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Abstract

JEREMY R. WANG. Analysis and Visualization of Local Phylogenetic Structure
within Species.

(Under the direction of Leonard McMillan.)

While it is interesting to examine the evolutionary history and phylogenetic relationship

between species, for example, in a sort of “tree of life”, there is also a great deal to be learned

from examining population structure and relationships within species. A careful descrip-

tion of phylogenetic relationships within species provides insights into causes of phenotypic

variation, including disease susceptibility. The better we are able to understand the patterns

of genotypic variation within species, the better these populations may be used as models to

identify causative variants and possible therapies, for example through targeted genome-wide

association studies (GWAS). My thesis describes a model of local phylogenetic structure,

how it can be effectively derived under various circumstances, and useful applications and

visualizations of this model to aid genetic studies.

I introduce a method for discovering phylogenetic structure among individuals of a pop-

ulation by partitioning the genome into a minimal set of intervals within which there is no

evidence of recombination. I describe two extensions of this basic method. The first allows it

to be applied to heterozygous, in addition to homozygous, genotypes and the second makes

it more robust to errors in the source genotypes.

I demonstrate the predictive power of my local phylogeny model using a novel method

for genome-wide genotype imputation. This imputation method achieves very high accuracy

- on the order of the accuracy rate in the sequencing technology - by imputing genotypes in

regions of shared inheritance based on my local phylogenies.
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Comparative genomic analysis within species can be greatly aided by appropriate visual-

ization and analysis tools. I developed a framework for web-based visualization and analysis

of multiple individuals within a species, with my model of local phylogeny providing the

underlying structure. I will describe the utility of these tools and the applications for which

they have found widespread use.
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Chapter 1

Introduction

Phylogenies describe the genetic relationships between species or individuals. Inferring these

relationships helps us better understand genetic similarities and differences which may drive

phenotypic variation and describe the organism’s history. Inter-species phylogenies - evo-

lutionary trees - describe the derivation of genomes between species. Intra-species phy-

logenetic structure describes the more complex multiple-inheritance relationships between

individuals in an interbreeding population.

Genomic structure can be represented, at a high level, as a mosaic of ancestral genomes.

This representation simplifies genome-wide analyses and is more robust than typical analyses

based on point markers. Relationships between individuals can be used to assess genome-

wide associations. I will first discuss phylogenetics and how my approach is related to higher-

level genomic structure. I will then define the genomic features and events forming the basis

for my model of local phylogenetic structure.

1.1 Phylogenetics

The study of phylogenetics aims to describe the relationships between phyla, species, or

individuals by their shared genetic material. Phylogenetics has been a major area of study

in biology for a very long time. At a high level, the phylogeny of all organisms depicts the



evolutionary tree of life, with branches implying division between entire groups of organisms.

In a phylogeny among species, these branches indicate “speciation” events where a species

diverged to evolve into two or more different species. Species do not interbreed, so there is

no recombination between their genomes. Figure 1.1 shows an evolutionary tree describing

the phylogenetic structure of a large portion of life on earth.

Figure 1.1: A phylogenetic tree indicating the evolutionary descent of organisms, including the top two
taxonomic levels: Domain, including Eukaryotes (red), Bacteria (green), and Archaea (blue), and Kingdom,
the most familiar of which will be Animals, Plants, and Fungi. This type of phylogenetic tree is rooted in the
center with time progressing outward. Branches indicate the point at which groups diverged, those closer to the
outside of the circle indicating more recent developments (on an evolutionary time scale). Viridae not shown.
Credit Wikimedia Commons (http://commons.wikimedia.org).

Although there is considerable disagreement among biologists about the appropriate tax-

onomic levels and classifications, the schema for representing phylogenetic structure as an

evolutionary tree down to the level of species or subspecies is widely agreed-upon [93].

The input data used initially were macroscopic or microscopic characteristics (e.g., abdom-

inal bristles in Drosophila, coat color in mouse, and Gram stain and shape for bacteria).
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DNA-based phylogenies became feasible beginning with one or a few genetic markers, and

currently based on hundreds of thousands of genetic markers or full genome sequence. Al-

though the methods I will describe are general, the applications and experimental results have

focused on the laboratory mouse. Figure 1.2 shows a phylogenetic tree of a subset of the sub-

family Murinae (family Muridae) including the species Mus musculus (the house mouse) and

five known subspecies. It is at this point that we start to see a breakdown of the standard form

of evolutionary trees. Mus musculus molossinus is generally considered a hybrid of M. m.

castaneus and M. m. musculus, and thus not the result of a simple speciation event. As we

begin to consider the phylogenetic structure within species, subspecies, and populations, this

global depiction of phylogeny breaks down.

Figure 1.2: Phylogenetic tree of a subset of the subfamily Murinae (family Muridae) including the species
Mus musculus (the house mouse), and five known subspecies, Mus musculus domesticus, M. m. musculus, M.
m. castaneus, M. m. molossinus, and M. m. bactrianus. The format of this tree is similar to Figure 1.1 except it
is rooted on the left and time progresses toward the right. (reproduced from [56])

3



Phylogenetic analyses among closely related species or individuals are often determined

by some measure of global genetic similarity. For example, we can line up the genetic se-

quence of two individuals and compare them base-by-base, computing percent identity. Us-

ing a sample (individual) from each of several strains (for our purposes right now, consider

these isolated subpopulations) of common laboratory mice, we can do this kind of compari-

son then construct a phylogenetic tree by recursively merging the “nearest neighbor” - the two

strains with the highest percent identity (this is called neighbor-joining). Figure 1.3 depicts

this type of tree. While this kind and construction of tree is not strictly an evolutionary tree, it

somehow represents a phylogenetic relationship [66]. This is especially true of the placement

of SPRET, CAST, and PWK. These strains are known to predominantly represent Mus spre-

tus (a different but closely related species), Mus musculus castaneus, and M. m. musculus,

respectively, while the remainder of the strains are predominantly M. m. domesticus. The

tree in Figure 1.3 accurately reflects these species and subspecific divisions.

Figure 1.3: A phylogenetic tree constructed using neighbor-joining over a set of common strains of laboratory
mice. This kind of tree, while not strictly an evolutionary tree, somehow represents the phylogenetic relationship
among a set of samples.

4



In the case of species, this general approach to phylogenetics is appropriate and effective,

mainly based on the constraint that individuals of different species cannot typically interbreed

to produce fertile offspring. The first violation can be seen at the subspecies level. Mus

musculus molossinus introduces an atypical feature into our tree because it is thought to

be a hybrid of M. m. musculus and M. m. castaneus. In order to consider the phylogenetic

relationships within a species, subspecies, or population, one must allow for the possibility of

interbreeding. Within an interbreeding population, an individual inherits from both parents.

When we attempt to model this, we cannot construct a simple bifurcating tree as we have

done so far. What we end up with is a web of inheritance relationships. I will discuss the

factors affecting genomic inheritance within species and how I derive the local phylogeny

structure under these conditions.

1.1.1 Thesis Statement

I introduce methods for efficiently and accurately identifying compatible genomic intervals

describing local phylogenetic structure within species. These intervals represent unique local

phylogenetic trees. I show how these intervals can be used to perform accurate genome-

wide imputation and to inform genome-wide association studies. I describe the design and

utility of visualization tools using local phylogenetic structure to allow effective and novel

comparative analyses between individuals. Lastly, I introduce an extension of my model of

compatible intervals which is resistant to erroneous data.

5



Allele One of two or more alternative forms of a gene that arise by mu-
tation and are found at the same place on a chromosome

Base-pair (bp) A pair of complementary bases in a double-stranded nucleic acid
molecule

Chromosome The distinct molecular units containing all or most of the genetic
material of cellular organisms

Diploid Having two sets of homologous chromosomes
Genome The genetic material of an organism
Genotype The genetic constitution of an individual organism
Haploid Having one set of distinct chromosomes, often one of each pair

of homologous chromosomes
Haplotype A group of alleles of different genes on a single chromosome
Heterozygous Having dissimilar alleles at corresponding chromosomal loci
Homozygous Having identical alleles at corresponding chromosomal loci
Phylogenetics The study of evolutionary relatedness among groups of organ-

isms
Recombination The rearrangement of genetic material, esp. by crossing over in

chromosomes
Single-Nucleotide
Polymorphism (SNP)

Genetic variation in DNA where a single nucleotide is altered

Table 1.1: Definition of terms

1.2 Genetic Structure and Inheritance

1.2.1 Genomic Nomenclature

I will introduce a general notion of genetic structure, inheritance, and phenomena which

affect them as it pertains to intraspecific phylogenetic structure. The mouse genome is ap-

proximately 2.5 billion base-pairs long. Each base on the primary strand consists of a single

nucleotide, of which there are four possible choices, adenine (A), cytosine (C), guanine (G),

or thymine (T). Within a species, only a very small fraction of base-pairs vary between in-

dividuals. We call these single-nucleotide polymorphisms, or SNPs. These and other com-

monly used genomic terms are defined in Table 1.1.

Genetic information is broken into separate functional units called chromosomes. Every

mammalian cell (except reproductive cells) contains two copies of each chromosome, one

6



Figure 1.4: The genome is broken into blocks called chromosomes, each of which has two copies.

inherited from each parent. In mice, there are 20 pairs of chromosomes; 19 of them, num-

bered 1-19, are called autosomes and the last pair are the sex chromosomes, labeled X and Y

(see Figure 1.4). As with humans, females have an XX pair and males have an XY pair. The

collection of chromosomes makes up the genome of an individual. In naturally occurring

sexually-reproducing populations, the two copies of each chromosome are different. One is

transmitted from the mother and the other from the father.

1.2.2 Genetic Variation

One of the primary sources of genetic variation in sexually-reproducing species is mutation

(see Table 1.1). Because mutation is very rare [53], I will make a common simplifying

assumption known as the infinite-sites model [48]. This model states that mutation is suffi-

ciently rare and the genome sufficiently long that no single position is likely to ever mutate

more than once. I will evaluate the impact of this assumption and propose a relaxation in

Chapter 5. Under this assumption, no SNP may include more than two alleles. As a result,

I will frequently simplify the representation of a haplotype to include binary alleles, ‘0’ and

‘1’, ‘0’ indicating the majority allele and ‘1’ representing the minority allele or nucleic acid

(see Figure 1.5). The infinite-sites model does not preclude the existence of heterozygosity,

so we represent heterozygous loci with ‘2’, meaning one copy contained ‘0’ and the other

7



‘1’. Violations of the infinite-sites model, where there have been multiple mutations at a

single base position, are called homoplasy events. In Chapter 2, I will take further advantage

of the infinite-sites model to make inferences about phylogenetic structure. We also often

ignore everything but SNPs - that is, ignore all non-variable base-pairs - when comparing

individuals.

Figure 1.5: Reduction of genome sequences to binary single-nucleotide polymorphisms (SNPs). Most loci in
the genome do not vary among individuals of the same species. Those which vary (are polymorphic), are called
SNPs. Under the infinite-sites model, each SNP in a haplotype may have only two states, so we represent the
majority allele with a ‘0’ and the minority with a ‘1’.

A much more common event introducing genetic variation is recombination. Recom-

bination is often the result of crossing-over during the formation of haploid reproductive

cells. If we have two chromosomes A and B, with nucleotides [A0 . . . An] and [B0 . . . Bn], a

recombination at locus r would result in [A0 . . . ArBr+1 . . . Bn] and [B0 . . . BrAr+1 . . . An].

Recombinations are the major driving force for mixing heterozygous genotypes during in-

heritance. Recombination events cannot be represented in a simple bifurcating evolutionary

tree since the resulting individual consists, in some part, of both parents’ genotypes.

The model of local phylogeny that I describe enhances our ability to determine which
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regions of the genome show no evidence of historical recombination among a set of indi-

viduals in a species. A set of genotypes admits a ”perfect” phylogeny if a binary tree can

be unambiguously constructed such that each branch represents a single SDP without ho-

moplays. Since we can construct a perfect phylogenetic tree within these intervals, we can

accurately describe the inheritance relationships within small segments of the genome, if not

genome-wide. I demonstrate the utility and biological significance of these intervals along

with useful visualization and analysis tools.

1.3 Compatible Intervals

In Chapter 2, I describe a method by which a set of genomes can be partitioned such that

there is no evidence of historical recombination within each block, that is, they admit a

perfect phylogeny. Although the discovery of perfect phylogenies is not new [71], I introduce

an efficient method which defines an interval set with several desirable properties. This

algorithm constructs an unambiguous set of intervals which is the smallest set necessary to

cover the genome while each interval is maximal in size, called a Maximal-k-cover, or Max-

k intervals. This set provides us with greater power to describe the phylogenetic structure

within these intervals and identify likely inheritance relationships.

To identify regions with no evidence of recombination, I use a method call the four-

gamete test (FGT) [40]. The four-gamete test states that, under the infinite-sites model, a pair

of SNPs which are not separated by a recombination breakpoint should exhibit no more than

three of the four possible allele pairs (gametes) among all samples. For example, if we have

two SNP loci A and B, some number of samples n, where Ai and Bi represent the binary

allele present in sample i at loci A and B, respectively, FGT (A,B) = {00, 01, 10, 11} 6⊂

{A0B0, A1B1, A2B2, . . . AnBn}. If a pair of SNPs passes the four-gamete test, we consider
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them “compatible” with the same phylogeny. We can compute a pairwise matrix of four-

gamete compatibility among all SNPs. Violations of the four-gamete rule imply a recombi-

nation or homoplasy event.

I describe the basic method - and computational complexity - for computing compati-

ble intervals that can be applied to haplotype data. Haplotypes may be derived either from

homozygous genotypes or heterozygous genotypes in which the component haplotypes are

separated into distinct sequences - a procedure known as phasing. Many genotyping tech-

nologies, like the probe-hybridization microarrays used to generate the SNP data on which

I demonstrate my method, cannot of themselves distinguish between the two copies of a

chromosome. This results in heterozygous loci, ‘H’, where the two copies do not have the

same allele, and it is unknown which haplotype (mother’s copy or father’s copy) contains

which allele. Phasing methods attempt to infer the correct assignment of alleles to the ap-

propriate haplotype, often by evaluating the co-occurrence statistics of nearby alleles within

a population. Phasing methods may result in the two chromosome copies which are likely

contributing to the genotype. In inbred mouse strains, this is often not a problem because

the inbreeding has led to chromosomes which are nearly identical and there is no ambiguity.

In other populations and species of interest, most notably humans, inbred genotypes are not

available. To sidestep the often inaccurate process of phasing, I developed an extension of the

four-gamete test which takes into account heterozygous ‘H’ calls. Due to the inherent ambi-

guity, I construct two sets of intervals depending on whether we take the optimistic view that

all possibly compatible SNP pairs are probably compatible, or the pessimistic view where we

consider all potentially compatible pairs incompatible.

Chapter 5 further extends this model to include a relaxation of the four-gamete rule which

helps reduce the effect of the real-world complication of erroneous input genotypes. An ap-

plication of my compatible intervals model used a probe-hybridization microarray, the Mouse

Diversity Array (MDA), to collect genotype data over more than 500,000 SNPs known to
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represent much of the diversity among classical laboratory mice [97]. This data allows us to

distinguish differences in this mouse population and predict the local phylogenetic structure.

However, with only half a million SNPs, there is an average genotype resolution of only one

SNP every 5,000 bases (5 kb). I can harness a large collection of additional genotype data

representing different technologies and analyses to improve the precision and accuracy of

my phylogeny model. Specifically, I discuss the inclusion of SNPs derived from paired-end

high-throughput short-read sequencing, or next-generation sequencing. These data provide a

far greater density of genotype data than do microarrays. However, misalignments of short

reads, homologous sequences, contamination, and sequencing error can all contribute to inac-

curacies in these data. To include high-throughput sequence and other genotype information

into my model, I introduce a relaxation of the four-gamete rule and the compatible intervals

model that allows for a small fraction of violations (incompatibilities) to be overlooked as

probable errors. Recombination produces an incompatibility signature distinctly different

from other types of error, which my relaxed model is tuned to ignore.

1.4 Imputation using Local Phylogeny

DNA microarrays are an established technology for querying a genome for specific subse-

quences. They are especially effective for detecting the alleles of known single-nucleotide

polymorphisms (SNPs). I describe a method to impute missing SNPs or other features using

the inferred local phylogeny structure derived from microarray-based SNP data over a large

set of individuals of a species. One can treat compatible intervals as regions of shared ances-

tral haplotypes, and their observed variants as alleles. I identified haplotype regions shared

among classical laboratory mouse strains. The collection of haplotypes within an identified

region implies a local phylogenetic structure that is useful for partitioning samples to a finer
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degree than is possible with individual SNPs. Others have previously used blocks of contigu-

ous SNPs as haplotypes to group samples locally [70]. The strength of our partitioning into

haplotypes is that it is always consistent with a phylogenetic tree.

Haplotype structure can be used to accurately impute missing genotypes among closely

related laboratory mouse strains [86]. I can confidently identify shared haplotype blocks

among related individuals using a relatively low-density set of loci. This allows us to reliably

predict that all intervening features are shared. I imputed 88 classical laboratory strains using

this method and have shown that these imputed genotypes are more accurate than alternative

imputation methods and exhibit an error rate approaching that of the sequencing technology

itself.

1.5 Visualization of genomic structure

Visualization is essential to understanding of the structure and function of genomes. Genome-

wide association relies on comparative analysis of closely related strains or individuals to

determine the relationship between genotype and phenotype. Such analyses are informed

by local haplotypes and phylogenetic structure. I have developed interactive visualization

tools particularly well-suited for comparative analysis of genomic structure [87, 88]. These

tools display SNPs, shared haplotype blocks, and subspecific origin over multiple collinear

genomes, highlighting similarities and differences across the genome.

While existing genome browsers provide an effective interface to analyze genotype infor-

mation and annotation for individuals, they lack the ability to visualize and analyze collinear

genomes in an informative way. The framework I have developed supports the simultane-

ous visualization of multiple collinear genomes (for example, a variety of laboratory mouse

strains). I introduce tools to support dynamic interaction and automatic comparison tools be-

tween genomes. These tools and datasets are derived from my model of compatible intervals
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such that we can use regions of local phylogeny to compare samples based on their local

inheritance structure. This type of interaction makes the phylogeny browser an excellent tool

for analyses such as GWAS in which one would like to discover the relationship between

regions of shared inherited genotypes and the phenotypes of a study sample.

My genome browser is provided as a web-based service, taking advantage of client-side

as well as server-side computation to provide an interactive and widely accessible interface

to this tool. Two instances of my browser have been deployed, one exposing the subspecific

and phylogenetic structure of a large set of classical laboratory mice, the other describing

the structure of the emerging Collaborative Cross [12] population including how the popula-

tion has been derived from eight “founder” strains. These resources have seen effective and

widespread use since their introduction.

1.6 Conclusions

In this thesis, I will describe my development of effective methods for decomposing genomes

into meaningful blocks, referred to as compatible intervals, and placing them within the

context of a local phylogeny. The point at which my approach departs from the classical

model of evolution is that it attempts to infer the history for genomic segments rather than

for an entire organism. The advantage of this approach is that it decouples genomic changes

brought on by recombination from those originating from mutations. In Chapter 2, I describe

my method for efficiently computing compatible intervals which are maximally informative

over both haplotype and genotype data. In Chapter 3, I describe a method for genome-wide

imputation using local phylogenetic structure and show that this method achieves a very high

accuracy. I introduce a visualization tool in Chapter 4 which allows comparative analysis of

multiple individuals within a species based on their local phylogenetic structure. Chapter 5

describes an extension of my local phylogenetic model to allow us to better handle haplotype
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data with a higher rate of error. Finally, Chapter 6 discusses additional applications of my

local phylogeny model and directions of future research.
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Chapter 2

Compatible Intervals

I present methods for partitioning a genome into blocks within which there are no apparent

recombinations. This provides parsimonious sets of compatible genome intervals based on

the four-gamete test. My contribution is a thorough analysis of the problem of dividing a

genome into compatible intervals, its computational complexity, and an achievable lower-

bound on the number of intervals required to cover an entire genome [85]. In general, such

minimal interval sets are not unique. However, I identify properties that are common to every

possible solution. I also define the notion of an interval set that achieves the interval lower-

bound, yet maximizes interval overlap. I demonstrate algorithms for partitioning haploid

data, such as that derived from inbred mice. I will then describe how I extend this method to

outbred, heterozygous genotype data using a modification of the standard four-gamete test.

These methods allow our algorithms to be applied to a wide range of genomic data sets.

2.1 Introduction

The local block structure of genotypes within a population sheds light on many biological

questions [19]. Genotype blocks are central to quantifying and localizing recombinations

(both recent and historical) [76, 75, 89], are widely used to identify informative marker sets

[101], and are building blocks for constructing genetic maps [73]. Genotype-block structure



also underlies many genome-wide association methods [100], provides evidence for selection

[32], and offers a tool for ascertaining ancestral origins [18].

The task of decomposing a genome into meaningful blocks, however, has proven to be

ill-defined, inconsistent, and often ambiguous [64, 70]. In part, the problem is due to the ad

hoc definition of what constitutes a genotype block. Genotype blocks are often defined to

serve a specific purpose. Examples include the minimum number of tagging SNPs sufficient

to capture informative genotypes [65, 101], intervals of SNPs that exceed a given threshold

of Linkage Disequilibrium (LD) [68], and maximal regions whose genotype diversity falls

below a threshold [19]. Partitioning genotypes into blocks supporting perfect phylogenies

[76, 31] and, similarly, the selection of blocks lacking evidence for recombination [91] are

also used to construct Ancestral Recombination Graphs (ARGs).

I propose unambiguous definitions for haplotype and genotype blocks and efficient meth-

ods for computing them. Where ambiguity is unavoidable, I provide properties common to

all solutions. My haplotype-block definition directly supports, and has been used for, asso-

ciation mapping [63], construction of genetic maps [103], and determining ancestral origins

within local genomic regions [104]. My proposed genotype blocks can be used in much the

same way.

Dense genotype data sets that are homozygous at every allele are readily available for

many inbred mammal [28] and plant [13, 60] models commonly used for association map-

ping. However, haplotype data is not directly available for use in human studies. Using my

approach, it is unnecessary to phase such data sets. I show how, using heterozygous geno-

types, blocks can be identified for exploring the local phylogenetic structures [8, 46, 59, 61]

and ancestral origins [99]. Like others [31, 91, 89], my blocks are chosen for their lack of

historical recombination evidence.

My methods can be used as an alternative to other block methods such as those in

[25, 102, 30]. Particularly, the genotype block methods I introduce may be used to inform
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phasing [47] and feasibly extend these methods to be applicable to unphased genotype data.

Block association methods such as Blossoc [57] and QBlossoc [6], which utilize small re-

gions that admit perfect phylogenies, could potentially benefit from my methods to compute

regional perfect phylogenies rather than single-marker phylogenies. These tools could also

be extended to unphased genotype data rather than exclusively haplotype data.

I define blocks in terms of SNP compatibility according to the four-gamete test (FGT)

[40]. The FGT is of interest because of its close relation to perfect phylogeny [44]. Specif-

ically, a necessary and sufficient condition for a perfect phylogeny is that all pairs of SNPs

satisfy the FGT [37]. For unphased genotype data, I further define the notion of optimistic

and pessimistic compatibility based on if a region is possibly or necessarily passes the FGT. I

partition the genome into a set of potentially overlapping maximal compatible intervals, each

of which admits a perfect phylogeny, and whose union covers the full data set. I address the

question of what is the fewest number of such intervals required and identify suspect SNPs

whose removal reduces the overall complexity of the block structure (perhaps indicating

genotyping errors, homoplasy, or gene conversions).

My contribution is an analysis of the problem of dividing a genome into compatible

intervals based on genotypes and its complexity. I provide an achievable lower-bound on the

number of such intervals. While in general there are numerous ways of dividing a genome

into a minimum number of compatible intervals (a fact overlooked by others [57, 89, 92]),

I also identify non-overlapping core subintervals common to all valid solutions. I define

an interval set that achieves the interval lower-bound, yet maximizes the overlap between

adjacent intervals, thus minimizing the number of perfect phylogeny trees, while providing

the richest possible set of SNPs to each tree.
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2.2 Related Work

There are three common approaches for partitioning haplotypes into blocks. The first em-

ploys LD measures [30, 68] and assigns blocks to regions with high pairwise LD within,

and low LD between, blocks. A second class assigns blocks to regions of low sequence di-

versity [65]. Lastly, there are approaches that look for direct evidence of recombination, by

either applying the FGT [40] and defining blocks as regions free of apparent recombination

or homoplasy, or during the construction of ARGs, denoting supporting regions’ component

subtrees [76]. Schwartz et al. [70] performed an analysis of approaches and concluded that

the block assignments of various methods differed markedly. Of these methods, the block

boundaries of the FGT were better correlated to both the LD and diversity-based methods

than these two methods were to each other.

My approach partitions the genome into blocks satisfying the FGT. This is not new. The

seminal work of Hudson and Kaplan [40] provides a sketch of a greedy algorithm that pro-

cesses SNPs in sequence order looking for runs of compatible intervals that are broken at

points of incompatibility. This method is widely used [57, 70, 89, 92]. A disconcerting fea-

ture of this approach is that one arrives at a different interval set if the genome is scanned

in the reverse order (Figure 2.4b). Alternative sets of compatibility intervals arise when the

region is grown maximally around each SNP [57]. Moreover, there appear to be many other

possible partitions, begging the question of which block sets have the fewest intervals, and,

of these sets, which minimizes haplotype diversity. In my model, each block is compatible

with a perfect phylogeny (a side effect of the FGT) and overlaps between adjacent intervals

are allowed.

I extend these basic methods to unphased genotype data. Modern genotyping technolo-

gies often cannot distinguish between alleles in the genotypes of diploid individuals. There

exist methods for computationally inferring the component haplotypes, called “phasing”, but
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these methods introduce significant inaccuracy [47]. Little work has been done on partition-

ing genotype data without first phasing; however, there has been considerable work on the

related topic of phasing by perfect phylogeny [3, 10, 26, 34, 22]. Such methods determine

if a given genotype block admits a perfect phylogeny. My contribution is to apply the basic

insights of these methods to extend the notion of a haplotype “scan” to the genotype case.

Similar work has been done [23] in which local phylogenies are built over unphased geno-

type data to inform association mapping; however, this work does not take full advantage of

compatible blocks, employing a single-marker approach rather than a global block structure.

Past attempts at using perfect phylogeny to analyze genotypes assume they are given a

region which admits a perfect phylogeny or does so within an error model. Most previous

work ([22, 34, 26, 77, 3]) determines if the given set of genotypes does in fact admit a perfect

phylogeny, and then solves the Perfect Phylogeny Haplotyping problem (PPH) [34]. In this

context, “haplotyping” refers to phasing - determining the component haplotypes from a

genotype. Recent extensions allow data to fall within some error model and handle cases

where the data does not fit a perfect phylogeny. Error models include Missing Data (MD)

and Character-Removal (CR), and the algorithms attain a global perfect phylogeny while

dealing with erroneous point cases ([37, 35]).

No previous approach considers the possibility of different PPH solutions as determined

by the choice of block partition. While I do not propose haplotyping by perfect phylogeny,

I use related techniques to partition the genome into blocks which satisfy a perfect phy-

logeny that could, in practice, then be haplotyped using any one of several previous algo-

rithms. Introducing a genome-wide approach to perfect phylogeny rather than filtering out

data as in [37, 35] considers many biological factors previously overlooked. The notion of

recombination-free blocks in the genome is well-documented in humans and mice, as well

as other species [30, 102, 89, 63, 60]. In many cases, regions of the genome on either side
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of a recombination point should realistically admit different phylogenies based on hybridiza-

tion between subspecies. Simply removing presumed erroneous data and forcing regions

separated by historical recombination into a global phylogeny ignores their biological rele-

vance and produces a misleading solution. My method of partitioning allows for biologically

meaningful, though limited, regions with which to perform further analyses.

2.3 Definitions

Throughout this discussion, we assume a data set of M SNPs spanning N haplotypes (or

genotypes) that are represented as either a binary data matrix S or a ternary matrix Sg where

each column corresponds to a SNP, and each row is a haplotype or genotype (Figure 2.1).

Alleles 0 and 1 represent alternative homozygous alleles and 2 represents heterozygous alle-

les.

A compatible interval over a set of haplotypes is a sequence of contiguous SNPs over

S for which there are no violations of the FGT between any SNP pair. A compatible inter-

val, Ix = [bx, ex], includes all SNPs between the beginning SNP sbx and ending SNP, sex .

Figure 2.1a shows a data set of 16 haplotypes and 44 SNPs, together with eight compatible

intervals, {I1 . . . I8}. Each interval covers a consecutive set of SNPs. For example, I3 covers

from s8 to s26. The triangular matrix above the SNP matrix is the pairwise compatibility

matrix. If two SNPs exhibit four gametes, the corresponding matrix element is marked in-

compatible (red). Darkened triangles indicate sub-matrices corresponding to SNP pairs in

the compatible intervals {I1 . . . I8}. Note that no triangles enclose red elements.

Compatible intervals over genotypes Sg are less straightforward due to ambiguities caused

by heterozygous alleles. I define the notion of optimistic and pessimistic compatibility,

whether genotypes are possibly or necessarily compatible, respectively. Resolving genotype

intervals requires more considerations when performing the FGT. Pairs of SNPs are evaluated
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to determine which gametes phasing could produce. In cases of homozygous-homozygous

and homozygous-heterozygous pairs, the possible gametes are trivially determined. For ex-

ample, the 0-0 produces the 0-0 gamete and 0-2 produces the 0-0 and 0-1 gametes. Ambiguity

is caused only by the 2-2 case - when there exist heterozygous alleles in the same sample at

two different loci. These cases can produce two different sets of gametes, either 0-0 and 1-1,

which we call consistent gametes, or 0-1 and 1-0, which we call inconsistent gametes. The

compatibility between 2-2 pairings can be categorized in three ways according to the restric-

tions necessary to make them compatible. If one of the 0-1 or 1-0 gametes are not present, all

pairs must be consistent. If one of the 0-0 or 1-1 gametes are not present, all pairs must be in-

consistent. If there are no other gametes present, all 2-2 pairs must simply produce the same

set of gametes since it is always possible to produce four gametes with opposite phasings of

two 2-2 pairs. These three states are indicated by green, orange, and blue, respectively, in the

compatibility matrix (Figure 2.1b).

The optimistic algorithm forms a graph with a vertex representing each locus and an edge

representing the relative phasing (consistent, inconsistent, or ambiguous) between two ver-

tices. An interval is optimistically compatible iff there exists a bipartition of the graph into

two sets A and B such that no edge within A is inconsistent, no edge within B is inconsistent,

no edge between sets A and B is consistent, and all ambiguous edges are uniquely resolvable

to as either in phase or out of phase. We use an algorithm similar to [26] to partition the

genome into blocks of genotypes which admit a perfect phylogeny. Similar to the haplotype

“scan”, we introduce SNPs one-by-one and test whether the resulting interval is internally

compatible. For haplotypes, this is accomplished by pairwise comparisons of previous SNPs

with every newly introduced SNP. For the genotype case, we define two interval types. For

optimistic intervals, we use the idea of what Eskin et al. [26] refer to as equal and unequal

resolution to create a bipartite graph for each proposed interval. We “scan” SNPs as de-

scribed in the haplotype case, adding these SNPs as vertices to the graph until the graph is no
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(a) CUber cover over haplotypes

(b) CUber cover over diploid genotypes

Figure 2.1: Example data sets and Uber-cover. The data sets used in this figure will be used as running
examples. The lower portion of the figure is the data matrix. The columns correspond to SNPs, and the
rows correspond to haplotypes (a) and genotypes (b). Blue and yellow boxes represent homozygous alleles
normalized such that the first sample is homozygous blue. Green boxes represent heterozygous alleles. The
large triangles above the data matrices are the compatibility matrices, showing the compatibility of each pair
of SNPs. Gray boxes indicate that a pair of SNPs definitely does not violate the four-gamete rule. Red boxes
indicate that a pair of SNPs creates four gametes. Green boxes indicate that a pair must be consistent to be
compatible. Orange boxes indicate that a pair must be inconsistent to be compatible. Blue boxes indicate that a
pair must be either consistent or inconsistent to be compatible.
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longer realizable, thus ending an interval. Pessimistic intervals are unambiguously compati-

ble regardless of the choice of haplotype phasing. When the scan is performed, an interval is

ended as soon as it reaches a SNP which is possibly incompatible with any previous SNP in

the interval. This is equivalent to considering all non-gray points as incompatible (red) and

performing a haplotype scan to produce the pessimistic genotype intervals.

Figure 2.1b shows a data set of eight genotypes and 44 SNPs, together with four of its

optimistic compatible intervals. It remains true that no interval may enclose an incompatible

SNP pair. However, unlike the haplotype case, intervals are not necessarily bounded by red

elements. As described, SNPs may be implicitly incompatible with a given interval if their

addition forms an unrealizable graph.

A compatible interval is maximal if it cannot be extended in either direction. All intervals

in Figure 2.1a (I1, I2, I3, I4, I5, I6, I7, and I8) are maximal, since further extension includes

one or more incompatible SNP pairs. We denote the set of all maximal compatible intervals

as CUber. Throughout, we will denote a cover over a genome generically by C. A cover of

a set of haplotypes will be represented by C(h). An optimistic cover of a set of genotypes

will be represented by C(g) and a pessimistic cover by C(p). The darkened triangles in

Figure 2.1a depict C(h)Uber. The two SNPs adjacent to a maximal compatible interval, sbx−1

and sex+1, are the flagging SNPs of the interval (Figure 2.2b). Note that flagging SNPs are

incompatible with at least one SNP of the maximal compatible interval that it flanks.

A cover, Cx,y, is an ordered set of intervals, Cx,y = I1, I2, . . . , Ic, where bi ≤ bi+1, and

every SNP in the range [x, y] is covered by some interval in C but no SNP outside [x, y]

is covered by any interval in Cx,y. Cx,y also satisfies ei ≤ ei+1, since otherwise Ii+1 is a

fully contained subset of Ii. We call C1,m a complete cover of S, and |C| is its cardinality.

I will frequently refer to a cover, C, where |C| = c, as a c-interval cover, or simply as a

c-cover. In addition, I will refer to special instances of complete covers by using descriptive

subscripts, in which case a range from [1,m] is implied. For example, in Figure 2.1a, I1, I3,
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(a) CUber with cores

(b) Flagging SNPs

Figure 2.2: This figure shows the CUber intervals. (a) includes the cores, highlighted in red. (b) shows
flagging SNPs highlighted in red. Incompatibilities between flagging SNPs of adjacent maximal compatible
intervals are highlighted with green circles.
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I4 is a C(h)1,29 cover, {I1, I3, I4, I6, I8} is a complete 5-cover. We are particularly interested

in complete k-covers, where k is a reachable lower bound on the number of intervals for the

given SNP set.

In the following sections we provide an effective method for finding minimum-length

complete covers for a given SNP set. This establishes k as a tight lower bound. In general,

the k-cover for a given data set may not be unique. I provide several simple linear-time

algorithms that generate various k-covers. In addition, we examine features which are com-

mon to all k-covers of a given data set. I then present a linear-time algorithm for finding a

cover composed entirely of maximal compatible intervals from CUber, where |CUber| ≥ k.

Finally, I present an algorithm for finding the k-cover with maximal overlap, the Maximal-

k-Cover (CMax). The cover CMax is of particular interest since it leads to the construction of

a parsimonious set of perfect phylogeny trees where each incorporates maximal information

(i.e. the maximum number of SNPs per tree). Finally, I present an algorithm for finding

critical SNPs in S whose removal reduces |CMax| from k to k − 1 or smaller. This can be

accomplished using a number of tests proportional to |CUber| rather than m.

2.3.1 Constructing Phylogenetic Trees from Compatible Intervals

Every compatible interval admits an unambiguous phylogenetic tree, by definition [33].

While we are often concerned only with the haplotypes represented within an interval, we

also often interested in constructing the actual phylogenetic tree which represents the varia-

tion in an interval. This can be done simply and efficiently for binary haplotypes using the

method described in [33]. We wish to construct a perfect phylogeny tree in which each edge

represents an SDP in the compatible intervals. A rooted tree is constructed with the all-zero

haplotype at its root (there may be no actual representative of this haplotype). SDPs are

considered in decreasing order of the number of minority alleles present in all samples. For

each unique SDP, the leaf containing the samples which have the minority allele is identified.
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A subtree is added to this leaf containing those samples with 1s (the minority allele). Fig-

ure 2.3a illustrates this tree construction procedure. When constructing local phylogenetic

trees in this way, the outgroup is most often unknown, so the resulting tree is considered

unrooted after it is fully constructed.

It is not trivial to construct a meaningful tree over genotypes unless they are phased and

the corresponding haplotypes admit a perfect phylogeny. However, when perfect phylogeny

trees are unreasonable or we wish to construct trees over intervals which do not strictly admit

a perfect phylogeny (in some circumstances, I consider the collection of several adjacent

intervals), I use other tree construction methods. The neighbor-joining method [69] allows

the efficient construction of parsimonious phylogenetic trees based on pairwise distances (in

our case, SNPs). Given a population of samples and pairwise distances between them, we

repeatedly merge the samples with the smallest distance (see Figure 2.3b). After merging two

samples, we remove them from further consideration and add a virtual sample with distances

to the remaining samples equal to the average distance from the two merged samples. These

”merges” represent the roots of successive subtrees until all samples are merged into the root.

This method accurately represents the relationships between samples when genotypes do not

admit a perfect phylogeny [69].

2.4 A Lower Bound

2.4.1 LR and RL Covers

We first define two non-overlapping covers, the Left-to-Right cover (C(h)LR), and the Right-

to-Left cover (C(h)RL). A simple greedy algorithm, LRScan (Algorithm 1), which has been

previously described in [89], finds C(h)LR over a set of haplotypes. It begins at the leftmost

SNP (s1), and either extends or terminates the current active interval as it considers each

SNP in sequence order. LRScan performs FGTs of the candidate SNP against those SNPs
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(a) Perfect Phylogenetic Tree Construction

(b) Neighbor-Joining Tree Construction

Figure 2.3: Construction of perfect phylogeny (a) and neighbor-joining (b) trees. Perfect phylogeny trees are
constructed from a set of SNPs admitting a perfect phylogeny by partitioning the samples into subtrees/leaves
strictly according the the distribution of alleles in each SNP. In (a), SDPs are used to partition samples in de-
creasing order of the frequency of the minority allele. Neighbor-joining trees do not require a perfect phylogeny.
Leaves are successively merged based on a distance matrix between samples. In (b), leaves are merged at each
step if they have the lowest distance in the distance matrix (circled in red).
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already in the active interval. If four gametes occur between the SNP under consideration

and a previous SNP found in the interval, the active interval is closed, and a new interval

begins from the candidate, otherwise the SNP is added to the active interval. This continues

until the last SNP is reached, thus closing the final interval (see Figure 2.4a).

The run-time of LRScan depends on the number of SNPs,m, and the number of the FGTs

performed for each SNP. Since the maximum number of distinct compatible SNP patterns

that can be mutually compatible among n haplotypes is 2n − 3 [77], the FGT requires only

O(n) operations per SNP, assuming a constant-time overhead for each FGT. Therefore, the

complexity for LRScan is O(mn), and thus is linear in the size of the data matrix.

Algorithm 1: C(h)LR=LRScan(SNP )
Input: SNP = [snp1, ..., snpm] : an array of m markers
Output: C(h)LR : a list of intervals covering 1 to m
Variables: l : list of unique SNP patterns we have seen for the current interval

s : the start of the current interval
s← 1
for i = 1 to m do

if snpi /∈ l then
for j = 1 to ||l|| do

if lj is not compatible with snpi then
append to C(h)LR interval [s, i− 1]
s← i
l← ∅
break

add snpi to l

append to C(h)LR interval [s,m]
return C(h)LR

A similar greedy Right-to-Left scan algorithm (RLScan) generating C(h)RL can be de-

fined via straightforward modifications to (LRScan). Likewise C(h)RL can be generated by

merely reversing the input sequence, applying LRScan, and adjusting the indices of the re-

sulting intervals, including their starting and ending positions. Note that a cover’s interval

ordering is defined consistently according to the sequence order, regardless of the scanning
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(a) CLR

(b) CLR (green) and CRL (orange)

(c) CMax

Figure 2.4: This figure shows three covers. (a) depicts CLR created by the LRScan algorithm. (b) shows
CLR (in green) and CRL (in orange) together. The intersection of these two covers creates the set of cores
(highlighted in red below the data matrix). In (c), each CMax interval encloses exactly one core.
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direction.

I define a similar notion over a set of genotypes. As described in Section 2.6, the only

difference is the manner in which the FGT is performed. We find an optimistic left-to-right

(C(g)LR) and right-to-left (C(g)RL) cover by closing an interval only when the subsequent

SNP will be definitely and unambiguously incompatible with a SNP in the interval (regardless

of the phasing chosen). Likewise, a pessimistic interval (C(p)LR and C(p)RL) is closed off if

there exists a phasing of the genotype set for which the next SNP will be incompatible with

SNPs already in the interval.

The run time of the pessimistic genotype scan is also O(mn). Like the haplotype case,

there is a limit on the number of distinct SNPs that can be compatible among n genotypes

which is linear in n. So, the adjusted FGT requires only O(n) operations per SNP to deter-

mine if there exists any possible incompatibility.

The run time of the optimistic genotype scan is more complex. Eskin et al ([26]) pro-

pose an algorithm with O(nm2) complexity to determine if a single region admits a perfect

phylogeny. I use a similar algorithm, adding SNPs incrementally. Since each interval is

bounded and scan proceeds linearly across the genome, this allows for an O(nm2) algorithm

to partition the entire genome.

2.4.2 Properties of CLR and CRL

In this section I present properties of compatible intervals and provide proofs. My first the-

orem states that “The covers CLR and CRL have the same number of intervals k, and k

is the minimal number of intervals possible for any complete cover.” A second theorem

identifies certain core subintervals are common to all complete k-covers of a given SNP set

(Figure 2.2a). These subintervals are the intersections of corresponding intervals from CLR

and CRL which I have called cores (Figure 2.4b). This implies that a k-cover must contain k

intervals each containing one core exclusively. This leads to two corollaries. The first is that
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any interval that does not contain an entire core is not part of any complete k-cover and the

second is that the ith core is only contained within the ith interval of any k-cover. Cores have

several interesting properties worth noting. All SNPs in a core are compatible because each

core is an intersection of two compatible regions. Adjacent cores must contain at least one

pair of incompatible SNPs.

LEMMA 1. Any c-interval cover covering the range [1, ec], with ec ≤ m, satisfies ec ≤ eLc ,

where eLc is the endpoint of the cth interval of CLR over the same sequence.

PROOF. By induction, a single-interval cover must end at, or short of, eL1 (an overage

would indicate LRScan closed the interval prematurely). Assume that the Lemma holds for

an i-interval cover, thus ei ≤ eLi . This implies for any (i + 1)-interval cover bi+1 ≤ bLi+1.

We now prove ei+1 ≤ eLi+1. Since there exists a SNP, s, in the (i + 1)th interval of CLR (i.e.

within [bLi+1, e
L
i+1]) where s is incompatible with seLi+1+1, [bi+1, ei+1] cannot be a compatible

interval if ei+1 > eLi+1. Therefore, we have ei+1 ≤ eLi+1.

A symmetric Lemma for CRL states that any C-interval cover covering the range [b1,m],

with b1 ≥ 1, satisfies bc ≥ bRc , where bRc is the start of the cth interval of CRL over the same

sequence.

THEOREM 1. The covers CLR and CRL have the same number of intervals k, and k is the

minimal number of intervals possible for any complete cover.

PROOF. Assume ‖CLR‖ = i. According to Lemma 1, for any c-interval cover, C, with

c < i and starting from the left-most SNP, the end of the cover’s range ec ≤ bLc < bLi = m.

Therefore, C cannot be a complete cover if ‖C‖ < ‖CLR‖, implying that a complete cover

must have at least ‖CLR‖ intervals. A similar conclusion can be drawn for ‖CRL‖ using the

symmetric version of Lemma 1. Therefore, we have ‖CLR‖ = ‖CRL‖ = k, and k is the

lower bound on the number of intervals for a complete cover.
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LEMMA 2. For all i = 1 . . . k, Corei 6= ∅.

PROOF. By induction. Assume CLR = {IL1 , . . . , ILk }, and CRL = {IR1 , . . . , IRk }. By

definition Corei is [bLi , e
R
i ]; therefore, it is sufficient to prove bLi ≤ eRi . This is trivially the

case for i = 1; bL1 ≤ eR1 . Assume that bLi ≤ eRi holds for i, we now prove it holds for i + 1.

From bLi ≤ eRi , we know bLi < bRi+1. If bLi+1 ≤ eRi+1 does not hold, implying eRi+1 ≤ eLi ,

then we know ILi ⊃ IRi+1, and SNP seRi (∈ ILi ) must be compatible with all SNPs in IRi+1.

Figure 2.5b illustrates this proof. seRi is outside and adjacent to IRi+1. By definition of the

Right-to-Left cover, SNP seRi must be incompatible with at least one SNP in IRi+1, which

results in a contradiction.

THEOREM 2. For any complete k-cover C1,m= {I1, . . . , Ik}, the ith interval contains the

entire ith core: Corei ∩ Ii = Corei, and, it does not contain any part of another core

Corej ∩ Ii = φ, 1 ≤ j ≤ k, j 6= i.

PROOF. Since Corei = [bLi , e
R
i ], to prove the ith interval Ii = [bi, ei] contains Corei,

it is sufficient to prove bi ≤ bLi and ei ≥ eRi . Since {I1, . . . , Ii−1} is an (i − 1)-cover

covering the range [1, ei−1] starting from the leftmost SNP, according to Lemma 1, we have

ei−1 ≤ eLi−1, which means bi ≤ bLi . Similarly, we can prove ei ≥ eRi (see Fig. 2.5c). To prove

Corej ∩ Ii = ∅ for any other core Corej , it is sufficient to prove ei < bLi+1 and bi > eRi−1.

Since {I1, . . . , Ii} is an i-cover covering the range [1, ei], according to Lemma 1, we have

ei ≤ eLi < bLi+1. Similarly, we can prove bi > eRi−1.

Stated formally, Corei = ILi ∩ IRi . According to Lemma 1, eRi ≤ eLi and bLi ≥ bRi

(Figure 2.5a), therefore Corei = [bLi , e
R
i ]. Theorem 2 states, “For any complete k-cover,

C{1,m} = {I1, . . . , Ik}, the ith interval contains the entire ith core: Corei ∩ Ii = Corei,

and, it does not contain any part of another core Corej ∩ Ii = Φ, 1 ≤ j ≤ k, j 6= i”.

This is due to the interleaving of the non-overlapping intervals of CLR and CRL. Corei

is necessarily compatible with both ILi and IRi and cannot be extended beyond the outside

boundary of either. Therefore, no part of any two cores may be a part of the same interval.
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PROPERTY 1. All SNPs in a core are compatible, since each core is an intersection of two

compatible intervals

PROPERTY 2. Adjacent cores must contain at least one pair of incompatible SNPs

PROOF. This can be demonstrated by contradiction. Assume that two adjacent cores, corei

and corei+1, are compatible. By definition, corei = [bLi , e
R
i ]. Since corei ⊆ ILi = [bLi , e

L
i ],

corei is compatible with [eRi + 1, eLi ]. Similarly, corei+1 is compatible with [eRi + 1, eLi ].

Therefore, corei∪ [eRi + 1, eLi ]∪ corei+1 = [bLi , e
R
i+1] is a compatible interval containing both

cores and contradicting Theorem 2 (Fig. 2.5d).

2.5 Max-k Interval Set

First we introduce UberScan, which generates the set of all the maximal compatible intervals,

CUber. UberScan, shown in Algorithm 2, is similar to the LRScan. Whenever a compatible

interval ends at SNP si, instead of starting the next interval from si + 1 as LRScan does,

UberScan finds the nearest SNP sj(j < i + 1) that is incompatible with si + 1, and the

following SNP, sj + 1, begins the next interval. Note that si + 1 is a flagging SNP of the

previous maximal compatible interval and sj is a flagging SNP of the next maximal compat-

ible interval. UberScan is a simple modification of LRScan with added bookkeeping to track

of the index of the last occurrence of each unique SNP pattern. Recall that the maximum

number of distinct SNP patterns within a compatible interval is 2n− 3, or O(n). An analysis

similar to that of LRScan shows that UberScan also takes O(mn) time. UberScan generates

CUber, containing all maximal intervals of S, and generally, |CUber| � k. CUber contains

all candidates for the Maximal-k-cover, CMax, since a cover with maximal overlap must be

composed of maximal intervals.
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(a) Shows the definition of core (Corei = ILi ∩ IRi )

(b) Illustration of the proof for Lemma 2

(c) Illustration of the proof for Theorem 2

(d) Illustration of the proof for Property 2

Figure 2.5: Illustration of proofs
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(a) Max-k graph

(b) CMax

(c) C(g)Max

Figure 2.6: (a) shows the k-partite graph used to find CMax for the running example. The node represents the
interval, and the edge connects intervals which overlap, with weight representing the number of shared SNPs.
The longest path (bold) is computed from source to sink which is CMax. It contains intervals I1, I3, I5, I6, and
I8 from CUber, with a total overlap of 17. (b) is the Maximum-k-cover of the set of haplotypes, C(h)Max. (c)
is the optimistic Maximum-k-cover of the set of genotypes, C(g)Max.
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Algorithm 2: CUber=UberScan(SNP )
Input: SNP = [snp1, ..., snpm] : an array of m markers
Output: CUber : a list of intervals covering 1 to m
Variables: l : sorted list of (position, SNP) tuples for the SNPs we have seen for the

current interval
s : the start of the current interval

s← 1
for i = 1 to m do

for j = ||l|| downto 1 do
if lj is not compatible with snpi then

append to CUber interval [s, i− 1]
s← ljposition + 1
remove l1 to lj from l
break

append snpi to l

append to CUber interval [s,m]
return CUber

2.5.1 Finding the Maximal-k-cover

A Maximal-k-cover, CMax, is of particular interest as it covers the entire SNP set using the

fewest, k, maximal intervals. While, CMax is not necessarily unique, alternate solutions are

generally similar. Next we provide a fast graph algorithm to compute all Maximal-k-covers.

We consider only those maximal intervals in CUber that entirely enclose a single core and

no part of a second core. According to Theorem 2, these intervals are the candidates for

Maximal-k-covers. Next, we organize the candidates into k groups according to the core

it contains. Each core is contained within at least one maximal interval, thus, no group is

empty. We then examine the overlap between groups. A candidate interval in group i can

only overlap candidates from groups i − 1 or i + 1, because, if any two candidates enclose

non-adjacent cores (say Corex and Corey), at least one of them contains part of the core

between Corex and Corey, contradicting Theorem 2.

The Maximal-k-cover problem is solved by recasting it as finding the longest path in a di-

rected k-partite graph (Figure 2.6a). Specifically, each candidate maximal interval is mapped
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to a node and each group as a part, with part i containing all the candidates covering Corei.

An edge connects nodes corresponding to overlapping candidates. Each edge’s weight is the

amount of overlap between the two intervals. The edge is directed towards the candidate that

contains the next core in the sequence. Because intervals only overlap adjacent groups, edges

only exist between adjacent parts. A source is added with edges to all nodes in part 1 and a

sink with edges from all the nodes in part k; both types of edges have weight 0. Finding a

CMax solution corresponds to finding the longest path in this directed graph with k+ 1 edges

from source to sink. Note that the greedy approach of taking the largest interval that encloses

each core does not always yield a correct answer, as shown in the fourth core of our running

example (compare Figure 2.2a and Figure 2.4c).

The problem is a single-source shortest path problem for a weighted directed acyclic

graph (DAG), except that we search for longest path (maximizing instead of minimizing the

sum of weight on the path) with a constraint on the number of steps. The constraint can be

ignored since all edges lead from one part to the next, thus any path from source to sink will

have k + 1 steps. The problem can be solved using dynamic programming and requires only

Θ(|V |+ |E|) time, where V is the set of nodes, and E is the set of edges [15].

2.5.2 Critical SNPs

A critical SNP is any SNP whose removal reduces k, the minimum number of intervals re-

quired to cover the given SNP set. To check whether a SNP is critical, one could simply

remove each SNP and recalculate k by either a LRScan or an RLScan. This naive approach

requires m scans, and takes O(nm2) time. However, it is unnecessary to test every SNP. In

fact, only flagging SNPs of maximal compatible intervals need to be considered. A flagging

SNP bounds an interval on one side and prevents the interval from growing toward an adja-

cent interval on that side, therefore a flagging SNP must be removed to allow any interval to

grow, a necessary condition of reducing k.
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THEOREM 3. Critical SNPs are flagging SNPs of CUber intervals.

PROOF. Consider two adjacent maximal compatible intervals, IUber
i and IUber

i+1 . Their flag-

ging SNPs seUber
i +1 and sbUber

i+1 −1 must be incompatible (see Fig. 2.2b for an example). This

incompatibility makes it infeasible for eUber
i to be larger and bUber

i+1 to be smaller. Without

removing at least one of these two flagging SNPs, it is impossible for either of these two in-

tervals to grow towards each other. Since CMax ⊆ CUber, a necessary condition of reduction

in k is that at least one interval in CUber grows in size. Therefore, being a flagging SNP is a

necessary condition for being a critical SNP.

Since each maximal compatible interval has two flagging SNPs, one on each side of the

interval, the total number of flagging SNPs is O(|CUber|). The running-time for computing

critical SNPs is O(nm|CUber|).

2.6 Genotypes

Determining four-gamete compatibility and compatible intervals over unphased genotype

data is ambiguous in that there are many possible interpretations (phasings) of a set of geno-

types as haplotypes. I define two approaches for determining compatibility among genotypes

without explicitly phasing. The optimistic method determines intervals for which there might

exist a phasing such that the interval is four-gamete compatible. The pessimistic method de-

termines intervals by choosing a phasing which introduces the maximum possible incompat-

ibility.

I compared the haplotype and genotype intervals on three data sets. First, I created simu-

lated genotype data using a simple infinite-sites model of mutation with cross-over recombi-

nation - this served as a data source devoid of confounding factors such as experimental error

and homoplasy. Second, I used real data from F1 crosses between isogenic mouse strains.

Last, I used two populations of HapMap data.
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2.6.1 Relating Genotype and Haplotype Covers

In simulated data, one can explore relationships between the compatible intervals of geno-

types and the compatible intervals of their “source” haplotypes. These haplotyeps can be

used as ground truth for the corresponding set of genotypes. The number of intervals in an

optimistic genotype cover, ||C(g)LR||, is less than or equal to the number of ground truth in-

tervals (Theorem 4) and the size of the pessimistic genotype cover, ||C(p)LR||, is greater than

or equal to the number of ground truth intervals (Theorem 5). Thus, the number of intervals

in an optimistic and pessimistic genotype scan are lower and upper bounds, respectively, on

the true number of intervals.

THEOREM 4. ‖C(g)LR‖ ≤ ‖C(h)LR‖

PROOF. By contradiction. Assume C(h)LR exists such that ‖C(h)LR‖ < ‖C(g)LR‖.

There must exist some incompatibility in Sg not in S. By definition, it must be impossi-

ble to phase Sg to make S. Therefore, S must not be a true phasing of Sg.

THEOREM 5. ‖C(h)LR‖ ≤ ‖C(p)LR‖

PROOF. By contradiction. Assume C(h)LR exists such that ‖C(p)LR‖ < ‖C(h)LR‖.

There must exist some incompatibility in S not in Sp. By definition, it must be impossi-

ble to phase S to make Sp. Therefore, Sp must not be a true phasing of S.

COROLLARY 1. ‖C(g)LR‖ ≤ ‖C(h)LR‖ ≤ ‖C(p)LR‖

In Figure 2.7, ‘a’ represents the distribution of the set of all possible genotype “pairings”

of a fixed haplotype set into genotypes. The “ground truth”, or the number of intervals

required to form a cover using the source haplotypes, is 5. Notice that the covers resulting

from every optimistic genotype scan fall closer to the “ground truth” than those from every

pessimistic scan. From our experimental results, we observe this is commonly the case.
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Figure 2.7: The distribution of cover sizes for genotypes resulting from all pairings of a set of haplotypes. For
‘a’ distributions, data was simulated using the infinite sites model and recombination. The source haplotypes
cover size (the “ground truth”) is represented by the solid black line. For ‘b’ distributions, a contrived haplotype
set was made by phasing a pessimistic genotype result of ‘a’. The source haplotypes cover size is the dashed
black line.

In contrast, ‘b’ represents the same plot for a contrived, non-biologically-based, haplo-

type data set. The distribution of the cover size of all genotypes can be formed by pairings

of the haplotype set that achieves one of the pessimistic covers from ‘a’ (this can always be

achieved, as discussed in Section 2.6.2). Specifically, the “true” cover size for this contrived

set is 23. Notice that the distribution is different from the biology-based model. In particu-

lar, the optimistic and pessimistic distributions are closer together and the “ground truth” is

nearer the pessimistic estimations.

2.6.2 Achieving Genotype Covers by Phasing

In many circumstances, it is useful to determine if a particular genotype cover or interval set

is achievable by phasing. Pessimistic genotype covers can always be achieved (see Algo-

rithm 3). However, there does not always exist a phasing to accomplish a given optimistic

genotype interval. In practice, many candidate covers can be proposed and it is trivial to
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verify candidate intervals using existing PPH methods ([34, 26, 3, 10]).

2.7 Experiments and Results

We tested the performance of our algorithms on real datasets. The first is based on 8 in-

bred mouse strains and selected F1 (first generation) crosses between these strains using a

newly developed genome-wide genotyping platform ([99]). The second and third are human

datasets from the International HapMap Project [83]. The first HapMap dataset describes

a population of Utah residents from northern and western Europe (CEU). The second is a

Yoruba population from Ibadan, Nigeria (YRI).

The mouse genome contains 20 chromosomes (chromosome 1-19 and chromosome X).

The number of SNPs per chromosome in our MDA genotypes varies from 15K to 50K and

includes strains: 129SvlmJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HILtJ, PWK/PhJ,

and WSB/EiJ along with 37 F1 crosses. The inbred founder mouse strains were used in the

haplotype analysis, while the F1 crosses were used in the genotype analyses. With this mouse

data set, we are able to ascertain an approximate ground truth, sans genotyping errors, with

real-world rather than simulated data. SNPs discriminating among the 8 strains were used in

our analysis, reducing the 500K total SNPs to 340K.

I found compatible intervals for 23 human chromosomes from the phased HapMap data

(Chromosome 1-22 and Chromosome X). The CEU dataset has 348 haplotypes (174 individ-

uals) with 34K - 222K SNPs per chromosome and the YRI dataset has 348 haplotypes (174

individuals) with 38K - 252K SNPs per chromosome. In my experiement, also used SNPs

imputed as a result of the HapMap phasing method. The final phased CEU data set has 2.6M

SNPs and YRI has 2.9M SNPs.

Our algorithms were implemented in Python 2.6 and experiments were performed on a

2.67GHz Intel Core i7 processor with 8.0GB of RAM.
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Algorithm 3: S=PGPhase(Sg)
Input: Sg = [snp1, ..., snpn] : an array of n SNPs with m markers,

C(p) = [(start1, end1), ..., (startn, endn)] : an array of intervals
Output: S : an array of n SNPs with 2m markers, initially empty
for i = 1 to n do

i1 = 2i, i2 = 2i+ 1
for j = 1 to ||C(p)|| do

if i == endj + 1 or i == startj − 1 then
for l = startj to endj do

l1 = 2l, l2 = 2l + 1
if Sg[i] is consistent with Sg[l] then

for k = 1 to m do
if Sg[i][k] == 2 and Sg[l][k] == 2 then

S[i1][k] = S[j2][l]
S[i2][k] = S[j1][l]
break

else if Sg[i] is inconsistent with Sg[l] then
for k = 1 to m do

if Sg[i][k] == 2 and Sg[l][k] == 2 then
S[i1][k] = S[l1][k]
S[i2][k] = S[l2][k]
break

else
phase = 0
for k = 1 to m do

if Sg[i][k] == 2 and Sg[l][k] == 2 then
if phase == 0 then

S[i1][k] = S[l1][k]
S[i2][k] = S[l2][k]
phase = 1

else
S[i1][k] = S[l2][k]
S[i2][k] = S[l1][k]
break

break

break

for k = 1 to m do
if Sg[i][k] == 2 then

S[i1][k] = 0
S[i2][k] = 1

else
S[i1][k] = Sg[i][k]
S[i2][k] = Sg[i][k]

return S
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(a) Mouse haplotype and genotype run-times

(b) HapMap CEU cover run-times

Figure 2.8: Run-times to calculate covers over real data sets. (a) shows CLR, CRL, and CUber run-times
versus the number of size of chromosome in SNPs for haplotype, optimistic genotype, and pessimistic genotype
covers over the mouse data set. (b) similarly depicts run-times of the HapMap CEU population.
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2.7.1 Run-times

The performance of interval scanning algorithms (LRScan, RLScan and UberScan) is linear

in the data size, which enables us to compute CLR, CRL, and CUber efficiently. The run-times

of all three scans and the Max-k-cover algorithm was recorded for all the data sets. Fig-

ure 2.8a gives the times for calculating the haplotype covers C(h)LR, C(h)RL, C(h)Uber, and

C(h)Max on the mouse data set (inbred founders) and times for calculating genotype covers

for the F1 crosses. Figure 2.8b shows run times for all covers over the HapMap data sets.

As shown, the run-times for all scan types are linear in the number of SNPs for a fixed pop-

ulation size. In addition, the Max-k-cover finding is much faster than all three scans. Since

the LRScan and RLScan are symmetric procedures, they have similar run-times. UberScan

involves more bookkeeping and, thus, has higher times than the other scans. The optimistic

genotype scan times (Figure 2.8) are much higher than the haplotype and pessimistic scans

due to the computationally intensive graph algorithm which must be performed at each step.

The k-partite graph component of the Max-k-cover algorithm takes the intervals of CUber

as input. Figure 2.10b shows the run time of the Max-k-cover algorithm as a function of

the number of SNPs. The pessimistic genotype scans admit substantially intervals to achieve

a cover, consistent with the linear relationship between the run time of the Max-k-cover

algorithm and the cardinality of CUber.

2.7.2 Interval and Core Statistics

We also collected various statistics over the CMax intervals and cores, including interval

lengths in terms of SNPs and genomic position, and the number of distinct haplotypes. The

interval lengths shown in Figure 2.9 illustrate the prevalence of many long conserved regions

punctuated by smaller intervals indicative of recombination hot spots. Numbers of distinct

haplotypes (Figure 2.10c) indicate the relative diversity within each block. Note that the

maximum number of distinct haplotypes is Min(n, s + 1), where s is the number of unique
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Figure 2.9: Interval size statistics for the CEU human population. A distribution of the number of SNPs
per interval over this data set under optimistic, pessimistic, and haplotypes scans. “-SSI” indicates a similar
distribution after the removal of single-SNP intervals (SSIs).

SNPs in the interval.

A large percentage of Max-k intervals in the optimistic genotype cover of the human

CEU data set contain only a single SNP. By definition, these are Critical SNPs - removing

one reduces the total number of intervals k by at least one. Such one-SNP intervals, which

are incompatible with SNPs immediately adjacent, are not likely to be informative regard-

ing recombinations and probably represent other biological or experimental artifacts such as

genotype errors, homoplasy, or gene conversions. This explains the prevalence of cores with

two unique haplotypes as shown in Figure 2.10c, and the large number of single-SNP cores,

as shown in Figure 2.9. Figure 2.9 also includes the distribution of interval sizes in SNPs of

the Max-k cover after the SNPs making up these single-SNP intervals have been removed.

Notice that the average interval size is greater for all three cover types after removing these

data.

The relationship between the haplotype covers and the optimistic and pessimistic geno-

type covers is illustrated in Figure 2.10. Figure 2.10a shows the number of intervals in a
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(a) Max-k cover sizes per chromosome.

(b) k-partite graph run times

(c) Unique Haplotypes per Interval

Figure 2.10: (a) shows the number of intervals required to form a k-cover over each chromosome before and
after removing the SNPs composing single-SNP intervals (SSI) in the optimistic genotype cover. (b) shows the
run times of the k-partite graph component of the Maximum-k-cover algorithm for the haplotype, optimistic
genotype, and pessimistic genotype intervals for all three data sets. The algorithm is linear in the number of
Uber intervals |CUber|. The runtimes of the haplotype and optimistic genotype algorithms are similar while
the pessimistic genotype run times are higher because since the pessimistic cover contains many more, smaller
intervals. (c) represents the distribution of the number of unique haplotypes per interval. All of these figures
plot both Max-k intervals and Cores over the CEU human data set.
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k-cover of the CEU human data set for each chromosome. These covers demonstrate The-

orems 4 and 5 that |C(g)| ≤ |C(h)| ≤ |C(p)|. Thus, the genotype scans serve as effective

upper and lower bounds on the “ground truth”.

2.8 Conclusion

This basic notion of compatible intervals is described by myself and collaborators in [85].

By providing an effective means of partitioning haplotypes and genotypes into meaningful

blocks on a genome-wide scale, these methods enabled several new areas for exploration.

An obvious application of FGT compatible intervals is to find sets of frequently recurring

local perfect phylogenetic trees [94]. These common phylogenies are of particular interest in

model organisms such as laboratory mice that are thought to derive from small set of founders

(i.e., fancy mice) [99], and in communities where there are ongoing efforts to generate new

model populations for systems biology [12]. Our method was used effectively by Yang et

al. [98] to identify meaningful blocks over which the historical subspecific origin of labo-

ratory mice can be analyzed. Both local phylogenetic trees derived from compatible SNP

intervals and the limited haplotype diversity of compatible SNP intervals can be incorporated

into disease association studies, as has been recently demonstrated [82, 57, 63]. With our

introduction of a method for finding compatible intervals over outbred populations, it may

be possible to gain the same benefits working with less controlled populations, including

humans.

The prevalence of single-SNP cores in our results also suggests new methods for cleaning

data. There are several possible sources for these small local features including genotyping

errors, gene conversions, and homoplasy. In addition to the obvious benefits of eliminating

putative errors from a given data set, the other two sources for single-SNP cores are of great

interest to biologists, but are not well-characterized. One would expect that a systematic
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greedy reduction of an interval set from k to k−1 or k−2 intervals would expose larger scale

structure and phylogenetic trees with improved support. I describe an effective approach to

this problem in Chapter 5.
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Chapter 3

Imputation using Local Phylogeny

In this chapter, I describe the method I developed to impute full-genome genotypes within

populations based on the local phylogenetic structure [86]. I discuss the results of this method

applied to 100 classical laboratory mouse strains. Imputation is the inference of unknown

variant alleles, in a low-density data set or missing genotypes. Using genotypes consisting

of 549,683 SNPs obtained with the Mouse Diversity Array (MDA), I partitioned the genome

of 100 mouse strains into 40,647 intervals that exhibit no evidence of historical recombina-

tion, as described in Chapter 2. For each of these intervals, I inferred a local phylogenetic

tree. These data were combined with 12 million SNPs recently discovered by whole genome

sequencing in a common subset of 12 classical laboratory strains. For each phylogenetic

tree, I identified strains sharing a leaf node with one or more of the sequenced strains. I then

imputed high and medium confidence genotypes for each of 88 non-sequenced genomes.

Among inbred strains, I imputed 92% of SNPs genome-wide, with 71% in high confidence

regions. This method produced 977 million new genotypes with an estimated per-SNP error

rate of 0.083% in high-confidence regions and 0.37% genome-wide. The analysis identi-

fied which of the 88 non-sequenced strains would be the most informative for improving

full-genome imputation, as well as which additional strain sequences will reveal more new

genetic variants. These imputed sequences, quality scores, and interactive visualizations are



publicly available and have since been used in a variety of genetic studies of this population.

3.1 Genome Imputation

Among the many advantages of inbred strains in genetic studies is that each strain needs to be

genotyped only once, and that information can be reused in many experiments. Moreover, as

more genotype data become available for a given inbred strain, the analysis can be updated.

This cycle can continue until, ultimately, all inbred strains are fully sequenced. In the mean-

time, there is a need to leverage the handful of inbred strains that have been sequenced using

robust imputation methods to maximize the value of existing data. High-quality imputed

sequence has many potential applications including identification of functional variants and

the creation of accurate scaffolds for the analysis of next generation RNA-seq and bisulfite

sequencing data. Until affordable deep sequencing becomes a reality, a balanced approach

that combines targeted sequencing with accurate imputation offers the best of both worlds:

high quality genomic data today at little additional cost.

A recent sequencing effort by the Wellcome Trust/Sanger Institute has made available

dense genome sequences for a set of 17 inbred mouse strains, including 13 common labora-

tory strains, three wild-derived mouse strains from different subspecies of Mus musculus and

a single strain from a different species, Mus spretus [43]. This set of samples is expected to

capture much of the variation found in common laboratory mouse strains and, therefore, pro-

vides a foundation for sequence imputation. A complementary resource is the recent release

of MDA genotypes from 162 mouse strains [98]. The density of SNP genotypes available

on the MDA is believed to exceed the density of recombination events accumulated over the

development of the classical inbred strains [97] and as such the MDA SNPs can provide a

framework for imputation of the underlying whole genome sequence.

Imputation can be used to increase the effective resolution of a lower density SNP panel

to match that of a higher density panel when there is a subset of samples common to both
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sets. Previous imputation methods use variations of a hidden Markov model (HMM) [4] to

infer sequence similarities and likely transitions between haplotypes [80, 50]. These methods

employ probabilistic models based on local sequence similarity to infer the state of missing

genotypes. Missing genotypes arise from two sources. No-calls (Ns) indicate either technical

noise or an unexpected sequence variant such as a nearby SNP or an indel that interferes with

probe hybridization. A second, and more extensive, source of missing genotypes is due to

differences in the density of marker sets between platforms.

There have been two recent imputation efforts in the laboratory mouse [80, 50]. Both

used the NIEHS/Perlegen SNP set [28] consisting of 8.27 million SNPs over 16 common

mouse strains as a source of high-density source genotypes. Szatkiewicz et al. imputed

genotypes by combining low-density genotypes from 51 classical and wild-derived inbred

mouse strains [99] with a filtered subset of the Perlegen SNPs set containing 7.9 million loci.

The authors imputed each locus consecutively across the genome using an HMM to predict

the most likely genotype among the possible alleles. Using this locus-by-locus method, they

reported a 10.4% error rate over the entire genome and 4.4% error in high confidence regions.

High confidence regions in this study were defined by high posterior probability and cover

71% of the genome.

Kirby et al. imputed genotypes in 94 classical and wild-derived laboratory strains for

the entire Perlegen SNP set [28] using a different HMM method that predicts genotypes by

estimating haplotype blocks from the smaller set of samples with high-density genotypes

(EMINIM, [41]). The hidden states in Kirby’s model correspond to the 16 NIEHS/Perlegen

strains or a 17th unknown state. Their method models recombination between haplotype

blocks rather than transitions between adjacent allele types. The authors imputed 657 million

genotypes with a reported error rate of 2.4% over the entire genome and 0.27% in regions

with high confidence based on posterior probability in the HMM.
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These two methods do not explicitly take advantage of the local phylogenetic relation-

ships present in classical inbred strains. This shortcoming is particularly significant given the

strong population structure and the limited amount of haplotype diversity present in classical

laboratory strains [98]. My approach estimates both haplotype blocks and the relatedness

between them in the form of a local phylogenetic tree. Because my method is fundamentally

different from these HMM methods, my notion of confidence is also fundamentally different.

My confidence is determined by the structure of the local phylogenies with which I impute,

whereas the HMM methods use posterior probability to define confidence level. In addition,

my haplotype blocks and trees are inferred from a larger set of genotypes. This has the ad-

vantage that the larger set of samples can capture haplotype diversity that is not sampled in

the smaller high-density set. The success of this approach requires that the SNP density in

the larger sample set is sufficient to detect haplotype blocks, which is the case for the MDA

genotypes [98]. Moreover, the trees provide a measure of difference between haplotypes that

is consistent with their evolutionary history.

I use the MDA and Wellcome Trust/Sanger Institute resources to impute the genotypes

of 88 common inbred strains (Figure 3.1). This approach takes advantage of the local phylo-

genetic relationships among inbred strains to determine the confidence of local imputation.

Based on this imputation, I discuss strategies for future sequencing and SNP discovery in the

lab mice and the efficient use of this resource for association studies. These data are publicly

available at http://www.csbio.unc.edu/imputation/.

3.2 Materials and Methods

3.2.1 MDA genotype data

All genotype and haplotype data as well as the phylogenetic trees were reported in [98]. This

study is based on local phylogenetic trees for 100 classical laboratory strains (Figure 3.1)
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based on genotypes from MDA. MDA is an Affymetrix-based 6.5M probe platform with

over 600,000 SNP markers uniformly spaced across the non-repetitive regions of the mouse

genome [97]. I used a subset including 549,683 high-quality SNPs out of the 600k markers. I

also identified additional alleles in these markers including residual heterozygosity, deletions

and other copy-number variation, and variable-intensity oligonucleotides (VINOs) [98, 20].

VINOs and deletions were incorporated into haplotype and tree estimations by treating them

as additional marker loci with binary alleles (i.e. with and without VINO, or with and without

deletion) at positions coincident with the probe where they were detected [98].

3.2.2 C57BL/6J reference genome

The Wellcome Trust/Sanger Institute reports SNPs relative to the reference mouse sequence

[62] and uses the NCBI Genome Reference Consortium’s build 37 (MGSCv37) [11]. The

reference genome is derived from C57BL/6J and, thus, I included this strain as a 12th high-

density sequence along with the 11 Sanger sequenced strains for which we have MDA geno-

types (Figure 3.1).

3.2.3 Wellcome Trust/Sanger Institute genotype data

Our imputation incorporates the set of high-confidence SNPs recently discovered during the

Wellcome Trust/Sanger Institute’s sequencing of 17 inbred strains [43] (which I will here-

after refer to as the Sanger set). Of these 17 sequenced strains, 12 are “classical” laboratory

strains for which we have MDA genotypes: 129S1/SvlmJ, A/J, AKR/J, BALB/cJ, C3H/HeJ,

C57BL/6N, C57BL/6J, CBA/J, DBA/2J, LP/J, NOD/ShiLtJ, and NZO/HlLtJ. I impute the

remaining 88 of the 100 MDA strains, for which we do not have sequence data. The Well-

come Trust study identified over 65 million high confidence SNPs. However, 82% of these

represent alleles private to wild-derived strains, so they do not vary among the subset of 12

classical strains (Figure 3.1). I impute the remaining 12,054,616 SNP loci where they are
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medium or high confidence. I did not include wild-derived strains in the imputation, for

reasons discussed later (see Section 3.4).

Figure 3.1: The set of mouse strains genotyped at medium-density on the MDA are shown on the right.
The strains in the Sanger set are shown on the left. The overlapping set we used as the source of high-density
genotypes in our imputation.

3.2.4 LG/J and SM/J validation genotypes

I verified my imputation method using an independent set of high-throughput sequence data

of two mouse strains, LG/J and SM/J. Whole-genome sequencing for the LG/J ( 20X haploid

coverage) and the SM/J ( 14X haploid coverage) strains [51] was completed by the Washing-

ton University School of Medicine Genome Sequencing and Analysis Center using Illumina

sequencing in two steps as described in [58] and [21]. Illumina reads from DNA extracted

from the livers of a single LG/J female and a single SM/J female were aligned to the July

2007 assembly NCBI build 37 reference genome using Mapping and Assembly with Quality

[55]. SNPs for each strain were called using SamTools [54], requiring a minimum of three

reads and a SNP quality score ≥20. For chromosomes 14 and 15, 305,114 SNPs were iden-

tified between LG/J and the reference and 422,879 SNPs were identified between SM/J and
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the reference. The LG/J and SM/J SNPs have been submitted to dbSNP [72] under the handle

Cheverud. For our validation method, I excluded ambiguous SNP calls, leaving 292,051 for

LG/J and 416,589 for SM/J, relative to the reference genome.

3.3 Imputation Method

My imputation method uses the notion of compatible intervals, described in Chapter 2, to

define haplotype blocks that admit a local perfect phylogeny. As described previously, I

compare all pairs of SNPs and identify a minimal set of maximum size contiguous intervals

covering the genome in which no pair of SNPs violates the four-gamete rule (Figure 3.3).

This results in 40,647 intervals covering the entire genome. The median interval size is 71kb

and covers 12 SNPs. Intervals had an average and median of 5 unique haplotypes. For each

interval, I construct the local phylogenetic tree as described previously [98]. Briefly, I com-

puted a pairwise genotype similarity score among strains as the proportion of the matching

variants in each interval. I identify shared haplotypes by connecting pairs of strains with sim-

ilarity score > 0.99. I constructed phylogenetic trees by connecting these haplotypes (leaves

in the tree) using neighbor-joining over the mean pairwise similarity of strains in each leaf.

The general workflow of my imputation method is shown in Figure 3.2.

I compared the local phylogenetic structure in our MDA genotypes to the strain allele

distribution patterns (SDPs) in the Sanger set. Among the Sanger SNPs differentiation among

classical laboratory strains, 96.66% are entirely consistent (four-gamete compatible) with

the phylogenetic trees computed using the MDA genotypes. An additional 2.09% further

subdivide leaves in the trees, but are essentially consistent. Only 0.17% of Sanger SNPs

are inconsistent with the corresponding phylogeny. This validated that my local phylogenies

matched the SDPs for the appropriate Sanger SNPs. This validation prior to imputation

supports our assumption that MDA SNPs are sufficient to define representative haplotype
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Figure 3.2: A diagram of the workflow showing the flow of data through our imputation method. Trees are
constructed from the MDA genotype data (Figure 3.3). These trees are then used to inform the imputation using
high-density sequence data (Figure 3.4).

blocks.

I imputed each sample for which we have only MDA data by filling in genotypes of

Sanger set samples in regions where they share a haplotype that is identical-by-descent (IBD)

as indicated by a shared leaf in the local phylogenetic tree. I assign confidences to each im-

puted strain over each interval according to whether the imputed strain shares a haplotype

block with a Sanger set sample. Figure 3.4 shows an example of imputation and the cor-

respondence between phylogenetic trees and imputation confidence. High confidence was
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Figure 3.3: Identification of recombination intervals (see Chapter 2) and phylogenetic tree construction. Two
compatible intervals and associated phylogenetic trees (73.7 - 73.8 Mb on chromosome 19) are shown. The left
interval (interval 1) is shown in pink and right interval (interval 2) in green. Below the SNP matrix, the SNPs
involved in violations of the 4-gamete between these two intervals are indicated by pink and green arrowheads.
The four-gamete incompatibilities between these intervals mean we cannot construct a single perfect phylogeny
tree. Strains are grouped by haplotype into groups A, B, C, and D - shown to the right of the haplotypes. These
haplotypes are the basic unit with which I perfom my imputation. Notice both the structural changes between
the adjacent trees and the subdivision of the haplotype in leaf C.

assigned to haplotypes in an interval for which there are one or more concordant Sanger

sequences. Where multiple samples from the Sanger set share a haplotype, but exhibit dif-

ferent alleles (i.e. evidence that our tree leaf could be further subdivided), I assign medium

confidence. In medium confidence cases, I resolve the allele at each locus independently

by further subdividing the leaves using the haplotype structure in neighboring intervals un-

til there is a consensus among remaining shared-haplotype samples. This method captures
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Figure 3.4: A representative example of our imputation method. Three trees on chromosome 15 (22.8 - 23.0
Mb, 31.3 - 31.4 Mb, and 45.1 - 45.5 Mb) which exhibit all three levels of confidence for LG/J and SM/J are
shown. At the bottom, a sampling of SNPs in these regions is shown with the alleles contributing to the imputed
sequences highlighted. Allele shown in blue contribute to SM/J, and those in pink contribute to LG/J.

nearby haplotype structure where intervals are too small to fully differentiate samples.

There are many intervals where classical inbred strains do not share a haplotype with
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any strain from the Sanger set, thus no high-density imputation source is available. These

intervals are assigned low confidence for strains not sharing a haplotype. Our approach

provides no satisfactory imputation method in these regions and I will show in the following

section that they cannot be imputed with accuracy substantially better than 50%. As a result,

these regions are not assigned a call, indicated by ‘N’ (see Figure 3.4). Since maximal

compatible intervals can overlap, two intervals might cover a SNP. In this case, the interval

with higher confidence is used. If the two intervals have the same confidence, the union of

strains with a shared haplotype in each intervals is used.

3.3.1 Validation

To assess the accuracy of our imputation method, I used a leave-one-out approach and com-

pared the imputed genotypes directly to the Sanger sequence data. In the leave-one-out

method, I removed the sequence for one of the 12 Sanger strains and imputed SNPs us-

ing only the remaining 11 strains in the Sanger set. This method has the advantage that it

allows us to consider the entire genome when determining accuracy. In addition, I performed

external validation using sequence data for chromosomes 14 and 15 obtained from strains

LG/J and SM/J. I determined imputation accuracy by comparing genotypes over the inter-

section of our imputed SNP set (Sanger set SNPs) and the SNP sets in the external validation

sequences.

3.4 Results and Discussion

I imputed 12 million SNPs over each of 88 samples for a total of 977 million new genotypes,

having excluded those found to be low confidence (Table 3.1). On average, I imputed 70.76%

of the genotypes with high confidence and 21.36% with medium confidence. The remaining

7.88% were low confidence. There is a wide range of variation in the fraction of SNPs
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imputed with different confidence among these 88 strains. The greatest fraction of high

confidence SNPs is observed in substrains derived from a common ancestor that only differ

at loci harboring new mutations (97.00%) [98]. These are followed by the 129T2/SvEmsJ

and TSJ/LeJ strains that have very large fractions of their genome imputed at high confidence

(94.21% and 93.29%, respectively). On the other hand, KK/HlJ and TALLYHO/JngJ have the

smallest fraction of genome imputed at high confidence (39.52% and 42.10%, respectively).

However, it is the CE/J strain that has the greatest fraction of the genome with low confidence

(23.48%).

Using a leave-one-out method, we can estimate our imputation accuracy using the Sanger

set. In these samples, 1.05% of genotypes could not be imputed because the haplotype struc-

ture is unknown for some strains in regions due to deletion or copy-number variation [98].

An additional 2.25% of genotypes are uncalled (N) in the Sanger set to which I compared

the leave-one-out imputed genotypes and, therefore, cannot be verified. On average, I im-

puted 73.8 ± 19.1% of the remaining genotypes with high confidence and 18.0 ± 11.8%

with medium confidence (Table 3.2). High confidence genotypes had an average error rate

of 0.083 ± 0.019% and the error rate for medium confidence genotypes was 1.57 ± 0.75%.

The remaining 8.2± 7.5% were low confidence. In these regions, methods based on the hap-

lotype similarity and phylogeny trees performed no better than a consensus sequence among

all strains in the Sanger set because there is no single representative haplotype to use for im-

putation. The consensus genotypes had an error rate of 44.5±10.1% compared to the Sanger

genotypes. Since our accuracy in low confidence regions is little better than chance, I do not

impute these genotypes, and indicate them by Ns.

In addition to leave-one-out analysis, I performed validation with the chromosome 14 and

15 DNA sequence data for LG/J and SM/J, two strains that are not included in the Sanger

set. I compared imputed genotypes on chromosomes 14 and 15, containing 1,316,845 im-

puted Sanger SNPs, with high-density genotypes for LG/J and SM/J containing 292,051 and
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416,589 SNPs, respectively. For SM/J, there were 362,362 SNPs in common with the SNPs

Sanger reported. Of these, 67.90% were imputed with high confidence and had an error rate

of 0.07% (Table 3.3). An additional 21.25% were imputed with medium confidence at an

error rate of 3.14%. The remaining were low confidence. Similar results were found for

LG/J (Table 3.3). We could attempt to validate more markers if we included all loci in our

imputed genotypes and assume that these markers have the reference allele in our validation

sequences where a SNP is not present. This is undesirable because the SNP density is much

lower in the validation sets than our imputed sequences, so there are likely many unreported

SNPs in LG/J and SM/J. While LG/J has 292,051 SNPs and SM/J has 416,589 SNPs in the

validation genotypes, any pair of two strains in the Sanger SNP sets has, on average, 908,493

SNPs across chromosomes 14 and 15.

My imputation method produced very low error rates in regions of high and medium

confidence with both validation approaches. It provides several improvements over existing

techniques and resources. It outperforms previously published imputation methods in regions

in which we can impute with high confidence. In addition, I identified regions that cannot

be accurately imputed with our samples because they do not share common haplotypes with

any sequenced strain based on local phylogeny. Furthermore, my analysis can inform the

selection of strains for which full genomic sequence would substantially improve the ability

to confidently impute other strains.

Kirby et al. [50] imputed 657 million genotypes over 94 strains consisting of 65 classical

and 13 wild-derived low-density sequenced strains and 12 classical and 4 wild-derived high-

density sequenced strains. They imputed the 78 low-density sequences (121,433 SNPs) with

the high-density NIEHS/Perlegen data set (8.27 million SNPs) [28] and missing genotypes

in the 16 high-density sequences. In addition to including wild-derived strains in the sample

set, 64% of SNPs in the full Perlegen data set include private alleles only seen in wild-

derived strains. Szatkiewicz et al. [80] imputed 269 million genotypes using a cleaned
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subset of 7.9 million NIEHS/Perlegen SNPs over 51 strains including 39 classical and 12

wild-derived. These previous imputation efforts attempt to impute a mixture of classical

laboratory strains and wild-derived strains including SNPs with private alleles in wild-derived

samples. Including wild-derived strains contributes many SNPs that are non-varying among

classical strains and results in inflated estimates of accuracy because many of the imputed

variants are actually constant among the classical population. Here I exclude wild-derived

strains because they exhibit few haplotype blocks seen among classical strains and many

haplotypes not seen in any classical strain. I have imputed many more SNPs that segregate

among classical inbred strains. In addition, my estimated error rate in high confidence regions

is 0.083% compared to 0.27% and 4.4% reported in previous studies. The error rate in high

confidence regions is in line with sequencing error and the rate of recurrent mutations at

highly mutable sites (homoplasy). These improvements are due, in part, to the use of a more

complete set of sequence data and the fact that our lower-density set, at over 500,000 markers,

is considerably denser than in previous studies. Furthermore, the MDA platform, designed

specifically to highlight the diversity among our sample set, is better equipped to identify

appropriate imputation genotypes than the sparser 135,000 marker Broad SNP set [50] used

in previous efforts.

Due to the different SNP and strain sets used for imputation in my work compared with

previous imputation methods, it is useful to analyze differences against a common set of

sequence data. I identified 174,891 SNPs common to our imputed genotypes, previous im-

putation results, and our LG/J and SM/J validation genotypes on chromosomes 14 and 15

against which we can directly compare (Table 3.4). In SM/J, my method imputed 64.95% of

SNPs with high confidence (by haplotype sharing), Kirby et al. [50] imputed 57.26% with

high confidence (they define this as posterior probability > 0.98), and Szatkiewicz et al. [80]

imputed 72.39% with high confidence (posterior probability > 0.9). Using our validation

genotypes as the ground truth, my method achieved a per-SNP error rate of 0.03% while
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previous methods achieved error rates of 1.60% and 5.76%, respectively (Table 3.4).

Because the measure of confidence is different between my method previous HMM-based

approaches, one may consider whether the difference in error rate is due only to confidence

assignments. My method, in some cases, imputes a lower fraction of SNPs with high confi-

dence, perhaps contributing to the lower rate of error. However, we may include those im-

puted genotypes I consider medium confidence (Table 3.3), achieving an error rate of 1.29%

over 90.78% of the genome, showing that my method performs better across the range of

corresponding confidence values in previous methods.

My imputation method highlights an important feature of the imputed MDA sample set.

This method of haplotype identification and assignment is based on the notion that classical

laboratory mice are derived from a small set of recent common ancestors. To impute missing

genotypes, I described previously how I identify intervals with no evidence of ancestral re-

combination, in which shared haplotype ancestry can be assumed (Chapter 2, [85, 98]), and

identify sequenced strains that share these haplotypes with strains that are to be imputed. In

some cases, there exists no evidence of a shared haplotype with a sequenced strain; these we

consider low confidence (Figure 3.4). Since these intervals are not derived from a haplotype

common to one of our high-density sequences, no method can produce accurate genotypes

given the data on hand. This feature allows us to suggest a method for improving our im-

putation power by identifying those sequences that share haplotypes unrepresented in our

high-density genotypes.

The strains that would provide the greatest improvement in imputation accuracy are those

which share the greatest number and size of unrepresented haplotype blocks with the greatest

number of other strains. These intervals are currently identified as low-confidence. If we had

whole genome sequence for even one sample with the shared haplotype in these intervals

(Figure 3.5), we could impute these genotypes with high-confidence. In other words, the

discriminating function can be described as the greatest total number of genotypes changed
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Figure 3.5: Frequency of leaf/haplotype sharing among the set of 100 MDA genotyped samples is shown as
a heat map. Green to red intensity colors indicate similarity among only classical MDA strains. Blue to white
colors indicate similarity with and between strains in the Sanger set.

from low-confidence to high-confidence by introducing a new fully sequenced sample into

these haplotypes (Table 3.5). The strain that would contribute the greatest number of new

high confidence genotypes is SWR/J, which would contribute an additional 12,973,012 high
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and medium confidence imputed alleles, reducing overall low confidence regions from 7.88%

to 6.65%.

Imputation, by its nature, cannot increase the number of SNPs since all imputed geno-

types are derived from existing sequence. However, using our local phylogenies, we can

predict samples that would contribute to the greatest discovery of additional sequence varia-

tion. While high confidence imputation power is related to the haplotype group membership

(Figure 3.5) in the local phylogenetic structure, the level of sequence variation can be in-

ferred from the edge length in the local phylogenetic trees. The edge lengths in my local

phylogenetic trees are derived from the sequence differences in each compatible interval.

The longer the edge, the further a leaf/haplotype is from the high-density samples and the

greater sequence variation we expect to see in the unrepresented sequence. This is unlike the

metric for imputation power since the haplotype frequency and sharing with other samples

are not relevant. The sample that would contribute the greatest additional sequence variation

is KK/HlJ. This strain has the most unrepresented sequence variation, an average sequence

variation of 5.55% from the nearest Sanger sequenced sample across the genome. The top

10 candidates and their sequence variation are shown in Table 3.6.

I deliberately omitted wild-derived strains from my imputation since wild-derived strains

do not share a recent history with the classical laboratory strains [5]. We do not have suf-

ficient marker density to catalog the variants among wild-derived strains and they are likely

so widely divergent that a local phylogeny cannot be constructed. However, using wild-

derived strains sequenced by the Sanger Institute to impute classical inbred strains could po-

tentially improve our current design in regions of contamination in the wild-derived strains

(i.e., CAST/EiJ and PWK/PhJ [98]) or in putative regions in which a few classical strains

share a haplotype that is rare or absent in fancy mice. I conclude that this could be worth

doing but is unlikely to have significant impact and is not consistent with our tree-based ap-

proach. Imputing wild-derived strains would be of little value as only a single wild-derived
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strain from each species or subspecies would be used to impute SNPs of all additional strains

in the same taxon. The work by Yang et al. [98], in which I contributed to the phylogenetic

analysis, demonstrates that there is far more sequence variation among wild-derived than

classical mice, making the imputation of wild-derived samples an exercise in futility.

3.5 Conclusion

This imputation model can be further fine-tuned to better identify the appropriate intervals

over which we assign a local phylogenetic structure. The optimal haplotype blocks should

be small enough to accurately represent only a single indivisible haplotype but large enough

to capture all appropriate variation in these haplotypes. As more samples are incorporated

into the haplotype derivation model, it will be especially important to accurately represent

the structure and how it relates to high-density sequenced samples. Chapter 5 describes a

modification of the compatible intervals model which allows us to incorporate additional and

more variable sources of data.

Imputed genotypes are evolving resources (http://cgd.jax.org/datasets/popgen/

imputed.shtml [80]; http://mouse.cs.ucla.edu/mousehapmap/ [50]). As

the pace of sequencing increases for the mouse genome, the need for a codified and co-

herent resource will be even more important. Using my method of imputation, additional

full genome sequences can be easily incorporated and will further improve the imputation

accuracy (Figure 3.4). Since my model explicitly takes advantage of local phylogeny and

haplotype structure and accounts for multiple instances of a single derived haplotype, we can

incorporate multiple and varying sequences representing a single sample or strain. This will

help consolidate and derive a consensus from possibly discordant sources. My phylogeny

modeling can be extended to include classical strains genotyped with MDA, such as the up-

coming Collaborative Cross strains [14], to provide an even larger and more diverse resource
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of imputed genotypes. The method I present here is not limited only to the laboratory mouse,

but could be extended to any organism for which inbred populations exist, such as rats and

dogs, as well as many plant species. Imputation in any species will be most effective when

inbred populations are derived from a common and relatively small set of ancestral popula-

tions.

Strain High confidence % Medium confidence % Low confidence %
129P1/ReJ 92.54 4.05 3.41
129P3/J 90.13 6.35 3.52
129S6 90.97 6.90 2.13
129T2/SvEmsJ 94.21 4.29 1.51
129X1/SvJ 90.14 6.38 3.48
A/WySnJ 97.26 1.41 1.33
AEJ/GnLeJ 76.11 18.14 5.76
AEJ/GnRk 75.57 18.57 5.86
ALR/LtJ 53.46 35.68 10.86
ALS/LtJ 57.47 32.78 9.75
BALB/cByJ 97.63 1.27 1.11
BDP/J 58.81 26.78 14.41
BPH/2J 79.92 15.79 4.29
BPL/1J 70.77 23.24 6.00
BPN/3J 68.72 25.08 6.20
BTBRT+tf/J 71.04 21.71 7.26
BUB/BnJ 56.14 32.43 11.42
BXSB/MpJ 88.38 9.36 2.26
C3HeB/FeJ 92.39 6.07 1.54
C57BL/10J 85.72 12.44 1.85
C57BL/10ScNJ 85.63 12.53 1.85
C57BL/10ScSnJ 85.66 12.50 1.84
C57BL/6NCrl 98.98 1.01 0.02
C57BL/6NTac 98.98 1.01 0.02
C57BLKS/J 70.87 21.04 8.09
C57BR/cdJ 65.74 25.67 8.59
C57L/J 70.84 21.06 8.10
C58/J 67.74 23.85 8.42
CBA/CaJ 85.47 11.39 3.14
CE/J 46.04 30.48 23.48
CHMU/LeJ 79.16 17.97 2.88
DBA/1J 84.31 12.50 3.19
DBA/1LacJ 84.70 12.09 3.21
DBA/2DeJ 96.76 1.48 1.76
DBA/2HaSmnJ 76.99 18.95 4.06
DDK 46.12 37.57 16.31
DDY/JclSidSeyfrkJ 42.14 41.76 16.11
DLS/LeJ 80.43 15.43 4.13
EL/SuzSeyfrkJ 43.96 41.46 14.58
FVB/NJ 49.52 34.92 15.56
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HPG/BmJ 88.64 9.12 2.24
I/LnJ 51.49 32.43 16.08
JE/LeJ 77.22 17.42 5.36
KK/HIJ 39.52 42.42 18.06
LG/J 60.78 27.65 11.57
LT/SvEiJ 78.25 15.70 6.05
MRL/MpJ 61.72 28.72 9.55
NON/LtJ 50.87 36.24 12.89
NONcNZO10/LtJ 46.36 40.08 13.56
NONcNZO5/LtJ 56.95 32.28 10.77
NOR/LtJ 84.40 12.19 3.42
NU/J 54.68 32.14 13.18
NZB/BINJ 58.76 29.49 11.75
NZL/LtJ 81.44 13.62 4.93
NZM2410/J 49.12 36.00 14.88
NZW/LacJ 49.09 35.58 15.33
P/J 58.39 27.11 14.50
PL/J 60.00 30.83 9.18
PN/nBSWUmaDJ 46.78 37.32 15.90
RF/J 66.97 25.02 8.01
RHJ/LeJ 82.57 14.57 2.86
RIIIS/J 45.13 37.46 17.41
RSV/LeJ 87.86 10.43 1.71
SB/LeJ 84.83 12.08 3.09
SEA/GnJ 72.31 20.11 7.58
SEC/1GnLeJ 82.88 11.96 5.17
SEC/1ReJ 83.13 11.72 5.15
SH1/LeJ 83.49 13.85 2.66
SI/ColTyrp1bDnahc11iv/J 75.42 19.96 4.62
SJL/Bm 53.84 32.52 13.65
SJL/J 53.89 32.49 13.62
SM/J 51.79 29.97 18.24
SSL/LeJ 82.21 13.46 4.34
ST/bJ 53.69 33.28 13.04
STX/Le 89.96 8.69 1.35
SWR/J 47.74 33.68 18.58
TALLYHO/JngJ 42.10 42.16 15.75
TKDU/DnJ 85.40 10.63 3.97
TSJ/LeJ 93.29 5.29 1.42
YBR/EiJ 47.36 37.29 15.35
ZRDCT Rax+/ChUmdJ 65.05 23.42 11.54
IBWSP2 67.83 25.23 6.94
IBWSR2 65.80 26.70 7.50
ICOLD2 70.84 22.58 6.59
IHOT1 70.31 24.01 5.68
IHOT2 69.29 24.49 6.22
ILS 76.18 16.99 6.83
ISS 74.25 20.01 5.74
Average 70.76 21.36 7.88
Standard Deviation 16.58 11.46 5.49
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Table 3.1: The percentage of SNPs imputed with high, medium, and low confidence in 88
classical inbred strains. I impute 71% of genotypes with high confidence, on average. How-
ever, strains range from 40% to 99% depending on the frequency of shared haplotypes.

Strain HC % HC error % MC % MC error % LC % LC error %
129S1SvlmJ 76.83 0.07 15.35 1.74 7.82 43.75
A/J 81.26 0.09 13.47 2.30 5.27 44.98
AKR/J 58.50 0.11 29.98 1.85 11.52 44.18
BALB/cJ 82.07 0.08 13.39 1.86 4.55 37.81
C3H/HeJ 85.29 0.09 11.92 0.82 2.79 53.76
C57BL/6J 97.05 0.08 2.89 0.54 0.06 33.87
C57BL/6NCrl 97.21 0.04 2.77 0.13 0.02 19.94
CBA/J 81.91 0.08 13.56 1.52 4.54 52.73
DBA/2J 66.46 0.10 22.54 1.60 11.00 50.67
LP/J 79.05 0.07 14.32 1.76 6.63 55.25
NOD/ShiLtJ 42.00 0.10 38.60 1.84 19.40 45.85
NZO/HlLtJ 38.04 0.10 37.12 2.83 24.84 51.20
Average 73.81 0.08 17.99 1.57 8.20 44.50
Standard Dev. 18.32 0.018 11.30 0.71 7.20 9.64

Table 3.2: The percentage of genotypes imputed with high, medium, and low confidence in
my leave-one-out analysis, and the error rates for each confidence level. On average, 74% of
genotypes are imputed with high confidence with an error rate of 0.08%

Strain HC % HC error % MC % MC error %
LG/J 65.58 0.08 25.20 4.43
SM/J 67.90 0.07 21.25 3.14
Average 66.74 0.075 23.23 3.79
Standard Dev. 1.16 0.005 1.98 0.65

Table 3.3: The percentage of genotypes imputed at high and medium confidence, and er-
ror rates, in LG/J and SM/J. I imputed LG/J and SM/J using the high-throughput Sanger
sequence SNPs and validated using SNPs derived from an external sequencing effort [51].
This comparison provides additional validation of my imputation method, achieving only
0.075% error in high confidence regions.
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This study Kirby et al. 2010 Szatkiewicz et al. 2007
LG/J HC % 60.91 65.88 73.07
LG/J HC error % 0.06 3.75 6.57
SM/J HC % 64.95 57.26 72.39
SM/J HC error % 0.03 1.60 5.76

Table 3.4: Performance of imputation methods based on percentage of SNPs imputed at
high confidence and fraction of error in chromosomes 14 and 15. I compare my imputation
method to previous imputation approaches [80, 50]. In this normalized comparison, my
method achieves an error rate orders of magnitude lower than previous studies.

Strain HC genotypes % increase
SWR/J 12,873,012 1.21%
SJL/Bm 12,806,101 1.21%
SJL/J 12,699,148 1.20%
BDP/J 12,592,551 1.19%
P/J 12,497,039 1.18%
DDY/JclSidSeyfrkJ 12,002,104 1.13%
FVB/NJ 11,985,984 1.13%
DDK 11,892,009 1.12%
KK/HIJ 11,546,347 1.09%
I/LnJ 11,497,933 1.08%

Table 3.5: These strains contribute the most high confidence genotypes not represented in the
Sanger set. Including high-density genotypes from these strains with the most unrepresented
haplotypes would significantly increase the power of the imputation model.

Strain % unrepresented variation
KK/HIJ 5.55
NZM2410/J 3.47
EL/SuzSeyfrkJ 3.30
DDK 3.09
DDY/JclSidSeyfrkJ 3.08
BDP/J 2.79
P/J 2.77
SWR/J 2.57
SJL/Bm 2.22
SJL/J 2.22

Table 3.6: These strains have the highest sequence variation not represented in the Sanger
set. The percentage of unrepresented variation indicates the average “distance” in the local
phylogenetic trees of these strains from the nearest Sanger haplotype. Sequencing of these
strains is likely to reveal the greatest number of new variants.
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Chapter 4

Visualization of Local Phylogeny

In this chapter, I describe a novel tool for comparative genomics based on my model of

local phylogenetic structure. I have developed a web-based tool for visualizing and analyzing

multiple collinear genomes. My tool illustrates genome-sequence similarity using a mosaic

of compatible intervals and the higher structure derived from them, including subspecific

origin and haplotype identity. Comparative analysis is facilitated through reordering and

clustering of genomic data which can vary between individuals. A significant feature of my

genome browser is that I provide local phylogenetic trees as an alternate visualization to

assess the relatedness of local haplotypes.

Genome browsers are a common tool used by biologists to visualize genomic features

including genes, polymorphisms, and many others. However, existing genome browsers and

visualization tools are not well-suited to perform meaningful comparative analysis among

a large number of genomes. With the increasing quantity and availability of genomic data,

there is an increased burden to provide useful visualization and analysis tools for compar-

ison of multiple collinear genomes such as the large panels of model organisms like those

commonly used in modern genetic research.

Unlike previous genome browsers and viewers, this tool allows for simultaneous and

comparative analysis. The browser provides intuitive selection and interactive navigation



around features of interest. Dynamic visualizations adjust to scale and data content making

analysis at variable resolutions and of multiple data sets more informative. I describe the

design and implementation of this genome browser based on my compatible intervals and

demonstrate these features using an extensive set of genomic data sets composed of almost

200 distinct mouse laboratory strains.

4.1 Classical Genome Browsers

Genome browsers are one of the most common bioinformatics tools used by biologists.

Browsers allow biologists to visualize genomic features such as genes, SNPs, CG islands,

and transcription factor binding sites, and to place these features in their genomic context.

They are also useful in adding and viewing genome annotations and feature-specific infor-

mation. Generally, genome browsers support analysis of a single genome, but there is often

a need to compare features between two or more genomes. Existing tools are not well-suited

for this. Many visualization methods have been developed to support comparative genomics

of animals from different species. These include phylogenetic trees, alignment viewers, Cir-

cos diagrams [52], and dot-matrix methods [7]. Tools that perform comparative analysis

include BLAST (pairwise alignment analysis) [1] and VISTA [29]. Generally these methods

support only comparisons between a small number of genomes. There is a need for com-

parative analysis and visualization tools supporting populations from the same species with

largely collinear genomes. These genomes are considered “collinear” in that they can largely

be considered identical in structure and content except for point variations. This is a common

assumption within species. My goal was to develop a system that supports simultaneous and

dynamic analysis of many (10s to 100s) collinear genomes and to display the context and

extent of compatible intervals and their corresponding phylogenetic trees.

A web-based resource for investigating genomic data from multiple samples simultane-

ously would aid many common comparative genome analyses including disease association
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studies and expression analysis. My system supports any generic genomic data set, allow-

ing it to be an extensible framework for analysis, not simply a data resource. Like existing

genome browsers and viewers, I represent different categories of genomic data as horizontal

“tracks” covering a particular region of the genome. Unlike previous work, color is used

to better indicate important regions and facilitate comparison. In addition, my tools allows

dynamic sorting and local reordering of tracks.

Comparisosn between genomes of different samples of the same species, particularly the

analysis of local haplotype and phylogeny, can provide insight into gene origins and individ-

ual variations. They can also aid in understanding population structure. Understanding local

genomic variations and population structure is the key to studies of individual genes and their

association with disease. We need to be able to not only determine similarities and differ-

ences between samples genome-wide, but also at the level of individual loci (Figure 4.6).

There are many genome browsers and viewers that can integrate multiple data sets per-

taining to a particular genome sequence whether it is specific or a species consensus. These

browsers, including the UCSC genome browser [45], GBrowse [78], Ensembl [39], NCBI

Map Viewer [24], and JBrowse [74], display multiple tracks of data and support a variety of

useful navigation techniques that allow the genome to be traversed and visualized at various

resolutions. However, existing browsers are limited in their ability to support dynamic and

comparative analysis between multiple genomes.

The UCSC Genome Browser [45] is the standard and most prevalent web-based genome

browser. The UCSC browser originally targeted the human genome data as a part of the

Human Genome Project. It has since been extended to numerous other species. The goal

of the UCSC browser is to make a particular set of data broadly accessible and navigable.

It does not focus on any particular analysis but is a comprehensive resource for integrating,

displaying, and navigating publicly accessible genome data. The browser supports standard
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functions including navigation by panning and zooming. Data sets of interest can be dis-

played in tracks and reordered manually by the user. The UCSC browser functions as a

window into very comprehensive sets of data for many different species, but does not sup-

port comparisons between either inter- or intraspecific genomes. The UCSC browser does

not support dynamic interactions with the displayed data. Instead, pages must be reloaded

in their entirety any time that new data is requested. Due to this limitation, data retrieval is

necessarily limited to a small window or few data types to allow quick and easy analysis.

The Generic Genome Browser (GBrowse) [78] is another widely used web-based genome

browser available for human, mouse and other model organisms. The main difference be-

tween GBrowse and the UCSC browser is extensibility. GBrowse is designed to be extended

with new and user-provided data sets, and as such it provides a flexible framework for dis-

playing and navigating arbitrary genome information. Otherwise, GBrowse uses the same

basic navigation and display structure as the UCSC browser. Data sets can be individually

selected and are displayed as horizontal tracks stacked on top of one another and aligned to

a common genomic scale. Unlike the UCSC browser, GBrowse supports asynchronous re-

trieval and navigation of data, meaning the entire page does not need to be reloaded to update

the genomic regions displayed. This reduces the computational overhead on the server, re-

freshing only those parts that need to be changed. However, GBrowse is limited in its ability

to display small-scale details at high resolutions. Since the representation and visualization

of data is essentially fixed, fine details such as SNPs are often omitted when viewing large

regions.

The Ensembl genome database project [39], a joint venture between the Sanger Institute

and the European Bioinformatics Institute (EBI), was initiated with a goal of providing full

genome data along with various annotation as a public resource for researchers. The Ensembl

genome browser serves as a publicly available web-based browser for this data. Although

initially focusing on the human genome, the browser now includes many model-organism
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genomes with annotations including genes, DNA and RNA alignments, and many others.

The browser function itself is similar to the UCSC browser, supporting traditional navigation

techniques. Ensembl also uses asynchronous data requests to retrieve data when it is needed.

In addition, detailed annotations and links to more thorough information are displayed when

a feature such as a gene or contig is selected.

The National Center for Bioinformatics Information (NCBI) provides the NCBI Map

Viewer [24] as an online tool for browsing genomes. Unlike others, the NCBI Map Viewer

displays the genome vertically with tracks for only the assembly, contigs, and genes while

focusing on detailed description and annotation for these features linking to other useful

NCBI tools for directly accessing related genes, SNPs, proteins, and more. Map Viewer

also does not provide any dynamic navigation mechanism, therefore the entire page must be

reloaded each time the genome window is adjusted. The browser serves best as a hub through

which other resources are accessed by genomic position and is not a viable analysis tool by

itself.

JBrowse (Javascript-based genome browser) [74] is a more recent web-based tool de-

signed to allow navigation and analysis of genomes and is available as a framework that

researchers can set up and fill with their own data. JBrowse takes advantage of the dynamic

features available to modern browsers and allows for more interactive and dynamic visualiza-

tions. JBrowse’s focus is on supporting dynamic and fluid transitions between displayed win-

dows, for example showing a smooth sliding transition as a user pans in one direction along

the genome. JBrowse also supports client-side dynamic rendering rather than the server-side

image or block rendering as in most other browsers. This reduces the server-side computa-

tion and time and cost associated with data transfer of full images between the server and

client. JBrowse leverages the computational power on the user’s browser to draw and dy-

namically shift and rescale the visualization, leading to a more intuitive understanding of the

relationship between genomic features as a user shifts the frame of reference. JBrowse is
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a good tool for generic genome annotation analysis, but, as with other existing browsers, it

does not provide suitable techniques for visualizing multiple genomes simultaneously.

Existing genome browsers are well suited for generic genome annotation and are useful

for analysis of the specific data sets to which they are tailored, but there are many limitations.

Available data is essentially static. In many cases, users have the ability to customize the

browser to use different data or display only that in which they are interested, but the un-

derlying information representation remains constant. The visualization is essentially static,

where the current region of interest is displayed to the viewer. Data can be viewed at multiple

resolutions, but no further attempt is made to improve upon the organization and layout of

the visualization for a particular purpose. It is hard to quickly glean information and under-

standing from the visualization. These tools are frequently used to provide access to publicly

available data sources rather than to support novel visualizations for analysis. Our browser

addresses the following limitations of existing genome browsers: it supports simultaneous

exploration of multiple aligned genomes, it allows for dynamic rearrangements of tracks to

support comparisons, and it provides alternative visualization modes based on the current

displayed scale.

4.2 Browser Design

The Mouse Phylogeny Viewer (MPV) is available as a public website allowing users to

view, explore, and analyze multiple genomic data without requiring a standalone applica-

tion (http://msub.csbio.unc.edu). Data is stored on the web server and the client side exe-

cutes within a web browser. It has been tested and works on most modern web browsers and

operating systems. Browsers using Webkit, Mozilla, and other renderers/Javascript engines

conforming to the HTML5 W3C specification are known to work. Platform interoperability

and constant availability make it an easy and useful tool for genetic analysis.
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Figure 4.1: An overview of the visualization interface. Basic navigation controls are shown at the top, allow-
ing users to zoom and pan within the viewing region. Three track types are shown, a histogram representing
the density of SNPs, subspecific origin (see Figure 4.3), the underlying compatible intervals (Fig. 4.11), and a
single phylogenetic tree representing the local phylogeny in the interval covering 7.8 - 8.9 Mb on chromosome
19.
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The design of MPV focused on the visualization of multiple simultaneous components

from aligned data sets (Figure 4.1). To this end, the browser supports a multi-row display,

where individual data sets are displayed as vertically stacked tracks that be compared ver-

tically, along with derived data tracks which integrate information over the selected subset

of samples. MPV assumes collinearity, common local coordinates, of all feature tracks of

interest. The displayed samples are selected or deselected by clicking the strain name in the

selector region. Data sets can also be individually shown or hidden depending on the analysis

performed by toggling the show/hide button next to each track group.

4.2.1 Navigation

MPV supports various navigation techniques including manually selecting a region of the

genome, panning backward and forward through the genome, and zooming in and out (Fig-

ure 4.2). Clicking and dragging over any track highlights the region over which the pointer

is dragged on all displayed tracks (Figure 4.4). This allows users to highlight regions of

interest to easily compare between track groups. In addition, once a region is selected, a

button appears to allow zooming in to the selected region such that it fills the entire viewing

window (Figure 4.4). This allows for precise navigation to features of interest. There are also

navigation buttons to zoom out by fixed small (two) and large (ten) ratios of the displayed

window size. Panning side to side is supported by four buttons; two pan in each direction,

one a short distance and one a long distance, 10% and 50% of the viewing window size,

respectively. Panning small distances allows the user to fine tune the display to focus on a

region of interest. Further panning allows users to scan the genome for nearby features while

maintaining a local frame of reference. In addition to panning and zooming, when a point on

any track is clicked, a vertical cursor line is highlighted to allow visual alignment of features

at that point. The display window may then be re-centered around the selected position to

best show the chosen feature and its surrounding area (Figure 4.5).
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Figure 4.2: Strain selection and navigation. Multiple strains can be selected from several groups to visualize
and compare. The displayed window reflects the chosen chromosome and base-pair coordinates. Navigation
actions include zooming in and out, and panning to the left and right varying amounts.

The user interface provides access to the underlying genetic data. For most data types, the

displayed information can be retrieved as a delimited text file by clicking the output button

below each track, which retrieves the underlying data for the currently selected sets of active
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Figure 4.3: Data tracks for subspecific origin and haplotype similarity. Some data sets, such as the haplotype
coloring, show only data for the selected classical laboratory strains. The user can drag tracks within a group to
reorder the display of samples. This reordering is reflected in all grouped tracks. Users can navigate the genome
by manually entering positions (Figure 5.1) or use the navigation buttons to zoom in and out and pan side to
side across the genome. Data tracks can also be collapsed and expanded using the b̂utton above each track.
In the subspecific origin group, the colored tracks indicate the subspecies origin of each strain. Throughout,
blue indicates Mus musculus domesticus, red indicates M. m. musculus, and green indicates M. m. castaneus.
Shared colors in the haplotype tracks indicate a common haplotype.

Figure 4.4: A region of mouse chromosome 19 selected by clicking and dragging across the genome. The
region is highlighted on all tracks and the user is given the option to zoom in to the chosen region.

genomes and within the displayed window so that no further filtering is required.

The visualization technique that is used changes based on both content and scale. Unlike
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Figure 4.5: The results of zooming into a highlighted region. These two tracks show a single point in the
genome selected to allow the user to center the viewing window on the chosen position. The position selected
by clicking one track is reflected in all other tracks to pinpoint aligned features.

previous browsers, the visualization changes to aid analysis based on the subset of samples

chosen, the order of samples, and the viewing resolution of the data. The basic data represen-

tation used by the browser is a set of possibly overlapping genomic intervals specified by their

genomic coordinates (typically chromosome and position). Intervals are displayed as hori-

zontal blocks that are displayed along the viewing window based on the bounding positions

of the interval. Overlapping intervals are displayed on adjacent stacked tracks. Dynamic

visualization techniques are also applied to the subset and order of comparative samples se-

lected. Samples can be displayed simultaneously and their tracks reordered such that they

can be easily compared. In addition, a variety of visualizations are computed dynamically

based on the current subset of selected samples, such as intervals of sequence identity among

the selected set of samples.

Another feature facilitates similarity analysis at a particular position by allowing sorting

of tracks within all groups at a user-selected position within the displayed genomic window.

Strains are sorted vertically according to the color at the selected position such that strains
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with identical features are grouped together. In addition, strains are further sorted at increas-

ingly distant positions radiating in both directions from the selected position until either the

edge of the displayed window is reached or all strains are distinct. This is particularly useful

in assessing local similarity among a large set of samples.

4.2.2 Multiscale Visualization

When examining a small region of fine detail, features such as SNPs and genotype intervals

are displayed as discrete blocks or points such that individual features and their exact rela-

tionship can be determined (Figure 4.6). Because data may be visualized at a wide range of

resolutions relative to the genome size, the number of intervals to display may exceed the

display resolution. To combat this, regions with multiple intervals are presented, at a course

resolution, as histograms. This resolution-dependent representation (RDR) supports a wide

variety of genome annotations and allows the browser to be easily extended to novel data sets

while providing a more useful high level interpretation of the data (SNPs in Figure 4.3). The

use of this visualization mode is well supported by my model of local phylogeny.

4.2.3 Use of Color

The genome browser uses color to allow for more intuitive visualization. Intervals for various

data types are displayed as variable-width colored bars across the genome, highlighting sim-

ilarities and differences between genomes by their respective color pattern. To allow users

to further customize the visualization, the browser supports dynamic recoloring of intervals

(Figure 4.7) as well as dynamic sorting of samples at a user-selected position (Figure 4.8).

Dynamic coloring and reordering tools facilitate comparison of features by visually aligning

regions where genomes are similar and different. At any position along the genome, the re-

lationships among the displayed strains can be understood visually as dividing strains into

groups according to their color such that strains with similar genomic features are the same
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Figure 4.6: Mouse Diversity Array SNPs (above) and subspecific origin (below) shown at a fine resolution.
A high density of SNPs is represented as a histogram across the genome. As the user zooms in, the histogram’s
bar heights dynamically adapt to display the relative SNP densities in each genomic region. Individual SNPs
are displayed as vertical ticks along the SNP track as the display resolution approaches an individual base-pair.
Alleles for each strain are shown overlaying the subspecific origin to enable detailed analysis. Alleles are also
shown overlaid on the haplotype track at low resolutions.

color. Over larger regions, similarity is represented by shared color patterns.

When viewing only a small sample of strains, this coloring can be simplified, essentially

changing colors only when there are feature changes among the selected strains. Colors can

be dynamically reassigned according to the order of the selected strains such that colors are

assigned in descending order (Figure 4.8). The topmost displayed strain is assigned a single

color across the genome. The second strain is assigned the color of the previous strain where

its content/color matches the first and a second color where it differs. This process is repeated

for subsequent strains, introducing a new color in regions that match none of the preceeding

strains. This has the effect of, for example, highlighting all regions where the first selected

sample shares some feature with subsequent samples by using the same color. In this way,

the coloring scheme can be substantially simplified for a small sample of strains allowing

more intuitive analysis.
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Figure 4.7: In the haplotype track, strains are assigned colors based on shared haplotypes - equivalent to a
shared leaf in the local phylogenetic trees. The default haplotype block mosaic, which minimizes total color
transitions across the entire genome, is shown above. Below is the selected subset of strains recolored according
to their displayed order. The topmost strain is assigned a single color and subsequent strains are assigned the
same color where their haplotypes match the first strain. A strain is assigned a second color where it does not
match the first strain and subsequent strains are assigned the color where they match the new strain but not
the first. This process is repeated for all remaining strains in displayed order. This recoloring highlights the
haplotype similarities over extended genomic regions (60 Mbases as shown) between the selected strains.

4.3 Browser Implementation

There are many critical design and resource allocation decisions which arise when handling

very large sets of data. In traditional genome browsers, a relatively small amount of data

needs to be handled at any one time. Existing browsers only need to handle a single se-

quence. In order to visualize multiple sequences simultaneously (10s to 100s) as in the case

of our implementation, it is important to consider different methods for efficient data trans-

fer, management, and visualization. In addition to handling multiple sequences, my tool

also supports dynamic visualizations that vary based on the scale and local context. Existing

browsers, such as the UCSC Genome Browser [45], do not support large-scale visualization
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Figure 4.8: The top track group shows haplotype similarities with strains shown in the default order. The
lower track shows this track after automatic sorting according to the haplotype similarity at the selected cursor
position. Strains are sorted by haplotype at the selected position. Strains with the same haplotype are further
sorted by adjacent positions until all strains are distinct. Other tracks are reordered to match.

of fine-scale features, like SNPs.

To support faster and more interactive visualization while dealing with remote data, I

addressed issues of data transfer and efficiency and how to best allocate the rendering tasks.

My implementation loads data as it is needed into the page using asynchronous requests

(using AJAX [84]) to the server. To reduce data transfer costs in memory and speed, the

page is loaded only once at the beginning of a session and, subsequently, only data is loaded.

In addition, visualization and display are handled in the browser by dynamic scripts on the

page so that complete images do not have to be transferred from the server. Data rescaling,

panning, and drawing are all handled by the client. Requests are made asynchronously so

that the tool is available to the user even while new data is transferred.
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In order to increase usability as well as allow dynamic content and interaction, my imple-

mentation requires a set of web-based technologies that would allow wide platform interoper-

ability and dynamic client-server interaction. The user interface and interactive components

are constructed in Javascript using the JQuery (http://jquery.com) library to simplify

implementation and abstract the numerous issues arising due to variable cross-browser syn-

tax.

4.4 Browser Usage

I have deployed an instance of the visualization tool to aid analysis and interpretation of a

Nature Genetics paper [98] that I coauthored. This browser analyzes a set of 100 classical

laboratory and 62 wild-derived mouse strains along with 36 wild-caught mice. This study

answers open questions regarding the subspecific origin of the laboratory mouse and provides

the first detailed view of the haplotype diversity in most common laboratory mouse strains.

This instantiation is used to visualize ten different data types to aid in comparative analysis

of these 198 mouse samples.

Several data sets are included to aid in analysis by placing features in a genomic context.

The browser supports display of SNPs from the Mouse Diversity Array [97] that used in

genotyping the analysis presented in the paper. SNPs use the RDR approach in a dedicated

track. In addition, alleles at each SNP for each strain are displayed at fine-scale resolutions

overlaying the subspecific origin and haplotype coloring tracks to allow for direct comparison

(Figure 4.6). Known genes [38] are displayed in a similar manner. In the case where genes

overlap, overlapping genes are displayed in additional stacked horizontal tracks.

A second data set of interest is the local subspecific origin of each sample’s genome.

The genomes of classical laboratory mouse strains arose through interbreeding of pet mice

from three different mouse subspecies. In [98], the subspecific mosaic structure of each
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genome was determined (Figure 4.3). Subspecies are assigned to each strain as a mosaic of

intervals representing Mus musculus domesticus, Mus musculus musculus, or Mus musculus

castaneus regions of origin. SNPs were assigned their diagnostic status based on each allele’s

distribution among wild and wild-derived mouse strains of known subspecies. In addition

to diagnostic alleles, diagnostic values were also assigned to SNPs based on the distribution

VINOs [20]. Subsequently, genomic regions of mouse strains from unknown subspecies were

assigned a subspecies and assigned a confidence based on these diagnostic values. A Hidden

Markov Model (HMM) was used to delineate subspecies intervals across the genome which

integrated the diagnostic strength of the SNP markers, a data-error model, and minimized the

number of transitions (see [98]). Subspecific origin is visualized as a horizontal track made

up of a mosaic of colored bars representing domesticus (blue), musculus (red), or castaneus

(green) regions for each selected strain. At fine scales, diagnostic SNPs are shown above the

subspecies assignment for each strain, the height and color of the bar represent the relative

diagnostic value and implied subspecies, respectively (Figure 4.9).

Another data set annotates regions of heterozygosity, which are displayed for each se-

lected strain (Figure 4.10). This is particularly important for outbred and wild-caught mice

since inbred laboratory mouse strains have little or no heterozygosity. Heterozygous blocks

are computed using a method similar to the subspecific origin HMM [98] to detect large het-

erozygous regions. Heterozygosity is displayed using the basic RDR approach I described.

Genome mosaic representations, such as subspecific origins and heterozygous regions,

reveal the phylogenetic structure and identify introgressions between mouse strains. Existing

laboratory and wild-derived strains are a mosaic of ancestral genomes that were selected

for desired traits and subsequently inbred. The genome browser provides the first tool for

exploring this genomic diversity at both a high level and a fine scale.

For classical laboratory strains, several additional data tracks are displayed to show lo-

cal variation and haplotype structure. These data include a mosaic of possibly overlapping
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Figure 4.9: Subspecific-origin assignments with diagnostic SNPs overlaid within a fine-scale window. Diag-
nostic SNPs are similarly indicated by color. Diagnostic SNPs were determined by [98] based upon whether
each SNP variant was unique to a particular subspecies, and categorized as either fully informative (common
to all members of the subspecies) or partially informative (occurring within some members of the subspecies).
The SNPs with diagnostic alleles are displayed as individual bars with the height representing the confidence
with which that allele indicates the particular subspecies. The subspecific origin intervals are computed using
an HMM over the set of diagnostic SNPs for each strain, as described in [98].

intervals or compatible haplotype blocks that show no evidence of recombination. Within

these blocks, the tool dynamically computes identity-by-descent between the selected set of

strains. The MPV provides an innovative visualization of haplotype identity among classical

laboratory strains based on these compatible blocks. Importantly, local phylogeny trees can

be displayed for each interval.
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Figure 4.10: The heterozygosity track highlights heterozygous regions of the genome, which occur primarily
in outbred and wild strains. Similar to SNPs, independent heterozygous calls are represented as a histogram
at coarse scales and individual loci at finer scales. Blocks of heterozygosity are inferred from the individual
calls using an HMM, and represent suspected outbred regions. Classical laboratory and wild-derived strains are
largely inbred however they may maintain small regions of residual heterozygosity.

I include a visualization of intervals that show no evidence of historical recombination

[85], as described in Chapter 2, among the classical laboratory strains (Figure 4.11). These

blocks serve as not only a visualization of their own representing ancestral haplotypes but

also as a framework over which other data sets and visualizations are based. This visualiza-

tion is useful when analyzing other data sets in order to place those data in the context relative

to these intervals. We expect that significant genomic features, specifically differences be-

tween strains, should fall within these breakpoints. Compatible intervals, as described by a

Maximal-k scan in Chapter 2, can overlap at most with one other interval on each side, so

intervals are displayed as horizontal bars in one of two stacked horizontal tracks. The visual-

ization uses RDR to allow users to assess the local interval structure at both course and fine

resolutions.

The compatible intervals are pre-computed in order to represent diversity our full set

of classical laboratory strains. The intervals are not recomputed dynamically based on the

selected subset of strains. The relationships between a small subset of samples is better
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represented by the dynamically computed identity-by-descent (IBD) track, which displays

the intervals in which the selected strains share a common haplotype.

Figure 4.11: Intervals are represented as blue blocks or a density histogram, using RDR. Compatible intervals
are computed as maximal overlapping four-gamete compatible regions across the genome (see Chapter 2). Such
intervals have the property that no more that 2 adjacent intervals can overlap. Overlapping ”even” and ”odd”
intervals are displayed on alternating stacked tracks.

Intervals of sequence identity are computed dynamically based on where the subset of

selected strains share a common haplotype (Figure 4.12). Strains are divided into haplotype

identity groups within each compatible interval based on sequence similarity (see [98]). We

compute intervals of identity by descent (IBD) over the user-selected set of strains on the fly.

We consider a region IBD if all selected strains are in the same haplotype group over that

region. As we will see in the following data description, regions of IBD should correspond

directly to identical haplotype coloring patterns as shown in Figure 4.7.

Figure 4.12: The dynamic IBD track shows intervals of sequence identity computed over the selected subset
of strains. Red horizontal bars represent regions of the genome over which all selected strains are substantially
identical. IBD is computed from the haplotype group assignments for each interval where strains in the same
haplotype group are considered IBD. Regions of IBD are displayed where all selected strains are in the same
haplotype group over consecutive compatible intervals. This visualization is computed on the fly based on the
current subset of selected strains.
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We also support a method for exploring the extent of shared haplotypes among the se-

lected strains. Blocks of color are used to depict haplotype similarity. Colors are assigned

and reused so that transitions are minimized. A fixed set of pastel colors is used only to easily

distinguish among different haplotypes, avoiding those colors representing subspecies. The

haplotype identity among the displayed strains can be understood visually as dividing strains

into haplotype groups according to their color such that strains with substantially identical

haplotypes are the same color. The compatible intervals shown in Figure 4.11 are the units

within which the shared haplotypes (Figure 4.7) and IBD (Figure 4.12) are computed. Shared

haplotypes correspond directly to a shared leaf in the local phylogenetic tree of each com-

patible interval. Initial haplotype colors are precomputed for all classical laboratory strains,

leading to frequent color/haplotype changes at a genomic scale. Using the dynamic recolor-

ing feature, the haplotype coloring scheme can be substantially simplified for a small sample

of strains allowing more intuitive analysis. Additionally, strains may be automatically sorted

by haplotype color, aligning strains with similar features.

Lastly, local phylogenetic trees are displayed by selecting a compatible interval of in-

terest within the genome (Figure 4.13). A tree is computed within the interval based on

neighbor-joining on haplotype similarity. Selected strains are highlighted according to the

haplotype group they fall in, corresponding to a leaf in the tree structure. In contrast to the

haplotype identity and IBD tracks, the phylogenetic trees show relative differences and pos-

sible ancestral relationships between similar haplotype groups rather than simply the group

membership. Strain names are colored according to their subspecific origin to show the rela-

tionship between subspecies assignment and tree structure.
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Figure 4.13: The compatible intervals and haplotype coloring are shown for a small region. A local phy-
logeny tree is also shown for the highlighted interval (denoted by the vertical red bar along the compatible
interval track). The local phylogeny tree visualization includes the tree structure, size and location annotation
for the interval the tree covers, the leaf descriptions including the strains in each leaf, and the distance matrix
used to perform the neighbor-joining between leaves. Letters at the leaves of the phylogeny tree denote nodes
that contain strains. The leaf descriptions show the corresponding node letter, a confidence score, and number
of supporting SNPs along with the set of strains in that leaf. Each strain is colored according to its assigned
subspecific origin within the tree’s interval and the strains in the currently selected subset are shown as bold to
allow the user to quickly identify them.

4.5 Conclusion

An instance of my genome browser and its dynamic analysis methods has been deployed to

display results of our recent publication [98] at http://msub.csbio.unc.edu. It is

currently used in comparative genome analyses of the mouse genomes presented. In the past

twelve months of our tool’s availability, we have had over 4,000 users make almost 50,000
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queries. The tool is used by researchers to perform comparative analysis between 198 com-

mon mouse strains. MPV is particularly well suited for selecting and partitioning strains

while simultaneously considering phenotypic variation as it relates to a given gene or ge-

nomic region. A recent focus of the browser has been to explore the predictive power of local

phylogeny and haplotype assignments. Local comparative genomic analysis has been par-

ticularly effective in predicting phenotypic states of the available set of mouse strains given

the known state of a small sample. Others have used it to predict copy-number variations in

laboratory mice [81] and to narrow the intervals of QTL loci [9]. I have also used the notion

of sequence similarity to inform genotype imputation by constructing a haplotype mosaic

(see Chapter 3, [86]). Work is continuing to enhances the browser’s support in this area.

There are many technical as well as structural improvements that can make the browser

more useful, general, and effective for visualization and analysis of multiple genome data.

Although the browser is constructed in a modular format, separating our data from the

browser itself, to add new user-specified data types or novel visualizations requires modi-

fications to the source configuration. In order to support a larger range of users and wider

adoption, it is possible to add a simple web-based user interface for adding new tracks and

visualizations within the existing framework. I present the genome browser’s application

to a specific data set here, but it is suitable to other organisms and other data types where

comparative analysis of multiple genomes is useful. I will discuss another genome browser

application based on MPV in Chapter 6. Likewise, the tool could provide an API for custom

analysis of the existing data set. Improvements to my model of local phylogeny may also

be included to enhance the visualization tool. I will discuss an extension of the compatible

intervals method useful for incorporating additional sources of data in Chapter 5.
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Chapter 5

More Robust Compatible Intervals

In this chapter, I introduce an accurate method for the discovery of local phylogenetic

structure among individuals of a species using genotype data with a high rate of genotyping

error or confounding biological variation. This is an extension of methods used to partition

the genome into regions exhibiting no evidence of historical recombination called compatible

intervals. This is accomplished by relaxing the four-gamete rule, which tests for conformance

to a perfect phylogeny, in which a number of loci may be ignored. The method I developed

is a variant of the Character Removal Problem [71]. This allows my method to accurately

discover true compatible regions while masking the effects of possibly erroneous loci. In this

chapter, I describe this modified algorithm and demonstrate its effectiveness on simulated

and real-world data sets with a range of error rates.

5.1 Introduction

In Chapter 2, I described methods for partitioning the genome into blocks showing no evi-

dence of historical recombination called compatible intervals. Here, I describe an extension

of this model which relaxes the four-gamete rule to allow us to construct intervals in the

presence of possibly erroneous data. These “errors” may be the result of true errors intro-

duced during the physical genotyping process, be it off-target hybridization on a microarray



or misreading of short shotgun sequencing reads. Errors may also be introduced in the com-

putational derivation of genotype data from raw sequencing or microarray data. This type of

error includes misclassification of probe intensities into allelic groups and a wide variety of

errors which can occur during sequencing read alignment. Using a scaffold-based alignment

approach [16], reads may align incorrectly to distant homologous areas of the genome or

the reference genome may not correspond accurately to the sequenced genome, for example

omitting polymorphic structural variations.

In addition to genotyping errors, there are also rare biological phenomena, such as homo-

plasy, which, although not strictly errors, violate assumptions made by our model and may

confound our ability to accurately determine the phylogenetic structure. Homoplasy is the

occurrence of multiple mutations at a single locus, violating the assumption we made in the

infinite-sites model that no site may mutate more than once. A homoplasy event or random

genotyping error results in the permutation of a single allele which may cause a violation

of the four-gamete rule, thus appearing as an incompatibility and implying a recombination

breakpoint. My goal is to, in some sense, “cover up” these kinds of perturbations to preserve

our ability to find the true underlying phylogeny structure. This type of error tends to have a

noticeable signature in that it most often introduces a novel distribution of alleles - or strain

distribution pattern (SDP) - within the local genotypes. As discussed in Chapter 2 pertaining

to the complexity of computing compatible intervals, any set of mutually compatible SDPs

is much smaller than the set of all possible SDPs. Thus, any random SDP is unlikely to be

compatible within its current interval. These erroneous SNPs are incompatible with a large

proportion of neighboring SNPs uniformly on both sides (see Figure 5.5). In contrast, recom-

bination breakpoints cause SNPs on one side of the breakpoint to be uniformly incompatible

with SNPs on the other side, but compatible with proximal SNPs within its own interval.

The algorithm I describe for constructing these robust intervals does not explicitly model

this signature, but has the effect of ignoring those SNPs which cause the most bidirectional
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incompatibility.

5.2 Effects of Genotyping Error and Homoplasy

In Chapter 2, I described the computation of compatible intervals using a set of dense geno-

types discovered using the MDA [97]. These data consist of about 500,000 SNPs across the

genome. In an attempt to improve my characterization of the local phylogenetic structure, I

recomputed compatible intervals using the Sanger SNP set described in Chapter 3, consisting

of over 12 million SNPs, nearly 25 times the density of the MDA. Figure 5.1 illustrates the

growth rate of the intervals detected using increasingly dense samples of these two data sets.

As one might expect, more intervals are detected as more SNPs are sampled, increasing

our precision in identifying probable recombination breakpoints. As illustrated in Chapter 2

and using my imputation method in Chapter 3, the compatible intervals discovered using

the MDA SNPs provide a very accurate characterization of the local phylogenetic structure

within the population of classical laboratory mice. However, it is disconcerting to note that,

with the incorporation of the much denser set of Sanger SNPs, the number of detected in-

tervals continues to increase. Within this population, the number of true historical recombi-

nations, and therefore compatible intervals, should be fixed. Therefore, I expect the number

of detected compatible intervals to asymptotically approach the true number as the sampling

density increases. A simulation model supports this hypothesis, as shown in Figure 5.2. With

no error (0%), the number of detected intervals asympototically approaches the true number

of recombinations (552). When random error is introduced into these simulated genotypes,

the number of detectable recombinations continues to grow as additional SNPs are sampled.

In fact, I illustrate in Figure 5.3 that the number of intervals detected in excess of the “truth”

grows linearly with the error rate.
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(a) Interval detection by SNP sampling

(b) Interval detection by SNP sampling (closeup)

Figure 5.1: These plots illustrate the change in number of detected intervals based on the SNP sample size.
As we expect, the number of detected intervals increases with the sample size. The increase is non-linear,
implying a saturation of informative variants to detect true recombinations.
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Figure 5.2: Interval detection growth using simulated genotypes. These data use a simulated model of
population inheritance under the infinite-sites model with increasing proportions of random error introduced.
The growth with 0% error illustrates the asympototic trend indicative of “true” intervals. Those with error
introduced are increasingly dominated by the linear error effect.

Figure 5.3: The number of intervals detected in excess of the ground truth, in simulation, is shown in relation
to the error rate. We see that, as the error rate increases, the proportion of excess intervals detected increases in
a roughly linear pattern.
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This model represents a set of observed genotypes and corresponding compatible in-

tervals as a combination of “true” and “error” signals. We directly observe this pattern in

the growth of detectable intervals, where we expect the “true” recombination breakpoints to

contribute to an asymptotic increase in detectable intervals, and the “error” in genotypes to

contribute to a linear increase. Using this model, we can decompose an observed interval de-

tection curve into these two components using least-squares regression. This decomposition

of the intervals computed over the Sanger SNPs is shown in Figure 5.4.

Figure 5.4: The growth rate of detectable compatible intervals at increasing sample sizes over the Sanger
SNPs. This growth curve is decomposed into asymptotic and linear components using a least-squares fit. This
mixed model provides a good fit of the observed interval growth pattern.

The partitioning of true compatible intervals into many smaller regions due to “error” in-

cluding genotyping error and homoplasy reduces our ability accurately characterize the local

phylogenetic structure, leaving fewer variants in each interval with which to distinguish local

inheritance structure. I propose a method to implicitly disregard those “errors” contributing

to the linear increase in observed intervals, allowing my method to better approximate the set

of “true” compatible intervals bounded by historical recombinations.
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5.3 Background

There exist a number of previous studies that consider partitioning a set of genomes into

blocks which exhibit high linkage or, equivalently, low levels of recombination. These meth-

ods include those based on linkage disequilibrium (LD) [30, 68] and perfect phylogeny

[40, 76]. These are described in Section 2.2. Each of these methods has advantages and

disadvantages, striking a balance between specificity and susceptibility to error. Methods

based on perfect phylogeny err on the side of describing exactly the genomic structure within

a population while breaking the genome into unnecessarily small blocks due to genotyping

error or due to violations of the infinite-sites model. Linkage disequilibrium measures are

necessarily parametric and are thus partially resistant to small-scale fluctuations which may

be a result of error, but do not necessarily describe a perfect phylogeny.

The model I have developed retains the notion of perfect phylogeny while relaxing the

compatibility rules to better predict the true phylogenetic structure where there is error in

the source genotypes. Methods for discovering a single perfect phylogeny over a fixed set

of genotypes have been described previously [35, 36, 31]. Gysel et al. [36] describes a

general method for solving the Perfect Phylogeny Problem for a set of haplotypes with an

arbitrary number of allelic states, missing data, and allowing for character removal. While

this method and the others referenced (for a survey, see [31]) go to great lengths to distill

a perfect phylogeny from data which may be discordant in many ways, they still attempt to

construct a single, global phylogeny to describe an entire data set. The method I describe

uses a variant of some of these approaches, notably character removal, in the context of local

phylogenies to improve our resistance to error.

The Perfect Phylogeny Character Removal problem can be reduced to the Minimum Ver-

tex Cover problem - basically, to find the fewest SNPs which must be removed such that there

are no remaining pairwise incompatibilities. The details of this reduction is given in the next

section. The Minimum Vertex Cover problem is a classic NP-complete problem [42] with
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a naive solution in O(2n) time. There also exist many efficient approximations which are

appropriate for common cases [95].

5.4 Method

In a standard compatible interval cover of any type (left-to-right, right-to-left, Uber, Max-

k), a requirement for any interval is that all pairs of SNPs included in an interval are four-

gamete compatible. The optimization described in Chapter 2 was to find the least ambiguous

and most informative set of such intervals. In order to overcome erroneous data, I redefine

the notion of a compatible interval to allow us to ignore a number of SNPs which may be

erroneous. My goal is to find a Max-k set of intervals for which no interval exceeds some

number, r, of SNPs that must be ignored such that all remaining SNP pairs are four-gamete

compatible. I will use Rr to represent the class of intervals which contain r such SNPs.

I will build upon a simple definition of an interval cover to define a maximal set as I did

in Chapter 2. We may perform a left-to-right (LR) scan much as we have done previously.

Starting at some SNP, Si, we add SNPs Si+n to our interval while each SNP is compatible

with all previous SNPs {Si, Si+1, . . . Si+n−1}. In addition, we will allow up to r SNPs to

be ignored such that if we ignore these SNPs, the remainder will all be pairwise compati-

ble. When we reach a SNP Si+n which contains one or more incompatibilities with previous

SNPs, we must attempt to satisfy our condition that no more than r SNPs are ignored. This

problem can be reduced to the (weighted) Minimum Vertex Cover Problem. The graph is

constructed as follows. Each unique SDP in an interval is a node with weight equal to the

number of SNPs with that SDP. If two SDPs are incompatible, we add an edge between the

corresponding nodes. Solving for a minimum cover, M , entails finding the minimum total

weight of nodes which must be removed such that every edge is removed. The minimum
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cover, M , represents the set of SNPs which must be ignored so that there are no more incom-

patibilities. If |M | ≤ r, we can satisfy our character removal condition and the SNP set is a

valid Rr interval. When a new SNP causes |M | > r, we record the interval [Si, Sn−1] and set

i = n, beginning the next interval immediately after where the last left off.

5.4.1 Minimum Vertex Cover Solution

The Minimum Vertex Cover problem is a well-known NP-complete problem [42] and, as

such, has no known polynomial solution. There exist efficient (polynomial) approximations

[95]; however, these, by definition, may not discover the optimal solution. Since the number

of unique SNPs in an interval is bounded (Chapter 2, [77]), the size of the graph is also

necessarily bounded. My method uses an exponential branch-and-bound algorithm to solve

for a Minimum Vertex Cover. This algorithm is guaranteed to find an optimal solution, and

is tractible, in practice, because the size of the graph is bounded.

I perform a recursive depth-first traversal of the incompatibility graph, bounding the

search based on the removal threshold, r. My method considers the removal of each sub-

set of vertices such that there are no remaining edges, backtracking if the total weight of

removed nodes exceeds r. The search is further bounded if any solution is found in which

the total weight of removed vertices is under the threshold r. If such a solution is found at any

point during the search, I stop and declare the interval under consideration achievable given

r or fewer removals. If no solution is found, there exists no subset of r SNPs which can be

removed to make the interval fully compatible, so the interval is closed at the preceding SNP.

5.4.2 Rr Covers

We can trivially compute Rr left-to-right (LR) and right-to-left (RL) Rr covers by scanning

in either direction. Similarly, the Uber scan described in Chapter 2 can be applied, in a

modified form, to construct anRr cover containing all possible intervals with r ignored SNPs.
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The Uber cover is constructed by scanning left to right, but with a trailing start rather than

beginning the next interval where the last left off. The first phase of the scan is the same as

the LR scan (Algorithm 1), adding SNPs to the interval as long as we can satisfy our removal

criteria (by adding incompatibilities to our graph and solving the Minimum Vertex Cover).

The Uber cover should contain all possible intervals that satisfy Rr. When a SNP is added

which increases our minimum cover over r, we store the interval [Si, Si+n−1] and add Sn and

all associated incompatibilities to the compatibility graph. The minimum cover must now be

r+1, so the interval starting position Si, is increased, removing the corresponding nodes and

incompatibility edges from the compatibility graph until the minimum cover is again r. This

represents the beginning of the next possible adjacent Rr interval. The end position is then

extended again until the minimum cover exceeds Rr, completing the interval.

The portion of the compatibility matrix “under” the Rr Uber cover represents those pairs

of SNPs which are either compatible or can be ignored as possibly erroneous with the removal

condition r. I will refer to this division as theRr “horizon”, where all SNP pairs under theRr

horizon are compatible if we allow up to r SNPs to be ignored (Figure 5.5). In simpler terms,

we can consider everything under this horizon compatible if we allow for some error term r.

I use this model to redefine what I consider “compatible” when computing a Max-k cover.

I recompute CLR, CRL, CUber, and CMax−k using this pseudo-compatibility model. These

covers have the same properties as the standard covers described in Chapter 2, including,

importantly, |CLR| = |CRL| = |CMax−k| ≤ |CUber|. It is also the case that every interval

must necessarily conform to Rr. Additionally, our Max-k cover meets the same criteria: it

contains the minimum number of Rr intervals necessary to cover the genome, and each such

interval is maximal in size.
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Figure 5.5: A subset of a simulated set of haplotypes with the corresponding compatibility matrix and interval
sets. The blue and yellow matrix at the bottom shows a set of haplotypes where each row represents the
haplotype for a single sample. Each column represents a SNP, where blue is the majority allele (0) and yellow
is the minority allele(1). The compatibility matrix show the pairwise four-gamete compatibility between SNPs
where gray is compatible and red is incompatible. There are three intervals sets shown, shaded with the colors
pink, green, and yellow. The yellow intervals represent the Max-k cover for exactly the given haplotypes.
The green represents the Max-k cover for the same set of haplotypes before 0.1% error was introduced. Pink
represents the Max-k cover using an R5 relaxation as described in this chapter.

5.4.3 Complexity

The extra work required to determine which SNPs to remove/ignore affects the complexity of

the LR, RL, and Uber scanning algorithms. Computing the unique cores and Max-k cover is

not different from what was described in Chapter 2 since these operate on the previous inter-

val sets. During a scan, the extra Minimum Vertex Cover problem must be solved whenever

an incompatibility is introduced. The Minimum Vertex Cover Problem has been thoroughly

studied [42, 95] and, while it is a classic example of an NP-complete problem [42], there
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exist many efficient approximation algorithms. The branch-and-bound algorithm I describe

is O(2n) where n is the number of nodes in the graph - in this case, SDPs. As I discussed in

Chapter 2, the number of mutually compatible SDPs is bounded by the number of samples,

n ≤ 2m− 3. So, my solution achieves O(2m). Optimizations of the Minimum Vertex Cover

Problem [95] or the character removal problem generally [35] could be trivially incorporated

to improve the performance of this method.

5.5 Results

I tested my Rr compatible intervals using both simulated genotype data as well as real data

from laboratory mice. Using simulated population data to test my model allows us to create

genotype data with known phylogenetic structure, introduce various errors into the data, then

find out if we can recover the “true” underlying phylogeny structure. In the likely cases

that our simulation model is oversimplified and does not represent the range of biological

and experimental variation found in real genotypes, I also validate my Rr intervals using the

imputation method described in Chapter 3. By using the discovered phylogenetic structure

to make predictions about imputed genotypes, I can obtain a measure of how well my local

phylogenies reflect the true population structure.

5.5.1 Simulation

I simulated a population of genotypes consisting of 100 haplotypes undergoing mutation at

a rate of 0.0001 per locus per generation and recombination at five per generation, for 50

generations. I used a coalescent model with non-overlapping generations, so that at each

generation, 100 progeny are created, each with a random, possibly duplicate, “parent” from

the previous generation. I chose a random sample of 10 individuals from the resulting popu-

lation as my experimental group. I computed the normal Max-k cover of these genotypes as

105



described in Chapter 2 and used this as my baseline “truth”. Figure 5.5 shows a subset of the

genome containing one of these intervals, shaded green.

To test the ability of my extended model to overlook errors, I introduce random allelic

errors into the simulated data set. I simulate genotyping error or, equivalently, homoplasy

events occurring in a single sample by randomly permuting a single allele. The error rates

are given as a probability of error per locus, per sample. Note that an error rate of 0.1 over a

dataset with ten samples would result in an average of one error in each SNP.

In order to determine the accuracy of an Rr cover, we must determine the concordance

of interval sets. For example, we would like to find out how well our ground truth Max-k

cover “agrees” with our Rr cover. I find the maximum pairwise overlap of two interval sets,

such that each interval in one set may be “paired” with at most one interval in the other and

vice versa. Because two covers may have different numbers of intervals, this is a nontrivial

problem. However, we can achieve a close approximation using a greedy pairing of intervals

for maximum overlap. I quantify the “agreement” between two interval sets by the total

pairwise overlap. The pairing of interval sets to determine agreement is shown in Figure 5.6.

This value must be less than or equal to the minimum total interval size of the two covers.

I represent the agreement value as a fraction of the total interval size of the base truth, as

shown in Figure 5.8.

In simulation, we can clearly see the effect of the SNP removal. Figure 5.5 shows an

example of a region of my simulated dataset with 0.1% error. This region contains one

true interval, computed over the same region without error (shaded green), normal Max-k

intervals (yellow), and an R5 interval, closely approximating the true interval regardless of

the erroneous SNPs. Four SNPs with errors introduce abundant incompatibilities. These

necessarily partition the normal Max-k cover, but are ignored as likely errors when we allow

a number of incompatible SNPs in theRr scan. Figure 5.7 shows visually the concordance of

Rr CMax−k and the ground truthCMax−k for several values of r. We can see qualitatively how
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Figure 5.6: The maximum pairwise overlap between two possible sets of intervals. This is a hard problem, but
can be approximated using a greedy approach. Determining the pairwise overlap relative to a ground truth lets
us assess the accuracy of candidate compatible interval covers. Two interval sets are shown, a set of candidate
intervals in blue and a “ground truth” set in green. Each green intervals is paired with the blue interval that
overlaps the most. Orange arrows indicate the assignment of candidate to true intervals to maximize the total
overlap, the percetages indicating the fraction of the true interval which is overlapped.

the interval cover predicted by the Rr Max-k scans approach the true intervals. Figure 5.8

shows the percent concordance between Rr intervals and the ground truth as r changes. As

we can see, the accuracy increases asymptotically as r increases. Shown in Figure 5.8, r = 0

corresponds to the original Max-k cover described in Chapter 2. In simulation, the accuracy

of the predicted interval cover doubles between r = 0 and r = 7, increasing the concordance

of these intervals to the true local phylogenetic structure and regions of shared inheritance.

5.5.2 Imputation of real data

I also validate my Rr compatible intervals using real-world genotype data. In previous stud-

ies, the local phylogenetic structure was computed based on microarray-based SNP data.

This has a relatively low SNP density compared to other methods, but also a relatively low

error rate after it has been properly curated. In order to improve the overall accuracy and

precision of my model of local phylogeny, a method is required which can be applied to

other, denser sources of genotypes while remaining resistant to possible errors. I computed

an Rr cover over a set of SNPs derived from high-throughput sequence data produced by the

Sanger Institute [43], with a density over 20 times that of our MDA data in classical labora-

tory strains. The sequencing technology used in the study by Keane et al. has an error rate
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Figure 5.7: The concordance of Rr CMax−k covers with the ground truth for several values of r. The green
peaks represent Max-k intervals over a simulated data set with no error. The other sets of peaks represent Rr

Max-k intervals over the same simulated data with 0.001 error introduced. As r increases, the Rr interval cover
approaches the true interval cover, up to a point where the Rr intervals become overly general.
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Figure 5.8: Here I show the concordance of Rr interval covers with the ground truth as r increases. The
Y-axis shows concordance as a percentage of interval set overlap between the Rr CMax−k and the truth. The
X-axis corresponds to increasing values of r. Note that as r increases, the accuracy increases asymptotically.

approximately consistent with my simulation trials.

I computed an R5 Max-k cover over 11 classical laboratory mouse strains, 129S1SvlmJ,

A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6NCI, CBA/J, DBA/2J, LP/J, NOD/ShiLtJ, and

NZO/HILtJ . While a normal Max-k cover produces 6,868 intervals, when I allowed r = 5

SNPs to be ignored, the minimum cover size is reduced to 1,898 in R5CMax−k. In compari-

son, the Max-k cover using the MDA data over the same region consists of 1,342 intervals.

This cover is illustrated in Figure 5.9. To assess the accuracy of the imputation using these

intervals, I use a leave-one-out analysis. Each of the 11 sequenced strains is imputed indepen-

dently using the remaining 10. The error rate is then computed from the difference between

the imputed genotype and the reported genotype based on sequencing. Table 5.1 shows the
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Figure 5.9: A region of the genome showing the CMax−k (yellow) and R5 CMax−k (green) covers over
the set of Sanger SNP data for 11 sequenced strains. The yellow intervals represent the Max-k cover using
the standard algorithm described in Chapter 2. The green represents the R5 Max-k cover for the same set
of haplotypes. We see the same signature of likely erroneous SNPs as we saw in the simulated data, with
occasional SNPs being incompatible with proximal SNPs on both sides. These are ignored to construct more
accurate and informative compatible intervals.

genome-wide imputation accuracy in high confidence regions using CMax−k derived from

MDA genotypes and Rr CMax−k over the Sanger SNP set. As discussed in Chapter 3, we

assign high confidence to those regions within which a strains share a haplotype from which

we can impute genotypes. I exclude C57BL/6J that was imputed using MDA because this

strain was not explicitly sequenced as a part of the Sanger project. This increases our error

across the board because we have fewer source genotypes from which to impute, and signif-

icantly impairs our ability to impute the closely related strain C57BL/6NCrl. Regardless, I

imputed nine of the eleven strains more accurately than we could with MDA. Three strains,

C57BL/6NCrl, NOD/ShiLtJ, and NZO/HlLtJ have slightly higher error rates, likely because

they are more closely related to the excluded C57BL/6J. The average error rate using an R5

Max-k cover is 0.07%, an improvement from the 0.08% error using MDA.
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Strain CMax−k MDA error % R5CMax−k Sanger error %
129S1SvlmJ 0.07 0.05
A/J 0.09 0.05
AKR/J 0.11 0.09
BALB/cJ 0.08 0.04
C3H/HeJ 0.09 0.03
C57BL/6J 0.08
C57BL/6NCrl 0.04 0.10
CBA/J 0.08 0.04
DBA/2J 0.10 0.07
LP/J 0.07 0.04
NOD/ShiLtJ 0.10 0.11
NZO/HlLtJ 0.10 0.15
Average 0.08 0.07

Table 5.1: Comparison of the leave-one-out imputation error rate for CMax−k over the MDA
SNPs, as described in Chapter 2, and R5CMax−k over the Sanger SNPs. This table shows
error rates in genotypes imputed with high confidence, as described in Chapter 3.

As discussed, the rate of error in high confidence imputed genotypes using MDA ap-

proaches the error rate we expect in high-throughput sequencing, so we should not expect a

dramatic improvement using additional sources of data. This approach does, however, allow

accurate imputation using other sources of data, imputing additional samples, or improving

our resolution in regions with unusual variation (for example, structural variants). We can see

that, by allowing character removal, we can improve genome-wide imputation accuracy, by

eliminating presumably erroneous variants from consideration when we construct the local

phylogenetic structure. Using a leave-one-out method, we can assess the accuracy of the im-

putation method, but these genotypes do not tell us anything new. However, this validates my

modified method for constructing compatible intervals using erroneous data in a real-world

context.
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5.5.3 Implications about Genotyping Error and Homoplasy

Using my model of the effect of genotyping error and homoplasy on compatible interval

detection, we can gain a better understanding of the relative and, perhaps, absolute frequency

of these events. I suggest two interpretations of this model, one to infer the absolute rate

of erroneous intervals (including both genotyping error and homoplasy) from the number of

detected intervals, and another to infer the relative abundance of true genotyping error and

homoplasy contributing to the increase in intervals.

Figure 5.3 illustrates the linear relationship between errors and detected intervals. In my

simulation model, this corresponds to approximately one extra interval detected for each er-

ror. Note that the maximum number of new intervals an error may produce is two if it is

immediately incompatible with both adjacent SNPs. If this holds true for the Sanger SNP

data, we can infer a per-base error rate from the slope of the linear fit component. As illus-

trated in Figure 5.4, there are approximately 0.006 excess intervals introduced per SNP. So,

if there is a 1:1 correspondence between errors and intervals, we can estimate a 0.006 error

rate per SNP, or 0.0005 per sample per SNP. This is consistent with my claim that the error

rate in my high confidence imputation (Chapter 3), 0.08%, or 0.0008 per sample-SNP, is on

the order of the true error rate in the data. Recall that this “error” consists of both experimen-

tal (genotyping) error and homoplasy which violates our infinite-sites assumption. We can

attempt to disentangle these by using some basic biological insights.

There are four nucleotides which make up DNA: adenine (A), cytosine (C), guanine (G),

and thymine (T). A and G are in a class of molecules called “purines” and C and T are “pyrim-

idines”. Mutations from purine to purine or pyrimidine to pyrimidine are called “transitions”,

and mutations between purines and pyrimidines are called “transversions”. Figure 5.10 illus-

trates the possible transitions between nucleotides, where blue indicate transitions and orange

indicate transversions. It is known that transitions naturally occur twice as often as transver-

sions [49]. If we assume there is no genotyping error and our data is a result of only mutation
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(including homoplasy), we expect to see a 2:1 ratio of transitions:transversions. I use ETs

and ETv, representing the fraction of “error” in transitions and transversions, respectively. It

holds thatETs+ETv = 1. Overall, the Sanger SNP data support this model, withETs = 0.67

and ETv = 0.33.

Figure 5.10: The four DNA nucleotides, adenine (A), cytosine (C), guanine (G), and thymine (T), are divided
into purines (A and G) and pyrimidines (C and T). Mutations from purine to purine or pyrimidine to pyrimi-
dine are known as transitions (blue). Mutations between purines and pyrimidines are known as transversions
(orange).

To categorize the SNPs causing erroneous intervals, I separated the SNPs representing

transitions from those representing transversions and independently computed compatible

intervals (Figure 5.11). The observed interval detection curves for transitions and transver-

sions are independently decomposed into asymptotic and linear components. As expected,

the asymptotic components closely correspond with one another, indicating that these dis-

joint SNP sets reflect the same set of true compatible intervals. However, the linear “error”

components are not the same. The slopes of these lines indicate the total error attributable to

transitions and transversions, respectively. I observe ETs = 0.581 and ETv = 0.419. This

ratio (˜7:5) does not match the expectation if these extra intervals are due only to homoplasy

(2:1).

Truly random genotyping errors, unlike homoplasy, should have no such bias. An A may

be just as likely to be mis-identified as a C, G, or T. Truly random errors are, in fact, twice as

likely to cause a transversion as a transition. The observed transition:transversion ratio (˜7:5)
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Figure 5.11: The growth rate of detectable compatible intervals at increasing sample sizes over the Sanger
SNPs, separated into transitions (Ts) and transversions (Tv). Each observed curve is decomposed into asymp-
totic and linear components. As expected, the asymptotic fits align with one another, indicating that these
disjoint SNP sets reflect the same set of true compatible intervals. The difference between the two error lines
reflects the variance between the “error” rate in transitions and transversions. There appear to be more errors in
the transition SNPs due to the increased chance of homoplasy with respect to transversions.

also does not match this expectation based on random genotyping error (1:2). However, we

can infer a weighted combination of homoplasy and genotyping error contributing to the

observed ratio.

I represent the relationships between error probabilities as ETs = EG

3
+ 2EH

3
, ETv =

2EG

3
+ EH

3
, and EG + EH = 1 where EG and EH represent the fraction of error attributable

to genotyping error and homoplasy, respectively. Solving this system of equations when

ETs = 0.581 and ETv = 0.419 yields EG = 0.257 and EH = 0.743. This indicates that

a large majority of “erroneous” intervals are, in fact, caused by homoplasy, violating the

infinite-sites model, rather than actual genotyping error.
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5.6 Discussion and Conclusion

I have described a method for partitioning a set of genotypes into accurate local phylogenies

in the face of errors. In Chapter 2, I describe compatible intervals computed using SNPs from

the Mouse Diversity Array. While these intervals have proven very informative (Chapter 3),

to improve the precision and accuracy of my model, we would like to include additional

sources of genotypes. In this Chapter, I consider computing compatible intervals using SNPs

derived from high-throughput sequence data. These data provide much denser genotypes, but

may have significant error that would otherwise confound my model of local phylogenetics.

I address this by relaxing the model of compatible intervals used in Chapter 2 to include a

number of, presumably erroneous, ignored SNPs. This modification improves our ability to

accurately predict blocks of local phylogeny in both simulation and real genotype data.

I further analyzed confounding factors in computing compatible intervals. I describe how

my model can be used to predict the absolute rate of error affecting my method’s ability to

accurately describe local phylogenetic structure. I also considered the attribution of these

“errors” to either genotyping error or homoplasy, a violation of the infinite-sites assumption.

This method may be applied to other data sets with significant error. Notably, we could

apply the same method to the structural variation data reported by the Sanger Institute as

a part of the same sequencing effort [96]. This includes small insertions and deletions (in-

dels), indicated by small nonlinearities in the read alignments, as well as large-scale struc-

tural variations discovered by a combination of post-alignment heuristics. Including these

variants while compensating for reporting error or confounding biological factors may fur-

ther improve our categorization of local phylogenetic structure in the population of classical

laboratory mice.

The inclusion of additional datasets and different types of input data to my compatible

intervals model may also improve the characterization of local phylogeny in regions with

unusual variation, for example structural variants. There exist regions of structural variation
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and regions with otherwise few detectable SNPs and recombinations, which - for this very

reason - may include biologically significant findings that we wish to identify. My extension

of the compatible intervals model to better handle errors enables the analysis of these types

of features.
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Chapter 6

Discussion and Conclusion

Local phylogenetic structure within species can provide unique insights into an organ-

ism’s history and inheritance. Local phylogenetic structure can be used to increase the den-

sity of genotype data through imputation, improve the specificity or narrow target regions

in GWAS, and to act as a scaffold for the discovery of secondary genotypic information in-

cluding subspecific origin and gene expression. In this thesis, I introduce highly effective

and generalizable methods for characterizing phylogeny structure as a mosaic of genomic

regions showing no evidence of recombination.

I described in Chapter 2 a generic method for computing an unambiguous and maximally

informative set of compatible intervals over the genome. A compatible interval is defined

as a contiguous region of SNPs for which no pair violates the four-gamete rule, that is, they

show no evidence of historical recombination under the infinite-sites model. I describe an

interval cover with the minimum number of intervals required to cover the genome, while

each interval is maximal in size. I show that this cover can be computed efficiently. Addi-

tionally, I describe extensions of this model which can be applied to unphased genotype data

(Chapter 2) and a relaxation of four-gamete compatibility that provides more useful intervals

over erroneous genotype data (Chapter 5).

In addition to these methods, I have contributed to the study of intra-species phylogeny



through the design and development of web-based visualization and analysis tools. These

tools use the model of local phylogenetic structure I describe to portray the relationships be-

tween individuals in a holistic manner. These tools are being actively used by researchers and

geneticists interested in comparative genomics between common laboratory strains, partic-

ularly aiding the identification of shared inherited haplotype structure, a crucial indicator of

likely gene expression and phenotype. These tools have been and continue to be widely used

(see Table 6.1). Thus far, my approaches have primarily applied to mouse populations, how-

ever, the tool is open source (see https://github.com/txje/phylogeny-viewer)

and easily extensible to other species and populations.

6.1 Applications of Local Phylogeny

The model of local phylogenetic structure and compatible intervals I have developed has

been and continues to be used in studies examining the variation among individuals within

a species. The understanding of the relationships between local inherited haplotypes can be

used to infer, among other things, regions sharing ancestral haplotypes, subspecific origin,

and likely gene expression profiles.

The compatible intervals described in this thesis have been used to label the genomic

regions of laboratory mice according to their subspecific origin [98]. This was accom-

plished by identifying a collection of informative SNPs ascertained from wild mice of known

subspecies. The subspecific origin of laboratory mice has been a hotly debated subject

[28, 99, 98], as it is an important factor in understanding the origins and sources of the

genetic diversity in an important model organism. This work uncovered at least three impor-

tant results relating to the use of the laboratory mouse as a platform for studying genetics.

First, the vast majority of the laboratory mouse’s genome is derived from a single subspecies.

Second, the classical laboratory strains available today appear to be derived from a relatively
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small population of ancestral mice, as evidenced by the limited number of distinct haplo-

types seen at any place in the genome. This suggests that relatively few chromosomes (likely

less than ten) can explain the overwhelming majority of the genetic diversity of the com-

mon laboratory mouse. Third, our studies suggest that some of the more recently developed

“wild-derived” inbred strains are not representatives from a single subspecies. In fact, most

exhibit evidence of introgression that may have occurred either in nature or in the lab. All

of these theories and conclusions rely heavily on the understanding genomic structure as it

relates to local phylogeny.

Genome-wide association studies have used the local phylogenies I derived to identify

or narrow regions possibly containing causative mutations. Because compatible intervals

have the property that they show no evidence or historical recombination, we can partition

individuals into groups with shared ancestral haplotypes. These groups may be used to better

differentiate genotypic variation across the genome and relate it to phenotypic variation, like

that which is done in GWAS. In a recent study [9], my collaborators and I used the local

phylogenetic structure of laboratory mice to better refine the region of the X chromosome

likely containing XCE, the X-inactivation controlling element. Analysis of MDA genotypes

and sequence data showed an enrichment of consistent SDPs (eight MDA SNPs, 120 Sanger

SNPs and indels) in a 194 kb compatible interval spanning from ˜99.09 - 100.46 Mb. Within

this candidate interval, all phenotyped strains cluster into haplotypes based on their XCE

allele.

The compatible intervals and associated haplotype groups were used by Szatkiewicz et al.

[81] to inform the identification of copy-number variations between laboratory mice. Shared

haplotypes derived from the local phylogenetic trees where used to confirm the predicted

copy-number variants and to predict these variants in other strains which are identical-by-

descent (IBD) according to the phylogenies.
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As a part of the Collaborative Cross (CC) Consortium [12], my analysis of local phyloge-

netic structure has been used to help categorize the structure of the emerging CC population

[90, 2, 14, 27]. In addition to the visualization tools described in Section 6.2, we have ex-

tended our mosaic of subspecific origin and ancestral haplotype structure in the “founder”

(progenitor) inbred laboratory mice to the CC population. These analyses and tools have

helped determine the emerging population structure, including the relative representation of

founders, haplotypes, and subspecies, and, thereby, the predictive power of phenotypic stud-

ies using this population.

Similar to GWAS, studies of relative gene expression in the laboratory mouse have ben-

efited from the understanding of local phylogenetic structure. Haplotypes within compatible

intervals are related to the relative gene expression between individuals, and can therefore be

used to both predict and validate gene expression when it is derived from ancestral genotypic

variance [79, 17]. We have developed a separate visualization tool allowing comparison of

gene expression profiles based on local phylogenetic structure, particularly differential gene

expression based on subspecific origin [GECCO, Gene Expression in the Collaborative Cross

(csbio.unc.edu/gecco), unpublished].

6.1.1 Improving Imputation

As discussed in Chapter 3, compatible intervals can be used as a scaffold to very accurately

impute missing genotypes where we can identify blocks of shared ancestral haplotypes be-

tween strains. While I show that this imputation can be done with unprecedented accuracy

using relatively sparse genotypes from microarrays, our ability to improve the overall accu-

racy of these methods is limited by the quantity and quality of both dense source genotypes

from which we can impute and our ability to accurately characterize the local phylogenetic

structure. As discussed, we may trivially increase the number of genotypes we can impute
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with high confidence by acquiring additional high-density source genotypes. The increas-

ing pace and decreasing cost of high-throughput sequencing will provide an abundance of

additional source genotypes we can use in our imputation efforts as time goes on.

In addition, we can better characterize the local phylogenetic structure - to determine

those individuals with shared haplotypes - by incorporating additional data. The effective-

ness of incorporating these data into our compatible intervals depends on the density and ac-

curacy of these genotypes. While high-throughput sequence is much denser than microarray

data, both technologies have non-ignorable error rates [67]. My extension of the compatible

interval cover algorithm I describe in Chapter 5 helps allow us to incorporate these data into

the model while minimizing the effect of error. So far, we ignore genomic variation that is

not represented by SNPs. However, other sources of variation may be incorporated to help

better describe inheritance relationships between individuals not well represented by SNPs.

Small insertions and deletions (indels) and large-scale structural variants including deletions,

duplications, and reorganizations may be incorporated into my model of local phylogenetic

structure in a way similar to the way I used SNPs. Like SNPs, these variants represent spe-

cific strain distribution patterns (SDPs) which can be accounted for in my assessment of

four-gamete compatibility. Including these extra sources of data may improve the accuracy

of our imputation, particularly by refining breakpoints and identifying small-scale haplotype

blocks which are not detected using our MDA genotypes.

A notable limitation of my imputation method is in the detection of de-novo mutations,

having occurred since the divergence of the inbred strains or in the particular individual

which was sequenced. Mutation is very rare and has had very little time, relatively, to occur

between closely related individuals. However, de-novo mutations do occur. Since there is no

representation of these alleles in the remainder of the population, they cannot be reasonably

imputed, but must be discovered experimentally.
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6.2 Extensibility of Visualization Tools

In Chapter 4 I describe a web-based tool built to allow comparative analysis and visualization

of individuals within a population. This application is, at its core, an extensible framework

for comparative visualization of any genomic data. While the instance discussed supports

comparison of common strains of laboratory mice, the framework can be trivially extended

to other data set or populations.

I have implemented another version of this framework to support preliminary analysis

of the emerging CC lines [2]. This browser supports analysis of 458 mouse lines in the

CC in various stages of inbreeding as well as the 8 inbred founder strains [14]. Visualized

data sets include the assigned founder mosaic for each CC line, subspecific origin, haplotype

diversity, and local phylogenetic trees. This resource is available at http://csbio.unc.

edu/ccv and is being used extensively by the CC Consortium and others to analyze these

data. Figure 6.1 shows a snapshot of this tool.

While this tool and the Mouse Phylogeny Viewer discussed in Chapter 4 have seen

widespread use (Figure 6.1), additional implementations of the local phylogeny model and

these visualization tools have the potential to contribute to the study of other genetic models

and populations.

Resource Unique Users Accesses/Downloads
Mouse Phylogeny Viewer 8680 199553
Collaborative Cross Viewer 1847 55623
Imputed genotypes 144 197

Table 6.1: Usage of online tools and resources since their inception (1-3 years)

Understanding the phylogenetic structure of a population allows us to do things we could

not before and leads to improvements in other commonly performed analyses. My set of

maximal compatible intervals and my visualization and analysis tools based upon them have
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Figure 6.1: A sample of the data tracks available in the Collaborative Cross Viewer (http://csbio.
unc.edu/ccv). The viewer supports analysis and visualization of 458 emerging CC lines and the 8 founder
strains [10]. From top to bottom, the CC founder origin histogram and mosaic for a subset of lines is shown.
The founder origins indicate the likely founder haplotypes inherited across the genome for the CC lines since
the CC lines are a mosaic of the 8 founders. Note that many of these lines are not yet fully inbred, so there exist
regions of heterozygosity as well as homozygosity. The subspecific origin histogram and mosaic is derived
from the subspecific origin of the founders, as described for the Mouse Phylogeny Viewer.

and continue to go to great use in a wide variety of research, primarily those based on com-

parative analyses among the population of classical laboratory mice. These include analysis

of subspecific origin in the lab mouse, a large collection of genome-wide association studies

(GWAS), breeding and experimental design, and genome-wide imputation. There has been a

variety of work others have done using, or informed by, the compatible interval method and

results.

123



6.3 Conclusion

In my research, I have introduced methods to accurately and efficiently compute compatible

intervals representing the local phylogenetic structure between individuals within a popula-

tion. I provide code to compute compatible intervals in Appendix A. I demonstrate how

these methods may be applied to assess multiple haplotypes and genotypes, and in the pres-

ence of erroneous data. I have shown how these intervals can be used to perform accurate

genome-wide imputation. I also discuss how my model of local phylogeny has been used

to inform a wide variety of intra-specific comparative studies including GWAS, QTL anal-

ysis, and identification of other genomic features like subspecific origin and copy-number

variation. I have designed and implemented a web-based genome browser to visualize local

phylogenetic structure and facilitate analyses on the basis of compatible intervals.
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Appendix A

Compatible Intervals Code

Code to compute compatible intervals, in Python (version 2.6 - 2.7)

import sys

# ----------------------------------------------------------------
# Data structures
# ----------------------------------------------------------------

class SNP:
def __init__(self, position, sdp_index, alleles):

self.position = position
self.sdp_index = sdp_index
self.alleles = alleles

def __repr__(self):
return str(self.position)

def __cmp__(self, other):
return cmp(self.position, other.position)

class SDP:
def __init__(self, bin, n, h, v, d, length):

# each of bin, n, h, v, and d are bit vectors (integers) whose bits represent
presence of the particular call

# each vector stores the call for each strain on this SDP in the order they appear in
the Chromosome.strains array from most to least significant bit

# i.e. strains[0] call is vector >> length-1 (highest bit) and strains[length] call
is vector & 1 or vector % 2 (lowest bit)

self.bin = bin # 1 indicates minority allele (1)
self.n = n # 1 indicates no call (N)
self.h = h # 1 indicates heterozygous (H)
self.v = v # 1 indicates VINO (V)
self.d = d # 1 indicates deletion (D)
# from process of elimination, a positions with 0 in all bit vectors is the majority

allele (0)
self.length = length

def __repr__(self):
return self.toarray()

def __str__(self):
return ’’.join(self.toarray())

def toarray(self):
sdparray = []
for i in xrange(self.length):

if self.n >> self.length-1-i & 1 == 1:
sdparray.append(’N’)

elif self.h >> self.length-1-i & 1 == 1:
sdparray.append(’H’)

elif self.v >> self.length-1-i & 1 == 1:
sdparray.append(’V’)

elif self.d >> self.length-1-i & 1 == 1:
sdparray.append(’D’)
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elif self.bin >> self.length-1-i & 1 == 1:
sdparray.append(’1’)

else:
sdparray.append(’0’)

return sdparray

def __eq__(self, other):
if self.toarray() == other.toarray():

return True
return False

def singleton(self):
j = 0
while self.bin > 2**j:

j += 1
if self.bin == 2**j:

return True
return False

def identical(self, other):
if self.bin == other.bin and self.n == other.n and self.h == other.h and self.v ==

other.v and self.d == other.d and self.length == other.length:
return True

return False

class Interval:
def __init__(self, start_index, end_index):

#the snps at both start and end indices are part of the interval
self.start_index = start_index
self.end_index = end_index

def __repr__(self):
return "(" + str(self.start_index) + "," + str(self.end_index) + ")"

def __cmp__(self, other):
return self.start_index - other.start_index;

def size(self):
return self.end_index - self.start_index + 1

class Chromosome:
def __init__(self):

self.chrName = ’’
self.strains = []
self.SNPs = []
self.SDPs = []

self.left = []
self.right = []
self.cores = []
self.uber = []
self.maxk = []

def sortSNPs(self):
self.SNPs.sort()

def lrScan(self):
self.left = allScan(self, 0, len(self.SNPs)-1, uber=False)

def rlScan(self):
scan = allScan(self, len(self.SNPs)-1, 0, uber=False)
reversed = []
for i in xrange(len(scan) - 1, -1, -1):

temp = scan[i].start_index
scan[i].start_index = scan[i].end_index
scan[i].end_index = temp
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reversed.append(scan[i])
self.right = reversed

def uberScan(self):
self.uber = allScan(self, 0, len(self.SNPs)-1, uber=True)

def coreScan(self):
if len(self.left) == 0 or not len(self.left) == len(self.right):

print "Can’t core scan because left != right or left = []"
print "left: " + str(len(self.left)) + ", right: " + str(len(self.right))
return

invs = []
for i in xrange(len(self.left)):

invs.append(Interval(self.left[i].start_index, self.right[i].end_index))
self.cores = invs

def maxkScan(self):
if len(self.uber) == 0:

self.uberScan()
if len(self.cores) == 0:

if len(self.left) == 0:
self.lrScan()

if len(self.right) == 0:
self.rlScan()

self.coreScan()
self.maxk = maxkScan(self)

def invFromType(self, type):
if type == "left":

return self.left
if type == "right":

return self.right
if type == "cores":

return self.cores
if type == "uber":

return self.uber
if type == "maxk":

return self.maxk

class Node:
def __init__(self, strains, label="", description=""):

self.strains = strains
self.label = label
self.description = description
self.edges = []

class Edge:
def __init__(self, direction, weight, end_node):

self.direction = direction
self.weight = weight
self.sink = end_node

# Convert to binary tree with no labelled internal nodes
def printTree(t, strains):

if len(t.edges) > 0:
out = [printTree(e.sink, strains) + [e.weight] for e in t.edges]
if len(t.strains) > 0:

out.append([’|’.join(strains[s] for s in t.strains), 0]) # zero-weight edge
# make bifurcating
while(len(out) > 2): # sub1, sub2

out = [[out[0], out[1], 0]] + out[2:]
return out

else:
return [’|’.join(strains[s] for s in t.strains)]

# ----------------------------------------------------------------
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# LR, RL, and Uber Scan computation
# ----------------------------------------------------------------

# allScan performs any of left->right, right->left (if start > end), and uber scan (if uber
flag is set)

# 8/2010 - added sdp_hash to prevent checking of duplicate SDPs a la the time proof
def allScan(chrom, start, end, uber=False):

SNPs = chrom.SNPs
SDPs = chrom.SDPs
inc = 1
if start > end:

inc = -1
invs = []
i = start
invStart = start
scan_back = False
sdp_hash = {}
while not i == end + inc:

if scan_back:
#scan backward

while not invStart == start - inc:
checkPos = i
string = str(SDPs[SNPs[invStart].sdp_index])
if not sdp_hash.has_key(string): # do not re-check duplicate SDPs, this gives

us linear time scan
while (not checkPos == invStart) and

compatible(SDPs[SNPs[invStart].sdp_index],
SDPs[SNPs[checkPos].sdp_index]):

checkPos -= inc
if not checkPos == invStart:

break
sdp_hash[string] = 1

invStart -= inc
invStart += inc

if uber:
scan_back = True

#scan forward
i += inc
while not i == end + inc:

checkPos = invStart
string = str(SDPs[SNPs[i].sdp_index])
if not sdp_hash.has_key(string): # do not re-check duplicate SDPs, this gives us

linear time scan
while (not checkPos == i) and compatible(SDPs[SNPs[i].sdp_index],

SDPs[SNPs[checkPos].sdp_index]):
checkPos += inc

if not checkPos == i:
invs.append(Interval(invStart, i - inc))
if uber:

invStart = i - inc
else:

invStart = i
sdp_hash = {}
break

sdp_hash[string] = 1
i += inc

invs.append(Interval(invStart, end))
return invs

# compatible tests 4-gamete compatibility of sdp1 and sdp2 with 2 alleles, n, h, d, and v
def compatible(sdp1, sdp2):

l = sdp1.length
mask = (sdp1.nˆ(2**l-1)) & (sdp2.nˆ(2**l-1)) & (sdp1.hˆ(2**l-1)) & (sdp2.hˆ(2**l-1)) &

(sdp1.dˆ(2**l-1)) & (sdp2.dˆ(2**l-1)) & (sdp1.vˆ(2**l-1)) & (sdp2.vˆ(2**l-1))
gametes = 0
if sdp1.bin & sdp2.bin & mask > 0:
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gametes += 1
if (sdp1.binˆ(2**l-1)) & sdp2.bin & mask > 0:

gametes += 1
if sdp1.bin & (sdp2.binˆ(2**l-1)) & mask > 0:

gametes += 1
if (sdp1.binˆ(2**l-1)) & (sdp2.binˆ(2**l-1)) & mask > 0:

gametes += 1
if gametes == 4:

return False
return True

# ----------------------------------------------------------------
# MaxK data structures and computation
# ----------------------------------------------------------------

class DPNode:
def __init__(self, a, b):

self.next = []
self.a = a
self.b = b
self.back = None
self.total = 0
self.back_count = 0

def AddNext(self, node):
overlap = self.b + 1 - node.a
if overlap >= 0:

self.next.append(node)
newTotal = self.total + overlap
if newTotal == node.total:

node.back = self
self.back_count += 1

if newTotal > node.total:
node.total = newTotal
node.back = self
self.back_count = 1

class DPArray:
def __init__(self):

self.current = []
self.last = None
self.start = self.current

def NextLevel(self):
if len(self.current) > 0:

self.last = self.current
self.current = []

def AddNode(self, a, b):
newNode = DPNode(a, b)
self.current.append(newNode)
if self.last != None:

for node in self.last:
node.AddNext(newNode)

def LastNode(self):
max = -1
lastNode = None
for node in self.current:

if node.total >= max:
max = node.total
lastNode = node

return lastNode
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def maxkScan(chrom):
cores = chrom.cores
uber = chrom.uber
minDPArray = DPArray()
last = 0
for i in xrange(len(cores)):

minDPArray.NextLevel()
for j in xrange(last, len(uber)):

if uber[j].start_index > cores[i].start_index:
break

elif (uber[j].end_index >= cores[i].end_index):
minDPArray.AddNode(uber[j].start_index, uber[j].end_index)

last = j
invs = []
node = minDPArray.LastNode()
while node != None:

invs.append(Interval(node.a, node.b))
node = node.back

invs.reverse()
return invs

def parse(filename):
data = [line.strip().split(’,’) for line in open(filename,

’r’).read().strip().split(’\n’)]
strains = data[0][1:]

sdps = {}
sdp_count = 0
snps = []
length = len(strains)
for d in data[1:]: # skip header

position = int(d[0])
snp = d[1:]
#SNPList = subset(SNPList, indices)
alleles = []
bin = 0
n = 0
h = 0
v = 0
d = 0
ns = 0
for i in xrange(length):

letter = snp[i].upper()
if letter == ’1’:

bin += 2**(length-1-i)
elif letter == ’N’ or letter == ’H’ or letter == ’V’ or letter == ’D’:

if letter == ’N’:# or letter == ’H’ or letter == ’D’:
n += 2**(length-1-i)

if letter == ’H’:
h += 2**(length-1-i)

if letter == ’V’:
v += 2**(length-1-i)

if letter == ’D’:
d += 2**(length-1-i)

sdpkey = bin*(2**(length*4)) + n*(2**(length*3)) + h*(2**(length*2)) +
v*(2**(length)) + d

sdp_index = -1
if not sdps.has_key(sdpkey):

sdps[sdpkey] = [sdp_count, 1]
sdp_index = sdp_count
sdp_count += 1

else:
sdp_index = sdps[sdpkey][0]
sdps[sdpkey][1] += 1

snps.append(SNP(position, sdp_index, alleles))
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sdps = [SDP(k>>length*4, (k>>length*3)%(2**length), (k>>length*2)%(2**length),
(k>>length)%(2**length), k%(2**length), length) for k,v in sorted(sdps.iteritems(),
key=lambda a:a[1][0])]

chrom = Chromosome()
chrom.SNPs = snps
chrom.SDPs = sdps
chrom.strains = strains
print "SNPs: " + str(len(data)-1)
return chrom

if __name__ == "__main__":
print "Usage: python compatinv.py <input> <output> <interval type>"

infile = sys.argv[1]
output = sys.argv[2]
inv_type = sys.argv[3]

print "Reading file..."
chrom = parse(infile)

print "Processing..."
chrom.maxkScan()
invs = chrom.invFromType(inv_type)
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