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Abstract

JAMES MURRAY POWERS: Population-averaged models for diagnostic
accuracy studies and meta-analysis

(Under the direction of Dr. John S. Preisser and Dr. Haitao Chu)

Modern medical decision making often involves one or more diagnostic tools (such

as laboratory tests and/or radiographic images) that must be evaluated for their dis-

criminatory ability to detect presence (or absence) of current health state. The first

paper of this dissertation extends regression model diagnostics to the Receiver Operat-

ing Characteristic (ROC) curve generalized linear model (ROC-GLM) in the setting of

individual-level data from a single study through application of generalized estimating

equations (GEE) within a correlated binary data framework (Alonzo and Pepe, 2002).

Motivated by the need for model diagnostics for the ROC-GLM model (Krzanowski

and Hand, 2009), GEE cluster-deletion diagnostics (Preisser and Qaqish, 1996) are ap-

plied in an example data set to identify cases that have undue influence on the model

parameters describing the ROC curve. In addition, deletion diagnostics are applied in

an earlier stage in the estimation of the ROC-GLM, when a linear model is chosen to

represent the relationship between the test measurement and covariates in the control

subjects. The second paper presents a new model for diagnostic test accuracy meta-

analysis. The common analysis framework for the meta-analysis of diagnostic studies is

the generalized linear mixed model, in particular, the bivariate logistic-normal random

effects model. Considering that such cluster-specific models are most appropriately

used if the model for a given cluster (i.e. study) is of interest, a population-average

(PA) model may be appropriate in diagnostic test meta-analysis settings where mean

estimates of sensitivity and specificity are desired. A PA model for correlated binomial
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outcomes is estimated with GEE in the meta-analysis of two data sets. It is com-

pared to an indirect method of estimation of PA parameters based on transformations

of bivariate random effects model parameters. The third paper presents an analysis

guide for a new SAS macro, PAMETA (Population-averaged meta-analysis), for fit-

ting population-averaged (PA) diagnostic accuracy models with GEE as described in

the second paper. The impact of covariates, influential clusters and observations is

investigated in the analysis of two example data sets.
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Chapter 1

Literature Review

1.1 Introduction to Diagnostic Test Accuracy

Modern medical decision making often involves one or more diagnostic tools (such as

laboratory tests and/or radiographic images). These diagnostic tools are developed us-

ing the most current technology available, and are often welcomed into medical practice

with the hope of improving the care for patients. A diagnostic tool must be evaluated

for it’s discriminatory ability to detect presence (or absence) of current health state.

The basic properties of quantitative evaluation of diagnostic tools were set forth over

half a century ago in the field of signal detection. The quantitative properties of a

decision tool involve assessments of how well the tool discriminates between states.

Using the notation of Pepe (2003), the variable for true disease status is defined as

D = 1 for a diseased subject and D = 0 for a non-diseased subject. The notation of D̄

for non-diseased and D for diseased subjects is also frequently used when displaying

equations for the regression models. The variable Y is the result of the diagnostic

test: Y = 1 indicates positive disease status, while Y = 0 denotes negative disease

status.The measures of accuracy displayed next include the disease-specific

classification probabilities false positive fraction (FPF ) and true positive fraction



(TPF ). TPF is also referred to as sensitivity, while 1− FPF is also known as

specificity. The first measures of accuracy of interest are those of quantifying the

misclassification probabilities for each disease group. The ideal test would have no

false positives or false negatives, since these are considered errors. The true and false

positive fractions are defined as:

FPF = P [Y = 1|D = 0]

TPF = P [Y = 1|D = 1]

These quantities address the question: to what degree does the test reflect the true

disease state? The ideal test has FPF = 0 and TPF = 1, while a completely

uninformative test has TPF = FPF . The FPF and TPF can be considered either

probabilities or fractions. However, these are often called false positive and true

positive ‘rates’, which they are not (Pepe, 2003) because the numerator and

denominator are in the same scale. There is a large body of literature concerning the

analysis of binary tests, most of which is based upon the theory of 2x2 tables. Specific

topics for binary tests including methods for a single test, multiple tests and

regression models are summarized in Pepe (2003).

1.2 Introduction to ROC Curves

While it is natural to think of diagnostic tests in terms of a dichotomous outcome, in

practice many tests are created on a continuous or ordinal scale and then possibly

simplified into a dichotomous outcome (such as a pregnancy test). The previous

section introduced measures of diagnostic accuracy and possible analysis models, all

assuming the test of interest was dichotomous. Diagnostic tests that are measured on

a continuous or ordinal scale are now examined.The consideration must be made that
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since there are more than just two possible outcomes of the test, there is now more

than just one 2x2 table to consider. For each result of a given test, there is an

associated set of accuracy measures. The Receiver Operating Characteristic (ROC)

curve is a device that describes the range of tradeoffs between failing to detect disease

and falsely identifying disease with the test (Pepe, 2003).

The development of the ROC curve can be traced back to the early 1950s where it

was developed for signal detection and radar applications (Metz, 1986). In the 1950s,

the first application of ROC to a medical test was completed when researchers

attempted to quantify the ability of a Pap smear analyzer to discriminate between

malignant and benign tissue samples (Zweig and Campbell, 1993). In the 1960s, ROC

plots began to surface in psychology and psychophysics studies (Metz, 1986). Lusted

(1960) provided the first paper on using “logical analysis” in radiology by presenting

decision making tradeoffs with an ROC curve. The statistical development of ROC

analysis can be traced initially to Patton (1978) who gives the first decidedly

statistical summary presenting the probability theory in the context of a 2x2 decision

analysis. Dorfman and Alf (1968) presented a maximum likelihood method that was

used in early binormal ROC curve analysis, but this was not presented specifically as

an ROC-specific method at the time.

Significant development of statistical methodology for ROC analysis came in the

1980’s: for example, Metz (1986) was one of a number of articles published in the

image evaluation area. In addition papers such as DeLong et al. (1988) offered the

background theory for the empirical ROC curve and associated area under the curve

(AUC). There was also a generalization to families of models including methods for

applying generalized linear models (Tosteson and Begg, 1988). The 1990s continued

the refinement of the binormal theory (Hanley, 1996; Metz et al., 1998) and a detailed

exposition of the empirical theory (Hsieh and Turnbull, 1996).

3



1.2.1 Notation and Properties

Pepe (2003) summarized the attributes of ROC curves for evaluating diagnostic tests

as providing a complete description of test performance, facilitating comparing and

combining information across studies of the same test, guiding the choice of threshold

value and providing a mechanism for relevant comparisons between different

non-binary tests. Since the ROC curve transforms all results to the TPF and FPF

scale, comparisons of different tests can be examined for the same disease, regardless

of the units or scale of measurement.

The ROC curve can be viewed as a function that describes the distance between

distributions. While the focus is typically on diagnostic tests, it is possible to use an

ROC curve as an exploratory curve any time interest lies in the difference between the

distribution of two groups. Brumback et al. (2006) provided an interpretation for the

ROC curve when used to describe the differences between two treatment groups in a

clinical trial, for example. By using a threshold , it is possible to transform a

continuous test result into a dichotomous outcome. Assuming a test, Y , is positive if

Y ≥ c and negative if Y < c then the following represent the responses of controls and

cases, respectively,

YD̄j, j = 1, . . . , nD̄

YDi, i = 1, . . . , nD

It is assumed that YD̄i and YDi are randomly selected from the population of test

results associated with the diseased and non-diseased states (Pepe, 2003).

4



The definition of TPF and FPF may then be augmented:

TPF (c) = P [Y ≥ c|D = 1]

FPF (c) = P [Y ≥ c|D = 0]

The ROC curve is then defined as the entire set of TPF and FPF pairs after

dichotomizing Y with different values of c :

ROC(·) = [(FPF (c), TPF (c)), c ∈ (−∞,∞)]. (1.1)

When c = ∞, then limc→∞ TPF (c) = 0 and limc→∞ FPF (c) = 0, while at the

opposite end of the interval we have c = −∞, then limc→−∞ TPF (c) = 1 and

limc→−∞ FPF (c) = 1. It is also possible to write the ROC curve as

ROC(·) = [(t, ROC(t)), t ∈ (0, 1)] (1.2)

where t = FPF (c) and ROC(t) = TPF (c) = TPF (FPF−1(c)).

The ROC curve is a monotone increasing function mapping two [0,1] intervals. The

uninformative test has an ROC curve that has unit slope through the unit square. In

this case the distributions of test results for the diseased and non-diseased subjects are

identical. On the other end of the spectrum the perfect test has an ROC curve that

traces the left and upper limits of the unit square since TPF (c) = 1 and FPF (c) = 0.

1.2.2 ROC Estimation Methods

Empirical Method

DeLong et al. (1988) formally defined the basic properties of nonparametric empirical

curves. These curves have a relationship to the Mann-Whitney U statistic (via the
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area under the curve) and are not smooth (resembling a Kaplan-Meier type of shape).

Zweig and Campbell (1993) argued that continuous diagnostic tests should employ

the purely nonparametric method since parametric methods were developed for

ratings data. Hsieh and Turnbull (1996) later defined the asymptotic properties of the

empirical ROC curve. The empirical ROC curve is a function only of the ranks of the

data because it only depends on the relative orderings of the test results and their

diseased status. For each possible cut-point c, the empirical estimates of TPF and

FPF are, respectively:

T̂PF (c) =

nD∑
i=1

I[YDi ≥ c]/nD (1.3)

F̂PF (c) =

nD∑
i=1

I[YDj ≥ c]/nD (1.4)

The empirical ROC curve is a plot of T̂PF (c) versus F̂PF (c) for all c ∈ (−∞,∞)

and denoted by R̂OCe(t). This is considered a discrete function because F̂PF (c) can

only take on values in increments of 1/ nD. Joining these points on a graph gives a

step function with vertical jumps of 1/ nD corresponding to subjects from diseased

subjects, while horizontal jumps of 1/ nD are made from subjects in the non-diseased

group. Ties within each group result in larger vertical or horizontal jumps, while ties

in test results between diseased and non-diseased subjects result in diagonal jumps. A

confidence band for the ROC curve was presented in Hsieh and Turnbull (1996). The

topic of nonparametric confidence bands for the ROC curve is identified as an area

requiring more statistical research (Pepe, 2003).

The empirical area under the curve is the Mann-Whitney U-statistic:

ÂUCe =

nD∑
j=1

nD∑
i=1

(
I[YDi > YDj] +

1

2
I[YDi = YDj]

)
/nD nD. (1.5)
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When there are no ties between diseased and non-diseased observations the above

expression simplifies to:

ÂUCe =
nD∑
j=1

nD∑
i=1

(
I[YDi > YDj]

)
/nD nD. (1.6)

Hanley and McNeil (1982) presented results for the asymptotic variance when

observations are independent. DeLong et al. (1988) discussed an alternative

representation of the asymptotic variance. The variability of the AUC is often

calculated using the bootstrap, especially when the data are clustered (Pepe, 2003).

In the case of clustered data, such as when a subject contributes multiple test data,

bootstrap resampling is performed at the cluster level.

Examples of other nonparametric methods include Zou et al. (1997) and Zhou et al.

(2002) who presented studies in kernel density smoothing. They both use kernels and

bandwidth selection procedures, however they arrive at the smooth curve in a slightly

different way. Their work provides some interesting theoretical results to help

determine the theoretical basis and justification for smoothing in ROC curve analysis.

Parametric Method

With its foundation in Gaussian distribution theory, the binormal curve has become a

common analysis tool for ROC curves, most commonly in the radiology imaging

evaluation area. Metz (1986) and Metz et al. (1998) are just two of dozens of articles

written by Charles Metz and colleagues. Despite being motivated based on

Gaussian-distributed test results, later it will become evident that this condition may

be relaxed. Given YD ∼ N(µD, σ
2
D) and YD* ∼ N(µD, σ

2
D
) then the ROC curve is

defined as

ROC(t) = Φ(a+ bΦ−1(t)) (1.7)
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where a =
µD−µD

σD
,b =

σD

σD
and Φ is the standard normal cumulative distribution

function. Using the convention that larger test results are more indicative of disease

a > 0, since µD > µD. The binormal method produces smooth curves which are

aesthetically pleasing. Also, the binormal model is appealing for ordinal predictors as

is often found in radiology studies for example (Metz et al., 1998).

1.3 Covariate Adjustment of ROC Curves

When considering binary tests it was observed that regression models could be fit for

FPF and TPF separately, as well as predictive values and DLRs. Methods have

been developed to fit models to continuous data, which are analogues to those fit to

FPF and TPF . Covariate effects are evaluated on the non-disease reference

distribution and the ROC curve which quantifies the discriminatory capacity of the

test (Pepe, 2003).

Evaluation of covariate effects on the non-disease reference distribution FX

determines which factors affect the false positive fractions when a test threshold is

fixed. Stated another way, it is determined whether thresholds should be defined

differently for sub-populations with different covariate values in order to keep FPF

constant across these subgroups. The methods for this are straightforward, making

use of regression quantiles. When covariate effects are modeled on the ROC curve

itself, the issue of interest is whether or not the covariates affect the ability of the test

to discriminate disease from non-disease independent of threshold (Pepe, 2003).

Inference about the accuracy of a given test may be biased if covariate effects are

neglected (Pepe, 2003). The classic case of confounding occurs when test results are

related to covariates and the distributions of the covariates are different for both the

diseased and non-diseased populations (Pepe, 2003). However, it is also possible to

have bias when the distributions are the same in both populations. There are two

8



cases to consider: the covariate affects only the test result, or the covariate affects the

ROC curve but not the test results. The radiology literature has much discussion on

attenuation of the ROC curve by ignoring covariates on the distribution of the test

results (Rutter and Gatsonis, 2001). In the case of radiology studies, the

’reader-specific’ ROC curve attenuates the overall ROC curve due to differing usage of

the rating scale for a given image.

When deciding whether to present the pooled or covariate-specific curves,

consideration should be given to what use the test result will have. If the test result

and given threshold will be used for a given covariate level (such as age group), then

the covariate-specific curve is of practical importance. However, if the test were to be

used across all age groups then the pooled curve is more relevant. For the second

case, where the covariate does not affect the test results of the non-diseased

population but does affect the ROC curve, the pooled ROC curve can be thought of

as a weighted average of the covariate-specific ROC curves. In this case the covariate

level ROC curves are of interest. Pepe (2003) observed that in data analysis

situations it may be useful to present both the pooled and covariate-specific curves.

1.3.1 Indirect Regression Methods

The first method for evaluating covariate effects on ROC curves was proposed by

Tosteson and Begg (1988) and would later be followed up by Toledano and Gatsonis

(1995). Although these two papers considered primarily ordinal data, the concepts

apply more generally (Pepe, 1998).

For continuous data the approach of this method is to model FX for both cases and

controls, and then calculate the covariate-specific ROC curve for covariate values of

interest. Tosteson and Begg (1988) achieved this by employing a location-scale ordinal

regression model. Test results that follow a location-scale family yield parameters
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that describe the covariate effects of test results. In this case the parameters quantify

covariate effects on the ROC curve. Note that the discrete ROC function framework

is adopted for this model as opposed to the latent variable posture. The reason for

this is that standard statistical packages do not handle the estimation properly due to

the dependence of the scale parameter on disease and status and covariates.

It is possible to fit a location-scale model without specifying FX , which is then a

semi-parametric alternative to the previous methods listed above. In this case,

quasi-likelihood may be used for estimation of the parameters. The induced curve

ROC estimate does require an estimator for FX . A proposed estimate is found in

Pepe (1998), which estimates FX with the empirical distribution of the standardized

residuals which is very similar to a semi-parametric regression quantile estimator.

Location-scale models that incorporate random effects are often fit to acknowledge

the correlations between test results. In the context of diagnostic accuracy evaluation,

fitting these random effects models is no different than other applications (Pepe,

2003). Random effects models can also provide insight into test result variability. In

the radiology setting multiple readers of a set of images present a level of correlation

that may be important to quantify using random effects. The random effects

formulation of the location-scale models presented previously would be of interest

when there are a large number of readers and inference is to be generalized to the

entire population of readers. Gatsonis (1995) followed by Ishwaran and Gatsonis

(2000) presented advanced discussion of this topic. Etzioni et al. (1999) proposed a

random effects model for longitudinal data regarding PSA testing. Finally, both

Gonen and Heller (2010) and Devlin et al. (2010) have proposed models that are

considered to be Lehmann Family models.

In summary, the indirect models assume a functional form of the distribution of

the test results. This can impose unnecessary restrictions on the modeling process.
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This prompted a new avenue of research into methods with less assumptions about

the distributional form of the test results.

1.3.2 Direct Regression Methods

The first direct regression method was proposed by Pepe (1997) using ordinal data

and applying the GEE for estimation. The individual test results are transformed to

indicators that are then used for modeling. Using the notation of Pepe (2003), the

variable for true disease status is defined as Di = 1 for a diseased subject and Di = 0

for a non-diseased subject. The notation of D̄ for non-diseased and D for diseased

subjects is used when displaying equations for the regression models. The variable Yi

is the diagnostic test result for subject i. Let {YD̄j
, j = 1, ... , nD̄} and

{YDi
, i = 1, ... , nD} represent the ordinal or continuous responses of controls and

cases, respectively, with larger values being more indicative of disease. It is assumed

that YDi
and YD̄i

are randomly selected from the population of test results associated

with the diseased and non-diseased states (Pepe, 2003). Next, we define a covariate

vector, X, which contains the covariates that affect the test result distribution in

control subjects, as well as those that affect the discrimination between cases and

controls. Finally, we define a set of t discrete points f = f1, ... , ft, on the x-axis of

the ROC curve, chosen from the interval (0, 1), over which the model will be fit. For

these points, define

Uit = I[Yi ≥ F−1
D,Xj(t)]− g(α(t), βX) (1.8)

Pepe (2000) then introduced the Receiver Operating Characteristic Generalized

Linear Model (ROC-GLM), relaxing assumptions on the distribution of test results

and improving on estimation using binary regression. This method uses ranks of the

11



test results to create binary indicators as the response variable in the GLM:

Uij = I(YDi ≥ Y D̄j) (1.9)

There are two components to the ROC-GLM regression model. The first is the vector

of covariate values X and the second is the specification of the ROC curve as a

function of f . If h0(·) and g0(·) are monotone increasing (or decreasing) functions on

(0, 1) then

g(ROCX(f)) = h0(f) + βX (1.10)

is an ROC-GLM regression model (Pepe, 2000).

Further work on the ROC-GLM occurred in Alonzo and Pepe (2002) and Pepe

(2000). The concept of estimating a reference distribution for the control subjects and

then standardizing case test results to these as “percentile” values are the basis of

creating the model. We summarize, and then expand upon, the following 3 general

steps required to perform a covariate adjustment of ROC curves using the ROC-GLM

(Janes et al., 2009):

1. Estimate PVDXi
= FX(YDXi

), the percentile values of the test results for cases,

where FX is the distribution of test results in controls as a function of the

covariates.

2. Estimate the cdf of the percentile values as a function of the covariates.

3. Specify the adjustment of the ROC curve as a function of the covariates. We

then employ GEE for binary data to estimate the model parameters (covered in

Section 2.2).

First, an estimate of FX , the distribution of test results in the control group, is

required. Essentially, we begin the process of standardizing the test results by finding
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the baseline relationship among the controls. A simple linear model could be specified

(Janes et al., 2009) such that

YD̄i
= ψ0 + ψ

′

1Xi + ϵi. (1.11)

where ϵi are i.i.d. as N(0, σ2).

We observe that this is the first opportunity to apply ordinary linear model deletion

diagnostics (such as Cook’s D for simple linear models) in the estimation steps of the

ROC-GLM. Given that the model in (2.1) is crucial to the remaining steps, it is

proposed that deletion diagnostics be applied at this step to assess the control

distribution model. We present the deletion diagnostics in a following section.

Having settled on a linear model in the previous step, and having assumed Gaussian

errors for this linear model, then the percentile values for the cases are defined as

P̂ V DXi
= Φ

(
(YDXi

− ψ̂0 − ψ̂
′
1Xi)/σ̂

)
. (1.12)

If Gaussian errors and/or a linear relationship are too restrictive for a given

application, there are other alternatives proposed. For example, Heagerty and Pepe

(1999) propose an empirical estimation of the error distribution using the residuals of

the linear model. Further, instead of assuming a linear relationship of the test result

in the controls, one could use a stratified approach (Janes et al., 2009).

At this stage we have now standardized the test results for the cases as a function

of the controls by the above step. Next, we must estimate the cdf of the percentile

values.

In the second step, we make use of the fact that an ROC curve is essentially the cdf

of the percentile values calculated above (Pepe, 2003). Defining the h(f) as the cdf

(recall that f are the chosen set of values on the x-axis of the ROC curve), we can
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write:

hX(f) = ROCX(f) = P (1− PVDX ≤ f) = g(β0 + β1g
−1(f)) (1.13)

where g(·) gives a parametric form of the ROC curve; g = Φ is the standard normal

c.d.f. and g(·) = exp(·)/[1 + exp(·)] is the logistic function giving binormal and

bilogistic ROC curves respectively.

The result after this second step is an ROC curve that is not yet adjusted for

covariates that discriminate between the cases and controls. However we do now have

an ROC curve that is inherently adjusted for how covariates affect the test

distribution results. This is quite important as Pepe (2003) demonstrates that

”pooled” or unadjusted ROC curves are biased.

The final step in the model specification is to create the inputs for a regression

model using the newly created percentile value cdf, and the covariates that are

assumed to affect the discriminatory capacity of the test. In other words, covariates

that affect the intercept and/or slope of the ROC curve. Recall that we have defined

T discrete points on the x-axis of the ROC curve over which to fit the model. We also

define Uit = I1−PVDXi
≤ft , t = 1, ..., T, as the set of cumulative binary indicators which

determine whether or not the percentile values are less than each choice of f . For

example, if we chose t = 10 values of f then each subject would have a vector of 10

binary indicators for each percentile value within a cluster. Next, we define the

covariates XDg
−1(f) as those that will enter the model as ones that affect

discrimination. The complete model combining steps 2 and 3 is:

ROCX,XD
(f) = g(β0 + β1g

−1(f) + β
′

2XD + β
′

3XDg
−1(f)) (1.14)

We may think of this final step as defining a model that has as its output a“baseline”

ROC curve (from step 2 and in equation 2.3) and some additional model parameters

14



that specify covariate-adjustments of that baseline curve. The previous steps also

allow for flexibility in defining which covariates are important for adjusting the

control test results distribution and those which affect the discrimination between

cases and controls. At this point it is important to note that Pepe (2003) advocate

using bootstrap standard errors for the estimates β̂ from the fitted model. The reason

is that since we do not have true independence between responses and covariates

there could be bias in the standard errors. In the case of a covariate that affects both

the test result distribution and the discriminatory capacity, this covariate would

essentially influence both the responses Uit and the covariates in X.

Pepe (2003) suggested using the independence working covariance matrix for

fitting the model. Any method for estimating the reference distribution (regression

quantiles) may be used, though the empirical method is most robust (Pepe, 2003).

The choice of f is important since this will determine the interval over which the

model is to hold. The number of points in f , (denoted earlier as ft) should be finite

so that standard statistical software can handle the estimation. There is currently no

method designed to choose the values in the domain that give optimally efficient

results (Pepe, 2003). Alonzo and Pepe (2002) found relatively good efficiency for

small values of ft. Pepe (2003) suggests that in practice it is possible to estimate

parameters with increasing the number of points in ft, stopping when the decreases in

standard errors become small.

Estimation of the ROC-GLM model proceeds following the generalized estimating

equations (GEE) procedure (see Chapter 2 for details). Recall from above that hX(f)

defines the basis for the ROC curve (having standardized cases to the control

reference distribution. Typically the choice for link function f is the probit function

which is the binormal model. One may choose the bi-logistic or any other basis.

Alternatively, a semi-parametric formulation of the ROC-GLM is also available where
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hX(f) is not formally parameterized (Cai and Pepe, 2002). Other research in this

area include Cai and Moskowitz (2004) who proposed a profile MLE of ROC with

binormal basis function (a special case of ROC-GLM with no covariates), as well as a

pseudo-MLE (where covariates can be included). Pepe and Cai (2004) developed an

extension of Cai and Pepe (2002) where semi-parametric ROC-GLM can be viewed as

a transformation model of the placement values. In practice, assuming a probit or

logistic basis function for the ROC curve is a reasonable assumption which eliminates

the need for computation of methods such as Pepe and Cai (2004).

1.3.3 ROC Regression Model Diagnostics

Cai and Zheng (2007) introduced model checking diagnostics for the ROC-GLM. The

asymptotic distributions are derived for cumulative residual-based model diagnostics

for ROC regression models. The proposed method is an extension of model diagnostic

procedures for traditional GLM models originally presented in Lin et al. (2002). The

ROC-GLM extension of three model checks (adequacy of ROC-GLM model, link

function and interaction of covariate effects with FPF) is based upon the

semi-parametric ROC-GLM presented in Cai and Pepe (2002). Given the task of

simultaneously evaluating the test result distributions as well as the relationship

between them requires these important extensions. One practical application of this

could be investigating the linearity of time in a longitudinal study. It is possible to

test whether time enters the model linearly and adjust the coefficients by perhaps

adding a quadratic term to the model.

It is natural to ask whether data from a single case (subject) has a large influence

relative to other cases on the estimates in the marginal mean model. For the h-th

element of β, interest is often in (β̂h − β̂h[i]), the difference in the parameter estimate

with and without the i-th case included in the data. Preisser and Qaqish (1996)
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introduced computationally quick approximations for both observation- and

cluster-deletion diagnostics for GEE. However, only the latter, which we call

case-deletion, are relevant for this application because the observation-level

diagnostics have no real interpretation in the ROC-GLM. Recall that the

Uit, t = 1, . . . , ni, are a set of binary placement value indicators constructed for the

i-th case in the course of applying the estimation method; they don’t have any

inherent meaning as individual data values.

Following the formulae of Hammill and Preisser (2006), the influence of the i-th

case as given by the p× 1 vector (β̂1 − β̂1[i], . . . , β̂p − β̂p[i]) can be approximated any

further iterations following convergence of the GEE iteratively weighted least squares

algorithm by

DFBETACi =M−1D′
iV

−1
i (I −Hi)

−1ri

where Hi = DiM
−1D′

iV
−1
i is the cluster leverage matrix. Note that DFBETACi is a

measure of the influence that each cluster has on the estimate of each parameter

element of β. Further, there is a close relationship of the set of

DFBETACi, i = 1, . . . , K with the bias-corrected variance estimator

Vbc(β̂) =
K∑
i=1

(DFBETACi)(DFBETACi)
′

Standardization of DFBETACi is achieved by dividing each of its elements by the

standard error of its respective parameter estimate, usually based on the full data.

Finally, a measure of the influence of the i-th cluster on the overall model fit can be

estimated by Cook’s D:

DCLSi = (DFBETACi)
′[var(β̂)]−1(DFBETACi)/p
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where var(β̂) is estimated by either the empirical (as in Ziegler et al. (1998) and

Preisser et al. (2012)) or bias-corrected variance estimators defined above. Additional

details are provided in Chapters 2 and 4.

1.4 Meta-analysis of Diagnostic Tests

Evidence-based decisions in health care are becoming increasingly utilized. From

pharmaceutical development programs to medical treatment regimens in practice, the

heightened awareness of methods to analyze data in support of health care decisions

requires quantitative methods for summarizing the evidence. Meta-analysis, decision

analysis and cost-effectiveness analysis are the cornerstones of evidence-based

medicine (Petitti, 2000). The meta-analysis of diagnostic tests is of particular interest

in certain screening programs for certain diseases such as cancer. Cervical cancer

screening in women and prostate cancer screening in men are both examples of heath

screening programs that have a great deal of diagnostic test accuracy studies to draw

from for meta-analysis.

Meta-analysis of clinical trials may be employed using various methods that

attempt to find the mean effect, however for diagnostic studies the typical summary

data points are two dimensional . These measures tend to be positively correlated

since studies tend to vary in how test positivity is defined (Pepe, 2003). In the

paragraphs below the evolution of the statistical methods for diagnostic test accuracy

meta-analysis are presented. Pepe (2003) lists three benefits of meta-analysis for

diagnostic tests: awareness within the research community of previous studies,

explanation of discrepancies between individual study results and identification of

common mistakes in study design thereby providing guidance for design of future

studies. For the interested reader, two excellent books reviewing the broad spectrum

of general meta-analysis considerations and statistical methods include Hedges and
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Olkin (1985) and Petitti (2000).

1.4.1 The Summary ROC curve

Moses et al. (1993) propose a summary ROC curve for the set of values of TPF and

FPF , which we denote as (TPFk, FPFk) for each of k studies summarized in the

meta-analysis. The ROC-like curve, called sROC, is a curve that goes through the

scatter plot of each TPF and FPF pair. In contrast to standard ROC analysis the

resultant curve need not yield a monotonic curve (Walter, 2002).The regression

equation proposed is D = a+ bS where

D = log(TPF/1− TPF )− log(FPF/1− FPF ) which is equivalent to the diagnostic

log-odds ratio, which conveys the test’s accuracy from discriminating cases from

non-cases, and S = log(TPF/1− TPF ) + log(FPF/1− FPF ) which is an

interpretation of the diagnostic threshold with high values corresponding to liberal

inclusion criteria for cases. The regression equation is then fit with ordinary least

squares assuming that D is approximately normally distributed for a given value of S.

Weighted analysis may be employed (i.e. weighted least squares) to account for the

heterogeneity of studies which is achieved through the sample variance of D. Pepe

(2003) notes however that inaccurate studies with large sample sizes may then skew

the results even further than just a regular unweighted analysis. If b is equivalent or

nearly 0 then the overall log(OR) may be used to summarize the studies since

a = log(OR). Conversely if b ̸= 0 then the studies are heterogeneous with respect to

OR. van Houwelingen et al. (2002) note that one simple refinement of the Moses

et al. (1993) specification is to make the intercept a random effect. Di = αi + βSi + ei

with αi ∼ N(α, σ2
α). Overall, this procedure converts the (TPFk, FPFk) to a

diagnostic odds ratio, thereby removing the inherent bivariate properties of the

diagnostic test result. For this reason, methods that preserve the bivariate properties
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are a more intuitive way to analyze these data. The trade-off then becomes the

complexity of analysis methods (Pepe, 2003).

1.4.2 The Hierarchical sROC

Rutter and Gatsonis (2001) note three weaknesses of the Moses et al. (1993) method.

1. Both D and S are derived from the same set of random variables (TPFk, FPFk)

thereby inducing dependence between the two.

2. Since S is measured with error this may introduce bias into the estimate of

regression coefficients, and

3. The decision and potential differences between weighted and unweighted least

squares for parameter estimation

Pepe (2003) also notes that the assumption that the true values (TPFk, FPFk) lie

on the sROC if the true values were known is not appropriate because that would

assume the only difference between studies is the threshold for test positivity, which is

generally not the only source of variation. This method is based on the location-scale

parametric formulation of the individual ROC curve presented previously. Here the

model is extended to allow variation in the parameters that define an individual ROC

curve to accommodate the meta-analysis setting. The assumed form of the ROC

curve from the kth study is logit(TPFk) = logit(FPFk + µk)σ
−1
k = (θk + µk)e

−bk . The

(TPFk, FPFk) pairs from the kth study are assumed to have a binomial distribution.

Rutter and Gatsonis (2001) assume that θk and µk are independent where

µk ∼ N(M,σ2
M) and θk ∼ N(Θ, σ2

θ) and also that bk is a constant b across all studies.

All of the parameters M , Θ, σ2
θ , σ

2
M and b may be estimated using maximum

likelihood or Bayesian methods, as outlined in Rutter and Gatsonis (2001).
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Pepe (2003) notes the following important attributes of this binomial regression

framework:

1. accomodates between-study variability that can be modeled with covariates or

that may be considered to be random

2. fitting procedures have a sound theoretical basis in maximum likelihood or

Bayesian methodology

The drawbacks of this method seem to be in the complexity of the estimating

algorithms with freely available software. Assessing model fit can also be difficult with

these methods (Pepe, 2003).

1.4.3 Bivariate Random Effects Models

The hierarchical sROC approach of Rutter and Gatsonis (2001) has been criticized for

being complex and requiring sophisticated statistical knowledge and programming

skills (Reitsma et al., 2005). As a result the simpler Bivariate Random Effects Model

has been presented as a more intuitive, easy-to-use model. As a great deal of the

literature in this area comes from the applied medical and diagnostic statistics

journals, it is no surprise that this method has been preferred since 2005.

Let ni11, ni00, ni01 and ni10 represent the number of true positives, true negatives,

false positives and false negatives (see Table 1), and ni1+ and ni0+ be the number of

diseased and non-diseased subjects in the ith study from a meta-analysis, where

studies are indexed as i = 1, . . . , K.. The bivariate random effects model is specified

by conditioning on the number of diseased and non-diseased in each study. Assume

ni01 and ni11 are binomially distributed as Bin(ni0+, 1− Spi) and Bin(ni1+, Sei)

conditionally on Spi and Sei which are the specificity and sensitivity parameters for

the ith diagnostic study, respectively. The expected sensitivity for a chosen specificity
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is given by

logit(Se) = µ0 + ρσµ/σν [logit(Sp)− ν0] = (µ0 − ρν0σµ/σν) + ρσµ/σν [logit(Sp)]. Let

θ = (µ0, ν0, ρ, σµ, σν) be the parameters of interest from a bivariate random effects

meta-analysis model and θ̂ be the MLE of θ with estimated variance covariance Σ̂.

After the original publication of this method by Reitsma et al. (2005) a number of

follow-up papers have sought improvements and refinements to this method. Arends

et al. (2008) discuss 5 different choices for bivariate random effects models

transformation of the sensitivities and specificities, noting that the within-study

distribution of sensitivity and specificity can be handled in one of two ways: the

normal-normal (approximate normal distribution) or the binomial-normal (binomial

distribution). Riley et al. (2007) and Riley et al. (2008) investigate more closely the

estimation of the between-study correlations to aid practitioners in understanding

heterogeneity in the bivariate random effects model. The hierarchical sROC and

BVRE models are similar under certain asumptions (Chu and Guo, 2010). A first

attempt at unifying the underlying methods theoretically was proposed by Harbord

et al. (2007). Chu and Guo (2009) then offered a correction and clarification of the

notation of the two methods.

1.4.4 Generalized Linear Mixed Models

Chu and Guo (2010) note that previously only logit transformations were used in the

bivariate random effects model. A natural extension of this is to consider other link

functions such as the probit and complementary log-log. The resulting generalization

is the generalized linear mixed model for diagnostic accuracy meta-analysis. The

differentiation between the BVRE models and the current model is the specification

that g(Sei) = µi and g(1− Spi) = νi where the random effects (µi, νi)
T are bivariate

normally distributed with mean µ and covariance matrix Σ.
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Here, g() is a montone link function (for example the logit link). Chu and Guo (2010)

also note that any transformation of the sensitivity and specificity may be used.

The GLMM is defined as follows. Following the notation of Chu and Guo (2010),

assume ni01 and ni11 are binomially distributed as Bin(ni0+, 1− Spi) and

Bin(ni1+, Sei) conditionally on Spi and Sei which are the specificity and sensitivity

parameters for the ith diagnostic study, respectively. Next, define

g(1− Spi) = β0 + νi (1.15)

and

g(Sei) = β1 + µi (1.16)

where the random effects are assumed to be distributed as (νi, µi)
′ ∼ N(0, D), where

D =

 σ2
0 ρmσ0σ1

ρmσ0σ1 σ2
1


Estimation of the parameters θm = (β0, β1, ρm, σ0, σ1)

′
using MLE methodology is

performed using numerical procedures such as Gaussian quadrature (as found in SAS

NLMIXED, for example).

1.5 Motivating Examples

Three data sets are used as analysis examples for the various methods found in

Chapters 2-4. The first data set is analyzed in Chapter 2 as an example of a

diagnostic accuracy study where the ROC-GLM approach (a PA model) is employed

along with model diagnostics. The original publication for the example data are

found in Norton et al. (2000). The sample comprises of 2742 infants and 5058 ears
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upon which three diagnostic screening tests (DPOAE, TEOAE and ABR) were

performed. The gold standard reference test applied is an audiometric behavioral

response test. The study was conducted at 6 different clinical centers. The above

example data set is one that has been used extensively to demonstrate analysis

methods for covariate-adjusted ROC curves. For example, Janes et al. (2009) use the

data extensively to demonstrate various analysis options.

The next set of analyses are related to diagnostic accuracy meta-analysis. The first

example data set for this topic is a meta-analysis of 33 diagnostic accuracy studies

previously analyzed in Chu et al. (2010). The 33 studies studied semi-quantitative

(19 studies) or quantitative (14 studies) catheter segment culture for the diagnosis of

intravascular device-related blood stream infection. Chu et al. (2010) report that

since there is no statistically significant difference between the semi-quantitative and

quantitative methods, the data are combined together without including this

potential covariate in any model. For demonstration purposes we investigate the

covariate for type of catheter segment culture method (semi-quantitative or

quantitative). The mean number (std. dev.) of diseased and non-diseased persons per

study was 20 (19.8) and 237 (240.5) respectively. The gold standard was final

diagnosis of blood-stream infection. The data are presented in Chapters 3 and 4.

The second example data set is a meta-analysis of 32 diagnostic accuracy studies

previously analyzed in Klerkx et al. (2010). The diagnostic accuracy of

gadolinium-enhanced MRI in detecting lymph node metastases using histopathologic

test as the reference gold standard. The mean number (std. dev.) of diseased and

non-diseased persons per study was 15(18.5) and 28 (30.4) respectively. Covariates for

partial verification bias (PVB, 8 studies) and study design (case control, 6 studies or

cohort, 26 studies) are available. The data are presented in Chapter 4.

The common theme throughout both analysis situations (single study and
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meta-analysis) is the fact that all methods employed are based on a

population-average approach, specifically the implementation of GEE as the

estimation engine. Further, deletion diagnostics are presented in both cases as a

method of evaluating influential observations (both in the single study ROC-GLM

setting and the meta-analysis setting).
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Chapter 2

Identifying Influential Cases with
the ROC-GLM

2.1 Introduction to Diagnostic Test Accuracy

Modern medical decision making often involves one or more diagnostic tools (such as

laboratory tests and/or radiographic images). Tests are designed to discriminate

between different states of health or medical conditions, e.g. cancer and no cancer.

Diagnostic markers with improved accuracy or decreased cost are also being sought

for established diseases. Screening biomarkers have the potential to detect disease at

an early stage, when it is most treatable. Pre-screening markers are being

investigated for their use in identifying subjects at high risk of the disease, who

should be targeted for screening or disease-preventative interventions. Prognostic

markers can be used, for example, to predict which patients will respond to

treatment. In all of these settings, the primary question is how well the biomarker

distinguishes between the two groups of individuals, the “cases” and the “controls”.

Receiver operating characteristic (ROC) curves are a well-accepted measure of

accuracy for tests that yield ordinal or continuous results. Based on the notion of

using a threshold to classify subjects as positive or negative, an ROC curve is a plot



of the the true positive fraction (TPF) versus the false positive fraction (FPF) for all

possible cutpoints. The TPF, also called the sensitivity, is the proportion of diseased

subjects correctly detected by the test. On the other hand, FPF or (1-specificity) is

defined as the proportion of non-diseased subjects erroneously deemed positive by the

test. Thus, the ROC curve describes the whole range of possible operating

characteristics for the test and hence its inherent capacity for distinguishing between

diseased and non-diseased states.

The use of a regression framework to account for covariates in a diagnostic accuracy

study was first proposed by Tosteson and Begg (1988) and would later be expanded

upon by Toledano and Gatsonis (1995). Tosteson and Begg (1988) used regression

models for the test outcome and inferred covariate effects on the corresponding ROC

curves. Although these two papers considered primarily ordinal data, the concepts

apply more generally Pepe (1998). The method of Pepe (1997) that directly models

the ROC curve is a good practical choice for an ROC regression model because of its

ease of interpretation. The model estimation approach was refined by Alonzo and

Pepe (2002), and presented as the receiver operating characteristic generalized linear

model (ROC-GLM), to allow for ease of fitting through application of generalized

estimating equations (GEE) within a correlated binary data framework. The binary

indicators are constructed from a diseased subject’s test result according to whether it

exceeds various specified quantiles of the distribution of test results from non-diseased

subjects with the same covariates. It is this modeling approach that will be used for

the remainder of this paper. For a complete review of alternative methods the

interested reader is referred to Pepe (2003).

With the exception of outlier detection in univariate random effects meta-analysis

Baker and Jackson (2008); Gumedze and Jackson (2011), there has been limited work

on influence statistics for medical diagnostic studies. Krzanowski and Hand (2009)
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list model diagnostics as an area of future research for the ROC-GLM model. There

currently exist diagnostics that focus on evaluating systematic departures from the

ROC-GLM. In particular, Cai and Zheng (2007). present a global test for the

ROC-GLM, a test for the link function and a test for the interaction between the

basis function and covariates. However these are not designed to address the same

questions as deletion diagnostics. The deletion diagnostics proposed by Preisser and

Qaqish (1996) provide a sensitivity analysis tool for parameters in a GLM for

clustered data for detection of isolated departures from the GLM assumptions. Since

the ROC-GLM is a specialized GLM model reformulated to address diagnostic

accuracy, the GEE cluster-deletion diagnostics may be applied to identify cases that

have undue influence on the model parameters describing the ROC curve. As will be

described in this article, the process of creating the final ROC-GLM requires three

general steps: first, a reference distribution is created using only the controls; second,

the cases (or diseased) observations are standardized to the control reference

distribution; and finally,the standardized case observations are used to model the

ROC curve. The opportunity to apply deletion diagnostics exists in steps one and

three. To our knowledge, deletion diagnostics have not been presented alongside the

ROC-GLM in any previous article.

In section 2, the ROC-GLM will be reviewed, followed by a description of the

cluster-deletion diagnostics applied in the ROC-GLM context. In section 3, an

example will be presented using data from the DPOAE data set Norton et al. (2000).

In the example, children are measured for diagnostic accuracy of hearing tests against

a gold standard, in either one or both ears. Finally, in section 4, the results of the

analysis will be discussed followed by conclusionary comments in section 5.
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2.2 Methods

2.2.1 Overview of ROC-GLM

The following notation is presented for the paragraphs that follow. The variable for

true disease status is defined as Di = 1 for a diseased subject and Di = 0 for a

non-diseased subject. Later the notation of D̄ for non-diseased and D for diseased

subjects will be used when displaying equations for the regression models. The

variable Yi is the diagnostic test result for subject i. Let {YD̄j
, j = 1, ... , nD̄} and

{YDi
, i = 1, ... , nD} represent the ordinal or continuous responses of controls and

cases, respectively, with larger values being more indicative of disease. It is assumed

that YDi
and YD̄j

are randomly selected from the population of test results associated

with the diseased and non-diseased states Pepe (2003). Next, a vector, X, is defined

which contains the covariates that affect the test result distribution in control

subjects, as well as those covariates, XD, that affect the discrimination between cases

and controls. Finally, a set of T discrete points f = f1, ... , fT is defined, on the x-axis

of the ROC curve, chosen from the interval (0, 1), over which the model will be fit.

The choice of f is important since this will determine the interval over which the

model is to hold. The number of points T should be assigned so that standard

statistical software can handle the estimation. There is currently no method designed

to choose the values in the domain that give optimally efficient results Pepe (2003).

Alonzo and Pepe (2002) found relatively good efficiency for small values of ft. Pepe

(2003) suggests that in practice it is possible to estimate parameters with increasing

the number of points in ft, stopping when the decreases in standard errors become

small.

The ROC-GLM is a regression model that provides covariate adjustment to a

diagnostic accuracy analysis ROC curve. The following 3 general steps are required to

29



perform a covariate adjustment of ROC curves using regression techniques Janes et al.

(2009):

1. Estimate PVDXi
= FX(YDXi

), the percentile values of the test results for cases,

where FX is the distribution of test results in controls as a function of the

covariates.

2. Estimate the cdf of the percentile values as a function of the covariates.

3. Specify the adjustment of the ROC curve as a function of the covariates. We

then employ GEE for binary data to estimate the model parameters (covered in

Section 2.2).

First, an estimate of FX , the distribution of test results in the control group, is

required. Essentially, the process of standardizing the test results begins by finding

the baseline relationship among the controls. Different assumptions may be employed

at this stage, the two most common being stratification and simple linear models

Pepe (2003). For example, and the method used here for demonstration, a simple

linear model could be specified Janes et al. (2009) such that the test measures in

control subjects follow a linear relationship:

YD̄i
= ψ0 + ψ

′

1Xi + ϵi. (2.1)

where ϵi are i.i.d. as N(0, σ2). We recall from above that this particular model

specification is not required for the ROC-GLM to hold, rather it is one option that is

possible. In any case, this first step provides the first opportunity to apply ordinary

linear model deletion diagnostics (such as Cook’s D for simple linear models) in the

estimation steps of the ROC-GLM. Given that the model in (2.1) is crucial to the

remaining steps, it is proposed that deletion diagnostics be applied at this step to
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assess the control distribution model. The deletion diagnostics are presented in a

following section.

Having settled on a linear model in the previous step, and having assumed Gaussian

errors for this linear model, then the percentile values for the cases are defined as

P̂ V DXi
= Φ

(
(YDXi

− ψ̂0 − ψ̂
′
1Xi)/σ̂

)
. (2.2)

If Gaussian errors and/or a linear relationship are too restrictive for a given

application, there are other alternatives proposed. For example, Heagerty and Pepe

(1999) propose an empirical estimation of the error distribution using the residuals of

the linear model. Further, instead of assuming a linear relationship of the test result

in the controls, one could use a stratified approach Janes et al. (2009). At this stage

standardized test results for the cases as a function of the controls are completed by

the above step. Next, the cdf of the percentile values is estimated.

In the second step, we make use of the fact that an ROC curve is essentially the cdf

of the percentile values calculated above Pepe (2003). Defining the h(f) as the cdf

(recall that f are the chosen set of values on the x-axis of the ROC curve), it is

possible to write:

hX(f) = ROCX(f) = P (1− PVDX ≤ f) = g(β0 + β1g
−1(f)) (2.3)

where g(·) gives a parametric form of the ROC curve; g = Φ is the standard normal

c.d.f. and g(·) = exp(·)/[1 + exp(·)] is the logistic function giving binormal and

bilogistic ROC curves respectively. The result after this second step is an ROC curve

that is not yet adjusted for covariates that discriminate between the cases and

controls. However, the ROC curve is now inherently adjusted for covariates that

affect the test distribution results. This is quite important as Pepe (2003)

31



demonstrates that “pooled” or unadjusted ROC curves are biased.

The final step in the model specification is to create the inputs for a regression

model using the newly created percentile value cdf, and the covariates that are

assumed to affect the discriminatory capacity of the test. In other words, covariates

that affect the intercept and/or slope of the ROC curve. Recall that T discrete points

on the x-axis of the ROC curve over which to fit the model have been defined. Also

defined are Uit = I1−PVDXi
≤ft , t = 1, ..., T, the set of cumulative binary indicators

which determine whether or not the percentile values are less than each choice of f .

For example, if T = 10 values of f are chosen, then each subject would have a vector

of 10 binary indicators for each percentile value. Next, we define the covariates

XDg
−1(f) as those that will enter the model as ones that affect discrimination. The

complete model combining steps 2 and 3 is:

ROCX,XD
(f) = g(β0 + β1g

−1(f) + β
′

2XD + β
′

3XDg
−1(f)) (2.4)

The link function g−1(·) is often chosen to be the Probit link in the model above. The

classical ROC curve typically employs the binormal basis function which is inherently

a probit function. The binormal framework as an estimation method has its roots in

works by Dorfman and Alf (1968); Metz (1986); Metz et al. (1998) among others as

applied mainly to radiology imaging evaluation analysis. In the binormal framework,

the distributions of both case and control observations are assumed to have a

Gaussian distribution. That assumption is relaxed with the semi-parametric

ROC-GLM. In this case the ”binormal” assumption refers only to the form of the

ROC curve through its estimation via the GEE machinery. In the ROC-GLM model,

the advantage of using the probit basis function is seen when interpreting the model

parameters for covariates. A positive coefficient in this model is interpreted as the

covariate adding diagnostic accuracy benefit to the model with higher values of the
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covariate, while a negative coefficient means lower values offer diagnostic accuracy

benefit to the model. Other link functions are possible assuming the binomial

variance function: the log link and logit link are possible and offer slightly different

interpretations to the parameters of the regression coefficients. Pepe (2003) discusses

all three links with examples and suggests that the probit model be used for its

intuitive interpretation qualities.

This final step of the ROC-GLM process may be thought of as defining a model

that has as its output a “baseline” ROC curve (from step 2 and in equation 2.3) and

some additional model parameters that specify covariate-adjustments of that baseline

curve. The previous steps also allow for flexibility in defining which covariates are

important for adjusting the control test results distribution and those which affect the

discrimination between cases and controls.

2.2.2 GEE Estimation of the ROC-GLM

Let t = 1, 2, ..., T observations from i = 1, 2, ..., K clusters where Uit is the response

measure for the t-th observation in the ith cluster and xit is a p x 1 vector of

covariates. The mean µit = E(Uit|xit) is related to the covariates through the linear

predictor ηit by µit(β) = g(ηit). The variance of the response is var(yij) = ϕv(µit)

where v(·) is the variance function and ϕ is the scale parameter; since yit is binary,

v(µit) = µit(1− µit) and ϕ = 1. The working covariance matrix for cluster i is

Vi = A
1
2
i RiA

1
2
i where Ai = Diag[v(µi1), ..., v(µiT )], Ri = Ri(α) is the working

correlation matrix depending on the nuisance parameter α and assumed not to vary

by cluster; independence working correlation is advocated by Pepe (2003).

The linear predictor, ηi, includes the basis function and covariates for adjustment
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where, following Alonzo and Pepe (2002),

ηit = β0 + β1g
−1(ft) + β

′

2XDi
+ β

′

3XDi
g−1(ft) (2.5)

where β = (β0, β1, β
′
2, β

′
3)

′
. The GEE estimates are determined by iteratively solving

K∑
i=1

D′
iV

−1
i ri = 0 (2.6)

where ri = yi − µi, Di = ∂µi/∂β = (∂µi/∂ηi)X
∗
i and X∗

i =
(
X

′
i1, ..., X

′
it, ..., X

′
iT

)′
,

where Xit =
(
1, g−1(f(t)), X

′
Di
, X

′
Di
g−1(f(t))

)
and g(f) = (g(f1), ..., g(fT )). Under the

marginal mean model for the binary indicators in equation (2.5) and working

independence, the matrix components in estimating equations (2.6) become

D′
iV

−1
i ri =

∑
t∈T

X ′
it

∂g(ηit)

∂ηit
v−1
it (yit − µit(β)) (2.7)

Further, the variance function for the binary indicators are v(µi) = g(ηi)[1− g(ηi)].

Additionally, under a working independence correlation structure (i.e., Ri = Ini
,

where Ir is an r × r identity matrix),

V −1
i =

(
A

1
2
i RiA

1
2
i

)−1

= A−1 = Diag{g(ηi)−1[1− g(ηi)]
−1}. (2.8)

The empirical (sandwich) estimator of the covariance matrix of β̂ is given by

Vemp(β̂) =M−1

(
K∑
i=1

D′
iV

−1
i rir

′
iV

−1
i Di

)
M−1 (2.9)

where M = (
∑K

i=1D
′
iV

−1
i Di) and ri = (ri1, . . . , riT )

′
with rit = (Uit − µit) /

√
vit. The

sandwich estimator is robust to mis-specification of the working correlation matrix in
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the sense that it is a consistent estimator as long as the marginal mean is specified

correctly. When there are a small to moderate number of subjects (clusters), say

between 15 and 50, a bias-corrected covariance estimator Mancl and DeRouen (2001),

defined below, has been shown to have good finite sample properties (see also Lu

et al. (2007) ).

A summary statistic often expected with ROC analysis is the area under the curve

(AUC). In this case we present covariate-adjusted AUC following the computational

formulae presented in Janes et al. (2009). The adjusted AUC, denoted AAUC is

defined as the mean of the case standardized placement values:

ÂAUC =

nD∑
i=1

P̂ V DZi
/nD. (2.10)

The AAUC is one measure which can be assessed for influential subjects in the sense

that changes could potentially be more interpretable than using only the regression

parameter diagnostics.

At this point it is important to note that Pepe (2003) advocate using bootstrap

standard errors for the estimates β̂ from of the fitted model, to account for

uncertainty associated with estimating equation 2.1 in stage 1 for later use in stage 3.

The corresponding theoretical results are quite complicated and not practically useful

for inference. In practice, bootstrap replicates are created according to the design of

the study. For clustered data, begin by sampling with replacement entire clusters (in

the data analysis examples this would consist of 2T binary indicators from both ears

of the child). Then proceed by fitting the complete ROC-GLM process according to

the steps outlined above. The parameter estimates from each of r replicates are

collected to construct estimates of the bootstrap standard error. The reason

bootstrapping is necessary is because there does not exist true independence between

the first and second stage models (i.e., the model for the outcomes in step 1 and for
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the ROC curve in step 3), there could be bias in the standard errors. In the case of a

covariate that affects both the test result distribution (first stage) and the

discriminatory capacity (second stage), this covariate would essentially influence both

the responses Uit and the covariates in X.

2.2.3 Cluster-deletion Diagnostics

It is natural to ask whether data from a single cluster (subject) has a large influence

relative to other clusters on the estimates in the marginal mean model given in

equation (2.5). For the h-th element of β, interest is often in (β̂h − β̂h[i]), the

difference in the parameter estimate with and without the i-th cluster included in the

data. In the case of the ROC-GLM this will provide us with a measure of sensitivity

of the parameters given deletion of a given cluster. Specifically, in the second stage

binary regression model is fit to obtain estimates of the ROC parameters and

associated covariates, insight is gained into how a given subject (cluster) influences

the model. This manifests itself as a change in parameter estimates. However as

noted above, and given the relationship between the parameters and the AUC, there

is potential for impact there as well.

Preisser and Qaqish (1996) introduced computationally quick approximations for

both observation- and cluster-deletion diagnostics for GEE. However, only the latter,

called case-deletion, are relevant for this application because the observation-level

diagnostics have no real interpretation in the second stage portion ROC-GLM where

the actual ROC model is fit. Generally, only observation deletion diagnostics are used

in the first stage of the model where a reference distribution is fit for the independent

control subject observations. However in the case of clustered data such as those that

arise with a diagnostic test result for both ears in the DPOAE data, cluster deletion

diagnostics are also useful.

36



Recall that the Uit, t = 1, . . . , T, are a set of binary placement value indicators

constructed for the i-th case in the course of applying the estimation method; they

don’t have any inherent meaning as individual data values. Following the formulae of

Hammill and Preisser (2006), the influence of the i-th cluster as given by the p× 1

vector (β̂1 − β̂1[i], . . . , β̂p − β̂p[i]), where “[i]” denotes the i-th cluster excluded, can be

approximated by

DFBETACi =M−1D′
iV

−1
i (I −Hi)

−1ri. (2.11)

Note that DFBETACi is a measure of the influence that each cluster has on the

estimate of each parameter element of β. Next, we observe that the bias-corrected

variance is related to 2.11 in the following way:

Vbias−corr(β̂) =
k∑

i=1

(DFBETACi)(DFBETAC
′

i). (2.12)

Standardization of DFBETACi is achieved by dividing each of its elements by the

standard error of its respective parameter estimate, usually based on the full data.

Finally, a measure of the influence of the i-th cluster on the overall model fit can be

estimated by Cook’s D:

DCLSi = (DFBETACi)
′[var(β̂)]−1(DFBETACi)/p (2.13)

where var(β̂) is estimated by either the empirical (as in Ziegler et al. (1998) and

Preisser et al. (2012) or bias-corrected variance estimators defined above. Vens and

Ziegler (2012) propose cut-off values for DCLSi, χ
2
p(1− α) when cluster sizes are

equal.

The goal of the cluster-deletion diagnostics in the ROC-GLM is to provide

additional model diagnostics which are noted as one area of future work Pepe (2003);
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Krzanowski and Hand (2009). As is demonstrated in the analysis below, there are

some interesting aspects of what it means to be influential in the ROC-GLM, and

that this complicated by the fact there are really two stages to the model as outlined

previously.

2.3 Analysis of the Neonatal Audiology Data set

The original publication for the example data are found in Norton et al. (2000). The

sample comprises of 2742 infants and 5058 ears upon which three diagnostic screening

tests (DPOAE, TEOAE and ABR) were performed. The gold standard reference test

applied is an audiometric behavioral response test. The study was conducted at 6

different clinical centers. The above example data set is one that has been used

extensively to demonstrate analysis methods for covariate-adjusted ROC curves. For

example, Janes et al. (2009) use the data extensively to demonstrate various analysis

options.

Previous analysis of this data via the ROC-GLM was performed in Janes et al.

(2009). The reference distribution adjustment model included a simple linear model

for the test result with age (months) and gender (1=female, 0=male) as adjustment

factors (covariates). Despite there being 2316 of 2724 subjects (85%) who had both

ears tested, the model did not account for multiple (and possibly correlated) measures

on a given subject. The ROC-GLM covariate adjustment was fit using a GEE with

probit link with subject as the cluster. The clustered data, in this case subjects and

ears tested are possibly correlated. We note here that the clustered nature of the data

do not provide any additional complications with respect to how the model is created.

As we will see in the sections that follow, clustering simply means that vectors of

placement values for a given subject will be correlated, and further when creating

bootstrapped estimates of parameter standard errors, we employ sampling with
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replacement with subjects selected as an entire cluster (in this case T or 2T placement

values depending on whether diagnostic test data is available for one or both ears.)

The model however is flexible to handle longitudinal data were it the case here.

In the sections that follow we present the ROC-GLM and covariate adjustment

process focusing on identification of influential observations and clusters within the

two adjustment models within the larger ROC-GLM analysis. To demonstrate

concepts we focus on only 1 of the 3 screening tests (DPOAE), with higher scores

being more indicative of hearing loss. Further, to maintain continuity with previous

analyses and to highlight benefit of deletion diagnostics analysis, we preserve the

model covariates in both portions of the ROC-GLM of Janes et al. (2009),

highlighting places where the analyst must make important decisions about covariates

for adjustment.

2.3.1 Reference distribution model step of ROC-GLM

As noted in section 2.1, the first important part of the process of creating a reference

distribution is to estimate a plausible model. We use the control subjects to estimate

a reference distribution and then standardize the cases to that reference. Therefore

this section deals with the first two steps outlined in 2.1 (whereas the next section

will deal only with influence in the ROC regression model).

We assume a linear relationship between the test results for DPOAE with the

covariates age and gender. Previous analyses have assumed that ears within a given

subject are not correlated. For this analysis we use a GEE to account for the fact that

there is correlation potentially within measurements for a given subject. It should be

noted that when comparing the results of this step to those in Janes et al. (2009)

there is not much difference in the significance of the regression parameters or their

estimates. This is likely due to the fact that there are a large amount of clusters
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(2688). However we do depart from the Janes et al. (2009) reference model slightly by

presenting the GEE to demonstrate the utility of both the cluster and observation

level diagnostics. We define the reference distribution model for control subject i and

observation j, j = 1, 2 as

Yij = ψ0 + ψ1 ∗ AGEi + ψ2 ∗GENDERi + ϵij (2.14)

where ϵij are correlated within subject (as opposed to i.i.d. in the previous analysis by

Janes et al. (2009)). Note that the important result from this step is to ultimately

obtain percentile values by which the case subjects can be standardized against.

The results of the model are presented in Table 2.1 (left columns). Clearly age is a

significant covariate to adjust for in this analysis, while gender is not significant.

Figures 1 and 2 display the Cook’s D statistics for both observations (ears) and

clusters (subjects) as well as the standardized DFBETAs for age (observation and

cluster level). Given there are a maximum of only 2 individual observations within a

cluster, the cluster level diagnostics are probably enough to determine influence.

Figure 2 shows that subjects 20409 and 11289 influential in terms of the overall model

(cluster Cook’s D) as well as the regression parameter for age. Further inspection of

the data for these subjects show that generally speaking subjects that are older

tender to have much lower DPOAE scores. For example, the average test result for

DPOAE amongst all infants greater than 45 months is -10.2. Subject 20409 is a male

subject 52 months old at the time of gold standard measurement with a baseline

DPOAE score of +17.1. The gold standard determination was no hearing loss yet the

screening test would be considered possibly indicative of hearing loss. Subject 11289

is a female subject with a DPOAE +37.6 with a non-diseased reference status

assigned at 46.4 months. For this sample the influential subjects, when removed,

result in the model parameter estimates displayed in Table 2.1 (right columns). We
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notice that the intercept parameter estimate shifts toward zero by 0.608. The large

sample size mitigates the impact of deleting these two subjects. Incidentally, and

though not explored in Janes et al. (2009), the reduced model (including all subjects

or with the 2 removed) includes only age, and is highly significant. At this point, the

percentile values are calculated and cases (hearing loss ears) are standardized as

described in section 2.1.

2.3.2 Covariate Adjustment model step of ROC-GLM

In the 3rd step of section 2.1, the ROC regression model is fit. The details of the

model specification and estimation are described in section 2.2. At this stage we now

have a dataset consisting of up to 20 binary indicators (10 per ear for each ear, noting

some subjects have only 1 ear measured) of the 128 case subjects in the sample. Each

of the indicators describes the placement of the standardized test results against the

control reference distribution. In this way, only the cluster deletion diagnostics have

an interpretation. Table 2.2 presents the results of the ROC-GLM model. The model

fit includes a regression adjustment for the covariate age. The regression coefficient

for age, β3, is slightly non-significant at the 0.05 significance level. Figure 3 displays

the covariate-adjusted ROC curves for age, for 30, 40 and 50 month old subjects.

Despite the separation of curves, we conclude as do Janes et al. (2009) that there is

no statistically significant impact of age on discrimination between cases and controls

using the DPOAE screening test.

The deletion diagnostics for clusters are displayed in Figure 4. The bootstrapped

covariance matrix is used for calculation of the deletion diagnostics. On the Cook’s D

plot (Figure 2.4, upper left) subjects 30276 and 50558 is highlighted as influential on

the overall model fit. For the standardized cluster DFBETA for age we notice that

these two subjects are at the opposite ends of the scale. For subject 30276, the value
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of the standardized DFBETA for age is -0.914. The unstandardized version provides a

direct interpretation on the parameter estimate for age which was estimated as -0.01.

Therefore removal of this subject changes the parameter estimate for age by

approximately +0.01. The 95% CI now changes to be slightly significant from

insignificant.

As in the first stage model, some interesting insights are available for consideration.

Figure 2.3 (dashed lines) shows how the effect of removing subject 30276 affects the

final ROC curve analysis. Once removed the 3 age-adjusted ROC curves are more

spread apart. Recalling that if removed, the age term becomes significant, we

conclude that subject 30276 is a highly influential subject with respect to the

age-adjusted ROC curves. When the data that contributed to the model are

considered we notice that the subject is a female subject, 43.1 months old at time of

gold standard assessment and has measurements on both ears. The results of the

DPOAE test are -16.1 and -19.2 respectively for each ear. For the 128 case subjects

(those with hearing loss), on average, the older a subject is, the more positive the

DPOAE. Given that subject 30276 has two ears both at the lower end of the range of

data for diseased subjects, and recalling that standardization to the control

distribution would have this subject’s measurements be more typical of a control, it is

not surprising to see the model flag this subject as influential.

2.3.3 Influence on Covariate-adjusted AUC

We have explored in the previous two sections the specific subjects and potential

explanations for influence. Here, influence is quantified as a single summary statistic

as is often done in ROC analyses. As presented earlier, we employ the AAUC as it is

an adjusted version of the regular AUC for analyses without covariates. Table 2.3

displays the AAUC for 4 data scenarios: the full data, influential control subjects
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removed (2), influential case subjects removed (2), and all 4 influential subjects

removed. A trend towards increasing AUC is observed, and smaller standard errors of

the estimates. Overall it is concluded that, as a sensitivity analysis, these potentially

influential subjects do not affect the AAUC significantly.

2.4 Discussion

In this article, deletion diagnostics as presented in Preisser and Qaqish (1996) were

extended to the covariate adjustment setting in ROC curve analysis. Models for the

control subject test result distribution, which forms the basis for evaluating

standardization of case subject results, were examined more closely than has been

acknowledged in previous papers such as Janes et al. (2009). By applying the deletion

diagnostics at this first stage, the sensitivity to influential observations and clusters

may be assessed. For the ROC-GLM portion, where ROC curves are adjusted for

covariates (in this case age) a method to assess influential subjects (clusters) on the

model parameters and overall fit is also presented. In addition, use of the AAUC may

provide a simpler summary statistic upon which we hypothesis testing may be

performed to simplify interpretation.

Norton et al. (2000) acknowledge the fact that the gold standard may in fact be in

error in some cases due to the nature of the test and the subjects (infant children).

The concept of an imperfect gold standard is covered in both Pepe (2003) and

Krzanowski and Hand (2009). Given the deletion diagnostics have highlighted

influential subjects in both the controls and cases that have profiles of screening test

measurements that would suggest the opposite disease status, the deletion diagnostics

may in fact be useful as a tool to identify impact of an imperfect gold standard.

Examples of the individual subjects presented in the Results sections for each portion

of the model suggest and possibly identify candidates where misdiagnosis via gold

43



standard may have occurred. This is suggested as future work, where the connection

between verification bias and imperfect gold standard measures, could be quantified

potentially, or at a minimum provide guidance in this area.

Future work could also evaluate the influence of individual observations and/or

clusters in relation to the ratio of the number of control subjects to the number of case

subjects. In the present analysis there were approximately 18x the number of control

subjects as case subjects. As this ratio decreases the hypothesis of interest would be

whether the impact of a highly influential control subject would have downstream

effects into the regression adjustment model for the cases. Also further investigation

into imperfect gold standards and merging concepts from other literature in this area

would add a potential tool for assessment of gold standards via the ROC-GLM.
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Figure 2.1: Observation deletion diagnostics for Control Reference Distribution linear
model portion of ROC-GLM.
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Figure 2.2: Cluster deletion diagnostics for Control Reference Distribution linear model
portion of ROC-GLM. DFBETAs are standardized by use of empirical standard errors.
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Figure 2.3: Covariate adjusted ROC curves for Age (age=50 top line, age=40 middle
line, age=30 lower line) for both full model (solid curves) and model without subjects
20409 and 11289 (dashed lines)
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Figure 2.4: Cluster deletion diagnostics for ROC regression portion of ROC-GLM.

48



Table 2.1: Results of linear model for DPOAE in control subjects only, estimated with
GEE to account for clustering of ears within subjects

Full Data 20409 and 11289 removed

Parameter Est. SE-emp p-value Est. SE-emp p-value

ψInt. -1.676 1.551 0.280 -1.068 1.498 0.476
ψAge -0.197 0.039 0.001 -0.214 0.038 0.001

ψGender 0.294 0.263 0.265 0.308 0.262 0.239
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Table 2.2: Results of ROC-GLM model, case subjects standardized to controls, all data

Parameter Estimate Bootstrap SE Bias-corrected 95% CI

βROCInt. -1.270 1.140 (-3.510, 0.884)
βROCSlope -0.937 0.077 (-0.796,-1.110)
βAge 0.045 0.030 (-0.010, 0.104)

Adjusted AUC 0.629 0.027 (0.573, 0.682)
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Table 2.3: Change in AUC with removal of influential subjects

Scenario AUC Bootstrap SE Bias-corrected 95% CI

All data 0.629 0.0267 (0.573,0.682)
Ctrl subj 20409 11289 removed 0.630 0.0247 (0.585,0.678)
Case subj 30276 50558 removed 0.642 0.0244 (0.596,0.693)

All 4 removed 0.643 0.0237 (0.592,0.688)
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Chapter 3

A Semi-parametric PA Approach to
Diagnostic Test Meta-Analysis

3.1 Introduction

Modern medical decision making often involves one or more diagnostic tools (such as

laboratory tests and/or radiographic images). These diagnostic tools are developed

using the most current technology available, and are often welcomed into medical

practice with the hope of improving the care for patients. A diagnostic tool must be

evaluated for it’s discriminatory ability to detect presence (or absence) of current

health state.

The meta-analysis of diagnostic tests is of particular interest in certain screening

programs for certain diseases such as cancer. Pepe (2003) lists three benefits of

meta-analysis for diagnostic tests: awareness within the research community of

previous studies, explanation of discrepancies between individual study results and

identification of common mistakes in study design thereby providing guidance for

design of future studies.

The typical summary data points for studies chosen for a diagnostic accuracy

meta-analysis are two dimensional: sensitivity and specificity. These measures tend to



be negatively correlated since studies tend to vary in how test positivity is defined

(Pepe, 2003).

Random effects models are intuitive in meta-analysis because the between-study

heterogeneity is modeled explicitly. For diagnostic accuracy meta-analysis the

bivariate random effects (BVRE) model (Reitsma et al., 2005) was the first model to

propose an alternative to the computationally intensive and assumption-laden sROC

model of Rutter and Gatsonis (2001). Chu and Guo (2010) also observe that

previously only logit transformations were used in the bivariate random effects model.

A natural extension of this is to consider other link functions such as the probit and

complementary log-log. Further, the model formulation is expressed as a generalized

linear mixed model (GLMM). Other key concepts regarding this approach include

extensions to account for prevalence of disease (Leeflang et al., 2009; Chu and Guo,

2009; Ma et al., 2012) and sparse data models (Chu and Cole, 2006). All of the

aforementioned random effects models are classified as subject-specific (SS) models.

Considering that SS models are most appropriately used if the model for a given

cluster (i.e. study) is of interest, a population-average (PA) model may be

appropriate in the current setting of diagnostic test meta-analysis. Although both of

these approaches have their merits, the choice between them really depends on the

research question being investigated. For covariates that do not vary within a

cluster-like intervention condition, PA models are often recommended because of their

regression parameter interpretation (Zeger et al., 1988). In the PA model, the

regression parameter describes the average change in response across subsets of the

population defined by the covariate. For cluster-specific models, the interpretation of

the regression parameter is specific to a given cluster. In the case of meta-analysis, a

random intercept model will provide median estimates of sensitivity and specificity,

whereas a population-averaged model provides mean estimates. PA models have been
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previously recommended for diagnostic accuracy test results in the single study

setting. For example, Wang et al. (2006) present a weighted least squares approach to

compare predictive values of diagnostic tests; Martus et al. (2004) and Leisenring

et al. (1997) present marginal regression models fit using GEE for diagnostic tests.

To our knowledge there has been no previous study of PA models for diagnostic

test meta-analysis. We present a PA model that is estimated using estimating

equations (GEE) procedures. In section 2, we define an overdispersed bivariate

binomial model and compare it to the GLMM approach of Chu and Guo (2010). This

includes a conversion of the SS parameter estimates to their PA equivalents using

methodology presented in Zeger et al. (1988). Section 3 presents an example data set

as well as results for both the GEE and GLMM approach for both the logit and

probit links. Simulation studies are performed in Section 4 to investigate the finite

sample performance of estimators of mean sensitivity and specificity based on the two

approaches. Section 5 provides discussion of the analysis, as well as summary

comments.
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3.2 A PA Model for Diagnostic Test Meta-analysis

We present both a cluster-specific GLMM and a population-average model for the aim

of estimating mean sensitivity and specificity across studies. We define the common

notation as follows. Let ni11, ni00, ni01 and ni10 represent the number of true positives,

true negatives, false positives and false negatives, and ni1+ and ni0+ be the number of

diseased and non-diseased subjects in the ith study from a meta-analysis, where

studies are indexed as i = 1, . . . , K. In the PA model, the marginal means are defined

as µ∗
i1 = E(ni11)/ni1+, which is the probability of a true positive, or sensitivity, and

µ∗
i0 = E(ni01)/ni0+, which is the probability of a false positive, or one minus specificity.

3.2.1 GLMM Model Definition

The GLMM is defined as follows. Following the notation of Chu and Guo (2010),

assume ni01 and ni11 are binomially distributed as Bin(ni0+, 1− Spi) and

Bin(ni1+, Sei) conditionally on Spi and Sei which are the specificity and sensitivity

parameters for the ith diagnostic study, respectively. Next, define

g(1− Spi) = β0 + νi (3.1)

and

g(Sei) = β1 + µi (3.2)

where the random effects are assumed to be distributed as (νi, µi)
′ ∼ N(0, D), where

D =

 σ2
0 ρmσ0σ1

ρmσ0σ1 σ2
1


Estimation of the parameters θm = (β0, β1, ρm, σ0, σ1)

′
are based on the marginal
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likelihood function

m(θm) =
k∏

i=1

∫ ∫
p(ni0+|νi, β0)p(ni1+|µi, β1)f(νi, µi|ρm, σ0, σ1)dνidµi (3.3)

The negative log-likelihood function f(θm) = −log m(θm) (also known as the

objective function) is minimized numerically in order to estimate θm, and the inverse

Hessian matrix at the estimates provides an approximate variance-covariance matrix

for the estimate of θm. Approximation is performed using numerical procedures such

as Gaussian quadrature (SAS Institute, 2008).

The empirical (also known as “robust” or “sandwich”) standard errors are defined as

V(θ̂m) = [H(θ̂m)]
−1

(
k∑

i=1

gi(θ̂m)gi(θ̂m)
′

)
[H(θ̂m)]

−1 (3.4)

where H is the second derivative matrix of f and gi is the first derivative of the

contribution to f by the ith subject (SAS Institute, 2008). The empirical estimator of

the variance-covariance matrix is robust to the mis-specification of the model under

certain regularity conditions, in the sense that it consistently estimates the true

variance even if the covariance structure is misspecified but is biased in small samples.

3.2.2 PA Model Definitions and Estimation Procedures

While study-level covariates could be incorporated into a PA model, we consider the

mean model without covariates.

g(µ∗
ij) = β∗

j , j = 0, 1 (3.5)

where g() is a monotone link function. For example the logit link is defined by,

g(µ∗
ij) = log[µ∗

ij/1− µ∗
ij], and the probit link is defined by g(µ∗

ij) = Φ−1(µ∗
ij) where Φ
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is the cdf of the standard normal distribution. For the model without covariates, all

choices of monotone link functions give the same model. The variance is defined by

var(nij1) = nij+hijϕj, j = 0, 1 (3.6)

where hij = µ∗
ij(1− µ∗

ij), j = 0, 1, are the variance functions, and ϕj (j = 0, 1) are the

overdispersion parameters subject to natural restrictions ϕj ∈ (0, nij+), for all i and j.

In other words, our model constrains the overdispersion parameters to be constant

across clusters. Additionally, define a common correlation, ρg = corr(ni01, ni11).

A generalized estimating equations procedure is used to estimate the model

parameters, θg = (β∗
0 , β

∗
1 , ρg, ϕ0, ϕ1)

′
. Let Yi = (ni01/ni0+, ni11/ni1+), and its

expectation as µ∗
i = (µ∗

i0, µ
∗
i1). Given current estimates of ϕ0, ϕ1 and ρg, β

∗ = (β∗
0 , β

∗
1)

′

are estimated by solving

K∑
i=1

D′
i(β

∗)V −1
i (ϕ0, ϕ1, ρg)(Yi − µ∗

i ) = 0 (3.7)

where D′
i(β

∗) = ∂µ∗
i /∂β

∗, Vi(ϕ0, ϕ1, ρg) = A
1/2
i RiA

1/2
i , and

Ai = Diag{var(ni01)/n
2
i0+, var(ni11)/n

2
i1+}. Finally, let Ri = ρgJ2 + (1− ρg)I2, where

Ir is the r × r identity matrix and Jr = 1r1
′
r, where 1r is a column of 1’s.

The iteratively reweighted least squares GEE algorithm alternates between

estimation of β∗ in (3.7) and (ϕ0, ϕ1, ρg), the latter estimated by the method of

moments (Liang and Zeger, 1986). The variance of β̂∗ can be estimated by the

model-based variance estimator

Vmodel(β̂∗) =
( K∑

i=1

D
′

iV
−1
i Di

)−1

=M−1 (3.8)
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or the empirical variance estimator

Vemp(β̂∗) =M−1
( K∑

i=1

D
′

iV
−1
i (Yi − µ∗

i )(Yi − µ∗
i )

′V −1
i Di

)
M−1 (3.9)

For the three method of moment estimators (ϕ0, ϕ1, ρg) we use a 2-stage bootstrap

for standard error estimates. These are typically not provided by software however in

the context of comparing the PA and SS methods it provides some level ground for

comparison. In the first stage of the bootstrap procedure we sample with replacement

clusters equal to the original meta-analysis size. In the second stage we perform a

stratified re-sampling procedure to produce randomly selected subjects within each of

the studies. In this way we maintain both the original sample size of studies in the

meta-analysis and the individual size of each study, all while creating 1000 bootstrap

replicates. Finally the GEE estimation procedures are performed and the standard

deviation of each of the bootstrap replicates of ϕ0, ϕ1 and ρg, respectively, constitutes

bootstrap estimates of their standard errors.

3.2.3 Relationship of PA and SS model parameters

The comparison of the subject-specific and population-average methods require that

their respective parameters be placed in a common context, that of the marginal

model parameters. Under Gaussian random effects in the GLMM, the PA model

in (3.5) and (3.6) with common marginal correlation ρg can be deduced (Zeger et al.,

1988). In other words, θm has simple relationships (exact or approximate) to θg.

Computation of marginal mean parameters from SS model

The marginal mean simplifies or is easily approximated for the standard link

functions. For the probit link the marginal parameters are obtained from the SS
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model via the following equation.

β∗
j =

βj√
σ2
j + 1

j = 0, 1 (3.10)

For the logit link, where the relationship is approximate, we have

β∗
j ≈ βj√

c2σ2
j + 1

j = 0, 1 (3.11)

where c = 16
√
3/(15π) (Zeger et al., 1988). The mean sensitivity and mean specificity

may be estimated by 1-g−1(β̂∗
0) and g

−1(β̂∗
1), respectively, where β̂

∗
0 and β̂∗

1 are

calculated by plugging in estimates for the elements of θm into equations (3.10)

and (3.11). Variance estimates, and therefore asymptotic confidence intervals, for

them can be constructed via application of the delta method.

Computation of marginal covariance parameters from SS model

Unfortunately, no simple formulae exist for cov(Yi), except for the identity link.

However, an approximation via equation (3.4) of Zeger et al. (1988) is

var
( ni01

ni0+

,
ni11

ni1+

)
≈

 L2
i0σ

2
0 Li0Li1σ01

Li0Li1σ01 L2
i1σ

2
1

+

 µ∗
i0(1−µ∗

i0)

ni0+
0

0
µ∗
i1(1−µ∗

i1)

ni1+


where Lij = Diag{∂g−1(βj)/∂βj}, j = 0, 1, σ01 = ρmσ0σ1, and µ

∗
ij = g−1(β∗

j ) where β
∗
j

is given in equation (3.10) or (3.11). Equivalently, noting that for the model without

covariates µ∗
j = µ∗

ij and Lj = Lij,

var(nij1/nij+) ≈ L2
jσ

2
j +

µ∗
j(1− µ∗

j)

nij+

, j = 0, 1. (3.12)

and
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cov
( ni01

ni0+

,
ni11

ni1+

)
≈ L0L1σ0σ1ρm. (3.13)

Under the probit link, Lj = ϕ(βj)ϕ(−βj), where ϕ is the pdf standard normal function

and µ∗
j = Φ(β∗

j ), j = 0, 1. Under the logit link, Lj = logit−1(βj) ∗ logit−1(−βj) and

µ∗
j = logit−1(β∗

j ), j = 0, 1.

Equation (3.12) implies var(nij1) ≈ nij+hijϕij, j = 0, 1, where

ϕij =
nij+L

2
jσ

2
j

µ∗
j(1− µ∗

j)
+ 1, j = 0, 1.

Under an equal number of diseased (n1+ = ni1+) and non-diseased (n0+ = ni0+) cases

across studies, the GLMM model above gives approximately constant variance and

overdispersion,

ϕj =
nj+L

2
jσ

2
j

µ∗
j(1− µ∗

j)
+ 1, j = 0, 1. (3.14)

From equations Equation (3.12) and Equation (3.13), the GLMM implies that the

marginal correlation for the i-th study is

ρig =
L0L1σ0σ1ρm√

[L2
0σ

2
0 +

µ∗
0(1−µ∗

0)

ni0+
][L2

1σ
2
1 +

µ∗
1(1−µ∗

1)

ni1+
]

(3.15)

Under an equal number of diseased (n1+ = ni1+) and non-diseased (n0+ = ni0+) cases

across studies, the GLMM model above gives approximately constant correlation

parameter,

ρg =
L0L1σ0σ1ρm√

[L2
0σ

2
0 +

µ∗
0(1−µ∗

0)

n0+
][L2

1σ
2
1 +

µ∗
1(1−µ∗

1)

n1+
]

(3.16)

Thus, under the special case of equal number of diseased and non-diseased cases
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across studies, there is an approximate one-to-one transformation of the GLMM

parameters θm to the marginal parameters θg. Thus, one way to obtain inference on

the marginal model parameters is to fit a GLMM, transform θ̂m to θ̂g, via a compound

matrix function, i.e., θ̂g = F (θ̂m), and use the multivariate delta method to obtain the

asymptotic covariance matrix of θ̂g from the asymptotic covariance matrix of θ̂m.

3.3 Data Examples and Analysis

Two data sets are presented for analysis to demonstrate the concepts presented in

Section 2.

3.3.1 Example 1: Catheter Segment Culture Data

The first example data set is a meta-analysis of 33 diagnostic accuracy studies

previously analyzed in Chu and Guo (2010). The 33 studies studied semi-quantitative

(19 studies) or quantitative (14 studies) catheter segment culture for the diagnosis of

intravascular device-related blood stream infection. The mean number (std. dev.) of

diseased and non-diseased persons per study was 20 (19.8) and 237 (240.5)

respectively. Chu and Guo (2010) report that since there is no statistically significant

difference between the semi-quantitative and quantitative methods, the data are

combined together without including this potential covariate in any model. The gold

standard was final diagnosis of blood-stream infection. The data are presented in the

Appendix, Table S1.

A PA model was fit to these bivariate binomial data with a cluster representing the

bivariate binomials pairs. The generalized estimating equation in this case provides

the estimation procedure. The logit link and an exchangeable working correlation

were employed for these data. The probit link is then explored in a comparative

fashion.
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Two different perspectives were taken with regards to the scale parameter. As

outlined in Section 2 is possible to have the scale parameter vary for sensitivity and

specificity separately. Models for both constant scale within a cluster (Appendix

Table S3) and varying scale within cluster (Table 3.1) are presented.

With respect to within-study variation, the scale parameter in the PA model

reflects strong over-dispersion in the given sample of data. The ability to allow this to

vary within each cluster seems to be important given the very different scale

parameter results in the Table 3.1. The data are very skewed in terms of the

study-level bivariate binomial proportions.

Table 3.1 displays the results of the PA model fit with a logit and probit link to

the catheter segment culture data. Estimates of the parameters on the logit and

probit scale as well as their standard errors are displayed along with estimates of the

mean sensitivity and specificity (data scale). Note that the standard errors for the PA

model parameters ϕ0, ϕ1 and ρg are calculated using a stratified bootstrap resampling

procedure. Finally, a confidence region for this summary is displayed in Figure 2.1.

The use of GEE does not allow for a prediction region like that of GLMM, however

a confidence region for the summary point is available (not available in GLMM) and

displayed in Figure 3.1 (upper panels) for the GEE fit corresponding to Table 3.1

(logit and probit links with heterogeneous scale).

An elliptical confidence region was calculated using the method of Douglas (1993).

This approximation for the confidence region ellipse has been used in other diagnostic

accuracy meta-analysis studies, for example Chu and Guo (2010).

As we have fit a PA model to these data we have provided an estimate for what we

may expect from the average study, assuming that our sample accurately reflects a

good sample of similar studies from the population. This is fundamentally a different

perspective than the SS model which would then seek to provide prediction for a
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future study, given study-specific estimates from a GLMM. Table 3.2 displays the

results of the GLMM as fit by for example Chu and Guo (2010).

The population-average estimates are not directly available from the GLMM,

however using the formulae provided in section 2.3 we can provide estimates.

Table 3.1 displays the estimates of the GLMM parameters converted to their marginal

counterparts, and compare these with the PA estimates for both the logit and probit

links; given the unbalanced data n̄j+, j = 0, 1 was substituted into equations (3.14)

and (3.16) for nj+. We immediately notice that the estimates do not match up

exactly, however they are closer for the probit link which is expected as the

relationship is not an approximation as it is for the logit link. The overdispersion and

extreme skew in the data are the cause for this, which is investigated further in the

simulation study.

3.3.2 Example 2: Simulated Correlated Binomial Data

The second example is a single simulated data set, using similar methodology to that

will be used for the simulation study. The study was simulated to have fixed cluster

sizes of (25,175) with mean 1-specificity = 0.7 and mean sensitivity = 0.75, with an

assumed correlation between the binomial proportions = 0.36. Bivariate overdispersed

binomial data will be randomly generated using an algorithm for generation of

correlated binary data based on the method of Emrich and Piedmonte (1991). The

results of a single set of the simulated data are presented in the Appendix, Table S2.

For a single cluster for the above assumptions, as well as in each of the scenarios

described in the simulation study in section 4, we generate correlated binary variates

Y = (Y
(0)
1 , . . . , Y

(0)
n0 , Y

(1)
n0+1, . . . , Y

(1)
n )′, distinguishing (with superscripts) the n

observations as belonging to diseased and non-diseased groups with n1 and

n0 = n− n1 observations, respectively. Indexing observations with k, we define a
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model with means E(Y
(0)
k ) = P (Y

(0)
k = 1) = µ0 and E(Y

(1)
k ) = P (Y

(1)
k = 1) = µ2, and

correlation structure with corr(Y
(0)
k , Y

(0)
k′ ) = α0, corr(Y

(1)
k , Y

(1)
k′ ) = α1, and

corr(Y
(0)
k , Y

(1)
k′ ) = α2, for k ̸= k′. This model generates bivariate, overdispersed

binomials taking T0 = Y
(0)
1 + . . .+ Y

(0)
n0 and T1 = Y

(1)
n1+1 + . . .+ Y

(1)
n . For a diagnostic

testing study, T0 and T1 are the number of positive test results in groups without and

with disease, respectively. It follows that E(T0) = n0µ0, E(T1) = n1µ1,

var(T0) = n0µ0(1− µ0)ϕ0, var(T1) = n1µ1(1− µ1)ϕ1, and

ρ = corr(T0, T1) = α2

√
(n0n1)/(ϕ0ϕ1). Hall (2001) discusses that to generate (T0, T1)

with correlation ρ, binomial parameters µ0 and µ1, and overdispersion ϕ0 and ϕ1 such

that ϕd ∈ (0, nd) (the natural range), respectively, take αd = (ϕd − 1)/(nd − 1) for

d = 1, 2 and α2 = ρ
√
ϕ0ϕ1/(n0n1).

The analysis of the simulated data proceeds in a similar fashion as Example 1.

Tables 3.3 and 3.4 present analogous results as those found in Tables 3.1 and 3.2

above.

3.4 Simulation Study

Given the impact of skewed data and unbalanced clusters, the primary goal of the

simulation study is to provide some insight as to how to perform a meta-analysis with

data that is similar to example 1 where interest is in estimating the population

averaged sensitivity and specificity. The simulation study will compare the estimation

performance of the direct PA model method with estimation by GEE to the

GLMM-converted PA parameter estimates for both the logit and probit link

functions. Bivariate overdispersed binomial data will be randomly generated using an

algorithm for generation of correlated binary data based on the method of Emrich

and Piedmonte (1991), as described above. For each of sensitivity and specificity,

bias, monte carlo standard errors, average of standard error estimates, and coverage
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of 95% confidence intervals will be evaluated.

3.4.1 Simulation design

The simulation study presented below has two main objectives: first, to

demonstrate the properties of the PA and SS model estimators under fixed and

varying cluster sizes; and, second, to investigate the relationship of the true correlated

binomial proportions under different scenarios at values above 0.7 (which are typically

observed in these types of meta-analysis, and tend to lead to skewed profiles of

proportions in actual meta-analyses). In general, our hypotheses are that: first,

percent relative bias and confidence interval coverage will be slightly better in the PA

model than the marginal SS model equivalents, especially with smaller cluster sizes;

and, second, that performance of scenarios with true mean sensitivity and specificity

closer to 1 perform less well.

The design of the simulation study is as follows, where each item is a design factor,

defining a total of 24 unique scenarios (each replicated 1000 times):

1. Cluster (study) sizes K = 15, K = 25 and K = 50

2. Cluster size: fixed across clusters or varies across clusters

(a) Fixed option for (n0, n1): (175,25)

(b) Varying within study: sample (n0, n1) from MVN
(
(µn0 , µn1)

′
,Σ
)

i. µn0 = 175, µn1 = 25, σn0 = 20, σn1 = 5, ρ = 0.2

3. Mean sensitivity and 1-specificity, generated as correlated binomial proportions

(a) µ0 = 0.7 or 0.9

(b) µ1 = 0.75 or 0.95
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(c) The correlations are defined as α0 = α1 = 0.05, α2 = 0.025 which is

equivalent to ρ = α2

√
n0n1

[α0(n0−1)+1][α1(n1−1)+1]
which equals 0.36 when

(n0, n1) = (175, 25).

For each scenario, the data set generated was analyzed using both the PA and SS

models, as described in section 3.2. Both the logit and probit links were employed

leading to a total of 4 analyses for each of the 24 simulation scenarios described

above. Measures of performance include model convergence, percent relative bias and

percent coverage of 95% confidence intervals. All simulations were run entirely using

SAS software (SAS/IML for data generation, SAS/SQL for simulation results

summary, SAS/IML macro Diag104.sas for PA models and SAS PROC NLMIXED

for SS models).

3.4.2 Simulation Study Results

Convergence rates exceeded 99.8 in the PA model scenarios and 96.5 in the SS model

scenarios (see Table S5 in the Appendix). Tables S4 and 3.5, summarize the findings

of the simulation study with respect to percent relative bias and confidence interval

coverage of simulated parameters.

For model convergence, we note that all PA models converged. While the SS

models had very high convergence rates as well, a few trends are noticeable. For the 8

scenarios that were generated using mean 1-specificity and sensitivity (0.9, 0.95), none

converged 100% of the time. For cluster sizes of K = 50 we notice convergence was

generally slightly better than for K = 25 and K = 15. Further, within a given cluster

size we notice slightly better convergence of fixed cluster size over varying cluster size

scenarios. This observation may suggest that for meta-analyses where the diagnostic

accuracy is very high, the PA model may provide more stable convergence properties.

Percent relative bias (PRB) is generally small across the board (less than 1.6%
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across the board). However there are some trends to be noted. First, we expect the

PRB to be similar for the PA models between logit and probit since with no

covariates the models are identical. The most noticeable trend is the difference in

PRB for fixed and varying cluster sizes, most notably for the highest values of

sensitivity (0.95). Even comparing within fixed or varying cluster sizes we notice that

the groups of scenarios in the smaller cluster sizes (K = 15 and K = 25) have slightly

higher PRB than those with larger cluster sizes (K = 50). Finally, within a given

scenario we notice that generally speaking the PA estimated parameters from most

scenarios have slightly smaller PRB than the SS model marginal estimates, though in

general the magnitude of the PRB is same (most noticeably for higher sensitivity).

From this we conclude that while not drastically lower the PA model does have good

PRB qualities and even more so as we approach larger numbers of clusters with more

uniform cluster sizes.

The summaries for coverage of 95% confidence intervals are all based on the

empirical standard errors which are robust to model mis-specification. We would

expect coverage to be slightly worse for K=15, then increasing for K = 25 and

K = 50 and this is slightly evident. Coverage trends a bit lower for unequal cluster

sizes, and within the unequal cluster sizes slightly lower coverage at the extremes

(0.9,0.95) that drops just slightly below 90%.

In summary, the PA model performs well under the scenarios generated, noting

that generally the PA and SS models trend together within a scenario. The scenarios

with mean values (0.9, 0.95) provide some insight into how models may have slightly

lower convergence rates, slightly higher PRB and lower CI coverage. This observation

is noteworthy as many meta-analyses of this type have a number of individual studies

that fit this profile. The question of whether this simulation study takes into account

within-cluster sample sizes that are very small (as is often observed in meta-analyses
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in practice) is addressed indirectly. For the varying cluster sample size scenarios

denominators for 1-specificity that varied around n0 = 25 generated some small

sample sizes upon closer inspection. However given these small sample sizes are mixed

in with larger ones due to random generation, perhaps their effect is not as clear.

3.5 Discussion

The binomial regression framework of the GLMM is the most prominent in the

literature due to its ease of interpretation and flexibility. Also given that it is a

random effects model, it has intuitive appeal because random effects approaches

explicitly model heterogeneity between studies that is inherent in a meta-analysis.

The inclusion of covariates and abundance of available software has allowed analysts

easy access to this method. A limitation of the GLMM approach is that it does not

easily provide population-averaged inference for sensitivity and specificity. In

contrast, the PA approach proposed in this article directly estimates the average

sensitivity and specificity. It can easily be extended to accommodate covariates,

though that was not demonstrated in this article.

The PA method presented is very easy to implement with standard software for the

assumption of a constant scale parameter. To account for heterogeneous scale, which

is viewed as an essential part of the proposed approach, the Diag104.sas macro was

used; this beta-test program will become the next version of the SAS macro for GEE

originally introduced by Hammill and Preisser (2006). We know of no other software

currently available to handle this. Otherwise GEE procedures in SAS such as PROC

GENMOD may be used, though they cannot handle heterogeneous scale parameter

estimation.

The arguments were based on the ideal setting of balanced clusters sizes with

constant numbers of diseased and non-diseased subjects, respectively. The method’s
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appropriateness for unbalanced clusters was investigated in the simulation study and

revealed that the the PA model performs well in comparison to the SS model, in some

cases slightly better.

The estimation of average sensitivity and specificity in the semi-parametric PA

model approach does not lead directly to a summary ROC curve. The literature in

this field seems to require a summary ROC curve however it is arguable whether this

is useful for the practicing researcher. Future work in this area could begin by

inverting the conversion equations used for the SS parameters to PA analogs we can

then enter PA estimates and output SS converted estimates which would then allow

for estimation of an ROC curve.
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Figure 3.1: GLMM prediction region and PA model mean estimate with 95% confidence
region. Upper left: Chu et al. 2010 data, logit link; Upper right: Chu et al. 2010 data,
probit link; Lower left: Expanded and balanced data, logit link; Lower right: Expanded
and balanced data, probit link. The confidence region is the smaller area contained
within the prediction region.
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Table 3.1: Comparison of PA Logit and Probit models with heterogeneous scale for
clusters for the catheter segment culture data , as well as the GLMM-converted analogs.
All standard errors reported are empirical except for PA parameters ϕ0, ϕ1 and ρg which
are estimated via a 2-stage bootstrap approach.

Parameter Logit Logit GLMM conv. Probit Probit GLMM conv.
β∗
0 -1.901 (0.203) -1.677 (0.127) -1.127 (0.090) -0.994 (0.072)
β∗
1 1.480 (0.183) 1.626 (0.184) 0.895 (0.113) 0.961 (0.104)
ϕ0 20.35 (7.249) 18.33 (7.625) 20.35 (7.249) 19.74 (8.136)
ϕ1 2.794 (1.005) 2.759 (0.719) 2.794 (1.005) 2.75 (0.746)
ρg 0.330 (0.200) 0.161 (0.150) 0.330 (0.200) 0.155 (0.151)

Mean Specificity 0.870 (0.023) 0.842 (0.017) 0.870(0.019) 0.840 (0.018)
Mean Sensitivity 0.815 (0.028) 0.836 (0.025) 0.815(0.030) 0.832 (0.026)
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Table 3.2: Results of GLMM model for Logit and Probit links for the catheter segment
culture data (from Chu et. al (2010))

Parameter Logit Probit
β0 -1.909 (0.169) -1.104 (0.088)
β1 1.829 (0.222) 1.069 (0.120)
σ0 0.925 (0.132) 0.483 (0.068)
σ1 0.876 (0.213) 0.489 (0.117)
ρm 0.208 (0.190) 0.197 (0.192)

Median Specificity 0.871 (0.019) 0.864 (0.019)
Median Sensitivity 0.862 (0.026) 0.857 (0.027)
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Table 3.3: Simulated Data: Comparison of Logit and Probit link functions for the PA
method heterogeneous scale for clusters. All standard errors reported are empirical
except for PA parameters ϕ0, ϕ1 and ρg which are estimated via a 2-stage bootstrap
approach.

Parameter Logit Logit GLMM conv. Probit Probit GLMM conv.
β∗
0 -0.851 (0.131) -0.864 (0.133) -0.527 (0.079) -0.527 (0.079)
β∗
1 0.934 (0.083) 0.950 (0.085) 0.580 (0.050) 0.580 (0.050)
ϕ0 6.638 (2.287) 7.300 (2.504) 6.638 (2.287) 7.307 (2.514)
ϕ1 2.457 (0.561) 2.358 (0.614) 2.457 (0.561) 2.315 (0.595)
ρg 0.212 (0.234) 0.160 (0.183) 0.212 (0.234) 0.160 (0.181)

Mean Specificity 0.703 (0.028) 0.703 (0.028) 0.703 (0.028) 0.703 (0.028)
Mean Sensitivity 0.721 (0.017) 0.721 (0.017) 0.721 (0.017) 0.721 (0.017)
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Table 3.4: Simulated Data: Results of GLMM model for Logit and Probit links

Parameter Logit Probit
β0 -0.904 (0.142) -0.553 (0.089)
β1 0.979 (0.094) 0.599 (0.055)
σ0 0.527 (0.090) 0.315 (0.070)
σ1 0.423 (0.143) 0.249 (0.046)
ρm 0.200 (0.259) 0.200 (0.258)

Median Specificity 0.704 (0.029) 0.705 (0.029)
Median Sensitivity 0.730 (0.021) 0.730 (0.021)
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Table 3.5: Percent coverage of nominal 95% confidence intervals based upon empirical
standard errors after fitting PA model as well as SS-model marginal converted results

Logit Probit
Clus. β∗

0 β∗
1 β∗

0 β∗
1

Size Type (n0, n1) (µ0, µ1) PA SS PA SS PA SS PA SS

K=15 Fix. (175,25) (0.7,0.75) 93 92 92 92 93 93 91 91
(0.7,0.95) 91 90 91 93 90 87 91 92
(0.9,0.75) 93 91 91 91 93 92 91 90
(0.9,0.95) 91 93 93 93 91 90 93 93

Uneq. MVN(1) (0.7,0.75) 88 90 92 91 88 89 92 91
(0.7,0.95) 92 92 93 92 92 92 93 92
(0.9,0.75) 89 90 90 89 89 89 90 89
(0.9,0.95) 92 91 90 87 92 91 90 86

K=25 Fix. (175,25) (0.7,0.75) 94 94 92 93 94 93 93 92
(0.7,0.95) 92 93 95 94 92 91 95 95
(0.9,0.75) 94 92 91 90 94 94 91 90
(0.9,0.95) 92 93 92 94 91 90 93 93

Uneq. MVN(1) (0.7,0.75) 89 91 93 92 89 90 93 93
(0.7,0.95) 93 94 94 94 93 94 94 94
(0.9,0.75) 93 93 93 90 93 94 93 90
(0.9,0.95) 92 93 91 86 92 91 90 87

K=50 Fix. (175,25) (0.7,0.75) 94 92 93 94 97 93 94 97
(0.7,0.95) 94 94 94 93 93 93 92 93
(0.9,0.75) 95 93 93 92 94 92 93 93
(0.9,0.95) 94 93 94 95 94 93 94 93

Uneq. MVN(1) (0.7,0.75) 83 88 95 95 84 85 95 95
(0.7,0.95) 94 94 95 95 94 94 95 95
(0.9,0.75) 92 93 94 92 92 92 94 93
(0.9,0.95) 95 95 91 86 95 94 90 86
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Chapter 4

Implementation guide for PA
diagnostic accuracy meta-analysis

4.1 Introduction to Diagnostic Test Accuracy

Modern medical decision making often involves one or more diagnostic tools (such as

laboratory tests and/or radiographic images). These diagnostic tools are developed

using the most current technology available, and are often welcomed into medical

practice with the hope of improving the care for patients. A diagnostic tool must be

evaluated for it’s discriminatory ability to detect presence (or absence) of current

health state.

The meta-analysis of diagnostic tests is of particular interest in certain screening

programs for certain diseases such as cancer. Pepe (2003) lists three benefits of

meta-analysis for diagnostic tests: awareness within the research community of

previous studies, explanation of discrepancies between individual study results and

identification of common mistakes in study design thereby providing guidance for

design of future studies.

The typical summary data points for studies chosen for a diagnostic accuracy

meta-analysis are two dimensional: sensitivity and specificity. These measures tend to



be negatively correlated since studies tend to vary in how test positivity is defined

(Pepe, 2003). We may think of these type of data as correlated binomial outcomes

within a cluster (study), with population-averaged (PA) models a possible choice for

estimation given their ability to handle correlated outcomes (via generalized

estimating equations (GEE) for example). In the PA model, the regression parameter

describes the average change in response across subsets of the population defined by

the covariate. For cluster-specific models, the interpretation of the regression

parameter is specific to a given cluster. In the case of meta-analysis, a random

intercept model will provide median estimates of sensitivity and specificity, whereas a

population-averaged model provides mean estimates. PA models have been previously

recommended for diagnostic accuracy test results in the single study setting. For

example, Wang et al. (2006) present a weighted least squares approach to compare

predictive values of diagnostic tests; Martus et al. (2004) and Leisenring et al. (1997)

present marginal regression models fit using GEE for diagnostic tests.

In this paper we describe in detail the application of a PA model for diagnostic

accuracy meta-analysis with covariates including investigation of influential clusters

(studies) and observations within each cluster. To our knowledge there is no such

analyst guide of this type. In section 2 we briefly describe the PA model definition

and estimation procedures; section 3 describes the analysis macro %PAMETA; section

4 presents two data sets along with macro inputs and results for each respectively;

finally, in section 5 we offer conclusions and commentary for future research directions.
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4.2 PA Model Definitions and Estimation Procedures

Let ni11, ni00, ni01 and ni10 represent the number of true positives, true negatives, false

positives and false negatives, and ni1+ and ni0+ be the number of diseased and

non-diseased subjects in the ith study from a meta-analysis, where studies are

indexed as i = 1, . . . , K. In the PA model, the marginal means are defined as

µi1 = E(ni11)/ni1+, which is the probability of a true positive, or sensitivity, and

µi0 = E(ni01)/ni0+, which is the probability of a false positive, or one minus

specificity. We consider the mean model where study-level covariates could be

incorporated if desired.

g(µij) = β0j + x
′

ijβj, j = 0, 1 (4.1)

where g() is a monotone link function. For example the logit link is defined by,

g(µij) = log[µij/1− µij], and the probit link is defined by g(µij) = Φ−1(µij) where Φ

is the cdf of the standard normal distribution. For the model without covariates, all

choices of monotone link functions give the same model. The variance is defined by

var(nij1) = nij+hijϕj, j = 0, 1 (4.2)

where hij = µij(1− µij), j = 0, 1, are the variance functions, and ϕj (j = 0, 1) are the

overdispersion parameters subject to natural restrictions ϕj ∈ (0, nij+), for all i and j.

In other words, our model constrains the overdispersion parameters to be constant

across clusters. Additionally, define a common correlation, ρg = corr(ni01, ni11).

A generalized estimating equations procedure is used to estimate the model

parameters, θg = (β0, β1, ρg, ϕ0, ϕ1)
′
. Let Yi = (ni01/ni0+, ni11/ni1+), and its

expectation as µi = (µi0, µi1). Given current estimates of ϕ0, ϕ1 and ρg,

β = (β00, β01, β0, β1)
′
are estimated by solving
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K∑
i=1

D′
i(β)V

−1
i (ϕ0, ϕ1, ρg)(Yi − µi) = 0 (4.3)

where D′
i(β) = ∂µi/∂β, Vi(ϕ0, ϕ1, ρg) = A

1/2
i RiA

1/2
i , and

Ai = Diag{var(ni01)/n
2
i0+, var(ni11)/n

2
i1+}. Finally, let Ri = ρgJ2 + (1− ρg)I2, where

Ir is the r × r identity matrix and Jr = 1r1
′
r, where 1r is a column of 1’s.

The iteratively reweighted least squares GEE algorithm alternates between

estimation of β in (4.3) and (ϕ0, ϕ1, ρg), the latter estimated by the method of

moments (Liang and Zeger, 1986). The variance of β̂ can be estimated by the

model-based variance estimator

Vmodel(β̂) =
( K∑

i=1

D
′

iV
−1
i Di

)−1

=M−1 (4.4)

the empirical variance estimator

Vemp(β̂) =M−1
( K∑

i=1

D
′

iV
−1
i rir

′

iV
−1
i Di

)
M−1 (4.5)

or the bias-corrected variance estimator (Mancl and DeRouen, 2001)

Vbias−corr(β̂) =M−1
( K∑

i=1

D
′

iV
−1
i (I −Hi)

−1rir
′

i(I −Hi)
−1V −1

i Di

)
M−1 (4.6)

where ri = (Yi − µi) and Hi = DiM
−1D

′
iV

−1
i is the cluster leverage matrix.

It is natural to ask whether data from a single cluster (study) has a large influence

relative to other clusters on the estimates in the marginal mean model given in

equation (4.1). For the h-th element of β, interest is often in (β̂h − β̂h[i]), the

difference in the parameter estimate with and without the i-th cluster included in the

data. Preisser and Qaqish (1996) introduced computationally quick approximations
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for both observation- and cluster-deletion diagnostics for GEE.

Following the formulae of Hammill and Preisser (2006), the influence of the i-th

cluster as given by the p× 1 vector (β̂1 − β̂1[i], . . . , β̂p − β̂p[i]), where “[i]” denotes the

i-th cluster excluded, can be approximated by

DFBETACi =M−1D′
iV

−1
i (I −Hi)

−1ri. (4.7)

Note that DFBETACi is a measure of the influence that each cluster has on the

estimate of each parameter element of β. We observe that (4.6) can be written as

Vbias−corr(β̂) =
k∑

i=1

(DFBETACi)(DFBETAC
′

i). (4.8)

Standardization of DFBETACi is achieved by dividing each of its elements by the

standard error of its respective parameter estimate, usually based on the full data.

Finally, a measure of the influence of the i-th cluster on the overall model fit can be

estimated by Cook’s D:

DCLSi = (DFBETACi)
′[var(β̂)]−1(DFBETACi)/p (4.9)

where var(β̂) is estimated by either the empirical (as in Ziegler et al. (1998); Preisser

et al. (2012) or bias-corrected variance estimators defined above. Vens and Ziegler

(2012) propose cut-off values for DCLSi, χ
2
p(1− α) when cluster sizes are equal.
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4.3 %PAMETA Macro overview and Implementation

4.3.1 Macro inputs and description

The following SAS/ SAS-IML macro performs a population-averaged model for

diagnostic accuracy studies. The macro centers around application of a second

SAS/IML macro used for fitting PA models using GEE machinery (Diag104.sas,

%GEE). %GEE was developed separately by the authors for use more generally when

GEE methods are required. The complete documentation of %GEE is referred to

separately in Appendix 1. We cannot use the SAS procedure PROC GENMOD to fit

a GEE in this current context because it does not allow for heterogeneous estimates

of the scale parameter for ϕ (i.e. a separate measure of overdispersion for the scale

parameters for each of sensitivity and specificity respectively, which is automatically

implemented here). The same applies for any software package that cannot handle

heterogeneous overdispersion parameter estimation.

The following lists the options for the macro PAMETA (population-averaged

meta-analysis) along with some brief explanation and detail around each option:

\%macro PAMETA (

filenet= example: X:\\Mydirectory\,

input the preferred file directory where the source

data resides, the macro Diag104.sas resides and where

all output written out from SAS will be stored.

WARNING: do not forget the last backslash!

sourcedat= example:mydata.sas,the name of the SAS data file.

The format of the file must be as listed

in the below example for one study. Two records per study

are required with a study and observation level identifier.

Additional columns contain covariables specifying the design

matrix of choice (not shown).

WARNING: do not forget the .sas extension.

STUDYID Y N SESP
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1 13 25 1

1 123 150 2

descstats= example:1,

if =1 requests a basic descriptive study as part of output

yvar= example:Y,

the numerator of the binomial proportion for

sensitivity and specificity

nvar = example:N,

the denominator of the binomial proportion for

sensitivity and specificity

covars=example:ONESP SE,

Here we must specify a design matrix through identification

of covariates. Examples are given in the next section.

An intercept is not automatically included.

studyid=example:ID,

a unique identifier for study within the meta-analysis.

obsid=example:SESP,

a unique identifier for observation

(sensitivity, specificity) within study within

the meta-analysis.

link=example:3,

a numeric value for choice of link function,

typically 3 (logit) or 5 (probit).

corr=example:1,

a numeric value for choice of correlation structure

typically 1 (independence) 3 (exchangeable)

outobsdiag=example:obsdiag,

an output data set name for the observation level

deletion diagnostics

outclusdiag=example:clusdiag,

an output data set name for the cluster level

deletion diagnostics
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outcsv = example: 1,

if =1 exports all outxxx datasets requested above

in .csv format

4.3.2 Output overview

The macro returns the model output from the GEE routine as well as data scale

conversions (i.e. on the scale of sensitivity and specificity). These results are

displayed in the output window (or .lst file). Additionally one may utilize the output

datasets described above (in both .sas and .csv formats for convenience).

The following is a brief summary of the macro output:

1. Estimates of model parameters (on both link scale and data scale), including 3

types of standard errors (output dataset: paramest)

2. Cluster (study) and observation-level deletion diagnostics for detection of

potential influential studies and specific observations within those studies. The

user may then use any graphics software to produce visuals. (output datasets:

outobsdiag and outclusdiag)

3. The required data elements to plot a confidence region (explicit implementation

is provided in Appendix 2)

4.4 Illustrative Data Sets and Analysis

4.4.1 Data set 1: Blood stream catheter infection data

Data and Descriptive Study

The first example data set is a meta-analysis of 33 diagnostic accuracy studies

previously analyzed in Chu and Guo (2010). The 33 studies studied semi-quantitative
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(19 studies) or quantitative (14 studies) catheter segment culture for the diagnosis of

intravascular device-related blood stream infection. Chu and Guo (2010) report that

since there is no statistically significant difference between the semi-quantitative and

quantitative methods, the data are combined together without including this

potential covariate in any model. For demonstration purposes we investigate the

covariate for type of catheter segment culture method (semi-quantitative or

quantitative). The mean number (std. dev.) of diseased and non-diseased persons per

study was 20 (19.8) and 237 (240.5) respectively. The gold standard was final

diagnosis of blood-stream infection. The data are presented in Table 4.1.

Model and macro inputs

We defined three models of interest a priori: a full model, reduced model and no

covariates model. The full model is as follows

g(µij) = β0j + xijβj, j = 0, 1 (4.10)

where xi0 = I(j = 0)xi, xi1 = I(j = 1)xi, and xi = 1 if study type is semi-quantitative

and xi = −1 if it is quantitative. The input data set has the following structure:

StudyID Y N SESP TYPE ONESP SE ONESPTYP1 SETYP1

1 36 85 1 1 1 0 1 0

1 1 18 2 1 0 1 0 1

21 4 60 1 2 1 0 -1 0

21 2 8 2 2 0 1 0 -1

We interpret the full model parameters as follows: β00 is the “average” 1-specificity

on the link scale (logit in this case); β00 + β0 is the 1-specificity estimate for the

semi-quantitative method on the link scale; and, β00 − β0 is the 1-specificity estimate

for the quantitative method on the link scale. Similarly for β01 and β1 we obtain
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estimates for sensitivity (overall and by type). For the reduced model we assume a

common study type effect for 1-specificity and sensitivity where β0 = β1 = β. Finally,

all estimates are then available on the data scale by applying the inverse link (inverse

logit in the current example).

As an example of the macro syntax inputs we assume a logit link model and include

the covariates ONESPTYP1 for xi0 and SETYP1 for xi1 (for type of catheter segment

culture analysis method). For the reduced model we include only xi instead of xi0 and

xi1. For the analysis without covariates we would simply remove variables with the

TYP1 suffix. The user must define which design matrix coding scheme (reference cell,

effect etc.) is deemed most appropriate for the particular meta-analysis.

\%PAMETA(filenet = D:\AnalysisPaper3\ChuData\,

sourcedat = chu2010

yvar = ny,

nvar = nn,

covars = ONESP SE ONESPTYP1 SETYP1,

studyid = ID,

obsid = SESP,

link = 3,

corr = 4,

outobsdiag = chuobsdiag,

outclusdiag = chuclusdiag,

outcsv=0);

Results

For the first set of analyses, all data from the catheter segment culture data set were

analyzed (see Table 4.1). Three models were fit: first, a model with separate Type

effects for 1-specificity and sensitivity; second, a reduced model where a common

Type effect is assumed; and, finally, a model with no covariates (for comparison

purposes). In the macro input in the previous section only the “covars” option was

changed at each stage (i.e. all models were fit with logit link and working correlation
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as exchangeable). The results of model estimation are presented in Table 4.2 and

provides a view into the effects of the covariate Type on the parameter estimates for

1-specificity and sensitivity.

Considering the first column of Table 4.2, which is the model where we define

separate effects of Type on each of sensitivity and specificity, we observe estimates of

specificity are slightly different and the sensitivity estimates are essentially the same

across types. A single df Wald Test was performed on the two regression parameters

for Type to test whether model reduction to a common effect is appropriate. Define

H0 : Cβ = 0, where C = [0 0 1 − 1] and β = (β00, β01, β0, β1)
T . The observed Wald

statistic is 0.51 with associated p-value=0.777. We conclude that a common effect of

Type may be appropriate in this case. The middle column of Table 4.2 displays this

reduced model, where the regression parameter estimate reported is for the common

effect of Type across sensitivity and specificity. The z-score (based upon the

bias-corrected standard error) is 0.674 with an associated p-value of 0.714. As was

noted in the pre-amble to the Chu and Guo (2010) paper, the effect of type of

catheter segment culture quantification is not significant, and the two groups of

studies may be included together for analysis. Finally, the right hand column displays

the results of a model with no covariate effect for Type.

An additional observation of interest pertains to the reduced model of Table 2.

Here we notice that the parameter estimate for the common covariate effect of Type

is actually quite close to that of the full model which is not generally expected. In

practice we expect the common effect parameter estimate to be more close to the

mid-point between the two. However, there is an explanation of this: when a binomial

outcome has a larger denominator it has a smaller variance. When this variance is

inverted (which is essentially done when one inverts A
−1/2
i in equation (3), and which

is precisely done when one assumes Ri is the independent working correlation
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matrix), the resultant weight is larger than the weight of a binomial outcome with a

larger variance. This is the reason that the estimate of a common effect for Type in

the reduced model is closer to the estimate of TYP1 for ONESPTYP1 from the full

model than the estimate of Type for SETYP1.

Next deletion diagnostics are considered to assess whether certain studies or

observations within studies (i.e., values of 1-specificity and sensitivity within a

cluster) are influential in the model. Using the model without covariates, we output

the cluster and observation level deletion diagnostics (see Figure 4.1). There are two

studies that seem to stand out as potential influential clusters: 18 and 20. Upon

closer evaluation we observe that the change in ONESP (lower left panel), with

studies 18 and 20 deleted is substantial. The Cook’s D statistic for the cluster (upper

left panel) and the observation (i.e. sensitivity or 1-specificity within a given study;

upper right panel) both highlight this finding as well as the DFBETAS. Thus, one

working hypothesis could be that re-fitting the model without studies 18 and 20 could

lead to different results, and perhaps some insight into the slightly elevated SEs for

the parameter estimates. When the source data for studies 18 and 20 are viewed in

Table 4.1 we notice that these two studies are actually the same study that use the

two different types of catheter segment culture quantification. We also notice that

these two entries have very large values for TN . The individual estimates for

specificity for these two entries is 0.98, which are the two highest values observed in

this meta-analysis. While this may have been an obvious finding even without the

deletion diagnostics, the influence is quantified for the analyst. In cases where the

data are not obvious outliers, the deletion diagnostics provide insight as to the

influence of the cluster and/or observation.

With studies 18 and 20 identified as influential, we re-run the 3 models with these

two studies removed. Table 4.3 displays the results, and we immediately notice the
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impact of studies 18 and 20. In general the removal of these two influential studies

causes an expected increase in estimates of mean sensitivity, along with an associated

decrease in mean specificity. Also of note is the decrease in the overdispersion

estimates ϕ0 for all 3 models, and a noticeable decrease in ρg. Given that we removed

one study of each Type it is not surprising to observe that the 1 df Wald test still

shows no significance for the separate effect of Type of sensitivity and specificity

(p=0.928), and the reduced model for the common effect type is also not significant

(p=0.763). For the model with no covariates we observe that comparing the mean

estimates and their standard errors between Tables 4.2 and 4.3 that the impact of

studies 18 and 20 is a 3.9% decrease in mean specificity and a 4.0% increase in mean

sensitivity. This additional analysis serves to provide potentially important

information about the impact of influential studies on the meta-analysis final

recommendations, especially with regards to any clinical practice impact.

One other interesting observation pertains to the estimates of overdispersion in

Tables 4.2 and 4.3. For correlated binomial data, such as these, there are natural

boundary restrictions placed on the overdispersion parameter estimates:

ϕ0 ≤ min(ni0+) and ϕ1 ≤ min(ni1+). In the current example min(ni0+) = 16 (Study

28) and min(ni1+) = 4 (Study 5). For the three models presented in Table 4.2 the

estimates of ϕ0 are all above 20 which violates the condition while for ϕ1 all estimates

are less than 4. When viewing the impact of studies 18 and 20 in Table 4.2, in

addition to effects on the estimates of sensitivity and specificity we also notice an

approximate halving of the estimates of ϕ0 such that the boundary condition is

satisfied. This finding seems to confirm that highly influential points such as Studies

18 and 20 contribute to substantial increase in variation, which the the overdispersion

parameters are highlighting.
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4.4.2 Data set 2: Lymph node metastases data

Data and Descriptive Study

The second example data set is a meta-analysis of 32 diagnostic accuracy studies

previously analyzed in Klerkx et al. (2010). The diagnostic accuracy of

gadolinium-enhanced MRI in detecting lymph node metastases using histopathologic

test as the reference gold standard. The mean number (std. dev.) of diseased and

non-diseased persons per study was 15(18.5) and 28 (30.4) respectively. Covariates for

partial verification bias (PVB, 8 studies) and study design (case control, 6 studies or

cohort, 26 studies) are available. The data are presented in Table 4.4.

Model and macro inputs

We defined three models of interest a priori: a full model, reduced model and no

covariates model. The full model is as follows

g(µij) = β0j + xijβj, j = 0, 1 (4.11)

where xi0 = I(j = 0)xi, xi1 = I(j = 1)xi; and, xi = 1 if PVB present and xi = 0 if

PVB absent. This example employs reference cell coding of the design matrix since

the main interest is to estimate sensitivity and specificity when PVB is not present.

The data structure is as follows:

StudyID Y N SESP PVB ONESP SE ONESPPVB SEPVB

1 3 12 1 1 1 0 1 0

1 7 10 2 1 0 1 0 1

2 1 41 1 0 1 0 0 0

2 4 9 2 0 0 1 0 0

We interpret the full model parameters as follows: β00 + β0 is the 1-specificity

estimate for PVB=1 (partial verification bias present) on the link scale; and, β00 is
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the 1-specificity estimate for PVB=0 (partial verification bias not present) on the link

scale. Similarly for β01 and β1 we obtain estimates for sensitivity. For the reduced

model we assume a common PVB effect for both 1-specificity and sensitivity where

β0 = β1 = β. Finally, all estimates are then available on the data scale by applying

the inverse link (inverse logit in the current example).

For the present data analysis we assume a logit link PA model and a covariate for

whether verification bias was known to be present (PVB). For the analysis without

the covariate we simply remove PVB. The following macro call was used to analyze

the lymph node metastases data (Klerkx et al., 2010) using the logit link. We

demonstrate the macro call that includes separate effects of PVB for each of

sensitivity and specificity.

\%PAMETA(filenet = D:\Analysis\Paper3\KlerkxData\,

sourcedat = klerkx2010,

yvar = ny,

nvar = nn,

covars = ONESP SE ONESPPVB SEPVB,

studyid = ID,

obsid = SESP,

link = 3,

corr = 4,

outobsdiag = klerkxobsdiag,

outclusdiag = klerkxclusdiag,

outcsv=1);

Results

The results for the full dataset are presented in Table 4.5. The model with separate

effects of PVB for each of sensitivity and specificity is displayed in the left column.

Although we notice quite different estimates of mean specificity and sensitivity, this

may be tempered by the fact there are only 8 studies with PVB=1. The single df

Wald test is not significant for the separate effects of PVB (p=0.80). Upon reducing
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the model to PVB having a common effect we observe the adjusted means (for PVB

present) for specificity equal to 0.882 (0.034) and mean sensitivity equal to 0.601

(0.079). For PVB not present specificity is 0.786 (0.022) and sensitivity equals 0.755

(0.025). The test for significance of the PVB effect based on the z-score

(bias-corrected SE) is -2.37 with p = 0.018. This result is significant at the 5% level,

and does caution us to interpret the parameter estimates of sensitivity and specificity

separately for PVB present or absent. For completeness we also present the model

without covariates, where the results for mean specificity and sensitivity, 0.802 (0.056)

and 0.731 (0.033), respectively.

The deletion diagnostics are displayed in Figure 4.2. Study 28 stands out as a

study that is influential. The 3 models were re-fit without study 28 and the results

given in Table 4.6. The effects of removal of this study are noticeable immediately in

estimates of ϕ1 and ρg. When considering the source data for study we notice that the

estimate for specificity of this study is 0.409 and sensitivity 0.850. We would expect

an increase in mean specificity estimates, especially in the no covariate model.

Comparing the results across Tables we do in fact notice a slight increase in specificity

with removal of the influential study 28. Further we also notice a slight reduction in

mean sensitivity for the models with removal of study 28’s contribution (0.850).

Verification bias in meta-analysis is an important and potentially serious cause for

concern (Ransohoff and Feinstein, 1978). Ma et al. (2010) investigate the impact of

partial verification bias on the Klerkx et al. (2010) data using a hybrid Bayesian

approach including a trivariate random effects model which includes prevalence

estimates. In the current analysis we take a slightly different approach by accounting

for presence of PVB as a covariate that potentially affects mean specificity and

sensitivity. Concurrently, the analysis assumes correlation and overdispersion

parameters are common across studies regardless of PVB status. Given that many
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meta-analyses will have small samples sizes (10-25), it may be argued that studies,

which might otherwise be identified for removal for minor design flaws, still be

included in the model in the way described in order to increase information for

estimation. The concept of “serious” design flaw excluding the study from the

meta-analysis versus “minor” would be an assumption that would be built into the

literature search and filtering process.

4.5 Conclusions

The PA approach to diagnostic accuracy meta-analysis provides mean estimates of

specificity and sensitivity, with or without adjustment for covariates. Further,

influential observations may be evaluated using the available deletion diagnostics.

This type of exploratory analysis may provide the analyst with key insights into the

make-up of the meta-analysis study sample. We provide some simple analysis for two

data examples along with implementation and interpretation guidelines.

The SAS software provided allows for easy implementation of model estimation as

well as options for output datasets to create graphics. To our knowledge no other

software allows for heterogeneous overdispersion parameter estimation for the analysis

of correlated binomial data with GEE making this set of software a valuable resource

for those wishing to undertake a PA analysis approach to their meta-analysis.
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Figure 4.1: Deletion diagnostics for catheter segment culture data. Upper left panel:
Cluster (Study) level Cook’s D; upper right: Observation (sensitivity and 1- specificity
within a cluster) Cook’s D; lower left: DFBETAS for 1-specificity; and, lower right:
DFBETAS for sensitivity.
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Figure 4.2: Deletion diagnostics for lymph node metastases data. Upper left panel:
Cluster (Study) level Cook’s D; upper right: Observation (sensitivity and 1- specificity
within a cluster) Cook’s D; lower left: DFBETAS for 1-specificity; and, lower right:
DFBETAS for sensitivity.
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Table 4.1: Data from a Meta-Analysis of Studies on Semi-Quantitative (Type=1)
or Quantitative (Type=2) Catheter Segment Culture for Diagnosis of Intravascular
Device-Related Bloodstream Infection. (Source: Chu et al. (2010)

Study No. TP No. FN No. FP No. TN Type
1 12 0 29 289 1
2 10 2 14 72 1
3 17 1 36 85 1
4 13 0 18 67 1
5 4 0 21 225 1
6 15 2 122 403 1
7 45 5 28 34 1
8 18 4 69 133 1
9 5 0 11 34 1
10 8 9 15 96 1
11 5 0 7 63 1
12 11 2 122 610 1
13 5 1 6 145 1
14 7 5 25 342 1
15 10 1 93 296 1
16 5 5 41 271 1
17 5 0 15 53 1
18 55 13 19 913 1
19 6 2 12 30 1
20 42 26 19 913 2
21 5 3 5 37 2
22 13 0 11 135 2
23 20 0 24 287 2
24 7 6 13 72 2
25 48 2 15 47 2
26 11 1 14 72 2
27 15 5 32 170 2
28 68 13 5 11 2
29 13 1 5 72 2
30 8 3 66 323 2
31 13 1 98 293 2
32 14 1 0 155 2
33 8 2 4 60 2
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Table 4.2: Comparison of Full and Reduced models for the catheter segment culture
data (all data), for PA model with logit link (bias-corrected standard errors)

Parameter Full Model Reduced Model No covar. Model
β00(1-Sp) -1.955 (0.271) -1.948 (0.265) -1.901 (0.223)
β01(Se) 1.464 (0.209) 1.494 (0.198) 1.480 (0.197)
β0(Type) 0.170 (0.271) 0.165 (0.245) -
β1(Type) -0.003 (0.209) - -

ϕ0 20.97 20.19 20.35
ϕ1 2.965 2.950 2.794
ρg 0.324 0.310 0.330

Mean Spec. Type=1 0.856 (0.047) 0.856 (0.044) -
Mean Sens. Type=1 0.812 (0.045) 0.840 (0.042) -
Mean Spec. Type=2 0.893 (0.045) 0.892 (0.035) -
Mean Sens. Type=2 0.813 (0.055) 0.791 (0.052) -
Mean Spec. Overall 0.876 (0.029) 0.875 (0.029) 0.870 (0.025)
Mean Sens. Overall 0.812 (0.032) 0.817 (0.030) 0.815 (0.030)
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Table 4.3: Studies 18 and 20 removed: Comparison of Full and Reduced models for the
catheter segment culture data (all data),for PA model with logit link (bias-corrected
standard errors)

Parameter Full Model Reduced Model No covar. Model
β00(1-Sp) -1.670 (0.153) -1.662 (0.143) -1.629 (0.126)
β01(Se) 1.696 (0.200) 1.724 (0.203) 1.450 (0.194)
β0 Type 0.111 (0.153) 0.096 (0.134) -
β1 Type -0.149 (0.200) - -
ϕ0 11.06 10.65 10.59
ϕ1 2.685 2.821 2.590
ρg 0.142 0.120 0.118

Mean Spec. Type=1 0.826 (0.031) 0.827 (0.028) -
Mean Sens. Type=1 0.824 (0.041) 0.861 (0.029) -
Mean Spec. Type=2 0.856 (0.033) 0.853 (0.025) -
Mean Sens. Type=2 0.864 (0.041) 0.836 (0.033) -
Mean Spec. Overall 0.842 (0.020) 0.841 (0.019) 0.836 (0.017)
Mean Sens. Overall 0.845 (0.026) 0.849 (0.026) 0.810 (0.030)
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Table 4.4: Data from a Meta-Analysis of Studies on lymph node metastases. (Source:
Klerkx et al. (2010)

Study No. TP No. FN No. FP No. TN Ver. Bias Design
1 7 3 3 6 0 Cohort
2 7 5 5 12 0 Cohort
3 18 6 3 19 0 Cohort
4 11 1 4 14 0 Cohort
5 9 5 3 29 1 Cohort
6 3 2 1 9 1 Cohort
7 6 0 2 7 0 Cohort
8 15 9 8 33 0 Cohort
9 15 7 1 25 0 Cohort
10 2 1 0 7 0 Cohort
11 5 1 2 3 1 Cohort
12 13 6 3 11 1 Cohort
13 7 1 1 23 1 Cohort
14 7 1 1 7 0 Cohort
15 9 2 4 26 1 Cohort
16 1 1 1 18 1 Cohort
17 10 0 17 20 0 Cohort
18 10 5 3 14 0 Cohort
19 5 8 2 17 0 Cohort
20 4 5 1 40 1 Cohort
21 12 2 2 41 0 Cohort
22 2 5 2 7 0 Cohort
23 3 1 1 22 0 Cohort
24 5 2 0 12 0 Cohort
25 6 3 1 11 0 Cohort
26 36 4 6 29 0 Cohort
27 16 2 2 22 0 Cohort
28 91 16 65 45 0 Case Control
29 4 0 1 31 0 Case Control
30 5 8 25 133 0 Case Control
31 18 6 8 22 0 Case Control
32 6 6 1 16 0 Case Control
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Table 4.5: Comparison of Full and Reduced models for the lymph node metastases data
(all data), for PA model with logit link (bias-corrected standard errors)

Parameter Full Model Reduced Model No covar. Model
β00(1-Sp) -1.279 (0.134) -1.300 (0.131) -1.400 (0.352)
β01(Se) 1.074 (0.135) 1.124 (0.133) 1.001 (0.167)
β0(PVB) -0.973 (0.449) -0.714 (0.301) -
β1(PVB) -0.455 (0.334) - -

ϕ0 2.263 2.256 2.143
ϕ1 5.735 5.557 5.925
ρg 0.387 0.372 0.408

Mean Spec. PVB=1 0.905 (0.056) 0.882 (0.034) -
Mean Sens. PVB=1 0.650 (0.081) 0.601 (0.079) -
Mean Spec. PVB=0 0.782 (0.066) 0.786 (0.022) -
Mean Sens. PVB=0 0.745 (0.036) 0.755 (0.025) -
Mean Spec. Overall - - 0.802 (0.056)
Mean Sens. Overall - - 0.731 (0.033)
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Table 4.6: Study 28 removed: Comparison of Full and Reduced models for the lymph
node metastases data (all data), for PA model with logit link (bias-corrected standard
errors)

Parameter Full Model Reduced Model No covar. Model
β00(1-Sp) -1.697 (0.188) -1.713 (0.178) -1.782 (0.176)
β01(Se) 0.987 (0.204) 1.010 (0.188) 1.933 (0.172)
β0 PVB -0.550 (0.422) -0.430 (0.322) -
β1 PVB -0.315 (0.312) - -
ϕ0 2.019 1.971 1.882
ϕ1 2.507 2.412 2.450
ρg 0.181 0.179 0.186

Mean Spec. PVB=1 0.904 (0.040) 0.895 (0.035) -
Mean Sens. PVB=1 0.662 (0.084) 0.641 (0.086) -
Mean Spec. PVB=0 0.845 (0.025) 0.847 (0.023) -
Mean Sens. PVB=0 0.729 (0.040) 0.733 (0.037) -
Mean Spec. Overall - - 0.856 (0.022)
Mean Sens. Overall - - 0.718 (0.027)
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Chapter 5

Conclusion

Methods for diagnostic accuracy analysis were presented for both the single study and

meta-analysis frameworks. Specifically, population-averaged methods were employed

in both cases using slightly different aspects of related methodology. In Chapter 2,

the ROC-GLM was presented within the context of the deletion diagnostics by

Preisser and Qaqish (1996). In this context we are able to identify potentially

influential subjects as a sensitivity analysis within the ROC-GLM method. Chapters

3 presented a PA model for diagnostic accuracy meta-analysis which to our knowledge

has not been done previously. Chapter 4 then presented the deletion diagnostics

again, this time in the meta-analysis contexts. Overall, the common theme is

population-averaged models along with the associated deletion diagnostics to enhance

sensitivity analysis of diagnostic accuracy studies.

There are a number of future directions for extension of these methods in the

diagnostic accuracy setting. In the single-study case, it is suggested in Chapter 2 that

the deletion diagnostics may in fact be a useful tool in the identification of imperfect

gold standard measurements. This finding was presented within the context of the

neonatal audiology data where the original authors acknowledged that gold standard

was difficult to measure accurately. Simulations and further study might investigate



this further.

For PA methods related to diagnostic accuracy meta-analysis, certainly the

production of an ROC curve via inversion of the equations presented in Chapter 3

would be important future work. An initial outline of a method is presented in

Appendix II, and could be an interesting publication in and of itself. It was shown

that the PA method performs well as measured with simulations against the GLMM

of Chu and Guo (2010).

Finally, there is a growing body of literature in predictive values and incremental

value in the context of biomarker development. The methods presented here may

perhaps be extended to these situations.
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Appendix I

Supplemental Tables to Chapter 3

Table S1. Data from a Meta-Analysis of Studies on Semi-Quantitative or
Quantitative Catheter Segment Culture for Diagnosis of Intravascular Device-Related
Bloodstream Infection. (Source: Chu et al. (2010).

Study No. TP No. FN No. FP No. TN
1 12 0 29 289
2 10 2 14 72
3 17 1 36 85
4 13 0 18 67
5 4 0 21 225
6 15 2 122 403
7 45 5 28 34
8 18 4 69 133
9 5 0 11 34
10 8 9 15 96
11 5 0 7 63
12 11 2 122 610
13 5 1 6 145
14 7 5 25 342
15 10 1 93 296
16 5 5 41 271
17 5 0 15 53
18 55 13 19 913
19 6 2 12 30
20 42 26 19 913
21 5 3 5 37
22 13 0 11 135
23 20 0 24 287
24 7 6 13 72
25 48 2 15 47
26 11 1 14 72
27 15 5 32 170
28 68 13 5 11
29 13 1 5 72
30 8 3 66 323
31 13 1 98 293
32 14 1 0 155
33 8 2 4 60
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Table S2. Simulated data of 25-study meta-analysis. Study cluster sizes were fixed at
(175,25) and generated via correlated binomial data methods with mean
1-specificity=0.7 and mean sensitivity=0.75.

Study No. TP No. FN No. FP No. TN
1 12 13 54 121
2 22 3 31 144
3 16 9 34 141
4 14 11 40 135
5 20 5 50 125
6 19 6 53 122
7 20 5 39 136
8 24 1 55 120
9 11 14 57 118
10 12 13 61 114
11 21 4 51 124
12 17 8 68 107
13 17 8 49 126
14 21 4 24 151
15 17 8 49 126
16 16 9 57 118
17 19 6 51 124
18 18 7 16 159
19 14 11 43 132
20 18 7 78 97
21 20 5 55 120
22 17 8 56 119
23 19 6 67 108
24 22 3 67 108
25 12 13 24 151
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Table S3. Comparison of Logit and Probit link functions for the PA method with
constant scale for clusters (with empirical standard errors

Parameter Logit Probit
β∗
0 -1.901 (0.205) -1.127 (0.110)
β∗
1 1.500 (0.187) 0.906 (0.105)
ϕ 11.227 11.227
ρg 0.222 0.222

Mean Specificity 0.870 (0.023) 0.870 (0.023)
Mean Sensitivity 0.818 (0.028) 0.818 (0.028)
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Table S4. Percent relative bias of simulated parameters based upon empirical
standard errors after fitting PA model as well as SS-model marginal converted results

Logit Probit
Clus. β∗

0 β∗
1 β∗

0 β∗
1

Size Type (n0, n1) (µ0, µ1) PA SS PA SS PA SS PA SS

K=15 Fix. (175,25) (0.7,0.75) 0.0 0.3 -0.1 0.2 0.0 -0.1 -0.1 0.0
(0.9,0.75) 0.0 -0.2 -0.2 0.2 0.0 0.0 -0.2 -0.2
(0.7,0.95) 0.3 0.6 0.2 0.3 0.3 0.3 0.2 1.0
(0.9,0.95) 0.1 -0.2 0.0 0.1 0.1 0.1 0.0 0.8

Uneq. MVN(1) (0.7,0.75) -1.6 -1.4 0.3 0.7 -1.6 -1.6 0.3 0.4
(0.9,0.75) -0.2 -0.3 -0.1 0.2 -0.2 -0.2 -0.1 -0.1
(0.7,0.95) -0.4 -0.6 0.3 -0.4 -0.8 -0.8 0.3 0.3
(0.9,0.95) 0.0 -0.2 0.8 0.9 0.0 0.0 0.8 0.8

K=25 Fix. (175,25) (0.7,0.75) 0.0 0.3 0.0 0.3 0.0 -0.1 0.0 0.0
(0.9,0.75) 0.1 0.3 -0.1 -0.2 0.1 -0.1 -0.1 0.1
(0.7,0.95) 0.2 0.6 0.1 0.2 0.2 0.2 0.1 0.1
(0.9,0.95) 0.1 -0.2 0.0 0.1 0.1 0.1 0.0 0.0

Uneq. MVN(1) (0.7,0.75) 0.5 -1.1 0.0 -1.4 -1.4 -1.4 0.0 0.2
(0.9,0.75) -0.1 -0.3 -0.2 0.1 -0.1 -0.1 -0.2 -0.3
(0.7,0.95) 0.4 -0.6 0.4 -0.9 -0.9 -0.9 0.4 0.4
(0.9,0.95) 0.0 -0.2 0.8 0.9 0.0 0.0 0.8 0.8

K=50 Fix. (175,25) (0.7,0.75) 0.1 0.4 -0.1 0.2 0.1 0.1 -0.1 -0.1
(0.9,0.75) -0.1 -0.3 -0.1 0.2 -0.1 -0.1 -0.1 -0.1
(0.7,0.95) -0.2 0.2 -0.1 0.0 -0.2 -0.2 -0.1 -0.1
(0.9,0.95) 0.0 -0.3 -0.1 0.0 0.0 -0.1 -0.1 -0.1

Uneq. MVN(1) (0.7,0.75) -1.1 -1.3 0.1 0.5 -1.6 -1.5 0.1 0.1
(0.9,0.75) -0.1 -0.2 -0.1 0.2 -0.1 -0.1 -0.1 -0.1
(0.7,0.95) -0.8 -0.6 0.3 0.4 -0.8 -0.8 0.3 0.3
(0.9,0.95) 0.0 -0.1 0.8 0.9 0.0 0.0 0.8 0.8
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Table S5. Convergence rates of simulated models based upon empirical standard
errors after fitting PA model as well as SS-model marginal converted results

Logit Probit
Size Type (n0, n1) (µ0, µ1) PA SS PA SS

K=15 Fix. (175,25) (0.7,0.75) 100 96.8 100 98.8
(0.7,0.95) 100 96.6 100 98.8
(0.9,0.75) 100 97.6 100 99.2
(0.9,0.95) 100 98.6 100 98.7

Uneq. MVN(1) (0.7,0.75) 100 98.2 100 99.6
(0.7,0.95) 100 97.2 100 98.1
(0.9,0.75) 100 97.4.2 100 97.4
(0.9,0.95) 100 98.5 100 98.5

K=25 Fix. (175,25) (0.7,0.75) 100 99.6 100 99.8
(0.7,0.95) 100 99.2 100 99.6
(0.9,0.75) 100 100 100 99.8
(0.9,0.95) 100 97.6 100 98.2

Uneq. MVN(1) (0.7,0.75) 100 98.1 100 100
(0.7,0.95) 100 97.2 100 97.2
(0.9,0.75) 100 100 100 100
(0.9,0.95) 100 96.5 100 96.5

K=50 Fix. (175,25) (0.7,0.75) 100 100 100 100
(0.7,0.95) 100 100 100 100
(0.9,0.75) 100 99.8 100 100
(0.9,0.95) 100 99.2 100 99.4

Uneq. MVN(1) (0.7,0.75) 100 99.6 100 99.8
(0.7,0.95) 99.8 98.1 100 99.6
(0.9,0.75) 100 100 100 99.8
(0.9,0.95) 100 97.6 100 98.2
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Appendix II

Diag104.sas macro

\%GEE (

DATA = SAS dataset, { syslast }

YVAR = y-variable, { required }

XVAR = x-variables, { required }

ID = id-variable, { required }

TIME = within cluster variable { }

HET = indicator for heterogeneous phi { }

LINK = link function, { required }

VARI = mean-variance relation, { required }

CORR = correlation structure, { required }

N = binomial denominator variable, { }

M = dependence, { 1 }

R = given correlation matrix, { }

SCALE= scale parameter, { }

BETA = initial estimate of beta, { }

OFFS = offset variable, { }

PROBITOVAR = variance estimation

using observed information (probit only) { 0 }

NCOVOUT = output dataset of beta, model-based se,

and model-based covariance matrix, { }

RCOVOUT = output dataset of beta, empirical se,

and empirical covariance matrix, { }
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BCOVOUT = output dataset of beta, bias-corrected se,

and bias-corrected covariance matrix, { }

OBSOUT = output dataset of observation diagnostics, { }

CLSOUT = output dataset of cluster diagnostics, { }

NORM = Cook’s D and DFBETAs normed by model-based

(1, default), Empirical (2), or bias-corrected (3)

variance estimator { 1 }

ITER = maximum iterations, { 20 }

MONITOR = print out iterations (YES | NO) { NO }

CRITTYPE = type of convergence criterion (REL | ABS) { REL }

CRIT = convergence criterion { 1E-5 }

BINRANGE = binary range checks enforced (Y | N) { Y }

)

REQUIRED MACRO SPECIFICATIONS

To run the macro, the user is required to provide a SAS dataset (DATA) with

response variable (YVAR), a list of independent variables (XVAR), cluster identifier

variable (ID), link (LINK) and variance (VARI) function, and working correlation

structure (CORR).

If no dataset name is given, the last working SAS dataset is used. Only one

response variable may be given. If an intercept term is desired in the model, the

intercept variable must be explicitly included with the covariate list. Options for

LINK, VARI, and CORR are below.

The following choices of link (LINK) function are available:

1 - Identity

2 - Logarithm

3 - Logit

109



4 - Reciprocal

5 - Probit

The following choices of variance (VARI) function are available:

1 - Gaussian

2 - Poisson

3 - Binomial

4 - Gamma

The following choices of correlation (CORR) structures are available:

1 - Independence

2 - Stationary m-dependent

3 - Non-stationary m-dependent

4 - Exchangeable

5 - Autoregressive(1)

6 - Unstructured

7 - User-defined, R must be given when macro is called

For m-dependent correlation structures, (M) should be specified. If it is not specified,

the default is 1-dependence. For user-defined correlation structures, all elements of

(R) must be given in one string without commas. The macro creates the square

matrix.

OPTIONAL SPECIFICATIONS

A within-cluster ordering variable (TIME) can be specified if desired. The possible

values of this variable must be positive consecutive integers starting with 1 or the

macro will not work correctly. If a time variable is specified, the data will be

pre-sorted by cluster ID and time. Otherwise, the data will be used as ordered in the
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dataset when the macro is called.

If a heterogeneous (e.g. time-varying) scale parameter is desired, then this may be

done using the HET parameter. The default is 0 (common scale parameter). If HET

is equal to 1, then a scale parameter for each value of TIME is estimated.

A denominator (N) is required for binomial data, but if not specified is assumed to

equal 1. Scale is assumed to equal 1 for binary data, but is otherwise estimated.

Optionally, it may be set to equal 1 (or some other value) with the (SCALE) option.

[Note that the scale parameter is assumed to be constant across all observations.] The

(BETA) option may be used to specify starting values for the regression coefficient

estimates, otherwise GLiM estimates are used as starting values. The offset option

(OFFS) specifies a SAS variable containing offsets (these are used for example in

poisson regression with unequal exposure periods).

The user can control the maximum number of iterations allowed (ITER), the

convergence criteria (CRIT), and can print out details of each iteration (MONITOR).

Convergence is determined by the magnitude of the maximum absolute or relative

(default) change in the betas between iterations. Checking for absolute or relative

changes can be set by the user (CRITTYPE).

There are a number of output datasets that can be requested by the user. For a

dataset that contains beta estimates, standard errors, and the covariance matrix,

enter an output dataset name for any or all of the following options:

For the model-based (naive) SEs and covariance matrix (NCOVOUT)

For the empirical sandwich (robust) SEs and covariance matrix (RCOVOUT)

For the bias-corrected SEs and covariance matrix (BCOVOUT)

For datasets that contain regression diagnostics, including Cooks distance,

DFBETA, DFBETAS (standardized), and leverage, enter an output dataset name for

either or both of the following options:
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For cluster-level diagnostics (CLSOUT)

For observation-level diagnostics (OBSOUT)

Cooks distance and DFBETAS are standardized by either the model-based,

empirical, or bias-corrected variance estimators. Use the (NORM) option to designate

which to use: Model-based = 1 (default), Empirical = 2, Bias- corrected = 3.

As noted in Prentice (Biometrics 1988:44, 1033-1048), among other places, there

are restrictions placed on the range of values that the correlation coefficients in R may

take for binary response data. An option has been added to this macro (BINRANGE,

when set to Y) to allow the user to enforce these ranges, which have the effect of

ensuring non-negative joint probabilities for all within-cluster pairs of observations.

REGRESSION DIAGNOSTICS

This macro provides computational formulae for case-deletion regression

diagnostics (Preisser and Qaqish, 1996). These diagnostics are generalizations of

Cook’s distance, DFBETA and leverage for linear regression, and their counterparts

for generalized linear models. They are an approximation to the difference in the

estimated regression coefficients that one would obtain upon deleting either one

observation or one cluster. The diagnostics are sometimes called “one-step”

diagnostics because they are equal to the procedure that upon convergence of the

iteratively reweighted least squares algorithm to the GEE solution, applies one more

iteration after deletion of an observation (or cluster). The difference in the regression

coefficients one would obtain from such a procedure is equivalent to the value of the

diagnostic. Because, however, of computational formula for the diagnostics, no

additional iterations are required in the computing algorithm to obtain the full set of

observation-deletion and cluster-deletion diagnostics.

Diagnostics are not provided automatically by the software, but may be requested

with optional statements declared in the macro call. To request observation-deletion
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diagnostics, one set for each observation, use the statement OBSOUT. For example,

OBSOUT=infobs will create a sas dataset “infobs” that will contain the influence

diagnostics for the observations, including cook’s distance, DFBETA, DFBETAS

(standardized), observation leverage, cluster size of the cluster to which the

observation belongs, fitted value, raw residual, and standardized residual (raw

residual divided by the variance function). The statement CLSOUT is used to obtain

cluster-deletion diagnostics. For example, CLSOUT=infcls will create a sas dataset

“infcls” that will contain the influence diagnostics for the clusters, including cook’s

distance, DFBETA, DFBETAS (standardized), cluster leverage, cluster size, and a

quadratic summary of the standardized residual vector of the cluster (the usefulness

of this last statistic is yet to be investigated).

Unstandardized and standardized DFBETAs are produced by the macro. In the

output dataset, the variables containing the unstandardized values take the name of

the covariate with DFBETA as the prefix; the variables containing the standardized

values take the name of the covariate with DFBETAS as the prefix. While these

prefixes are long, they allow differentiation from the original covariates if the

diagnostic datasets are merged back onto the raw data.

The user may compute standardized DFBETAs using a different norm–either

model-based, empirical sandwich, or bias-corrected standard errors–by first requesting

an output dataset using the NCOVOUT, RCOVOUT, of BCOVOUT options,

respectively. These output data sets are also useful for constructing contrasts and

hypothesis tests, for example, using SAS/IML.

OUTPUT DIAGNOSTICS DATASETS

The observation-level dataset specified with the OBSOUT option will

contain the following variables:

I Sequential cluster number
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IJ Sequential observation number

NI number of records in the cluster

FIT Predicted value for obs

RES Unstandardized residual

SRES Standardized residual

QWOBS Leverage: Diagonal element of H matrix for obs

COOKDOBS Cooks D

DFBETA<xvars> Unstandardized DFBETA values

DFBETAS<xvars> Standardized DFBETA values

The cluster-level dataset specified with the CLSOUT options will

contain the following variables:

I Sequential cluster number

NI number of records in the cluster

TRQWCLS Leverage: Trace of H matrix for cluster

COOKDCLS Cooks D

GCLS Scalar summary of the residual vector Ei for cluster,

tr(Ei)[var(Ei)]^{-1}Ei (similar to MCLS_i on p557 of

Preisser and Qaqish, 1996, but without the Hi and p)

DFBETA<xvars> Unstandardized DFBETA values

DFBETAS<xvars> Standardized DFBETA values

114



Appendix III

Determination of ROC curve from PA model

To develop an ROC curve for the case of balanced cluster sizes using the PA model

approach, the formula in equations (9), (12) and (14) are inverted, solving for the

GLMM parameter θTm = (β0, β1, ρm, σ0, σ1) from the PA model parameter

θTg = (β∗
0 , β

∗
1 , ρg, ϕ0, ϕ1). In other words, defining the vector function F (·) such that

θTg = F (θTm), we solve θ̂Tm = F−1(θ̂Tg ), where θ̂g is the GEE estimate of the PA model

parameter. Then, leveraging the bivariate normal distributional structure of the

GLMM model, θ̂m is plugged into formula (2) of Chu, Guo and Zhou (2009) obtaining

the ROC curve

g(Se) = (β1 − ρmβ0σ1/σ0) + ρmσ1/σ0[g(1− Sp)].

Fortunately, the required inversion can be broken down into three simple steps, as

illustrated for the logit link:

1. Together, equation (9) expressed as β⋆
0 = f1(β0, σ

2
0) for j = 0, and equation (12)

expressed as ϕ0 = f2(β0, σ
2
0) give two equations in two unknowns. Specifically,

equation (9) gives

β0 ≈ [c2σ2
0 + 1]β⋆

0 ,

which is then inserted into equation (12) giving an equation for σ2
0 which is

solved iteratively using Newton’s method (details are provided below). The

solution σ̂2
0 along with the GEE estimate β̂⋆

0 are plugged into the equation above

giving

β̂0 ≈ [c2σ̂2
0 + 1]β̂⋆

0 .
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2. Estimates β̂1 and σ̂2
1 are determined in steps analogous to (1).

3. Finally, it is easy to invert equation (14) giving

ρm =
ρg

√
[L2

0σ
2
0 +

µ∗
0(1−µ∗

0)

n0+
][L2

1σ
2
1 +

µ∗
1(1−µ∗

1)

n1+
]

L0L1σ0σ1
, (5.1)

which provides an estimate ρ̂m by plugging in β̂0, β̂1, σ̂0 and σ̂1 obtained in the

first two steps, with σ̂j =
√
σ̂2
j for j = 0, 1.

Details of application of Newton’s method.

In step (1), let x = σ̂2
0, k = c2 and y = (kx+ 1)β⋆

0 . We wish to solve for the root x in

the equation f(x) = 0 where (referencing equation (12)),

f(x) =
n0+[L0(x)]

2x

µ∗
0(1− µ∗

0)
+ 1− ϕ0, (5.2)

where L0(x) = exp[y(x)]/{1 + exp[y(x)]}2 and µ⋆
0 = exp(β⋆

0)/[1 + exp(β⋆
0)]. Given x(t),

the estimate at the t-th iteration, the updated estimate at the (t+ 1)-th iterative step

is given by Newton’s method as

x(t+1) = x(t) − f(x(t))

f ′(x(t))

where, through application of the product, quotient and chain rules of differentiation

f ′(x) = ∂f(x)/∂x =
kβ⋆

0e
y(1− ey)

[1 + ey]3
.

Convergence proceeds until |x(t+1) − x(t)| < ϵ for some small ϵ. A good starting value

x(0) for σ2
0 is necessary for convergence. The same basic procedure is used for step (2).
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