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ABSTRACT 

Giridhar Murlidharan: Biology of AAV vectors in the central nervous system 
(Under the direction of Aravind Asokan) 

 Adeno-Associated Viruses (AAV) have emerged as the vector platform of choice 

for therapeutic gene transfer towards multiple genetic disorders with neurological 

manifestations. My doctoral thesis was focused on a) evaluating CNS spread, 

transduction profiles, receptor interactions and clearance; and b) understanding the 

physiological and biochemical checkpoints governing AAV biologics in the CNS. In our 

first study, we engineered an AAV4 variant (AAV4.18) that shows expanded tropism 

from ependymal cells to migrating progenitors in the developing brain. AAV4.18 

revealed a striking shift in glycan engagement from 2,3-linked Sialic acid (SA) to 2,8-

linked Polysialic acid (PSA). PSA is an important biomarker of neurogenesis. We also 

report opposing roles of SA and PSA on CNS transduction of AAV4. Overall, 

carbohydrate content can be exploited to regulate viral tropism in the brain. We then 

evaluated a lab-derived chimeric AAV2g9, developed through rational vector design. 

Direct brain injections of AAV2g9 resulted in widespread neuronal transduction with 

reduced glial tropism. As compared to AAV9, AAV2g9 displayed minimal systemic 

leakage and off-target gene expression within peripheral organs. We utilized AAV2g9 

for brain-specific deletion of ubiquitously expressed MIR137 schizophrenia risk gene 

using CRISPR/Cas9 technology. Our approach exemplifies control over AAV tropism at 

both cellular and organ levels to potentially improve vector safety. Lastly, AAV mediated 
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CNS gene therapy requires a deeper understanding of factors affecting transduction 

efficiency and clearance. Dysfunction in aquaporin-4 (AQP4) mediated CSF flux during 

aging or disease is correlated with ineffective solute clearance from the brain. Aged 

mice showed mislocalized AQP4 expression and increased AAV9 deposition following 

intraCSF administration. We further compared wildtype (WT) and AQP4 knockout 

(AQP4-/-) mouse CNS. Minutes after intraCSF administration, AQP4-/- mice exhibited 

highly restricted spread of fluorophore labeled AAV9. Transgene expression was 

markedly increased 2 weeks post AAV9 administrations in AQP4-/- mice. Further, 

AQP4-/- mice showed markedly reduced AAV biodistribution and transgene expression 

in peripheral organs. This suggests that AQP4-deregulation affects CNS spread, 

transduction efficiency and systemic leakage of AAV vectors. We hypothesize that 

altered CSF flux under conditions of aging, CNS disease or injury can impact AAV 

residence time and gene transfer efficiency. 
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CHAPTER 1: INTRODUCTION1 

1.1 Disorders of the Central Nervous System 

Mammalian central nervous system (CNS) is a complex and precise connectivity 

of intertwining neurons nourished and supported by glial cells- astrocytes, 

oligodendrocytes, and microglia. Smooth functioning of the CNS is orchestrated by 

excitation and inhibition of neuronal firing/action potential i.e. relay of potential 

difference traveling between the cell body (soma) and its projections at the axonal 

terminus/ni. Neurons are decorated with receptors for neurotransmitters like glutamate 

and gamma ()-amino butyric acid (GABA), which are specifically associated with 

excitatory or inhibitory responses (1).  

While timely excitation and inhibition of regional subpopulations of neurons 

controls motor, behavioral, hormonal, sensory and cognitive outcomes; unregulated 

neuronal activity and selective loss of neuronal or glial subgroups has been associated 

with CNS disorders. Such disorders can arise from drug abuse, injuries, genetic, 

epigenetic and environmental factors. Loss of functionality in affected cell types within 

the brain can often be attributed to defects in single genes. For instance, a range of 

                                            
1This chapter includes original publications that appeared in the journal Frontiers in 
Molecular Neuroscience and the book Translational Neuroscience. Full citations are as 
follows: Murlidharan, G., Samulski, R.J., Asokan, A. Biology of adeno-associated viral 
vectors in the central nervous system, Frontiers in Molecular Neuroscience, 2014, 
89:0076. 
Murlidharan, G, Samulski, R.J., Asokan, A. Gene therapy of CNS disorders using 
recombinant AAV vectors, Translational Neuroscience-Fundamental approaches for 
neurological disorders, 2016 (9-32)  
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neurological disorders arise from the inability of cells in the CNS to break down 

metabolic end products (e.g. lysosomal storage disorders (LSDs)). One such example 

of LSDs with fatal manifestations includes Globoid-cell leukodystrophy (GLD) or Krabbe 

disease in which mutations in galactosylceramidase leads to accumulation of the toxin 

‘psychosine’ in the CNS (2). This disease shows early-onset of symptoms like 

demyelination, astrocyte gliosis etc. and progresses to the death of patients within 2 

years of age (3). Other examples of LSDs include Fabry disease, Gaucher disease, 

GM1/GM2 Gangliosidosis, Mucopolysacharidoses disorders, Pompe disease and 

Neuronal Ceroid Lipofuscinosis amongst others (4, 5).   

 Another major class of neurological disorders manifest themselves as loss of 

motor skills e.g. Parkinson’s disease (6), Huntington’s disease (7), epilepsy (8), 

Tourette’s syndrome (9, 10) and amyotrophic lateral sclerosis (ALS) (11); cognitive skills 

e.g. Alzheimer’s disease (11), and Autism (12); or can rarely even be lethal very early 

on in life e.g. Canavan’s disease (13). A common theme among patients suffering from 

such diseases includes difficulties in performing day to day activities amounting to 

exceptional loss in quality of life; disruption of social life; heavy financial burden of 

treatment; and in most cases, absence of curative options. 

 

1.2 Therapeutic Approaches to CNS disorders 

To ameliorate such disease phenotypes, tremendous effort has been directed 

towards pharmacological regulation of events such as neurotransmitter signaling e.g. by 

synthesizing receptor agonists/manipulating receptor domains by genetic 

reprogramming etc. (14). Although successful reversal of pathology is not common, 
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such interventions often provide symptomatic relief for short periods of time and are 

therefore approved for clinical use. Unfortunately, side-effects of pharmacological 

agents; irreversible nature of most genetic alterations; restricted ability of CNS cells to 

replenish themselves; and complicated clinical procedures make CNS disease therapy 

an exceptionally difficult endeavor.  

Gene therapy is being utilized for treating severely debilitating diseases by 

delivering healthy cargo of genetic information to afflicted cell/tissue types. Within the 

CNS, replenishment of biomolecules that are depleted as a result of disease (e.g. 

catabolic enzymes); protection of neurons and glia from premature death; and even 

utilization of cells as bio-factories for production of neurotransmitters and their biological 

co-factors have been demonstrated using gene therapy. Viral vector mediated gene 

therapy offers the ability to perform efficient in vivo gene transfer of therapeutic 

transgenes directed to the CNS. In particular, Adeno-Associated Viruses (AAV) have 

emerged as promising tools for clinical gene transfer in a broad range of genetic 

disorders with neurological manifestations (15). Throughout this chapter, I have 

attempted to bridge the current understanding of the biology of different AAVs with their 

properties such as transduction efficiencies, cellular tropism and transport within the 

CNS. 

 

1.3 Recombinant Adeno-Associated Viral Vectors 

Adeno-associated viruses (AAV) are non-enveloped, helper-dependent 

parvoviruses with an icosahedral capsid architecture ~25 nm in diameter. AAVs 
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package ~4.7 kb genome flanked by ~145 bp inverted terminal repeats (ITRs) on the 5’ 

and 3’ ends (16). The wildtype AAV (wtAAV) genome is a linear single stranded DNA 

consisting of two open reading frames (ORFs). AAV ORFs encode four replication 

proteins (Rep) and three capsid proteins (Cap/VP) and an assembly activating protein 

(AAP) (17). In addition, wtAAV requires co-infection by Adenoviruses or Herpes Simplex 

viruses for successful replication and production of viable AAV particles (16).  

Three advancements have been instrumental in enabling the use of AAV as a 

recombinant vector for gene transfer applications: a) the ability to pseudotype AAV 

vectors by employing AAV capsids of natural or synthetic origin (18-21); b) cloning and 

characterization of adenoviral helper genes that are minimally required for generation of 

infectious AAV particles (22); and c) understanding that inverted terminal repeats (ITRs) 

are the only cis-acting molecular signature for successful packaging of  transgenes 

within an AAV capsids (23). These streamlined components are now used to 

manufacture recombinant AAV (rAAV) vectors packaging a broad spectrum of promoter 

elements and transgene cassettes for different gene transfer applications (24). It is 

noteworthy that due to the aforementioned discoveries, we are now able to manufacture 

AAV vectors with minimal contamination of the wildtype virions. This technology allows 

us to package the transgene of interest into an AAV serotype with desirable properties 

in either single stranded (ss) or self-complementary (sc) configuration (Figure 1). 

Different AAV serotypes exhibit a range of properties pertaining to antigenicity, in 

vivo tropism and receptor interactions based on their capsid structures (17). Capsids of 

different AAV strains bind a spectrum of cell surface glycan receptors and utilize co-

receptors for infection (25). These differences in capsid-receptor interactions play a 



  5 

major role in determining the regional and cellular transduction efficiencies of AAV 

strains across different mammalian organs. Additionally, a recent in vitro genetic screen 

has revealed the type I transmembrane protein, KIAA0319L as an important receptor for 

AAV infection (26). Continued progress in understanding the biology of AAV infection 

over the past two decades has provided the scientific and clinical community with an 

arsenal of AAV strains that offer desirable features for CNS gene transfer (27). In 

addition to natural isolates, several laboratory-derived AAV strains have been 

engineered or evolved for specific CNS gene transfer applications. These efforts have 

yielded novel AAV vectors for targeting a) glioblastoma cells (28); b) rat, mouse and 

human neural stem cells (29); and c) specific regions (piriform cortex and ventral 

hippocampus) of blood-brain barrier (BBB) compromised rats (30).  

In order to showcase differences in CNS transduction profiles of AAV vectors, we 

injected two structurally and functionally distinct strains- AAV4 and AAV9 packaging 

TdTomato (TdTom) fluorescent reporter gene driven by chicken  actin (CBA) promoter 

in the neonatal mouse brain. Intraventricular injections (white arrows, Figure 2) of AAV4 

resulted in TdTom expression (red) close to the site of injection (ependyma) (AAV4-

CBA-TdTom, Figure 2). On the other hand, AAV9 administration resulted in widespread 

TdTom expression across multiple regions of the brain parenchyma (AAV9-CBA-

TdTom, Figure 2). These results suggest that AAV vectors can be utilized to achieve 

either restricted or widespread transgene expression in the CNS. We discuss the 

existing inventory of AAV vectors and their characterization within the CNS later. 
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1.4 Biology of AAV cell entry and implications for CNS gene transfer 

Successful transduction by AAV vectors is contingent on many key steps like cell 

surface receptor binding, endocytic uptake, endosomal escape, subsequent nuclear 

entry, capsid uncoating, genome release, second strand synthesis and subsequent 

transcription. Surface exposed regions on the AAV capsids dictate the interactions with 

the host cell surface (25). Cell surface glycans have been identified as the preferred 

primary receptors for many natural AAVs (31). Accordingly, differences in glycan 

architecture have been attributed to variations in the efficiency of gene transfer by AAV 

capsids in different organs. AAV serotypes 1,5 and 6 bind N-linked sialic acid (SA), 

whereas AAV4 is the only natural AAV isolate that binds O-linked SA moieties on 

mammalian cell surfaces (32-34). AAV2, 3 and 6 bind Heparan Sulfate (HS) 

proteoglycans, whereas AAV9 requires N-terminal galactose residues to perform 

successful gene transfer (35-38).  

Direct injection of HS binding AAV2 in the CNS leads to a largely neuronal 

transduction profile, whereas Sialic acid (SA) binding vectors like AAV1 and AAV5 

perform efficient neuronal and some glial transduction (39-41). The preferential 

neuronal tropism of AAV2 was later identified to correlate with the comparatively larger 

availability of Heparan sulfate proteoglycans (HSPGs) on the surface of neurons than 

glia (42, 43). Interestingly, in addition to enabling the neurotropic bias of AAV2, HS 

binding has also been associated with restriction of the CNS volume that is effectively 

targeted by AAV vectors. 

It is now known that the lysine residue at position 531 on AAV6 capsid plays an 

indispensable role in HS binding (44, 45). By creating HS binding and non-binding 
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variants of AAV1 (AAV1E531K) and AAV6 (AAV6K531E) respectively, Arnett and 

colleagues demonstrated antagonistic effect of HS binding on CNS transduction of 

intracranially injected AAVs (46). Supporting these point mutation studies, co-injection 

of safe doses of soluble heparin also led to substantial increase in the CNS transduction 

by AAV2 (47, 48).  

On the other hand, N-terminal galactose binding AAV9 is one of the most 

efficient vectors for CNS gene transfer. AAV9 has been shown to perform extensive 

neuronal and glial transduction from different routes of injection in small and large 

animal models (49-56). In addition to important features on the capsid surfaces, 

efficiency of AAV vector mediated gene transfer can be affected by several post-entry, 

trafficking and genome-related events within the CNS (26). Studies pertaining to some 

of these aspects of AAV biology have been performed within the context of the CNS 

and discussed later. Prior to cell surface binding, the transduction profiles of different 

AAV strains also appear to be affected by the route of CNS administration. These 

aspects are first discussed below.  

 

1.5 Clinical routes of AAV administration for CNS applications 

1.5.1 Direct AAV administration into the CNS 

Direct injections of AAV vectors into the CNS have been used to achieve high 

levels of transgene expression across different animal models (57-60). This strategy of 

AAV vector administration can be broadly classified into intra-cerebrospinal fluid (CSF) 

administration and intra-parenchymal administration. The CSF plays a multi-functional 

role by providing nutrients; molecular and physical cues for important processes like 
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stem cell migration; and removal of interstitial solutes from the brain parenchyma (61, 

62). An extensive characterization of CSF clearance of brain interstitial solutes and its 

effects on intracranially administered AAV biologics can be found in chapter 4 of this 

thesis. The CSF is housed within the subarachnoid space, cerebral ventricles, cisterna 

magna, openings under the cerebellum (foramena), and is in close contact with the 

spinal cord and brain tissue in the rostrocaudal axis (63, 64). Understandably, efficient 

delivery of reporter/therapeutic transgenes to large areas of the CNS has been 

achieved using AAV injections into cerebral ventricles, cisterna magna or intravertebral 

lumbar puncture (65-75).  

Serotypes such as AAV9 and rh.10 exhibit inherently superior ability to spread 

within the brain parenchyma. These vectors have been used to achieve widespread and 

long term expression of corrective transgenes from intra-CSF injections towards 

disease models of spinal muscular atrophy and Krabbe disease (73, 74). On the other 

hand, some AAV vectors exhibit highly cell-specific transduction profiles from intra-CSF 

injections. For instance, intracerebroventricular (ICV) administration of AAV4 leads to 

selective targeting of astrocytes in the ependymal zone surrounding the cerebral 

ventricles (71, 76, 77). The ependyma consists of adult neural stem cells that have the 

ability to perform lifelong migration, differentiation and repopulation of functionally 

defined regions in the brain (78). Due to this natural propensity for ependymal cells, we 

used AAV4 as a platform to engineer a migrating neural progenitor targeting AAV4.18 

vector, as shown in chapter 2. Indeed, targeted delivery of neurogenic cargo, e.g. 

noggin and brain derived neurotrophic factor (BDNF) packaged in AAV4 has shown 

long-term rescue of mouse models of severely debilitating CNS disorders like 
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Huntington’s disease (76, 79). In addition to these in vivo studies, biophysical analysis 

of the AAV4 capsid has revealed distinct structural features and low capsid homology 

among other natural AAV isolates (80, 81). 

Due to the advantages offered by the CSF connectivity of the brain and the 

spinal cord, AAV vector administration has also been extensively characterized through 

intrathecal injections (IT). Traditionally, these injections have been performed by 

exposing the subarachnoid space at the suboccipital cisterna magna region or the 

intravertebral space at lumbar region. In general, applications requiring enhanced 

transduction at the motor, sensory and nociceptive neuronal subpopulations (e.g. within 

dorsal root ganglia (DRG)) utilize lumbar punctures. AAV serotypes 1, 5, 8 and 9 have 

shown extensive transduction in the spinal cord and DRG neurons from IT injections at 

the intravertebral lumbar region (82-84). In an independent study, Snyder and 

colleagues compared IT injections of AAV vectors 1, 6, 8 and 9 for transduction of motor 

neurons in the spinal cord and brain stem, and reported superior transduction properties 

of AAV6 and 9 (85). From studies conducted in large animals like pigs and non-human 

primates (NHPs), a single IT injection of AAV9 has emerged as the candidate procedure 

for clinical correction of motor neuron disorders affecting the different regions of the 

spinal cord (86, 87). As with all these studies, it remains to be seen how vectors 

pseudotyped with these different capsids respond in a human setting and more 

importantly, in manifestations of human brain disease. 

Direct parenchymal injections of AAV vectors in rodents and non-human 

primates have been traditionally used to achieve transduction within, focused, spatio-

functionally distinct regions of the brain (88-90). AAV2 shows minimal ability to spread 
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from the parenchymal site of injection and performs preferential gene transfer in the 

neurons (71). Unlike other capsid-receptor interactions, the high affinity for HSPGs has 

been shown to be detrimental to the spread of AAV2 in the brain parenchyma (48). As 

discussed above, another vector that lacks the ability to spread from the site of 

intracerebral injection is the NHP isolate AAV4 (71). In another study performed in adult 

rats, Burger and colleagues demonstrated that N-linked SA binding AAV1 and AAV5 are 

superior to AAV2 in terms of spread of transduction from a single parenchymal 

microinjection into the hippocampus, substantia nigra, globus pallidus, striatum and 

spinal cord (89). Widespread transgene expression was also achieved by parenchymal 

injections of AAV7, 8 and 9 in rodents (90, 91). On a cellular level, these vectors 

preferentially transduced neurons in the adult rodents from clinically relevant stereotaxic 

injections into the hippocampus, thalamus, cortex and striatum (90). Interestingly, in 

addition to capsid serotype, other parameters like age of the animal also seem to affect 

cellular tropism of AAV vectors from direct brain injections. Using ICV injections of AAVs 

1, 8 and 9, Chakrabarty and colleagues demonstrated, that injections performed on 

postnatal day 0 (P0) leads to preferential neuronal tropism. On the other hand the same 

vectors showed neuronal and astrocytic transduction profiles from injections performed 

on P1 or later (72).  

Against this backdrop of AAV isolates and serotypes that have been extensively 

characterized for their receptor interactions, novel AAV serotypes isolated from human 

beings- AAVhu32, 37, 11, 48R3; and non-human primates- AAVrh.8 and 10 have been 

evaluated in neonatal and adult rodents (55, 92). Preliminary studies have confirmed 

the ability of these vectors to perform transduction comparable to AAV9 in rodents, 
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expanding the AAV vector toolkit for CNS gene transfer. For instance, a recent study 

conducted head to head comparison of AAV 2, 5, 8 and rh.10 for therapeutic delivery of 

functional ‘CLN2’ transgene in a late infantile neuronal ceroid lipofuscinosis (LINCL) 

mouse model. Among different serotypes, AAVrh.10 demonstrated comparatively larger 

spread of transgene expression and restoration of functional levels of the enzyme 

tripeptidyl-peptidase I, originally lost as a result of mutations in the CLN2 gene. 

Improvement in motor activities like gait, balance and grip; and amelioration of seizures 

led to enhanced survival of the treated mice from a single direct brain parenchymal 

injection (93). More recent studies evaluating AAVrh.10 administered through different 

routes in primates have been reviewed in detail in the context of AAV transport within 

the CNS later.  

 

1.5.2 Intravenous AAV administration for CNS Gene Transfer 

Systemic administration of viral vectors has the potential to achieve ubiquitous 

gene transfer of the CNS from a single injection. Additionally, the minimally invasive 

nature of intravenous (IV) injections adds great value to clinical administration of AAV 

vectors via the bloodstream. Two major roadblocks currently impede our ability to utilize 

this technique for therapeutic gene transfer of the CNS. The first major concern is the 

broad biodistribution of AAV vector particles into off-target tissues such as the liver, 

spleen and kidneys during IV administration of AAVs. For instance, IV injections of 

AAV9 achieves exceptional transduction of neurons and glia in rodents and non-human 

primates, but also leads to enrichment of viral genomes (~10 fold or more) in the liver 

and spleen as compared to the brain (94). Careful optimization and use of safe dosages 

of AAV vectors can lead to reduced systemic leakage and associated viral clearance 
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due to neutralizing antibodies (94). Another approach to reduce peripheral organ toxicity 

is the occlusion of blood flow into organs like liver and spleen during IV injections of 

AAVs (95). 

Clearly, the use of such techniques requires meticulous optimization of 

complicated surgical procedures during vector administration before being approved for 

the clinic. However, it should also be noted that several of these techniques are already 

approved for use with other drugs/treatments in the clinical setting. Another important 

problem is the inability of the majority of well-characterized AAV vectors to efficiently 

cross the blood-brain barrier (BBB) and transduce cells within the CNS. In order to 

successfully transduce cells in the CNS, systemically injected virions are thought to 

undergo receptor mediated transcytosis to cross the brain microvasculature. Tight 

junctions in the endothelial cells, astrocytic endfeet and pericytes are collectively 

thought to constitute the BBB (96, 97). Intra-arterial infusion of mannitol leads to 

transient opening of the BBB without eliciting any permanent damage (67). Short-term 

disruption of these checkpoints by administration of mannitol led to effective CNS 

transduction by IV injections of AAV2 which is unable to cross the BBB (67, 98).  

A recent study compared CNS transduction from injections of AAVs 1, 2, 5, 6, 7, 

9, Rh.10, Rh.39 and Rh.43 into the superficial temporal vein of neonatal mice (P1). 

Successful, but differential levels of CNS transduction were reported from all tested 

vectors (except AAVs 2 and 5) (96). Additionally, some leading examples of intravenous 

administration of AAV vectors that have been tested in adult rodents and non-human 

primates include AAVs 8, 9, Rh.8 and Rh.10 (97, 99). These results clearly indicate that 

many AAV serotypes have been associated with a range of cellular and regional CNS 
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gene transfer properties from systemic injections. A better understanding of capsid 

structural motifs that allow certain AAV strains to traverse the blood brain barrier is 

critical. For instance, using directed evolution, Gray and colleagues have engineered 

two AAV capsids capable of crossing seizure compromised-BBB in rats. The original 

library of AAVs from which the candidate capsid was isolated included AAVs 1-6, 8 and 

9. Comparison of the parental and evolved capsid sequences further provided some 

insights into capsid domains possibly involved in CNS transduction after IV 

administration (30). Along similar lines, peptide motifs have been identified that impart 

AAV capsids with the ability to cross the brain microvasculature. IV injection of a peptide 

modified version of the AAV2 packaging glucuronidase was used to achieve 

significant clearance of lysosomal storage burden, leading to cognitive benefits and 

prolonged survival in a mucopolysacharidoses VII mouse model (100). It is noteworthy 

that IV administration of the corrective transgene packaged in AAV9 capsid was unable 

to confer therapeutic benefits. It was later identified using fluorescein labeled Sambucus 

Nigra lectin that enhanced SA depositions in the MPS VII affected mouse CNS might be 

detrimental for AAV9-mediated CNS transduction (100). Such results demonstrate that 

the biology of different AAV strains can be affected by specific disease phenotypes that 

alter the molecular composition(s) of different cell types within the brain.  

 

1.6 AAV transport within the CNS 

Subsequent to vector administration and engagement of cell surface attachment 

factors such as glycans, AAV vectors appear to undergo interstitial as well as 

intracellular transport within the CNS. For instance, recent studies in the primate brain 
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have demonstrated that AAVrh.10 displays distinct transduction patterns following 

different routes of administration (101). Of the five routes tested, delivery to parenchyma 

resulted in more efficient gene transfer than intraventricular or intraarticular routes of 

administration. Another study in marmosets demonstrated that intravenous 

administration of AAVrh.10 is capable of efficient CNS transduction (97). These results 

highlight the potential diversity in AAV vector transport mechanisms not only in the 

context of brain physiology, but also possibly due to vector serotype, receptor usage 

and animal models.  

Although not completely understood, two mechanisms, namely paravascular 

CSF transport and axonal transport appear to play a role in controlling the spread of 

AAV vectors within the CNS. It has been established that the paravascular transport of 

CSF plays a major role in the spread of interstitial fluid (ISF) within the CNS. One of the 

earliest studies demonstrated that proteins accumulate along highly vascularized 

regions of forebrain and brainstem within minutes of ICV injections (102). Further, 

medically induced blood pressure fluctuations have been directly shown to control the 

spread of nanoparticles including AAVs in the brain (103). The brain is distinct from 

other organs in that it lacks lymphatic circulation (104, 105). To understand 

compensatory mechanisms, Iliff and colleagues performed CNS-injections of differently 

sized (between 750 da and 2000 kda) molecular tracers. Using compelling visual 

evidence provided by 2-photon microscopy, the authors concluded that paravascular 

movement of CSF clears solutes from the CNS (62). Specifically, the para-arterial influx 

and the paravenous efflux of subarachnoid CSF drain accumulations of metabolic end 

products and other solutes within the brain parenchyma. These results suggest that 
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mechanisms like the CSF transport can possibly play a role in determining the extent of 

spread of viruses within the CNS. Clearly, understanding the structure-function 

correlates of AAV capsids and host factors that might dictate their ability to spread 

within the CNS will be valuable. 

Another known pathway that viruses utilize to spread within the CNS is axonal 

transport post-entry into host neurons. Viruses can travel long distances by getting 

transported across synaptic connections in various sectors of mammalian central and 

peripheral nervous system (106, 107). Over the years, Herpes simplex virus (HSV) and 

Pseudorabies virus (PRV) have been used to visualize axonal transport and the 

resulting patterns of viral infections in the CNS milieu (108). Although accurate neuronal 

tracing has been achieved using these viruses, a major disadvantage is the loss of gene 

expression and neuronal death observed in the labeled cells between 5 days to 2 weeks 

post infection (109-111). In case of AAVs, both unidirectional and bidirectional axonal 

transport has been observed depending on the viral strain (112, 113). During retrograde 

transport, intact virions are taken up at the axonal projections and are transported to the 

neuronal cell body (soma), where the virus enters the nucleus to carry out transduction. 

Conversely, a successful anterograde transport requires virions to enter the neuronal 

soma and travel along the length of the axon to finally get released at the projections. 

The released virions are then free to transduce new cellular subpopulations in the 

region. 

Understandably, directional axonal transport of AAV can be utilized to achieve 

safe and targeted gene delivery in spatially and functionally distinct neuronal 

subpopulations. For instance, AAV2 specifically undergoes anterograde transport (114, 
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115). On the other hand, AAV6 exhibits exclusive retrograde transport in both rat and 

primate brain (116). In addition, AAV9 has been shown to efficiently travel in both 

anterograde and retrograde directions (117-119). Specifically, Castle and colleagues 

visualized dye-conjugated AAV9 vectors during their anterograde and retrograde 

movements within cultured rat cortical neurons. These studies showed that axonal 

transport of AAV9 occurs in Rab7 positive late endosomal/lysosomal compartments. 

Further, cytoplasmic dynein and kinesin-2 were identified as being critical for successful 

retrograde and anterograde transport, respectively (118, 120).  

The aforementioned strides made in context of AAV biology within in vitro and in 

vivo experimental systems have been instrumental in the field of CNS gene therapy. We 

now focus on therapeutic usage of AAV biologics for CNS disorders. The following 

sections elaborate on the progress made towards AAV mediated therapeutic 

intervention for two major classes of neurological diseases- movement disorders and 

storage disorders. 

 

1.7 Gene Therapy of CNS Disorders using Recombinant AAV vectors 

1.7.1 Gene therapy of Movement disorders 

The timely firing of neurons projecting within corticostriatal, nigrostriatal and 

thalamocortical circuits of the brain orchestrate events leading to motor control. Under 

the umbrella of movement disorders, therapeutic gene transfer using rAAVs has shown 

promise in animal models e.g. Huntington’s disease (HD) and Parkinson’s disease (PD), 

amongst others. For the purpose of this chapter, we will focus on PD and assess the 

use of AAV vectors in understanding and treating the multifactorial CNS disorder.  
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Familial, environmental and idiopathic factors result in selective loss of 

dopaminergic (DA) neurons leading to Parkinsonism (121). PD patients exhibit 

bradykinesia (slow movements), akinesia (no movements) and tremors among other 

symptoms exemplifying disrupted motor function. During normal conditions, DA neurons 

at the basal ganglia (Substantia Nigra Pars Compacta (SNPc) region) send inhibitory 

inputs to the subthalamic nucleus (STN) through enhanced GABA signaling (6). Such 

inhibitory inputs received at the STN are important for the controlled excitation of the 

projections to motor associated regions of the cortex. Detailed descriptions of the 

neuronal subtypes and comprehensive analyses of the circuitry that governs the states 

of normalcy and disease have been reviewed elsewhere (6, 121). On a cellular level, 

PD features loss of DA neurons at the SNPc leading to reduced inhibition of the STN 

causing unregulated inputs reaching motor areas further downstream. Understandably, 

the dysfunction of two major checkpoints i.e. loss of DA neurons/dopamine and 

reduction of GABAergic input to the STN result in disease. Over the years, gene therapy 

research has focused on both of these checkpoints to develop strategies that can 

reverse PD pathology.  

One of the hallmarks of PD is the appearance of aggregated synaptic protein 

alpha-synuclein (-syn) in the surviving dopaminergic neurons (122, 123). Such 

aggregations called ‘Lewy bodies’ are not restricted to PD. A similar phenotype occurs 

in Alzheimer’s disease (AD) where aggregations of the proteins amyloid- and tau 

have been associated with loss of hippocampal neurons resulting in learning and 

memory defects (124). In case of PD, the phosphorylation of the protein -syn at the 

Serine-129 position has been associated with potent disease pathology (125-128). A 
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key mechanistic insight of the association between PD pathology and -syn aggregation 

was provided by the work of Gorbatyuk and colleagues (129). The authors performed 

nigral injections of rats with AAV5 vectors packaging three versions of -syn i.e. wt -

syn, phosphorylated -syn S129A or non-phosphorylated -syn S129D. The enzyme 

TH is a biomarker for DA neurons as it is required for the conversion of L-tyrosine to 

levodopa, a precursor of dopamine (130). The study demonstrated that the AAV 

mediated delivery of S129A mutant was highly toxic to the TH immunopositive (TH+) DA 

neurons resulting in loss of striatal dopamine levels in the brain. Intermediate loss of 

TH+ neurons was also observed due to AAV mediated overexpression of wildtype -

syn. More importantly, the study reported that the unphosphorylated form of -syn 

(S129D) was not toxic to dopaminergic neurons and was incapable of causing PD 

pathology. In summary, this in vivo study utilized AAV vectors to demonstrate that PD 

pathology due to syn aggregation is dependent on its phosphorylation state at the 

S129 position (129).  

The use of AAV vectors to achieve controlled biosynthesis of dopamine in vivo 

has been reported by Li and colleagues (131). Briefly, AAV2 vectors packaging 

dopamine synthesizing enzyme TH, flanked by LoxP loci were generated. In the event 

of Cre-recombination, the transgene expression would be lost, leading to a loss of TH 

gene expression in the transduced neurons. To incorporate temporal control of TH 

expression in their system, the authors packaged 4-hydroxytamoxifen inducible version 

of Cre (CreERTS) into another AAV vector (132). The authors speculated that such AAV 

mediated regulation of TH expression would alter the dopamine levels in both in vitro 

and in vivo settings. Transfection of AAV2 vectors packaging the LoxP flanked-TH 
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transgene led to efficient production of dopamine which was significantly lost after 

subsequent superinfection of AAV2-Cre/CreERTS recombinases in cell culture. This 

confirmed proper functioning of constitutively active and inducible Cre systems in vitro.  

The authors then tested their system in Parkinsonian rats. Specifically, 

neurotoxin 6-hydroxydopamine (6-OHDA) was injected into rat brain to induce lesions in 

the dopaminergic areas of the CNS, generating a Parkinsonian rat model. Such rats 

then received individual/combinations of the above mentioned AAV vectors in the 

striatum and were assessed for biochemical and behavioral outcomes associated with 

PD. Significantly increased dopamine production in the animals that received AAV2 

vectors packaging TH encoding transgene was reported. Subsequent Cre-recombinase 

mediated loss of dopamine production led to significant disruption of motor skills during 

apomorphine-induced rotation tests and spontaneous limb movement tests.  

During low levels of dopamine availability, the compensatory mechanism 

employed by the brain involves conversion of dopamine precursor levodopa into usable 

dopamine using L-amino acid decarboxylase (AADC) enzyme. The Cre-recombinase 

mediated loss of TH expression led to significant reduction of dopamine levels, but did 

not affect the cellular expression of AADC in the rats that received oral levodopa. This 

suggested that the inherent compensatory mechanism of dopamine production is 

unaffected by the AAV treatments. These results demonstrated a system wherein AAV 

gene therapy was used to achieve temporally controlled induction and rescue of PD 

pathology in vivo (131).  

Gene therapy mediated replenishment of the levels of AADC enzyme in the brain 

is a potential strategy to ameliorate PD pathology by way of bolstering the 
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compensatory mechanism for dopamine production. A phase 1 clinical trial reported the 

use of tracer dependent positron emission tomography (PET) to track the spread of 

AADC transgene delivered using AAV2 in 6 PD patients who underwent putaminal 

injections of the vectors (133). The patients were given oral levodopa for continuous 

supply of the enzymatic substrate. PET analysis revealed a 56% increase in the 

bioavailability of AADC for up to 96 weeks post injections. 6 months post injections, the 

authors observed ~46% improved Unified Parkinson’s Disease Rating Scale scores. 

These results show that the AAV vectors can be utilized for potential therapeutic 

intervention for PD pathology, but is also safe and well tolerated in a human disease 

setting (133).  

The combinatorial intracranial delivery of the therapeutic enzyme AADC along 

with oral administration of levodopa is not free of side-effects. Continuous intake of 

levodopa leads to complications associated with loss of impulse control leading to 

uncontrolled motions (Dyskinesia) among other symptoms (134-136). Cederfjall and 

colleagues hypothesized that gene therapy can be used to achieve focused 

biosynthesis of dopamine in therapeutically relevant regions of the brain (137). For this, 

two rate-limiting enzymes involved in the conversion of tyrosine from human diet to 

DOPA (3,4- Dihydroxyphenylalanine) were packaged in the same AAV vector. 

Intrastriatal delivery of AAV5 vectors encoding the transgenes tyrosine hydroxylase 

(TH) and GTP-cyclohydrolase-1 (GCH1) led to efficient production of DOPA and its 

cofactor 5,6,7,8- tetrahydro-L-biopterin (BH4), respectively. The previously discussed 6-

OHDA induced PD rat model was used to assess the efficacy of AAV mediated gene 

therapy.  



  21 

Efficient expression of TH and GCH1 were reported at the striatum and SN. The 

authors speculated anterograde transport of the vector to be responsible for this 

transgene expression profile in the rat brains. AAV treated PD rats in the study exhibited 

supraphysiological levels of BH4 expression along with accumulation of synthesized 

DOPA in the forebrain regions, possibly due to the saturation of available AADC 

enzyme. Furthermore, AAV-treated rats exhibited motor and behavioral benefits from 

PD pathology, not seen in the lesion control animals. Specifically, the motor skills were 

compared using amphetamine-apomorphine induced rotation tests; and corridor and 

staircase tests. Significant therapeutic benefit with forelimb akinesia, sensorimotor 

control and symmetry of movements was reported. In short, widespread biochemical 

reversal of PD pathology (DOPA production) in the AAV5 treated 6-OHDA lesioned rat 

brains resulting in functional recovery of motor control was observed (137). Another 

comprehensive study was recently conducted by the same research group utilizing 

administration of the aforementioned AAV5 vectors. This study surprisingly reported the 

inability of their previous strategy of vector administration used in the PD rat model to 

directly translate therapeutic benefit in higher order mammals. In NHPs, such AAV5 

administration led to increase in the GCH1 levels but not TH levels. It was speculated 

that other important parameters like promoter/enhancer elements were to be optimized 

so as to dissect the molecular basis of the incoherence seen between gene therapy of 

rats and monkeys (138). 

In addition to accentuation of dopamine levels by delivering enzymes that 

partake in its biosynthesis, gene therapy could be used to reverse another aspect of PD 

pathology, neurodegeneration. Gasmi and colleagues have extensively characterized 
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the neuroprotective factor Neurturin (NTN) or Glia derived neurotropic factor (GDNF) 

towards amelioration of PD pathology (139). The authors packaged NTN in AAV2 

vectors and performed intra-striatal injections in a 6-OHDA induced rat model of PD. 

NTN gene expression was reported as early as 2 days post injections and lasted till the 

last time point of the study i.e. 1 year post administration. Further evaluation of the 

kinetics of the AAV gene transfer reported both the bioavailability of the enzyme and the 

expression of the transgene stabilized in 4 weeks post striatal injections. The effect of 

NTN transduction on the dopaminergic neurons was further evaluated at the SN via 

immunostaining for TH. A significant increase (p<0.001) in the neuroprotection of the 

TH-immunopositive (TH+) SN neurons as compared to the control animals was 

reported. Similar promising results were reported during intra-striatal injections of AAV2 

packaging the neurotrophic factor Pleiotrophin (PTN). PTN has a protective and 

nourishing effect towards nigrostriatal dopaminergic neurons lost during PD. Studies 

have shown that PTN expression is associated with differentiation of mesencephalic 

TH+ neurons and neuroprotection of surviving DA neurons during PD (140, 141). To 

utilize such properties of PTN towards gene therapy of PD, intrastriatal delivery of AAV1 

encoding the PTN transgenes was performed by Gombash and colleagues (142). 

Interestingly, this led to restricted transduction of neurons at the striatum and SNPc 

leading to efficient neuroprotection of DA neurons and reversal of PD phenotype in the 

6-OHDA rat model.  

It is clear that the injection of neuroprotective agents like GDNF has a stimulatory 

effect on DA neuronal growth at the site of injection. While functional reversal of PD 

pathology from intrastriatal injections of AAV vectors packaging GDNF has been shown, 
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SN injections of such AAV vectors has been associated with ‘aberrant sprouting’. 

Specifically, intracranial administration of viral vectors packaging GDNF has been 

shown to cause innervation of DA neurons in unspecific regions around the site of 

injection (143). The unprecedented increase of DA synthesizing neurons at random 

projection regions has been associated with counter-beneficial behavioral side-effects in 

the animals (144).  

Fetal ventral mesencephalic (VM) cells are precursors of DA neurons in the 

mammalian CNS. Direct injections of fetal VM tissue implants have shown reversal of 

PD pathology via integration and striatal-innervation of mature DA neurons. Functional 

turnover of dopamine biosynthesis leading to reversal of behavioral pathology in PD 

animal models has been reported from such treatments (145-147). A combination of 

gene and cell therapy strategies was used by Redmond Jr. and colleagues in an 

attempt to augment the benefits individually achieved by both (148). AAV5 vectors 

packaging the GDNF transgene were co-administered with VM tissue grafts into the 

caudate and putamen striatal regions of MPTP induced PD model of NHPs. A head to 

head comparison of the gene and cell therapy based systems individually and in 

tandem was performed. Striatal levels of both DA and GDNF were significantly higher in 

animals that received the dual treatment in comparison to either individual procedure. 

Interestingly, during the phenotypic evaluation conducted over a span of 8 months post-

treatments, the dual treatment did not show a significant increase in the amelioration of 

PD pathology as compared to the singular treatments.  

The authors speculated that these discrepancies in the biochemical and 

functional outcomes could be accounted for by events like downregulated TH 
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expression at innervations of DA termini and aberrant sprouting events in the treated 

NHPs (148). These results indicate that gene and cell therapeutic interventions that are 

autonomously capable of reversing PD pathology do not always complement one 

another. Such results need to be taken into consideration before clinical translation of 

such combinatorial procedures. 

Human erythropoietin (EPO) enhances the production of red blood cells and is 

therefore an unlikely candidate for gene therapy of neurodegenerative disorders in 

CNS. However, recent research has indicated strong neuroprotection of dopaminergic 

neurons achieved by EPO expression in the brain. Mechanistically, the protein is known 

to have anti-inflammatory and anti-apoptotic effects among others leading to protection 

from neuronal loss during experimental neurodegeneration (from hypoxia induced 

ischemia); or toxic insults (e.g. MPTP and 6-OHDA abuse) in vivo. (149-152). In an 

attempt to utilize the aforementioned therapeutic properties of the EPO protein, Xue and 

colleagues packaged human EPO transgene into AAV9 vectors and injected them into 

the rat striatum (153). The authors reported neuroprotection of DA neurons due to 

widespread transduction of EPO in the striatum and SN. The behavioral PD pathology 

was also attenuated in the rats injected with AAV9-EPO, as demonstrated in the rotation 

test and the test for spontaneous use of forelimbs.   

Taken together, such experimental and clinical outcomes have characterized 

three main strategies routinely used in gene therapy of PD i.e. dopamine biosynthesis 

(154); functional growth, protection and innervation of DA neurons (155, 156); and 

neurochemical inhibition of STN (157, 158). Clearly, it is important to restrict the 

aforementioned processes to functionally relevant regions of the brain by choosing the 
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optimal site of injection, dosage and the right AAV serotype during PD gene therapy. 

Other challenges associated with CNS gene therapy in the clinic include neutralizing 

antibodies, long-term bioactivity and aggregation of the protein product. It is important to 

note that none of these concerns have posed serious adverse effects in the last decade 

of research in PD gene therapy (159-163). A comprehensive perspective on gene 

therapy of PD with special focus on predictive animal models, clinical trial design, 

safety, patient selection, and the current limitations has been recently provided by 

Bartus and colleagues (164). 

 

1.7.2 Gene therapy of CNS disorders arising from metabolic defects 

Mammalian cells constantly break down complex biomaterials into simpler end 

products that make up for cellular nutrients or act as transient precursors for 

subsequent metabolic activities. Such biomaterials originate from dietary intake or 

preceding enzymatic degradations. Lysosomes are enzyme rich digestive 

compartments inside a cell that are specifically designed to break-down such buildup. 

Understandably, dysfunctional lysosomes cause steady accrue of undigested enzymatic 

substrates, ultimately leading to cell death. Organs with continuously dividing cells are 

often able to compensate for this loss by replenishing themselves with new cells over 

time. On the other hand, once fully formed, the CNS undergoes very little cell division 

and reorganization. This makes it vulnerable to loss of functional tissue from such 

cellular distress. CNS disorders arising from metabolic storage burden have largely 

been classified as lysosomal storage disorders (LSDs). Another class of disorders 
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called neuronal ceroid lipofuscinosis (NCLs) presents a similar phenotype and 

originates from the inability of the cells to breakdown the metabolite lipofuscins.  

The first association of a metabolic storage disorder with debilitating human 

disease was Pompe’s disease (Glycogen storage disease type II) characterized by 

severe progressive myopathy (165). We are now cognizant of 50 LSDs that affect 

humans, most of which target CNS tissue (5). It is worth mentioning that majority of 

LSDs and NCLs are transmitted in an autosomal recessive fashion, which accounts for 

their rare occurrence in the human population (166). The molecular bases of many such 

disorders have been uncovered in the last few decades and have been reviewed 

elsewhere (5). Such efforts have been important in the development of strategies to 

employ gene therapy towards disease treatment and amelioration. During normal 

conditions, catabolic enzymes utilize specific cellular macromolecules as substrates.  

Typically, LSDs and NCLs occur due to ‘loss of’ or ‘mutations in’ functional genes 

that encode such enzymes. Mucopolysacharidoses (MPS) are a broad range of LSDs 

branching from the common incapability of breaking down mucopolysaccharides 

resulting in fast deterioration of CNS milieu. Pharmacological enzyme replacement 

therapy (ERT) only provides short-lived and localized respite from the cellular buildup 

due to inefficient penetration of CNS tissue and inability of recombinant enzymes to 

cross checkpoints like the blood-brain barrier (BBB) (167). A complete reversal of 

disease pathology demands continuous production and secretion of the lost enzymes in 

both CNS and peripheral organs. AAV gene therapy provides the necessary genomic 

elements to the patient’s functional tissue for biosynthesis of lost enzyme(s) in a cell 

autonomous/non-autonomous fashion. In addition, the combinatorial spread of AAV 
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vectors and the translated protein results in efficient penetration of the disease-afflicted 

CNS and peripheral organs. We have focused our discussion on major MPS disorders 

as case studies outlining progress towards understanding prominent metabolic storage 

disorders affecting the CNS and the use of AAV gene transfer towards their therapy.  

MPS type VII (Sly disease) is a severely debilitating form of LSD that occurs as a 

result of accumulation of glycosaminoglycans (GAGs) due to the deficiency of -

glucuronidase (GUSB) enzyme. The disease symptoms include skeletal deformations, 

mental retardation, loss of sensory skills (vision and hearing), distorted features and a 

short life span (168). In one of the first attempts at utilizing AAV gene therapy towards 

amelioration of MPS VII in a mouse model, AAV2 vectors were engineered to package 

the GUSB transgene. Intravenous delivery of AAV2-GUSB led to reversal of disease 

phenotypes pertaining to bone length, retinal function and vacuole clearance in the MPS 

VII mouse model at an early age of postnatal day 2 (P2) (169, 170). In theory, utilizing 

the blood stream for delivering pharmacological agents to multiple organs is attractive, 

although, it is not always the best route for administration of certain AAV serotypes for 

gene therapy.  

Early studies conducted by Elliger and colleagues concluded that i.v. 

administration of the AAV2 vectors resulted in modest levels of CNS transduction and 

higher transgene expression in the peripheral tissues i.e. heart and liver (171). Recent 

research has demonstrated that AAV2 vectors are unable to cross the BBB (96). 

Therefore, the clearance of GAG accumulation from CNS tissue observed in these initial 

studies using AAV2 is possibly due to secreted enzymes crossing the brain 

microvasculature or entering the parenchyma via aquaporin mediated interstitial fluid 
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clearance (62, 172). Further supporting this argument, direct CNS administration of 

AAV2-GUSB via intrathecal injections in adult mice was demonstrated to achieve 

increased enzyme levels and decreased vacuole formations in the CNS tissue (171). 

This study underscores the importance of pairing an AAV serotype with its optimal route 

of administration for CNS gene therapy applications. Widespread diffusion of the GUSB 

enzyme product in the CNS tissue was achieved by Skorupa and colleagues (173). 

Their report demonstrated that direct injections of AAV2-GUSB into four sites in the 

adult rodent brain namely: striatum, cortex, thalamus and hippocampus achieves 

maximal spread of the enzyme. The authors reported clearance of lysosomal storage 

burden across the complete neuraxis in the ipsilateral hemisphere from such injections 

(173).  

More recently, the use of multiple intracranial injections to achieve efficient 

biodistribution of therapeutic enzyme has been replaced by other strategies that are 

more amenable to clinical translation. To this end, a single striatal injection in the adult 

MPSVII affected rat brain was shown to produce enzyme expression in 10% of the brain 

volume leading to loss of the storage burden for ~16 weeks by Bosch and colleagues 

(174). An alternative strategy towards achieving enhanced levels of transduction is to 

incorporate genetic elements like the promoter and enhancer, from other infectious 

mammalian viruses. The work of Sferra and colleagues demonstrated enhanced 

transduction efficiency of murine -GUSB transgene, when driven by cytomegalovirus 

promoter-enhancer elements. ~50-240% spread of enzyme expression across the CNS, 

resulting in metabolic storage benefit for up to 3 months of age was reported by the 

authors (175).  
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Progressive loss of vision due to retinal degeneration is a characteristic clinical 

phenotype of MPSVII in humans. In an attempt to correct this pathology, AAV2-GUSB 

was injected into adult MPSVII mice via the intravitreal route by Hennig and colleagues 

(176). The enzyme activity was observed in areas of the brain receiving visual inputs 

from the eye e.g. thalamus and tectum. Interestingly, neighboring non-visual areas like 

hippocampus and visual cortex also exhibited GUSB activity. The transduction profile 

suggested the combined role of synaptic vector transmission and diffusion of the 

translated product (176).  

Understandably, expression of the GUSB transgene in large 3-dimensional 

spaces of the CNS is important for rapid lysosomal clearance and associated 

symptomatic benefits from MPSVII. Primate derived AAV strains 7, 8, 9 and rh10 were 

injected into adult mouse brain regions cortex, striatum, thalamus and hippocampus by 

Cearley and colleagues to assess their properties as CNS gene transfer vectors (90). 

The authors reported that all tested serotypes showed preferential transduction of 

neurons and not astrocytes and oligodendrocytes. While AAV7 performed efficient gene 

transfer in cortex, thalamus and hippocampus, AAV9 and AAV Rh.10 outperformed 

other serotypes in spread and transduction of both ipsilateral and contralateral 

hemispheres. Specifically, the assessment of AAV9 injected rodent brains 

demonstrated reversal of lysosomal clearance at 2 months post injections in multiple 

regions of the brain. The authors also observed AAV9 mediated transduction across 

neuronal projections in the hippocampal commissure, providing supportive evidence for 

the vector’s ability to undergo axonal transport to cover large distances in the CNS (90).  
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Although AAV mediated gene therapy in the postnatal in vivo animal models 

successfully reverses clinical manifestations of LSDs, survival of such animals is still 

significantly lower than their wildtype counterparts. In one of the first attempts to 

introduce therapeutic intervention in an in vivo embryonic stage, AAV1 vector encoding 

the GUSB transgene was administered at embryonic day 15.5 (E15.5) by Karolewski 

and colleagues (177). Vector mediated CNS transduction resulting in enzymatic spread 

across the entire brain and spinal cord was observed. Low levels of GUSB activity was 

also observed in peripheral organs like liver, spleen, kidneys and gonads. Interestingly, 

no vector genomes were detected at such off-target locations. The authors further 

discussed that the peripheral leakage of the enzyme was possibly due to uptake of CSF 

metabolites into the venous system. The CNS-specific therapeutic intervention was 

enough to confer benefit from lysosomal storage lesions for up to one year post 

injections and improved the survival comparable to wildtype controls. Surprisingly, some 

of the clinical manifestations like facial and skeletal deformations were not rectified post-

treatment. Such mixed results indicate room for improvement in areas like vector design 

and route of AAV administration (177).  

Some of the most daunting challenges with clinical translation of gene therapy 

are related to surgical procedures during vector administration in the clinic. Major 

advances have been made towards reduction of invasiveness during therapeutic vector 

administration targeting the CNS. Intra-CSF injections like ICV injections, intracisternal 

injections (IC) and intrathecal lumbar puncture (IT) are all viable strategies to achieve 

maximal contact with the CNS tissue from a single dose of administration. In addition, 

viruses are also known to utilize axonal transport to cover long distances via inter-
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synaptic relay. AAV strains have different efficiencies and preferred directionalities of 

movement across neuronal connections (112). In this regard, utilizing regions of heavy 

afferent and efferent ‘wiring’ within the brain can be a useful strategy. A comparative 

assessment of AAVs 1, 9 and Rh.10 injected into a major hub of neuronal projections, 

ventral tegmental area (VTA) was reported by Cearley and colleagues (55). The authors 

compared VTA injections of the AAV vectors to conventional striatal injections. While an 

increase in spread of transduction to distal regions of the brain was reported from all 

three AAV serotypes, the maximal spread was seen in case of AAV9 vectors. The 

authors then used the strategy to deliver GUSB transgene packaged in AAV9 vectors in 

the MPSVII mouse model. The study reported widespread transduction of the 

therapeutic transgene, leading to expanded biodistribution of the enzyme in the entire 

brain from a single 1 ul injection of ~1010 total viral genomes (vg) (55).  

On the behavioral front, MPSVII patients display mental retardation due to 

neuronal and glial cell death. Frisella and colleagues hypothesized that AAV mediated 

GUSB transgene delivery would achieve successful restoration of lost cognitive 

function. To this end, intracranial administration of AAV2-GUSB was performed in the 

MPSVII mice by the authors that led to long-lasting supply of the enzyme in the CNS. 

The authors then utilized the Morris water maze test to show that the mice treated with 

the AAV vector exhibit near wildtype levels of cognitive skills (178). The loss of cognitive 

acumen is often related to dysfunction of the hippocampus e.g. deteriorated learning 

and memory, difficulties in fear conditioning etc.  

Preclinical evaluations of the extent of cognitive benefit seen in MPSVII mice due 

to AAV mediated gene therapy was performed by Liu and colleagues (179). The authors 
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administered AAV5 packaging -GUSB via bilateral intrastriatal injections in adult MPS 

VII mice. AAV5 has been previously demonstrated to be a highly neurotropic vector 

capable of transducing a larger area of the CNS than AAV2 (71). AAV5 mediated 

intrastriatal delivery of the corrective GUSB transgene provided cognitive benefits in 

MPS VII mice as demonstrated in repeated acquisition and performance chamber 

(RAPC) assay. Specifically, the MPSVII affected adult mice underwent RAPC assay 

before and after the vector administration. Post administration, the mice displayed a 

significant reduction in the learning errors and latency period to reach the reward. 

Furthermore, the authors identified a specific loss of glutamate receptor on the surface 

of hippocampal neurons in the MPSVII affected mice. Specifically, 40-60% depletion of 

glutamate receptors GluR1, GluR2 and NR1 was observed in the hippocampal neurons 

which could be linked to the learning deficits. Furthermore, the authors demonstrated 

that the glutamate receptor levels of AAV5-GUSB treated mice was indeed restored 

comparable to the levels of heterozygous littermates, thereby providing the molecular 

basis of the therapeutic benefit (179).  

MPSIIIB/Sanfilippo syndrome is a rare, genetically transmitted LSD where 

patients suffer from intracellular accumulation of glycosaminoglycan heparan sulfate. 

The disorder stems from the deficiency of -N-acetylglucosaminidase (NaGlu) enzyme 

in the CNS. The disease features fast deterioration of CNS and peripheral tissues 

leading to severe mental retardation and premature death in patients (Neufeld and 

colleagues 2001, Metabolic and Molecular basis of inherited diseases). Enzyme 

biosynthesis using gene therapy confers successful protection of neuronal and 

peripheral tissue and provides symptomatic relief in the MPS IIIB mouse model. One of 
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the earliest examples of therapeutic AAV gene transfer was reported by Fu and 

colleagues (180). AAV2 vectors packaging the NaGlu transgene was engineered. The 

transgene was driven by either a constitutive cytomegalovirus (CMV) promoter or a 

neuron specific enolase (NSE) promoter. Successful transduction of AAV2 in human 

MPS IIIB patient fibroblasts and mouse somatic and primary brain cells, resulting in 

significant degradation of GAGs was demonstrated. A low dose (~107) of viral genomes 

of AAV2-NSE-NaGlu was then injected into the adult MPS IIIB mouse brain and 

successful NaGlu expression leading to correction of GAG storage in a broad CNS area 

was observed(180).  

Cressant and colleagues assessed the effects of AAV mediated gene transfer of 

the NaGlu transgene on the behavioral outcomes of MPS IIIB (181). It is now clear that 

certain AAV serotypes like AAV2 have the preferential ability to undergo axonal 

transport in the anterograde direction (115). Regions of extensive synaptic connectivity 

are attractive sites of injection for AAVs packaging corrective transgenes to target a 

large area of the brain from a single injection. In the mammalian CNS, axonal 

projections to multiple regions originate at the caudate putamen. In this report, the 

authors compared putaminal injections of AAV2 and AAV5 vectors in adult 6-week old 

MPS IIIB mice and demonstrated that AAV5 mediated transduction spreads more than 

AAV2 (181). AAV5 binds N-linked sialic acid as cell surface attachment factors whereas 

AAV2 requires the availability of Heparan Sulfate proteoglycans (HSPG) to perform 

successful gene transfer (34, 182).  

The interaction of AAV2 with its cognate receptor (HSPG) is one of the rare 

occurrences where cellular receptor binding is detrimental to the spread of the AAV 
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vectors in the CNS (172). This phenomenon might explain the enhanced ability of AAV5 

vectors to spread and transduce CNS tissue in the distant regions from the site of 

injection. Both AAV vector injections resulted in the enzyme bioavailability above 

untreated controls leading to reversal of disease phenotype in the neurons, microglia 

and perivascular cells. Additionally, a complete reversal of behavioral symptoms from 

both AAV2 and AAV5 treatments was reported (181). The assessment of behavioral 

recovery was performed using a circadian cycle controlled open field test. Parameters 

such as mouse activity during light and dark time periods; explorative and habituated 

navigations, were monitored during the course of the sessions. To summarize, these 

tests provide a fair assessment of the success of gene therapy towards reversal of 

cellular pathology and behavioral outcomes seen in MPS IIIB patients featuring anxiety, 

restlessness, hyper-excitability and aggressiveness (181).  

Many natural and engineered AAV isolates are being discovered with attractive 

properties like the ability to spread and transduce large CNS volumes. In an attempt to 

achieve widespread correction of the MPS IIIB disease pathology in the CNS, AAV2 

mediated NaGlu gene transfer was performed by Fu and colleagues in BBB 

compromised mice in vivo (183). Specifically, the authors utilized intra-arterial injection 

of mannitol post AAV administration that led to transient opening of the BBB. While 

there is no measurable permanent damage inflicted upon the BBB due to this treatment, 

efficient entry of viruses, antibodies and large macromolecules has been widely 

documented due to such treatment (98, 183, 184). The authors demonstrated that 

combined intravascular and intra-cerebrospinal fluid (CSF) vector administration led to 

successful and long term correction of the disease pathology and a significant increase 
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in the lifespan of the mice (from 7.9-11.3 months in untreated mice to 11.1-19.5 months 

in treated mice).  

Simultaneous use of CSF and blood connectivity led to successful gene transfer 

not only in the CNS tissue but in peripheral organs as well. Virtually the entire brain and 

spinal cord tissue are connected with the combination of the CSF and blood vessels. 

The CSF constantly provides nutrients and molecular signals to, and drains interstitial 

fluids from, the brain and spinal cord tissue via the sub-arachnoid space, cerebral 

ventricles, cerebellar foramena and the cisterna magna (61-64). The blood vessels on 

the other hand provide constant supply of oxygenated blood due to the combination of 

arterial influx and venous efflux in the CNS tissue. The authors of this study speculated 

that the success of their therapeutic AAV administration could be attributed the routes of 

administration (183). The transient opening of the BBB clearly assisted the CNS spread 

of AAV vectors. Moving forward, the time span between intra-arterial mannitol infusion 

and the i.v. administration of AAV vectors was optimized by McCarty and colleagues. 

The authors demonstrated that injections performed exactly 8 min after the mannitol 

infusions led to significantly enhanced viral transduction resulting in reversal of the 

disease phenotype in the MPS IIIB mice (98).  

Combinatorial use of other strategies of therapeutic intervention can have a 

synergistic effect on AAV mediated gene therapy of the CNS. Exploring such a 

hypothesis, AAV gene transfer in combination with bone marrow transplant and 

assessment of correction of MPS IIIB was performed by Heldermon and colleagues in 

mice. Specifically, the authors performed intracranial AAV5-NaGlu administration 

with/without the transplant of NaGlu transduced bone marrow cells in the MPS IIIB 
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mouse model. The bone marrow transplant (BMT), by itself, was the least efficacious of 

all three strategies and the report surprisingly concluded an antagonistic effect of the 

combination treatment on survival and motor skills in the disease affected mice (185). 

Such outcomes provide cautious optimism and direction for the future use of AAV 

towards CNS gene therapy of metabolic storage disorders. 

 

1.8 Safety aspects of AAV-mediated CNS gene therapy 

Recombinant AAV vector genomes display inefficient integration into the host 

chromosome and predominantly persist in episomal form (186). This reduces the risk of 

insertional mutagenesis, often associated with other viral vectors like retroviruses (187). 

The vector genomes subsequently require the host cellular machinery to carry out 

second strand synthesis, transcription and translation (188, 189). Safety aspects 

pertaining to persistence of AAV vector genomes have been reviewed elsewhere (27, 

186, 190).  

Another important safety consideration is the observation that rAAV mediated 

overexpression of non-self transgenes can elicit immune responses due to antigen 

presentation of the expressed transgene product. . For instance, direct primate brain 

infusion of AAV1 packaging a humanized Renilla GFP transgene triggered an immune 

response against the translated reporter product (191). Similarly, a cell mediated 

immune response and neuronal loss was observed in rats injected with AAV9 vectors 

packaging the GFP reporter transgene or a human L-amino acid decarboxylase 

transgene (192). More recently, certain AAV serotypes have been shown to undergo 
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systemic leakage resulting in off-target biodistribution in organs like liver and spleen (94, 

97, 101). Crucially, AAV vector engineering can also be employed to design elegant 

solutions to contain peripheral organ accumulation of CNS-targeted AAV biologics. To 

this end, we have engineered and extensively characterized the AAV2g9 vector that 

performs widespread neuronal gene transfer with minimal systemic leakage, peripheral 

tissue biodistribution and systemic tissue gene transfer. These findings have been 

elaborated in the chapter 3 of this thesis.  

These preliminary observations in animal models highlight the need to better 

understand the parameters that determine potential toxicity/biodistribution profiles and 

immune response in AAV-mediated CNS gene transfer. It is also important to 

acknowledge that aspects related to manufacturing, downstream processing and purity 

of AAV vector preparations are critical towards ensuring the safety of AAV vectors. A 

comprehensive comparison of different viral gene transfer vectors for parameters such 

as packaging capacity, host chromosomal integration and other biosafety aspects can 

be found elsewhere (27, 190). 

As of early 2014, 5.3% of world-wide clinical trials involving gene therapy have 

utilized Adeno-associated viruses (AAVs) (109 ongoing trials) (Journal of Gene 

medicine). Only a few of these trials are aimed at treating diseases with CNS 

manifestations. In this chapter, I attempted to provide an overview of various 

parameters that might play a role in determining the success of AAV mediated 

therapeutic gene transfer to the CNS. Interactions of AAV vectors with different primary 

receptors, directional transport and cellular tropisms following different routes of 

administration are summarized in Table 1. Although we were unable to cover every 
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contribution to the field of CNS gene therapy, the information provided not only 

highlights potential gaps in our understanding of AAV-host interactions within the CNS, 

but will assist with continued vector development for CNS-directed gene transfer 

applications in the clinic. 

Some of the prominent applications of AAV mediated CNS gene therapy that are 

currently undergoing various stages of clinical trials as reported in the National Institutes 

of Health’s database (https://clinicaltrials.gov/) have been listed in Table 2. Although we 

were unable to discuss gene therapy of many other CNS disorders and several other 

outstanding scientific contributions; through this chapter, we have attempted to bring 

clarity to the advantages and challenges associated with the therapeutic use of AAV 

vectors in the CNS.   
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Figure 1: Schematic representation of recombinant AAV genomes: The promoter, 
transgene and polyadenylation signal (PolyA) are flanked by inverted terminal repeats 
(ITRs) in single stranded (ss) or self-complementary (sc) configurations.  
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Figure 2: Differential spread of CNS transduction from AAV4 or AAV9 vectors 
packaging TdTomato fluorescent reporter transgene in neonatal mouse brain: P0 
mice were injected with 1x109 vg of AAV4 or AAV9 packaging a CBA-TdTom reporter 
transgene into the left lateral ventricle. At 2 weeks post injections, mice were sacrificed 
and paraformaldehyde fixed brains were sectioned. Brain sections were imaged using a 
Zeiss CLSM 700 confocal laser scanning microscope. Confocal micrographs show 

TdTom transgene expression (red) in 50 m vibratome section of the mouse brain 
(global) and higher magnification images of individual regions in the rostrocaudal axis of 
the brain parenchyma. 
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Table 1. Capsid-receptor interactions, transduction profiles and axonal transport properties of some of 
the well characterized Adeno-associated viral serotypes in the mammalian CNS. 

Serotype Primary 
Receptor 

Intra-CSF or Intra-
parenchymal Administration 

Intravascular Administration Axonal 
Transport 

  Neuronal 
Transduction 

Glial 
Transduction 

Neuronal 
Transduction 

Glial 
Transduction 

 

AAV1 α2,3/α2,6 N-
linked SA 

++ + + + A-,R+ 

AAV2 Heparan 
Sulfate 

+ - - - A+,R- 

AAV4 α2,3 O-
linked SA 

- + - - ? 

AAV5 α2,3 N-
linked SA 

++ + - - ? 

AAV6 α2,3/α2,6 N-
linked 

SA/heparan 
sulfate 

++ - + + A-,R+ 

AAV8 ? ++ ++ ++ ++ A+, R+ 

AAV9 Galactose +++ ++ +++ +++ A+,R+ 

AAVRh.8 ? ++ ++ +++ +++ ? 

AAVRh.10 ? +++ + +++ +++ ? 

? Receptor usage/Axonal transport has not been characterized; + Low levels of transduction; ++ Moderate 
levels of transduction; +++ High levels of transduction; - No transduction; ? A+ or R+ (AAV vector undergoes 
axonal transport in the anterograde (A) or retrograde (R) direction during in vivo characterization) 
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Table 2. Clinical gene therapy of some neurological disorders using AAV vectors. 

Category Disorder Transgene AAV Serotype, 
Route and 

Dosage 

Clinical Status Summary 

Metabolic 
Storage 

Disorders 

Batten’s 
Disease 

Human CLN2 
gene 

AAV2- 
Intracranial 
injections  

Phase 1 
(NCT00151216) 

Expression of CLN2 
transgene to 

replenish the levels 
of tripeptidyl 
transferase-1 

(TPP1) enzyme. 

AAV Rh.10- 
Intracranial 

injections – 2.85 
or 9 X 10^11 vg 

Phase 2 
(NCT01414985) 

Pompe 
Disease 

Human acid 
alpha-

glucosidase 
(GAA) gene 

AAV9- 
Intramuscular 

injections- 
5X10^9 vg 

Phase 1 
(NCT02240407) 

The enzyme GAA 
degrades cellular 
accumulation of 
glycogen which 
leads to severe 
neuromuscular 

pathology.  

AAV1- 
Intramuscular 
injections- 1-
5X10^12 vg 

Phase 2  
(NCT00976352) 
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MPS III A 
(Sanfilippo’s 

type A 
Syndrome) 

Human SGSH 
and SUMF1 

genes 

AAV Rh.10- 
Intracranial 
injections  

Phase 2 
NCT01474343 

Expression of N-
Sulfoglucosamine 

Sulfohydrolase and 
Sulfatase modifying 

factor 1 leads to 
degradation of 

glycosaminoglycans 
(GAGs) 

accumulations in 
the CNS tissue 

Acute 
Intermittent 
Porphyria 

Porphobilinogen 
deaminase 

(PBDG) gene  

AAV5- 
Intravenous 
injections  

Phase 1  
(NCT02082860) 

PBDG enzyme 
deficiency blocks 

heme-biosynthesis 
and causes severe 

neuropathic 
symptoms ranging 

from abdominal 
pain to seizures 
and psychotic 

episodes. 

Movement 
Disorders 

Parkinson’s 
Disease 

Human 
aromatic L-
amino acid 

decarboxylase 
(AADC) 

AAV2- 
Intracranial 

I(Striatal 
injections) – 
9X10^10 – 

3X10^11 vg total 

Phase 1  
(NCT00229736) 

AADC mediated 
conversion of orally 

administered 
levodopa into 

dopamine 

AAV2- 
Intracranial 

(Striatal 
injections) – 
7.5X10^11-

2.3X10^12 vg 

Phase 2  
(NCT01973543) 
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 total 

Glial cell line- 
derived 

neurotrophic 
factor (GDNF) 

AAV2- 
Intracranial 

(Striatal 
injections) – 
9X10^10-

3X10^12 vg total 

Phase 1  
(NCT01621581) 

Neuroprotection of 
dopaminergic 

neurons with GDNF 

Neurotrophic 
factor Neurturin 

(NTN) 
 

AAV2- 
Intracranial 
(Putaminal 
Injections)  

Phase 1 
(NCT00252850) 

Neurturin mediated 
neuroprotection of 

dopaminergic 
neurons 

 AAV2- 
Intracranial 

(Putaminal and 
Substantia Nigral 

injections) – 4-
5X10^11 vg or 
24X10^11 vg 

Phase 1 
(NCT00985517) 

Glutamic acid 
decarboxylase 

(GAD) 

AAV-GAD 
intracranial 
injections 

(Subthalamic 
nucleus) 

Phase 1 
(NCT00195143) 

GAD expression in 
the STN has an 

inhibitory effect due 
to GABA production 
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CHAPTER 2: EXPLOITING GLYCAN SIGNATURES TO REGULATE ADENO-

ASSOCIATED VIRAL TROPISM IN THE DEVELOPING BRAIN2 

2.1 Overview 

Adeno-associated viruses (AAV) are thought to spread through the central 

nervous system (CNS) by exploiting cerebrospinal fluid (CSF) flux and hijacking axonal 

transport pathways. The role of host receptors that mediate these processes is not well 

understood. In the current study, we utilized AAV serotype 4 as a model to evaluate 

whether ubiquitously expressed 2,3-linked sialic acid and the developmentally regulated 

marker, 2,8-linked polysialic acid (PSA) regulate viral transport and tropism in the 

neonatal brain. Modulation of the levels of SA and PSA in cell culture studies using 

specific neuraminidases revealed possibly opposing roles of the two glycans on AAV4 

transduction. Interestingly, upon intracranial injection into lateral ventricles of the 

neonatal mouse brain, a low affinity AAV4 mutant (AAV4.18) displayed a striking shift in 

viral tropism from 2,3-linked SA+ ependymal lining to 2,8-linked PSA+ migrating 

progenitors in the rostral migratory stream and olfactory bulb. In addition, this gain-of-

function phenotype correlated with robust CNS spread of AAV4.18 through 

paravascular transport pathways. Consistent with these observations, altering glycan 

dynamics within the brain by co-administering SA and PSA specific neuraminidases 

resulted in striking changes to the cellular tropisms and transduction efficiencies of both 

                                            
2This chapter includes the original publication that appeared in the journal of virology. 
The full citation is as follows: Murlidharan, G., Corriher, T., Ghashghaei, H.T., Asokan, 
A. Unique glycan signatures regulate adeno-associated virus tropism in the developing 
brain, Journal of Virology, 2015, 89(7):3976-3987 (PMID: 25631075).  
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AAV4 as well as AAV4.18 vectors. We postulate that glycan signatures associated with 

host development can be exploited to redirect AAV vectors to specific cell types in the 

brain.  

 

2.2 Introduction 

Viruses enter the CNS by exploiting a variety of transport pathways that hinge on 

preliminary infection of peripheral nerve endings or through the blood by infecting 

circulating leukocytes or brain endothelial cells. Subsequent spread within the brain is 

achieved by axonal transport and trans-synaptic spread (193). A key step in viral entry 

into the CNS and subsequent directional transport is the recognition of specific cell 

surface membrane glycoproteins as receptors. For instance, polioviruses utilize CD155 

as a receptor (194), while alpha herpesviruses exploit nectin-1 for CNS entry (195), both 

members of the immunoglobulin superfamily. Several membrane-associated 

components have also been implicated in Rabies virus CNS entry (196). Prior to 

engagement of such host membrane proteins, viruses often bind to cell surface glycans 

for attachment. One of the most versatile host glycans that have been exploited as viral 

attachment factors are the family of sialic acids (SA) (197-199). For instance, SA 

receptors have been implicated in the neurovirulence of reovirus and polyomaviruses 

(200, 201). Modulating SA binding affinity has also been shown to influence the 

pathogenicity of the neurovirulent strain of the minute virus of mice (MVM) (25).  

While no natural isolates from brain tissue have been reported thus far, adeno-

associated viruses (AAV), which are helper-dependent parvoviruses, display a broad 

spectrum of CNS tropisms following intracranial or systemic administration in different 



 

47 
 

hosts (71, 89, 90, 92, 96, 97, 172). The cellular tropisms of different AAV strains 

observed in these studies were mostly neuronal, with a few exceptions that can 

transduce astrocytes and glia as well. Similar to their helper viruses such as 

Adenoviridae or Herpesviridae (193), AAV strains undergo interstitial as well as axonal 

transport within the CNS (172). However, the molecular bases of this diversity in AAV 

transport mechanisms and CNS tropisms are not well understood. Within this 

framework, AAV isolates have been shown to utilize three different glycans – SA, 

galactose (GAL) and heparan sulfate (HS) for cell surface attachment (25). In addition, 

several growth factor receptors, transmembrane proteins and integrins have been 

identified as being essential for AAV cell entry (26, 31). Our lab and others have 

recently demonstrated the role of SA and GAL in determining the systemic fate of 

different AAV serotypes in mouse models (38, 202, 203). 

  The African green monkey isolate, AAV serotype 4 is one of the evolutionarily 

and structurally most distinct serotypes known to date and displays selective tropism for 

the ependymal lining following intra-cerebroventricular (ICV) administration in neonatal 

and adult mice (77). In addition, AAV4 particles directly injected into the sub-ventricular 

zone can transduce astrocytes forming glial tubes within the RMS. The functional cell 

surface attachment factor for AAV4 is O-linked α2,3-SA (mucin) (34, 204, 205). We 

previously identified a novel AAV4 mutant (AAV4.18) that displays decreased affinity 

towards 2,3-SA and a transduction-deficient phenotype following systemic 

administration in mice (205). In the current study, we identify a novel glycan that 

differentially regulates the CNS transport and cellular tropism of AAV4 and the lab-

derived mutant strain. Unlike AAV4, which displays restricted tropism for the ependymal 
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lining, the lab-derived AAV4.18 mutant spreads throughout the brain parenchyma and 

can selectively infect migrating progenitors in the rostral and caudal directions from a 

unilateral ICV injection in neonatal mice. Further biochemical characterization of AAV4 

and AAV4.18 in the mouse brain confirmed a switch in receptor specificity from α2,3-

linked SA to α2,8-linked PSA, a well-established marker of neurogenesis. 

 

2.3 Materials and Methods 

Recombinant AAV vector production. Recombinant AAV4 and mutant 

AAV4.18 vectors were generated using an updated triple plasmid transfection method 

(206). Briefly, this involved transfection of (a) the pXR4 helper plasmid (18) or the 

mutant pXR4.18 helper plasmid (205); (b) the adenoviral helper plasmid pXX6-80; and 

(c) pTR-CBA-tdTom or pTR-CBA-Luc plasmids encoding the tdTomato (tdTom) or 

Luciferase (Luc) reporter genes driven by the chicken beta actin (CBA) promoter and 

flanked by inverted terminal repeats (ITRs) derived from the AAV2 genome. Vector 

purification was carried out using cesium gradient ultracentrifugation and viral titers 

obtained by quantitative PCR using a Roche Lightcycler® 480 (Roche Applied 

Sciences, Pleasanton, CA) with primers (IDT Technologies, Ames, IA) designed for the 

CBA promoter (forward, 5’-CGT CAA TGG GTG GAG TAT TT-3’ ; reverse, 5’-GCG 

ATG ACT AAT ACG TAG ATG-3’).  

In order to generate AAV particles packaging thymidine analog 5-bromo-2’-

deoxyuridine (BrdU) labeled genomes, we adapted a modified vector production 

protocol described earlier (207, 208). Briefly, at 1hr post triple plasmid transfection, 

HEK293 producer cells were treated with a 10:1 molar mixture of BrdU and 5-fluoro-2’-
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deoxyuridine at a final concentration of 10μg BrdU/ml of media (Invitrogen, Camarillo, 

CA). Vectors packaging BrdU-labeled genomes were purified and quantified as 

described above.  

 

Cellular transduction assays. CV-1 cells (African green monkey kidney 

fibroblasts) were seeded at a density of 5x104 cells per well in 24-well plates and were 

maintained at 37˚C and 5% CO2. The cells were grown in Dulbecco’s modified eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 U/ml 

penicillin, 100 g/ml streptomycin and 2.5 g/ml amphotericin-B (Sigma-Aldrich, St. 

Louis, MO). For transduction assays, cells were first exposed to the different enzymatic 

treatments as described below.  

To cleave long PSA chains, cell cultures were treated with Endoneuraminidase-N 

(ABC Scientific, Los Angeles, CA) diluted to 1:5000 in DMEM supplemented with 10% 

FBS for 12 hrs at 37˚C and 5% CO2. To cleave terminal SA residues, Neuraminidase III 

(Neuraminidase) (Sigma-Aldrich, St. Louis, MO) was diluted to 50 mU/ml in serum-free 

DMEM and cells treated for 3 hrs at 37˚C and 5% CO2. After these treatments, cells 

were washed three times with phosphate-buffered saline (1XPBS) and the media 

replaced with fresh DMEM+10% FBS containing AAV4 or AAV4.18 vectors packaging 

the firefly luciferase transgene, driven by the CBA promoter at a multiplicity of infection 

(MOI) of 1000 viral genomes per cell (vg/cell). Cells were lysed at 24 hours post-

transduction and luciferase transgene expression was quantified using Victor2 

luminometer (PerkinElmer, Waltham, MA) with D-Luciferin as a substrate. 
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Intracerebroventricular (ICV) injections. All animal experiments were carried 

out with Balb/c mice bred and maintained in accordance to NIH guidelines and as 

approved by the UNC Institutional Animal Care and Use Committee (IACUC). Neonatal 

postnatal day 0 (P0) pups were rapidly anesthetized by hypothermia by placing on ice 

for 1 min followed by stereotaxic intraventricular cerebral injections. A Hamilton 700 

series syringe with a 26s gauge needle (Sigma-Aldrich, St. Louis, MO) was attached to 

a KOPF-900 small animal stereotaxic instrument (KOPF instruments, Tujunga, CA) and 

the mice injected unilaterally in their left lateral ventricle with a dose of 1x109 particles 

(volume 3 μl) of AAV4 or AAV4.18 vectors packaging the CBA-tdTom reporter cassette. 

Developing mouse brains (P14) were harvested, post-fixed and immunostained as 

described in detail below. For tracking bromodeoxyuridine (BrdU)-labeled viruses, 

7.4x108 vector genome-containing particles in a volume of 5 µL were injected into the 

left lateral ventricle of P0 mice. Neonatal brains were harvested 2 hours post-injection, 

post-fixed in paraformaldehyde, sectioned and immunostained as described below. For 

recombinant sialidase co-injection experiments, the vectors were mixed with either 5.2 

mU of Neuraminidase type III (Sialidase, Sigma-Aldrich, St. Louis, MO) or 1.45U of 

Endoneuraminidase-N (ABC Scientific, Los Angeles, CA) to a total injection volume of 

4.3μl. All neonatal injections were performed 0.5mm relative to the sagittal sinus, 2mm 

rostral to transverse sinus and 1.5mm deep. Following vector administration, mice were 

revived under a heat lamp and rubbed in the bedding before being placed back with the 

dam. 
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Tissue processing, confocal microscopy and immunofluorescence 

analysis. Two week old mice were sacrificed with an overdose of tribromoethanol 

(avertin) (0.2 ml/10 g of 1.25% solution) followed by transcardial perfusion of 4% 

paraformaldehyde in PBS. The brains were removed and post-fixed for 24 hr and 50μm 

thick sections were obtained using a Leica VT 1000S vibrating blade microtome (Leica 

VT 1000S, Leica Biosystems, IL). Free floating brain sections were blocked in 10% goat 

serum and 1% Triton X (Sigma-Aldrich, St. Louis, MO) in PBS for 1hr prior to overnight 

incubation with primary monoclonal antibodies at 4˚C. The following primary antibodies 

were utilized: rabbit anti- S100β (Sigma, 1:1000), mouse anti-GFAP (Abcam-10062, 

1:1000), rabbit anti-Dcx (Abcam-18723, 1:1000), goat anti-phospho-histone H3 

(Millipore, 1:1000), mouse anti-BrdU (Invitrogen-033900, 1:2500), rabbit anti-NeuN 

(Abcam-104225, 1:750), mouse anti PSA-NCAM (DSHB, 1:750) and mouse anti-

Rc2/Nestin (DSHB, 1:750). Secondary antibodies were raised in goats and conjugated 

to Alexa 488 or Alexa 647 (Abcam, 1:500). For jacalin staining, we followed the blocking 

step with 1.5 hour incubation of free floating mouse brain sections in FITC-Jacalin at 

room temperature (Vectorlabs, Burlingame, CA, 1:40). Jacalin was diluted to a working 

concentration of 20 µg/ml in 3% goat serum in PBS-T. Immunostained brain sections 

were visualized using a Zeiss CLSM 700 confocal laser scanning microscope and 

analyzed with Zen® Black software. Colocalization (%) of tdTomato reporter expression 

with different cell type specific markers were derived from the ratio of the number of 

transduced cells (tdTom+) that were S100β/GFAP/Dcx/PH3+ and the total number of 

transduced cells (tdTom+). Cells were counted in non-overlapping fields of view of 200 
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m2 area in the subependymal zone, rostral migratory stream, olfactory bulb or other 

pertinent regions in the P14 mouse brain. 

 

2.4 Results 

Substrate-specific neuraminidases have differential effects on AAV4 

transduction in vitro. In most mammalian tissues, SA occupies the terminal position 

originating from Asparagine linked (N-) or Serine/Threonine linked (O-) glycoprotein 

glycans. However, in the CNS, sialylated glycans are expressed in two forms, 2,3- or 

2,6-sialylated glycosphingolipids (gangliosides) as well as long polymeric chains of 

2,8-linked PSA bound to neural cell adhesion molecule (NCAM) (209) (Fig. 3A). 

Importantly, the expression of PSA is known to regulate neural plasticity and play an 

indispensable role in embryonic and adult neurogenesis in the mammalian brain (210).  

It is well known that AAV4 utilizes2,3-linked SA as the mammalian cell-surface 

receptor (34). In order to understand whether 2,8-linked PSA on cell surfaces could 

also affect AAV4 transduction, we performed specific neuraminidase treatments to alter 

the relative levels of cell surface SA and PSA in vitro. We chose parental African green 

monkey kidney CV1 cells (precursor to Cos cells) for these experiments due to their 

highly permissive nature towards AAV4 transduction (34). As depicted in Fig. 3A, two 

classes of neuraminidase enzymes were used  - Neuraminidase (Neu), which 

specifically cleaves 2,3/2,6 linkages on SA and Endoneuraminidase-N (Endo-N), 

which targets 2,8 linkages on the polymeric PSA chain. We observed that cleavage of 

SA by Neuraminidase treatment significantly reduced AAV4 transduction (> 1 log order 
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of magnitude reduction in luciferase activity, p < 0.005, Fig. 3B). In contrast, 

Endoneuraminidase-N mediated cleavage of 2,8-linked PSA significantly enhanced 

AAV4 transduction (> 7 fold increase, p < 0.05, Fig. 3C). Taken together, these 

preliminary results suggested that levels of SA and PSA on cell surfaces might 

differentially regulate AAV4 transduction. In contrast to AAV4, we observed no 

significant changes in the in vitro transduction efficiency of AAV4.18 virions arising from 

Neuraminidase or Endoneuraminidase-N treatments (Figs. 3D and E). However, we 

interpreted these results with caution due to the inherently low transduction efficiency of 

the AAV4.18 mutant in these cells. Earlier studies from our lab have demonstrated that 

the mutant AAV4.18 is likely transduction-deficient in vitro due its low binding affinity for 

SA on the cell surface (205).  

 

Ependymal transduction efficiency by AAV4.18 is similar to parental AAV4 

in neonatal mice. Previous studies have demonstrated that ICV administration of AAV4 

results in robust gene transfer in the ependymal cells and astrocytes lining the neonatal 

mouse cerebral ventricles (77). We injected P0 mice with identical titers of AAV4 or 

AAV4.18 packaging the tdTomato (tdTom) reporter gene driven by chicken beta actin 

(CBA) promoter via the ICV route. At 2 weeks post-injection, we carried out confocal 

microscopy analysis of sagittal mouse brain sections. Both vectors displayed efficient 

tdTom expression (tdTom+) in the sub-ependymal zone (SEZ) (Figs. 4A & B, Top row 

panels). In order to further characterize the tdTom+ cells at a cellular level, we 

performed immuno-colocalization with markers for ependymal cells (S100 and primary 

astrocytes (GFAP). As seen in Figs. 4D and E, tdTom+ cells (red) within the SEZ in 
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both AAV4 and AAV4.18 injected mouse brains show significant colocalization with 

S100+ cells (green). Similarly, comparable levels of colocalization of tdTom+ cells 

(red) and the GFAP+ cells (green) were also observed in the SEZs of AAV4 and 4.18 

treated mice (Figs. 4G & H). These observations were further supported by quantitative 

and statistical analyses that showed no significant differences in tdTom+ cells within the 

SEZ (Fig. 4C) or the percentage (%) colocalization with cellular markers (S100and 

GFAP) from AAV4 or AAV4.18 injections (Figs. 4F & I). These results indicate that both 

AAV4 and 4.18 vectors can efficiently transduce neonatal mouse ependyma. Although 

not relevant to the current study focused on the developing brain, it is noteworthy to 

mention that similar ependymal transduction profiles for AAV4 and AAV4.18 vectors 

were observed in adult mouse brains (data not shown). 

 

The AAV4.18 mutant displays expanded tropism for migrating progenitors. 

Neuronal progenitors in the SEZ are known to migrate via the RMS to the OB, where 

they differentiate into interneurons of the granular and periglomerular layers in 

developing and adult rodent brains (78). Confocal microscopy analysis of sagittal 

sections of postnatal mouse brains imaged at 2 weeks post-injection revealed strikingly 

distinct patterns of transduction between AAV4 and AAV4.18 vectors. Notably, AAV4.18 

injected mice showed significantly more tdTom expression in the RMS and OB (~3 and 

6 fold increase respectively, n=4 mice) regions as compared to AAV4 injected mice 

(Top row panels, Figs. 5A & B). We then performed immunostaining for the migrating 

neuroblast marker doublecortin (Dcx) and proliferating cell marker phospho-histone H3 

(PH3) to assess the cell types associated with the tdTom expression in the RMS and 
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OB. As seen in Figs. 5D & E (Middle row panels), tdTom+ cells (red) within the RMS 

and the OB in AAV4.18 injected mouse brains show significantly increased 

colocalization with Dcx+ cells (green) compared to AAV4 injected brains. A similar trend 

showing increased colocalization of tdTom+ expression with the PH3+ cells was 

observed in the RMS and to a lesser level in the OB of 4.18 injected brains (Figs. 5G & 

H; Bottom row panels). These observations were corroborated by quantitative and 

statistical analyses (Figs. 5C, F & I; *p < 0.05).  

 

Mutant AAV4.18 virions display enhanced CNS spread. In order to 

understand the mechanisms underlying the selective tropism of AAV4.18 for progenitors 

and neuroblasts in the postnatal CNS, we tracked the distribution of each AAV vector in 

the mouse brain parenchyma following ICV injections. To achieve this, we injected AAV 

vectors packaging genomes that were labeled with the thymidine analog 

bromodeoxyuridine (BrdU) through ICV injections in neonatal mice. Brains were 

harvested as early as 2 hours post vector administration and immunostained with an 

anti-BrdU antibody to visualize the biodistribution of AAV genomes in the brain 

parenchyma. AAV4 injected mice exhibit robust BrdU staining in the immediate vicinity 

of the site of injection in the SEZ and the outer meninges of the neonatal brain, 

presumably due to CSF transport (Fig. 6A, middle column, arrow). In contrast, the 

AAV4.18 vector shows a remarkably diffuse distribution pattern of BrdU-labeled viral 

particles not only in the SEZ (Fig. 6A, far right column, arrow) but also through the brain 

parenchyma and particularly in the cortical regions (Fig. 6A, far right column, 

arrowhead). Immunostaining analysis of brain sections with the endothelial cell marker 
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CD31 revealed BrdU+ AAV4.18 genomes (green) arranged alongside CD31+ 

processes (red) in the cortical regions of the mouse brain (Fig. 6B, far right column). In 

contrast, AAV4 genomes did not show this phenotype in the cortex (Fig. 6B, middle 

column). It should be noted that despite the expanded spread of the AAV4.18 genomes, 

complete colocalization with endothelial cells was not observed (Fig. 6B, far right 

column, inset). This suggests that the selective tropism for migrating progenitors can, in 

part, be attributed to the ability of AAV4.18 to spread across the neonatal brain 

parenchyma. 

 

           Selective enzymatic removal of PSA expands CNS tropism of AAV4 

vectors. The polysialylated form (PSA, 2,8-linked sialic acid) of neural cell adhesion 

molecule (NCAM) is expressed in migrating progenitor cells of the RMS during OB 

neurogenesis (211). PSA-NCAM plays a pivotal role in mediating rostral migration of 

olfactory bulb precursor cells whereas deficiencies in either PSA or NCAM cause 

accumulation of progenitor cells in the SEZ and RMS resulting in aberrant olfactory 

histogenesis (211, 212). We co-injected Neuraminidase, which selectively cleaves 

terminal SA residues or Endoneuraminidase-N, which cleaves the polymeric PSA chain 

with AAV4 packaging the CBA-tdTom reporter gene in neonatal P0 mice via the ICV 

route. Loss of terminal SA residues due to Neuraminidase treatment was confirmed by 

a significant reduction in fluorescein isothiocyanate (FITC)-labeled jacalin staining in the 

mouse brain (data not shown). Control injections of AAV4 alone resulted in highly 

localized tdTom+ expression in the ependymal lining, which was almost completely 

abrogated in Neuraminidase co-injected mice (Figs. 7A and C, left columns). We 
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observed minimal tdTom+ expression in migrating progenitors within the RMS and OB 

by AAV4, regardless of treatment with Neuraminidase (Figs. 7A and C, middle and 

right columns). Further, no colocalization with PSA-NCAM immunostaining was 

observed (Figs. 7B and D).  In contrast, Endoneuraminidase-N treatments increased 

AAV4 mediated tdTom+ expression in the RMS, but more strikingly in the OB (Fig. 7E, 

middle and right columns) and without affecting ependymal tdTom+ expression. (Fig. 

7E, left column). A concomitant and significant reduction in PSA-NCAM immunostaining 

in the RMS and OB upon Endoneuraminidase-N treatment is also observed (Figs. 7D & 

F). Taken together, these results suggest that 2,8-linked PSA negatively regulates 

AAV4 spread and potentially competes for 2,3-linked SA binding sites on the AAV4 

capsid.  

 To further characterize the expanded transduction profile of AAV4 observed 

following Endoneuraminidase-N co-injections, we carried out immuno-colocalization 

with several cellular markers. As discussed above, PSA-NCAM immunostaining was 

abrogated due to efficient cleavage of PSA residues from such treatments (Fig. 8A) and 

no colocalization with tdTom+ cells was observed as expected. Interestingly, we 

observed that AAV4 mediated transgene expression (tdTom+) significantly colocalized 

with NeuN+ neurons in the OB (Fig. 8B, arrows, far right column). However, we did not 

observe colocalization of tdTom+ cells with the astrocytic marker, GFAP or the radial 

glial marker, RC2/Nestin (Figs. 8C and D). These results indicate that under conditions 

displaying reduced PSA levels, AAV4 can efficiently transduce mature OB neurons. 

This data is consistent with observations from cell culture studies described earlier. 



 

58 
 

Thus, it appears that modulation of PSA levels can influence AAV4 tropism in the 

mammalian brain. 

 

The low affinity AAV4.18 mutant displays expanded tropism for migrating 

progenitors by exploiting high PSA levels. In order to dissect the possible 

mechanism underlying the expanded tropism displayed by AAV4.18 from ependymal 

cells towards migrating neuroblasts, we subjected the mutant strain to similar enzymatic 

modulation of SA and PSA levels. Similar to untreated controls (Figs. 9A & B), co-

injection of Neuraminidase III with AAV4.18 did not alter the extent of co-localization 

between tdTom+ and PSA-NCAM+ cells in the RMS or the OB (Figs. 9C & D). In 

contrast, co-administration of Endoneuraminidase-N dramatically altered PSA-NCAM 

staining throughout the mouse brain, particularly within the migrating progenitor 

continuum and completely abrogated tdTom reporter gene expression in AAV4.18 

injected mouse brains (Fig. 9E and F). Taken together, these results support the notion 

that the AAV4.18 has undergone a complete switch in glycan receptor specificity from 

terminal 2,3-linked SA to the polymeric 2,8-linked PSA chain owing to a loss in SA 

binding affinity. In turn, AAV4.18 appears to exploit the PSA glycosylation pattern in the 

developing brain to efficiently transduce migrating progenitors.   

Further characterization of AAV4.18 treated mice co-injected with Neuraminidase 

revealed a striking correlation between the pattern of TdTom+ cells and PSA-NCAM 

staining along the migrating progenitor RMS-OB continuum (Fig. 10A). No apparent 

colocalization was observed with the mature neuronal marker, NeuN in the PSA-NCAM 

labeled region (Fig. 10B). Although, it is noteworthy to mention that some colocalization 
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was observed between tdTom+ and NeuN+ cells in the periphery of OB (data not 

shown). Several tdTom+ cells along the migratory pathway colocalized with the 

astrocyte marker, GFAP; but not the radial glial marker, RC2/Nestin in the RMS as well 

as OB (Figs. 10C and D). Taken together, these results corroborate the notion that 

modulating SA and PSA levels in the brain can be differentially exploited by AAV4 and 

AAV4.18 to attain strikingly distinct transduction patterns targeting the ependymal lining, 

neurons within the OB or migrating progenitors in the RMS and OB regions within the 

neonatal brain.  

 

2.5 Discussion 

Successful infection by parvoviruses such as AAV involves a series of  carefully 

orchestrated events including cell surface receptor binding, endocytic uptake, capsid 

uncoating, nuclear entry and genome release followed by second strand synthesis and 

subsequent transcription. The first step, i.e., parvoviral attachment to the host cell 

surface is mediated by different glycans (25). In the brain, AAV capsid interactions with 

heparan sulfate (HS) have been particularly well-studied. Direct parenchymal injection 

of AAV serotype 2, which utilizes HS as a primary receptor (35), results in a prominently 

neuronal transduction profile (40, 41). Co-injection of soluble heparin has been shown 

to improve the CNS spread and consequently transduction efficiency of AAV2 following 

intracranial injections in rodent models (47, 48). The ability to bind HS also appears to 

restrict the CNS transduction profile of AAV serotype 6 (46). However, this effect can be 

reversed in part by mutating a lysine residue (K531) on the capsid surface, which 
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abolishes HS binding (45, 46). These earlier studies highlight the potential for glycan 

expression patterns to regulate viral spread and tropism in the brain.  

In the current study, we have characterized a novel AAV mutant that selectively 

transduces migrating progenitors in the neonatal mouse brain. This mutant was 

originally discovered from a randomly mutated AAV4 capsid library and characterized 

as an SA-binding deficient mutant. When administered systemically, the AAV4.18 

mutant displays attenuated cardiopulmonary tropism in mice due to the low binding 

affinity towards O-linked 2,3-SA, the cognate receptor for the parental AAV4 serotype 

(205). In the neonatal mouse brain, the natural isolate AAV4 exclusively transduces 

ependymal cells following ventricular injection (77). Interestingly, when injected directly 

into the SEZ, AAV4 can transduce type B astrocytes in the SVZ and glia overlying the 

RMS (77). Our results now show that this dichotomy potentially arises from the high 

binding SA and PSA affinity of AAV4 capsids, which likely restricts transduction to the 

ependymal lining following ICV administration.  

In contrast, the low affinity AAV4.18 mutant can penetrate the ependymal barrier 

into the brain parenchyma following a single ICV injection and selectively transduce 

migrating neuroblasts and proliferating cells, apparently due to interactions with PSA 

alone (Figs. 3-5). It is noteworthy that the enhanced spread of AAV4.18 particles to 

distal regions of the mouse brain does not result in successful transduction of mature 

neurons within these regions. Rather, immunohistochemical analysis suggests that 

AAV4.18 particles that reach the cortex are closely associated with the brain 

microvasculature without actually transducing endothelial cells (Fig. 6). This observation 

suggests that interstitial solutes such as viral particles might exploit paravenous efflux or 
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the ‘glymphatic’ clearance pathway (62). Correspondingly, we postulate that low binding 

affinity AAV4.18 particles are more likely to be affected by interstitial fluid transport 

through white matter tracts and perivascular spaces leading to enhanced penetration of 

brain parenchyma.  

We further expanded these findings by evaluating the effect of selective 

enzymatic removal of 2,3- or 2,8-linked SA from the murine brain by ICV injection of 

substrate-specific neuraminidases. While AAV4 transduction is completely abrogated by 

selective SA removal, AAV4.18 transduction of a subset of cells in the ependymal wall, 

the choroid plexus and PSA-NCAM+ migrating progenitors remains unaffected (Figs. 7 

- 9). This selective requirement of polymeric 2,8-linked PSA chain rather than terminal 

SA residues for AAV4.18 transduction was clearly demonstrated by enzymatic removal. 

Taken together, these results support the notion that AAV4.18 can not only spread 

throughout the brain parenchyma, but also selectively exploit PSA (2,8-linked SA) to 

transduce postnatal migrating progenitors in the mouse forebrain.  

The expanded receptor usage and selective cellular tropism displayed by 

AAV4.18 particles are not a mere coincidence. It is well known that the linear 

homopolymer of alpha 2,8-linked sialic acid (polysialic acid/PSA) plays an indispensable 

role in embryonic and adult neurogenesis. Two regions of the brain, namely OB and 

hippocampal dentate gyrus are persistently neurogenic and undergo constant 

progenitor chain migration into adulthood in rodents (213). Despite multiple differences 

between adult and embryonic neurogeneses, consistent PSA-NCAM expression is a 

feature observed in both of these regions through adulthood (214). The biochemical 

properties of PSA make it a potent negative regulator of cell-cell adhesion. This is 
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important for successful migration of precursor cells during neurogenesis (215). This is 

potentially the reason PSA-NCAM is highly expressed in the neuronal precursor cells 

during olfactory neurogenesis (215). Furthermore, the enzymatic removal of PSA using 

Endoneuraminidase-N treatment disrupts the RMS leading to neuroblast dispersion to 

unspecific regions like cortex and striatum (211). Thus, the selective transduction of 

migrating progenitors by AAV4.18 can be directly attributed to the expression patterns 

of this unique glycan attachment factor that can vary with the developmental stage of 

the host organism.  

Certain gaps still remain in our understanding of the proposed AAV-PSA 

interactions. First, PSA does not appear to functionally influence the tropism or 

transduction efficiency of AAV4 or related mutants in physiological settings other than 

the CNS, such as the heart and lung following intravenous administration (205). It is 

likely that the developing brain provides a unique setting for this novel virus-glycan 

interaction. Secondly, the structural coordinates that mediate PSA recognition by AAV4 

and the mutant virion remain to be determined. Preliminary structural modeling revealed 

altered surface electrostatics for the AAV4.18 mutant in comparison with the parental 

AAV4 strain (data not shown). It is tempting to speculate that manipulation of capsid 

surface charge density might decrease affinity for branched or linear 2,3-linked SA 

glycans, while simultaneously imparting the expanded potential to recognize the 

negatively charged PSA glycopolymer.  

These hypotheses warrant further structural and biophysical analysis outside the 

scope of the current study. Nevertheless, our overall approach helps understand the 

functional implications of altering virus-glycan interactions in the CNS, impact of 
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developmentally regulated or disease-specific glycan expression profiles on virus 

neurotropism. Simultaneously, we provide a roadmap for engineering viruses to favor 

certain glycan architectures for gene transfer applications in the brain.  
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Figure 3: Effects of substrate-specific neuraminidases on AAV4/4.18 transduction 

in vitro (A) Schematic representation of O-linked 3/2,6 Sialic acid (top) and 8 
Polysialic acid (bottom) on mammalian cell surfaces. Legend describes different glycan 
symbols. Black and white arrows represent the cleavage sites of Neuraminidase (Neu) 
and Endoneuraminidase-N (Endo-N) enzymes, respectively. Effects of Neuraminidase 
and Endoneuraminidase-N treatment on AAV4 (B and C) as well as AAV4.18 (D and E) 
are also shown. CV-1 cells pretreated with each enzyme were incubated with AAV4 or 
AAV4.18 vectors packaging a CBA-Luc transgene (MOI = 1000 vg/cell) and luciferase 
activity in relative light units (RLU) measured at 24 hrs post-infection. Error bars 
represent standard deviation (n = 3). (n.s., not statistically significant; *p < 0.05 as 
determined by student t-test).   
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Figure 4: Ependymal transduction in the neonatal mouse brain by AAV4 and the 
AAV4.18 mutant. P0 mice were injected with 1x109 vg of AAV4 (A) or mutant AAV4.18 
(B) packaging a CBA-tdTom transgene into the left lateral ventricle. At 2 weeks post-
injections, mice were sacrificed and paraformaldehyde fixed brains were sectioned and 
immunostained. Brain sections were imaged using a Zeiss CLSM 700 confocal laser 
scanning microscope equipped with 488nm and 555nm excitation filters. Confocal 
micrographs show tdTom transgene expression in red. Global brain sections are 
confocal image stitches of representative 50 um vibratome sagittal sections and SEZ 
regions show tdTom expression in the sub-ependymal zone. (D and E) Immuno-
colocalization of tdTom gene expression (red) with ependymal cells (S100β, green) and 
(G and H) primary astrocytes (GFAP, green) is indicated by yellow pseudocolor within 
the S100β/GFAP merged images. Quantitative assessments of the AAV4 (dark grey 
bars) or AAV4.18 (light grey bars) transduced cells in the dorsal and ventral SEZ are 
indicated by the number of tdTom+ cells (C) and percentage colocalization with S100β+ 
cells (F), or GFAP+ cells (I). Error bars represent standard deviation (n = 4). (n.s., not 
statistically significant; *p < 0.05 as determined by student t-test). Representative 
confocal images are shown. 
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Figure 5: The AAV4.18 mutant exhibits selective tropism for migrating 
progenitors. P0 mice were injected with 1x109 vg of AAV4 (A, D, G) or AAV4.18 (B, E, 
H) packaging the tdTomato reporter transgene driven by a chicken beta actin promoter 
into the left lateral ventricle. Comparison of tdTom expression (red) in sagittal sections 
of the developing mouse brain including the sub-ependymal zone (SEZ), rostral 
migratory stream (RMS) and olfactory bulb (OB) regions are shown. (A, B) Immuno-
colocalization of AAV4 or AAV4.18 mediated gene expression (tdTom, red) with (D, E) 
the migrating neuroblast marker, doublecortin (Dcx+, green) and (G, H) the proliferative 
cell marker, phospho-histone H3 (PH3+, green) are shown. White arrows indicate the 
locations shown at higher magnification (insets) and immunocolocalized regions 
depicted in yellow. Quantitative analysis of the number of tdTom+ cells (C) and 
percentage colocalization with Dcx+ processes (F) and PH3+ cells (I) in the RMS and 
OB regions of AAV4 (dark grey bars) or 4.18 (light grey bars) treated mice are shown. 
Error bars represent standard deviation (n = 4). (n.s., not statistically significant; *p < 
0.05 as determined by student t-test). Representative confocal images are shown. 
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Figure 6: AAV4.18 particles show enhanced CNS spread. P0 mice were injected 
with 7.4x108 vg of AAV4 or AAV4.18 packaging BrdU-labeled genomes into the left 
lateral ventricle. At 2 hours post injections, mice were sacrificed and paraformaldehyde 
fixed brains were sectioned, immunostained and imaged as outlined in methods. (A) 
Global anti-BrdU immunostaining (green) in sagittal sections of the brain obtained from 
mock-treated, AAV4 or AAV4.18 injected mice into the left lateral ventricle (white 
arrows). The positions of the cortical regions shown in higher magnification in B are 
indicated by white arrowheads in A. (B) Immuno-colocalization of BrdU+ viral genome-
containing particles (green) and anti-CD31, endothelial cell marker immunostaining  of 
blood vessels (red) in the cortex. All experiments were carried out in triplicate, 
representative images are shown.  
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Figure 7: SA and PSA play opposing roles in AAV4 transduction within the 
neonatal mouse brain. (A, B) P0 mice were co-injected with mixtures of 1x109 vg of 
AAV4 mixed with PBS (control); (C, D) 3.5 mU of Neuraminidase (cleaves 2,3-/2,6- 
linked sialic acid); or (E, F) 1.45 U of Endoneuraminidase-N (cleaves 2,8 linked 
polysialic acid) into the left lateral ventricle. At 2 weeks post-injections, mice were 
sacrificed and paraformaldehyde fixed brains were sectioned and immunostained. 
TdTom transgene expression patterns (red) and PSA-NCAM immunostaining (green) 
resulting from enzymatic desialylations are shown in the global context or as higher 
magnifications of the RMS and OB regions. White arrows indicate the locations shown 
at higher magnification (insets). All experiments were carried out in triplicate, 
representative images are shown.  
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Figure 8: Removal of PSA expands AAV4 tropism to mature OB neurons.  P0 mice 
were co-injected with 1x109 vg of AAV4 mixed with 1.45 U of Endoneuraminidase-N into 
the left lateral ventricle. At 2 weeks post-injections, mice were sacrificed and 
paraformaldehyde fixed brains were sectioned and immunostained for different cellular 
markers, PSA-NCAM (A), NeuN (B), GFAP (C) and RC2/Nestin (D) with specific 
antibodies as outlined in methods. Sagittal sections of the mouse brain featuring 
progenitor migration in the rostral migratory stream (RMS) and olfactory bulb (OB) and 
immuno-colocalization of tdTom transgene expression (red) with each cellular marker 
(green) are shown. White arrows indicate the locations shown at higher magnification 
(insets) or immunocolocalized regions (shown in yellow). All experiments were carried 
out in triplicate, representative images are shown. 
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Figure 9: The AAV4.18 mutant selectively exploits polysialic acid (PSA) to 

transduce migrating progenitors. (A, B) P0 mice were co-injected with mixtures of 

1x109 vg of AAV4.18 mixed with PBS (control); (C, D) 5.2 mU of Neuraminidase 

(cleaves 2,3- and 2,6- linked sialic acid); or (E, F) 1.45 U of Endoneuraminidase-N 

(cleaves 2,8 linked sialic acid/polysialic acid) into the left lateral ventricle. Post-fixed 

sagittal sections of P14 mouse brains displaying tdTom transgene expression patterns 

resulting from enzymatic desialylation are shown in the global context or as higher 

magnifications of the RMS and OB regions. White arrows indicate the locations shown 

at higher magnification (insets) and immuno-colocalization of tdTom expression (red) 

with PSA-NCAM staining (green) is depicted in yellow (B, D, F). All experiments were 

carried out in triplicate, representative images are shown.  
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Figure 10: AAV4.18 selectively transduces migrating progenitors expressing 
polysialyated NCAM and GFAP.  P0 mice were co-injected with 1x109 vg of AAV4.18 
mixed with 5.2mU of Neuraminidase into the left lateral ventricle. Postfixed P14 mouse 
brains were sectioned and immunostained for different cellular markers, PSA-NCAM 
(A), NeuN (B), GFAP (C) and RC2/Nestin (D) with specific antibodies as outlined in 
methods. Sagittal sections of the mouse brain featuring progenitor migration in the 
rostral migratory stream (RMS) and olfactory bulb (OB) and immuno-colocalization of 
tdTom transgene expression (red) with each cellular marker (green) are shown. White 
arrows indicate the locations shown at higher magnification (insets) or 
immunocolocalized regions (shown in yellow). All experiments were carried out in 
triplicate, representative images are shown. 
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CHAPTER 3: LIMITED SYSTEMIC BURDEN AND BRAIN-SPECIFIC GENE 

DELETION WITH A NOVEL AAV VECTOR 

3.1 Overview 

Gene therapy using recombinant adeno-associated viral (AAV) vectors is 

emerging as a promising approach to treat central nervous system (CNS) disorders 

such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst 

others. A critical remaining challenge for CNS-targeted gene replacement, silencing or 

gene editing therapies is to limit potential vector dose-related toxicity in systemic, off-

target organs. Here, we address the latter concern through rational AAV vector design. 

Specifically, we characterize a lab-derived AAV chimeric (AAV2g9), which displays 

favorable CNS attributes derived from both parental counterparts, AAV2 and AAV9. 

This synthetic AAV strain displays preferential, robust and widespread neuronal 

transduction within the brain and decreased glial tropism. Importantly, we observed 

minimal systemic leakage of AAV2g9 compared to AAV9, when administered into the 

cerebral ventricles or by lumbar puncture. Correspondingly, AAV2g9 shows markedly 

decreased sequestration and gene transfer in off-target organs. A single intracranial 

injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene 

MIR137 (encoding miR137) in CRISPR/Cas9 knockin mice resulted in brain-specific 

gene deletion with no detectable events in the liver. Dual glycan binding AAV vectors 

are a promising platform to potentially improve the safety of gene editing, RNAi or gene 

therapies for neurological disorders  
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3.2 Introduction 

The clustered, regularly interspaced, short palindromic repeats (CRISPR)-

associated endonuclease (Cas)9 technology has been utilized for targeted disruption of 

genomic loci in cell culture (216-219), animal studies (220-223), and recently for in vivo 

disease correction (221, 224, 225). Specifically, guide RNA (gRNA) dependent 

recruitment of Cas9 endonuclease (226) can be employed for generating double strand 

breaks in the targeted loci of the host genome (218, 227, 228). The recombinant adeno-

associated viral (rAAV) vector platform offers safe, efficient and tissue specific gene 

transfer systems for therapeutic delivery of CRISP/Cas9 modalities, in vivo (224). 

Understandably, the integration of rAAV and CRISPR/Cas9 technologies can be 

instrumental for gene therapy. However, it is crucial to exercise caution and preempt 

potential side effects before clinical translation of such combinatorial therapeutics. 

Adeno-associated viruses (AAV) are members of the Dependoparvovirus genus 

within the Parvoviridae family (16). These small, non-enveloped viruses package a 

single-stranded DNA genome within an icosahedral (T=1) capsid, approximately 25 nm 

in diameter (17). The topology of the AAV capsid presents a versatile surface for 

interaction with a wide variety of cellular ligands, carbohydrates in particular, which 

serve as attachment factors for viral infection (25). For instance, interactions of AAV 

serotype 2 with the glycosaminoglycan, heparan sulfate (hep) are well known. Other 

natural isolates such as AAV3b and AAV6 have also been shown to bind hep both in 

vitro and in vivo. Further, sialic acids with different linkage specificities and more 

recently, galactose (gal) have been identified as primary receptors for various AAV 



 

74 
 

strains (25, 229). Several of the aforementioned AAV strains are under active 

development as gene therapy vectors for different clinical indications (230, 231). 

The central nervous system (CNS) is comprised of a complex architecture of 

neurons, astrocytes, microglia, endothelium and other cell types. Glycosaminoglycans 

such as hep and chondroitin sulfate as well as sialylated glycans are ubiquitously 

expressed in the mammalian CNS and often tightly regulated during the course of 

neural development (210, 232). Several viral pathogens have evolved to exploit different 

glycosylation patterns within the brain. For instance, hep binding has been implicated in 

the neurovirulence displayed by members of the Alphavirus genus such as sindbis virus 

and equine encephalitis viruses (233, 234). In case of AAV, intracranial injection of a 

hep binding serotype, AAV2, shows restricted, neuronal gene expression (71, 89). 

Controlled co-injection of safe doses of soluble heparin have been shown to enhance 

AAV2 spread and transduction in the CNS (47, 48). Sialic acid binding serotypes such 

as AAV1 or AAV5 appear superior to AAV2 in mediating spread of transgene 

expression in the CNS (89). Widespread transgene expression in the CNS has also 

been demonstrated in case of AAV9, which utilizes gal as a primary attachment 

receptor (37, 90). Studies involving intravascular/intrathecal administration in mouse, 

canine, feline and non-human primate models have provided important insight into the 

CNS tropism of AAV9 and Rh.10 and supported their advancement as candidate 

vectors for clinical trials (54, 56, 66, 94, 235). 

Despite these exciting advances, several gaps exist in our understanding of 

AAV-glycan interactions in the CNS. Within this framework, a specific focus of the 

current study is to understand how glycans such as hep and gal mediate differential 
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AAV-mediated transduction patterns in the CNS. It is known that attachment to heparan 

sulfate (hep) influences the neurotropism of adeno-associated virus (AAV) serotype 2, 

herpes simplex virus, sindbis virus and equine encephalitis viruses amongst other 

examples. Although several natural AAV isolates broadly transduce neurons and glia in 

a hep-independent manner, glycan interactions within the central nervous system (CNS) 

are not well understood. We also systematically evaluated the role of galactose (gal) in 

determining the CNS transduction profile of AAV9 and several lab-derived strains. A 

hep-binding mutant (AAV2i8g9) or co-injection of soluble heparin with AAV2g9 

attenuated neuronal transduction, but redirected transgene expression to glia. Another 

chimeric strain, AAV8g9, which binds gal, but not hep, displayed enhanced CNS 

transduction in both neurons and glia compared to parental AAV8 vectors. Consistent 

with observations that gal binding improves transduction efficiency, a gal-binding AAV9 

mutant was completely attenuated in the brain. Together, these results corroborate 

distinct roles for hep and gal in determining neurotropism and spread of AAV vectors.  

Recombinant AAV vectors have met safety endpoints in several Phase I gene 

therapy clinical trials for treating Hemophilia, Alpha-1 Antitrypsin (AAT) deficiency, 

Alzheimer disease amongst other indications (236-238). Although vector re-dosing 

might be essential in some indications due to loss of gene expression observed in long 

term follow up studies (239), preclinical studies continue to show promise and advance 

with cautious optimism. One concern noted in hemophilia gene therapy clinical trials is 

the potential for vector dose-related hepatotoxicity in patients as evidenced by a rise in 

transaminases (237, 240). Although resolvable by administration of anti-inflammatory 

steroids such as methyl prednisolone, permanent loss in gene expression has been 
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observed (237). The dose and composition of clinical AAV vectors has been shown to 

influence these outcomes in preclinical toxicity studies (241). Accordingly, scientific, 

regulatory and clinical communities alike have established that continued improvements 

in vector design, development and manufacturing are needed (242, 243). 

To date, over a hundred naturally occurring strains of AAV derived from human 

and animal tissues have been isolated (244, 245). Multiple strains ranging from AAV 

serotypes 1 through 9 and Rh.10 are under active development as gene therapy vectors 

for different clinical indications (230, 231). Recent data from clinical gene therapy trials 

to treat Parkinson and Alzheimer disease have provided information that is critical 

towards continued AAV vector development (164, 238). In addition, preclinical studies 

involving intravascular/intrathecal administration in mouse, canine, feline and non-

human primate models have supported the advancement of serotypes such as AAV9 as 

candidates for clinical trials (54, 56, 66, 94, 235). Notably, AAV9 is currently being 

evaluated in Phase I clinical trials for the treatment of Spinal muscular atrophy (SMA) by 

intravascular injection and Giant axonal neuropathy (GAN) through intrathecal injection 

(Clinical trial identifiers NCT02122952, NCT02362438).  

A key observation from preclinical studies is that CNS administration of several 

naturally occurring AAV strains often results in vector sequestration within peripheral 

organs such as the liver and spleen via systemic leakage (94, 101, 235, 246). In the 

current study, we address this potential concern through vector design. Specifically, we 

describe the CNS transduction profile of a rationally engineered, chimeric AAV strain 

(AAV2g9), which harbors the ability to engage either heparan sulfate or galactose as 

receptors for cell entry (37, 206). We demonstrate exceptional CNS transduction 
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efficiency following single bolus injections of AAV2g9 as validated by two routes of 

administration in neonatal and adult rodents. More importantly, we establish potentially 

useful attributes of AAV2g9 for CNS-specific gene therapy applications, namely, 

preferential neuronal tropism, restricted CNS biodistribution and minimal transgene 

expression in off-target peripheral organs.  

Lastly, systemic dissemination of CNS-directed CRISPR/Cas9 modalities can 

result in undesirable genome editing/disruption events in peripheral organs. The 

microRNA (MIR) 137 gene is ubiquitously expressed across mammalian tissue types 

(247). In the CNS, MIR 137 dysfunction has been strongly associated with risk of 

schizophrenia in patient cohorts (248-252). In addition to involvement in SZ, miR137 

also plays an important role in regulation of neurogenesis and neuronal maturation in 

the brain (253, 254). Using AAV2g9, we demonstrate CNS-restricted gRNA mediated 

disruption of miR137 locus within the Cas9 transgenic mouse (222). 

  

3.3 MATERIALS AND METHODS 

Recombinant AAV vector production. An updated triple plasmid transfection 

protocol was used to generate recombinant AAV vectors. . The pXR plasmids 2g9, 8g9, 

2i8g9 and 9W503R have been described earlier (206, 255) All other plasmids used for 

AAV production in this study were obtained from the UNC vector core. Briefly, the 

transfection mixture contained (a) the pXR9 helper plasmid or pXR2g9/2i8g9 helper 

plasmids; (b) the adenoviral helper plasmid pXX6-80; and (c) pTR-CBh-ScGFP, pTR-

hSyn-EGFP, pTR-GFAP-EGFP or pTR-CBA-Luc plasmids encoding the green 

fluorescent protein (GFP) or luciferase (Luc) reporter genes driven by the chicken β 
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hybrid (CBh), human synapsin (hSyn), glial fibrillary acid protein (GFAP) or the chicken 

β actin (CBA) promoters, flanked by inverted terminal repeats (ITRs) derived from the 

AAV2 genome. Vector purification was carried out using iodaxinol gradient 

ultracentrifugation protocol, buffer exchange and concentration using vivaspin2 100 kDa 

molecular weight cut-off (MWCO) centrifugation columns (F-2731-100 Bioexpress, 

Kaysville, UT, USA). Vector genome (vg) titers were obtained by quantitative PCR 

(Lightcycler® 480, Roche Applied Sciences, Pleasanton, CA) using primers designed to 

selectively bind AAV2 ITRs (forward, 5’- AAC ATG CTA CGC AGA GAG GGA GTG G -

3’; reverse, 5’- CAT GAG ACA AGG AAC CCC TAG TGA TGG AG -3’) (IDT 

Technologies, Ames, IA).  

 

Intracerebroventricular (ICV) administration. Animal experiments reported in 

this study were conducted with Balb/C or C57/Bl6 mice bred and maintained in 

accordance to NIH guideline as approved by the UNC Institutional Animal Care and Use 

Committee (IACUC). Postnatal day 0 (P0) Balb/c pups which were rapidly anesthetized 

on ice for 2 min followed by stereotaxic intracerebroventricular (ICV) injections. 

Specifically, AAV9 or AAV2g9 vectors packaging different transgenes were injected into 

the left lateral ventricle (total volume <3 µl) using a Hamilton 700 series syringe with a 

26s gauge needle (Sigma-Aldrich, St. Louis, MO), attached to a KOPF-900 small animal 

stereotaxic instrument (KOPF instruments, Tujunga, CA). All neonatal injections were 

performed 0.5mm relative to the sagittal sinus, 2mm rostral to transverse sinus and 

1.5mm deep. Following vector administration, mice were revived under a heat lamp and 

rubbed in the bedding before being placed back with the dam. 2 weeks post vector 
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administrations (P14) the mouse brains were harvested, post-fixed and immunostained 

as described in detail below. For co-administration of soluble heparin (generously 

provided by Dr. Jian Liu, School of Pharmacy, UNC), AAV vectors (3.5x109 vg) were 

mixed with 1 g of heparin and a total volume of 2-3 l administered per mouse for 30 

min on ice prior to ICV injections in neonatal mice. 

 

Intrathecal (IT) administration. AAV vectors were infused into the mouse 

intrathecal cerebrospinal fluid (CSF) space using Alzet mouse intrathecal catheter and 

pump (Alzet, 0007743, Durect corp. Cupertino, CA, USA). Briefly, the pumps were 

primed with 0.9% NaCl for ~12 hrs followed by AAV vectors. 8 week old C57/Bl6 males 

were anesthetized with intraperitoneal injection of Avertin (1.25%, 2,2,2-tribromoethanol 

in PBS) at 0.23 ml/10 g body weight prior to infusions. A 23 gauge needled was used to 

expose the L5-L6 intervertebral space and the osmotic pump was implanted and 

sutured under the skin. The vector was then infused at the rate of ~8 µl/hr for ~24 hours 

to infuse a total 1x1011 vg of AAV9 and AAV2g9 vectors packaging the CBh-ScGFP 

transgene. 3 weeks post administration of the vectors, the mice were sacrificed, post-

fixed in paraformaldehyde, sectioned and immunostained as described below. Another 

cohort of 8 week old Balb/C mice was injected via IT bolus injections with AAV9 and 

AAV2g9 vectors as described elsewhere (256). Briefly, equal titers of vectors packaging 

the CBA-Luc transgene cassette (total volume 4-5 µl) was free-hand injected into the L5 

and L6 intervertebral space. The injections were carried out an angle of 20-30 degrees 

from spinal column using the 30G disposable needle attached to 50 µl Luer-hub 

Hamilton syringe (Sigma-Aldrich, St. Louis, MO).  
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Vector genome biodistribution and pharmacokinetic analyses. Cohorts of 

neonatal and adult mice used for biodistribution studies were sacrificed 3 days post 

vector administration via the ICV or IT bolus routes. The genomic DNA was extracted 

from the tissue lysates and blood using the DNeasy® kit (Qiagen, Valencia, CA). To 

calculate viral genome copy numbers QPCR was performed with primers specific to 

luciferase transgene 5’-AAAAGCACTCTGATTGACAAATAC-3’ and 5’-

CCTTCGCTTCAAAAAATGGAAC-3’. The vector genome copy numbers were 

normalized to mouse lamin B2 locus as the housekeeping gene using the primers 5’-

GGACCCAAGGACTACCTCAAGGG-3’ and 5’- AGGGCACCTCCATCTCGGAAAC-3’. 

The vector biodistribution was represented as the ratio of vector genomes per cell 

recovered in the peripheral organs to the CNS site of injection (brain or the spinal cord). 

For pharmacokinetic studies, the vector genome copy numbers were calculated from 

total DNA isolated from 10 l blood. 

 

Tissue processing, immunofluorescence and confocal microscopy. 

Neonatal and adult mouse cohorts were sacrificed 2 weeks and 3 weeks post vector 

administrations respectively. The mice were overdosed with tribromoethanol (avertin) 

(0.2 ml/10 g of 1.25% solution) via the intraperitoneal route. This was followed by 

transcardial perfusions of PBS and 4% paraformaldehyde in PBS. The organs were 

removed and post-fixed for 24 hr prior to sectioning. Briefly, 50 μm thick sections were 

obtained using a Leica VT 1200S vibrating blade microtome (Leica Biosystems, IL). The 

spinal cords were cryo-sectioned by UNC animal histopathology core. The sections of 
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mouse organs from various treatments were blocked in 10% goat serum (Sigma-

Aldrich, St. Louis, MO) and 1% Triton X (Sigma-Aldrich, St. Louis, MO) in PBS for 1 hr. 

This was followed by overnight incubation with primary monoclonal antibodies at 4˚C. 

The primary antibodies utilized as a part of this study are as follows: Rabbit anti-GFP 

(Life-Technologies- G10362, 1:750) mouse anti-GFAP (Abcam-10062, 1:1000), rabbit 

anti-NeuN (Abcam-104225, 1:750), chicken anti-GFP (Abcam-13970 1:750). Secondary 

antibodies were raised in goats and conjugated to Alexa 488 (anti-rabbit Abcam-96883, 

anti-chicken Abcam-96947), Alexa 594 (anti-Rabbit Abcam-96885) or Alexa 647 (anti-

mouse Abcam-150115). The secondary antibodies were used at a standard dilution of 

1:500. The immunohistochemical analyses of GFP expression was conducted using 

Vectastain ABC kit (Rabbit IgG PK-4001 kit, Vector biolabs, Burlingame, CA, USA). We 

used Zeiss CLSM 700 confocal laser scanning microscope for imaging sections of 

different organs after immunostaining (Microscopy services laboratory, UNC). The 

images were stitched, pseudocolored and analyzed on the Zen® Black software.  

 

GuideRNA (gRNA) design. Two gRNAs were designed to detect 98bp Pre-

miR137 flanking region and analyzed by COSMID (crispr.bme.gatech.edu) to check 

potential off-target sites (257). Target sequencing used to make the gRNAs are 

following: mir-137-g1; CGTCACCGAAGAGAGTCAG, mir-137-g3; 

GTAGTCGAGGAGAGTACCAG. For control gRNA, we used a 20bp sequence, which 

recognizes an unspecific backbone region of plasmid DNA (Con-g1; 

GTCGACTCTAGAGGATCCAC). Tandem repeat of U6 promoter-target sequence-
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guideRNA is conjugated with EF1core promoter-tdTomato-P2A-PuroR and subcloned 

into the pTR vector for packaging into AAV.  

 

Droplet digital PCR (ddPCR). PureLink Genomic DNA extraction kit (Thermo 

Fisher Scientific, K182002) was used to obtain DNA from brain and liver tissues. 

Following sequences of primers and probes were used for the ddPCR assay. 

Mmir137L206ddPCR; GCAGCAGTGACAGCGGTAGC, Mmir137R206ddPCR; 

TGGCAACCGGGAGCTTTTAG, Mmir137MTFAMddPCR; /56-

FAM/TCCACCCAA/ZEN/GAATACCCGTCACCG/3IABkFQ/, Mmir137WTHEXddPCR; 

/5HEX/CCCTCCCAG/ZEN/CCCACCAGCTG/3IABkFQ/ 

For ddPCR, 2x ddPCR Supermix for Probes (No dUTP; Bio-rad, 1863023), the QX100 

Droplet generator and reader (Bio-rad) were employed. 10ng genomic DNAs were 

subjected to PCR amplification by C1000 thermal cycler (Bio-rad) with the following 

condition: 95°C 10 min x1, (4°C 30 sec, 65°C 1 min)x40, 98°C 10 minx1; 2°C/sec. 

Obtained data was analyzed by the QuantaSoft software (Bio-rad). 

 

3.4 RESULTS AND DISCUSSIONS 

AAV2g9 and AAV9 display similar spread and transduction efficiencies in 

the CNS. We first carried out neonatal (P0) mouse intracerebroventricular injections 

(ICV) comparing AAV2g9 and AAV9 vectors packaging a self-complementary GFP 

(ScGFP) cassette driven by the ubiquitous chicken β actin hybrid (CBh) promoter. At 2 

weeks post administration (3.5x109 vector genomes (vg)/mouse), diaminobenzidine 

(DAB) immunohistochemistry and confocal microscopy analysis of post-fixed mouse 
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brain sections revealed extensive GFP expression across multiple sections in the 

rostrocaudal axis of the mouse brain for both AAV strains (Fig. 11A). Specifically, we 

observed robust transduction in the olfactory bulb, striatum, hippocampus and cortical 

regions of the mouse brain. To further compare cellular transduction profiles of the two 

vectors, we generated higher magnification confocal micrographs of functionally 

relevant regions of the brain including the cortex, amygdala, hypothalamus and 

hippocampus. Mice injected with AAV9 or AAV2g9 showed comparably robust GFP 

expression in these regions (Fig. 11B). Additionally, we observed that while AAV9 

treatment resulted in GFP+ cells with neuronal or glial morphology, AAV2g9 mediated 

GFP expression was mostly restricted to neurons. We further validated this observation 

using immune co-localization with the neuronal antigen marker, NeuN or glial fibrillary 

acid protein marker, GFAP. These results were further confirmed upon quantitation, 

which revealed a ~4 fold reduction in GFP+ cells with glial morphology for AAV2g9, but 

no significant differences between the two vectors in neuronal populations (Fig. 13A, 

B). Taken together, these results suggest that AAV2g9 spreads efficiently across the 

neonatal mouse brain, while demonstrating a robust and neurotropic transduction profile 

from a single unilateral ICV injection.  

 

AAV2g9 and AAV9 display different cell-type specificities in the CNS. We 

then generated AAV9 and AAV2g9 vectors packaging single-stranded (ss) GFP 

cassettes driven by the neuron-specific human synapsin I (hSyn) or the glia-specific 

glial fibrillary acid protein (GFAP) promoter. Vectors (3.5x109 vg/mouse) were 

administered in postnatal day 0 (P0) mice via the ICV route and post-fixed brain tissues 
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analyzed at 2 weeks post administration by diaminobenzidine (DAB) 

immunohistochemistry, immunostaining and confocal microscopy analysis. Both AAV9 

and AAV2g9 vectors packaging transgene driven by hSyn promoter displayed robust 

transduction across multiple sections of the mouse brain (Fig. 12A). Specifically, we 

observed GFP+ cells colocalizing with NeuN+ cells (yellow) in various regions including 

the striatum, cortex, hippocampus, amygdala and hypothalamus (Fig. 12B). As 

expected, no glial staining was observed for either vector supporting the potential 

application of such neuron-specific promoters for CNS gene therapy studies.  

In contrast to hSyn promoter driven expression, we observed striking differences 

in the patterns of GFP expression mediated by AAV9 and AAV2g9 vectors packaging 

the GFAP promoter driven transgene cassette. Notably, AAV9 injections resulted in 

widespread GFP expression in cells with glial morphology across the entire brain 

parenchyma in multiple brain sections (Fig. 12C). In contrast, mice injected with 

AAV2g9 exhibit spatially restricted GFP expression within close proximity of the site of 

cerebrospinal fluid (CSF) injection (lateral ventricles) or along the immediate point of 

contact between the CSF and brain parenchyma, the inner meninges. To further confirm 

these observations, we co-immunostained different sections of the mouse brain for GFP 

expression (green) with neuronal marker-NeuN or glial marker-GFAP (red) as before. 

High magnification confocal micrographs generated at different brain regions show 

robust GFP+ expression from AAV9 injections in GFAP+ cells, but not NeuN+ cells (Fig. 

12D). These observed patterns of transgene expression were further confirmed by 

quantitative analysis, which revealed ~2.5 fold reduction in glial transduced area 

throughout the brain with AAV2g9 vectors under GFAP promoter activity (Fig. 13C, D). 



 

85 
 

These results demonstrate for the first time that AAV9 vectors packaging GFAP 

promoter driven expression cassettes are excellent candidates for glial gene transfer 

applications, while AAV2g9 appears to more neurotropic and hence suitable for CNS 

gene transfer applications targeting neuronal populations. From the AAV biology 

perspective, AAV2g9 appears to preferentially transduce neurons over glia, while this is 

patently not the case with AAV9. 

 

Heparan sulfate interactions are critical towards preferential neuronal 

transduction by AAV2g9 vectors. The interaction of AAV2 vectors with heparan 

sulfate (HS) proteoglycans is associated with preferential neuronal transduction in the 

immediate vicinity to site of CNS administration (71, 89). Co-administration of soluble 

heparin has been shown to block the ability of AAV2 to bind hep and alter transduction 

profiles in vitro and in vivo (35, 47, 48). Therefore, we compared the CNS transduction 

profiles of AAV2 and AAV2g9 to co-injections of AAV2g9 with 1 g of soluble heparin in 

the neonatal mouse brain. Further, we generated a hep binding mutant, AAV2i8g9, as 

described in earlier studies by our lab (206). Specifically, we injected equal viral titers 

(3.5x109 vg) of AAV2, AAV2g9, AAV2g9 + soluble heparin or AAV2i8g9 packaging CBh-

ScGFP transgene via the ICV route in P0 mice. As shown in Fig. 14A, we observed a 

low level of GFP+ expression as evidenced by DAB immunostaining within the 

hippocampal sections of AAV2 injected mouse brains. Consistent with earlier results, 

AAV2g9 displayed robust and widespread CNS transgene expression supporting the 

notion that the gal footprint enhances transduction efficiency and spread. Further, we 

observed a decrease in GFP+ expression across the brain parenchyma in AAV2g9 + 



 

86 
 

soluble heparin treated animals as well as AAV2i8g9 treated mouse cohorts in 

comparison with AAV2g9 (Fig. 14B-D). 

High magnification confocal micrographs of multiple regions of the mouse brain, 

namely; the somatosensory  cortex (SCT), piriform cortex (PCT), motor cortex (MCT), 

dentate gyrus (DG), amygdala (AMG) and hippocampal CA1, CA2 and CA3 regions 

were then generated. As seen in the top panel of Fig. 14E, we observed sporadic 

expression in neurons and astrocytes in case of AAV2-injected mice. On the other 

hand, extensive and preferential neuronal transduction was observed across these 

regions in case of AAV2g9 as observed earlier (Fig. 14E, second row panel). In 

contrast, loss of hep binding, either by competitive inhibition with soluble heparin or with 

the AAV2i8g9 mutant resulted in a decreased neuronal transduction in multiple brain 

regions (third row and bottom row panels, Fig. 14E). In addition, loss of neuronal 

transduction was accompanied by an increase in GFP+ cells with glial (astrocytic) 

morphology in these cohorts. Taken together, our observations suggest that hep binding 

is critical in determining the preferential neuronal tropism displayed by AAV2g9. 

 

Galactose (gal) binding enhances CNS transduction of AAV vectors 

independent of heparan sulfate (hep) binding interactions.  The exact mechanisms 

by which AAV9 exploits its primary receptor, gal (37) for CNS transduction are yet to be 

determined. We have previously shown that a single point mutation on the VP3 region 

of the AAV9 capsid (W503R) dramatically alters the systemic tropism of the virus by 

disrupting the gal footprint (255, 258). To this end, we compared transduction profiles of 

AAV9 and AAV9W503R packaging CBA-TdTomato (TdTom) fluorescent reporter 
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transgene (3.5x109 vg) in P0 mice via the ICV route. Two weeks post injections; mice 

were sacrificed, fixed and subjected to confocal analysis for TdTom expression. As 

shown in Fig. 15, AAV9-CBA-TdTom (left column) injected mouse brains exhibit robust 

TdTom+ transgene expression (pseudocolored white) across multiple regions of the 

mouse brain, namely: olfactory bulb, cortex, sub-ependymal zone, hippocampus and 

cerebellum. On the other hand, we observed a complete loss of TdTom+ expression in 

the mouse brain injected with AAV9W503R-CBA-TdTom (Fig. 15, right column). This 

result demonstrates the critical role played by gal in mediating the CNS transduction of 

AAV9. A single point mutation attenuating gal interactions (258, 259) on the AAV9 

capsid protein results in a loss of function phenotype within the CNS.  

To further demonstrate the distinct role played by hep and gal in CNS 

transduction by different AAV strains, we engineered the gal footprint (206) onto the 

primate isolate, AAV8 (244). Unlike AAV2, AAV8 does not engage hep as the cellular 

attachment receptor (260). Specifically, we injected equal titers (3.5x109 vg) of AAV8 or 

AAV8g9 packaging the CBh-ScGFP transgene in P0 mice via the ICV route. At 2 weeks 

post vector administration; brains and spinal cords were harvested from the mouse 

cohorts and subjected to immunostaining and confocal analysis. As shown in Fig. 16A, 

we observed that AAV8g9 injected mice showed enhanced spread and efficiency of 

GFP+ transgene expression within multiple sections of the mouse CNS. Further co-

immunostaining with neuronal and glial cellular markers (i.e., NeuN and GFAP, 

respectively) showed that cellular tropisms were unaltered with no preferential 

transduction of either neurons or astrocytes by both AAV8 and AAV8g9 (Fig. 16B). 

These results indirectly support the notion that the robust CNS transduction profile is 
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independent of hep binding. More importantly, these results further corroborate the 

notion that gal binding ability can enhance both CNS transduction efficiency and spread 

without altering the endogenous cellular tropism displayed by a particular AAV capsid 

(natural or engineered).  

 

AAV2g9 and AAV9 display similar transduction profiles in adult mice after 

intrathecal administration. To compare the two strains in adult mice, we carried out 

intrathecal (IT) infusions of AAV9 or AAV2g9 packaging CBh-ScGFP reporter transgene 

into the lumbar CSF space of 8 week old mice. At 3 weeks post administration of 1x1011 

vg/mouse, we subjected postfixed tissues to immunohistochemical analyses and 

confocal imaging as outlined in online methods. As shown in Fig. 17A, IT infusions of 

both AAV9 and AAV2g9 resulted in strong transgene expression in the lumbar, thoracic 

and cervical spinal cord regions. Of note, we observed GFP expression in multiple gray 

and white matter regions of the spinal cord. Further, we compared cellular transduction 

profiles resulting from IT infusions of AAV9/2g9 vectors. Specifically, we focused on 

different regions of the adult CNS, namely: ventral horn (VH), dorsal horn (DH), 

intermediate gray matter region (INT), ventral funiculus (VF), lateral funiculus (LF), 

ventral commissure (VC), and rubrospinal tract (RT). As shown in Fig. 17B, both 

AAV2g9 and AAV9 infused mice exhibit robust GFP expression in these regions of the 

spinal cord. In both AAV9 and AAV2g9 injected mice, we observed that the GFP+ cells 

(green) in the gray matter regions of the spinal cord (VH, DH and INT) extensively 

colocalized with NeuN+ as well as GFAP+ cells. Within the white matter regions of 

spinal cord (VF, LF, VCOM and RT), the GFP+ (green) cells from either injection 
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extensively colocalized with GFAP+ cells (Fig. 17B). Importantly, these observations 

also underscore the potential influence of route of injection on the cellular tropism of 

different AAV vectors.  

 

AAV2g9 and AAV9 display distinct systemic biodistribution and off-target 

transduction profiles following CNS administration. Having established the 

robustness of the rationally engineered AAV2g9 strain, we compared the systemic 

leakage, vg biodistribution and gene expression profiles in peripheral organs resulting 

from ICV or IT injections of AAV9 and AAV2g9 in both neonatal and adult mice. At 3 

days post-administration, we extracted whole genomic DNA from different organs and 

determined vg copies using qPCR in different peripheral organs including the liver, heart 

and spleen. We observed a striking difference between the off-target biodistribution 

profiles of AAV9 and AAV2g9 vectors following ICV or IT injections. As seen in Fig. 

18A-C, in the AAV9 injected neonatal mouse cohort, ~40%, 30% and 3% of the viral 

genomes were recovered from the liver, heart and spleen, respectively, in comparison 

with the brain (normalized to 100%). In contrast, AAV2g9 vg copy numbers ranged from 

~1.4%. 0.7% and 0.003% in these peripheral organs. In the adult mouse cohort, AAV9 

vg copies recovered in the liver, heart and spleen were 188%, 81% and 59%, 

respectively in comparison with vg copies recovered from the spinal cord (normalized to 

100%). In contrast, only ~3%, 4.5% and 10% of vg copies were recovered from these 

systemic organs in the AAV2g9 treated cohort (Fig. 18E-G). These results suggest that 

unlike AAV9, AAV2g9 is sparingly sequestered in off-target, systemic organs following 

CNS administration.  
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To further corroborate the biodistribution results, we harvested different 

peripheral organs from the ICV and IT mouse cohorts treated with either AAV2g9 or 

AAV9 and subjected post-fixed tissue to immunostaining and confocal imaging analysis 

as outlined earlier. We observed robust GFP expression in the heart, liver and spleen of 

both neonatal (ICV) (Fig. 18D) and adult (IT) (Fig. 18H) mice treated with AAV9. 

Consistent with biodistribution data, AAV2g9 treated mice exhibit near background 

levels of GFP expression in both ICV and IT cohorts. Together, these results are also 

consistent with the reduced leakage of AAV2g9 vectors (>100 fold) into the blood 

circulation that was observed in comparison to AAV9 vectors (Fig. 19). Briefly, AAV9 

vector genomes were observed in blood as early as 15 min post-administration and 

continued to decline over two days. These results are consistent with earlier studies 

reported by our lab and others (258, 261). In contrast, AAV2g9 vector genomes 

remained near background levels with a slight increase in copy number observed at the 

24 hr and 48 hr time intervals. Together, our results confirm that unlike AAV9, AAV2g9 

undergoes significantly reduced systemic leakage following CNS administration and 

consequently displays low levels of sequestration and transgene expression in 

peripheral organs. 

 

Brain-restricted deletion of MIR 137 gene using AAV2g9 in CRISPR-Cas9 

knock-in mice. We have established that CNS administration of AAV2g9 results in 

limited systemic exposure and efficient gene transfer within the neural tissue. To 

demonstrate application of this unique property, we produced AAV2g9 vectors 

packaging two gRNAs for targeted disruption of the MIR 137 gene in the brain. 
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Specifically, the gRNAs were designed to recognize both ends of the 85bp pre-miR137 

region. Equal titers of AAV2g9 packaging miR137gRNA or controlgRNA were injected 

into Cas9 transgenic mice (222) via unilateral ICV route. 2 weeks post vector 

administration the mice were sacrificed and organs were harvested. The brain and liver 

tissues were subject to genomic DNA extraction. To evaluate gene disruption events, 

we utilized the droplet digital PCR technique. Briefly, primers were designed to amplify 

206 bp mouse genomic region flanking the miR137 target locus. Fluorescent probes 

were designed to bind miR137gRNA target region (FAM, red) and an unspecific 

downstream locus (HEX, green). Successful disruption of miR137 locus results in 

exclusive excitation of HEX probe alone (green). Whereas both FAM and HEX probes 

are excited (orange) in case of no gene disruption events (Fig. 20A). First, we 

evaluated AAV2g9 vector genome biodistribution by performing QPCR on genomic 

DNA samples obtained from brain and liver tissues of the injected mice. We observed 

significant enrichment of AAV genomes within the brain as compared to the systemic 

liver tissue (Fig. 20B). Next, droplet digital PCR analysis revealed that the frequency of 

miR137 eliminated alleles was significantly higher (green dots) in mice that received 

AAV2g9-miR137gRNA, as compared to AAV2g9-controlgRNA cohort (Fig. 20C, red 

arrow). Correspondingly, quantitative analysis of this phenomenon demonstrated a 

significant increase in mutant allele frequency within the miR137gRNA injected mouse 

brains (Fig. 20D).  

Next, we examined if the gene disruption events were specific to the brain. 

Identical ddPCR analysis conducted on liver DNA extracted from the same mouse 

cohorts displayed near background levels of miR137 elimination in the systemic organ 
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(Fig. 20E). Further quantitation demonstrated negligible mutant allele formation due to 

both AAV2g9-controlgRNA and AAV2g9-miR137gRNA injections in the liver (Fig. 20F). 

Overall, our data demonstrates CNS-restricted gene disruption within the Cas9 

transgenic mouse using ICV administration of engineered AAV2g9 vector. 

Micro RNAs (miRNAs) are one of the largest species of non-coding RNAs that 

employ post-transcriptional silencing mechanisms to control ~60% of host gene 

expression (262). Majority of miRNA expression occurs in the CNS where gene 

regulatory mechanisms within neuronal subpopulations orchestrate states of normalcy 

and disease (263). Large scale GWAS studies conducted across ~40,000 patients 

recently led to the identification of disruption in MIR 137 gene function to have a strong 

correlation with the SZ disease occurrence (248, 264). It is well known that establishing 

a CNS-specific gene delivery system is crucial for developing gene therapy strategies 

and generating disease models of neurological disorders. As miR137 and CAG 

promoter driven Cas9 are both expressed in brain and liver tissue (222, 247), it is safe 

to assume that the brain specific miR137 elimination relies on AAV2g9 vector design. 

To our knowledge, this is the first example of CNS-specific gene disruption using an 

engineered AAV vector. 

Although we successfully demonstrate CNS-restricted gene disruption in this 

study, certain caveats are noteworthy and need to be addressed by future studies. For 

instance, we achieved a modest ~5% frequency of MIR 137 elimination within the 

AAV2g9-miR137gRNA injected Cas9 transgenic mouse brain. It is intriguing to 

speculate that the Cas9 expression within the mouse brain could be mosaic, resulting in 

a smaller subset of CNS cells capable of undergoing CRISPR mediated gene 
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disruption. Moving forward, it is important to evaluate the percentage of cells expressing 

Cas9 within the mouse brain. Additionally, in the current study we utilized rAAV vectors 

packaging single stranded DNA genomes. Packaging the gRNA constructs into a self-

complementary AAV cassette can possibly enhance the gene transfer efficiency and 

subsequently elevate MIR 137 gene disruption frequency. 
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Figure 11. Comparison of transgene (GFP) expression and cellular tropisms 
displayed by AAV9 and AAV2g9 vectors with a ubiquitous promoter after 
ventricular (ICV) injection. Postnatal day 0 (P0) mice were injected with equal viral 
titers (3.5x109 vg) of AAV9 or AAV2g9 packaging a ScGFP transgene driven by a 

ubiquitous chicken  hybrid (CBh) promoter into the left lateral ventricle. At 2 weeks 
post vector administration, the mice were sacrificed and paraformaldehyde postfixed 
brains were sectioned and immunostained as described earlier. (A) Representative 
images of coronal sections obtained from olfactory bulbs, lateral ventricles and 
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hippocampi are shown. Inset images from whole brain sections are shown to the right of 
each section at higher magnification. (B) Top image panel shows higher magnification 
images of DAB staining (GFP expression) in functionally relevant regions of the mouse 
brain namely; somatosensory cortex (SCT), piriform (PCT), motor CT (MCT), dentate 
gyrus (DG), amygdala (AMG), hypothalamus (HTL) and hippocampal CA1, CA2 and 
CA3 are shown. Middle and bottom panels show immuno-colocalization of GFP 
expression (green) with neuronal marker, NeuN or glial marker, GFAP (red). All 
experiments were conducted in triplicate and representative images are shown. 
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Figure 12. Comparison of transgene (GFP) expression and cellular tropisms 
displayed by AAV9 and AAV2g9 vectors with cell type-specific promoters after 
ventricular (ICV) injection. Postnatal day 0 (P0) mice were injected with equal viral 
titers (3.5x109 vg) of AAV9 or AAV2g9 packaging a single-stranded GFP (ssGFP) 
transgene driven by the (A,B) hSyn promoter or the (C,D) GFAP promoter into the left 
lateral ventricle. At 2 weeks post vector administration, the mice were sacrificed and 
paraformaldehyde postfixed brains were sectioned and immunostained. 
Diaminobenzidine (DAB) immunohistochemistry was used to detect GFP expression. 
(A,C) Representative images of coronal sections obtained from olfactory bulbs, lateral 
ventricles and hippocampi are shown. Inset images from whole brain sections are 
shown to the right of each section at higher magnification. (B,D) Representative 
confocal images of coronal tissue sections at higher magnification. Top image panel 
shows higher magnification images of DAB staining (GFP expression) in functionally 
relevant regions of the mouse brain namely; Striatum (STR), piriform CT, Motor CT, 
dentate gyrus (DG), amygdala (AMG), hypothalamus (HTL) and hippocampal CA1, CA2 
and CA3 regions are shown. Middle and bottom panels show  immuno-colocalization of 
GFP expression (green) with neuronal marker, NeuN  or glial marker, GFAP (red) 
obtained using a Zeiss CLSM 700 confocal laser scanning microscope. Co-localized 
cells are pseudocolored yellow (GFP/NeuN or GFP/GFAP overlay). All experiments 
were conducted in triplicate and representative images are shown.  
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Figure 13. Quantitative assessment of transduction following ICV administration 

of AAV9 and AAV2g9 vectors. GFP expression was quantified in representative 

hippocampal sections of the mouse brains treated with AAV9 or AAV2g9 vectors. 

Specifically, GFP+ cells with neuronal (A) or glial (B) morphology were counted in 

different cortical regions including the retrosplenial, posterior parietal, somatosensory, 

auditory and piriform areas. Further, quantitative assessment of GFP expression 

following ICV administration of AAV9 and AAV2g9 vectors driven by (C) human 

synapsin (hSyn) promoter or (D) glial fibrillary acid protein (GFAP) promoter was carried 

out using ImageJ analysis software. Specifically, the mean intensity calculator function 

was applied across multiple sections of the mouse brain including sections of the 

olfactory bulbs, lateral ventricles and hippocampal regions. Data is represented as 

mean ± standard deviation, * represents p<0.05 and n.s. indicates ‘not statistically 

significant’ (p>0.05) as determined by student t-test. All experiments were conducted in 

quadruplicate.  
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Figure 14. Heparan sulfate interactions are critical towards preferential neuronal 

transduction by AAV2g9 vectors. Postnatal day 0 (P0) mice were injected with equal 

viral titers (3.5x109 vg) of AAV2, AAV2g9 or AAV2i8g9 packaging the CBh-ScGFP 

transgene into the left lateral ventricle (ICV). One cohort of mice was co-injected with 1 

g soluble heparin (Hep) per mouse as indicated. 2 weeks post vector administration, 

the mice were sacrificed and the brains were harvested and immunostained for 

comparing transgene (GFP) expression (black). (A-C) Representative images of 

hippocampal sections from AAV2, AAV2g9, AAV2g9+Heparin or AAV2i8g9 injections 

have been shown. (D) Higher magnification images of GFP expression (black) in 

different regions of the mouse brain namely; somatosensory cortex (SCT), piriform CT, 

motor CT, dentate gyrus (DG), amygdala (AMG) and hippocampal CA1, CA2 and CA3 

regions have been shown. The Zeiss CLSM 700 confocal laser scanning microscope 

was used to image stitched images of entire mouse brain and higher magnification 

images of individual regions. All experiments were conducted in triplicate and 

representative images are shown.    
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Figure 15. CNS transduction profile of a gal-binding AAV9 mutant (W503R) and 
AAV9 following ventricular (ICV) administration. Postnatal day 0 (P0) mice were 
injected with equal viral titers (3.5x109 vg) of AAV9 or AAV9W503R packaging a single-
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stranded TdTomato (TdTom) fluorescent reporter transgene driven by CBA promoter 
into the left lateral ventricle. At 2 weeks post vector administration, the mice were 
sacrificed and sagittal sections were obtained from the paraformaldehyde postfixed 
brains. Representative confocal stitches show TdTom reporter gene expression 
(pseudocolored white) in the whole brain (global) and higher magnification images of 
individual regions (i.e. olfactory bulb, cortex, sub-ependymal zone, hippocampus and 
cerebellum). Zeiss CLSM 700 confocal laser scanning microscope equipped with 
555nm excitation filter was used to obtain the global stitches and higher magnification 
images of individual regions of the mouse brain. All experiments were conducted in 
triplicate and representative images are shown. 
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Figure 16. CNS transduction profile and cellular tropisms displayed by AAV8 and 

gal-binding AAV8g9 vectors following ventricular (ICV) injection. Postnatal day 0 



 

102 
 

(P0) mice were injected with equal viral titers (3.5x109 vg) of AAV8 or AAV8g9 

packaging a ScGFP transgene driven by a ubiquitous chicken  hybrid (CBh) promoter 

into the left lateral ventricle. At 2 weeks post vector administration, the mice were 

sacrificed and paraformaldehyde postfixed brains were sectioned and immunostained 

as described earlier. (A) Representative images of coronal sections obtained from 

olfactory bulbs, lateral ventricles and hippocampi are shown. Inset images from whole 

brain sections (arrows) are shown to the right of each section at higher magnification. 

(B) Top image panel shows higher magnification images of GFP expression (green) in 

functionally relevant regions of the mouse brain namely; olfactory bulb (OB), 

somatosensory cortex (ss CT), motor CT (MCT), visual CT (VCT), striatum (STR), 

amygdala (AMG), hippocampal CA1, CA2 and CA3  of the brain and dorsal and ventral 

horn regions of the spinal cord are shown. Middle and bottom panels show immuno-

colocalization of GFP expression (green) with neuronal marker, NeuN or glial marker, 

GFAP (red). All experiments were conducted in triplicate and representative images are 

shown.   



 

103 
 

 

Figure 17. Comparison of transgene (GFP) expression and cellular tropism 
displayed by AAV9 and AAV2g9 vectors following intrathecal infusion. (A) Spinal 
cord sections showing cervical, thoracic and lumbar regions obtained from 8 week old 
adult C57/BL6 male mice infused with AAV9 or AAV2g9 packaging the CBh-ScGFP 
transgene (1x1011 vg) by lumbar puncture. Mice were sacrificed and the spinal cords 
were postfixed in paraformaldehyde, sectioned at 3 weeks post vector administration. 
Diaminobenzidine (DAB) immunohistochemistry was used to detect GFP expression. 
Inset images from whole spinal cord cross-sections are shown to the right of each 
section at higher magnification. (B) Representative confocal images of immunostained 
sections at higher magnification. GFP expression (top panel, green) in the ventral horn 
(VH), dorsal horn (DH), intermediate zone gray matter (INT), ventral funiculus (VF), 
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lateral funiculus (LF), ventral commissure (VCOM) and rubrospinal tract (RT) regions is 
shown. Middle and bottom panels show  immuno-colocalization of GFP expression 
(green) with neuronal marker, NeuN  or glial marker, GFAP (red) obtained using a Zeiss 
CLSM 700 confocal laser scanning microscope equipped with 488nm, 555nm and 
647nm excitation filters. Co-localized cells are pseudocolored yellow (GFP/NeuN or 
GFP/GFAP overlay). All experiments were conducted in triplicate and representative 
images are shown. 
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Figure 18. Comparison of systemic biodistribution and off-target transgene (GFP) 
expression displayed by ICV/IT injected AAV9 and AAV2g9 vectors. (A-C) Relative 
percentage of vector genome (vg) copy numbers for AAV9 (dark gray bars) and 
AAV2g9 (light gray bars) in systemic organs, i.e., liver, heart and spleen normalized to 
vg copy number in the brain following ICV administration in neonates. (D) Confocal 
micrographs showing GFP expression in systemic organs – liver, heart and spleen 
obtained from neonatal ICV cohorts. (E-G) Relative percentage of vector genome (vg) 
copy numbers for AAV9 (dark gray bars) and AAV2g9 (light gray bars) in systemic 
organs, i.e., liver, heart and spleen normalized to vg copy number in the spinal cord 
following IT administration in adult mice. (H) Confocal micrographs showing GFP 
expression in systemic organs – liver, heart and spleen obtained from adult IT cohorts. 
The vg copy per host genome (vg/cell) was determined by quantitative PCR of extracted 

DNA and normalized to the number of copies of the mouse lamin  gene. Data shown 
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is represented as mean + standard deviation; Statistical significance (* p<0.05) was 
established using student t-test. All experiments were conducted in quadruplicate and 
representative images are shown. 
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Figure 19. Comparison of blood circulation/pharmacokinetic profiles AAV9 and 
AAV2g9 vectors in adult mice post IT administration. 8 week old Balb/C mice were 
injected with equal viral titers (7.8x109vg) of AAV9 or AAV2g9 packaging CBA-Luc 
transgene via intrathecal injections. Approximately 10 µl blood was collected via tail vein 
nicks from adult mice at 15 min, 2 hrs, 6 hrs, 24 hrs and 48 hrs post IT injection. Blood 
samples were immediately mixed with equal volume of sodium citrate (3.8% 
weight/volume) to avoid coagulation. Pharmacokinetic profiles of AAV9/2g9 vectors 
were generated using qPCR to calculate viral genomes in the blood samples with 
primers specific to the luciferase transgene. Data represents mean ± standard error 
mean (s.e.m.) * represents p<0.05 as determined by student t-test. All experiments 
were conducted in quadruplicate. 
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Figure 20. CNS-restricted gene disruption of MIR 137 within Cas9 transgenic 
mouse using AAV2g9. (A) Schematic representation of mouse miR137 locus (mm10, 
chr3:118,433,800-118,434,004). Two gRNAs were designed to generate a 98bp 
deletion within pre-miR137 region. Droplet digital PCR (ddPCR) primers were designed 
to amplify a 206bp region (wild type mir-137) and shorter mutant (mir-137 eliminated) 
genomic DNA. Probes detect unaltered region (HEX probe, green) and a region flanked 
by two miR137gRNAs (FAM probe, red). (B) AAV2g9 vector genome (vg) copy 
numbers (per cell) within the brain (light gray bars) and liver (dark gray bars) tissues, 2 
weeks post ICV administration in neonatal (P0) Cas9 transgenic mice. Scatter plots 
showing results of ddPCR on brain (C) and liver (E) genomic DNA from AAV2g9-
controlgRNA (left) or AAV2g9-miR137gRNA (right) injected mice. Specifically, 
HEX+/FAM+ double positive droplets (Orange) indicate wildtype alleles, while 
HEX+/FAM- droplets (Green; depicted by red arrow) show miR137 eliminated alleles. 
Results from all samples (N=3 or 4) are pooled to generate plots. (D and F) Quantitative 
analyses of ddPCR from controlgRNA (light gray bars) and miR137gRNA (dark gray 
bars). Wild-type or mutant allele were predicted using a 2D dot plot as shown. Graphical 
data represents mean ± standard error mean (s.e.m.) * represents p<0.05, n.s. indicates 
‘not statistically significant’ (p>0.05), as determined by student t-test. All experiments 
were conducted in triplicate.  
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CHAPTER 4: AQUAPORIN 4 REGULATES THE PARAVASCULAR CLEARANCE OF 

AAV VECTORS FROM THE BRAIN 

4.1 Overview 

Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for 

gene therapy of central nervous system (CNS) disorders. However, host factors that 

influence the spread, clearance and transduction efficiency of AAV vectors in the brain 

are not well understood. Recent studies have demonstrated that water flow mediated by 

aquaporin 4 (AQP4) channels located in astroglial endfeet is essential for exchange of 

solutes between interstitial and cerebrospinal fluid. In the current study, we demonstrate 

that AQP4 water transport profoundly affects various aspects of AAV gene transfer in 

the CNS. Mislocalization of AQP4 in aged mouse brains correlated with significantly 

increased retention of AAV vectors in the parenchyma following ventricular 

administration. Within minutes after unilateral administration into the ventricles, AQP4 

knockout mice displayed highly restricted spread of fluorophore labeled AAVs compared 

to WT mice. We observed increased retention and transgene expression when AAV 

vectors were administered into the ventricles (intraCSF) of AQP4-/- mice, as compared 

to WT mice. These results were corroborated by markedly reduced clearance of AAV 

vectors from the brain as demonstrated by reduced transgene expression and vector 

genome accumulation in systemic organs. We postulate that deregulation of AQP4 in 

aged and diseased brains could markedly affect the parenchymal spread, clearance 

and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the 
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kinetics of CSF flux in prospective gene therapy patients could help understand variable 

treatment outcomes and guide future clinical trial design. 

 

4.2 Introduction 

Tremendous progress is being made towards building a repertoire of viral vectors 

for therapeutic gene transfer in the central nervous system (4, 15, 27, 229). Gene 

therapy approaches for treating diseases such as Spinal Muscular Atrophy 

(NCT02122952), Giant Axonal Neuropathy (NCT02362438), Parkinson’s 

(NCT00229736), Alzheimer’s (NCT00017940) and Lysosomal storage disorders 

(NCT01474343) are being tested in Phase I/II clinical trials. Almost all such therapeutic 

strategies currently utilize AAV biologics for delivering the corrective transgene in the 

disease-affected CNS (4, 266). For instance, clinical trial was conducted on 10 patients 

with early Alzheimer’s disease by administration of AAV2 vectors packaging nerve 

growth factor (NGF). Post-mortem patient brains showed pathological benefits proximal 

to NGF expression in the form of axonal sprouting and cholinergic neuronal hypertrophy 

with no adverse effects for 10 years (238). However, reports from other ongoing clinical 

trials indicate that the efficacy of CNS gene transfer from such strategies often falls 

short of the therapeutic baseline in patient cohorts (164). To this end, techniques like 

convection-enhanced delivery (CED) of AAV vectors are being employed to target a 

larger brain volume from a single intracranial administration (267). Understandably, it is 

crucial to conduct preclinical evaluations of AAV vectors on predictive in vivo systems 

that accurately depict physiological processes and biochemical landscape of the human 

CNS.  
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Interstitial flux of biological fluids is a common mechanism employed by 

mammalian tissues for lymphatic waste clearance (62, 268). Due to lack of a 

conventional lymphatic vasculature in the brain, a combination of CSF and water moves 

via subarachnoid spaces and paravascular compartments to drain extracellular 

depositions like metabolites and proteins (104, 105, 269). Specifically, CSF engages in 

direct exchange of biomaterials with proximal CNS tissue via subarachnoid ducts (63, 

105). Such exchange of cargo within deeper anatomical regions of neural tissue is 

made possible by paravascular water transport through aquaporin-4 (AQP4) channels 

(62, 269). Iliff and colleagues utilized fluorescent CSF tracers and AQP4 knockout 

(AQP4-/-) mice to visualize and elucidate mechanistic aspects of paravascular CSF flux 

and solute clearance in CNS (62, 270). This glial-associated lymphatic clearance of 

brain tissue has been termed ‘glymphatic’ clearance (269, 271).  

Successful CNS spread and infection by viral biologics is a multifactorial cascade 

of events (193). For instance, adeno-associated viral (AAV) vectors overcome 

physiological barriers (e.g. blood-brain/ blood-CSF barrier) and utilize biochemical 

processes (e.g. receptor interactions) to achieve successful CNS gene transfer (25). 

Vector transduction efficiency and cell-specificity are evidently attributed to AAV capsid-

cell surface receptor interactions in vivo (25, 31, 229). However, there is a need for 

better understanding the checkpoints that govern AAV vector spread, accumulation, 

transduction and clearance in the CNS. For this study, we hypothesized that 

transparenchymal CSF flux via glymphatic transport has profound implications on 

aforementioned properties of AAV vectors within the brain. On a molecular level, an 

expanding body of evidence suggests that this paravascular fluid flux is regulated by 
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AQP4 lining at the astrocytic endfeet (62, 269, 272, 273). We demonstrate the effects of 

abnormal AQP4 expression on CNS gene transfer properties of AAV vectors in vivo. 

Specifically two mouse models of dysfunctional AQP4 glymphatic transport were 

studied: a) age dependent mislocalization of AQP4 and; b) genetic knockout of AQP4. 

We show that AQP4 mediated CSF flux dictates multiple aspects of AAV-gene therapy 

of the CNS tissue. 

  

4.3 Materials and Methods 

Recombinant AAV vector production. An updated triple plasmid transfection 

protocol was used to generate recombinant AAV9 vectors (206, 255). All plasmids used 

for AAV production in this study were obtained from the UNC vector core. Specifically, 

HEK 293 cells were transfected with a mixture of (i) the pXR9 helper plasmid; (ii) the 

adenoviral helper plasmid pXX6-80; and (iii) pTR-CBh-ScGFP or pTR-CBA-Luc 

plasmids encoding the green fluorescent protein (GFP) or luciferase (Luc) reporter 

genes driven by the chicken β hybrid (CBh) or chicken β actin (CBA) promoter and 

flanked by inverted terminal repeats (ITRs) derived from the AAV2 genome. Iodaxinol 

gradient ultracentrifugation was used to purify AAV vectors. Fluorophore labeled AAV 

vectors were generated using an Alexa-647 labeling kit (Thermofisher-A20006) by 

following the protocol provided by the kit manufacturer. Following fluorophore labeling, 

the AAV vectors were dialyzed against 1X PBS for 2 overnight cycles using a 12-14 kDa 

MWCO dialysis column (Millipore-71505-3). Finally, quantitative PCR (QPCR) 

(Lightcycler® 480, Roche Applied Sciences, Pleasanton, CA) was used to calculate 

vector genome (vg) titers with primers designed to selectively bind AAV2 ITRs (forward, 
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5’- AAC ATG CTA CGC AGA GAG GGA GTG G -3’; reverse, 5’- CAT GAG ACA AGG 

AAC CCC TAG TGA TGG AG -3’) (IDT Technologies, Ames, IA).  

 

Animal Experiments: The constitutive aquaporin-4 knockout (AQP4-/-) mouse 

model was provided by Dr. Alan Verkman in University of California in San Diego. All 

animal experiments reported in this study were conducted on AQP4-/- or C57/Bl6 mice 

bred and maintained in accordance to NIH guideline as approved by the UNC 

Institutional Animal Care and Use Committee (IACUC) protocol number 15-109.  

 

Intracerebroventricular (ICV) administration. Postnatal day 0 (P0) mouse 

pups which were rapidly anesthetized on ice for 2 min followed by 

intracerebroventricular (ICV) injections using a stereotaxic apparatus. AAV vectors (< 3 

µl total volume for ICV and < 1 µl total volume for ISTR) packaging the CBh-ScGFP 

transgene cassette were injected into the left lateral ventricle with a Hamilton 700 series 

syringe and 26s gauge needle (Sigma-Aldrich, St. Louis, MO), attached to a KOPF-900 

small animal stereotaxic instrument (KOPF instruments, Tujunga, CA). Ventricular 

injections were performed at the following stereotaxic coordinates - 0.5mm relative to 

the sagittal sinus, 2mm rostral to transverse sinus and 1.5mm deep. Mice were revived 

under a heat lamp and rubbed in the bedding after AAV injections before being placed 

back with the dam. The mouse brains were harvested, post-fixed and immunostained 2 

weeks post vector administrations (P14). The immunostaining procedure has been 

described in detail below. For visualizing AAV spread within the mouse brains, Alexa-

647 tagged AAV vectors were mixed with 0.1% dextran (10 kDa) (5mg/ml) 
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(Thermofisher-D22910) reconstituted in 1XPBS prior to ICV injections. 45 min later, 

injected mouse pups were rapidly anesthetized using hypothermic shock, perfused with 

1XPBS followed by 4% paraformaldehyde. The neonatal mouse brains were harvested 

and postfixed for 3 days prior to vibratome sectioning, staining and confocal 

microscopy. 

 

Vector genome biodistribution. Mouse Cohorts used for biodistribution studies 

were sacrificed 3 days post vector administration via the ICV route. The genomic DNA 

was extracted from the tissue lysates and blood using the DNeasy® kit (Qiagen, 

Valencia, CA). Viral genome copy numbers were calculated by performing QPCR 

(Lightcycler® 480, Roche Applied Sciences, Pleasanton, CA) using primers specific to 

luciferase transgene 5’-AAAAGCACTCTGATTGACAAATAC-3’ and 5’-

CCTTCGCTTCAAAAAATGGAAC-3’. The vector genome copy numbers were 

normalized to mouse lamin B2 locus as the housekeeping gene using the primers 5’-

GGACCCAAGGACTACCTCAAGGG-3’ and 5’- AGGGCACCTCCATCTCGGAAAC-3’. 

The vector biodistribution was represented as the ratio of vector genomes per cell 

recovered in the peripheral organs to the CNS site of injection (brain).    

 

Tissue processing and immunostaining. Mouse cohorts used for gene 

expression (GFP) studies, were sacrificed 2 weeks post vector administration via ICV 

route. Mouse cohorts used for visualizing viral spread were sacrificed 45 min after 

fluorescent AAV injections. The mice were overdosed with tribromoethanol (avertin) (0.2 

ml/10 g of 1.25% solution) via the intraperitoneal route. This was followed by 
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transcardial perfusions of PBS and 4% paraformaldehyde in 1xPBS. The organs were 

removed and post-fixed for 24 hr prior to sectioning. Briefly, 50 μm thick sections were 

obtained using a Leica VT 1200S vibrating blade microtome (Leica Biosystems, IL). The 

sections of mouse organs from various treatments were blocked in 10% goat serum 

(Sigma-Aldrich, St. Louis, MO) and 1% Triton X (Sigma-Aldrich, St. Louis, MO) in PBS 

for 1 hr. This was followed by overnight incubation with primary monoclonal antibodies 

at 4˚C. The primary antibodies utilized as a part of this study are as follows: Rabbit anti-

GFP (Life-Technologies- G10362, 1:750), rabbit anti-AQP4 (Millipore-AB3594, 1:750). 

Secondary antibodies were raised in goats and conjugated to Alexa 488 (anti-rabbit 

Abcam-96883 or Alexa 594 (anti-Rabbit Abcam-96885). The secondary antibodies were 

used at a standard dilution of 1:500. The immunohistochemical analyses of GFP and 

AQP4 expression was conducted using Vectastain ABC kit (Rabbit IgG PK-4001 kit, 

Vector biolabs, Burlingame, CA, USA). 

 

Microscopy and Image processing: We used Zeiss CLSM 700 confocal laser 

scanning microscope (Microscopy services laboratory, UNC) or Aperio Slide scanner 

(Leica Biosystems, IL) (Translational pathology laboratory, UNC) for imaging 

immunostained mouse tissue sections. Quantitation of fluorescence intensities was 

carried out using the ImageJ image analysis software. For calculating AAV/dextran 

fluorescence, the mean pixel intensity function was applied across identical regions of 

interest (ROI) and threshold settings in specific anatomical regions of the mouse brain. 

For calculating subpial AQP4 expression profiles, individual fluorescence intensity 

values were recorded at 0-200 pixel positions starting from the pial surface of every 
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mouse brain. For calculating perivascular AQP4 polarity, fluorescence intensity values 

were recorded at 50 pixel positions across 4-5 major cortical blood vessels in the mouse 

brain. The procedure for quantitation of perivascular AQP4 polarity was adopted from a 

previous study (273). Confocal images were stitched, pseudocolored and analyzed on 

the Zen® Black software.  

 

4.4 Results 

AAV vectors readily accumulate within the aging mouse CNS. The aging 

brain is susceptible to increased parenchymal depositions of biomolecules such as 

metabolic wastes. We hypothesized that CNS administration of AAV vectors in aging 

mice will result in enhanced viral accumulation in the neural tissue. AAV serotype 9 

(AAV9) is currently being evaluated in Phase I clinical trials for treating neurological 

disorders-spinal muscular atrophy and giant axonal neuropathy (Clinical trial identifiers 

NCT02122952, NCT02362438). To verify our hypothesis, we performed intracranial 

injections of AAV9 into juvenile (3 months old) and aging (>18 months old) mouse 

brains. In order to visualize viral particles within the brain, we generated fluorophore 

labeled AAV9 vectors. Additionally, prior to intracerebroventricular (ICV) injections, 

labeled AAVs were mixed with 10kDa fluorescent dextran tracer as an internal control 

for injections and microscopy. Specifically, equal mixtures of Alexa-647 labeled AAV9 

vectors (1.75x109 vector genomes (vg)/mouse) and (0.1%) Alexa-488 labeled dextran 

were administered. 45 min post injections, the mice were rapidly anesthetized and the 

brains were harvested after cardiac perfusions with phosphate buffered saline (PBS) 

followed by 4% paraformaldehyde (PFA). Postfixed brains were sectioned on a 
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vibratome and Zeiss 700 confocal microscope was used to obtain whole brain stitches 

of the ventricular slices. We observed restricted fluorescence (red) from AAV9 vector 

particles at close proximity to ventricular site of administration in the juvenile mouse 

cohort (Fig. 21A, AAV9). On the other hand, identical injections performed on aging 

mice resulted in dramatically enhanced fluorescence (red) in deeper anatomical regions 

across the brain parenchyma (Fig. 21B, AAV9). A similar increase in fluorescence 

signal (green) was also observed due to dextran tracer injections in the aging mice (Fig. 

21B, AAV9/Dex) as compared to juvenile mice (Fig. 21A, AAV9/Dex). This suggests 

that increase in parenchymal accumulation is not specific to AAV vectors. To further 

demonstrate AAV accumulation in the aging brain, we generated high magnification 

confocal micrographs of six brain regions i.e. lateral ventricles (LV), corpus callosum 

(CC), cortex (CT), piriform cortex (PCT), thalamus (THL) and hypothalamus (HTL). We 

observed fluorescence from AAV vectors and dextran tracers restricted to LV and CC 

regions of the juvenile mouse brain (Fig. 21C, AAV9 & AAV9/Dex). On the other hand, 

fluorescent signal was observed in all the six anatomical regions in the aging mouse 

brain (Fig. 21D, AAV9 & AAV9/Dex). Quantitation of fluorescence intensities due to 

AAV9 vectors shows a significant increase CC, CT, PCT, THL and HTL of the aging 

mice as compared to the juvenile mice (Fig. 21E and F, regions 2-6). It should be noted 

that difference in AAV fluorescence in the two groups was not-significantly different in 

the area surrounding the lateral ventricle site of injection (Fig. 21E, region 1). A similar 

overall enhancement in fluorescence signal was also observed due to dextran 

administration within different anatomical regions of the aging mouse brain (Fig. 21G 
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and H). Overall, our results show increased parenchymal accumulation of AAV vectors 

and dextran tracers, minutes after intracranial administration into the aging CNS.  

Altered AQP4 localization correlates with AAV deposits in the aging brain. 

Loss of perivascular AQP4 polarity is one of the histological hallmarks that indicate 

impairment of CSF penetration through the brain parenchyma (273). To assess whether 

altered localization of AQP4 plays a role in accumulation of AAV vectors within the aged 

mouse brain, we analyzed AAV capsid accumulation and AQP4 expression profiles in 

juvenile and aging mouse brains. Fluorescently labeled AAV9 particles were injected 

through the intraCSF route in juvenile (3 months) and aged (18 months) mouse brains. 

At 45 min post-administration, animals were sacrificed and post-fixed in 4% PFA. High 

magnification confocal micrographs of cortical regions (Fig. 22D and E) revealed that 

the fluorescent signal from AAV9 particles (red) was strikingly elevated and appeared 

as deposits in the aged mouse brain (Fig. 22B) as compared to the juvenile cohort (Fig. 

22A). Quantitation of this phenomenon shows a significant increase in fluorescence 

signal associated with AAV capsids within cortical regions of aged mouse brains 

compared to juvenile mice (Fig. 22C).  

Next, to compare perivascular AQP4 polarity, we generated high magnification 

confocal micrographs of AQP4 expression within juvenile and aged mouse brains. 

Specifically, we compared AQP4 localization on penetrating large blood vessels 

(arterioles) within the cortex (Fig. 22D and E, red boxes and insets). When compared to 

juvenile mice (Fig. 22D, inset), we observed a striking increase in AQP4 expression 

(green) immediately surrounding the blood vessels in the aged mice (Fig. 22E, inset). 

These results are consistent with loss of AQP4 polarity as reported earlier in the 
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literature (273). To quantify this phenomenon, we measured fluorescence intensities in 

pixel positions across the blood vessel walls (Fig. 22D and E, insets, red dotted lines). 

In juvenile mice, we observed a noticeable increase in AQP4 expression within the 

blood vessel architecture with low, background level fluorescence signal in the 

surrounding tissue (Fig. 22F). However, AQP4 expression was mislocalized and 

broadly distributed in areas adjacent to the blood vessels of the aging mice (Fig. 22F). 

Taken together, these results suggest a potential correlation between altered AQP4 

expression in aged mouse brains and increased parenchymal accumulation of AAV 

vectors.  

AAV vectors exhibit significantly reduced spread within the AQP4 knockout 

mouse CNS. Our previous results establish a strong correlation between loss of AQP4-

mediated CSF flux and increased accumulation of AAV vectors within the brain. To 

further delineate the role of AQP4 in other aspects of AAV mediated CNS gene transfer, 

we utilized the constitutive AQP4 knockout (AQP4-/-) mouse model (274). Successful 

knockout was ensured by detecting loss of AQP4 expression with 

immunohistochemistry on wildtype (WT) and AQP4-/- mouse brain sections (Fig. 26). 

First, we hypothesized that AAV vectors utilize AQP4-CSF flux to spread within the 

CNS. To verify, we compared spread of fluorescently labeled AAV vectors within the 

WT and AQP4-/- mouse brain. Specifically, we injected equal titers (1.75x109 

(vg)/mouse) of Alexa-647 labeled AAV9 mixed with equimolar concentrations (0.1%) of 

Alexa-488 labeled 10kDa dextran-tracer into the postnatal day 0 (P0) mouse brains. 

The mice were sacrificed 45 min post ICV injections following which the brains were 

harvested and postfixed in 4% PFA.  
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To evaluate differences in viral spread from a global standpoint, we employed the 

histograph functionality (Zen Black image analysis software, Zeiss 700 confocal 

microscope) on whole brain confocal stitches (Fig. 23, top row). Briefly, white peaks on 

the surface of coronal brain sections indicate positions of the fluorescent AAV9 vector 

particles. ICV administration of AAV9 in WT mice resulted in numerous fluorescent 

peaks distributed across both hemispheres of the brain (Fig. 23A, WT, top row, AAV). 

Additionally, dextran tracer injection in the WT mouse resulted in similarly diffuse 

fluorescent peaks across the brain parenchyma (Fig. 23B, WT, top row, Dextran). On 

the other hand, ICV administration of AAV9 vectors in the AQP4-/- mice resulted in a 

large concentration of fluorescent peaks restricted to the immediate vicinity of the 

ventricular site of injection (Fig 23A, AQP4-/-, top row, AAV). Similarly, we observed 

noticeable increase in fluorescent peaks surrounding the ventricles and within the extra 

parenchymal CSF space due to dextran injections in AQP4-/- mice (Fig. 23B, AQP4-/-, 

top row, Dextran). In order to further demonstrate change in the spread of AAV9 vectors 

within the AQP4-/- brain, we generated high magnification confocal micrographs of the 

lateral ventricles. In comparison to WT mice (Fig. 23A, WT, middle row, AAV), AAV9 

injections in the AQP4-/- mice resulted in increased fluorescence (red) surrounding the 

ventricles (Fig. 23A, AQP4-/-, middle row, AAV). A similar increase in the fluorescent 

signal (green) was also observed due to dextran injections in the AQP4-/- mice (Fig. 

23B, AQP4-/-, middle row, Dextran) as compared to WT mice (Fig. 23B, WT, middle 

row, Dextran). Furthermore, to evaluate the numerical change in the spread of AAV and 

dextran particles, we quantified the fluorescence intensities in WT and AQP4-/- mouse 

brains after various treatments. We observed significant increase in fluorescence signal 
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due to AAV (~3 fold) and dextran (~6 fold) injections in the AQP4-/- mice as compared 

to WT mice (Fig. 23C & D). Our results demonstrate that during conditions of reduced 

transparenchymal CSF penetration, AAVs show restricted mobility within the brain. In 

other words, AAV vectors employ AQP4-mediated CSF flux to spread within the brain.  

AAV transduction is significantly altered in the brains of AQP4-/- mice. To 

further delineate the role of AQP4 in other aspects of AAV mediated CNS gene transfer, 

we utilized the AQP4 knockout (AQP4-/-) mouse model (274). Complete loss of AQP4 

expression was confirmed by immunohistochemical analysis of wildtype (WT) and 

AQP4-/- mouse brain sections (Fig. 26). We then compared transduction profiles of 

AAV9 vectors injected unilaterally into the ventricular CSF space (ICV injections). 

Specifically, we injected neonatal P0 mice with AAV9 vectors packaging a self-

complementary GFP (scGFP) cassette driven by a hybrid chicken β actin (CBh) 

promoter. At 2 weeks post-administration, 50 m vibratome brain sections were subject 

to diaminobenzidine (DAB) immunohistochemistry to visualize transgene (GFP) 

expression. AAV9 injections in the WT mice resulted in broad GFP expression across 

the brain parenchyma (Fig. 24A). Interestingly, ICV administration of AAV9 in AQP4-/- 

mice resulted in dramatically enhanced GFP expression in the CNS (Fig 24A). 

Specifically, we observed a significant increase in GFP+ cells in representative regions 

of the contralateral hemisphere after unilateral ICV injections in the AQP4-/- mice (Fig. 

24A, boxes and insets). We measured pixel intensities to quantify GFP expression 

across different brain regions, specifically, the motor, somatosensory, auditory and 

piriform cortices as well as striatum and hippocampus. A significant increase in pixel 

intensities within the aforementioned regions in AQP4-/- mouse brain when compared to 
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the WT brain was observed (Fig. 24B). These results indicate that AAV vectors 

administered directly into the CSF are likely subject to rapid clearance. Reduced 

clearance of solutes due to lack of AQP4 function could result in retention of AAV 

vectors and consequently improved gene expression. Taken together, these results can 

possibly be explained by severely impaired parenchymal transport within the brain and 

CSF clearance of AAV vectors from the brain in AQP4-/- mice.  

CNS-administered AAV vectors utilize AQP4 for systemic leakage and 

peripheral organ gene transfer. AQP4 mediated brain interstitial fluid flux shunts 

parenchymal cargo into CSF compartments where they drain into peripheral lymphatics 

or systemic blood circulation. An important safety concern raised during CNS injections 

of clinical vector candidates like AAV9 is systemic leakage resulting in off-target gene 

transfer. We hypothesized that transportation of AAV vectors from CNS tissue to 

peripheral organs is an AQP4 dependent process. To verify, we injected AAV9 vectors 

into WT and AQP4-/- mouse brains via the ICV route. 3 days post vector administrations 

we sacrificed one cohort of mice and carried out biodistribution studies to calculate 

vector genome accumulation in off-target organs. ICV injections of AAV9 results in 

heavy viral genome leakage (~150 fold) into peripheral organs like heart and liver (Fig. 

25B, WT) resulting in strong off-target transgene expression (Fig. 25A, WT). Crucially, 

under identical conditions of AAV9 CNS administration, the AQP4-/- mouse cohort 

displayed near background levels of off-target vector genome biodistribution (Fig. 25B, 

AQP4-/-). Correspondingly, this resulted in dramatically reduced transduction (GFP 

expression) in the heart and liver tissue (Fig. 25A, AQP4-/-). Overall, for the first time, 
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our results indicate that AQP4 mediated CSF flux is the underlying phenomenon driving 

systemic leakage and off-target transduction of CNS injected AAV vectors. 

 

4.5 Discussion 

AAV vectors are being evaluated as clinical vector candidates for CNS maladies 

such as Alzheimer, Parkinson and Frontotemporal dementia (4, 15, 27, 229). A common 

hallmark of such diseases is the parenchymal accumulation of misfolded proteins and 

erroneous metabolic byproducts such as alpha-synuclein, hyperphosphorylated tau etc. 

Aging brains are more susceptible to such depositions of senile plaques (275, 276). 

Correspondingly, these neurocognitive disorders are more prevalent among the geriatric 

demographic (277). In the aging mouse brain (>18 months), both glymphatic CSF flux 

and transparenchymal solute clearance have been demonstrated to be severely 

impaired (273). In the current study, we first hypothesized that CSF flux plays a major 

role in retention of clinically relevant biomaterials like AAV vectors in the CNS. Our 

results in Figure 21 confirm that accumulation of AAV vectors and dextran tracer 

increase dramatically in the aging mouse brain. As shown in Figure 22, AQP4 lines the 

major blood vessels (arteries and veins) and microvasculature (capillaries) in the brain. 

Furthermore, dysregulated AQP4-fluid flux is a common occurrence during conditions of 

ablated interstitial clearance in the CNS such as aging, Alzheimer’s disease and 

dementia (270-273, 278). Correspondingly, Figure 22 also confirms that increased 

parenchymal AAV accumulation is accompanied by indications of dysfunctional AQP4-

glymphatic clearance. It is therefore tempting to speculate that the older patient 

demographic offers a CNS landscape that allows for increased retention of AAV vectors 
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within the brain. Future gene expression studies done on aging animals might uncover 

the effect of dysfunctional AQP4 on other aspects of therapeutic AAV gene transfer 

such as dosage and efficacy.  

To directly investigate if the absence of AQP4 water channel protein affects AAV 

vector functioning in the brain, we compared WT mice with constitutive AQP4 knockout 

mouse model (AQP4-/-) generated by Verkman and colleagues (274). AQP4-/- mice 

have reduced glymphatic water transport resulting in slower clearance of parenchymal 

accumulations such as Amyloid- in the CNS (269). Accordingly, intraventricular 

administration of fluorophore labeled AAV vectors in the AQP4-/- mice resulted in 

restricted spread and increased fluorescence from accumulating AAV vector particles 

(Fig. 23). Intriguingly, we observed differences in spread and accumulation of AAV 

vectors depending upon the level and functional status of AQP4 in the brain. 

Specifically, while Figure 21 and 22 depict the dysregulated status of the AQP4 

channel protein in the aging brain, in Figure 23 AAV particles were exposed to a CNS 

environment lacking AQP4 altogether. Both conditions resulted in enhanced retention of 

AAV particles in the brain. Interestingly however, while AAV vectors successfully spread 

within the aging brain (Fig. 21), knocking out AQP4 restricts the viral mobility (Fig. 23). 

These results demonstrate that fluid flux via AQP4 channels is crucial for AAV vector 

spread in the parenchyma.  

In addition to the implications on AAV vector retention and spread within the 

CNS, the AQP4 glymphatic flux also has a significant effect on AAV transduction and 

systemic leakage. Interestingly, intraCSF administration of AAV9 resulted in a 

significant increase in transduction efficiency within the AQP4-/- mice (Fig. 24). Similarly 
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dramatic effects were also observed with respect to the systemic leakage of AAV9 

particles from the CNS. Specifically, AQP4-/- mice injected with equal concentrations of 

AAV9 underwent a significantly reduced systemic leakage. Thus resulting in diminished 

biodistribution and gene expression in peripheral organs such as heart and liver (Fig. 

25). 

 Overall, our study suggests that AQP4-glymphatic flux has critical implications 

on determining parameters of AAV-mediated CNS gene transfer. Moving forward, 

kinetic-biomarkers of CSF flux can be used to devise the right combination of AAV 

capsid, dosage and injection strategies to ensure therapeutic gene transfer for treating 

CNS dysfunctions (279).  
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Figure 21. Comparison of AAV vector accumulation within juvenile and aging 
mouse brains. 3 month and 18 month old mice were injected with equal viral titers 
(1.75x109 vg per animal) of Alexa-647 tagged fluorescent AAV9 vectors mixed with 



 

127 
 

0.5% Alexa-488 tagged fluorescent 10 kDa dextran tracer (5 mg/ml) into the left lateral 
ventricle. 45 min post injections, the mice were anesthetized and sacrificed for organ 
harvests. Paraformaldehyde fixed brains were sectioned on a vibratome and Zeiss 700 
confocal microscopy was used to generate fluorescence images of the mouse brains. (A 
and B) Representative confocal stitches of coronal sections containing the lateral 
ventricular site of injection. Top row shows accumulation of fluorophore labeled AAV9 
(red). Bottom row shows merge of AAV (red) and dextran (green) fluorescent signals. 
Additionally, 6 brain regions: i.e. lateral ventricles (LV), corpus callosum (CC), cortex 
(CT), piriform cortex (PCT), thalamus (THL) and hypothalamus (HTL) have been 
numbered 1-6 as positional cues to higher magnification images below. (C and D) 
Higher magnification confocal micrographs show regions of interest in juvenile (C); and 
aging (D) mouse cohorts. Images show differences in fluorescence signal due to AAV 
(top row, red) and AAV/dextran merge (bottom row, red/green). Quantitation of 
fluorescence intensities from AAV (E and F) and dextran (G and H) channels within 
regions 1-6 have been shown. Graphical data shown is represented as mean + 
standard deviation. P values were calculated by unpaired, 2 tailed student t-test. ‘n.s.’ 
indicates not statistically significant; ‘*’ indicates statistically significant (p<0.05). All 
experiments were conducted in triplicate, representative images are being shown. 
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Figure 22. Aged mice display abnormal AAV accumulation and altered AQP4 
localization in the brain. (A and B) Comparison of accumulation of fluorophore 
labeled AAV9 vector particles (red) 45 min after ICV injections in the 3 month and 18 
month old mouse brain. (C) Quantitation of fluorescence intensities from AAV9 
accumulation within cortical regions of 3 month and 18 month old mice. Graphical data 
shown is represented as mean + standard deviation. P values were calculated by 
unpaired, 2 tailed student t-test. ‘*’ indicates statistically significant (p<0.05). (D and E) 3 
month and 18 month old mouse brains injected with fluorescent AAV9 vectors (Fig. 1) 
were immunostained for AQP4 expression (green). Red boxes indicate positions of 
large blood vessels (arterioles) shown in higher magnification within the insets on the 
left. White boxes indicate cortical regions where AAV accumulation was compared (F) 
Fluorescence intensity (green) of AQP4 expression was measured as a function of 
distance (in pixels) across 4-5 large blood vessels (red boxes, D and E) per mouse (red 
dotted line, insets within D and E). Error bars on the graphs represent 95% confidence 
interval of fluorescence intensity calculated at every pixel position across the blood 
vessel (F). All experiments were conducted in triplicate, representative images are 
being shown. 
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Figure 23. Comparison of AAV vector spread within wildtype and aquaporin-4 
knockout mouse CNS. Postnatal day 0 (P0) wildtype (WT) and aquaporin-4 knockout 
(AQP4-/-) mice were injected with equal viral titers (1.75x109 vg per animal) of Alexa-
647 tagged fluorescent AAV9 vectors mixed with 0.1% Alexa-488 tagged fluorescent 10 
kDa dextran tracer (5 mg/ml) into the left lateral ventricle. 45 min post injections, the 
mouse pups were anesthetized and sacrificed for organ harvests. Paraformaldehyde 
fixed brains were sectioned on a vibratome and Zeiss 700 confocal microscopy was 
used to generate fluorescence images of the mouse brains. (A and B) Top row- 
Histograph functionality (ZEN black image analysis software for Zeiss 700 laser 
scanning microscope) was applied across whole brain confocal stitches of AAV+dextran 
injected mouse brains. White peaks within the histographs represent positions of 
fluorescent AAV or dextran particles within mouse brains. Bottom row- higher 
magnification fluorescence images of the lateral ventricles show differential 
accumulation of AAV vectors (red) and dextran tracers (green) at the site of injection in 
WT and AQP4-/- mice. (C and D) Quantitation of fluorescence intensities due to AAV9 
(C) and dextran (D) administration into WT and AQP4-/- mouse brains. Graphical data 
shown is represented as mean + standard deviation. P values were calculated by 
unpaired, 2 tailed student t-test. ‘n.s.’ indicates not statistically significant; ‘*’ indicates 
statistically significant (p<0.05). All experiments were conducted in triplicate, 
representative images are being shown.  



 

130 
 

 

Figure 24. Comparison of AAV transduction efficiency following intraCSF 
administration in WT and AQP4-/- mouse brains. Postnatal day 0 (P0) mice were 
injected with equal viral titers (3.5x109 vg per animal) of AAV9 packaging the self-

complementary GFP transgene driven by hybrid chicken  actin promoter (CBh) into the 
left lateral ventricle. 2 weeks post vector administration the mice were sacrificed and the 
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brains were harvested, postfixed and vibratome sectioned. (A) Diaminobenzidine (DAB) 
immunohistochemistry was used to visualize GFP expression (brown) within the WT 
and AQP4-/- mouse brains. Boxes indicate the positions of higher magnification insets 
adjacent to the whole brain coronal stitches. (B) Quantitation of pixel intensities from 
GFP expression within motor cortex (MCT), somatosensory cortex (SCT), auditory 
cortex (ACT), piriform cortex (PCT), striatum (STR) and hippocampal (HC) regions of 
WT (red) and AQP4-/- (grey) mice injected with AAV9 vectors. Graphical data shown is 
represented as mean + standard deviation. P values were calculated by unpaired, 2 
tailed student t-test. ‘n.s.’ indicates not statistically significant; ‘*’ indicates statistically 
significant (p<0.05). All experiments were conducted in triplicate, representative images 
are being shown.  
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Figure 25. Comparison of off-target transduction and biodistribution of AAV 
vectors following intracranial administrations in WT and AQP4-/- mice. Postnatal 
day 0 (P0) WT or AQP4-/- mice were injected with equal viral titers (3.5x109 vg per 
animal) of AAV9 packaging the self-complementary GFP transgene driven by hybrid 

chicken  actin promoter (CBh) into the left lateral ventricle. 2 weeks post vector 
administration the mice were sacrificed and peripheral organs were harvested, postfixed 
and vibratome sectioned. (A) Vector genome (vg) copy numbers within the heart and 
liver of WT and AQP4-/- mice injected with AAV9 vectors (normalized to vg in the brain) 
via ICV injections. The vg copy per host genome (vg/cell) was determined by QPCR of 

extracted genomic DNA and normalized to the number of copies of the mouse lamin  
gene. (B) Confocal micrographs showing GFP expression (green) in heart and liver, 
following brain injections of AAV9. Graphical data shown is represented as mean + 
standard deviation. P values were calculated by unpaired, 2 tailed student t-test. ‘n.s.’ 
indicates not statistically significant; ‘*’ indicates statistically significant (p<0.05). All 
experiments were conducted in quadruplicate, representative images are being shown.  
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Figure 26. Comparison of AQP4 expression in WT and AQP4-/- mouse brain. 2 
week old WT and AQP4-/- mice were harvested, postfixed and vibratome sectioned. (A 
& B) Diaminobenzidine (DAB) immunohistochemistry was used to compare AQP4 
expression (brown) in the whole brain stitches of WT and AQP4-/- mice. (C & D) 
Comparison of AQP4 expression in functionally relevant anatomical regions of the 
mouse brains. Specifically, high magnification images of six anatomical regions- 
striatum, motor cortex, piriform cortex, hippocampal CA1, thalamus and hypothalamus 
have been shown. All experiments were conducted in quadruplicate, representative 
images are being shown. 
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Chapter 5: SYNOPSIS AND FUTURE DIRECTIONS 

5.1: The Big Picture 

AAV gene therapy has come a long way since the initial discovery of the wildtype 

virus as a contaminant in adenoviral stocks. The combination of comprehensive 

understanding of AAV biology and some significant achievements in AAV vector 

engineering has equipped us with technology to generate recombinant AAVs (rAAVs) 

(24, 172, 280). Using rAAV vector technology, any ssDNA within the packaging capacity 

(~4.7kb between AAV ITRs) can be encapsidated as an AAV serotype of choice. Such 

flexibility has enabled scientists to characterize an arsenal of natural and engineered 

AAVs as gene transfer vectors towards research and therapeutic applications.  

From the vantage point of CNS gene therapy, AAV vectors offer the following 

attractive features - (a) there is no conceivable evidence correlating AAV serotypes with 

pathogenicity/disease in animal models or human patients; (b) unlike many other 

viruses, AAV is not highly immunogenic, with the immune response being usually 

restricted to generation of anti-capsid neutralizing antibodies (281); (c) upon host 

nuclear entry, the genomic contents of AAV predominantly exist in an episomal form 

and utilize the cellular machinery for gene expression (16, 188, 189). It is important to 

mention that a small percentage of AAV genomes have been reported to undergo highly 

specific insertion at the AAVS1 locus of human chromosome 19 (186). In contrast, host 

genome integration is an integral part of the life cycles of other viral vectors like 



 

135 
 

lentiviruses, adenoviruses and herpes viruses (187). Such events are often associated 

with insertional and frame shift mutageneses, sometimes resulting in carcinogenic 

outcomes for the host cells. (d) AAVs transduce both dividing and non-dividing 

mammalian cells. This is especially important for CNS transduction where a majority of 

cells stop dividing once complete maturity is attained. (e) Lastly, direct brain 

administrations of different AAV serotypes result in distinctive patterns of cellular and 

regional gene expression in the CNS (53, 71, 72, 89-91, 114, 267, 282). Such variations 

in AAV transduction profiles have been attributed to capsid-receptor interactions in 

different hosts (172). For instance, AAV serotype 9 (AAV9) binds N-terminal galactose 

residues on the mammalian cell surfaces and shows extensive neuronal as well as glial 

transduction in animal models (37, 94). On the other hand, AAV2, which utilizes 

Heparan sulfate as the primary receptor demonstrates neuronal tropism and minimal 

spread from the injection site in the mammalian brain parenchyma (71, 182). Another 

unique example is AAV4, which binds sialic acid and displays exclusive tropism for 

astrocytes at the injection site of the mammalian brain (34, 77).  

Numerous genetic disorders exhibit distinct manifestations in the CNS. Viral 

vectors, especially Adeno-associated viruses (AAV) have emerged as the vehicle of 

choice for supplying healthy cargo of therapeutic genes for such CNS indications (4, 15, 

27). The past few decades have witnessed consistent progress towards 

characterization and preclinical evaluations of AAV vectors in small/large animals and 

non-human primates (NHPs) (283). Such efforts enable us to make informed decisions 

regarding parameters like viral serotype, route of administration, immune response, 
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dosage and biosafety; and employ AAV vectors for therapeutic gene transfer in the 

clinic. 

Continuous efforts in vector design have resulted in an ever increasing toolkit of 

novel AAV vectors. The key areas requiring vector design and improvement include-

transduction efficiency, cell/tissue specificity, packaging capacity and antibody evasion. 

My doctoral thesis in Asokan Lab in part was focused on developing a deeper 

understanding of the physiological and biochemical checkpoints that control AAV 

biologics in the CNS. The interesting phenotypes were often uncovered during 

screening of multiple AAV variants in vivo. The findings showcased in this thesis were 

the consummation of a systematic sequence of tests conducted on in vitro and in vivo 

platforms to unravel the underlying biology of specific phenomena pertaining to AAV 

vectors in the CNS. To this end, I was fortunate to be working in a laboratory that 

offered the bandwidth to produce an extensive portfolio of natural and engineered AAV 

vectors to be tested within the mammalian CNS landscape.  

 Given the bench-to-bedside nature of the field, it is absolutely crucial that 

preclinical evaluation of AAV biologics be carried out in predictive in vivo systems that 

mimic the patient CNS. To this end, my research work spanned the use of mouse 

models in neonatal, juvenile and geriatric demographics displaying varying physio-

chemical statuses. In the following chapter, I have proposed follow up studies that have 

the potential to answer questions pertinent to the theme of my PhD work. 

 

 

 



 

137 
 

5.2: Future Directions 

In the first project, we focused on the African green monkey isolate, AAV 

serotype 4. AAV4 utilizes O-linked sialic acid for cellular attachment. Systemically 

administered AAV4 results in highly targeted gene transfer in heart and lung tissue. In 

the CNS, cerebral ventricular system constitutes the ductal connectivity of CSF deep 

within the brain parenchyma. In addition to the ventricular system, the CSF maintains 

contact with the CNS tissue via subarachnoid ducts, foramena in the cerebellum and 

spinal cavity. The key advantage of administering AAV biologics into the CSF space is 

the ability to target maximal CNS tissue from a single injection. In the context of 

ventricular administration, AAV4 shows highly specific transduction of the ependymal 

cells. Although, the underlying glycan receptor interaction of AAV4 is well known, we 

discovered the biochemical requirement for the virus to traverse the brain parenchyma 

further. We focused on AAV spread, transduction and cellular tropism for this study. 

The formation of functional neurons and glia from the initial pool of neural stem 

cells (NSCs) is thought to be due to expression of time-sensitive molecular signatures 

that trigger migration and differentiation (284, 285). For instance, olfactory neurogenesis 

in mammals is characterized by the migration of a subset of ependyma-derived 

neuronal progenitors from the sub-ependymal zone (SEZ) via the rostral migratory 

stream (RMS). These neuroblasts radially differentiate into interneurons of the granular 

and periglomerular layers in the olfactory bulb (OB), while cells of radial glial lineage 

differentiate to form glial tubes that guide these migratory processes (284). In addition to 

rostral migration, a subpopulation of the subependymal progenitors migrate in the 

caudal direction towards the hippocampal boundary (286). This migration is almost 
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exclusively gliogenic and gives rise to astrocytes and oligodendrocytes in the neocortex 

and white matter regions of the brain (287, 288). The ability of such precursor cells to 

continuously migrate, differentiate and replenish neuronal subpopulations makes them 

attractive candidates for therapeutic gene delivery in treating neurodegenerative 

diseases. 

Currently available techniques to label or manipulate various aspects of 

progenitor cell migration during postnatal neurodevelopment include injection of equine 

infectious anemia viruses or retroviruses packaging fluorescent transgenes directly into 

adult sub-ventricular zone; DNA analog mediated cell lineage tracking; cell type-specific 

promoters; transgenic mouse models; or immunohistological analyses (211, 289-292). 

In addition to these tools, different viral vectors derived from rabies virus, herpes 

simplex virus and lentiviruses have enabled efficient gene transfer to the mammalian 

central and peripheral nervous systems (110, 293, 294). Despite this broad spectrum of 

tools and reagents, targeted genetic manipulation of specific subsets of neuronal 

progenitors in vivo remains a daunting challenge.   

Migration and differentiation of neuronal precursors in the developing brain is a 

carefully orchestrated event. The cell surface biomarker, polysialic acid (PSA) is known 

to regulate neural plasticity and plays an indispensable role in embryonic and adult 

neurogenesis (210). In my first project, we reported a novel, engineered AAV4.18 that 

displays a switch in glycan receptor specificity from sialic acid (SA) to PSA and 

consequently, acquires the ability to target migrating progenitors in the developing brain. 

The new AAV strain spreads throughout the brain parenchyma following 

intracerebroventricular administration, but selectively transduces a subset of ependyma-
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derived neuroblasts in the subventricular zone, rostral migratory stream and olfactory 

bulb (295). Engineering viral tools to exploit molecular signatures could enable selective 

reprogramming of progenitors to understand and repair damaged CNS tissue.  

The engineered AAV4.18 strain has several possible applications. Packaging 

genome editing tools such as the CRISPR/Cas9 nucleases (296) within AAV4.18 can 

facilitate targeted ablation of genetic factors that drive neural stem cell recruitment and 

differentiation during development or trauma (288, 297, 298). For instance, ependymal 

cells lining the spinal canal have been shown to give rise to neuroblasts and astrocytes 

in response to stroke (298). Manipulating different mechanisms to maintain an 

undifferentiated quiescent state or activate normally quiescent cells in order to promote 

the expansion and migration of progenitors might enable lineage tracing (299). In 

addition, the highly selective tropism for migrating neuroblasts also make the 

engineered AAV4.18 strain a promising vector for manipulating the stem cell niche by 

overexpressing dominant negative transgene cassettes to model neurodevelopmental 

disorders (300) or deliver neural stem cell reprogramming factors (301, 302).  

For my second project, we evaluated a dual glycan binding AAV2g9 vector that 

harbors the ability to bind both HS and Gal on mammalian cell-surfaces. From the AAV 

biology perspective, our study provides new insights into the role of capsid-glycan 

interactions in determining CNS spread and systemic leakage. Earlier studies in our lab 

and others have demonstrated that the diverse cellular tropisms and biodistribution 

profiles of different AAV strains are intricately linked to their glycan receptor binding 

profiles (38, 172). For instance, intracranial injection of the heparan sulfate binding 

strain, AAV2 shows restricted, neuronal gene expression (71). This preferential 
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neuronal tropism of AAV2 appears to correlate with the higher concentration of heparan 

sulfate proteoglycans (HSPGs) on the surface of neurons compared to glia (42). 

 However, as a caveat to this neurotropic bias, the ability of AAV2 to bind HS with 

high affinity also restricts vector spread and the effective volume of CNS tissue 

transduced (89). In contrast, the galactose binding strain, AAV9, shows both neuronal 

and glial transduction as well as efficient CNS spread (55, 56). Consistent with the latter 

attributes, AAV9 capsids also appear to be prone to systemic leakage and transduction 

in the liver and other organs following CNS administration (94, 235, 246). In our current 

study, we demonstrated that the dual glycan binding AAV2g9 strain inherited traits from 

both parental AAV serotypes, i.e., neurotropism from AAV2 and robust CNS spread and 

transduction from AAV9. 

Our study demonstrates that the interplay between capsids and cell surface 

glycans can determine CNS spread and transduction efficiency of AAV vectors 

administered into the cerebrospinal fluid. However, it is also known that viruses can 

travel large anatomical distances within the CNS using synaptic connections or axonal 

transport (303, 304). Viral entry into the neuronal cell body (soma) leading to 

dissemination at the axonal projections represents anterograde transport, while the 

opposite scenario is termed retrograde transport. In this regard, AAV strains have been 

shown to employ axonal transport to undergo single or bidirectional movement within 

the brain parenchyma (112, 118, 120, 305). In particular, hep binding AAV2 particles 

have been shown to exclusively move in the anterograde direction (115), whereas sialic 

acid binding AAV1 or gal binding AAV9 particles appear to shuttle in both directions 

(117, 118, 120). Exactly how each glycan receptor influences the axonal transport of 
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different natural AAV isolates as well as engineered strains, such as the dual glycan 

binding strain AAV2g9 reported here remains to be determined. 

 From the vector development perspective, our studies have important 

implications for gene therapy, silencing and editing. First, it should be noted that the 

CNS transduction efficiency and systemic gene expression from a single ICV/IT dose of 

AAV9 is particularly striking. Although, not ideal for CNS-specific indications due to the 

systemic leakage profile, AAV9 could serve as an optimal vector candidate for treatment 

of lysosomal storage disorders and other such diseases, which are characterized by 

multi-organ involvement in addition to the CNS. On the other hand, AAV2g9 displays 

favorable attributes for therapeutic applications targeting neuronal populations within the 

CNS. Further, the features displayed by the engineered AAV2g9 strain exemplify the 

feasibility of making rational improvements to AAV vector design with the goal of 

imparting favorable biodistribution profiles. When combined with cell-specific elements 

such as the hSyn promoter, as established in the current study or miRNA targeting 

elements (235, 246), such approaches can help to efficiently restrict transgene 

expression to neuronal populations within the CNS and reduce systemic exposure. 

Crucially, we demonstrate that therapeutic delivery of gene editing nucleases using 

AAV2g9 helps mitigate the risk for off-target effects at the organ level. 

Conventional treatments for mental illnesses like attention deficit hyperactivity 

disorder (ADHD), bipolar disorder (BD) and schizophrenia (SZ) are exclusively designed 

to ameliorate psychosomatic symptoms. Interestingly, diseases like SZ and BD display 

strong genetic predispositions in patient cohorts (306). Understandably, devising the 

next generation of therapeutic interventions for such disorders requires development of 
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animal models with underpinning disease genetic signature. The AAV2g9 vector offers 

the unprecedented advantage of CNS contained CRISPR/Cas9 gene disruption using 

capsid engineering. As shown in Fig. 20, chapter 3, we demonstrate ~5% mutant allele 

formation in the brain using this approach. Understandably, future studies can be 

designed to achieve improvement of gene editing efficiency. The availability of smaller 

Cas9 species e.g. from Staphylococcus aureus offers the unique possibility of 

packaging both CRISPR endonuclease and the targeting gRNAs within the single AAV 

cassette. Such a strategy also offers the ability to perform targeted gene editing in any 

animal model and circumvents the need for using transgenic Cas9 mice. Nevertheless, 

optimization of the site(s) of CNS administration, AAV dosage and promoter usage; and 

use of self-complementary AAV cassettes are all viable targets to pursue for improving 

the gene editing efficiency with AAV2g9 in the CNS. 

In the third study, we studied glymphatic flux mediated by AQP4-water transport 

as an important parameter that governs various aspects of AAV gene transfer within the 

CNS. More importantly, animal testing of clinical conditions like traumatic brain injury 

(TBI) have revealed significant loss (~60%) in AQP4-mediated glymphatic water 

transport (270). Correspondingly, the risk of developing neurodegenerative disorders 

stemming from parenchymal aggregations of neurofibrillary tangles such as Alzheimer’s 

and dementia are significantly higher in the post-TBI demographic (278, 307-310). It is 

intriguing to speculate with our data that CSF administration of AAV vectors in post-TBI 

patient cohort, will display inherently reduced vector spread within the CNS.  

As shown in Figure 24, in chapter 4, the increase in viral residence within CNS 

also translated to enhanced gene transfer efficiency from CSF injections of AAV vectors 
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in AQP4-/- mice. Interestingly, a reverse phenotype was observed in case of 

transduction efficiency from parenchymal administration of AAV vectors (data not 

shown). Specifically, AAV9 administration into the neonatal mouse striatum transduces 

significantly smaller area within the AQP4-/- mouse. It is known that AAV9 successfully 

employs axonal transport in both retrograde and anterograde directions to travel long 

distances within the brain (118-120, 311). We speculate that under conditions of ablated 

CSF flux in the AQP4-/- brain, AAV vectors are unable to “hit” all the neuronal 

projections with the same efficiency, from a single parenchymal injection. Conversely, 

AAV2 is only able to travel in the anterograde direction in the CNS (114, 115). 

Supporting our hypothesis regarding the role of axonal transport, we do not see 

reduction in transduced area from intrastriatal injections of AAV2 within the AQP4-/- 

mouse cohort (data not shown). Taken together, ablation of AQP4 fluid flux negatively 

affects transduction of bidirectional axonal transporters like AAV9 possibly due to 

diminished levels of axonal transport. In future, studies with unidirectional transporters 

like AAV2 (anterograde) and AAV6 (retrograde), can further juxtapose the roles of CSF 

flux and axonal transport on AAV transduction within the CNS. 

In addition to viral spread, retention and transduction, we also proposed that 

AQP4 fluid flux plays a major role in systemic leakage of interstitial deposits such as 

AAV vectors. Accordingly, we saw a significant reduction of off-target biodistribution and 

gene expression in peripheral organs from intracranial administration of AAV9 vectors in 

the AQP4-/- mice (Fig. 25). To our knowledge, this is the first demonstration of AQP4 

fluid flux as the biological flushing mechanism that clears AAV vectors into the systemic 
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circulation/organs. Accordingly, in the absence of AQP4, AAV vectors are effectively 

contained within the CNS.  

Events like aging, neurological storage disorders and traumatic brain injuries can 

have direct implications on AQP4 function and therefore glymphatic solute clearance 

(270-273, 278). We believe that future preclinical evaluations of CNS gene therapy 

strategies can benefit from results obtained from predictive in vivo systems like AQP4-/- 

condition and aged mice. Additionally, biomarkers of CSF flux can be made an integral 

part in the recruitment process of patient candidates with neurological disorders towards 

therapeutic AAV gene transfer (279).  

The success of CNS gene therapy hinges on a thorough understanding of 

successes achieved and challenges faced during experimental, preclinical and clinical 

administrations of therapeutic gene transfer strategies. In this regard, although AAV 

vector mediated gene transfer in the CNS has demonstrated safe and successful 

replenishment of proteins, the efficacy of gene therapy reported in the last decade of 

clinical trials has not met the expectations of researchers and clinicians. There remains 

a critical need for predictive in vivo models of neurodegenerative disorders; establishing 

correlation between preclinical studies conducted in rodent and primate animal models, 

and recruitment of representative patient cohorts for clinical trials. Moving forward, it is 

particularly important to invest time and effort towards various aspects of AAV vector 

design, development of biomarkers and animal models to overcome the existing 

roadblocks. 
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