermost

level of the 3-level nested reduce or scan (AKA the Input and Output stages). Unfortunately, using

shared memory to transfer short sequential per-thread runs between shared memory and registers (or vice

versa) can result in k-way bank conflicts, which I discuss next.

6.7.2 Mitigating Bank Conflicts

Transferring short sequential runs of n elements between shared memory and registers can cause

k-way bank conflicts (1 ≤ k ≤ n). Look at the sequential view panel in Figure 6.22 again. Note that the

individual threads start their respective runs at offsets [0, 4, 8, …, 124]. However, since there are only 32

physical memory banks, the starting bank is equal to mod(offset,32). Look at the first column with four

zeros. The four threads with warp columns equal to [0, 8, 16, 24] respectively all start on the same bank in

175

shared memory [0=(0*8)%32, 0=(8*4)%32, 0=(16*4)%32, 0=(24*4)%32]. This resulting in a four-way

bank conflict. This conflict will be serialized (replaying the load or store instruction 3 more times) for

each transfer, increasing total cycles and slowing down performance.

Not all sequential runs result in k-way bank conflicts. Only those where the run length and the

WarpSize (32) are not relatively prime to each other do so. As shown in Table 6.10, all odd numbered run

lengths will not encounter bank conflicts on transfers.

RL k-way Pad RL k-way Pad RL k-way Pad RL k-way Pad
1 0 0 9 0 0 17 0 0 25 0 0

2 2 1 10 2 3 18 2 3 26 2 1

3 0 0 11 0 0 19 0 0 27 0 0

4 4 1 12 4 3 20 4 3 28 4 1

5 0 0 13 0 0 21 0 0 29 0 0

6 2 3 14 2 3 22 2 3 30 2 7

7 0 0 15 0 0 23 0 0 31 0 0

8 8 1 16 16 1 24 8 1 32 32 1

Table 6.10: Padding needed for a given run length (RL). The k-way columns show the number of bank

conflicts that occur without padding. The Pad columns show the minimal amount of padding needed to

avoid bank conflicts. Pad numbers in bold red have an additional issue with some runs being cut in half

by the pad columns.

There are four solutions to mitigate bank conflicts, three that I tried, and one that I discovered that

CUDA applied on my behalf – 1) live with the conflicts; 2) use run-lengths that are odd numbers; 3) use

the Pad & Rake technique on run lengths that are powers of two; or 4) apply CUDA’s aligned vector2 or

vector4 optimization on run lengths that are exactly [2, 4, 8] in length.

Live with the bank conflicts: Since potential solutions may cost more operations than the serialized

replay instructions caused by the bank conflicts themselves, for some runs it may be faster to just live

with the k-way bank conflict (especially if k is small). This is the solution, I use for runs of length 6.

Doing nothing results in one two-way bank conflict per transfer and thus a total of six extra transfer

replays per run (where 6 = 6 work items∙(2 replays – 1 original transfer)).

Use odd-numbered run-lengths: Since odd numbered run lengths are always relatively prime to the

WarpSize (32), using odd numbered run lengths will avoid all bank conflicts. This is an easy solution.

176

Use Pad & Rake on run lengths that are a power of two: For run lengths that are a power of two [2, 4,

8, …], I use the Pad and Rake technique due to Blelloch (Blelloch, 1995) to avoid any bank conflicts.

The pad and rake technique is shown in Figure 6.17 and described in the two paragraphs that follow. This

technique will not work with even run lengths that are not powers of two due to a cut-in-half issue (where

at least one sequential run is cut in half by the extra pad columns), which breaks sequential access.

Pad (with 1 extra column)

*0123012301230123012301230123012
3*012301230123012301230123012301
23*01230123012301230123012301230
123*0123012301230123012301230123
0123............................

Shift thread runs over one column

No bank conflicts

Rake
// Constants
BankSize = 32; // Num. of Memory Banks
PAD = 1;
...
// Rake run offset
runIdx = nWork*tid;
rRow = runIdx/BankSize; // idx/32
rCol = runIdx & (BankSize-1); // idx % 32

outIdx = rRow*(PAD+WarpSize))+(PAD+rCol);

Figure 6.17: The Pad and Rake technique to avoid bank conflicts for a run of length 4. The extra

pad column per data warp is shown as a red asterisk. Alternating colors indicate alternating threads

within the warp and their matching runs of 4 work elements [0123] each.

Pad: The shared memory arrays are padded with extra unused memory columns. Consider the

32 threads within a thread warp (WarpSize = 32), these extra pad columns shift each thread’s

access pattern over just enough so that each thread’s sequential run starts on a different bank in

memory and therefor avoids bank conflicts.

Rake: Raking is the process of re-indexing to skip over the extra pad columns. Conceptually,

raking works by switching from the original 1D index without padding to a 2D index (rows, cols)

and then back to a 1D index with the extra pad columns accounted for.

All in all, the Pad & Rake technique is tricky to get right and requires more operations, but fortunately the

raked offsets can be pre-computed and folded into my view conversion pointer initialization.

Apply CUDA’ Aligned Vector2 or Vector Optimization: For run lengths that are exactly 2, 4, or 8,

CUDA partially mitigate the bank conflicts using an aligned vector2 or vector4 optimization. For these

run lengths, CUDA’s low-level SASS compiler will optimize two or four 32-bit load (or store)

instructions into a single 64-bit or 128-bit load (or store) instruction. This decreases the number of

177

instructions and bank conflicts by 4× (as instructions that never get executed do not cause bank conflicts).

This optimization only gets applied when the shared memory access is sequential, aligned to a 64-bit or

128-bit boundary, and run lengths are exactly 2, 4, or 8. Because the data must be aligned to a proper 64-

bit or 128-bit boundary, this aligned vector4 optimization and the Pad & Rake technique are mutually

exclusive.

As we will see in the results section (6.??), This aligned vector4 optimization is faster than Pad &

Rake on the GTX Titan (Kepler) but slower on the GTX 580 (Fermi). The results section will also show

that living with a high number of non-aligned bank conflicts results in poor performance due to the high

number of serialized replays for transfer instructions. For loading sequential runs (length = k) that happen

to be powers of two, the number of serialized replays caused by the resulting k-way bank conflicts grows

quadratically O(k) = k2 = k(k-1) ={ 0 = 1∙0, 2 = 2∙1, 12=4∙3, 56 = 8∙7, … }.

6.7.3 Constraints on Occupancy

In this section, I want to pick my CTA grid size (r = nRows) to achieve good performance. Recall

from chapter 5.?? That I define workLoad as workLoad = nSMs∙nConBlocks, where nSMs is the actual

number of SMs (or SMXs) on a given GPU card and nConBlocks is the expected number of concurrent

thread blocks that can be concurrently running on each SM at the same time while running a given GPU

kernel. I want to pick my CTA grid size to be a multiple of the workLoad so that all thread blocks in the

grid divide evenly across all the SM’s with no left-over thread blocks (rows). A partially full last

workLoad set means that some SM’s continue to work while the rest SM’s idle. Given a very large

gridsize, the poor performance of the last partially full workLoad can be amortized across all the full

workLoads. This means that the Block DASk can effectively ignore this issue for large grids. However,

Since I am deliberately keeping the number of rows small (r ≤ 1000) so that GPU_SumRows or

GPU_SumsToStarts kernel can complete using a single thread block (GS = 1), I need to compute the

correct workLoad and make my grid size a multiple of this work load for best performance.

178

Unfortunately, computing the number of concurrent blocks per SM is complicated by various

constraints on occupancy (see Section 3.3). Recall that the number of concurrent thread blocks and active

thread warps on a GPU are limited not only by direct hardware constraints (‹8, 48› on Fermi, and ‹16, 64›

on Kepler) but also by the register pool size (32K on Fermi and 64K on Kepler) and shared memory pool

size (48 KB on both Fermi and Kepler) on each SM. With some effort, shared memory use can be

predicted ahead of time. Register use by the CUDA compiler is not easily predicted, however. It requires

experiments with the “–verbose” output compiler flag turned on.

To maximize performance, I iterate on a six-step process in order to choose an initial CTA grid size

that respects constraints on occupancy and results in a workLoad that evenly divides thread blocks across

the number of SMs on each GPU:

1) I compile my kernels with the CUDA “–verbose” output flag run on, which reports the expected

registers per thread (count) and shared memory (in bytes) used per block. Note: these results are

estimates; the runtime hardware may actually use more or fewer registers.

2) From these compiler outputs, I compute the excepted number of concurrent thread blocks that can

run at the same time nExpectBlocks = min(regBlocks, shareBlocks, {8|16}). {8|16} comes from

the max concurrent blocks per SM. The register pool size limits blocks as regBlocks = floor(

{32K|64K}/(TBS*RPT)), where{32K|64K} is the register pool size (Fermi or Kepler), TBS =

threads per block, and RPT = registers per thread (from verbose output). The shared memory

pool limits blocks as shareBlocks = floor({16 | 32 | 48KB }/SBB), where {16 | 32 | 48 KB } is

the size of the shared memory pool and SBB = shared bytes per block (from verbose output).

3) From the expected concurrent blocks, I compute my initial work load as workLoad =

nSMs∙nExpectBlocks, where the number of SM or SMX cores is GPU card specific. The work

load is the minimum number of thread blocks needed to evenly divide the grid of thread blocks

across all SM cores on the current GPU device.

4) I choose my actual grid size as a multiple of the workLoad to load balance work evenly across the

SMs on the current GPU card.

5) I run the code using the chosen CTA (grid size, thread block size) and track performance. If I get

slow performance, then either I may have miscalculated or the true register use is higher than the

CUDA compiler originally suggested. I try reducing the number of concurrent blocks by {1|2}

concurrent blocks and re-measure.

6) I repeat steps 1-5 as needed after I rewrite my code, change my data design layout, or modify my

CTA parameters until I am satisfied with the throughput results.

179

6.8 Results

I focus in this section on experiments involving ILP and TLP to find the best performance results.

All tests were performed on a GTX 580 (Fermi) and a GTX Titan (Kepler) using the same host

environment (as shown in Figure 6.25).

CPU Hardware: CPU = i7-4770K@3.50 GHz, RAM=12 GB

GPU Hardware:

GTX 580 (16 SMs, 512 SPs, 1.5 GB RAM, 192.4 GB/s peak throughput)

GTX Titan (14 SMXs, 2,688 SPs, 6.0 GB RAM, 288.4 GB/s peak throughput)

Software: GPU API = CUDA 5.5, C++, IDE = VS 2010, OS = Windows 7, SP1, Pointers = 64-bit

Data: Input size, n = [210 – 228], in increasing powers of two

Table 6.11: Reduce/Scan Experiment Environment

All timings are derived from 101 runs of each test by dropping the first run and averaging the

timings for the last 100 runs. I/O throughput is measured in gigabytes per second (GB/s) by counting the

number of giga-bytes processed and dividing by the average run time in seconds. Total cycles (TC) are

computed as TC=II/IPC by grabbing raw counts (Instructions Issued [II], and average Instructions retired

Per Cycle [IPC]) from NVidia’s NSight Profiler.

In this results section, I focus on two sets of experiments: First experiments on finding the best

throughput by varying TLP and ILP parameters, see Section 6.8.1; Second by running experiments to

measure the total cycles for some of the more interesting TLP and ILP parameters pairs, see Section 6.8.2.

6.8.1 Throughput

At the end of the chapter introduction, Figure 6.4 shows four plots of throughput results by input

size for Reduce (2 kernels) and Scan (3 kernels) on both the GTX 580 and GTX Titan. Four main factors

impact performance: TLP, ILP, efficient memory access patterns, and mitigating issues, such as

converting views, k-way bank conflicts, and constraints on occupancy

I vary both TLP and ILP using template parameters, ‹nWarps, nWork›. For example, my baseline

pair ‹nWarps=1, nWork=1› uses a single thread warp per thread block and loads and reduces/scans a

single work item per thread. I measure throughput for increasing n (as powers of two) for both nWarps

180

and nWork in the range {1..8} resulting in 64 possibilities. I summarize some of the relevant results

below.

Baseline ‹1,1›: My baseline case experiments shows the performance achieved when no extra TLP or

ILP is applied via my template parameters. The best throughputs are taken from each throughput curve

(typically when the input size (n) = 228). The throughputs for all four baseline cases (Reduce vs Scan on

both a GTX 580 and GTX Titan) are summarized in Table 6.12.

Reduce (GB/s) Scan (GB/s)

580 Titan 580 Titan

24.24 40.04 33.57 53.71

Table 6.12: Best Case Summary

TLP-Focused ‹1-8, 1›: In these experiments (see Table 6.13), I test the impact of TLP by varying the

template parameter nWarps in the range {1-8} and leaving nWork fixed at {1, no extra ILP} for n = 228.

On the GTX 580, the best throughput for Reduce and Scan occurs with pair’s ‹6, 1› and ‹5, 1›

respectively. On the GTX Titan, the best throughput for both Reduce and Scan occurs with pair ‹4, 1›.

 Reduce (GB/s) Scan (GB/s)

nWarps 580 Titan 580 Titan

1 24.24 40.04 33.57 53.71

2 40.93 59.29 55.60 77.44

3 58.49 90.32 76.20 114.06

4 71.34 107.85 90.47 136.70

5 84.01 103.71 104.28 130.15

6 91.51 93.64 94.84 115.39

7 82.34 102.94 89.26 125.67

8 77.05 104.68 81.35 128.57

Table 6.13: TLP Reduce / Scan Results

ILP-Focused ‹1, 1-8›: In these experiments (see Table 6.14), I test the impact of ILP by leaving

nWarps fixed at {1, no extra TLP} and varying nWork in the range {1-8} for n = 228. On the GTX 580

the best throughput occurs with the pair ‹1, 6› for both Reduce and Scan. On the GTX Titan the best

throughput occurs with the pair ‹1, 8› for both Reduce and Scan.

181

 Reduce (GB/s) Scan (GB/s)

nWork 580 Titan 580 Titan

1 24.24 40.04 33.57 53.71

2 44.60 72.36 59.84 93.23

3 63.36 95.83 80.60 123.15

4 81.25 124.78 97.54 152.11

5 94.55 122.72 112.45 147.57

6 108.80 133.27 128.37 151.89

7 98.67 152.28 118.43 168.00

8 100.34 164.36 120.08 175.95

Table 6.14: ILP Reduce / Scan Results

Comparing the results from the TLP and ILP experiments, we see that ILP has a bigger impact

and TLP has a lesser impact. Even though, with our copy case studies in Chapter 4, the reverse was the

case. These results make sense to me. Recall that the way I wrote my 3-level nested BlockReduce and

BlockScan methods. The outer most stage (S1) is driven directly by the nWork parameter, with all threads

in the thread block reducing (or scanning) a short run of nWork elements. While the two-inner most

stages (S2 and S3} are driven by the nWarps parameter, reducing (or scanning) a short run of nWarps

elements and then reducing (or scanning) the final data warp. Recall also that in stages S2 and S3 and S4

for Scan) that only a single warp is active, while the rest of the warps in the thread block sit idle. So, the

impact of TLP is in effect muted as only one warp out of nWarps is doing useful work in these inner

stages. Naturally, the programmer would consider reversing the TLP and ILP (inner and outer stages)

with the hope of better throughput. However, I have tried this with disappointing results.

Best Throughput: I ran experiments for all 64 combinations of ‹nWarps, nWork›, each in the range

{1–8}, to find the best overall throughputs for Reduce and Scan on the GTX 580 and GTX Titan GPUs.

Based on my ILP and TLP test results, I would have predicted the pair’s ‹6, 6› and ‹5, 6› would produce

the best throughput for Reduce and Scan on the GTX 580. I would have similarly predicted the pair ‹5, 6›

to have the best throughput for both primitives on the GX Titan. However, after trying all 64

combinations, I discovered that this was not the case. Other pairs were faster. After thinking about this, I

realized that as I varied the ‹nWarps, nWork› parameters, I also increased register and shared memory

182

usage, which puts constraints on occupancy, making it hard to predict winners. I had to brute force test

all combinations to find the best pairs.

The experimental pairs resulting in the best throughput are summarized in Table 6.15 (with best

throughputs typically for n = 228.)

 Reduce (GB/s) Scan (GB/s)

 580 Titan 580 Titan

Best Pair ‹3, 6› ‹3, 8› ‹3, 6› ‹5, 4›

Throughput 172.34 220.30 163.75 220.06

% of Baseline 711% 550% 488% 410%

% of Copy 98.5% 93.2% 93.6% 93.1%

% of Peak 89.6% 76.4% 85.1% 76.3%

Table 6.15: Best ‹TLP,ILP› Summary.

For run lengths that are powers of two {4,8}, I use the Pad and Rake technique to avoid bank

conflicts. For run lengths equal to six, I live with the serialized replays caused by the resulting two-way

bank conflicts. In the next section, I describe the results from trying various experiments on mitigating

bank conflicts.

Bank Conflicts: In this set of experiments, I explore the impact of bank conflicts (and the resulting

serialized replay instructions) on throughput. Figure 6.30 shows GTX Titan Scan throughput results for

five different ways to handle bank conflicts:

 Using the Pad and Rake technique, which avoids all bank conflicts

 Letting CUDA apply its aligned Vector4 optimization on shared memory transfers, which

decreases the number of transfer instructions and bank conflicts by 4×

 Using odd-numbered run lengths, which avoids all bank conflicts ‹3, 5›

 Living with a low number of two-way bank conflicts ‹6, 6›

 Living with a high number of non-aligned bank conflicts ‹4, 8› {4-way & 8-way bank conflicts}.

183

Figure 6.18: Throughput results for five different ways to handle bank conflicts for a

full scan on the GTX Titan (Kepler).

The throughput curves (Figure 6.18 above) and in the summary table (Table 6.16 below) of best

results capture the throughput results. As can be seen, the first four methods for dealing with bank

conflicts are all reasonably good. However, living with a large number of bank conflicts negatively

impacts throughput due to the high number of instruction replays caused by serialization. Living with a

high number of bank conflicts for the pair ‹4, 8› runs at only about 75% of the throughput of completely

avoiding them using the Pad and Rake technique.

BC Results Pad & Rake Align V4 Odd Runs Low BC High BC

Pair‹nWarps,nWork› ‹4, 8› ‹4, 8› ‹3, 5› ‹6, 6› ‹4, 8›

Throughput (GB/s) 214.02 220.05 211.90 206.40 163.50

Table 6.16: Mitigating Bank Conflict Results

Recall that the serialized instruction replays caused by bank conflicts for power of two run

lengths grow at a quadratic rate with the run length (0, 2, 12, 56, …). Interestingly, at least on the GTX

Titan (Kepler), CUDA’s Aligned Vector4 optimization is faster than the Pad and Rake technique. The

opposite is true on the GTX 580 (Fermi). As can be seen from the throughput curves and results,

mitigating bank conflicts is well worth the extra effort for my Reduce and Scan primitives.

210 213 216 219 222 225 228
0

50

100

150

200

250

288.4

N = Number of Elements (powers of 2)

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Full Scan -- Bank Conflict Comparison

High Bank Conflicts (Warps=4, Work=8)

Low Bank Conflicts (Warps=6, Work=6)

NO Bank Conflicts (Warps=3, Work=5)

Align V4 Mitigate (Warps=4, Work=8)

Pad & Rake Avoid (Warps=4, Work=8)

184

6.8.2 Total Cycles

In this section, I gather TC results from the NVidia Compute Visual Profiler (on CUDA 5.5) on

the GTX Titan for n = 228. The results are summarized in Table 6.17 below. The instructions issued (II)

and TC columns are measured as millions of instructions or cycles, respectively. The instructions retired

per cycle (IPC) column has a maximum value of 5.0 instructions per cycle on the GTX Titan. The

Throughput column (for comparison) is measured in Giga-Bytes per second (GB/s). The type pairs with

dark red font have bank conflicts (V4 = 4.2M, Low =10.5M, and High = 54.0M), the rest of the rows have

no bank conflicts.

Type

Pair
II IPC

TC

(II/IPC)

Throughput

(GB/s)

Base‹1 1› 364.9M 0.78 467.9M 53.7

TLP‹4,1› 304.0M 1.59 191.2M 136.7

ILP‹1,8› 110.1M 0.66 166.9M 176.0

P&R‹5,4› 133.8M 0.98 136.5M 220.0

V4‹5,4› 127.7M 0.95 134.4M 224.0

Odd‹3,5› 126.1M 0.89 141.6M 211.9

Low‹6,6› 128.4M 0.86 149.3M 206.4

High‹4,8› 172.2M 1.06 162.5M 163.5

Table 6.17: Total Cycle Results

There are four significant insights that I see in the total cycles data. First, there appears to be a

strong inverse correlation between total cycles and throughput. When total cycles is low, throughput is

high (and vice versa). Second, a high number of instruction replays caused by bank conflicts significantly

increases total cycles and thus decreases throughput performance. For instance, the High‹4, 8› row issues

a lot more instructions (including replays) than the P&R, V4, and Odd rows that mitigate or avoid bank

conflicts. Third, the combination of both low instructions issued (II) and high instructions retired per

cycle (IPC) results in the overall throughput winners. For instance, the TLP‹4, 1› row has great

instructions retired per cycle (IPC = 1.59) but still performs poorly because it issues so many instructions

(II = 304 million). On the other hand, the ILP‹1, 8› row has the smallest number of instructions issued (II

= 110 million), but still performs poorly because it has the worst instructions retired per cycle (IPC =

185

0.66). Fourth and finally, the two highest performing rows P&R‹5, 4› (Avoid Bank Conflicts via Pad &

Rake) and V4‹5, 4› (Mitigate Bank Conflicts via the aligned Vector4 optimization) each have the second

best instructions issued (II) and the third best instructions retired (IPC) but they result in the lowest total

cycles and thus the best throughput.

The formula for total cycles (TC = II/IPC) tells me that there are two ways to attempt to improve

performance by decreasing TC and thus improving throughput:

1) Decrease instructions issued (II) by trying different algorithms or simplifying code.

2) Increase instructions retired, by increasing ILP via software pipelining and increasing TLP

via higher occupancy, to consume as many instructions per cycle (IPC) as possible.

To me, the main lesson is to keep our parallel processing cores (SMs and SPs) and memory

controllers as busy as possible. TLP supports such an effort by providing lots of active thread warps for

the SM on-core scheduler to switch to when the currently executing warp stalls. ILP supports it by

providing lots of independent instructions for the scheduler to harvest to keep the instruction pipeline as

full as possible. Fortunately, both approaches are orthogonal. Therefore, both techniques (TLP and ILP)

can be used to hide pipeline and I/O stalls and keep the processing cores as busy as possible.

6.9 Conclusion

In this chapter, I introduced Reduce and Scan primitives that require only the associative property

(re-grouping) and forbid the commutative property (re-ordering). Non-commutativity implies that short

data runs must be summed or scanned in consecutive order. To do this in the 2-level CTA hierarchy of

GPU’s, I used a 2-level access pattern. At the CTA first level (blocks), I partitioned data using my Row

DASk that sequentially marches along each data row, block by block. At the CTA second level (threads),

for each data block I transferred short runs of consecutive data between global memory and registers

using a conversion array in shared memory.

To make this all work, I had to overcome three main issues that hindered performance:

186

1) To respect coalescence for better global memory throughput, I actually transferred data

between global memory and shared memory using the warp by warp access pattern. I then

converted data to a sequential access pattern using shared memory.

2) To avoid bank conflicts when accessing shared memory which can cause serialized replays, I

discussed and tested several ways of mitigating bank conflicts: using odd length runs, using

the Pad & Rake technique on power of two length runs, using Aligned Vector4’s so that

CUDA can decrease bank conflicts by a factor of 2× or 4×, and, finally, just living with a low

number of serialized replays caused by bank conflicts.

3) Using the Row DASk results in small grid sizes, which makes my solution sensitive to

picking a good work load in six steps that evenly divides the thread blocks in the grid across

the SMs. Picking a good work load requires that the programmer understands constraints on

occupancy and picks the initial grid size accordingly.

By increasing TLP, increasing ILP, using efficient I/O access patterns, and mitigating bank

conflicts, I improved Reduce and Scan performance over my baseline performance. The best performing

throughput for the Reduce primitive was up to 7.1× and 5.8× faster than the baselines on the GTX 580

and GTX Titan respectively. The best performing throughput for the Scan primitive was up to 4.9× and

4.2× faster than the baselines.

6.9.1 Limitations

My GPU Reduce and Scan implementations have three main limitations.

1) Sensitivity to Work Loads: My method uses small grid sizes (r < 1000) which means that if the

grid work load is not setup to evenly divide rows across SMs based on the correct number of

concurrent thread blocks per SM than performance will suffer.

2) Potential Copy and Paste Errors: The amortized range checking pattern used by the Row

DASk means that I had to write the same BlockReduce & BlockScan methods four times with

minor differences to support different types of range checking NONE, [start, …), (…, stop] and

[start, stop]. This means if I find and fix bugs in one of my BlockReduce or BlockScan

methods, I have to remember to make corresponding changes in the other three versions.

187

3) Brute-Force Search of Parameter Space: Due to varying constraints on occupancy as register

and shared memory usage increase, searching the parameter space ‹nWarps, nWork› for the best

throughput is currently brute-force.

6.9.2 Future Directions

My implementations achieved a solid percentage of peak throughput on both the GTX 580

(Reduce = 89.8% and Scan = 85.1%) and GTX Titan (Reduce = 79.7% and Scan = 77.9%), but perhaps

other clever algorithmic improvements, or a ‹nWarps, nWork› pair outside the range I explored, code

simplification, or leveraging of other GPU features may lead to further performance gains.

Overflow Support: The Reduce and Scan primitives should be rewritten to upscale input data types

(32-bit) to larger output data types (64-bit) to handle summations on millions or billions of elements.

Commutative Reduce: For summations, if the commutative as well as associative property is

assumed, then the Reduce primitive can be completely rewritten to sum data blocks into per-thread sums

and then after all the data blocks have been exhausted, block reduce the per-thread sums to a single row-

sum. Reordering data enables direct use of the warp by warp access pattern, thus eliminating the

overhead of my current conversion code (between warp and sequential views). Rewriting also eliminates

the need for a 3-level nested reduce and barriers. The resulting simplified commutative Reduce kernels

should take far fewer instructions, fewer total cycles and thus have higher throughput. Unfortunately, the

GPU Scan kernels still requires consecutive access for correct prefix-sum results. Nevertheless, since the

GPU_Reduce kernel accounts for about one-third of the total work in the full scan primitive, there will be

a modest increase in throughput for the Scan primitive when used with a faster commutative

GPU_Reduce kernel.

6.10 Lessons Learned from Reduce/Scan

In this section, I summarize the lessons learned from this case study. Here is the notation that I

typically use. The symbol n is used to represent the run length, the warp size, or the input size depending

on context. The symbol k is used to represent two unrelated concepts 1) the pipelined instruction length

188

(18-22 cycles on Fermi, 9-11 cycles on Kepler) or 2) alternately the number of conflicting threads in a k-

way bank conflict. The symbol S is used to represent the number of cycles to transfer data between

shared memory and registers (40-80 cycles on Fermi, 20-40 cycles on Kepler). The symbol G is used to

represent the number of cycles to transfer data between global memory and registers (400-800 cycles).

SerialReduce and SerialScan Lessons:

 For both methods, it is faster to load a short run (length n) into registers and then Reduce or Scan

on the run stored in registers instead of Reduce or Scan on the run stored in shared or global

memory. The in-register based methods take O(n) registers, while the in-memory based methods

take O(1) registers.

 Sequential serial reduce or serial scan methods in registers, shared memory, and global memory

take O(k∙n), O(S∙n) and O(G∙n) cycles respectively and O(1) registers.

 Serial Reduce: For better performance on short runs (n ≤ 8), use Sklansky’s adder layout as the

basis for the SerialReduce method (see Figure 6.12). This takes O(n + k∙log2n) cycles and

O(n) registers.

 Serial Scan: For better performance on short runs (n ≤ 8), use Sklansky’s adder layout as the

basis for the SerialScan method (see Figure 6.12). This takes O([(n/2)+k]∙log2n) cycles and

O(n) registers.

 For longer runs (8 ≤ n ≤ 64), consider using a nested serial reduce or serial scan in batches of 4 or

8 work-items to mitigate register pressure.

 Overloading the summation operator as shown in figure 6.14 prevents the CUDA compiler from

de-optimizing away (via unwanted stalls) some of the expected performance.

WarpScan and WarpReduce Lessons:

 For best parallel performance, Use the WarpReduce or WarpScan methods to reduce or scan a

single data warp using a single thread warp (n = 32).

o On Fermi, use WarpReduce or WarpScan in shared memory. This takes O(1) = 3

registers per thread and takes O([2S+k]∙log n +2S) total cycles and also requires

O(WarpSize) = 49 (1+16+32) storage space per active warp (49 data elements per active

thread warp for the warp array kept in shared memory). For both shared memory

methods, the last column of the warp array contains the final warp-sum.

o On Kepler, use WarpReduce or WarpScan in registers with the .PTX shuffle command.

This takes O(1)=3 registers per thread and takes O([2k∙log n]+k) total cycles and requires

no shared memory. For both shuffle methods in registers, only the last thread in the warp

ends up with the final warp-sum.

 Both methods are expensive due to RAW dependencies between each pair of instructions and the

higher cost of shared memory accesses (on Fermi). So only use to reduce or scan the last data

warp (32) inside a nested reduce or scan.

BlockReduce and BlockScan Lessons:

189

 To support coalescence and high-global memory throughput on input and output, use a warp-by-

warp BASk. (see Chapter 5.1.1. for details.)

 To support non-commutative summation, convert the warp-view into a sequential-view to load

short sequential runs of nWork data elements (see Section 6.7.1. for details on this conversion)

 Mitigate bank conflicts (see Section 6.7.2. for more details)

 To coordinate data communication across thread warps, use barriers to synchronize behavior.

 For increased TLP performance via increased occupancy, write code or design data layouts that

minimize register and shared memory usage.

 For increased ILP via reduced total cycles, write code that minimize the total number of

instructions, and manually unrolls (software pipelines) multiple work items to avoid hardware

pipeline stalls.

 For BlockScan: For missing prefixes, reach back one column in shared memory (or in registers)

to grab inclusive results from an inclusive prefix sum.

 For BlockScan: use the Scan-then-Fan pattern, and preserve runs in registers between paired

stages (S1 & S5, S2 & S4) to decrease the total instructions (summations and shared memory

accesses).

 Setup two views (pointers) into each of the S1-S3 data arrays. A store view where a single thread

stores a single value or run-sum into the array. And a run view where a single thread loads a

short sequential run of values from a starting offset or pointer.

Reduce and Scan Kernel Lessons:

 For best throughput, support coalescence.

 For better performance, as part of kernel setup, pre-compute the views (warp-view and

sequential-view as pointers or indices) used in the BlockReduce and BlockScan methods. Note:

storing these view pointers or indices increases register pressure

 To reduce code overhead, use the Row DASk as a starting point.

 Under the assumption of non-commutativity, both Reduce and Scan require consecutive access

within runs for correct results. So use the Row DASk to implement the GPU_Reduce and

GPU_Scan kernels. As the Row DASk supports sequential access along each row for the first

level of the CTA (thread blocks within a grid).

 Since, the Row DASk requires four bodies of very similar code to properly support amortized

range checking, watch out for copy and paste errors in the BlockReduce and BlockScan

methods. If you fix a bug in one version, remember to check and fix the other versions as well.

 To keep the SMs busy and to load balance thread blocks evenly across SMs, pick the number of

rows (r) to be a multiple of the workLoad = nSMs∙nConBlocks (see section 6.7.3 for details on

how to compute the work load).

 For Scan: Make sure the GPU_Reduce and GPU_Scan kernels both use the exact same data rows

for correct scan results. My solution is to have both kernels use the same Row DASk, the same

CTA layout, and the same DBS.

 For Scan: For fewer global I/Os (3× instead of 4×), use the Reduce-then-Scan pattern, and avoid

the Scan-then-Fan pattern. The Row DASk on both the GPU_Reduce and GPU_Scan kernels

naturally supports this pattern. From hard personal experience, I advise programmers to avoid

using the Block DASk as the base framework for implementing Scan. Using the Block DASk

190

leads to a recursive Scan-then-Fan pattern, which is not only tricky to get working correctly but,

in my experience, it is also quite slow.

General Advice:

 To find the best performance, use both ILP and TLP.

o For increased TLP, each thread block should contain multiple warps (nWarps).

o For increased ILP, each thread should load and process multiple work items (nWork).

 Mitigate bank conflicts in shared memory to avoid costly replays (see section 6.7.2)

o Avoid bank conflicts using run lengths that are odd numbers.

o Avoid bank conflicts using the Pad & Rake technique for run lengths that are powers

of two.

o Reduce bank conflicts by aligning runs to 64-bit or 128-bit boundaries to let CUDA

optimize shared memory access using 64-bit or 128-bit load/store commands (aligned

Vector 2 and Vector 4 optimization.

o Live with low number of bank conflicts such as 2-way bank conflicts. Note: Trying

to live with high number of bank conflicts (4-way or higher) may negatively impact

performance due to costly replays.

 Decrease Total Cycles to increase throughput (TC = II/IPC)

o Decrease instructions issued (II) by simplifying code, avoiding dependencies

between instruction, and software pipelining.

o Increase instructions retired per cycle (IPC) by increasing occupancy, minimizing

register & shared memory usage.

191

7.0 Case Study: kd-Tree

The kd-tree is a spatial partitioning data structure that supports efficient nearest neighbor

(NN) searches on a CPU. Although a depth-first search (DFS) kd-tree is not a natural fit for GPU

implementation, it can still be effective with the right engineering decisions. In my

implementation, by bounding the maximum height of the DFS kd-tree, minimizing the memory

footprint of data structures, and optimizing the GPU kernel code, multi-core GPU NN searches

with tens of thousands to tens of millions of points run 20-40 times faster than the equivalent

single-core CPU NN searches even after I rewrote the CPU code with the knowledge gained from

optimizing the GPU code.

Be aware that this case study is the first algorithm (DFS kd-tree NN searches) I ever

adapted to work on a GPU. As a result, I had not yet invented data access skeletons (DASk), so I

do not use them in this case study. Also, I was not as familiar with concepts of coalescence,

branch divergence, occupancy, and constraints on occupancy and therefore I did not really know

how these concepts can impact performance. As a result, most of the parallel performance I do

achieve in this case study comes from the first level of the CTA (thread blocks within a grid

mapped onto SMs) and engineering decisions to streamline the kd-tree search algorithm on both

the CPU and GPU. For the second level of the CTA (threads within a thread block mapped onto

SPs), threads within each thread warp diverge down different search paths through the kd-tree.

Since all threads in each warp move in lock-step through the instruction stream, the slowest

thread in each warp gates performance for the entire warp.

Unfortunately, this thread divergence eliminates most of the performance advantage of

using multiple threads per thread block. As will be seen later in this chapter, experiments show

that the best performance occurs for small thread blocks sizes (4-16 threads per thread block).

192

All my experiments were done on an older GTX 285 GPU card (30 SMs with 8 SPs per SM, 159

GB/s peak throughput for global memory). Since more modern GPUS (GTX 580 and GTX Titan

vs. GTX 285) have even fewer SMs (16 and 14, respectively, vs. 30) at the first level of the GPU

core hierarchy, I predict that my NN kd-tree GPU kernels will perform worse if run on these more

modern GPUs.

7.1 Nearest Neighbor (NN) Problem Definitions

The NN problem, which finds the closest point in a point cloud to a specified query point,

is important in many areas of computer science, including computer graphics, machine learning,

pattern recognition, statistics, and data mining (Shakhnarovich and Indyk, 2005).

Despite its importance and the frequency of its use, there are several NN search

problems. In each NN search, input consists of sets of n searched points, S, and m query points,

Q, and a distance metric in d dimensions (such as Euclidean, Manhattan, Chebyshev, or

Mahlanobis distance). The Euclidean distance between search point p ∈ S and query point q ∈ Q

is dist(p,q) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2. Output consists of the km nearest

points, where k is the number of requested nearest points in the search set S for each query point

in Q. I define six common NN searches (see Table 7.1), the first four of which (in black type) I

implement and test. The last two (in gray), I do not.

NN Type Abbr. Input Output

Query Nearest Neighbor QNN S, Q, dist R = m closest points

k Nearest Neighbor kNN S, Q, k, dist R = km closest points

All Nearest Neighbor All-NN S (== Q), dist R = n closest points

All k-Nearest Neighbor All-kNN S (== Q), k, dist R = kn closest points

Range Query RNN S, QR, dist R = varying list

Approximate

Nearest Neighbor
ANN S, Q, dist R = m closest points

Table 7.1: A Table of six common nearest neighbor (NN) searches with typical

abbreviations, inputs, and outputs.

193

 For the query nearest neighbor (QNN) search, I find the closest point (k=1) in the search

set S for each query point in Q under the distance metric dist, this produces the output set R

containing m result points. For the ‘k’ nearest neighbor (kNN) search, I generalize QNN to find

the k closest points in the search set S for each query point in Q (producing R containing km

points). For the all nearest neighbor searches (All NN and All kNN), I assume that the query set

Q and search set S are one and the same (Q = S). Assuming that Q = S results in a new issue

where I need to carefully exclude zero distance results; otherwise, each query point would return

itself as part of the search results.

 There are a couple of other NN searches that kd-trees can support. However, although I

define them, I will not discuss them further. In the range query nearest neighbor (RNN) search, I

find all points from the search set S contained in each individual query region belonging to the

query set QR(egion). This approach results in a varying number of result points for each region.

Consequently, the final output size is indeterminate. Each individual query region QRi is

typically a d-dimensional hyperbox or hyperball of radius r. In the approximate nearest neighbor

(ANN) search, I find the approximate closest neighbor to each point in Q from S. Each answer is

approximately correct with high probability. There is always a small chance that another point

(the true solution) is even closer. See Mount’s paper (Mount and Arya, 2010) for more details on

ANN searches.

194

7.2 Related Work

In this section, I briefly discuss NN solutions, kd-trees, and related NN work on the GPU.

7.2.1 NN Solutions

A brute force QNN search could directly compare the query point to all

𝑛 points in the search set (see Figure 7.1). Solving the All-NN problem this

way takes quadratic O(n2) time.

However, one can achieve better asymptotic performance using spatial

data structures, such as fixed grids, Quad-trees,

BSP Trees, R-Trees, Voronoi Diagrams, and kd-

trees (see Figure 7.2). Most of these structures

subdivide the original space containing all the points into smaller

spatial regions, called cells, and partition the original points into

these cells. Many also impose a spatial hierarchy on the cells. NN

searches on these data structures use "branch and bound," which

focuses the effort on the small set of nearby cells that are likely to contain neighbors and trims

away large groups of cells that are too distant. The box tree of Vaidya (Vaidya, 1989) is an early

example of a data structure to solve the All-NN problem in O(n log n) time. For a review of

spatial data structures, refer to Samet’s book (Samet, 2006).

For my NN search solutions, I focus on the kd-tree, a generalized binary tree invented by

Bentley (Bentley, 1975) and improved by many researchers in the years since. Arya (Arya and

Mount, 1993) detailed an efficient nearest neighbor (NN) algorithm using a depth-first search

(DFS) balanced kd-tree, a priority queue, and a trim optimization to avoid unproductive search

paths. This approach resulted in O(log n) expected search times for each query point on well

distributed point sets. Jensen (Jensen, 2001) implemented a fast and efficient version of Arya's

Figure 7.1: Brute

Force Spatial Search.

The query point is

connected by a red line

to its nearest neighbor

Figure 7.2: Spatial Searches

195

NN search in his book on photon mapping. Jensen's implementation is the basis for my own CPU

kd-tree algorithm and has informed the development of my GPU NN algorithms.

7.2.2 kd-tree Review

The kd-tree is a hierarchical spatial partitioning data structure that is used to organize

objects in d-dimensional space (see Figure 7.3). The kd-tree

partitions points and more complicated objects into axis-aligned cells

called nodes. For each internal node of the tree, I pick an axis and

split value to form a cutting plane. This cutting plane partitions all

points at each parent node into left and right child nodes. One or

more points contained in the cutting plane may be stored at each

node. Variations on kd-trees differ in how the cutting plane is picked. Splitting heuristics include

median split, empty space maximization, surface area, and voxel volume.

A kd-tree for a search set S of n d-dimensional points takes O(d∙n) storage and can be

built in O(d∙n log n) time. I build the kd-tree on the CPU and then transfer the kd-nodes onto the

GPU. (I also implemented a GPU build algorithm, but performance was worse than the CPU

build algorithm, so I abandoned it.)

To perform a nearest neighbor search in a kd-tree, one can imagine traversing the entire

tree, computing the distance of the query to the search points stored at each node while keeping

track of the nearest neighbor point found thus far. If the method reaches a node whose bounding

box extent is farther from the query point than the current best candidate, that node and all of its

children can be skipped. If the method traverses by first visiting the child on the same side of the

split as the query point and by visiting the other child only if necessary, then the method will

prune many nodes. Search queries (QNN, kNN and RNN) that return t results have been shown

to take worst-case O(d∙n(1-1/d) + t) time for all search point sets and expected O(log2(n) + t) time

for well distributed search point sets. For the 2D All-NN and All-𝑘NN searches, I multiply the

Figure 7.3: A kd-tree

196

theoretical cost of a single point query by the number points (n) in my search set, giving

O(n√𝑛+tn) worst-case time and O(n log2(n) + tn) expected time using a balanced kd-tree

implementation (Samet, 2006). In addition to performing NN searches, kd-trees can also solve

point location, range search, and partial key retrieval problems (Skiena, 2008).

7.2.3 Related NN work on the GPU

For GPU solutions, the first NN search solutions were implemented brute force,

comparing each of the m points in Q to all n points in S. For each query point qi, the n query to

search point distance calculations are computed in parallel using p threads, which takes O(n/p)

time, followed by a parallel reduction to find the minimal distance for that query point, which

also takes O(n/p) time. The expected brute-force parallel performance for m query points is

O((mn)/p), if we assume the query and search sets are the same size (m == n) then this becomes

O(n2/p) time. Purcel (Purcell et al, 2003) approximated a NN search for photon gathering using a

multi-pass algorithm involving a uniform grid and an incrementally growing radius. Bustos

(Bustos et al, 2006) stored data as textures and used three fragment programs to compute

Manhattan distances. He then minimized those distances by reduction. Rozen (Rozen et al, 2008)

implemented a bucket sort to partition 3D points into fixed-size grid cells, and he then searched

brute force in the 3×3×3 cell neighborhood of each query point. Garcia (Garcia et al, 2008)

implemented a brute force NN algorithm in CUDA with a 100+ to 1 speedup compared to the

equivalent algorithm in MATLAB. All these authors mention that Arya's kd-tree approach is

more efficient but is difficult to implement on the GPU due to hardware and software limits.

Zhou (Zhou et al, 2008) built a breadth-first search GPU kd-tree in CUDA with a splitting

metric that combines empty space splitting and median splitting. This splitting metric

approximates either the surface area heuristic (SAH) or the voxel volume heuristic (VVH). The

SAH kd-tree accelerated ray-tracing, while the VVH kd-tree accelerated NN searches. The VVH

NN search was iterated using a range region search and by increasing the fixed radius of the

197

search region on each iteration. The GPU kd-tree built about 9-13 times faster than the CPU kd-

tree. The GPU kNN search ran 7-10 times faster than the CPU kNN search.

Qiu (Qiu et al, 2008) developed a GPU ANN search based on Arya's approach with a kd-

tree to assist in solving a 3D registration problem on the GPU. The kd-tree is built on the host

CPU and then transferred to the GPU before running ANN. The ANN search back-tracks to

candidate nodes using a small fixed length queue. If the queue is full, new candidate nodes are

discarded. Thus final query results are approximate. According to Qui, GPU registration was 88

times faster than CPU registration. Unfortunately, the performance comparison between the GPU

and CPU ANN searches was not broken out from the overall results.

7.3 The kd-tree Data Structure

My NN search algorithm is adapted from Arya’s (Arya and Mount, 1993). It uses a

minimal kd-tree, a search stack, and the trim optimization. I demonstrate this solution for 2D

points, although later in the paper, I also do performance experiments on 3D and 4D points.

7.3.1 kd-tree Search Concepts

To help the reader understand the kd-tree search, I briefly enumerate

the following six concepts:

(1) Each kd-node contains a search point ‹x, y, ...›.

(2) A best distance variable tracks the closest solution found so

far.

(3) A 1D interval trim test eliminates non-overlapping sub-trees

(see Figure 7.5).

(4) At any level of my search path, the onside node is the left or

right child containing the query point and the offside node is the remaining node.

(5) A depth first search (DFS) first explores onside nodes while storing overlapping

offside nodes in a search stack to revisit later.

(6) Each element stored on the search stack contains a kd-node index, onside/offside

status, split axis, and split value.

Onside Offside

Trim Test

Figure 7.4: kd-tree Trim

Test

198

7.3.2 kd-tree NN Search

My kd-tree search algorithm works as follows (see Figure

7.5). The root search element (root index, onside, x-axis,) is

pushed onto the stack. While the stack is not empty, the top search

element is popped off the stack, and the current node index,

onside/offside status, split axis and split value are extracted from

it. If the node is marked as offside, a trim test is applied in order to

accept or reject the entire offside sub-tree. The trim test (illustrated in figures 7.5 and 7.6 is a 1D

interval overlap test of a ball with the offside half-plane, where the ball is centered at the query

point with radius equal to the best distance and the half-plane is defined by the current split axis

and split value. If the node is onside (or offside and accepted), the current kd-node is loaded from

the node index. Next, if the distance between the query point and the current node’s search point

is smaller than the current best, my method updates the best distance and best index. The current

nodes split axis and value are used to form left and right 1D intervals. The interval containing the

query point is the onside node; and the remaining interval is the offside node. The trim test is

applied to the offside node in order to keep or reject it. If kept, an offside search element is

pushed onto the search stack. The onside search element is always pushed onto the search stack.

When the search stack becomes empty, the best distance and best index indicate the nearest

neighbor.

7.4 Hardware Limits and Design Choices

7.4.1 GPU Hardware Considerations

In this section, I discuss GPU hardware limitations and the engineering decisions made in

response to these limitations. All my NN kernels were implemented using the CUDA 2.3 API

and tested on the NVIDIA GTX 285 GPU. Some of these limitations include the following seven

Figure 7.5: kd-tree Search

199

concepts – floating point data, memory hierarchy access speeds, memory hierarchy capacities,

memory alignment, coalescence, thread block size, and divergent branching.

Floats: Modern GPUs support both 32-bit and 64-bit floating point data. I focus only

on 32-bit floating point data since 64-bit doubles take twice the space and are a factor of 8 slower

on the GTX 285 GPU1. Floating point support on the GTX 285 is not fully IEEE 754 compliant,

and, in a handful of queries, my GPU and CPU NN searches returned slightly different neighbors.

In all cases that I investigated, the resulting nearest neighbor distances turned out to be identical.

Therefore, the different results were all valid solutions.

Memory Hierarchy: Recall from Chapter 3.4 that the GPU memory hierarchy access

speeds, from fastest to slowest, are registers, shared memory, constant memory, and global

memory (RAM). For better performance, I put local variables in registers, simple indexed data

structures in shared memory, and keep points and kd-tree nodes in global memory. Note: I tried

storing indexed structures directly in registers; however, CUDA stored them in local memory

(AKA a special partition in global memory) instead, which slowed the overall search time by a

factor of three.

I minimized the number of data transfers from slower RAM into faster shared memory.

The NN search code contains a single read per loop. The total reads per query is O(log n)

expected or O(d∙n(1-1/d)) worst case. For example, in a QNN search containing 1 million search

and query points, each query visits about 40-80 kd-nodes (one read per node) to find the exact

answer.

Memory Capacity: Since the GTX 285 has only one GB of fixed memory limiting

data storage; I sought to minimize the size of my data structures in GPU memory. I compressed

kd-nodes from eight down to two fields for 2D points. So the 2D QNN search needs only seven

1 The ratio of double precision to single-precision performance varies across the different Fermi and

Kepler GPU cards. For instance, on the GTX 580 double precision (64-bit) is 8× slower than single-

precision (32-bit); On the GTX 680, double precision is 24× slower; and on the GTX Titan, double

precision is 3× slower. Ideally, double precision should be only 2× slower than single precision.

200

32-bit elements per 2D point to store query points, kd-nodes, and final search results. This

approach allowed the QNN search to process up to 36+ million 2D points on the GTX 285.

Memory Alignment: Data structures aligned on 4, 8, or 16 byte memory boundaries

perform faster than unaligned data. I saw a 37% speed improvement by aligning my data

structures2.

Coalescence: The GPU coalesces memory accesses only if they are sequential. With a

NN depth first search (DFS) through the kd-tree, all threads within a thread warp start their

searches at the root node but then quickly diverge to different unpredictable sub-trees (based on

their individual query point) within the kd-tree and thus different parts of memory. NN searches

on a DFS kd-tree tend not to result in sequential reads across the data warp and thus do not

support coalescence. Consequently, I ignore this GPU hardware property at this time.

Latency: The GPU programmer hides latency via TLP by scheduling a large grid of

thread blocks; however block performance is limited by the slowest thread in each block (or

thread warp). Both grids and thread blocks can be 1D or 2D in shape. A 1D or 2D thread block

shape has little effect on performance. So, I excluded my 2D thread block results. The grid can

support a maximum of 65,535 thread blocks3 in any dimension. Each thread block can contain a

maximum of 5124 threads. For the GTX 285, the thread manager maps thread blocks onto 15

SMs each containing 16 SPs. I setup my NN searches to use one thread per query point. I use

padded access (as described in Chapter 5.1.2) to pad my queries up to the next multiple of the

thread block size by repeating the first query as needed; this approach avoids a range check

comparison that would increase divergence across the threads within the thread warp.

2 I aligned my various kd-tree search data structures using the CUDA __align__ macro. See the CUDA

programmers guide for more details.
3 This maximum of 216-1 (65,535) threads per grid in any dimension is a hard constraint of both the Telsa

and Fermi architectures, the Kepler architecture raises this maximum limit to 232-1 threads per dimension.
4 512 threads is the maximum number of threads per thread block allowed on Telsa architectures

(including the GTX 285 card). Both Fermi and Kepler architectures increase this limit to 1,024 threads per

thread block.

201

Thread Block Size (TBS): Each GPU core is limited to 16 KB of shared memory and

8 K of 32-bit registers. My current NN searches require about 24-32 registers for temporary

variables, which limits the maximum number of threads per SM to 2565, at most. The QNN and

All-NN searches require 192–240 bytes of shared memory for data structures including a 20–28

element deep stack. This shared memory constraint limits the maximum number of threads per

SM to at most 64–806. My performance experiments revealed that the optimal thread block size

for my DFS kd-tree NN searches is 4–16 threads per-block, depending on the search type and the

size of the input data.

Divergent Branching: On the GPU, branch divergence degrades performance (see

Chapter 3.3). If at least two threads in a thread block diverge at a conditional branch, then both

the "if" and "else" branch paths must be executed by all threads in the thread block. So, I

eliminated as many branches as possible from my code. The remaining conditional logic is

necessary for correct behavior, for which I accept the performance hit due to divergence. I

process the All-NN and All-kNN searches in sequential kd-tree order to increase the coherence of

all threads in the thread block. This results in a modest 4–5% performance improvement for the

All-NN search over the QNN search. However, the trade-off is that the All-kNN search performs

slightly worse than the kNN search.

7.4.2 kd-tree Design Choices

Based on the GPU hardware limits, I sought to efficiently use GPU memory resources.

Such a goal suggests bounding the kd-tree height and reducing the size of data structures in

memory.

5 Since the Fermi and Kepler architectures increase the register pool size to 32 K and 64 K respectively,

the maximum number of threads per SM on these GPU architectures would be raised to 1,024 and 2,048

threads respectively.
6 Since both the Fermi and Kepler architectures increase the shared memory pool size to 48 KB, the

maximum number of threads per SM on both these GPU architectures would be raised to 208-256 threads.

202

Bounding kd-tree Height: Shared memory is the target for my NN search stack.

There is only 16KB of shared memory across all threads in each GPU core on the GTX 285. If I

use 64 threads per-thread-block, then I have at most 256 bytes available for all data structures.

Since my data structures must include a DFS search stack for performing the NN searches, this

shared memory constraint bounds the stack size to 20-28 elements, at most. Since my stack size

is bounded, I also must bound the length of any kd-tree search path to prevent overflowing the

stack. One way to prevent this overflow is to bound the maximum height of the kd-tree search

tree. Bounding the height implies that the 𝑘d-tree should be both balanced and static. For faster

index calculation, I store the kd-tree in an efficient array layout. I describe the concepts of

balanced, static, and efficient array layout as follows:

Balanced kd-tree: A balanced kd-tree of maximum height ⌈𝑂(log2 𝑛)⌉, with a

difference of at most one level across all leaf nodes, is built by setting the cutting plane

through the median point of each sub-tree.

Static 𝑘d-tree: A dynamic kd-tree can handle insertions, deletions, and modifications,

but it can quickly become unbalanced, and exceed my bound on height. When all points

are known a priori, I can build the kd-tree all at once and never change it. A static tree

also enables a left-balanced binary tree layout order for the kd-tree that supports fast

index operations.

Array Layout: For faster indexing, I store the kd-nodes in an array as a left-balanced

binary tree. kd-nodes are stored in the range [1..n] using one-based indexing. The root is

always stored at index one. Given a node at index i, its parent is found at ⌊𝑖/2⌋, and its

left and right children are found at 2i and 2i+1 respectively. Any child indices greater

than n are invalid. Leaf nodes have both invalid left and right child indices. The kd-nodes

are first built as a left-balanced median kd-tree and then converted into a left balanced

203

binary tree as part of the build process. The left-balanced median position (LBMpos) for

splitting a partition containing n nodes can be found in 3 steps as follows:

(1) h = ⌈log2(𝑛 + 1)⌉

(2) half = 2(h-2)

(3) LBMpos = half + min(half, n-2*half+1).

Basis Step: The above formulas do not work correctly for small partitions (n ≤ 3), so the

correct LBMPos for n=1, 2, 3 are 1, 2, 2 respectively.

Reducing Memory Foot-print: To maximize the number of points in GPU RAM

memory, I minimize the size of the kd-tree data structure. A maximal set of kd-node fields might

include: child pointers, parent pointer, split axis, split value, cell bounding box, and stored point.

d-Dimensionality: I use points with 2-4 dimensions ‹x, y, ...› in these NN searches,

which reduces the data stored on the GPU. The searches can be extended to higher

dimensions as well; however, since kd-tree worst-case performance is no better than a

brute-force search for higher dimensions, I recommend not using kd-tree based NN

searches for points with high dimensionality (d > 16).

Eliminating fields: The parent pointer can be avoided by using the search stack in the

NN search to back-track. The split axis can be implicit in a cyclic kd-tree if that tree

splits ‹x, y, x, y, ...› and the split value is implied by the stored d-dimensional point. Cell

bounding boxes are not needed for NN search. Child pointers can be eliminated by

computing them directly from the left binary tree layout (2i, 2i+1). Such a computation

results in a fully minimal kd-tree, where each kd-node contains just the original points

rearranged into a left-balanced binary tree order. Note: I also need to store a remapping

array of size O(n) for converting rearranged node indices back into the original point

indices to obtain the final search results.

204

Final Design: I implement my DFS kd-tree data structure as a 2D, 3D, or 4D static

balanced cyclical kd-tree with a single left-balanced median point stored at each node (internal or

leaf). The nodes of the kd-tree are stored as a left-balanced binary tree array. The NN search is

implemented using a depth first search using a stack for back-tracking. This design bounds the

height of the kd-tree for predictable stack sizes, minimizes the footprint of the kd-tree and search

nodes in memory. It also reduces the number of transfers to and from slower global memory.

7.5 Building the kd-tree

In this section, I describe how to build the minimal kd-tree from the search points. I

construct the kd-tree on the CPU and then transfer it to the GPU for the GPU NN search. A high-

level overview is found in Figure 7.6 (left panel).

205

As shown in Figure 7.6 (left panel), I compute the minimum and maximum bounds of the

search points. The root of the kd-tree is conceptually associated with these min-max bounds and

the sequence [1, n] of original points. A split value is picked along one of the dimensional axes.

The split value is chosen to optimize the results according to some measure. All points are

partitioned into the two smaller left and right boxes based on the splitting value. Each child node

procedure BuildKDTree(d, points, lbm kd-nodes)
// Initialize kd-tree nodes
n ← |𝑝𝑜𝑖𝑛𝑡𝑠|
Allocate memory for n median kd-nodes
Allocate memory for n left balanced median
(lbm) kd-nodes
for all in points
 medianNodes[idx].xy ← points[idx].xy
 medianNodes[idx].pointIdx ← idx
 medianNodes[idx].nodeIdx ← INVALID
// Add root build item
top ← 0
build ← { [0,n-1], x-axis, 1 }
buildStack[top++] ← build;
// Build kd-Tree
while buildStack not empty do
 // Get current build item
 currItem ← buildStack[top--]
 [low,high] ← currItem.sequence
 currAxis ← currItem.splitAxis
 currIdx ← currItem.location
 N ← (high-low)+1
 M ← low + LBMpos(N) // Left bal. Median
 L ← (low+M-1)/2
 R ← (M+1+high)/2
 left ← 2*currIdx;
 right ← left+1;
 nextAxis = (currAxis+1) % d
 // Partition via Median Selection
 Partition(medianNodes, M) into sub-seqs.
 Left{low,M-1}, Median{M}, and
 Right{M+1,high}
 mNode ← medianNodes[M]
 lbmNode[currIdx] ←
 {mNode.xy,mNode.pointIdx,M}
 // Add right build item to stack
 rightItem ← {[low+M+1,high],nextAxis,right}
 buildStack[top++] ← rightItem
 // Add left build item to stack
 leftItem ← {[low,low+M-1],nextAxis,left}
 buildStack[top++] ← rightItem
end while
// Cleanup
Free memory associated with median kd-nodes
return lbm kd-nodes

procedure QNNsearch(d, qp, kd-nodes, remap)
// Initialize search
root ← kd-nodes[1]
bestIdx ← 1
bestDist ← Huge Value (Infinity)
// Add root search element
top ←0
rootElem ← {1, onside, x-axis, Infinity}
searchStack[top++] = rootElem;
// Find Nearest Neighbor
while searchStack not empty do
 currElem ← searchStack[top--];
 if currElem.state == offside,
 result ← trimtest(bestDist,
 currElem.splitValue)
 if result == rejected
 return to top of loop // while (search)
 end if
 end if
 // Update Best Distance
 currNode ← kd-nodes[currElem.nodeIdx]
 left ← 2 * currElem.nodeIdx
 right ← left+1
 currDist ← distance(qp.xy, currNode.xy)
 if currDist < bestDist
 bestDist ← currDist
 bestIdx ← nodeIdx
 end if
 currAxis ← currElem.splitAxis
 nextAxis ← (currAxis + 1) % d
 splitValue ← currElem.xy[currAxis];
 determine onside and offside nodes
 from qp, splitAxis, splitValue
 // Add offside node
 diff2 ← (qp.xy[currAxis] -
 currNode.xy[currAxis])^2
 result ← trimtest(bestDist, diff2)
 if result == accepted
 offElem←{offIdx,offside,nextAxis,splitValue}
 searchStack[top++] ← offElem
 end if
 // Add onside node
 onElem ← {onIdx,onside,nextAxis,splitValue}
 searchStack[top++] ← onElem;
end while
bestIdx ← remap[bestIdx] // map node into pntIdx
return bestIdx and bestDist.

Figure 7.6: Build & Search Methods

The kd-tree build algorithm from a list of search points (left panel). And the kd-tree search algorithm from

the point of view of a single query point (right panel).

206

is associated with its bounding box and partitioned sequence of points. The kd-tree is recursively

refined by splitting each child sub-tree, the associated boxes, as well as associated point

sequences until some stopping criteria is reached. In general, there are many possible ways in

which the splitting plane can be chosen. For my kd-tree, I always choose the left-balanced

median point as the splitting plane along the current cyclical axis ‹x, y, x, y, ...›, as the tree is

descended. The left-balanced median point is found using the quickmedian selection algorithm

(Sedgewick, 1998). Recursion is converted into iteration by means of a build stack for tracking

work yet to be done.

Quickmedian Selection Algorithm:

The quickmedian algorithm used for selection is similar to the quicksort algorithm

used for sorting and uses the same partition sub-routine. Each selection iteration runs in two

phases: pivoting and partitioning.

Pivot phase: The algorithm picks a candidate pivot value p using the median of three

technique.

Partition Phase: The pivot value is then used to partition the points into three data sets

{Left: points less than p, Middle: all points equal to the pivot value7, and Right: all points

greater than or equal to p.}. If the true median position is equal to the current pivot

position, the algorithm stops and returns the pivot point as the median. Otherwise, the

algorithm iterates into the child data set (left or right) which contains the true median

position. This approach takes quadratic O(n2) time in the worst case but its expected

performance is linear O(n) (Sedgewick, 1998). In practice, this approach is fast and

reliable.

7 Though not required, if desired, points that are equal to the pivot value can then be compared on a

secondary key such as index offset or pointer address to preserve stability (meaning that if the point a

precedes point b in the array and both a and b match the pivot point c then after partitioning a will still

precede b in the middle partition, in other words their relative orders in the original array are preserved).

207

7.6 Searching the kd-tree

All my NN search solutions are based on the kd-tree search solution, already described in

Section 7.3. This same search solution can be simplified and adapted to solve the Point Location

problem as described in section 7.6.1. I give more details on a CPU Host function for the QNN

and All-NN search solutions in section 7.6.2. The kNN and All-kNN search solutions must track

the k closest points, so I introduce more details on how to handle these k points in 7.6.3. The data

structure used to track the k closest points also uses shared memory, I talk about how this impacts

shared memory resource usage in 7.6.4.

7.6.1 Point Location Problem:

I can quickly find items in a kd-tree by traversing down the tree until the cell of interest is

found and then by searching for the point of interest within that cell. This approach is easily

implemented using the search algorithm described previously in Figure 7.7 (right panel) by

simply eliminating the stack and back-tracking code. While traversing the kd-tree, the code

always chooses the onside node (left or right sub-tree) whose 1D interval contains the query point

until arriving at the leaf node which locates the query point.

NN Search Remapping Issue: To solve any NN search problem such as QNN, I

directly convert the 𝑘d-tree NN search algorithm into code. However, one minor change is also

required. Since the NN search algorithm actually returns the index of the nearest kd-node from

the constructed median array layout, but, what is needed is the index of the nearest point from the

original search set, then I solve this problem by creating an additional remap array of original

indices stored in median array order and then using the median index as a lookup into the remap

array to get the original search index. This is a simple straight forward solution but adds another

level of indirection and another non-coalesced I/O to the total cost of performing NN searches on

GPUs.

208

7.6.2 QNN and All-NN Search Algorithms

A brief high level overview of the QNN search algorithm is presented in this section.

Both the GPU and CPU code are implemented using this algorithm for a fair comparison, see

Figure 7.7 (right panel) for more details. For the CPU code, a CPU NN search algorithm is called

for each query point in turn. For the GPU kernel, a CPU host function does the following:

(1) Allocates host and device memory for the search points, query points, kd-tree

nodes, and final results

(2) Sets up the thread blocks for the GPU

(3) Transfers the inputs onto the GPU

(4) Invokes the parallel GPU NN kernel

(5) Transfers the output results back onto the CPU

7.6.3 𝒌NN and All-𝒌NN Search

The kNN and All-kNN searches are based on the QNN and All-NN searches. Two

simple changes enable these searches. First, the k neighbors are tracked by a closest heap data

structure and, secondly, the trim distance test is changed to work with k points instead of a single

closest point.

Closest Heap Data Structure: The k nearest neighbors are stored in a closest heap

data structure (Jensen, 2001), which acts first like an array and then later like a heap. Array

Behavior: While visiting the first k-1 search nodes in the kd-tree, these nodes are appended to the

end of the array. Each append takes constant O(1) time. Heap Behavior: After adding the kth

search node into the array, the array is converted into a max-distance heap (Sedgewick, 1998)

using the make-heap method, which takes O(k) time to run. From then on the NN search treats

the closest heap data structure as a true heap. For each subsequent node in the kd-tree that is

encountered during the NN search, the corresponding search point is compared to the top element

of the closest heap. If the distance from the new point to the query point is less than the distance

on top of the heap, the top of the heap is replaced with the new point. The correct heap ordering

is then restored via the demote method, which takes logarithmic O(log k) worst case time to run.

209

Unfortunately, the closest heap data structure results in many more instructions and more

opportunities for branch divergence across the threads within each thread warp thus slowing

down performance (as compared to the QNN and All-NN searches).

During the processing of a NN search, a logarithmic O(log n) number of nodes will be

visited. The worst case time to process the NN search using the closest heap data structure is the

time to append the first k points. The time to run make-heap when the closest heap becomes full

is O(k), and the time to compare and insert the last log2(n) - k nodes into the closest heap which

takes O(log k) time per demote. Summing these different operations, I arrive at a total of k∙O(1)

+ O(k) + [log2n – k]∙O(log k) worst case time, for which the linear term O(k) dominates. Each

individual kNN search thus takes O(log n + k) expected time. Given p cores, the 2D kNN and

All-kNN search algorithms should take O((m log n+mk)/p) and O((n log n+nk)/p) expected time

respectively for well distributed point sets.

Adjusting Trim Distance: The current trim test must also be adjusted to account for

the k nearest neighbors: The initial huge or infinite starting best distance value is not allowed to

change for the first k-1 insertions into the closest point heap data structure. After the kth

insertion, the trim distance is changed to match the maximum best distance from the top of the

closest heap data structure in constant O(1) time. Any time the algorithm decides to change the

top of the heap (and demote) then the current best trim distance must also change to match the

resulting new maximum best distance. This has the effect of making the kNN and All-kNN

searches run slower (than the QNN and All-NN searches) due to a slower ramp-up time, as they

must completely fill the closest heap with k search nodes before then being able to successfully

trim away portions of the search tree using the trim test.

7.6.4 GPU Resource constraints for kNN and All-kNN search

The same two memory constraints apply with the kNN and All-kNN searches: global

memory and shared memory. First, I need to save the k search results for each of the n query

210

points. This means the final result structure takes O(kn) space. There is a maximum of 1 GB of

RAM memory on the GTX 285 card. This extra constraint on memory limits the searches to

about n = one million and k = 32 in the worst case. Another possible configuration is n = 10

million and k = 8. Second, in order to support kNN on the GPU, I need to carve out space for the

closest heap data structure from the same shared memory that I use for the search stack. I assume

k will never end up being larger than a maximum stack size of 32 elements. This implies that the

kNN and All-kNN searches can be done using about half as many threads as I used for the

singleton QNN and All-NN searches.

7.7 Performance Results

In this section, I compare parallel NN search performance on the GPU to serial NN

search performance on the CPU. All performance tests were conducted on a GTX 285 (Tesla)

using a desktop computer configured as below (see Table 7.2).

CPU Hardware: CPU = i7-920@2.67 GHz, RAM=12 GB

GPU Hardware:

2× GTX 285 (30 SMs, 240 total SPs, 1.0 GB RAM, 159.0 GB/s peak throughput)

Software: GPU API = CUDA 2.3, C++, IDE = VS 2008, OS = Windows 7, SP1, Pointers = 64-bit

Data: Input size, n = [100 – 107], in increasing powers of ten.

Table 7.2: NN Search Experiment Environment

As part of these performance experiments: I show the cost to build the kd-tree on the

CPU, see Section 7.71; TLP experiments to find the best thread block size (TBS) for each NN

search type, see section 7.7.2; and experiments to show the resulting performance for increasing

input sizes (n) and increasing search sizes (k), see section 7.7.3.

211

7.7.1 Building the kd-tree on CPU

Table 7.3 shows the CPU cost of building the kd-tree for different numbers of 2D points.

𝒏, # of points 1 10 102 103 104 105 106 107

Build Time (in ms) 0.019 0.045 0.151 2.43 22.74 192.52 2,165.31 24,491.28

Time/Pnt (ms/pnt) .014 .0043 .00165 .00165 .00214 .00163 .00179 .00202

Table 7.3: CPU Build Performance

As the previous figure shows, the amortized time per point to build the kd-tree initially

decreases and then surprisingly levels off after 100 points. I expected the time per point to

increase, matching the theoretical O(n∙log n) performance. My best guess for this surprising

result is that some CPU caching effects came into play.

7.7.2 Finding the optimal thread block size

A complicated set of trade-offs determine the optimal number of threads per-thread

block. On the one hand, more threads means more parallel work gets done, and therefore there

are more opportunities to hide latency stalls, On the other hand, more threads means more

competition for resources, increased chances for slower threads to stall the entire thread warp, and

more branch divergence.

To find the optimal thread block size on the GTX 285 GPU, I manually tried thread

blocks sizes containing between 1 and 80 threads for each of my NN searches. Shown in Figure

7.7 (panels a-c) are 2D QNN, All-NN, kNN, All-kNN results for data sets containing 1 million

and 10 million search points, respectively. For QNN of 1 million search points, the optimal

thread block was 10x1 with a speedup of 46.4. For 10 million points, it was 7x1 with a speedup

of 43.6. For All-NN of 1 million points the optimal thread block was 10x1 with a speedup of

35.9. For 10 million points, it was 10x1 with a speedup of 36.8. For kNN using 1 million search

points and k = 32, the optimal thread block was 4x1 with a speedup of 18.1. For All-kNN search

using 1 million points and k = 32, the optimal thread block was 4x1 with a speedup of 15.7.

212

a) 2D QNN, All-NN searches

 (𝒏 = 106 points)

b) 2D kNN, All-𝒌NN searches

 (𝒏 = 106 points, 𝒌=32)

c) 2D QNN, All-NN searches (𝒏 = 107 points) d) 2D 𝒌NN, All-𝒌NN, Increasing 𝒏 (TB=4x1, 𝒌=32)

e) 2D QNN, All-NN, Increasing 𝒏 (TB = 10x1) f) 2D 𝒌NN, All-𝒌NN, Increasing 𝒌 (n=106,TB=4x1)

Figure 7.7 kd-tree Search Results

a) This chart plots the GPU/CPU speedup for 2D QNN, All-NN searches for increasing thread block sizes

with a fixed-size search and query data set of 1 million points. b) This chart is the same but for the 2D

kNN and All-kNN searches. c) This chart plots the 2D QNN, All-NN speedups for 10 million points. d)

This chart tracks 2D kNN and All-kNN speedups for increasing values of n. e) This chart tracks 2D QNN

and All-NN speedups for increasing values of n. f) This chart tracks 2D kNN and All-kNN speedups for

increasing values of k from 1-32.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

5

10

15

20

25

30

35

40

45

50

QNN, All-NN 1 million point speed up

of threads

P
e

rf
o

rm
a

n
c
e

 S
p

e
e

d
u
p

(C
P

U
/G

P
U

)

QNN

All-NN

Max Speedup

0 5 10 15 20 25 30 35
6

8

10

12

14

16

18

20

Threads in Thread Block

P
e
rf

o
rm

a
n
c
e
 S

p
e
e
d
u
p

(C
P

U
/G

P
U

)

kNN, All-kNN Optimal Thread Block, n=10
6

kNN

All-kNN
Max. Speedup

0 10 20 30 40 50 60 70
5

10

15

20

25

30

35

40

45

Threads in Thread Block

P
e

rf
o

rm
a

n
c
e

 S
p

e
e

d
u
p

(C
P

U
/G

P
U

)

QNN, All-NN Optimal Thread Block (n=10
7
)

QNN

All-NN

Max Speedup

10
2

10
3

10
4

10
5

10
6

10
7

0

5

10

15

20

25

n = # of search points, logarithmic scale

P
e

rf
o

rm
a

n
c
e

 S
p

e
e

d
u
p

(C
P

U
/G

P
U

)

kNN, All-kNN Performance speedup for Increasing n

kNN

All-kNN

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

5

10

15

20

25

30

35

40

45

n = # of search points, logarithmic scale

P
e
rf

o
rm

a
n

c
e
 S

p
e
e
d

u
p

(C

P
U

/G
P

U
)

QNN, All-NN Performance speedup for Increasing n

QNN

All-NN

0 5 10 15 20 25 30 35
15

16

17

18

19

20

21

22

23

k # nearest neighbors

P
e
rf

o
rm

a
n
c
e
 S

p
e
e
d
u
p

(C
P

U
/G

P
U

)

kNN, All-kNN Performance speedup for Increasing k

kNN

All-kNN

213

7.7.4 Performance for increasing n and k

In panels d-f in Figure 7.7, I increased, n, the total number of search points across several orders

of magnitude using the optimal thread block size for each type of NN search. I keep the number

of query points equal to the number of search points in these tests. I plot the four 2D searches in

two pairs—QNN and All-NN; kNN and All-kNN—since they have similar algorithms and results.

For the kNN searches, I also test performance for increasing values of k from 1-32.

Increasing n: For 2D QNN, I see speed-ups in the range [20 - 41.5]; the maximum

speed-up occurs for n = 10 million. For All-NN, I see similar results: the speedups in the range

[20 - 36.8]; the maximum again at 10 million points. For both searches, if n ≤ 100 points, it is

better to use a CPU or brute force solution.

For 2D kNN and All-kNN, I set k = 32. For kNN, I see speedups in the range [14 - 18]

with the maximum at 1 million points. There is enough memory to run a query with 10 million

points, but I then have to decrease k = 8 in order for both the search stack and closest heap to fit

into shared memory. When I decrease, I see a speedup of 23.4. For All-kNN, I see speed-ups in

the range [12 - 15.7] with the maximum again at 1 million points. Again, for n ≤ 100, it is better

to use a CPU or a brute force solution.

Increasing k: for the 2D searches, I set n = 106 and vary k from 1 - 32. In both cases,

the speed-ups appear to follow a shallow inverse quadratic curve. For the kNN search, all the

speed-ups are in the range [17.9 - 22.7] with the maximum at k = 6. For the All-kNN search, the

results are similar with speedups in the range [15.7 - 18.4] with the maximum at k = 3.

7.8 Conclusion

The demonstrated QNN, kNN, All-NN, and All-kNN search algorithms are based on a

DFS minimal kd-tree. The minimal kd-tree design is static, balanced, cyclical, using all nodes

(internal and leaf) each storing a single point corresponding to the left-balanced median split

along the current axis. This kd-tree design allows us to handle more points with higher

214

performance by efficient memory utilization. Not only is it possible to support nearest neighbor

searches on the GPU using a minimal kd-tree but there is a large performance gain from doing so.

7.8.1 2D Performance Summary

The GPU parallel NN searches can handle up to 36+ million 2D points and run faster

than the equivalent CPU serial NN search algorithms. The multi-core GPU QNN search runs 20-

44 times faster than the equivalent single core CPU search QNN. The GPU All-NN search runs

10-40 times faster than the CPU All-NN search. The GPU kNN search runs 13-18 times faster

than the CPU kNN search. The GPU All-kNN search runs 8 - 17 times faster than the CPU ALL-

kNN search.

7.8.2 3D Performance Summary

The GPU parallel NN searches can handle up to 22+ million 3D points and ran faster than

the equivalent CPU serial NN search algorithms. The multi-core GPU QNN search runs 10-30

times faster than the equivalent single core CPU search QNN. The GPU All-NN search runs 10-

29 times faster than the CPU All-NN search. The GPU kNN search runs 7-16 times faster than

the CPU kNN search. The GPU All-kNN search runs 7 - 14 times faster than the CPU ALL-kNN

search.

7.2.3 4D Performance Summary

The GPU parallel NN searches can also handle up to 22+ million 4D points and run faster

than the equivalent CPU serial NN searches. The multi-core GPU QNN search runs 8-22 times

faster than the equivalent single core CPU search QNN. The GPU All-NN search runs 11-21

times faster than the CPU All-NN search. The GPU 𝑘NN search runs 6-14 times faster than the

CPU 𝑘NN search. The GPU All-𝑘NN search runs 6 - 13 times faster than the CPU ALL-𝑘NN

search.

215

7.9 Future Directions

GPU Build: I actually implemented a GPU algorithm to build the kd-tree directly on the GPU.

Unfortunately, it was actually slower than building the kd-tree on the CPU. At some point, I

would like to revisit this GPU build algorithm and see if it can be improved.

BFS kd-tree: I implemented my DFS minimal kd-tree before I understood the GPU hardware

and hardware issues that constrain performance—issues such as coalescence, branch divergence,

bank conflicts, etc. If I were to re-implement my NN search kernels today, I would try a breadth

first search (BFS) kd-tree algorithm instead in order to respect coalescence and to help reduce

search divergence across threads within each thread warp.

216

8.0 Case Study: A GPU Histogram

In this case study, I demonstrate my Column data access skeleton (DASk) on a 256-bin

histogram over byte data. My histogram implementation is called TRISH1 and is a deterministic

algorithm that avoids atomic operations and gives performance that is data independent. TRISH

is higher performing than previous GPU histograms, with a focus on reducing the algorithm’s

total cycle counts. Reducing the cycles comes from improving thread level parallelism (TLP),

instruction level parallelism (ILP) and bit-level parallelism (BLP). TLP improves performance

by increasing occupancy from two to three thread blocks, which is achieved by compacting “per-

thread” histograms in shared memory and by using register arrays. ILP improves performance by

increasing independent instructions via loop unrolling by a factor of 𝑘 = [1. .63] and by

batching operations in groups of four. BLP improves performance by compacting bin counts into

four 8-bit quads per 32-bit element. BLP also improves performance by reducing binning and by

accumulating instructions by working with 32-bit elements as overlapping 16-bit pairs instead of

four individual bytes. TRISH runs up to 50% faster than previous GPU histogram methods for

random data and 2 to 4× faster for image data.

8.1 Introduction

Histograms, first defined by Karl Pearson (Pearson, 1895), summarize the frequency

distribution of a data set. Given an input array V with n data values, with an associated data range

R = [min; max) and m bins to count the data values into, the histogram algorithm outputs the

histogram as m frequency counts hi, one for each bin. The actual counting is done using a find

1 TRISH is an acronym for the “threaded registers independent strided histogram.” method

217

function f(v) that maps each data value into one of sub-ranges2 ri = [ai, bi), which are known as

bins, all sub-ranges ri collectively cover the original range R without overlap. The m sub-ranges

are chosen to be equal-sized as this enables a linear algorithm O(n), as each of n values can be

mapped onto its matching sub-range in constant time O(1) using numeric calculations. More

complex histograms can support varying size sub-ranges but then require more costly logarithmic

O(log n) or linear O(n) searches in order to map each of n values into its matching sub-range.

These more complex histograms thus result in log-linear O(n∙log n) or quadratic O(n2) asymptotic

performance. These more complex histograms will not be discussed further in this dissertation.

The histogram method works in four broad steps:

Step 1) Subdivide Ranges partitions the original range R into m equal-sized sub-ranges3

(known as bins), ri = [ai; ai+1), all sub-ranges ri collectively cover the original range R

without overlap.

Step 2) Distribute Values maps each of n data values from V into one of the m sub-

ranges, ri.

Step 3) Count Bins maintains bin counts hi for the number of data values that fall into

each bin ri.

Step 4) Output Histogram outputs the m frequency counts (hi) that collectively make up

the histogram.

The resulting histogram is often graphically rendered as a bar-chart of these counts. The

shape of the chart gives information about the frequency distribution of the data.

The histogram methods discussed in this chapter focus on the special case of 256-bin

histograms for (8-bit) byte data, which are useful for image processing, text processing, and other

applications. The advantage of using 256-bin histograms on byte data is that computing ranges

and distributing values into bins can be replaced by simpler indexing operations for faster

2 There are m subranges ri = [ai, ai+1) with each of the (m+1) partition values ai typically computed as

ai = min + i∙[(max-min)/m)].
3 There are m subranges ri = [ai, ai+1) with each of the (m+1) partition values ai typically computed as

ai = min + i∙[(max-min)/m)].

218

performance. Figure 8.1 shows code for a simple 256-bin CPU histogram method for counting

byte values.

Input: 𝑉 = array of 𝑛 bytes to be binned
Output: bins = array of 𝑚 = 256 bin counts

integer bins[256] = 0; // Zero counts

foreach idx in [0..n-1] // Count bytes
 bins[V[idx]]++;
end idx

Figure 8.1: A 256-bin CPU histogram method.

 Although histogram methods are straightforward to implement on a sequential CPU they

have proven difficult to adapt for use on many-core processors such as GPUs. Prior researcher’s

GPU histogram implementations generate correct results but achieve only 6–15% of the

theoretical peak throughput of modern GPU hardware, such as NVIDIA Fermi or Tesla cards.

My TRISH method improves modestly on previous results, achieving ~21% of peak throughput.

8.1.1 Parallelism improves Performance

Readers are already aware of the benefits of using instruction-level parallelism (ILP),

data-level parallelism, and thread-level parallelism (TLP). In this chapter, I introduce Bit-level

parallelism (BLP) which can also improve performance.

Bit-Level Parallelism: Bit-level parallelism (BLP) is an older form of parallelism (Wadleigh

and Crawford, 2000) and is a special case of vector-parallelism4. BLP processes multiple small

data types at once using a single ISA instruction on larger data types. A shown in Figure 8.2, if

the native machine word size is 32-bit then the programmer can choose to work with four 8-bit

bytes, or two 16-bit words, or one 32-bit double-word (DWORD) using 32-bit ISA instructions.

4 Bit-Level parallelism is also sometimes referred to as “SIMD within a Word” (SWAR).

219

Working with 8-bit bytes or 16-bit words on such an architecture using BLP can result in

speedups up to 4× or 2× respectively.

Figure 8.2: Bit-Level Parallelism

The trade-off with BLP, is that programmers also pay overhead in the form of extra

instructions to compress and decompress multiple small data values into or from the larger data

type registers. A performance increase thus depends on whether the instructions saved by BLP is

more than the overhead incurred compressing values and decompressing results.

Performance:

To improve parallel performance, I take advantage of these 4 types of parallelism -- ILP,

data-level, TLP, and BLP.

To achieve good GPU performance, I use coalescence, avoid bank conflicts, and

minimize branch divergence. For measuring GPU performance, I use the concepts of I/O

throughput (GB/s) and Total Cycles (TC = II/IPC) from Chapter 3. Using the TC metric, I seek

to improve performance by either reducing the total instructions issued (II) or by increasing the

instructions retired per cycle (IPC).

To achieve better GPU performance in my TRISH histogram, I also use a couple of ideas

from other sources. First, Dr. Micikevicius (Micikevicius, 2010 both papers) explained how to

find and remove GPU performance bottlenecks by carefully measuring and analyzing

performance. Second, Dr. Merrill (Merrill and Grimshaw, 2010 both papers) used register arrays

for better performance and memory utilization by partitioning array elements across the registers

of multiple threads in a thread block.

I aim for my GPU histogram methods to be correct, fast, and predictable. I verify

correctness by comparison against a baseline CPU method. I achieve faster performance by

porting my original CPU methods onto GPUs via data-level parallelism and by seeking to

8-bit 8-bit 8-bit 8-bit

16-bit 16-bit

32-bit

220

minimize the total cycles that my GPU method takes to complete. I also seek predictable

methods where performance is not influenced by the underlying data distribution.

8.2 Related Work

Since my work is related to two prior GPU Histogram implementations, I will briefly

describe those two prior GPU histograms from Podlozhnyuk (Section 8.2.1) and Nugteren

(Section 8.2.2). There is also a third GPU histogram implementation, by Yang (Yang et al,

2008), but his histogram method is slow (~ 0.7 GB/s throughput on G80 class GPUs).

8.2.1 Podlozhnyuk’s Histogram Method

NVidia provides 64-bin and 256-bin histogram methods in the most recent CUDA

software development kit (NVIDIA, 2012, C++ Programming Guide). These methods5 were

created by Victor Podlozhnyuk (Podlozhnyuk, 2007). These methods target older GPUs with 16

KB of shared memory per streaming multi-core (SM). Thus, 64-bin histograms can be created in

shared memory for each thread. Since 256-bin histograms for each thread would not fit into

shared memory, Podlozhnyuk uses a novel “per warp” method, in which thread blocks with six

warps of 32 threads each create six histograms in shared memory. After scanning the data, he

then accumulates these per-thread or per-warp histograms into the final histogram. Using this

“per warp” memory layout, all 32 threads in each warp must compete to increment and update

shared histogram bins. In order to maintain correct behavior during collisions between threads,

the method must use either hardware atomics or the author's novel software tagging scheme. In

this scheme, the top five bits of a counter are reserved for a thread ID (thread offset within the

warp), which each thread sets as it tries to increment a bin count. Since hardware guarantees that

a single thread will always win despite collisions, each thread must check the winning tag to

ensure that its own increment occurred or try again. Of course, this means that worst-case

5 Shams (Shams and Kennedy, 2007) has generalized Podlozhnyuk's method to support 32-bit inputs and a

range of bin sizes.

221

behavior (many thread collisions) can be 8–32× times slower than best-case behavior (no thread

collisions). However, this method uses 192 threads per-block with eight concurrent blocks per

SM and thus achieves full occupancy (100% = 1536/1536). Most of this histogram’s

performance comes from TLP, but performance is limited by the need to resolve intra-warp

thread collisions.

Unfortunately, Podlozhnyuk’s 256-bin method performs at only 15.0% of peak

throughput on modern GPUs (GTX 580) for random, uniformly distributed data. Moreover,

performance is data dependent: the data distribution determines the number of thread collisions

within each warp, which gates overall performance. As my experiments show, performance can

indeed degrade by factors of > 30.

8.2.2 Nugteren’s Histogram Method

Nugteren (Nugteren et al, 2007) reported a histogram method for fixed-size images

(2048×2048 bytes) that is independent of the data distribution. They claimed that on a GTX 470

they achieved 56% better throughput than Podlozhnyuk's method. Nevertheless, I have not seen

consistent improvements in my tests on the more modern GTX 580, 480, and 560M. Two factors

may explain this. First, in my tests I replace Podlozhnyuk's older software tagging with newer

hardware atomics for a 50% speedup of his algorithm, and, secondly, Podlozhnyuk’s data

dependent method will perform better on the uniform distribution that forms my main test case

than on images with correlated pixel values that were probably used by Nugteren. Our

experimental results (as seen in Figure 8.7) are consistent if both factors are taken into account.

Nugteren use the larger shared memory (48 KB) of modern GPUs to implement “per-

thread” histograms. Histogram bin counts are compressed by storing two 16-bit bins per 32-bit

DWORD. Therefore, 128 DWORDs suffice to store an entire 256-bin histogram. With 32

threads per-thread block, 16 KB of shared memory is also sufficient to store individual

histograms for each thread block. This compression enables three thread blocks (of 32 threads

222

each) per SM to run concurrently. Unfortunately, the large amount of shared memory used

results in low occupancy (6.25%= 96/1536), and therefore Nugteren’s method does not fully

utilize the GPU pipelines.

Nugteren’s histogram GPU kernel works in a straightforward way. First, the data is

partitioned across all the threads in a cooperative thread array (CTA). Next each thread bins and

counts all its assigned data. After all input data has been binned, the per-thread histograms are

then summed to create a per-block histogram in global memory. A tail GPU kernel is then

executed to sum the per-block histograms into the final histogram.

In my experiments, Nugteren's code achieved about 5.4% of peak throughput on the GTX

580 for a fixed image size of 2048×2048 bytes. Performance for this method is predictable, since

the method is deterministic and not influenced by the underlying data distribution.

8.3 My TRISH Method

Like Podlozhnyuk’s and Nugteren’s methods, my GPU histogram method supports

coalesced memory accesses for efficient I/O, stores intermediate results in shared memory, and

uses simple indexing. My “threaded registers independent strided histogram” (TRISH) method is

similar to Nugteren's method with several simple ideas that improve overall performance. Where

possible, I report the improvements in throughput (GB/s) afforded by each idea to indicate their

contributions to overall performance. I defer the description of the experimental setup to Section

8.4.

For my TRISH Histogram case-study, I use these ideas to achieve better throughput:

 Reduce the total cycles required to complete my method (𝑇𝐶 = 𝐼𝐼/𝐼𝑃𝐶)

 Improve pipelining, as measured by instructions retired per cycle (IPC), via a

combination of thread- and instruction level parallelism (TLP and ILP)

 Reduce instructions issued (II) by simplifying code and applying vector

processing (VP) ideas

 Build compact per-thread histograms in shared memory to achieve Better TLP

 Increase independent instructions by loop unrolling and batching operations into

groups of four to achieve better ILP

223

 Work with 16-bit pairs or 8-bit quads as single 32-bit elements instead of

separately as 8-bit bytes to achieve better BLP

Like Nugteren's method, I use a deterministic per-thread histogram algorithm and

therefore have no need for tagging or atomics to resolve intra-warp thread collisions as in

Podlozhnyuk's method. Thus my method is data independent and faster.

8.3.1 Improving TLP

One way to improve GPU performance is to increase TLP. I increase TLP for my TRISH

method by building compact “per-thread” histograms in shared memory. This improves thread-

level parallelism at the cost of more frequent accumulation passes.

Compacting Histograms: I compact my TRISH histogram by storing four 8-bit bin

counters per 32-bit word. Since each bin counter is a single byte, 64 DWORDs suffice to store an

entire histogram for a thread (see Figure 8.3).

Figure 8.3 TRISH Layout: – In TRISH, each thread has a 256-bin histogram

stored as a column of 64 DWORDs (four 8-bit bin counts per DWORD). Each

Thread also maintains four 32-bit registers for the per-block register array.

As can be seen in Figure 8.3, I choose to use 64 threads per-thread block, thus 16 KB of

memory suffices to store all per-thread histograms for each thread block. Recall from Chapter 2

…

…

…

… … … … …

‘Per Block’
Histogram

‘Per Thread’ Histograms
Thread Columns [0..63]

W
o

rd
 R

o
w

s
[0

..
6

3
]

o
r

B
in

s
[0

-2
5

5
]

= Bin counts stored as 8-bit bytes (4 bins per 32-bit word)

= Bin counts stored as 32-bit words (4 registers per thread)

224

that each Fermi and Kepler class SM has 48 KB of on-chip shared memory, this specific data

layout in shared memory enables three concurrent thread blocks per SM (3 = 48/16), achieving a

thread occupancy rate of 12.5% (192/1536). As a result, TRISH has a much lower occupancy

than Podlozhnyuk's method but double the occupancy of Nugteren's method. Furthermore,

having two or more warps per SM enables the dual issue feature on Fermi class GPU cards and

therefore enables the scheduling of two warps of instructions at a time onto GPU pipelines.

The small range [0..255] of bytes as bin counters means that TRISH must act earlier to

prevent overflow. Thus, I accumulate per-thread histograms into a per-block histogram on a

regular basis. The per-block histogram uses 32-bit bin counters, and so overflow within the per-

block histogram is not a concern. For faster performance via BLP, I treat data elements as 32-bit

DWORDs instead of individual 8-bit bytes, meaning each 32-bit DWORD contains four 8-bit

data values. To always avoid overflow within the per-thread histograms, I accumulate my per-

thread results after binning at most 63 32-bit DWORDs per-thread. That means that I

conservatively assume all 252 bytes in those 63 DWORDs will bin into the same counter.

Per-thread histograms are accumulated into the per-block row sum histograms by simply

reducing (linear serial scan) the bin counts. As part of the reduction, I reset the per-thread bin

counts to zero. Since there are 256 bins but only 64 threads per-thread block, each thread must

accumulate four bins.

Direct indexing during the `per-block' row sum accumulation would result in a 32-way

bank conflict per warp, which would hurt performance. Consequently, I stagger starting indices

by thread ID and index modulo block size (circular indexing). The staggered start ensures that

each thread within a thread warp starts on a unique memory bank within shared memory thus

avoiding bank conflicts. Circular indexing ensures that the code wraps around correctly to

accumulate the 64 DWORDs along each row that will be accumulated into the per-block

histogram. Figure 8.4 shows how I implement staggered start and circular indexing.

225

// Staggered Start
currIdx = threadID;
…
// Circular Indexing
nextIdx = mod(currIdx+1, BlockSize);

Figure 8.4 Staggered Start / Circular Indexing: To help avoid bank conflicts, I use a staggered

start along with circular indexing so each thread refers to a different memory bank in shared

memory.

Register Arrays: Since each bin counter is completely independent, I can safely store

the entire per-block histogram as a register array. I partition the entire 256-bin histogram across

all the 64 threads in each thread block. Each thread maintains its four per-block bin counters in

registers.

8.3.2 Improving ILP

Since my method results in low occupancy (12.5%), I cannot take full advantage of TLP

to keep the hardware pipelines busy. Instead, I fall back on well-known ILP techniques of loop

unrolling ,software-pipelining and batching four runs of independent instructions.

Loop Unrolling: I define work per-thread, 𝑘, as the number of 32-bit words that each

thread counts in bins before looping to the next chunk of work and repeating. To prevent possible

overflow in the 8-bit per-thread counters, I should bin and count at most 63 DWORDs (252

bytes) of input values before accumulating my per-thread counts into my per-block counts.

Consequently, I pick 𝑘 in the range [1. .63]. Larger values of 𝑘 amortize the cost of loop

overhead across multiple elements and increase the pool of independent instructions that the

compiler and the hardware can potentially harvest during instruction pipeline scheduling.

Software Pipelining: To decrease pipeline stalls and improve ILP performance, I

group and reorder batches of instructions from k independent work-items. However, unrolling a

226

loop of k work-items, could result in up to k× as many sets of registers, greatly increasing register

pressure on each thread.

Batching Instructions: To decrease register pressure, I batch software pipelining into

smaller fixed-size groups of [2-4] work items per batch. In other words, instead of software

pipelining all k work-items at once, I group the k work-items into smaller batches of four work-

items at a time (1-4, 5-8, 9-12, …, 57-60, 61-63) and then software pipeline each individual batch

of four work-items separately. Batching software pipelining in this manner reduces the registers

required from O(k) down to O(4). Batching thus provides a good compromise between ILP

performance and high register pressure. For GPU programming, I recommend batching a large

group of k work-items into smaller batches of [2-4] work-items each as a good initial starting

point until you have a feel for how many registers are being consumed by your algorithm.

Even with batching, my unrolling and software pipelining of k work-items increases

register pressure on my TRISH kernels; Using CUDA 4.0, my TRISH method uses 36 registers

per-thread (between Podlozhnyuk's 18, and Nugteren's, which spills out of 42 registers.) Since

thread occupancy is already limited by shared memory constraints, any reduced occupancy due to

high register usage effectively goes unnoticed.

8.3.3 Improving Bit-Level Parallelism

As much as possible I handle the input data and initial count arrays either as 32-bit quads

of bytes or as two alternating pairs of bytes. Such an approach reduces the arithmetic operations

involved by up to factors of four or two, respectively (Wadleigh and Crawford, 2000). There are

two main places where I take advantage of bit-level parallelism (BLP) to improve performance –

when accumulating per thread counts into per block counts, and when binning four 8-bit values

into their respective bins.

227

Accumulation Optimizations: One normally thinks of the four 8-bit bins in a 32-bit

word as a quad layout [3,2,1,0] as shown in Figure 8.5 (top).

Figure 8.5 Optimizing via BLP: Processing 2 or 4

bytes simultaneously using 32-bit instructions.

If we extract each 8-bit value individually as a singleton and then accumulate, then this

approach can take up to 4× as many instructions as accumulating the 32-bit DWORD directly as

shown in Figure 8.5 (left). Due to overflow issues across bytes within the 32-bit DWORD, it is

not always possible to accumulate the 32-bit DWORD directly6. However, one can also consider

the same 32-bit layout [3,2,1,0] as two alternating pairs [*,2,*,0] and [3,*,1,*] as shown in Figure

8.5 (right). Using this alternate layout, I can extract and work with these alternating pairs using

bit shift and mask operations to upscale the arithmetic range from 8-bits to 16-bits before

overflow becomes a problem. Changing my accumulation code to work with pairs instead of

singletons during the per-block row sum operations improved throughput performance by about

5% on the GTX 580 (from 38.1 GB/s to 40.3 GB/s).

Binning Optimizations: It is common to extract individual bin indices by multiplying

the byte value by the thread block size and then adding in the thread offset. However, using bit

manipulation, I can multiply alternating pairs of bytes, and, assuming fixed powers of 2 for my

histogram table sizes, I can replace expensive multiplies and divides by bit shift and mask

operations. This approach not only saves instructions via BLP but also uses less expensive bit

6 As an alternative, one could mask away the high order bit in each byte before accumulating and then

restore them after accumulating. However, the number of overall instructions involved may not change for

the better (The number of additions decreases but at the cost of increased mask operations).

3 02 1

02
3 1

2 Alternating Pairs

0
1

2
3

4 Singletons

Machine Word = 32-bits

Four 8-bit counts

2× Instructions

4× Instructions

228

operations. I also realized that by using BLP that I could also combine multiple shifts into a

single instruction. See Figure 8.6 for an example of my binning code which bins four 8-bit values

stored as a single 32-bit DWORD.

 template < ColSize, nWarps >
 Bin4_None(cntPtr, val32, currWarp)

 // Masks (lane and shift)
01: const U32 maskRow13 = 0x07E007E0u;
02: const U32 maskCol = 0x03030303u;

 // Get Lane Info [0..3]=bin[0..255] % 4
03: laneCol = val32 & maskCol;
04: LI_13 = laneRow13 & maskRow13;
05: LI_24 = laneRow24 & maskRow13;

 // Get Shifts [0,8,16,24] = [0,1,2,3]*8
06: shift = laneCol << 3u;

 // Get Local Indices
07: LI_4 = LI_24 >> 16u;
08: LI_3 = LI_13 >> 16u;
09: LI_2 = LI_24 & 0xFFFFu;
10: LI_1 = LI_13 & 0xFFFFu;

 // Get Shifts
11: S4 = (shift >> 24u);
12: S3 = (shift >> 16u);
13: S2 = (shift >> 8u);
14: S1 = (shift & 0xFFu);
15: S3 = s3 & 0xFFu;
16: S2 = s2 & 0xFFu;

 … // Continued on next column

 … // Continued from prior column

 // Get Increments
17: inc4 = 1u << S4;
18: inc3 = 1u << S3;
19: inc2 = 1u << S2;
20: inc1 = 1u << S1;

 // Increment bins
21: oldCnt = cntPtr[LI_4];
22: newCnt = oldCnt + inc4;
22: cntPtr[LI_4] = newCnt;

23: oldCnt = cntPtr[LI_3];
24: newCnt = oldCnt + inc3;
25: cntPtr[LI_3] = newCnt;

26: oldCnt = cntPtr[LI_2];
27: newCnt = oldCnt + inc2;
28: cntPtr[LI_2] = newCnt;

29: oldCnt = cntPtr[LI_1];
30: newCnt = oldCnt + inc1;
31: cntPtr[LI_1] = newCnt;

 end Bin4_None

Figure 8.6 Binning Code: This code bins four 8-bit values compacts in a single 32-bit

DWORD. The code uses unrolling (group of 4) and interleaving for increased ILP. The code

also uses bit masks and shifts tricks for increased BLP.

 As shown in Figure 8.6, my binning algorithm depends on knowing the data layout in

advance. The data layout is one histogram per thread with each histogram consisting of 64 rows

and each row consisting of four 8-bit counters stored as a single 32-bit DWORD. Since there are

64 threads per thread block, there are 64 columns of histograms. Each 8-bit value to be binned is

turned into a row [0-63] and shift increment value [0, 8, 16, 24] within each row. Since the data

layout is known and fixed, I can use bit tricks via masks and shifts to eliminate multiplies and

modulus and use some BLP tricks to reduce total operations. Using the row indices and shift

increments, the per-thread histogram bin counts are then incremented, one at a time.

Incrementing is by far the slowest part of the binning algorithm due to shared memory accesses

229

and dependencies between instructions within this section of code for each bin operation. I

attempted several rewrites to improve performance by interleaving the “increment bins”

operations to increase ILP. However, these rewrites failed as they caused incorrect results (two

or more work-items colliding on the same bin results in some increments getting lost).

8.3.4 Picking the best 𝒌 value

What k-value (work per-thread) in the range [1..63] gives the best performance? Recall

that 63 is the maximum number of elements that can be safely processed before overflow

becomes a possibility. Picking the best k-value is complicated by several limitations: loop

overhead, ILP, and the row-sum efficiency ratio.

Loop Overhead: The TRISH method amortizes the cost of loop overhead across the

work of binning 𝑘 elements per loop. This suggests that TRISH should favor larger values of 𝑘.

ILP: At low values of 𝑘, the method does not unroll the loop enough to unlock sufficient

independent instructions for the warp schedulers to exploit to hide latency during instruction

scheduling (see Figure 8.7, for 𝑘 = [1. .4]). This suggests that TRISH should favor larger values

of 𝑘 for improved ILP.

230

Figure 8.7 Row-Sum Efficiency: Upper: Impact of work per-thread on I/O throughput for k ∈ [1,

63]. Best results are for k=31 and k=63. Lower: Bins per row-sum efficiency for k ∈ [1, 63]. Max

Efficiency = 1.0 (63 elements binned per row-sum) occurs at k = 1,3,7,9,21, and 63.

Row-Sum Efficiency: See Figure 8.7, In order to avoid overflow, TRISH frequently

accumulates all per-thread counts into per-block counts and resets the per-thread counts to zero.

This accumulation operation, which I call a row-sum, is expensive but fortunately is amortized

across the cost of binning k DWORD values. Since, 63 DWORDs (252 bytes) is the most the

method can safely bin before accumulating, the ideal bins per row-sum efficiency ratio (bins/row-

sum) would be 63 binning operations per row-sum operation. However, since TRISH tests for

overflow only at the top of each loop of k work-items, the actual bins per row-sum efficiency

ratio becomes the maximum number of iterations before overflow becomes possible, which is

computed as Efficiency = (⌊63/𝑘⌋𝑘)/63.

Consider the case, k = 32 (red bar in Figure 8.7), TRISH processes and bins one loop

iteration of 32 elements (128 bytes). In the worst case, all 32 elements could end up in one bin

0 10 20 30 40 50 60
0

0.5

1

'K' = Work Per Thread (per loop)

E
ff

ic
ie

n
c

y 0 10 20 30 40 50 60

20

25

30

35

40

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

231

counter (bin count = 128). Thinking about what could happen on the next loop, one realizes that

overflow is now possible, since (32+32) > 63 or alternately (128+128 > 252). This means that a

row-sum operation must be performed on the current iteration to avoid this potential overflow on

the next iteration. This results in an efficiency of only 32/63 = 0.508, which turns out to be the

worst case bins per row-sum efficiency. Now consider the case k = 31 (the green bar in Figure

8.7). With this value, TRISH processes 31 elements (124 bytes) and, on the next loop, can

process another 31 elements (124 bytes) before having to perform a row-sum at the top of the

third loop, since (31+31) ≤ 63. This case achieves an efficiency of (2×31)/63 = 0.984.

Contrasting these two cases, TRISH must accumulate row-sums almost twice as often for k = 32

than for k = 31. The ideal bins per row-sum efficiency ratio of 1.0 = (63/63) is consequently

achieved at the values k = 1, 3, 9, 21, and 63, which are the values of k that divide 63 evenly.

As shown in figure 8.5 (upper graph), I tested all values of k = [1..63] to see how these

limiting factors combine. For low values of k (k ≤ 4), throughput was poor because of high loop

overhead and the low potential for increasing ILP. For example, at k = 1 throughput was only

18.92 GB/s. At higher values of k, there is a strong correlation between the bins per row-sum

efficiency and I/O throughput as the row-sum operation is expensive. I found that k = 31 and

k = 63 give the best throughput results at 40.91 GB/s and 41.86 GB/s, respectively. At 𝑘 = 32,

performance drops to 35.44 GB/s due to the increased frequency of row-sum.

Although throughput for k = 31 is slightly slower than for k = 63, I recommend k = 31

as the better overall choice because it is is faster overall for small to medium input sizes (n).

8.3.5 TRISH Method Summary

Here is a brief high-level summary of my 256-bin TRISH code. A CPU host function (not

shown) implements my TRISH method by dealing with setup, invoking the GPU kernels, and

cleaning up resources.

232

The actual GPU histogram method is a two-step process using two GPU kernels, a Count

kernel and a BlockSum kernel. I briefly describe the BlockSum kernel first as it is so simple.

The BlockSum kernel simply sums the results of all the individual per-block histograms

generated by the Count kernel to obtain the final histogram.

The Count kernel (see Figure 8.8) implements the Column DASk (see Section 5.3),

which groups the data into multiple fixed-size data blocks and partitions the data blocks across a

fixed number of columns. Each thread block then cooperatively strides through its assigned data

along the column (row by row). A last partially full row must range check to avoid access errors.

Count Kernel
Inputs: ⌊𝑛/𝑛𝐵𝑙𝑜𝑐𝑘𝑠⌋+[0,1] 32-bit values to bin & count
Outputs: per-block counts (256 ×nBlocks)

I/O Summary:
⌈𝑛/32⌉ coalesced reads of input values
⌈(256 × 𝑛𝐵𝑙𝑜𝑐𝑘𝑠)/32⌉ coalesced writes of per-block counts

Algorithm: (In Parallel, 64 threads)
 // 1. Set-up

while (more ‘full’ rows) // 2. Main loop

end while

if (‘left-over’ row) // 3. Partial Row

end if
 // 4. Wrap-up

Figure 8.8 GPU Count Kernel – Computes per-block histograms for each thread block

if (overflowCount > 0)
 row-sum(…) // Accumulate block counts
end if
Write out block counts

 … Similar to “main loop” plus “range checks”

if (overflowCount ≥ (63 – K))
 row-sum(…) // Accumulate block counts
 overflowCount = 0;
end if
repeat K times // fixed K in [1..63]
 Read 32-bit DWORD of data
 Bin 32-bit DWORD as 4 bytes
end repeat
overflowCount += K;
move to next data block along column (next row)

Compute # of ‘full’ rows & ‘left over’ partial row

233

As shown in Figure 8.8, each thread block computes its own per-block histogram for its

assigned data elements. Following the Column DASk template, this code has four main sections:

(Set-up, main loop, partial row, and wrap-up)

Section 1) Setup: The set up code figures out how many fixed size rows (via the stride)

to process in the main loop and checks if we have any leftover data that needs to be

processed with careful range checks.

Section 2) Main-Loop: In the main loop, each thread in a warp (of 32 threads) processes

k work-items in each data block. For the kth work-item, each thread reads in a 32-

DWORD from global memory in a coalesced manner and then bins each of the four bytes

within that DWORD into the per-thread histogram array kept in shared memory. An

overflow counter is incremented after each inner loop of 𝑘 elements is processed. On

detecting possible overflow, the code launches the row-sum operation to accumulate per-

thread counts into the per-block histogram stored as a register array, the per-thread counts

are reset to zero as part of the row-sum. The row-sum function treats 32-bit quads as

two alternating pairs for better performance via BLP.

Section 3) Partial-Row: The Column DASk pushes any range checking into the last row

only, which most likely is only partially full. This section of code is almost exactly the

same as the main-loop code with the addition of extra required range-checks when

loading data from global memory. Since the last partially full row contains one row of

fixed-size data blocks and each data block contains k work-items. I actually use a

telescoping “divide and conquer” tree on k to reduce the actual number of range checks

required from O(k) to O(log k)7 at the cost of more verbose and confusing code.

Section 4) Wrap-Up: The wrap up code then accumulates any left-over per-thread

counts and writes out the final per-block histograms to global memory in a coalesced

manner.

8.4 Performance Results

In this section, I report the performance results of three different sets of experiments. In

the first set of experiments, I directly compare my TRISH histogram method to Podlozhynuk’s

and Nugutern’s histogram methods on both synthetic data sets and image data sets. In the second

set of experiments, I deliberately turn off some of my optimizations to see the degraded

7 Telescoping means that I do my range check first on a group of 32 work-items, then 16 work-items, then

8, then 4, then 2, then 1. This requires log2(k) range checks per data block instead of k range checks per

data block (one per work-item).

234

performance that results. In the third set of experiments, I collect useful performance metrics

from some the hardware profile counters on the GPU card.

Hardware CPU = i7-920 @ 2.66 GHz, RAM = 12 GB, GPU = GTX 580 (16 SMs, 512

SPs, 1.5 GB memory, 192.4 GB/s peak throughput).

Software GPU API = CUDA 4.0 (64-bit), LANG = C++, IDE = VS 2010 (64-bit), OS =

Windows 7, SP1 (64-bit)

Data Size n = [8192 – 268,435,456], in increasing powers of 2.

Table 8.1: Histogram Experiment Environment

All tests were performed on a GTX 580 using the exact same computational environment

(shown in Table 8.1). Timings are averages derived by using 100 runs of each test. I/O

throughput is measured in gigabytes per second (GB/s) by counting the number of bytes

processed in billions and dividing by the average time to process in seconds.

8.4.1 Direct Comparison

In this section, I directly compare my TRISH method to Podlozhnyuk’s and Nugteren’s

methods.

235

Figure 8.9 Synthetic Data Throughput: Throughput for Podlozhnyuk’s (POD), Nugteren’s (NUG), and

my TRISH methods on three synthetic datasets -- all zeros, uniform random, and linear. I base

comparisons on uniform random results, although these will be optimistic for POD. Performance

measurements were taken on a GTX 580 card, all software was built using the CUDA 4.0 platform;

results on other tested platforms were similar.

Because Podlozhnyuk's method is data dependent, Figure 8.9 shows results for three

different data sets:

 All zeros: A worst-case dataset of “all zeros,” which for Podlozhynuk’s method

causes all threads in each data warp to collide.

 Linear: A best-case linear dataset, carefully constructed to prevent any thread

collisions in Podlozhynuk’s method.

 Uniform Random: A uniform random dataset, where each data warp should

cause a unpredictable number of thread collisions in Podlozhynyuk’s method,

which according to Raab (Raab and Steger, 1998) should average around 3

collisions per data warp (2.79 = ln(32)/ ln(ln(32)).

The performance results for TRISH and Nugteren’s methods on these three different

datasets cannot be easily distinguished, confirming their data independence.

Test Conditions: For Podlozhnyuk's method I enabled hardware atomics, which

improved performance by 50% over his original software tagging approach. Nugteren's original

2^13 2^16 2^19 2^22 2^25 2^28
0

10

20

30

40

50

'n' = 32-bit elements, binned, log scale

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

POD

POD

Random,
All Zeros, Linear

TRISH

POD

All Zeros

NUG

Random, All Zeros

Linear

Random

236

method is statically compiled for a fixed 2048×2048 image size. I tweaked Nugteren’s code

slightly to also allow sizes that are 4, 16, or 64 times larger. Generalizing the code further would

require range checks that would decrease Nugteren’s throughput. The TRISH method bins 31

elements per-thread (k = 31) before looping, for a cooperative stride factor of 95,232 data

elements across all 48 thread blocks in the CTA. The grid size was set to 48 to give 3 concurrent

blocks per SM on all 16 SMs on the GTX 580. My experiments (not shown) on larger grid sizes

resulted in a larger last row size, more range checking, and slightly slower overall performance.

Data Results: The TRISH method has better throughput than the previous methods for

large 𝑛. For example for 𝑛 = 67,108,864, TRISH achieves 40.53 GB/s. Nugteren's method

achieves 11.25 GB/s. Unlike the other two, Podlozhnyuk's method is highly data dependent: for

best-case, uniform random, and worst-case datasets achieves 43.61 GB/s, 27.43 GB/s and 0.48

GB/s, respectively. For uniform random data, TRISH is 3.6× and 1.48× faster than Nugteren's

and Podlozhnyuk's methods, respectively.

Image Experiments: In Figure 8.11, I compared all three methods on three standard

grey-scale images (Lena, Raft, MRI) obtained from

scien.stanford.edu/pages/labsite/scien_test_images_videos.php.

http://scien.stanford.edu/pages/labsite/scien_test_images_videos.php

237

Figure 8.10 Image Data Throughput: Throughput for Podlozhnyuk's (POD), Nugteren's (NUG) and my

TRISH methods on 3 greyscale images (Lena, Raft, MRI) and one RGBA image (Raft). Each is tiled to

sizes 2562 - 40962. Performance measurements were taken on a GTX 580 card, software built on the

CUDA 4.0 platform.

As shown in Figure 8.10, Images are tiled to make sizes from 2562 through 40962. I

included an RGB Raft image for comparison, which was actually stored as RGBA with the alpha

channel set to all zeros (a near worst case for Podlozhnyuk's method.) For all images, the

coherence of nearby pixel values hurts the throughput of Podlozhnyuk's method but does not

affect the other two. These results indicate that my synthetic uniform random experiment was

overly optimistic for Podlozhynuk’s practical performance.

I found that my TRISH method was from 1.05× to 4.4× times faster than Podlozhnyuk's

method for black and white images, depending on the image and image size. The TRISH method

was 2-3× faster than Nugteren's method for the images and image sizes tested. The RGB results

underscore the potential danger of using a data dependent histogram method.

2^14 2^16 2^18 2^20 2^22 2^24
0

5

10

15

20

25

30

35

40

'n' = Number of Elements in Image, logscale

I/
O

 T
h

ro
u

g
h

p
u

t
(G

B
/s

)

TRISH = Lena (BW)

TRISH = Raft (BW)

TRISH = MRI (BW)

TRISH = Raft (RGB)

NUG = Lena (BW)

NUG = Raft (BW)

NUG = MRI (BW)

POD = Lena (BW)

POD = Raft (BW)

POD = MRI (BW)

POD = Raft (RGB)

POD

TRISH

NUG

238

8.4.2 Degraded Self-Comparison

I ran three degraded performance tests to determine the impact of ILP and TLP on the

overall performance of TRISH.

 Turn off Row-Sums: In the first test, I turned off accumulation (row-sums)

completely, which makes the results incorrect, but gives an upper bound on

performance if one could reduce the frequency of accumulation. Performance

increased about ~20% (from 40.9 to 49.4 GB/s, a difference of 8.6).

 Decrease per-thread Work: In the second test, I degraded ILP by reducing the

amount of work per-thread (𝑘). I measured 18.9 and 40.9 GB/s for 𝑘 = 1 and

𝑘 = 31 respectively. To do this comparison correctly, one must ignore the cost

of accumulation. Adding in the accumulation difference of 8.6 from the first

degraded test result, I obtained 27.5 and 49.5 GB/s respectively, so TRISH’s use

of ILP makes the code run roughly two times as fast (49.5/27.5).

 Decrease Concurrent Thread Blocks: In the final test, I degraded TLP by

reducing the number of concurrent thread blocks per SM from 3 thread blocks

per SM to 2 to 1 by padding shared memory. I measured 40.9, 28.5, and 14.6

GB/s for 3, 2, and 1 concurrent blocks per SM, respectively. Consequently,

TRISH use of TLP makes the code run roughly three times8 as fast (40.9/14.6).

8.4.3 Profiler Comparison

I also ran all three methods (POD = Podlozhnyuk, NUG = Nugteren, TRISH = my

method) under the NVIDIA Compute Visual Profiler (CUDA 4.0) on a GTX 580 card with n =

67,108,864 on uniform random data to gather performance metrics. The results are summarized

in Table 8.2.

8 I expect TRISH could run even faster if there was enough shared memory to support even more

concurrent thread blocks per SM – Fermi and Kepler support up to 8 and 16 maximum concurrent thread

blocks per SM

239

Time

(ns)

Through

put (GB/s)

Through

Put Perf.

Ratio

Registers
Shared

Mem.
Occupancy

Warps/

Cycles

Ins./

Bytes

TRISH 6,545.41 40.02 1.00 36 16,384 192/1536 5.94 11.71

POD 9745.44 27.03 1.48 18 6,144 1536/1536 44.47 23.71

NUG 22,631.2

0

11.25 3.56 42 16,384 96/1536 2.98 6.11

IPC

(2.0

Max)

II Bank

Conflicts

Cycles

II/IPC

Ratio

Cycles

Perf.

Ratio

Branches Divergent

Branches

Instruct

Replays

TRISH 1.18 6,140,046 0 5,203,429 1.00 8,844 0 0.00%

POD 1.58 12,292,604 2,469,684 7,780,130 1.50 1,663,119 940,361 20.09%

NUG 0.34 6,039,095 7,680 17,762,045 3.41 1,677 0 8.32%

Table 8.2: CUDA Profiler Results for TRISH, Podlozhnyuk’s(POD) and Nugteren’s (NUG)

As seen in Table 8.2, all three histogram methods are compute-bound with an

instruction:byte ratio (Ins/Byte) above the 4.00:1 balanced instructions per byte ratio

recommended for a GTX 580 (Micikevicius, 2010, Analysis-Driven Optimization).

This figure shows that Podlozhnyuk's method excels at TLP. With low register and

shared memory usage and 192 threads per-block, this method achieves full occupancy of 48

warps (100% = 1536/1536) threads per SM. Such a high occupancy allows the hardware to

keep the instruction pipelines busy, retiring 1.58 IPC on average (compared to a hardware

maximum of 2.0). However on the negative side, the code in this method issues many more

instructions, has many unavoidable bank conflicts, and is involved in a great deal of divergent

branching—all of which slow down overall performance dramatically. These performance issues

are all directly a result of the intra-warp thread collisions which are resolved using atomics.

Nugteren's straight-forward code issues only half as many total instructions as

Podlozhnyuk's. However, Nugteren's method does a poor job keeping the hardware pipelines

busy, with only 0.34 IPC, due to small number of bank conflicts, but primarily due to poor TLP

caused by low occupancy (6.25% = 96/1536).

Although the TRISH method also has poor TLP due to low occupancy

(12.5%=192/1536), it is double that of Nugteren's method. Nonetheless, by taking advantage of

240

ILP via loop unrolling and batching, TRISH manages to retire 1.18 IPC. This result is not quite

as good as Podlozhnyuk's method but is about 3.5× times better than Nugteren's. Despite the

extra overhead of having to accumulate regularly, the total instructions issued (II) is competitive

with Nugteren's method, due to streamlining code and using some BLP to reduce the number of

arithmetic operations. In summary, the TRISH method runs efficiently with no bank conflicts or

divergent branching requiring instruction replays.

Total Cycles: So why is the TRISH method faster overall despite being in second place

for both for IPC and II? Although it is not immediate apparent, this is because the total cycles

required to complete the TRISH method is much lower than either Podlozhnyuk’s or Nugteren’s

methods. Recall that total cycles is computed as TC = II/IPC. As discussed back in Chapter 6

(Case Study on Reduce/Scan), there is an inverse relationship between total cycles and

throughput, so a lower total cycles implies a higher throughput result.

The TRISH method beats the Nugteren method by using about twice the TLP and

increased ILP to keep the hardware pipeline busy, as captured by the IPC counter. This usage

allows TRISH to retire 3.5× more instructions per cycle. The TRISH method beats

Podlozhnyuk's method by simply issuing many fewer instructions, as captured by the II counter.

This reduced II result is mainly because there are no thread collisions causing instruction replays.

Also, I reduced overall computations via bit-level parallelism.

8.5 Conclusion

The 256-bin GPU histogram TRISH method presented here outperforms prior GPU

histogram methods, Podlozhnyuk’s and Nugteren’s, which focused on minimizing I/O via

coalesced memory accesses, on storing bin counts in shared memory, and on using simple straight

forward binning code. The TRISH method improves compute performance by reducing the total

cycles required, by increasing instructions retired per cycle (IPC), by increasing occupancy (TLP)

via data compression and register arrays, and by reducing instructions issued (II) via a

241

combination of TLP and BLP. ILP is increased by using k work-items per thread. BLP is

increased by treating 4 bytes stored as a DWORD as two alternating pairs instead of four

singletons.

The final best results of the GPU TRISH method are up to 3.6× times faster than Cedric

Nugteren's per-thread method and up to 1.5× times faster than Victor Podlozhnyuk's per warp

method for uniform random data. And the results are up to 4× and 3× faster than Podlozhnyuk's

and Nugteren's methods, respectively, for image data. Note also like Nugteren’s method, the

TRISH method is data independent.

In summary, GPU TRISH is a data independent 256-bin histogram method that achieves

a throughput of up to 41.87 billion bytes binned per second (GB/s) on the GTX 580.

8.5.1 Future Directions

My TRISH method falls well short of peak I/O throughput (~21%). Consequently, clever

algorithmic improvements, better I/O access patterns, or leveraging of other GPU hardware

features can lead to yet more performance gains. Three improvements I have thought about are

generalizing TRISH, increasing IPC, and leveraging FPU’s on each SP core.

Generalizing: My TRISH method is hardcoded for 256-bin histograms on 8-bit data. It

should be possible to generalize it for smaller numbers of bins [1..254] and to support different

data types (for instance floats) at an additional arithmetic cost required to distribute values into

bins. However, because of shared memory pressure, it will be difficult to generalize the TRISH

method to support larger numbers of bins (>256).

Improving IPC:..Different versions of the binning and accumulating code could

improve ILP even further and achieve a higher IPC—perhaps even equaling or exceeding

Podlozhnyuk's IPC of 1.58. If so, overall performance could be increased by up to 33% or more.

Leveraging FPU: Each Fermi SM contains 16 used ALUs and 16 unused FPUs

representing the SPs on each SM core. It may be possible to use the currently unused FPU

242

hardware for accomplishing additional work during binning and accumulation. For example,

binning four additional counts using floats (on FPUs) per 16 counts binned using integers (on

ALUs).

8.6 Acknowledgements

I thank the reviewers of my original TRISH paper (Brown and Snoeyink, 2012) for their

helpful comments on presentation and suggestions for additional experiments. One reviewer in

particular helped me find a copy/paste error that artificially restricted throughput of

Podlozhnyuk’s method in my initial analysis.

My thanks to NVIDIA, Victor Podlozhnyuk, and Cedric Nugteren for providing their

histogram source code online. In that same spirit, I provide a link to my source code below.

TRISH source code: https://github.com/shawndb/demoTRISH

https://github.com/shawndb/demoTRISH

243

9.0 Case Study: Radix Sort on the GPU

In this chapter, I demonstrate my Row data access skeleton (DASk) on a least-significant

digit (LSD) Radix Sort. A radix sort produces a sorted output sequence from an unsorted input

sequence of n keys, which are numbers in some base or radix. My hybrid CPU/GPU LSD radix

sort implementation assumes 32-bit keys with 4-bit radices. The CPU implements the main radix

sort loop in k = 8 (=32/4) passes on the digits which make up each key (one pass per digit). For

each pass, the GPU distributes the n keys into sixteen sorted runs using a stable Counting Sort

implemented as three GPU kernels. Achieving solid performance on all three kernels is one of

my main goals in this case study.

Knuth (Knuth, 1998) credits Herman Hollerith with inventing radix sort to conduct the

1890 United States census (Hollerith, 1889). Individual census records were represented by

punch cards, each with a fixed number of columns (k), where each column was represented by a

single digit in a small range [0, d). Hollerith’s radix sort fully sorted the final card stack by

proceeding in k binning passes from the least to the most significant column. In each of k binning

passes, Hollerith’s tabulating machine distributed the card stack into d runs by directing each

card to the bin for the digit value in the currently selected column. At this point a human operator

collated the card runs from the bins in monotonically increasing order, reloaded them into the

machine, and advanced the machine to the next column to prepare for the next binning pass.

After k passes, the card stack was fully sorted. A more modern presentation of the serial LSD

Radix Sort algorithm is found in on the book “Introduction to Algorithms” (Cormen et al, 2009).

In general, LSD radix sort loops over digit positions, from least to most significant, and applies a

stable sort comparing that digit in all keys. (Recall that a sort is stable if elements with equal

keys are kept in the same relative order.)

244

There is also a most-significant-digit (MSD) radix sort, which bins the card stack on the

most significant digit into sub-stacks and then recursively bins each sub-stack separately on the

next-most significant digit, and so on. MSD radix sort fragments each stack into many smaller

sub-stacks with as many as Θ(dk-1) sub-stacks after k passes on d digits. Since LSD Radix sort

setup and storage costs are linear1 in k, rather than exponential, LSD is more suitable than MSD

radix sort for parallel applications aiming for high throughput.

Here follows some useful definitions of common radix sort terms. A key is a numeric

value taken from a large fixed-size numeric range [0, m). In my GPU radix sort example in this

chapter, the n keys are 32-bit unsigned integers in the range [0, 232); so it may be more convenient

to work with the number of bits B = 32 = ⌈log2𝑚⌉. A key is written in a base, or radix, as a

string of digits, where each specific digit value is taken from a small fixed-size numeric range

[0, d). Typically, the chosen radix is much smaller than the key’s range, d ‹‹ m. Again, with my

chosen radix d = 16, it may be more convenient to call it b = 4-bits. The maximum number of

digits in a key is k = ⌈log𝑑𝑚⌉, or, when m and d are both powers of two, k = ⌈
𝐵

𝑏
⌉. In my example,

there are at most 32/4 = 8 digits in each key. The maximum number of digits, k, is also the

number of binning passes required in a LSD radix sort. In the jth pass (0 j < k), the chosen digit

is the jth digit within the key used to perform the current pass’s Counting Sort to bin n keys into d

runs. Within each binning pass, a run ri is a sequence of keys where the chosen digit has the

value i, with i ∈ [0, 𝑑). In my example, the r5 run contains all keys where the chosen digit was

equal to 5.

 LSD radix sort has often been implemented as a hybrid CPU/GPU algorithm, with a main

radix sort loop implemented on the CPU and a stable sorting sub-routine (typically Counting

1 For a serial LSD radix sort, the total fixed setup cost is O(k∙d) to zero out and scan the count histogram on

each Counting Sort pass, where k is the number of digits within the key and d is the number of digits in the

radix. The total storage cost is O(n+d) to store the input and output arrays of n elements plus an additional

array of d counts to hold the count histogram.

245

Sort) implemented using multiple GPU kernels (Harris et al, 2008; Ha et al, 2009; Merrill and

Grimshaw, 2010 Revisiting Sorting).

Counting Sort sorts numbers into runs in three steps, using primitives that generalize

those in my previous case studies:

Step 1) Count Keys partitions the n keys into d bins on a chosen digit, by accumulating

each digit into its corresponding bin as a count. The d bin counters collectively form a

count histogram. This counting step is similar to Reduce (see Section 6.1) but generates

d bin counts instead of a single total sum.

Step 2) Scan Runs exclusively scans the histogram of d counts into d starts. Each count

(ci) represents the length of the ith digit run. Each start (si) represents the starting run

position of the ith digit run.

Step 3) Distribute Keys distributes the n keys into their corresponding digit runs by

extracting the chosen digit (with value i) from the current key, looking up the current start

si (run position) at index i in the current start histogram, and then incrementing that start

(si += 1). This distribution step is similar to Scan (see Section 6.1) but works on d runs

instead of a single run representing a prefix sum.

Steps 1 and 3 take O(n) time, and step 2 takes O(d) time. Consequently, a complete

Counting Sort takes O(n+d) time. Because a simple LSD radix sort with k iterations (one pass

per digit in the key) invokes a Counting Sort on each pass, the total time to compute a LSD radix

sort is O(k(n+d)). When k and d are considered constants, the total time to sort is reported as

linear, O(n). By binning digits and concatenating runs, radix sort escapes the well-known Ω(n log

n) lower bound on comparison-based sorts.

 My solution implements Counting Sort following the same three-step approach above via

three matching GPU kernels -- GPU_CountKeys, GPU_ScanRuns, and GPU_DistributeKeys.

To ensure stable sort results, the GPU_DistributeKeys must preserve sequential access across

data runs, data blocks, and the entire data input array. Since my Row DASk supports sequential

access, I use it for both the GPU_CountKeys and GPU_DistributeKeys kernels. Using the

same Row DASk helps ensure that thread blocks in both kernels group and partition data in the

same way, which keeps data rows in sync between these two kernels.

246

In the previous chapters, readers have already learned to improve performance on GPUs

by experiments on thread-level parallelism (TLP) via multiple thread warps and on instruction-

level parallelism (ILP) via multiple work items. Readers have also learned to respect

coalescence, take advantage of multi-issue, avoid register spills, mitigate bank conflicts, and

mitigate branch divergence. Therefore, I say little about these good performance practices and

drill down on new tips and tricks to improve radix sort performance in a Row DASk, namely

reducing I/O, reducing instructions, and increasing occupancy.

9.1 Related Work

The three broad performance themes of reducing I/O, reducing instructions, and

increasing occupancy can be found among the details of four papers that influenced my GPU

parallel radix sort.

Chatterjee et al.’s Parallel Radix Sort:

In their paper. Chatterjee (Chatterjee et al, 1990) described how to perform a parallel

LSD radix sort on a Cray vector computer as a serial/parallel hybrid. They implemented a loop

on the serial platform with 32 passes to sort 32-bit integer keys using a 1-bit radix. In each pass,

keys were sorted on the current bit using a split operation that first performed a parallel scan on

the parallel platform using their +-scan primitive on the extracted zero bits then performed

another +-scan on the extracted one bits. Each scan returned output offsets that indicate where

to store the scanned keys within each run. Finally, keys were distributed into their sorted

locations based on their current radix value {0|1} and their scan offset within the matching run.

For fewer I/Os, the authors swap the input and output pointers rather than copying the output

back onto input for the next sorting pass.

The authors claim that this parallel radix sort was only 20% slower than a highly

optimized comparison-based sort implemented on the same vector architecture. I personally

expected an O(n) radix sort vs. an O(n log n) comparison sort to be faster, not slower. However,

247

by using a 1-bit radix, this radix sort maximizes the number of passes (k = 32) required to fully

sort 32-bit keys. In addition, since each split operation does two parallel scans and one parallel

permute to distribute keys, the entire radix sort requires a total of 64 parallel scans and 32 parallel

permutes. Since each of these scan and permute operations require memory transfers to load

inputs and store outputs, this radix sort requires a minimum of at least 192 I/O memory accesses

per 32-bit key to fully sort. Better performance might have been obtained by increasing the radix

size to reduce the total number of passes, operations, and memory accesses required.

I use a 4-bit radix in my own GPU radix sort implementation primarily to reduce the

number of passes2 (and associated I/Os) from 32 down to 8. I also use Chatterjee’s idea of

swapping input and output array pointers to reduce CPU I/Os.

Govindaraju’s GPU TeraSort:

 In 2005 Govindaraju (Govindaraju et al, 2005) won the “Penny Sort Benchmark” contest

with GPU TeraSort, which sorts 100 byte keys[Sortbenchmark.org] in two steps. The first step uses a

hybrid CPU/GPU in-memory sort algorithm to generate sorted runs of data in memory (as much

data as would fit). This hybrid sort implements a MSB3 4-byte radix sort on the CPU, which in

turn invokes a GPU kernel for sorting 4-byte keys. The GPU kernel cleverly tricked the GPU’s

graphics rendering pipeline into performing a bitonic sort while rendering 4-byte pixel fragments.

The second step merges sorted runs using an external, disk-based merge sort algorithm. The

authors claimed GPU throughputs of 50 GB/s (or 14 giga-operations per second), and that their

overall results were 4× faster than the previous record holders.

2 I also implemented two GPU radix sorts using 8-bit radices to reduce the number of passes from 32 to 4.

However, the performance at 500+ million ‹key,value› sorted pairs per second was simply not as good as

the 700+ million pairs per second for the 4-bit radix results discussed in this chapter.

248

Harris et al.’s Radix Sort:

In 2008, Mark Harris (Harris et al, 2008) suggested adapting their parallel GPU Scan

primitive to implement Chatterjee’s parallel radix sort. They used a block-level scan, based on

Blelloch’s work-efficient scan pattern, to sort individual data blocks, and a higher level hybrid

CPU/GPU parallel scan, based on a recursive scan-then-fan pattern (as described in Section

6.4.2), to scan large data arrays on the GPU.

In my experience, this approach to radix sort was difficult to get working correctly and

had relatively poor performance on the GTX 280 (15+ million pairs/sec) due to a high number of

passes (using a 1-bit radix), the inefficiency of the recursive scan-then-fan pattern used in each

pass (as discussed in Section 6.4), and the inefficiency of Blelloch’s scan when used on small

runs of data.

Ha et al.’s Radix Sort:

In 2009, Linh Ha (Ha et al, 2009) wrote a fast general LSD Radix sort that was also a

CPU/GPU hybrid. The CPU performed the LSD radix sort with a 2-bit radix (digit values [0-3])

on 32-bit keys, requiring 16× passes rather than the 32× of Chatterjee’s or Harris’s methods. A

Counting Sort on 2-bit keys is implemented using four GPU kernels as follows:

Kernel 1) An “order checking kernel” performed an “early exit test” on all n inputs in each

pass. The authors claim this kernel decreased performance by only 2% and allowed the radix

sort to exit early if the data was ever found fully sorted. The remaining three kernels

followed the two-level scan-then-fan pattern (as described in Section 6.4.2).

Kernel 2) A “4-way radix count kernel” extracted and binned 2-bit keys into per-thread count

histograms that were then scanned into per-block starts (using Blelloch’s scan) with an extra

step to store the four block totals for each scanned data block. The keys were then shuffled

(locally sorted) to increase coherence. The entire locally sorted data block was then written

back out as well as the per-block sums for the entire data block (4-way starts).

Kernel 3) A “scan kernel” read and scanned all the per-block sums to generate globally

correct run positions for each data block.

249

Kernel 4) A “mapping kernel” loaded the 4-way starts for each data block and then reread

the locally sorted data block and then distributed the locally sorted keys into their globally

sorted positions.

The authors claimed throughput performance of 60 million key/value pairs sorted per second

on the GTX 280. The authors’ five main contributions are as follows:

⦁ Increasing the radix to 2 bits, resulting in fewer passes, fewer I/Os, and fewer

operations to count and distribute keys, and increasing overall performance.

⦁ Terminating early, if the data became sorted after just a few passes.

⦁ Scanning an entire data block of 4-way counts using a modified version of Blelloch’s

scan method.

⦁ Generalizing data, the authors used C++ templates to support multiple data types and

also discussed specialized techniques to convert floats into unsigned integers while

preserving the correct sorting order.

⦁ Shuffling data (local sorting) in shared memory (kernel 2) before mapping the data

(global sorting) into its final sorted position in global memory (kernel 4). This increases

the coherence in the data stream to increase coalescence on output.

Early versions of my radix sort code also had support for early termination, which I later

removed due to performance problems, but my current code contains other ideas from Dr. Ha’s

paper, including generic programming using C++ templates and shuffling before mapping.

Merrill’s Radix Sort:

In 2010, Merrill (Merrill and Grimshaw, 2010, Revisiting Sorting) at the University of

Virginia adapted various efficient strategies for radix sort on the GPU to achieve near-peak

throughput, up to 480 million key/value sorted pairs per second on the GTX 285. They also used

a hybrid method where the LSD radix sort was implemented on the CPU and the three steps of

counting sort were implemented on the GPU as three kernels. These three kernels carried out a

two-level reduce-then-scan pattern (described in Section 6.4.2.) as follows:

250

Step 1) Count: The “count kernel” creates a histogram for all keys assigned to each thread

block. The number of thread blocks within a grid is deliberately kept small to ensure that the

next kernel can use a single thread block.

Step 2) Scan: The “scan runs kernel” uses the reduce-then-scan pattern (as described in

Section 6.4) at the kernel level to convert per-thread block counts into per-thread block start

in three steps. The authors call this 3-step method a block multi-scan since they are

effectively scanning sixteen rows of counts at once for a single data block using a single

thread block in parallel. The block multi-scan also needs to scan the resulting sixteen row

counts and update all elements in each of the sixteen scanned rows with the correct row

prefix for correct per-thread run positions within each data block.

Step 3) Distribute: The “distribution kernel” uses a nested reduce-then-scan pattern (as

described in Section 6.4) which calls the block multi-scan method on each data block to

distribute keys (and values) to their appropriate place in the sorted output arrays.

Merril and Grimshaw’s approach has the following seven main advantages:

⦁ It decreases sorting passes by using a larger radix (4-bit = 16 digit values) than previous

GPU Radix Sorts; this decreases the total number of counting sort passes required from 32×

to 8×.

⦁ It decreases I/Os by using A 2-level reduce-then-scan pattern (which decreases I/Os from

~4 to 3 per data element on each pass, and results in a fixed number of kernel launches O(1)

= 3) as compared to a recursive scan-then-fan pattern.

⦁ It scans data block using a block multi-scan method on each fixed-size data block following

a nested reduce-then-scan pattern.

⦁ It sorts output locally in shared memory then distributes keys (and values) into global

memory for increased coherence and thus increased throughput on output4.

⦁ It compresses data in arrays in shared memory to increase occupancy.

⦁ It mitigates bank conflicts using the “Pad and Rake” technique (see Section 6.7.2).

⦁ It stores short arrays in registers to increase occupancy.

I use many of Dr. Merrill’s ideas in my own implementation: specifically, his idea of a 2-

level reduce-then-scan pattern across my three GPU kernels, a multi-scan on fixed-size data

blocks, his efficient parallel WarpScan method, compressing data to save space, and the “Pad

and Rake” technique to avoid bank conflicts.

4 Dr. Merrill calls this “exchange then scatter,” but it is equivalent to Dr. Ha’s “shuffle and map”

technique.

251

9.2 Serial CPU Implementation

Because I want to demonstrate the conversion of a CPU sort to an efficient GPU sort

using my Row DASk, let me be briefly introduce my own CPU serial implementations of

Counting Sort and LSD Radix Sort, which are described in sections 9.2.1 and 9.2.2.

9.2.1 Serial CPU Counting Sort:

 As shown in Figure 9.1, my serial CPU Counting Sort method is implemented in six

simple steps, with steps 3-5 corresponding to the three kernels of Counting Sort. Steps 1, 2, and 6

allocate the count histogram and run positions array, set the initial counters in the count histogram

to all zeros, and free any allocated resources. In the code, I assume my key and digits sizes are

both powers of two, so that I can extract my chosen digit on each pass using simple shift and

mask operations instead of slower division and modulus operations.

252

CountingSort sorts a sequence A containing n integer elements, where each element is in range [0, d).

Input: An unsorted sequence A = [a1, a2, ⋯, an], and d = range of data elements (nBins).

Output: A sorted sequence S = [s1, s2, ⋯ , sn] (S is a permutation of A), where S satisfies the standard

ordering of integers such that s1 ≤ s2 ≤ ⋯ ≤ sn-1 ≤ sn, Note: Counting Sort is stable.

Performance: Total Computations: O(n+d); Total I/Os: O(n+d). Linear O(n) if d ≤ n.

Counting Sort

 CountSort(S, A, n, d, shift, mask)

01: counts = allocate d integers; // Step 1: Setup resources
02: runs = allocate d integers;

03: for j in 1..d // Step 2: Zero Counts (in count histogram)
04: counts[j] = 0;
05: end for

06: for i in 1..n // Step 3: Count keys (into bins)
07: key = A[i];
08: digit = (key >> shift) & mask; // Extract chosen digit from key
09: counts[digit]++; // Update run count
10: end for

11: sum = 0; // Step 4: Scan runs (start pos’s from counts)
12: for j in 1..d
13: currCount = counts[j];
14: runs[j] = sum; // Save current run’s starting position
15: sum = sum + currCount;
16: end for

17: for i in 1..n // Step 5: Distribute keys (into runs)
18: key = A[i];
19: digit = (key >> shift) & mask; // Extract chosen digit from key
20: S[runs[digit]] = key; // Store key in its output run
21: runs[digit]++; // Update run pos for next key in run
22: end for

23: free runs; // Step 6: Cleanup resources
24: free counts;

 end CountSort

Figure 9.1 -The serial Counting Sort algorithm: The top row has a brief overview of the expected

behavior of counting sort with inputs and outputs. The middle row has the corresponding pseudo-code

for the serial counting sort algorithm intended to run on a single-core CPU in 6 steps.

The six main steps of my CPU serial Counting Sort are as follows:

Step 1) Setup allocates two helper arrays {counts, runs} each of size d. (lines 1-2)

Step 2) Zero Counts zeros d counters in the count histogram. (lines 3-5)

Step 3) Count Keys counts n keys into a count histogram of run lengths. (lines 6-10)

Step 4) Scan Runs scans the counted run lengths into starting run positions. (lines 11-16)

Step 5) Distribute Keys distributes n keys into d runs forming the sorted output. (lines 17-22)

Step 6) Cleanup frees the two helper arrays {counts, runs}. (lines 23-24)

Steps 1 and 6 each take constant O(1) time, steps 2 and 4 each take O(d) time, and steps 3

and 5 each take O(n) time for a total linear performance cost, with O(n+d) = 2n+2d+2. The

stability of my Counting Sort method results directly from my implementation of steps 4 and 5

253

above, where all d run lengths are scanned sequentially and then all n input keys are distributed

sequentially. This sequential processing preserves the relative order of keys with the same digit

value within the resulting sorted runs.

9.2.2 Serial CPU LSD Radix Sort:

As shown in figure 9.2, my LSD radix sort algorithm loops over k passes of Counting

Sort, where k is the number of digits in the maximum key value (computed as k = ⌈log𝑑𝑚⌉ or k =

⌈
𝐵

𝑏
⌉). The iteration proceeds from the least significant to the most significant digit. All n keys are

counted and then redistributed on each digit’s pass.

Radix Sort primitive Sorts an unordered integer sequence A containing n integer elements in k passes,

where k = ⌈log𝑑𝑚⌉ or 𝑘 = ⌈
𝐵

𝑏
⌉, with B = the maximum bits per integer in a fixed-size range [0, m), and b

= the maximum bits per radix in a range [0, d). Note: we assume d ≤ m.

Input: An unsorted integer sequence A = [a1,⋯, an].

Output: A sorted sequence S = [s1, s2, ⋯, sn] (S is a permutation of A) under the standard ordering of

integers such that s1 ≤ s2 ≤ ⋯≤ sn, Note: Radix Sort never uses any direct comparison operators.

Performance: Total Computations: O(k(n+d)). Total I/Os: O(k(n+d)). Linear O(n) if d ≤ n.

 LSD_RadixSort<B, b>(S, A, n)

 // B = #bits in key, b = #bits in radix, A = input array, n = length of input
 1: d = 2b; mask = d-1;
 2: k = nPasses = ceil(B/b);

 // Allocate resources
 3: counts[] = allocate d integers;
 4: starts[] = allocate d integers;
 5: in[] = allocate n keys;
 6: out[] = allocate n keys;
 7: Copy(in, A, n);

 // Setup Ping-Pong pointers
 8: ping = in; pong = out;
 9: if (isEven(nPasses)
10: Swap(ping, pong);
11: end if

 // Loop over digits in keys (k passes)
12: for (pass = 0; pass < k; ++pass)

13: shift = b*(pass-1);

14: CountSort(pong, ping, n, d, counts, starts, shift, mask);

 // Move to next digit (pass)
15: Swap(ping, pong); // Ping-Pong

16: end for (k passes)

 // Cleanup resources (return results)
17: Copy(S, out, n);
18: deallocate (counts, starts, in, and out)

 end LSD_RadixSort

Figure 9.2 LSD Radix Sort: The top row has a brief overview of the expected behavior of LSD radix

sort with inputs and outputs. The middle row has the corresponding pseudo-code for the serial LSD

radix sort algorithm, which iterates over k passes of Counting Sort.

254

 As can be seen in Figure 9.2, the actual code is a main loop over the k passes of Counting

Sort with some additional setup and cleanup code. Since each Counting Sort pass takes linear

O(n+d) time and there are k passes, the total time is also linear, with O(n) = O(k(n+d)). Since

there are at most k passes and since the underlying Counting Sort is stable, the entire LSD radix

sort is also stable and correctly sorts numeric keys.

Input-output array swapping: Similar to Chatterjee’s radix sort, my Counting Sort interface

takes both input and output pointers. My LSD radix sort uses two extra pointers (ping, pong) to

track the current input and output arrays for each pass. The code swaps the input and output

pointers after each Counting Sort pass (see line 15). The partially sorted output from the current

pass becomes the new input on the next pass. This simple pointer swap avoids unnecessary array

copies, which would otherwise be required to move the output back onto the input. To make sure

the output array always ends up with the correct sorted values on the final pass, I swap the ping-

pong pointers one extra time during setup if the number of passes is even (see lines 8-11).

Adapting for the GPU: My CPU serial LSD radix sort implementation is easily adapted to

work as part of a hybrid CPU/GPU radix sort. There are four required changes:

⦁ The temporary in, out arrays of n elements are allocated and freed on the GPU instead of

on the CPU (lines 5-6 and line 18).

⦁ The CPU copy methods (on lines 7 and 17) are replaced with equivalent cudaMemCopy

calls to transfer data between the CPU and GPU as needed.

⦁ The single invocation of the CPU Counting Sort (line 14) is replaced by three GPU kernel

invocations for the three kernels that make up my GPU Counting Sort.

⦁ The CTA launch parameters {grid, block} for each GPU kernel are initialized and setup

(between lines 11 and 12).

To save space and to avoid redundancy, I do not show my actual CPU host code with these

changes.

255

9.3 Parallel GPU Implementation

As mentioned, a LSD radix sort only works correctly if the Counting Sort sub-method is

stable. Sequentially counting and then distributing keys is one way to ensure this stability. Thus,

my GPU Counting Sort implementation uses my Row DASk, since it supports sequential access

of data rows and data blocks along each row. Within each data block, my code partitions data

into short per-thread runs and then enforces sequential access within runs and across runs on

input. The keys within each run are binned into per-thread counts, which are then hierarchically

scanned into per-thread starts. Prefixes from prior runs, blocks, and rows are all hierarchically

accumulated into each final per-thread start to ensure stable sorted results on output.

My Row DASk, discussed in Section 5.4, also supports warp-alignment and automatic

load-balances data across the grid rows. In addition, it provides setup and support for a range-

check pattern [‹FIRST?›, ‹MIDDLE*›, ‹LAST?›], which pushes expensive range checks out of

the middle section and into the first and last data blocks. This approach amortizes the range

check costs over the large middle section. The initial setup also helps support full coalescence by

aligning the input array to a data warp boundary.

Building upon the serial CPU Counting Sort and LSD radix sort algorithms (as described

in section 9.2), my GPU radix sort is implemented as a hybrid CPU/GPU solution in which the

CPU-based radix sort iterates over the GPU Counting Sort in k passes. Each Counting Sort is

implemented as three separate kernels on the GPU, one kernel per major step of the Counting

Sort algorithm (count keys; scan runs; and distribute keys). For this particular example, I choose

32-bit unsigned integers as my keys and a 4-bit radix (d = 16 = 24), which requires k = 8 (=32/4)

passes to sort. Since the CPU host algorithm is almost exactly the code of Figure 9.2 with the

four GPU changes already described, I focus on the details of my GPU Counting Sort.

256

GPU Counting Sort

Figure 9.3: My GPU Counting Sort is implemented as 3 kernels (GPU_CountKeys, GPU_ScanRuns,

and GPU_DistributeKeys), which correspond to the three main steps of the already described in the

CPU Counting Sort (count keys, scan runs, distribute keys). Both the GPU_CountKeys and

GPU_DistributeKeys kernels are based on my Row DASk.

In my GPU Counting Sort, depicted in Figure 9.3, the three counting sort GPU kernels

(GPU_CountKeys, GPU_ScanRuns, and GPU_DistributeKeys) are based on the two-level

reduce-then-scan pattern. (This is similar to how my Scan primitive is implemented using three

GPU kernels, see Section 6.5.) The main kernels (the first, GPU_CountsKeys, and last,

GPU_DistributeKeys) are implemented using my Row data access skeleton (DASk) from

Section 5.4. As before, I choose a small fixed grid size (g < 1000 blocks) so that the middle

kernel (GPU_ScanRuns) can convert row-counts into row-starts using a single-thread block.

 The GPU_CountKeys kernel (Figure 9.3, left side) generates a total of k (=dp) row

counts from n keys using p thread blocks (each thread block generates one count histogram with d

row-counts). This kernel uses my Row DASk to group n keys into m fixed-size data blocks

(m = ⌈𝑛/𝐷𝐵𝑆⌉) and then partitions the m data blocks across the p thread blocks. This operation

initially produces c data blocks per row (c = ⌈𝑚/𝑝⌉). Then, each thread block marches down its

assigned data row, block by block, counting keys within each thread block into per-thread count

… … …
Thread
Blockr

Data
Block2

Data
Block1

Block
Reduce

…

Row
Counts

2. Counts to Starts

… … …
Thread
Block1

… … …
Thread
Block2

1. Count Keys

Block
Sort

Block
Sort …

…Thread
Block2

…
Thread
Block1

…
Thread
Blockr

…

3. Distribute Keys

Row
Starts

 Block
Count

Block
Count

Data
Block1

Data
Block2 …

257

histograms. After all the data within each row has been counted, the per-thread histograms are

reduced to a single per-block count histogram (resulting in one row-count histogram per row).

 The GPU_ScanRuns kernel (Figure 9.3, middle) follows the reduce-then-scan pattern but

works on d = 16 rows of data at once. This kernel exclusively scans the k (=dp) row-counts into k

row-starts in three main steps using a single thread block. First, the kernel reduces the sixteen

rows (of p elements each) down to sixteen final run-counts. Second, the kernel exclusively scans

the sixteen run-counts into sixteen run-starts, where each run-start (ri) is the starting run position

of the ith sorted digit run in the output array. Finally, the kernel scans the k (=dp) row-counts into

k row-starts. Note: This final scan also adds in matching run-starts to the row-starts as prefixes.

 The GPU_DistributeKeys kernel (see Figure 9.3, right side) distributes keys into their

final sorted position in the output array. This kernel uses my Row DASk to group n keys into m

fixed-size data blocks (m = ⌈𝑛/𝐷𝐵𝑆⌉) and then partitions the m data blocks across the p thread

blocks. This partitioning results in c blocks per row (c = ⌈𝑚/𝑝⌉). Each thread block marches

down its assigned data row, data block by data block, distributing keys to their final sorted

positions. Note: If the programmer is sorting ‹key, value› pairs instead of just keys, then after

distributing a data block of keys, the code also distributes the corresponding data block of values

to their final sorted positions.

Both the GPU_CountKeys and GPU_DistributeKeys kernels must guarantee that

each thread block partitions the same data along each data row in order to generate correct results.

The easiest way is to use the same Row DASks and CTA launch layouts for both kernels.

In the next subsections, I delve into implementation details for my three GPU kernels.

9.3.1 GPU_CountKeys Kernel Implementation Details

The code in Figure 9.4 for my GPU_CountKeys kernel (left panel) clearly follows my

Row DASk, where data is grouped into blocks and partitioned across rows (one row per thread

block). As each thread block moves along its assigned data row, data block by data block, it

258

counts keys into per-thread histograms using the BlockCount method (middle panel). After

counting all keys in the data row, the kernel accumulates all those per-thread count histograms

into a single per-block count histogram using the BlockReduce method (right panel).

This is conceptually similar to my GPU_Reduce kernel (from Section 6.5), but rather

than computing a single total-sum, the GPU_CountKeys kernel accumulates multiple counters

(one counter per digit value, d =16= 24) at the same time. Because addition is commutative and

associative, the code can safely reorder and regroup elements for better I/O throughput.

GPU_CountKeys Kernel

Row DASk Setup

// Body Setup

for each data block along row

 Move to next data block
end for each block

// Body Cleanup

end GPU_CountKeys

BlockCount Method

Each thread reads ‹nWork› keys

Each thread bins ‹nWork› keys

 Extract chosen digit from key

 Compute count index

 Compute increment

 Increment counter

end bin keys

end BlockCount

BlockReduce Method

warpRow = threadID % WarpSize;

fullRows = 16/nWarps;

leftover = 16 – (fullRows*nWarps);
start = warpRow*nDigs;

// Process Full Rows

for each row in [startRow,

stopRow]

 Reduce ‹nWarp› run

 Store run-sum in warp array

 WarpReduce run-sums

 Save per-row count (last column)

end for each digit row

// Process Left-Over Rows

if (leftOver)

 if (warpRow < leftOver)

 Same as reducing full row above

 end if
end if

end BlockReduce

Figure 9.4: My GPU_CountKeys kernel (left panel) follows my Row DASk to group n keys into m

fixed-size data blocks and then partitions the m blocks across p rows (one thread block per row). Each

thread block bins keys into per-thread count histograms for all data blocks along its assigned row using

my BlockCount method (middle panel). After exhausting all keys in the data row, it reduces all the

per-thread histograms down to a single per-row count histogram using my BlockReduce method (Right

panel). The final per-row count histogram is then output to an array of row-counts.

In this kernel, my data layout stores per-thread count histograms (d = 16 counters per

thread) in shared memory. (Registers would be faster, but they do not support the necessary

indexing.) These histograms are used by the BlockCount method to partition work (keys)

across all the threads in each thread-block by accumulating intermediate counts. An additional

per-block count histogram (d = 16 counters) is kept in shared memory for use by the

BlockReduce method, which reduces the per-thread count histograms to a single per-block

BlockReduce(…)
Output per-row counts

BlockCount(…)

Zero all counts

259

count histogram after counting all keys in the current row. This per-block count histogram is

output to the row-counts array.

My GPU_CountKeys method requires three types of parameters -- template, function,

and CTA launch -- which are described next.

Template Parameters: The following ten template parameters (as shown in Table 9.1) support

genericity and experimentation.

Parameter Explanation

keyT This parameter is a generic place holder for the underlying data types used to

represent keys during the radix sort (U32, for instance).

mapT This parameter represents a mapping function (or functor) type to convert the actual

key types into 32-bit unsigned integers that are consumed by the actual kernel code

(for example, floats need to be carefully transformed).

WarpSize This parameter represents the threads per warp. This value has remained fixed at 32

threads per warp for the past several generations of GPU hardware.

nWarps This parameter in the range [1-8] specifies how many thread warps per thread block

are used. My code only supports values within this range despite the fact that

current GPU hardware can actually support up to 32 warps per thread block.

nWork This parameter in the range [1-16] specifies how many ‹keys› or ‹key, value› pairs

are assigned to each thread inside each thread block while counting.

bMap This Boolean parameter {true|false} controls whether the mapOp transform operator

should be applied or not to transform actual keys into 32-bit unsigned integers.

bShift,

bMask

These Boolean parameters control whether shifting and masking operations

respectively are required to extract 4-bit digits from the 32-bit keys.

Counts

PerLane

This parameter was originally intended to experiments using different levels of

compression for Bit-level parallelism: However, the value {2} should be hardcoded

for now, as it is the only tested and working version.

S1_pad This flag parameter {0|1} controls whether the “Pad & Rake” technique will be

turned on to help mitigate bank conflicts inside the BlockReduce method. Since

the cost of BlockReduce is amortized across all data in the row, this optimization

has a negligible performance impact, thus I tend to leave it set to {0} all the time.

Table 9.1: GPU_CountKeys C++ template parameters.

260

Function Parameters: The following function parameters (as shown in Table 9.2) are used to

count the unsorted keys into a collection of count histograms (one histogram per thread-block):

Parameter Explanation

outRowCounts This parameter is a pointer to the output array that receives one histogram of

row-counts per thread block (data row). Each count histogram contains 16 row-

counts (one for each digit value induced by a 4-bit radix, d = [0-15]). Each row-

count indicates the total count of keys that match the ith digit value along the

current data row, where i ∈ [0, d).

inKeys This parameter is a pointer to the input array of unsorted keys to be counted as

part of the current counting sort pass on the chosen LSD 4-bit digit.

[start, stop] These two parameters identify the range of the input array (inKeys) to count.

The input size (n) can be computed from this range as n=stop-start +1.

keyShift This parameter indicates how much to shift each key within the transformed 32-

bit unsigned key in order to extract the chosen 4-bit digit for the current LSD

counting sort pass.

Table 9.2: GPU_CountKeys function parameters.

CTA Parameters: The following Grid and Block layout parameters (as shown in Table 9.3)

are chosen to support thread-level parallelism (TLP):

Parameter Explanation

Thread Block Size

(BS)

This parameter is chosen as a 2D block of threads to take advantage of TLP and

multi-issue within each SM core.

For example: ‹32,4,1› means 4 warps of 32 threads each.

Grid Size (GS) This parameter is chosen as a 1D grid to load balance the concurrent work load of

thread blocks evenly across all the SM cores on the GPU card.

For example: ‹1,112,1›). Assume occupancy allows 8 concurrent thread blocks

per SM core, then on a GTX Titan, a work load of 112 thread blocks per grid

divides 14 SMX cores evenly into 8 concurrent thread blocks each.

Table 9.3: GPU_CountKeys CTA parameters.

 For the GPU_CountKeys kernel, all of the actual counting and reduction work is done by

the BlockCount and BlockReduce methods, which are described in sections 9.3.1.1 and

9.3.1.2.

261

9.3.1.1 BlockCount Method:

The GPU_Count kernel invokes my BlockCount method on each data block to do all of the

actual work of counting keys into histograms. The BlockCount method (as shown in Figure 9.6,

middle panel) has three main steps:

Step 1) Loading: Each thread loads ‹nWork=[1-8]› keys belonging to the current data block

following the warp-by-warp access pattern from Section 5.1.1.

Step 2) Extracting: Each thread extracts the chosen digit from each key. Digit extraction is

done using simple binary shift and mask operations.

Step 3) Counting: For each extracted digit, the thread increments the correct counter in its

per-thread count histogram, kept in shared memory.

Since counting (addition) is commutative, sequential counting is not required for correct

results. Consequently, the warp-by-warp access block access skeleton (BASk) can be used

directly on each data block for maximum coalescence and better throughput (there is no need to

convert between a warp-by-warp layout and then a sequential layout within each data block).

Generalizing my GPU_CountKeys kernel via template parameters results in various trade-

offs. The three main parameters causing trade-offs include: ‹nWarps› causing “increased

memory use”, ‹nWork› causing a “counting pipeline bottleneck”, and ‹CountsPerLane› causing

“potential overflow”.

‹nWarps› causes “Increased Memory Use”:

As the number of threads is increased via the ‹nWarps› parameter, the amount of shared

memory required to store per-thread histograms increases linearly. This memory increase

eventually exhausts all memory in the shared memory pool, requiring CUDA to decrease the

number of concurrent blocks (and thus warps) per SM core. Once this happens, TLP

performance most likely will decrease due to reduced occupancy, negatively impacting

throughput.

262

‹nWork› causes “Counting Pipeline Bottleneck”:

As the amount of keys per thread being counted is increased via the ‹nWork› parameter, the

number of RAW stalls caused by counter increments increases linearly. Recall that a simple C++

increment operation requires a read-modify-write resulting in three separate machine instructions.

There are RAW dependency between instructions that increment the same counter, which causes

pipeline stalls. Trying to remove the stalls via software pipelining causes concurrency bugs, as k

keys that collide on the same counter should increment that counter by +k but instead only

increment by +1. Unfortunately, which keys will increment which counters cannot be predicted,

so collisions between competing work items (digits) on the same counter within the hardware

pipeline are inevitable. ILP performance is decreased due to these RAW stalls. The code shown

in Figure 9.5 illustrates this issue.

…

// Get indices from digits
LI_1 = (D1*CountSize) + countOff;
LI_2 = (D2*CountSize) + countOff;
…

// Increment counts
// Sequential,
// Correct results but causes RAW stalls
sm_Counts[LI_1]++;
sm_Counts[LI_2]++;
…

…

// Get indices from digits
LI_1 = (D1*CountSize) + countOff;
LI_2 = (D2*CountSize) + countOff;
…

// Increment counts
// Pipelined, fewer stalls but causes
// Incorrect counts, if LI_1==LI_2*
C1 = sm_Counts[LI_1];
C2 = sm_Counts[LI_2];
…
C1++;
C2++;
…
sm_Counts[LI_1] = C1;
sm_Counts[LI_2] = C2;
…

Figure 9.5: Comparing sequential vs. pipelined counting. The left panel shows the sequential method code which is

correct but slow due to RAW dependencies hidden within each individual increment. The right panel shows a

pipelined method, which is faster but causes incorrect counts due to collisions between keys on the same counter.

‹CountsPerLane› causes “Potential Overflow”:

I originally intended to enable performance experiments on Bit-level parallelism using

the ‹CountsPerLane = {1, 2, or 4}›” template parameter. The idea was to support one 32-bit

counter per lane, two 16-bit counters per lane (the current default), or four 8-bit counters per lane.

This would allow the per-thread count histograms to be compressed saving shared memory

263

(decreasing memory by 1×, 2× or 4× respectively) at the cost of more instructions to

compress/decompress counters and the need to prevent overflow when counting. Decreasing

shared memory usage enables increased occupancy and thus better TLP performance. Although I

have written code for all three approaches, I have only tested the middle case (two 16-bit counters

per lane). So, that is what should be used for now.

The actual count histograms are stored as eight lanes of 32-bit values with two 16-bit

counters per lane. A 16-bit counter can overflow if it is incremented past 65,535 (=216-1). So,

the code needs to detect and guard against this overflow. My current, potentially unsafe, solution

assumes that 16-bit overflow cannot actually occur with my current CTA layout and data set sizes

(this assumption limits5 my input sizes to n < 227). A safer and more general solution, shown in

figure 9.6, would be to accumulate per-thread histograms into a per-block histogram on a regular

basis using the already existing BlockReduce method.

// Handle overflow …
currWork = 0;
maxWorkBeforeOverflow = (216-nWork); // Note: use 28 instead for 8-bit overflow
while (more data blocks)
 // Overflow possible? (conservative test)
 if (currWork >= maxWorkBeforeOverflow)
 BlockReduce(…); // Accumulate thread histograms into single block histogram
 Zero ‘per-thread’ histograms
 end if

 ...
 BlockCount(…);
 ...

 currWork += nWork;
 Move to next data block
end while (data)

Figure 9.6: Handle potential Overflow by reducing per thread histograms down to a per-block histogram just

before 16-bit overflow (or 8-bit overflow) can happen.

5 I assume the original maximum input size (n) is 32-bits (0xFFFFFFFFu). I assume both keys and values

are 32-bit integers and require both input and output arrays. Since global memory is stored on byte

boundaries, this reduces n from 32 to 28 (=32-log(4 arrays *4 bytes)) bits. Furthermore, I assume that data

is partitioned evenly across all threads. Assuming at least one thread warp per thread block (32 threads)

and a minimum grid size of 128 thread blocks, results in a minimum of at least 4096 threads (=32*128),

which reduces the maximum elements assigned to each individual thread from 28 to 16 bits (=28-

log(4096)), which almost fits in a 16-bit counter (in the worst case, 65,536 = 216 counts is one value too

large for 216-1), decreasing the maximum input size to n=227-1 bits avoids overflow under these

assumptions.

264

As may be apparent, this code, after calling BlockReduce, would also need to reset all

the per-count histograms to zero. The word “regular” means that the code conservatively tests for

potential overflow of a loop counter against a maximum overflow variable, where even a single

additional iteration would cause the 16-bit counter to potentially overflow. This conservative

approach assumes the worst case, where all increments always end up in the exact same counter6.

9.3.1.2 BlockReduce Method:

The GPU_CountKeys kernel uses my BlockReduce method to reduce multiple per-

thread count histograms down to a single per-block (row-count) histogram. The goal is to reduce

16 rows of counters (with TBS entries in each row) down to 16 final row-counts in parallel. My

code load-balances the row-counts across ‹nWarp› thread warps within each thread block, so that

each thread warp processes fullRows, where fullRows = ⌈
16

𝑛𝑊𝑎𝑟𝑝𝑠
⌉. If the number of warps does

not divide evenly into the number of histogram entries (d = 16), then extra code is also required to

reduce the partial leftover rows (leftOver = 16-(fullRows*nWarps)). For each full work row of

counters, each thread warp loads and reduces ‹nWarp› counts per row down to a single count. The

single count is then stored in an intermediate array, and subsequently the WarpReduce method

(see Section 6.6.3) is invoked to reduce 32 single counts using all 32 threads in the warp down to

a final row-count. Note: The final row-count is found in the last column of each warp reduced

array. Next, each final row-count is extracted and stored in another per-block row-count

histogram in shared memory. Finally, the resulting 16 final row-counts are output to an

intermediate array in global memory, which corresponds to this data row (thread block). The

BlockReduce method is called rarely to prevent 16-bit overflow, currently only once per data

row. So, the performance costs are amortized across all the data blocks along each data row.

6 For example, an array of input keys that were all set to zero could cause this behavior.

265

Memory Reuse: There is really only one general issue with my BlockReduce method:

reducing shared memory usage to mitigate constraints on occupancy. My solution is to reuse

memory: My code allows two different arrays to share the same memory buffer (the per-thread

count histograms from BlockCount and the warp-reduce arrays from BlockReduce). These

two methods do not overlap in time, since BlockReduce is not invoked until after all data blocks

have been counted using BlockCount. This allows the code to safely overlap these two different

arrays within the same memory space, which is the larger of these two different arrays (spaceReq

= max(sizeArray(thread-counts), sizeArray(warp-reduce)).

9.3.2 GPU_ScanRuns Kernel

My GPU_ScanRuns kernel (as shown in Figure 9.7) is used to scan row-counts into row-

startsthat will later be used as starting prefixes for storing sorted runs of keys (and values) by my

GPU_DistributeKeys kernel. The GPU_ScanRuns kernel is conceptually similar to my

GPU_SumsToStarts kernel, used in my Scan primitive (see Section 6.5). The pseudo-code for

my GPU_ScanRuns kernel follows the 2-level reduce-then-scan pattern (described in Section 6.4)

but scans 16 different rows of row-counts instead of just one row.

To support the 2-level scan pattern used across all 3 kernels making up my GPU

Counting Sort, the GPU_ScanRuns kernel is launched using a single-thread block of TBS

threads(gridsize = 1). This means the grid size for both the GPU_CountKeys and

GPU_DistributeKeys kernels must be kept reasonably small (p ≤ 1000). My GPU_ScanRuns

has three main steps: reducing to final counts, scanning final counts, and scanning row counts:

266

GPU_ScanRuns Kernel
 1: Row DASk Setup

 2: Zero local arrays (including TBS counters)

 // Step 1) Reduce (p*d) row-counts down to (d) final counts
 3: for all row-counts // in parallel across TBS threads

 4: Read TBS row counts

 5: Accumulate TBS row counts into TBS counters

 6: Move to next data block (+TBS)

 7: end for

 8: Reduce TBS individual counters down to (d) final counts

 // Step 2) Exclusively Scan final counts into final starts // in parallel across d threads

 9: Scan (d) final counts

10: Reach back one column to get exclusive results

11: Save d scanned counts as d start prefixes

 // Step 3) Exclusively Scan row-counts into row-starts

12: for all row-counts // in parallel across TBS threads

13: Read DBS row counts

14: d-way multi-scan on DBS row counts

15: Save d block-sums

16: Write DBS scanned row starts (+ count prefix)

17: Update count prefixes (count prefixes +=block-sums for i in 0..d-1)

18: Move to next data block (+DBS)

19: end for

Figure 9.7: GPU_ScanRuns Kernel pseudo-code. The GPU_ScanRuns kernel follows the reduce-then-scan

pattern but performs a d-way multi-scan on the d entries in p count histograms to generate starting run positions for

each of p thread blocks. This partitions the keys (and values) output locations safely across p concurrent thread

blocks.

Step 1) Reduce to final counts: This first step (Figure 9.7, lines 3-8) reduces all k (=dp)

row-counts to d = 16 final counts. The thread block size (TBS) is chosen to be a multiple of

the number of digit values (d). For instance, 256 threads is evenly divisible by d = 16 = 24 for

a 4-bit radix. Before accumulating any row-counts, the code first calculates the number of

full-rows (nRows = k/TBS) and the presence of a last partial row (leftOver = k – (nRows∙TBS)

assigned to each thread. The full-rows do not require any range checking. The last partially

full row requires careful range checks. Each thread then loads and accumulates all assigned

row-counts from the full-rows and the last partially full row (if it exists). After accumulating

all assigned row counts into intermediate thread-counts, the TBS thread-counts need to be

reduced to d = 16 final counts. This is done by storing all TBS thread-counts in a shared

memory array and then using d = 16 threads to serially accumulate (TBS/d) partial sums each,

with a stride of d = 16 elements between each row. This step produces d = 16 final run-

counts.

Step 2) Scan final counts: This middle step (Figure 9.7, lines 9-11) is trivial, where d = 16

threads inclusively scan d = 16 run-counts into d = 16 run-starts by invoking the parallel

WarpScan method. Recall that WarpScan also requires a half-array (8 columns) of identity

elements (zeros). However, exclusive (not inclusive) scan results are needed for correct run-

starts. Consequently, the code reads exclusive final-starts from the inclusively scanned

results by reaching back one column in the warp array. These d = 16 final run-starts indicate

267

the starting location of each sorted digit run in the sorted output array and are used as run

prefixes to generate correct per-block row-starts in the next step.

Step 3) Scan row counts: This last step (Figure 9.7, lines 12-19) scans k (=dp) row-starts

into k row-starts. A Row BASk access pattern is then applied. Given a fixed data block size

(DBS = TBS*nWork), the code groups the k row-starts into m (=⌈𝑘/𝐷𝐵𝑆⌉ fixed-size data

blocks, and the single thread block marches along this single data row, data block by data

block, scanning each data block in turn from DBS row-starts into DBS row-starts. The first

m-1 data blocks require no range checks, while the last partially full data block may require

careful range checks. For each data block, the code performs a d-way inclusive multi-scan on

the DBS row-counts, adds in the correct run-start prefix from step 2, and then outputs the d-

way exclusive scan results as DBS row-starts. After each data block is scanned, the resulting

d = 16 block totals are accumulated into the current d = 16 run prefixes from step 2 to prepare

for the next data block along the row.

After scanning, the “row-starts” array contains valid block-starts within each sorted run for

each individual thread-block. These block-starts safely partition the sorted output array across all

thread blocks (with one set of d=16 block-starts for each thread block). The row-starts enable the

GPU_DistributeKeys kernel to independently distribute its keys (and values) into sorted runs

without conflicting with other thread blocks concurrently distributing data at the same time. The

GPU_ScanRuns kernel has one performance issue in step 3, which is 2-way bank conflicts as

described next.

Multi-scan 2-way Bank Conflicts: In Step 3 above, each thread warp is responsible for

scanning (2 = d/nWarps = 16/8) row-counts within each data block. Since 32 threads in a warp

can store two sets of d values (32/16), a modified WarpScan method (Section 6.6.3) is used,

which actually performs two 16-element scans at once. Unfortunately, adding an 8-element pad

section before each 16-element scan section immediately results in 2-way bank conflicts between

all threads in the same warp. To avoid bank conflicts, I tried re-orienting the data layout and

using an extra level of indirection to access the data during the scan7. However, this solution was

7 I tried 2 different solutions, both with poor results: 1) I moved all zeros into the first data warp and then

had all scans referenced the sub-set of zeros that resulted in no bank conflicts, an extra level of indexing

was required to make this approach work correctly. Unfortunately, this extra level of indirection hurt

overall performance. 2) I tried re-using my 3-step conversion method to move data into a new data layout

where bank conflicts could not happen. Unfortunately, this required 3× as much memory and 3× as many

shared memory accesses, which hurt overall performance.

268

more computationally expensive than the bank conflicts themselves. Consequently, my current

code just lives with the 2-way bank conflicts.

9.3.3 GPU_DistributeKeys Kernel

My GPU_DistributeKeys kernel (as shown in Figure 9.8) distributes keys (and values)

into sorted runs based on the current chosen digit. The GPU_DistributeKeys kernel is based

on the GPU_ScanRuns kernel used in my Scan primitive (in Section 6.5). The main difference is

GPU_DistributeKeys must do a lot more work than just scanning (as in GPU_ScanRuns) to

correctly support the distribute phase of my GPU Counting Sort. As already discussed, the code

for this kernel uses my Row DASk for sequential processing of data to support stable sorts. As

per the Row DASk access pattern, this kernel groups n input keys into m fixed size data blocks (m

= ⌈
𝑛

𝐷𝐵𝑆
⌉). The kernel then load-balances the m data blocks evenly across the p thread blocks in

the CTA grid (nBlocks = ⌈
𝑚

𝑝
⌉). Each thread block finally marches down its assigned data row,

data block by data block, calling the BlockDistribute method on each fixed-size data block of

keys (and values) in sequence.

 My BlockDistribute method does a local counting sort in parallel on each data block to

determine local offsets (within the current data block) and then adds in matching row-starts to get

global offsets before distributing the locally sorted data into their final sorted positions After

distributing one block of keys (and values) into d = 16 sorted runs, the d = 16 row-starts are

incremented by the matching d = 16 block-sums from the current data block to prepare to

distribute the next data block along the row.

269

GPU_DistributeKeys Kernel

GPU_DistributeKeys

// Distribute all ‹key, value› pairs into sorted runs.

Row DASk Setup

if (rc.Both)

end if

if (rc.Start)

end if

for each data block along row

end for

if (rc.Stop)

end if

BlockDistribute_RC_* ②

// Distribute one data block of ‹k,v› pairs into sorted runs.

 Pre-computed constants

 // Bin Keys

 STEP 1.0: LoadKeys (with range checks)
 STEP 2.0: ExtractDigits
 STEP 3.0: CountKeys

 // Scan counts (into starts)

 STEP 4.0: ScanWarps
 STEP 5.0: ScanBlocks
 STEP 6.0: UpdateKeyStarts

 // Sort Keys

 STEP 7.0: ShuffleKeys
 STEP 8.0: MapKeys (with range checks)

 // Sort Values (Optional)

 STEP 9.0: LoadValues (with range checks)
 STEP 10.0: ShuffleValues
 STEP 11.0: MapValues (with range checks)

 // Move to next data block (along row)

 STEP 12.0: UpdateRunStarts

end BlockDistribute

STEP 1.0: LoadKeys_RC_NONE

// Load short run of nWork keys [1-8] into registers.

Setups “load”, “store”, and “run” pointers.

1.1: Loads nWork keys [1-8] from loadPtr.

1.2: Stores nWork keys [1-8] into storePtr.

1.3: Loads nWork keys [1-8] from runPtr.

LoadKeys_RC_BOTH
Also range checks array accesses against [start, stop].

LoadKeys_RC_START
Also range checks array accesses against [start, …).

LoadKeys_RC_STOP
Also range checks array accesses against (…, stop].

STEP 2.0: ExtractDigits

// Extract digits [0-15] from keys [1-8].

2.1: (Optional) Map keys into 32-bit unsigned integers

2.2: Extract digits from keys (shift & mask)

2.3: Compress digits into single 32-bit register

STEP 3.0: CountKeys

// Count Keys (into ‘per thread’ histograms.)

3.1: Zero counts array

3.2: Compute lane indices

3.3: Compute shifts and increments

3.4: Accumulate counts (save initial starts)

3.5: Compress initial starts into 32-bit register

STEP 4.0: ScanWarps

// Scan ‘per warp’ counts into ‘per warp’ starts

Setups “S1”scan and “S3” store pointers.

4.1: S1:SS‹4›, each thread in warp serially scans a short run

of 4 lane counters. (4 8-bit counters per 32-bit lane).

4.2: S2:SS‹8›, each active thread (4 per warp) serially scans a

short run of 8 S1 run sums. Also stores final S2 run sums into
S3 scan array.

4.3: S1:SU‹4›, each thread updates short run of 4 scanned
results with S2 prefix (from Step 4.2)

STEP 5.0: ScanBlocks

// Scans ‘block’ counts into ‘block’ starts

Setups “S3”scan and “S4” pointers.

5.1: S3:SS‹8›, each active thread (8) serially scans a run of 8
lane counters. (2 16-bit counters per 32-bit lane).

5.2: S4:WS‹8›, all active threads (8 total) warp scan 16 block
sums into 16 block starts.

5.3: S3:SU‹8›, each active thread (8) updates run of 8
scanned results with S4 prefix (from Step 5.2)

STEP 6.0: UpdateKeyStarts

// Grab final ‘per key’ starts

Setups “S1”scan and “S3” pointers.

5.1: Grabs [1-8] per key starts from compressed reg.

5.2: Adds in correct S1 prefixes (from Step 4.3).

5.3: Adds in correct S3 prefixes (from Step 5.3).

STEP 7.0: ShuffleKeys
// Sort Keys into shared memory array (Local Sort)

STEP 8.0: MapKeys (range checks like STEP 1.0)

// Sort Keys into outKeys array (Global Sort)

STEPS 9.0, 10, & 11: Sort Values
Similar to Steps 1.0 (Load), 7.0 (Shuffle), and 8.0

(Map) respectively but with “values” instead of

“keys”.

STEP 12.0: Update Run Starts
// Add current block sums [1-16] into run starts [1-16].

BlockDistribute_RC_STOP(…) ②

BlockDistribute_RC_NONE(…) ②

BlockDistribute_RC_START(…) ②

BlockDistribute_RC_BOTH(…) ②

Zero local arrays // Distribute Setup

Load initial run-starts[0-15]

270

Figure 9.8 GPU_DistributeKeys Kernel: This kernel follows my Row DASk. n keys are grouped into m data

blocks that are partitioned across p thread blocks. Each thread block marches down its data row, calling

BlockDistribute on each assigned data block in turn. BlockDistribute loads and bins keys into counts

(Steps 1-3), scans counts into starts (Steps 4-6), sorts keys (Steps 7-8), optionally sorts values (Steps 9-11), and then
gets ready for the next data block (Step 12).

 Since my GPU_DistributeKeys kernel follows the Row DASk, there is a setup stage at

the beginning of the kernel, which initializes the desired Row DASk behavior and also initializes

the local arrays used by this kernel. This setup step has four main sub-steps:

Sub-Step 1) Load Balance: the kernel computes the nBlocks (m) assigned to this data row

using biased load-balancing, as described in section 5.6.3.

Sub-Step 2) Range Check: the kernel initializes the variables used with the ‹FIRST?,

MIDDLE*, LAST?› range check pattern, as described in section 5.6.2.

Sub-Step 3) Zero Arrays: the kernel allocates and zeros intermediate arrays in shared

memory, which are used by the BlockDistribute method.

Sub-Step 4) Load row-starts: the kernel loads the d = 16 row-starts that indicate where each

thread block can safely output its sorted data within each output run without conflicting with

other concurrent thread blocks outputting data at the same time. These row-starts (starting

block run positions) were computed by the GPU_ScanRuns kernel.

My GPU_DistributeKeys method requires 3 types of parameters--template, function, and

CTA launch--which are described next.

271

Template Parameters: The following twelve template parameters (as shown in Table 9.4) are

used to support genericity and experimentation for this kernel.

Parameter Explanation

keyT, valT These parameters are generic placeholders for the different key and value types used

to represent the ‹key, value› pairs (‹U32, U32› for instance).

mapT This parameter represents a mapping function (or functor) type to convert the actual

keys into 32-bit unsigned integers that are consumed by the actual kernel code (for

example, floats need to be transformed).

WarpSize This parameter represents the threads per warp. This value has remained fixed at 32

threads per warp for the past several generations of GPU hardware.

nWarps This parameter in the range [1-8] specifies how many thread warps per thread block

are used. My code only supports values in this range, despite the fact that current

GPU hardware can support up to 32 warps per thread block.

nWork This parameter in the range [1-8] specifies how many ‹keys› or ‹key, value› pairs are

assigned to each thread inside each thread block while sorting.

bMap This Boolean parameter {true|false} controls whether or not the mapOp transform

operator should be applied to transform actual keys into 32-bit unsigned integers.

bShift, bMask These Boolean parameters control whether shifting and masking operations

respectively are required to extract 4-bit digits from the 32-bit keys.

bHasValues This Boolean parameter controls whether to sort ‹key, value› pairs {true} or ‹key›

singletons only {false}.

IO_pad, S1_pad These parameters control whether the “Pad & Rake” technique will be turned on to

help mitigate bank conflicts {1} or left turned off {0}. The IO_pad should only be

set to {1} when the nWork parameter is a power of 2 other than one [2,4,8],

otherwise it should be set to zero. Invalid use can lead to kernel crashes or incorrect

results.

Table 9.4: GPU_DistributeKeys C++ template parameters.

Function Parameters: The following eight function parameters (as shown in Table 9.5) are used

to distribute the unsorted input arrays into output arrays containing sixteen sorted runs (one run

per digit value):

272

Parameter Explanation

outKeys,

outVals

These parameters represent the output arrays that receive the sorted keys and

values as part of the current counting sort pass on a chosen LSD digit.

inKeys, inVals These parameters represent the unsorted input arrays (keys and values) that need

to be sorted on the chosen LSD digit as part of the current counting sort pass.

inRowStarts The inRowStarts parameter is a pointer to the scanned row-starts from the

GPU_ScanRuns kernel. There are sixteen entries per thread block (one for each

digit value, d = [0-15]). Each row-start indicates the unique starting position for

the current thread block to output its sorted output data within the dth sorted run

without conflicting with other concurrent thread blocks outputing data at the

same time.

[start, stop] These parameters identify the range of the input arrays (inKeys, inVals) to sort

by distributing into runs. The input size (n) can be computed from this range as

n=stop-start +1.

Note: The output arrays are also assumed to use the same range.

nWork This parameter in the range [1-8] specifies how many ‹keys› or ‹key, value› pairs

are assigned to each thread inside each thread block while sorting.

bMap This Boolean parameter {true|false} controls whether the mapOp transform

operator should be applied or not to transform actual keys into 32-bit unsigned

integers.

bShift, bMask These Boolean parameters control whether shifting and masking operations

respectively are required to extract 4-bit digits from the 32-bit keys.

bHasValues This Boolean parameter controls whether to sort ‹key, value› pairs {true} or

‹key› singletons only {false}.

keyShift This parameter indicates how much to shift each key within the transformed 32-

bit unsigned key in order to extract the chosen 4-bit digit for the current LSD

counting sort pass.

Table 9.5: GPU_DistributeKeys function parameters.

CTA Parameters: The following Grid and Block layout parameters (as shown in Table 9.6)

are chosen to support thread-level parallelism (TLP):

273

Parameter Explanation

Thread Block Size

(BS)

This parameter is chosen as a 2D block of threads to take advantage of TLP and

multi-issue within each SM core.

For example: ‹32,4,1› means 4 thread warps of 32 threads each.

Grid Size (GS) This parameter is chosen as a 1D grid to load balance the concurrent work load of

thread blocks evenly across all the SM cores on the GPU card.

For example: ‹1,112,1›). Assume occupancy allows 8 concurrent thread blocks

per SM core, then on a GTX Titan, a work load of 112 thread blocks divides 14

SMX cores evenly into 8 concurrent thread blocks each.

Table 9.6: GPU_DistributeKeys CTA parameters.

 For the GPU_DistributeKeys method, all the actual work of distributing keys (and

values) into sorted runs is done by the BlockDistribute method (a method overview and the

12 individual steps of this complex method are described in section 9.4.3.3). Also, there are

several general performance issues associated with this method, which are described first in

section 9.4.3.1. Other issues unique to each step, are described within each individual step.

Some general solutions to these general performance issues are described in section 9.4.3.2.

Other solutions unique to each step, are described within each step.

9.3.3.1 BlockDistribute Issues:

There are three general issues with BlockDistribute – bank conflicts, register pressure,

and shared memory pressure.

Bank Conflicts: Since each thread works with short sequential runs [1-8] in shared memory,

bank conflicts during shared memory accesses become a performance issue. As discussed in

section 6.7.2, odd-length runs [1, 3, 5, 7] will not cause any bank conflicts, but even length runs

[2, 4, 6, 8] can result in [2-way, 4-way, 2-way, and 8-way] bank conflicts costing [1, 3, 1, or 7]

extra machine cycles per shared memory access, respectively. For run lengths that are powers of

two [2, 4, 8], the “Pad and Rake” technique can be used to eliminate bank conflicts at the cost of

an extra pad column in memory and extra rake instructions to skip over the pad column. Users

can, of course, choose to live with the performance costs due to extra cycles caused by the bank

274

conflicts (for example, for runs of length [6]). If you choose to live with the bank conflicts,

CUDA’s low level SASS compiler may decide to optimize an aligned sequence of two or four 32-

bit load (or store) instructions as a single Vector2 (64-bit) or Vector4 (128-bit) instruction. This

optimization decreases the total number of instructions and bank conflicts by 2× or 4×,

respectively, since instructions that never get executed do not cause bank conflicts

Register Pressure: My code takes advantage of each GPU core’s support for instruction

pipelining to improve ILP performance by having each thread work on multiple (k=[1-8]) work-

items at once and then grouping and reordering instructions using software pipelining. Linearly

increasing the amount of work per thread by k× increases the number of registers per thread

needed O(k) to keep track of multiple keys, counts, starts, etc. throughout the code.

Consequently, more work means more registers.

My code also takes advantage of the GPU’s support for massive multi-threading to improve

TLP performance by launching multiple thread blocks with multiple thread warps (w=[1-8])

within each thread block, with each warp containing 32 threads. However, each individual thread

needs its own unique set of independent registers to ensure correct behavior. More threads means

more registers.

Recall that each SM core contains only a fixed pool of registers (32K or 64K), that are shared

across all active thread warps (up to 48 or 64 thread warps per SM). Too much work or too many

warps can constrain occupancy due to register pressure, which decreases TLP performance. My

BlockDistribute method keeps both the supported amount of work ‹nWork› and the supported

number of thread warps ‹nWarps› small (≤ 8) for my experiments.

Shared Memory Pressure: The BlockDistribute method needs several different memory

arrays stored, which are kept in shared memory. For instance, shared memory is needed to

convert between data warps in global memory (stride = 32) and short sequential runs of keys (and

values) kept in registers (stride = 1). Several different memory arrays are also needed to count

275

keys into per-thread count histograms and later to scan those counts into starts (local sorted

offsets). Finally, shared memory arrays are needed to sort keys (and values) locally before

distributing them globally into sorted runs. Larger data block sizes (DBS) results in larger arrays.

Large arrays reduce occupancy due to shared memory pressure, which hurts TLP performance.

My solution reuses the same memory buffer for multiple arrays, which is discussed more fully in

section 9.4.3.2, Step 12 (Move to next Block).

9.3.3.2 BlockDistribute Solutions:

 To handle bank conflicts, I apply different techniques from section 6.7.2 to different steps

in this BlockDistribute method. To decrease register pressure, I batch my software

pipelining into small groups. To decrease shared memory pressure, I reuse memory to save

space.

Handling Bank Conflicts: As already discussed in Section 6.7.2, there are multiple ways to deal

with bank conflicts 1) Live with the performance hit; 2) Use runs whose length is odd; 3) Use the

Pad and Rake technique on runs whose length is a power of two; 4) Enable the SASS compiler

Vector2/Vector 4 optimization by aligning data to a 16-byte boundary. Almost all of the twelve

steps in this method result in bank conflicts.8 Sometimes I live with the performance hit;

sometimes I use the “Pad and Rake” technique. I try to align my data arrays in shared memory to

16 byte boundaries to enable the Vector2/Vector4 optimization by the SASS compiler, adding

extra pad columns where necessary. Note: The “Pad and Rake” technique prevents the Vector4

optimization by the SASS compiler.

8 For many of these individual steps, I have tried multiple solutions to mitigate bank conflicts. For

instance, early versions of my radix sort code used my 3-step conversion technique from LoadKeys over

and over again between steps to eliminate as many bank conflicts as possible. However, one of my primary

goals is to increase throughput by decreasing total cycles. So, I only kept solutions which increase data

throughput. As a result, the 3-step conversion technique got dropped as it was usually more expensive then

living with the bank conflicts it removed.

276

One interesting wrinkle is that avoiding bank conflicts in one step may cause them in

another step. For instance, step 3 (CountKeys), step 4 (ScanThreads), and step 6

(AccumulateLocalStarts) access the same memory buffer using two different views. In this

case, I try it both ways and see which way has the best performance.

Another wrinkle is that some bank conflicts are simply unavoidable. For instance, Step 7

(ShuffleKeys) results in an unpredictable number of bank conflicts, since the algorithm cannot

predict ahead of time which bank column in shared memory each key will be stored into. Based

on a 32 balls into 32 bins simulation on 10,000 runs on uniform random data, the average number

of bank conflicts is about 3.4 on each memory access per thread warp.

Compression: To save registers, instructions, and shared memory, I compress data. For

instance, I compress up to eight digits into a single 32-bit register, which reduces register storage

costs by a factor of 8×. Also, when counting, I compress four 8-bit counters within a single 32-

bit lane, which reduces the number of registers and shared memory required to store per-thread

count histograms by a factor of 4×. However, there is a trade-off here, since many more

instructions and temporary registers are also required to correctly compress and later decompress

these values as needed. Where possible, bit-level parallelism is taken advantage of to decrease

the number of total instructions required. For example when scanning, the code can scan four (or

two) compressed runs at the same time using one set of serial Sklansky scan instructions,

reducing the number of scan instructions required by a factor of 4× (or 2×).

Batched Software Pipelining decreases Register Pressure: Software pipelining k work items

increases the number of required registers by k×. Range checked I/O steps (such as steps 1.0, 8.0,

9.0, and 11.0) require extra registers for the checks. Other steps (such as 3.0, 4.0, 5.0, and 6.0)

require complex logic to implement correctly, which also tends to increase the number of

registers required. For these complex steps, one solution is to batch the software pipelining into

smaller groups of [2-4] work items at a time. For complex steps, my code may batch [1-8] work

items in groups of four work items, resulting in up to two different instruction groups [1-4] and

277

[5-8], where each instruction group is software pipelined independently. This decreases the

number of registers from 8× to 4×. For complex steps that also require range checks, my code

may batch in groups of two work items, resulting in up to four instruction groups [1-2], [3-4], [5-

6], and [7-8]. This decreases the number of registers from 8× to 2×. Although batching software

pipelining in small groups of [2-4] work items decreases register pressure, it may also decrease

ILP performance since the hardware scheduler now has fewer independent instructions to choose

from.

Memory Reuse decreases Shared Memory Pressure: To save shared memory space, a single

large memory buffer per thread block is used, which is partitioned into smaller per-warp and per-

block buffers. Each per-warp buffer is then reused for multiple different purposes (loading keys,

counting digits, scanning starts, extracting warp starts, etc.) during the various steps that make up

my BlockDistribute method. The larger total memory buffer is used for sorting keys (and

values) locally. In addition, there is a small per-block buffer used to store the S3 and S4 arrays.

Since the twelve steps are sequential and do not overlap in time (for instance, scanning counts

into starts does not begin until counting digits is completely finished), these two different uses of

the same memory can safely reuse the same memory space for these different purposes.

Practically speaking, I need to allocate each per-warp memory buffer as the largest of all these

different warp arrays (warpSpaceReq = max(sizeArray(warp-keys), sizeArray(thread-counts),

sizeArray(thread-starts), sizeArray(warp-values), …). I then need to allocate the entire

memory buffer as the larger of either the aggregate of the warp arrays or the local sort buffers,

also adding in the per block memory use (spaceReq = max(sizeArray(nWarps*warpSpaceReq,

block-keys, block-values) + sizeArray(S3 + S4)).

Memory Alignment: To enable the possibility of the compiler applying the Vector4

optimization to mitigate both load/store instructions and bank conflicts by a factor of 4×, I try to

align the start of each block-array and warp-array in memory to a Vector4 boundary (16 bytes =

4*4) with extra pad columns where necessary.

278

9.4.3.2 BlockDistribute method:

 My BlockDistribute method (see Figure 9.8) distributes an entire block of ‹key,

value› pairs (or ‹key› singletons) into their final sorted runs. This method is invoked on each data

block by the GPU_DistributeKeys kernel as it marches down each data row, block by block.

This method basically performs a local counting sort on a single data block to locally sort keys

(and values) into sorted runs. It then globally distributes the locally sorted keys (and values) into

their final sorted run positions.

This is complex method, which and it took me a long time to get it working correctly, so I

apologize that the overview may also be complex. The twelve steps of this method are organized

into five broad processing groups: Count Keys, Scan Counts, Sort Keys, Sort Values, and Move

to next Block. After the overview, each individual step is discussed in depth.

Group) Count Keys: In this group, all keys are counted into thread-counts (16 counters

per-thread histogram). In Step 1 (LoadKeys), each thread loads a short sequential run of

‹nWork=[1-8]› keys from the unsorted input array. In Step 2 (ExtractDigits), each

thread extracts the current chosen digit from each key and stores the resulting [1-8] digits

in a single compressed register. Finally in Step 3 (CountDigits), each thread bins its

[1-8] digits into its matching count histogram of thread-counts. A single compressed

register (called regStarts) of [1-8] key-starts is also created in Step 3. Each key-start is a

collision-free starting offset for each key relative to the other keys assigned to this thread.

These key-starts are needed to uniquely offset keys, when two or more keys from the

same work run collide on the same digit value.

Group) Scan Counts: This group is the most complex, so I will explain the general

problem needing to be solved before I overview the individual steps. To enable sort, the

local starts (unique sorted offsets within the fixed-size data block) for each key (and

279

value) are needed. The main point of generating these starts is that each thread can then

safely store all its assigned keys into the sorted array without colliding with other threads

concurrently storing data at the same time. To generate these local starts, a hierarchical

set of three relative starts (warp-starts, across warps within a thread block; thread-starts,

across threads within a warp; and key-starts, across keys within a thread) are built and

then accumulated. These three relative starts are built using a hierarchy of scans from the

count histograms. Note: The key-starts were already built by step 3 (in group 1), while

the thread-starts and warp-starts will be built by steps 4 and 5 (in this group).

In Step 4 (ScanThreads), the entire thread warp scans assigned thread-counts

into thread-starts. Each thread-start is a collision-free starting offset for sorted data runs

relative to the other threads within the same warp. Step 4 also generates and stores a

single histogram of sixteen warp-sums for use in the next step. In Step 5 (ScanWarps),

eight active threads scan the warp-sums from Step 4 into warp-starts. Each warp-start is

a collision-free starting offset for sorted data runs relative to the other warps within the

same thread block. Step 5 also generates a final histogram of sixteen block-sums (total

run counts) and sixteen block-starts (starting run offsets) across the entire data block. In

Step 6.0 (AccumulateStarts), the local starts [1-8] are built by accumulating warp-

starts (Step 5), thread-starts (Step 4), and key-starts (Step 3).

Group) Sort Keys: With local-starts now built, the keys can be safely distributed into

sorted runs. In step 7 (ShuffleKeys), each thread shuffles (locally sorts) its assigned

keys into sorted runs (kept in a local shared memory array). Local sorting increases

overall performance by increasing run coherence, which reduces the number of “stores”

required to distribute the keys into sorted runs in the next step. In Step 8 (MapKeys),

each thread loads and maps (globally sorts) a short sequential run of [1-8] locally sorted

keys into global memory. The global offsets are created by accumulating row-starts with

280

relative run offsets from the start of each sorted local run. Each row-start is a collision-

free starting offset for sorted data runs within the entire data set relative to other thread-

blocks within the entire grid (CTA).

Group) Sort Values: Optionally, the values also need to be distributed into sorted runs.

If sorting ‹key, value› pairs instead of just ‹key› singletons, then the methods

corresponding to Steps 9 – 11 need to be invoked. Otherwise, the BlockDistribute

method can safely skip over to Step 12. In Step 9 (LoadValues), each thread loads a

short sequential run of ‹nWork=[1-8]› values. In Step 10.0 (ShuffleValues), each

thread shuffles (locally sorts) its assigned values (reusing the local starts from Step 6).

In Step 11 (MapValues), each thread loads and maps (globally sorts) a short sequential

run of [1-8] locally sorted values into global memory (reusing the global offsets from step

8).

Group) Move to Next Block: In step 12 (UpdateRowStarts), the thread block prepares

to distribute the next data block along the current data row by adding the final block-

sums (from Step 5) into the current row-starts. This safely skips past the just distributed

keys (and values) for the current data block.

Now that a broad overview of the BlockDistribute method has been presented, next follows

an in depth discussion of each of the twelve steps.

STEP 1) LoadKeys method:

The LoadKeys method takes as input the inKeys parameter and produces as output a

short run of ‹nWork=[1-8]› sequential keys stored in registers. For better performance, I reuse the

3-step conversion described in section 6.7.1 to convert between a warp-by-warp layout (that

respects coalescence) kept in global memory into a sequential layout (required for correct results)

281

kept in registers. These three sub-steps quickly cycle through three different views of memory

(via three pointers) as summarized in Figure 9.9.

Sub-step 1.1) Each thread warp loads its own assigned section of [1-8] data warps of

keys from the current data block in the inKeys array kept in global memory. These [1-8]

keys are temporarily stored in registers.

Sub-step 1.2) Each thread warp stores its [1-8] keys as data warps into a conversion array

kept in shared memory, each data warp may have an optional pad column to avoid bank

conflicts using the “Pad and Rake” technique described in section 6.7.2.

Sub-step 1.3) Each individual thread within the thread warp loads a short sequential run

of [1-8] keys from its assigned section of the conversion array kept in shared memory.

Step 1.1 Load Keys

Step 1.2 Store Keys

Step 1.3 Load Run (No Pad)

Load Run of 3 (Per Thread)

01201201201201201201201201201201
20120120120120120120120120120120
12012012012012012012012012012012
................................

Step 1.3 Load Run (With Pad)

Load Run of 4 (Per Thread)

*0123012301230123012301230123012
3*012301230123012301230123012301
23*01230123012301230123012301230
123*0123012301230123012301230123
0123............................

Figure 9.9: Four views of memory required to Load Keys efficiently. For Sub-step 1.1) the upper-left panel shows

a warp by warp layout of the inKeys arrays as a single fixed-size data block, with each thread warp being assigned

[1-8] sequential data warps. For Sub-step 1.2) the upper-right panel shows a warp by warp layout of the same data

warps into shared memory with optional padding to help mitigate bank conflicts. For Sub-step 1.3) Both lower

panels show how the short runs would be assigned to all 32 threads for a run of size 3 (without padding) and for a

run of size 4 (with padding), where the extra pad column mitigates 4-way bank conflicts.

There are 3 main issues associated with this LoadKeys method – bank conflicts,

converting between views, and range checks.

0

7

…
nWork
[1-8]

Warp
1

…

Warp
8

0 31

WarpSize(32)
TBS = nWarps[1-8]*WarpSize[32]

DBS = TBS*nWork[1-8]

...

n
W
a
r
p
s

[
1
-
8
]

I/O Layout (Global Memory)

0

7

…
nWork
[2,4,8]

Warp
1

…

Warp
8

0 31

PadSize {32|33}={0|1}+32)
Space = nWarps*(PadSize*nWork+Unused)

...

n
W
a
r
p
s

[
1
-
8
]

Warp by Warp Layout
(Shared Memory, Padded)

Optional Pad
Column

Unused
Pad

282

Mitigating Bank Conflicts: Bank conflicts caused by loading short sequential runs can be

mitigated using the “Pad and Rake” technique (as described in section 6.7.2) via this kernel’s

IO_pad template parameter, as shown in Table 9.7.

nWork 1 2 3 4 5 6 7 8

k-Way BC 0 2 0 4 0 2 0 8

Extra Cycles 0 1 0 3 0 1 0 7

IO_pad 0 1 0 1 0 0* 0 1

Table 9.7: Bank Conflicts for increasing run length.

In this table, the nWork row shows the run length [1-8] to load; the k-Way BC row shows

the expected number of bank conflicts per memory access [0,2,4,8]; the Extra Cycles row shows

the cost in extra machine cycles per shared memory access; and the IO_pad row shows whether

to turn on {1} or off {0} the “Pad and Rake” technique to avoid these k-way bank conflicts.

Recall that the “Pad and Rake” technique only works for run lengths that are powers of two. So I

only set IO_pad = {1} for ‹nWork=[2,4,8]›. In the outlier case of a run of length 6, it is cheaper

to live with the resulting 2-way bank conflicts then to fix the problem.

Conversion between Views: For a stable Counting Sort, each thread needs to load a short

sequential run of keys (stride =1). However, for best I/O performance via coalescence, keys

should be loaded using the warp-by-warp BASk pattern (stride = 32). This problem was solved

using the 3-step conversion process already described.

Range Checks Issue: My ROW DASk requires four similar versions of code when transferring

I/O between global memory and registers, which supports the [‹FIRST?›, ‹MIDDLE*›, ‹LAST?›]

range check pattern. Since this method loads keys from the inKeys array, four different range

checked versions of this method are also required:

LoadKeys_RC_BOTH does [start, stop] range checks, which is typically only needed for a

input range smaller than a single fixed-size data block (n ‹ DBS).

LoadKeys_RC_START does [start, …) range checks, which is typically only needed if the

start offset is not warp aligned to a warp boundary [0, 32, 64, …].

LoadKeys_RC_STOP does (…, stop] range checks, which is only needed by the very last

partially covered data block in the data set.

283

LoadKeys_RC_NONE does *NO* range checks, the vast majority of data blocks should end

up calling the ‘NONE’ version, which is another reason to use my Row DASk.

In all four versions of LoadKeys, instructions are regrouped and reordered using software

pipelining. This results in better ILP performance. The three range-checked LoadKeys

functions support software pipelining using smaller batches of [2-4] keys at a time to reduce

register pressure. The LoadKeys_RC_NONE function software pipelines all eight keys as a single

batch of [1-8] work items.

STEP 2) ExtractDigits method:

The ExtractDigits method takes [1-8] keys as inputs and produces a single compressed

32-bit value containing [1-8] digits. Each chosen digit is extracted from its corresponding key by

(optionally) transforming the key into a 32-bit unsigned integer and then shifting and masking off

the chosen digit (4-bits) from this 32-bit key. The resulting 4-bit digits [1-8] are then compressed

into a single 32-bit register called regDigits. The layout of 4-bit digits within this register is

[8462 7351] instead of the more typical [8765 4321]. This specific layout pattern supports bit-

level parallelism by allowing quads and pairs to be easily extracted using fewer shifts and masks.

Also, type upscaling from 4-bits to 8-bits or 16-bits respectively basically costs nothing extra

when extracting these quads and pairs. Instructions are software pipelined and reordered in

batches of [2-4] keys to increase ILP performance. The ExtractDigits method is illustrated in

Figure 9.10.

284

Figure 9.10 - Extract Digits from Keys: Each individual key is optionally transformed into a 32-bit integer. Then

a chosen digit is extracted from the 32-bit key by shifting and masking. Then the resulting [1-8] digits are

compressed and reordered into a single 32-bit integer with each 4-bit nibble representing a single digit. The

reordered layout of 4-bit digits within the 32-bit register is [8462 7351].

STEP 3) CountDigits method:

The CountDigits method takes [1-8] compressed digits (stored in regDigits) and counts the

digits into a per thread counts histogram containing 16 bins (one bin per possible digit value [0-

15]). For each digit in regDigits, it extracts the current digit, bins the digit, and increments the

corresponding counter in the histogram. The bins in each count histogram are represented by

sixteen 8-bit counters, which are compressed and stored in four 32-bit lane counters in order to

save shared memory space. Since each thread counts at most eight digits per counter, any

overflow of 8-bit counters is not yet possible. Before counting any digits in any thread, all counts

are reset to zero to ensure correct final counts in each histogram. Counting instructions are

reordered using software pipelining in batches of [2-4] digits at a time to increase ILP.

The memory layout for CountDigits is shown in Figure 9.12. As can be seen in this figure,

there are a total of four rows (one for each 32-bit lane) and 32 columns (one for each thread in the

warp). Optionally, the Kernel’s “S1_pad” template parameter can be used to turn on the “Pad and

Chosen
Digit

Shift (bottom nibble)

Transform (Optional)

Mask (4-bit digit)
AND

EQUALS
Digit #3

Key #3

Extract

Digits [1-8]

Compress

8 4 6 2 7 3 5 1

1

8

3

…

Compress

Re-order

285

Rake” technique for use in step 4.0 (ScanWarps). This adds a single pad column to the end of

each lane row. The total number of 32-bit values required for counting in each individual warp is

thus 128 (or 132 with pad).

There are two main issues with this counting step:

Counting Bottleneck Issue: Incrementing [1-8] per-thread counters cannot be safely software

pipelined due to possible collisions between concurrently executing increment instructions.

Consequently, the method must live with the stalls caused by the RAW dependencies between the

load, increment, and store instructions associated with each count operation. This issue was

previously described in Section 9.3.1.1.

Bank Conflict Issue: Unfortunately, there is a conflict between Step 3.0 CountDigits and

Step 4.0 ScanWarps. To mitigate bank conflicts when loading and storing runs in Step 4, the

“Pad and Rake” technique can add a single pad column per lane. This pad column impacts the

data layout for both steps 3 and 4, as shown in Figure 9.12.

Figure 9.12 - CountDigits Memory Layout: Each thread in a thread warp has its own unique histogram of

sixteen 8-bit counters compressed intofour4 32-bit lanes. Across all threads in a warp, there are four rows of 32

columns (+ optional pad column) resulting in a total of 128 (or 132) 32-bit lane values. Each thread warp is assigned

its own unique memory array used for counting. Step 3 accesses per-thread count histograms in columns

(vertically). However, Step 4 accesses short runs of 4 lane counters across each row (horizontally).

…

T0 T1 T31

Current Warp (32 Threads)

Lane 1

Lane 2

Lane 3

…

…

…

…

Lane 0

T2
Prior Warp … … Next Warp

16 8-bit
Counters

or
(4 32-bit
Lanes)

*

*

*

*

Pad Col.
(Opt.)

Unused… Unused… Unused…

286

 Adding the pad column can avoid bank conflicts when scanning runs in step 4. However,

adding the pad column also negatively impacts step 3, which uses the same memory layout but

with a different view of the data. Adding the pad column to the shared memory layout in Step 3

shifts each per-thread count histogram from being a straight vertical line on one bank column into

a diagonal line spread over multiple bank columns. This shift results in an unpredictable number

of bank conflicts on each shared memory access. Assuming a uniform random distribution of

digits into counters results in a rough estimate9 of 3.4 bank conflicts per shared memory access on

average across the entire thread warp. Since there are up to sixteen shared memory accesses to

count [8] digits, this approach results in up to 54.4 extra cycles due to bank conflicts in Step 3.

On the other hand, not adding the pad column results in a guaranteed four-way bank conflict for

each shared memory access in Step 4. Since there are a total of 25 shared memory accesses to

scan all four data warps, not padding results in 100 extra cycles due to bank conflicts in Step 4.

Since 54.4 < 100, I have found it best for overall performance to always set S1_pad = 1 to turn on

the “Pad and Rake” technique in Step 4 even though it causes unavoidable bank conflicts in Step

3.

STEP 4) ScanWarps method:

The ScanWarps method exclusively scans thread-counts into thread-starts for a single

thread warp. Recall that there are sixteen rows of 8-bit counters compressed into four 32-bit

lanes. This results in a total of 128 32-bit values (132 with optional pad) that need to be scanned.

Compressing four 8-bit counters per lane decreases work via bit-level parallelism (BLP), by

allowing the code to scan four rows of 8-bit counters at once by scanning 32-bit lane values

instead. Scanning each row of lane values also results in sixteen warp-sums (one per counter

9 Given 4 rows, each thread in the warp can now potentially collide with 3 other threads on each shared

memory access. Assuming a uniform random distribution of digits into counters, the chances of [1,2,3,4]-

way collision for each thread are then [27/64, 27/64, 9/64, 1/64], respectively. Across all 32 threads in a

warp, the chances of [1-4]-way conflicts become [1.01×10-12, 0.22%, 60.29%, 39.59%] respectively, which

leads to an average bank conflict of 3.39.

287

row), which are stored in the S3 block array as eight lanes per warp (2 16–bit sums per 32-bit lane

value). These S3 warp-sums will finish being hierarchically scanned in Step 5 (ScanBlocks).

The memory layout for Step 4 is the same as in Step 3 (4 lanes × {32|33} columns).

However, the pointer used to scan the data uses a row orientation instead of a column orientation

(as in Step 3). The actual ScanWarps method uses a hierarchical set of scans on short runs and

follows the scan-then-san parallel scan pattern (as described in Section 6.4.2). Individual runs are

kept in registers to decrease shared memory accesses and to enable the Sklansky serial scan (as

described in section 6.6.2). The method proceeds in three sub-steps, as shown in Figure 9.13: 1)

S1:SS‹4›, 2) S2:SS‹8›, 3) S1:SU‹4›.

Figure 9.13 – ScanWarps: The ScanWarps method hierarchically scans warp-counts into warp-starts in 3 steps.

In step 4.1 (S1:SS‹4›), each thread loads and scans a sequential run of 4 warp-counts. The resulting S1 run-sums are

stored in the S2 array. In step 4.2 (S2:SS‹8›), each active thread [0,8,16,24] loads and scans a sequential run of 8 S1

run-sums. The resulting upscaled 16-bit S2 run-sums are stored in the S3 array. The exclusive S2 scan results are

stored in the S2 array. In step 4.3 (S1:SU‹4›), each thread accumulates an S2 prefix into its S1 run. The exclusive

S1 scan results are stored in the S1 array to generate the final warp-starts.

Sub-step 4.1 (S1:SS‹4›): Each thread in the warp loads a short sequential run of four counters

(lane values) from the S1 array and then inclusively scans the run (in registers) using Sklansky’s

Lane 1

Lane 4
...

tid [0-7]

tid [25-31]
...

Counts

Starts

tid [0,8,16,24]

+ + + + + + + +

S1:SS‹4›

Output: Start Histograms

Exclusive scan results

Input: Count Histograms

4 lanes 32 columns

S1:SU‹4›

S2:SS‹8›

4 8-bit counts

per 32-bit lane

0 31

310

288

serial scan (see section 6.6.2). The resulting run-sum (Sum[1-4]) is stored back into the S1 array

(which is also the S2 array) for further hierarchical scanning in sub-step 4.2.

Note: Since the entire “S1 run” is currently stored in registers, it is safe to reuse S1’s memory for

scanning the S2 array. Reusing memory saves space.

Sub-step 4.2 (S2:SS‹8›): Four active threads [0,8,16,24] in the current thread warp each load a

sequential run of eight S1 run-sums from the S1 array and then they inclusively scan the run (in

registers) using Sklansky’s serial scan (see section 6.6.2). The resulting S2 run-sums are then

upscaled and stored into the S3 array. Upscaling converts four 8-bit counters (stored in one 32-

bit lane) into four 16-bit counters (stored in two 32-bit lanes) to avoid 8-bit overflow. The

exclusive S2 scan results are then stored back into the S1 array to be used as prefixes in sub-step

4.3. Recall that an inclusive scanned run can be converted into an exclusive scanned run by

reaching back one column and pre-pending the identity (𝕀). The identity is zero (∅) for addition.

Given an inclusive scanned run represented as [s1, s2, … , s8], the exclusive scanned run should

be stored as [∅, s1, … , s7].

Sub-step 4.3 (S2:SS‹8›): Each thread in the warp loads the correct S2 prefix from Sub-step 4.2

and accumulates that prefix into its current inclusive S1 run (stored in registers). The exclusive

S1 scan results are then stored back into the S1 array as thread-starts for reuse in Step 6.2. Figure

9.13 shows the pseudo-code for all three steps (4.1-4.3).

289

Step 4.1: S1:SS‹4›
All threads

...

Load S1 run
S1_1 = S1[0]
S1_2 = S1[1]
S1_3 = S1[2]
S1_4 = S1[3]

Scan S1 run Inc.
 // Stage 1
S1_2 = S1_1+S1_2
S1_4 = S1_3+S1_4

 // Stage 2
S1_3 = S1_2+S1_3
S1_4 = S1_2+S1_4

Store S1 run sum
S1[3] = S1_4

...

Step 4.2: S2:SS‹8›
4 active threads

bActive = (0==tid%8)
if (bActive)

 Load S2 run
 //S1_4 = S1[3]
 S2_2 = S1[7]
 S2_3 = S1[11]
 ...
 S2_8 = S1[31]

 Scan S2 run Inc.
 // Stage 1
 S2_2 = S1_4+S2_2
 S2_4 = S2_3+S2_4
 S2_6 = S2_5+S2_6
 S2_8 = S2_7+S2_8

 // Stage 2
 S2_3 = S2_2+S2_3
 S2_4 = S2_2+S2_4
 S2_7 = S2_6+S2_7
 S2_8 = S2_6+S2_8

Step 4.2: Cont…
 // Stage 3
 S2_5 = S2_4+S2_5
 S2_6 = S2_4+S2_6
 S2_7 = S2_4+S2_7
 S2_8 = S2_4+S2_8

 Upscale
 S8_12=… // 8[1-2]
 S8_34=… // 8[3-4]

 Store S2 run sums
 S3[…] = S8_12
 S3[…] = S8_34

 Store S2 Exclusive
 S1[3] = 0
 S1[7] = S1_4
 S1[11] = S2_2
 ...
 S1[27] = S2_6
 S1[31] = S2_7
end (bActive)

Step 4.3: S1:SU‹4›
All threads

Load S2 prefix
pre = S1[3]

Update S1 run
S1_1 = pre+S1_1
S1_2 = pre+S1_2
S1_3 = pre+S1_3

Store S1 Exclusive
S1[0] = 0
S1[1] = S1_1
S1[2] = S1_2
S1[3] = S1_3

Figure 9.13: ScanWarp code: Step 4.1 (S1 scan) inclusively scans a run of 4 counters. Step 4.2 (S2 scan)

inclusively scans a run of 8 S1 run-sums then stores the exclusive scan results. Step 4.3 (S1 update) adds the
matching S2 prefix into each inclusive S1 run (from step 4.1) and then stores the exclusive scan results.

Performance Analysis: My ScanWarps code scans four data warps of warp-counts into four

data warps of warp-starts using a single thread warp (32 threads). This code also generates as

output the warp-sums required for Step 5.0 (ScanBlocks) to generate block-starts. The code

was carefully written10 to take advantage of ILP via software pipelining for increased

performance.

The code was also purposefully written to overlap the S1 and S2 arrays in memory. This

overlap was enabled by storing both the S1 and S2 runs in registers. My 32-element hierarchical

scan provides five advantages:

 It enables reordering the load and scan operations to increase performance via ILP.

 It enables Sklansky’s serial scan (in registers) for scanning both the S1 and S2 runs.

 It overlaps the S1 and S2 arrays in memory saving space (The S2 array size would

otherwise require space equal to ¼ the size of the S1 array).

 It saves one register pointer (by reusing the S1 array pointer instead of creating an S2

pointer) and also saves the cost in instructions to setup the S2 pointer.

10 I tried many different ways to scan four data warps using a single thread warp. This hierarchical method

(S1:SS‹4›, SS‹8›, S3:SU‹4›) was the fastest (taking about 315 machine cycles). Compare this with an

interleaved WarpScan (in shared memory) (WS‹32›) over four data warps (taking about 503 machine

cycles). A modified interleaved WarpScan (in registers, .PTX shuffle) (WS‹32›) should be even faster

(taking about 280 machine cycles) but only works on the GTX Titan or newer GPU architectures.

290

 It turns out by construction that the final S1 run-sum (S1_4) and the first entry in the S2

run (S2_1) are one and the same value. This insight saves one load instruction and one

register in the final code.

My scan also has five disadvantages:

 A branch test, bActive = ((0==(tid%8)), is required to determine the four threads that are

active during Sub-step 4.2 (S2:SS‹8›). The CUDA compiler generates three PTX

instructions with RAW dependencies between each other, slowing ILP performance.

 Loading the S1 and S2 runs sequentially can result in four-way bank conflicts on (25 out

of 27) shared memory accesses for a loss of at least 100 machine cycles to bank

conflicts. Bank conflicts can be mitigated by using the “Pad & Rake” technique by

turning on the (S1_pad=1) template parameter. Unfortunately, as already explained,

avoiding bank conflicts in step 4.0 causes unavoidable bank conflicts in step 3.0.

 Storing both the S1 and S2 runs in registers increases register pressure. At least thirteen

registers are required: two for the 64-bit S1 run pointer, four for the S1 run, seven (=8-1)

for the S2 run, and two for upscaling from 8-bit to 16-bit.

 The CUDA LLVM compiler de-optimizes my scan code by reordering the loads and

adding and using more registers than actually required. The only work-around I have

found so far is to carefully rewrite the code in .PTX assembly. Unfortunately, this makes

the resulting code much less general.

 There is a potential overflow issue on the final summation in the S2 scan (in Sub-step

4.2). How I deal with this is discussed next.

Overflow Issue: Recall that to save space and scan work, my code compressed sixteen 8-bit

counters into four 32-bit lane counters. This means that overflow is now a distinct possibility.

Although unlikely, if nWork =8, then all eight digits for all 32 threads could get binned into the

same counter, with a maximum count of 256 (=8∙32). This maximum count would overflow an

8-bit counter. However, if nWork = [1-7] then overflow cannot happen (7*32 < 255).

However, in step 5.0 (ScanBlocks), overflow becomes very likely. Consequently, the

code handles overflow by upscaling four 8-bit counters stored in one 32-bit lane counter into four

16-bit counters stored as two 32-bit lane counters. The upscaled pair of lane values (four 16-bit

counters) are stored in the S3 array. If overflow is not a possibility (nWork = [1-7]), then the

code adds first and then upscales second before storing the final results. If overflow is a

possibility (nWork = 8), then the code upscales the 8-bit counters into 16-bit counters first and

291

then perform sthe final add before storing the final results in the S3 array. The two different

approaches to handle overflow by upscaling are shown in Figure 9.14.

Figure 9.14 - Handle overflow by upscaling: In the top graphic, overflow is not possible, so the code

adds first, upscales second, and then stores the final 16-bit counters. In the bottom graphic, overflow is

possible, so the code upscales first, then adds second, and then stores the final 16-bit counters.

STEP 5) ScanBlocks method:

The ScanBlocks method exclusively scans warp-sums into block-starts using eight

active threads. Recall that there are ‹nWarps=[1-8]› thread warps as specified by the kernel

template parameter. During Step 4.0, ScanWarps scans the thread counts into thread starts and

stores a complete histogram of sixteen upscaled warp-sums in the S3 array, where each warp-sum

is the sum of all thread counts along each row of 32 threads. For better performance, the code

scanned using stored four 8-bit counters per 32-bit lane. To avoid potential overflow, the code

upscaled from four 8-bit counters to four 16-bit counters just before storing the sums into the S3

array. Thus, the sixteen warp-sums are stored as eight rows of lane values with two 16-bit

counters per 32-bit lane value. Each individual thread warp generates its own per-warp count

histogram stored as a column of eight lane values. As a result, the size of the resulting S3 array is

Store
16-bit lanes

0
128
0
0

[0]
[1]
[2]
[3]

Sum[1-4] +

+

Sum[5-7]

=

= Sum[1-7]

0
96
0
0

0
224
0
0

Sum[1-4]

+

+

Sum[5-8]

=

Sum[1-8]

0
0

128
0

[0]
[1]

[2]
[3]

0
0

128
0

0
0

256
0

+

=

0
224

0
0

8
-
b
i
t

Add then Upscale

0
0
128
0

Upscale

Upscale
then Add

0
0
128
0

[0]
[1]
[2]
[3]8

-
b
i
t

1
6
-
b
i
t

Upscale

Store
16-bit lanes

292

8*nWarps([1-8]). This S3 array will be scanned into a final per-block count histogram of sixteen

block-sums, which will be stored in the S4 array.

The S4 array layout (as shown in Figure 9.16) has a fixed array size with four different

sub-arrays that are used for different purposes:

 Row-starts: The row-starts sub-array contains sixteen row-starts, which track the

current start of each globally sorted array within the output.

 Block-starts: The block-starts array tracks the start of each locally sorted run within

the current data block. This array includes an extra hard-coded “zero” value that is used

for grabbing exclusive results by reaching back one column. Consequently, this array

contains seventeen values (one zero + sixteen inclusively scanned block-starts).

 Block-start-pairs: The block-start-pairs array is used to scan the final block-sums into

final block-starts. The 16 block-sums are compressed into 8 lane counters (2 16-bit

counters per lane). The first four elements of this array are hard-coded to zero to

eliminate branching during parallel WarpScan (See Section 6.6.3). Consequently, this

array contains 12 values (4 zeros + 8 compressed lane counters).

 Block-sum-pairs: The block-sum-pairs array contains eight elements, representing the

compressed final block-sums for the entire data block. This array is used in step 12.0 to

update the row-starts to skip past the just sorted current data block.

An additional unused three pad elements are added to the end of the S4 array. Consequently,

the final array size is 56 elements, which is a multiple of eight. The memory layout for the S3

and S4 arrays are shown in Figure 9.15.

293

Figure 9.15 - ScanBlocks Memory Layout. The S4 array contains 16 row-starts, 17 block-starts (+1 pad column

for exclusive results), 12 compressed block-start-pairs (+4 pad columns for parallel WarpScan) and 8 compressed

block-sum-pairs. Finally, 3 unused pad columns are used to align the S4 array to an 8-element boundary, resulting

in 56 (32-bit) elements in total. The S3 array contains 16 warp-sums per thread warp, stored as 8 rows of

compressed lane values (2 16-bit counters per lane) with one column of warp-sums/block-starts per thread warp

(nWarps = [1-8]). The S3 array is thus already aligned to an 8-element boundary with a minimum and maximum

size of 8 (8*1) and 64 (8*8) elements, respectively.

Because the overall scan is hierarchical, the warp-starts generated in the ScanWarps method

are missing the correct prefixes for the thread-warps (and their counters). These missing prefixes

represent the total sum of all counters, which would normally precede the current warp-starts (as

in a serial sequential scan). The ScanBlocks method provides these missing prefixes by

scanning the warp-sums into block-starts. The actual ScanWarps method, as shown in Figure

9.16, proceeds in three main sub-steps: S3:SS‹nWarps›, S4:WS‹8›, and S3:SU‹8›.

1616 1 4 8 8

Row Starts
32-bit

Block Starts
32-bit

Block Starts
16-bit pairs

3

Align

Pad

Kogge
Stone

Exclusive
Results

Block Sums
16-bit pairs

Total Size
= 56

Pad Pad
S4

Layout

S3
Layout

0 1 … 7

nWarps [1-8]

0 1 … 7

0 1 … 7

…

Lane 1

Lane 2

Lane 8

…

Total Size = nWarps*8
Min = 8

Max = 64

16 S3
Counts/Starts

in
8 Lanes

(2 16-bit values)

294

Figure 9.16: The ScanBlocks method scans warp-sums into warp-starts in three steps. In step 5.1

(S3:SS‹nWarps›), 8 active threads ([0-7]), each loads and scans a short sequential run of ‹nWarps=[1-8]› warp-

sums. The resulting S3 run-sums are stored into both the S4 Block-Sum-Pairs and Block-Start-Pairs arrays. In step

5.2 (S4:WS‹8›), 8 active threads ([0-7]) cooperatively WarpScan the 16 block-sums into 16 block-starts. The

resulting inclusive pairs are decompressed and stored in the S4 block-starts array and then reloaded and

recompressed as an exclusive scanned run. In step 5.3 (S3:SU‹nWarps›), each thread adds an S4 prefix into its S3

run. The exclusive S3 scan results are stored in the S3 array to generate the final warp-starts.

Sub-step 5.1 (S3:SS‹nWarps›): Eight active threads [0-7] in the first warp each loads a short

sequential run of ‹nWarps=[1-8]› warp-sums (lane values) from the S3 array and then inclusively

scans the run in registers. The resulting block-sum (Sum[1-nWarps]) is stored into both the S4

block-sum-pairs array (for use in Step 12.0) and the S4 block-start-pairs array (to be scanned in

sub-step 5.2).

Sub-step 5.2 (S4:WS‹8›): Eight active threads [0-7] in the first warp cooperate to WarpScan the

elements stored in the S4 block-start-pairs array from block sums into block starts. The parallel

WarpScan method generates an inclusive run of block-starts, but exclusive results are needed in

Step 5.3. To unpack/repack the compressed pairs properly, the code uses a 5-step solution:

Step 1) It decompresses the eight scanned lane values into sixteen block starts.

Step 2) It stores the sixteen block starts in the S4 block-starts array.

Step 3) It has each thread load an exclusive pair of two block-starts by reaching back one

column in the S4 block-starts array.

Input: warp-sums

8 lanes nWarps cols

Output:
warp-starts

nWarps [1-8]

T0

T7

+
+

+
+
+
+
+
+

T1

...

S4:SS‹nWarps› S4:SU‹nWarps›

S4:WS‹16›

WarpScan

2 16-bit counts

per 32-bit lane

...

295

Step 4) It compresses the sixteen exclusive pairs into eight lane values.

Step 5) It stores the compressed lane values back into the S4 block-start-pairs array for

use as prefixes in Sub-step 5.3.

Sub-step 5.3 (S3:SU‹8›): Eight active threads [0-7] in the first warp each load the correct prefix

from sub-step 5.3 (in the S4 block-start-pairs array) and adds that prefix into its current S3 run

(stored in registers). The exclusive S3 scan results are then stored back into the S3 array for use

as warp-start prefixes in Sub-step 6.3.

Issues: There are two main problems with this step: Barrier synchronization and Idle threads

Barrier Issue: All warp-sums for each thread warp must be generated before this step

can safely scan those warp-sums into block-starts. One easy solution is to insert a barrier

(syncthreads) before and after this step. These barriers are necessary11 for correct

parallel behavior between multiple warps within a thread block.

Idle Threads Issue: Only eight threads are active in the first warp during the entire

execution of the ScanBlocks method. This means the other 24 threads in the first

thread warp do no useful work during this time and the other [2-8] thread warps are

inactive until all thread warps reach the second barrier.

STEP 6) AccumulateLocalStarts method:

The AccumulateLocalStarts method generates the local starts needed to correctly sort

each key (and value). These local starts allow each thread to safely store all its assigned keys into

a local keys array (in shared memory) without colliding with other parallel threads concurrently

storing data. Recall that the local starts are built by accumulating: warp-starts, thread-starts, and

key-starts, as depicted in Figure 9.17.

11 Note: a thread block containing only a single warp does not need barriers for correct parallel behavior, as

all threads within a thread warp move in lock-step through the code.

296

Figure 9.17: Local Start = Warp-Start + Thread-Start + Key-Start. The original start for each key was split and generated

hierarchically in Steps 3, 4, and 5. The local start is the accumulation of the other 3 starts. Key-starts (Lower-Left panel) are

extracted from a compressed “regStarts” register using shift & mask operations. Thread-starts (Upper-Right panel) are extracted

from the S1 array using the thread id and digit to identify the row ([0-3]) and column ([0-31]), respectively. Warp-Starts (Upper-

left panel) are extracted from the S3 array using the thread id and digit to identify the row [0-7] and column [0-nWarps-1]. One

example (Lower-Right panel) of how one run (digit = 9) is divide into warp-starts, thread-starts, and the final start is shown. The

example assumes 4 thread warps per block, threadId = 72, and the 7th key in a run of 8 keys.

 Warp-starts: The warp-starts (Figure 9.17, upper-left panel, stored in the S3 array

and built in Step 5.3) provide the missing prefix sums from preceding warps within

the same thread block.

665

Lane
(D/8)

warpRow
(tid/32)

Extract
Digit
(D%2)

2 16-bit starts
per 32-bit lane

S3 Warp
Starts warpCol

(tid%32)

Lane
(D/4)

8
Extract
Digit
(D%4)

4 8-bit starts
per 32-bit lane

S1 Thread
Starts

0 1
Mask

1

2 7
0 1

Shift

7th Key start

Key Starts

regStarts

Block start (630)
Warp 0 start (630)

Warp 1 start
(653)

Warp 2 start
(665)

Warp 3 start
(686)

Local Keys array
Digit=9 run [630-702]

T72 Start
(673)

Final Start
for 7th Key

(674)

297

 Thread-starts: The thread-starts (Figure 9.17, upper-right panel, stored in the S1

array and built in Step 4.3) provide the missing prefix sums from preceding threads

within the same warp.

 Key-starts: The key-starts (Figure 9.17, lower-left panel, stored in the compressed

regStarts register and built in Step 3) provide the correct prefix-sums for the

‹nWork=[1-8]› sequential keys assigned to each thread (in case 2 or more keys share

the same digit value).

The local start for each key is the sum of the corresponding warp-start, thread-start, and key-

start for the unique ‹warp [0-7], thread [0-31], key [0-7]› triplet.

In the lower-right panel of Figure 9.18, I show how a local start is built for a specific triplet

for a specific data block, with ‹warp, thread, key› = ‹2,8,7›. Note that the actual key has a chosen

digit value of 9 in this example. The local data block stores 1,024 keys. The block-start shows

the starting offset (630) of the entire 9th digit value’s run. The warp-start (+665) shows the

starting offset (665) for the 2nd warps sub-run within the 9th digit run. The thread-start (+8) shows

the starting offset (673 = 665+8) for the threads sub-run within the warps run. This run belongs to

the 72nd thread in the thread block (which is also the 8th thread within the 2nd warp). Finally, since

the 72nd thread had two keys that collided on the 9th digit value, the key-start (+1) shifts the 7th

key by one to account for that prior key in the same work run, resulting in the final local-start

value of 674 (= 665+8+1).

This method proceeds in three main sub-steps: Extract Key-starts, Accumulate Thread-Starts,

Accumulate Warp-Starts:

Sub-step 6.1) Extract Key-Starts: Each thread extracts ‹nWork=[1-8]› key-starts from the

compressed “regStarts” register, which was created in Step 3.0. This is done using simple bit-

logic “shift & mask.”

Sub-step 6.2) Accumulate Thread-Starts: For each of i= [1-8] keys assigned to the thread, the

thread extracts the correct thread-start from the S1 array. The ith thread-start is then accumulated

into the ith key-start. Since the thread-start is a prefix of the key-start, the addition is done as

keyStart = threadStart + keyStart. The memory layout is shown in Figure 9.18 (upper-right

298

panel), with four compressed lanes in four rows and 32 columns (one per thread in the warp).

Each 32-bit lane value contains four 8-bit thread starts. So, additional work (shift & mask) must

be done to extract the correct 8-bit start from each lane. This method basically works in six steps:

Step 1) It extracts the ith 4-bit digit from the compressed regDigits register.

Step 2) It computes the lane offset of the correct lane value in the S1 array (warpCol =

tid%32; laneRow = digit/4; laneOff = (laneRow*S1_rowSize)+warpCol). Note: S1_rowSize

is either {32|33} depending on whether the “Pad and Rake” technique is turned on using the

S1_pad template parameter.

Step 3) It computes the shift and mask values (for [0-3] = digit%4) required to extract the

correct 8-bit start from the 32-bit lane value.Step 4) Load the lane value from the S1 array

(using the lane offset from step 2).

Step 5) It cxtracts the thread-start from the lane value (using the shift and mask from step 3).

Step 6) It accumulates the thread-start into the key-start (keyStart = threadstart + keyStart).

The instructions for extracting S1 thread-starts are grouped and reordered using software

pipelining in batches of [2-4] starts at a time to increase ILP. As already discussed in Step 3.0,

this sub-step can cause bank conflicts when using the “Pad & Rake” technique, which can result

in an unpredictable number of bank conflicts, typically costing ~3.4 extra machine cycles per

shared memory access.

Sub-step 6.3) Accumulate Warp-Starts: For each of the i = [1-8] keys assigned to the thread,

the thread extracts the correct warp-start from the S3 array. The S3 memory layout is shown in

figure 9.18 (upper-left panel), with eight compressed lanes in eight rows and ‹nWarp=[1-8]›

columns (one per warp in the thread-block). Each 32-bit lane value contains two 16-bit thread

starts. So, additional work (shift & mask) must be done to extract the correct 16-bit start from

each lane. This method basically follows the same six main steps as sub-step 6.2 with some

minor differences to account for the different memory layout. There is a minor issue with bank

conflicts in this sub-step; however, because of the small size of the S3 array ([8-64] elements),

there will be at most 2-way bank conflicts on each access.

299

STEP 7) ShuffleKeys (Local Sort) method:

 The ShuffleKeys method distributes keys from the current data block into sorted runs

into a local array kept in shared memory. The implementation of this method is straightforward.

The [1-8] original keys from Step 1.0 (LoadKeys) are stored directly into the local array at the

positions indicated by the corresponding [1-8] local starts from Step 6. Since there are sixteen

possible values for each digit [0-15] extracted from each key, the sorted keys (or values) ends up

sorted into sixteen contiguous runs. The relative order of input keys (within the current data

block) with the same digit value [0-15] is preserved in the final order of each sorted digit run.

Thus, this local sort is stable. This stability is a direct result of the code carefully preserving

sequential sequences during loads and scans.

There are two main issues associated with sorting keys (and values): bank conflicts and

efficient use of coalescence.

Bank Conflict Issue: Shuffling keys into shared memory is unpredictable as it is unknown

ahead of time which keys will end up in which memory banks. As a result, there will be an

unpredictable number of bank conflicts within each data warp being sorted. This is a classic

“balls into bins” problem: assume a uniform random distribution of keys across memory banks.,

The problem is to find the expected maximum keys per bank (or in other words the maximum

height of any bin). My own simulations on 100 thousand runs (32 balls into 32 bins) show the

average bin height (expected number of bank conflicts) is about four (4-way bank conflicts on

average), which would cost an extra three machine cycles per memory access on average. All the

workaround solutions I have tried require many instructions and therefore decrease performance

further. Therefore, in this case the best solution is to just live with the resulting bank conflicts.

Coalesced Memory Efficiency Issue: This local sort is clearly optional, so why do it? There is

enough information to build global starts to distribute keys into sorted runs immediately available

after step 6.0. So, why not just output each key to its final sorted position in the output array?

The answer (as demonstrated by Dr. Ha’s shuffle and map technique) is coherence. Coherence

300

impacts output performance. As Figure 9.18 illustrates, unsorted keys have low coherence and

require many uncoalesced stores to write into multiple output runs; sorted keys have high

coherence and require fewer coalesced stores to write into the same runs.

Figure 9:18 - ShuffleKeys (Local Sort): 1024 keys (32 rows × 32 columns) represented by their digit values [0-

15] as 16 different colors. The left grid represents 1024 unsorted input keys assuming a uniform random

distribution. The right grid shows the same keys locally sorted into 16 digit runs. Sorting the left grid (unsorted)

directly into global memory requires 441 stores total (512 maximum in the worst case). However, the right grid

(locally sorted) requires at most 47 stores (32 warps + 15 transitions) to sort into global memory.

To help measure how coherence impacts coalescence, I created a metric called Coalesced

I/O efficiency, which is a percentage measure of the ratio of the average data elements transferred

versus the maximum possible elements transferred (32) given a coherent run of data containing n

elements. “Coherent” in this case means that all the data within this run is being written to the

same output array. One easy way to achieve 100% coalesced I/O efficiency is to warp-align data

transfers and to access data sequentially within a thread warp (meaning that the kth thread within a

warp accesses the kth data offset within the data warp, k ∈ [0-31]). This is exactly how Step 1.0

loads keys from global memory into registers.

1024 Unsorted Keys 1024 Sorted Keys
0 0

Requires only 47 Stores to sort
into Global Memory

But costs a “Local Sort”

Requires 441 Stores to sort
into Global Memory

But no “Local Sort” required

Local Sort
Increases
Coherence

301

If the initial data start is not warp-aligned but is random or unpredictable, then the length

of the data run helps determine the coalesced I/O efficiency. Typically, longer sequences of

elements have larger aggregate increases in I/O throughput. Coalesced I/O efficiency ranges

from a minimum of 3.125% (only one data element transferred per I/O operation) up to a

maximum of 100.0% (32 data elements transferred per I/O operation). I/O sequences that are

short or unaligned can only partially take advantage of coalescence. On the other hand, I/O

sequences that are long and warp-aligned can fully take advantage of coalescence.

The following table (shown in Table 9.8) shows what happens to coalesced I/O efficiency

as the data block size (DBS), alternately known as keys per block, is increased from 32 to 2048 in

powers of two.

DBS 32 64 128 256 512 1024 2048 ∞

Avg. Run Length 2 4 8 16 32 64 128 n/a

Max. Stores 16 17 19 23 31 47 79 n/a

Avg. Keys per Store 2.00 3.76 6.74 11.13 16.52 21.79 25.92 32

Coalesced I/O

Efficiency
6.25% 11.75% 21.00% 34.78 51.63% 68.09% 81.00% 100.00%

Table 9.8: Coalesced I/O efficiency as the DBS increases in size from 32 to 2048 in powers of two.

For this specific example of 4-bit radix sort, the maximum number of stores (Max.

Stores) can be computed from the DBS as (DBS/32)+15, since there is at least one store required

per data warp (32) and a maximum of 15 transitions (16 data runs – 1) across the entire sorted

data block. The Average Keys per Store is computed by dividing the DBS by the maximum

stores. Finally, the coalesced I/O efficiency is computed by dividing the Average Keys per Store

by the maximum coalesced transfer rate (32 keys per store). As can be seen from the table,

coalesced output becomes more efficient as the average run length increases, which in turn

depends on the DBS. Therefore, throughput performance can be improved by increasing the

work per thread and warps per block via the ‹nWork, nWarps› template parameters.

302

STEP 8) MapKeys (Global Sort) method:

The MapKeys method distributes keys into sorted runs in the output array in global

memory. This method’s implementation is straightforward and takes 4-5 sub-steps:

Sub-step 1) Each thread loads a short sequential run of ‹nWork=[1-8]› keys from the

sorted local array of keys in shared memory (from Step 7).

Sub-step 2) The chosen digits [0-7] are extracted from the keys using the same

transform, shift, and mask process as described in Step 2 (ExtractDigits).

Sub-step 3) A local index (LI[0-7]) is computed from the keys. The local index is

computed as LI[0-7] = (tid*nWork)+[0-7], where [0-7] is the current key [1-8]-1 being

processed.

Sub-step 4) For each key, a global index (GI) is computed. Optionally, a range check

may also need to be applied to each global index to avoid writing keys that are out of

bounds. When range checks are not required, sub-steps 3 and 4 are combined into a

single sub-step. The global index is computed as GI[0-7] = LI[0-7] –

blockStarts[digits[0-7]] + rowStarts[digits[0-7]]. The blockStarts array indicates the start

of each of the sixteen sorted runs in the local array. The rowStarts array indicates the

start of each of the sixteen sorted runs in the global array for the current thread block.

Sub-step 5) Each thread outputs its run of keys [1-8] to global memory at the specified

global index (GI[0-7]).

Within this method, instructions are software pipelined and reordered in batches of [2-4]

work-items at a time to increase ILP performance. After this method completes, the entire

current fixed-size data block of keys has been distributed to their unique sorted locations as

sixteen digit runs in global memory.

If the radix sort is sorting ‹key, value› pairs instead of ‹key› singletons, then optional steps

9.0-11.0 also need to be invoked to sort the fixed-size data block of values corresponding to the

just sorted block of keys. Otherwise, the algorithm can safely skip to Step 12.0.

 There is are two main issues: bank conflicts and range checks.

Bank Conflict Issue: I did not add code to “Pad & Rake” when loading the runs to mitigate

bank conflicts since this would needlessly complicate the computation of the correct local

index (as well as needlessly complicate storing the shuffled keys in Step 7.0). As a result,

runs of length nWork=[2,4,6,8] will experience [2-way, 4-way, 2-way, and 8-way] bank

303

conflicts respectively and will add [1, 3, 1, 7] extra cycles on each shared memory access

when loading the run. My current non-solution is just to live with any resulting bank

conflicts.

However, as discussed in section 6.7.2, for runs of length [2,4, or 8], CUDA’s low-level

SASS compiler can optimize a sequence of two or four aligned sequential 32-bit load

instructions into a single Vector2 (64-bit) or Vector4 (128-bit) load instruction. If this

optimization is applied, then the number of load instructions and bank conflicts are both

reduced by a factor of 2× or 4× since instructions that do not get executed do not cause bank

conflicts.

Range Checks Issue: Since this MapKeys step stores sorted keys to the output array, four

versions of this method are required to support the [‹FIRST?› ‹MIDDLE*› ‹LAST?›] range check

pattern as part of my Row DASk:

MapKeys_RC_BOTH does [start, stop] range checks, which is typically only needed for a

input range smaller than a single fixed-size data block (n ‹ DBS).

MapKeys_RC_START does [start, …) range checks, which is typically only needed if the

start offset is not warp aligned to a warp boundary [0, 32, 64, …].

MapKeys_RC_STOP does (…, stop] range checks which is only needed by the very last

partially covered data block in the data set.

MapKeys_RC_NONE does *NO* range checks, the vast majority of data blocks should

end up calling the ‘NONE’ version, which is another reason to use my Row DASk.

STEP 9) LoadValues method:

 The optional LoadValues method takes as input the inValues parameter and produces as

output a short run of ‹nWork=[1-8]› sequential values stored in registers. This method is the same

as the LoadKeys method from Step 1, except it works on values instead of keys.

STEP 10) ShuffleValues (Local Sort) method:

 The optional ShuffleValues method distributes values from the current data block into

sorted runs into a local array kept in shared memory. This method is almost the same as the

304

ShuffleKeys method from Step 7, except it works on values instead of keys and reuses the

local starts already computed in Step 6.

STEP 11) MapValues (Global Sort) method:

The optional MapValues method distributes values into sorted runs in the output array

kept in global memory. This method is almost the same as the MapKeys method from Step 8,

except it works on values instead of keys, and it also reuses the global output offsets already

computed in Step 8.

STEP 12) UpdateRowStarts method:

The UpdateRowStarts method accumulates d = 16 current block-sums [0-15] into the

current row-starts [0-15] using sixteen active threads. After distributing all keys (and values)

within the current fixed-size data block into their respective sorted runs in global memory, this

method moves the current row-starts (global run positions) just past the distributed local data runs

to get ready for sorting the next data block along the current data row assigned to this thread

block.

9.4 Experiment Results

For my GPU Radix Sort, I focus in this section on experiments exploring the trade-offs

for ILP and TLP to find the best performance results. All tests were performed on a GTX 580

(Fermi) and a GTX Titan (Kepler) using the host environment in Table 9.9.

CPU Hardware: CPU = i7-4770K@3.50 GHz, RAM=12 GB

GPU Hardware:

GTX 580 (16 SMs, 512 SPs, 1.5 GB RAM, 192.4 GB/s peak throughput)

GTX Titan (14 SMXs, 2,688 SPs, 6.0 GB RAM, 288.4 GB/s peak throughput)

Software: GPU API = CUDA 5.5, C++, IDE = VS 2010, OS = Windows 7, SP1, Pointers = 64-bit

Data: Input size, n = [210 – 227], in increasing powers of two

Table 9.9: Radix Sort Experiment Environment

305

For these experiments, I measured performance using data throughput across the entire

GPU radix sort. In other words, how many ‹key, value› pairs can my algorithm sort per second.

Data throughput was measured in mega-pairs per second (Mpairs/s) by counting the number of

pairs to be sorted (n, in millions) and dividing by the average run time for the entire radix sort to

complete in seconds. My experiments found the best data throughput by varying the TLP and

ILP parameters (similar to Section 6.8.1).

9.4.1 Data Throughput

To find the optimal data throughput, I varied both TLP and ILP using two template

parameters, ‹nWarps›, ‹nWork›, respectively. For example, my baseline pair ‹nWarps=1,

nWork=1› uses a single thread warp per thread block and sorts a single ‹key, value› pair per

thread. I measured data throughput for increasing n (as powers of two) for both nWarps and

nWork in the range {1..8} resulting in 64 (=8*8) possibilities. Tables 9.10 And 9.11 show the

maximum data throughput for all 64 cases for the GTX 580 and the GTX Titan, respectively.

GTX

580

nWork = [1-8]

1 2 3 4 5 6 7 8

n
W

a
rp

s
=

 [
1

-8
]

1 119.07 249.06 274.72 371.26 401.65 407.98 475.46 452.24

2 207.95 419.51 451.64 596.04 597.75 648.21 661.97 717.63

3 260.80 499.40 475.27 638.06 618.00 597.88 615.29 675.42

4 253.20 489.02 499.11 564.30 574.42 618.15 639.34 666.62

5 164.75 475.98 450.68 526.99 513.80 547.83 566.93 623.60

6 237.06 427.36 430.48 569.12 545.91 489.82 507.17 560.36

7 217.85 440.49 372.64 494.13 478.96 516.81 527.33 585.38

8 186.05 373.60 388.09 509.72 488.57 521.47 539.36 588.19

Table 9.10: Maximum Data throughput on the GTX 580 for each of 64 experiments. Data

throughput is measured in millions of pairs per second (Mpairs/sec).

306

GTX

Titan

nWork = [1-8]

1 2 3 4 5 6 7 8

n
W

a
rp

s
=

 [
1

-8
]

1 186.28 318.43 357.07 444.94 427.02 452.97 475.46 489.76

2 311.28 521.35 599.50 690.68 672.38 707.42 727.32 742.07

3 361.29 435.26 468.89 774.77 742.07 768.04 774.61 799.95

4 378.04 452.31 690.67 795.61 763.38 811.04 816.93 835.34

5 375.99 451.45 468.74 750.61 735.52 738.38 749.25 766.26

6 367.21 432.03 480.62 776.51 732.82 730.98 743.97 767.88

7 361.19 413.66 622.15 727.36 707.05 710.47 712.71 744.02

8 357.29 587.34 595.09 702.68 796.31 755.37 763.20 795.74

Table 9.11: Maximum Data throughput on the GTX Titan for each of 64 experiments. Data

throughput is measured in millions of pairs per second (Mpairs/sec).

For both tables, each of the 64 ‹nWork, nWarps› pairs represents the maximum data

throughput observed from a set of performance measurements that varies the input size of n =

{28-227} in increasing powers of two. The first entry ‹1,1› represents baseline performance. The

first row captures ILP performance by varying nWork in the range {1-8} and leaving nWarps

fixed at {1}. The first column captures TLP performance by varying nWarps in the range {1-8}

and leaving nWork fixed at {1}. The rest of the pairs represent the combined performance effect

of both ILP and TLP in varying amounts.

Comparing the first columns and first rows, which capture TLP and ILP experiments, it is

clear that ILP has a bigger impact than TLP. This makes sense, since most of the actual work is

done in the GPU_DistributeKeys kernel and most of the work in that kernel occurs in locally

counting and scanning keys (to prepare for a shuffle and map on each data block). Recall that

scanning occurs hierarchically across four stages (S1:SS‹4›, S2:SS‹4›, S3:SS‹nWarps›, and

S4:WS‹8›). Only in the first stage (S1) are all threads in the thread block participating. In stage 2

(S2), only four threads per thread warp are active, and in the last two stages (S3 and S4) only

eight threads per thread block are active. So, the impact of TLP is lessened since only a few

threads are doing useful work in these inner stages, while the rest of the threads are idle. On the

307

other hand, ILP techniques can be applied across all twelve steps of the BlockDistribute

method.

Best Throughput Experiments: I ran experiments for all 64 combinations of

‹nWarps, nWork›, each in the range {1–8}, to find the best overall data throughputs for Radix

Sort were 717.63 for ‹2, 8› on the GTX 580 and 835.34 for ‹3, 8› on the GTX Titan. As discussed

in Chapter 6, predicting winners on the GPU is difficult because of various constraints on

occupancy caused by register and shared memory usage; based on my ILP and TLP test results, I

would have predicted ‹3, 7› and ‹4, 8›, respectively. Figure 9.19 plots the data throughput results

for four representative pairs for both the GTX 580 and GTX Titan.

GTX 580 Full RadixSort

Data Throughput (Mpairs/sec) vs. Input Size (n).

GTX Titan Full RadixSort

210 213 216 219 222 225 226
0

100

200

300

400

500

600

700

800

308

Figure 9.19: Full Radix Sort data throughput results (y-axis: millions of sorted pairs per second (Mpairs/s)) as a

function of input size (x-axis; log-scale) on the GTX 580 {Fermi architecture} (top panel) and GTX Titan {Kepler

architecture} (bottom panel) GPUs.

In both graphs, I chose the four pairs as the baseline: best ILP performance, best TLP

performance, and best overall performance.

9.4.2 Total Cycles

In this section, I gather Total Cycle (TC) results from the NVidia Compute Visual

Profiler (on CUDA 5.5) on the GTX Titan for n = 227 for both the GPU_CountKeys and the

GPU_DistributeKeys kernels. The results are summarized in Tables 9.12 and 9.13 below.

Type

Pair

Issued

II

Issued

IPC

T. Cycles

(II/IPC)

II/IPC

Ratios
Grid WI Eff.

(None)
WI Eff

(≥ 1)
Occupancy

Baseline‹1,1› 83M 0.59 140M 1.00 224 90.61% 9.39% 13/64

TLP‹4,1› 91M 1.80 51M 2.76 168 69.84% 30.16% 40/64

ILP‹1,8› 63M 0.55 114M 1.24 224 92.80% 7.20% 8/64

Best‹4,8› 65M 1.38 47M 2.98 112 76.86% 23.14% 32/64

Table 9.12: Total Cycles (TC) performance from instructions issued (II) and average instructions

retired per cycle (IPC) for the GPU_CountKeys kernel.

210 213 216 219 222 225 227
0

100

200

300

400

500

600

700

800

900

Baseline (Warps=1, Work=1)

Best TLP-Focused (Warps=4, Work=1)

Best ILP-Focused (Warps=1, Work=8)

Best Avoid BC (Warps=4, Work=8)

309

Type

Pair

Issued

II

Issued

IPC

T.

Cycles

(II/IPC)

II/IPC

Ratios

Thput

(KV

MP/s)

Coalesced

I/O

efficiency

Bank

Conflicts
Occupancy

Baseline‹1,1› 1,189M 0.76 1,565M 1.00 186.28 6.75% 104M 16/64

TLP‹4,1› 766M 1.62 473M 3.31 378.04 18.15% 25M 48/64

ILP‹1,8› 399M 1.34 298M 5.25 489.76 26.81% 29M 16/64

Best‹4,8› 396M 1.71 231M 6.77 835.34 41.49% 38M 32/64

Table 9.13: Total Cycles (TC) performance from instructions issued (II) and average instructions retired

per cycle (IPC) for the GPU_DistributeKeys kernel.

These two tables (9.12 and 9.13) measure the total cycles (TC) to complete a single

Counting Sort pass within my Radix Sort for both the GPU_CountKeys and

GPU_DistributeKeys kernels12. Recall that the total cycles can be computed from instructions

issued (II) and average instructions retired per cycle (IPC) as TC = II/IPC (as discussed in

Sections 3.1 and 6.8.2). Some notes about these tables are summarized below.

⦁ The instructions issued (II), total cycles (TC), and bank conflict columns are measured

in millions of instructions, cycles, or bank conflicts, respectively.

⦁ The throughput column is measured in millions of sorted ‹key,value› pairs per second

(MP/s). Note: These throughput results are for the entire radix sort (8 passes of counting

sort on all three kernels) and thus shouldn’t be compared directly to the total cycle

performance results for each individual kernel.

⦁ The II/IPC ratios column shows the relative speed-up of the other performance pairs

(TLP, ILP, and Best) versus the baseline pair.

⦁ The Grid column shows how many thread blocks are scheduled per kernel, this value is

the same for both kernels. NOTE: These values are deliberately divisible by 14, which is

the number of physical SMX cores on a GTX Titan.

⦁ The Warp Issue Efficiency columns (WI Eff.) shows how often there were no active

thread warps that could be scheduled onto the GPU SP cores (none) versus how often

there were one or more (≥ 1) active thread warps that could be scheduled. These columns

are not shown for the K3_DistributeKeys kernel to save space but the results are

similar.

⦁ The Occupancy columns show how many active warps were scheduled to run

concurrently vs. the maximum of 64 thread warps that could be scheduled on a GTX

Titan.

12 My K3_ScanRuns kernel was also profiled but the results are not included as this kernel takes a trivial

amount of time to complete compared to the other two kernels. The main interesting insight from the

profile results for this kernel is that it is inefficient at taking advantage of GPU parallelism.

310

⦁ The instructions retired per cycle (IPC) column has a maximum value of 5.0 on the

GTX Titan. This value is impacted by both ILP and TLP.

⦁ The bank conflicts column shows how many total bank conflicts are generated

accessing shared memory. Note: Bank conflicts is not shown for the GPU_CountKeys

kernel as they are measured in the hundreds not millions and do not significantly impact

performance.

There are six significant insights that I see in the total cycles data.

⦁ First, There appears to be a strong inverse correlation between total cycles and overall

throughput. When total cycles is low, throughput is high (and vice versa). The

comparison needs to be done carefully as throughput is aggregated across all 3 kernels.

⦁ Second, in the GPU_DistributeKeys kernel, a high number of instruction replays

caused by bank conflicts significantly increases total cycles and thus decreases

throughput performance. Despite this, the Best‹4, 8› row still manages to have the best

overall performance despite having 33% more bank conflicts than the ILP‹4, 1› row due

to increased TLP parallelism.

⦁ Third, the combination of both low instructions issued (II) and high instructions retired

per cycle (IPC) results in the overall throughput winners. For instance in the

GPU_DistributeKeys kernel, the TLP‹4, 1› row has great instructions retired per cycle

(IPC = 1.62), but it still performs poorly because it issues so many instructions (II = 766

million). On the other hand, the ILP‹1, 8› row has a small number of instructions issued

(II = 399 million), but it also performs poorly because it has the smaller instructions

retired per cycle (IPC = 1.34). The Best‹4, 8› row has the best overall performance

because it issues the fewest instructions (II= 396 million) and also retires the most

instructions per cycle (IPC = 1.71).

⦁ Fourth, Larger data blocks result in longer coherent runs on output which results in

increased Coalesced I/O efficiency, fewer replays, and thus higher throughput. The data

block size is not shown to save table space but for the four rows [baseline, TLP, ILP, and

Best] is [32, 128, 256, and 1024] respectively. In the baseline case, each sorted data warp

only successfully outputs about 6.75% of a data warp, which means about 14.8 stores are

required on average to store each sorted data warp. Whereas in the Best case, each sorted

successfully outputs about 41.50% of a data warp, which only requires about 2.4 stores

on average per sorted data warp.

⦁ Fifth, Both ILP and TLP help increase the number of active thread warps for the

scheduler (GPU Hardware or CUDA software) to choose between to keep the SP cores

busy doing useful work. However, even in the best case on the GPU_CountKeys kernel,

we are only keeping the cores busy about 25% of the time, meaning that 75% of the time

the scheduler must stall instead of issue a useful instruction to the SP cores. Similarly on

the GPU_DistributeKeys kernel the Warp Issue Efficiency (One or more) percentages are

311

is [16.12, 34.55, 24.97, and 32.46] respectively. So, even in the best case we are only

keeping the cores busy ~35% of the time. This means there is an opportunity for better

performance by rewriting code to do a better job avoiding stalls.

⦁ Sixth and finally, The GPU_DistributeKeys kernel easily takes the most time. For

example in the Best case, The GPU_CountKeys kernel costs about 47 million total

cycles, while the GPU_DistributeKeys kernel costs 231 million cycles. Thus to improve

overall Radix Sort performance, the primary focus should be on speeding up the

GPU_DistributeKeys kernel.

The formula for total cycles (TC = II/IPC) tells me that there are two ways to attempt to

improve performance by decreasing TC and thus improving throughput:

 Decrease instructions issued (II) by trying different algorithms or simplifying code

 Increase instructions retired, by increasing ILP via software pipelining and increasing

TLP via higher occupancy, to consume as many instructions per cycle (IPC) as

possible

To me, the main lesson is to keep parallel processing cores (SMs and SPs) and memory

controllers as busy as possible. TLP keeps the processing cores busy by providing lots of active

thread warps for the SM on-core scheduler to switch to when the currently executing warp stalls.

ILP keeps the processing cores busy by providing lots of independent instructions for the

scheduler to harvest to keep the instruction pipeline as full as possible. Fortunately, both

approaches are orthogonal. Therefore, both techniques (TLP and ILP) can be used to hide

pipeline and I/O stalls and keep the processing cores as busy as possible. The low percentages in

the warp efficiency column tells me there is still lots of headroom for further improvement on my

current performance results.

9.5 Conclusion

In summary, My Radix sort is a hybrid CPU/GPU sort. At the top level, the CPU iterates

over multiple counting-sort passes (one per 4-digit radix) in LSD order to execute a full radix

sort. Each counting-sort pass is implemented on the GPU using three kernels (GPU_CountKeys,

GPU_ScanRuns, and GPU_DistributeKeys), which mirrors the same pattern as my Scan

312

primitive (section 6.5). Both the GPU_CountKeys and GPU_DistributeKeys kernels are built

using my ROW DASk.

The key idea is to partition keys into hierarchically sorted runs (at the thread-block level,

at the thread-warp level, and at the individual thread level) with one sorted run per digit value.

This partitioning allows each block, warp, and thread in the hierarchy to safely distribute their

assigned ‹key, value› pairs into their final sorted positions without colliding with other blocks,

warps, and threads concurrently distributing at the same time.

With the GPU_CountKeys kernel, each thread block marches along its assigned data

row, data block by data block, counting all the keys along each row into a per-row count

histogram containing (d = 16) row-counts. With the GPU_ScanRuns kernel, a single thread

block scans all the row-counts into row-starts. This action not only partitions the output range

[start, stop] into sixteen sorted runs (one per digit value) but also sub-partitions each sorted run

into r smaller per-row runs (one per thread block). The resulting scanned row-starts allow each

thread block to safely distribute its assigned data into its own individual block-runs. Finally, with

the GPU_DistributeKeys kernel, each thread-block marches along its assigned data row, data

block by data block, distributing ‹key, value› pairs into sorted runs using the complex twelve-step

BlockDistribute method on each data block in turn. This BlockDistribute method counts

keys, hierarchically scans counts into starts, and then distributes keys (and values) into sorted

runs.

To make this all work, I had to deal with several issues that hindered performance:

coalescence, bank conflicts, grid size, register pressure, and shared memory pressure

 Coalescence: To respect coalescence for better global memory throughput, I needed

two different solutions: one for input and one for output. For input, I transferred data

between global memory and registers using the warp by warp access pattern. I then

converted data into a sequential access pattern using shared memory in two more

313

steps. For output, I shuffled (locally sorted) the data in shared memory first to

increase run coherence. This extra shuffle step reduced the number of store

operations required to distribute the local sorted runs into their final sorted positions.

However, the impact of this local sort, as measured by my “coalesced I/O efficiency”

metric, depends on the average local run length depends on the data block size (DBS)

and the number of digit values (d=24), with runLength = DBS/d. In general, I found

that the longer the coherent run being output, the more efficient coalescence is and

the fewer stores operations are required to distribute the run into global memory.

 Bank Conflicts: To avoid bank conflicts when accessing shared memory (which can

cause serialized replays), I tried using odd length runs, utilizing the “Pad & Rake”

technique on power of two length runs; aligning Vector4’s so that CUDA can

decrease bank conflicts by a factor of 2× or 4×; and, finally, just living with a low

number of serialized replays caused by bank conflicts.

 Grid Size: My Row DASk requires small grid sizes, which makes my solution

sensitive to picking a good work load (as described in section 6.7.3), which evenly

divides the thread blocks in the work load across the SM cores on each GPU card.

Picking a good work load requires that the programmer understands constraints on

occupancy and picks the initial grid size accordingly.

 Register Pressure: My current code multi-scans sixteen sets of counts into sixteen

sets of starts. I compressed four 8-bit counters per 32-bit lane to help decrease this

scan pressure somewhat. However, compressed data requires decompression to

access. Decompression increases the number of instructions and registers in other

ways. In addition, I used software pipelining in batches of [2,3,4 or 8] throughout my

code to increase ILP performance. Both multi-scan and ILP techniques increase

register pressure. My current code takes anywhere between 38 and 63 (+10) registers

as nWork varies between [1-8], where the (+10) refers to additional spill registers

314

(using global memory to store extra registers which negatively impacts performance).

This register pressure negatively impacts occupancy reducing the number of thread-

blocks that can run concurrently.

 Shared Memory Pressure: I have written many different versions of Radix Sort

seeking to improve performance. Almost all of my earlier solutions used 2-3× as

much shared memory as my current solution. This caused my shared memory usage

to constrain occupancy (more than register pressure). I made three main changes to

decrease shared memory usage. First, I transitioned from a block-share pattern to a

warp-share pattern. In the block-share pattern, I treated memory arrays as accessible

by every thread in the block all the time. In the warp-share pattern, I divided

memory into individual per-warp sub-buffers, where each warp can work on its

assigned memory sub-buffer independently. This allows memory use to grow

dynamically with the nWarps parameter as it varies between [1-8]. Second, I figured

out how to overlap the S1 and S2 scan arrays during my scan which reduced the total

size of my scan arrays by 25%. Third, and most importantly, I carefully reused the

same memory for different purposes at different times in my algorithms.

By increasing TLP, increasing ILP, using efficient I/O access patterns, mitigating bank

conflicts, and reducing memory space, I improved Radix Sort performance over my baseline

performance. The best performing throughput for my Radix Sort primitive was up to 6.1× and

4.4× faster than the baselines on the GTX 580 and GTX Titan, respectively.

315

9.6 Future Directions

 I estimate that the maximum peak rates13 of sorting 32-bit ‹key, values› pairs on the GTX

580 and GTX Titan are 1205 million and 1802 million pairs per second, respectively. My GPU

radix sort implementations achieved 59.5% and 46.3% of peak data throughput on the GTX 580

and GTX Titan, respectively.

These performance results are solid but fall well short of the maximum throughput rates

possible on these architectures. In other words, my Radix Sort method still has limitations that

decrease performance. My method has high register pressure, which constrains occupancy. It

performs many compression/decompression operations to save registers but which increases the

total number of instructions. Perhaps a different approach may lead to greater performance gains.

I have four ideas for future investigation: specializing code, rewriting code to take full advantage

of the Vector4 optimization, decreasing passes using a larger radix, and writing a specialized

WarpScan using the PTX Shuffle command.

Specialize Code: My current code was written in a generalized way to support experiments on

‹nWarps, nWork› pairs, both in the range [1-8]. My experiments show that that the best

performance for the GTX 580 and GTX Titan occurs on the pairs ‹2,8› and ‹4,8›, respectively.

Rewriting hard-coded specific versions of code for these specific pairs may allow various short-

cuts to be taken, which should result in lower register use and fewer instructions required,

unlocking more peak performance.

Shared Memory access using Vector4: My code could be optimized to use Vector4 access into

shared memory as much as possible. This replaces four sequential shared memory accesses

(loads/stores) with a single Vector4 (128-bits) instruction instead and therefore reduces memory

13 Given a peak I/O throughput of 192.4 and 288.4 GB/s for the GTX 580 and 288.4 respectively. A 32-bit

key (and value) each take up 4 bytes each. 32-bit keys also requires a total of 8 sorting passes (8=32/4) for

a 4-bit radix. Assuming 5 I/Os per pass to sort (1 read to count + 1 read/write per key to distribute + 1

read/write per value to distribute). Then I compute the maximum sorting rate for the GTX 580 as (192.4/(4

bytes * 8 passes * 5 I/Os per pass), which results in 1205 million pairs per second. A similar calculation

for the GTX Titan (288.4/(4*8*5) results in 1802 million pairs per second.

316

access instructions and bank conflicts by a factor of 4×, wherever this optimization is applied..

To leverage this optimization, shared memory accesses must be aligned to Vector4 boundaries

(128-bits). This optimization means that the “Pad and Rake” technique cannot be used to

mitigate bank conflicts. Note: Based on my own painful experiences with poor I/O throughput,

the Vector4 optimization should not be applied when accessing global memory.

Reduce the number of Counting Sort Passes: In order to sort 32-bit keys, my code currently

needs to sort in eight passes (=32/4). CPU Radix Sort code typically uses 8-bit radices in order to

fully sort data in only four passes (=32/8), greatly reducing the total number of I/Os required. (I

wrote two completely different versions of GPU Radix Sort that used 8-bit radices to sort.

Unfortunately, due to high pressure on registers and shared memory, both versions were

compute-bound, taking 24-32 complex steps to distribute and my best performance was around

500 million pairs per second).

Use PTX “Shuffle” Command: Recent GPU architectures (CC ≥ 3.5) like the GTX Titan (CC ≥

3.5) support the new “SHUFFLE (SHFL)” PTX command, which allows warp-scans across all

threads of a thread-warp. My ScanWarps step could be rewritten to scan four data warps at once

taking advantage of the SHUFFLE command for potentially better performance.

9.7 Lessons Learned

Future directions includes ideas about how to improve radix sort performance. However,

there are many practical lessons I learned from my experiments on radix sort using my Row

DASk. This section summarizes many of these lessons.

RadixSort Lessons:

 To support sequential processing

o Use my Row DASk to support sequential processing across thread blocks, which

is required by the “Distribute” step in Counting Sort.

o Group n keys into m fixed-size data blocks, m = ⌈𝑛/𝐷𝐵𝑆⌉

317

o Partition the m data blocks across r rows, where r is picked by the programmer

based on the expected work load, resulting in c columns, c = ⌈𝑚/𝑟⌉.

o Partition fixed-size data blocks into short sequential per-thread runs to support

sequential processing within thread blocks (across warps, across threads).

Note: Hierarchal operations within each “distributed” data block should avoid

reordering count, scan, and distribute operations within data blocks, and thread

runs as the commutative property cannot be safely assumed.

 To increase performance via ILP

o Work on multiple [2-8] work items per thread. This is similar to loop unrolling

on CPUs. Note: This approach increases register pressure, since k work-items

require k× as many registers.

o Use software pipelining to regroup and reorder instructions from multiple work

items. Note: Watch out for code that cannot be software pipelined safely (like

incrementing counters within a histogram by multiple work items).

 To increase performance via SIMD

o Launch thread-blocks that are a multiple of the WarpSize [32, 64, …, 1024],

since the GPU SIMD hardware is designed to efficiently support warp-level

processing.

o Launch [2-4] thread warps per thread block, since the hardware supports multi-

issue dispatch.

 To increase performance via TLP

o Launch as many thread blocks as possible.

o Pick the number of thread blocks, rows (r), to be a multiple of the work load (see

section 6.7.3) to evenly divide thread blocks across SM cores.

o Maximize occupancy given current constraints on occupancy (hardware limits,

register pressure, and shared memory pressure).

o Decrease occupancy constraints (reduce register & shared memory pressure)

 Rewrite code to decrease registers.

 Software pipeline in batches of [2-4] work items to decrease registers.

 Redesign memory layouts to decrease shared memory use

 Divide memory into per-warp and per-block buffers.

 Reuse memory (same buffer for many purposes).

 Same per-warp memory buffer for count, scan, and distribute.

 Reuse the S1 scan array for both the S1 & S2 scans.

 Compress data in registers and shared memory. Note: This increases

code complexity in order to compress/decompress required values.

 In my radix sort, register pressure is the main constraint on occupancy.

 To increase I/O throughput via Coalescence

o Load input data using my warp-by-warp BASk (see section 5.1.1.) in warp-

aligned runs of 32 data elements for 100% coalesced I/O efficiency.

o Convert between a warp-by-warp view of global memory and a sequential view

of data required for a stable counting sort using a three-step conversion method

(see section 6.7.1).

318

o Store output data in long runs of coherent data. The longer the data run, the

higher the “coalesced I/O efficiency” on output.

 Mitigate bank conflicts in shared memory to avoid lost cycles due to serialized replays

o Use odd-numbered run lengths [1,3,5,7].

o Use the “Pad & Rake” technique for run lengths that are powers of 2 [2,4,8].

o Take advantage of the Vector4 optimization to reduce bank conflicts by 4×.

o Live with the resulting bank conflicts (run length = [6]).

Note: Some bank conflicts are unavoidable (unpredictable access patterns)

Note: Whack-a-mole (when multi-step methods have different views of the same

memory in different steps then mitigating bank conflicts in one step may cause

them to pop up in another step.)

 To increase Scan performance

o Use a hierarchical multi-level nested multi-scan to scan an entire data block (For

instance: S1:SS‹4›, S2:SS‹8›, S3:SS‹nWarps›, S4:WS‹16›). NOTE: this results in

idle threads and warps at higher levels of the hierarchy.

o Use the scan-then-fan pattern (see section 6.4), and preserve short runs in registers

between stages to decrease the total summations and shared memory accesses

required.

o Serially scan short runs in registers using Sklansky’s method (Section 6.6.2).

o Cooperatively scan across threads using the WarpScan method (Section 6.6.3).

o Scan inclusive then store exclusive. Exclusive scans can be built from inclusive

scans by reaching back one column.

o Compress data, so multiple counts can be scanned using bit-level parallelism.

Note: Overflow can result requiring code that upscales data before summing.

 To increase performance via the Total Cycles (TC = II/IPC) metric

o Minimize the number of instructions issued (II).

 Eliminate unnecessary instructions

 Rewrite code to simplify complex calculations

o Maximize the average instructions retired per cycle (IPC).

 Software pipeline multiple work items to increase ILP.

 Rewrite code to decrease instruction dependencies and hardware stalls.

 Launch many concurrent thread blocks (and warps) to increase TLP.

 Mitigate constraints on occupancy to increase TLP.

 Miscellaneous Lessons

o To coordinate data communication across thread warps, use barrier

synchronization (syncthreads). Note: This is the only mutual exclusion

primitive needed for correct parallel behavior in my GPU radix sort.

o For better performance, as part of kernel setup, pre-compute some view indices

or pointers (warp-view and sequential-view) used in the BlockCount and

BlockDistribute methods. This amortizes the higher cost of “Raking.”

Note: storing these pre-computed indices or pointers increases register pressure.

o Since the Row DASk requires four sets of very similar code to properly support

amortized range checking, watch out for copy and paste errors in the various

319

BlockDistribute methods. If fixing a bug in one version, remember to check

and fix the other versions as well.

o For GPU Counting Sort, the GPU_CountKeys and GPU_DistributeKeys

kernels both must use the same data rows for correct scan results. My solution is

to have both kernels use the same Row DASk, the same CTA layout, and the

same DBS.

o For GPU Counting Sort: For fewer global I/Os (3× instead of 4×) at the kernel

level, follow the reduce-then-scan pattern, and avoid the scan-then-fan pattern

(see section 6.4). Using the Row DASk on both the GPU_CountKeys and

GPU_DistributeKeys kernels naturally supports this pattern.

o For CPU radix sort, swap between input and output pointers (ping-pong) to avoid

unnecessary memory copies after each Counting Sort pass.

320

10.0 Conclusion

 Programmers have many data structures and algorithms to choose from when they solve a

real-world problem. Experienced programmers select their algorithm by balancing between

competing demands and constraints of the problem. Great programmers also understand the

underlying hardware and select the algorithm and implementation to take advantage of beneficial

hardware features while avoiding hardware constraints. I have seen great programmers achieve

ten-fold increases in performance over a straight-forward implementations of an algorithm.

 The many competing constraints make GPU parallel programming hard, even for the

most experienced programmers. They typically begin with a good single-threaded serial

algorithm and convert it into a massively multi-threaded parallel algorithm that is both correct

and robust. GPU programming is made more difficult, since programmers must decide how to

map millions of data elements onto tens of thousands of threads, represented by a complex two-

level parallel hierarchy called a cooperative thread array (CTA). Increasing the burden yet

further, programmers need to understand the complex GPU memory model to maximize data and

I/O throughput. Picking the right memory access pattern to enable peak throughput can be

difficult, but, if done right, it can result in a massive parallel performance increase.

To increase parallel performance, programmers must understand the GPU’s model of

data-level parallelism (SIMD), pipelining and instruction-level parallelism (ILP), and multi-

threading and thread-level parallelism (TLP). For high-performance GPU implementations,

programmers need to understand the resource trade-offs imposed by GPU architecture--with its

multi-level memory hierarchy, the two-level cooperative thread array (CTA) parallel hierarchy,

and other GPU hardware issues such as coalescence, bank conflicts, and occupancy constraints.

GPU programmers must also be able to conduct experiments to find the best performing set of

321

parameters on a particular GPU device. In other words, a beginning GPU programmer must

master a daunting set of skills to become great.

 To help facilitate this mastery, I have developed memory layout and access frameworks

that provide GPU programmers with a starting point for developing their own specific parallel

implementations to solve general problems on the GPU. I call these frameworks data access

skeletons (DASks) and block access skeletons (BASks). These frameworks provide a strong

starting points for converting single-threaded serial algorithms into high-performance parallel

implementations on GPU machines.

10.1: DASks and BASks

As discussed in Section 2.2.1 and Section 3.3.1, modern GPU architectures use a 2-level

parallel hierarchy: a set of MIMD SM cores, each containing a set of SIMD SP cores. Parallel

warp-threading also has a 2-level hierarchy: thread blocks within a grid, threads within each

thread block. Memory has a configurable hierarchy as well. In addition to global memory,

programmers can choose how to allocate shared memory and registers, subject to hardware

constraints. Threads and memory interact in complex ways in these hierarchies. To reduce the

complexity that programmers must consider, I produced three data access skeletons (DASks) and

two block access skeletons (BASks), as discussed in Chapter 5. These skeletal frameworks are

higher level abstractions for memory access patterns that map well onto the GPU. The DASks

partition data arrays (input and output) into fixed-size data blocks then load-balance these data

blocks across thread blocks using different layout patterns. The BASks are generalized memory

access patterns for efficient coalesced I/O throughput at the thread-block level.

The skeletal frameworks are next parameterized to support experiments on the best

combinations of instruction and thread-level parallelism as well as to create the best balance

between shared memory and registers. This dissertation has demonstrated such experiments in

several case studies. As shown in my case studies, each DASk provides the general skeleton for

322

parallel processing over data blocks, and I, as the GPU programmer, then provide a “body”

method to solve a specific problem (such as Copy, Reduce, Radix Sort) on a fixed-size data

block. GPU programmers can then take my existing “body” sections and replace them with code

to solve their own problems with high confidence since the underlying framework code forming

the skeletons has already been tested, works correctly, and achieves high throughput.

I report many implementation details for the case studies of the previous chapters.

Therefore, in this conclusion, I highlight two broad insights that might have gotten lost among

those details: partitioning and fixed-size data blocks.

Partitioning:

 As discussed in Chapter 5, partitioning1 is where my DASks group n data elements into m

fixed size data blocks. These m data blocks are then load-balanced across p thread blocks using

different memory access patterns. My DASks provide the “skeleton” for accessing data blocks

according to a 1D or 2D layout. GPU programmers then provide the “body” methods for

processing individual data elements within each data block. Unfortunately, correct use of

partitioning requires that all data is known a priori before executing the GPU algorithm and that

the input set remains static during the course of executing the GPU algorithm. Consequently,

algorithms on unknown, streaming, or dynamically varying data sets will require a different

approach. There are five important benefits to partitioning: parallel processing, data coherence,

sequential ordering, data independence, and deterministic algorithms.

Parallel Processing: By design, my DASks are built to efficiently support the 2-level

cooperative thread array (CTA) hierarchy (thread blocks within a grid and threads within a thread

block). This enables programmers to take advantage of the tens of thousands of threads on each

GPU for massive parallel performance.

1 What I describe as “partitioning” is also known as “data decomposition” or “geometric decomposition”.

323

Data Coherence: By grouping data into fixed size data blocks, data elements are kept localized

within each data block, resulting in high coherence. Loading warp-aligned input elements within

each data block via the Block-by-Block or Warp-by-Warp BASk can take full advantage of

coalescence for 100% coalesced I/O efficiency and peak I/O throughput. When possible (as in

Scan from Chapter 6), outputting coherent data blocks of results allows peak I/O throughput as

well. When not possible (as in Radix Sort from Chapter 9), outputting longer runs of coherent

results increases coalesced I/O efficiency and allows for a solid fraction of peak I/O throughput.

Sequential Ordering: For algorithms (such as Scan and Radix Sort) that require data to be

processed in a sequential order for correct behavior, my Row DASk supports sequential ordering

at the data block level. Within each data block, GPU programmers can load and convert k data

warps per thread warp into per-thread sequential runs of k elements using my 3-step conversion

process, as described in section 6.7.1.

Data Independence: With one exception2, all my case study algorithms are data independent.

In other words, for a given fixed input size (n), changing the values of data within the input data

set has no noticeable impact on performance.

Deterministic Algorithms: All of the GPU primitives implemented in my case studies are

deterministic algorithms. They are lock-free and avoid all atomic operations. For correct parallel

coordination, the only mutual exclusion primitive actually used is barrier synchronization3 across

all threads within a thread block (as discussed in Section 2.2.3). As a result, there are no parallel

communication slow-downs4 due to waiting on locks or atomics, which can serialize parallel

performance. Also, there are no concurrency side effects, such as incorrect results, deadlocks, or

2 The one exception is my nearest neighbor kd-tree case study from Chapter 7, this primitive unfortunately

is data dependent. The location of query data points within the search tree causes different amounts of

branch divergence within each thread warp, which causes overall performance to fluctuate as data elements

vary within the data set.
3 My barrier synchronization uses the CUDA syncthreads method.
4 Barriers are not a complete panacea, as barriers still can result in idle cycles by finished thread warps

which must wait on other thread warps to complete.

324

starvation, which often require complex code to carefully resolve. This is a direct result of my

decision to base my DASks on partitioning data across the 2-level CTA hierarchy. Once all

threads have identified the unique locations required to load its inputs and store its outputs, each

thread can then proceed at full speed without needing to coordinate with the other tens of

thousands of parallel threads each processing their own data at the same time.

Fixed-Size Data Blocks:

Fixed-size data blocks are a fundamental unit of work for efficient GPU data parallel

programming. By construction both my BASks and DASks first organize data into short fixed-

size runs, each processed by a single thread. These runs are then organized into fixed-size data

blocks, each processed in parallel by a fixed-size thread block of multiple thread warps. This

organization allows all levels of the GPU parallel hierarchy to avoid idle time: The SP cores

process a warp of threads at a time, the SM warp schedulers have many warps to switch between

on stalls for I/O or memory access, and the individual threads have enough computation between

memory accesses to make progress.

The block sizes are determined by three parameters: WarpSize, nWarps, and nWork. At

the bottom level of the GPU parallel hierarchy, the SP cores process a warp of WarpSize (=32)

threads to take full advantage of SIMD. My DASks enable programmers to boost TLP on the

SMs (and hide memory latency) by choosing the number of warps in a small range, ‹nWarps=[1-

8]› to get the fixed thread block size, TBS = nWarps*WarpSize. My DASks also enable

programmers to increase ILP by choosing the amount of work per thread in a small range,

‹nWork=[1-8]›, to get the fixed data block size, DBS = nWork*TBS. Consequently, the data block

size varies as a function of the ‹nWarps, nWork› template parameters chosen at compile time.

Generic programming techniques (C++ templates, inlining, etc.) allow the resulting compiled

325

code to adapt to the chosen template pair ‹nWarps, nWork›. This ‹nWarps, nWork› template pair5

enables experiments on parallel performance (ILP and TLP) to find the best performing DBS for

a given problem, as shown in the case studies for Copy in Chapter 5, Reduce/Scan in Chapter 6,

and Radix Sort in Chapter 9.

10.1.1 Block Access Skeletons (BASks):

To improve I/O performance within each fixed-size data block, I produced the Block-By-

Block and Warp-By-Warp block-access skeletons (BASks) (shown in Figure 10.1) to transfer data

between global memory and registers.

Figure 10.1: The Block by Block and Warp by Warp BASk layouts respectively.

As discussed in Section 5.1.1 and shown in Figure 10.1 (left panel), the Block-By-Block

access pattern strides through the data block cooperatively, using all threads in the thread block.

In other words, each thread within the block accesses its own unique data element within the

current group of TBS elements and then strides (stride = TBS) to the next group of TBS data

elements within the data block to access. As also discussed in Section 5.1.1 and shown in Figure

10.1 (right panel), the Warp-by-Warp access pattern assigns each thread warp its own unique

5 WarpSize is also specified as a C++ template parameter to allow for future changes but for all current

generations of modern GPU architectures I have worked on (Tesla, Fermi, Kepler, Maxwell) it has

remained fixed at 32 threads per warp.

Block Size (Threads per Block)

Warp1 Warp4…

Work1

Work2

…

WorkWPT

Block by Block

D
at

a
B

lo
ck

 (
Fi
xe

d
)

Work1 Work2 … WorkWPT

Work1 Work2 … WorkWPT

Warp1

Warp2

…

Warp4

Work1 Work2 … WorkWPT

Data Block (Fixed)

B
lo

ck
 S

iz
e

(T
P

B
)

Warp by Warp

326

chunk of data within the data block, and then each thread warp strides through its assigned data

chunk one data warp at a time (stride = WarpSize = 32).

Although the Block-By-Block pattern is simple, easy to code, and easy to reason about, I

prefer the more complex Warp-by-Warp for three main reasons:

 Coherence: The underlying access pattern is slightly more coherent (localized),

which can result in a modest increase in I/O throughput (1-2% faster) despite the

extra instructions required for setup and indexing.

 Warp independence: Each individual thread warp can proceed to work on its

assigned chunk of data independent of any other warp in the thread block.

 Less synchronization: The Warp-by-Warp pattern avoids extra Barrier instructions

that would be required for correct parallel results in the Block-by-Block pattern.

The main take-away for programmers is to use fixed-size data blocks that are multiples of

the desired work and warps for a given problem and to use a Warp-by-Warp access pattern into

global memory when processing each data block.

10.1.2 Data-Access Skeletons (DASks):

 To take advantage of the top layer of the CTA parallel hierarchy, I produced three data

access skeletons (DASks): Block, Column, and Row DASks. All three of these DASks partition

by first grouping n data elements into m fixed-size data blocks and then load-balancing the m data

blocks across p thread blocks. As discussed in Section 6.7.3, for better performance,

programmers should be careful to choose the initial grid size so that it balances work loads of

concurrently running thread blocks evenly across the all the SM (or SMX) cores on a GPU card.

327

Block DASk:

 As discussed in Section 5.1, my Block DASk (shown in Figure 10.2) follows a simple 1D

layout pattern, where m data blocks are mapped onto m thread blocks.

Figure 10.2: The Block DASk layout.

My Block DASk (shown in Figure 10.2) enhances the simple Copy I/O kernel (from

Chapter 4) with C++ template parameters, multiple work items per thread, amortized range

checking, amortized pointer indexing, and manual loop unrolling. The Block DASk follows a 1D

layout pattern on input (and output) arrays by grouping n data elements into m fixed size data

blocks and then assigning one thread block per data block to process data. The last fixed-size

data block in the input array may only be partially full, requiring range checks to avoid out-of-

range memory accesses. Using multiple work items per thread allows programmers to amortize

the costs of range-checks and pointer setup across all ‹nWork=[1-16]› work items in each data

block, which decreases the total number of range checks required by (1/nWork).

Experiments reported in Section 5.1.6 suggest that for simple kernels, like Copy, TLP has

a much more pronounced impact on increasing throughput than ILP. TLP experiments for thread

DB1 DB2 …

TB1 TB2 … TBm

Thread
Blocks

Input
Data

Blocks

DBm

DB1 DB2 … DBm
Output

…Transform

 = # Data Elements

Block size ()

Grid size ()

328

block sizes (TBS) in the range [32-1024] reveal the significant effect of occupancy constraints on

the number of concurrently running thread blocks. The best performing thread blocks were found

at TBS=[128, 256, 512, and 1024] with TBS=128 (four warps). These had the best overall

performance. Experiments on ILP reveal that software pipelining has greater potential to increase

throughput than simple loop unrolling, which is not unexpected. My Block DASk is

recommended for simple transformation kernels (such as Fill, Copy, Gather, and Scatter) on

linear arrays, since the setup costs are low.

Column DASk:

 My Column DASk (shown in Figure 10.3) follows a 2D layout where m thread blocks are

load balanced across c fixed columns into r rows.

Figure 10.3: The Column DASk layout.

As discussed in Section 5.3, the Column DASk uses a two dimensional data access

pattern. The input data (n) is grouped into m fixed-size data blocks (DBS) with the data blocks

being laid out on a 2D grid, with m = ⌈ /𝐷 𝑆⌉. The number of columns (C = grid.width) is fixed

and chosen ahead of time by the GPU programmer. The number of rows (R = data blocks per

column) varies with m (and thus n) in order to fully cover all input data, with R = ⌈ /𝐶⌉. The last

row may be partially full, requiring range checks to prevent out-of-range data access. The full

DB1 DB2 … DBm

TB1 TB2 … TBm

Block size ()

Grid size (𝑆)

DB(r-1)m+1 … DBrm

Row1

Rowr

DB1 DB2 … DB2mRow2

DB(r-1)m+2

Input Data Blocks OutputTransform

329

rows require no range checks. The Column DASk maps one thread block onto each data column,

with each thread block being responsible for processing all data blocks along its assigned data

column. All thread blocks cooperatively stride through the entire data set, one row at a time. The

Column DASk is conceptually similar to the Block-by-Block DASk but works across the entire

data set, rather than just on one fixed-size data block.

 The column DASk has three main benefits and five main limitations.

Benefits:

 It supports proper range checking of all data [start, stop] while only requiring range

checks on the last row of data; the cost of doing the range check on the last row of data is

amortized across the other full data rows within the column.

 It supports an efficient access pattern into memory using a 2D grid layout.

 Is works well when processing data where the underlying data order doesn’t matter

(example: Reduce, Histogram).

Limitations:

 GPU programmers need to write two slightly different versions of the same code to

handle the three different range check cases {in-range, out-of-range, overlap}. Different

versions of code can lead to cut and paste errors if programmers are not careful when

fixing bugs.

 Register pressure is increased due to range check variables required by this DASk.

 Extra branches are required to handle loops and range checks. In particular, the while

loop used to loop over the full rows of data is called once per data block. Fortunately, my

DASk implementation is written to avoid divergent branching.

 Performance is sensitive to the initial grid size. If the grid size chosen by the

programmer is not an even multiple of the actual workLoad (#SMs * #Blocks), then

performance suffers as a few SM cores process the extra rows while the rest of the SM

cores sit idle.

 Coherence is reduced since the cooperative stride across all data blocks results in each

new data block being a full data row apart from the previous data block. This hinders

caching by the memory controllers when moving row to row.

330

Row DASk:

 My Row DASk (shown in Figure 10.4) follows a 2D layout where m thread blocks are

load balanced across r fixed rows into c columns.

Figure 10.4: The Row DASk layout.

 As discussed in Section 5.4, the Row DASk is quite similar to the Column DASk. It also

uses a two dimensional grid layout. However, the rows and columns are reversed. For the Row

DASk, the original input data (n) is grouped into m fixed-size data blocks (DBS) with the data

blocks being laid out on a 2D grid, with m = ⌈ /𝐷 𝑆⌉. The number of rows (R= grid.height) is

chosen ahead of time by GPU programmers as a static fixed-size constant. The number of

columns (C = data blocks per row) varies with m (and thus n) in order to fully cover all input

data, with C = ⌈ /𝑅⌉. However, for better load balancing of work across thread blocks, my

actual computation of the number of columns per row is more complex (see Section 5.6.3). The

Row DASk maps one thread block onto each data row, with each thread block being responsible

for processing all data blocks along its assigned row.

 The orientation change induces several other differences between the Row and Column

DASk in alignment, range checks, and load balancing. To better support coalescence, as

discussed in Section 5.6.1, my Row DASk aligns the input data to a data warp boundary before

marching down the first row (the Block and Column DASks do not warp align data; so I/O

DB1 DB2 … DBmT
B

1
…

DB(r-1)m+1 … DBrm

Col1

DB1 DB2 … DB2m

Col2

DB(r-1)m+2

Input Data Blocks OutputTransform

Colk

T
B

2
T

B
G

S

G
ri

d
 s

iz
e

(
𝑆

)

331

performance may suffer if the user passes in unaligned data arrays). Supporting warp-aligned

data implies that the first data warp in the first data block in the first row may be partially empty,

which requires careful range checks. Similarly, the last data block in the last data row may also be

partially empty, which also requires careful range checks. To help mitigate underutilization, I use

a complex load-balancing scheme, as discussed in Section 5.6.3, to distribute the data blocks

approximately evenly across the thread blocks representing each data row. With a difference of

at most one data block in length between any two given rows. I bias the load balancing against

the thread blocks (rows) containing the first data block and last data block as they may require

more expensive range checks when processing those data blocks.

As discussed in Section 5.6.2, I also introduced the ‹FIRST?› ‹MIDDLE*› ‹LAST?›

range check pattern for use with the Row DASk. I use regular expression notation to indicate

how many data blocks are involved in each group (? = zero or one data blocks, * means zero or

more data blocks). This pattern removes range checks out of the large excluded middle and

pushes required range checks into only the first and last data blocks. There is also a special case

‹BOTH› for when the first and last data blocks are one and the same. This approach amortizes

the required per-element range checks in the first and last data blocks across the entire data set of

m data blocks.

 ‹FIRST?›: As a result of warp-aligning the data array to a warp boundary, the first data

block may require partial [start, …) range checks on the first data warp.

 ‹LAST?›: As a result of using fixed size data blocks, the very last data block may be

only partially full and thus require partial (…, stop] range checks on all data warps.

 ‹MIDDLE*›: The data blocks in the vast excluded middle do not require range checks.

 ‹BOTH?›: For very small data sets, it is possible that the ‹FIRST? › and ‹LAST?› data

blocks are one and the same. This case requires full [start, stop] range checks.

My Row DASk has five main benefits and five limitations.

Benefits:

 To better support coalescence, this DASk warp-aligns data access (input/output) to a

warp boundary [0, 32, 64, …].

332

 For better SM core processor utilization, this DASk load balances work as evenly as

possible across thread blocks (rows) while also biasing against the first and last range

checked blocks.

 For better performance, this DASk amortizes range checks using the ‹FIRST?›

‹MIDDLE*› ‹LAST?› pattern, which pushes range checks into the first and last data

blocks and allows any required range checks to be amortized across the entire data row.

 This DASk can support algorithms that require ordered data for correct results by

supporting a sequential access pattern as each thread block marches along its data row,

block by block. However, GPU programmers still need to ensure sequential access

within each data block for correct overall behavior.

 For better throughput, this DASk supports an efficient access pattern into memory, using

a 2D grid layout.

Disadvantages:

 High setup costs (warp alignment, load balancing, range checks, …) need to be amortized

across R data blocks along each row.

 GPU programmers need to write four slightly different versions of the same code to

handle the four different range check cases {Both, First, Middle, Last}. These different

versions of code can lead to cut and paste errors if programmers are not careful when

fixing bugs.

 This DASk can increase register pressure due to setup costs, load balancing and range

check variables used by this DASk.

 Extra branches are needed to handle the four range check cases {BOTH, FIRST,

MIDDLE, LAST}. In particular, the while loop used for the ‹MIDDLE*› case gets called

once per data block. Fortunately, my DASk implementation was written to avoid

divergent branching.

 Performance is sensitive to the initial grid size. If the grid size chosen by the

programmer is not an even multiple of the actual workLoad (= nSMs × nConBlocks), then

performance suffers as some SMs process a few extra data blocks along the row while the

rest of the SMs idle.

DASk Summary:

All three DASks support high performance parallel programming. The Copy case study in

Chapter 4 and 5 showcases the Block DASk. The Histogram case study in Chapter 8 showcases

the Column DASk. The Reduce/Scan case studies in Chapter 6 and the Radix Sort case study in

Chapter 9 showcases the Row DASk.

Taking advantage of both instruction-level parallelism and thread-level parallelism on GPUs

is essential to unlocking high performance. All three DASks are written to take two template

parameters ‹nWarps, nWork› which allow experiments on ILP and TLP. This approach allows

333

programmers to find the optimal balance of ILP and TLP for best performance for a given

problem.

10.2 Summary and Lessons Learned:

 GPUs unlock massive amounts of parallelism for programmers to take advantage of.

Writing parallel code that is correct and high performing is quite difficult. My three data access

skeletons help solve many of the issues that GPU programmers must grapple with and eases the

burden of implementing their own GPU programs. These issues include mapping threads onto

data using the 2-level CTA hierarchy, coalescence, bank conflicts, and multi-issue. To achieve

high performance, GPU programmers also need to take advantage of ILP and TLP techniques.

My various case studies show useful GPU primitives implemented on top of my three DASks.

These primitives achieve high performance results using varying amounts of ILP and TLP.

334

Lessons Learned:

Summarized here are some of the key lessons on high performance GPU programming

that my dissertation has presented.

 Use my three data access skeletons (Block, Column, or Row) as starting points to speed-

up the writing of your own GPU kernels.

o The 1D Block DASk is a good choice for simple kernels such as Map operations

(such as Fill, Copy, Scatter, Gather, …) due to its simplicity and coherent access

pattern.

o The 2D Column DASk is a good choice for complex operations on unordered

data (such as Histogram, Reduce, …).

o The 2D Row DASk is a good choice for complex operations on ordered data

(such as Scan, Radix Sort, …).

 Partition data across the 2-level CTA hierarchy

o Partitioning can be implemented in a deterministic lock-free manner provided

that the data is known a priori and remains static during the algorithm.

o Programmers should partition data into m fixed-size data blocks

 TBS = nWarps*WarpSize

 DBS = nWork*TBS

 m = ⌈ /𝐷 𝑆⌉

o Data blocks represent the bottom level of the CTA hierarchy (threads within a

thread block).

 BASks (Block-by-Block and Warp-by-Warp) are a good starting point

for loading inputs and storing outputs for processing each data block

 Programmers still need to design data layout and write kernel code that

solves their specific problem.

o DASks handle the top level of the CTA hierarchy (thread blocks within a grid).

 Block DASk – one thread block per data block (GridSize = m)

 1D layout

 Last block may be partially full requiring range checks

 Column DASk – distribute m data blocks evenly across C columns

 2D layout

 C = GridSize.y (picked by programmer), C ≤ 1000.

 R = ⌈ /𝐶⌉ = number of blocks per column

 Each of C thread blocks processes R data blocks along its

assigned data column

 Last row may be partially full requiring range checks.

 Row DAsk – distribute m data blocks evenly across R rows

 2D layout

 R = GridSize.x (picked by programmer), R ≤ 1000.

 C = ⌈ /𝑅⌉ = number of blocks per row

335

 Each of R thread blocks processes C data blocks along its

assigned data row.

 First and last data blocks may be partially full requiring range

checks.

 Use ILP and TLP techniques to increase parallel performance

o Unlock pipelined performance via ILP by working on ‹nWork=[1-8]› work items

per thread. Regroup and reorder instructions using loop unrolling and software

pipelining to mitigate instruction dependencies and reduce pipeline stalls.

o Unlock multi-threaded parallel performance by launching ‹nWarps=[1-8]› thread

warps per thread block.

o Perform experiments on ‹nWarps, nWork› pairs to find the optimal performance.

o The optimal balance between ILP and TLP varies across problems,

implementations, and platforms due to varying constraints on occupancy.

 Mitigate constraints on occupancy to increase parallel performance.

o Redesign memory layouts to reduce shared memory usage to increase occupancy

o Rewrite code to reduce register usage to increase occupancy.

o Choose a grid size that is a multiple of the concurrent work load so that thread

blocks divide evenly into the number of SM cores on a specific GPU card.

336

APPENDIX A: GLOSSARY

Absolute speedup: Speedup in which the time to run the best parallel solution is compared to the time

to run the best serial solution to the same problem, even if they are using different algorithms.

Abstract Data type: An abstract data type (ADT) is a model for data structures or data types that can be

described by their behavior or semantics. An abstract data type is defined only by the operations that may

be performed on it; pre-conditions on the inputs to those operations; post-conditions on the outputs from

those operations; and possible descriptions of the required time or space complexity of those operations

using asymptotic notation. For example: A stack can be defined by 3 operations – push, pop, and top,

each taking constant O(1) time. See also object-oriented programming.

Abstraction: In computer science, abstraction manages complexity. A certain level of complexity is

established on how a person interacts with the computing system, while more complex details below the

current level are suppressed. Thus a programmer works with an idealized well-defined interface and can

add more levels of functionality later that would otherwise be too complex to handle. There are two main

types of abstraction – control and data. Control abstraction involves using sub-programs or sub-routines to

manage the control flow through a program. Data abstraction allows the grouping of data bits into

meaningful chunks, i.e. data types, records, structures, etc. Object-oriented classes combine abstractions of

both functionality and data.

Algebraic Simplification: A data-flow optimization technique that uses algebraic laws to simplify or

re-order instructions for better performance. See also constant folding, code fusion, and strength reduction.

Algorithm: An algorithm is a step-by-step recipe to perform a task that solves a problem – an

unambiguous set of instructions that performs the task by operating on input and producing output. An

algorithm is typically expressed using language-agnostic pseudo-code, which can be implemented in any

programming language.

Algorithmic Skeleton: Synonym for pattern, specifically the subclass of patterns having to do with

algorithms.

337

Algorithm strategy pattern: A class of patterns that emphasize the parallelization of the internal

workings of algorithms.

Aliasing: Two similar definitions: 1) When two pointers (or expressions that resolve to memory

addresses) refer to overlapping memory locations. For example, if pointers 𝑝, 𝑞 both point to the exact

same location, then 𝑝[0] and 𝑞[0] alias each other. 2) When two different variables are mapped onto the

same physical register by scheduling (static compiler or dynamic hardware). This can result in write after

read (WAR) or write after write (WAW) dependencies through the aliased register.

Alignment: With alignment, data starts on some fixed boundary, where the boundary is a multiple of

some integer number, usually measured in bytes. For instance 64-bit integers are aligned to start on 8 byte

boundaries within memory (0, 8, 16, 24, …). See also data alignment, cache-line alignment, warp-line

alignment and coalescence.

All-kNN: See All k-Nearest Neighbor.

All k-Nearest Neighbor: A type of Nearest Neighbor Search (All-kNN) where each query point in a

query set Q is matched to the k closest points in a search set S under some distance metric. In this search,

the query set Q and search set S are one and the same (Q == S). See also kd-tree.

All-NN: See All Nearest Neighbor.

All Nearest Neighbor: A type of Nearest Neighbor Search (All-NN) where each query point in a query

set Q is matched to the closest point (k = 1) in a search set S under some distance metric. In this search, the

query set Q and search set S are one and the same (Q == S). See also kd-tree.

All-to-All: A special case of a mapping relationship where every source object is related to every

destination object in a set, table, or array of parallel objects. See also cardinality.

ALU: An ALU (arithmetic logic unit) is a small processing unit which can perform simple computations

such as addition or multiplication on integer data.

Amdahl’s Law: Speedup is limited by the serial portion of the total work. Given 𝛼 and 𝑝, where 𝛼 ∈

[0,1] is the percentage of the program which is serial and 𝑝 is the number of parallel processing cores used

338

to process the parallel portion of the program. Then the maximum speedup according to Amdahl’s Law is

𝑆(𝛼, 𝑃) =
1

𝛼+
1−𝛼

𝑝

. Compare with Work+Depth Analysis or Gustafon’s Law.

AMP: Microsoft’s C++ Accelerated Massive Parallelism (AMP) is a native programming model that

extends the C++ programming language and its associated runtime library to enable data-parallel programs

on data-parallel hardware, such as GPUs.

ANN: See Approximate Nearest Neighbor.

Anti-Dependency: See write after read (WAR).

Analysis of Algorithms: See Asymptotic Analysis.

Application Programming Interface (API): An interface is the set of function calls, operators,

and/or classes through which an application developer accesses a predefined module or library to

accomplish some useful task(s). Ideally information hiding is used to hide the implementation details of

the module while allowing functionality to be accessed through the API’s interface.

Approximate Nearest Neighbor: A type of Nearest Neighbor Search (ANN) where each query point

in a query set Q is approximately matched to the closest point in a search set S under some distance metric.

In ANN searches, each answer is approximately correct with high probability. However, there is always a

small chance that another point (the true solution) is even closer. ANN searches usually run faster than

other types of NN searches, but at the cost of some incorrect answers in the search results.

Arithmetic Intensity: The ratio of computational to communication operations in a program.

Comparing the programs arithmetic intensity with the hardware’s theoretical arithmetic intensity helps

decide whether computation or communication limits performance.

Arithmetic Logic Unit: See ALU.

Array of Structures (AoS): A data layout for collections of data elements where all of the

heterogeneous data fields for a single element are stored in adjacent physical memory locations. Compare

with Structure of Arrays (SoA).

339

Associative Cache: A k-way cache organization in which different data from different locations in main

memory are mapped onto the same small subset of physical locations within a cache (4 cache-lines are

shared in a 4-way associative cache). A fully associative cache allows data from anywhere in main

memory to be stored anywhere in cache memory. Older data only needs to be evicted from cache when the

entire associate k-way set (or entire cache for fully associative) becomes full. Contrast with direct mapped

cache.

Associative Operation: An operation ⊗ is associative, if (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐) for all 𝑎, 𝑏, and

𝑐 in its domain. Associative operations allow data to be re-grouped but no re-ordered. Integer addition is

associative for both mathematics and computation. However, even though mathematical addition for reals

is associative, floating-point addition on a computer is not due to truncation and round-off errors (Press et

al, 2007). If these small errors can be lived with then floating-point math can be considered approximately

associative (pseudo-associative). Some techniques for parallelizing scans and other ordered operations

require associativity for correct results.

Asynchronous Coordination: Involves multiple threads (or tasks) trying to communicate data or

coordinate work between themselves. Asynchronous coordination allows threads to transfer data

independently from each other. One thread can start a data transfer and then start doing other useful work

while waiting for the data transfer to complete. Interleaving computation with coordination between

threads allows latency hiding to improve overall performance. Contrast with synchronous coordination.

Asymptotic Analysis: AKA Analysis of algorithms - Measures the overall intrinsic efficiency of

algorithms without getting bogged down in the actual details of hardware, software, or implementation.

Two main principles are used 1) Ignore machine-dependent or implementation-dependent constants; 2)

Look at the overall growth rate of resources (time, space, etc.) as the input size (n) goes to infinity (n → ∞).

See also Asympotic Complexity.

Asymptotic Complexity: A limit on resource usage, including work, time and space but also for ratios

such as speedup and efficiency. See also Big ‘O’ notation, Big ‘omega’ notation, Big ‘theta’ notation, Little

‘O’ notation, and little ‘omega’ notation.

340

Asymptotic Running Time Description

𝜃(1) Constant Time

𝜃(log 𝑛) Logarithmic Time

𝜃(log𝑘 𝑛) Polylogarithmic Time

𝜃(𝑛) Linear Time

𝜃(𝑛 log 𝑛) Log-Linear or Linearithmic Time

𝜃(𝑛2) Quadratic Time

𝜃(𝑛𝑘), k > 1 Polynomial Time

𝜃(𝑘𝑛), 𝑘 > 1 Exponential Time

Asymptotic Efficiency: An asymptotic complexity measure for efficiency.

Asymptotic Speedup: An asymptotic complexity measure for speedup.

Atomic Instruction: See atomic operation.

Atomic Operation: A small set of instructions guaranteed to appear as if it occurred as a single

indivisible instruction by the rest of the system. Once the atomic operation has started other threads cannot

interrupt the current thread until the atomic operation has completed. See also lock, thread-safe, mutual

exclusion, non-blocking algorithm, lock-free algorithm, and wait-free algorithm.

Atomics: The set of atomic operations supported on a specific machine architecture. Modern atomic

operations are based on compare-and-swap semantics. Older architectures used test-and-set, or fetch-and-

add semantics.

Atomic Scatter Pattern: A non-deterministic data pattern in which multiple competing writers to a

single memory location result in exactly one value being written and all other values being discarded. The

value written is chosen non-deterministically from the multiple competing sources. The only guarantee is

that the final written value will belong to at least one of the competing writers. See also the PRAM

machine model.

341

Auto-tuning: Auto-tuning is an automated process which adjusts and selects parameters in parameterized

code in order to find the set of parameters which result in the best performance.

Back-Tracking: Backtracking is a general algorithmic approach used to find all (or some) solutions to

computational problems. Typically a tree or graph is explored or built as part of finding these solutions.

The back-tracking algorithm incrementally builds partial solutions and stores other possible candidate

solutions (unexplored paths) encountered along the way in some simple data structure (queue or stack). It

abandons each partial solutions as soon as it determines that they cannot possibly be part of the valid

solution set. It then backtracks to any other candidate solutions kept in storage until all possible candidates

(solution paths) have been exhausted (the storage data structure is empty).

Balanced: A balanced tree with n nodes has a maximum tree height of ⌈log2 𝑛⌉, in other words, there is a

difference in path length from the root to any leaf node of at most one level across all leaf nodes.

Bandwidth: The rate at which information is transferred. This can be between the CPU and memory or

over some other communications channel. The amount of data that is communicated per unit of time,

usually measured in megabytes per second (MB/s) or gigabytes per second (GB/s). See also throughput.

Bank Conflicts: A bank conflict occurs when multiple threads attempt to access different data elements

stored in the same memory bank at the same time. The GPU hardware scheduler solves this resource

contention by serializing access to the memory bank which negatively impacts I/O performance.

Banked Memory: With banked memory, also known as interleaved memory, we have multiple parallel

sections of memory with each bank represented by its own memory chip (or separate section on a chip).

Memory accesses return k values from k banks in parallel increasing memory throughput by a factor of k

for coherent memory accesses. Banked memory is one way to compensate for the relatively slow speed of

RAM memory compared to CPU registers. GPU hardware uses banked memory for both shared and global

memory to greatly increase aggregate memory throughput.

Banking: Increases memory transfer throughput by having multiple banks of memory that are accessed in

parallel. Banks usually work modulo the bank size. A memory system with k banks can be up to k× faster

than the equivalent non-banked memory solution.

342

Barrier: A check-point that each thread must wait at until all threads reach this check-point before any

thread proceeds past the check-point. This allows the coordination of execution across threads within a

thread block on GPUs.

Barrier Synchronization: A multi-threaded computation is often divided into multiple phases. Often

all threads must complete one phase fully before any thread is allowed to move onto the next phase for

correct program behavior. A barrier is a form of synchronization that ensures this behavior. Threads

arriving at the barrier wait there until all threads have arrived, at which point all threads are allowed to

continue. Barriers can be implemented using atomic operations. Barriers do serialize thread behavior

which slows parallel performance.

BASk: See block access skeleton.

Batching: Batching helps reduce register pressure in GPU kernels by grouping partially unrolled work

items into fixed sized batches. Typically the amount of batched work is in the range of [2..4] work items.

BFS: See Breadth-First-Search.

Big ‘O’ Notation: Complexity notation that denotes an asymptotic upper bound on resource usage;

written as O(g(n)). Big ‘O’ notation is useful for comparing the algorithmic efficiency of different

algorithms. O(g(n)) = {f(n) : there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c∙g(n) for all n ≥ n0

}. See also asymptotic complexity, little ‘o’ notation, big ‘omega’ notation, little ‘omega’ notation, and big

‘theta’ notation.

Big ‘Omega’ Notation: Complexity notation that denotes an asymptotic lower bound on resource

usage; written as Ω(g(n)). Big ‘Omega’ notation is useful for comparing the algorithmic efficiency of

different algorithms. Ω(g(n)) = {f(n) : there exist positive constants c and n0 such that 0 ≤ c∙g(n) ≤ f(n) for

all n ≥ n0 }. See also asymptotic complexity, big ‘O’ notation, little ‘o’ notation, little ‘omega’ notation,

and big ‘theta’ notation.

Big ‘Theta’ Notation: Complexity notation that denotes an asymptotic upper and lower bound on

resource usage; written as Θ(g(n)). Big ‘Theta’ notation is useful for comparing the algorithmic efficiency

of different algorithms. Θ(g(n)) = {f(n) : there exist positive constants c1, c2 and n0 such that 0 ≤ c1∙g(n) ≤

343

f(n) ≤ c2∙g(n) for all n ≥ n0 }. See also asymptotic complexity, big ‘O’ notation, little ‘o’ notation, big

‘Omega’ notation, and little ‘omega’ notation.

Binary Tree: A tree data structure composed of binary nodes where each node contains a data element

with at most two child links {left, right} which point to the left and right child nodes in the tree.

Binary Heap: A binary heap is a complete binary tree which satisfies the heap ordering property. Either

min-heap (The key value of each node is greater than or equal to the value of its parent, with the minimum-

key element kept at the root) or max-heap (the key value of each node is less than or equal to the value of

its parent, with the maximum key element kept at the root).

Binning: The process of partitioning labeled data into a collection of labelled sub-collections. Each

labelled sub-collection only contains data belonging to that specific label.

Bin Pattern: A generalized version of the split pattern, which in turn is a generalization of the pack

pattern. The bin pattern takes as input a collection of data and a collection of labels to go with every

element of that collection. This pattern reorganizes data into labelled sub-categories (bins) for every

unique label in the input. The deterministic version of this pattern is stable, in that it preserves the original

order of the input for data with the same label. Typically used in radix sort and other binning algorithms.

Bit-Level Parallelism: Bit-level parallelism is a well-known programming technique for increasing

performance which can be thought of as a special form of vector-level parallelism. Bit-level parallelism,

also known as word parallelism and SWAR (SIMD within a Register), works on multiple small data types

in parallel using a single large word instruction (typically in the machines native hardware word size). For

instance, a 32-bit hardware register can store four 8-bit bytes, two 16-bit words, or one 32-bit dword.

Programmers that work conceptually with bytes or words but process data using 32-bit instructions can

potentially work on four or two data items at once using standard machine instructions. This allows a

potential speed-up of 4× or 2× respectively.

Block: Three definitions: 1) A state in which a thread cannot proceed while it waits on some other system

resource or synchronization event. 2) A 3D sub-region of memory from a larger data collection, see also

run and tile. 3) A CUDA thread block of a fixed shape (1D, 2D, or 3D) and size. See also CTA.

344

Block Access Skeleton: A block access skeleton (BASk) is a machine dependent memory access pattern

(or algorithm) for GPUs. For instance, the Block by Block BASk accesses and covers an entire data block

by supporting the bottom level of the 2-level CTA mapping. See also data access skeleton, Block-by-Block

and Warp-by-Warp BASks.

Block-by-Block BASk: An efficient access pattern at the bottom level of the 2-level CTA mapping that

supports coalescence. Each thread within a thread block of size TBS accesses its own unique data element

within the current group of TBS elements and then strides (stride = TBS) to the next group of TBS data

elements within the data block to access. See also block access skeleton. Compare with the Warp-by-Warp

BASk.

Branch and Bound Pattern: A non-deterministic pattern meant to find one satisfactory answer when

many possible answers exist. The term branch refers to using concurrency. The term bound refers to

limiting the computation in some manner. This pattern is often used to implement an efficient search

pattern.

Branch Condition: An expression that resolves to a {true, false} predicate which is then used to choose

between two paths of execution within a section of code, function, or program.

Branch Divergence: Because all threads within a thread warp step through an instruction stream in

lockstep, branch divergence occurs when some threads within a warp take the true branch path and the rest

of the threads take the false branch path. GPU hardware currently handles branch divergence via

“serialization by predication”. Serialization mean that the code for both branch paths are executed by all

threads. Predication means that individual threads within each warp are enabled/disabled via predicate bit

masks as appropriate for the code represented by each branch. This solution guarantees correct per-thread

branch outcomes at the cost of reduced performance. In the worst case, where branches are nested five

levels deep, with each thread taking its own unique path, branch divergence can cause parallel threads to

run up to 32× slower than equivalent single-threaded code which follows only one taken path through the

branch tree.

Branch Prediction: Branch prediction is an entire family of ILP optimization techniques meant to

reduce the branch delay caused by control hazards. Branch prediction uses special logical circuitry to try

345

to predict which branch {true, false} a given branch will take and will either start pre-fetching instructions

from the predicted path or start executing speculative instructions from the predicted path. If the guess is

correct than the core starts executing the prefetched instructions which reduces the cost of branch delays or

commits the speculative instructions which avoids the cost of branch delays. If the guess is incorrect than

either the pre-fetched instructions are ignored or the speculative instructions and any side effects from the

incorrect path need to be canceled and the instruction counter reset to the correct path. See also Branch

Speculation.

Branch Selection: see selection pattern.

Branch Speculation: Branch speculation is an entire family of ILP techniques meant to reduce the

branch delays caused by control hazards. With branch speculation, the architecture has enough functional

resources to execute speculative instructions from both paths {true, false}. Once the branch outcome is

known the incorrect path’s speculative instructions & any side effects must be canceled and the correct

path’s instructions are committed. This approach avoids branch delays at the cost of extra functional units

and extra control logic to commit or cancel speculative instructions. Nested branch instructions can still

cause branch delays as it is infeasible in practice to speculate along all possible branching sub-paths. See

also Branch prediction.

Breadth-First-Search: An algorithm for searching a tree or graph data structure. The algorithm starts

at the root (or an arbitrary starting node) and explores all neighbor nodes first before moving to the next

level of neighbors (neighbors of neighbors). Nodes to be visited are typically stored using a Deque in

FIFO order. See also Depth-First-Search.

Broadcast Model: A coordination model, where one thread (or task) sends the same message to all

other threads (or tasks) in the same group. See also remote message passing.

Brute-Force Search: A geometric search where each point in a query set Q (with m points) is compared

to all points in a search set S (with n points) to find the k closest neighbors. This typically takes O(mn)

time, or quadratic time O(n2) time if S == Q. See also nearest neighbor search.

BSP Tree: A binary space partitioning (BSP) tree is a hierarchal spatial partitioning data structure used

to speed up geometric searches. Each tree node typically has two children. BSP trees typically are used to

346

partition d-dimensional space by recursively dividing the starting bounding object into 2 smaller geometric

regions separated by a d-dimensional hyperplane. See also BSP tree, octree, and kd-tree.

Buffering: A buffer is a fixed-size region of memory storage used to temporarily store data while it is

being moved from a producer to a consumer. Buffering is often used to move data between RAM memory

and files on disk drives. Buffering is often used when moving data between processes within a computer,

for instance when implementing the pipeline pattern or a producer-consumer relationship. Buffering

introduces issues with stalling the producer when the buffer is full and stalling the consumer when the

buffer is empty.

Busy Waiting: A form of mutual exclusion, where the current thread tries repeatedly to acquire a lock,

this busy waiting is typically done inside a small tight loop (such as a spin-lock). The assumption with this

style of programming is that there is not much resource contention for the lock and that the code/data

protected by the lock will be processed quickly by the primary thread that successfully acquires the lock.

By Pointer: A parameter to a function that is passed in indirectly as a memory address which needs to be

dereferenced in order to access the true value. Allows the original value to be changed as part of the

functions execution. For good or bad, the pointer address can be manipulated to access data elements other

than the one originally pointed to. See also by reference, by value, and parameter.

By Reference: A parameter to a function that acts exactly as if it were the original location passed into

the function. Allows read/write access to the original element only. The original element must exist before

passing the reference into a function. See also by pointer, by value, and parameter.

By Value: A parameter to a function that is a copy of the original value passed into the function. The

original value will remain unchanged regardless of what changes are made to the copy’s value during the

functions execution. See also by pointer, by reference, and parameter.

Bypassing: An ILP optimization technique where extra shortcut circuitry is added into the instruction

pipeline to get intermediate output results from one stage into another stage where the results are needed as

inputs. Bypassing reduces the instruction delay (number of stalls) between two dependent instructions in

the pipeline at the cost of a more complex processing core.

347

Byte Stream: A byte stream is a stream of data in which the individual machine bits are grouped into

units of 8-bits called bytes. Byte streams are also used as a basic abstraction for how to communicate data

between two processing units. One unit writes bytes into the communications channel and the other unit

reads them. Byte streams are often used to connect producers with consumers (see producer-consumer

relationship) as used in the pipeline pattern. Buffering is often used to smooth out performance differences

between the producer and consumer. On most operating systems, access to any file is done as a byte

stream.

Cache: A part of the memory system that stores copies of data temporarily in faster memory so that future

requests for that same data can be handled more quickly. Caches are typically implemented in hardware

with support from the operating system and thus hidden from the programmer. Caches are designed to

enhance average memory access speeds by exploiting temporal and spatial locality. Caches in modern

computers are multi-level. Cache coherence is required to avoid data errors when caching. See also cache-

aware and cache-oblivious programming.

Cache-Aware Programming: Programs that are written to take advantage of the multi-level memory

hierarchy on a specific machine architecture for better I/O performance. Programmers learn the actual

details of cache-line sizes and page sizes for a specific memory architecture. Programmers then use that

knowledge to write code that transfers data in an aligned, coherent, and fully-loaded manner that uses

memory more efficiently. Since cache-aware programs are tied to a specific memory architecture, they are

not portable and need to be carefully tweaked on different machines in order to run well. Contrast with

cache-oblivious programming and streaming algorithms.

Cache Alignment: When memory accesses are aligned to start on cache-line boundaries (0, 64, 128,

192, 256), memory accesses tend to run faster.

Cache Coherence: A mechanism for keeping multiple copies of the same data stored in different caches

consistent. In other words, all threads accessing the same original memory location will see the same value

despite there being multiple copies scattered throughout the multi-level cache system.

Cache Coherent Architecture: Refers to the consistency of data stored in multiple separate caches for

parallel computing units. A multi-core system may have a L1 cache that is private to each core but an L2

348

cache or RAM main memory that is shared across all the cores in the system. As data is accessed, each

core may cache its own copy of an original data element in its L1 cache. When one core updates its copy

of data then all other cores will have stale copies (incorrect) in their caches. A cache coherent memory

architecture will ensure that all processors receive the most up-to-data version of any data regardless of

where it is stored (L1 cache, L2 cache, RAM memory).

Cache-conflict: When multiple locations in memory are mapped onto the same location in cache

memory only a subset of them can be kept in cache.

Cache Fusion: A memory access optimization where data is partitioned into small tiles and vector

operations are executed on each tile so that intermediate values can be kept in cache for better performance.

Cache Line: The fixed unit sizes in which data is retrieved and held by a cache; the cache line size is

typically 8-64 bytes on CPU architectures and typically 128 bytes on modern GPU architectures. Larger

cache lines allow for more efficient bulk transfers but also increase the inefficiency of incoherent memory

accesses.

Cache Miss: A cache miss is caused when a requested instruction or data operand(s) is not immediately

available from the fastest level of a memory hierarchy and the entire instruction processing pipeline must

suspend operation until the cache memory is filled with the requested instructions or data via memory I/O

and then resumes operation. There are four main types of cache misses – Compulsory, Capacity, Conflict,

and Coherency. Capacity, Conflict, and Coherency misses can lead to cache thrashing.

Cache Miss Rate: The fraction of memory cache accesses that result in a cache miss.

Cache-Oblivious programming: Refers to writing programs that have good cache behavior without

knowing the actual size or design of a specific memory architecture (caching system) in advance. This is

typically accomplished by recursively partitioning data into smaller and smaller processing chunks until at

some point a chunk becomes small enough to fit into a single cache-line or page at some level of the

memory hierarchy. Cache-oblivious algorithms are portable across different memory architectures as they

do not depend on any particular memory details. Contrast with cache-aware and Byte stream

programming.

349

Cache Thrashing: Cache thrashing is when a sequential (or parallel program) spends most of its time

reloading cache blocks into the cache and waiting on the cache loads to occur instead of getting useful

work done. This is caused because a small working set of cache blocks all get mapped onto the same cache

line in cache memory and the system keeps evicting and then reloading these competing cache blocks as

the program progresses. Capacity, conflict, and coherency cache misses are the typical cause of cache

thrashing.

Caching: A memory organization that exploits temporal and spatial locality in instructions and data for

better amortized memory access speeds for frequently reused instructions or data.

Cancellation: Two definitions: 1) Refers to hardware invalidating all instructions currently in the

instruction pipeline after the cancelled instruction in response to a hardware exception, speculative

execution, or other event. Cancelled instructions are similar in behavior to NOP instructions. 2) The

ability to stop a running task (thread) from another task (thread).

Capacity Cache Miss: A capacity miss occurs when a cache simply cannot contain all the cache blocks

needed during the full execution of a program. Cache blocks need to be discarded from the cache to make

room for other cache blocks needed by the program. The discarded cache blocks may themselves need to

be reloaded later as the program continues to execute.

Cardinality: A mapping relationship between two different sets, tables, or arrays of parallel objects. For

instance data and processing cores. The main relationship types are one-to-one, one-to-many, many-to-one,

and many-to-many. With some special case relationships such as all-to-all, one-to-several and several-to-

one.

Category Reduction Pattern: A combination of search and segmented reduction, each data input has a

label and reduction occurs only between elements with the same label. The output is a set of reduced

results for each label. The map-reduce model is the classic example of this pattern.

Ceiling Function: Given any real number x, there exists a unique integer n such that n < x ≤ n+1. We

say that n+1 is the ceiling of x, often denoted as ⌈𝑥⌉ = n+1. See also floor function.

350

Chosen Digit: For Radix Sort, Given a key taken from a large numeric range [0, m) represented by a

string of up to k digits, with each digit from a small range [0, d) then the radix sort will take k sorting

passes. Each pass uses a stable sort such as Counting Sort to distribute n keys into d sorted runs. The

number of digits (or sorting passes) can be computed as k = ⌈log𝑑 𝑚⌉. The chosen digit represents the

current digit, j ∈ [0, k), within the key used to perform the current pass’s stable sort. The k passes proceed

from the least to most significant digit in the key for a LSD radix sort.

Cilk: Cilk (and Cilk++ and Cilk Plus) are general purpose programming languages designed for multi-

threaded parallel computing. They extend the C and C++ programming languages with constructs to

express parallel loops and the fork-join parallel pattern. Originally developed by MIT and currently owned

by Intel.

Class: A class is an expanded concept of a data structure; instead of holding only data, it can hold both

data and the functions intended to manipulate that data. An object is a specific concrete instantiation of a

class. See also object-oriented programming.

Cloud: A set of computers, typically kept in a data center that can be allocated dynamically and accessed

remotely. Unlike a cluster, cloud computers are typically managed by a third party and may host multiple

applications from different, unrelated users.

Cluster: A set of computers with distributed memory communicating over a high-speed interconnect.

The individual computers within a cluster are often called nodes.

Coarse-Grained Multi-threading: With coarse-grained multi-threading, context switches between

active threads only happen when the current thread is likely to stall for a long time or a large time-slice

(measured in milli-seconds) has gone by. Thread contexts tend to be heavy-weight. As a result, this

approach cannot hide latency for short term pipeline stalls caused by various hazards.

Coarse-Grained Parallelism: With coarse-grained parallelism, the ratio of coordination to

computation events in a parallel algorithm is quite large. In other words, coordination & communication

events occur infrequently.

351

Code Fusion: 2 similar definitions: 1) An optimization for a sequence of operations on parallel data

each with their own separate input/output phases into a single fused operation with a single input/output

phase. This optimization reduces the total number of I/Os required to process data. 2) This data-flow

optimization technique combines several operations with one simpler equivalent operation.

Copy: A type of map primitive, which copies a source array S of n elements into a destination array D,

with no overlap allowed. Also see Fill, Scatter, and Gather.

Closest Heap Data Structure: A special compound data structure used with kNN and All-kNN nearest

neighbor searches to return the k nearest neighbors. This compound data structure first acts like a simple

array of k elements and then later like a fixed-size binary heap of k elements. The first k-1 search results

are appended into the array. After adding the kth search node into the array, the array is converted into a

max-distance heap, taking O(k) time to run. Subsequent search point results encountered during the NN

search are then compared against the top point in this closest heap data structure. If the new distance is

closer, the top is replaced by the new point. The correct heap ordering is then restored by demoting the

new top which takes logarithmic time O(log k) in the worst case to run.

Coalescence: With coalescence, The GPU memory controllers support accessing an entire warp (32

threads) of 32 (32-bit) data elements (128 bytes) in parallel. In fact, 128 bytes is the standard I/O access

size. Thus each memory controller can read or write up to 32 elements in parallel for the cost of a single

I/O. Similar to CPU cache-lines, the aggregate data access must be aligned to a warp-line boundary (some

multiple of 128 bytes). The memory controller has native “gather” support so each thread can access any

relative index [0..31] within a warp-line at no extra cost. However, each thread’s access index must be

unique otherwise the hardware will serialize access across threads competing for the same address. This

means the memory access pattern used to access data can impact performance. A sequential access pattern

could run at near peak I/O throughput speeds. On the other hand, a random access pattern might access a

different warp-line in memory for each individual thread within a thread warp, requiring 32 separate I/Os

and wasting work (by loading 31 unused data elements per I/O request).

352

Coalescence: A single transfer operation (load, store) is fully coalesced, if a single data warp is accessed

by a single thread warp in a single operation. Otherwise, if the data is spread out across multiple data

warps, then the hardware must replay the transfer multiple times in order to access all the requested data.

Coalesced Access: See Coalescence.

Coalesced I/O Efficiency: A percentage measure of how efficiently coalescence is being taken

advantage of. The percentage is the number of average data elements transferred per transfer divided by

the maximum number of elements that could be transferred (k = 32). For example, if on average 16 out of

32 data elements are accessed on each store, then the Coalesced I/O efficiency is said to be 50% (=16/32).

This efficiency metric has a minimum and maximum value of 3.125% (1/32) and 100% (32/32)

respectively. Typically longer coherent data runs tend to require fewer transfer operations than shorter runs

resulting in greater I/O throughput.

Coherence: see data coherence, locality or coalescence.

Coherency Cache Miss: An aliasing problem caused by virtual memory management where multiple

virtual addresses all map onto the same physical address. A physical cache block may need to be evicted to

make room for a new virtual address and then later retrieved as the program continues to execute.

Coherent Memory Access: Refers to memory accesses which support spatial locality, in other words, a

group of memory accesses are typically within the same small neighborhood of memory as the first

memory access. Sequential memory access (serial or parallel) is a perfect example of coherent Memory

Access. Coherent memory accesses result in good I/O throughput as they support caching in modern

memory architectures.

Coherent Masks: With SIMD warp branching, the situation where the branch masks across all

processing cores in the warp contain either all zeros or all ones.

Collective Coordination: Multiple threads cooperate to communicate data and coordinate work with

each other. Common coordination models include broadcast model, scatter model, gather model, and the

reduction model.

353

Collective Operation: An operation, such as a reduction or a scan, that acts on the collection of data as

a whole.

Collision: In the scatter pattern, or when using random writes from parallel tasks, a collision occurs when

two or more parallel threads (or tasks) try to write to the same location at the same time. The result is

typically non-deterministic since it depends on the timing of the parallel writes. In the worst case,

unexpected garbage is written into the location impacting the correctness of the entire program.

Common Sub-expression Elimination: A data-flow optimization technique where a sub-expression

that is computed two or more times in the original code but doesn’t change values is only calculated once

and then reused in the compiled code. See also code fusion, constant folding, and strength reduction.

Communication: Any exchange of data between parallel software tasks or threads. See also

coordination.

Communication Avoiding Algorithm: An algorithm that avoids communication between tasks or

threads, even it if results in additional or redundant computations.

Commutative Operation: A commutative operation ⊕ satisfies the equation 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 for all 𝑎

and 𝑏 in its domain. Commutative operations allow data to be re-ordered but not re-grouped. Some

techniques for parallelizing reductions and other operations require commutatively for correct results. See

also associative operation.

Compare-and-Swap: Compare and swap (CAS) is an atomic operation used to synchronize

concurrency issues and prevent incorrect multi-threaded behavior. It compares the contents of a memory

location to a specific value, and if and only if they are the same, it then swaps the contents of the memory

location with a given new value. Even though this actually requires several instructions in hardware, it

appears as a single atomic operation to the rest of the threads, i.e. no other thread can interrupt the CAS

once it has begun and until it has finished. Most modern CPU architectures implement one or more

variations of Compare-and-Swap as atomic operations. CAS is often used to implement lock-free and/or

wait-free algorithms and data structures. See also fetch-and-add and test-and set which CAS replaces.

354

Composability: The ability to use two components with each other. Can refer to system features,

programming models, or software modules. If the two components can easily be made to work together

than they are said to be composable, otherwise they are not.

Compulsory Cache Miss: The very first memory access to a memory block cannot be in the cache, so

the cache block must be brought into the cache. Compulsory misses would occur even if the memory

architecture contained an infinitely sized cache.

Complete: A complete binary tree is both a full binary tree and a left-balanced binary tree. In other

words, all nodes (except leaf nodes) has two children; all levels except the last are completely filled, and on

the last level all nodes are as far left as possible.

Concurrent: Logically happening simultaneously. Two or more threads (or tasks) that appear to all be

logically active at some point in time are considered to be concurrent. Older multi-threading systems used

pre-emptive multi-tasking on a single CPU to give the illusion of multiple tasks executing concurrently

despite the reality that only a single instruction could execute at a time on the CPU. Contrast with parallel.

Concurrency Issues: The collection of issues associated with moving from serial to parallel execution.

See also non-deterministic, mutual exclusion, collision, deadlock, livelock, and starvation.

Conflict Cache Miss: If the cache block placement policy is not fully associative, conflicts misses occur

because multiple different memory blocks get mapped onto the same specific block in the cache and the

current block in the cache needs to be evicted to make room for the currently requested block. The evicted

block may need to be retrieved later as the program accesses it.

Constant Folding: A data-flow optimization technique that replaces a complex expression made up of

only constant values with a single specific constant value that represents the entire complex expression.

See also strength reduction.

Contention Issues: The collection of issues associated with multiple parallel threads (or cores)

competing for access to shared resources. See also non-deterministic, mutual exclusion, collision,

deadlock, livelock, and starvation.

355

Context Switch: With a context switch, A processing core 𝑝 replaces one thread (or warp) 𝑠 with

another thread (or warp) 𝑡. 𝑠’s state switches to active (or blocked, inactive) and 𝑡’s state switches to

executing (or running). This happens by pausing 𝑠 on 𝑝, storing 𝑠’s context, reloading 𝑡’s context and re-

starting execution of 𝑡 on 𝑝. Context switches are done for two reasons 1) To keep processor cores busy by

latency hiding and 2) To ensure each thread (or warp) gets a fair slice of processing time to make forward

progress.

Control Dependency: A dependency between two tasks where whether or not a task executes depends

on the result computed by another task.

Control Hazard: Control hazards, also known as branching hazards, are a direct result of branching on a

pipelined architecture. Given that there are two distinct instruction paths {true, false} as a result of a

branch, the instruction scheduler (hardware or software) doesn’t know which set of instructions to start

fetching & scheduling from until the branch condition outcome is actually known. Stalling is the original

solution to this problem -- Wasteful NOPs are inserted into the instruction pipeline until the branch

outcome is known and the program counter (PC) can be updated to start scheduling from the correct branch

path. A branch delay is the number of stages (machine cycles) lost due to waiting on the outcome. Branch

prediction and branch speculation are entire families of ILP optimization techniques intended to help

reduce to number of stalls caused by control hazards.

Convergent Memory Access: When memory accesses by threads in a warp (or block) access adjacent

memory locations. Actually the memory locations can be somewhat scattered as long as all accesses by an

entire warp are constrained to a cache-line (warp-line) they can be in any order within the cache-line

without causing a performance hit. See divergent memory access.

Cooperative Multi-tasking: With cooperative multi-tasking, also known as cooperative scheduling, the

thread scheduling system allows threads to decide for themselves when to give up control of the CPU core

to another thread. This approach is vulnerable to poorly written programs hogging most of the system

resources for themselves leading to starvation for the rest of the better behaving applications.

Coordination: The synchronization of behavior between parallel software tasks or threads. See also

communication.

356

Coordination Issues: The collection of issues associated with coordinating the behavior or

communicating the exchange of data across multiple parallel threads (or cores). See communication and

coordination.

Cooperative Thread Array (CTA): With a GPU running CUDA, a cooperative thread array (CTA) is

the batch of threads launched by a GPU kernel to execute a parallel program. The CTA is organized as a

grid of thread blocks. There are hardware constraints that limit the number of concurrent thread blocks that

can execute on each individual SM core. But in aggregate it is potentially possible to run tens of thousands

of threads concurrently on each GPU device.

Core: An individual processor within a multicore processor. Each core should be able to support at least

one thread of execution.

Counting Sort: A Counting Sort sorts an unordered sequence A into an ordered sequence S. A contains

n elements, where each element is represented by a numeric key in the range [0, d). (d is typically a small

number, with d ‹‹ n). These keys are used to distribute the n keys directly into d sorted runs using

counting, indexing, and table lookup. The d runs are then concatenated to produce the final sorted output.

By distributing keys using indexing and then concatenating runs, counting sort escapes the well-known

Ω(n∙log n) lower bound on comparison-based sorts. Counting Sort is often used as a subroutine within

Radix Sort.

CPI: Cycles per instruction (CPI), the number of machine cycles it takes to execute a particular

instruction on a core.

CPU: A central processing unit (CPU) is also known as a core, processor, or socket. Originally, a CPU

was the single computation unit on a computer. Modern CPUs may actually contain multiple redundant

processing cores which can be accessed in a pipelined or parallel manner. Multiple CPUs may be bundled

together on a single motherboard to form a computer node.

CPU Time: The amount of time it takes a CPU to implement a program, task, method, or set of

instructions. 𝐶𝑃𝑈𝑡𝑖𝑚𝑒 = 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 × 𝐴𝑣𝑔 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 × 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒

Critical Path: The longest chain of tasks (or instructions) ordered by dependencies in a program.

357

CTA: See cooperative thread array.

CUDA: CUDA (formerly called the Compute Unified Device Architecture) is a high level language and

parallel computing platform created at NVIDIA. The language is based on C++ and version 5.0 of CUDA

uses the well-known Low Level Virtual Machine (LLVM) compiler infrastructure to compile, link, and

generate run-time GPU code from CUDA kernel programs. The CUDA language includes several C++

extensions to express parallelism, data locality, memory usage, and to manage thousands of threads. The

CUDA API supports many libraries for supporting kernel invocation, synchronization, memory allocation,

memory transfers, numeric processing, random number generation, and exposing the rich parallel

functionality available on each GPU device.

Cutting Plane: An axis-aligned hyperplane used to separate a set of n d-dimensional points (objects)

from a parent node into two child nodes {left, right} as part of building a spatial portioning data structure

such as a kd-tree.

Cycles per Instruction: See CPI

Cyclical: A cyclical kd-tree is one in which the d-dimensions are used as cutting planes in repeated

cyclical order as often as necessary when building the kd-tree. For instance given 3D points with axes

{x,y,z}. The cyclical cutting plane order would be {x,y,z,x,y,z, …} as often as required until the tree is fully

built.

DASk: See data access skeleton.

Data Access Skeleton: A data access skeleton (DASk) is a machine independent data access pattern (or

algorithm) adapted to run on a specific architecture like a GPU. DASks group n data elements into m fixed

size data blocks. These m data blocks are then load balanced across p thread blocks according to a 1D or

2D layout. For instance, the Row DASk enables the parallel partition pattern on a GPU by supporting the

top level of the 2-level CTA mapping while also preserving sequential ordering to support parallel patterns

like reduce & scan. See also block access skeleton, Block-, Column-, and Row-DASks.

Data Alignment: When basic data-types or data structures are aligned to start on machine-word

boundaries (32-bit or 64-bit), memory accesses tend to run much faster.

358

Data Block: A fixed-size unit of data elements that is meant to be processed in parallel by a matching

thread block. With a Data Access Skeleton, an array of n data elements is grouped into m data blocks, each

of size DBS and distributed across p thread blocks. The data block size (DBS) is typically parameterized

using three template parameters -- nWork, nWarps, and WarpSize. These three parameters represent three

different types of parallelism – Instruction-level Parallelism, Thread-level Parallelism, and Data-level

Parallelism.

Data Block Size: A fixed-size data block which contains DBS elements, where DBS is typically

computed as DBS = nWork*nWarps*WarpSize. See also Thread Block Size.

Data Coherence: A concept of how close data elements within a group are to each other. Data elements

that are close to each other are said to have high coherence. Data elements that are far apart from each

other are said to have low coherence. See also locality.

Data Compression: Data compression encodes information using fewer bits than the original

representation. Compressing data can potentially improve performance by reducing processing

instructions, transmission bandwidth and disk storage. However compressing and decompressing data can

take a lot of computation which may slow-down performance.

Data Dependency: Two similar definitions 1) A dependency between two tasks where one task requires

as its input data the output data from another prior task. 2) A dependency between multiple instructions

where one instruction requires as its input operand(s) the output result(s) from prior instruction(s). See also

dependencies and data hazard.

Data Dependent: See data independent.

Data-flow optimization: A family of optimization techniques (often done by a compiler) that seeks to

improve performance by first analyzing then second reducing, replacing, or reordering instructions for

better performance. See also algebraic simplification, code fusion, common-subexpression elimination,

constant folding, dead code elimination, and strength reduction.

Data Hazard: Data hazards occur when multiple instructions in an instruction stream have dependencies

on each other. Ignoring data hazards in out-of-order instruction pipelined architectures can result in race

359

conditions which lead to incorrect program results. There are 3 main types of data hazards – read after

write (RAW), write after read (WAR), and write after write (WAW) which are also known as true-, anti-,

and output-dependencies respectively. Schedulers (hardware & software) must detect and handle data

dependencies for correct program results. Typically this is done using stalling or out-of-order scheduling.

Data Independent: Given an algorithm with input data set of fixed-size n, if varying the data elements

which makes up the input set has no noticeable impact on total performance, then the algorithm is said to

be data independent. On the other hand, if varying the input data causes total performance to vary greatly

than the algorithm is said to be data dependent. If varying the data set causes only minor performance

fluctuations (say within 10% of the best), then the algorithm is said to be partially data dependent. For

instance, in a histogram algorithm, replace a random data set by a set of all zeros, if the zero data set is 10×

slower than the random data set than the algorithm is clearly data dependent.

Data-Level Parallelism (DLP): A type of parallelism. With data-level parallelism, a set of n data

elements is partitioned (decomposed) into m runs that are then mapped onto p cores to execute in parallel.

With a equal balanced partitioning, each core is responsible for processing O(n/p) elements as a 1D run,

2D tile, or 3D block. Data-level parallelism scales easily to handle more data or more parallel cores. See

also instruction-level parallelism and thread-level parallelism.

Data Parallel Programming: With data parallel programming, programmers implement their parallel

algorithms to take advantage of data-level parallelism on top of SIMD vector-parallel and/or multi-

threaded hardware. The main idea is that each unique thread is assigned its own unique data element (or

data run) to work on independently from every other thread concurrently working on its assigned data.

Data Structures: A data structure is a particular way of organizing data in a computer so that it can be

used consistently and efficiently. Associated with each data structure is a set of procedures that create,

delete, update, and manipulate specific instances of that data structure. Some typical examples of data

structures include arrays, records, sets, lists, trees, graphs, and objects. See also abstract data types and

object-oriented programming.

360

Data Throughput: The number of data elements processed per second during the execution of some

program, algorithm, function, or section of code. Typically measured in mega-elements per second (ME/s)

or giga-elements per second (GE/s).

Data Type: A data type is a classification identifying one of many specific types of data such as integer,

floating point, Boolean, character, string, etc. The actual data type defines the values of that type; how that

data should be interpreted; how many bits are required to represent that data type; and how that data should

be stored in memory.

Data Warp: A collection of WarpSize (=32) data elements that are transformed from input into output by

an algorithm implemented as one or more GPU kernels. Each data warp is associated with a matching

thread warp and is executed by a set of multiple SP cores within each SM core. Data Warps naturally

support Data-level Parallelism via data parallel programming to take advantage of SIMD hardware on a

GPU. See also Data Block, Thread Warp, and Thread Block.

DBS: See data block size.

Dead Code Elimination: A data-flow optimization technique that detects and eliminates dead code,

redundant code, or useless operations from the output code. For example, a complex calculation that is

stored in a variable which is subsequently never used can be safely eliminated. See also strength reduction.

Deadlock: A concurrency issue that occurs when at least two tasks (or threads) circularly wait on each

other to complete and each task (thread) will not resume execution until the other task (thread) proceeds.

This error occurs frequently with code that uses locks for mutual exclusion. See also livelock and

starvation.

Dependencies: A relationship among tasks, threads, or instructions that results in an ordering constraint.

Dependencies are important to understand because they can inhibit parallel performance.

Depth: Depth, also known as span, is how long a program would take to execute on an idealized machine

with an infinite number of parallel processors. The depth of an algorithm can be seen as the critical path in

its task dependency graph.

361

Depth Complexity: Depth complexity, also known as step-, circuit-, and span-complexity, is an

asymptotic measure of complexity in a parallel algorithm based on its depth. Informally, if we are willing

to use more resources in parallel to solve a problem, we can often reduce the time required to solve that

problem. Depth complexity, D(n,p), measures how much time it takes for a given input size (n) and given

number of parallel cores or threads(p). For the work+depth analysis of parallel algorithms, this measure is

equally as important as work complexity.

Depth-First-Search: An algorithm for searching a tree or graph data structure. The algorithm starts at

the root (or an arbitrary starting node) and explores as far as possible along each branch path before

backtracking to other branch paths. Nodes to be visited are typically stored using a Stack in LIFO order.

See also Breadth-First-Search.

Deque: A double-ended queue. Elements can inserted and removed from both the front and the back of

the Deque.

Design Pattern: 1) A general term for pattern that includes not only algorithm strategy patterns but

patterns related to overall code organization. 2) A general reusable solution to a commonly occurring

problem in a given context. Design patterns are formalized best practices that the programmer must still

implement themselves in a program. Algorithms and design patterns are orthogonal and can both be used at

the same time.

Deterministic: A deterministic algorithm is an algorithm that behaves predictably. Given a specific

input, a deterministic algorithm will always produce the same output no matter how many times it is run.

Parallel floating-point algorithms may have small differences in output compared to the equivalent serial

floating-point algorithms due to the different order in which the parallel algorithm groups floating-point

data and operations compared to the serial algorithms and the fact that floating-point operations have small

errors due to truncation and round-offs. However, in practice, concurrency is the main cause for non-

deterministic results. Programmers need to use sequential semantics and eliminate all race conditions in

order to convert non-deterministic algorithms into deterministic algorithms with the exception of non-

determinism caused by “rounding” differences for floating point algorithms.

362

Device Processor: A device processor, also known as a co-processor, is a secondary computational unit

that is under the control of a primary host processor. The device responds to requests from the host to do

useful computations. GPUs are co-processor devices that can do massive parallel computation under the

direction of a CPU host processor.

DFS: See Depth-First-Search.

Digit: A small numeric range specified by the radix (or base). For instance, a base 10 radix allows digits

in the range [0,9]. See also Key.

Digit Value: A specific value taken from a digits numeric range. For instance, 5 is a specific digit value

from the range [0-9].

Directed Acyclic Graph (DAG): A graph that defines a partial order so that nodes can be sorted into a

linear sequence with references only going in one direction. A directed acyclic graph has, as its name

suggests, only directed edges and no cycles.

Direct Memory Access (DMA): The ability of one processing unit to access another processing unit’s

memory with involving the other processing unit in the transfer.

Direct-Mapped cache: A cache organization in which data from multiple disjoint locations in main

memory are mapped onto the same physical cache-line in the cache. Typically this direct mapping uses a

modulo function of the original address. Older data needs to be evicted from cache anytime newer data is

mapped onto the same cache line, which can lead to cache thrashing in some cases. Contrast with

associative cache.

Distributed Memory: 2 Definitions: 1) Memory which is located in multiple physical locations.

Accessing data from a remote location typically has higher latency and possibly lower bandwidth than

accessing local memory. 2) Memory that is physically located in separate computers. An indirect

interface such as remote message passing, is required to access memory on remote computers, while local

memory can be accessed directly. Distributed memory is typically supported by clusters of computers.

Divergent Memory Access: When memory accesses by adjacent threads in a warp (or block) access

scattered (non-adjacent) memory locations. See convergent memory access.

363

Divide and Conquer Pattern: Recursive decomposition of a problem. Can often be parallelized with

the fork-join pattern.

Domain-Specific Language (DSL): A language with specialized features suitable for a specific

application. For Example: MATLAB is a domain specific language for Matrix processing & Numerics.

DRAM: Dynamic Random Access Memory. See RAM.

Dynamic: A dynamic algorithm (or data structure) allows insertions, deletions, or other modifications to

the original input data set (or data structure) as the algorithm proceeds. Contrast with Static.

Dynamic Scheduling: With dynamic scheduling, the thread scheduler (hardware or software) maps

active threads onto available processing cores using pre-emption. The scheduler adapts to changing

circumstances to try to optimize overall processor utilization by skipping stalled (or inactive) threads,

waking up completed threads, blocking threads waiting on long running transfers of I/O resources, etc.

Dynamic Work Assignment: Dynamic work assignment is a technique for load balancing work across

parallel threads (or cores). An array of n data elements is initially divided into m fixed-size chunks which

are then assigned into a work queue. Each parallel core grabs a chunk of work from the queue and

processes it until the work queue is empty. As new work is generated, it is also subdivided and added into

the work queue. This approach works best when the total amount of work is variable or unpredictable.

Preventing resource competition across threads when accessing or updating the work queue data structure

can itself become a potential performance bottleneck. See also equal partitioning and work stealing.

Efficiency: Efficiency measures the return on investment in using additional hardware to operate in

parallel.

Encapsulation: Three related definitions – 1) Encapsulation is the packing of data and functions into a

single component. 2) A programming language mechanism for restricting access to some of the object’s

components, which is useful for information hiding. 3) A programming language mechanism for bundling

data with the methods operating on that data. See also object-oriented programming.

Exceptions: Exceptions are the unusual situations that result from hardware instructions being presented

with incorrect data that could result in incorrect system behavior if not handled properly. Hardware

364

exceptions include overflow, divide by zero, translate look-ahead buffer miss for virtual memory, etc.

Exceptions are usually handed off to special system software exception handlers to be dealt with properly.

Handling exceptions often impacts program performance as the exception handlers often take hundreds or

thousands of machine cycles to execute.

Elemental Functions: A function used in a map pattern. An elemental function acts on single item

inputs. In other words each transformation from an input data element into an output data element has no

dependencies on other data. An elemental function can be easily vectorized by replicating the computation

it specifies across multiple SIMD lanes. See embarrassingly parallel algorithms.

Embarrassingly Parallel Algorithms: With embarrassingly parallel algorithms, the depth efficiency

is constant, D(n) ≈ O(1), in other words the number of parallel steps required is fixed, small, and

independent of the input size. These algorithms process each data element completely independently from

all other data elements so no communication or coordination across cores is required. The actual code

tends to follow the map pattern and is often trivial.

Equal Partitioning: Is a technique for doing load balancing across parallel cores. Given n data

elements or operations. Each of the p parallel cores is assigned to process equal sized chunks ⌈𝑛 𝑝⁄ ⌉ of

work (elements or operations). This approach works best when the amount of work is known a priori (in

advance) and the data or operations are uniformly sized. See also dynamic work assignment and work

stealing.

Exclusive Scan: A type of scan where the ith output element (si) is the total sum of the first (i-1)

elements from an input array A under some binary associative operator ⨁ with identity 𝕀, in other words

𝑠𝑖 = 𝕀 + ∑ 𝑎𝑗
𝑖−1
𝑗=1 . Compare with Inclusive Scan.

Expand Pattern: A pattern in which each element of a map pattern can output zero or more data

elements, which are then assembled into a single (possibly segmented) array. Compare to the pack pattern.

False Sharing: Two separate tasks in two separate cores may write to separate locations in memory, but

if those memory locations happen to be allocated into the same cache line, the cache coherence hardware

365

will attempt to keep the cache lines coherent, resulting in extra communication and reduced performance,

even though the tasks are not actually sharing data.

Faster: An improved method S is said to be x times faster than a baseline method T, which is expressed

using the following formula.

𝑥 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑛𝑒𝑤

=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑇

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆

Fetch-and-Add: fetch and add is an atomic operation used to synchronize concurrency issues and

prevent incorrect multi-threaded behavior. It adds a new value to a value in a memory location and then

returns the old value from the same memory location. Even though this actually requires several

instructions in hardware, it appears as a single atomic operation to the rest of the system, i.e. no other

thread can interrupt the CAS once it has begun and until it has finished. This atomic operation has been

replaced by compare-and-swap semantics on modern architectures. See also test-and-set.

Fiber: A very lightweight unit of execution. Similar to a thread, but fibers use co-operative multi-tasking

while threads use pre-emptive multi-tasking.

Fibonacci Numbers: The Fibonacci numbers are defined by a linear recurrence and are often used as

examples of recursion in computer science. The two base cases are defined as F(0) = 0 and F(1) = 1 with

the recursive induction step, F(N) = F(N-1) + F(N-2). The integer sequence grows as

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …}.

FIFO: Abbreviation for first-in, first-out. For instance a single line of customers in a book store are

typically handled in FIFO order. The first customer to enter the service queue is the first customer to reach

a cash register and check out. Contrast with LIFO.

Fill: A type of map primitive, which fills a destination array D of n elements with a single data value. For

example: setting an entire array to all zeros is a form of fill. Also see Copy, Scatter, and Gather.

Fine-Grained Locking: Locks used to protect small parts of a larger data structure from race

conditions. Such locks avoid locking the entirety of the large data structure during parallel accesses.

366

Fine-Grained Parallelism: A level of parallelism with very small units of parallel work per unit of

coordination (communication). Care must be taken to reduce the cost of coordination (communication)

otherwise parallel overhead will dominate performance costs and reduce parallel efficiency.

Fine-Grained Multi-threading: With fined-grained multi-threading, the scheduler can and does

switch between active threads on a core every few cycles (even as often as once per cycle). Thread

contexts must be light-weight. The thread scheduler can adapt to short-term stalls in execution by pausing

threads (warps) and switching to other active threads.

Floating-Point Data: Modern GPUs support both 32-bit and 64-bit floating point data types to

approximate real numbers and associated arithmetic operations as specified in the IEEE 754 specification.

Floating-Point Unit: See FPU.

Floor Function: Given any real number x, there exists a unique integer n such that n ≤ x < n+1. We say

that n is the floor of x, often denoted as ⌊𝑥⌋ = n. See also ceiling function.

Flynn’s Taxonomy: A well-known categorization of parallel processing into four groups {SISD, SIMD,

MISD, and MIMD} based on parallel instruction handling {single, multiple} and parallel data handling

{single, multiple}.

Fold: An operation on a collection of data in which every output is a function of all previous outputs and

all inputs in a sequence up to the current index. A fold is based on a successor function that computes a

new output value and new state for the fold from the previous state and each new input value. A scan is a

special parallelizable case of a fold where the successor function is associative.

Fork: The creation of a new thread or task from an original thread. The original thread or task continues

executing in parallel with the forked thread or task. See also spawn or join.

Fork-Join Pattern: A parallel pattern of computation in which new (potential) parallel flows of

execution are created/split using forks and terminated/merged with joins.

Fork Point: A point in the code where a fork takes place.

367

FPU: An FPU (floating-point unit) is a small processing unit which can perform simple computations

such as addition or multiplication on floating-point data. See also ALU.

Frequency Scaling: A way to increase computational throughput (performance) by increasing the

frequency at which transistors are run. As transistors get smaller, it gets easier to run them faster.

However, faster running chips also generate more heat. If chips get too hot they will burn out. So

frequency scaling requires careful cooling. Modern chips can’t run much faster than ~4 GHz on air-flow

cooling (fans) without risk of burn out. More exotic forms of cooling like water, oil, liquid nitrogen, etc.

can be used to raise this maximum frequency.

Frequency Scaling Era: The time period from roughly 1965-2004 where the primary way to increase

integrated chip performance was to increase the frequency at which transistors ran. In 2004, chip

architectures hit a power wall where running chips faster than ~4 GHz generated more heat than air-flow

cooling (fans) were capable of removing from the chip risking burn out. In 2005 chip designs moved into

the Multi-core era.

Full: A Full binary tree is a binary tree in which every node other than leaf nodes has two children.

Fully Loaded: A fully loaded memory access pattern uses all the data in each cache-line before

accessing data that would result in another cache line being loaded into cache. A sequential access pattern

over a large array results in one I/O per cache line and all the data in each cache line being used fully

before moving onto the next cache line. This is true for all cache lines, except for possibly the first and last

cache lines which might only be partially full with data due to alignment issues. Whereas, a random access

pattern loads an entire cache line but only accesses a single data element. That cache line is highly likely to

be evicted from cache before being randomly accessed again resulting in lots of I/O and poor utilization of

the caching architecture. See also coherence, coalescence and alignment.

Functional Decomposition: Task-level parallelism where the original task is divided into smaller sub-

tasks and each sub-task is then run on its own thread. A directed acyclic graph (DAG) is often used to

model the flow of data through the sub-tasks. This approach is difficult to scale beyond a small number of

threads.

368

Functional Unit: A hardware processing unit that can perform simple computations such as addition or

multiplication. See also ALU and FPU.

Function: A function typically consists of a function-call interface used to invoke the function from

elsewhere in the program and the body of the function which is the actual sequence of instructions that

perform some specific task for which the function was written. In C++, the function-call interface is called

a declaration and the function body is called the definition. Each function has one or more input and output

parameters. Functions enable code reuse and modular programming.

Function Overloading: Function overloading (or method overloading) is a type of polymorphism that

creates multiple methods with the same name but with possibly different implementations for different data

types. For instance: One could create a swap function for exchanging two integers, and another for

swapping two strings. The integer swap could take constant time O(1), while the string swap could require

linear time O(n).

Functor: A class which supports a function-call interface. They behave similarly to C or C++ callback

functions and can be used in the same manner. However, functors are also objects and can hold state and

support additional class interfaces for modifying that state. Functors can often be optimized by compilers

(typically removing the function invocation overhead) often resulting in better performance than an

equivalent callback function.

Fusion: An optimization in which two or more things with similar forms are combined to reduce

overhead. See loop fusion, cache fusion, and code fusion.

Gather: A type of map primitive, which gathers elements from a large source array S into a small

destination array D using an index map. Also see Copy, Fill, and Scatter.

Gather Model: A collective coordination model, where all threads (but one) send a message to a single

primary thread. The primary thread then composes the messages together.

Gather Pattern: A set of parallel random reads from memory. A gather takes a collection of memory

addresses and outputs a collection of data read from those memory addresses. Gathers are equivalent to

random reads inside a map pattern. Given an input array of size n, and an output array of size m, and an

369

index array of size m, typically with n ≥ m. Each element of the output array comes from some element in

the input array at the given index. Output[i] = Input[index[i]] for all i ∈ [0, m). The scatter pattern is the

inverse of the gather pattern.

Generic Programming: A style of programming in which algorithms can be written in terms of generic

abstract types which are then instantiated later as the specific data types needed by a specific

implementation. C++ templates are a mechanism for supporting generic programming. Data access

skeletons use generic programming techniques to enable performance experiments with three template

parameters – nWork, nWarps, and WarpSize representing three types of parallelism – instruction-level

parallelism, thread-level parallelism, and data-level parallelism.

Geometric Decomposition Pattern: A pattern that decomposes a data domain for an algorithm into a

set of possibly overlapping sub-domains. A special case is the partition pattern, which is when the sub-

domains do not overlap.

GPU: A GPU (graphics processing unit) was originally developed to accelerate graphics computations but

now is sufficiently evolved to support arbitrary computations. GPUs are especially good at massively

parallel, fine-grained data-parallel algorithms. They typically use multi-threading, hyper-threading, SIMD

threads, and extensive use of latency hiding.

GPU Kernel: A GPU kernel is a program that runs in parallel on a GPU device. A GPU kernel looks

like a serial program written to run on a single thread. However, the GPU device will run the kernel on

many threads in parallel.

GPU Programming Model: A programming model where parallel computation is run on a GPU co-

processor device using a CTA (a 2-level grid of thread blocks). The parallel computation is done under the

direction of a CPU host core. This model supports limited communication and synchronization between

different threads within the same thread block. But assumes no communication or synchronization between

different thread blocks in the same grid. This model makes no assumptions about what order thread blocks

in a grid are scheduled onto the SM (SMX’s) processing cores by the GPU. A coarse level of

synchronization is supported via kernel termination in that all thread blocks in a grid are guaranteed to have

completed when the kernel terminates.

370

Grain: A unit of work to be run serially on a single core. See granularity.

Grain Size: The amount of work in a grain.

Granularity: Granularity is a qualitative measure of the ratio of computation to coordination

(communication) in a parallel algorithm. The amount of decomposition applied to the parallelization of an

algorithm, and the grain size of that decomposition. Coarse granularity implies large amounts of

computations are done between communication events. Fine granularity implies that small amounts of

computations are done between communication events. If the granularity is too coarse, then there won’t be

enough parallel threads (or tasks) to keep all the parallel cores busy (under-utilization) or poor latency

hiding. If the granularity is too fine, then the coordination required between parallel threads may dominate

the resulting performance. See also parallel overhead.

Graphics Accelerator: A co-processor specialized for handling graphics workloads, typically used for

real-time graphics. APIs such as Direct3D and OpenGL are typically used to send graphic commands to

the hardware. See also GPU.

Graph Rewriting: A computational pattern where nodes of a graph are matched against templates and

substitutions made with other sub-graphs. When applied to directed acyclic graphs (DAGs), this is known

as term graph rewriting and is equivalent to the lambda calculus, except that it also explicitly represents

memory sharing.

Greedy Scheduling: A scheduling strategy in which no worker idles if there is work to be done.

Grid: Two different definitions: 1) A distributed set of computers that can be allocated dynamically and

accessed remotely. A Grid is distinguished from a cloud in that a grid may be supported by multiple

organizations and is usually more heterogeneous and physically distributed. 2) A batch of thread blocks

meant to be concurrently executed on a GPU to carry out a GPU kernel program. Typically a grid is 1D or

2D in shape. See also CTA.

Gustafson’s Law: A different view from Amdahl’s Law that factors in the fact that as problem sizes

grow the serial portion of computations tend to shrink as an overall percentage of the total work to be done.

Given 𝛼 and 𝑃, where 𝛼 ∈ [0,1] is the percentage of the program which is serial and 𝑃 is the number of

371

processing cores used to parallelize a program. Then the speedup according to Gustafson’s Law is

𝑆(𝛼, 𝑃) = 𝑃 − 𝛼 ∙ (𝑃 − 1). Compare and Contrast with Amdahl’s law and Work+Depth analysis.

Halo: In the implementation of the stencil pattern on distributed memory, each thread often needs to

access nearby neighbors outside of its initial assigned data partition. The halo is the set of boundary

elements surrounding each partition that are replicated on different worker threads to allow each partition to

be computed in parallel.

Hash Lookup: A hash function is a well-defined procedure or mathematical function that converts a

large amount of data (variable or fixed) into a small datum. This datum can be turn be used as an index to

speedup searching, sorting, or table-lookups. If the resulting datum is small enough, a “trivial hash

function” can be used to provide constant time searches at almost zero cost. See also indexing, table-

lookup.

Hazard: A hazard is any parallel computing approach which could end up producing incorrect results

compared to an equivalent serial approach. The main types of hazards include structural hazards, control

hazards, and data hazards.

Heap: Two definitions 1) An abstract data structure for loosely ordering data in a conceptual tree, this

data structure can be used for priority queues and sorting. 2) The physical memory used for storing

allocation requests made using heap allocation, this is also known as the free store or dynamic memory.

Heap Allocation: An allocation mechanism, also known as free storage or dynamic memory allocation,

that supports unstructured memory allocations of different sizes and at arbitrary times during a program’s

execution. Compare with stack allocation.

Heavy-weight Context: A heavy-weight thread (or warp) context typically contains 1K or more of

execution state can take hundreds of machine cycles or more to transfer into/out-of virtual memory during a

context switch. Heavy-weight contexts implies the use of coarse-grained parallelism due to the large

overhead of heavy-weight context switches.

Heterogeneous Computer: A computer which supports multiple processing cores, with each core

having its own unique specialized capabilities and/or performance characteristics.

372

High Performance Computing: High performance computing (HPC), also known as super-

computing, uses the world’s fastest and largest computers to solve massive and complex problems.

Modern supercomputers typically use thousands of GPUs and CPUs in parallel.

Histogram: A histogram summarizes the frequency distribution of an entire data set via a much smaller

table of counts. In a nutshell, n input elements are counted into m bins. The resulting m frequency counters

form the histogram. A bar chart is often used to visualize the histogram. All n inputs are assumed to be

taken from a range R = [min, max). Each of the m bins represents a sub-range ri from R. (These sub-ranges

uniquely partition and fully cover the original range R). Counting proceeds by selecting the sub-range that

contains each input element and incrementing the corresponding bin’s counter.

Host Pattern: A simple programming pattern for launching GPU kernel(s) from a CPU host program.

The pattern involves 1) allocating GPU & CPU resources 2) transferring data from the CPU onto the GPU

3) launching the GPU kernel(s) 4) transferring results from the GPU to the CPU and 5) deallocating

resources.

Host Processor: 2 different definitions: 1) The main control processor in a system as opposed to any co-

processors or GPUs also in the system. The host processor is responsible for booting and running the

operating system. 2) The CPU processor that coordinates running a parallel algorithm using one or more

GPUs.

HPC: See High performance computing.

Hybrid Parallelism: A type of parallelism that combines two or more other types of parallelism to

support parallel processing in a parallel system.

Hyperplane: An arbitrarily oriented d-1 dimensional plane used to separate a set of n d-dimensional

points (objects) from a parent node into two child nodes {left, right} as part of building a spatial portioning

data structure such as a BSP tree. See also cutting plane.

Hyper-threading: Multi-threading on a single processor core. With hyper-threading, also known as

simultaneous multi-threading (SMT), one core draws instructions from multiple threads to fill multi-issue

instruction pipelines.

373

Identity: An identity element, 𝕀, is a data element under some binary operator ⨁ such that 𝑎 = 𝑎⨁𝕀 =

𝕀⨁𝑎 for all 𝑎 ∈ 𝕌. For instance, one is an identity element for multiplication, any number times one

returns itself. See also Reduce and Scan.

Idle Cycle: any machine cycle where a processing core is not doing useful work. When a program is

running, there are multiple causes (ramp-up/ramp-down time, hazards, cancellations …) which lead to idle

cycles. See also stalls.

ILP: See instruction-level parallelism.

ILP Wall: The limits to automatic parallelism given by the amount of parallelism naturally available at

the instruction level in serial programs. This wall was effectively reached in the early 2000’s when new

ILP features that gave at best a 1-3% performance gain over existing ILP approaches cost significant

amounts of silicon real estate to implement in hardware.

Information Hiding: Information hiding segregates the design decisions about the interface for using an

algorithm from the actual implementation of that algorithm. The goal is to provide a stable interface

(which seldom changes) for other programmers to use a specific function, class, module, or program while

hiding the implementation details from those programmers (this allows the underlying implementation to

change more frequently as needed to fix bugs and improve performance). In other words, the details of the

implementation becomes a black box from the point of view of the user, all that matters is the interface

which allows access to the desired behavior. Encapsulation is often used to enforce information hiding and

these two terms are often used interchangeably. See also object-oriented programming.

Implementation: A specific section of code, function, module, or program that realizes a software

design to solve a problem. The implementation is written by a programmer in a specific programming

language and then compiled and linked into an executable program. The program solves the problem when

given correct inputs and run. The implementation may use various algorithms, design patterns, and idioms

in solving the problem. Some implementations are better than others. A good implementation should be

correct, robust, and fast. Correct means the code solves the original problem as intended. Robust means

that the code doesn’t crash even when given incorrect inputs. Fast means the code runs with sufficient

374

performance that an end user is willing to wait for the output results (the code return results in seconds,

minutes, or hours not after months, years or decades).

Implementation Pattern: A pattern that is specific to efficient implementation using specific hardware

mechanisms.

Incoherent Memory Access: Refers to memory accesses which don’t support (or only weakly support)

spatial locality. In other words, a batch of memory accesses will tend to be scattered across the memory

address space. Each memory access will tend to bring in an entire cache-line into cache just to read one

data item (or byte). Randomly picking data from a data set is a good example of incoherent memory

access. Incoherent memory access results in poor I/O throughput as it under-utilizes caching which is

based on spatial locality.

Inclusive Scan: A type of scan where the ith output element (si) is the total sum of the first i elements

from an input array A under some binary associative operator ⨁ with identity 𝕀, in other words 𝑠𝑖 = 𝕀 +

∑ 𝑎𝑗
𝑖
𝑗=1 . Compare with Exclusive Scan.

Indexing: Is an optimization technique that represents a large data object by a simple index often called a

key to improve the performance of searches, sorts, and table lookup. Indexing usually assumes a trivial

function for computing the index from the original data object. Often the index (or key) is stored as part of

the original data object. See hash look-up.

Induction: When proving a statement true, the principle of mathematical induction is often used. For

proving computer science algorithms correct based on induction, a third requirement of Termination is

added to the Basis and Inductive Steps. The Termination step needs to prove that the algorithm will

actually end after a finite number (n) of steps. To implement an algorithm based on induction, the iteration

pattern is often used.

Inheritance: In object-oriented programming, inheritance is when one object or class called the child

class is based on (derived from) another object or class called the parent class and inherits the same default

behavior (interface and methods) from the parent class. However, certain “virtual” methods may be

specified as polymorphic – there is a default implementation in the parent class and a possibly different

375

(overloaded) implementation in the child sub-class. For instance, a draw method in a parent shape class

may do nothing but the overloaded draw method in a child “box” class might know how to draw a rectangle

based on the specific attributes of that object (width, height, color). See also object-oriented programming.

Inlining: Inlining, also known as inline expansion, is an optimization technique implemented by a

programmer or compiler to replace a relatively short function call with the entire function body instead.

This optimization often may improve runtime performance by reducing function call overhead and giving

optimizing compilers more opportunities for optimizations without being stopped by function boundaries.

On the negative side, the resulting application binaries are often larger and the larger instruction sizes may

result in more instruction cache misses which slow down performance.

In-Order Execution: With in-order execution, the hardware executes a program (instruction stream)

sequentially in the exact same order that the instructions were laid out in the original program. Contrast

with out-of-order execution.

Instance: In a map pattern one invocation of the elemental function on one data element of the map.

Instruction-Level Parallelism (ILP): A type of parallelism. Instruction-level parallelism (ILP)

exploits parallelism found in a sequential instruction stream by re-ordering, grouping, and executing

independent instructions in parallel without changing the actual program results (as compared to a simple

serial computer).

Interleaved Scheduling: With interleaved scheduling, the thread scheduler (hardware or software)

switches between threads every few cycles (as often as once per cycle). All active threads (or warps) are

executed in turn, typically in a round-robin fashion. As an optimization, stalled (or blocked) threads are

skipped over. This schedule is inherently fair but may result in under-utilization of the processing core.

Intrinsics: Special function wrappers which allow direct access to a hardware’s specific instructions.

They appear to programmers as normal functions but are replaced by the compiler by a short sequence of

assembly instructions that map directly into the desired hardware instructions. See also instruction-set

architecture (ISA).

376

Instruction-Set Architecture (ISA): An Instruction Set Architecture (ISA) is a set of operations

(arithmetic, logic, control, data transfer, etc.) exposed by the hardware for performing computations.

Programmers commonly access the ISA indirectly via a compiler which transforms instructions from a

high-level language (such as C++) into machine language instructions for a specific hardware architecture

(such as PTX for NVIDIA GPUs). The ISA can also be accessed directly by a programmer using

intrinsics.

Instruction Throughput: The average number of instructions processed per second over the duration

of a program, algorithm, or function. Typically measured in mega-instructions per second (Mi/S) or giga-

instructions per second (Gi/S).

Instructions per Cycle (IPC): Instructions per cycle (IPC) is the average number of instructions

retired per cycle on a particular computer hardware architecture. See also multi-issue.

I/O Throughput: The number of bytes transferred per second during the execution of a program,

algorithm, or function. Typically measured in mega-bytes per second (MB/s) or giga-bytes per second

(GB/s).

Irregular Parallelism: Parallelism using heterogeneous tasks or different sized data runs across threads.

Irregular work makes load balancing work across threads more difficult.

Iteration Pattern: A serial pattern where the same set of instructions is executed repeatedly and in

sequence.

Join: A join is where multiple threads of execution are merged into a single thread of execution which

continues on from the join point. All other threads (in the join) are terminated or re-used for other

purposes. See also fork.

Join Point: The point in the code where a join takes place.

kd-Tree: A kd-tree is a hierarchical spatial partitioning data structure that is used to organize points (or

other geometric objects) in d-dimensional space for faster geometric searches. A kd-tree can be built in

O(n∙log n) time, takes O(d∙n) storage, and can find the closest point to a query point in O(d∙n(1-1/d)) worst-

case time, with an expected time of O(d∙log n). See also BSP Tree, octree, and nearest neighbor search.

377

kNN: See k-Nearest Neighbor.

k-Nearest Neighbor: A type of Nearest Neighbor Search (kNN) where each query point in a query set

Q is matched to the k closest points in a search set S under some distance metric. See also kd-tree.

Kernel: 3 definitions: 1) Key code sequence for an algorithm 2) Small section of code that performs the

crucial portion of an algorithm. 3) On GPUs, a Kernel is the official name for functions launched by the

CPU host but executed on the GPU device to implement a data-parallel algorithm.

Kernel Termination: Kernel termination is waiting until a GPU kernel has fully completed execution

before launching the next GPU kernel as part of a larger parallel algorithm. This allows a very coarse-

grained form of parallel coordination or barrier synchronization across all the threads in a CTA.

Key: For comparison-based sorts, a key is the primary value used to compare two objects to determine

their relative sorted order (less than, equal, or greater than). For Radix Sort, A key is a numeric value taken

from a large fixed-size numeric range [0, m). A key is written in a base, or radix, as a string of digits,

where each specific digit value is taken from a small fixed-size numeric range [0, d). Typically, the radix is

much smaller than the keys range, d ‹‹ m. For Example: A 32-bit number using a base 16 radix would

require at most a string of 8 hexadecimal digits (=⌈log16 232⌉) to represent.

Lambda Expression: An expression that returns a lambda function.

Lambda Function: A lambda function is an anonymous function. This feature has been part of

languages like LISP for a long time but was only recently added to C++ per the C++11 standard. A lambda

function enables a fragment of code to be treated as a function parameter and passed into another function

without having to write a separately named function or functor for this purpose.

Lane: A lane is the idea of focusing on a single item within some larger group of which it is a part, similar

to a lane within a road. Three similar definitions: 1) A single SP core within a SM(X) core is sometimes

called a lane. 2) A single thread within a thread warp or thread block is sometimes called a lane. 3) A

single data element(s) being worked on by a single thread within a thread warp or block is often called a

lane.

378

Latency: The duration of time it takes to issue a request until its corresponding response is received.

Latency is measured using units of time such as machine cycles, nano-seconds, seconds, days, etc. Latency

stalls on computers can be long (hundreds of machine cycles) often caused by waiting on I/O operations or

other system resources, or short (20 cycles or less) often caused by hardware schedulers issuing NO-OP

commands to overcome hazards that would otherwise jeopardize correct behavior. CPUs are sometimes

described as latency-focused architectures as the goal is to minimize the total running time of a single

application.

Latency Hiding: On older architectures, when a thread of execution would stall waiting on some

response, the core would often idle doing no useful work. Modern GPU hardware schedulers can avoid

unnecessary idling by 1) switching from the stalled thread warp to another active warp (aka Thread-Level

Parallelism TLP; or by 2) finding other independent instructions that can be executed now safely (aka

Instruction-Level Parallelism – ILP). The process of keeping cores busy in the presence of latency stalls

via TLP (other warps) or ILP (other instructions) is known as latency hiding. Latency hiding increases

processing throughput.

Left-Balanced: A balanced binary tree in which the left sub-tree of each node is filled before the right

sub-tree is filled. Informally, leaf nodes only occupy the leftmost positions in the last level of the tree.

Left-Balanced Median Position: Given n points in a parent node, the left-balanced median position

(LBMpos) is the point which would split the parent node into two child nodes {left, right} which eventually

would form an entire left-balanced tree. The LBMpos can be found in 3 steps as follows: 1) ℎ =

 ⌈log2(𝑛 + 1)⌉ 2) ℎ𝑎𝑙𝑓 = 2(ℎ−2) 3) 𝐿𝐵𝑀𝑝𝑜𝑠 = ℎ𝑎𝑙𝑓 + min (ℎ𝑎𝑙𝑓, 𝑛 − 2 ∗ ℎ𝑎𝑙𝑓 + 1). Note: The above

formulas do not work correctly for small values (n ≤ 3). The correct LBMPos for n = {1, 2, 3} are {1, 2, 2}

respectively.

LIFO: Abbreviation for last-in, first-out. For instance a group of people using an elevator typically do so

in LIFO order. The first people to enter the elevator move to the back to make room for others and are

typically the last ones off the elevator when reaching the destination floor. Contrast with FIFO.

379

Light-weight context: A light-weight thread (or warp) context contains just a few items (typically 32

registers or less) and can be context switched quickly by a hardware scheduler (in just a few machine

cycles). Light-weight contexts support fine-grained parallelism.

Little ‘o’ Notation: Complexity notation that denotes an asymptotic strict upper bound on resource

usage; written as o(g(n)). Little ‘o’ notation is useful for comparing the algorithmic efficiency of different

algorithms. o(g(n)) = {f(n) : there exist positive constants c and n0 such that 0 ≤ f(n) < c∙g(n) for all n ≥ n0

}. See also asymptotic complexity, big ‘O’ notation, big ‘omega’ notation, little ‘omega’ notation, and big

‘theta’ notation.

Little ‘omega’ Notation: Complexity notation that denotes an asymptotic strict lower bound on

resource usage; written as ω(g(n)). Little ‘omega’ notation is useful for comparing the algorithmic

efficiency of different algorithms. ω(g(n))= {f(n) : there exist positive constants c and n0 such that 0 ≤

c∙g(n) < f(n) for all n ≥ n0 }. See also asymptotic complexity, big ‘O’ notation, Little ‘o’ notation, big

‘omega’ notation, and big ‘theta’ notation.

Linear Speedup: Speedup where performance improves in direct proportion to the computation

resources used to solve the problem. Achieving a linear speedup is considered optimal for parallel

programming.

Little’s Law: A formula relating parallelism, concurrency, and latency. This theorem by John Little

comes originally from queuing theory. Reinterpreted for parallel processing, in a parallel system that has

reached steady-state equilibrium, it ties the average request rate (𝜆), the average time each request takes to

be processed (W), and the number of concurrent requests pending in the system (L) as follows: 𝐿 = 𝜆𝑊.

Live-Lock: A concurrency issue where multiple threads (or tasks) are active yet cooperate to block each

other from making forward progress towards work completion. Similar to two people trying to pass each

other in a hallway but they both keep stepping into each other’s way. See also deadlock and starvation.

Load Balancing: Refers to the practice of distributing work among multiple threads (or tasks) so that all

threads (or tasks) are kept busy most of the time. Load balancing can be done using equal partitioning,

dynamic work assignment, and work stealing.

380

Load Imbalance: A situation where distributing uneven sizes of tasks or runs onto worker threads

results in some threads finishing early and then idling while waiting for other threads to complete the larger

tasks or runs.

Locality: The notion that a data value in storage (or nearby values) will be frequently accessed during the

course of an executing program. Systems with strong locality are good candidates for optimizations which

exploit locality, such as caching, pre-fetching, pipelining, branch prediction, etc. There are two main types

of locality – temporal locality and spatial locality.

Local memory: Local memory is a CUDA technique where register spills (extra variables) are put into

global memory and accessed at global memory speeds. This enables kernel compilation for complex

algorithms at the cost of relatively slow I/O for the affected variables.

Lock: A generic term for objects used to ensure mutual exclusion between multiple parallel threads (or

tasks). Only one thread (or task) at a time may own the lock. Other threads (or task) may attempt to

acquire the lock but must wait until the owning thread (or task) releases the lock.

Lock-Free Algorithm: A non-blocking algorithm is lock-free if there is guaranteed system-wide

progress across all threads. See also wait-free algorithm.

Loop: A sequence of code which implements the iteration pattern. Common loops include while

(test) {…} statements, do {…} while (test) statements, and for (setup; test;

increment) {…} statements.

Loop-carried dependency: A dependency that exists between multiple iterations of a sequence of code

implementing the iteration pattern.

Loop Fission: A loop optimization technique where a single loop with a complex body is broken into

two or more loops with simple bodies. The goal with this technique is to improve locality when accessing

I/O arrays for better performance. Contrast with loop fusion.

Loop Fusion: A loop optimization technique where two or more loops with compatible indexing

executed in sequence are rewritten and merged into a single loop. This technique can help reduce loop

overhead and the total I/Os into input & output arrays. Contrast with loop fission.

381

Loop Interchange: A loop optimization technique where a compiler or a programmer exchanges the

order of a set of nested loops (inner-outer ↔ outer-inner) for better I/O performance. Typically the change

is made to better align the data access pattern into memory with the underlying cached memory architecture

layout.

Loop Invariant Code Motion: If a value is computed inside a loop during every loop iteration but yet

has the same value on each loop iteration. Performance can be improved greatly by moving the value’s

calculation outside the loop, where it is computed just once, stored in a register, and then reused as needed

inside the loop.

Loop Optimizations: Loop optimizations are a family of implementation optimization techniques

targeted at increasing program performance by reducing the overhead of loops. Since loops are frequently

used and executed repeatedly, they are good targets for optimization. Loop optimizations include – loop

fission, loop fusion, loop interchange, loop invariant code motion, loop reversal, loop unrolling, and loop

unswitching. See also the related concepts software pipelining and tiling.

Loop Overhead: The necessary instructions (increments, branch tests, etc.) needed to iterate repeated

over a loop which implements the iteration pattern.

Loop Reversal: A subtle loop optimization technique which reverses the order in which values are

assigned to the index variable. This technique can sometimes eliminate loop carried dependencies and

enable other loop optimizations.

Loop Unrolling: A loop optimization technique performed manually by a programmer or automatically

by a compiler to improve performance by reducing loop overhead. With loop unrolling, instead of

processing one array element per loop iteration, we process k array elements per iteration, this reduces

pointer arithmetic and amortizes the cost of loop overhead across k elements. This increases register usage

from O(1) to O(k). Care must be taken to deal with the last few left-over data elements [1..k-1] which don’t

fit into a single loop iteration. See also software pipelining.

Loop Unswitching: A loop optimization technique where a conditional inside a loop is moved outside of

the loop by duplicating and rewriting the loop twice once each for the {true} and {false} clauses.

382

Many-Core: A processor with tens, hundreds, or even thousands of parallel processing cores.

Many-to-One: A mapping relationship where many source objects are related to one destination object

in a set, table, or array of parallel objects. See also cardinality, one-to-one, one-to-many, and many-to-

many.

Many-to-Many: A mapping relationship where many source objects are related to many destination

objects in a set, table, or array of parallel objects. See also cardinality, one-to-one, one-to-many, and many-

to-one.

Map Pattern: With a map pattern, a single elemental function is applied to all the data elements in an

array. The data elements are mapped in parallel onto multiple processing threads (or cores). The elemental

function requires no coordination between parallel threads resulting in embarrassingly parallel

performance.

Masking: Two definitions: 1) Bit-level technique for retrieving only the desired bits from a larger

machine word of bits. 2) Another term for how GPUs implement vectorized branching across a warp of

threads using serialization and predication. See also Branch Divergence.

Massively Parallel: Refers to hardware that comprises a parallel system having many processing cores.

The meaning of “many” keeps increasing, but currently, means hundreds, thousands, or even hundreds of

thousands.

Mathematical Induction: See Principle of Mathematical Induction.

Median of Three: Quicksort tends to slow down to quadratic time O(n2) when encountering sorted

(reverse sorted) or nearly sorted input data. The problem is that each pivot results in a degenerate parition,

a trivial set with only one (or a few) item(s) and another large set with all the remaining items, eventually

requiring a linear number of partitions O(n) to sort the data. The median of three technique helps speed up

Quicksort back to log linear time O(n log n) for these situations. It works by picking 3 random pivot values

from the current partition range and then choosing the median of these 3 values as the actual pivot. This

greatly increases the probability that each pivot will partition the data into two large sets, resulting in a

logarithmic number of partitions.

383

Median Tree: A left-balanced kd-tree in which the the n points belonging to a parent node are split

almost exactly in half between the two child nodes. Given a current splitting axis, the median point is

found, whose associated cutting plane separates the left and right child nodes into having ⌈𝑛/2⌉ and

⌊𝑛/2⌋ = 𝑛 − ⌈𝑛/2⌉ points respectively. Informally, at most there is a difference in size of one point

between the left and right child nodes.

Member Function: A function associated with an object-oriented class that is used to access or

manipulate the objects specific data.

Memory Alignment: See alignment.

Memory Constraints: Various hardware limits on sizes, access speeds, transfer rates, cache-line sizes,

etc. for each specific type of memory in a specific memory architecture.

Memory Hierarchy: A memory hierarchy in computer storage is a multi-level storage scheme which

distinguishes each level in the hierarchy by its access speed. Each type of memory has many properties and

performance characteristics of which the three most important are speed, size and price. Modern memory

hierarchies typically have four main levels which themselves are often sub-divided into smaller hierarchies.

1) Registers 2) On-Chip Cache 3) On-line Main Memory (RAM), 4) Off-line file-based storage (hard

drives). The top most level is usually the fastest, smallest, and most expensive. Each subsequent level is

usually slower, larger, and less expensive than the previous level. The overall goal is to provide a memory

system with amortized memory access speeds almost as fast as the fastest level but with an amortized cost

per byte almost as low as the cheapest level of the hierarchy.

Memory Sub-system: The portion of a computer system (or chip) responsible for moving instructions

and data between memory and the computational processing cores. Modern memory sub-systems often

include connections to I/O devices such as graphics cards, disk drives, and networks. Modern memory sub-

systems are typically implemented as a memory hierarchy which includes support for caching.

Memory Wall: A limit on parallel scalability. Memory bandwidth (and more generally communication

bandwidth) and latency is not scaling at the same rate as computational bandwidth. See also power wall.

384

Metaprogramming: The use of one program to analyze, generate, manipulate, and/or transform other

programs. See also generic programming and template metaprogramming.

Message Passing: See remote message passing.

Message Passing Interface: The message passing interface (MPI) is a standardized and portable

remote message-passing system designed to function on a wide variety of parallel computers. The standard

defines the syntax and semantics of a core of library routines useful to a wide range of users writing parallel

programs based on remote message-passing in different computer programming languages such as Fortran,

C, C++, and Java. This standard has fostered the development of a parallel software industry, and

encourage development of portable and salable large-scale parallel applications.

Method: See member function.

MIMD: A category in Flynn’s taxonomy where processing occurs using multiple data streams and

multiple instruction streams in parallel. This model supports task-level parallelism. MIMD is inherently

more flexible than SIMD and thus more generally applicable to any algorithm. But MIMD is also

inherently more expensive than SIMD as well. Beowulf clusters, Clouds, and Grids are all examples of

MIMD computers that exploit request-level parallelism.

Minimal kd-tree: A minimal kd-tree uses exactly n points re-ordered as kd-tree search nodes to

represent the n points contained in a search set S. Note: This doesn’t use a linear O(n) amount of points but

exactly n points.

MISD: A category in Flynn’s taxonomy where a single data stream is executed in parallel on multiple

instruction streams. This category is seldom used. No commercial architecture has been built using this

model to date. The only partially related example I can think of is that the Space Shuttle executes three

similar programs on three different computers which then vote (majority wins) in order to hopefully avoid a

catastrophic software or hardware bug in any one system crashing the shuttle.

Monoid: An associative operator in some domain that has an identity element.

Moore’s Law: Describes a long-term trend that the number of transistors that can be incorporated

inexpensively on an integrated circuit chip appears to double approximately every 2 years. It is named for

385

Intel co-founder Gordon Moore who first described this trend in a 1965 paper. This law is often loosely

(and incorrectly) used to describe any form of computational improvement that appears to grow

exponentially over time.

Motif: Sometimes used as a synonym for pattern.

MPI: See message passing interface.

Multi-computer Machine Model: An abstract model of a parallel computer architecture for

programmers. Under this model, a parallel computer is composed of several smaller computers. This

model generally refers to an architecture in which each processor has its own stand-a-lone memory as

compared to multiple processors with a shared memory. Contrast with the von Neumann machine model.

See also multi-core, the RAM machine model and the PRAM machine model.

Multi-Core: A processor with multiple parallel cores. Each core supports execution of at least one

hardware thread. Typically these multiple cores have a shared memory.

Multi-Core Era: Time period after which chip designs shifted away from frequency scaling and shifted

into adding more parallel cores onto each chip. This era started in 2005 after chip architectures hit a power

wall in 2004. See also Frequency scaling era.

Multi-Issue Execution: A type of ILP, also known as super-scalar, where each core can dispatch more

than one instruction per clock cycle. Multiple independent instructions are dispatched and executed in

parallel on multiple redundant functional processing units (ALU’s & FPU’s). This is similar in concept to

having multiple assembly lines on one factory floor. The instruction scheduler must be able to detect

dependencies between instructions and only schedule multiple independent instructions when safe to do so.

See also pipelining, out-of-order execution and simultaneous multi-threading.

Multi-ported Memory: Multi-ported memory allows multiple reads/writes to occur in parallel when

accessing the memory system for faster access and transfer speeds.

Multi-threading: With multi-threading, also known as thread-level parallelism, multiple active threads

from a pool of thread are mapped onto and executed on multiple cores in parallel. Multi-threading can also

be executed on a single-core system using time-slice multiplexing (multi-tasking) to switch between

386

threads frequently. This results in logical concurrency not true parallelism but if the switching is fast

enough it will appear to an end-user that multiple applications are running in parallel on the machine.

Multi-threading with more threads than cores enables latency hiding for better system performance by

avoiding idle waiting.

Mutex: Three similar definitions: 1) Short-hand for /mutual exclusion/. 2) Synonym for a lock object.

3) A specific type of lock object.

Mutual Exclusion: With Mutual exclusion, Gate keeper objects serialize access to a section of code

and/or data objects. Mutual exclusion includes objects such as Mutex’s, semaphores, and atomic

instructions. Protected code must be carefully written to ensure serialized access across parallel threads

while avoiding concurrency problems like deadlock, livelock, and resource starvation.

Nearest Neighbor Search: With a nearest neighbor (NN) search, each query point is matched to the

closest point (object) in a point cloud under some distance metric (such as Euclidean distance). This is an

important problem for many different areas of computer science, including computer graphics, machine

learning, pattern recognition, statics, and data mining. Specific types of NN searches include Query

Nearest Neighbor (QNN), k Nearest Neighbor (kNN), All Nearest Neighbor (All-NN), All k-nearest

neighbors (All-kNN), Range Query Nearest Neighbor (RNN), and Approximate Nearest Neighbor (ANN).

Nesting Pattern: A pattern that supports the ability to hierarchically compose other patterns.

Nested Reduce: A GPU implementation pattern that combines Serial Reduce & Warp Reduce building

blocks in a nested manner to reduce a large run of n elements to a single total sum.

Nested Scan: A GPU implementation pattern that combines Serial Scan, Warp Scan, & Run Update

building blocks in a nested manner to scan a large run of n elements.

NN: See Nearest Neighbor Search.

Node: 3 different definitions: 1) A node is a stand-a-lone “computer in a box”. Each node usually

consists of multiple processing cores, accelerators (GPUs), storage, and network support. Nodes are often

networked together to comprise a cluster, cloud, grid, or super computer. 2) A node is a data structure

containing a data element plus one or more links (pointers or references). A node can be used to create

387

lists, trees, and graphs. 3) An axis-aligned geometric cell used within a spatial partitioning data structure,

such as a kd-tree.

Non-blocking Algorithm: A non-blocking algorithm ensures that threads competing for a shared

resource do not have their execution indefinitely postponed by mutual exclusion. In modern usage, an

algorithm is non-blocking if the suspension of one or more threads does not stop the progress of the

remaining threads. These algorithms are often designed to avoid using lock’s and often use simple atomic

operations, such as compare-and-swap, instead. See also lock-free and wait-free algorithms.

Non-deterministic: Exhibiting a lack of deterministic behavior or ordering. So output results can vary

from run to run of a non-deterministic program using the same input each time. Contrast with

deterministic.

Non-Uniform Memory Access (NUMA): A multi-level memory system where different levels of the

memory sub-system have different access rates. This results in varying performance for a program

depending on where the data is physically located. Most modern computers are NUMA.

NO-OP: See NOP.

NOP: A NOP, or NO-OP, is a special do-nothing instruction. The instruction proceeds through an

instruction processing unit (pipelined, out-of-order, multi-issue, multi-threaded, …) without doing any

useful work or causing any side-effects. This type of instruction is useful as it is often used by hardware

(or compiler) schedulers to delay execution (by stalling) for correct execution behavior in the presence of

various hazards caused by parallel instruction processing. However, each NOP issued wastes a machine

cycle which results in core under-utilization.

nWarps: The ‹nWarps› template parameter represents thread-level parallelism on warp-threaded

hardware. This parameter allows experiments on TLP to find the best performance. The programmer must

use generic programming techniques to support a differing number of thread warps in a small range,

typically ‹nWarps=[1-8]›, See also nWork, WarpSize, and data block.

nWork: The ‹nWork› template parameter represents instruction-level parallelism on warp-threaded

hardware. This parameter allows experiments on ILP to find the best performance. The programmer must

388

use generic programming techniques to support a differing number of work items per thread in a small

range, typically ‹nWork=[1-8]›, See also nWarps, WarpSize, and data block.

Objects: Objects are a language construct that associate a group of data fields with the corresponding

code (functions) intended to act on and manage that group of data. Multiple functions may be associated

with an object and those functions are called the methods (or member functions) of that object. Objects are

considered to be members of a class of objects. And classes in turn can be arranged in a hierarchy in which

subclasses inherit and extend the features of superclasses. That state of an object may or may not be

directly accessible; in many cases access to an objects data fields may only be permitted through its

methods.

Object-Oriented Programming: Object-oriented programming (OOP) is a programming paradigm based

on objects, which contain both state (data described by data structures) and behavior (methods implemented

as code). Each object is a specific instance of a class which describes both the data structure and methods.

A class is an abstract data type with support for polymorphism, inheritance, encapsulation, and

information hiding.

Observed Speedup: The speedup of parallel code over the equivalent serial code for solving the same

problem, which is defined as

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

Occupancy: The ratio of actual thread warps (known as active warps) that are tracked and scheduled on

an SM(X) core to the theoretical maximum number of thread warps that could be tracked and scheduled on

an SM(X) core for a given GPU architecture and GPU Kernel. Occupancy = (#ActiveWarps / #MaxWarps).

Occupancy Constraints: Various hardware constraints (number of registers, shared memory

allocations, etc.) that limit the number of active warps on an SM(X) core, thus limiting occupancy.

Octree: An octree is a hierarchal spatial partitioning data structure used to speed up geometric searches.

Each tree node has exactly eight children. Octree typically are used to partition 3D space by recursively

dividing the starting bounding cube into 8 octant cubes. See also BSP tree, quad-tree, and kd-tree.

Offload: Placing part of a programs computation on an attached device such as a GPU or co-processor.

389

Offline: An algorithm which runs independently of the main CPU. For instance on an accelerator such as

a GPU or co-processor.

Offside Node: In a kd-tree nearest neighbor search, the offside node is the left or right child node that

does not contain the current query point of interest. Contrast with onside node.

One-to-One: A mapping relationship where a source object is related to only one destination object in a

set, table, or array of parallel objects. See also cardinality, one-to-many, many-to-one, and many-to-many.

One-to-Many: A mapping relationship where a source object is related to many destination objects in a

set, table, or array of parallel objects. See also cardinality, one-to-one, many-to-one, and many-to-many.

One-to-Several: A special case of a mapping relationship where a source object is related to a small

number of destination objects in a set, table, or array of parallel objects. See also cardinality.

Online: An algorithm which can begin executing before all of its input data has been read.

Onside Node: In a kd-tree nearest neighbor search, the onside node is the left or right child node that

contains the current query point of interest. Contrast with offside node.

OpenACC: Open Accelerators (OpenACC) is a programing standard for parallel computing developed

by Cray, CAPS, Nvidia, and PGI. The standard is designed to simplify parallel programming of

heterogeneous CPU/GPU systems. OpenACC is similar to OpenMP and will be merged into a future

release of OpenMP.

OpenCL: Open Computing Language (OpenCL) was originally a standard defined by the Khronos group

for supporting parallel and vectorized computations on graphics processors and attached co-processors.

However, OpenCL has also been extended to specify parallel and vectorized computations on multicore

host processors as well.

OpenMP: Open Multi-Processing (OpenMP) is an API that supports multi-platform shared memory

multi-processing programming in the C, C++ and Fortran programming languages. It is available on most

processor architectures and operating systems (Solaris, AIX, HP-UX, Linux, Max OS X, and Windows). It

consists of a set of compiler directives, library routines, and environment variables that influence run-time

behavior. OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface

390

for developing parallel applications for platforms ranging from the standard desktop computer to the

supercomputer. OpenMP is run as a nonprofit technology consortium that includes many major computer

hardware and software vendors (including AMD, IBM, Intel, Cray, HP, Fujitsu, NVIDIA, NEC, Red hat,

TI, Oracle, and more…).

Optimization Techniques: A collection of programming (or compiler) techniques meant to improve

the performance of a section of code, a function, a class, a module, or an entire program. See also loop

optimizations, data-flow optimizations, and inlining.

Out-of-order Execution: With out-of-order execution, the hardware is allowed to re-organize the

original program (instruction stream) order. This is allowed as long as re-arranging the order of

instructions will not change the correct behavior of the program as compared to an in-order execution.

Advanced hardware ILP techniques such as score-boarding and Tomasulo’s method implement out-of-

order execution for more efficient utilization of the processing cores. Software compilers can build

instruction dependency graphs as DAGs and then perform a topological sort to find valid instruction re-

orderings for better ILP performance. Contrast with in-order execution. See also pipelining, multi-issue

execution, and simultaneous multi-threading.

Output-Dependency: See write after write (WAW).

Over-decomposition: A parallel programming style where many more tasks, work-items, or data runs

are specified than there are worker threads to execute them. On the positive side, this can benefit load

balancing and latency hiding. On the negative side, this can result in increased parallel overhead.

Over-subscription: A parallel programming style where many more threads (or warps) are scheduled to

run than there than there are processing cores to support them. On the positive side, this can help with

latency hiding as individual threads (warps) stall. On the negative side, this can result in increased parallel

overhead.

Pack Pattern: A data management pattern where certain elements of an array are discarded and the

remaining elements are placed in a contiguous sequence, maintaining the relative order of the original

sequence. Compare with the expand pattern.

391

Pad and Rake: A technique for mitigating bank conflicts. Warp Padding adds an extra data element

(column) before or after each data warp (32 elements). This works well for sequential data runs that are a

power of two in length, k=[2,4,8,16,32]. Run padding adds an extra data element (column) before or after

each individual per-thread run. This works well for sequential data runs that are even in length,

k=[6,10,12,14,18,20,…,30]. Raking changes indices to skip over the extra pad columns during indexing

operations. Note: Sequential runs which are odd in run length, k=[1,3,5,7,9,11,…,31] do not cause bank

conflicts and thus do not require the Pad and Rake technique..

Padding: Extra unused pad columns are inserted into shared memory arrays to prevent bank conflicts

when loading short sequential runs for each thread in a warp. This works quite well for runs that are

powers of two [2,4,8,…,32]. Padding requires raking to skip over the extra pad columns during indexing

operations. See run padding and warp padding.

Page: The granularity at which virtual to physical address mapping is done in virtual memory

management. Within a page, the mapping of virtual to physical memory addresses is continuous.

Page Thrashing: Page thrashing, also known as TLB Thrashing, occurs when a program spends most of

its time loading and reloading virtual pages into physical memory instead of getting useful work done.

This is typically caused by a large program (larger than can fit into physical memory) with a frequently

accessed working set of active pages which get mapped from their own unique virtual addresses onto the

same physical addresses. The O.S. keeps ping-ponging between evicting and reloading a small set of 2 or

more logical pages onto the same physical page when instructions (or data) in each individual page are

referenced.

Parallel: Physically happening simultaneously. Two or more threads (or tasks) that are all actually doing

work that overlaps at some point in time are considered to be operating in parallel. When a distinction is

made between concurrent and parallel, the key is whether at any point in time the work was done

simultaneously. Multi-tasking operating systems have supported concurrency for decades via multi-

threading even when simultaneous execution was impossible because there was only one processing core.

392

Parallel Algorithm: With Parallel Algorithms, the depth efficiency is logarithmic, D(n) ≈ O(log n). The

programmer typically deals with a divide and conquer type problem where there is a need to coordinate

work across parallel threads during the individual steps of the parallel algorithm.

Parallelism: With parallelism, a programmer or system uses multiple resources concurrently to solve

problems to increase performance and/or throughput. There are many types of parallelism including

Instruction-, Thread-, Task-, and Data-Level parallelism.

Parallelization: The act of transforming serial code into parallel code. The parallelization of a program

allows at least parts of it to execute in parallel.

Parallel Overhead: The amount of time spent coordinating parallel threads (or tasks) as opposed to

doing useful work solving the original problem. Parallel overhead can be caused by factors such as

creating threads, data communications between threads, synchronizing execution between threads, and

terminating threads. In addition, extra overhead can be imposed by parallel compilers, libraries tools,

operating system, etc.

Parallel Data Management Patterns: Parallel programming patterns for managing data. Examples

of parallel data management patterns include – gather, scatter, pack, pipeline, and geometric decomposition

including (stencil, partition). See also serial data management pattern.

Parallel Pattern: Programming patterns arising specifically in support of parallel computations.

Examples of parallel patterns include the map pattern, the reduction pattern, the scan pattern, the fork-join

pattern, and the partition pattern.

Parallel Program: A parallel program consists of multiple work-items (tasks or runs of data) executing

in parallel on multiple cores.

Parallel Slack: The amount of “extra” parallelism available above the minimum necessary to use all the

available parallel computing resources. See also over-decomposition and over-subscription.

Parameter: A value, reference to a value, or a pointer to a value(s) that is passed into a function,

procedure, subroutine, command or program that represent input element(s) that need to be processed;

393

represent control elements that signal how other parameter(s) should be processed; and/or represent output

element(s) where processed results should be stored. See also by value, by pointer, and by reference.

Partition Method: A sub-routine method used by both Quickmedian and Quicksort. Given an input set

with a sub range [a, b], and a pivot value (pv) randomly chosen from the range of input elements. The

partition method distributes all the elements in the range [a, b] into three data sets {Left: all elements less

than pv, Middle: all elements equal to pv, and Right: all elements greater than pv }. This method takes

linear time O(n).

Partition Pattern: A pattern that decomposes the computational data domain for an algorithm into a set

of non-overlapping subdomains called runs, tiles, or blocks. Runs are typically 1D, tiles are typically 2D,

and blocks are typically 3D. Input data and output results may use different partition patterns as

appropriate. See also the geometric decomposition pattern which is similar but allows overlap between

sub-domains.

Pass: For Radix Sort, given data elements represented by numeric keys from a range [0, m), with a fixed-

size radix with digits in the range [0, d), then the full radix sort will take k = ⌈log𝑑 𝑚⌉ passes to fully sort,

where each sorting pass (one pass per digit in the key) is done using a stable sort such as Counting Sort.

Pattern: A pattern is a recurring combination of data and task management, separate and distinct from

any specific algorithm or data structure. Patterns are universal in they apply to and can be used in any

programming system. Patterns are also known as dwarfs, motifs, and algorithmic skeletons. Patterns are

not necessarily tied to any hardware architecture, programming language, or operating system. Though

features of the architecture, language, or OS may make implementing patterns easier in that specific

environment. See also parallel pattern.

PCIe bus: A peripheral bus supporting relatively high bandwidth and DMA, often used for attaching

specialized co-processors such as GPUs and NICs to the motherboard.

Peak Performance: The performance level (throughput, bandwidth) that a computer is guaranteed never

to exceed because of hardware limitations.

394

Permutation Scatter Pattern: A form of the scatter pattern in which multiple parallel writes to a

single storage location are disallowed. This form of scatter is deterministic but can only be considered safe

if collision are checked for and prevented.

Pipeline Delays: Short stalls in instruction processing caused by various pipeline hazards. The most

common delay is caused by instruction dependencies (RAW).

Pipeline Parallel Pattern: A set of data processing stages connected in series, generally the output of

one stage becomes the input of the next stage in the sequence. Each stage of the pipeline can be scheduled

onto its own thread allowing the data elements in different stages of the pipeline to be processed

concurrently. FIFO queues can be used to help smooth out performance differences between different

stages of the pipeline. Many algorithms can be quite naturally described as simple pipelines. A pipeline

with only k stages only scales naturally up to k threads. To scale beyond the number of pipeline stages, it is

necessary to exploit other forms of parallelism within each pipeline stage.

Pipelining: Two definitions: 1) Pipelining divides tasks (or instructions) into multiple sequential stages.

Work items are processing sequentially with the output from one stage becoming the input into the next

stage similar to an assembly line. 2) Pipelining is a form of instruction-level parallelism. With pipelining,

the chip architects breaks each computational instruction into multiple processing stages. Each

heterogeneous stage is performed by different processing units. The data operands stream through the

hardware pipeline much like an assembly line.

Pipelined Processor: A pipelined processor can execute up to k instructions in parallel using k

instruction processing stages laid out in a sequential pipeline where the output of each stage becomes the

input to the next stage. This is similar in concept to a factory assembly line. The MIPS architecture is a

well-known example architecture with 5 heterogeneous instruction processing stages: Instruction Fetch,

Instruction Decode, Execute, Memory, and Write-Back often abbreviated as IF, ID, EX, MEM, WB.

Pivot Value: Part of the partition method (used in quickmedian and quicksort), where an arbitrary value

from the current partition range [min, max] is chosen as the pivot. The rest of the elements in the current

partition range are then distributed into three data sets those less-than the pivot value, those equal to the

pivot value, and those greater than the pivot value.

395

Point to Point Coordination: Involves two threads (or tasks) communicating with each other with one

thread acting as the producer of data and the other thread acting as the consumer of data.

Point Location Problem: Given a spatial partitioning data structure, and a query point (q) to search

for, the point location problem wants to find the geometric region (cell or node) within the data structure

which actually contains q. This is a simpler search problem then nearest neighbor search.

Polymorphism: A polymorphic data type or object-oriented class is one whose operations (or methods)

can also be applied to the data values of other different but semantically compatible data types or classes.

There are many different ways of achieving polymorphism including function overloading, generic

programming, and inheritance between parent and child classes. See also object-oriented programming.

POSIX Threads: POSIX threads, often referred to as Pthreads, is a POSIX standard API for creating

and managing threads as well as creating and managing locks to manage concurrency issues.

Implementations are available on many Unix-compatible operating systems such as FreeBSD, NetBSD,

OpenBSD, Linux, Max OS X, Solaris. DOS and Microsoft Windows implementations also exist.

Power Wall: A limit to the practical clock rate (frequency) of serial processors caused by the non-linear

relationship between power and switching speed which limits parallel scalability. Computational

performance (throughput) doubled approximately every 2 years from frequency scaling alone until chip

architectures hit a power wall around 2004. This power wall means that running transistors faster than ~4

GHz generates more heat than simple air flow cooling (IE fans) can safely dissipate. Since 2004, most

processors run between [1..4] GHz as a maximum upper bound on frequency to avoid overheating. See

also memory wall, frequency scaling era, and multi-core era.

PRAM Machine Model: An abstract extension of the serial RAM machine model to support parallel

programming. Under this model, one assumes that parallel random access to any data element in memory

(storage) can be done in a constant amount of time. Four variations model whether parallel reads and

writes from/into memory are exclusive or concurrent, only 3 variations are actually used in practice – 1)

Exclusive Read Exclusive Write (EREW), 2) Concurrent Read Exclusive Write (CREW), 3) Concurrent

Read Concurrent Write (CRCW).

396

Pragma: A form of program markup used to give hints or directions to a compiler but not change the

semantics of a program written in a particular programming language. Also known as a compiler directive.

Precise Exception: In a pipelined (or parallel) instruction processing architecture, A precise exception

means that a hardware exception has just occurred and all instructions in the stream before the exception

have been successfully executed and all instructions after the instruction that caused the exception have not

yet been executed. Modern processing cores require support for precise exceptions to support virtual

memory. To handle precise exceptions, the processing core must commit changes in the original sequential

program order. Many pipelined architectures make exceptions precise by cancellation.

Precision: The detail to which a number (typically floating point) is expressed. Lack of precision is the

source of rounding errors in computations. The fixed and finite number of bits used to store a number

requires some approximation of the true underlying value. These errors accumulate as multiple

computations are made to the data in operations such as reductions and scans. Precision is measured in

term of the number of digits that contain meaningful data, known as significant digits. Significant digits in

computer science are often measured in bits because most floating-point arithmetic is done in radix-2.

Radix-10 arithmetic should be expressed in terms of decimal digits when used.

Pre-computation: Precomputation is an optimization pattern where the programmer writes code that

precomputes a value (or range of values) ahead of time which can then be stored in a look-up table and then

reused at runtime for faster performance. For example, one might precompute the cosine of an angle at 100

separate angles between [0, 𝜋/2) and then linearly interpolate between two bounding angles around the

requested angle to get a close approximation to the actual results. This is a classic time-space trade-off and

also a performance-accuracy tradeoff.

Predication: GPUs support conditional branching across thread warps using serialization via

predication. Predication supports a special active/inactive flag across all 32 threads in a warp for all ISA

instructions. Only active threads will actually execute the predicated instruction. Inactive threads will

suppress any hardware results, effectively treating the instruction as a NOP instead. Branch outcomes

{true, false} are used to set the predicate warp flags on a per-thread basis when executing the {true} and

{false} sections of code associated with a branch condition.

397

Pre-emptive Multi-tasking: With pre-emptive multi-tasking, The scheduler (hardware or software)

tries to guarantee each thread a regular “slice” of processing time in order for each thread to make forward

progress on its own execution. The system scheduler may pre-empt any thread at any time by pausing it,

and context switching to another active thread of execution. Pre-emption is usually done using an interrupt

mechanism supported by the hardware (and/or operating system). Most modern operating systems support

pre-emptive multi-tasking for multi-threading. See also cooperative multi-tasking and time-slice.

Pre-fetching: A programming optimization technique for increasing memory or I/O performance by

fetching data shortly before the code actually needs it so that it will already be in faster cache memory

when we actually do need it. This is a form of latency hiding. Pre-fetching requires a predictable access

pattern for programmers to take advantage of. Care must be taken not to pre-fetch too much data otherwise

it may be evicted by the time we actually try to use it. Too much pre-fetching could even lead to decreased

performance due to cache thrashing.

Principle of Locality: See locality.

Principle of Mathematical Induction: Proving a predicate true for all cases can be done using the

principle of mathematical induction as follows: Let P(n) be a predicate, where n is an arbitrary positive

integer. Suppose we can prove the following two statements. 1) Base Case: P(n) is true for all n ≤ n0,

where n0 is a small integer (typically one). 2) Inductive Step: Whenever P(k) is true, it follows that P(k+1)

is also true. Then it follows that P(n) is true for all positive integers n. See also induction.

Priority Scatter Pattern: A deterministic form of the scatter pattern in which an attempt to write

multiple values in parallel to a single storage location results in one value (and only one value) being stored

in the location. The value picked is based on some priority function, with all other values being discarded.

The unique priority given to each parallel write in a priority scatter can be assigned in such a way that the

result is deterministic and equivalent to a serial implementation.

Problem: A question, statement, or matter which seeks some solution. The problem is often uncertain or

difficult. For mathematical problems, the solution is provided using a step by step application of

mathematical operations resulting in a set of concrete numbers or an abstract formula. For software

problems, the problem is often described in terms of transforming some set of input data into another set of

398

output results. The software solution is provided using step by step computations encapsulated as a

program. See also algorithms, design patterns, and implementation.

Process: An application-level unit of parallel work. A process has its own thread of control is typically

managed by the operating system. Usually, unless special coordination logic is written into each program,

a process cannot access the memory of other processes.

Producer-Consumer: A relationship where the producer creates data to pass to the consumer which

consumes it in order to do further processing. If data is not consumed immediately on production, it must

be buffered. See also point to point coordination.

Program: A program, also called an executable or binary, is a sequence of machine instructions, written

to perform some specified task to solve a problem using a computer. The program is usually written by

programmers as human readable source code in some higher level language and then compiled and linked

into the actual machine language program targeted at a specific computer architecture. The program can

then be run on a computer to solve the original problem. See also ISA, solution, algorithm, design pattern.

Programming: Computer programming -- also known as coding, software development, or software

engineering -- is the iterative process of writing and editing source code to solve some set of tasks or

problems. The process involves designing, writing, testing, debugging, profiling, and maintaining the

source code for computer programs. Designing and writing source code often requires expertise in

programming languages, formal logic, algorithms, data structures, and specialized knowledge of the

application domain. Good programmers follow fundamental design properties when developing their code.

These properties include – correctness, robustness, usability, readability, portability, maintainability, and

efficiency.

Pseudo-code: Pseudo-code is an informal language-agnostic high-level description in English of an

algorithm, this description can then be used to implement the algorithm in any programming language. It

uses the structural conventions of a programming language (selection, iteration, sequences, etc.) but is

intended for human reading and understanding. Pseudo-code often omits minor details such as variable

declarations, parameter lists, sub-routine listings, etc. Pseudo-code often substitutes brief one line

descriptions of what the code should do instead of the actual code. For example: “Set array to zero”.

399

Pthreads: see POSIX threads.

Pure Function: A function whose output depends only on its input and that does not modify any other

system state (I.E. the function doesn’t cause any side effects).

QNN: See Query Nearest Neighbor.

Quadtree: A quadtree is a hierarchal spatial partitioning data structure used to speed up geometric

searches. Each tree node has exactly four children. Quadtrees typically are used to partition 2D space by

recursively dividing the starting bounding rectangle into 4 quadrant child rectangles. See also spatial

partitioning data structure, octree, and kd-tree.

Query Nearest Neighbor: A type of Nearest Neighbor Search (NN) where each query point in a query

set Q is matched to the closest point (k=1) in a search set S under some distance metric. See also kd-tree.

Query Point: A specific d-dimensional point for which to find the closest k neighboring points from

some search set S containing n points. A spatial portioning data structure is often used to speed up the

geometric search. See also Nearest Neighbor Search.

Query Set: A set Q containing m query points for which to find the closest k neighboring points from

some search set S containing n points. A spatial partitioning data structure is often used to speed up the

geometric search. See also Nearest Neighbor Search.

Queue: A basic data structure that stores data elements (commands, objects) as nodes in a list. Elements

(nodes) are typically inserted at the back of the list and removed from the front of the list resulting in an

FIFO processing order for data elements in the queue. See also Deque and Stack.

Quickmedian: A selection algorithm used to choose the kth ordered point from a set of n unordered

points. This is implemented using the partition sub-routine from quicksort. The entire algorithm takes

linear time O(n) on average and quadratic time O(n2) in the worst-case.

Quicksort: An comparison-based sorting algorithm to efficiently sort unordered data. This is

implemented using a partition sub-routine, the entire algorithm takes log-linear time O(n log n) on average

and quadratic time O(n2) in the worst case.

400

Race Condition: Non-deterministic behavior in a parallel program that is generally considered a

programming error. A race condition occurs when parallel tasks perform operations at the same time on

the same memory location and at least one of the operations is a write. Code with a race condition may

often operate correctly then mysteriously fail in unpredictable ways. Programmers can prevent race

conditions by using locks to serialize access to the memory locations in contention. See also concurrency

issues.

Radix: The base of a system of numeration. For example: a base 10 radix allows digits in the range [0,9)

whereas a base 16 radix allows digits in the range [0,15). See also Radix Sort.

Radix Sort: With radix sort, an unordered integer sequence A is sorted into an ordered integer sequence S

in k passes (with one pass per digit in the maximum key). There are two types of Radix Sort, least-

significant-digit (LSD) and most-significant-digit (MSD). With LSD radix sort, on each pass, the n keys

are counted and distributed into d sorted runs based on the current digit from each key. The d runs are then

collated in monotonically increasing digit order, each pass is usually implemented using Counting Sort.

Given m is the maximum key size, and d is the maximum digit value of the radix (typically d is much

smaller than m, d ≤ m) then the number of passes can be computed as k = ⌈log𝑑 𝑚⌉ or 𝑘 = ⌈
𝐵

𝑏
⌉, with B = the

maximum bits per integer in a fixed-size range [0, m), and b = the maximum bits per radix in a range [0, d).

Raking: Raking is an indexing technique to skip over unused pad columns (see padding) inserted to

prevent bank conflicts when working with short sequential per-thread data runs. The basic idea is to

convert from a 1D index without padding (stride = WarpSize [32]) to a 2D index (warps & rows) and then

convert back to a 1D index with padding (stride = (WarpSize+PAD) [33]).

Range Query Nearest Neighbor: A type of Nearest Neighbor Search (RNN) which returns all points

from a search set S which are covered by each individual query region QRi belonging to a query set QR (for

Query Region). This causes a varying number of search results for each query region. Each individual

query region is typically defined as a d-dimensional hyperbox or hyperball (of radius ri).

401

RAM: Random-access memory is a form of computer data storage. A random-access device allows

stored data to be accessed directly in any random order. Modern DRAM actually supports reading not as

random machine words but in small parallel chunks called bursts.

RAM Machine Model: An abstract extension of the von Neumann machine model for programmers.

Under this model, one assumes that random access to any data element in memory (which contains M

elements) can be done in a constant amount of time Θ(1). Actual architectures take O(k + log M) time to

access a sequential run of k elements in memory and O(log log M) time to execute individual instructions in

registers. To complicate matters further, modern computers actually use a multi-level memory hierarchy

with varying access costs at each level and with support for caching at higher levels. Nevertheless, the

constant time assumptions on memory access and instruction execution are standard and useful fictions for

reasoning about algorithms on von Neumann machines. See also the Multi-computer machine model and

the PRAM machine model.

Ramp-Down Time: Idling which happens when an instruction pipeline finishes up by draining out the

last few instructions in the pipeline. See also ramp-up time and idle cycles.

Ramp-Up Time: Idling which happens when an instruction pipeline first starts filling up. An k stage

pipeline takes at least k cycles to fill up fully. See also ramp-down time and idle cycles.

Reach-Back: An inclusive scan can be converted into an exclusive scan by reaching back one column in

the scan results. For the first element in the inclusive scan (which has no previous column), the identity

element (𝕀) should be substituted instead. For example, the inclusive scan under simple addition with

identity {𝕀 = 0} resulting in {1,3,6,10} can be converted into the corresponding exclusive scan as {𝕀 =

0}+{1,3,6} = {0,1,3,6}

Recurrence Pattern: A sequence defined by a recursive equation. In a recursive equation, one or more

initial terms are given and each further term of the sequence is defined as a function of the preceding terms.

Implementing recurrences with recursion is often inefficient since the recursion tends to re-compute

intermediate solutions that have already been computed on other recursion chains. A loop with

dependencies between iterations can also be described as a recurrence. In the case of a single loop, if the

dependence is associative, it can be parallelized using the scan pattern. If the dependence is inside a multi-

402

dimensional set of nested loops with dimension n, the entire nested loop can always be parallelized over n-

1 dimensions using a hyperplane sweep. In addition nested loops can often be parallelized using the fork-

join pattern.

Recursion: The act of a function being re-entered while an instance of the function is still active in the

same thread of execution. In the most common case, a function directly calls itself. Recursion is often

supported by storing function state for each function instance on a stack. Bounding the depth of the

recursion is important to avoid infinite recursion and unbounded stack growth. See Recursion.

Reduce: An operation applied to a collection of values to merge all values down to a single value. A

simple example is computing a total sum on n numbers. This can be done in serial or parallel.

Reduce-than-Scan: A 3-level GPU implementation pattern on n elements where 1) Do a serial reduce

on short runs of [n/p] elements per thread in parallel to generate run sums 2) Do an inclusive scan on the

run sums and then reach back one column to get inclusive prefix sums for each run. 3) Do a scan on each

run from step 1 and also do a run update by adding in the missing run prefixes from step 2 to each element

in the run. This pattern requires 3 I/Os per data element on average to fully scan the data (1 read for the

reduce (step 1), 2 (1 R + 1 W) for the scan (step 3). This parallel scan pattern is typically implemented

using a hierarchical or nested scan.

Reduction Pattern: A collective coordination model, where all threads (or tasks) cooperate to merge 𝑛

results down to a single result. The merging is typically done using binary operations to combine values in

pairs. The binary merging operation should be associative in order to allow parallelization of the process.

It is often also useful if the binary operation is commutative, which allows data re-ordering. Integer

addition and multiplication is both associative and commutative. Floating-point addition and

multiplication, however is not due to truncation and round-off errors. Using the reduction pattern on

floating-point data may lead to non-deterministic results for parallel algorithms and different results

between the serial and parallel implementations of the same algorithm. Though still useful, the user must

be aware that the floating-point reductions are approximate and not exact.

403

Reduction Variable: A variable that appears in a loop for combining the results of many different loop

iterations. For example, a variable that represents the total sum for a loop that computes the total sum of 𝑛

values.

Re-entrancy: A re-entrant function is a function 𝑓 that can be paused at any point in its execution, switch

to another thread (which may or may not call the same function), and eventually resume execution and

complete correctly. This means all function state (function parameters, stack variables, etc.) are thread-

local and can be correctly stored/loaded through context switching. A re-entrant function should avoid

static variables, global variables, or any other type of non-local state. Alternately, non-local data can be

made re-entrant if all access to this data is protected using mutual exclusion.

Refactoring: Reorganizing code to clean it up, generalize it, or make it better suited for some new design

purpose, such as enabling cross-platform compatibility or parallelization.

Registers: A very fast but usually very-small on-core set of memory locations meant to be used directly

by each processing core for maximum speed. Registers can typically be read and written in a single

machine cycle. Input operands and output results are temporarily stored in registers while being processed

by machine instructions. Data is transferred between the core registers and memory storage using

load/store instructions.

Register Pressure: The programmer has the illusion of allocating as many variables as they want as they

write code. However during compilation, the compiler must decide how to allocate these variables onto a

small finite set of registers. Register pressure is the term used when there are much fewer hardware

registers available than would have been optimal to schedule all variables without any conflicts. Register

pressure means that register reloads and register spills must be used to deal with the scheduling conflicts

between conflicting variables resulting in lower performance than optimal.

Register Renaming: A technique for handling WAR and WAW data hazards caused by aliasing, which

is the unnecessary sharing of a destination (register, memory) across multiple instructions in a pipelined

architecture. This solution uses different destinations (registers) for the instructions in competition.

Tomasulo’s method eliminates both WAR & WAR hazards in hardware using dynamic register renaming.

404

Register Spills: Programs with too many variables may exceed the maximum number of registers

allocated per-thread in concurrent thread blocks on each SM for a specific kernel on a GPU device. CUDA

works around having register spills by using Local memory. Local memory is a technique where the extra

variables are put into global memory and accessed at global memory speeds. This enables kernel

compilation at the cost of relatively slow I/O for the affected variables.

Relative Speedup: Speedup in which a parallel solution to a problem is compared to a serialization of

the same parallel solution. For instance, the parallel algorithm might be restricted to only using a single

thread to serialize performance.

Remapping Array: Given an input array S with n points that has been re-ordered as S’ (by sorting for

instance). Create a secondary array I as the original indices [0, 1, 2, …, n-1] of S. Create a remapping

array I’ by re-ordering I in the exact same manner as S’. This allows original elements in S to be looked up

from search results found in S’ via the remapping array I’.

Rematerialization: Rematerialization is an implementation optimization, also known as re-calculating,

where the programmer recomputes intermediate results from original inputs as often as needed. This

optimization pattern assumes that recomputing the intermediate results from the original input is faster than

computing it once, storing the result, and reloading it as needed. Contrast with Precomputation and

reusing.

Remote Message Passing: A communication model where distributed memory is partitioned across

different cores (or computer nodes) and the best way to access data on other cores (or nodes) is remotely

using messages sent across a network. The message transfer speed is dependent on the distance between

nodes, network topology, and the size of the message. Large messages are often broken into a set of

smaller fixed size messages.

Replicate: Two definitions 1) To solve structural hazards in pipelined micro-architectures, architects

often replicate functional units on a chip, IE make extra copies of functional units to eliminate competition

between stages. 2) To increase parallelism, architects make many copies of simple chips distributed across

a larger chip.

405

Request-Level Parallelism: A type of parallelism which divides mostly independent read-only requests

across multiple computing nodes. Each request (task) is routed onto a node (server) which fulfills the

request. Request-Level parallelism exploits parallelism among largely decoupled tasks specified by the

programmer or the operating system. This type of parallelism is typical of webservers rendering webpages

for customers surfing a company’s web-site.

Resource Contention: Resource contention occurs when multiple parallel threads (or tasks) all attempt

to access the same data element, memory address, or system object at the exact same time. Resource

contention can result in race conditions. Resource contention can be solved by mutual exclusion or by

careful partitioning.

Response Time: The time between when a request is made and when the response is received.

Re-using: Re-using is an implementation optimization technique where the programmer computes an

intermediate result once, stores it in registers (or memory) and reloads it as needed for future re-use. This

optimization pattern assumes that the stored value will be frequently reused (to take advantage of temporal

locality) and that reloading the value is faster than recomputing it. Contrast with rematerialization.

RNN: see Range Query Nearest Neighbor.

Rotate Pattern: A special case of the shift pattern that handles boundary conditions by moving data that

moves out of range on one side back around to the other side.

Run: Two different definitions: 1) A single execution of a program on a computer is often called a run.

2) A 1D sub-range of data from a larger data array. Each 1D run is typically contiguous and sequential.

All runs typically partition the original array using the partition pattern. The set of runs are mapped onto

an executed in parallel on multiple processing cores. The processing cores typically execute the same

program when processing the data runs. See also block, data-level parallelism, parallel program, and tile.

Run Padding: With run padding, a single unused pad column is added after (before) each short data run

to mitigate bank conflicts in shared memory. It works on runs with even run lengths {6, 10, 12, 14, 18, 20,

22, 24, 26, 28, 30} by effectively treating them as runs with odd run lengths instead. Runs with even

lengths that happen to also be a power of two {2, 4, 8, 16, 32} should use warp padding instead as it

406

requires less total padding (one pad column per data warp). Run indices must be raked (see Pad and Rake)

to skip over unused pad columns.

Run Reduce: Run Reduce, also known as reduce-reduce, is a parallel pattern for reducing a long run of n

elements to a single sum in two parallel stages. The reduction is done by combining pairs of elements

using a binary sum operator. In the first stage, n elements are partitioned across p threads into runs of ⌈
𝑛

𝑝
⌉

elements each. Each of p threads then serially reduces its assigned run to a single run-sum. In the second

stage, a single thread serially reduces p run-sums to a single final sum. Compare with Tree-reduce.

Run Update: A building block for GPU Scan used to update a short run of n =[2-32] elements with a

common prefix value under some associative binary summation operator. See also Serial Reduce, Serial

Scan, Warp Reduce, and Warp Scan.

Safety: A system property that automatically guards against certain classes of programmer errors, such as

race conditions.

Saturation: Saturation arithmetic has maximum and minimum values that utilized instead of the logical

results when the logical results would be higher or lower respectively than the max/min values. Numerical

representations on computers always are limited in precision and range. Saturation arithmetic is one way to

ensure computations do not exceed a computers precision and range. Saturation arithmetic for signed

values is not associative. Contrast with wrap-around arithmetic.

Scalability: A measure of the performance increase in a system as more and more parallel resources are

added into the system.

Scalable: A program (or system) is scalable if its performance increases when additional parallel

computing resources are added into the system. In the ideal case, a parallel program will demonstrate a

linear speedup as more parallel computing resources are added into the system. Programs (and systems)

often fail to achieve linear speedup due to parallel overhead or under-utilization of parallel resources.

Scalar Processor: Each instruction is executed one at a time on a single processing core. This is the

essence of the SISD processing model.

407

Scalar Promotion: When a scalar and a vector of size n are combined under some operation, the scalar

is automatically treated as a vector with n elements, with all elements set to the original scalar value. This

approach allows the original operation to proceed as intended.

Scatter Model: A collective coordination model, where one thread (or task) sends different messages to

all other threads (or tasks). The messages are typically data decomposed.

Scan: With scan, also known as prefix sum, an output sequence S = [s1, s2, ⋯ , sn] is generated from the

input sequence A = [a1, a2, ⋯ , an], where 𝑠𝑖 = 𝕀⨁𝑎1⨁𝑎2⨁ ⋯ ⨁𝑎𝑖−1 for exclusive scan,

or 𝑠𝑖 = 𝑎1⨁𝑎2⨁ ⋯ ⨁𝑎𝑖 for inclusive scan. In other words, the ith output element is the total sum of the

first i (or i-1) elements from A. The scan is done using a binary associative operator ⨁ with identity 𝕀. A

simple example is computing a prefix sum on 𝑛 numbers under addition with zero as the identity. The scan

can be done in serial or parallel. See also Reduce.

Scan Pattern: Pattern arising from a 1D recurrence relationship on some computation. This often arises

as a loop-carried dependency where the computation of one iteration depends on the results from the

previous iteration. Such loops can still be parallelized if the underlying dependency can be expressed using

an associative operation.

Scan-than-Fan: A 3-level GPU implementation pattern on n elements where 1) Do a serial scan on

short runs of [n/p] elements per thread in parallel to generate prefix sums and a run sum per run. 2) Do an

inclusive scan on the run sums and then reach back one column to get inclusive prefix sums for each run.

3) Do a run update on each run from step 1 by adding in the run prefixes from step 2 to each element in the

run. This pattern requires 4 I/Os per data element on average to fully scan the data 2 (1 R + 1 W) for the

scan (step 1) and 2 (1 R + 1 W) for the run update (step 3). This parallel pattern is typically implemented

using a hierarchical or nested scan.

Scan Update: A building block for GPU Scan used to scan a short run of n =[2-32] elements into a

prefix sum under some associative binary summation operator and the update the entire run with a common

prefix. Basically a Serial Scan is combined with a Run Update.

408

Scatter: A type of map primitive, which scatters elements from a small source array S into a large

destination array D using an index map. Also see Copy, Fill, and Gather.

Scatter Pattern: A set of parallel random writes into memory. A scatter takes a collection of memory

addresses and overwrites data at those memory addresses. Scatters are equivalent to random writes inside a

map pattern. Given an input array of size m, an index array of size m, and an output array of size n,

typically with n ≥ m, each element of the input array overwrites some element in the output array at the

given index. Output[Index[i]] = Input[i] for all i ∈ [0, n). The scatter pattern is the inverse of the gather

pattern. Unlike gathers, scatters must deal with collisions which occur when multiple input elements being

processed in parallel all map onto the same output index. There are 4 common ways to resolve collisions --

permutation scatter, atomic scatter, priority scatter, and merge scatter.

Scoreboarding: A type of hardware ILP architecture that supports parallel out-of-order execution of

instructions in an instruction stream. A scoreboard is a table maintained in the hardware that tracks all

active instructions (status, assigned resources, registers, etc). The scoreboard is used to dynamically and

safely schedule each instruction as soon as there are no conflicts and as soon as functional computing units

(ALU’s or FPU’s) are available to take the instruction.

Search Pattern: A pattern than finds data from a larger collection that meets some criteria.

Search Set: A set S containing n search points that need to be searched for a closest points to a query set

Q containing m query points. A spatial partitioning data structure is often used to speed up the geometric

search. See also Nearest Neighbor Search.

Segmentation: A representation of a collection of data which is divided into non-overlapping

subdomains. Typically, the various subdomains vary in size. Reduction and scan patterns can be

generalized to operate over the segments of a collection independently while still being parallelized and

load balanced across the original large domain.

Selection Pattern: A serial pattern in which one of two flows of execution are chosen based on a

Boolean test predicate {true, false}. Contrast with Speculative Execution.

409

Separating Hyperplane: A n-1 dimensional plane that can be used to determine the sweep order for

executing a n-dimensional recurrence in parallel.

Sequence Pattern: A serial pattern in which tasks are executed sequentially in-order one after the other.

Each task completes before the next task starts. In some sense, this is the most fundamental programming

pattern.

Sequential Consistency: Sequential consistency is a memory consistency model where every task in a

concurrent system sees all memory writes happen in the exact same order, and an individual tasks own

writes occur in the original order that the task specified.

Serial: A program, task, or system that is neither concurrent nor parallel. Typically there is a single

processing core that executes a single program (instruction stream) sequentially in-order as it was original

written.

Serial Bottleneck: A region of an otherwise parallel program that runs serially.

Serial Consistency: A parallel program that produces the same output results from the same input data

as an equivalent serial program.

Serial Illusion: The apparent serial execution order of machine language instructions on a computer. In

fact, modern processing cores support various hardware ILP techniques which run instructions in parallel

and often re-order instructions for better performance. See out-of-order.

Serial Data Management Patterns: Serial programming patterns for managing data (allocation,

sharing, reading, writing, copying, etc.). Examples of these serial data manage patterns include – Random

access, Stack Allocation, Heap allocation, Closures, and Objects. See also parallel data management

patterns.

Serial Patterns: Common programming patterns arising in support of serial computations. Examples of

serial patterns include – sequence, selection, iteration, recursion, and nesting. See also parallel patterns.

Serial Reduce: A building block for GPU Reduce & GPU Scan used to reduce a short run of n =[2-32]

elements down to a single total sum value under some associative binary summation operator. See also

Serial Scan, Warp Reduce, and Warp Scan.

410

Serial Scan: A building block for GPU Scan used to scan a short run of n =[2-32] elements into a prefix

sum under some associative binary summation operator.

Serial Update: Another name for Run Update.

Serial Trap: A serial trap is a programming construct that semantically requires serial execution for

correct results. Even though a specific problem might be over-constrained with respect to concurrency by

such semantics. The term “trap” acknowledges how such constructs can easily escape the attention of

programmers as barriers to parallelism. In part, because these constructs are common and were not

intentionally designed to prevent parallelism. For example, the for statement in the C language, has

semantics that dictate the order of iterations by allowing each iteration to assume that all prior iterations

have already been fully executed. These semantics make it harder for parallel compilers to extract natural

parallelism from these for loops. Many loop constructs actually do not need to assume anything about the

execution order of prior loop iterations for correct behavior. Unfortunately, most programmers use the for

statement as a matter of course when writing loops in C or C++.

Serialization: Three definitions: 1) Refers to when the potentially parallel tasks in a parallel program are

actually executed in a specific serial order. This is typically caused by resource constraints or locking

mechanisms used in the program to prevent parallel resource contention. 2) A hardware scheduler may

serialize access to a shared resource, such as memory, by parallel threads (cores) to ensure correct program

behavior. 3) On GPUs, warp branching is supported by serialization, which means the program will

execute both the {true} and {false} paths sequentially inactivating those threads for which the branch test

doesn’t apply. See also branch divergence and predication.

Set Associative Cache: A cache organization in which a particular location in main memory can be

stored in a (small) number of different locations in the cache.

Several-to-one: A special case of a mapping relationship where a small number of source objects are

related to a single destination object in a set, table, or array of parallel objects. See also cardinality.

Shared Address Space: Even if parallel processing cores do not share a common physical memory,

they may agree on conventions that allow a single unified set of addresses to be used when addressing all

411

memory. For example, one range of addresses could always refer to memory on the host CPU processor,

while another range could refer to memory on a specific co-processor such as a GPU. The use of unified

addresses simplifies memory management.

Shared Memory: Two different definitions: 1) A memory model where each parallel processing core

has access to a shared bank of memory common to all cores. As a result of the all point-to-point

connections required and the complex hardware required to maintain cache coherence across parallel cores

this model typically is limited to 2-8 cores per shared memory bank. Programmers need to use some form

of synchronization to prevent resource contention between parallel threads (or cores). 2) A specific form of

GPU scratchpad memory local to each SM core used to store intermediate results for better algorithmic

performance.

Shift Pattern: A special case of the gather pattern. The shift pattern translates (or offsets) the location

of each element in the array by a fixed index offset. The basic shift pattern ignores (drops) values that are

out of range. While the rotate pattern wraps out of range indices around to the other side of the array and

stores them there.

SIMD: A category in Flynn’s taxonomy where processing occurs using multiple data streams all sharing a

single instruction stream in parallel. Intel’s MMX instructions and GPUs are examples of SIMD

computers. See also MIMD.

Simultaneous Multi-Threading (SMT): A form of ILP. SMT improves on multi-issue and out-of-

order execution ILP techniques by adding direct support for multi-threading into the processing core

scheduler. Instructions from more than one executing thread can be scheduled onto the multi-issue

processing units on any given machine cycle. Since instructions from different threads are guaranteed to be

independent this multi-threading scheduling helps each core stay busy doing useful work. See also latency

hiding.

SISD: A category in Flynn’s taxonomy where processing occurs using a single data stream and a single

instruction stream. Most programmers think of this as the standard sequential computer as in the von

Neumann model even though modern CPUs actually support both ILP and TLP.

412

SIMT: Single-Instruction Multiple-Threads. A variation on SIMD that also supports multi-threading in

addition to vectorized instruction processing (SIMD).

Skeleton: Two Definitions: 1) A parallel implementation pattern. 2) A code framework, AKA as a stub,

that compiles and runs but does no useful work. A programmer must fill in the missing details to solve a

specific problem. The skeleton is meant as a good starting point for programmers. See data access

skeleton (DASK) and block access skeleton (BASK).

SMT: See simultaneous multi-threading.

SoC: System on a chip (SoC). As CPU cores gain more transistors more and more functionality that used

to be handled by specialized co-processors have been moved back onto the chip itself. This includes

support for items such as Compression, Graphics, Audio, I/O protocols, Networks, etc.

Software Pipelining: Software pipelining is a loop optimization technique. Software pipelining is a

type of out-of-order execution except the reordering is done by a compiler or a programmer instead of by

ILP hardware. Here is a simple example:

 for i=1 to n {

 A(i); B(i); C(i);

 }

where C depends on B which depends on A. This loop can be rewritten as a software pipeline in batches of

3 as follows:

 nBatches = n/3; nLeftover = mod(n,3);

 for (i=1; i<nBatches, i+=3) {

 A(i); A(i+1); A(i+2); // Execute 3 A commands

 B(i); B(i+1); B(i+2); // Execute 3 B commands

 C(i); C(i+1); C(i+2); // Execute 3 C commands

 }

 // Handle [0-2] leftover data items here …

413

This technique reduces loop overhead and reduces data dependencies for better ILP. Special care must be

taken to handle any partially left-over data items at the end of the loop. See also loop unrolling and

batching.

Software Thread: A software thread is a virtual hardware thread – Multiple software threads are

mapped onto a single hardware thread (or processing core) by the thread scheduler (hardware or software).

Typically there are more software threads than there are processing cores. Fine-grained context switching

is used to switch between software threads on each core to support latency hiding.

Solution: Four definitions: 1) The act of solving a problem, question, etc. 2) The answer to a problem,

question, etc. 3) In mathematics, a step-by-step series of operations that solves a problem. 4) In

computers, a section of code, function, module, or program that solves a problem.

Space Complexity: A complexity measure for the amount of memory (or storage) used by an algorithm

as a function of problem size. See also asymptotic analysis or big “O’ notation.

Span: See Depth.

Span Complexity: See Depth Complexity.

Spatial Locality: The frequent access of data elements which are relatively close to the original location

of the first access into memory storage. See also locality and temporal locality.

Spatial Partitioning Data Structure: A data structure (typically hierarchical) used to organize points

(or objects) in d-dimensional geometric space for faster search algorithms. See also kd-tree and octree.

Spawn: The creation of a new thread (or task) from within an existing thread (or task). See also fork and

join.

Speculative Execution: A parallel form of the selection pattern. Where both paths in a conditional

branch are executed in parallel using redundant processing units and once the branch condition outcome

{true, false} is successfully known then the instructions from the invalid path are cancelled.

Speedup: Speedup is the ratio between the time it takes to solve a problem using a single processing core

vs. the time for solving the same problem using n parallel processing cores.

414

Split Pattern: A generalized version of the pack pattern that takes an input collection and a set of

Boolean labels {true, false} that go with every data element in that collection. It re-organizes the data so

all elements marked with {false} are stored in one output sub-group (typically at the front) and all elements

marked with {true} are stored in another sub-group (typically at the back). The deterministic version of

this pattern is stable, so it preserves the same relative order of data elements form the original collection in

each output sub-group.

SPMD: Single-Program, Multiple-Data, A program that runs a single function on multiple processing

cores, but allows each function instance to follow different control flow paths during execution.

Stable Sort: A sort is stable if elements with equal keys maintain the same relative order. A more

descriptive way of saying this is as follows: Given any two elements (ai, bj) with equal keys (ai.key ==

b.key), such that a precedes b in the unsorted input (i < j) then after the sort is done, then a still precedes b

in the sorted output (i’ < j’). An unstable sort does not preserve the relative ordering of elements with

equal keys.

Stack: A basic data structure where data elements are kept in a list (representing a pile of objects).

Elements are both inserted and removed from the top of the list resulting in a LIFO processing order for

elements kept on a stack. See also Deque and Queue.

Stall: Two related definitions: 1) A processing core which does nothing useful for many cycles is said to

be stalled. 2) Each machine cycle where the instruction scheduler issues NOP “do nothing” command to

prevent hazards from causing incorrect behavior is known as a stall.

Stalling: An ILP technique, also known as bubbling, for handling various hazards in a pipelined micro-

architecture. With stalling, the scheduler (hardware or software) inserts NOP’s (do nothing instructions)

into the pipeline until the hazard is resolved. This gives correct results at the cost of under-utilizing the

processing core.

Standard Library: The C++ standard library is a collection of classes, algorithms, and functions. The

C++ standard library provides generic containers; functions to use and manage those containers; function

objects; generic strings; I/O streams; and many other useful algorithms and tasks. The C++ standard

415

library currently follows conventions introduced by the original Standard Template Library (STL) and has

been influenced by research in generic programming. The C+ standard library and STL overlap in many

features and functionality but neither is a strict superset of each other.

Standard Template Library: The C++ Standard Template Library (STL) is a software library for the

C++ programming language that provides four main components – algorithms, containers, functional, and

iterators. The STL achieves all of its components through the use of C++ templates. This provides

compile-time polymorphism that is much more efficient than traditional run-time polymorphism. The four

main ideas behind the STL are – generic programming, abstractions without loss of efficiency, the von

Neumann computation model, and value semantics.

Starvation: A concurrency issue where one or more threads fail to make forward progress towards

completion because they are perpetually denied necessary system resources. Without those resources, the

thread can never finish its assigned task. This is typically caused in a multi-threaded environment where

the thread manager (or scheduler) implements priority pre-emption incorrectly. See also deadlock and

livelock.

Static: A static algorithm (or data structure) does not allow any insertions, deletions, or any other

modifications to the original input data set (or data structure once built) until the algorithm has completed.

Contrast with Dynamic.

Static Scheduling: With static scheduling, the thread scheduler (typically software) pre-computes a

thread schedule before executing a program and then sticks to the thread schedule during the entire

execution of the program. This is typically implemented as part of a compiler. This approach can result in

poor overall performance as the compiler must be strictly conservative in how it assumes pointers alias

memory accesses. Often threads idle waiting for their turn, get woken up only to promptly go back to sleep

while waiting on slow I/O resources to complete.

Stencil Pattern: A regular input data access pattern based on a set of fixed offsets relative to an output

location. The stencil over the input is repeated for every output position in the output grid. This pattern

can be seen as combine the map pattern with a local gather over a small neighborhood in a fixed pattern of

offsets. Some care must be taken at the boundaries of the grid for how to deal with out of range offset

416

indices. Stencil patterns are common in algorithms that deal with regular grids of data, as in image

convolution.

Step: A single step in a chain of processing steps that make up the critical path through a task dependency

graph for a parallel program. The depth is a measure of how many steps are in this critical path.

Step Complexity: See depth complexity.

Strangled Scaling: A programming error in a parallel program where performance is poor due to high

resource contention between threads or high parallel overhead. The performance may be so bad that the

parallel algorithm may underperform the serial version of the same algorithm.

Stream: A sequence of data elements made available over time. A stream can be thought of as a

conveyor belt that allows data elements to be processed one a time sequentially instead of in larger batches.

Streaming Algorithms: Streaming algorithms are algorithms for processing data streams in which the

input is presented as a sequence of data elements which can only be examined in a few passes (typically

just one). Streaming algorithms are usually constrained by the access pattern, memory, and time. The

access pattern is typically sequential, in other words, the data elements must be processed one at a time as

they are received. These algorithms typically have limited memory available to use for processing data

(typically much less than the actual input size) and also limited processing time per data item in the stream.

These constraints mean that streaming algorithms are often used to create summaries or smaller datasets

which approximate the full data stream. See also BYTE stream, RAM model, map pattern, pipeline pattern,

producer-consumer relationship.

Stream Processing: A paradigm for computer programming for SIMD architectures. Given a set of

data (the stream), a series of operations (elemental functions) is applied to each element in the stream.

These elemental functions are often arranged in a pipelined manner. To reduce I/O operations these

pipelined functions are often fused into one larger uniform function. Stream processing works best for

programs that exhibit three characteristics – High Compute intensity, Data Independence, and Data

locality. Compute Intensity means that the ratio of computations to communications is quite high. Data

Independence in this context means that each data element can be processed independently from any other

element. Data locality means that data is produced (typically only once), read once (or twice) during the

417

processing, optionally output (again typically only once) and never accessed again. GPUs are examples of

high throughput stream processors. See also Map Pattern.

Strength Reduction: Strength reduction is a data-flow optimization where expensive (or slow)

operations are replaced with equivalent less expensive (or faster) operations. For instance computing an

index inside a loop for array access using “strong” multiplication can be replaced by “weaker” addition

instead. Another example, replacing division by a constant by multiplication using its reciprocal. See also

constant folding, code fusion, and dead code elimination.

Strip-Mining: When implementing a stencil or map pattern, an optimization that groups instances in a

way that avoids unnecessary and redundant memory accesses and aligns memory accesses with the vector

lanes of the SIMD cores.

Strong Scalability: A form of scalability that measures how performance increases when adding in

additional parallel processing resources but leaves the original problem size fixed.

Strongly Serial Algorithm: With Strongly Serial algorithms, the depth efficiency is linear, D(n) ≈ O(n).

With these algorithms, there is no obvious way for a programmer to divide work across multiple parallel

cores, the entire algorithm is almost entirely one long chain of dependent steps.

Structural Hazard: A structural hazard occurs when a specific part of the processor’s hardware needs

to be used by two or more stages of an instruction pipeline concurrently. For example, A pipelined

architecture might only have a single memory unit that is used both in the fetch stage to retrieve

instructions from memory and also in the memory stage where data needs to be transferred (read/write)

between registers and memory. Architects often solve structural hazards by replication -- creating multiple

redundant processing units (one per stage) to eliminate competition.

Structure-of-Arrays (SoA): A data layout for collections of data elements where each data element is

a structure made up of heterogeneous fields. For data storage, all the data for the first field in each data

element is stored in one contiguous array and all the data for the second field in each data element is then

stored in another contiguous array. This contiguous storage layout is repeated for all fields in data

structure. Compare with array-of-structures (AoS).

418

Successor Function: In a fold, the function that computes a new state given the old state and a new

input data item.

Supercomputing: See high performance computing.

Superlinear speedup: Speedup where performance grows at a rate greater than the new parallel

processing resources are added into the system. Since linear speedup is optimal for parallel algorithms, the

superlinear speedup is usually the result of some additional performance optimization coming into play as a

result of the new parallel layout of the algorithm (better caching opportunities, reduced branching, etc.)

Super-Scalar: See Multi-issue.

Super-Scalar Processor: A super-scalar processor executes more than one instruction per clock cycle

by simultaneously dispatching multiple independent instructions across multiple redundant functional units

(ALU’s, FPU’s) on each processing core.

Superscalar dependency pattern: A sequence of tasks (instructions) ordered only by true data

dependencies rather than a sequential ordering of the tasks. This allows the parallel execution (multi-issue

& out-of-order) of tasks (instructions) that have no dependencies on each other.

Switch-on-event Multithreading: A technique that supports the execution of multiple threads on a

single core by context switching to another thread on long-latency events such as cache misses when

transferring data between main memory and registers.

Symmetric Multi-processor (SMP): A hardware architecture where multiple typically homogenous

processing cores share a single address space and access to all system resources. See shared memory

computing.

Synchronization: The coordination of parallel threads (or tasks) in real time to ensure the correct

behavior of a parallel algorithm across all threads (or tasks). This is often implemented by establishing a

synchronization point within the code where a thread (or task) must wait until all other threads (tasks) in

the same group (warp or block) reach the same synchronization point. Synchronization usually involves

waiting by one or more threads (or tasks) and can thus slow parallel performance.

419

Synchronous Coordination: Involves multiple threads (or tasks) trying to communicate data or

coordinate work between themselves. Threads are now dependent on each other while doing coordination.

All threads involved in transferring data must wait until the transfer is complete before proceeding on to

other work. This results in gaps of idle work spent waiting instead of doing useful computations. Contrast

with asynchronous coordination.

Table Lookup: Table lookup is an implementation optimization that can make many algorithms run

more efficiently. A lookup table is an array that replaces runtime computation with a simple array indexing

operation. The tables can be precomputed and stored in static storage. This pattern assumes a reasonable

amount of reuse and that array lookup is faster than computing the value as needed.

Tail Recursion: A form of recursion where a result of the recursive call is returned immediately without

modification to the parent function. Such forms of recursion can be rewritten to use an iteration pattern

instead.

Target Processor: A specialized co-processor to which work can be offloaded. See also host processor.

Task: A logically discrete chunk of computational work. A task is typically a program or program-like

set of instructions that is executed by a single processing core. See also task-level parallelism and parallel

program.

Task-Level Parallelism: A type of parallelism. With task-level parallelism, also known as function

parallelism or control parallelism, a programmer decomposes an algorithm into multiple sub-tasks

(typically heterogeneous) and assigns each sub-task to its own parallel thread. A DAG is typically used to

model the flow of data through the network of sub-tasks. Task-level parallelism doesn’t scale well as it is

difficult for programmers to decompose a program into more than just a few parallel sub-tasks.

TBS: See Thread Block Size.

Template Metaprogramming: The use of generic programing techniques to manipulate and optimize

source code before it is compiled. The template rewriting rules in C++ can be interpreted as a functional

language for manipulating C++ source code. These rules can be used to generate high performance

optimized code at compile time instead of run-time. See also metaprogramming.

420

Temporal Locality: The frequent re-use of the same data element within a small period of time. See

also locality and spatial locality.

Test-and-Set: test and set is an atomic operation used to synchronize concurrency issues and prevent

incorrect multi-threaded behavior. It writes a new value to a memory location and then returns the old

value from the same memory location. Even though this actually requires several instructions in hardware,

it appears as a single atomic operation to the rest of the system, i.e. no other thread can interrupt the CAS

once it has begun and until it has finished. This has been replaced by compare-and-swap semantics in most

modern architectures. See also fetch-and-add.

Thread: The smallest unit of execution that can be scheduled on a single processing core. Each thread

maintains thread state (registers, instruction pointer, …) for correct execution. See also Thread Warp and

Thread Block.

Thread Block: A CUDA thread block of a fixed shape (1D, 2D, or 3D) and size. Each thread block is

eventually scheduled to run concurrently on a SM to execute a parallel GPU kernel algorithm. For best

performance, each thread block is made up of one or more thread warps. Although, thread blocks which

are not a multiple of the WarpSize (=32) are supported, they tend to have poor performance as one or more

SP cores are underutilized. Each thread block is typically assigned one or more matching data blocks to

process. See also CTA, Thread Warp, and Data Warp.

Thread Block Size: A fixed-size thread block which contains TBS elements, where TBS is typically

computed as TBS = nWarps*WarpSize. See also Data Block Size.

Thread Constraints: Various hardware constraints that limit the size (and shape) of threads on a CPU

(or GPU).

Thread Context: The state information (registers, instruction pointer, etc.) about the executable state of

a thread which is needed to correctly resume execution after a thread has been paused or blocked.

Thread-Level Parallelism (TLP): A type of parallelism. With Thread-Level Parallelism (TLP), also

known as multi-threading, work is sub-divided and executed on multiple independent threads of execution

421

in parallel. Typically a thread scheduler maps a pool of 𝑚 threads onto 𝑝 cores (with 𝑚 ≥ 𝑝). TLP enables

task- and data-level parallelism.

Thread Lifecycle: A state machine diagram that captures common thread states and what behavior

moves a thread between the various thread states. See also thread state.

Thread-Local Storage: With thread-local storage, each thread has its own private copy of local data

(variables, stacks, registers, program counter, etc.). These variables retain their values across sub-routine

and other code boundaries are thread-safe since they uniquely belong to each individual thread. Parallel

threads may end up executing the same code yet all threads still refer to their own unique local data.

Thread Manager: A thread manager is responsible for creating, tracking, managing, and destroying

threads in a multi-threading system. Threads are a mechanism for running concurrent tasks using a single

core or multiple parallel tasks using multiple cores. A thread manager can be implemented in hardware

and/or software. See also thread, multi-threading.

Thread-Safe: A program (or section of code) is said to be thread-safe if the algorithm manages data

structures in a way that guarantees correct execution by multiple threads in parallel. In other words, the

multi-threaded parallel program gives the same results as an equivalent single-threaded serial program. A

program can be made thread-safe by 1) partitioning data into independent per-thread runs, 2) supporting

re-entrancy, mutual exclusion, and thread-local storage or 3) by using lock-free or wait-free algorithms and

data structures.

Thread Scheduler: See thread manager.

Thread State: The various states that a thread can be in over the course of its lifetime from creation to

termination. A running thread is the thread that is currently executing on the processor core. An active

thread (or blocked thread) is one that is waiting to resume execution on the core. A stalled thread is one

that is waiting to wake-up or for a long I/O operation on which it depends to complete. An aborted thread

is a thread which has been requested to be terminated but is not yet terminated.

Thread Warp: The smallest unit of vectorized execution that can be scheduled on a single streaming

multi-processor (SM) by being mapped onto multiple SP cores and other functional processing units. Each

422

warp also maintains associated warp state for correct execution. On modern GPUs, each thread warp

consists of WarpSize (=32) threads. See also Data Warp and Thread Block.

Throughput: A measure of performance where we count the number of units of work completed per unit

of time, typically this is measured as work per second, mega-items per second, or giga-items per second.

GPUs are throughput focused devices, IE, GPUs process hundreds (or thousands) of instructions in parallel

using hundreds (or thousands) of simple processing cores. A throughput device (or program) might put up

with higher latency for an individual computation if it still resulted in faster throughput overall. Contrast

with latency. See also data-, instruction- and I/O-throughput.

Thrust: NVIDIA’s thrust is a C++ template library of data-parallel algorithms and data-parallel data

structures. Thrust is intended to eventually have the same kind of relationship to C++ for data-parallel

algorithms on GPUs that the C++ standard template library has for serial algorithms on CPUs. It currently

supports GPU accelerated algorithms for sort, scan, transform, and reduce.

Tile: A region of memory which is part of some larger collection. Typically each tile is 2D. Tiles might

result from applying the partition pattern to data which is inherently 2D. See also run and block

Tiling: With tiling, also known as blocking, a loop is divided into a set of parallel tasks of a suitable

granularity. In general, tiling consists of applying multiple steps on a smaller part of a problem instead of

running each step on the whole problem one after the other. The main purpose of tiling is to increase the

reuse of data in caches for better performance. For example, with parallel matrix multiplication 𝑪 = 𝑨 ×

𝑩, we might divide the original 𝑨, 𝑩, 𝑪 matrices into a collection of 2D tiles small enough so that three

subtiles 𝑨𝒊𝒌, 𝑩𝒌𝒋, and 𝑪𝒊𝒋 fit into cached (or shared) memory all at the same time and then run the parallel

matrix multiplication in terms of these sub-tiles. Contrast the tiled access pattern with the usual row-by-

row vs. column-by-column serial solution for matrix multiplication.

Time Complexity: A complexity measure for the amount of time used by an algorithm as a function of

problem size. See also space complexity and asymptotic analysis.

Time Elapsed: A measure of the duration of time from the start to the end of some program, function, or

section of code. See also latency.

423

Time Slice: A time slice is a short period of time (typically counted in machine cycles) for which a

thread is allowed to execute before being pre-empted by the scheduler (hardware or software) in favor of

another active thread.

TLB: A translation lookaside buffer (TLB) is a specialized cache used to hold translations of virtual to

physical page addresses. The number of elements in the TLB determines how many pages of memory can

be accessed simultaneously with reasonable efficiency. Accessing a page not already in the TLB will cause

a TLB miss. A TLB miss causes a trap (system interrupt) to the operating system to load the requested page

into memory and to update the TLB. The TLB enables virtual memory management.

TLB miss: Occurs when a virtual memory page access is made for which the page translation is not

already in the TLB.

TLP: See thread-level parallelism or multi-threading.

Tomasulo’s Method: A type of ILP hardware architecture which enables out-of-order execution of

instructions. Tomasulo’s method improves on scoreboarding by adding support for register renaming

(aliasing), reservation stations (queues), a re-order buffer, and a command data bus (CDB) for broadcasting

updated data values to all compute stations. Tomasulo’s method reduces pipeline stalls by directly

resolving false resource conflicts (WAW & WAR hazards) through registers by register renaming.

Topological Sort: A topological sort of a directed acyclic graph (DAG) is a linear re-ordering of the

graphs vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the

ordering. Often used for imposing a valid ordering on a dependency graph, although there are frequently

many different but all equally valid orderings. Topological sorts can be computed in linear time, O(n).

Transaction: An atomic update to a data element. Each data element is assumed to consist of multiple

fields where some or all fields might be potentially changed as part of the update. Atomic means that the

results of all the individual field updates are either seen in their entirety or none of the individual field

updates are seen when looking at the data element, in other words, any data changes are seen by the rest of

the system as all or nothing.

424

Transactional Memory: A way of accessing memory such that a collection of memory updates, called

a transaction will be visible to other threads (or tasks) either all or nothing. Transactional memory is an

alternate approach to handling resource competition which is different from mutual exclusion.

Translation Lookaside Buffer: see TLB.

Transpose Pattern: A special case of a gather and scatter pattern. Where we transform 2D data stored

in a row-major order into a column-major order or vice versa.

Tree-Reduce: Tree Reduce is a parallel pattern that reduces two input elements per thread to one output

sum at each stage and, in so doing, takes a logarithmic O(log2 n) number of stages to fully reduce n

elements down to one final sum. Each pair-wise reduction uses an associative binary operator which has an

associated identity element. The first stage requires 𝑝 = ⌈𝑛/2⌉ threads. Each subsequent stage uses half as

many threads. Compare with Run-Reduce.

Trim Test: A simple 1D interval test used to eliminate non-overlapping sub-trees during a kd-tree search

algorithm and thus speed up nearest-neighbor searches.

True-Dependency: See read after write (RAW).

Under-Utilization: A processing core is said to be underutilized when it could be doing useful work but

is instead sitting idle. ILP and TLP techniques in a broad sense are trying to increase the utilization of all

parallel processing cores on a machine.

Uniform Parameter: A constant parameter to the map pattern that is broadcast to all instances of the

map’s elemental function. See also varying parameter.

Unpack Pattern: The inverse of the pack pattern, this operation scatters data from a smaller packed

array back into a larger unpacked array. This pattern may optionally fill in a default value for missing data.

Unsplit Pattern: The inverse of the split pattern, this operation scatters data back into its original

location. Unlike the case with the unpack pattern, there is no missing data to worry about.

Unstable Sort: See stable sort.

425

Unswitching: Unswitching is a loop optimization where a conditional inside a loop is moved outside of

the loop by duplicating the loop twice once each for the {true} and {false} clauses.

Unzip pattern: The inverse of the zip pattern, this operation deinterleaves data and can be used to

convert from an array-of-structures (AoS) to a structure-of-arrays (SoA).

Varying Parameter: A parameter to the map pattern that delivers a different parameter to each instance

of the map’s elemental function. See also uniform parameter.

Vector Intrinsic: An intrinsic used to specify a vector-parallel operation.

Vector-parallel operation: A low-level operation that can act on multiple data elements at once in

SIMD fashion.

Vector-Level Parallelism: A type of parallelism. Vector-level Parallelism, also known as

vectorization, applies a single instruction to an array of data in parallel using an array of processing cores.

This is the heart of the SIMD parallel model.

Vectorization: Reorganizing code to support vector-level parallelism.

Vector Processor: Multiple data is executed in parallel using an array of 1D simple cores and

corresponding data registers called a vector register. Typically all vectors move in lock-step through the

same instruction stream. This is the essence of the SIMD parallel processing model.

Virtual Memory: Virtual memory decouples the address used by software from the physical address

where data is stored in physical memory. The translation from virtual addresses to physical addresses is

done in hardware which is managed by the operating system.

Virtual Memory Management (VMM): A memory management technique developed for multi-

tasking operating systems which decouples logical memory addresses from physical memory address. The

O.S. with hardware support translates the logical addresses into physical addresses at runtime. This

technique hides the complexity of actual memory hierarchies from programmers so they can continue to

write programs using the much simpler RAM memory model.

426

VLIW (Very Large Instruction Word): A processor architecture that explicitly supports processing

multiple instructions in parallel which are stored in a single VLIW. See Vectorization.

Von Neumann Model: An abstract model of a serial computer architecture for programmers. Under

this model, a computer consists of a CPU, a load/store memory and a bus to transfer data between the CPU

and memory. The memory stores both programs (as sequential streams of instructions) and data (both input

and output). The CPU fetches instructions sequential in-order from the program, decodes, and executes the

instructions. Data is transferred between CPU registers and memory using simple load/store commands.

The CPU performs all the basic computations. I/O is used to get data (and programs) into the computer

memory from other computers, devices, or human operators. See also the RAM machine model, the PRAM

machine model, and the multi-computer machine model.

Voronoi Diagram: A voronoi diagram is a spatial partitioning data structure used to speed up

geometric searches. The set of generating points (called seeds) is specified a-priori, and for each seed point

there is a corresponding geometric region (typically as a polygon) consisting of all points closer to that seed

point than to any other seed point. See also BSP tree, octree, and kd-tree.

Voting Intrinsics: Special voting instructions on a GPU that allow all threads in a warp to share per-

thread predicate test results with all other threads in a warp in a single instruction. These Voting

instructions are also used internally by the GPU hardware to implement barriers.

Wait-free algorithm: A non-blocking algorithm is also wait-free if there is guaranteed per-thread

progress. See also lock-free algorithm.

Warp: The smallest unit of vectorized execution that can be scheduled on a single streaming multi-

processor (SM) by being mapped onto the SP cores and other functional processing units. Each warp also

maintains associated warp state for correct execution. See also Data Warp and Thread Warp.

Warp-by-Warp BASk: An efficient access pattern at the bottom level of the 2-level CTA mapping that

supports coalescence. Each thread warp of size WarpSize within the thread block is assigned its own

unique chunk of data within the data block of size (nWork*WarpSize). Each thread within the thread warp

accesses its own unique data element within the current group of WarpSize elements and then strides (stride

427

= WarpSize) to the next group of WarpSize data elements within the data chunk to access. This approach is

more coherent and requires less barrier synchronization than the Block-By-Block BASk. Most importantly,

each individual thread warp has Warp Independence and thus can proceed to work on its own assigned

chunk of data without concern to other concurrent thread warps doing the same. See also block access

skeleton. Compare with the Block-by-Block BASk.

Warp Context: The state information (instruction pointer, etc.) about the executable state of a warp

which is needed to correctly resume execution after a warp has been paused.

Warp Independence: With warp independence, each individual thread warp within a thread block can

proceed to work on its own assigned data chunk independent of any other concurrently executing thread

warp. See also Warp-by-Warp BASk.

Warp Lifecycle: A state machine diagram that captures common warp states and what behavior moves a

warp between the various warp states.

Warp Padding: With warp padding, the pad and rake technique is used to mitigate bank conflicts for

runs that are a power of two {2, 4, 8, …} in length. It works by padding a single unused pad column after

(or before) each data warp (effectively turning an even run of 32 elements into an odd run of 33 elements).

Indexing must be raked to skip over the pad columns. See also run padding.

Warp Reduce: A building block for GPU Reduce/Scan that cooperatively reduces n = [2,4,8,16,32]

elements down to a total sum using n threads in parallel. The reduction is done using a binary associative

summation operator. See also Serial Reduce, Serial Scan, and Warp Scan.

Warp Scan: A building block for GPU Reduce/Scan that cooperatively scans n = [2,4,8,16,32] elements

into a prefix sum using n threads in parallel. The scan is done using a binary associative summation

operator. See also Serial Reduce, Serial Scan, Warp Reduce, and Run Update.

Warp State: The various states that a warp can be in over the course of its lifetime from creation to

termination. An executing warp is the warp that is currently running on the SP cores that make up an

SM(X) core. An active warp is a warp that could be running but is currently waiting to be scheduled onto

428

the SP cores. An inactive warp is a warp that is currently stalled on a short-term instruction dependency or

waiting on a long-term I/O operation to complete before it is again ready to resume execution.

WarpSize: Two related definitions: 1) A group of k=32 threads that collectively execute the same

instruction stream in lockstep, but on different data elements. Modern GPU architectures are designed to

support SIMD efficiently via data-level parallelism using thread blocks made of up of thread warps where

each thread warp is of size 32. 2) The WarpSize parameter represents Data-level parallelism on SIMD

hardware. This parameter allows experiments with data-level parallelism to find the best performance.

The programmer must use generic programming techniques to support parallel processing one thread warp

at a time. Unlike the nWork and nWarps parameters, this parameter is typically fixed at k=32, as this is

what modern GPUs efficiently support.

Weak Scalability: A form of scalability that measures how performance increases when adding in

additional parallel computing resources while increasing the problem size at the same rate.

Weakly Parallel Algorithm: With Weakly Parallel algorithms, the depth efficiency is approximately

D(n) ≈ 𝑂 (
𝑛

log 𝑛
). The algorithm usually has significant section(s) of the code which cannot be parallelized

easily so Amdahl’s Law bounds performance. Alternately, the weakly parallel algorithm requires so much

coordination (communication) between parallel cores that the resulting parallel overhead overwhelms most

of the advantage of using parallel processing cores.

Work: Three definitions: 1) the part of a parallel program which actually spends time solving the original

problem for which the program was written instead of time spent coordinating (or communicating) with

other threads (tasks). See also parallel overhead. 2) A measure of how many data elements get processed

per-thread on each function (or kernel) invocation. 3) An abstract unit of useful computations. See also

work-depth analysis.

Work Complexity: The asymptotic total number of operations, W(n,p), required by a parallel algorithm

to run across all parallel threads (p) as a function of problem size (n). Work complexity is essentially

equivalent to asymptotic analysis for serial programs (p=1). If the work complexity of a parallel algorithm

is asymptotically the same as an equivalent serial algorithm (i.e. both require linear work, O(n)) then the

429

parallel algorithm is said to be work-efficient. If the parallel algorithm is asymptotically more expensive

(log-linear, O(n log n) vs. linear work O(n)), then the parallel algorithm is said to be work-inefficient. In

order for speedup ratios to be computed, it is often better to use Big “Theta” notation instead of Big “O”

notation. See also depth complexity.

Work+Depth Analysis: A model for analyzing the performance of parallel programs that can be used

to compute both upper and lower bounds on parallel speedup. See also depth complexity and work

complexity.

Work-Span: See Work+Depth analysis.

Workpile Pattern: An extension to the map pattern that allows new work items to be dynamically

generated and added to the workpile during the execution of each elemental function. If the map pattern

can be thought of as a parallel generalization of the for statement then the workpile pattern can be thought

of as a parallel generalization of the while statement.

Work Stealing: A scheduling model where each thread (or task) has it’s own local work queue. The

initial work load is load balanced across all threads and stored in each threads local queue. As new

dynamic work gets generated by each thread (or task), each thread adds it onto its own local queue. What a

specific thread runs out of work in its own queue, it will randomly steal work from another thread’s work

queue. When all local queues are empty, then the task is typically complete. This model greatly reduces

resource competition for the work queue data structures themselves which reduces parallel overhead. Load

balancing though not perfect tends to be quite well across all threads.

Wrap-around Arithmetic: Computers usually use fixed size data types which have a specific numeric

precision and range. When computers perform simple computations such as addition or multiplication

there needs to be a solution when the resulting computed value is logically outside the allowed for that data

type. One solution is simply to allow the values to wrap around naturally to the other end of the range. For

instance, with unsigned 8-bit integers with a range [0..255]. Adding 250 + 20 = 270 which is outside the

allowed range, with wrap-around arithmetic the actual stored result would become 15 = 270 % 255.

Contrast with saturation arithmetic.

430

Write after Read (WAR): A type of data hazard. With WAR, one instruction tries to write to a

destination (register, memory) before a prior instruction has had a chance to read from the same

destination. Unless this hazard is prevented the read instruction may pick up an incorrect value. A WAR

dependency can be handled by stalling or register renaming.

Write after Write (WAW): A type of data hazard. Where one instruction tries to write to a

destination (register, memory) before a prior instruction has had a chance to write to the same destination.

The WAW data hazard will only cause problems if writing to the destination generates side-effects or if

some parallel processing unit actually depends on the first write value (IE is reading). A WAR dependency

can be handled by stalling or register renaming.

Zip Pattern: A special case of the gather pattern that interleaves elements from multiple arrays (or

collections). This can be used to convert from a structure-of-arrays (SoA) to an array-of-structures (AoS).

431

BIBLIOGRAPHY

[1] Alexandrescu, A., 2001, Modern C++ Design, Generic Programming and Design Patterns Applied, Addison-

Wesley, Boston, MA

[2] Amdahl, G.M., 1967, Validity of the single-processor approach to achieving large scale computing capabilities,

AFIPS Conference Proceedings, vol 30, AFIPS Press, Reston, VA, pp. 483-485

[3] Arya, S., and Mount., M., 1993, Algorithms for Fast Vector Quantization, IEEE Proceedings of Data

Compression Conference, IEEE Computer Society Press, pp. 381-390.

[4] Atallah, M., and Blanton M., editors, 2010, Algorithms and Theory of Computation Handbook, 2nd Edition,

Volume 2, Special Topics and Techniques, Taylor and Francis Group LLC, Boca Raton, FL

[5] Bell, N., and Hoberock, J., 2012, Thrust: A Productivity-Oriented Library for CUDA, in W.M. Hwu, editor, GPU

Computing Gems: Jade Edition, chapter 26, pp. 359-371, Elsevier Inc., Waltham MA, 2012. URL:

https://code.google.com/p/thrust/downloads/detail?name=An%20Introduction%20To%20Thrust.pdf

[6] Bentley, J. L., 1975, Multidimensional binary search trees used for associative searching, Communications of the

ACM, Sept. 1975, Vol 18(9), pp. 509-517 URL: http://dl.acm.org/citation.cfm?id=361007

[7] de Berg, M. et al, 2000, Computational Geometry, Algorithms and Applications, 2nd Edition, Springer Verlag,

New York NY

[8] Blelloch, G., 1989, Scans as Primitive Parallel Operations. IEEE Transactions on Computers 38(11), pp. 1526-

1538

[9] Blelloch, G., 1990, Prefix Sums and Their Applications, School of Computer Science, Carnegie Mellon

University, CMU-CS-90-190, Nov. 1990. URL: http://www.cs.cmu.edu/~scandal/papers/CMU-CS-90-190.html

[10] Blelloch, G., et al, 1995, Solving Linear Recurrences with Loop Raking, Journal of Parallel and Distributed

Computing, Academic Press Inc., vol. 25, Iss. 1, pp 91-97.

[11] Blelloch, G. and Maggs, B., 1996, Parallel Algorithms. ACM Comput. Surv. v. 28, 1 (March 1996) p. 51-54

[12] Brent, R. and Kung, H., 1982, A Regular Layout for Parallel Adders, IEEE Transactions on Computers, vol. C-31,

no 3, p. 260-264, March 1982

[13] Brown, S. and Snoeyink, J., 2012, Modestly Faster Histogram Computations on GPUs, In IEEE Innovative

Parallel Computing (INPAR ’12), May 2012

[14] Buck, I, et al, 2004, Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics,

23(3), pp. 777-786, 2004. URL: http://dl.acm.org/citation.cfm?doid=1186562.1015800

[15] Bustos, B., Deussen, O., Hiller, S., Keim, D., 2006, A Graphics Hardware Accelerated Algorithm for Nearest

Neighbor Search, Proceedings of the 6th International Conference on Computational Science, May 2006, pp. 196-

199

[16] Chatterjee, S., et al, 1990, Scan Primitives for Vector Computers, in Supercomputing ’90, Proceedings of the 1990

ACM/IEEE Conference on Supercomputing, pp. 666-675, 1990. URL: http://dl.acm.org/citation.cfm?id=110597

[17] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., 2009, Introduction to Algorithms, 3rd Edition, Massachusetts

Institute of Technology, Boston, MA

[18] Cuccuru G., Gobbetti E., Marton F., Pajarola R., Pintus R., 2009, Fast low-memory streaming MLS reconstruction

of point-sampled surfaces, Graphics Interface, pp. 15-22.

[19] Dongarra J., et al, 2003 Sourcebook of Parallel Computing, Morgan-Kaufman, San Francisco CA

[20] Dotsenko, Y., et al, 2008, Fast Scan Algorithms on Graphics Processors, in ICS’08, Proceedings of the 22nd annual

international conference on Supercomputing, pp. 205-213, 2008.

https://code.google.com/p/thrust/downloads/detail?name=An%20Introduction%20To%20Thrust.pdf
http://dl.acm.org/citation.cfm?id=361007
http://www.cs.cmu.edu/~scandal/papers/CMU-CS-90-190.html
http://dl.acm.org/citation.cfm?doid=1186562.1015800
http://dl.acm.org/citation.cfm?id=110597

432

[21] Edmonds, J., 2008, How to think about Algorithms, Cambridge University Press, New York, NY

[22] Flynn, M. J., 1972, Some Computer Organizations and Their Effectiveness, in IEEE Trans. Comput. C-21 (9):

948-960. doi:10.1109/TC.1972.5009071

[23] Garcia, V., Debreuve, E., and Barlaud, M., 2008, Fast k Nearest Neighbor Search using GPU. Proceedings of

Computer Vision and Pattern Recognition Workshops, June 2008, pp. 1-6.

[24] Garland, M., Kirk, D., 2010, Understanding Throughput-Oriented Architectures, Communications of the ACM

31(1), pp. 58-66, Nov, 2010.

[25] Göddeke, D., Kurzak, J., Weiß, J-P., Heidekrüger, A., and Schröder, T., Scientific Computing on GPUs: GPU

Architecture Overview, PPAM 2011 Tutorial, Toruń, Poland, Sept. 11, 2011, URL: http://gpgpu.org/wp/wp-

content/uploads/2011/09/03-arch.pdf

[26] Govindaraju, N.K., et al, 2005, GPUTeraSort: High Performance Graphics Co-processor Sorting for Large

Database Management, Microsoft Technical Report MSR TR-2005-183, Nov. 2005, revised March 2006. URL:

http://research.microsoft.com/pubs/64572/tr-2005-183.pdf

[27] Gustafson, J. L., 1988, Reevaluating Amdahl’s Law, Communications of the ACM 31(50), pp. 532-533 URL:

http://www.johngustafson.net/pubs/pub13/amdahl.pdf

[28] Gustafson, J. L., 2011, Brent’s Theorem, Encyclopedia of Parallel Computing, pp. 182-185 URL:

http://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_80

[29] Jensen H., 2001, Realistic Image Synthesis Using Photon Mapping, A K Peters, Natick MA

[30] Ha, L., Krüger, J., and Silva, C., 2009, Fast 4-way Parallel Radix Sorting on GPUs, Computer Graphics Forum

V28, pp. 2368-2378, Blackwell Publishing. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-

8659.2009.01542.x/abstract

[31] Han, T. and Carlson, D., 1987 Fast Area-Efficient VLSI Adders, Proc. 8th Symp. Comp. Arith. P 49-56, Sept.

1987

[32] Harris, D. and Sutherland, I., 2003, Logical Effort of Carry Propagate Adders, Asilomar Conference on Single,

Systems, and Computers. URL: http://www3.hmc.edu/~harris/research/adderle.pdf

[33] Harris, M., 2007, Optimizing Parallel Reduction in CUDA,

URL: http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

[34] Harris, M. , Shubhabrata S., and Owens J.D. , 2008, Parallel Prefix Sum (Scan) with CUDA., in GPU Gems 3,

edited by H. Nguyen, chapter 39 pp. 851-876 . Addison-Wesley, Reading MA URL:

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

[35] Hennessey, J. and Patterson, D., 2012, Computer Architecture: A Quantitative Approach, 5th Edition, Elsevier Inc,

Waltham, MA

[36] Hillis, W. Daniel and Guy L. Steele, Jr. 1986, Data Parallel Algorithms, Communications of the ACM 29(12), pp.

1170-1183

[37] Hollerith, H., 1889, Art of Compiling Statistics, U.S. Patent 395,781, patented Jan.8, 1889

[38] Hwu, WM, editor, 2011, GPU Computing Gems Emerald Edition, Elsevier Inc., Waltham MA

[39] Hwu, WM, editor, 2012, GPU Computing Gems Jade Edition, Elsevier Inc., Waltham MA

[40] Knowles, S., 1999, A Family of Adders, Proc. 14th IEEE Symposium on Comp. Arith., p. 30, April, 1999

[41] Knuth, D., 1998, The Art of Computer Programming, Volume 3, Sorting and Searching, 2nd Edition, Addison-

Wesley, Boston, MA

[42] Kogge, P., and Stone, H., 1973, A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence

Equations, IEEE Transactions on Computers, C-22, p. 783-791

http://gpgpu.org/wp/wp-content/uploads/2011/09/03-arch.pdf
http://gpgpu.org/wp/wp-content/uploads/2011/09/03-arch.pdf
http://research.microsoft.com/pubs/64572/tr-2005-183.pdf
http://www.johngustafson.net/pubs/pub13/amdahl.pdf
http://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_80
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01542.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01542.x/abstract
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html

433

[43] Khronos Group, 2012, OpenCL – The open standard for parallel programming of heterogeneous systems, URL:

www.khronos.org/opencl/

[44] Ladner, R. and Fischer, M., 1980, Parallel Prefix Computation, Journal of the ACM (4): p. 831-838

[45] Merrill, D. and Grimshaw, A., 2010, Parallel Scan for Stream Architectures., Technical Report, CS2010-02,

University of Virginia, Dept. of Computer Science, Charlottesville, VA URL:

http://www.cs.virginia.edu/~dgm4d/papers/ParallelScanForStreamArchitecturesTR.pdf

[46] Merrill, D. and Grimshaw, A., 2010, Revisiting Sorting for GPGPU Stream Architectures., Technical Report

CS2010-03, University of Virginia, Dept. of Computer Science, Charlottesville, VA URL:

http://www.cs.virginia.edu/~dgm4d/papers/RadixSortTR.pdf

[47] Micikevicius, P., 2010, Analysis-Driven Optimization, NVIDIA GPU Technology Conference 2010,

URL: http://www.NVIDIA.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf

[48] Micikevicius, P., 2010, Fundamental Optimizations, NVIDIA GPU Technology Conference 2010,

URL: http://www.NVIDIA.com/content/GTC-2010/pdfs/2011_GTC2010.pdf

[49] Microsoft, 2012, C++ AMP Overview, URL: http://msdn.microsoft.com/en-us/library/hh265136.aspx

[50] Miller, R., and Boxer, L., 2013, Algorithms Sequential & Parallel a Unified Approach, 3rd Edition, CENGAGE

Learning., Boston MA

[51] Mitzenmacher, M., 1996, The Power of Two Choices in Randomized Load Balancing, PhD Thesis, Computer

Science Department, University of California at Berkeley, 1996.

[52] Mount, D. and Arya, S., 2010, ANN: A Library for Approximate Nearest Neighbor Searching, URL:

http://www.cs.umd.edu/~mount/ANN/ ANN Version 1.1.2 (Release date: Jan 27,2010)

[53] Nickolls, J., and Dally, W.J., 2010, The GPU Computing Era, IEEE Micro 30(2), pp. 56-69, Mar-Apr, 2010.

[54] Nugteren, C., van den Braak, G.J., Corporaal, H., and Mesman, B., 2011. High performance predictable

histogramming on GPUs: exploring and evaluating algorithm trade-offs. In Proceedings of the Fourth Workshop

on General Purpose Processing on Graphics Processing Units (GPGPU-4). ACM, New York, NY, USA, , Article

1 , 8 pages. DOI=10.1145/1964179.1964181 URL: http://doi.acm.org/10.1145/1964179.1964181

[55] NVIDIA, 2010, What is CUDA, URL: http://www.NVIDIA.com/object/what_is_cuda_new.html

[56] NVIDIA, 2012, CUDA C Best Practices Guide, URL:

http://docs.NVIDIA.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

[57] NVIDIA, 2012, CUDA C Programming Guide, URL:

http://docs.NVIDIA.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[58] NVIDIA, 2012, NVIDIA GeForce GTX 680, Whitepaper, URL:

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

[59] NVIDIA, 2010, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, Whitepaper, URL:

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pd

f

[60] NVIDIA, 2012, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110, Whitepaper, URL:

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[61] NVIDIA, 2012, Parallel Thread Execution ISA Version 3.1, URL:

http://docs.NVIDIA.com/cuda/pdf/ptx_isa_3.1.pdf

[62] NVIDIA, 2012, Thrust, URL: https://developer.NVIDIA.com/thrust

[63] Owens, J., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E, and Purcell, T.J, , 2007, A Survey of

General-Purpose Computation on Graphics Hardware, in Computer Graphics Forum 2007 26(1), pp.80-113, Mar.

2007.

http://www.khronos.org/opencl/
http://www.cs.virginia.edu/~dgm4d/papers/ParallelScanForStreamArchitecturesTR.pdf
http://www.cs.virginia.edu/~dgm4d/papers/RadixSortTR.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010v2.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2011_GTC2010.pdf
http://msdn.microsoft.com/en-us/library/hh265136.aspx
http://www.cs.umd.edu/~mount/ANN/
http://doi.acm.org/10.1145/1964179.1964181
http://www.nvidia.com/object/what_is_cuda_new.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
https://developer.nvidia.com/thrust

434

[64] Pajarola, R., 2005, Stream-Processing Points. IEEE Visualization, p. 31.

[65] Patterson, D.A., 2009, The Top Innovations in the New NVIDIA Fermi Architecture, and the Top 3 Next

Challenges, Elec. Eng. and Comp. Sci., UC Berkeley, Sept. 2009. URL: http://origin-

jp.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf

[66] Pearson, K., 1895, Contributions to the Mathematical Theory of Evolution II. Skew Variation in Homogenous

Material, Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences v.

186 pp. 343-326

[67] Podlozhnyuk, V., 2007, Histogram calculation in CUDA, Technical Report, NVIDIA, URL:

http://developer.download.NVIDIA.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf

[68] Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., 2007, Numerical Recipes the Art of Scientific

Computing, 3rd Edition, Cambridge University Press, New York, NY

[69] Purcell, T.J, Donner, C, Cammarano, M., Jensen, H.W., and Hanrahan, P., 2003, Photon Mapping on

Programmable Graphics Hardware. ACM SIGGRAPH / EUROGRAPHICS Conference on Graphics Hardware,

ACM Press

[70] Qiu, D., May, S., and Nuchter, A., 2009, GPU-accelerated Nearest Neighbor Search for 3D Registration, 7th

International Conference on Computer Vision Systems, Oct 2009, pp. 194-203

[71] Raab, M., and Steger, A., 1998, “Balls into Bins” – A Simple and Tight Analysis, Conference on Randomization

and Approximation Techniques in Computer Science (RANDOM), pp. 159-170, 1998.

[72] Rauber, T. and Rünger, G., 2010, Parallel Programming for Multicore and Cluster Systems, Springer-Verlag,

Berlin Heidelberg

[73] Rozen, T., Boryczko, Alda, W., 2008, GPU Bucket Sort Algorithm with Applications to Nearest-Neighbor Search,

Journal of the 16th International Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision, Feb. 2008

[74] Sanders J., and Kandrot, E., 2011, CUDA by Example: An introduction to General-Purpose GPU programming,

Elsevier Inc., Waltham MA

[75] Samet, H., 2006 Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, San Francisco

CA

[76] Sedgewick, R., 1998, Algorithms in C++, 3rd Edition, Parts 1-4: Fundamentals, Data Structures, Sorting,

Searching, chapter 7 pp. 315-346, Addison-Wesley, Reading MA

[77] Shakhnarovich, G., Darrell, T, and Indyk P., Editors, 2005, Nearest-Neighbor Methods in Learning and Vision,

Theory and Practice, The MIT Press, Cambridge MA

[78] Skiena, S. S., 2008, The Algorithm Design Manual, 2nd Edition, Springer-Verlag, London UK

[79] Shams, R. and Kennedy, R., 2007, Efficient Histogram Algorithms for NVIDIA CUDA compatible devices, in

ICSPCS: Proceedings of the International Conference on Signal Processing and Communication Systems

[80] Sklansky, J., 1960, Conditional-Sum Addition Logic, IEEE Transactions on Electronic Computers, vol. EC-9, no.

2, p. 226-231

[81] Stroustrup, B., 2013, The C++ Programming Language, fourth edition, Pearson Education, 2013, Upper Saddle

River, NJ

[82] Vaidya, P. M., 1989, An O(n log n) Algorithm for the All-Nearest Neighbors Problem., Discrete and

Computational Geometry, (4):101-115, 1989

[83] Volkov, V., 2010, Better Performance at Lower Occupancy, NVIDIA GPU Technology Conference 2010,

URL: http://www.NVIDIA.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

http://origin-jp.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf
http://origin-jp.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/histogram256/doc/histogram.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

435

[84] von Neumann, J., 1945, First Draft of a Report on the EDVAC, archived from the original on March 14, 2013,

retrieved August 24, 2011 URL:

https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf

[85] Wadleigh, K.R., and Crawford, I. L., 2000, Software Optimization for High Performance Computing, Prentice

Hall PTR, Upper Saddle River, NJ

[86] Wilt, N., 2013, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-Wesley, Upper

Saddle River, NJ

[87] Yang, Z., Zhu, Y., and Pu, Y., 2008, Parallel Image Processing Based on CUDA, In Computer Science and

Software Engineering, 2008 International Conference on, v3, pp. 198-201

[88] Zhou, K., Hou, Q., Wang, R., and Guo B., 2008, Real-time KD-Tree Construction on Graphics Hardware, ACM

SIGGRAPH Asia 2008, April 2008, page 10.

https://web.archive.org/web/20130314123032/http:/qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf

