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ABSTRACT 

MARGARET A. ADGENT: Early Life Soy Exposure and Child Development: An 

Assessment of Language Acquisition, Play Behavior, and Time-to-Menarche 

(Under the direction of Julie Daniels) 

 

 Soy isoflavones are weak estrogenic compounds contained in products derived from 

soybeans, including soy-based infant formula. Exposure to these compounds in infancy may 

have lasting effects on later neurological and reproductive development and function.  This 

study examined the association between early life soy-based feeding and developmental 

outcomes, including language acquisition, gender-role play behavior and time-to-menarche.  

Subjects were participants in the Avon Longitudinal Study of Parents and Children 

(ALSPAC).  Subjects were classified into mutually exclusive infant feeding categories:  early 

soy, late soy, primarily breast, and early formula (referent).  Language acquisition, measured 

as word comprehension and production, was assessed using the MacArthur Communicative 

Development Inventory (MCDI) at 15 and 24 months of age.  Gender-role play behavior was 

assessed using the Preschool Activities Inventory (PSAI) at 42 months of age.  Time-to-

menarche was assessed by self-report of age at menarche between ages 8 and 14.   

Using generalized estimating equations (n = 3,384 boys; 3,176 girls), a small, imprecise 

increase in both word comprehension and word production was observed in girls with early 

soy exposure (βcomprehension = 0.87, 95% CI: 0.36, 1.38; βproduction = 1.46, 95% CI: 0.56, 2.29) 

over time, as compared to the referent.  No association was observed among boys. 

Likewise, no association between PSAI score and infant feeding method was observed in 

boys, using multivariable linear regression models. However, the mean PSAI score among 

early soy exposed girls was slightly higher than the referent (β = 2.68, 95% CI: 0.20, 5.15), 

indicating slightly masculinized behavior.  
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 Time-to-menarche was assessed in 2,884 girls using Cox proportional hazards modeling.  

The rate of menarche in early adolescence (before age 12.5) increased by 42% in the early 

soy fed girls (Hazard Ratio: 1.42, 95% CI: 0.92, 2.20). There was no association in later 

adolescence. 

In this study, early life exposure to soy products was associated with slight, imprecise 

associations with developmental outcomes in girls, but not boys.  Interpretation was limited 

by a small number of early soy exposed subjects.  Despite the imprecision, similar patterns of 

association among girls in all outcomes support the need for additional studies to replicate 

these novel findings.  
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I. INTRODUCTION 

Soy-based infant formula (SBF) is a commonly used alternative to cow‟s milk based 

infant formula, particularly in instances of milk intolerance or preference for a vegan diet.  It 

accounts for approximately 20% of the infant formula sold in the United States, and 7% in 

the United Kingdom (1, 2).  SBF has been shown to be nutritionally adequate for term infants 

(2).  However, it also contains high levels of phytoestrogens, plant compounds with structural 

and functional similarity to 17β-estradiol that may have long term effects on developing 

infants. Infants exclusively fed SBF are thought to receive doses of these compounds at 

approximately 4.5-8.0 mg/kg bodyweight, with plasma concentrations an order of magnitude 

higher than adults on a diet containing soy(3). Since endogenous estrogen levels are typically 

low during infancy, exposure to these estrogen-like compounds is of concern. 

Animal models show that the phytoestrogens found in soy are capable of inducing 

disruptive effects on the endocrine system. Endocrine disrupting chemicals (EDCs) have 

been associated with a wide range of developmental outcomes.  For example, EDCs have 

been shown to influence sexually dimorphic brain development in animals and consequently 

sex-specific animal behavior (4). Additionally, a popular hypothesis suggests that trends in 

early onset of puberty may be, in part, due to early life EDC exposure (5).  

Few longitudinal studies of early life soy exposure have been conducted in human 

populations beyond infancy. There is a particular paucity of data with respect to neurological 
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and reproductive outcomes, which may be sensitive to changes in normal early life hormone 

concentrations (6). Therefore, the overall long term safety of SBF is unclear.  

This epidemiologic investigation aims to assess the association between soy-based infant 

formula and milk use in infancy and hormonally sensitive outcomes related to neurological 

and reproductive development.  Specifically, this study will examine the effects of SBF on 1) 

gender-specific language acquisition rates and gender-role behavior in preschool aged 

children, and 2) age at menarche in adolescent females.  This investigation will be carried out 

in the Avon Longitudinal Study of Parents and Children (ALSPAC), a pregnancy cohort of 

over 14,000 live births recruited in 1991-1992 in the United Kingdom, and followed to the 

present day.  Because SBF use is a relatively common source of infant nutrition in the United 

States, this study will be a much needed contribution to the understanding of effects of 

exposure to dietary estrogens on early child development.  
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II.  REVIEW OF LITERATURE 

a. Background: Soy Based Infant Formula 

Prevalence and Indications for Soy Based Infant Formula Use: Soy based infant formula 

(SBF) was first introduced in the United States in the early 1900s, and has since become a 

popular feeding alternative to breast milk and cow‟s milk formula (CMF).  SBF currently 

accounts for approximately 20-25% of the formula market in the United States (1). 

Internationally, SBF did not become available until the mid-1970s, and is much less 

prevalent than in the US. For example, only 2-3% of infants (7% of formula market) in the 

United Kingdom were reportedly using SBF in the mid 1990s (2, 3).  SBF use in Asian 

countries is not typical, despite adult diets high in soy foods (4). 

Parents choose to feed SBF for a variety of reasons, ranging from medical advice to 

personal preference. Recent American Academy of Pediatrics guidelines have identified 

galactosemia and hereditary primary lactase deficiency, which are rare autosomal recessive 

traits, as the only medical conditions that can be successfully controlled with an SBF diet (1).   

Historically, however, SBF has been recommended in instances when an infant‟s nutritional 

needs could not be met by breast or cow milk (5).  Such instances might include colic, mild 

lactose intolerance or cow‟s milk allergy. Rash and family history of atopy are also potential 

motivations for SBF use.   

However, SBF is not effective in the treatment or prevention of these most of these 

medical conditions. Controlled trials comparing SBF and CMF have not demonstrated any 
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benefit of soy on the relief of colic symptoms, including excessive spitting, vomiting, and 

fussiness.   Additionally, SBF has not been shown to be effective in the prevention of 

development of allergy, nor has it been shown to be a suitable alternative for infants already 

experiencing CMF allergy (1).  10 -14% of infants with cow‟s milk allergy are also allergic 

to soy (6, 7).  SBF fed infants with family history of atopy are no less likely to develop atopic 

responses, such as cow‟s milk allergy or eczema, than infants fed CMF. Therefore, maternal 

perception of an infant health problem, or of the effectiveness of SBF treatment may drive 

the initiation or continuation of SBF use over actual medical advice (8-10). 

 Maternal preference for SBF may be influenced by a number of other factors as well. 

These factors include vegan diet, perceived health benefit of soy products in adult 

populations, peer pressure from other mothers, or experience from previous births. Since 

most studies on SBF have been either controlled trials or small studies in homogenous 

communities, it is unclear if there are other socioeconomic, cultural or demographic 

characteristics related to preference of SBF over other types of formula.   

Composition of Soy Based Infant Formula, Nutritional Content:  Early formulations of 

SBF met concerns regarding digestibility and nutrient availability, and as a result, SBF has 

undergone numerous modifications over the past 50 years to enhance quality and nutritional 

content.  In the mid-1960s, soy protein isolate, a form of soy protein that is highly digestible 

and high in essential amino acid content, replaced soy flour as the primary protein source in 

SBF.  Around 1980, micronutrient availability was improved through mineral fortification 

and reduction of phytates, compounds capable of interfering with mineral absorption and 

iodine metabolism.   Commercially available SBFs have since met American Academy of 
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Pediatrics recommendations for full-term infant feeding and U.S. Food and Drug 

Administration quality standards (1, 5, 11).    

SBF composition has been well characterized in order to ensure nutritional adequacy, 

although content likely varies slightly between brands and batches because it is a complex 

mixture (12).  In addition to soy protein isolate, L-methionine, L-carnitine, and taurine 

supplementation also contribute to SBF protein content (5).  Fat content is derived primarily 

from vegetable oils, with routine addition of docosahexaenoic (DHA) and arachidonic (AA) 

acids. In lieu of lactose found in cow‟s milk, carbohydrate sources in SBF include corn 

maltodextrin, corn syrup solids, tapioca starch, and sucrose (1, 5).   

Composition of Soy Based Infant Formula, Phytoestrogen Content : SBF also contains 

high levels of phytoestrogens, or plant based estrogen-like compounds, that are naturally 

found in soybeans. Specifically, SBF contains the compounds genistein and daidzein, which 

belong to a particular subclass of phytoestrogens known as isoflavones. SBF isoflavone 

content varies slightly between brand, formula type (powder vs. liquid) and country of origin. 

These compounds are typically measured in formula as aglycones (unconjugated genistein 

and daidzein) (Figure 2.1), and conjugates (daidzin, genistin, malonyl- and acetyl- 

glycosides), with the conjugates comprising the vast majority of formula composition.  

Total isoflavone concentrations in common U.S. brands of SBF range from 32- 46 mg/L 

(13). The conjugate genistin comprises the highest proportion of the total concentration in all 

brands and types, followed by daidzin. Powdered formulas tend to have higher isoflavone 

content than liquid formulas. Soy formulas obtained between March 1996 and July 1997 

from the U.K. had similar, but slightly lower isoflavone content ranging from 18-41 mg/L 

(14).  Soy milk and other soy drinks, which also may be administered to infants, have even 
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higher isoflavone content than SBF, at 22.9 - 71.5 mg/L, based on commercial samples 

purchased in Australia in 1995 (15).  

Isoflavone concentrations in SBF are markedly higher than in other sources of infant 

nutrition. Breast milk isoflavone content is minimal in comparison to SBF, at ~5 ng/ml in 

healthy women. This concentration increases approximately 10 fold following a soy dietary 

challenge (13, 16).  Isoflavones genistein and daidzein have been detected at 0.1 – 2.0 ng/ml 

in cow‟s milk, while equol, an important metabolite of daidzein, has been found at slightly 

higher concentrations (5-30ng/ml) (17). Insensitive methods have prevented investigators 

from detecting isoflavones in cow‟s milk formula (13), but cow‟s milk formula isoflavone 

concentrations are presumed to be low. 

It is important to note that the aglycone forms of these compounds are the more 

biologically available and biologically active isoflavone moieties, and yet typically only 

account for 3-5% of isoflavone content in SBF (12).  The vast majority of ingested 

isoflavones are in the conjugate form.  This brings into question, then, whether the majority 

of isoflavone intake is biologically relevant or capable of inducing a biological response. A 

more detailed discussion of isoflavone intake, metabolism and biologic activity, particularly 

with respect to aglycone and conjugated forms, will be provided in a later section.   .  

Biologic Availability of Isoflavones:  Aglyconic and conjugated isoflavones differ in their 

initial capacity for digestive absorption into the body. While aglyconic isoflavones are 

rapidly absorbed through the intestine, conjugated isoflavones contain a bulky glycosidic 

bond that prevents such transport.  Glycosidases must cleave the glycosidic bonds in order to 

facilitate absorption. This cleavage process readily occurs in both adult and infant humans 

(18, 19).   
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Bacteria in the gut may also further metabolize genistein and daidzein following 

glycoside bond cleavage.  Metabolites of this process include dihydrogenistein and O-

desmethylangeolensin, which are derived from genistein, and dihydrodaidzein, 

tetrahydrodaidzein, and equol, which are derived from daidzein (18).  However, it is not 

likely that such bacteria are present in an immature infant digestive tract, so exposure to these 

metabolites is probably very limited following exposure to SBF.  

Once absorbed, isoflavones are metabolized in the liver into glucuronide and sulphate 

conjugates. These metabolites are then excreted in urine. The half-life for genistein and 

daidzein detection in adult plasma is approximately 7-8 hours (20). 

Detection of high levels of genistein and daidzein metabolites in both urine and serum of 

SBF fed infants provide evidence that infants efficiently absorb, metabolize and excrete soy 

isoflavones (Table 2.1).  Infants exclusively fed SBF receive total isoflavone doses ranging 

from 4.5 – 8.0 mg/kg bodyweight, and have plasma isoflavone concentrations an order of 

magnitude higher than adults on a diet containing soy (21).  Urinary concentrations of total 

genistein and daidzein have been shown to be 500 times the concentration detected in CMF 

fed infants (22). Total isoflavone concentrations in SBF fed infants are 13,000- 22,000 times 

the level of early life endogenous estradiol (13, 21).   

It is important to note that low levels of equol have been detected in some CMF fed 

infants. In some instances, equol was detected in plasma of CMF infants at concentrations 

slightly higher than in SBF fed infants (21) (Table 2.1).  This may be due to the presence of 

low levels of equol isomers in cow‟s milk (17, 23).  Since equol has biologic activity that is 

similar to genistein (described below), it is important to consider how equol may influence a 
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comparison between CMF and SBF fed infants, as well as the interpretation of experimental 

animal studies of isoflavones.  

Biologic Activity of Isoflavones:  Much of the concern regarding genistein and daidzein 

exposure is attributed to their structural and functional similarities to 17β-estadiol (Figure 

3.1).  Typically, 17β –estradiol binds to estrogen receptors (ER), which ultimately allows for 

controlled gene expression and cell-specific protein synthesis (24). Estrogen receptors are 

distributed in tissues of the male and female reproductive system, breast, bone, 

cardiovascular system, and the hypothalamus region of the brain (25, 26).  Estradiol-ER 

binding is thought to be necessary for the proper development and function of these various 

organ systems.  However, like estradiol, aglyconic genistein and daidzein are also capable of 

binding to ERs, and are thus capable of disrupting normal developmental processes.  

Comparatively, genistein has a higher ER binding affinity than daidzein, but one that 

is100 fold less than estradiol, so it is considered a “weak” estrogen (27).  Both isoflavones 

have ER binding affinities that are also markedly less than the synthetic estrogen, 

diethylstibesterol (DES),  but are more potent than other chemicals with known endocrine 

activity, such as bisphenol A and methoxychlor (28).  In serum, these isoflavones have been 

shown to have greater access to ER binding in comparison to estradiol, since estradiol easily 

binds to serum proteins, such as α-fetoprotein, and isoflavones do not (29, 30). Estrogen 

receptors have been identified in two distinct sub-types, ERα and ERβ.  Aglyconic genistein 

and daidzein can bind to both sub-types, although both have a much higher affinity for ERβ.  

Genistein and daidzein in the conjugate form are not capable of such activity, since the 

glycosidic bond occurs at the site of estrogen binding.   
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The activity of isoflavones appears to be at least partially dependent on the concentration 

of endogenous estradiol.  In a high estradiol environment, these isoflavones tend to act as 

estrogen antagonists (inhibitors of estrogenic activity), whereas in a low estrogen 

environment, they can act as estrogen agonists (estrogen mimics) (18, 27, 28, 31).  Given the 

capacity for such activity, these isoflavone compounds are appropriately categorized under a 

wider classification of exogenous hormonally active compounds known as endocrine 

disrupting chemicals (EDCs). A more detailed discussion of how isoflavone ER binding 

activity may affect brain and reproductive system development will be given in later sections.  

Isoflavones may also be capable of affecting estrogen metabolism, as well as the 

metabolism of other steroid hormones, through a gene expression mediated mechanism.  

Dietary genistein was recently shown to reduce mRNA associated with the gene Hsd3b [7-

Dehydrocholestrol reductase], which plays an important role in the synthesis of steroid 

hormones. Likewise, a gene associated with the degradation of these hormones, Akr1d1 

[Aldo-keto reductase family 1, member D1], was significantly upregulated by genistein and 

daidzein.  Genistein was also shown to decrease serum cholesterol levels in rats, which may 

have additional implications for steroid hormone synthesis (32).  

Isoflavones are also capable of exerting effects beyond those associated with steroid 

hormones. Genistein is a potent inhibitor of tyrosine kinase (21, 33), which may have 

estrogen-independent implications for cell proliferation and intracellular signaling pathways.  

Isoflavones are also capable of binding to peroxisome proliferator-activated receptors 

(PPAR), which are important in insulin regulation and adipogenesis(34-36).  

Genistein has also been shown to effect thyroid function.  Tyrosine peroxidase, which is 

required for thyroid hormone synthesis, is inactivated in rats exposed to dietary genistein 
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(37).  Additionally, genistein can act as a T3 antagonist(38). These findings have been 

documented at concentrations relevant to dietary soy exposure in humans, and are 

particularly relevant here since thyroid hormones, including T3, are important for many 

developmental processes, including brain, ear, and bone development (38, 39).   

Biological Activity in Humans: The biological activity of isoflavones has been explored 

extensively in experimental animal and in vitro models. Relevant findings have been 

described, in part, above, and additional animal studies specifically related to sexually 

dimorphic learning, memory, behavior, and reproductive development will be discussed in 

later sections.   

Despite extensive animal evidence, however, the actual biologic activity of circulating 

isoflavones in SBF fed infants is unclear. Exposure to isoflavones has been well documented, 

but studies linking these exposures with sensitive developmental outcomes are limited. 

Approaches to clarify their biologic activity have included detailed biomarker measurement, 

and both observational and clinical studies of effects exposure to SBF.  Additional evidence 

of biologic activity in humans can also be derived from studies of adults exposed to dietary 

soy products.   

Given the current understanding of isoflavone ER binding potential, the extent of 

isoflavone biologic activity in infancy may be informed through the measurement of 

aglyconic, as opposed to conjugated, isoflavones in vivo.   Accordingly, in a study of 

genistein exposure in rats, 31% of circulating isoflavones were aglyconic (40). This provides 

evidence that a relatively high level of active compound is circulating and available for ER 

binding. In contrast, Huggett et al., did not detect any circulating aglyconic isoflavones in 

plasma of four SBF fed infants. Instead, isoflavone composition consisted of glucoronide and 
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sulfide metabolites, with unknown biological significance (41).  Other isoflavone exposure 

studies, such as those presented in Table 2.1, did not sufficiently document the relative 

concentrations of aglycone and conjugate forms.   Therefore, it is not possible to derive 

substantial conclusions regarding biologic activity in infants based on the current biomarker 

literature.  

 Numerous clinical trials have examined the overall safety of SBF use in infancy since 

the mid-1960s. While these studies do not address the mechanistic behavior of SBF 

isoflavones, they can suggest biologic activity at the organism level. These studies have 

examined growth and bone mineralization in SBF fed infants as compared to CMF fed 

infants, gastrointestinal or allergic response to soy, responses to immunizations, and select 

childhood and early adult outcomes (1, 5, 42-44).  SBF feeding has been shown, in general, 

to allow for normal growth and bone development in term infants, and normal immune 

response to immunizations. Nutritional recommendations based on this literature do specify 

that SBF is not appropriate for preterm infants.  SBF may not support adequate growth and 

bone development in this population.  

Distinct from these gross measures of development, such as growth, subtle effects on the 

endocrine system have been observed following exposure to SBF.  For example, children 

with congenital hypothyroidism on a diet of SBF require higher than normal T4 treatment 

dosages to regulate TSH levels (45-47). For these cases, SBF is likely inducing increased 

stool frequency, and thus a decreased capacity for T4 absorption. An alternate explanation is 

that soy isoflavones may be adversely affecting thyroid function via thyroid peroxidase 

inhibition (37).  Additionally, SBF may also influence cholesterol production in infants, as 
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infant urinary isoflavone concentrations were shown to be inversely related to cholesterol 

synthesis rates following exposure during the first four months of life (48).   

 In some instances, these subtle endocrine effects have not manifested until later in 

childhood. For example, Chinese children who  consumed SBF at either 4-6 months of age, 

or 7-12 months of age were shown to have increased odds for Type I diabetes, as compared 

to CMF fed infants (ORs: 2.0 (95% CI: 1.1-3.4); 1.5 (95% CI: 1.0 – 2.1), respectively) (49).  

In an earlier study, Fort et al. reported a higher proportion of SBF use in infancy among 

children with Type I diabetes than in controls (50).  Studies of other long term effects of SBF 

exposure, such as early life sex hormone status, sexually dimorphic cognition and behavior, 

and reproductive development are very limited, and will be discussed in later sections.  

Studies on the effects of soy products in the adult diet are also informative with respect to 

the potential biologic activity of soy isoflavones, despite obvious discordance in exposure 

timing. With an understanding that adult and infant metabolisms can differ in some respects, 

such as the capacity to metabolize daidzein into equol, these adult studies can provide some 

insight into the overall biological activity of soy isoflavones in humans, particularly with 

respect to sex hormone status.  Accordingly, in a small study of premenopausal women, a 

diet supplemented with 45 g soy/day was shown to modify menstrual cycle characteristics, 

including suppression of mid-cycle hormone surges and delayed menstruation.  Effects lasted 

for several months beyond the one month treatment period (51).  Subsequent studies have 

reported similar findings, with a recent meta-analysis supporting that soy isoflavone exposure 

is associated with a reduction of circulating gonadotropins and increased menstrual cycle 

length in premenopausal women (52).   In males, studies of the effects of adult exposure to 

soy protein on hormone levels are equivocal. Dietary soy consumption, as assessed by 
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questionnaire, has been associated with increased estradiol, and decreased testosterone 

among adult Asian men (53). However, concentrations of estradiol, testosterone, and other 

steroid hormones did not differ between men randomized to either lean meat or tofu diets 

(54), among men consuming daily soy milk (55), or on soy isoflavone supplements (56).  No 

significant effects on adult testicular volume or sperm count have been noted following adult 

soy isoflavone exposure (56).  

Data Gaps:  The findings described above demonstrate that SBF is a potent source of soy 

isoflavone exposure in infancy, and that soy isoflavones have the biologic potential to 

interfere with normal developmental processes via endocrine disruption. However, to date, 

research of SBF exposure in infancy has primarily focused on nutritional adequacy and 

allergic response to soy.  Little research has been done on the effects of soy on the 

developing neurologic and reproductive systems – two endpoints that are heavily influenced 

by endocrine function, including sex steroid concentrations. While professional pediatric 

guidelines have noted that SBF is an adequate source of nutrition for term infants, more 

research is needed to properly characterize risks to child development, particularly as they 

relate to long term health, following early life exposure to soy products.  

b. Background: Sexually Dimorphic and Reproductive Outcomes 

Early life is a period when exposure to endogenous estrogens is typically low (57).   

Since SBF dramatically increases the level of exposure to environmental estrogens with 

potential for endocrine disrupting activity, the present study intends to assess the relationship 

between SBF exposure and subtle changes developmental outcomes. The discussion below 

describes normal patterns and typical predictors of these developmental processes, followed 
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by a presentation of experimental and epidemiologic data relevant to the effects that EDCs, 

and isoflavones specifically, may have on these normal processes.  

i. Language Acquisition and Gender-Role Behavior:   

1. Background 

Typical language acquisition rate and gender-role behavior characteristics are well 

described in child development literature. Both of these outcomes are largely influenced by 

age and gender, as well as a range of biological, social and environmental factors.   

Language Acquisition: In a typical child, word comprehension begins around 9 months of 

age, and word production begins around 12 months of age.  Following 12 months, a “fan 

effect” occurs in which rapid word producers and slow word producers begin to differentiate.  

At around16 to 18 months, a significant difference can be observed between males and 

females in both the number of words understood, and the number of words produced (58), 

with females consistently demonstrating higher word production than males (59-64).  

Language development continues with the initiation of word combinations around 18 to 20 

months of age, and grammatical development around 24 to 30 months of age.   By 30 

months, the difference between rapid and slow producers begins to decrease, indicating a 

ceiling effect.  

Language acquisition rates can be mediated by a number of influences in addition to age 

and gender. These may include social environmental factors, such as parental tendency to 

engage verbally with the child (“language input”), or presence of an older sibling.  Physical 

factors such as oral development, hearing, and general health may influence language 

development.  Chronic ear infections, for example, are thought to delay speech (61).  Family 

history of speech problems, maternal vocabulary/education, non-English speaking 
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background (in English speaking countries), and temperament may also be predictive (64). 

The presence of other behavioral or cognitive development issues may delay speech as well, 

although they would not necessarily influence language development in a “normal” 

population.    

Gender-Role Behavior:  In the course of typical child development, differences in male 

and female behaviors are readily observable. While there is generally a fair amount of 

overlap between what is considered “male” and “female” behavior, one particularly 

prominent type of sex-specific behavior is a child‟s preference for certain toys or activities. 

Gender based differences in play activities can be apparent by as early as 12 months of age, 

and are clearly observable by age 3 years.  At this time, it can be shown that boys tend to 

prefer items such as cars, trucks, and weapons. Girls prefer items such as dolls, dress-up toys, 

and domestic toys.  Additionally, boys are also more likely than girls to engage in “rough and 

tumble” play. Children are also more likely to choose playmates of their same sex.  Boys 

tend to play in large groups of other boys, while girls prefer to interact with only one or two 

other girls (65, 66).  

Like language acquisition, gender-role behavior is influenced by a many factors, 

including both biology and social environment.  Biologically, gender-role behavior has been 

shown to be influenced by early life brain development.  A more detailed discussion of this 

developmental process is described below.  With respect to the social environment, boys and 

girls learn to choose sex-specific toys simply because they are taught to use those toys.  

Influence from parents or older siblings may discourage “cross sex” play. Additionally, peer 

influence is also thought to contribute largely to gender-role behavior.  Establishment of a 
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gender identity, or awareness of being a boy or a girl, will likely influence play choices, since 

children tend to model behaviors seen in other children of their same gender (65). 

Biological Basis for Sexual Dimorphism in Language and Behavioral Development:   

Both of the outcomes discussed above tend to show clear differences in performance and 

behavior on the basis of gender. The biological basis for observed sex differences in 

cognitive and behavioral development can be related to sexual differentiation of the brain in 

early development. Biologically, sex differences appear to be largely influenced by early life 

hormonal levels, regulated by the hypothalamic-pituitary-gonadal axis (HPG).   

HPG activity is initiated by the central nervous systems signaling a release of 

gonadotropin releasing hormone (GnRH) from the hypothalamus. GnRH stimulates the 

pituitary to produce luteinizing hormone (LH) and follicular stimulating hormone (FSH) 

(“gonadotropins”), which then target the gonads, and initiate the release of sex steroids, 

including estrogen and testosterone (67).  This series of events is mediated by negative 

feedback inhibition, where estrogen and testosterone at high enough concentrations act on the 

hypothalamus and pituitary to decrease gonadotropin secretion, and thus slow the production 

of estrogen and testosterone (68). “Normal” hormone concentrations vary throughout the full 

lifespan, as marked differences can be observed between the neonatal, childhood, 

reproductive and post-reproductive stages.   

Hormone concentrations and bioavailability appear to influence sexually dimorphic brain 

development, and consequently, the manifestation of gender-specific learning and behavior 

characteristics.  In developing males, circulating testosterone is converted to estrogen in the 

brain by the enzyme, aromatase.  This estrogen, in turn, binds to estrogen receptors in the 

brain, and promotes synthesis of proteins that then allow for the development of male 
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neurological structures, and subsequently, behavioral characteristics (69).   In females, 

however, testosterone is essentially absent. Furthermore, circulating estrogen is excluded 

from the brain because it tends to binds with α-fetoprotein, a steroid-binding protein in the 

serum (30).   So, the estrogen-dependent brain development process that occurs in males does 

not occur in females. As a result, males and females have distinct, sexually dimorphic brains. 

The timing of these events span the late prenatal and early postnatal period in rats, but have 

been thought to occur primarily in the second trimester of gestation in the human (70). 

Human infants are somewhat unique in that they also experience continued surges of sex 

hormones for the first several months of life, in addition to those seen in the prenatal stage.  

Male infants experience a testosterone surge that typically occurs between 1 and 5 months of 

age, a characteristic that is not observed in rodents and is shared only with other primate 

species (71). High levels of LH have also been detected in male infants through the first 

month (72), suggesting that testosterone production may be occurring through an LH 

mediated mechanism. The physiologic importance of the testosterone surge in both humans 

and non-human primates is unclear.  Some evidence suggests that postnatal testosterone 

levels influence penile growth and later reproductive function (73, 74), but have little effect 

on sexually dimorphic behavior in infant rhesus monkeys (75-78).  However, more recent 

evidence indicates that postnatal testosterone may play a role in postnatal brain organization 

in human infants, specifically with respect to language processing (79).  

Female infants also experience low levels of certain hormones. Estradiol and FSH have 

been detected in 3-month old infant girls at levels comparable to those detected in early 

pubertal, premenarcheal females (age 6-12, Tanner Breast Stage I or II) (80, 81). As in males, 

the functionality of early life reproductive hormones are not well understood.  However, their 
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presence demonstrates the potential for an additional or extended window of developmental 

susceptibility for endocrine related outcomes, such as brain development, beyond the 

prenatal period.  Extended periods of susceptibility have been noted in other species as well.  

For example, prolonged postnatal exposure to exogenous estrogens has been shown to 

“defeminize” the networking of the HPG among ewe sheep, a species previously thought to 

experience sexual differentiation primarily in the prenatal period (82). 

Influence of Endocrine Disruption on Language Acquisition and Behavior:  

The effects of early life reproductive hormone concentrations and EDC exposure on sex-

specific learning patterns and behaviors have been well studied in experimental animal 

models, and to a far lesser extent, in human populations.  Such patterns and behaviors are, in 

fact, shown to be sensitive to early life hormone status. Accordingly, prenatal, neonatal, and 

long term exposures to SBF, genistein, and phytoestrogen-rich diets have been shown to 

elicit physiologic responses and behavioral changes that deviate from normal sexually 

dimorphic development.    

The mechanism(s) by which EDC compounds may induce alterations in learning and 

behavioral development are unclear, but it is likely that EDCs disrupt the regulation of 

endogenous hormone concentrations via interference with the HPG axis.  The neural 

components of the HPG axis are sexually differentiated by endogenous estradiol during the 

pre- and perinatal periods in rats (83, 84), so it is postulated that EDC exposure during these 

times could alter HPG organization. Both ERα and ERβ are present in the hypothalamus, 

making it a susceptible region to isoflavones and other disruptors (26, 85).  In addition to 

perturbation of hypothalamus structure and function, isoflavones may also interfere with the 
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natural inhibition feedback mechanism of the HPG axis, and thus affect normal sex steroid 

production and concentrations.   

Neonatal primates are ideal animals to study for early life endocrine disruption effects, 

since like humans, they experience neonatal hormone surges.  Serum testosterone and LH 

levels at 3 months postpartum, for example, have been show to significantly decline 

following exposure to GnRH agonist in monkeys, due to blockage of the HPG axis pathway 

(73). Accordingly, in an early life feeding study of twin marmoset monkeys, twins that were 

fed SBF ad-libitum, much like human infants, had serum testosterone levels that were 55% 

lower than their CMF fed sibling at age 35-45 days (p = 0.004). Twelve out of 15 SBF fed 

monkeys had “low” testosterone levels (< 0.5 ng/ml), whereas this occurred in only 1 of the 

15 CMF-fed monkeys (p <0.001).  In addition, an increase in the number of Leydig cells per 

testis was also observed among the SBF fed monkeys (p < 0.001) (86). Upon reexamination 

at age 3, testis weight, Sertoli and Leydig cell counts were elevated among SBF fed 

monkeys, where the highest Leydig cell concentrations were among the monkeys with the 

lowest testosterone concentrations, suggesting Leydig cell failure compensation (87).  While 

this study addresses male reproductive health rather than neurodevelopment, it is important 

to note the effects that SBF has on early life hormone surges, as well as downstream effects 

of those surges in adulthood.  Given the recognized importance of testosterone in sexually 

dimorphic brain development, this study suggests potential for overt effects of SBF on brain 

development.  

In experimental rat models, the volume of the sexually dimorphic nucleus of the medial 

pre-optic area (SDN-POA) of the hypothalamus is often used as a marker of endocrine 

disruptive activity and changes in sexually dimorphic brain structure (69, 88). This brain 
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region is typically larger in males than in females, and is thought to play a role in male sex 

behaviors in rats (89-91).  It expresses both ERα and β throughout the life span, and therefore 

is susceptible to isoflavone binding (26, 85). In developing males, testosterone that is 

converted to estradiol serves to maintain the SDN neurons throughout development.  So, in 

the relative absence of estradiol, female SDN neurons undergo programmed cell death 

(apoptosis), which results in the characteristically smaller volume (92).  However, exposure 

to testosterone, excess endogenous estradiol, or an exogenous estrogen-like compound may 

interrupt the apoptotic process to result in a “masculinized” female.  A “feminized” male 

may result if an exogenous estrogen, acting as an ER antagonist, blocks endogenous estradiol 

from ER binding.  Conversely, a “hyper-masculinized” male may result when an exogenous 

estrogen acts as an ER agonist (estrogen mimic), and any apoptosis is prevented more 

effectively than it would be in the normal male (69).   

Studies examining the effects of isoflavones on SDN-POA volume in rats suggest that 

effects may be dose and time dependent (69).  Larger SDN-POA volumes have been noted in 

female rats following postnatal exposure to high, but not low doses of genistein (93-95). 

However, a non-significant decrease was seen when rats were treated at similar doses only in 

the prenatal period (96), or across the prenatal and early postnatal period (97). Other studies 

show an SDN-POA volume decrease in exposed males, but not females, following a 

moderate, life-long dose of genistein (98). Male rats exposed to a phytoestrogen-rich diet for 

their first 80 days had significantly smaller SDN-POA volumes than their counterparts who 

were fed a phytoestrogen rich diet throughout life (99).   

Another relevant outcome assessed in animals exposed to phytoestrogens is visual spatial 

memory (VSM).  VSM refers to the ability to discern relationships between shapes and 
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objects, or to remember locations. This is an appropriate measure for examining effects on 

sexually dimorphic traits, since males consistently out-perform females on VSM tests. Earlier 

studies have demonstrated that exogenous estradiol will inhibit VSM in male rodents, but 

improve VSM in ovariectomized females. Similarly, in a study of life-long phytoestrogen 

diet exposure, exposed females performed VSM tasks significantly faster than unexposed 

females. The opposite effect was observed for males, with the unexposed performing better 

than the exposed rats (100, 101). Conversely, low dose of exogenous estrogen administered 

developmentally has also been shown to improve spatial learning in male rats (102). 

Male rats exposed to low doses (but not high doses) of genistein from conception through 

lactation exhibited decreased offensive behaviors and increased defensive behaviors in 

adulthood, which is considered to be indicative of „demasculinizing‟ effects (103).  Adult 

exposure to phytoestrogen rich diets increased aggression in male monkeys and hamsters 

(104, 105).  Post-weaning exposure in the hamster increased aggressive behavior, but not 

significantly over controls. In the female rat, neonatal genistein exposure affected estrus 

cycling.  It also interfered with lordic posturing, an important adult reproductive behavior, 

which may be indicative of “defeminizing” effects (106).  This is similar to effects seen in 

animals exposed to other EDC chemicals. For example, male rats have shown increased 

aggressive behavior during adulthood following prenatal exposure to the EDC, bisphenol A 

(107).  

Most of these experiments have focused on exposures occurring in the prenatal, perinatal 

and neonatal stages of rodent development. However, the timing of these exposures may 

have limited relevance to the developing human.  Typically, the neonatal rodent is 

underdeveloped in comparison to the neonatal human, and thus may be more representative 
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of the prenatal human in terms of developmental stage.  With this understanding, these rodent 

models are regarded as informative with respect to general biologic processes, but limited 

with respect to the amount of extrapolation that can be carried out between species.  Another 

important caveat with respect to interpreting these animal studies is that, in studies of 

“phytoestrogen” exposure, one should note that animals tend to produce equol from daidzein 

much more rapidly and consistently than humans.  Therefore, it is possible that observed 

effects may be attributable to equol, and not other more relevant phytoestrogen components 

(108). 

Human Studies on the Influence of Hormonal and EDC Exposures:  Human studies of 

hormonal influence of language and behavior have largely focused on the effects of exposure 

to androgens, such as testosterone.  As described previously, testosterone is influential in 

normal sexual differentiation of the male brain. Additional studies of exogenous estrogens, 

such as DES and polycholobiphenyls (PCBs), have also provided evidence that early life 

endocrine disruption can affect learning and behavior.  

The behavioral effects of androgens have perhaps been most widely studied among 

subjects with congenital adrenal hyperplasia (CAH).  CAH is a disorder characterized by 21-

hydroxylase deficiency that results in elevated levels of androgens.  Accordingly, females 

with CAH tend to show masculinized behaviors, including masculine toy play, increased 

physical aggression, greater spatial ability, and decreased interest in parenting.  Masculine 

effects are associated most highly with the most severe cases of CAH.  Severe cases are 

typically diagnosed and treated before 6 months of age, suggesting that the prenatal and early 

postnatal windows of exposure to androgens may be the most influential on behavior (109).    
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Additionally, “normal” female infants born to mothers with high prenatal testosterone 

levels were shown to exhibit masculine toy preference at age 3.5 years.  No effect on toy 

preference was observed in boys born to women with high prenatal testosterone (110).   

Postnatally, neonatal brain activity associated with phonological discrimination has been 

shown to vary by both biological sex, and by testosterone level.  When exposed to a series of 

similar and dissimilar syllable sounds, the brain activity of 4-week old female infants 

demonstrated a clear response to the “mismatch” of sounds. A discrimination response was 

also observed in male infants with low testosterone (< 168 ng/dl), but not in male infants 

with high testosterone levels (>168 ng/dl).  The response in low testosterone males was 

primarily lateralized to the left hemisphere, whereas the response was bilateral in females 

(median testosterone = 17 ng/dl) (79).  This study provides preliminary evidence that brain 

organization and early life language processing may be driven, at least in part, by 

testosterone.  

Prenatal exposure to diethylstilbestrol (DES), a potent estrogen-like compound, is 

associated with lowered spatial cognitive ability among males, evidence for a feminizing 

effect (111).  Sexually dimorphic behavioral characteristics among adult women exposed to 

DES prenatally are varied.  DES exposure among women has been associated with both 

decreased interest in parenting, which is a masculine trait, and decreased levels of “rough and 

tumble” play as girls, a more feminine trait (112).  Other studies have shown no effect (113).   

Lastly, in a study of the effects of environmental contaminiant exposure via maternal fish 

consumption, duration of breast feeding among highly exposed women was associated with 

more feminized (hyper-feminization) behavior in girls.  In boys, masculine behavior 

increased with age and years of maternal fish consumption (114).  
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2. Critical Review of Soy Based Infant Formula Exposure and Cognitive 

and Behavioral Outcomes 

Studies examining the effects of SBF on cognitive and behavioral development are 

limited in many respects.  Only three studies have been identified that explore “cognitive 

function,” and each assesses this outcome in a different way: brain activity, intelligence 

quotients, and academic achievement.  Sexually dimorphic behaviors are not assessed in any 

of these studies, nor are subtle effects of SBF on gender-modified developmental 

characteristics. The results, limitations, and overall relevance of these studies are discussed 

below.  

Jing et al. (115) recently investigated the potential differences in electroencephalographic 

(EEG) spectral power in multiple brain areas of 46 CMF and 39 SBF fed infants, at 3 and 6 

months of age.  When EEG signals were compared between the feeding groups, no 

differences were detected.  However, spectral edge frequencies were significantly different 

between genders, ages, and brain areas.  No significant interaction was observed between 

feeding group and gender, suggesting an overall null effect of soy feeding on EEG-measured 

brain activity.  However, this study does have a limited sample size, which restricts its power 

to detect modest significant findings, particularly with respect to interactions.  Additionally, 

this study does not capture more latent effects of soy exposure on brain development and 

function, highlighting a need for assessment of long-term, not immediate, effects of early life 

soy exposure on neurological outcomes. 

Malloy and Berendes (116) explored the effects of breastfeeding on IQ in a population of 

9 and 10 year old subjects exposed to either soy formula, or a combination of soy formula 

and breastfeeding. Six hundred fifty three school-aged subjects were recruited into a 



26 
 

retrospective study, intended to examine the effects of exposure to a chloride-deficient soy 

formula, as compared to other soy formulas, in infancy.  Formula exposure was determined 

through parental recall questionnaires. IQs were measured using the Weschler Intelligence 

Scale (WISC) at ages 9 and 10. When no difference was detected between the chloride-

deficient and other soy formulas, a follow up was conducted to assess the effects of partial 

breastfeeding versus no breastfeeding (exclusive soy feeding).  One hundred eighty eight 

subjects were exclusively soy fed, while 466 were fed some combination of soy formula and 

breast milk.  In crude analyses, the breastfed group had significantly higher IQ scores than 

the exclusively soy-fed group.  However, following adjustment for parental education and 

income, the difference in IQ score was no longer distinguishable between the groups.  More 

importantly, no difference was seen when the comparison was limited to exclusively soy-fed 

infants, and infants reportedly exclusively breast-fed for the first 60 days. No report on IQ 

differences with respect to gender is reported, nor is it supported that IQs among boys and 

girls at this age are distinct enough to use as measures of sexually-dimorphic development. 

This study is also limited by the lack of an adequate, non-soy fed reference group.  Given 

that all subjects were fed soy at some point in infancy, results reported in this study are likely 

to be diluted by poor exposure contrast, and thus biased towards the null.    

Finally, Strom et al. (117) suggested a null effect of SBF on cognitive function in a 

population of adults that had been exposed to either SBF or CMF in infancy as part of a 

clinical trial.  They reported no difference in the level of education attained among the SBF 

and CMF groups.  Education level was defined dichotomously as less than or equal to high 

school, and greater than high school. The null effect was reported for both males and 

females.  This study is informative, in that it suggests no gross cognitive effects in SBF 
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exposed infants.  However, this study does not allow for investigation of subtle cognitive or 

behavioral effects, such as those that should be observable in the proposed investigation.   

3. Significance  

SBF is an alternative source of infant nutrition for parents not otherwise satisfied with 

breast feeding or cow‟s milk infant formulas.  It is widely used, and is generally considered 

to be a safe infant feeding method.  Previous studies have suggested that it does not have 

gross effects on developmental outcomes, including growth, immune function, and to some 

extent, cognitive function.  However, no study to date has examined the EDC-like properties 

of SBF, particularly with respect to outcomes related to “masculinzing” or “feminizing” 

behaviors or characteristics.   

Experimental animal research provides compelling evidence that soy phytoestrogens, and 

genistein in particular, are capable of affecting sexually dimorphic developmental 

characteristics.  Gender-modified responses to these compounds have been observed in the 

study of both physiologic and behavioral outcomes. These findings are supported by 

plausible mechanisms of action, involving isoflavone-estrogen receptor binding and 

alterations of normal estrogen-dependent activity.  Human studies have consistently 

demonstrated that SBF-fed infants are exposed to remarkably high levels of isoflavones. 

Combined, these elements support that improved evaluation of SBF exposure effects in 

humans is warranted, with particular emphasis on gender-modified sexually dimorphic 

behaviors.   

Comparison of within-gender language acquisition rates and gender-role behavior among 

SBF exposed and unexposed individuals will provide insight into the subtle effects that SBF 

may have on normal child development.  Although subtle changes in these developmental 
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measures may not present a large public health burden, such changes may indicate that a 

biological response to isoflavones is occurring in the developing child exposed to SBF.  With 

the understanding that early life is generally a time of low hormonal activity, such a response 

may be cause for concern. It is possible that isoflavone-induced changes in development may 

have greater health consequences in the long term. Such effects may include adverse effects 

on reproductive function, or the development of certain cancers.  For example, perinatal 

estrogen exposure has been shown to affect prostate development in men (118), while 

neonatal genistein can induce uterine adenocarcinoma in rodents (119). 

It is important to acknowledge that soy products, in general, have become somewhat 

ubiquitous in the human diet in the form of oils, meat/dairy substitutes, and other processed 

foods and drinks.  The popularity of soy is driven, in part, by economic forces and ease of 

soybean production and growth, and also by common popular culture perceptions that soy-

based products are “health foods.”  However, this perception is increasingly falling under 

question as more research attention is focused on the potential adverse effects of estrogen-

like isoflavones.  Exploring the true health effects of soy products in adult populations is 

beyond the scope of this study, but studying the subtle health effects in infants who are 

highly exposed to soy isoflavones through SBF is an ideal approach for assessing their 

biologic activity in a susceptible human population. 

Finally, exposure to SBF and soy isoflavones is modifiable, and is thus appropriate for 

public health research and intervention. If developmental effects of SBF exposure are 

discovered, parents and pediatricians can be encouraged to seek out alternative formulas, 

such as hydrolyzed formulas.  Soy formula manufacturers may also pursue opportunities to 

improve the safety of their products by decreasing or eliminating the isoflavone content. 



29 
 

ii. Time-to-Menarche  

1. Background 

Characterization and Trends of Puberty in Adolescent Females: Puberty is a transitional 

period in development that encompasses the change from a non-reproductive to a 

reproductive state. It is characterized by a series of biological changes including the 

development of secondary sex characteristics, accelerated growth, behavioral changes, and 

menarche (67). The physiological properties that regulate the onset of puberty are complex, 

and potentially have origins in the fetal and neonatal periods.   

Developmental changes in puberty are largely regulated by the hypothalamic-pituitary-

gonadal axis (HPG) and the hypothalamic-pituitary-adrenal axis (HPA).  Activation of both 

axes requires central nervous system signaling to the hypothalamus.  HPG activity has been 

described previously. Specifically in the female, LH and FSH target the ovaries, and initiate 

the release of both estrogens and androgens. LH and FSH signaling eventually lead to ova 

production and menarche. The HPG is of particular interest not only to early life learning and 

behavioral outcomes described above, but also to research questions involving effects of 

early life exposures on puberty. The HPG is active in mid-fetal, neonatal, infant, and 

prepubertal/pubertal stages of human development (67), so early life modifications can 

certainly influence outcomes later (120). 

For the HPA, a similar cascade of signaling events from the hypothalamus, to the 

pituitary, to the adrenal cortex occurs. The adrenal cortex then produces hormones that 

interact with androgens to initiate growth of armpit and pubic hair, and skin changes.  The 

hypothalamus and pituitary also can influence the production and release of hormones from 

the thyroid, including thyroid stimulating hormone (TSH). TSH can trigger the release of 
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other thyroid hormones (T3 and T4).  Experimental evidence suggests that thyroid hormones 

can interact with gonadotropins in the HPG cascade described above, and consequently 

influence ovarian development.  Hypothyroidism, for instance, has been shown to decrease 

FSH and LH concentrations, and block the event of first ovulation in rats (121).   

The onset of puberty can be measured in a variety of ways. Commonly, breast budding, 

pubic hair development, and age at menarche are used.  Age at menarche is ideal for use in 

studies that do not allow for physical examination. It can be reliably reported by a girl or her 

parent, provided that the interview occurs shortly after the menarche event.   In a study of 88 

adolescent girls, Koo et al. (122) determined that 59.1% of girls could correctly recall the 

exact month and year of menarche, and 77.3% could recall menarche correctly within one 

month, after a mean 430 day interval between initial reporting of menarche and recall 

reporting (range = 266-698 days).  Exact recall reliability was higher (66%) for girls 

interviewed after a shorter interval (mean = 323 days) than it was for girls interviewed after a 

longer interval (mean = 649 days) (44.8%).  Other studies have assessed age at menarche 

recall in adult populations, and have also shown that reliability of recall tends to decrease 

over time (123), or that adult recall is only accurate with respect to year of age (124, 125). 

Therefore, this measure is best and most precisely used in adolescent, not adult, populations.  

Populations have historically recorded age at menarche data for many years.  Data from 

the late 1800s through the mid-1900s indicate that the average age at menarche has been 

declining over time. This decline is largely attributed to improved health and nutrition. More 

controversial is the proposed decline in pubertal onset that has been seen in more recent 

years. Reports from the 1950s and 1960s suggest the average age of menarche was 
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approximately 12.8-12.9 years.  However, more recent data report an earlier age at menarche 

in the US population, at 12.4-12.5 years (126).  

Age at pubertal onset, and age at menarche specifically, differ by race. National Health 

and Nutrition Examination Survey (NHANES) III data indicate that the average age for 

initiation of breast development was approximately 10.3 years for Caucasian girls, and 9.5 

years for African American girls in a 1988-1994 US population of 8 – 16 year olds. Average 

age at menarche was approximately 12.6 for Caucasians, and approximately 12.1 for African 

Americans (127).   

Other factors that appear to affect the age at onset of puberty include body fat 

composition or body mass index (BMI), birth weight and genetics.  High childhood BMI and 

low birth weight have been associated with advanced age at menarche, while poor nutrition 

may result in a delay of pubertal onset.  Poor nutrition may be the result of socioeconomic 

environment, an eating disorder, or the result of excessive exercise. Maternal age at 

menarche is also predictive of a daughter‟s age at puberty.  

 Influence of Endocrine Disruption on Onset of Puberty:  Timing of puberty and 

normalcy of pubertal development are measured in animal studies in a variety of ways.  

Perhaps the most commonly reported outcome is age at vaginal opening (VO) in rats.  This 

event is thought to correspond to breast development in humans.  It typically occurs around 

postnatal day 35, approximately 4.2 days prior to the animals‟ first ovulation and estrus 

(analogous to menarche in humans) (128). Thyroid hormones, uterine and ovary weights, and 

vaginal cytology are also frequently reported outcomes when studying the effects of 

environmental compounds on pubertal development in rats (121).  
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Accordingly, genistein and other isoflavones have been shown to affect VO in multiple 

studies. Advancement of VO was observed in association with isoflavone exposure following 

early neonatal (birth – PND 3) exposure (83), persistent (birth – PND 21) and post-weaning 

(PND21-27) postnatal exposure (93, 129), and life-long exposure (gestation – puberty)(130). 

A similar advancement effect was seen when soy protein isolate (SPI) was administered from 

gestation through adulthood (131).  

Another study showed a linear trend toward accelerated onset of VO across doses ranging 

from 4 to 1250 ppm diet, along with abdominal cellular maturation of vaginal cells at the 

highest doses (gestation – PND 50) (132).  Delayed VO was observed on one study of 

prenatal genistein exposure (96), and one study assessing lifelong exposure to a 

phytoestrogen-rich diet (99).  No effect on VO was observed in another study, but differences 

in estrus cycling were observed after exposure during PND 1-5, instead (133).  Masutomi et 

al. (97), however, found no effect on endocrine dependent outcomes, apart from a decrease in 

body weight at week 11 following exposure from gestational day 15 to PND 10.  

 The mechanism(s) by which EDC compounds may induce alterations in pubertal 

development are unclear, but again, are likely to be partially regulated by the hypothalamic-

pituitary-gonadal (HPG) axis,.  As described previously, the HPG axis regulates GnRH 

secretion and subsequent hormone release that ultimately leads to menarche.  The 

functionality of the HPG axis is regulated by endogenous estradiol during development, and 

so it thought to be particularly susceptible to endocrine disruption.  As evidence, exogenous 

estradiol exposure in rats has consistently induced effects on HPG dependent outcomes, 

including advanced age at VO and advanced age at first estrus (128). These effects were seen 

following exposures that started as early as postnatal day 1, and as late as postnatal day 10 
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and 20.  Since the “critical” window of effect on HPG development in the rat is thought to be 

around postnatal day 10 or 12, these later exposures again provide evidence that there is a 

relatively wide time frame for susceptibility.  

Human Studies, Effects of Endocrine Disruptors on Pubertal Onset: The effects of EDCs 

on pubertal development have been studied in several human populations.  Both the 

advancement and delay of pubertal onset have been seen following perinatal exposure to 

certain pesticides and other organic compounds (67, 120). Interestingly, a study of 

brominated flame retardant chemicals in maternal serum demonstrated that girls who were 

exposed in utero and breastfed reported earlier menarche than girls exposed in utero and not 

breastfed, and earlier pubic hair development compared to both unexposed girls and girls 

who were not breastfed (134).  While the role of brominated flame retardants in this scenario 

is not precisely clear, this study is informative with respect to the role of the postnatal human 

environment influencing pubertal onset later in life. 

2. Critical Review of Soy Based Infant Formula and Pubertal Onset 

Only one longitudinal study has assessed the effects of SBF on outcomes related to 

adolescence or adulthood. Several other studies have, however, assessed estrogen dependent 

outcomes in younger children exposed to SBF in infancy, such as early breast bud 

development and retention, hormone levels, and vaginal cytology.   

Strom et al.(117) investigated approximately 30 outcomes related to overall health, onset 

of puberty and reproductive function.  The study population consisted of individuals who had 

participated in SBF and CMF clinical trials as infants who were contacted again as adults, 

aged 20 to 34 years (n = 248 SBF, 563 CMF).  All were healthy term infants, with birth 

weights greater than 2500 g. Outcomes among females included height, weight, education 
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attainment (discussed previously), age at menarche, age a bra was first worn, menstrual cycle 

length, number of days of menstrual bleeding, and many others. Data was collected through a 

telephone questionnaire. Among women, those fed SBF were slightly younger than those fed 

CMF, they were more likely to use allergy or asthma medication, and reported marginally 

less time spent engaged in “sedentary activities.” No difference was seen in outcomes related 

to pubertal onset, with a mean age at menarche of 12.6 for SBF and 12.7 for CMF fed 

infants. Additionally, no difference was seen in height or weight.  SBF fed women did report 

significantly more days of menstrual bleeding per cycle, and greater discomfort with 

menstruation. All estimates were adjusted for birth weight, current age, “usual” BMI, 

parent‟s stature, hormone disorders, alcohol and cigarette use, current soy food consumption, 

current physical activity, and others.  

The soy exposure in this study is well classified due to clinical trial participation. 

However, since subjects consumed soy produced in the 1960s and 1970s, it is possible that 

the formulations administered to them differ slightly from what is available today. Authors 

do note that few subjects (n = 12) used a formula containing soy flour.  Findings suggest that 

no severe long health complications result from early life soy exposure. However, the ability 

for women to accurately and precisely recall past events, such as age at menarche or breast 

development, is likely limited, and it is not clear whether validation of report was attempted 

(or possible) from medical records.  There is also limited generalizablity associated with this 

population.  Subjects were from the Midwestern US, were of high socioeconomic status, and 

were a predominantly white population.  

Two studies have reported positive associations between SBF and breast development at 

or before the age of 2.  In a case control study of girls with early thelarche in Puerto Rico, no 
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association was found among 120 matched pairs and any environmental or familial factors 

(135), when the population was limited to children under 2 years of age,  a significant 

association with SBF consumption in infancy was found.  Maternal ovarian cysts and 

consumption of various meat products were also associated with early thelarche. However, 

despite statistical findings, over 50% of the study population did not report having these risk 

factors.  The findings of this study suggest that soy exposure may be part of a larger, multi-

factorial causal mechanism leading to early thelarche, but is not the sole attributable 

exposure.  

A cross sectional study of 694 Israeli girls, age 3 to 24 months, reported that those fed 

SBF for 3 months or more had a higher prevalence of breast tissue at age 2 compared to a 

combined CMF/breast milk comparison group (136). There was no difference in breast bud 

prevalence in the first year of life across the feeding groups.  There was no statistical 

difference in breast bud development across a range of soy feeding regimes (exclusive soy, 

soy with breast and cow milk, soy with cow milk, soy with breast milk).  Additionally, 

whereas CMF and breast fed girls experienced a decline in breast bud prevalence between 1 

and 2 years of age, the SBF fed girls were more likely to retain breast tissue into the second 

year.  Since this is not a population based study, it has limited generalizability. There is also 

potential differential exposure misclassification due to misreporting of feeding patterns by 

parents, as well as potential outcome misclassification of breast bud measurement due to 

difficulties in standardizing breast measurement.  

Giampietro et al. (137) assessed a range physical, hormonal and metabolic factors in a 

study of 48 SBF fed children (age range 7 – 96 months) and 18 controls.  27 boys and 21 

girls comprised the SBF fed group, and all had been exclusively fed SBF for at least 6 



36 
 

months due to either a family history of allergy or a documented CMF allergy. The 20 SBF 

subjects under the age of 24 months were still consuming soy regularly. Outcomes of interest 

included bone age, urinary markers of bone metabolism, serum levels of bone alkaline 

phosphatase, oestocalcin, 17B-estradiol, intact parathyroid hormone, “precocious puberty” in 

females and gynocomastia in males.  Testosterone concentrations were not measured.  No 

significant difference was reported for any outcome, with the exception of lower levels of 

calciuria and higher levels of phosphaturia in SBF fed children. Estradiol was below the level 

of detection in all subjects.  This study uses a range of biomarkers and physical assessments 

to assert that SBF induces no long term hormonal effect in children. However, given the 

small sample size and wide range of ages and developmental stages captured in the study 

population, these results should be interpreted with caution.  The study was grossly 

underpowered to study the outcomes that are most relevant to timing of puberty, such as 

estradiol levels, since the study included only 8 subjects at a relevant age (73 to 96 months). 

Lastly, this study was not designed to look at interactions of SBF and gender, so sex-specific 

effects, apart from precocious puberty in females and gynocomastia in males, were not 

assessed.  

Finally, in a recent pilot study of 37 male and 35 female infants, at various age ranges 

between birth and 6 months, the effects of SBF, CMF and breastfeeding were assessed for a 

range of developmental measures (138).  These included breast adipose tissue, breast buds, 

testicular volume, genital development, vaginal cell cytology, and information on vaginal 

discharge. The objective of this study was to assess feasibility of sample collection and study 

protocol, and thus does not provide reliable information on associations between exposure 
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and outcome.  Interestingly, though, the study found that, in girls older than 30 days, vaginal 

wall cells tended to show higher maturity in SBF fed girls than in other girls. 

Apart from the Strom et al., study, the epidemiologic literature offers little information on 

the effects of SBF on reproductive maturity.  However, several studies do suggest that SBF 

exposure has endocrine related activity in females, as evidenced in studies of early thelarche 

and vaginal cytology.  While little can be inferred from these studies regarding the 

association between SBF exposure and onset of menarche, they do highlight the need for 

additional studies of soy exposure and female reproductive health. 

3.  Significance 

SBF is a common alternative to other infant feeding methods, such as cow‟s milk formula 

and breast feeding.  For several decades, it has been considered a generally safe nutrition 

source in term infant populations.  However, increased attention is currently focusing on how 

soy isoflavones found in SBF, and other soy products, may be associated with subtle effects 

on health and development.  

Much is not known about the effects of early life exposure to soy isoflavones that can be 

found in SBF and other soy products.  Since human endocrine and reproductive development 

is active from the prenatal period through childhood, exposure to biologically active soy 

isoflavones may cause a disruption or alteration in normal development.  It is therefore the 

obligation of the public health community to thoroughly assess these possible effects in 

developing females.  

The timing of the onset of puberty is widely posited as a sensitive endpoint for perinatal 

exposure to endocrine disruptors.  Although it is a somewhat subtle outcome, it does have 

large public health significance.  Early puberty can put children at higher risk for obesity, 
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psychosocial abuse, behavior disorders, and potential sexual abuse. Furthermore, early 

menarche has been associated with increased risk for breast cancer (139, 140).   

The study of SBF as it relates to age at menarche will contribute to a growing literature 

on endocrine disruptors and age at menarche.  In contrast to exposures to other 

environmental EDCs, which often occur passively, ubiquitously, and at low levels, 

isoflavone exposure is isolated to those knowingly given SBF as part of the diet.  Infants with 

predominantly SBF-based diets have documented high exposures to soy isoflavones, and 

infants fed other diets have comparatively little exposure.  This wide exposure contrast 

makes SBF an ideal EDC exposure to study.   

Additionally, unlike other environmentally EDCs, exposure to soy products in infancy is 

highly modifiable.  If this study identifies SBF as a potential risk for advanced age at 

menarche, infant formula product manufacturers and parents have the opportunity to adjust 

their behaviors accordingly.    
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Figure 2.1. Chemical Structure of 17β-estadiol, Genistein and Daidzein (Aglycone)(18) 
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Table 2.1. Isoflavone Concentrations in Infant Biological Samples (Adapted from Cao et al., 

2009(22)) 

Reference Fluid N 

 

Age Isoflavone Concentrations* [% < LOD] 

Genistein Daidzein Equol 

SBF Fed       

Cruz et al., 1994 Urine 13 4 mo ~390 [0] ~700 [0] [~100] 

Setchell et al., 

1997 

Plasma 7 4 mo 684 ± 443 [0] 295 ±59.5 [0] ~ 2.0 [42.9] 

Irvine et al., 1998 Urine 4 2 – 16w  2.9-3.8 mg·kg
-1

·d
-1

 [0] -- 

Hoey et al., 2004
a
 Urine 7 4 -6 mo 

a
65 ± 53 [0] 

a
60±32 [0]  

a
0.05±0.10[75] 

Cao et al., 2009 

   

Urine 125 0-12 mo 5891 x/÷ 3.1 [0] 5096 x/÷ 2.5 [0] 2.3 x/÷ 4.6 [95] 

Saliva 119 0-12 mo 11.6 x/÷ 5.1 [9] 5.2 x/÷ 5.8 [17] [100] 

Whole 

Blood 

27 0-12 mo 757 x/÷ 3.0 [4] 256 x/÷ 2.8 [4] [100] 

CMF Fed       

Cruz et al., 1994 Urine 8 4 mo ~15 [0] ~20 [0] [~100] 

Setchell et al., 

1997 

Plasma 7 4 mo 3.2 ± 0.7 [0] 2.1 ± 0.3 [0] 4.1± 0.5 [0] 

Irvine et al., 1998 Urine 25  2 – 16w [100] [100] -- 

Hoey et al., 2004 Urine 7 4-6 mo [100] [100] [100] 

Cao et al., 2009 Urine 128 0-12 mo 11.8 x/÷ 5.7 [9] 8.2 x/÷ 5.0 [22] 2.4 x/÷ 2.1 [78] 

Saliva 120 0-12 mo 0.7 x/÷ 1.3 [95] 0.4 x/÷ 1.4 [93] [100] 

Whole 

Blood 

30 0-12 mo 14.2 x/÷ 1.5 [90] 5.5 x/÷ 1.5 [97] [100] 

Breast Milk Fed       

Cruz et al., 1994 Urine 12 4 mo [~100] [~100] [~100] 

Setchell et al., 1997 Plasma 7 4 mo 2.8 ± 0.7 [0] 1.5  ± 0.1 [0] ~0.5 [85.7] 

Franke et al., 

2006 

Urine 7 2-45 w  29.8 ±11.6 nmol/mg creatine 

Urine
b
 7 2-45 w  

b
111.6 ± 18.9 nmol/mg creatine 

Plasma
b
 11 2-45 w 

b,c
19.7 ±13.2 nmol/L 

Cao et al., 2009 Urine 128 0-12 mo  1.5 x/÷ 4.8 [51] 1.5 x/÷ 2.9 [70] 1.7 x/÷ 1.2 [98] 

Saliva 120 0-12 mo 0.7 x/÷ 1.3 [98] 0.4 x/÷ 1.5 [93] [100] 

Whole 

Blood 

20 0-12 mo 10.8 x/÷ 2.7 [95] 5.3 x/÷ 1.2 [95] [100] 

*Concentration units are reported in ng/ml unless otherwise specified, and represent either mean ± standard 

deviation or geometric mean x/÷ geometric standard deviation. LOD = limit of detection.  
a
 units = ug/mg creatine.  

b
 following 2-4 day maternal soy challenge, consisting of one serving of soy beverage per day 

a 
approximately equivalent to 5.2 +/- 3.5 ng/ml, using conversion unit 3.8 x 10

-3 
mol/g (Cao et al., 2009) 



 
 

 

 

 

III. SPECIFIC AIMS AND HYPOTHESES 

 Aim1: To assess the effects of soy product exposure on early life, sexually dimorphic 

cognitive and behavioral function.  

 Sub Aim 1.1. To assess the effect of early life soy product use on language 

acquisition within strata of gender 

 Sub Aim 1.2. To assess the effect of early life soy product use on gender-role 

behavior within strata of gender 

Hypothesis 

The hypothesis is that soy fed males will demonstrate more feminized behaviors, 

characterized by both a more rapid acquisition of vocabulary, and increased tendency toward 

feminine play behavior.  Given that a rise in testosterone occurs in the postnatal male, it is 

possible that isoflavone effects on elements of the HPG axis could disrupt this normal trend, 

resulting in a suppression of the testosterone rise. Such effects on postnatal programming 

could result in more feminized behaviors in males.  It is more difficult to predict how 

postnatal isoflavone exposure might affect a female‟s capacity to fully undergo early life 

sexual differentiation. However, de-feminizing effects of genistein seen in postnatally 

exposed animal models, such as changes in SDN-POA volume and lordic posturing, suggest 

that masculinzing effects are possible.  

 

Aim 2: To assess the effect of early life soy product use on time to menarche in adolescent 

females.  
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Hypothesis 

In accordance with a substantial animal literature on genistein, other phytoestrogens, and 

other exogenous estrogens, it is hypothesized that SBF exposure will advance the age at 

menarche in this population. 



 
 

 

 

 

IV.   METHODS 

The aims of this study will be investigated using data from the Avon Longitudinal Study 

of Parents and Children (ALSPAC).  This study is a large, population based study of children 

followed from pregnancy to adolescence.  ALSPAC‟s longitudinal study design and 

substantial sample size offer a unique and efficient opportunity for addressing the research 

questions of interest here.    

a. Overview of The Avon Longitudinal Study of Parents and Children (ALSPAC) 

 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is an ongoing 

longitudinal study of parents and children born in the Avon region of the United Kingdom 

(UK) between April 1991 and December 1992.  Over 14,000 pregnancies were recruited into 

the study, representing approximately 85% of all eligible pregnancies in the region.  Live 

births were followed throughout childhood.  Several thousand subjects and their families are 

still being studies in their late teenage years.  Ongoing study activities, as well as 

management of existing data, are overseen by staff at the University of Bristol, Bristol, UK.  

The study area, formerly known as the county of Avon, is the region in western England 

currently known as Greater Bristol. Recruitment of ALSPAC participants took place within 

this defined geographic region, exclusive of the area of Bath.  Avon has a total population of 

approximately 1 million, and is comprised of the city of Bristol (population 0.5 million) and 

surrounding communities, including both rural areas and mid-sized villages and towns {{}} 

(1, 2).  Prior to initiating the ALSPAC study, births in this area were evaluated in comparison 

to other areas of Great Britain.  Children in Avon were shown to be similar to children in 
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other areas of the country with respect various demographic and descriptive factors, 

including the proportion of children living with a single parent at age 5 (4%), being non-

European non-Caucasian (5.1%), having a parent with a University degree (14.0%), living in 

an apartment (10.2%), living in a rural area (15%), and having a smoking parent (36.7% for 

mothers, 49.7% for fathers).  There was no difference in prevalence of preterm birth, low 

birth weight, mental, physical or behavioral problems, or respiratory or allergic disease. 

Children in Avon were less likely to live in a rented home (26.7%), or to have a father in a 

manual occupation (51.6%)(1). Generally, though, this region was considered to be well 

representative of other areas of the country, and thus suitable for a population based study of 

child development.  

Population Eligibility and Recruitment: Efforts to enroll eligible subjects began in 

September 1990. Eligible subjects included women who were pregnant, residing in Avon, 

and expecting to deliver between April 1, 1991 and December 31, 1992.  Women who 

enrolled, but moved out of the area in early pregnancy, were not included in the study.  

Women that moved following completion of a third trimester questionnaire, however, were 

eligible for continued enrollment, regardless of their place of residence at the time of 

delivery. 

Recruitment followed a combination of clinic and population based methods.  Posters 

advertising the “Children of the Nineties” (ALSPAC) study were displayed in pharmacies, 

libraries, preschool play groups, mother-toddler play areas, physician waiting rooms, prenatal 

clinics, and other areas pregnant women may be likely to visit.  Local and national news 

media also frequently discussed the study, and provided information for enrollment. In clinic 

settings, community midwives were encouraged to discuss the study during first visits with 
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newly expectant mothers.  ALSPAC staff also approached eligible women during routine 

ultrasound visits, and hospitals distributed information about the study to women along with 

the mother‟s „booking information.‟  Women were also approached by ALSPAC staff at 

delivery (1).   

14,893 pregnancies were recruited into the study, representing approximately 85% of 

eligible pregnancies in Avon at the time of recruitment (ALSPAC documentation, Feb. 

1996). Of these, 13,995 pregnancies were followed into the postnatal period, along with 

14,138 children who survived the first 12 months.   13,978 twin or singleton children are 

included in data available for analysis.  Only term singletons will be included in this analysis 

(n = 12,931).  

Protocols and Response Rates: Data was collected from early pregnancy onward through 

a variety of methods, including self-completed questionnaires for mothers, their partners, and 

children; medical and educational record examination; biological specimen collection; and 

clinic visits and household environmental assessments for sub-sets of the study population.  

Since the present study will be using data collected from the self-completed questionnaires 

and medical records, the following discussion will be limited to those instruments. 

Questionnaires of interest are documented in Table 4.1, along with corresponding response 

rates.  

Pregnancy Questionnaires 

A series of four questionnaires were administered during pregnancy. They were 

completed at various time points depending on the stage of pregnancy at enrollment.  Two of 

these questionnaires, “Having a Baby” and “Your Pregnancy,” were intended to be 

completed at 18 and 32 weeks‟ gestation, respectively.  They aimed to capture attitudes, 
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perceptions and environments at specific points in pregnancy.  However, women enrolled 

later in pregnancy were allowed to complete these questionnaires as late as 23 weeks‟ and 40 

weeks‟, as needed. A questionnaire specifically interested in early pregnancy exposures, 

“Your Environment,” was only administered to women who enrolled prior to 23 weeks‟ 

gestation. A separate questionnaire, “Your Home and Lifestyle,” was given in lieu of “Your 

Environment” and “Having a Baby” to women who enrolled past 23 weeks‟.  The “Your 

Home and Lifestyle” questionnaire was designed to capture early life environment and 

lifestyle characteristics that could still be validly reported later in pregnancy. For subjects 

that could not complete the 32 week “Your Pregnancy” Questionnaire, several questions 

regarding race, education, and other descriptive variables were presented again in a follow up 

questionnaire at 12 months postpartum, “Filling the Gaps.” Finally, “About Yourself” was 

administered without respect to time in pregnancy to all women.  Since this involved 

questions about past medical, social, and environmental history, it was not sensitive to time 

of enrollment. It was thus administered throughout a wide range of gestational ages, and in 

some cases, it was administered after delivery (1).  

Following a questionnaire mailing, if a response from the mother was not received within 

7 days, a reminder letter was sent.  A second reminder was mailed if a response was not 

received within 10 days of the first reminder.  If no response was received 1 month after the 

second mailed reminder, study staff would either call or visit the mother to encourage her to 

complete the questionnaire(s), and provide assistance if necessary.  

Delivery Outcomes 

The study obtained information about live births and deaths using government mandated 

birth notifications made available to health authorities.  Notifications of live births included 
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date of delivery, birth weight, sex of child, and singleton versus multiple birth status. This 

notification also alerted study staff to the time at which they should send the first post-natal 

questionnaire. For births occurring outside the Avon area, a questionnaire was mailed to 

mothers approximately 8 weeks after the expected date of delivery.  Information regarding 

birth weight and other delivery related items were reported from the mother at this time 

(ALSAC documentation).  

Child-Based (Postnatal) Questionnaires 

Beginning at 4 weeks postpartum, a series of “child based questionnaires” were sent to 

the home of the child and could be completed by the child‟s mother, father, or other carer.  If 

a pregnancy resulted in multiple births, a separate questionnaire was mailed for each child 

born. A total of 22 child based questionnaires were mailed out between the ages of 4 weeks 

and 166 months (13.8 years).  The present study is mostly interested in the child-based 

questionnaires up to age 42 months, where topics including child health, feeding/eating, 

sleeping habits, temperament and behavior, growth, milestones of physical and cognitive 

development, child care, and household characteristics are assessed.   The mailing schedule 

for these questionnaires is shown in Table 4.1.  It is important to note that questionnaires 

were made available to participants at the “scheduled” time.  However, completed 

questionnaires were frequently returned several weeks or months later, so the actual age of 

competition for each questionnaire may vary substantially.  

Puberty Questionnaires 

Questionnaires intended to assess physical markers of pubertal development, entitled 

“Growing and Changing” were first mailed when the child reached age 97 months (8.1 

years).  Five “Growing and Changing” questionnaires followed, through age 175 months 
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(14.6 years) (Table 4.1). Other maternal, partner and child-completed questionnaires were 

also sent to the household at these times. The “Growing and Changing” questionnaires 

collected self-rated data on physical stages of puberty, as well as specific dates for pubertal 

milestones, such as age at menarche.  Separate questionnaires were designed for males and 

females. Between 97 months (8.1 years) and 157 months (13.1 years), these questionnaires 

were mailed directly to the “carer,” and could be completed by the parent alone, the child 

alone, or the parent and child together.  The 175 month (14.6 years) questionnaire was the 

first puberty questionnaire sent directly to the teenager. Perhaps as a result, it has a slightly 

lower response rate than the previous questionnaires. The lower response rate may also have 

resulted from girls achieving and reporting relevant puberty milestones on questionnaires 

prior to 175 months.  To better characterize these response rates, patterns of response and 

non-response will be evaluated prior to analysis, particularly with respect to each subject‟s 

demographic and developmental characteristics. While most respondents completed the 175 

month questionnaire themselves, about 10% reported seeking help from a parent or other 

individual.  

Partner Questionnaires 

Select partner information was obtained for the present study in order to gather 

information regarding paternal demographic, health, and parenting-style information.  

b. Methods: Aim 1 

Aim1: To assess the effects of SBF exposure on early life, sexually dimorphic cognitive 

and behavioral function.  

 Sub Aim 1.1. To assess the effect of SBF on language acquisition within strata of 

gender 
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 Sub Aim 1.2. To assess the effect of SBF on gender-role behavior within strata of 

gender 

i. Hypothesis 

The hypothesis is that SBF fed males will demonstrate more feminized behaviors, 

characterized by both a more rapid acquisition of vocabulary, and increased tendency toward 

feminine play behavior.  Given that a rise in testosterone occurs in the postnatal male, it is 

possible that isoflavone effects on elements of the HPG axis could disrupt this normal trend, 

resulting in a suppression of the testosterone rise. Such effects on postnatal programming 

could result in more feminized behaviors in males.  It is more difficult to predict how 

postnatal isoflavone exposure might affect a female‟s capacity to fully undergo early life 

sexual differentiation. However, de-feminizing effects of genistein seen in postnatally 

exposed animal models, such as changes in SDN-POA volume and lordic posturing, suggest 

that masculinzing effects are possible.  

ii. Study Sample 

The study sample included subjects of the ALSPAC study, described above, who were  

1) term infants (gestational age ≥ 37 weeks), 

2) singleton births,  

3) alive at 1 year 

4)  had sufficiently complete infant feeding data provided at 6 or 15 months of age, and 

5) who completed both a 15 and 24 month vocabulary production assessment 

(MacArthur Communicative Development Inventory) within a designated time frame 

(Sub-Aim 1), or who completed a 42 month gender-role evaluation (Preschool 

Activity Inventory) (Sub-Aim 2). 
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The study population was limited to term singletons alive at 1 year.  Preterm infants 

(gestational age < 37 weeks) are likely to have both health problems, and some 

developmental delays, which may influence both SBF use and language acquisition.  

Likewise, language development and play behavior are likely to be heavily influenced by the 

presence of a twin sibling.  Therefore, excluding preterm and twin births will reduce 

confounding related to these factors.   Of the 14,663 births on which data is available, 390 

births were excluded on the basis of a preterm or unknown gestational age.  This preterm 

birth exclusion also included 188 twin births.  An additional 202 term twin births were also 

excluded.  Finally, an additional 49 subjects were excluded that were not alive at 1 year, for a 

total eligible sample size of 12,931. 

Subjects were excluded if the data collected on infant feeding methods was not sufficient 

to characterize infant feeding habits, as described in the Exposure Assessment and Definition 

section below.  4,502 subjects were excluded based on this criterion.  

Additional exclusions were made for Sub-Aim 1.1.  Subjects that completed the outcome 

assessment more than 4 months after the intended assessment date (i.e., after 19 months for 

the 15 month language assessment, or after 28 months for the 24 month assessment) were 

excluded (n= 43 at 15 months; n = 54 at 24 months). These restrictions were intended to 

maximize the validity of outcome assessment, since the instrument used for language 

assessment was designed for children of specific ages.  Also, any child with diagnosed 

complete or partial deafness (n= 27 in eligible population) or later diagnosis of autism (n = 

71 in eligible population) was excluded.  These characteristics may be related to early life 

illness (and thus, soy formula use) and also affect language development skills. 
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Subjects that reported initiating soy formula exposure after 15 months of age were not 

included in this analysis.  This exclusion was required to maintain a proper temporal 

relationship between the exposure and outcome for Sub-Aim 1.1, since the first language 

assessment was conducted at 15 months of age. Also, by excluding this population from both 

the exposed and unexposed classifications, the overall exposure contrast is sharpened to 

emphasize soy exposures in the first year of life, which are of most interest in this study.  

Exposures occurring after 15 months of age are probably minimal in comparison to those 

occurring earlier in infancy. This exclusion applies to 210 subjects out of the 12, 931 

otherwise eligible subjects.   

iii. Exposure, Outcome and Covariate Assessment 

Exposure Assessment and Definition:  Mothers completed infant feeding questionnaires 

at 1, 6, 15 and 24 months postpartum.  At 1 month, mothers reported all feeding methods 

used since birth (breast or bottle), and the type of formula used, if any.  At 6, 15, and 24 

months, mothers reported current breastfeeding habits, the age at which other milks or 

formulas were introduced into the child‟s diet (including formula/baby milk,  soy milk, soy 

formula, goat‟s milk, hypo-allergenic formula, and cow‟s milk), and how many feedings per 

week were given for each of these products at the time of questionnaire completion.   

Relevant questions regarding formula and milk feeding are shown here,  

At 6 months, 

Item C1.A. Ordinary Baby Milk 

Has your baby ever had ordinary baby milk (formula)? [yes/no] 

 At what age did your baby start ordinary baby milk (formula)? [age in months] 

How often nowadays is your baby fed ordinary baby milk (formula)? [times/week at 

time of  questionnaire completion]. 

   

Item C1.C. Soya Milk 
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Has your baby ever had soya milk? [yes/no] 

 At what age did your baby start soya milk? [age in months] 

How often nowadays is your baby fed soya milk? [times/week at time of questionnaire 

completion]. 

 

Additional feeding options, including follow-on milk (a diet supplement, typically used 

after 6 months), goat‟s milk, hypoallergenic formula, and ordinary cow‟s milk are also 

assessed in this manner.   

At 15 months, 

 Item D6.A. Baby Milk (formula) 

Since your child was 6 months old, has he/she had baby milk (formula)? [yes/no] 

 At what age did your child start baby milk (formula)? [age in months] 

How often nowadays is your child fed baby milk (formula)? [times/week at time of 

questionnaire completion] 

   

Item D6.C. Soya Formula 

 Since your child was 6 months old, has he/she had soya formula? [yes/no] 

 At what age did your child start soya formula? [age in months] 

How often nowadays is your child fed soya formula? [times/week at time of 

questionnaire completion] 

 

Item D6.F Soya Milk 

Since your child was 6 months old, has he/she had soya milk? [yes/no] 

 At what age did your child start soya milk? [age in months]  

How often nowadays is your child fed soya milk? [times/week at time of questionnaire 

completion] 

 

Using this data, along with the reported age that breast feeding ended, subjects were 

categorized into four mutually exclusive feeding groups: primarily breastfed, early formula, 

early soy, and late soy (Figure 4.1).  Exposure classification was primarily defined by 

responses to the questionnaire administered at 6 months postpartum; if these data were 

missing or incomplete, responses from the 15-month questionnaire were used according to 

the following criteria. The same exposure definition was used for Sub Aim 1.1 and Sub Aim 

1.2.   
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  “Early” exposure to any type of formula or milk (soy or traditional) was defined as the 

use of a specific formula or milk type occurring ≤ 4 months of age (“At what age did you 

start [formula/milk type]?”) through ≥ 6 months of age. Use at 6 months was indicated by 

any non-zero response to the question, “How often nowadays is your baby fed [formula/milk 

type]?” in the 6 month questionnaire. If the 15 month questionnaire was used instead, “early” 

exposure to formula was established for any subject that reported introducing the formula or 

milk ≤ 4 months of age and responded affirmatively to the question “Since your child was 6 

months old, has he/she had [formula/milk type]?”  This definition not only establishes early 

use of formula, but also a 1 month minimum duration of use.    

To note, there is some ambiguity between the terminology of “soya milk” and “soya 

formula” in these questionnaires.  In the 6 month questionnaire, respondents may construe 

Item C1.C as a question regarding either soy-based infant formula, or soy milk. Therefore, 

exposure definition used in this study will include early life exposure to both soy formula and 

soy milk.  As described in Section II., both types of soy product contain high levels of 

isoflavones. Exposure to either product, individually or in combination, should result in a 

large dose of isoflavone compounds.  Applying the term birth and singleton birth inclusion 

criteria, and the age at completion criteria, 796 infants are identified as having any soy 

exposure prior to 15-19 months of age using the questions listed above. 

Overall, the exposure groups were classified as follows: Primarily breastfed infants were 

those breast fed until ≥ 6 months of age, with no reported soy use between birth and 24 

months and no reported introduction of other milks or formulas before 6 months of age.  

Early formula fed infants were those introduced to any non-soy milk or formula product at or 

before 4 months of age, who use such products at 6 months of age [How often nowadays [6-
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10months] is your child fed [non-soy milk/formula]?” > 0 times/week, or, Since your child 

was 6 months old, has he/she had [non-soy mllk/formula]?” YES], and reported no soy use 

before 24 months.  Early soy fed infants were those introduced to soy milk or soy formula at 

or before 4 months of age, and reported sustained use at 6 months of age (Figure 4.2).  Late 

soy fed infants were those introduced to soy milk or soy formula any time after 4 months of 

age through 15 months of age.  No restrictions were made in the early formula, early soy, and 

late soy groups with respect to duration of breast feeding; likewise, there were no restrictions 

in the early soy or late soy groups with respect to use of non-soy milk or formula.    

This study is population-based, and therefore reflects a very “real world” scenario in 

which infant feeding practices change over time, and often include mixing or 

supplementation between formula and breast feeding.  “Exposed” infants may be exposed to 

some combination of breast milk, CMF, SBF and soy milk.  “Unexposed” infants may be 

exposed to some combination of breast milk and CMF.  To address this, in part, breast 

feeding will be included as an a priori confounder in analysis.   The age of soy product 

introduction is also provided in Appendix I, Table A.1 to provide information on the 

variability of exposure within this group.  

Outcome Assessment: 

Language Acquisition: ALSPAC administered modified versions of the MacArthur 

Communicative Development Inventory (MCDI) at 15, 24 and 38 months. The MCDI is a 

widely used instrument in clinical and research settings, intended to assess the growth and 

variability of communicative skills in early life (3).  Separate MCDI instruments have been 

developed for infants (age 8 – 16 months), and toddlers (age 16-30 months).  Only the 15 and 
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24 month assessments were used here; the instrument was not age-appropriate for children as 

old as 38 months.  

In the MCDI, parents indicate which words their child can understand (comprehension) 

or say (production), according to a list of provided vocabulary words. In the modified version 

administered here, a list of 124 words was assessed at 15 months, and 135 slightly more 

complex words were assessed at 24 months.  The ALSPAC modified version of the 15 month 

CDI has been used to gauge cognitive development in studies of prenatal nutrition and 

environmental factors by Daniels et al., 2004 and Daniels et al., 2007(4, 5).  Subjects who 

completed this questionnaire between 15 and 19 months of age were included in analysis. 

The 24 month assessment closely resembles the toddler MCDI (3), except in an abbreviated 

format.  This modified version assesses the distinction between “words understood” and 

“words produced,” whereas the original MCDI only assesses word production.  Subjects who 

completed this questionnaire between 24 and 28 months of age will be included in analysis.  

Scores for word comprehension and word production were calculated as the sum of 

understood or spoken words reported by the parents at 15 months for the 15 month scores, 

and as the sum of the 15 month word score plus the new words spoken at 24 months for the 

24 months scores.  Twenty-eight words were included on both the 15 and 24 month 

assessment, but were only counted in scores on the first occasion that they were reported.  

 Preschool Activities Inventory (PSAI): Childhood play activities are easily observed 

behavioral characteristics that tend to show clear, gender specific distinctions, even at early 

ages.  Therefore, play behavior is an ideal outcome to use in the assessment of gender roles 

in children.  In this study, gender role behavior was used as a marker to assess effects of early 
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life soy isoflavone exposure on sexually dimorphic behavioral development.  The Preschool 

Activities Inventory (PSAI) was the instrument used to measure this effect.  

The PSAI is an assessment of play behavior among preschool aged children, based on 

maternal report of child involvement in various sex-typical play behaviors (6).  It is 

composed of three sections: toy preference, activities, and characteristics. In each section, 

mothers (or caregivers) are instructed to report on how often her child has played with a 

particular type of toy (7 items), engaged in a particular activity (11 items), and displayed a 

particular characteristic (6 items), for the past month.  Half of these items are “masculine” 

activities or behaviors, and half are “feminine.” Possible responses include “never,” “hardly 

ever,” “sometimes,” “often,” and “very often.” Each response is scored on a 5-point scale.  

The total instrument is scored by summing responses to all masculine items, and subtracting 

the sum of all feminine items, and applying a transformation (48.25 + (1.1*[Score]), to 

achieve a “pseudo-T score.” Higher scores indicate masculine-typical behavior, and lower 

scores indicate feminine-typical behavior (6, 7).  

This test is a desirable measure of gender role behavior for several reasons. First, the 

PSAI was developed with the intention for use in research of gender-role behavior, such as 

studies of the influence of family structure or of gender stereotypes on gender development 

(7). Therefore, it should be adequately designed for the current research purposes.  

Additionally, it is specifically designed to assess gender role behavior in children under age 

5, which includes the target population for the current study. Finally, in addition to being able 

to discriminate between play behaviors of males and females, it is also designed to 

characterize differences in play behavior among children of the same gender, which is of 

primary interest for the current study.  



69 
 

The instrument has been standardized on over 2,000 children in the UK, US, and 

Netherlands (6).  The population mean score based on these three populations is 51.10.  The 

mean score for boys is 61.66 (SD = 9.4), and the mean score for girls is 38.72 (SD = 9.66), 

indicating that that this instrument can efficiently detect a pronounced difference between 

gender populations. Sex-specific age standardizations can be applied to scores, and used 

when within gender comparisons are of interest.  

Certain psychometric properties of this instrument are documented by its authors (7), but 

are somewhat uninformative due to use of small samples for several of the reliability and 

validity measures. Based on test-retest and split-half reliability assessments, the PSAI does 

appear to have moderate reliability. Gender-specific test-retest reliability after 1 year is 

reported as 0.62 for boys and 0.66 for girls (based on 15 boys and 18 girls), although this 

value has been criticized for the “re-test” occurring too long after the original test (8).   The 

gender-specific split-half reliability is 0.66 for boys (n = 1260) and 0.80 for girls (n = 1070).  

PSAI has also been shown to have moderate agreement with teacher ratings of gender 

behavior, although neither the PSAI nor teacher ratings can be considered a “gold standard.”  

In a population of 45 boys and 57 girls who attended day care (mean age 45.7 months), 

maternally completed PSAI scores, compared to teacher rankings of a child‟s “boyish” or 

“girlish” behavior, had correlations of 0.48 (p <0.0002) for girls and 0.37 (p<0.01) for boys.   

The PSAI has been used in several other research studies of gender-role behavior.  

Increased levels of maternal testosterone during pregnancy, for example, were positively 

associated with more masculine behavior in 3.5 year old females in the ALSPAC study 

population (9).  Other studies using the PSAI have examined effects of perinatal PCB and 

dioxin exposure (10), prenatal stress (11) and influences of older siblings (12).  
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In the ALPSAC study, the PSAI was included in the 30 month, 42 month, and 57 month 

child-based questionnaires.  This study was limited to analysis of the 42 month assessment 

only, since the age of this population most closely resembles the standardization populations‟ 

(mean ages 35.8 -51.4 months). A recent study of the PSAI in the ALSPAC population also 

suggests that gender-role behavior remains relatively stable over time (13), so there was little 

need to utilize repeated measures to assess this outcome.   

A PSAI score was calculated using a scoring algorithm that accounts for each subject‟s 

responses to masculine and feminine items, such that the lower scores represent more 

feminine behavior and higher scores represent more masculine behavior.  Males and females 

were analyzed separately to look for within gender variations attributable to exposure to SBF.  

Covariate Assessment:  

A preliminary assessment was performed to determine how certain covariates differed 

across feeding groups, with particular attention paid to predictors of soy product use.  Key 

variables of interest included various measures of infant health, demographic characteristics, 

and other characteristics that were associated with the outcomes of interest in relevant 

literature (Appendix Table A.2).  This assessment informed, in part, which covariates were 

included as potential confounders.  Information was collected on key covariates through 

several questionnaires administered during pregnancy and early childhood. Relevant 

variables are listed below.  

- Infant Health: Various measures of infant health were acquired during the 6 month 

questionnaire, including several that might be indications for soy formula or soy milk 

use. Parental report of “ever/never” for each of the following infant health outcomes 

was assessed as a dichotomous variable: diarrhea, vomiting, cough, earache, ear 

discharge, colic, and rash.  
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- Cow’s Milk Allergy:  Child food allergies were assessed in multiple questionnaires. 

The presence of early allergy to milk was documented in the 6 month questionnaire,  

 

- Crying/Fussiness: Excessive crying or fussiness may be associated with colic, or 

colic-like symptoms, and thus may be related to soy product use. Excessive crying 

was assessed at 4 weeks and 6 months of age:  

 

At 4 weeks:  

ItemD4.a. Do you feel that your child's crying is a problem?[Yes/No] 

- Maternal Demographics: The following maternal characteristics were assessed at 

various time points in gestation and childhood.  

 

Maternal Age: Age of Mother at Birth [years] 

 

Race: At 32 weeks’ gestation:  

Item H8. How would you describe the race or ethnic group of yourself, your 

partner and your parents?[white; black/Caribbean; black/African; 

black/other (please describe below); Indian; Pakistani; Bangladesh; Chinese; 

any other ethnic group (please describe)] 

Education: At 32 weeks’ gestation:  

Mother’s Highest Educational Qualifications 

[CSE/None; Vocational; O-Level; A-Level; Degree] 

Marital Status: At 8 weeks postpartum: 

F2. a) What is your present marital status? 

[never married; widowed; divorced; separated; married (once); married for 

2nd or 3rd time] 

Race was dichotomized to white vs. other.  Child‟s race was further described in the 

ALSPAC data as being white if both parents reported being white, and non-white otherwise.  

  

- Infant Characteristics/Demographics 

Gender: from birth records and various questionnaires 

Birth weight: from birth records 
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Gestational Age: derived from medical records.  The variable associated with 

gestational age is entitled “Best Gestational Age We Could Get.” 

 

Additional Potential Confounders for Sub Aim 1.1: Language Acquisition Rate: In 

addition to the covariates described above, several additional covariates were assessed as 

potential confounders of the association between feeding group and language acquisition 

rate.  These additional covariates are described below.   

- Ear problems: Dairy intolerance may lead to a variety of health complications, 

including chronic ear infections.  Accordingly, ear infections may be an impetus to 

switch from breast or CMF to SBF.  Poor ear health may also lead to hearing 

difficulties that may induce a delay in language skills. Therefore, subjects that have 

partial or complete deafness were excluded.  Furthermore, models were adjusted for 

having a “suspected hearing problem,” as determined by parent report, at 6 months of 

age.  

 

- Breast feeding: Initiation and duration of breastfeeding can be identified using 1, 6 

and 15 month questionnaires. Duration of breastfeeding will be determined based on 

the reported age that breastfeeding stopped, using 1 and 6 month reports in preference 

of 15 month reports if a there is a discrepancy in reporting.  If breastfeeding was 

never initiated, a duration of 0 was be assigned.  Otherwise, a duration in months was 

assigned.  This was be treated as a continuous variable, which can be categorized if 

needed.  

 

- Maternal Parenting Score: Interaction with the child is likely to influence language 

acquisition rates. It may also be related to infant feeding if one supposes a more 

involved mother may be more willing to seek out infant feeding methods with 

perceived health benefit, such as soy. A maternal parenting score, assessed at 18 

months, was included as a confounder in language assessment models.   

 

- Preschool Attendance: Involvement in a preschool or nursery school environment 

may advance language acquisition.  Nursery school attendance may also impede 

one‟s capacity to breastfeed, or may increase a child‟s rate of infection, which may 

lead to increased use of either soy formula or traditional formula. Accordingly, 

regular use of a day nursery was reported at 15 months of age and was included as a 

potential confounder in this analysis.   

 

- Presence of older sibling: Older siblings may advance a child‟s rate of language 

acquisition, as well as influence a mothers feeding choice.  The presence of older 

brothers and sisters was assessed at 18 months 
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- Pre/Postnatal Smoking: Exposure to environmental tobacco smoke may influence 

child health, which may lead to soy product use, and may also affect infant neurologic 

development.  Exposure to tobacco smoke was defined as a dichotomous yes/no 

variable based on perinatal maternal tobacco use, determined via the question,   

 

At 8 weeks postnatal,   

B4. Did you smoke regularly in the last 2 months of pregnancy and since having the

  baby? 

 

- Maternal Vegan/Vegetarian Status: At 32 weeks‟ gestation, and 97 months 

postpartum:  

 

Are you, or have you ever been, a vegan (i.e. do/did not eat meat, poultry, fish, eggs, 

butter, milk or cheese)? [yes, I am now/ yes,  in past not now/ no, never] 

 

Are you, or have you ever been, a vegetarian? [yes, I am now/ yes,  in past not now/ 

no, never] 

 

Vegan/Vegetarian status during pregnancy, and historical reports of vegan/vegetarian 

status at 97 months postpartum were assessed to infer vegan/vegetarian status at the time of 

formula feeding.  This may inform the motivation for soy formula/soy milk use.  Status 

during pregnancy may also indicate higher exposure to isoflavones during the prenatal 

period, which is also likely to influence the outcomes of interest.  

Additional Potential Confounders for Sub-Aim 1.2: Gender Role Behavior: Several of the 

variables defined above were assessed as confounders with respect to Sub Aim 1.2.  These 

included breast feeding, preschool attendance, presence (and gender) of older siblings, 

maternal education, perinatal smoking, and race.  In addition, maternal and partner 

interaction scores at 42 months were assessed as a potential confounders (Appendix Table 

A.2).   

iv. Analysis 

Aim 1.1. Language Acquisition: All analyses were conducted separately for boys and 

girls, so as to highlight within gender differences in language development with respect to 
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exposure. The population-averaged effect of feeding method on word comprehension and 

word production over time was assessed using generalized estimating equations (GEE), with 

a compound symmetric covariance.   These models were used to determine the mean effect 

across exposure groups at 15 and 24 months, and how these means were related across the 

two time points (14).   The change in mean over time was quantified as the interaction 

between feeding group and age at assessment, expressed as continuous months.  The early 

formula group was used as the referent for all models. 

Simplified models were also run that compared the crude mean MCDI scores for word 

comprehension and word production at each time point separately.  Mean differences were 

compared using linear regression.   

GEE models were adjusted for variables associated with feeding method and with 

language development, as determined by assessment in the data or in relevant literature. Final 

adjusted models included breast feeding duration, maternal age, presence of an older sibling 

(yes/no), maternal parenting score at 18 months, daycare attendance at 15 months (yes/no), 

and suspected hearing problem at 6 months (yes/no), according to the Figure 4.3.   

Aim 1.2 Gender-role Behavior: Crude mean PSAI scores were assessed as simple means 

within exposure groups and within strata of each covariate.  Differences in means were 

assessed using univariable linear regression.  Adjusted mean difference in PSAI scores were 

estimated using multivariable linear regression.  Boys and girls were modeled separately to 

emphasize within gender differences.  Unless otherwise noted, the early formula feeding 

group was used at the referent for all feeding group comparisons.  

Confounders included variables thought to be associated with both cultural and 

environmental influences of gender role behavior, as well as feeding method.  Final models 
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were adjusted for age at PSAI assessment, breast feeding duration (months), presence of an 

older brother (yes/no), presence of an older sister (yes/no), regular attendance in daycare 

(yes/no), and maternal factors including age, prenatal smoking status (yes/no), education (5 

levels in the United Kingdom, ranked from high to low: University Degree, Advanced Level, 

Ordinary Level, Vocational, and Certification of Secondary Education (CSE)/None), and 

interaction score, as illustrated in Figure 4.4.  A partner interaction score was also included in 

models, given the supposed importance of male influence in the home on gender-role 

behavior, however it did not influence results.  Partner and maternal interaction scores were 

estimated at 42 months of age using a series of questions that assessed the frequency at which 

each parent participated in a list of 8 activities with the child (score range: 0-36).  Partner 

interaction scores were set to zero if the questionnaire reported that no partner was present.  

All partners were assumed to be male, given a very low prevalence of mothers in same-sex 

partnerships in this cohort (<1%) (22).  

Missing Data: Eligible subjects that were included in these analyses were compared to 

other eligible subjects in ALSPAC that were excluded on the basis of incomplete feeding 

information, outcome information, or other exclusion criteria.   

Given the large proportion of data missing in the PSAI analysis, models were analyzed 

using both complete case analysis (CCA) and multiple imputation (MI) approaches. For the 

CCA, subjects with missing data for adjustment variables were dropped from models, so only 

true values for subjects with complete data were modeled.  Multiple imputation was 

implemented to allow the entire study sample to be included in analyses.  Values for missing 

covariates were estimated using PROC MI.  Regression models using 5 iterations of imputed 
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data were run and summarized in PROC MIANALYZE.   All analyses were completed using 

SAS 9.1.3 (SAS Institute Inc., Cary, NC).   

v. Sample Size  and Power 

For Aim 1.1, the sample size is  

 Primarily Breast: 683 boys and 684 girls 

 Early Formula: 2487 boys and 2329 girls 

 Early Soy: 85 boys and 58 girls 

 Late Soy: 129 boys and 105 girls 

The power calculations presented here show power estimates for the detection of a 

significant difference in the mean number of words comprehended or produced at a single 

point in time, at the α = 0.05 level, for the comparison between early soy and early formula 

(Table 4.2).   A range of power estimates are given for a range of plausible standard 

deviations that may be observable in the ALSPAC data.  These reflect results from 2-tailed 

significance tests.   

For males, our sample size allows for the detection of a difference  of 11 – 15 words with 

a standard deviation ranging between 30 and 45.  For females, a 15 -20 word difference can 

be detected, given various standard deviations.  Comparisons between the early formula and 

other feeding groups should amply powered to detect more precise results given the 

increased sample sizes in both the late soy and primarily breast fed groups.  Furthermore, 

when GEE should also allow for a more efficient analysis than a simple, time-specific linear 

regression model, so these estimates are conservative with respect to the statistical power of 

the GEE model. 

For Aim 1.2, the sample size is 

 Primarily Breast: 707 boys and 706 girls 
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 Early Formula: 2699 boys and 2490 girls 

 Early Soy: 89 boys and 68 girls 

 Late Soy: 132 boys and 112 girls 

 

The power calculations presented here show power estimates for the detection of a 

significant difference in PSAI score, at the α = 0.05 level, for the comparison between early 

soy and early formula (Table 4.3).   A range of power estimates are given for a range of 

plausible standard deviations that may be observable in the ALSPAC data.  These reflect 

results from 2-tailed significance tests.   

In males, this analysis should have 80% power to detect a 3 point difference in PSAI 

score between these two exposure groups.  In females, a 3-4 point difference is detectible, 

depending on the standard deviation of mean estimates.  

c. Methods: Aim 2 

Aim 2: To assess the effect of early life soy product use on time to menarche in 

adolescent females.  

i.  Hypothesis 

In accordance with a substantial animal literature on genistein, other phytoestrogens, and 

other exogenous estrogens, it is hypothesized that SBF exposure will advance the age at 

menarche in this population.  

ii. Study Sample   

The study sample will include subjects of the ALSPAC study, described above, who were  

1) female, 

2) term infants (gestational age ≥ 37 weeks), 
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3) singleton births, 

4) white, 

5) had sufficiently complete infant feeding characterization, and 

6) who completed at least one “Growing and Changing” puberty questionnaire 

(administered between the ages of 8 and 14). 

 

iii. Exposure, Outcome and Covariate Assessment 

Exposure Assessment and Definition: The exposure definition used for Aims 1.1 and 1.2 

will also be applied here.   

Outcome Assessment: Between 1999 and 2007, a series of questionnaires regarding 

pubertal development, known as the Growing and Changing questionnaires, were 

administered at approximately 8, 9.5, 10.5, 11.5,13 and 14.5 years of age, as previously 

described by Rubin et al., 2009 (15).  Questionnaires were completed by a care-giving adult 

or the child of interest.  Between 8 and 13 years of age, questionnaires were mailed to parents 

or guardians.  At 14.5 years of age, the questionnaire was mailed directly to the child 

In each questionnaire, subjects were asked if the child had had her first period, and if so, 

what month and year her first period occurred.  This date was used in combination with the 

child‟s birth date to provide an age in months for menarche.   The earliest reported age was 

used as the age at menarche in the event that multiple questionnaires contained discordant 

responses for the same individual.  

ALSPAC also enrolled some subjects from the main study into a smaller clinic-based 

cohort study that also assessed age at menarche. For 146 (4.6%) subjects in the present 
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analysis, , missing questionnaire data on age at menarche was imputed from ALSPAC clinic 

data.  

107 subjects reported a menarche event, but did not report an age.  For 67 of these 

subjects, age at menarche was estimated as the midpoint between the age at which the 

questionnaire with the first positive menarche response was completed, and the age at which 

the previous year‟s questionnaire was completed. If more than one questionnaire was skipped 

between a negative and positive menarche response, and estimated age was not derived and 

this subject was not included in any analysis.   As an alternative, an imputed age at menarche 

was estimated for these 67 subjects as part of a larger multiple imputation model for missing 

data (described below).  Ages derived using the midpoint approach were included in the 

complete case analysis, while imputed values were used in multiple imputation models.  

Covariates:  Variables examined as potential confounders include child‟s birth weight, 

breast feeding duration, milk allergy at 6 months, vegetarian diet in childhood, and maternal 

perception of infant health, and maternal factors including age and education at delivery, 

prenatal vegetarian diet, age at menarche, pre-pregnancy body mass index (BMI), race, and 

pre- and postnatal smoking.  Covariates were included as potential confounders if they were 

associated with an infant feeding method, age at menarche, or censoring in these data or in 

relevant literature.   Duration of breast feeding was not included as confounder, despite 

having an equivocal association with age at menarche in previous literature (16, 17). Final 

models were adjusted for pre-pregnancy BMI, smoking in the last 2 months of pregnancy 

(yes/no), and maternal age at menarche.  Since this population is >90% white, analyses were 

restricted to the white children (defined as having two white parents) to control for any 

effects due to race.  Effect measure modification was examined in relation to childhood 
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weight status by stratifying above and below the 85
th

 percentile of BMI for age z-scores (18), 

using measurements taken at any time between 7 and 9.5 years.  Associations between 

feeding group and BMI Z-scores were assessed using linear regression (Appendix Table 

A.3).  The distribution of characteristics among the lost to follow up subjects, including 

stratum specific median time to menarche values, is shown in Table A.4.  

iv.  Analysis  

 All analyses were completed using SAS 9.1.3 (SAS Institute Inc., Cary, NC).  Hazard 

ratios (HR) for time to menarche were estimated using Cox proportional hazards modeling.  

Relative precision of estimated HRs were compared using confidence limit ratios, calculated 

as the upper 95% confidence limit divided by the lower 95% confidence limit.  The early 

formula group was used as the referent group in all models, unless otherwise specified.  

Proportional hazards assumptions (PHA) were assessed using log-log survival density 

function plots and Cox chi-squared significance tests for time interaction variables (α = 0.05), 

which revealed varying degrees of hazard non-proportionality over time (convergence). This 

PHA violation can be expected given that, over time, menarche “failure” will inevitably 

approach 100%, as previously noted by Warner et al.(19).  Therefore, models were carried 

out  using categorical (< / ≥ 150 months (12.5 years)) and  continuous-time interactions 

(exposure*time, pre-pregnancy BMI*time, prenatal smoking*time, and maternal age at 

menarche*time), to characterize changes in hazards over time.  Hazard ratios were estimated 

at 10,11,12,13 and 14 years for continuous-time Cox models. Cox models were analyzed 

using both complete case analysis and multiple imputation (MI). For the complete case 

analysis, only subjects with complete data on necessary covariates were modeled, which 

resulted in a loss of 18% of subjects.  Multiple imputation of missing outcome (n = 67), 
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adjustment variables and other covariates (BMI) was performed using PROC MI (5 

imputations), and simulated results were combined using PROC MIANALYZE.  As 

described previously, final models were adjusted for pre-pregnancy BMI, smoking in the last 

2 months of pregnancy (yes/no), and maternal age at menarche (Figure 4.5). 

Follow up time was defined for each subject based on the age in months at which she 

reported a menarche event (events), or the age of the last completed questionnaire in which 

she reported not having reached menarche (censored). Censored subjects were distinguished 

as either lost to follow up, or administratively censored. Lost to follow up refers to subjects 

that dropped out before the end of the study period (14.5 years of age) before reporting an 

event. Administratively censored refers to subjects that completed the study period, but never 

reported a menarche event.   Crude median time-to-menarche  and  inter-quartile range (IQR: 

25
th

-75
th

 Percentile) estimates were obtained using lifetable analysis (PROC LIFETEST).   

We obtained counfounding-adjusted median age at menarche by exposure group by 

calculating inverse probability of exposure weights (20) using polytomous logistic 

regression, and then performing a weighted lifetable analysis. Crude and adjusted time-to-

menarche Kaplan Meier curves were obtained similarly (21).  

Sensitivity analyses were performed to assess whether results were affected by 

informative random censoring (23).  In the first analysis, we assumed that all lost to follow up 

subjects were at low risk for reaching menarche in the study period, and their follow-up times 

were reassigned to resemble the administratively censored (follow-up time: 175 months) 

(“low risk”).  In the second analysis, we assumed that randomly censored subjects were at 

high risk for reaching menarche in the study period, and all lost to follow up follow-up times 

were modeled as events occurring at the time of drop out (“high risk”).  A third sensitivity 
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analysis was preformed to address early censoring times in the early soy group.  Here, we 

manipulated the distribution of censor times in the early soy group to mimic the censor time 

distribution seen in other exposure groups (median: ~140 months) (“redistributed”).   

Categorical-time Cox models were repeated for each of the three hypothetical scenarios to 

evaluate how these assumptions affected estimates.  

Effect measure modification was examined in relation to childhood weight status by 

stratifying above and below the 85
th

 percentile of BMI, using measurements taken at any 

time between 7 and 9.5 years.  BMI stratified results are presented as time-averaged HRs, 

since PHA violations were minimal in the stratified samples, and sample size limitations 

prevented further stratification by time. 

v. Sample Size and Power 

The sample size for Aim 2 is shown below.  

 Primarily Breast: 620 

 Early Formula: 2124 

 Early Soy: 54 

 Late Soy: 86 

 

The power for a “time to event” analysis comparing early soy to early formula was 

calculated using a simulation in nQuery software.  Estimates were based on 100% survival 

prior to age 10, and 22 and 35% survival rates at the end of study at age 14.  The sample size 

identified above is adequate for detecting these estimates with 81% power at the α = 0.05 

significance level. It should be strongly noted that survival rates and dropout rates are 

estimates and approximations, not actual values based on the data. It is therefore possible that 

power may decrease when actual survival rates and dropout rates are taken into account.  The 
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estimates used for the simulation are shown in Table 4.4 and the results are shown in Table 

4.5.    

  



84 
 

REFERENCES 

1. Golding J, Pembrey M, Jones R, ALSPAC Study Team. ALSPAC--the avon longitudinal 

study of parents and children. I. study methodology. Paediatr Perinat Epidemiol. 2001 

Jan;15(1):74-87.  

2. Golding J, ALSPAC Study Team. The avon longitudinal study of parents and children 

(ALSPAC)--study design and collaborative opportunities. Eur J Endocrinol. 2004 Nov;151 

Suppl 3:U119-23.  

3. Fenson L, Dale PS, Reznick JS, Bates E, Thal DJ, Pethick SJ. Variability in early 

communicative development. Monographs of the Society for Research in Child 

Development. 1994;59(5, Serial No. 242):i-185.  

4. Daniels JL, Longnecker MP, Rowland AS, Golding J, ALSPAC Study Team. University 

of Bristol Institute of Child Health. Fish intake during pregnancy and early cognitive 

development of offspring. Epidemiology. 2004 Jul;15(4):394-402.  

5. Daniels JL, Rowland AS, Longnecker MP, Crawford P, Golding J, ALSPAC Study Team. 

Maternal dental history, child's birth outcome and early cognitive development. Paediatr 

Perinat Epidemiol. 2007 Sep;21(5):448-57.  

6. Golombok S, Rust J. The measurement of gender role behaviour in pre-school children: A 

research note. J Child Psychol Psychiatry. 1993 Jul;34(5):805-11.  

7. Golombok S, Rust J. The pre-school activities inventory: A standardized assessment of 

gender role in children. Psychological Assessment. 1993;5(2):131-6.  

8. Kaufman AS. Critique of vreugdenhil et al.'s study linking PCBs to the play behaviors of 

dutch girls and boys. Environ Health Perspect. 2003 Jun;111(7):A380; author reply A380-1.  

9. Hines M, Golombok S, Rust J, Johnston KJ, Golding J, Avon Longitudinal Study of 

Parents and Children Study Team. Testosterone during pregnancy and gender role behavior 

of preschool children: A longitudinal, population study. Child Dev. 2002 Nov-

Dec;73(6):1678-87.  

10. Vreugdenhil HJ, Slijper FM, Mulder PG, Weisglas-Kuperus N. Effects of perinatal 

exposure to PCBs and dioxins on play behavior in dutch children at school age. Environ 

Health Perspect. 2002 Oct;110(10):A593-8.  

11. Hines M, Johnston KJ, Golombok S, Rust J, Stevens M, Golding J, et al. Prenatal stress 

and gender role behavior in girls and boys: A longitudinal, population study. Horm Behav. 

2002 Sep;42(2):126-34.  



85 
 

12. Rust J, Golombok S, Hines M, Johnston K, Golding J, ALSPAC Study Team. The role of 

brothers and sisters in the gender development of preschool children. J Exp Child Psychol. 

2000 Dec;77(4):292-303.  

13. Golombok S, Rust J, Zervoulis K, Croudace T, Golding J, Hines M. Developmental 

trajectories of sex-typed behavior in boys and girls: A longitudinal general population study 

of children aged 2.5-8 years. Child Dev. 2008 Sep-Oct;79(5):1583-93.  

14. Applied longitudinal data analysis: Lecture notes ST 732 [homepage on the Internet]. 

Raleigh: North Carolina State University. 2005. Available from: 

http://www.stat.ncsu.edu.libproxy.lib.unc.edu/people/davidian/st732/#notes.  

15. Rubin C, Maisonet M, Kieszak S, Monteilh C, Holmes A, Flanders D, et al. Timing of 

maturation and predictors of menarche in girls enrolled in a contemporary british cohort. 

Paediatr Perinat Epidemiol. 2009;23:492-504.  

16. Novotny R, Daida YG, Grove JS, Acharya S, Vogt TM. Formula feeding in infancy in 

associated with adolescent body fat and earlier menarche. Cell Mol Biol. 2003;49(8):1289-

93.  

17. Blell M, Pollard TM, Pearce MS. Predictors of age at menarche in the newcastle 

thousand families study. J Biosoc Sci. 2008;40(4):563-75.  

18. A SAS program for the CDC growth charts [homepage on the Internet]. . 2009 November 

16, 2009. Available from: 

http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm.  

19. Warner M, Samuels S, Mocarelli P, Gerthoux PM, Needham L, Patterson DG, et al. 

Serum dioxin concentrations and age at menarche. Environ Health Perspect. 

2004;112(13):1289-92.  

20. Hernan MA, Robins JM. Estimating causal effects from epidemiological data. J 

Epidemiol Community Health. 2006 Jul;60(7):578-86.  

21. Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights. Comput 

Meth Prog Bio. 2004;75:45-9.  

22. Remsberg KE, Demerath EW, Schubert CM, Chumlea WC, Sun SS, Siervogel RM. Early 

menarche and the development of cardiovascular disease risk factors in adolescent girls: The 

fels longitudinal study. J Clin Endocrinol Metab. 2005 May;90(5):2718-24.  

23. Allison PD. Survival analysis using the SAS system: A practical guide. Cary, NC: SAS 

Press; 1995.  

 

http://www.stat.ncsu.edu.libproxy.lib.unc.edu/people/davidian/st732/#notes
http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm


86 
 

Figure 4.1. Exposure Characterization  
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Figure 4.2. „Early Soy‟ Exposure Criteria: 4 to 6 Month Exposures 

 

 

 

 

 

 

 

 

 

 

  

1) Item C1.C:   

“Has your baby ever had soya milk?” YES  

“At what age did you start soya milk?” ≤ 4 months  

“How often nowadays [6-10months] is your child fed soya milk?” 

> 0 times/week,  

Or,  

2) Item D6.C:  

“Since your child was 6 months old, has he/she had soya 

formula?” YES 

   “At what age did your child start soya formula?” ≤ 4 months 

 Or,  

3) Item D6. F: 

 “Since your child was 6 months old, has he/she had soya milk?” 

YES 

   “At what age did your child start soya milk?” ≤ 4 months. 
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Figure 4.3. Conceptual diagram of association between infant feeding and language 

acquisition, noting confounding relationships.  
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Figure 4.4. Conceptual diagram of association between infant feeding and gender-role 

play behavior, noting confounding relationships.  
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Figure 4.5. Conceptual diagram of association between infant feeding and time-to-menarche, 

noting confounding relationships.  
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Table 4.1. Number of Respondents Per Questionnaire, According to ALSPAC 

Documentation 

Questionnaire Goal Age for 

Administration 
# of 

Subjects 

% of Enrolled 

Pregnancies* 

% of 

Births* 

% of 4 week 

Postnatal 

Respondents* 

Maternal      
Your Environment  < 28 wks G 12,571 84.4   

Having a Baby < 23 wks G 12,213 82.0   
Your Home and Lifestyle

1
 24-41 wks G 977 6.6   

Your Pregnancy 32-40 wks G 12,084 81.1   
Filling the Gaps

2
 12 m 334 2.2   

About Yourself 14 wks - PD 12,471 83.7   
Child Based       

My Young Baby Boy/Girl 4 wks 12,353 82.9 88.4  
My Son/Daughter 6 m 11,485 77.1 82.2 92.97 

My Infant Son/Daughter 15 m 11,073 74.4 79.2 89.64 
Boy/Girl Toddler 18 m 10,750 72.2 76.9 87.02 

My Little Girl/Boy 24 m 10,431 70.0 74.6 84.44 
My Study Son/Daughter 30 m 10,359 69.6 74.1 83.86 
My 3-year old Girl/Boy 38 m 10,145 68.1 72.6 82.13 

My S/D‟s Health and Behavior 42 m 10,083 67.7 72.1 81.62 
My Young 4 Year Old Boy/Girl 54 m 9722 65.3 69.6 78.70 

Puberty        
Growing and Changing 1 97 m 6255 42.0 44.7 50.64 
Growing and Changing 2 115 m 7017 47.1 50.2 56.80 
Growing and Changing 3 128 m 6629 44.5 47.4 53.66 
Growing and Changing 4 140 m 6293 42.3 45.0 50.94 
Growing and Changing 5 157 m 6075 40.8 43.5 49.18 
Growing and Changing 6 175 m 5163 34.7 36.9 41.80 

Partner       
You and Your Environment 12 wks G 8645 58.0 61.8 69.98 

1
 Responses pooled with Your Environment and Having a Baby 

2
 Responses pooled with Your Pregnancy 

*pregnancy denominator = 14,893, birth denominator = 13,978, 4 week denominator = 12,353 

G = Gestation PD = Post-Delivery 
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Table 4.2.  Power estimations for mean word comprehension and production differences   

   Range of Standard Deviations 

 Early Soy/ 

 Early Formula 

Difference in 

mean words  

30 35 40 45 

Males 85/2487 9 77 64 53 44 

  11 91 81 70 60 

  13 97 92 83 47 

  15 99 97 92 85 

Females 58/2329 9 61 48 39 32 

  11 78 65 54 45 

  13 90 79 68 58 

  15 95 89 80 70 

  20 99 99 96 91 
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Table 4.3.  Power estimations for mean PSAI score differences 

   Range of Standard Deviations 

 Early Soy/ 

 Early Formula 

Difference in 

mean PSAI 

Score 

8 9 10 

Males 89/2699 2 64 54 45 

  3 93 87 79 

  4 99 98 96 

Girls 68/2490 2 52 43 36 

  3 86 77 68 

  4 98 95 90 
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Table 4.4. Time-dependent hazard info for log-rank survival test 

 1 2 3 4 5 6 

  End of period, time t     0.00   10.000    11.000    12.000    13.000    14.000 

  Accrual (% of total)  100.00   0.000   0.000   0.000   0.000   0.000 

  Group 1  

  exponential hazard rate 

   0.000   0.0020    0.1054    0.3052    0.3242    0.2800 

  Group 2  

  exponential hazard rate 

   0.000   0.0033    0.2960    0.4265    0.2948    0.4643 

  Group 1  

  expected % surviving time t 

 100.00   98.000   88.200   65.000   47.000   35.530 

  Group 2  

  expected % surviving time t 

 100.00   96.800   72.000   47.000   35.000   22.000 

  Common  

  exponential dropout rate,d 

   0.00    

0.0000 

   0.0000    0.0050    0.0250    0.0100 
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Table 4.5. Log-rank test of survival in two groups, simulation with specified rates (unequal 

n's) 

  Test significance level, alpha   0.050 

  1 or 2 sided test?    2 

  Number of periods  5 

  n1  2124 

  n2  54 

  Power ( % )      81 



 
 

 

 

 

V.   AIM 1.1 SUMMARY 

Background: 

In a typical child, word comprehension begins around 9 months of age, and word 

production begins around 12 months of age.  Following 12 months, a “fan effect” occurs in 

which rapid word producers and slow word producers begin to differentiate.  At around16 to 

18 months, a significant difference can be observed between males and females in both the 

number of words understood, and the number of words produced (1), with females 

consistently demonstrating higher word production than males (2-7).   

Language acquisition rates can be affected by a number of environmental influences in 

addition to age and sex. These may include social factors, such as parental tendency to 

engage verbally with the child (“language input”), or presence of an older sibling.  Physical 

factors such as oral development, hearing, and general health may also influence language 

development.   

In addition to the social and physical environment, sex-specific biologic development 

may also play a large role in influencing language acquisition. Specifically, the biological 

basis for observed sex differences in language development may be related to sexual 

differentiation of the brain in early life. Sex hormone concentrations can influence sexually 

dimorphic brain development, and consequently, the manifestation of sex-specific learning 

and behavior characteristics (8).   Under this mechanism, typical sex-specific developmental 

patterns may, in theory, be altered by exposure to endocrine disrupting compounds in early 

life. This analysis will assess whether exposure to soy-based infant formula, common source 
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of infant nutrition that contains high levels of estrogen-like plant based compounds, affects 

the rate of language development in boys and girls between the ages of 15 and 24 months.  

Methods: 

 

Study Sample.  The Avon Longitudinal Study of Parents and Children (ALSPAC) is an 

ongoing, prospective, longitudinal study which enrolled pregnant women residing in the 

Avon region of the United Kingdom, who were expected to deliver between April 1, 1991 

and December 31, 1992 .  Women were informed of the study by community clinicians or 

local media campaigns, and were recruited into the study after expressing interest in 

participation.  14,062 live births were recruited into the study during pregnancy. Of these, 

13,978 (7220 boys and 6756 girls) were twins or singletons alive at one year.  Mothers 

provided consent for participation. Ethical approval for the study was obtained from the 

ALSAPC Law and Ethics Committee and the Local Research Ethics Committees.  

The present investigation was restricted to term singletons who were alive at one year of 

age (n = 8,492), for whom comprehensive infant feeding data was available and for whom a 

language assessment was completed at approximately 15 and 24 months of age. Subjects 

were excluded if they completed either questionnaire more than 4 months past the intended 

administration time or had a missing completion age, if they had total or partial deafness, or 

were later diagnosed with autism spectrum disorder. The final sample size for this analysis is 

nboys = 3384, ngirls = 3176.  The present analysis was approved by the Institutional Review 

Board of the University of North Carolina at Chapel Hill.  

Exposure: Exposure was assessed using methods identical to those described elsewhere 

in this document.  Subjects were categorized into four mutually exclusive feeding groups: 
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primarily breastfed, early formula, early soy, and late soy, based on previously described 

definitions. 

Outcome: The outcomes assessed here included word comprehension and word 

production at approximately 15 and 24 months, as assessed by a modified version of the 

MacArthur Communicative Development Inventory (MCDI). The MCDI is a widely used 

instrument in clinical and research settings, intended to assess the growth and variability of 

communicative skills in early life (1).  In the MCDI, parents indicate which words their child 

can understand (comprehension) or say (production), according to a list of provided 

vocabulary words. In the modified version administered here, a list of 134 words was 

assessed at 15 months, and 123 slightly more complex words were assessed at 24 months.  

Scores for word comprehension and word production were calculated as the sum of 

understood or spoken words reported by the parents at 15 months for the 15 month scores, 

and as the sum of the 15 month word score plus the new words spoken at 24 months for the 

24 months scores.  Twenty-eight words were included on both the 15 and 24 month 

assessment, but were only counted in scores on the first occasion that they were reported.  

Analysis:  All analyses were conducted separately for boys and girls, so as to highlight 

within sex differences in language development with respect to exposure. Crude mean MCDI 

scores for word comprehension and word production were calculated as simple averages for 

each of the feeding groups.  Mean differences were compared using linear regression.  Each 

time point was assessed separately in preliminary analyses.  

The population-averaged effect of feeding method on word comprehension and word 

production over time was assessed using generalized estimating equations (GEE) with a 

compound symmetric covariance assumption.   These models were used to determine the 
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mean effect across exposure groups at 15 and 24 months, and how these means are related 

across the two time points (9).   The change in mean over time was quantified as the 

interaction between feeding group and age at assessment, expressed as continuous months.  

The early formula group was used as the referent for all models.  

GEE models were adjusted for variables associated with feeding method and with 

language development, as determined by assessment in this data, or in relevant literature. 

Final adjusted models included breast feeding duration, maternal age, presence of an older 

sibling (yes/no), maternal parenting score at 18 months, daycare attendance at 15 months 

(yes/no), and suspected hearing problem at 6 months (yes/no).   

Results:  

 

The characteristics of the study sample, as compared to the total eligible ALSPAC 

cohort, are shown in Table 5.1.  Generally, the study sample is similar to the source cohort.  

Minimal differences between these groups included slightly lower word production scores at 

15 months (14.5 vs. 15.2), longer breast feeding duration (4.1 months vs. 3.8 months) and 

maternal age (28.8 years vs. 28.0 years), and a higher proportion of subjects with no older 

siblings (45.7% vs. 44.2%) and of mothers with a university degree (15.2% vs. 13.8%) in the 

study sample versus the eligible ALSPAC cohort (not accounting for distributions of missing 

data).  

Mean word comprehension and word production values at 15 and 24 months, and the 

crude difference in these means, are shown in Tables 5.2 and 5.3.  The crude change in mean 

scores is also shown graphically in Figure 5.1.  In boys, word comprehension at 15 months 

and 24 months is higher in those that were breast fed, compared to the early formula group.   

However, the overall difference in mean words comprehended (i.e., words acquired between 
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15 and 24 months) is higher in all feeding groups compared to the early formula group.  A 

similar effect is seen in girls, with the exception that there is no difference in girls‟ 

comprehension scores at 15 months across feeding groups.  Word production was elevated at 

24 months among breast fed boys and among early soy fed girls.   

GEE model results are shown in Tables 5.4 and 5.5.  The mean changes over time, as 

expressed by β, demonstrate similar trends as were observed in the mean difference 

comparisons discussed above.  Adjustment did not substantially affect results.  Early soy was 

associated with a small increase in mean change in word comprehension in boys.  Word 

production among early and late soy fed boys was also elevated, but with poor precision. 

Both outcomes modestly increased in primarily breast fed boys, as compared to the early 

formula feeders.  In girls, the effect of early soy exposure on word comprehension was larger 

than in boys, but imprecise in comparison to the effect observed in the primarily breast fed.   

Word production in early soy exposed girls increased by 1.46 words per month compared to 

early formula fed girls (95% CI: 0.56, 2.29); no effect was observed in the other feeding 

groups with respect to this outcome.  

Conclusions: 

 

Here, we demonstrate a small and imprecise increase in word comprehension and word 

production associated with soy product exposure in early life, adjusting for multiple social 

and environmental factors, in both boys and girls.  

Since girls typically acquire language more rapidly than boys, an increase in rate of 

vocabulary development between 15 and 24 months may be interpreted as a “feminized” 

effect.  Accordingly, the small increase in word comprehension, as well as the small and 

imprecise increase in word production, among early and late soy fed boys is consistent with 
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animal literature suggesting that male mammals exposed to the estrogenic components of soy 

demonstrate feminine characteristics (10-14).  However, these results should be interpreted 

cautiously with respect to broad conclusions regarding endocrine disruption.  It is not clear 

whether such modest changes are truly indicative of biological changes in brain 

development, particularly since similar effects were observed in the primarily breast fed boys 

as well.  Furthermore, this study is not sufficiently powered to detect subtle differences 

between either group of soy fed boys and early formula fed boys; effect estimates among the 

soy groups are imprecise and subject to Type II error.  

The effect of early soy exposure on girls‟ word production was the most substantial of all 

effects observed.  Following the endocrine disruptor hypothesis, it could be argued that early 

life exposure to exogenous estrogen may be enhancing the development of female-typical 

structures and functions, thus enhancing soy exposed girls to be “hyper feminine.”  However, 

as in boys, the effects seen in girls are small and imprecise. It is not appropriate to make 

broad conclusions on the effects of soy and female brain development.  This finding, 

however, does highlight an interesting hypothesis that should be explored in future studies.    

No effect was observed in the late soy exposed girls.  This may be due mostly to low 

statistical power. However, in the absence of a Type II error, this finding also may suggest 

that if biologically active components of soy are inducing changes in sexually dimorphic 

development, it is likely happening in the early, as opposed to later stages of infancy in girls.  

This is in contrast to boys, where a similar magnitude of effect was observed in both the early 

and late soy feeding groups, highlighting potentially variable stages of susceptibility between 

the sexes. 
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Unmeasured confounding is important to acknowledge here.  Language development is a 

complex, multi-factorial process.  While sex, age, and many of the social environmental 

factors used in this study are important in determining the rate at which language develops, 

other important factors play a role as well.  These factors may include the quality of 

“language input” from parents, or the quality of childcare that the child received. It is 

possible, for instance, that early soy fed girls were fed soy for reasons that also coincided 

with increased adult attention (illness, for example), which subsequently enhanced language 

development.  Although our models attempted to control for such factors, by including terms 

such as the maternal parenting score, it is still important to note that factors other than 

biologically based endocrine disruption may have influenced findings.  

Since this study only had two time points to assess the rate of language acquisition, we 

are limited in the conclusions that can be drawn, particularly with respect to change over 

time. Future studies should integrate multiple language assessments to facilitate the 

development of language development trajectories.  Additionally, there were few subjects in 

both the early soy and late soy groups.  This led to largely imprecise estimates for both 

groups.  It is possible that some of the null findings reported here may be a result of low 

statistical power.  Since the prevalence of soy use is low in this population, future studies 

should be attempted in areas with higher proportions of soy use during infancy, such as the 

United States. 



103 
 

REFERENCES 

1. Fenson L, Dale PS, Reznick JS, Bates E, Thal DJ, Pethick SJ. Variability in early 

communicative development. Monographs of the Society for Research in Child 

Development. 1994;59(5, Serial No. 242):i-185.  

2. Bauer DJ, Goldfield ba, Reznick JS. Alternative approaches to analyzing individual 

differences in the rate of early vocabulary development. 2002;23:313-35.  

3. Westerlund M, Lagerberg D. Expressive vocabulary in 18-month-old children in relation 

to demographic factors, mother and child characteristics, communication style and shared 

reading. Child Care Health Dev. 2008 Mar;34(2):257-66.  

4. Stokes SF, Klee T. Factors that influence vocabulary development in two-year-old 

children. J Child Psychol Psychiatry. 2009 Apr;50(4):498-505.  

5. Berglund E, Eriksson M, Westerlund M. Communicative skills in relation to gender, birth 

order, childcare and socioeconomic status in 18-month-old children. Scand J Psychol. 2005 

Dec;46(6):485-91.  

6. Bornstein MH, Haynes MO, Painter KM. Sources of child vocabulary competence: A 

multivariate model. J Child Lang. 1998 Jun;25(2):367-93.  

7. Reilly S, Wake M, Bavin EL, Prior M, Williams J, Bretherton L, et al. Predicting language 

at 2 years of age: A prospective community study. Pediatrics. 2007;120(6):e1441-9.  

8. Scallet AC, Divine RL, Newbold RR, Delclos KB. Increased volume of the calbindin 

D28k-labeled sexually dimorphic hypothalamus in genistein and nonylphenol-treated male 

rats. Toxicol Sci. 2004 Dec;82(2):570-6.  

9. Applied longitudinal data analysis: Lecture notes ST 732 [homepage on the Internet]. 

Raleigh: North Carolina State University. 2005. Available from: 

http://www.stat.ncsu.edu.libproxy.lib.unc.edu/people/davidian/st732/#notes.  

10. Slikker W,Jr, Scallet AC, Doerge DR, Ferguson SA. Gender-based differences in rats 

after chronic dietary exposure to genistein. Int J Toxicol. 2001 May-Jun;20(3):175-9.  

11. Lund TD, Rhees RW, Setchell KD, Lephart ED. Altered sexually dimorphic nucleus of 

the preoptic area (SDN-POA) volume in adult long-evans rats by dietary soy phytoestrogens. 

Brain Res. 2001 Sep 28;914(1-2):92-9.  

12. Lephart ED, Setchell KD, Handa RJ, Lund TD. Behavioral effects of endocrine-

disrupting substances: Phytoestrogens. ILAR J. 2004;45(4):443-54.  

http://www.stat.ncsu.edu.libproxy.lib.unc.edu/people/davidian/st732/#notes


104 
 

13. Lephart ED, West TW, Weber KS, Rhees RW, Setchell KD, Adlercreutz H, et al. 

Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol. 2002 Jan-

Feb;24(1):5-16.  

14. Wisniewski AB, Klein SL, Lakshmanan Y, Gearhart JP. Exposure to genistein during 

gestation and lactation demasculinizes the reproductive system in rats. J Urol. 2003 

Apr;169(4):1582-6.  

 



105 
 

Figure 5.1.  Change in mean word comprehension and production over time, by feeding 

group 
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Table 5.1. Study Sample Characteristics 

Characteristics Study Sample Eligible 

ALSPAC 

Subjects
1
 

(n = 12,931) 

 Boys 

(n = 3384) 

Girls 

(n = 3176) 

Total 

(n = 6560) 

Word Comp Score, 15 M, mean (SD) 68.6 (31.5) 77.8 (31.0) 73.0 (31.6) 73.3 (32.4) 

Missing, n  0 0 0 2679 

Word Prod Score,  15 M, mean (SD) 12.0 (16.1) 17.1 (19.8) 14.5 (18.2) 15.2 (19.1) 

Missing, n 0 0 0 2679 

Word Comp Score, 24 M, mean (SD) 140.2 (43.7) 155.8 (41.8) 147.8 (43.5) 147.4 (44.2) 

Missing, n  0 0 0 3789 

Word Prod Score,  24 M, mean (SD) 66.2 (43.0) 86.0 (43.7) 75.8 (44.4) 17.9 (44.5) 

Missing, n 0 0 0 3789 

Breast Feeding Duration, mean (SD) 4.0 (4.5) 4.2 (4.6) 4.1 (4.6) 3.8 (4.5) 

Missing, n 0 0 0 1011 

 Maternal Age, mean (SD) 28.9 (4.7) 28.7 (4.6) 28.8 (4.6) 28.0 (5.0) 

Missing, n  0 0 0 0 

Maternal Parenting Score, mean (SD) 40.4 (4.6) 41.0 (4.3) 40.7 (4.4) 40.7 (4.5) 

Missing, n 93 70 163 2626 

Infant Feeding Method, n (%)     

Early Formula 2487 (73.5) 2329 (73.3) 4816 (73.4) 6294 (74.7) 

Early Soy 85 (2.5) 58 (1.8) 143 (2.2) 182 (2.6) 

Late Soy 129 (3.8) 105 (3.3) 234 (3.6) 286 (3.4) 

Primarily Breastfed 683 (20.2) 684 (21.5) 1367 (20.8) 1667 (19.8) 

Missing, n - - - 4502  

Presence of Older Sibling, n (%)     

No 1465 (44.7) 1445 (46.8) 2910 (45.7) 4537 (44.2) 

Yes (≥ 1) 1811 (55.3) 1646 (53.3) 3457 (54.3) 5717 (55.8) 

Missing, n 108 85 193 2677 

Regular Daycare Attendance, n (%)     

No 3151 (93.9) 2955 (94.0) 6106 (93.9) 9574 (94.1) 

Yes 206 (6.1) 190 (6.0) 396 (6.1) 605 (5.9) 

Missing, n  27 31 58 2752 

Suspected Hearing Problem, n (%)     

No 3163 (96.8) 2981 (97.0) 6144 (96.9) 10,213 (96.4) 

Yes 106 (3.2) 91 (3.0) 197 (3.1) 380 (3.6) 

Missing, n 115 104 219 2338 

Maternal Education, n (%)     

University Degree 467 (14.6) 471 (15.8) 938 (15.2) 1497 (13.8) 

Advanced Level 814 (25.5) 767 (25.8) 1581 (25.6) 2607 (24.1) 

Ordinary Level 1229 (38.5) 1112 (37.4) 2341 (38.0) 4002 (36.9) 

Vocational 316 (9.9) 277 (9.3) 593 (9.6) 1132 (10.5) 

CSE
2
/None 366 (11.5) 348 (11.7) 714 (11.6) 1596 (14.7) 

Missing, n 192 201 393 2097 
1 
Eligible subjects include term, singleton births alive at 1 year of age 

2
 Certificate of Secondary Education 
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Table 5.2. Mean Word Comprehension MCDI Scores 

Feeding 

Group
a
 

 

 Boys (n = 3384) 

 n 15 M 24 M Mean 

Difference 

ES 85 69 (34) 146 (47) 77 (23)* 

LS 129 68 (31) 143 (45) 74 (21)* 

PB 683 72 (31)* 146(41)* 74 (19)* 

EF (ref) 2487 68(32) 138 (44) 70 (22) 

 Girls (n = 3176) 

 n 15 M 24 M Mean 

Difference 

ES 58 81 (31) 165 (37) 84 (15)* 

LS 105 78 (30) 159 (40) 81 (20)* 

PB 684 78 (31) 158 (42)* 80 (19)* 

EF (ref) 2329 78 (31) 154 (42) 77 (20) 

     
a 
ES: Early Soy; LS: Late Soy; PB: Primarily Breast; EF: Early Formula 

*P < 0.05 
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Table 5.3. Mean Word Production MCDI Scores 

Feeding 

Group
a
 

 

 Boys (n = 3384) 

 n 15 M 24 M Mean 

Difference 

ES 85 14 (18) 72 (45) 58 (34) 

LS 129 13 (16) 70 (42) 57 (32) 

PB 683 12 (15) 70 (42)* 58 (34)* 

EF (ref) 2487 12 (16) 65 (43) 53 (34) 

 Girls (n = 3176) 
 n 15 M 24 M Mean 

Difference 

ES 58 22 (25) 101 (44)* 79 (28)* 

LS 105 19 (23) 90 (46) 71 (31) 

PB 684 16 (19) 86 (44) 70 (32) 

EF (ref) 2329 17 (20) 85 (43) 68 (32) 
a 
ES: Early Soy; LS: Late Soy; PB: Primarily Breast; EF: Early Formula 

*P < 0.05 
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Table 5.4.  Mean response estimates for MCDI word comprehension from 15 to 24 months 

Feeding 

Group
a
 

 

 Boys 

  Crude Adjusted
b
 

 n β (95% CI)  β (95% CI) 

ES 84 0.66 (0.13, 1.18) 0.66 (0.13, 1.18) 

LS 120 0.41 (-0.06, 0.88) 0.41 (-0.05, 0.88) 

PB 639 0.37 (0.18, 0.57) 0.37 (0.18, 0.57) 

EF 2303 0. 0. 

 Girls 

  Crude Adjusted
b
 

 n  β (95% CI)  β (95% CI) 

ES 52 0.87 (0.36, 1.38) 0.87 (0.36, 1.38) 

LS 96 -0.00 (-0.48, 0.48) -0.01(-0.49, 0.43) 

PB 637 0.19 (0.10, 0.48) 029 (0.10, 0.48) 

EF 2187 0. 0. 
a 
ES: Early Soy; LS: Late Soy; PB: Primarily Breast; EF: Early Formula 

b
Adjusted for breast feeding duration, maternal age, presence of an older sibling (yes/no), maternal 

parenting score at 18 months, daycare attendance at 15 months (yes/no), and suspected hearing 

problem at 6 months (yes/no) 

 

  



110 
 

Table 5.5.  Mean response estimates for MCDI word production from 15 to 24 months  

Feeding 

Group
a
 

 

 Boys 

  Crude Adjusted
b
 

 n β (95% CI)  β (95% CI) 

ES 84 0.51 (-0.31, 1.32) 0.50 (-0.32, 1.31) 

LS 120 0.50 (-0.19, 1.19) 0.51 (-0.18, 1.19) 

PB 639 0.46 (0.14, 0791) 0.47 (0.14, 0.79) 

EF  2303 0. 0. 

 Girls 

  Crude Adjusted
b
 

 n  β (95% CI)  β (95% CI) 

ES 52 1.43 (0.55, 2.30) 1.46 (0.56, 2.29) 

LS 96 -0.05 (-0.72, 0.63) -0.06 (-0.73, 0.61) 

PB 637 0.27 (-0.03, 0.59) 0.27 (-0.04, 0.59) 

EF  2187 0. 0. 
a 
ES: Early Soy; LS: Late Soy; PB: Primarily Breast; EF: Early Formula 

b
Adjusted for breast feeding duration, maternal age, presence of an older sibling (yes/no), maternal 

parenting score at 18 months, daycare attendance at 15 months (yes/no), and suspected hearing 

problem at 6 months (yes/no) 

 

 



 
 

 

 

 

VI. AIM 1.2 MANUSCRIPT 

Introduction 

Soy-based infant formula (SBF) is a commonly used alternative to cow‟s milk based 

infant formula, particularly in instances of milk intolerance or preference for a vegan diet.  It 

accounts for approximately 20% of the infant formula sold in the United States, and 7% in 

the United Kingdom (1, 2). While it is thought to be nutritionally adequate for term infants 

(2), SBF also contains high levels of phytoestrogens, plant compounds with structural and 

functional similarity to the steroid hormone,17β-estradiol.  These phytoestrogen compounds, 

specifically the isoflavones genistein and daidzein, can bind to estrogen receptors (ER) and 

can act as either estrogen agonists or antagonists (1, 3-5).  Since steroid hormones play an 

important role in sexually dimorphic brain and reproductive development during the pre- and 

early postnatal periods (6, 7), it is important to explore whether early life exposure to these 

hormonally active soy-derived compounds affect hormonally driven developmental 

characteristics.   

Animal models have demonstrated that sexually dimorphic behaviors are sensitive to 

early life hormonal exposures, including exposure to the isoflavones in soy.  For instance, 

visual-spatial memory, a characteristic on which male rats test better, is enhanced in females 

and decreased in males exposed to a phytoestrogen rich diet (8, 9).  Low doses of genistein 

decreased offensive behaviors in male rats (10), while neonatal genistein exposures 

decreased reproductive posturing behaviors among female rats (a “defeminized” effect 

consistent with genistein functioning as a weaker agonist than the estradiol it displaced from 
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receptors) (11).  However, no studies have assessed the effects of soy or its constituents on 

sexually dimorphic behaviors in children.  

Since breast milk and formula are the only sources of nutrition for infants in the first 

months of life, an infant diet of soy-based formula can result in extremely high exposure to 

isoflavones.  In fact, soy formula fed infants experience isoflavone exposures that are 500 

times that of those fed cow‟s milk formula (12).  Exposure of this magnitude may be of 

concern since brain development in early infancy may be particularly susceptible to 

endocrine disrupting effects (13-15) .  

In this study, we assessed gender-role play behavior in boys and girls exposed to soy 

products in early infancy.  Gender-role play behaviors are characterized by a child‟s 

preference for certain masculine- or feminine-typical toys, activities, and attitudes.  Gender 

dimorphism in play is detectible at 12 months of age, and becomes pronounced by 36 months 

(16-19).  These play behaviors are influenced largely by the social environment.  However, 

the biological influence of early life hormone concentrations on play behavior has been 

clearly documented.  Girls with high levels of androgens in the prenatal and very early 

postnatal periods due to congenital adrenal hyperplasia have consistently shown preference 

for male-typical toys and interests in multiple studies (20-22).  Subsequent studies of 

environmental endocrine disruptors have yielded less clear results.  Boys have exhibited less 

masculine play behavior following exposure to polychlorinated biphenyl, dioxins, and 

phthalates; girls have exhibited play behaviors that were more masculine, more feminine and 

not associated with the same exposures, respectively (23-25).  Here, we assess the association 

between gender-role play behavior and early life soy exposure to further explore the 

influence of endocrine disruption on sexually dimorphic characteristics during development.   
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Methods 

Study Sample.  Women who were pregnant, residing in the Avon region of the United 

Kingdom, and expected to deliver between April 1, 1991 and December 31, 1992 were 

eligible for the Avon Longitudinal Study of Parents and Children (ALSPAC).  Women were 

informed of the study by community clinicians or local media campaigns, and were recruited 

into the study after expressing interest in participation.  14,062 pregnancies were recruited 

into the study that resulted in live births. Of these, 13,978 (7,220 boys and 6,756 girls) were 

twins or singletons alive at one year.  The present investigation was restricted to term 

singletons (n = 12,931) for whom complete infant feeding data were available (n = 8,492) 

and for whom a play behavior outcome assessment was completed at approximately 42 

months of age, yielding a total study sample of 7,003 subjects (3,627 boys and 3,376 girls). 

Mothers provided consent for participation. Ethical approval for the study was obtained from 

the ALSAPC Law and Ethics Committee and the Local Research Ethics Committees. The 

present analysis was approved by the Institutional Review Board of the University of North 

Carolina at Chapel Hill.  

Exposure Assessment. Mothers completed infant feeding questionnaires at 1, 6, 15 and 24 

months postpartum.  At 1 month, mothers reported all feeding methods used since birth 

(breast or bottle), and the type of formula used, if any.  At 6, 15, and 24 months, mothers 

reported current breastfeeding habits, the age at which other milks or formulas were 

introduced into the child‟s diet (including formula/baby milk, , soy milk, soy formula, goat‟s 

milk, hypo-allergenic formula, and cow‟s milk), and how many feedings per week were 

given for each of these products at the time of questionnaire completion.    
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Exposure classification was defined by responses to the questionnaire administered at 6 

months postpartum; if these data were missing or incomplete, responses from the 15-month 

questionnaire were used.  “Early” exposure to any type of formula was defined as the use of a 

specific formula or milk type occurring ≤ 4 months of age (“At what age did you start 

[formula/milk type]?”) through ≥ 6 months of age. Use at 6 months was indicated by any 

non-zero response to the question, “How often nowadays is your baby fed [formula/milk 

type]?” in the 6 month questionnaire. If the 15 month questionnaire was used instead, “early” 

exposure to formula was established for any subject that reported introducing the formula or 

milk ≤ 4 months of age and responded affirmatively to the question “Since your child was 6 

months old, has he/she had [formula/milk type]?”  This definition not only establishes early 

use of formula, but also a 1 month minimum duration of use.    

Subjects were categorized into four mutually exclusive feeding groups: primarily 

breastfed, early formula, early soy, and late soy (Figure 6.1). Primarily breastfed infants 

were those who were breast fed until ≥ 6 months of age, who had no reported introduction of 

other milks or formulas before 6 months of age and no reported soy milk/formula use before 

24 months of age.   Early formula fed infants were introduced to any non-soy milk or formula 

product at or before 4 months of age, sustained use of such products at 6 months of age, and 

reported no soy use before 24 months of age.  Early soy fed infants were introduced to soy 

milk or soy formula at or before 4 months of age, and sustained use at 6 months of age.  Late 

soy fed infants were introduced to soy milk or soy formula any time after 4 months of age 

through 15 months of age.  No restrictions were made in the early formula, early soy and late 

soy groups with respect to duration of breast feeding; likewise there were no restrictions in 

the early soy or late soy groups with respect to use of non-soy formula.  
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Subjects were excluded if feeding profiles were not sufficiently complete to estimate 

duration of a particular feeding method.  Subjects who only reported soy use between 15 and 

24 months were also excluded because it was assumed that exposure would be low compared 

to the earlier time periods when milk or formula comprised most of the diet.  Responses from 

the 1 month questionnaire were used to verify that no soy was used in early infancy among 

primarily breast fed, early formula and late soy subjects. Exposure definitions do not take 

into account exposure to solid foods or their corresponding soy content, if any.   

Outcome assessment.  Gender-role play behavior was assessed at approximately 42 

months of age using the Preschool Activities Inventory (PSAI), a psychometric test designed 

to assess within and between gender differences in early life play (26, 27).    To complete the 

PSAI, mothers or other primary caregivers reported how often her child had played with 

certain toys (7 items), engaged in certain activities (11 items), and displayed certain 

characteristics (6 items) for the past month.  Half of these items were “masculine,” and half 

were “feminine.”  Each response was scored on a 5-point scale (“never,” “hardly ever,” 

“sometimes,” “often,” and “very often”).  The total instrument was scored by summing 

responses to all masculine items, subtracting the sum of all feminine items, and applying a 

transformation (48.25 + 1.1*[Score]) to achieve a “pseudo-T score.” Higher scores indicated 

masculine-typical behavior, and lower scores indicated feminine-typical behavior (27).  

Covariates: Demographic factors, family composition, and lifestyle factors were assessed 

through parent report on various self-completed questionnaires.  Given the potential 

importance of parental influences on both feeding practices and children‟s development, the 

mother‟s and partner‟s interaction with the child was estimated when the child was42 months 

of age using a series of questions assessing the frequency at which each parent participated in 
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a list of 8 activities with the child (score range: 0-36).  Partner interaction scores were set to 

zero if the questionnaire reported that no partner was present.  All partners were assumed to 

be male, given a very low prevalence of mothers in same-sex partnerships in this cohort 

(<1%) (28).  

Analysis.  Crude mean PSAI scores were assessed as simple means within exposure 

groups and within strata of each covariate.  Differences in means were assessed using linear 

regression.  Adjusted mean difference in PSAI scores were estimated using multivariable 

linear regression.  Boys and girls were modeled separately to distinguish within gender 

differences.  Unless otherwise noted, the early formula feeding group was used at the referent 

for all feeding group comparisons.    

We assessed confounding by variables thought to be associated with both cultural and 

environmental influences of gender role behavior, as well as feeding method in the literature 

and in univariate investigations of these data.  Final models were adjusted for age at PSAI 

assessment, breast feeding duration (continuous months), presence of an older brother 

(yes/no), presence of an older sister (yes/no), regular attendance in daycare (yes/no), 

maternal and partner interaction scores, and other maternal factors including age at delivery, 

smoking in the third trimester of pregnancy (yes/no), and education (5 levels in the United 

Kingdom, ranked from high to low: University Degree, Advanced Level, Ordinary Level, 

Vocational, and Certification of Secondary Education (CSE)/None).   

Data were analyzed using both complete case analysis (CCA) and multiple imputation 

(MI) approaches. For the CCA, subjects with missing data for adjustment variables were 

dropped from models, so only true values for subjects with complete data were modeled.  

Approximately 17% of the study sample was excluded due to missing covariate data.  
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Multiple imputation was implemented to allow the entire study sample to be included in 

analyses.  Values for missing covariates were estimated using PROC MI.  Regression models 

of imputed data were run and summarized in PROC MIANALYZE.   All analyses were 

completed using SAS 9.1.3 (SAS Institute Inc., Cary, NC).   

Results 

The subjects included in this analysis were similar to other term, singleton ALSPAC 

births with respect to the distribution of PSAI scores (among non-missing), gender 

distribution (not shown), feeding method distribution, and other select covariates (Table 6.1).  

The study sample did have slightly lower proportions of subjects with older brothers (32.1% 

vs. 33.6%), older sisters (30.9% vs. 31.8%), and prenatal smokers (16.9% vs. 19.5%), and 

slightly higher mean maternal age (28.7 years vs. 28.0 years), mean partner interaction scores 

(20.3 vs. 19.8), and proportions of mothers with a university degree (14.9% vs. 13.8%), than 

the larger ALSPAC cohort (not accounting for distribution of missing data within each 

covariate). Participating boys and girls were demographically similar, although girls were 

slightly more likely to have an older brother or sister (Table 6.1).  Approximately 35% of the 

study sample attended day care regularly.   Most mothers were non-smokers during the 

prenatal period and had mid- to high-level education.  Approximately 6% of households 

reported the absence of a partner in the home.  

 Boys‟ and girls‟ PSAI scores had distinct normal distributions (Figure 2; mean (SD): 

boys, 62.3(8.6), range 20.8-95.6; girls, 36.9(9.3), range 4.3-85.7). Boys‟ scores were slightly 

higher and girls‟ scores were slightly lower in this study sample compared to the scores 

previously documented by the instrument‟s developers (mean (SD), boys: 61.7 (9.4); girls 
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38.7 (9.7)) (26). The PSAI assessment was completed between 41-53 months for boys, and 

41-54 months for girls.  Early soy fed infants accounted for 2.5% of boys and 2.0% of girls.  

 Among girls, early soy exposure was associated with a higher crude PSAI score, as 

compared to early formula feeding (Table 6.2).  The other feeding regimes were not 

associated with PSAI scores.  Among boys, lower (more feminine) scores were observed 

among the primarily breast fed as compared to early formula fed boys.  No substantial 

difference was observed between early soy and early formula fed boys. Scores for both 

genders were higher in the presence of an older brother and prenatal tobacco smoke 

exposure, and decreased in the presence of an older sister.  Women with more education 

reported lower scores for their boys and higher scores for their girls.  Scores were lower for 

boys and higher for girls with higher levels of maternal education.  Boys‟ scores also lowered 

with increasing duration of breast feeding, while girls‟ scores elevated with increasing 

maternal age and lowered with increasing age at PSAI assessment.  Daycare attendance and 

parental interaction scores were not associated with any difference in PSAI score for either 

gender.  

In the adjusted complete case analysis, early soy feeding was also associated with an 

elevation in PSAI score among girls (β = 2.68; 95% CI: 0.20, 5.15) compared to early 

formula feeding, but no association was observed in boys for any feeding group (Table 6.3).    

Estimates for early soy exposure derived using multiple imputation were similar, but more 

precise (βgirls = 2.87; 95% CI: 0.67, 5.06;βboys = 0.96;95% CI: -0.82, 2.74). No association 

was observed in the late soy or primarily breast fed exposure groups.  

Several control variables were also associated with change in PSAI score in the adjusted 

model.  For both genders, adjusted mean change in PSAI scores were associated with the 
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presence of an older brother, presence of an older sister, prenatal smoking, maternal 

education, and maternal age.  Breast feeding duration was associated with lower scores 

among males, while age at assessment was associated with lower scores among females.  

Discussion 

Early life soy exposure was associated with a slightly higher (more “masculine”) PSAI 

score among girls, while no association between soy and PSAI score was observed in boys.  

The association among girls was robust to adjustment for multiple social and environmental 

factors.  Although the average PSAI score was nearly 3 points higher among early soy fed 

girls, they remained within the normal range for feminine behavior.  As a point of 

comparison, the association between early soy exposed girls and gender-role behavior is 

similar to, but slightly less than, that observed among girls with older brothers in this study, 

though much less precise.  Our findings suggests that early soy exposure may be associated 

with girls exhibiting slightly less feminine behavior than their non-soy fed counterparts, but 

not overtly masculine or “boy-like” behavior. 

A subtle de-feminizing effect on behavior in females is consistent with previous 

investigations of early life exposure to endocrine disrupting compounds.  The binding of 

estrogen receptors to a weak, exogenous estrogen such as genistein may induce an 

antagonistic effect on normal, highly regulated estradiol-dependant mechanisms, resulting in 

impaired development of normal female characteristics (3).  Animal models have suggested 

such effects occur structurally in sexually dimorphic regions of the female brain following 

exposures to testosterone, excess estrogen, or exogenous estrogen-like compounds (6).   For 

example, the volume of the sexually dimorphic nucleus of the medial pre-optic area (SDN-

POA) of the hypothalamus, which plays a role in male sexual behavior and is normally larger 



120 
 

in males than females, has been shown to increase in female rats following postnatal 

exposure to high levels of genistein (29-31).  Neonatal genistein exposure has also been 

shown to affect estrus cycling and alter reproductive posturing behaviors in exposed female 

rats (11). These studies emphasize the early postnatal periods, which operates in agreement 

with our findings that early soy exposure, but not late soy exposure, had an effect on play 

behavior.  

Epidemiologic studies of other hormonal and endocrine disrupting exposures also support 

our findings in girls.  The association between of early life hormone concentrations and 

gender-role play behavior has been observed among girls with congenital adrenal 

hyperplasia, who clearly and consistently show preference for male-typical toys when 

compared to unexposed female relatives (20, 21).  This hypothesis that early life endocrine 

disruption affects sexually dimorphic behavior in girls has been further supported in studies 

showing increased masculine typical behaviors in girls following prenatal exposures to 

polychlorinated biphenyls and bisphenol A (23, 32).  

 Most animal studies also suggest a feminizing effect among males following soy 

isoflavone exposure, which was not observed in this study.  Our null findings may be 

explained, in part, by biased reporting of feminine behaviors among parents of boys. If, for 

instance, social stigma prevented parents from accurately reporting feminine behaviors 

among boys in a manner that was non-differential by exposure status, our results would then 

be biased towards the null.  Alternatively, it is possible that the biologic effect of soy in boys 

is too subtle, if present at all, to be detected by a parent-report instrument such as the PSAI, 

or that the susceptible developmental period for these effects may be in the prenatal rather 

than postnatal period. 
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We used longitudinal exposure assessment data to characterize soy product use in early 

and late infancy.  However, early and late soy users were not necessarily exclusively fed soy 

products at any time point and we were not able characterize the relative dose of soy; thus we 

were unable to assess a dose-response relationship between soy feeding and PSAI score.  The 

exposure classification was also unable to account for other dietary or prenatal exposures to 

soy isoflavones.  Improved characterization of early life soy exposure, either through more 

detailed questionnaire or isoflavone biomarker measures, should be implemented in future 

studies. 

While the ALSPAC cohort is a large study that is widely generalizable to the United 

Kingdom, the number of soy users in this population is quite small, resulting in imprecise 

estimates of association.  This study characteristic should be considered when determining 

whether to generalize these findings to other regions where soy use is more prevalent, such as 

the United States.   

Our results suggest that early life exposure to soy products may subtly increase masculine 

type play behaviors in girls, but are not associated with gender-role play behaviors in boys.   

Given the low prevalence of soy use in this study sample, associations between soy exposure 

and PSAI score were imprecise and results should be interpreted cautiously.  If replicated, 

these findings may be more important in populations with higher prevalence of soy use than 

observed here.   Accordingly, additional studies should explore the relationship between 

early life soy exposure and sexually dimorphic development, particularly in populations with 

high soy use prevalence.  Additional attention should also be paid to the effects that soy 

isoflavones may be having in the prenatal period, so as to better characterize effects across 

multiple developmental stages.   
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Figure 6.1.  Exposure Characterization for Infant Feeding Groups 

 

Exposure Characterization for Infant Feeding Groups. Solid arrows (      ) indicate the 

required time period (age in months) of use for each particular feeding method.  Short dotted 

arrows (      ) indicate the time period (age in months) during which “early use” of a product 

(either soy-based or traditional milk or formula) could have been introduced.  Solid bars(      ) 

indicate time periods for which use of a particular milk or formula product was prohibited for 

a particular feeding group.  Long dotted arrows (      ) indicate periods of time for which use 

of a particular feeding method was not restricted or defined according to the exposure 

definition.  
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Figure 6.2.  Distribution of PSAI scores, by gender and feeding group 

 

Distribution of PSAI Scores By Gender and Feeding Group.  Histograms representing the 

distribution of PSAI scores for girls (top) and boys (bottom).   Colored bars (see key) 

correspond to each of the four infant feeding group categories.  
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Table 6.1. Characteristics of study sample (n = 7,003) and eligible subjects (n = 12,931) 

       Study Sample 

Characteristic   Boys   Girls  Total     Eligible
a
 

PSAI Score, mean (SD)  62.3 (8.6) 36.9 (9.3) 50.1 (15.5) 50.0 (15.6) 

Missing, n   --  --  --  3567  

Age at PSAI completion, mean (SD) 42.3 (0.8) 42.3 (0.8) 42.3 (0.8) 42.3 (0.9) 

Missing, n   81  85  166  4872 

Breast Feeding Duration, mean (SD) 3.9 (4.5) 4.1 (4.6) 4.0 (4.5) 3.8 (4.5) 

Missing, n   0  0  0  1011 

 Maternal Age, mean (SD)  28.8 (4.7) 28.5 (4.6) 28.7 (4.7) 28.0 (5.0) 

Missing, n    0  0  0  0 

Mother Interaction Score, mean (SD) 28.5 (4.9) 28.8 (4.7) 28.6 (4.8) 28.6 (4.8) 

Missing, n   12  6  18  3597 

Partner Interaction Score, mean (SD) 20.4 (7.9) 20.1(8.1) 20.3 (8.0) 19.8 (8.6) 

 Missing, n   19  25  44  3567 

Infant Feeding Method, n (%) 

Early Formula   2699 (74.4) 2490 (73.8) 5189 (74.1)  6294(74.7) 

Early Soy    89 (2.5)  68 (2.0) 157 (2.2) 182 (2.2) 

Late Soy    132 (3.6) 112 (3.3) 244 (3.5) 286 (3.4) 

Primarily Breastfed  707 (19.5) 706 (20.9) 1413 (20.2) 1667(19.8) 

Missing, n    --  --  -- 4502 

Presence of Older Brother, n (%) 

No    2324 (66.7) 2235 (69.1) 4559 (67.9) 6816(66.4) 

Yes (≥ 1)    1160 (32.0) 999 (29.6) 2159 (32.1) 3443(33.6) 

Missing, n   143  142  285  2672  

Presence of Older Sister, n (%) 

No    2370(68.1) 2268(70.1) 4638(69.1) 6991(68.2) 

Yes (≥ 1)    1112 (31.9) 965 (29.9) 2077 (30.9) 3264(31.8) 

Missing, n   145  143  288  2676 

Regular Daycare Attendance, n (%) 

No    2212 (64.5) 1998 (62.4) 4210 (63.5) 5943(63.0) 

Yes    1220 (35.6) 1205 (37.6) 2425 (36.6) 3490(37.0) 

Missing, n    195  173  368  3498 

Prenatal Smoking, n (%) 

No    2895(82.7) 2734 (83.6) 5629 (83.1) 8898(80.5) 

Yes    604 (17.3) 538 (16.4) 1142 (16.9) 2162(19.5) 

Missing, n   128  104  232   1871  

Maternal Education, n (%) 

University Degree  489 (14.4) 488 (15.4) 977 (14.9) 1407(13.8) 

Advanced Level   869 (25.4) 814 (25.8) 1674 (25.6) 2607(24.1) 

Ordinary Level   1306 (38.5) 1186 (37.5) 2492 (38.0) 4002(36.9) 

Vocational   335 (9.9) 297 (9.4) 632 (9.64) 1132(10.5) 

CSE
b
/None   403 (11.9) 375 (11.9) 778 (11.9) 1596(14.7) 

Missing, n   234   216  450   2097 
a
 Eligible ALSPAC subjects are limited to term, singleton infants alive at 1 year 

b
CSE: Certificate of Secondary Education
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Table 6.2. Crude mean Preschool Activities Inventory (PSAI) (mean (SD)) scores and 

regression estimates (β (SE)) for exposure groups and select categorical and continuous 

covariates  

Covariate    Boys   Girls  

Infant Feeding Method, Mean (SD) 

Early Formula
a    

62.6 (8.5)  36.7 (9.2) 

Early Soy    63.0 (8.1)  40.8 (9.1)* 

Late Soy    61.7 (7.8)  36.9 (9.8)  

Primarily Breastfed  61.3 (9.1)*  37.1 (9.4)   

  

Presence of Older Brother, Mean (SD) 

No
a    

61.5 (8.5)  35.9 (9.0) 

Yes (≥ 1)    63.7 (8.7)*  39.3 (9.5)* 

Missing    62.8 (8.4)  36.3 (9.3) 

Presence of Older Sister, Mean (SD)      

No
a    

63.2 (8.5)  37.6 (9.4) 

Yes (≥ 1)    60.2 (8.6)*  35.5 (8.9)* 

Missing    62.7 (8.4)  36.3 (9.3) 

Regular Daycare Attendance, Mean (SD) 

No
a    

62.2 (8.6)  36.7 (9.2) 

Yes    62.4 (8.5)  37.3 (9.5) 

Missing    62.7 (9.3)  37.2 (9.3) 

Prenatal Smoking, Mean (SD)  

No
a    

62.0 (8.5)  36.7 (9.2) 

Yes    63.7 (8.8)*  38.2 (9.8)* 

Missing    62.1 (9.0)  36.2 (8.7) 

Maternal Education, Mean (SD) 

University Degree
a  

60.6 (8.5)  38.6 (9.3) 

Advanced Level   61.9 (9.0)*  37.4 (9.4)* 

Ordinary Level   62.7 (8.3)*  36.1 (9.1)* 

Vocational    62.4 (8.1)*  36.0 (9.0)* 

CSE
b
/None   63.2 (8.7)*  36.9 (9.7)* 

Missing    63.2 (9.0)*  36.7 (9.5)* 

Age at PSAI Assessment, β (SE) 0.25 (0.18)  -0.44 (0.19)* 

Breast Feeding Duration, β (SE) -0.16 (0.03)*  0.05 (0.04) 

 Maternal Age at Delivery, β (SE) -0.01 (0.03)  0.17 (0.03)* 

Maternal Interaction Score, β (SE) 0.02 (0.03)  0.02 (0.03) 

Partner Interaction Score, β (SE) 0.00 (0.02)  0.02 (0.02) 
a 
Referent Category 

b 
CSE: Certificate of Secondary Education 

*p <0.05 for mean difference estimates, compared to referent category 
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Table 6.3.  Adjusted 
a
 change in mean Preschool Activities Inventory (PSAI) scores for boys 

and girls   

       β (95% CI) 

Covariate    Boys (n = 2979)  Girls (n = 2788)  

Infant Feeding Method 

Early Formula   0.    0. 

Early Soy    1.24 (-0.67, 3.14)  2.68 (0.20, 5.15) 

Late Soy    -0.40 (-2.05, 1.24)  -0.56 (-2.59, 1.47) 

Primarily Breastfed  0.29 (-0.82, 1.39)  0.00 (-1.22, 1.23) 

Presence of Older Brother  

No    0.    0. 

Yes (≥ 1)    2.06 (1.39, 2.73)  3.26 (2.50, 4.03) 

Presence of Older Sister  

No    0.    0. 

Yes (≥ 1)    -2.76 (-3.44, -2.09)  -1.88 (-2.65, -1.11) 

Regular Daycare Attendance 

No    0.    0. 

Yes    0.37 (-0.26, 1.01)  0.46 (-0.25, 1.16) 

Prenatal Smoking  

No    0.    0. 

Yes    1.35 (0.50, 2.21)  2.07 (1.10, 3.04) 

Maternal Education  

University Degree  0.    0. 

Advanced Level   1.04 (0.04, 2.03)  -1.32 (-2.40, -0.25) 

Ordinary Level   1.68 (0.69, 2.66)  -2.64 (-3.73, -1.55) 

Vocational    1.34 (0.02, 2.65)  -2.75 (-4.21, -1.28) 

CSE
b
/None   2.19 (0.91, 3.48)  -2.29 (-3.72, -0.85) 

Age at PSAI Assessment  0.15 (-0.25, 0.55)  -0.61 (-1.07, -0.15) 

Breast Feeding Duration  -0.14 (-0.24, -0.03)  -0.03 (-0.14, 0.09) 

 Maternal Age    0.08 (0.01, 0.15)  0.10 (0.01, 0.18) 

Maternal Interaction Score  0.03 (-0.03, 0.05)  0.02 (-0.06, 0.09) 

Partner Interaction Score  0.01 (-0.03, 0.05)  0.02 (-0.02, 0.07) 
a
 Adjustment variables include age at PSAI assessment, breast feeding duration (months), 

presence of an older brother (yes/no), presence of an older sister (yes/no), regular attendance 

in daycare (yes/no), partner interaction score, and maternal factors including age, prenatal 

smoking status (yes/no), education, and interaction score 
b 

CSE: Certificate of Secondary Education 



 
 

 

 

 

 

 

VII. AIM 2 MANUSCRIPT 

 

Introduction 

The soy isoflavones, genistein and daidzein, are weak estrogenic compounds contained in 

soy protein and various products derived from soybeans (1).  Demonstrating structural and 

functional similarity to 17β-estradiol, soy isoflavones can bind to estrogen receptors and can 

act as either estrogen agonists or antagonists (1-4).  The biological activity of soy isoflavones 

has been demonstrated widely in vitro and in animal models(5-9), as well as in adult 

humans(10, 11).  Few studies, however, have addressed the effects of early life soy protein 

exposure on long-term outcomes such as reproductive development and function.   

Endogenous sex hormones play an important role in brain and reproductive development 

in the pre- and neonatal periods (12-14).  Their biologic activity is also important in the 

timing of pubertal onset and in reproductive function during adolescence (15).  

Consequently, exposure to soy isoflavones in early infancy may have lasting effects on later 

reproductive development and function.  Animal studies have shown that pubertal markers, 

such as the age at vaginal opening, occur earlier in female rodents fed genistein during 

various time points in early development (16-19).  Early pubertal onset has also been 

observed in girls exposed to other endocrine disrupting compounds pre- and postnatally (20).  

Infants exposed to soy-based products, such as soy-based infant formula (SBF), have not 

been prospectively followed to evaluate the potential for early life soy exposure to disrupt 

endocrine system activity. SBF is commonly used in the United States, accounting for 

approximately 20% of the infant formula sold (21).  Isoflavone content in SBF is 
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approximately 4 orders of magnitude higher than other common sources of infant nutrition 

(isoflavone range in SBF: 32 to 47 mg/L; breast milk: ~ 5.6 μg/L; cow‟s milk: 0.1-2.0 

μg/L).(22-24)  The urinary concentration of total isoflavones among infants exclusively fed 

SBF is approximately 500 times the concentration of those fed cow‟s milk formula (25), and 

plasma isoflavone concentrations per bodyweight were an order of magnitude higher in SBF 

fed infants than in adults consuming diets containing soy protein (26).  No other postnatal 

exposure to an endocrine disruptor approaches this exposure level (27).  We have 

investigated the association between soy product use during early infancy and age at 

menarche among girls enrolled in the Avon Longitudinal Study of Parents and Children 

(ALSPAC).  In this study, age at menarche may serve as an easily observable marker of 

possible early life endocrine disruption.   

Methods 

Study Sample.  ALSPAC is an ongoing, prospective, longitudinal study which enrolled 

pregnant women residing in the Avon region of the United Kingdom, who were expected to 

deliver between April 1, 1991 and December 31, 1992. 14,062 live births were recruited into 

the study during pregnancy. Of these, 13,978 (7,220 boys and 6,756 girls) were twins or 

singletons alive at one year.  Mothers provided consent for participation.  

The present investigation was restricted to singleton, term, white females who were alive 

at one year of age (n = 5,230), then further restricted to those for whom comprehensive infant 

feeding data was available and for whom at least one puberty questionnaire was completed 

between the ages of approximately 8 and 14 years of age (n = 2,884).  We restricted the 

analysis to white race was because over 90% of the study sample were white, which limited 

the power to control potential confounding by race.  Ethical approval for the study was 
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obtained from the ALSAPC Law and Ethics Committee and the Local Research Ethics 

Committees and the present analysis was approved by the Institutional Review Board of the 

University of North Carolina at Chapel Hill.  

Exposure Assessment. Mothers completed infant feeding questionnaires at 1, 6, 15 and 24 

months postpartum.  At 1 month, mothers reported all feeding methods used since birth.  At 

6, 15, and 24 months, mothers reported current breastfeeding habits, the age at which other 

milks or formulas were introduced into the child‟s diet (including formula/baby milk, soy 

milk, soy formula, goat‟s milk, hypo-allergenic formula, and cow‟s milk), and how many 

feedings per week were given for each product at the time of questionnaire completion.    

Exposure classification was defined by responses to the questionnaire administered at 6 

months postpartum; if these data were missing or incomplete, responses from the 15-month 

questionnaire were used.   Subjects were categorized into four mutually exclusive feeding 

groups: primarily breastfed, early formula, early soy, and late soy (Figure 7.1). Primarily 

breastfed infants were breast fed until ≥ 6 months of age, had no reported soy use between 

birth and 24 months and no reported introduction of other milks or formulas before 6 months 

of age.  Early formula fed infants were introduced to any non-soy milk or formula product at 

or before 4 months of age, sustained use of such products at 6 months of age, and reported no 

soy use before 24 months.  Early soy fed infants were introduced to soy milk or soy formula 

at or before 4 months of age, and reported sustained use at 6 months of age.  Late soy fed 

infants were introduced to soy milk or soy formula any time after 4 months of age through 15 

months of age.  No restrictions were made in the early formula, early soy, and late soy groups 

with respect to duration of breast feeding; likewise, there were no restrictions in the early soy 
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or late soy groups with respect to use of non-soy milk or formula.  Exposure definitions do 

not take into account exposure to solid foods or their corresponding soy content, if any. 

Outcome assessment.  Between 1999 and 2007, a series of questionnaires regarding 

pubertal development (the “Growing and Changing” questionnaires), were administered at 

approximately 8, 9.5, 10.5, 11.5,13 and 14.5 years of age.(28)  Questionnaires were 

completed by a care-giving adult or the child of interest. In each questionnaire, subjects were 

asked if the child had had her first period, and if so, what month and year her first period 

occurred.  Her age at menarche was defined as her age in months at this time.  The earliest 

reported age was used as the age at menarche in the event that multiple questionnaires 

contained discordant responses for the same individual.  

ALSPAC also enrolled some subjects from the main study into a smaller clinic-based 

cohort study that also assessed age at menarche.  For 146 (4.6%) subjects in the present 

analysis, missing questionnaire data on age at menarche was obtained from ALSPAC clinic 

data.  

 Some subjects reported a menarche event, but did not report an age (n = 107).  For 67 of 

these subjects, age at menarche was estimated as the midpoint between the age at which the 

questionnaire with the first positive menarche response was completed, and the age at which 

the previous year‟s questionnaire was completed. If more than one questionnaire was skipped 

between a negative and positive menarche response, and estimated age was not derived and 

this subject was not included in any analysis (n = 40).   As an alternative, an imputed age at 

menarche was estimated for these 67 subjects as part of a larger multiple imputation model 

for missing data (described below).  Ages derived using the midpoint approach were included 
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in the complete case analysis, while imputed values were used in multiple imputation 

models.  

Analysis.  All analyses were completed using SAS 9.1.3 (SAS Institute Inc., Cary, NC).  

Hazard ratios (HR) for time-to-menarche were estimated using Cox proportional hazards 

modeling.  The early formula group was used as the referent group in all models.  Relative 

precision of estimated HRs were compared using confidence limit ratios (CLR), calculated as 

the upper 95% confidence limit divided by the lower 95% confidence limit.  Proportional 

hazards assumptions (PHA) were assessed using log-log survival density function plots and 

Cox chi-squared significance tests for time interaction variables (α = 0.05). These diagnostics 

revealed varying degrees of hazard convergence over time, including a notable convergence 

at approximately 150 months of age. Therefore, models were carried out using categorical (< 

/ ≥ 150 months (12.5 years)) and continuous-time interactions (exposure*time, pre-pregnancy 

BMI*time, prenatal smoking*time, and maternal age at menarche*time), to characterize 

changes in hazards over time.  Hazard ratios were estimated at 10,11,12,13 and 14 years for 

continuous-time Cox models. Cox models were analyzed using both complete case analysis 

and multiple imputation (MI). For the complete case analysis, only subjects with complete 

data on necessary covariates were modeled, which resulted in a loss of 18% of subjects.  

Multiple imputation of missing outcome (n = 67), adjustment variables and other covariates 

(BMI) was performed using PROC MI (5 imputations), and simulated results were combined 

using PROC MIANALYZE.  

Follow up time was defined for each subject based on the age in months at which she 

reported a menarche event (events), or the age of the last completed questionnaire in which 

she reported not having reached menarche (censored). Censored subjects (those that did not 
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report a menarche event) were distinguished as either lost to follow up  (dropped out before 

the end of the study), or administratively censored  (completed the study).   Crude Kaplan 

Meier survival curves, median time-to-menarche and inter-quartile range (IQR: 25
th

-75
th

 

Percentile) estimates were obtained using lifetable analysis (PROC LIFETEST).  We 

obtained confounding-adjusted Kaplan Meier curves and median time-to-menarche by 

exposure group by calculating inverse probability of exposure weights (29, 30) using 

polytomous logistic regression, and then performing a weighted lifetable analysis.  

Sensitivity analyses were performed to assess whether results were affected by 

informative censoring (31).  In the first analysis, we assumed that all lost to follow up 

subjects were at low risk for reaching menarche in the study period, and their follow-up times 

were reassigned to resemble the administratively censored (follow-up time: 175 months) 

(“low risk”).  In the second analysis, we assumed that randomly censored subjects were at 

high risk for reaching menarche in the study period, and all lost to follow up follow-up times 

were modeled as events occurring at the time of drop out (“high risk”).  A third sensitivity 

analysis was preformed to address early censoring times in the early soy group.  Here, we 

manipulated the distribution of censor times in the early soy group to mimic the censor time 

distribution seen in other exposure groups (median: ~140 months) (“redistributed”).   

Categorical-time Cox models were repeated for each of the three hypothetical scenarios to 

evaluate how these assumptions affected estimates.  

 Covariates were included as potential confounders if they were associated with an 

infant feeding method, age at menarche, or censoring in these data (via univariate 

association) or in relevant literature.   Variables examined included child‟s birth weight, 

breast feeding duration, milk allergy at 6 months, vegetarian diet in childhood, and maternal 
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perception of infant health, and maternal factors including age and education at delivery, 

prenatal vegetarian diet, age at menarche, pre-pregnancy body mass index (BMI), and pre- 

and postnatal smoking.   The final models were adjusted for pre-pregnancy BMI, smoking in 

the last 2 months of pregnancy (yes/no), and maternal age at menarche (continuous years).  

Postnatal smoking was not included to avoid collinearity with the prenatal smoking.  

Effect measure modification was examined in relation to childhood weight status by 

stratifying above and below the 85
th

 percentile of BMI, using measurements taken at any 

time between 7 and 9.5 years.  BMI stratified results are presented as time-averaged HRs, 

since PHA violations were minimal in the stratified samples, and sample size limitations 

prevented further stratification by time. Associations between feeding group and BMI age 

adjusted Z-scores were assessed using linear regression.(32)   

Results 

Among 5,230 eligible ALSPAC subjects, 2,884 had sufficient infant feeding and puberty 

data to be included in this analysis.  Of the 2,346 excluded girls, most had insufficient 

feeding data to characterize exposure (n=1,480), or had soy exposure only after 15 months of 

age when milk/formula is a less prominent component of the diet (n=86). Other excluded 

girls did not complete any “Growing and Changing” questionnaire (n = 780). On average, 

excluded girls had lower birth weight, shorter breastfeeding duration, were more likely to be 

ill as infants, exposed to prenatal tobacco smoke, and born to younger mothers than those 

that remained in the final study sample (Table 7.1). Excluded girls were also more likely to 

have missing data on key covariates. There was no difference between the included and 

excluded subjects with respect to soy product use. However, excluded girls were less likely 
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to be classified in the primarily breast fed group, and more likely to be classified in the early 

formula group, as compared to the included study sample.  

The median time-to-menarche was 153 months (12.8 years) [IQR, 144-163]. The median 

follow-up time contributed by those lost to follow up (n = 658 [22.8%]) was 140 months 

(11.7 years) [IQR, 118-157].  Three percent of girls were administratively censored.  Two 

percent of girls were fed soy at or prior to 4 months of age (early soy).  Over 20% of subjects 

in this group initiated soy use in the first month, while approximately 37% initiated soy use 

at age 4 months.   

In crude bivariate analyses, there was no effect of birth weight, breast feeding duration, 

infant health, or maternal age at delivery on median time-to-menarche.  Time-to-menarche 

was earlier among girls with high BMI, and among girls whose mothers had a high pre-

pregnancy BMI or a young age at menarche.  However, early censoring may have 

contributed to early time-to-menarche among girls with high BMI, and among those whose 

mothers had high pre-pregnancy BMI (respective median [IQR] follow-up times among lost 

to follow up subjects: 128 [115-141] and 132 [124 -141]).  Girls with mothers who had an 

older age at menarche had a later age at menarche (Table 7.1).   

Across infant feeding groups, the crude median time-to-menarche was earliest for girls 

receiving an early soy diet (149 months (12.4 years) [IQR, 140-159]), and latest among those 

who were primarily breast fed (154 months (12.8 years) [IQR, 145-165]).   There was 

considerable overlap of the inter-quartile ranges for all comparison groups.   Crude and 

adjusted Kaplan Meier curves (Figure 7.2) suggest a more rapid time-to-menarche in the 

early soy group, as compared to all other feeding groups, prior to approximately 150 months.  

However, these curves, along with adjusted median time-to-menarche estimates (Table 7.2) 
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further suggest that that this difference converges across all feeding groups at approximately 

150 months of age (12.5 years).  

Adjusted hazard ratios for the complete case analysis are presented in Table 7.2.  The 

hazard of reaching menarche by age 12.5 (150 months) among girls in the early soy feeding 

group is approximately 1.42 times [95% CI, 0.92, 2.20] higher than among girls in the early 

formula feeding group, adjusted for maternal pre-pregnancy BMI, prenatal smoking, and 

maternal age at menarche.  This association was similar when implementing multiple 

imputation to account for missing covariates (MI HR: 1.42 [95% CI, 0.94, 2.14]). 

Accordingly, MI results will not be presented except where estimates differed.  No 

association was observed in the other feeding groups.  After age 12.5, a small decrease in 

hazard is associated with the primarily breast fed, however, this association is largely 

attenuated when multiple imputation is applied (MI HR: 0.93 [95% CI, 0.77, 1.11])    

A clear trend towards decreasing hazard ratios over time among early soy users was 

observed when continuous time interaction variables were modeled (Figure 7.3).  The most 

precise hazard ratio estimates occur at age 12 (144 months) (HR: 1.33 [95% CI, 0.96, 1.85]). 

Hazard ratios for other feeding groups, as compared to the early formula group, remained 

close to the null over time.  

Stratifying on childhood weight status, feeding group was not associated with hazard of 

menarche among girls of normal weight over time.  Among those with a BMI for age above 

the 85
th

 percentile, the hazard of menarche in the early soy group was elevated (HR: 1.60 

[95% CI, 0.98, 2.61]; MI HR:1.66 [95% CI, 1.04, 2.64]). Estimates among those with high 

BMI for age are particularly imprecise given the low number of subjects in this group.  Early 
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soy feeding was not associated with a change in BMI z-score at any age point between 7 and 

9, as compared to either early formula feeding or primarily breast feeding (data not shown).  

The distribution of censoring (lost to follow up and administrative) by main exposure 

status for the total study sample is shown in Table 7.3.  Loss to follow up in the early soy 

group tended to occur earlier in the study than in the other feeding groups, but the overall 

proportion of censoring in this group is less than other feeding groups (14.8%).  The effect of 

these censored observations on reported effect estimates was assessed in sensitivity analyses 

(Table 7.4).  Hazard ratios prior to age 12.5, while consistently elevated for the early soy 

group, are slightly attenuated in the “high risk” and “redistributed” models. Estimates after 

age 12.5 increased in the “low risk” model for both early and late soy feeding, but are 

otherwise similar to the original analysis.    

Discussion 

In this study, early life exposure to soy products was associated with a small, but 

imprecise, increase in the hazard for reaching menarche in early adolescence. Over the full 

course of the study period   the median time-to-menarche did not differ substantially between 

each of the feeding groups. However time interaction Cox models and Kaplan Meier survival 

curves  support that early soy exposure may be associated with earlier time-to-menarche 

before age 12.5, while soy does not influence menarche after this time.    

   The association between early soy exposure and early time-to-menarche is supported 

biologically.  The physiological processes that regulate the onset of puberty are complex, and 

may have origins in the fetal or neonatal periods.  For example, the hypothalamic-pituitary-

gonadal (HPG) axis regulates hormone signaling that eventually leads to ovulation and 

menarche during puberty.  This system, which integrates the central nervous system and the 
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reproductive tract, is also active during the mid-fetal and infant stages of human development 

(15).  Estrogen receptors are present in the hypothalamus (33, 34), suggesting that this region 

in particular may be susceptible to isoflavone binding.  Accordingly, rodent models have 

demonstrated that neonatal exposure to estrogenic compounds has altered hypothalamic 

characteristics and function (16).   

Our findings also suggest that the effect of an early soy diet was modified by childhood 

BMI.  Early soy product use was associated with earlier time-to-menarche among girls whose 

BMI was above the 85
th 

percentile for age between ages 7 and 9, but not below the 85
th 

percentile.  Early soy exposure was not associated with increased BMI in this study sample, 

as compared to early formula exposure.  However, soy isoflavones and other endocrine 

disruptors have been hypothesized to affect adipogenesis and obesity (6, 35).   While based 

on few observations, the observed association among overweight girls deserves further 

investigation and may present leads to evaluate potential biological mechanisms relating 

isoflavone exposure, adiposity, and menarche.   

The finding that late soy feeding was not associated with time-to-menarche suggests that 

dose and timing of soy isoflavone exposure may be important for the induction of 

developmental effects.  The diet becomes increasingly diverse with increasing age, so 

exposure to soy isoflavones is presumably higher during early infancy when formula 

provides a greater proportion of the child‟s nutrition compared to later. Furthermore, the 

endocrine system is more active in the first several months of infancy, compared to later (36-

38), implying that this early stage may be more susceptible to endocrine disrupting effects 

than later in infancy.   
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Strom et al.(39) observed various endocrine-sensitive outcomes among adults who had 

been involved in cow‟s milk formula and soy formula clinical trials in infancy, and reported 

no difference in age at menarche between the two feeding groups (adjusted mean difference 

in years = -0.03 [95% CI, -0.32,0.26].  We also noted little difference in the median age at 

menarche over the full course of this study.  However, using Cox models that isolated risks 

of menarche during distinct time periods in adolescence, we observed differential effects of 

soy exposure across time.  During earlier, but not later ages, the magnitude of association in 

our study was notable.    

Previous reports by Strom et al. relied largely on age at menarche recall in adulthood for 

outcome assessment.  Validation studies have suggested that accuracy in reporting age at 

menarche decreases with age (40-42), so non-differential inaccuracies in recall may have 

biased these results towards the null.  To improve upon this, our study used a series of 

puberty questionnaires that were administered approximately every 1 to 1.5 years between 

ages 8 and 14.5. This approach maximized the proximity of data collection to the actual 

menarche event, and was thus a potentially more reliable and useful method of outcome 

assessment.  

The longitudinal nature of our study, however, may have resulted in potential selection 

bias with respect to inclusion and exclusion of potential study subjects.  To address this, 

important covariates were assessed among eligible ALSPAC subjects who were included and 

excluded from the final study sample.   Of note, excluded subjects had a higher proportion of 

prenatal smoking, a characteristic that was associated both with earlier time to menarche and 

also with any type of formula feeding (as compared to breast feeding). The median time-to-

menarche in all of the formula feeding groups, then, may be underestimated in our study 
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population given the artificially low representation of prenatal smoke exposures.  This may 

have biased our results towards the null. However, the relative effect of prenatal smoking on 

age at menarche is probably small compared to other major predictors, and adjustment for 

prenatal smoking in all models likely negates any bias that this omission might have created.  

An additional source of bias may be present if there is an unmeasured characteristic that is 

associated with both infant feeding and loss to follow up.  Certain factors associated with loss 

to follow up, such as age at menarche and pre-pregnancy BMI, and breast feeding duration 

were included in models to address this issue, but it is possible that other factors exist that 

allow for some selection bias to persist.  

Sensitivity analysis demonstrated that our results have the potential to be biased by 

censoring.  For early soy exposures, the models that assumed early values for menarche and 

the redistributed models moved early adolescent hazard ratio estimates towards the null..  

The model assigning late ages of menarche to missing data moved the later adolescent hazard 

ratio estimates away from the null.  Based on these findings, if the true distribution of event 

times among the censored more closely resembles either hypothetical distribution, rather than 

our assumption that they resemble the event time distribution seen in our population, then our 

results may be biased.  However, no characteristic of the lost to follow up subjects (Table 

7.1) support that these subjects are particularly high or low risk.  Since these  model 

assumptions are less likely than the assumption that lost to follow up event times are 

distributed similarly to the observed event times in our population, the high and low risk 

model results do not change our overall interpretation of results. However, the redistributed 

model allows for more plausible treatment of lost to follow up subjects in the early soy group.  
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The attenuation of association in this model (HR: 1.31 [95% CI, 0.85, 2.02]) does indicate 

that our results are slightly overestimated due to early censoring in the early soy group.   

This analysis was conducted using a large, longitudinal cohort study that is generalizable 

to the United Kingdom (43).  This cohort is unique in that it allows investigators to relate 

early life exposures to adolescent outcomes, without the hindrance of inaccurate, long term 

recall.  However, as stated previously, the proportion of subjects using soy products in early 

infancy in this population is small (2%) and our analysis was limited to a white race sample.  

Thus our power to detect associations was limited and the generalizability of these results 

may be limited in regions where soy use is more prevalent or populations are not primarily 

white. 

In summary, our study suggests that early life soy product exposure may be contributing 

to a small decrease in time-to-menarche in white populations, particularly in early 

adolescence. This study contributes to a growing literature on potential endocrine disruptors 

and pubertal onset, uniquely making use of a wide exposure contrast between those who 

were and were not fed soy products in infancy.  In contrast to many studies of other 

environmental endocrine disruptors, where exposures typically occur passively, ubiquitously, 

and at low levels, the use of soy was actively and continuously fed to infants at regular doses 

during the defined exposure period. This improves our confidence in the quality of exposure 

classification and the noted associations.   

Since early puberty can put children at risk for obesity, psychosocial abuse, behavior 

disorders, potential sexual abuse and certain cancers (44, 45), assessing nutritional and 

environmental factors that may modify the onset of puberty is of great public health 

significance.  Given the growing prevalence of soy in infant diets, further investigation into 
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these associations, specifically focusing on the role of BMI, deserve attention.  Supportive 

findings from future studies in this area may allow for revised use and manufacturing of soy 

based products marketed towards infants, as well as a greater understanding of the role of 

endocrine disruption on development in general.  
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Figure 7.1. Exposure Characterization 

 

Exposure Characterization. Infant feeding characteristics for the four mutually exclusive 

exposure categories are illustrated above.  Solid arrows (      ) indicate the required time 

period (age in months) of use for each particular feeding method.  Short dotted arrows (      ) 

indicate the time period (age in months) during which “early use” of a product (either soy-

based or traditional milk or formula) could have been introduced.  Solid bars (       ) indicate 

time periods for which use of a particular milk or formula product was prohibited.  Long 

dotted arrows (      ) indicate periods of time for which use of a particular feeding method was 

not restricted or defined according to the exposure definition.  
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Figure 7.2.  Crude (a) and Adjusted (b) Kaplan Meier survival curves, by feeding group 

 

Crude (a) and counfounding-adjusted (b) Kaplan Meier survival curves for each feeding 

group are shown above.  Censored observations are indicated by   .  Survival for each feeding 

group is incidated as follows:          early formula;         early soy;           late soy;          

primarily breast.   Confounding-adjusted curves are adjusted for pre-pregnancy BMI, 

maternal age at menarche, and prenatal smoking.     
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Figure 7.3. Period specific hazard ratios by feeding group (early formula = referent) 

 

 

 

Period specific hazard ratios for ages 10, 11, 12, 13 and 14, are shown above.  Estimates 

were derived from Cox proportional hazards models with continuous exposure*time and 

covariate*time interaction terms.  

The early formula is the referent exposure category.        indicate hazard ratios for the early 

soy group;       indicate hazard ratios for the late soy group;      indicate hazard ratios for the 

primarily breast fed group.  Vertical lines correspond to 95% confidence intervals.   
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 Table 7.1. Characteristics of eligible
a
 ALSPAC study sample (n = 5,230), distinguished as 

those included in the present analysis (n = 2,884) and those excluded for missing exposure or 

outcome data (n = 2,346)  

 Study Sample Included in Present Analysis  Excluded 

 n (%) Median Time-to-Menarche 

(mo) [IQRb] 

Lost to Follow Upc  

n (%) 

n (%) 

Study Sample 2884 153 [144 – 163] 658 2346 

Feeding Group     

Early Formula 2124 (73.7) 153 [144-163] 513(78.0) 607 (77.8)* 

Early Soy 54 (1.9) 149 [140-159] 8 (1.2) 12 (1.5) 

Late Soy 86 (3.0) 151 [146-159] 13 (2.0) 24 (3.1) 

Primarily Breast 620 (21.5) 154 [145-165] 124 (18.8) 137 (17.6)* 

Missing -- -- -- 1566 

Birth Weight     

≤ 2500g 35 (1.2) 151 [146-160] 10 (1.5) 53 (2.3)* 

>2500g 2808 (98.8) 153 [144-163] 638 (98.5) 2266 (97.7) 

Missing 41 153 [144-161] 10 27 

Mean  (SD) (g) 3429 (436) - - 3408 (463)* 

Breast Feeding Duration    

Mean (SD) (mo) 4.3 (4.6) - - 3.8 (4.4)* 

Missing 0 - 0 142 

Pre-pregnancy BMI     

≥ 25 535 (20.1) 150 [140-160] 128 (21.4) 436 (21.6) 

  < 25 2124 (79.9) 154 [145-164] 470 (78.6) 1584 (78.4) 

Missing 225 153 [143-162] 60 326 

Mean (SD)  22.8 (3.7) - - 23.1 (4.0) 

Maternal Age at Menarche    

8-11 490 (19.2) 146 [138-155] 97 (16.9) 379 (19.5) 

12-14 1748 (68.5) 154 [145-163] 384 (67.0) 1299(66.8) 

15+ 313 (12.3) 161 [151-171] 92 (16.1) 267 (13.7) 

Missing 333 154 [146-165] 85 401 

Mean (SD)(y) 12.8 (1.5) - - 12.9 (1.6) 

Prenatal Smoking     

Yes 423 (15.0) 152 [142-163] 128 (20.5) 419 (20.8)* 

No  2387 (85.0) 154 [144-163] 498 (79.6) 1595 (79.2) 

Missing 64 153 [147-160] 32 332 

BMI for age, age 7-9     

>85
th

 Percentile 754 (28.1) 148 [137-155] 142 (25.0) 340 (27.9)  

≤ 85
th

 Percentile 1926 (71.9) 156 [147-165] 425 (75.0) 880 (72.1) 

Missing 204  154 [142-162] 91 1126 

Infant Health at 6 months    
Healthy/ Minor Problems 2745 (98.0) 153 [144-163] 609 (96.8) 1813 (96.5) 

Sometimes ill/unwell 56 (2.0) 153 [148-170] 20 (3.2) 66 (3.5)* 

Missing 83 154 [144-160] 29 467 

Maternal Age at Delivery    

≤ 30 1924 (66.7) 154 [144-163] 471 (71.6) 1692 (72.1)* 

>30 960 (33.3) 153 [144-164] 187 (28.4) 654 (27.9)* 

Missing 0 - 0 0 

Mean (y) 28.7 (4.5) - - 27.6 (5.0)* 
*p < 0.05, comparing proportion of excluded to proportion included. 
a Term, singleton, white females born in the ALSPAC cohort.  
b Interquartile Range: 25th – 75th Percentile 
c Subjects who completed at least one “Growing and Changing” questionnaire, but did not report menarche and did not 

complete the study; a subset of study sample (n = 2,884). 
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Table 7.2.  Adjusted
a
 hazard ratios and median time-to-menarche estimates 

Feeding Group N HR< 150 months 

[95% CI] 

CLR
b
 HR≥ 150 months 

[95% CI] 

CLR Adjusted 

Median Time-

to-Menarche
a
 

[IQR] 

Early Formula 1718 1.0  1.0  153 [144-163] 

Early Soy 46 1.42 [0.92, 2.20] 2.39 1.11 [0.71, 1.74] 2.45 153 [140-159] 

Late Soy 72 0.84 [0.55, 1.29] 2.35 1.13 [0.80, 1.59] 1.99 151.5 [146-159] 

Primarily Breast 518 1.03 [0.87, 1.22] 1.40 0.89 [0.76, 1.04] 1.37 154 [145-165] 

Total 

Observations 

2354  

Events 1774  

Censored (%) 580 (24.6)  
a 
Adjusted for pre-pregnancy BMI, maternal age at menarche, prenatal smoking (yes, no)  

b 
Confidence Limit Ratio 
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Table 7.3.  Proportion of censoring in study sample: lost to follow up (LTF) and 

administrative censored subjects [n (%)], by feeding group 

 Lost To Follow Up: 

Approximate Age at Last Completed Questionnaire 

Administratively  

Censored
a
 

Total 

Censored
b
 

 Feeding 

Group 

8
a
 9 ½

a
 10 ½

a
 11 ½

a
 13

a
 Total 

LTF
b
 

Early 

Formula 

63 

(10.9) 

84 

(14.5) 

97 

(16.8) 

123 

(21.2) 

146 

(24.8) 

513 

(24.1) 

66  

(11.4) 

579 

(27.3) 

Early Soy 1  

(12.5) 

3  

(37.5) 

3  

(37.5) 

1  

(12.5) 

0 

(0) 

8  

(14.8) 

0  

(0) 

8  

(14.8) 

Late Soy 2  

(11.1) 

0 

 (0) 

4  

(22.2) 

5  

(27.8) 

2 

(11.1) 

13 

 (15.1) 

5  

(27.8) 

18  

(20.9) 

Primarily 

Breast 

20 

(13.9) 

17 

(11.8) 

16 

(11.1) 

34 

(23.6) 

37 

(25.7) 

124 

(20.0) 

20  

(13.9) 

144 

 (23.2) 

Total 86 

(11.5) 

104 

(13.9) 

120 

(16.0) 

163 

(21.8) 

185 

(24.7) 

658 

(22.8) 

91  

(12.2) 

749  

(26.0) 
a 
Percent expressed as percentage of total censored within feeding group  

b 
Percentage expressed as percentage of within feeding group totals for the study sample 
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Table 7.4. Sensitivity analysis hazard ratios and median survival times  

Feeding Group HR < 150 [95% CI]
 a
 CLR

b
 HR ≥ 150 [95% CI]

a
 CLR 

Low Risk Follow Up Time Assumption  

Early Formula 1.0  1.0  

Early Soy 1.43 [0.93, 2.21] 2.37 1.51 [0.97, 2.35] 2.42 

Late Soy 0.84 [0.55, 1.29] 2.35 1.37 [0.97, 1.93] 1.99 

Primarily Breast 1.02 [0.85, 1.16] 1.36 0.99 [0.85, 1.16] 1.36 

High Risk Follow Up Time Assumption  

Early Formula 1.0  1.0  

Early Soy 1.19 [0.81, 1.76] 2.17 0.95 [0.61, 1.49] 2.44 

Late Soy 0.82 [0.57, 1.17] 2.05 1.03 [0.74, 1.43] 1.93 

Primarily Breast 0.98 [0.76, 1.01] 1.33 0.88 [0.76, 1.01] 1.33 

Redistribution of Early Soy Censor Times  

Early Formula 1.0  1.0  

Early Soy 1.31 [0.85, 2.02] 1.87 1.07 [0.68, 1.66] 1.87 

Late Soy 0.84 [0.54, 1.29] 1.70 1.13 [0.80, 1.59] 1.74 

Primarily Breast 1.02 [0.87, 1.21] 1.25 0.89 [0.76, 1.03] 1.38 
a
Adjusted for pre-pregnancy BMI, maternal age at menarche, and prenatal smoking 

b
Confidence Limit Ratio 

 



 
 

 

 

 

VIII. CONCLUSIONS 

Soy-based infant formula is a commonly used alternative to cow‟s milk based infant 

formula, particularly in instances of milk intolerance or preference for a vegan diet.  

However, soy products contain high levels of phytoestrogens, plant compounds with 

structural and functional similarity to 17β-estradiol, which may have long term effects on 

developing infants. Animal models have shown that the phytoestrogens found in soy are 

capable of inducing disruptive effects on the endocrine system. However, few longitudinal 

studies of early life soy exposure have been conducted in human populations. Therefore, the 

overall long term safety of soy exposure in infancy is unclear.  

This epidemiologic investigation aimed to assess the association between early life soy 

product exposure and hormonally sensitive outcomes related to neurological and 

reproductive development.  This investigation was carried out in the Avon Longitudinal 

Study of Parents and Children (ALSPAC), a pregnancy cohort of over 14,000 live births 

recruited in 1991-1992 in the United Kingdom, and followed to the present day.   

Three major analyses were carried out to address two specific aims,  

1) to assess the effects of soy product exposure on early life sexually dimorphic 

cognition and behavior, and  

2) to assess the effect of early life soy product use on time-to-menarche in 

adolescent females.  

A common exposure definition was used for all analyses, and is fully described in Section 

IV. Methods of this document.  A summary of this study‟s findings are provided below, along 
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with a discussion of the strengths, limitations, implications, and future directions of this 

research.   

a. Summary, Aim 1 

 The objective of Aim 1 was to assess the effects of soy product exposure on early life 

sexually dimorphic cognition and behavior.  This aim was investigated using two approaches.  

First, in Aim 1.1, we assessed word comprehension and word production at 15 and 24 

months across the four feeding groups, with the intention of emphasizing the contrast 

between soy fed children and formula fed children, within each gender.  Next, in Aim 1.2, we 

similarly assessed the within gender differences for gender-role play behaviors across 

feeding groups.  Both of these outcomes have been shown to have clear, sexually dimorphic 

patterns in normal development, and so were used to assess the overall objective of Aim 1.   

 The hypotheses behind Aims 1.1 and 1.2 were that soy exposed boys would exhibit 

“feminized” behavior, as exhibited in accelerated language acquisition and lower scores on 

the gender-role play behavior assessment.  This hypothesis was based on ample animal 

literature, as cited throughout this document. A masculinizing effect (decreased language 

acquisition and higher gender-role play behavior scores) was hypothesized for soy exposed 

girls, although the body of previous literature supporting this effect was not as consistent as it 

was for boys.  

 The results for Aim 1.1 are summarized in Section V of this document.  Among boys, 

a minimal increase in word comprehension and word production was observed between 15 

and 24 months among both early and late soy exposed boys.  However, the differences 

between the soy fed boys and the early formula fed boys were small and imprecise.  

Furthermore, results in the early and late soy group were not substantially different from the 
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results observed in the primarily breast fed group, with the exception that the estimates in the 

primarily breast fed group had increased precision due to larger sample size.   

While these findings do agree with the hypothesized direction of effect, sample size 

limitations, combined with modest effect estimates, prevent valid conclusions from being 

drawn in this analysis with respect to soy use.  Recalling preliminary power calculations 

(Section IV. Methods), a mean difference of approximately 11 words was the minimum 

detectible effect, at 80% power, given the sample size of the early soy group.  Since the crude 

mean difference between early soy word comprehension and word production did not exceed 

8 words (Tables 5.2 and 5.3), we can conclude that this analysis was not sufficiently powered 

to detect the subtle effect that was observed.  While our results can suggest a very small 

increase in language acquisition over time, our effect estimates were imprecise. This study 

sample was not appropriate for answering this research question in boys without 

acknowledging a high likelihood for Type II error.  

 In girls, the effect observed in the early soy fed group was greater than was observed 

in the boys.  Therefore, the limitations with regard to power did not apply to the analysis in 

girls.  An elevated effect was observed in word comprehension and word production among 

both early soy fed girls and primarily breast fed girls.  In both comparisons, the effect in the 

early soy fed girls was substantially larger than what was observed in the primarily breast fed 

girls. No effect was observed in the late soy fed group.  Interestingly, the direction of effect 

observed in the early soy fed girls is opposite of what was hypothesized.  Rather than a 

“masculinizing effect,” or decrease in acquisition rate, soy appeared to induce a “hyper-

feminizing” effect.  Given that our confidence in the direction of effect in our hypothesis was 

somewhat weak, this effect is not entirely surprising.  Alternatively,this result may suggest 
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that soy was inducing a biological effect that was not related to sexual-dimorphism, per se, 

but rather an alternative biological mechanism that enhanced language development. In 

addition, while all analyses were adjusted for breast feeding duration, maternal age, the 

presence of an older sibling, maternal parenting, day care attendance, and potential hearing 

problems, it is possible that unmeasured confounding was biasing estimates away from the 

null.   

For Aim 1.2, gender-role play behavior scores were slightly elevated in early soy exposed 

boys and girls.  As in Aim 1.1, the effect in boys was negligible. However, our study was 

likely not sufficiently powered to allow for strong conclusions to be drawn, given the high 

likelihood for Type II error.  The effect in girls was more substantial, although still 

imprecise. 

In contrast to Aim 1.1, the finding among early soy fed girls was in the masculine, not 

feminine, direction. Because the observed effect was small (an increase of 2.7 points on a 

„pseudo T-score‟ scale of approximately 100), and did not place soy fed girls outside the 

normal range of female scores, it would not be appropriate assert that soy fed girls have been 

“masculinized.”  Rather, they may be considered slightly less feminine than their unexposed 

counterparts, and experience an effect similar to having an older brother in the home.      

It is difficult to interpret Aims 1.1 and 1.2 in summary, because the effects in girls 

suggest that early soy exposure is inducing opposite effects in each analysis.  Several 

possible explanations may account for this discrepancy.  First, it is possible that soy 

isoflavones are acting as both estrogen agonists and antagonists in various regions of the 

brain, resulting in the somewhat inconsistent direction of effect. In addition, it is also 

possible that language acquisition and gender-role play behavior are not adequate indicators 
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of sexually-dimorphic development, as they were intended to be.  Simply assessing an 

increase or decrease in language or play behavior score may be too crude a measure to truly 

assert any sort of “masculinzing” or “feminizing” effect, particularly when effect estimates 

are small, and not outside the range of normal within-gender development.  

Next, it is possible that other components of soy products, apart from isoflavones, 

influence early development in ways that are not necessarily related to sex hormone 

concentrations and sexually dimorphic development. For example, compared to breast milk 

and cow‟s milk formula, soy formula has high concentrations of phosphatidylcholine (1), an 

essential precursor to phospholipids and an important part of early development (2).  The 

results of our language acquisition analysis could be attributed to this property of soy 

formula, as opposed to isoflavone content, in which case a sexually-dimorphic effect would 

not necessarily be expected.   

Lastly, unmeasured confounding is also important here. Both outcomes are multi-

factorial in nature, in that many social, environmental, and biological factors contribute to 

their development. These analyses attempted to control for many of these factors, but it is 

plausible that unmeasured confounding persists.  For example, a common characteristic may 

be shared among parents that chose soy formula over traditional formula.  This common 

characteristic may have also influenced parenting styles, such that soy fed girls were 

conditioned to be more physical, outgoing, assertive, and verbal than other girls.  

b. Summary, Aim 2 

The objective of Aim 2 was to assess the effect of early life soy product use on time-to-

menarche in adolescent females.  The hypothesis behind this aim was that, in accordance 

with a substantial animal literature on genistein, other phytoestrogens, and other exogenous 
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estrogens, early life soy exposure would be associated with earlier age at menarche.   For this 

aim, the outcome was assessed using a series of puberty questionnaires administered 

approximately annually between the ages of 8 and 14.  

In this study, early life exposure to soy products was associated with a small, but 

imprecise, increase in the hazard for reaching menarche in early adolescence.   When 

averaged over the course of the study period, time-to-menarche did not differ substantially 

between each of the feeding groups.  However, categorical and continuous time interaction 

models and adjusted Kaplan Meier curves support that early soy exposure may be associated 

with reaching menarche before age 12.5, and that the influence of soy on menarche after this 

time is attenuated.   

Our findings also suggested that the effect of an early soy diet was modified by childhood 

BMI.  Early soy product use was associated with earlier time-to-menarche among girls whose 

BMI was above the 85
th 

percentile for age between ages 7 and 9, but not below the 85
th 

percentile.  Early soy exposure was not associated with increased BMI in this study sample. 

Sensitivity analysis demonstrated that our results also have the potential to be biased by 

censoring.  In hypothetical models where lost to follow up follow up times were modeled as 

event times at the time of dropout, hazard ratio estimates before age 12.5 moved towards the 

null.  Since this model assumed the earliest possible even time for lost to follow up subjects, 

it can be viewed as a lower bound of the amount of bias that is introduced by lost to follow 

up subjects.  Based on these findings, we acknowledge that, if the true distribution of event 

times among the censored more closely resembles this low-end hypothetical distribution, 

rather than our assumption that they resemble the event time distribution seen in our 

population, then our results may be slightly overestimating effects.  Additionally, if the 
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follow up times for the lost to follow up early soy subjects were redistributed to resemble 

follow up times of other exposure groups, estimates before age 12.5 were also slightly 

attenuated.  These “redistributed” results suggest that early censoring in the early soy group 

was affecting results, and are acknowledged.  

 Overall, the aim of assessing the effects of early soy exposure on time-to-menarche 

was successfully met in this analysis.  Although potentially biased by loss to follow up, both 

proportional hazards models supported that, before age 12.5, early soy fed girls were 

achieving menarche earlier in this study sample.  As with all analyses described here, the 

number of soy exposed individuals was small, and our results were imprecise.  As will be 

discussed in greater detail below, these findings do not support any sort of causal inference 

with respect to early life soy exposure and early age at menarche.  Rather, this research 

should be viewed as an early contribution to a currently sparse literature on early life 

endocrine disruption and pubertal onset, and should be used to generate hypotheses for future 

studies rather than promote changes in public health practice.   

c. Strengths 

This study addresses novel, biologically based research questions that investigate the role 

of early life soy product exposure in sexually dimorphic and reproductive development.  

Previous studies of soy use have largely focused on gross developmental outcomes, such as 

growth and immune response in first few years of life. No studies have addressed the 

question of gender-specific effects of soy on sexually differential development, and few have 

explored the role of early life soy exposure on timing of pubertal onset.  The outcomes 

studied here were specifically selected to explore changes in hormonally-sensitive 

development, so as to address the role of soy isoflavones as endocrine disruptors.   
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Particularly for Aim 1, the outcomes are subtle, and may not convey significant public health 

impact. However, all outcomes explored here do contribute to an understanding of soy 

exposure as an endocrine disruptor, which may have great public health impact given the 

prevalence of soy use in the American diet.  

This study utilizes a large, population based longitudinal cohort.  Applying the ALSPAC 

study data to this research question is efficient in many ways. Because of the large sample 

size, this study was able to identify a suitable number of soy exposed children, despite a low 

prevalence of use in the United Kingdom (UK) during the 1990s.  The ALSPAC study was 

also expertly designed to collect longitudinal and repeated measures data that were utilized 

here without the time or financial expense that is associated with other longitudinal studies.  

This study population has been shown to be generally representative of the UK on a 

range of demographic factors.  Thus, results from this study will be generalizable to the 

larger UK population, with the exception of Aim 2, where generalizablity is limited only to 

the white population.  The ALPSC population is also likely representative of “real world” 

soy use prevalence and patterns.  The patterns associated with infant feeding often involve a 

degree of mixing and switching between breast milk, and various types of infant formula.  

This behavior is reflected in this study. Most previous studies have been performed in 

randomized clinical trial settings.  While clinical trials are advantageous in many respects, it 

is also informative to be able to assess the effects of soy as it is actually used, provided 

careful controlling for confounding is possible.  

Outcome assessment for all study aims was a major strength of this study.  Word 

comprehension and production (MCDI, Aim 1.1) and gender role play behavior (PSAI, Aim 

1.2) were assessed efficiently through parent report.   Both instruments have been used 
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widely in other studies to explore developmental variability with respect to nutritional and 

environmental factors (3-8).  These instruments have also been shown to be reliable and valid 

(9, 10).   Any misclassification in outcome assessment is likely to be non-differential with 

respect to exposure status, meaning that any bias introduced by inaccuracies in outcome 

assessment should lead to overly conservative results.  In addition, the assessment of age at 

menarche in Aim 2 was well designed to improve upon previous studies of time-to-

menarche. Whereas many previous studies have relied largely on adult recall of age at 

menarche, our study used a series of puberty questionnaires that were administered 

approximately annually between ages 8 and 14 to assess the age in months that menarche 

occurred. This approach maximized the proximity of data collection to the actual menarche 

event, as well as the precision of the age estimate (months instead of years), and was thus a 

more reliable and useful method of outcome assessment than has been used in many previous 

studies.  

  The prospective nature of the ALSPAC study also allowed for quality exposure 

assessment.  Infant feeding habits were assessed at several time points in infancy.  The 6 

month assessment, which was predominantly used for our exposure assessment, occurred 

rather proximally to the time period of interest, and thus can be viewed as an accurate 

method of recall of early life infant feeding habits.  Our exposure definition also took into 

account the age at which children were introduced to the various formulas, as well as an 

implied duration of use (use at or beyond 6 months of age).  This definition is advantageous 

because it isolates subjects who used formula for at least one month from those who may 

have reported only “ever” using the formula.     
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 A final strength of this study, and of the ALSPAC study in general, is the availability 

of extensive covariate data.   While the potential for bias due to unmeasured confounding still 

persists, these analyses were able to adjust for most reasonably identified confounders.   

d. Limitations 

Despite being a very large prospective cohort, the proportion of infants using soy 

products in this sample is low compared to what might have been observed in other regions 

or time periods. The power to detect small changes in effect is therefore limited, and thus this 

study is only suited to detect moderate to large effects of exposure.  This limitation was 

particularly clear in the analysis of boys in Aim 1, but was also evident in consistently 

imprecise effect estimates, as indicated by wide confidence intervals.    

In addition, this study relied on questionnaire-based maternal report of both exposure and 

outcome. Some misclassification may result.  With respect to outcome misclassification, it is 

not likely that it occurred differentially across exposure groups, so any existing bias should 

be towards the null. Regarding exposure, reliance on questionnaire data is admittedly less 

than ideal.  Improvements in future studies should attempt to assess total isoflavone exposure 

through the use of biomarkers, as opposed to maternal report of feeding method.  Even 

within exposure categories, as they were defined in this study, there is potential for 

considerable heterogeneity of exposure to exist.  For example, the age of soy product 

initiation was shown to vary substantially across the first 4 months of life (Appendix Table 

A.1). However, subjects that started soy formula at birth and those that started at age 4 

months are treated as though they had identical exposures.  Our effect estimates, then, may 

be underestimating the effect of exclusive soy feeding from birth, or over estimating effects 

of moderate feeding that began several months later. 
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As mentioned previously, there is potential that our findings may be affected by some 

degree of unmeasured confounding.   Since only approximately 2% of our study sample 

included parents who chose to feed soy formula, it is possible that some unmeasured factor 

motivated parents to choose a somewhat rare feeding method.  It is also possible that this 

same unmeasured factor may have influenced cognitive and behavioral development, as well 

as other environmental and behavioral factors that influenced age at menarche.  While this 

study attempted to identify predictors of soy use (Appendix Table A.2), the examined 

covariates may not fully characterize personal characteristics of infants or parents, or 

parenting styles that may also have influenced development in soy fed children.  

Finally, given the longitudinal nature of this study, selection bias is important to consider 

as a potential limitation to this study.  For both aims, analyses were limited to subjects that 

had data on both the exposure and outcome.   This requirement limits the overall 

generalizablity of our study, in that our findings can only truly be generalized to subjects who 

would have stayed in this study long enough to complete all necessary questionnaires.  With 

respect to exposure status, this may have occurred differentially if a large proportion of soy 

users dropped out of the study before reporting soy use because they, for example, had a sick 

baby.  We therefore may only be capturing a select portion of actual soy users in this study.  

It is unlikely, however, among those with complete feeding data, that loss to follow up by 

outcome was differential by exposure group, since the proportion of subjects in each feeding 

group was consistent across the 3 analyses.   In Aim 2, loss to follow up after age 8 (subjects 

that contributed to the puberty assessment, but dropped out before reaching menarche) may 

be particularly problematic, as shown in the sensitivity analyses which indicate that these loss 
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to follow up individuals could possibly have biased our results.   However, such a bias would 

only exist if extreme assumptions applied to these individuals, which is unlikely.  

e. Implications 

Collectively, the research presented here provides a much needed and worthwhile 

contribution to the literature in the fields of endocrine disruptor research and pediatric 

epidemiology.  Using three distinct outcomes, we have demonstrated small associations 

between early life soy exposure and developmental effects among exposed girls.  This study 

was not sufficiently powered to detect small effects in the male study subjects.  Since this is 

the first study to look at several of these outcomes, it is premature to assert that early life soy 

exposure has a true effect on developmental outcomes.  However, our findings do provide 

groundwork for future studies of this kind. 

The findings presented here are novel, particularly with respect to language development 

and play behavior.  Again, it is not appropriate at this stage to make any sort of causal 

inference with respect to early life soy use and developmental outcomes, nor is it appropriate 

to make firm conclusions regarding the potential for soy isoflavones to act as endocrine 

disruptors based on this work.  Instead, this study should be regarded as a preliminary, 

hypothesis generating body of work. Future studies of infant feeding should integrate the 

novel research questions explored in these analyses into study protocols.  This is feasible, 

since the outcomes assessed here were low-cost and easily administered questionnaires. A 

greater body of knowledge on how early life feeding of soy based products affect subtle, sex-

specific developmental outcomes is needed to clarify the findings of this work, as well as to 

more fully understand the impact that early life soy exposure may have on the population 

level.    
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f. Future Directions 

This work suggests a need for future research on the effects of early life soy exposure.   

Future studies should identify a larger population of soy formula users from which to sample 

the study participants.  Ideally, biomarkers of isoflavone concentrations could be used to 

improved exposure classification.  Detailed, month to month feeding data would also be an 

improvement on the methods used here.  

In addition, to gain understanding of the overall biologic activity of soy products, it may 

also be interesting and useful in future studies to assess the effects of soy exposure in the 

prenatal period, as well as later in childhood.  Such studies would meaningfully contribute to 

the understanding of developmental periods of susceptibility for the outcomes assessed here.    
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Tables:  

Table A.1.  Age of introduction of soy product in early soy exposure group (n = 182) 

Age (months) of Soy 

Introduction 

N (%) 

0 35 (19%) 

1 20 (11%) 

2 30 (16%) 

3 41 (23%) 

4 56 (31%) 
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Table A.2. Covariate assessment by feeding group 

 

Breast Early Formula Early Soy Late Soy Total 

N* 1667 6298 183 288 8436 

Male Gender, n (%) 827 (49.6) 3263 (51.8) 109 (59.6) 158 (54.9) 4357 (51.7) 

Gestational Age, mean 

(SD) 39.8 (1.25) 39.8 (1.32) 39.9 (1.31) 39.8 (1.26) 38.36 (5.5) 

Birthweight, n(%) 

     ≥ 2500 g 1636 (99.3) 6115 (98.2) 173 (96.1) 278 (96.5) 13089 (98.4) 

<2500 g 12 (0.7) 112 (1.8)
B
 7 (3.9)

B,F
 6(2.1)

B
 812 (1.6) 

Birthweight, mean (sd) 

g 3537 (448) 3458 (472)
B,L

 3495 (531) 3544 (497) 3477 (470) 

Child Race, n (%) 

     White 1516 (95.0) 5638 (96.0) 165 (96.5) 256 (91.8) 7575 (95.7) 

Non-White 79 (5.0) 234 (4.0) 6 (3.5) 23 (8.2)
B,F,E

 342 (4.3) 

Breast Feeding Duration 
    Never 0 1494 (23.7) 42 (23.0) 26 (9.0) 1562 (19.5) 

<3 months 0 2456 (39.0) 58 (31.7) 55 (19.1) 2569 (32.1) 

3-<6 months 0 1231 (19.6) 35 (19.1) 34 (11.8) 1300 (16.3) 

6+ months 1667 (100) 695 (11.0)
B
 38 (20.8)

B,F
 

165 

(57.3)
B,E,F

 2565 (32.1) 

Mean (sd) months of 

BF 10.4 (3.2) 2.2 (2.8) 3.3 (3.9) 6.6 (4.8) 4.2 (4.5) 

BMI at age 8 

(TOTAL) 

     Mean (SD) 16.9 (2.4) 17.2 (2.5)
B,L

 17.4 (2.5) 16.6 (2.0) 17.1 (2.5) 

Missing * * * * * 

>85th percentile 

     BMI at age 8 (Girls) 

     Mean (sd) 16.9 (2.5) 17.4 (2.6)
L
 17.6 (2.6) 16.7 (2.0) 17.3 (2.6) 

>85th percentile 139 (23.9) 533 (28.7)
B,L

 15 (34.9)
L
 16 (18.8) 703 (27.4) 

BMI at age 8 (Boys) 

     Mean (sd) 16.9 (2.3) 17.0 (2.4) 17.3 (2.4) 16.6 (2.1) 16.9 (2.3) 

>85th percentile 123 (23.0) 461 (24.0) 17 (25.0) 21 (19.1) 622 (23.6) 

Infant Health Condition Reported by 6 Months, 

n(%) 

   

Colic 551 (34.9) 2411 (39.7)
B
 

103 

(59.2)
B,F

 

131 

(47.3)
B,F,E

 3196 (39.5) 

Earache 153 (9.7) 599 (9.9) 

28 (16.1)
B,F, 

L
 26 (9.4) 806 (10.0) 

Vomiting 391 (24.8) 1970 (32.5)
B
 80 (46.0)

B,F
 109 (39.4)

B,F
 2550 (31.5) 

Diarrhea 288 (18.2) 2200 (36.2)
B
 

80 (46.0)
B,F, 

L
 101 (36.5)

B
 2669 (33.0) 

Rash 603 (38.2) 2266 (37.3) 83 (47.7)
B,F

 151 (54.5)
B,F

 3103 (38.3) 

Cough 970 (61.4) 3987 (65.7)
B
 125 (71.8)

B
 194 (70.0)

B
 5276 (65.1) 

Wheezing 281 (17.8) 1289 (21.2)
B
 59 (33.9)

B,F
 80 (28.9)

B,F
 1709 (21.1) 

Suspected Hearing 

Problem 62 (4.0) 195 (3.2) 11 (6.4)
F
 13 (4.8) 281 (3.5) 

*Milk Allergy* 19 (1.2) 69 (1.1) 91 (52.3)
B,F,l

 58 (20.9)
B,F

 237 (2.9) 

LATER Milk Allergy 

(81M) - Yes 16 (1.4) 55 (1.4) 17 (14.9)
B,F

 29 (15.8)
B,F

 117 (2.1) 
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Table A2 continued 

4 weeks: Mom thinks crying is a problem 

   Yes/Sometimes 65 308 28 20 377 

No 1544 (96.0) 5696 (94.9) 
147 

(84.0)
B,F,L

 256 (92.8) 7643 (94.8) 

Maternal Perception of Infant 

Health 

    

Very Healthy 1034 (65.7) 3677 (60.8)
B
 

56 

(32.6)
B,F,L

 132 (48.2)
B,F

 4899 (60.7) 

Minor Problems 501 (31.9) 2195 (36.3) 93 (54.1) 130 (47.5) 2919 (36.2) 

Sometimes quite ill 34 (2.2) 133 (2.2) 16 (9.3) 9 (3.3) 192 (2.4) 

Mostly unwell 4 (0.3) 43 (0.7) 7 (4.1) 3 (1.1) 57 (0.7) 

Childhood Soy Consumption 

    Yes (Veget/Veg/High 

Soy Meat or Milk) 52 (4.4) 115 (2.8)
B
 12 (10.3)

B,F
 25 (12.3)

B,F
 5353 (96.3) 

No 1130 (95.6) 3939 (97.2) 105 (89.7) 179 (87.8) 204 (3.7) 

Pregnancy Vegetarian Status 

    Yes (at 32-40 weeks) 122 (7.6) 255 (4.3) 19 (11.1) 39 (14.0) 435 (5.4) 

No (does not excl. 

previous) 1474 (92.4) 5733 (95.7)
B
 153 (88.9)

F
 239 (86.0)

B,F
 239 (94.6) 

Maternal Smoking 

 (3rd Trimester)  n(%) 162 (10.1) 1227 (20.6)
B
 40 (22.6)

B
 51 (18.6)

B
 1480 (18.5) 

Maternal Smoking 

(Postnatal) n(%) 190 (11.9) 1463 (24.6)
B
 48 (27.1)

B
 60 (21.8)

B
 1761 (22.0) 

Maternal Race 

     White 1571 (97.6) 5888(98.2) 170 (98.8) 267 (95.0) 7896 (98.0) 

Non-white 39 (2.4) 106 (1.8) 2 (1.2) 14 (5.0)
B,E,F

 161 (2.0) 

Pre-pregnancy BMI, 

mean (sd) 22.4 (3.2) 23.1(3.9)
B,L

 22.8 (3.6) 22.3 (3.6) 22.9 (3.8) 

Maternal Age 

     Maternal Age, mean 

(sd) 30.1 (4.5) 27.9 (4.8)
B,E,L

 29.4 (4.7) 29.8 (4.7) 28.0 (5.0) 

Maternal Education 

     O-Level, Voc, CSE, 

None 726 (46.3) 3799 (66.6) 80 (47.6) 103 (37.5) 4708 (61.0) 

A-Level, Degree 841 (53.7) 1904 (33.4)
B
 88 (52.4)

F
 

172 

(62.6)
B,F,E

 3005 (39.0) 

Marital Status 

     Single  232 (14.9) 1203(20.6) 44 (26.2) 55 (20.2) 1534 (19.6) 

Married 1327 (85.1) 4629 (79.4)
B
 124 (73.8)

B
 217 (79.8)

B
 6297 (80.4) 

Maternal Age at Menarche 

(DERIVED) 

    <12 246 (16.7) 1084 (20.1) 38 (23.9) 36 (14.0) 1404 (19.3) 

12-<15 1032 (70.0) 3614 (67.2) 101 (63.5) 181 (70.2) 4928 (67.8) 

15+ 195 (13.2) 683 (12.7)
B,L

 20 (12.6)
L
 41 (15.9) 939 (12.9) 

Mean Mat. Age at Men 12.9 (1.5) 12.8 (1.5) 12.6 (1.5)
L
 13.0 (1.4) 12.8 (1.5) 

Maternal Parenting Score (18M)     

Mean (SD) 41.4 (4.2) 40.6 (4.6)
B
 40.7 (4.6) 41.0 (4.5) 40.7 (4.5) 

Maternal Interaction Score, 42 M     

Mean (SD) 29.1 (4.6) 28.5 (4.9)
B
 28.3 (4.6) 28.7 (4.5) 28.6 (4.8) 
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Table A.2 continued 

Partner Interaction Score, 42 M     

Mean (SD) 20.6 (7.4) 20.1 (8.2) 21.6 (7.5) 21.4 (7.2) 20.3 (8.0) 

Day Care (15M)      

Yes (%) 93 (6.0) 322 (5.7) 16 (9.5)
F
 23 (8.4) 454 (5.9) 

Day Care (42 M)      

Yes (%) 515 (35.6) 1902 (73.4) 68 (43.3) 106 (44.0)
B,F

 2591 (36.8) 

Older Sibling      

Yes (%) 990 (63.9) 2915 (51.6)
B
 103 (60.2)

F
 155 (58.5)

F
 4163 (54.5) 

Older Brother      

Yes (%) 613 (40.0) 1688 (29.9)
B
 66 (38.6)

F
 100 (37.7)

F
 2467 (32.3) 

Older Sister       

Yes (%) 572 (36.9) 1691 (29.9)
B
 55 (32.1) 81 (30.5)

B
 2399 (31.4) 

*Assessment performed before exclusions using 1 month data were applied, so sample sizes are 

slightly larger than that used in final analyses.  
B,F,L,E

 Indicate that a particular value is different from B (breast), F(formula), L (late soy), E (early 

soy) at the p<0.05 level.  
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Table A.3.  Girls‟ BMI Z-scores for age, by feeding group 

Feeding Group n 

Mean z-score 

(SD) 

Breast Referent 

β (95% CI) 

Early Formula Referent 

β (95% CI) 

Age 7     

Primarily Breast 550 0.06 (0.97) 0. -0.14 (-0.23, -0.05) 

Early Formula 1733 0.21 (0.96) 0.14 (0.05, 0.23) 0. 

Early Soy 47 0.18 (1.24) 0.11 (-0.17, 0.40) -0.03 (-0.31, 0.25) 

Late Soy 83 -0.06 (0.88) -0.13 (-0.35, 0.09) -0.27 (-0.48, -0.06) 

Age 8     

Primarily Breast 460 0.20 (0.94) 0. -0.16 (-0.25, -0.06) 

Early Formula 1515 0.35 (0.90) 0.16 (0.06, 0.25) 0. 

Early Soy 37 0.49 (0.86) 0.29 (-0.01, 0.60) 0.14 (-0.16, 0.43) 

Late Soy 71 0.10 (0.82) -0.10 (-0.33, 0.13) -0.26 (-0.47, 0.04) 

Age 9     

Primarily Breast 522 0.06 (1.03) 0. -0.20 (-0.29, -0.10) 

Early Formula 1746 0.25 (0.97) 0.20 (0.10, 0.29) 0. 

Early Soy 45 0.31 (0.91) 0.26 (-0.04, 0.56) 0.06 (-0.23, 0.35) 

Late Soy 79 -0.03 (1.01) -0.09 (-0.31, 0.15) -0.28 (-0.50, -0.05) 
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Table A.4: Distribution of covariate characteristics for lost to follow up subjects, across feeding group 

categories, and stratum-specific median follow up times.  

    

 Primarily 

Breast 

Early Formula Early Soy Late Soy Median Follow Up 

Time (IQR) 

Study Sample 124 513 8 13 140 (118 – 157) 

Birth Weight      

≤ 2500g 2 (1.7) 8 (1.6) 0 0 140 (140 - 141) 

>2500g 119 (98.4) 498 (98.4) 8 (100) 13 (100) 140 (117 – 157) 

Missing 3 7 0 0  

Breast Feeding 

Duration 

     

None 0 152 (29.6) 2 (25) 1 (7.7) 129 (116 – 141) 

<3 mo 0 222 (43.3) 2 (25) 2 (15.4) 140 (119 – 157) 

3-<6 mo 0 95 (18.5) 3 (37.5) 0 140 (118 – 157) 

6+ mo 124 (100) 44 (8.6) 1 (12.5) 10 (76.9) 140 (117 – 157) 

Missing 0 0 0 0  

Mean (SD) (mo) 10.3 (3.0) 1.9 (2.7) 3.6 (5.3) 7.4 (5.0)  

Pre-pregnancy BMI      

≥ 25 18 (15.7) 107 (23.1) 1 (14.3) 2 (15.4) 132 (124 – 141) 

  < 25 97 (84.4) 356 (76.9) 6 (85.7) 11 (84.6) 140 (117 - 157) 

Missing 9 50 1 0  

Mean (SD)  22.6 (3.1) 23.2 (4.1) 24.3 (6.5) 23.1 (8.1)  

Maternal Age at Menarche     

8-11 20 (17.5) 75 (17.0) 1 (16.7) 1 (9.1) 140 (118 – 141) 

12-14 77 (67.5) 295 (66.7) 3 (50.0) 9 (91.8) 140 (118 – 157) 

15+ 17 (14.9) 72 (16.3) 2 (33.3) 1 (9.1) 140 (115 – 157) 

Missing 10 71 2 2  

Mean (SD)(y) 12.9 (1.6) 13.0 (1.5) 13.0 (1.7) 13.1 (1.4)  

Prenatal Smoking      

Yes 13 (11.0) 108 (22.2) 3 (37.5) 4 (30.8) 137 (117 – 141) 

No  105 (89.0) 379 (77.8) 5 (62.5) 9 (69.2) 140 (118 – 157) 

Missing 6 26 0 0  

BMI for age, age 7-9      

>85
th

 

Percentile  

19 (17.9) 119 (26.9) 1 (14.3) 3 (27.3) 128 (115 – 141) 

≤ 85
th

 Percentile 87 (82.1) 324 (73.1) 6 (85.7) 8 (72.7) 140 (128 – 157) 

Missing 18 70 1 2  

Infant Health at 6 

months 

     

Very Health/ Minor 

Problem 
114 (98.3) 477 (96.8) 5 (71.4) 13 (100) 140 (117 – 157) 

Sometimes ill/ Mostly 

unwell 
2 (1.7) 16 (3.3) 2 (28.6) 0 134 (117 – 141) 

Missing 8 20 1 0  

Maternal Age      

Mean (y) 29.3 (4.8) 27.7 (4.6) 30.9 (4.7) 29.5 (5.7)  

IQR: Inter-quartile Range  
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Discussion: 

Table A.1 describes the distribution of ages at which early soy users initiated soy product use.  

The distribution across these ages suggests a large amount of heterogeneity in the age of introduction 

to soy.  This may have implications with respect to conclusions that can be drawn from this exposure 

group.  

Table A.2 assesses the association between covariates that are associated with various 

developmental outcomes measured in this analysis, and infant feeding group.  The primary interest, 

given the aims of this study, are covariates that are associated both with the outcomes of interest and 

also with a differential distribution between early soy and early formula use.  However, since all 

feeding groups were included in models, a covariate with a differential proportion in any of the 

feeding groups will be considered as a potential confounder of the whole model.   Differences across 

feeding groups were assessed via pairwise chi-squared tests for categorical variables, and ANOVA 

with tukey adjustment for multiple comparisons for continuous variables.  

Breastfeeding duration was variable across all feeding groups. All “formula” groups (early 

formula, early soy, late soy) had a higher prevalence of prenatal smoking and “single” marital status 

than the primarily breastfed.   

 Early Soy differed from other feeding groups in the proportion of male births, low birth weight, 

girls with BMI above the 85
th
 percentile at age 8 (vs. late soy only), most infant health variables, 

infant crying, maternal perception of infant health, childhood soy consumption, maternal prenatal 

vegetarian status (vs. early formula only), day care attendance at 15 months (vs. formula only), and 

presence of any sibling or an older brother (vs. formula only).  Mothers in the early soy group also 

had an earlier age at menarche, compared to the late soy group.  

Early formula feeders had a lower level of maternal education and lower maternal age than all 

other feeding groups.  They also had lower maternal parenting and interaction scores (vs. primarily 

breast), higher pre-pregnancy BMI (vs. primarily breast and late soy), lower birth weight (vs. 

primarily breast and late soy), and a higher proportion of girls with BMI above the 85
th
 percentile, as 
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compared to the primarily breast fed. .  They had higher proportions of childhood illnesses reported 

than the primarily breast fed group, but less than the early soy group.  

The late soy group had a higher proportion of non-white subjects compared to all other feeding 

groups. Compared to the primarily breast and early formula groups, the late soy group had a higher 

proportion of vegetarian mothers.  They also had a lower proportion of subjects in day care at 42 

months, compared to the early soy group, and a higher proportion for the same variable, compared to 

the primarily breast fed group. Partner interaction scores at 42 months of age was not associated with 

any feeding group.  

In Table A.3, it is show that there is no statistical difference in BMI z-score at ages 7, 8 

and 9 between the early formula and early soy exposure groups among girls.  Early formula 

fed girls do appear to be heavier than breast fed girls, in general.  

In Table A.4, the stratum-specific distributions of lost to follow up subjects across 

feeding groups is broadly similar to the distributions of the sample population, as shown in 

Table A.2.  These relationships were not evaluated for statistical difference, and it is noted 

that the number of lost to follow up subjects are small in the early and late soy groups, so it is 

difficult to draw inferences from their distributions as shown here.   

The median follow up time contributed by lost to follow up subjects is 140 months (IQR: 

118 – 157).  The distribution of follow up times within strata of each covariate is similar in 

most cases.  Exceptions include shorter follow up time for subjects that did not breastfeed, 

who had high pre-pregnancy BMI, who smoked prenatally, had high BMI for age, and were 

ill as infants.  

 

 

 


