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ABSTRACT

SUSHANT REWASKAR: Real World Evaluation of Techniques for Mitigating the
Impact of Packet Losses on TCP Performance.

(Under the direction of Jasleen Kaur)

The real-world impact of network losses on the performance of Transmission Control Protocol

(TCP), the dominant transport protocol used for Internet data transfer, is not well understood. A

detailed understanding of this impact and the efficiency of TCP in dealing with losses would prove

useful for optimizing TCP design. Past work in this area is limited in its accuracy, depth of analysis,

and scale. In this dissertation, we make three main contributions to address these issues: (i) design

a methodology for in-depth and accurate passive analysis of TCP traces, (ii) systematically evaluate

the impact of design parameters associated with TCP loss detection/recovery mechanisms on its per-

formance, and (iii) systematically evaluate the ability of Delay Based Congestion Estimators (DBCEs)

to predict losses and help avoid them.

We develop a passive analysis tool, TCPdebug, that accurately tracks TCP sender state for many

prominent OSes (Windows, Linux, Solaris, and FreeBSD/MacOS) and accurately classifies segments

that appear out-of-sequence in a TCP trace. This tool has been extensively validated using controlled

lab experiments as well as against real Internet connections. Its accuracy exceeds 99%, which is double

the accuracy of current loss classification tools.

Using TCPdebug, we analyze traces of more than 2.8 million Internet connections to study the

efficiency of current TCP loss detection/recovery mechanisms. Using models to capture the impact of

configuration of these mechanisms on the durations of TCP connections, we find that the recommended

as well as widely implemented configurations for these mechanisms are fairly sub-optimal. Our analysis

suggests that the durations of up to 40% of Internet connections can be reduced by more than 10% by

reconfiguring prominent TCP stacks.

Finally, we investigate the ability of several popular Delay Based Connection Estimators (DBCEs)

to predict (and help avoid) losses using estimates of network queuing delay. We find that aggressive

predictors work much better than conservative predictors. We also study the impact of connection

characteristics—such as packet loss rate, flight size, and throughput—on the performance of a DBCE.
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We find that high-throughput connections benefit the most from any DBCE. This indicates that DBCEs

hold significant promise for future high-speed networks.
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CHAPTER 1

Introduction

The important thing in science is not so much to obtain new facts as to discover new
ways of thinking about them.

— Sir William Bragg (1862–1942)

It requires a very unusual mind to undertake the analysis of the obvious.

— Alfred North Whitehead (1861–1947)

1.1 Thesis Goals

The end-to-end principle of network design argues for the implementation of most features required

only by an end-to-end protocol at end-hosts and not in routers [SRC84]. Based on this argument, the

Internet was designed with a network core primarily concerned with a best-effort transfer of packets

between end-systems. Any application that requires additional features such as reliable delivery of

packets needs to rely on an end-to-end protocol. Such a protocol has to deal with the unreliable

nature of the underlying Internet infrastructure by detecting packet losses and recovering from these.

Transport Control Protocol (TCP) is the most popular of such protocols. It accounts for more than 80%

of the traffic on the Internet [tcpb, TMW97, CMT98]. Given its wide-spread usage, TCP performance

arguably governs the performance of Internet transfers.

It is generally accepted that network packet losses can adversely affect the performance of a TCP

connection. Packet losses influence two important aspects of TCP - reliable delivery and congestion

control. To understand how, lets consider how TCP implements these. A TCP sender assigns a sequence

number to every packet it sends to a receiver and expects a positive acknowledgment (ack) for it. In

the absence of an ack from the receiver, the sender assumes that the packet is lost and retransmits

it — this is termed as loss recovery. TCP is a sliding-window based protocol in which the size of



the window determines the maximum number of outstanding unacknowledged packets in the network.

While TCP is waiting for an ack for a lost packet, it is unable to send out new data (because of the

window limit), thereby stalling the data transfer. Also, when TCP detects a loss, it assumes that

the loss is due to congestion on the network; in order to reduce the load on the network, it reduces its

window size and further witnesses degradation in its throughput. A degradation in throughput can also

be characterized as an increase in the time taken to transfer all data, referred to as the response time.

The above description argues that packet losses have the potential to significantly increase response

time.

While the above argument is well established and it is generally believed that losses do impact TCP

performance, the extent to which they do so in the real world is not well understood. The impact of

losses on TCP’s performance can be understood by studying two different interactions between TCP

and losses – (i) TCP’s efficiency in detecting packet losses when they occur and (ii) TCP’s efficiency in

predicting and hence avoiding losses when possible. We look at each of these below.

• Ability of TCP to detect losses: Two performance-related goals guide the design of TCP’s de-

tection mechanisms. First, TCP should accurately identify segment losses. In particular, if TCP

erroneously infers that a segment was lost, it would unnecessarily invoke loss recovery which in-

creases the connection duration. Second, TCP should quickly identify segment losses. A longer

detection period would result in longer stalling periods for the connection while it waits for an

ack. This would adversely impact the connection duration as well. Unfortunately, these two

goals conflict with each other. A “quick” inference of segment loss would also be erroneous when

segments (or their acks) are not lost but merely delayed or reordered in the network. To achieve

high loss-estimation accuracy, therefore, TCP would necessarily have to wait longer for acks that

may merely be delayed.

This fundamental tradeoff between accuracy and timeliness is controlled by several design param-

eters associated with TCP’s loss detection mechanisms. While the proposed standards for TCP

recommend values for each of these parameters, TCP implementations in prominent Operating

Systems (OS) stacks differ (sometimes significantly) in the values used. This naturally raises two

questions regarding the state of loss detection in real world TCP connections: (i) how does the

configuration of TCP loss detection impact the performance of Internet TCP connections, and (ii)

Are the recommended values for these parameters optimal in reducing the connection duration?

In this thesis, we address these questions. Specifically, our goal is to:
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– Study the accuracy and timeliness of TCP loss detection/recovery in real world TCP con-

nections originating from prominent sender-side OSes, and

– Study the impact of changing parameter configurations on the overall durations of real world

connections in order to identify the best parameter settings.

• Ability of TCP to predict losses: In order to avoid the heavy penalty associated with packet

losses, several studies have looked at alternate network signals, such as packet delays, to detect

congestion [Jai89, WC91, WC92, BOP94, AR98, MNR03, WJLH06, YQC04, LSM+07]. These

schemes rely on Delay Based Congestion Estimators (DBCEs) that assume that during periods

of congestion, the packets of a connection would experience higher queuing delays than normal

at the congested link – this should translate to an increase in packet round-trip times (RTTs).

So by sampling per-packet RTTs, and comparing them to a base RTT (measured in the absence

of congestion), a DBCE infers the onset as well as alleviation of congestion. More relevantly, a

DBCE expects to avoid most packet losses by doing so. The success of the DBCEs, however,

depends on the basic premise that the DBCEs can accurately predict the occurrence of losses.

Unfortunately, the validity or invalidity of this premise has not been demonstrated convincingly.

Specifically, most DBCE evaluation assume that delay is “always” an indicator of congestion.

However, this assumption may be too strong given that the end-to-end delay signal may be too

noisy due to several network and connection characteristics such as queuing at multiple routers,

ack compression [ZSC91], and insufficient sampling of network delay information. The extent of

the reliability of the delay signal and its relationship with network and connection characteristics

in the real Internet needs to be understood to correctly interpret this signal.

Our objective is to

– Systematically evaluate the ability of different Delay Based Congestion Estimators (DBCEs)

to accurately predict losses.

– Study the impact of connection characteristics on the performance of DBCEs

Note that our prime objective is to address the issues raised above in the context of “real-world” TCP

transfers. One promising approach for doing this is to passively analyze traces of real world connections

collected from production Internet links. The main challenge in using this approach is that the packet

traces are simply a sequence of packets on the network and they do not directly carry information

about the configuration or state of end-host TCP mechanisms. This is particularly challenging because
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end-hosts differ in the configuration and variant of TCP used and a packet trace originating from a

host does not directly indicate which one is being used.

Hence, it is our objective in this dissertation to first develop passive analysis techniques that can

result in an in-depth analysis of TCP reliability mechanisms by studying Internet packet trace

1.1.1 Summary of Dissertation Objectives

• Study the accuracy and timeliness of TCP loss detection/recovery in real world TCP connections

originating from prominent sender-side OSes, and

• Study the impact of changing parameter configurations on the overall durations of real world

connections in order to identify the best parameter settings.

• Systematically evaluate the ability of different Delay Based Congestion Estimators (DBCEs) to

accurately predict losses.

• Study the impact of connection characteristics on the performance of DBCEs

• Develop a passive analysis tool for accurate and in-depth analysis of real world TCP connections.

In the rest of the chapter, I will briefly describe our approach for developing a passive analysis tool.

I will then formulate the problem of analyzing and improving TCP loss detection and prediction. I will

conclude this chapter with my thesis statement, a summary of major contributions and an overview of

the rest of the dissertation.

1.2 Passive Analysis of TCP Traces

1.2.1 Benefits of Passive Analysis

The main approach of this dissertation is to conduct passive analysis of Internet TCP connections

to understand their behavior in the real world. Passive analysis offers several key advantages. A single

observation point provides access to a large number of connections that traverse different paths and

experience widely different network conditions. Passive monitoring offers simpler logistics and lower

overhead than conducting active network measurements; this is because it neither relies on a distributed

measurement infrastructure nor does it inject additional probe traffic on the paths to be studied.
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1.2.2 Challenges of Passive Analysis

Passive analysis present two significant challenges. First, with ever-increasing traffic volumes carried

by Internet links, the collection, storage, and analysis of packet traces presents logistical as well as

computational constraints. Passive analysis techniques, therefore, need to be designed to be able to

operate with such constraints. The second challenge is that passive analysis does not allow any direct

control over either the end-system mechanisms or the network and traffic conditions experienced by

the traffic; one can simply observe what occurs. This makes it difficult to answer “what if” type of

questions.

To see how these challenges impact our work, recall that the main goal of this dissertation is to

study TCP’s efficacy in recovering from and in predicting packet losses. This goal requires that our

passive analysis should be able to: (i) identify all occurrences of packet losses in a given TCP connection

trace, (ii) study the efficiency of the corresponding TCP sender’s loss detection/recovery mechanisms

in dealing with these losses, and (iii) study the ability of TCP to predict such losses. All three of these

steps must address the first issue by making sure that the analysis is completed in a single-pass through

a trace and does not require excessive memory or intermediate storage. The second and third steps also

require that we be able to, respectively, modify loss detection/recovery mechanisms and introduce loss

prediction mechanisms at the TCP sender corresponding to each trace, and then study the impact on

connection performance. With passive analysis, we can do this only by relying on a “semi-experimental”

approach, wherein we develop models to capture the above interaction.

We develop a passive analysis tool called TCPdebug that achieves the first of the above steps. Below

we describe our methodology for developing TCPdebug.

1.2.3 Developing TCPdebug

Since TCP itself uses several detection/recovery mechanisms like – retransmission timeouts (RTO) [APS99]

, Fast retransmit/recovery (FR/R) [Ste97], Partial Acks (PA), Selective Acks (SACK) – to detect losses,

the simplest (and common) approach for inferring segment loss is to simply look for the reappearance

of some segments in the TCP packet trace and assume that the original packet was indeed lost in

the network [KSE+04]. However, this approach can lead to over-estimation of losses. TCP maintains

limited state information and hence is not able to always correctly determine if a packet is actually lost

in the network or not. This is especially true after a timeout as a TCP sender resets its state after
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a timeout. In order to reliably infer packet losses from all segments retransmissions, it is important

to track the explicit triggering of TCP’s loss detection mechanisms—namely, RTO, FR/R, PA, and

SACK.

It turns out that even simply tracking the triggering of loss detection/recovery mechanisms in a TCP

sender—as is done in [JID+04]—is not sufficient for reliably inferring packet losses. This is because of

two reasons related to TCP’s inability to accurately infer packet losses:

• Some losses do not trigger TCP’s loss detection phases: If multiple packets are lost

together, the first packet is detecting using TCP’s detection mechanism while the subsequent

packet retransmissions may be triggered in some versions of TCP using implicit signals like Partial

ack (PA) [FHG04]. It is, thus, important to identify implicit retransmissions that are needed

for recovering from packet losses. It should be noted that if the history about all previously

transmitted data packets is maintained, the ACK stream can help to identify such retransmissions.

• A TCP sender may incorrectly infer packet losses: TCP may retransmit a packet too

early if its RTO computation is not conservative. Furthermore, some packet re-ordering events

may result in the receipt of duplicate acks, triggering a loss detection/recovery phase in TCP. It

is, therefore, important to identify explicit retransmissions that are not needed for recovering

from packet losses.

The final significant issue is due to the diversity among real-world operating systems (OSes) in the

implementation and configuration of TCP loss detection/recovery mechanisms. This diversity poses two

types of challenges. First, the details of most of these implementations are either not well-documented

or are hidden behind proprietary code. Second, given a TCP connection trace, it is not clear which

sender-side implementation it corresponds to. Hence, it is important to extract details of TCP loss

detection/recovery from prominent TCP implementations and to develop techniques for identifying the

sender-side OS for a given packet trace.

Basic Approach: Our approach for achieving the first three requirements derived above is based on

the belief that if sufficient state about previously transmitted packets are maintained, then subsequent

patterns in the data and ACK streams of a TCP connection can help with accurate analysis. Second, we

also believe that details of sender-side loss detection/recovery implementations in prominent OSes can

be extracted by subjecting each to controlled patterns of loss and delay and by analyzing the observed
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behavior. The extracted behavioral signatures can also help in identifying the sender-side OS for an

arbitrary Internet trace. Thus, our basic approach for passive inference of TCP losses is as follows: (i)

Use reverse-engineering to extract the implementation details of loss detection/recovery in four promi-

nent TCP stacks (Windows XP, Linux 2.4.2, FreeBSD 4.10 (MacOS), and Solaris) by experimenting

with these in a controlled lab setting, (ii) Replicate the loss detection/recovery mechanisms in four OS-

specific analysis state machines—these state machines use the data and ACK streams, (iii)Augment

these machines with extra logic and state about all previously-transmitted packets in order to classify

retransmissions as needed or unneeded and to infer packet losses with accuracy greater than TCP, and

(iv) Run each connection trace against all four machines and use the analysis results from the one that

can explain and classify all of the observed out-of-sequence (OOS) segments.

1.3 TCP Loss Detection

Using TCPdebug , our first objective is to analyze the efficiency of TCP loss detection mechanisms.

Below, we review these mechanisms and formulate the problem of analyzing these.

Loss detection mechanisms: TCP senders assign sequence numbers to all data bytes transmitted

and receivers use cumulative acknowledgments (ACKs) to confirm receiving these. Senders detect

segment losses using two types of mechanisms that rely on the ACK stream: retransmission timeouts

(RTOs) [APS99] and fast retransmit/recovery (FR/R) [Ste97]:

RTOs: TCP sets a timer to expire after an RTO-amount of time when a segment is transmitted; if

the ACK for a segment is not received before the timer expires, the sender concludes that the

segment was lost. The value of RTO is determined using the relation: RTO = m ∗ srtt + k ∗

rttvar, where srtt is a moving average of the connection round-trip time (RTT), computed as:

srtt = (1 − b) ∗ srtt + b ∗ rtt; rttvar is a moving average of the variability in RTT, computed

as: rttvar = (1 − a) ∗ rttvar + a ∗ |srtt − rtt|; a, b, m, k, are positive constants and a, b ∈ [0, 1].

The value of RTO increases with m and k, whereas a and b determine the weight given to history

when RTT is quite variable. The actual value of the RTO timer is set to a predetermined value,

minRTO, if the value computed above is smaller than minRTO. The above formulation is

intended to compute an RTO that is greater than the current RTT, in order to avoid inferring

loss of segments for which the ACK is merely delayed. Since RTT variability can be high, the

value of RTO can be high, especially with the recommended settings for the five parameters,
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a, b, m, k, minRTO [PA00]—RTO-based loss detection can, therefore, be time-consuming.

FR/R: FR/Rs are a faster means of detecting losses—if a segment is lost, segments with higher

sequence numbers trigger duplicate (cumulative) ACKs for its preceding segment. Hence, when a

sender receives duplicate ACKs for a segment, it can conclude that the next higher segment was

lost. However, reordering of segments by the network can also trigger the generation of duplicate

ACKs. In order to avoid erroneously inferring loss in such cases, TCP senders usually wait for

D > 1 duplicate ACKs [Ste97] before concluding a segment loss.

TCP receivers may also use selective acknowledgments (SACKs) or Partial acks (PA) for informing

the sender of missing segments—this helps quickly detect subsequent losses when multiple segments are

lost.

When loss is detected, segments are immediately retransmitted. Loss recovery is also accompanied

by a reduction in TCP sending rate—the reduction is quite significant for RTO-based loss detection.

The invoking of loss detection/recovery can thus be quite costly in terms of connection duration1.

Factors affecting the loss detection efficacy: The exact cost of loss recovery depends on the

choice of values for each of the 6 parameters associated with loss detection: D, a, b, m, k, minRTO. Two

performance-impacting goals guide the optimal setting of these parameters:

• High accuracy of loss detection: First, a TCP sender should be accurate when it identifies segment

losses. If TCP erroneously infers that a segment was lost, it would unnecessarily invoke loss

recovery, reduce its sending rate and hence increase the connection’s duration.

Accuracy of FR/R-based loss detection can be improved by selecting a larger value of D, the

duplicate ACK threshold—a larger D would help avoid spurious retransmissions when duplicate

ACKs are generated not by segment losses, but by mere segment reordering in the network.

Accuracy of RTO-based loss detection can be improved by selecting a larger value of RTO, which

is determined by the parameters a, b, m, k, andminRTO—a larger RTO would help avoid spurious

retransmissions when segments or their ACKs are not lost, but merely delayed in the network.

• Timeliness of loss detection: Second, a TCP sender should quickly identify segment losses. The

longer a sender takes to detect a loss, the more is the opportunity lost for sending new data and

1Throughout this paper, we define the connection duration of a TCP connection as the total duration of the connection
(the time taken to complete all data transfers). This includes user think times for applications that use persistent TCP
connections.
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Parameter Linux Windows FreeBSD Solaris
Timer granularity 10ms 100ms 10ms 10ms
Initial RTO (s) 3 3 3 3.375
minRTO (ms) 200 200 1200 400

a 0.25 0.25 0.25 0.25
b 0.125 0.125 0.125 0.125
m 1 1 1 1.25
k 4 4 4 4
D 3 2 3 3

RTO srtt + srtt + srtt+ 1.25*srtt +
vartt 4*rttvar 4*rttvar 4*rttvar

Table 1.1: Values of key parameters in different TCP Stacks. Timer granularity is the granularity
of clock used in the OS to measure RTT and RTO. Initial RTO is the initial value of RTO used.
minRTO is the minimum value of the RTO permitted by the OS. a, b, m, k are the parameters of
RTO equation used by the OS. D is the dupack threshold used by the OS. RTO equation is the
outline of the equation used by the OS.

reducing the connection duration. This is especially true for RTOs, which have long detection

times—these can be reduced by selecting a smaller value of RTO.

The loss detection times for FR/R can also be reduced slightly by selecting a smaller value for

D—in this case, the sender has to wait for a smaller number of duplicate ACKs before it can

infer a loss. However, much more significantly, a smaller value of D enables more losses to be

discovered using FR/R, rather than RTOs—this is especially true for small connections that do

not transmit enough segments to generate the required number of duplicate ACKs. Given that

RTO-based loss recovery is more costly than FR/R-based recovery, this further helps improve

connection durations.

It is apparent from the above discussion that the goals of accuracy and timeliness of loss detection

impose conflicting requirements on the values of the design parameters—accuracy requires the RTO and

D to be large, while timeliness requires these to be small.

The proposed standards for TCP recommend values for each of these parameters [PA00, Ste97]—

however, these recommendations are based on empirical evidence collected more than a decade ago.

Furthermore, real world TCP implementations differ, sometimes significantly, in their default settings

of these parameters (see Table 1.12). This naturally raises two important questions regarding the ef-

ficacy of TCP loss detection/recovery: Are the parameter settings in different TCP implementations

working well in reducing connection durations? Are the decade-old recommended settings in the TCP

standards optimal for the current Internet? These questions have been partially addressed in a couple

2For Linux, the threshold D is actually adaptive based on the amount of reordering seen in the network
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of key studies described below – however, most studies were conducted nearly a decade ago; conse-

quently, these do not incorporate diversity in properties of real world TCP implementations, Internet

paths, and application behavior. More importantly, no previous study has modeled the impact of TCP

configuration on the overall connection durations of TCP connections.

In this dissertation we answer these questions using a two pronged approach. First, we study

the current state of the TCP packet loss detection/recovery mechanisms in an OS sensitive manner.

Second, we evaluate different parameter settings to identify the optimal setting to achieve best possible

connection duration in real world connections.

1.4 TCP Loss Prediction and Avoidance

While the previous section discusses the possibility of detecting and recovering from losses efficiently,

an alternate (and perhaps more desirable) approach would be to predict upcoming losses and react to

avoid these from occuring. We next study ability of TCP to predict losses. Below, we discuss the

advocated use of delay for predicting losses and formulate the problem of analyzing these predictors.

Ability of delay signals to predict losses: In order to avoid packet losses and the associated

performance costs of TCP loss-recovery, several Delay-based Congestion Estimators (DBCEs) have been

proposed [Jai89, WC91, WC92, BOP94, AR98, MNR03, WJLH06, YQC04, LSM+07]. These DBCEs

rely on the assumption that during periods of congestion, packets within a connection will experience

higher queuing delays at the congested link—this should translate to an increase in packet round-trip

times (RTTs). By sampling per-packet RTTs, and comparing them to a base RTT value (measured in

the absence of congestion), a DBCE infers the onset as well as alleviation of congestion. The hope is

that DBCEs can detect the onset of congestion much earlier than the occurrence of packet loss and the

corresponding congestion avoidance (CA) mechanisms can potentially avoid the loss. Existing DBCEs

differ primarily in the RTT-derived metric and the base metric used for estimating congestion.

The performance of a DBCE is governed by how well it can predict congestion and help avoid packet

loss. Specifically, two factors determine the overall efficacy of a DBCE:

• Ability to predict losses: Packet losses have been shown to significantly impact the durations of

TCP connections, mainly due to the time spent in loss detection/recovery [RKS07a]. The larger
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the fraction of losses in a connection that can be predicted and avoided3, the larger the likely

reduction in connection duration.

• Ability to avoid false predictions: Note that an aggressive DBCE that signals congestion most

of the time is likely to predict more losses. However, the corresponding CA mechanism would

react to this signal and keep reducing the connection send rate—even when no loss is likely to

happen—and degrade the connection duration. Thus, the lower the rate of false loss predictions

made by a DBCE, the better the connection duration is likely to be.

Unfortunately, due to the inherent noise in TCP RTT estimates, the two factors mentioned above

are often in conflict with each other. An aggressive DBCE is likely to predict more losses, but also

have a high rate of false predictions. On the other hand, a conservative DBCE will seldom give false

predictions, but would miss out on many losses. Consequently, it is natural to ask: how well do existing

DBCEs perform along these two factors? And perhaps more importantly, what DBCEs perform the

best in terms of achieving maximum reduction in connection duration?

Secondly, the loss prediction ability is also a characteristic of the connection and the network. A

connection that consumes a significant portion of bandwidth on a congested link is likely to witness high

correlation between the losses and end-to-end delays. On the other hand, connections that traverse a

highly multiplexed path and occupy only a small fraction of the link bandwidth may witness low

correlation. In our evaluation of DBCEs, therefore, we would also like to address the question,: what

connection and network properties affect the performance of a DBCE in real-world TCP transfers?

While DBCEs have been evaluated in the past [JWL03, PJD04, BV03, MNR03, BV98a, BV98b], the

issue of what DBCEs are likely to improve the overall timeliness performance of TCP connections has

not been adequately addressed. To understand these issues we first conduct a comprehensive evaluation

of several prominent DBCEs. Our evaluation explicitly models the impact of a DBCE on the duration

of these connections. Next, we study the characteristics of these connections in order to analyze their

influence on the efficacy of delay-based congestion estimation.

3Note that a DBCE can aid in merely predicting losses; a corresponding CA mechanism is expected to additionally
help avoid the impending loss. We discuss this assumption in more detail later.
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1.5 Thesis Statement

While it is generally accepted that TCP, the most popular transport protocol in use in the Internet,

is adversely affected by the packet losses on the network, the actual impact of these losses on TCP

performance in the real world is not well understood. Furthermore, the ways to mitigate this impact

have not been systematically evaluated. In this dissertation, I carry out a systematic evaluation of the

impact of packet losses on real world TCP connections and also evaluate two approaches to mitigate

the impact of losses, namely (i) optimizing the configuration of current loss detection algorithms and

(ii) evaluating the efficacy of delay signals in predicting losses. This dissertation develops a detailed

OS-sensitive passive analysis tool to facilitate the above analysis.

The main theses of my dissertation are as follows

• Real world TCP connections can accurately be analyzed to study the impact of packet losses on

TCP.

• We can improve upon the recommended and in use configurations of TCP loss detection param-

eters to improve TCP performance.

• Aggressive DBCEs can help in predicting the packet losses for connections with high throughput

but have limited use for other connections.

1.6 Contributions

The main contributions for this dissertation are as follows

• We developed a detailed, OS-sensitive passive analysis tool (TCPdebug) for accurate classification

of retransmission in a TCP connection. We carefully validated the tool using both controlled

and real world test cases and found it to be accurate in 99+% of cases. To the best of our

knowledge, TCPdebug is the only OS-sensitive tool available for passive TCP analysis. We have

made significant advances by explicitly including TCP implementation-specific factors for those

operating systems that are currently (and likely to be for the foreseeable future) the dominant

end points for TCP connections (Windows, Linux, Solaris and FreeBSD/Mac OS X). While many

of the trace analysis insights used in the tool are not new, this is the first time all have been
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integrated into a single, carefully validated tool. We have also been careful to cover many of

the “corner cases” and boundary conditions that are missing in prior work, choosing to rely on

explicit sender-state tracking rather than approximations or heuristics where possible.

• Using TCPdebug we analyzed a large number of diverse traces to provide a detailed view of

current state of losses in the Internet. We find that while a large percentage of connections do

not experience any loss at all. For connections that do experience losses, the main detection

mechanism used to detect these losses is RTO and not FR/R. The main cause of prevalence of

RTO is the small flight sizes of typical connections, which do not generate significant duplicate

ACKs to trigger FR/R based loss detection. Finally, we find that a significant number (3.7-19%)

of all retransmissions are unnecessary as the packets are not actually lost.

• We performed a detailed analysis of TCP loss detection using TCPdebug. Specifically, we study

the impact on connection performance of the configuration of parameters associated with TCP

loss detection. To facilitate this analysis, we develop models to capture the impact of change in

each parameter setting on the total duration of a connection. Based on this analysis we conclude

that:

– Most of current implementations of RTO estimators are conservative in incorporating vari-

ability in TCP RTT. Reducing the influence of RTT variability can help significantly reduce

the connection durations of TCP connections.

– Unlike in the past, timer granularity and the minimum RTO no longer significantly limit

connection performance.

– Based on our analysis of a large number of connections, we found that the best-performing

configuration of TCP loss detection can be obtained by lowering the value of K from current

default value of 4 to 2 and making the dupack threshold D adaptive according to the rule

D = max{1, min{3, F − 2}} where F is the current flight size of the connection.

– The Linux RTO estimator converges fast and is the most efficient. If properly configured,

this estimator has the greatest potential for improving connection durations.

• We evaluated the ability of several prominent DBCEs to predict losses. We developed analytical

models to passively predict the impact of these predictions/mis-predictions on the connection

duration. We find that

– CIM is the overall best estimator. It is likely to reduce the duration of large connections

significantly.
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– The estimator used by the prominent Vegas protocol is fairly conservative. It has almost

no impact on the performance of TCP connections that do not transmit large flights of

segments.

– Tri-S and DECA are two estimators which, in most cases, worsen connection performance.

• Finally, we study the influence of connection characteristics on the performance of DBCEs. We

find that connections with a high throughput and large flight sizes are likely to benefit the most

from any DBCE . Connections which have very few packets in flight are least likely to see any

improvement in their performance.

1.7 Overview

In Chapter 2, we first discuss the basic functioning of TCP, its congestion control algorithm and

alternate congestion control algorithms. Next we present a survey of various passive and active analysis

tools. Finally, we summarize research on TCP analysis as well as modeling of TCP performance.

Chapter 3 presents our tool TCPdebug. In this chapter we present the basic approach for the tool,

its major challenges, and their solutions. Finally, we validate the accuracy of the tool and compare it

with other prominent tools in this area.

Chapter 4 focuses on analyzing the efficacy of current TCP implementation’s loss detection mecha-

nisms. We show results from systematic evaluation of the impact of design parameters associated with

TCP loss detection/recovery mechanisms on the performance of real world TCP connections. This

chapter concludes by suggesting changes to current TCP implementations and its potential impact on

TCP performance.

Chapter 5 studies the ability of nine prominent DBCEs to predict or mis-predict losses. It quantifies

the potential change in connection duration each of these DBCEs results in for a prediction or mis-

prediction and uses it to evaluate the overall impact of each DBCE . We also study the impact of

connection duration on the performance of these DBCEs .

Chapter 6 presents ours conclusions and discusses future work.
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CHAPTER 2

Background and Related Work

A scientific theory should be as simple as possible, but no simpler.

— Albert Einstein (1879–1955)

The outcome of any serious research can only be to make two questions grow where only
one grew before.

— Thorstein Veblen (1857–1929)

TCP, being the most popular transport protocol, has received a lot of attention in the literature.

In the first part of this chapter we will provide a brief background on TCP and its operation. In this

part we discuss the mechanism used by most current implementation of TCP. With this background,

in the second part of the chapter we highlight some of the past work related to this dissertation. This

covers past work on

• TCP reliability and congestion control. We look at the literature which proposes and evaluated

alternate approaches for implementing congestion control in TCP. We then discuss work related to

enhancing and evaluating the accuracy of TCP’s loss detection mechanism which is the backbone

of achieving reliability in TCP as well as look at how several other protocols achieve reliability.

• TCP analysis tools and methodologies. Next, we present various tools and methodologies de-

veloped for understanding TCP’s behavior and performance and highlight their advantage and

drawbacks.

• TCP analysis and modeling. Finally, we present the conclusions of several studies analyzing TCP

as well as present models used to capture TCP’s behavior.



Figure 2.1: Time Sequence Plots for TCP: these plots are used to present the exchange of data
and acks between the sender and the receiver

2.1 Background

In this section, we will discuss the basic operation of TCP protocol as well as some of the popular

modifications proposed or implemented for this protocol. TCP provides a connection oriented data

transfer service to applications communicating over the Internet. The main reasons for TCPs popularity

are that it provides two attractive services: reliability and congestion control. Reliability ensures that

all data reaches the receiver while congestion control makes sure that a TCP connection does not

overload the network. Below we discuss how TCP implements these services.

2.1.1 TCP Reliability

In order to provide reliability, TCP relies on the mechanism of assigning sequence number to all the

data it sends out and requires the receiver to send acknowledgment for the data it receives. TCP sends

out new packets on receiving the acknowledgment for packets it has send out. This interaction can be

represented by a time sequence plot as shown in figure 2.1. The x-axis plots the time and the y-axis

plots the sequence number of packets send by the sender or the acks received. The data packets are

depicted by an arrow and the cumulative acknowledgment received so far is represented by a dotted

line.

In absence of loss, TCP keeps sending new packets as old ones are acknowledged until all the data

is transferred. Problems occur when a packet is lost. Since TCP guarantees reliability, it is responsible
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Figure 2.2: Retransmission Timeout (RTO) based loss detection in TCP

for detecting any packet loss and retransmitting the packets. TCP relies on implicit signals from the

network or the receiver to make an educated guess about whether a packet is lost or not. It detects the

first of a series of packet losses using one of the following mechanisms.

Retransmission Timeout

TCP starts a timer when it sends out a data packet and waits for an acknowledgment. The timer

is referred to as the retransmission timer. If an acknowledgment arrives before the timer expires,

TCP resets the timer and measures the time difference between the data packet send and its ack

received as the Round Trip Time (RTT) for the connection (as shown in figure 2.1). However, if an

acknowledgment is not returned within the timeout period, the sender times-out, assumes that the

packet is lost in the network and retransmits it. Fundamental to this strategy is the act of setting the

retransmission timeout (RTO). In order to adjust to the network delays over different types of network,

the retransmission timeout is not set to a fixed value but is calculated as a function of the connections

RTT. Also, as the RTT itself may vary during the duration of the connection, the retransmission

timeout is recomputed with each measurement of the RTT.

The main problem with waiting for the retransmission timeout to detect a loss is that for the duration

when a connection is waiting for the RTO to expire, the sender is not sending any data. Figure 2.2

depicts this. During interval t1 to t2 TCP is waiting for the timer to expire and in absence of acks,

the sender does not send out any new data packets. This stalling in effect increases the duration of the
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Figure 2.3: Duplicate acknowledgments based loss detection in TCP

connection1.

Duplicate Acks Based Detection

To reduce the amount of stalling TCP undergoes when it has to wait for a timeout, it relies on

a second, much faster, detection mechanism whenever possible. A TCP receiver sends out implicit

negative acknowledgment on receiving a higher sequence number packet than what it was expecting.

For TCP these negative acks are simply inferred from the duplicate acks for the last in-sequence packet.

Reception of the duplicate ack indicates to the sender that a packet may be lost or delayed as the only

way a duplicate ack is generated is if the receiver is missing a packet. TCP waits for a few of these

before concluding that the packet is indeed lost and resends2. Figure 2.3, shows a dupack triggered loss

detection. RTO based detection is very conservative and cause connection stalling for several RTTs, the

dupack based detection is more aggressive (as it has more information to make an informed decision.)

and leads to loss detection in slightly more than an RTT. As is indicated in the figure 2.3, the amount

of stalling in this case is much less compared to the RTO based detection.

Next we discuss the congestion control algorithm used by TCP.

1Note that smaller connection duration is usually desirable as it means that all the data sent reaches the receiver
earlier.

2The recommended number of duplicate acks to wait for is three but some implementations use a value of two while
others use a variable value.

18



Figure 2.4: TCP Slow Start: The congestion window increases exponentially.

2.1.2 TCP Congestion Control

Early TCP implementations relied on a simple go-back-n mechanism without any congestion control.

It had a notion of a fixed congestion window(cwnd) size and the whole window size worth of data is

sent out without waiting for any acknowledgment. The sender waits for a predefined time (timeout

interval) for an acknowledgment from the receiver and in absence of any ack, it resends all the packets

again starting with the unacked packet.

The problem with this approach is that if TCP’s sending rate causes a router in the path to get

overloaded and its queue to overflow causing packet losses, TCP would simply timeout and resend all

the packets at the old rate, again overloading the network. To prevent this effect, TCP implements

a congestion control approach where it is continuously trying to adjust its sending rate to match the

available capacity on the network. The algorithm used by TCP consists of several distinct phases and

the rate adjustment in these phases and transition to and from these phases is described below.

Slow Start

When a connection is established, it starts off in a slow start phase. The initial size of the congestion

window is between one to four packets3. The connection sends out the “congestion window” worth of

data and waits for the acks. For every ack the sender receives, it increases the congestion window by

one. Contrary to its name, slow start is not very slow. It increases the congestion window exponentially

as shown in figure 2.4. This exponentially increases the load on the network and at some point the

3The initial recommended value was one but recent proposals have suggested using a higher value. Most TCP
implementations currently use a value of two
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Figure 2.5: TCP Congestion Avoidance: The congestion window increases linearly.

network queues overflows and leads to packet losses. This loss is detected using either the retransmission

timeout (RTO) or the duplicate ack-based detection.

TCP considers the encountered loss as an indication of network congestion and to alleviate the

congestion it reduces its sending rate. The amount by which it reduces its sending rate depends on the

mechanism used to detect the loss. If the loss is detected using a retransmission timeout it reduces the

sending rate down to one packet and then uses a combination of slow start and congestion avoidance

described below to increase its congestion window again. On the other hand, if the loss is detected

using duplicate acks it reduces the sending rate to half of its current rate and enters the fast retransmit

and recovery phase as described below. This reduction in sending rate again impacts the connection’s

duration. For retransmission timeout based detection the reduction is more drastic and hence may

impact the connection more severely.

Congestion Avoidance

TCP uses a variable “ssthresh” to transition from an exponential increase to a linear increase. The

slow start phase continues until it sees a loss or until the congestion window reaches the ssthresh limit.

Once the congestion window crosses ssthresh, the connection enters the “congestion avoidance” phase.

In congestion avoidance the sender increases its congestion window (cwnd) by 1/cwnd for every ack it

receives. As shown in figure 2.5, this is equivalent to increasing the congestion window by 1 packet per

RTT if every packet sent out is acked.

Ssthresh determines the point at which the rate of increase in the congestion window changes. The

value of ssthresh is reset every time the connection detects a loss using the retransmission timeout
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or duplicate acks. The ssthresh is set to maximum of 2 or half the number of packets in flight. As

mentioned above when a loss is detected using RTO, the congestion window is reduced to 1, it then

uses slow start to increase the window until it reaches ssthresh, and following that enters the congestion

avoidance phase. The recovery scheme used after a dupack-based detection is described below.

Fast Retransmit and Recovery (FR/R)

When the sender receives a predefined number (recommended value is three) of duplicate acks, it

concludes that the packet acked by the duplicate acks is lost and retransmits it. This is referred to as

fast retransmit(FR). Following the loss detection, the ssthresh is updated and the congestion window

is reduced to half the number of packets in flight. At this point the connection enters fast recovery

instead of congestion avoidance.

In fast recovery, the sender keeps track of the number of duplicate acks it receives and since they

are triggered by packets reaching the receiver, it inflates the congestion window and retransmits new

packets to replace the ones which have left the network. This keeps the data flowing in the network.

The sender comes out of fast recovery when it receives an ack for the segment which was retransmitted.

If multiple packets are lost from the same flight the losses following the first loss have to be indi-

vidually detected using one of the two loss detection mechanism. This may increase the time it takes

to detect the losses as well as reduce the sending rate multiple times. To avoid this, TCP relies on two

mechanisms to detect multiple packet losses in the same flight. These mechanisms are detailed below.

Partial Acks

When the sender is using the Partial Acks(PAs) mechanism to detect multiple packet losses after

Fast Retransmit, it remains in recovery until all the packets that were in flight when the loss is detected

are acked. Figure 2.6 shows a connection’s behavior when it uses PAs. While the sender is in recovery,

if a partial ack (i.e. an ack which acks new data but not all the data that was in flight) is received, the

sender concludes that the packet acked by the partial ack was lost in the network and it is immediately

retransmitted. If more partial acks are received the corresponding packets are retransmitted. On

detecting the losses using partial acks, the congestion window or ssthresh is not modified and the

connection enters congestion avoidance phase when all packets which where in flight when the first

packet loss was detected using duplicate acks are acknowledged.
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Figure 2.6: TCP Partial Acks.

Selective Ack (SACK)

Another way to deal with multiple losses is for the receiver to explicitly inform the sender about

the packets it has received. This is exactly what selective acks do. TCP receiver uses SACK blocks,

which are additional fields in an ack packet, to inform the sender what packets have reached it. After

a dupack based loss detection, the sender retransmits all the packets indicated by the SACK block as

missing at the receiver as long as the congestion window allows it.

We have so far covered the current popular implementations of TCP congestion control which are

packet loss based. An alternate delay based scheme, which is slowly gaining popularity, is described

below.

Delay Base Congestion Control for TCP We will now describe an alternate congestion control

scheme which relies on packet delays. This scheme is popularly referred to as the Delay Based Con-

gestion Control (DBCCs). In this section we will simply discuss the basic concept of this scheme and

leave detailed discussion of the various Delay Based Congestion Estimators (DBCEs) proposed in the

literature for the related work section.

Internet is a store and forward network. If the network is not congested, the network queues are

relatively empty (as shown in figure 2.7). Hence the time it takes a data packet to reach the receiver
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Figure 2.7: Uncongested Network

and the ack to get back to the sender is simply the time it takes for these packets to propagate through

the network. This results in the data packets experiencing the minimum RTT for the network. On the

other hand if the network is congested, the network queues will be relatively full (as shown in figure 2.8),

the data packets will spend some time queued behind other packets and hence the total time it takes

for the data packet to reach the receiver and the ack to get back is more than the minimum RTT.

DBCEs exploit this very fact. It measures the RTT and whenever it finds that the current RTT

is larger than the minimum RTT by a certain factor, it infers congestion. DBCEs are therefore likely

to infer congestion before the queues in the network completely fill up. Thus, it can avoid losses from

occurring. This ability to avoid losses can greatly improve the performance for a connection as now

the connection neither stalls waiting for a loss detection, nor has to undergo the drastic reduction in

sending rate following a loss.

However, in practice there are several problems with this approach. The most prominent being

the noise in the RTT measurement. There are several queues in the network and so the overall delay

experienced by a packet is the sum of all delays and may not correctly reflect the situation at any one

queue. Similarly, the end-system may introduce additional processing delays which adds more noise to

the delay signal. It is not clear how well the proposed schemes would behave in the Internet.
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Figure 2.8: Congested Network

2.2 Related Work

With the above background on TCP, we will now present some research related to this dissertation.

The first step involved in improving any system is to understand it. Hence first we will look at the

evolution of TCPs congestion control algorithms and work related to providing reliability with emphasis

on the motivations behind the various design decisions. Next, we look at some of the tools used in the

past for understanding TCP’s behavior. Than we look at some approaches to TCP analysis. This

involves the various evaluations of TCP as well as work related to modeling the behavior of TCP. Both

of these approaches help us better understand the performance of TCP.

2.2.1 Past Work on TCP Congestion Control and Reliability

In this section, we discuss the work related to TCP congestion control and reliability. The default

packet loss based congestion control mechanism and its evolution is described first followed by the

delay based congestion schemes, which are slowly gaining popularity. We then briefly look at other

alternate methods of congestion control. While reliability in TCP is quite straightforward and has been

discussed in the Section 2.1, we will briefly discuss work related to evaluating the accuracy of TCP’s loss

detection and its impact of TCP performance. Finally, we look at some alternate techniques proposed

for implementing reliability in transport protocols.
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Congestion Control

The current implementations of TCP use packet loss as an indicator of congestion. We will first

briefly discuss these congestion control schemes and then look at other congestion control schemes based

on delay, mathematical equations or sending rate.

Packet Loss Based Congestion Control

TCP was designed in the late seventies and early eighties as a reliable protocol. It achieved reliability

by detecting packet losses and retransmitting the packets. It also provided flow control mechanism to

prevent the sender from overrunning the receiver and sequencing of packets [CDS74, Pos81]. In October

of 1986, the Internet observed a series of congestion events during which the performance of the Internet

drastically declined [Jac95]. The cause was identified to be overflowing queues at the routers coupled

with the use of continuous retransmissions by TCP to guarantee retransmission. In 1988 Jacobson

proposed a series of algorithms based on the principle of “conservation of packets” to overcome these

shortcomings [Jac95, APS99]. The proposed algorithms used packet drop as an indicator of congestion

and employed exponential back-off mechanism to reduce its transmissions rate and thus mitigating the

congestion. There were other proposed modifications like the use of slow start (for better estimation of

available bandwidth at the start), better estimation of retransmission timeouts using variation in RTT,

dynamic window sizing, etc. These modifications were deployed in a version of TCP that is popularly

know as “TCP Tahoe”.

TCP Tahoe waits for a coarse timeout every time a packet is lost. This long wait coupled with

reducing the sending rate to a low value of one packet drastically degrades the performance of TCP

connections. To overcome this problem TCP Reno [Ste97] was proposed. Reno relies on the fact that

a TCP receiver send cumulative acks for packets it receives. So if a packet is lost, all the packets with

higher sequence numbers will generate a duplicate acks for the lost packet. Duplicate acks will also be

generated if the packet is not lost but simply reordered causing higher sequence packets to reach the

receiver first. Reno assumes that the level of reordering is such that it will usually generate only one or

two duplicate acks. Hence, if more than that many duplicate acks are seen by the sender, it can safely

assume that the packet is lost and retransmit it. Furthermore, since higher sequence packets were able

to reach the receiver without having been lost, the level of congestion in the network is relatively mild

and hence it just halves its sending rate as against going down to a sending rate of one packet as done

by Tahoe. These two changes reduce the detection and recovery period for packet losses and improve
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TCP performance.

TCP Reno works well in low loss conditions where only one packet is lost in the network at a time.

However, if multiple packets are lost then TCP Reno is able to recover the loss quickly only for the first

packet, the remaining packets still have to be recovered using the much more costly timeout mechanism.

TCP New-Reno [FHG04] was proposed to overcome this drawback. When multiple packets are lost

in the flight, a retransmission for the first lost packet triggers an ack indicating that the next packet

expected is the second lost packet. This ack is called as a partial ack (PA) (as it does not ack all packets

that where in flight when the loss occurred). In Reno a partial ack ends the fast recovery. New-Reno

does not exit fast recovery on partial acks. It uses the partial ack as an indicator that the second packet

(acked by the partial ack) was actually lost in the network and retransmits it. Thus when multiple

packets are lost, New-Reno can recover without another fast-retransmit or timeout, retransmitting one

lost packet per RTT.

All the above modifications used an “intelligent interpretation” of the ack stream to detect and

recover from lost packets. While duplicate acks or Partial acks indicate that an intermediate packet is

missing and a higher packet has reached the receiver, but it is not able to inform the sender which packets

are exactly missing or have reached the receiver. To overcome this shortcoming TCP SACK [MMFR96,

BAFW03] was proposed. The SACK option in a TCP header contains a number of sack blocks. Each

sack block reports a non-continuous block of data received by the receiver. The first sack block includes

the most recently received packet and the other block simply repeat the most recent sack blocks. The

receiver can use the information supplied in the sack blocks to maintain a list of packets that have

reached the receiver and the ones which are missing. Sack does not change the basic congestion control

algorithm or TCP robustness to delayed/reordered packets by waiting for multiple duplicates acks

before triggering fast retransmit. Its behavior is different only in presence of multiple losses in a flight.

When multiple packets are lost and fast retransmit is triggered for the first packet, Sack TCP uses the

information in the sack blocks to identify the other lost packets and retransmit them.

The above description captures the TCP variants used by most of current TCP implementations.

New modifications [FMMP00, BA02, BRAB06, LK00, ZKFP03] to TCP’s congestion control have been

proposed to overcome few specific problems with its performance. We will look at a few of these in

Section 2.2.1.

All the above modifications still relied on packet losses as an indication of congestion in the network.

Next we look at proposals which uses packet delays as an indication of congestion.
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Figure 2.9: Network Performance as a function of load

Delay Based Congestion Control

There are several proposed modifications to TCP which use increase in delay on a path as an indicator

of congestion. These schemes are collectively referred to as Delay Based Congestion Avoidance (DBCA)

techniques. The basic idea behind these schemes is described in Section 2.1.2. These schemes are based

on the following principle. The increase in delay is due to queuing at the routers. The increase in queuing

results from the load been greater than the network capacity. This is an indicator of congestion. These

delay based techniques use the round trip time (RTT) as the delay estimate of a path instead of the

one way delay, which is difficult to measure. Below we discuss a few prominent schemes proposed in

this area followed by studies evaluating these schemes.

Proposed DBCEs (Delay Based Congestion Estimatators

CARD [Jai89] was proposed in 1989 and was the first of the DBCE schemes. It is based on the

argument that when the network is lightly loaded, the connection throughput increases with an increase

in sending rate. But as network load reaches saturation, connection throughput does not increase further

and RTTs start to increase. This can be viewed as a power graph as shown in figure 2.94. CARD uses

the increase in delay associated with increased network load as an indicator of congestion. It measures

a gradient of delay and based on whether the gradient is increasing on decreasing it reduces or increases

4Figure from the paper [Jai89]

27



the congestion window.

The Tri-S scheme [WC91] is similar to this scheme but it uses a throughput gradient. It compares

the current throughput gradient to the initial throughput gradient. Depending on whether the former

is greater or small, Tri-S infers the absence or presence of congestion and decides on the change in

congestion window.

While both CARD and Tri-S involve gradients, Dual [WC92] is based simply on comparing the

maximum and minimum RTT. Dual is based on the assumption that the minimum RTT of a connection

corresponds to the propagation delay along the network path, and the maximum RTT is the sum of

this minimum RTT and the maximum queuing delay. When the current RTT exceeds the average of

the min and max RTTs, Dual estimates congestion and its CA algorithm decreases the sending rate.

Delay-based End-to-end Congestion Avoidance [YQC04] (DECA) also tried to maintain the RTT at

the midpoint of the minimum and maximum RTT. However, instead of using the current RTT for

comparison, it uses the maximum RTT observed in the last RTT interval.

While all the above schemes were promising, the idea of using delay as congestion indicator really

came into the limelight following the introduction of TCP Vegas [BOP94]. TCP Vegas attempts to

maintain enough data in the network such that it exceeds the delay-bandwidth product by a small

amount. It compared the observed throughput in a flight of packet to the expected throughput, where

the expected throughput is the throughput that would result in if all packets are acked within the

minimum RTT. Its congestion-estimator relies on the fact that if the sending rate is much larger than

that required to maintain only a few additional packets in the network, the connection RTT would

increase (and its throughput would decrease). The decrease in connection’s throughput is an indicator

of congestion. TCP FAST [WJLH06] is a variant of Vegas designed for high-speed networks. Its

congestion estimator is similar to that of Vegas; although it uses increase in RTT as an indicator of

congestion, its DBCE can be shown to be a simple derivative of the Vegas throughput-based DBCE.

Delay based Additive Increase Multiplicative Decrease [LSM+07] (DAIMD) is also based on com-

paring the observed RTT to the minimum RTT for a connection. DAIMD assumes that the minimum

RTT is simple the propagation delay. It measures the queuing delay as the difference between the

smoothed RTT and the minimum RTT. However unlike Dual which uses a relative metric to estimate

the congestion level, DAIMD compares the queuing delay to a fixed threshold (20-50ms) and if the

queuing delay is above the threshold, it predicts congestion. To avoid oscillating between congestion

and no congestion indicators, it uses a lower threshold to change back to no-congestion state. Another
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algorithm that uses a fixed threshold is the TCP Buffer Fill Avoidance [AR98] (BFA). BFA measures

the RTT variability similar to TCP-Reno but maintains its sign (direction of change). If the variation

is above 10ms, it predicts congestion. It predicts no-congestion when the variability falls below -10ms.

None of the above DBCEs use history of the RTT in its estimation. Next we look at two DBCEs

which uses history of RTT for a connection to estimate the congestion. Sync-TCP [WJS05] is based on

TCP Reno but uses one way delay to detect network congestion. It detects congestion and its severity

as follows. Sync-TCP defines the difference between observed RTT and the minimum RTT as the

queuing delay. It measures the trend in the queuing delay over a certain number of packets (usually

9) and if the trend is increasing it compares the measured queuing delay with the max queuing delay

seen so far. Based on this comparison, the estimator predicts congestion severity. The Congestion

Indication Metric (CIM) was proposed in [MNR03] as a DBCE metric. This metric compares the

most recent RTT samples (typically 1-2 samples) to the average RTT of several immediately preceding

samples (typically, 20). If the most recent sampled RTT is greater than the average RTT, it concludes

congestion has occurred.

Apart from these DBCE, there are several other DBCEs that have been proposed for specific envi-

ronments [SS06, PLK05, Qiu05], or that use delay in conjunction with packet loss signals [LBS06], or

use a parameterized model in conjunction with a DBCE to predict losses [HR06, MOM02]. We have

not considered these DBCEs as they are not generic enough.

Evaluation of DBCEs

We now look at research evaluating the efficiency of DBCEs. The efficacy of a DBCE depends on

its ability to predict the onset of congestion (or predict an impending loss) accurately and in a timely

manner. The first question to be asked is whether the DBCCs even have a hope of succeeding in the real

network. We look at a few studies which argue that DBCCs will not be effective in the real network.

In [PJD04], the authors briefly discuss a set of conditions under which DBCC will fail. They argue

that DBCC is bound to fail if: (i) the max queuing delay at the bottleneck link is too small compared

to the connection RTT, or (ii) the RTT sampling rate is less than the required Nyquist rate, or (iii)

there is high degree of aggregation along a path and a connection’s contribution to the total load is

too small, or (iv) packet loss is not handled effectively. The paper, however, merely presents arguments

and does not conduct a detailed investigation to validate the conclusions.

[JWL03] argues that the loss-based congestion control is inherently unstable in high-bandwidth
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networks. It contends that the binary signal of loss/no-loss is too coarse to allow fine adjustment of

send-rates, which is needed for stability at high speeds. A multi-bit signal can be obtained by using

queuing delays as an additional indicator of network conditions. The authors, however, do not present

any experimental results to illustrate/prove their point.

While both of the above studies present arguments against DBCE they do not evaluate DBCE in a

real world experiment. Next, we look at some real world evaluations of DBCCs.

In [MNR03] the authors argue that if the increase in delay is due to the congestion in the queues, then

a correlation should be present between observing higher delay for the packets and the probability of

seeing a loss in the queue. They defines several metrics for quantifying correlation between packet losses

and high RTTs. The authors conducted passive analysis of a large number of connections instantiated

over 7 paths using the CIM DBCE defined in the paper. They find that using CIM as a congestion

estimator can reduce connection loss rates. However, it also results in a large number of false positives

resulting in a 37% reduction in the aggregate throughput. Based on this observation they conclude

that DBCC is in general not a viable solution. This study is severely limited in its size. It also does

not analyze the influence of connection characteristics on the performance of CIM.

In [BV03], the authors compare the correlation between the packets in flight and RTT unlike [MNR03],

which compares the correlation between RTT and packet loss. The idea is that DBCC is likely to be

effective only if its congestion avoidance can alleviate congestion by reducing the sending-rate (that

is, the connection is self-congesting). This is not likely to happen if the correlation between sending

rate (or packets in flight) and observed RTTs is low. The authors passively analyze 14,218 connections

instantiated over 737 different paths. They found that, in general, the coefficient of correlation between

RTT and packets in flight is weak [BV03]. However, this study does not evaluate the ability of DBCEs

to predict loss in general.

Apart from these real network studies, there have been several studies using network simulations

to evaluate DBCEs. In [BV98a, BV98b] the authors have used network simulations to evaluate the

ability of Vegas, CARD, and Tri-S to predict loss. They found that all three methods are rarely better

than a “random coin-tossing” estimator. However, the Vegas method was found to be slightly better

than the other two methods. Unfortunately, their use of simulations prohibits evaluation under a wide

range of connection characteristics, as well as prohibits sampling the wide variety of real world network

conditions which may affect the performance of an estimator.

Both loss based and delay based congestion control schemes implements both congestion control and
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reliability components of TCP. Several real world application, like live video streaming, do not need the

reliability component or simply want to have more control on the congestion control mechanism than

what TCP allows protocols build on top of it. These protocols are TCP-friendly in the sense that they

do not aggressively consume the network resources but share the network like TCP. However, these

protocols do not directly implement all of TCPs features. Below we discuss several of these protocols.

TCP Friendly Congestion Control

The TCP friendly congestion control protocols are described as those for which the long-term through-

put does not exceed the throughput of a conformant TCP connection under the same conditions. A

slightly alternate definition is used by some protocols. This definition considers a protocol to be TCP

friendly if it does not reduce the long-term throughput of any co-existent TCP flow more than another

TCP flow on the same path would do under the same network conditions. TCP friendly protocols can

be broadly classified as multicast or unicast protocols [WDM01]. Designing multicast protocols is much

more difficult because the congestion action has to take into consideration the feedback from all the

hosts. We will first look at some unicast protocols and then discuss some simple multicast protocols.

We will first look at some techniques that rely on detecting packet losses to sense congestion in

the network. An obvious first step to detect packet losses and be TCP-friendly is to use the default

TCP congestion control method directly but remove its reliability mechanism. This approach was used

in [JE96] for video streams. Rate Adaptation Protocol [RHE99](RAP) further expanded this idea. It

implemented an AIMD scheme similar to TCP in a rate based manner but does not retransmit lost

packets. Like TCP, RAP uses ack streams and timeouts to detect packet losses. However, on detecting

the losses, it reduces its sending rate only by half each time. The decision of increasing or decreasing

the rate of sending data packets is done only once every RTT. General AIMD congestion control [YL00]

(GAIMD) is another scheme using an additive increase and multiplicative decrease behavior like TCP.

However, instead of increasing congestion window by one packet and reducing it by half, GAIMD uses

variable parameters. This paper found that to remain friendly to TCP, the increase in the rate(α) and

the decrease the rate (β) should maintain a ratio of α = 4(1 − β2)/3.

Loss-Delay Based Adaptation Algorithm [SW00] LDA+ relies on the RTCP feedback mechanism

provided by the Real time Transport Protocol [FHG04] (RTP) instead of using TCP like methods to

measure losses on the network. LDA+ uses a packet pair technique [KLDL04] to estimate the available

bandwidth and uses this to dynamically set its additive rate increase. Its multiplicative rate decrease

is set as 1 −√
p where p is the observed packet loss rate in the network.
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An alternative to reacting like TCP to losses is to model the behavior of TCP and modify the

sending rate according to this model. This is exactly the approach used by the TCP-Friendly Rate

Control Protocol [PKT99] (TFRCP). It uses the model for TCP throughput developed in [PFTK98] to

adjust its sending rate rather than reacting to losses directly. This protocol divides time into rounds

with fixed durations and in each round the parameters required for the model are calculated. If any

packet loss is seen during a round, the rate is recalculated using the new set of parameters. If no loss

is observed in a round, the sending rate is doubled. This doubling of sending rate makes this protocol

more aggressive than TCP and leads to unfairness as well as oscillation in the rate. TCP-Friendly Rate

Control Protocol [FHPW00] (TFRC) evolved from [PKT99]. [FHPW00] uses the complex equations

developed in [PFTK98] as well, but it uses more complex methods to measure the parameters used in

the model. Most notably, the packet loss rate is measured as a moving average to avoid sudden increase

in sending rate when no loss is seen in a round.

Finally, TCP Emulation At Receiver [ROY00] (TEAR) also measures losses like TCP, but does so

at the receiver instead of at the sender. The receiver calculates a fair receive rate and sends it back

to the sender, who adjusts its sending rate accordingly. To calculate the receive rate, the receiver has

to replicate the congestion window changes at the sender which it does by tracking the congestion

window reduction that would be triggered by any triple duplicate acks it sends out and by estimating

the timeout events at the receiver. It uses a moving average to smoothen the rate changes resulting in

a much smoother rate change than TFRC.

We will now discuss a few of the multicast protocols. This review is not exhaustive but covers a

representative set of protocols. The Loss Tolerant Rate Controller [Mon97] (LTRC) uses an AIMD

scheme which is different than TCP. Given the difficulty of measuring network characteristics to be

used in the model as parameters for a large number of receivers, the protocol proposes using preset

values for these parameters. The presets include even the RTT expected for a packet. All receivers

report the losses using negative acks (NACKs). LTRC uses the worst loss rate seen by the receiver to

calculate TCP throughput using the simple model presented in [MSM97]. It uses this as an upper

bound on its sending rate. LTRC does not react to each loss it experiences. Periodically, based on the

timers used to detect loss, it evaluates the number of losses seen so far and if this is over a certain

threshold, it decreases its sending rate else it increases it rate. Since this protocol uses preset values

for some of its parameter including RTT, it cannot adapt to the dynamics of the network. The use of

explicit packet loss indication using NACKs, which cannot be suppressed, limits the scalability of these

protocols.
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To streamline the process of estimating network loss rates, Tree-based Reliable Multicast proto-

col [CHKW98] (TRAM) uses a dynamic tree structure for reliable multicast. The receivers (leaves of

the tree) periodically generate a report of the losses they experience. The intermediate nodes can also

generate a congestion report if their buffer occupancy exceeds a certain threshold. These congestion

reports are passed towards the root node and aggregated as they are passed upward. The sending rate

to be used by the sender is bounded by a maximum and minimum sending rate set independently for

the tree. If the final congestion report reaching the receiver indicates congestion the sender halves its

sending rate else it increases its sending rate as a fraction of the difference between its current sending

rate and the maximum sending rate.

The authors in [GS99] propose a protocol which is a hybrid of the approach proposed in TEAR [ROY00]

and TRAM [CHKW98]. The receiver keeps track of the congestion window adjusted similar to the con-

gestion window at the sender. Based on this it calculated the highest sequence number it can receive

and propagates this to the sender using a tree structure similar to that used in TRAM. The aggregated

information is received at the sender and it uses the minimum sequence number it has received to set

its congestion window.

The protocols discussed so far use a single sending rate and adjust it according to the feedback

received from the receiver(s). There are certain classes of protocols which allow the sender to have

different rates for different receivers allowing each receiver to get data at the best bandwidth it can

support. This is especially important for multimedia content where the quality of the content is directly

proportional to the bandwidth available. A number of protocols [VRC98, BFH+00, JAA00, LPPA97]

use variant of the basic approach proposed by Receiver-driven Layered Multicast [MJV96] (RLM). In

RLM, the sender splits the data (in this case video) into multiple layers. Each higher layer carries

more information than a lower layer. A receiver starts by subscribing to the first layer. If it is able to

sustain the bandwidth for its current layer, it subscribes to the next higher layer. It does this until it

subscribes to all layers or starts experiencing losses. This allows, each receiver to self determine the

amount of bandwidth it can support and control the data transfer accordingly. In Layered Transmission

Schemes [TPB97] (LTS) and TCP-Friendly Transport Protocol [TZ99] (TFRP) the above approach was

modified slightly to reduce the amount of losses experienced. Rather than probing for bandwidth by

joining higher layers, these schemes use the TCP model in [MSM97] to calculate the bandwidth they

can support and join the corresponding number of layers directly. These schemes measure the RTT

using a timestamped message sent to the sender which the sender replies to. This limits the scalability

of these schemes.

33



Reliability

TCP detects losses using one of it many detection mechanisms (RTO, FR/R, PA, and SACK)

and retransmits the packets to achieve reliability. While retransmission of lost packets to achieve

reliability is obvious, accurately detecting lost packets is a challenge. Incorrect loss detection leads

to spurious retransmissions and unnecessary reduction of TCP’s sending rate. We will first look at

proposals to mitigate the impact of spurious retransmissions and work related to evaluation of the loss

detection mechanisms. Next, we will look at other protocols which achieve reliability by detecting and

retransmitting lost packets.

Mitigating impact of spurious retransmissions

There are several approaches used to mitigate the impact of spurious retransmissions. The first

approach is to optimize the TCP parameters to try and reduce the number of spurious retransmissions.

The second approach is to modify the TCP loss detection mechanism itself to reduce the number of

spurious retransmissions. Finally, the last approach is to identify the spurious retransmissions after

they occur and to mitigate their impact. Lets look at each of these approaches below.

Optimizing TCP parameters to avoid spurious retransmissions

In [Pax97a], Paxson investigated the effect of changing dupack threshold on the number of spurious

retransmissions. The data was collected by actively establishing approximately 20,000 connections

sending 100KB of data between multiple machines and capturing the packet flow using tcpdump [JlM].

He found that increasing dupack threshold to 4 improves ratio of needed FR/R to spurious FR/R by

a factor of 2.5. However, it also reduces the chance of detecting a loss by FR/R by 30%. Reducing the

dupack threshold to 2 increases the number of FR/R by 65-70% but the ratio of needed to unneeded

FR/R falls by a factor of 3. Since, reordering leads to spurious ack generation at the receiver, Paxson

investigates the usefulness of delaying dupack generation at the receiver to avoid generating spurious

dupacks. He found that for his dataset, reducing the dupack threshold to 2 and waiting for 20ms

at the receiver results in same fraction of spurious retransmissions as a threshold of 3 but allows 65-

70% more FR/R. While, this paper studies the impact of changing FR/R parameters on its ability

to avoid spurious retransmission and its ability to detect packets by FR/R instead of RTO, it does

not consider in much detail the impact of these changes on the performance (i.e. response times) of

the connections. More recently [BRAB06] suggested similar changes to TCP. [BRAB06] recommends

waiting for a certain time τ before reacting to the duplicate acks. The recommended value of τ is one
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RTT. However, there is again no substantial evaluation of the effect of this recommendation on TCP

performance.

In [AP99], the authors investigate the effect of changing several parameters related to RTO-estimation

on the accuracy and timeliness of RTO detection. The data used for this study is same as that used

for [Pax97a] and hence suffers from the same lack of diversity/representativeness. This study was done

in 1999 when the most popular minRTO value was 1 second and the timer granularity was 500ms. They

found that the minRTO and timer granularity has the most impact on the accuracy and timeliness

of the equation while the other parameters related with the exponential moving average calculation

of RTO had little impact on the overall performance. This study did present some insights on the

parameters of the RTO equation but it did not evaluate the effect of changing these parameters on the

response time of the connection. Eight years after this study, we find that timer granularity no longer

impacts the performance of TCP loss detection (indeed, several current OSes use a 10ms timer). While

the minRTO does limit performance in some OSes (Solaris and BSD), it is not a dominant factor for

most connections. Instead, we find that the multiplicative factor, k, is quite significant and a low value

of k can help many connections achieve close to their Best-Case reduction in response times. Finally,

we explicitly model and evaluate the impact of timeliness and accuracy of RTO-based loss detection on

overall connection response times.

Modifying TCP algorithms to avoid spurious retransmissions

In [FC05], the authors argue that TCP’s loss detection is more of an inference rather than a known

entity and hence should be viewed in a standard inference framework. They propose the use of Bayesian

detector to identify whether a dupack is triggered by an actual packet loss or a network reordering event.

The detector bases its prediction on the RTT samples measured before a loss event. They were able to

predict 80% of the losses triggered by a single dupack using their detector with a false positive rate of

15%. They were able to test this detector on a small dataset and while they used an analytical model

to investigate the behavior of their method under different circumstances; however, a broader network

measurement based evaluation of the method needs to be done.

In [BHL+03], the authors suggest a very aggressive approach where they completely neglect the

dupacks received but use a very aggressive adaptive timer (similar to RTO) to decide when to send a

packet. The aggressiveness and effectiveness of the new algorithm is tested to a limited extent using

simulations but a complete analysis of the effect of the changes made is not performed. [KM05] also

suggested changing the RTO equation. In this paper, the authors suggest changing the RTO equation
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to base it on the window size to optimize the throughput. They use the model suggested in [PFTK98]

to analytically show the benefit of their proposal. They do not evaluate the proposal using any network

measurements or simulations nor do they consider the effect of the proposed change on the number of

spurious retransmissions.

Identifying spurious retransmissions and mitigating their impact

While SACK provided a good way to exactly identify which packets were lost in the network to avoid

unnecessary retransmissions it does not help at all if there is indeed an unnecessary retransmission. In

[FMMP00], the authors propose an extension to SACK called DSACK to detect spurious retransmis-

sions. On receiving a packet that the receiver already has (i.e. the sender retransmitted unnecessarily),

the receiver uses the SACK blocks to indicate this back to the sender. In [BA02] several responses

to a DSACK notification were proposed. The simplest response proposed was to restore the original

congestion window (congestion window before the spurious retransmission was detected). Apart from

this, [BA02] also suggested strategies to adjust dupack threshold to avoid spurious retransmission due

to FR/R. The different responses suggested were (i) increasing dupack by a constant, (ii) setting new

threshold to average of current threshold and the number of dupacks caused leading to the spurious

retransmission, and (iii) setting threshold to an exponentially weighted moving average of the number

of dupacks received at the sender. RR-TCP [ZKFP03] is a more recent extension of the DSACK study

which suggests mechanisms to avoid spurious retransmissions by adjusting the dupack threshold. It

increases the dupack threshold on experiencing spurious retransmission and decreases it on experiencing

RTO.

In [LK00], Ludwig and Katz propose the Eifel algorithm. It proposes the use of timestamp option

in TCP [MMFR96] to differentiate among acks generated in response to the original transmission and

a retransmission in order to detect spurious RTO and FR/R. It recommends restoring the congestion

window state to its state prior to the spurious retransmission. FRTO [SKR03] was suggested to detect

spurious RTO without the use of any TCP options. It monitors the acks after a timeout to determine

if the timeout was spurious. The algorithm does not attempt to recover the congestion window on

detecting the spurious retransmission but is aimed at avoiding sending out any more unnecessary

retransmissions. The benefits of both these proposals have not been quantified.

Reliability in non-TCP protocols

We will now discuss the loss detection and retransmission mechanism used in different protocols to
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achieve reliability. We will first look at three UDP [Pos80] based reliable protocols.

The first protocol, Reliable Blast UDP [HLYD02, HAE+03], provides reliability without congestion

control. It does not use a per packet ack as done by TCP, instead acks are aggregated and delivered

only at the end of the data transmission. The sender indicated the end of data transfer by sending a

done signal. On receiving the done signal the receiver send a special ack consisting of a bitmap tally

of received packets. Sender uses this to identify the lost packets and retransmit them. This process

continues till all packets are transmitted.

The second protocol, UDP based Data Transfer [GG07, GGH+03] (UDT), builds its own reliability

and congestion control. It has a set of API which allows both reliable data streaming and partial

reliable messaging. In UDT, rather than generating an ack for each data packets, a selective ack is

send periodically (every 0.01 second) and a negative ack (NACK) is generated explicitly when a packet

is lost. The sender then retransmits the message to achieve reliability. In partial reliability scenario

the sender will send a “message drop” signal to the receiver if the retransmission is not successful for

a certain interval and the receiver will then marked those packets as received even if it is not actually

received it.

Finally, UDP lite [LDP+04] does not provide loss detection and recovery but improves on UDP’s

perceived performance by allowing packets with a single bit error to be passed to the application instead

of dropping it. This is helpful especially for multimedia applications. However, since several link layers

themselves are known to drop a packet with bit errors in it the utility of this protocol is questionable.

Next we look at some TCP like protocols. Stream Control Transmission Protocol [SXM+00] (SCTP)

as well as DCCP [KHF06b, KHF06a] use loss detection and recovery mechanisms similar to TCP.

SCTP also provides an extension which allows partial reliability [SRX+04] similar to UDT. In DCCP,

the congestion control and reliability mechanisms are separated. Hence it can also be tuned to allow

different level of reliability requirement.

Detecting and recovering from losses is a popular way to implement reliability. However, this

approach is not always timely as a considerable time is wasted in detecting the loss to begin with. To

overcome this problem several schemes have been proposed to use Forward Error Correction [CC81]

(FEC) schemes or redundancy to achieve partial or complete reliability. SmartTunnel [LZQL07] is one

of the many protocols [PPM07, Bie92, APRT96, WCK03, RS99] that use FEC to achieve reliability.

SmartTunnel uses a FEC encoder to generate redundancy packets for its data. The original packets and

the redundancy packets are then send to the sender through different paths. (other schemes may choose
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to send all packets on the same path). If any data packet is lost, the receiver can use the redundant

packets to rebuild the original data stream.

2.2.2 Past Work on TCP Analysis Tools and Methodology

Several tools have been developed to understand the behavior of TCP. These tools can be roughly

divided into two categories. The first category consists of tools which analyze a pre-captured trace

of TCP. These are referred to as passive tools as they do not actively inject packets in the network.

The second category belongs to the active tools which actively instantiates TCP connections to study

their behavior. In this section, we present both these types of tools. We also discuss some tools which

are developed to remotely identify the Operating System for a machine. These tools in conjunction

with the active or passive analysis tools can provide additional insights in the performance of TCP

implementations.

Passive Trace Analysis Tools

Tcptrace [tcpc] is perhaps the most widely used among the many tools available for passive analysis.

Tcptrace is able to identify several characteristic of a flow like throughput, elapsed time, number of

bytes/segments send or received, RTT, number of out-of-order segments, advertised window, and packet

duplication. However, tcptrace, like many other tools, does not maintain enough state to accurately

identify and classify TCP packet losses. tstat [MCC] is another tool similar to tcptrace. It captures

statistics such as number of IP addresses in the trace, and different options on SYN packets in addition

to everything else that tcptraces does. However, tstat is also limited in its analysis ability as it does

not perform any loss classification.

Using heuristics in the analysis is a popular approach used by several tools to overcome the limita-

tions of the above stateless tools. In [ZBPS02], the authors propose TRAT, a passive tool to study TCP

flow rates and identify the probable causes that limit TCP throughput. Instead of directly measuring

the characteristics of a flow they develop heuristics to estimate the RTT, MSS and other characteristics

of the flow. This approach allows them to analyzed connections even when they do not have access to

both the data stream and ack stream of a flow. While they do study flow behavior, the limited state

information they have do not allow them to study a connection’s behavior at the granularity of individ-

ual congestion events. They also do not study exactly which TCP mechanism limits the performance
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and whether it could be improved.

Next step in improving the analysis accuracy and granularity was achieved by including more state in

the analysis tools. The first category of such tools used additional state to identify spurious retransmis-

sions. Both [AP99] and [LK00] were designed to deal with timeout-triggered spurious retransmissions.

While [AP99] relies on keeping enough state to measure the time difference between the retransmitted

segment and the ACK to identify spurious timeouts, [LK00] requires end-system cooperation to im-

plement a new algorithm called Eifel, which actively includes timestamps to detect spurious timeouts.

Both these approaches only work for timeout-based spurious retransmissions. Allman Et. al presented

an improved algorithm called LEAST [AEO03] for passive estimation of unnecessary timeouts (for

Reno implementations) or any unnecessary retransmission in presence of SACK blocks. We find that

their method underestimates unnecessary retransmissions in Reno implementations because they do

not address additional retransmissions in Fast Retransmission/Recovery. Further, the limited state

maintained is insufficient for tracking unneeded retransmissions when duplicate ACKs are lost.

A significant improvement in the level of details used for TCP analysis was achieved in the tcpflows [JID+04]

tool which uses a state-machine based approach for analysis of TCP connections. This state-machine

design is based on RFC specifications for congestion response, retransmissions, and RTO calculations.

tcpflows can perform passive analysis of traces taken anywhere in the network and attempts to character-

ize the causes of packet losses using inferences of RTO and the sender’s congestion window. Though this

tool was a significant advance in passive analysis, we found that this method has practical limitations

because widely used TCP implementations vary significantly from the RFC specification. Furthermore,

since the primary purpose of [JID+04] was not to study packet losses in detail, their analysis tool is

limited in the granularity with which OOS segments are classified. The results from their method

(especially the RTT calculation and the subsequent RTO calculation) are dependent on the frequency

with which RTT is measured (per packet vs. per flight), and the inferences necessary to track the

sender’s congestion window. All of these details vary across TCP implementations. To overcome these

problems, in our analysis, we rely on OS-specific state machines to more robustly infer TCP sender

state in passive analysis. TCP mystery [KKB+04] is another state-machine based tool which identifies

loss events and classify them as necessary or unnecessary. This tool uses a subset of the algorithms

used in tcpflows and hence suffers from the same limitation of being OS agnostic.

OS-specific analysis is not a new idea. As early as in 1997, Paxson implemented a stateful im-

plementation specific analysis in his tool, tcpanaly [Pax97b], for passive analysis of traces at the end
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system. The primary limitation of this tool is that it has not been extended to handle traces taken in

the middle of the network. Since the analysis was performed on end system traces, there was no need

to address several practical challenges such as packets lost between the trace point and end system.

Further, the analysis did not have to infer the specific TCP implementation characteristics because the

end system OS was known in advance. Given the above reasons and the significant pace of changes to

TCP implementations since the time the tool was developed, we believe that TCPdebug represents a

substantial advancement.

Estimating a connection’s Round-Trip Time (RTTs) is fundamental to estimating the retransmission

timeouts (RTO), which in turn impact a connections performance. We will next look at some of the

passive techniques used for estimating a connection’s RTT.

Several analysis techniques do not rely on a per-packet RTT estimate. These techniques simply

obtain a single estimate of the connections RTT and use it throughout the connection’s lifetime. One

of such techniques was proposed in [JD02]. In [JD02], the authors present a simple passive method for

getting a single estimate for a connection’s RTT using the three-way TCP handshake [Pos81] and first

few flights of data. Their method works even if the trace is not bi-directional. For traces containing the

SYN, the RTT is measured as the difference between the SYN and the ack generated in response to the

SYN-ACK. For traces which do not see the SYN, the proposed technique works only when the flow has

at least 5 segments and 4 of these are of MSS size. The initial congestion window for the connection

is assumed to be one or two packets. They apply heuristics to divide the first 5 segments into two

flights and measure the RTT as the difference between the send times of these two flights. While this

technique provides an RTT estimated even when we have only one direction (either the ack or the data

packets) of a connection, it provides only one estimate instead of a running series of estimates of RTTs

throughout the lifetime of the connection. In [VLL05], the authors propose a slightly different approach

for estimating RTT both in bi-directional as well as uni-directional traces. For bi-directional traces,

the approach relies on using timestamps included in the packets to match the data segments and their

acks and estimate the RTT using these. For uni-directional traces, the authors use autocorrelation

techniques to detect patterns caused by self-clocking that repeats every RTT. Like [JD02] this method

also provides only a single RTT estimate for a connection.

The more interesting problem is that of estimating an RTT for every packet in a connection. This

provides more details about the evolution of RTT throughout a connections lifetime and hence will

provide a better estimate of a connection RTO as well. Several stateful and heuristic based approaches
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have been proposed to do this. The main challenge for these approaches is to maintain enough state to

match the data and ack packets to estimate the RTT and at the same time to get a robust estimate of

RTT even in presence of loss. When an ack arrives for a segment that has been retransmitted, there is

no indication whether the ack is for the original packet transmission or for the new retransmitted packet.

This result in an ambiguity about the RTT inferred from this ack. [KP88] proposed a simple solution

to this problem. They recommend neglecting the RTT obtained using this ack and not updating the

RTO. The RTO is updated only when a packet is acknowledged without an intervening retransmission.

This algorithm is used in all the popular implementation of TCP. Implementing this algorithm and

using a Finite State Machine (FSM), the authors of [JID+04] proposed tracking the correspondence

between the data and ack packets as follows. The RTT is calculated in two parts the forward path

RTT and the reverse path RTT. The forward path RTT estimation is simple. For each data packet

going in the forward direction its corresponding ack is tracked and the forward RTT is estimated as

the time difference between the data and ack packet. The reverse RTT estimation is slightly more

complicated. The FSM tracks the congestion window at the sender and by doing this it estimates the

data packets that would be triggered by each ack reaching the receiver. By tracking the acks and the

corresponding data packets triggered by it the reverse RTT is estimated as the time difference between

the ack packet and the data packet. The problem with this approach is the inaccuracies in the RTT

estimation resulting for the inaccuracies in tracking the senders congestion window. This paper found

the error in RTT estimation because of these inaccuracies to be limited to less than 10% for 90% of the

flows.

Active Analysis Tools

While passive analysis tools are beneficial as they provide access to a large quantity of real world

data, they do not allow controlled interaction with the network to study its impact. We will now look

at some of the active tools developed to study either TCP or network behavior using controlled active

experiments.

The first set of tools we look at were developed to measure the network properties and not really

the TCP properties though they may rely on TCP to do so. In [Sav99], the authors describe an active

tool, Sting, for measuring end-to-end path properties. This tool overcomes problems with using ICMP

packets (such as blocking, rate-limiting, and spoofing) to measure the network properties. The tool

estimates one-way end-to-end network loss rate by careful manipulation of TCP behavior. Bolot [Bol93]
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and Sommers [SBDR05] used active probes to measure the network loss rate. In [BS02], the authors

design a tool for actively measuring reordering on a network path. This tool exploits the relative

sequence number spacing between segments transmitted and can not be easily adapted for passive

monitoring of the network. All of these tools are not designed to be generic enough to be used for

studying other TCP characteristics.

In [PF01],, the authors developed a versatile tool called TBIT which emulates TCP behavior to test

the behavior of the network or the end-host TCP stack. TBIT queries the TCP stack of the end-host to

explore its deployment of different TCP features. The end-host behavior that is tested includes SACK

information generation, MTU discovery, ECN and other TCP options. Their key observations were

that (i) SACK is prevalent in two-thirds of servers and nine-tenth of clients, (ii) DSACK is supported

by 40% of servers, (iii) ECN is not prevalent, and (iv) 1460 bytes is a popular size of MSS. The active

nature of the tool and the fact that it requires the other end of the connection to run a webserver

limits the scalability of this method to study network behavior. In our research we use TBIT to extract

several default parameter settings of TCP implementations, as well as to validate our tool TCPdebug.

End Host Operating Systems Fingerprinting

As we have emphasized earlier, estimating the source Operating System (OS) of a connection is

an important step in accurately understanding a connections behavior. In this section we will look at

some of the tools which are used for identifying the source OS for remote machines. This information

is also of interest for several other reasons such as intrusion detection, servicing OS specific content,

maintaining inventories, building representative models and, in our case, verifying the results reported

by our tool.

There are several methods proposed for identifying the OS passively. [Zal06] relies on the difference

in the option field of SYN, SYN-ACK and RST packets for different OSes to identify the source OS. It

maintains a fingerprint of all OSes option fields and then compared the observed packets to find a match.

While, this tool is capable of giving an exact answer most of the time, its main drawback is that it has

to keep updating the fingerprint list to make sure it matches the latest change in the TCP stack for any

OS. It is also not able to predict the OS if the option field is slightly modified (either by the sender or

an intermediate router). To overcome this drawback of rule-based fingerprinting techniques, [Bev04],

developed a Bayesian classifier to passively infer a host OS even if the option fields are scrambled a bit.

There are also several active fingerprinting tools which explicitly set-up a connection with an oper-
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ating system to identify its OS. While these techniques are usually more accurate, their active nature

limits the scalability of these techniques to identify the OS for a large number of hosts. [Lyo97] is

probably the most popular of these active tools. It sends a series of IP and TCP packets to a host and

examines its response to obtain a fingerprint for a given host. It then compares this to a list of known

fingerprints for a large number of OSes to identify the OS. SYNSCAN [Tal04] is similar to [Lyo97] in

its operation though the level of details it provides for the end-system differ.

2.2.3 Past Work on TCP Analysis and Modeling

In this Section, we review work on TCP analysis and modeling. We will first present some work on

analysis of TCP loss detection and recovery mechanism and evaluation of various DBCEs . Research

related to measurement of various TCP statistics and performance is reported next. Finally, we conclude

with a look at TCP performance modeling, including studies on TCP loss modeling.

TCP Measurement and Analysis

Understanding the cause of retransmissions and the RTTs observed for connection is essential to

optimize TCPs loss detection mechanisms. For e.g. if the RTT variability is really high the algorithm

used for RTO estimations would have to be modified to account for it. Similarly if the number of

spurious dupack based loss detection is high then that part of the algorithm has to be modified. In this

Section we will look at past work related to analysis of out-of-sequence segment and RTT.

Analysis of Losses

Understanding network loss properties would help in designing better loss detection algorithm. There

is considerable work on characterizing the losses on a network path using active methods. [Bol93]

and [Pax97a] studied the correlation between packet losses. Both studies found that the conditional

probability of seeing a packet loss if previous packet is lost is considerably high. Similar observations

were made in [YMKT99], which developed a model for the loss patterns as well. In [Pax97b] and [ZD01]

the authors studies the duration of time over which all packets were lost (loss periods). In [ZD01], the

authors found that 95% of all loss periods where smaller that 250ms. In [Pax97b], the author found

that the loss periods span an order of magnitude. While 10% of the loss periods lasted less than 33ms

there were 10% of loss periods which lasted more than 3.2 seconds.
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While the network loss properties helps algorithm design, a post-hoc analysis of current TCP imple-

mentations would help even more in improving the implemented designs. Understanding the frequency

of occurrence for different loss detection algorithms as well their efficiency is the first step in modifying

the algorithms. In [JID+02], the authors used tcpflows [JID+04] to study the retransmissions in over

17 million connections from the middle of the network. They found that 7-25% of all out-of-sequence

segments occurred as a result of packet reordering in the network. They also found that 9-19% of

retransmissions seen in the traces were unnecessary. [AEO03], presented a method, referred in this dis-

sertation as LEAST, to improve the loss estimation for TCP by identifying unneeded retransmission.

They found that on an average 33% of all retransmission in TCP Reno and 2% of retransmission for

SACK TCP were unnecessary. They also investigated the burstiness of losses and found that 60% of

all losses where single loss events.

Analysis of RTTs

Several studies have looked at the distribution of Round-Trip Times (RTTs) observed in the internet.

We look at results from several of these studies below.

• In [JD02], the authors present a technique to obtained one RTT measurement per connection.

95% of RTT were seen to be less than 500ms. 75-90% of RTTs were less than 200ms. This study

present interesting statistic about the distributions of RTT in the network, however, it does not

provide any insight about the variability in RTT on a per packet basis.

• In [JID+02], the authors used tcpflows to study the distribution of RTT in over 17 million connec-

tions. 80% of connection in their dataset had a RTT of over 100ms. While the tool did calculate

per packet RTT, this paper did not study the overall RTT variability in the trace but compared

the RTT obtained using the Syn/Syn-Ack packet to the other RTTs in the flow and found that

the Syn/syn-Ack RTT underestimates the RTT observed by most of the packets for a trace. This

observation was later verified by [AKSJ03].

• In [All00], the author presents the distribution of per-packet RTTs obtained using tcptrace [tcpc]

for over 500,000 connections collected at a web-server at NASA’s Glenn Research Center. They

found that 75% of connections had an average RTT greater than 100ms and 40% of connection

had an average RTT greater than 200ms. While the RTT distributions varied from a few ms to

a few seconds, 85% of RTT were between 15-500ms. They also found that for their dataset 90%

of connection had a median RTT which was less than twice the minimum RTT.
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• A much more detailed study of distribution of RTT and its variability was reported in [AKSJ03].

In [AKSJ03], the authors studied the per-packet RTT distribution of over 1 million connections.

They also found that the RTT distribution varies between a few ms to 200s. In their dataset 55%

of connection had RTT greater than 100ms and 35% of connections had an RTT of more than

200ms. The also found that in 70% of the connections the median RTT was less than twice the

minimum RTT and 25% of connection see a median RTT which is 2 to 10 times the minimum

RTT.

TCP Modeling

To understand (and predict) TCP performance, several detailed models have been proposed for

TCP. We will briefly describe some of these general TCP models as well as some models associated

with the loss process.

TCP performance modeling

In [MSM97], the authors develop a model to describe TCP’s throughput as a function of connections

RTT and loss rate. It assumes that the connection always has data to send (bulk transfer) and that

the losses are either random or periodic. For a loss rate of p the throughput B is given as

B(p) =
MSS

RTT

C√
p

(2.1)

where, MSS is the packet size, RTT is the connections average RTT and C is a constant which depends

on whether losses are periodic or random and whether delayed ack is employed or not. The model was

shown to match the performance quite well in a low loss rate scenario. However, the model assumes

that all TCP losses are recovered by an FR/R and no RTO based retransmissions are seen. Considering

that most retransmission are RTO based and its affects the performance much more than FR/R this

assumption is the key cause for the model not matching the actual observed performance in many cases.

This was the first paper to show that TCP’s performance is inversely related to a connection RTT and

the square root of its loss rate.

To overcome the limitations of [MSM97] a new model was proposed by Padhye Et. al in [PFTK98]

which models both the FR/R based retransmission and the RTO based retransmission. [PFTK98]

present a simple model for TCP Reno’s throughput as a function of the loss rate of a connection. For
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a given loss rate p the approximate model for throughput B is

B(p) =
1

RTT
√

2bp

3
+ To min(1, 3

√

3bp

8
) p(1 + 32p2)

(2.2)

where, b is the delayed ack threshold (2 if every second packet is acked), RTT is the average RTT of

the connection and To is the timeout interval for a RTO based retransmission. This model matches the

actual performance for connections with large number of losses quite well. This model also confirmed

that TCP’s performance is inversely related to its RTT and square root of its loss rate for low loss rate

scenarios.

While the above models worked reasonably well for large connection with a sustained loss rate, they

failed to model the performance of short connections which see few or no losses. The performance of

such flows is dominated by start-up effect of TCP. [CSA00] extended the model in [PFTK98] to capture

the start-up effect. They present a model for a connection’s latency as a function of its transfer size,

RTT and loss rate. The model is developed in two stages. First the connection establishment time is

models in terms of the forward and reverse loss rates for the connection. The second stage models the

data transfer time as sum of the time spend in slow start, time to recover from first loss, time required

to transfer rest of the data, and the time delay introduced by use of delayed acks. This model was

shown to be more accurate than that mentioned in [PFTK98], especially for small connections. For

large connection the difference in the performance of these models was negligible.

TCP loss model

The pattern of losses experienced by a connection can severely impact its performance. For e.g. a

burst of packet losses experienced by a Reno TCP connection results in the later losses to be detected

using the much costlier RTO if the first loss is detected using a FR/R. On the other hand for connections

using SACK TCP these losses can be recovered in a few RTTs.

We will first briefly look at the loss models assumed by some of the popular studies. [MSM97]

was one of the earlier papers assuming a periodic loss model to derive a simple stochastic model for

TCP behavior. (The model assumed a steady state loss probability “p” and assumed that every 1/p

packet is dropped.) Cardwell et.al [CSA00] also assumed an independent loss model while modeling

TCP latency. Other studies which assume an independent loss model are [ARA00, Kum98, LM97].

[PFTK98], one of the most widely cited and influential of TCP modeling papers, assumes that packet

losses are independent across flights but highly correlated within a flight. [MGT99] modeled the losses

46



as a Poisson stream of arrivals. [AAB00] used a correlated loss model to model TCP performance. A

two state Markov model was used in [ARA00, AT99].

While, the above studies did explore several popular and expected loss models and its impact on

TCP performance, the interesting question to be considered is which of these loss patterns are actually

present in the Internet. Next we will look at some empirical studies aimed at identifying the loss

patterns in the network.

In [Bol93], Bolot et al. studied the conditional probability of losses using UDP packet streams.

While they did find that the conditional loss probability of the second packet being lost given that the

first was lost is slightly higher, the overall loss process was argued to be best described as random.

The use of UDP packets may prohibit using the insights from the above paper for TCP analysis.

Packets pattern in TCP is very different than the UDP packet patterns and hence to understand the

loss patterns that would be experienced by TCP we need to look at a TCP based analysis study. In

[Pax97a], Paxson used TCP connections to measure loss rate on the network. Both end points of the

connection were monitored to identify the packets which were dropped in the forward as well as reverse

direction. He found, that the second packet was more likely to be lost if the first packet is lost. This

is one of the few studies which use actual TCP connections to study the loss process on the network.

Similarly, [BSUB98] used a similar approach in which it used a client-server program to measure losses

in both the forward and reverse direction of a transfer. The client sends a stream of packets to the

server and the server echoes them back. They found that the loss process was very bursty but the

number of packets lost in a burst had a long tail distribution. A large number of packets were lost in

a small number of bursts. They showed that while there was dependence among losses the degree of

dependence varied a lot.

A more detailed study for loss patterns where the losses were modeled as a multi-state process were

reported in [YMKT99] and [ZD01]. In [YMKT99], the authors looked at conditional loss probabilities

of losses at different timescales. They collected 128 hours of end-to-end unicast and multicast data

to analyze losses. 76 hours worth of data over 38 runs was found to have stationary losses and was

considered for analysis. They evaluated three different models: Bernoulli, 2-state Markov chain model,

and kth-order Markov chain model. They found that 18% of the runs matched Bernoulli model (i.e. the

losses were independent). 26% of the runs could be modeled by a simple 2-state Markov model while

55% were best modeled by a Markov model with more then two states. [ZD01] studied loss behavior

on a path using Poisson probes. They found that only 27% of the traces could be modeled to have

47



independent losses. They then combined all “near-by” losses into a single loss episode. The idea was

that all losses in a loss episode would be caused by the same congestion event. A test of independence

on these loss episodes showed that 64% of the traces could be modeled as independent events. Thus

it shows that the congestion events (loss episodes) are independent but the losses within the event are

bursty. Within a loss episode they found that 40% of the losses could be modeled as independent, 49%

out of the rest fit a 2-state Gilbert model, 9% of the rest were modeled by a 3-state Gilbert model and

1% by 4-state Gilbert model.
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CHAPTER 3

TCPdebug

Truth is what stands the test of experience.

— Albert Einstein (1879–1955)

If the only tool you have is a hammer, you tend to see every problem as a nail.

— Abraham Maslow (1908–1970)

In this Chapter we describe our tool TCPdebug developed for the passive analysis of TCP packet

traces. The purpose of this tool is to provide more complete and accurate results for identifying and

characterizing out-of-sequence TCP segments than those provided by prior tools such as tcpanaly,

tcpflows, LEAST, and Mystery [AEO03, JID+02, JID+04, Pax97b].

The methodology presented here classifies each segment that appears out-of-sequence (OOS) in a

packet trace into one of the following categories: network reordering or TCP retransmission triggered

by one of—timeout, duplicate ACKs, partial ACKs, selective ACKs, or implicit recovery. Further, each

retransmission is also assessed to determine whether it was needed or not.

This tool provides significant improvement over current state-of-the-art tools for passive analysis

of TCP. One of the crucial factors that limits the accuracy of prior tools is that different TCP imple-

mentations (for different operating systems) have unique parameters (e.g., timer granularity, minimum

RTO, duplicate ACK thresholds, etc.) or algorithms that influence what can be inferred about out-of-

sequence segments. Our approach is to analyze each TCP segment trace from the perspective of each of

four implementations (Linux, Windows, FreeBSD/Mac OS-X, and Solaris) and determine which specific

implementation behavior best explains the out-of-sequence segments and timings observed in the trace.

We validate TCPdebug using controlled lab experiments and real world traces. Using TCPdebug

we analyze packet traces of more than 52 million Internet TCP connections collected from 5 different

vantage points across the globe. and present the results.



Given that prior tools have been shown to provide reasonably good results, one might question

whether the additional completeness and accuracy justifies creating a new tool. We believe that it

does so for the following reasons. First, as discussed in Chapter 1 and 2, each of these prior tools

has particular strengths and weaknesses for analyzing some aspect(s) of out-of-sequence segments but

none deal with all aspects at the desired level of accuracy. Second, a number of potential uses for

the analysis results are much enhanced when they are accurate. For example, while the TCP loss

detection and recovery mechanisms are quite mature and unlikely to undergo major design changes,

there may still be opportunities for “fine-tuning” to improve certain cases. Prior studies have indicated

that retransmissions are triggered much more frequently by timeouts than by duplicate ACKs, and

that significant numbers of retransmissions are unnecessary. Having accurate data on issues such as

these is necessary for quantifying the potential benefits of fine-tuning these TCP mechanisms. Another

example where accurate results from analysis of out-of-sequence segments are needed is in validating and

evaluating models of TCP performance; such models are based on the evolution of TCP’s congestion

window as it changes along with retransmissions, and according to how the need for a retransmission

was detected (timeout or duplicate ACKs) [CSA00, FF96, PFTK98]. An inaccurate classification of

such retransmission can mislead such evaluations.

In this chapter, we elaborate on the methodology already discussed in Chapter 1. We then present

validation results for the tool. Next, through real world trace analysis we show the impact of the details

incorporated in this tool while also comparing it to other related tool.

3.1 Passive Inference of TCP Losses

A packet trace of a TCP connection is a time-ordered sequence of data segments and acknowledg-

ments (ACKs) exchanged (and observed at the trace-collecting monitor) between the TCP sender and

the TCP receiver. Our objective is to find out, given a packet trace, which TCP segments were lost in

the network. Below we describe our passive loss inference methodology.

3.1.1 Passive Loss Inference Methodology

TCP uses a well-known combination of detection and recovery mechanisms to deal with packet

losses—retransmission timeouts (RTOs), fast retransmit/recovery (FR/R), partial acks (PAs), and

selective acks (SACKs). Each of these mechanisms is used to detect and retransmit segments that
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Figure 3.1: Implicit TCP Retransmission. Segment 1 is retransmitted due to a timeout. Segment
2 is a necessary implicit retransmission while segment 3 is an unnecessary implicit retransmission
triggered simply due to TCP’s recovery mechanism.

are perceived to be lost [APS99, BAFW03, FF96, FHG04, MMFR96, Ste93]. Since TCP is actively

detecting losses, the simplest way to identify losses in a trace would be to count the number of packets

which are retransmitted in a trace. We explore this and several similar approaches to identifying losses

below and highlight their drawback and propose solutions to them.

Why not consider all retransmissions?

Since TCP retransmits segments on detecting packet losses, the simplest (and common) approach

for inferring segment loss is to simply look for the reappearance of some segments in the TCP packet

trace and assume that the original transmission was lost somewhere between the monitor and the

receiver [KSE+04]. However, this approach can lead to over-estimation of losses as illustrated in Fig 3.1,

which depicts part of a TCP connection selected from the unc trace. Segment 3 is retransmitted during

a post-timeout period, although the original transmission was successfully received (as is confirmed by

the subsequent duplicate ACK). In [AEO03], Allman proposes an algorithm, LEAST, that accounts for

such unneeded retransmissions in computing the true loss rate of a connection, by simply subtracting

the count of duplicate ACKs that are received after timeouts. However, such an approach does not

help identify which retransmissions were unneeded.
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Figure 3.2: Unneeded Retransmission. This visualization of a real connection from the unc trace
shows how a single occurrence of network reordering results in some spurious duplicate ACKs,
that ultimately trigger 64 subsequent phases of unnecessary retransmissions.

Note that while segment 3 was retransmitted, this was not the result of any explicit loss detec-

tion/recovery attempt by the TCP protocol. This example, thus, illustrates that in order to reliably

infer packet losses from all segment retransmissions, it is important to track the explicit triggering of

TCP’s loss detection mechanisms—namely, RTO, FR/R, PA, and SACK.

Why not simply track TCP sender state?

It turns out that even simply tracking the triggering of loss detection/recovery mechanisms in a TCP

sender—as is done in [JID+04]—is not sufficient for reliably inferring packet losses. This is because of

two reasons related to TCP’s inability to accurately infer packet losses:

Some losses do not trigger TCP’s loss detection phases For implementation efficiency, TCP

senders maintain only a limited history about unsuccessful transmissions. In particular, if multiple

packet losses are followed by a timeout, the sender explicitly discovers and recovers only from the first

of those losses. As a result, the remaining packet losses may not get discovered by simply tracking the
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invocation of TCP’s four loss detection mechanisms (RTO, FR/R, PA, SACK). Fig 3.1 illustrates this

for segment 2, which was unsuccessfully transmitted the first time. The segment gets retransmitted in

the post-timeout period, but without explicitly triggering TCP’s loss detection/recovery mechanisms.

It is, thus, important to identify implicit retransmissions that are needed for recovering from packet

losses.

Note that if history about all previously transmitted data packets is maintained, then the ACK

stream can help identify such retransmissions (in Fig 3.1, the cumulative ACK received after retrans-

mission of segment 1 indicates that segment 2, which was previously transmitted, was lost).

A TCP sender may incorrectly infer packet losses TCP may retransmit a packet too early

if its RTO computation is not conservative. Furthermore, some packet re-ordering events may result

in the receipt of TDAs, triggering a loss detection/recovery phase in TCP. In fact, Fig 3.2, which

again depicts part of a TCP connection selected from the unc trace (and visualized using the tcptrace

utility [tcpc]), plots a connection in which a single packet reordering event resulted in the triggering

of 64 subsequent phases of fast retransmit/recovery, that lasted for more than 5 seconds! It is, thus,

important to identify explicit retransmissions that are not needed for recovering from packet losses.

Such unneeded explicit retransmissions are not identified by LEAST [AEO03]—our analysis of

Internet TCP connections in Section 3.3 shows that more than 90% of unneeded segment retransmissions

in the Internet may occur due to explicit loss detection/recovery actions by TCP. Note that an explicit

retransmission can be identified as unneeded if an ACK is received within a fraction of the connection’s

minimum RTT after the segment is retransmitted—we use a fraction of 0.75 in our analysis.

Basic Approach

As reasoned above, if the timing and history about all previously transmitted packets are maintained

for each connection, then the ACK stream can help achieve each of the three goals outlined above.

Based on this intuition, our basic approach for passive inference of TCP losses is to: (i) replicate

partial state machine for a TCP sender that uses the data and ACK streams to track the triggering

of loss detection/recovery mechanisms, and (ii) augment the state machine with extra state and logic

about the transmission order and timing of all previously-transmitted packets, in order to classify

retransmissions as needed or not. Using this basic approach, we can classify segment retransmissions

as triggered by: (i) RTOs, (ii) FR/Rs, (iii) PAs, (iv) SACKs, and (v) implicit. Furthermore, each

53



retransmission is also classified as needed or unneeded. Fig 3.3 depicts this classification taxonomy.

A similar approach is taken in [JID+04] for developing a tool, tcpflows, for studying congestion

window behavior of TCP connections. However, due to the different objective, tcpflows does not focus

on accurately identifying and classifying segment losses. In particular, it classifies retransmissions

into RTO-triggered, FR/R-triggered, RTO-recovery, and FR/R-recovery. It does not analyze implicit

retransmissions (RTO-recovery) to see if these are needed or not. In Section 3.3, we show that up to

30% of needed (and up to 40% of unneeded) segment retransmissions in the Internet occur during such

an RTO-recovery phase.

3.1.2 Practical Challenges in Loss Inference

Three kinds of practical concerns complicate the implementation of the above approach. We describe

these concerns and how we address them below.

Diverse and Non-documented TCP Stacks

The Challenge:

TCP implementations written by different operating system (OS) vendors may differ (sometimes

significantly) in either their interpretations or their conformance to TCP specification/standards. Fur-

thermore, a few aspects of TCP—such as how a sender responds to SACK blocks—are not standardized.

As a result, the sender-side state machines can differ across OSes. This results in two main challenges

in implementing our basic approach. First, the difference in implementations on different OSes ne-

cessitates that we implement different analysis tools to analyze connections originating from different

sender-side OSes. More significantly, given the trace of a TCP connection, it is non-trivial to identify the

corresponding sender-side OS and decide which OS-specific analysis program to use for analyzing the

connection. Second, most OSes either have proprietary code or have insufficient documentation on their

TCP implementations. Without detailed knowledge of the loss detection/recovery implementations, it

is not trivial to replicate these mechanisms in our OS-specific analysis programs.

This challenge has not been addressed in tcpflows [JID+04], which replicates only the TCP standards

specification [APS99, BAFW03, FHG04, MMFR96, PA00]. tcpflows has been validated only against

connections with FreeBSD senders (that follow the standards closely). Our analysis of general Internet
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connections in Section 3.3 reveals that more than 80% of real world connections involve either a Windows

or Linux sender. More importantly, we find that analyzing such connections with a FreeBSD-based tool

can introduce significant inaccuracy in identifying and classifying TCP losses.

Our Approach:

We consider and incorporate 4 prominent OS stacks in our analysis tools—namely, Windows XP,

Linux2.4.2, FreeBSD 4.10, and Solaris. The TCP sender stack in MacOS is identical to the FreeBSD

stack; hence this OS is also implicitly incorporated in our analysis. We used the popular passive

fingerprinting tool, p0f [Zal06], in order to identify the sender OS in three of our traces (unc, ibi and

jap)—we found that nearly 90% of TCP connections originated from one of these 5 sender-side OSes.

We extract sufficient details about the implementation of loss detection/recovery in the above OS

stacks using three different approaches: (i) by studying the source code when publicly available, (ii)

through direct communication with OS Vendors, and (iii) by using an approach similar to the TBIT

approach described in [PF01] (in order to infer non-public details). To extract OS information using

TBIT we install all four above-mentioned OSes on experimental lab machines and run the Apache

web-server on each machine. We then implement an application-level TCP receiver (by borrowing from

the TBIT code base) that initiates TCP connections to each of the server machines and requests HTTP

objects. Once the server machines start sending the objects, the receiver artificially generates different

sequences in the ACK stream to trigger loss detection/recovery mechanisms on the sender-side stacks

(including FR/Rs, RTOs, PAs, and SACKs). We then use the manner in which the server responds to

the ACK stream to infer several characteristics of the sender-side TCP implementation, including the

computation of RTO, the number of duplicate ACKs that trigger FR/R, and the response to SACK

blocks. Details of the extracted characteristics can be found in Table 3.3 and in [RKS05]. We use these

details in our implementation of four OS-specific trace analysis programs.

For each TCP connection to be analyzed, we run its packet trace against all four analysis programs.

We then select the program that is able to explain and classify each retransmission event.
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Delays and Losses Between Monitor and Sender

The Challenge:

Packet traces used in passive analysis are typically collected at links that aggregate traffic from a

large and diverse population. As a result, there may be several network links on the path between a

TCP sender and the trace monitoring point. Thus, the data packets transmitted by the sender may

experience delays,1 losses, duplication, or reordering before the monitor observes them; the same is true

for ACK packets that traverse between the monitor and the sender. Consequently, the data and ACK

streams observed at the monitor may differ from those seen at the TCP sender. In particular, if some

of the TDAs observed at the monitor fail to reach the sender, the analysis programs may incorrectly

conclude that the sender has entered FR/R. Similarly, if a data packet gets lost before it reaches the

monitor, and subsequently gets retransmitted, the analysis programs may fail to infer that the packet

has been re-transmitted. Thus, the programs may not be able to accurately track the sender-side state

machine.

Our Approach:

In order to deal with this complication, we use a general approach in which loss indications in the

ACK stream trigger only tentative state changes in the monitor state machine, which are confirmed only

by subsequent retransmission behavior by the sender. In addition, we consider all out-of-sequence (OOS)

segments (and not just retransmitted segments) as possible indicators of packet loss. Furthermore, we

infer network reordering by either (i) detecting if an OOS segment appears within a fraction (0.75)

of the connection’s minimum RTT after the segment with the next higher sequence number, or (ii)

detecting reordering in the IP-id field of packets seen from a given TCP source. Finally, we infer

network duplication of packets by detecting repetition in the IP-id field of reoccurring segments seen

from a given TCP source. We remove such duplicated OOS segments from further analysis.

1The RTT measured at the monitor (monitor-receiver-monitor) is less than that measured at the sender (sender-
receiver-sender). We address this issue (i) by estimating the monitor-sender-monitor delay during the initial three-way
SYN/SYN+ACK handshake, and (ii) by adding this quantity to each estimate of the monitor-receiver-monitor delay, in
order to obtain the sender-receiver-sender RTT. The initial sub-RTT obtained from the SYN/SYN+ACK exchange is
a good approximation of the minimum monitor-sender-monitor delay [AKSJ03]. If subsequent delays on this sub-path
vary significantly, the RTO computed at the monitor may be smaller than that used by the sender. Fortunately, this
discrepancy does not negatively impact our analysis—the RTO is used as a minimum threshold for the gap between the
original transmission and retransmission of a lost segment. Therefore, a smaller-than-actual value of RTO would simply
lower the threshold and still be able to correctly identify retransmissions that occur due to timeouts.
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Non-availability of SACK Blocks in Traces

The Challenge:

A large number of traces do not capture the TCP option field. SACK blocks are transmitted as

TCP options and hence are not available for passive analysis of these traces. The sender may have used

the SACK block information to retransmit certain packets. In the absence of these blocks, the monitor

will fail to accurately identify the cause of these retransmissions.

Our Approach:

To overcome this problem, we develop the following heuristic to identify whether a packet could

have been triggered by incoming SACK information. We classify a segment retransmission as SACK-

triggered if: (i) the connection is in FR/R, (ii) the retransmission is not explained by either RTO or

a PA, and (iii) the sequence number of the retransmitted segment is less than the highest sequence

number that was in flight when the connection entered FR/R. We evaluate this heuristic using the

unc and jap traces. We first run our analysis tools with the SACK blocks available and log all OOS

segments that were SACK-triggered. Then we remove the SACK blocks from these traces and run

the tools with the above heuristic. The heuristic-based analysis identified all of the OOS segments

identified as SACK-triggered by the analysis based on SACK blocks; however, it also marked 6.9% and

15.3% of the unexplained events as being SACK-triggered, in the unc and jap traces respectively. Our

analysis of Internet TCP connections in Section 3.3 shows that only a small fraction (less than 7%) of

all OOS segments are SACK-triggered—the possible overestimation introduced by the above heuristic,

therefore, is not significant.

3.1.3 Summary of Our Methodology

Our methodology for reliably inferring and classifying TCP losses can be summarized as follows.

1. We first extract the implementation details of four prominent TCP stacks (Windows XP, Linux

2.4.2, FreeBSD 4.10 (MacOS), and Solaris) using the approaches described in Section 3.1.2. These

details primarily include the initial RTO, the minimum RTO, the RTO estimation algorithm, the

number of duplicate ACKs that trigger FR/R, and the responses to partial ACKs and SACKs.

In addition, some OS-specific peculiarities are included—for instance, if a segment with options
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Figure 3.3: Classification Taxonomy.

fields is to be retransmitted in FR/R, some versions of Windows transmit a small packet equal

to the size of the options field.

2. We then replicate the loss detection/recovery mechanisms in four OS-specific analysis state

machines—these state machines use the data and ACK streams as input. Loss indications in

the ACK stream are used to only tentatively trigger state transitions, which are confirmed only

by subsequent segment retransmission behavior. For instance, on detecting an RTO-based re-

transmission, the state machine will enter an “RTO-recovery” state. A new RTO is calculated,

any pending RTT measurements are canceled and the SACK block, if present, is cleared. The

machine exits this state on receiving an ACK for the highest packet that was in flight when RTO

was detected.

3. We then augment these machines with extra logic and state about all previously-transmitted

packets, in order to classify retransmissions as needed or unneeded and infer packet losses with

accuracy greater than TCP.

4. We then run each connection trace against all four machines and use the results from the one

that can explain and classify all of the observed OOS segments. In case more than one machine

matches this criteria, we check if the classification of each OOS segment is the same in each

machine. If not, we discard the connection. We also discard the connection in case none of the

machines can explain each OOS segment.

Our methodology classifies all OOS segments that appear within the packet trace of a TCP connection,

according to the taxonomy depicted in Fig 3.3.
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Trace Duration Avg TCP Load # Connections # Bytes # Packets
Abilene-OC48-2002 (abi) 2h 211.41 Mbps 7.1 M 190.3 G 160.1 M

Japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3 M 3.5 G 3.7 M
UNC-wireless-2005 (wls) 178h 1.58 Mbps 20.2 M 126.9 G 157.6 M
UNC-wired-2005 (wrd) 178h 2.18Mbps 6.8M 175.1 G 217.5 M
Liepzig-1Gbps-2003 (lei) 2h 45m 9.53 Mbps 2.4 M 11.8 G 17.3 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5 M 133.3 G 151.0 M
Ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 0.9 M 163.2 G 158.9 M

Table 3.1: General Characteristics of Packet Traces. The trace name indicates the location, link
speed, the year data was collected and the acronym used for the trace. The remaining columns
describe the duration of the trace, average load on the link, and the number of connections,
bytes, and packets.

We have implemented the above machines in the C programming language. All four implementations

can analyze more than a million connections in a few minutes. The source code is available online

via [tcpa].

In the next two sections, we validate our methodology and compare its performance with past work.

3.2 Validation

Our primary validation method is to compare the output from the analysis tools for TCP connections

where the “ground truth” about the classification of each OOS segment is known. To do this, we

modified the TCP Behavior Inference Tool (TBIT) [PF01] in order to observe the sender’s responses

under additional controlled conditions. We supplement this validation by comparing the determination

made by the tools for identifying a specific OS implementation with the results from p0f [Zal06] - a

well-known passive fingerprinting tool.

Below, we first describe the sources of Internet packet traces used throughout this Chapter and then

we will present our validations. methodology.

3.2.1 Data Sources

Table 3.1 describes the traces used in our analysis. These traces are collected from links with

transmission capacity ranging from 155 Mbps to OC-48. The abi traces [abi] are collected from a

backbone link of the Internet-2 network (Abilene); the jap trace [jap] is collected off a trans-Pacific link

connecting Japan to the US by the MAWI working group; the unc trace is collected at the campus-
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to-Internet links of the University of North Carolina; and the wls and wrd traces are captured inside

the UNC campus. The wls trace captures wireless TCP connections from over 600 wireless access

points while the wrd trace captures just the wired network. The lei [lei] traces are collected at the

campus-to-Internet links of University of Leipzig; the ibi trace captures traffic served by a cluster of

high-traffic web-servers (mirror for ibiblio.org). All traces except the one from the link to Japan were

collected using Endace DAG cards [dag]; the jap trace was collected using tcpdump [JlM]. The abi and

lei traces are from the NLANR repository. The unc, ibi, and jap traces include TCP options as well.

Our trace set is fairly diverse in its geographic location, proximity to TCP senders, as well as types of

users represented.

All Connections OOS Connections All OOS Segments Explained
Trace # Conn # Bytes # Packets # Conn # Bytes # Packets # Conn # Bytes # Packets
abi 389.0 K 180.1 G 148.4 M 66.1 K 120.1 G 100.0 M 40.5 K 55.8 G 45.0 M
jap 58.0 K 5.0 G 4.8 M 29.8 K 4.2 G 4.1 M 23.1 K 1.3 G 1.5 M
wls 329.8 K 121.7 G 144.1 M 101.3 K 113.3 G 122.1 M 63.3 K 28.0 G 40.1 M
wrd 290.9 K 171.3 G 208.8 M 98.0 K 167.7 G 200.0 M 73.3 K 36.7 G 63.1 M
lei 75.4 K 10.5 G 12.6 M 14.0 K 7.8 G 9.7 M 10.7 K 3.1 G 4.4 M
unc 774.8 K 121.3 G 129.5 M 168.1 K 94.7 G 100.5 M 131.7K 46.0 G 49.1 M
ibi 287.5 K 161.8 G 157.2 M 78.5 K 135.6 G 129.5 M 59.8 K 57.4 G 64.9 M

Table 3.2: Characteristic of Connections That Transmit More Than 10 Segments. Connections
that transmit at least 10 data segments are described under “All Connections”. Out of these,
the connections with traces that contain at least one OOS segment are described under “OOS
Connection”. The final set of columns describe the characteristics of the connections for which
our tool was able to unambiguously explain and classify all OOS segments.

For our analysis, we use only those connections that transmit at least 10 segments. Furthermore,

since our objective is to study TCP retransmissions, we select only those connections in which at

least one OOS segment is observed (“OOS” connections). Table 3.2 shows the impact of applying the

latter filter. While less than 50% of connections that transmit at least 10 segments also have some

OOS segments, these connections carry most of the bytes in this class. Furthermore, the traces vary

significantly in the distribution of bytes transmitted per connection—this adds to the diversity of our

results.

3.2.2 Validation Against TBIT Controlled Conditions

TBIT emulates a TCP protocol stack for the receiver side of a unidirectional data transfer where

the sender is a normal application (in our case a Web server) running over a real TCP implementation

in a specific operating system. We modify TBIT to simulate different packet loss scenarios that would
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trigger sender responses by withholding ACKs, sending duplicate ACKs, and providing SACK blocks.

Because the state-machine analysis critically depends on inferring the TCP sender’s RTO to identify

retransmissions triggered by timeouts, we use TBIT to delay ACKs thus simulating variable round-

trip delays. For some of the validation scenarios described below we also use dummynet on the TBIT

machine to create additional constant latency between the sender and receiver.

For each validation scenario we used two machines, one running TBIT and the other running a web

server, connected over a switched 100/1000 Mbps Ethernet that is shared by users in the Computer

Science department. TBIT established a TCP connection to the web server and sent a valid HTTP

request for a very large file. TBIT then implemented the desired validation scenario with a specifically

generated ACK stream. Unless stated otherwise, each validation scenario was repeated 100 times

because not all sources of variation in timing could be controlled (e.g. OS scheduling, Ethernet switch

delays, etc.). Separate estimates of these uncontrolled delays concluded that the majority were less

than 1 millisecond and nearly all were less than 10 milliseconds.

The entire suite of validation scenarios was run with TBIT connecting to each of four different

TCP implementations on the server machine – Windows XP, Solaris, Linux 2.4.2, and FreeBSD 4.10.

Bidirectional tcpdumps of all packets were taken on these server machines and the traces were then

used as input to our validation procedures. The procedures have two parts – (1) to verify that each

TCP implementation responds in real operation as expected (thus establishing the “ground truth”) ,

and (2) to verify that the state-machine analysis programs correctly emulate each implementation’s

responses. For part (1) we processed the tcpdump traces with tcptrace [tcpc] and other tools to verify

the implementations’ responses by inspection. For part (2), we used the tcpdumps as input to the state-

machine analysis programs and recorded their outputs. By comparing the results from the state-machine

analysis with the known implementation responses, we could determine how correct the inferences about

conditions at the sender were. We also used the tcpdumps as input to the analysis program, tcpflows,

presented in [JID+04] but report the results from this only when they differ substantially from ours. In

addition, we implement the LEAST algorithm from [AEO03] for identifying unneeded retransmissions.

RTO classification:

The first group of validation scenarios deal with how well the state-machine analysis can infer

the sender’s estimate of RTT and RTO which are critical in identifying retransmissions triggered by

timeouts. In this group of validation scenarios, TBIT causes all retransmissions to be triggered by
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Parameter Linux Windows FreeBSD Solaris
Timer granularity 10ms 100ms 10ms 10ms
Initial RTO (s) 3 3 3 3.375
minRTO (ms) 200 200 1200 400

a 0.25 0.25 0.25 0.25
b 0.125 0.125 0.125 0.125
m 1 1 1 1.25
k 4 4 4 4
D 3 2 3 3

RTO srtt + srtt + srtt+ 1.25*srtt +
vartt 4*rttvar 4*rttvar 4*rttvar

dupACK threshold 3 2 3 3

Table 3.3: Values of key parameters in different TCP Stacks

timeouts (by withholding ACKs). The analysis state machine for each implementation requires correct

values for parameters defining the initial and minimum RTO, the timer granularity, and the equations

used in computing RTO. These elements are verified as part of the validation results. Table 3.3 gives

the values used in the state machine for each TCP implementation.2 3

RTT estimation:

Dummynet was used in experiments with constant minimum RTTs—of 50, 100, 150, 200, 400, 1000,

and 2000 ms—between the two machines. All RTTs estimated for segment/ACK pairs by our state

machines were within +/- 10 milliseconds of the value set by dummynet (these differences are consistent

with the inherent variable delays in the switches).

Initial RTO setting:

The initial RTO parameter helps classify retransmissions of SYN or SYN+ACK segments at con-

nection establishment. TBIT initiated a connection (sent SYN) but did not respond to the SYN+ACK

sent by the server. This resulted in a retransmission of the SYN+ACK after the initial RTO interval.

Our OS-specific state machines correctly identified the SYN+ACK retransmission as being triggered

by RTO; further, the measured RTO was equal to the value expected +/- the timer granularity (also

shown in Table 3.3).

2Details about the RTO computation (srtt and rttvar) are taken from RFC 2988 [PA00]. Linux, however, uses a
significantly different computation for the variance in RTT—we extract this from the Linux source code. The details can
be found in [RKS05].

3Some parameters for Windows are based on private communication with engineers at Microsoft Corp.
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Trace # OOS p0f-id % Linux % Windows % FreeBSD % Solaris % Other
Conn. Conn. Correct Wrong Correct Wrong Correct Wrong Correct Wrong OSes

jap 23923 21260 25.79 0.02 21.21 0.32 41.51 0 1.98 0.05 9.11
(89%)

ibi 59713 59713 99.80 0.20 0 0 0 0 0 0 0
(100%)

unc 138214 136524 7.26 0 78.08 0.69 5.02 0 8.52 0.17 0.25
(99%)

Table 3.4: Validation using p0f. The third column lists the number (and percent) of connections
for which p0f was able to identify the source OS. For each OS, we next list the percent of
connections for which our estimation of sender OS was correct or wrong. The last column lists
the percent of connections which did not belong to any of the OSes that we model. All percent
values are with respect to the second column.

Minimum RTO setting:

No delays were added to the actual RTT (typically 1 millisecond) over the switched Ethernet. TBIT

received and ACKed a significant number of segments (typically 50 or more) so the sender’s RTO

calculation stabilized before withholding all ACKs to trigger an RTO retransmission. The extremely

small RTT and the stabilization of the RTO before we simulate a dropped packet ensure that RTO

should occur after an interval approximately equal to the minimum RTO. The OS-specific state machines

correctly identified these retransmissions as triggered by RTO using these minimum values and timer

granularities.

RTO Estimation

These validations were conducted with both near-constant and highly variable random delays. For

the experiments with near-constant delays (varying by only 1-10 ms caused by switch delays), we used

dummynet to set a target minimum RTT ranging from 10 to 1000 ms between the two machines. For

experiments with highly variable delays, ACKs were delayed randomly by TBIT to vary the RTT from

0 to 400% above the dummynet minimum delays described above. In both sets of experiments TBIT

triggered RTO retransmissions by withholding ACKs after a randomly selected packet.

Figure 3.4 summarizes the results of all the RTO experiments. It shows the CDF of the error between

the actual RTO extracted from the tcpdump and the RTO value predicted by the state machines,

normalized to the timer-granularity of each OS. We see that the errors fell well within the timer

granularity for a particular OS except for Windows. Windows exhibits a strong instability in its RTO

calculation. We contacted engineers at Microsoft who attributed our observations to a “rounding issue”
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Figure 3.4: Error in RTO estimation for different OSes

with the OS, the details of which were not revealed due to copyright issues. However, our heuristics for

timeout detection in the state machine for Windows are conservative enough to not be affected by the

error. In terms of absolute numbers, the difference between the observed and state machine RTO was

within 20ms for Linux and within 2ms for FreeBSD and Solaris.

These experiments also allowed us to estimate the percentage of RTO timeout events that would have

been missed if we used only the RFC specifications in the analysis tools as is done for tcpflows [JID+04].

We found that if only the RFC specification was used, we would miss 85% of RTO events in Linux

TCP connections, 55% in Windows, and 100% in Solaris. This is perhaps the most important reason

that OS-specific logic needs to be incorporated in the analysis tools.

FR/R classification:

The second group of TBIT validation scenarios deals with how well the state-machine analysis can

infer the sender’s response to duplicate ACKs, partial ACKs in Fast Recovery, and SACK blocks. In

all cases, TBIT received and ACKed a randomly chosen number of segments before creating a specific

loss scenario.
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Number of duplicate ACKs to trigger retransmission:

To simulate this case, TBIT sent duplicate ACKs (without delays) in response to subsequent seg-

ments (thus simulating loss of a random segment). The number of duplicate ACKs was varied from 1 to

4. We repeated each of these experiments 4 times with different random number seeds. In the absence

of enough duplicate ACKs, the sender times out and this is detected correctly by our OS-specific state

machines. In the presence of enough duplicate ACKs, the retransmission was by a Fast retransmit and

our OS-specific state machines also classified these events correctly. For a windows connection, the

tcpflows tool failed to identify the retransmissions triggered by 2 duplicate ACKs. This is because it

assumes that 3 duplicate ACKs are needed, as is recommended in the RFC specification.

Response to Partial ACKs in Fast Recovery:

TBIT triggered a retransmission by sending sufficient duplicate ACKs (as described above) and

then sent partial ACKs for a randomly chosen segment from among those transmitted between the

original and retransmission. We repeated this experiment 4 times with different random seeds. Our

OS-specific state machines correctly identified these Partial ACK events. Note that Windows TCP

does not retransmit on receiving a partial ACK during FR/R but instead retransmissions are triggered

by RTO (does not implement newReno but does use SACK if present).

Response to SACK blocks

TBIT triggered a retransmission by sending sufficient duplicate ACKs and generated several different

cases of SACK block contents indicating gaps in the received segments beyond the simulated loss. In

all cases, our OS-specific state machines correctly classified such retransmissions. There are minor

differences in the way Windows responds to SACK. This can cause a RTO-triggered retransmission

even in presence of correct SACK blocks. These packets were correctly classified by our Windows-

specific state machine. The tcpflows tool, which does not use SACK blocks, classified the above as

simply retransmissions during “FR/R recovery”.

65



Unneeded and Needed Retransmissions:

TBIT simulated instances of the implicit retransmission scenario of Fig 3.1. In a second set of

scenarios, it sends spurious duplicate ACKs to trigger an unneeded retransmission (similar to Fig 3.2).

Our OS-specific state machines correctly classified the corresponding retransmissions as needed or un-

needed. These experiments also allowed us to compare our state-machine results with those we obtained

by implementing the algorithm used in LEAST [AEO03]. LEAST correctly identified the unneeded re-

transmissions in the first scenario but failed to identify them in the second case.

3.2.3 Validation Against Real TCP Connections

Next, we validate our tool-set against traces of real world TCP connections. In this case, since we

do not have access to either the TCP sender or the receiver for these connections, the ground truth

about the classification of each OOS segment is not known. Consequently, we can not use the same

validation tests as those used in Section 3.2.2. Instead, we use our tool to identify the sender OS (as

the one corresponding to the state machine that is able to explain all OOS segments). Our validation

evaluates how accurately does our tool-set identify the sender-OS (and hence, is able to accurately

model the sender state machine and classify OOS segments).

For establishing the ground truth about the sender-OS, we rely on p0f [Zal06]—a popular passive

fingerprinting tool which uses the information present in the option fields of SYN, SYN+ACK, or Reset

segments to identify the source OS for the packet. We use p0f to identify the sender-side OS for all

OOS connections in the jap, ibi, and unc traces that were successfully classified by our tool-set. These

traces include TCP option fields and, hence, can be analyzed by p0f.

We compare our estimate of the sender-OS to that reported by p0f. Table 3.4 reports the com-

parison results. The numbers listed under the OS-specific columns report the percent of p0f-identified

connections for which our tool-set correctly or incorrectly identified the sender-OS. We observe that:

• p0f is able to identify the sender-OS for 89-100% of the connections. The relative mix of sender-OS

is quite different across the three traces. This is to be expected; ibi represents connections to a

cluster of web-servers, all of which run Linux; unc represents members of an academic and medical

community, most of whom use Windows PCs; jap represents trans-continental connections made

by a generic mix of users in Japan.
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Trace # OOS % % Segment Retransmissions
Segments Network Total RTO Dupack PA SACK Implicit

Reorder
abi 339.2 K 14.1 85.9 33.4 17.9 4.4 7.1 23.1
jap 121.7 K 4.2 95.8 46.9 13.9 5.8 2.4 26.9
wls 1119.5 K 5.8 94.2 52.9 10.7 6.1 2.4 22.1
wrd 1250.4 K 5.3 94.7 66.0 9.6 2.5 1.1 15.6
lei 110.5 K 0.2 99.8 53.5 9.9 2.8 5.0 28.6
unc 1327.4 K 12.9 87.1 40.3 13.2 6.1 6.5 20.9
ibi 787.4 K 0.2 99.8 32.8 17.3 8.7 0.4 40.8

Table 3.5: Classification of OOS segments by TCPdebug . These are from connections for which
we were able to unambiguously explain and classify all OOS segments.

tcpflows
Trace # OOS % % Segment Retransmissions

Segments Network RTO Dupack RTO FR/R
Reorder recovery recovery

lei 110.5 K 0.8 55.2 7.5 34.7 1.8
unc 1327.4 K 13.8 39.5 7.0 36.0 3.6
ibi 787.4 K 0.27 26.5 21.2 29.7 22.3

Table 3.6: Classification of OOS segments by tcpflows . These are from connections for which we
were able to unambiguously explain and classify all OOS segments. tcpflows classifies an OOS
segment as one of: network reordering, retransmission triggered by RTO, duplicate ACKs, or
during FR/R or RTO-recovery.

• Our estimate of sender-OS matches that of p0f for more than 99% of the connections—accuracy

is high for all four OSes. We attribute this high level of success to two factors: (i) our in-depth

modeling of sender-state as well as high granularity of analysis of OOS segments; and (ii) our

conservative approach of filtering out connections with even a single OOS segment that is not

robustly explained.4

A natural question to ask is: in practice, how important is it to correctly model the sender OS? In

particular, if an RFC-based analysis tool is used, how different would the results be. We investigate

this and other issues in the next section.

3.3 Impact

We believe the reason for the high degree of accuracy of our tool is that we insist on unambiguously

explaining and classifying all OOS segments that appear within a connection. In order to be able to

4This also means that we can directly use p0f to identify the source OS for a connection.
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Trace # OOS % Network % Segment Retransmissions
Segments Reordered Total RTO Dupack PA SACK Implicit Unexplained

abi 1345.0 K 11.4 88.6 26.9 17.1 4.0 7.3 17.4 16.0
jap 340.8 K 6.3 93.7 35.6 14.6 5.0 4.2 22.1 12.2
wls 2927.5 K 7.7 92.3 39.9 11.4 5.9 2.7 22.3 10.0
wrd 4177.3 K 7.3 92.7 43.9 11.4 2.2 0.8 19.2 15.3
lei 294.5 K 0.4 75.6 40.6 11.6 3.1 5.6 24.0 14.7
unc 2752.9 K 12.6 87.4 32.9 12.7 5.7 6.0 20.1 10.0
ibi 2383.9 K 0.7 93.0 26.3 19.6 10.9 0.2 34.8 7.5

Table 3.7: Classification of all OOS segments (including unexplained events) by our tool-set.
These are all connections irrespective of whether we were able to explain all events or not.

Our Tool-set
Trace # Total % Needed % Unneeded % No LEAST [AEO03]

Retran Total Implicit Explicit Total Implicit Explicit Inference % Needed % Unneeded

abi 291.9 K 79.1 13.1 66.0 12.0 4.9 7.1 8.8 89.6 10.4
jap 116.6 K 82.4 4.4 78.0 15.6 6.6 9.0 2.0 92.7 7.3
wls 1054.2 K 86.7 22.3 64.4 13.2 1.1 12.1 0.1 98 2.0
wrd 1184.2 K 96.2 15.9 80.3 3.7 0.5 3.2 0.1 97.7 2.3
lei 110.3 K 82.5 19.6 62.9 12.7 4.2 8.5 4.8 87.7 12.3
unc 1155.9 K 91.2 21.4 69.8 7.7 1.1 6.6 1.5 96.2 3.8
ibi 785.5 K 76.6 23.2 53.4 18.9 13.1 5.8 4.5 85.0 15.0

Table 3.8: Needed and Unneeded Retransmissions (for connections with all OOS segments un-
ambiguously explained).

do so, our tool encodes significant amount of state and logic and it incorporates much of the diversity

across TCP implementations. It is natural to ask: in practice, how much difference does this make?

In particular, if prior tools are used to analyze real world OOS connections, how different would the

classification results be? We investigate this issue by raising several questions below—we address each

question by analyzing all of the seven Internet TCP trace-sets described in Section 3.2.1.

• How many OOS segments can we successfully classify?

Table 3.2 reports the number of OOS connections in which all OOS segments were unambiguously

classified by our analysis. We find that in nearly 25-35% of OOS connections, at least one OOS

segment could not be classified. Two main factors are responsible for the failure to completely

classify a connection.

– First, we specifically model only 5 sender OS versions. In order to study the prevalence of

these OSes, we ran p0f against all connections (whether or not they had any OOS segments)

that appear in the jap, unc, and ibi traces. While more than 80% of connections in each

trace originated from a Windows or Linux machine, we found that nearly 10% of connec-
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tions in each trace originated from an OS different from the above five—such connections,

consequently, may not be successfully modeled by our state machines.

– Second, recall that we apply a conservative filter for accepting a connection classification:

(i) each OOS segment that appears in a connection trace must be explained, and (ii) the

explanations must match if more than one state machine explains all such segments.

More that 50% of the discarded connections are discarded only due to the second rule above.

In Section 3.2.3 we saw that p0f can be used quite effectively for identifying the source

OS of connections. This allows us to eliminate the second filtering rule—if more than one

state machines explain all OOS segments of a connection, p0f can be used to identify the

sender OS, and the corresponding OOS classification can be accepted. We are currently

incorporating this feature in our tool-set.

Figure 3.5 plots the distribution of the number of unexplained OOS segments in each OOS connec-

tion. We see that all segments are classified in 62-95% of the connections and these are accepted

by our filters (as is also indicated in Table 3.2). More interestingly, the number of unexplained

OOS segments are less than 5 in most of the remaining connections. Since the total number

of unexplained segments is small, it may be worthwhile to include in our analysis the explained

OOS segments even from the discarded connections. We study below how our classification results

change if we do so. For the rest of the analysis in this section, however, we do not include results

from such connections.

• How important is it to replicate TCP sender state?

Tables 3.5 and 3.8 report our classification for OOS segments in the seven traces, according to

the taxonomy of Fig 3.3. Table 3.8 shows that the fraction of retransmissions that are unneeded

(the original transmission of the segment was not lost) ranges from 3-19%. This suggests that,

in practice, TCP loss rate would be significantly overestimated if every segment retransmission is

taken as an indicator of packet loss—this underscores the importance of modeling and replicating

TCP sender state.

In order to study the effect of our connection filter—that requires that each OOS segment be

unambiguously classified—we present in Table 3.7, our classification results when the explained

OOS segments are included from all connections (including the connections discarded by our

filter). We find that the number of unexplained segments are small (7-16%) in each trace. More

importantly, Tables 3.5 and 3.7 are quite comparable in the distribution of elements within the
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Figure 3.5: The distribution of the number of unexplained OOS segments in each OOS connection.

classification tree.5 This suggests that our filter does not bias our classification results significantly.

• How important is it to identify unneeded explicit retransmissions?

Table 3.8 also compares the classification of needed and unneeded retransmissions made by our

tool-set to that made by LEAST [AEO03]. We find that the number of unneeded retransmissions

reported by LEAST is always lower (sometimes by more than 50%) than that reported by our

tool-set. There are two reasons for this. First, as illustrated in Section 3.1 and as demonstrated in

Section 3.2, LEAST does not identify some explicit retransmissions that are unneeded. Table 3.8

indicates that a majority of unneeded retransmissions occur due to explicit TCP loss detection-

recovery actions. Second, when duplicate ACKs generated by unneeded implicit retransmissions

are lost in the network, LEAST fails to conclude that the retransmission was not needed. While

this is true even for our tool-sets, our additional analysis of the timing between the retransmission

and the ACK (ACK arrives within a fraction of the minimum RTT) for the segment helps us

identify some of these retransmissions.

• How important is it to classify implicit retransmissions?

5We also find, although not reported here, that the values in Table 3.8 (including those reported for LEAST) do not
change significantly if explained OOS segments from discarded connections are also included.
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Implicit retransmissions are not analyzed for whether these are needed or not by tcpflows [JID+04].

Table 3.5 indicates that the fraction of retransmissions that are sent implicitly by TCP is signifi-

cant (16-40%). More importantly, Table 3.8 indicates that, in practice, up to 30% of needed (and

up to 40% of unneeded) segment retransmissions occur implicitly. Classifying these is, therefore,

important for any study of either TCP losses or the effectiveness of TCP mechanisms.

• How important is it for the analysis to be OS-sensitive?

tcpflows [JID+04] is based on TCP standards specified in RFCs and does not incorporate variations

that exist in TCP implementations across different OSes. In order to assess the impact of being

OS-insensitive, we analyze using tcpflows all OOS connections that were explained by our tool-

set in the lei, unc, and ibi traces (the other traces could not be processed by tcpflows due to

incompatible trace formats). Table 3.6 includes the results—note that the “FR/R” classification

of tcpflows is a combination of our PA- and SACK-triggered categories, and that “RTO-recovery”

is captured by our implicit category. The classification differs significantly from that of our tool-set

reported in the same table, underscoring the need for incorporating popular implementations.

We also evaluate the need for OS-sensitive analysis using our tool-set. For this, we again consider

all OOS connections in the above three traces that were explained by our OS-sensitive tool-set, and

observe the classification results when only our FreeBSD-specific state machine (which follows the

TCP standards fairly closely) is used on these. This state machine was unable to explain around

50% of all OOS segments in each trace!

• How important is it to incorporate delays and losses between the monitor and the

sender?

Table 3.5 shows that significant number of OOS segments occur due to network reordering between

the sender and the monitor. We have also observed that a significant fraction of losses occur

between the sender and the monitor. It is, therefore, important to incorporate such network

anomalies in the analysis.

In the abi and unc traces,6 nearly 13-14% of OOS events are classified as due to network packet

reordering between the sender and the monitor—these numbers appear unusually high. To inves-

tigate these events further, in Fig 3.6, we plot the time gap (referred to as the resequencing delay)

between each such OOS segment and the segment with the next higher sequence number. We find

that most of the resequencing delays are within 5 ms—this indeed corresponds to timescales of

6A known contributor of excessive reordering in the UNC trace is the presence of intrusion detection appliances that
divert, from selected connections, a few IP packets from the fast data-path for deeper inspection.
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Figure 3.6: Resequencing delays for reordered segments

network reordering and is much smaller than typical RTTs. The small fraction of OOS segments

with large resequencing delays occur in connections with large minimum RTTs as well.

3.4 Concluding Remarks

The primary contribution of our work is the implementation and validation of a new suite of tools

for passive analysis of TCP connections. These tools are freely available to the networking research

community and we hope they will encourage others to contribute to our understanding of TCP behavior

“in the wild” by analyzing larger and more diverse sets of traces. While many of the ideas used in

these tools are not new (see the discussion of related work), we believe this is the first time all have

been integrated into a single, carefully validated, analysis approach. Further, we have made significant

advances by explicitly including TCP implementation-specific factors for those operating systems that

are currently (and likely to be for the foreseeable future) the dominant end points for TCP connections

(Windows, Linux, FreeBSD/MAC OS X, Solaris). We have also been careful to cover many of the

“corner cases” and boundary conditions that are missing in prior work, choosing to rely on explicit
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sender-state tracking rather than approximations or heuristics where possible.

We believe the accuracy and high classification granularity of our tools will facilitate research to

address issues related to the efficacy of TCP’s loss detection/recovery mechanisms, to develop new

models for the underlying loss processes that TCP must deal with, and to better understand the

impact of network congestion on real world TCP performance. For example, the analysis of real world

TCP connections may suggest important implications for the refinement of analytic models of TCP

throughput as a function of loss rates [CSA00, PFTK98].
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CHAPTER 4

TCP Detection Recovery

In the middle of difficulty lies opportunity.

— Albert Einstein (1879–1955)

Believe those who are seeking the truth. Doubt those who find it.

— Andre Gide (1869–1951)

While it is generally known that segment losses can adversely impact the connection duration of

TCP connections, the extent to which they do so in the Internet has never been quantified. We address

this issue by evaluating the impact of the design of TCP loss detection/recovery mechanisms on the

performance of real world TCP connections.

As discussed in Chapter 1, two performance related goals guide the design of TCP loss detection

mechanisms. First, TCP should accurately identify segment losses. In particular, if TCP erroneously

infers that a segment was lost, it would unnecessarily invoke loss recovery and increase the connection

response time. Second, TCP should quickly identify segment losses. A longer detection period adversely

impacts connection response time as well. This fundamental trade-off between accuracy and timeliness

is controlled by several design parameters associated with RTO and FR/R based loss detection—these

include the dupACK threshold, the minimum RTO, the RTT-smoothing factor, the weight of RTT

variability in the RTO-estimator, and the RTO estimator algorithm itself. In this chapter, we will

systematically vary these parameters and (i) study the accuracy and timeliness of TCP loss detec-

tion/recovery in real world TCP connections originating from different sender OS stacks, and (ii) study

the impact of packet loss detection/recovery on overall response time of these connections.

We rely on passive analysis of traces of more than 2.8 million real world TCP connections, originating

from 5 prominent sender-side OSes—including Linux, Windows XP, MacOS, Solaris, FreeBSD. Our

study thus incorporates a large, diverse, and realistic mix of applications, user behavior, network paths,



and traffic conditions.

We will first summarize the problem as formulated in Chapter 1. Next we present our data source

and methodology. We present the detailed analysis of loss detection mechanism next and then conclude

the chapter with the summary of our findings.

4.1 Problem Formulation

In Chapter 1, we highlighted the objectives of TCP loss detection/recovery analysis. The key

questions we address here are: Are the parameter settings in different TCP implementations working

well in reducing connection response times? Are the decade-old recommended settings in the TCP

standards optimal for the current Internet?

These questions have been partially addressed in a couple of key studies—however, as described

in detail in Chapter 2, most studies were conducted nearly a decade ago; consequently, these do not

incorporate diversity in properties of real world TCP implementations, Internet paths, and application

behavior. More importantly, to the best of our knowledge, no previous study has modeled the impact

of TCP configuration on the overall response times of TCP connections.

Our Contribution We consider each of the design parameters associated with TCP loss detec-

tion/recovery and: (i) quantify the impact of these on accuracy and timeliness of real world TCP

implementations, and (ii) model and quantify the impact of these on overall response times of current

Internet TCP connections. Our study incorporates the behavior of 5 prominent sender-side OSes and

relies on passive analysis of more than 2.8 million real world TCP connections. To the best of our

knowledge, this is the largest and most comprehensive study of these design parameters associated

with the most widely-used transport protocol.

In the following sections, we elaborate on our analysis methodology and results. We first describe

the connection traces used for our study.
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Trace Duration Avg TCP Load # Connections # Bytes # Packets
japan-155Mbps-2004 (jap) 4h 1.93 Mbps 0.3 M 3.5 G 3.7 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 14.5 M 133.3 G 151.0 M
ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 0.9 M 163.2 G 158.9 M

wireless-2006 (wls) 178h 1.58 Mbps 20.2 M 126.9 G 157.6 M

Table 4.1: General Characteristics of Packet Traces: We present the average TCP load, number
of connections, number of bytes and number of packets in the traces. The name is brackets will
be used to represent the traces in the rest of this chapter.
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Figure 4.1: Distribution of Bytes Transmitted in Each Connection

4.2 Data Sources

Table 4.1 describes the bi-directional traces used in our analysis. These traces are collected from

links with transmission capacities ranging from 155 Mbps to OC-48. The jap trace [jap] is collected off

a trans-Pacific link connecting Japan to the US by the MAWI working group; the unc trace is collected

at the campus-to-Internet link of the University of North Carolina (UNC); the wls trace captures

wireless TCP connections from over 600 wireless access points within the UNC campus; and the ibi

trace captures traffic served by a cluster of high-traffic web-servers (mirror for ibiblio.org). All traces

except the one from the link to Japan were collected using Endace DAG cards [dag]; the jap trace was

collected using tcpdump [JlM]. This trace set is fairly diverse in its geographic location, proximity to

TCP senders, as well as types of users represented. The traces also vary significantly in the distribution

of bytes transmitted per connection (see Fig 4.1).
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All Connections Lossy Connections Lossy Connections with OS identified
Trace Conn Bytes Packets Conn Bytes Packets Conn Bytes Packets

jap 58 K 5 G 4.8 M 29.8 K 4.2 G 4.1 M 29.8 K 4.2 G 4.1 M
(51.37 %) (84 %) (85.42 %) (51.38 %) (84 %) (85.42 %)

unc 774.8 K 121.3 G 129.5 M 168.1 K 94.7 G 100.5 M 122.65 K 93.74 G 87.71 M
(21.69 %) (78.07 %) (77.61 %) (15.83 %) (77.28 %) (67.73 %)

ibi 287.5 K 161.8 G 157.2 M 78.5 K 135.6 G 129.5 M 30.68 K 134.54 G 128.28 M
(27.30 %) (83.81 %) (82.38 %) (10.67 %) (83.15 %) (81.6 %)

wls 329.8 K 121.7 G 144.1 M 101.3 K 113.3 G 122.1 M 13.95 K 94.32 G 104.27 M
(30.72 %) (93.10 %) (84.73 %) (4.23 %) (77.5 %) (72.36 %)

Table 4.2: Characteristics of Connections That Transmit More Than 10 Segments. Connections
that transmit at least 10 data segments are described under “All Connections”. Out of these,
the connections with traces that contain at least one OOS segment are described under “Lossy
Connections”. The final set of column describes the characteristics of the connections for which
we where unambiguously able to identify the OS. The number in the brackets is the percentage
of total connections, bytes or packets in that column.

4.3 Methodology

Our objective is to study the impact of different design parameters on the performance of TCP loss

detection/recovery mechanisms. Specifically, given a packet-level trace of a TCP connection, our passive

analysis needs to: (i) determine the configuration of the 6 design parameters at the sender; (ii) identify

all instances of loss detection/recovery attempts by the sender, and determine the configuration of the 6

design parameters at the sender; (iii) determine the accuracy and timeliness of each loss detection; (iv)

vary the 6 design parameters and estimate the impact on the overall connection duration. We address

each of these steps as described below.

4.3.1 Identifying Loss Detection Attempts and Configuration:

We rely on TCPdebug [RKS06, tcpa] to (i) identify all segment retransmissions in a TCP packet

trace and classifies them based on the corresponding loss-detection mechanism—including RTO, FR/R,

and SACK, (ii) identify if the retransmission was necessary or spurious (depending on whether the

original segment was actually lost or not) and (iii) identify the sender-side OS for each connection—

more relevantly, identify the configuration of the 6 design parameters of interest to us.

We run this tool against all TCP connection traces and select those for which the tool can un-

ambiguously identify the sender-side OS. We have already evaluated the OS identified by TCPdebug

against p0f, a passive fingerprinting tool [Zal06], and found the OS-identification accuracy to be more

than 99.9%. Since our objective is to study loss detection/recovery, we consider traces of only those
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Explained Lossy Connections Distribution across OSes
Trace Conn Bytes Packets Windows Linux Solaris FreeBSD

jap 23.10 K 1.30 G 1.50 M 5.47 6.56 0.52 10.55
(39.83 %) (26.00 %) (31.25 %) (23.70 %) (28.40 %) (2.23 %) (45.67 %)

unc 115.52 K 47.80 G 50.74 M 97.45 2.56 12.35 3.15
(14.91 %) (39.41 %) (39.18 %) (84.36 %) (2.22 %) (10.69 %) (2.73 %)

ibi 23.37 K 42.23 G 52.57 M 0.00 23.37 0.00 0.00
(8.13 %) (26.10 %) (33.44 %) (0.00 %) (100.00 %) (0.00 %) (0.00 %)

wls 13.82 K 25.95 G 39.40 M 13.77 0.00 0.00 0.05
(4.19 %) (21.32 %) (27.34 %) (99.63 %) (0.00 %) (0.00 %) (0.37 %)

Table 4.3: Characteristics of Connections Used in Our Analysis and the Distribution of OSes in
Them: The first column titled “Explained Lossy Connections” describe characteristics of con-
nections for which we were able to explain all the losses and identify the OS unambiguously. The
second set of columns describe the distribution of these explained connections within the differ-
ent OSes. For the connections characteristics, the numbers in brackets represent the percentage
of total connections, bytes and packets represented by those columns. For the OS distribution
the number in brackets describe the percentage of explained lossy connections for that OS.

connections that experience at least one segment loss.1 Table 4.2 and 4.3 summarizes the impact of

applying these filters to our traces—a total of more than 2.8 million connections—as well as the dis-

tribution of connections across the 4 OSes. Our traces provided a large set of Windows and Linux

connections, but relatively few Solaris or FreeBSD connections.

4.3.2 Studying Accuracy and Timeliness of Loss Detection:

Note that TCPdebug helps compute the accuracy of loss detection by identifying which retransmis-

sions are spurious. In order to compute the timeliness of loss detection/recovery, we augment the tool

as follows. For each loss detection event, we determine the time spent in loss detection—defined as

the time difference between the original transmission and the retransmission of a segment—as well as

the time spent in recovery—defined as the time difference between the loss detection and receiving of

a ACK for the highest segment transmitted before the detection.

4.3.3 Studying Impact of Design Parameters:

For this, we create several different instances of the emulated sender-side state-machine—one in-

stance for each of several different configurations of the 6 design parameters. We then reprocess our

traces using these modified state-machines and estimate for each sender configuration: (i) whether a

1Ideally, it would be interesting to study even connections that do not experience any losses to measure the false-
positives rate of TCP loss detection (when TCP erroneously infers losses in these).
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segment loss would be detected by either FR/R or RTO, (ii) whether a spurious retransmission would

be avoided, and (iii) whether a segment would be spuriously retransmitted due to a premature RTO

or spurious dupACKs. We use this data, to compute the accuracy and timeliness of the corresponding

sender configuration.

It is important to note that this passive evaluation methodology does not let us incorporate the

interaction between the modified state machines, TCP congestion control, and subsequent network

feedback (RTTs and losses)—only active experimentations with modified kernels can let us do that.

Instead, what we analyze is that, if RTTs and losses occur independent of TCP loss detection/recovery

behavior, how efficient would each parameter-configuration be.

4.3.4 Studying Impact on Connection Response Times:

Finally, we quantify the impact of change in accuracy and timeliness of loss-detection, on the overall

connection durations. Note that a change in parameter configurations can result in one or more of the

following events—for each such events, we augment the tool to re-process the trace of each connection

and compute the savings in connection duration:

• A spurious FR/R-based loss detection is avoided. In this case, the sender would not unnecessarily

retransmit a segment. More significantly, the sender would not reduce its sending rate after

“recovering” from the perceived loss. If the TCP flight size was 2x before the segment was

retransmitted, it would take the sender x + 1 RTTs to recover the same flight size after exiting

FR/R. However, the sender also achieves some goodput during this time —in Appendix A, for

each such avoided spurious FR/R-based loss recovery, we derive an estimate of the overall saving

in connection duration in units of RTT to be:

F (x) = x + 1 − 3x2 − x

5x + 1
(4.1)

• A spurious RTO-based loss detection is avoided. When a sender avoids a spurious RTO-based

retransmission, it saves time spent on recovering the flight size. To see by how much, assume

that the flight size was 2x before the RTO expired; on RTO-expiry, the flight size is reduced to

1. It would take the sender log(x) + x − 1 RTTs to recover the flight size. However, the sender

also achieves some goodput during this time —in Appendix A, for each such avoided spurious

RTO-based loss recovery, we derive an estimate of the overall saving in connection duration in
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units of RTT to be:

R(x) = x + log x − 1 − 3x2 + x − 4

5x + log x − 1
(4.2)

• A loss is detected by FR/R, instead of an RTO. Assume that the flight size was 2x when a loss

occurred. If the loss is detected by FR/R instead of an RTO, there are two types of savings in

response time. The first is in the time it takes to detect the loss, and is given by the difference

between the RTO and the time at which the dupACKs are received (usually around 1 RTT). The

second savings is due to the fact that the TCP sending rate after exiting from FR/R (flight size

is reduced to x) is usually higher than after an RTO expiry (flight size is reduced to 1). It would

take the receiver log(x) − 1 RTTs to gain a flight size of x after an RTO. However, the sender

would also achieve some goodput during this time —in Appendix A, for each loss that is detected

by FR/R, instead of an RTO, we derive an estimate of the overall saving in connection duration

in the post-loss-recovery period in units of RTT to be:

RF (x) = log x − 1 − 2x − 4

2x + log x − 1
(4.3)

• A needed RTO-based loss detection takes a different amount of time. For non-spurious RTO-based

retransmissions, we compute the change (increase or decrease) in loss-detection time (difference

between the original value of RTO and the new estimated value)—this also equals the change in

connection duration for each such event.

Based on the above methodology, we next present our analysis and results for existing TCP imple-

mentations, as well as variants created by varying the 6 design parameters. We present only the most

significant results here—a complete tabulation of all results can be found in [RKS07b].

4.4 Analysis of TCP Loss Detection

4.4.1 Baseline Performance of real world TCP Implementations

Before assessing if the performance of TCP loss detection can be improved by reconfiguring its

parameters, we first evaluate if it is worthwhile to do so by asking the basic question: how much scope

do we really have for improving TCP loss detection in current TCP deployments?
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Total Needed Spurious
OS Retransmits RTO FR/R RTO FR/R

Windows 1074097 638969 117040 279358 38730
(59.5%) (10.9%) (26%) (3.6%)

Linux 310418 175922 115295 10759 8442
(56.7%) (37.1%) (3.5%) (2.7%)

Solaris 27105 19170 5399 1322 1214
(70.7%) (19.9%) (4.9%) (4.5%)

FreeBSD 2312 1308 166 733 105
(56.6%) (7.2%) (31.7%) (4.5%)

Table 4.4: Classification of TCP Retransmissions: We divide the observed losses in a trace into
needed and unneeded retransmissions and further classify these losses as triggered by RTO and
FR/R. The figure in brackets represent the percentage of total losses represented by that column.

Parameter Linux Windows FreeBSD Solaris

Timer granularity 10ms 100ms 10ms 10ms

Initial RTO (s) 3 3 3 3.375

minRTO (ms) 200 200 1200 400

a 0.25 0.25 0.25 0.25

b 0.125 0.125 0.125 0.125

m 1 1 1 1.25

k 4 4 4 4

D 3 2 3 3

RTO Eq. srtt + srtt + srtt+ 1.25*srtt +
vartt 4*rttvar 4*rttvar 4*rttvar

Table 4.5: Values of key parameters in different TCP Stacks. Timer granularity is the granularity
of clock used in the OS to measure RTT and RTO. Initial RTO is the initial value of RTO used.
minRTO is the minimum value of the RTO permitted by the OS. a, b, m, k are the parameters of
RTO equation used by the OS. D is the dupack threshold used by the OS. RTO equation is the
outline of the equation used by the OS.

In order to answer this, we ask three specific questions for each connection in our data-set: (i) how

often are segments retransmitted spuriously (the original transmission had reached the receiver)? (ii)

how much time is spent in detecting and recovering from losses (both actual and perceived)? and (iii)

by how much (upper bound) can the connection durations of the connection be improved by doing loss

detection/recovery in a more accurate and timely manner? We also study whether the answer to any

of the above depends on the sender-side OS of a connection. We address each of these questions below.

Accuracy

Table 4.4 summarizes the total number of spurious retransmissions that were triggered by RTOs as

well as FR/Rs, across connection traces originating from each of the 4 sender-side OSes. We observe

that:
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Figure 4.2: Distribution of Detection duration for FR/R and RTO (Normalized with RTT)

• Nearly 7-35% of all TCP retransmissions are spurious. In all of these cases, TCP inaccurately

inferred that a segment was lost and retransmitted it. Most of the spurious retransmissions are

triggered due to the expiry of an RTO (rather than an FR/R).

• The frequency of spurious RTOs varies significantly across OSes. This is somewhat to be expected,

since the implementations and configurations of RTO estimators differ across current OSes—the

Linux RTO estimator differs most significantly from the rest. We find that among Windows

connections, nearly 30% of all RTO-triggered retransmissions are spurious, while for Linux, only

about 6% of all RTO-triggered retransmissions are spurious.

• The fraction of all retransmissions that are based on spurious FR/R events is much smaller (3 -

5%), and do not differ much across OSes. It is important to note that the spurious FR/R-based

retransmissions occur only when network reordering events result in the generation of D or more

duplicate ACKs—the occurrence of such events is independent of the sender-side OS. All OSes

(other than Windows that uses a value of 2) use 3 as the value of D—see Table 4.52. We find that

this value does not result in a large fraction of retransmissions due to inaccurate loss inferences.

Recall that the accuracy of loss detection can be improved by increasing the dupACK threshold and

the RTO.

2Dupack Threshold for Linux is actually adaptive depending on number of duplicate ack triggered spurious retrans-
missions
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Timeliness

Detection Durations RTO-based loss detection is, in general, more time-consuming that that based

on FR/R—Figure 4.2 plots the distribution of loss detection times in units of the moving average of

RTT,34 for all FR/R- and RTO-based retransmissions. We find that:

• Most FR/R-based loss detection takes about 1-2 RTTs for all OSes.5 For the Solaris TCP

connections, however, around 7% of FR/R detections take more than 5 RTTs.

• RTOs take much longer than FR/Rs to detect losses. Also unlike FR/Rs, the RTO-based detection

durations differ significantly across OSes. While the median RTO for Windows and Linux is

around 4 RTTs, it is more than 20 RTTs for Solaris and FreeBSD.

The Solaris RTO-estimator uses a minimum RTO of 400 ms and an srtt multiplier of 1.25; FreeBSD

uses a minimum RTO of 1200 ms—these values are significantly higher than for Windows or Linux.

As a result, for connections with relatively small and stable RTTs, the RTOs computed by Solaris

and FreeBSD tend to be higher—TCP connections on these OSes, therefore, take longer to detect

a loss using RTOs.

• The tail of the distribution of RTO detection duration for Windows differs significantly from that

of Linux. For instance, while only around 10% of RTOs are larger than 10 RTTs for Linux,

nearly 25% of Windows RTOs are larger than this amount. On close inspection of our traces, we

find that several of these larger RTOs in Windows correspond to losses at the beginning of the

respective TCP connections, when the RTO is primarily governed by the initial RTO and has

not converged to a value representative of the network path. Linux updates its estimates of RTT

and RTO at a much higher frequency (once per segment) than Windows (once per flight) and

converges faster.

Overall, we find that the Linux RTO estimator converges fast and results in the smallest fraction of

spurious RTO-based retransmissions.

Table 4.4 summarizes the relative frequency of occurrence of RTO-based vs. FR/R-based loss

detection. We find that 60-88% of TCP retransmissions are triggered by RTOs. Our observation above

3The exponential-weighted moving average is computed using a weight of 1/4 for the current RTT sample.
4The detection time is below 1 RTT in some cases due to using a moving average instead of just previous RTT. For

windows additional rounding issues resulting in the retransmission timer to expire early.
5We do not plot data for FR/R events in FreeBSD since our traces yield a fairly small set of data points for this

OS (only 271 FR/R events)—any conclusion may not be statistically robust. The number of RTO events in FreeBSD
connections, however, exceeds 2000; hence, the distribution of RTO-based detection times is significantly more robust
and is plotted.
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Figure 4.3: Distribution of Best-Case Reduction in Response Time

shows that all such RTO-based detection can be quite time-consuming. The prime reason for the high

frequency of RTOs rather than FR/Rs is that there are often not enough segments in flight to trigger

duplicate ACKs for a connection that experiences a loss. Thus, reducing the value of D should increase

the likelihood of FR/R-based detection when losses occur; and reducing the value of RTO should reduce

the loss-detection times when RTOs are unavoidable.

Recovery Durations The time spent by a TCP connection recovering from segment losses is inde-

pendent of the loss-detection mechanism, and depends primarily on the number of segments lost within

a flight. We analyze our traces to study recovery durations and find that these are also relatively

independent of the sender-side OS. We also find that that use of selective acknowledgments (SACKs)

helps reduce recovery times, but only when 3 or more segments are lost in a TCP flight. We refer the

reader to [RKS07b] for details.

Most relevantly, note that none of the six design parameters considered in this paper impact loss

recovery; TCP immediately retransmits segments upon inferring a loss—a TCP-like protocol can not

do better than that. Thus, in this paper, what we are really studying is the design of loss detection

mechanisms.
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Scope for Improving Connection Response Times

The observations made above on accuracy and timeliness suggest that real world TCP implemen-

tations can deal more effectively with segment loss detection. A natural question to ask, though, is:

how much does TCP’s inefficacy really impact connection’s performance? Or more importantly, what is

the maximum amount by which one can hope to improve connection durations by re-configuring design

parameters related to TCP loss detection?

In order to address these questions, we attempt to characterize the Best-Case reduction in connection

durations that can be achieved by an ideal set of loss detection mechanisms. Our analysis is optimistic

and assumes that in an ideal setting, (i) all spurious retransmissions (based on either FR/R or RTOs) are

avoided, and (ii) all RTO-based loss detection takes no more than the maximum RTT of a connection.6

Specifically, for each connection in our traces: (i) we identify all instances of spurious FR/R-based

loss detection and use Equation (4.1) to compute the savings in connection duration if the inaccurate loss

inference is avoided; (ii) we identify all instance of spurious RTO-based loss detection and use Equation

(4.2) to compute the savings in connection duration if the inaccurate loss inference is avoided; and (iii)

we identify all needed RTO-based loss detection and compute the savings in connection duration if the

RTO was instead equal to the maximum RTT of the connection (as described in Section 4.3.4). For

each connection, we compute the total savings in connection duration as the sum of each of the above.

Figure 4.3 plots the distribution of the percent reduction in connection duration for connections

belonging to each of the 4 OSes. We observe that:

• Nearly 45-75% connections have little potential (less than 1%) for improving their connection

duration by improving the configuration of loss detection.

However, a significant fraction (15-40%) of connections can see greater than 10% reduction in

their connection durations by improving loss detection.

• The potential for improving connection durations differs across OSes. While more than 40% of

Linux connections can see greater than 10% improvement in connection durations, less than 15%

of Windows, FreeBSD, and Solaris connections have a similar opportunity.

6Our analysis assumes that an oracle informs the configuration of both FR/R and RTOs. Specifically, the oracle helps
the sender achieve 100% accuracy in FR/R-based loss detection by informing it when dupACKs are generated by events
other than segment loss. The oracle also helps achieve ideal accuracy and timeliness of RTO-based loss detection by
informing the sender of the maximum RTT that can be witnessed by the connection—the sender can then use this value
as the RTO and: (i) avoid spurious RTO-based retransmissions, and (ii) quickly invoke non-spurious retransmissions.
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Figure 4.4: Linux: Impact of k = 2 on Connec-
tion Response Times
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Figure 4.5: Linux: Impact of k = 3 on Connec-
tion Response Times
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Figure 4.6: Linux: Impact of k = 6 on Connection Response Times

Based on the above, we expect to be able to significantly reduce connection durations of up to 40%

of TCP connections by improving the configuration of loss detection parameters. In the rest of this

section, we carefully compare the impact of each of these parameters on the performance of a connection

with respect to the upper-bound computed above.

4.4.2 Impact of The RTO Estimator

The value of RTO is controlled by the 4 parameters: k, minRTO, a, b 7. If the value is large, the

number of spurious RTO-based retransmissions reduce and help improve connection duration. Further-

more, there is increased likelihood of detecting losses by FR/R (rather than RTO). On the other hand,

7Current default for parameter m was observed to be optimal; results for varying m are not discussed in this paper

86



if the value of RTO is small, the time spent on detecting the loss (given by the RTO) decreases and

helps improve the connection duration. We vary the above 4 parameters (k from 2 to 8, minRTO from

100ms to 1000ms, a from 1 to 1/32, and b from 1 to 1/32), and for each combination of their values,

estimate the RTOs that would be computed within each connection. We then estimate what segments

would be retransmitted spuriously due to premature RTOs, which RTO-detected losses would instead

be detected by FR/R, and which RTO-detected losses would incur different detection durations.

We then study how each of these different phenomena interplay to impact the connection duration

of each connection, by asking three questions: (i) What is the reduction in connection duration when a

spurious RTO is avoided? (ii) What is the reduction in connection duration when a loss is detected by

FR/R (instead of an RTO)? (iii) What is the reduction in connection duration when the value of RTO is

small? The first two questions have already been addressed in Section 4.3.4. For the third, we compute

the saving in connection duration simply as the difference between the default connection RTO and

the new estimated RTO. For each combination of RTO-related parameters, and for each connection,

we then list all instances of any of the above phenomena, and use the above formulations to compute

the total reduction in connection duration8.

Recall from Figure 4.3 that the scope for reduction in connection duration can differ by several

orders of magnitude across different connections. To put our observations in perspective, therefore,

throughout this section we plot the total connection duration reduction for each connection (y-axis) as

a function of the Best-Case reduction for that connection (x-axis), each computed in units of the average

connection RTT. For improved readability of these plots, we first divide the x-axis (Best-Case reduction

in connection duration) into logarithmically-sized bins. We then consider all connections that fall within

each bin, and compute the average and the 95-percentile values of the actual reduction in connection

durations. We then plot these per-bin average and 95-percentile values (plotted as error-bars) against

the average Best-Case reduction in connection duration for that bin.

We present our results for each of the 4 parameters below. For brevity, we present graphs only for

the Linux OS; graphs for other OSes are plotted only when the trend is different from that of Linux.

Impact of k

Figures 4.4, 4.5, and 4.6 plot the average and 95-percentile improvements in connection durations

of connections as a function of their best-case improvement, for k equal to 2, 3, and 6, respectively. We

8A negative value of reduction imply an increase in connection duration
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Figure 4.7: Linux: Impact of minRTO = 100ms, 400ms

find that:

• The value of k significantly impacts the connection durations. We find that a small value of k (2

or 3) can help significantly improve the connection durations of most connections. A value of 2,

in fact, comes fairly close to achieving an average connection duration improvement similar to the

best-case improvement for connections. This suggests that perhaps k is the single-most influential

parameter related to TCP loss detection and that setting it to a small value of 2 (rather than the

in-use and recommended value of 4) can help significantly reduce connection durations.

k = 6 consistently increases the connection durations.

Some connections do seem to witness an increase in their connection durations even with a small

value of k—this is especially true for connections with a small potential for best-case improvement.

However, the average connection in all of these cases does witness a good reduction in connection

durations. This suggests that only a small fraction of connections is adversely affected.

• The impact of k on other OSes is similar in trend, but not as pronounced as for Linux.

It is important to note that Linux tracks RTT on a finer time-scale and hence its RTO estimate

is robust even with a small value of k.
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Impact of minRTO

Figures 4.7 plot the average and 95-percentile improvements in connection durations as a function

of their best-case improvement, for Solaris with minRTO equal to 100ms and Linux with minRTO

equal to 400ms, respectively. We find that a larger value of minRTO adversely impacts the connection

durations of almost all connections. Even the 95-percentile connections do not witness a reduction in

connection duration. This suggests that the overall performance of TCP loss detection is significantly

adversely impacted by a large value of minRTO. This observation was also made in [AP99], although

the minRTO evaluated was a very large value of 1 second. Fortunately, both Linux and Windows

use a minRTO of 200ms; FreeBSD and Solaris, however, use larger values. We find that reducing the

Solaris minRTO from 400ms to 100ms improves the connection durations of the Solaris connections—

the improvement, however, is not as significant as that observed using small values of k. Reducing the

Linux minRTO to 100ms had negligible impact on the connection durations of most connections.

Impact of Smoothing Factors, a and b

The smoothing factors a and b have a less deterministic impact on the connection durations of

TCP connections of most OSes, other than Linux. Recall that the default values of smoothing factors

implemented in all OSes are: a = 1/4, and b = 1/8. In general, a larger value of a or b seems to help

reduce the connection durations of a larger fraction of connections; however a significant fraction of

connections also witness an increase in connection durations.

Figure 4.8 plots the average and 95-percentile improvements in connection durations of the Linux

connections as a function of their best-case improvement, for a = 1/2. We find that a larger value of

a helps improve connection durations for most Linux connections, especially those that have a large

Best-Case potential for reduction. This corroborates well with the fact that the Linux RTO estimator

runs at a higher frequency (once per segment) than most other OSes (once per flight) and hence is less

sensitive to high fluctuations in the measured RTT. This implies that in computing the RTT variation,

the most recent sample of rttvar should be given a weight of at least 25%. a = 1/32 (or anything

smaller than 1/4) increases the connection durations of most Linux connections. Changing the value

of b (to a larger or smaller value than 1/8) has negligible impact—less than 1 RTT–on the connection

durations of most Linux connections, independent of their Best-Case reductions.
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Figure 4.8: Linux: Impact of a = 1/2

4.4.3 Impact of The dupACK Threshold

Recall that the value of D can impact the connection durations in opposing ways. Table 4.6—

that lists the changes in total number of RTOs, FR/Rs, and spurious FR/R-based retransmissions, for

D = 2, 3, 4—highlights this fact. For instance, we find that increasing D to 4 avoids 1.2% of Linux

retransmissions due to spurious FR/R events, but at the same time causes 7.2% of retransmissions due

to FR/R to be converted into RTOs. In order to see which of these factors has a more pronounced

effect on connection durations, we need to answer two questions: (i) By how much does a spurious

FR/R increase connection duration? (ii) By how much does a detection by FR/R (instead of RTO)

reduce connection duration? Both of these questions have already been addressed in Section 4.3.4,

where Equations (4.1) and (4.3) formulate these effects respectively. Using these formulations, for each

connection, we compute the total reduction in connection duration when the dupACK threshold is

varied from 4 to 2.

Note that the likely impact of D on a connection depends on its average flight size. A larger flight

is likely to benefit from a large value of D that helps avoid spurious retransmissions due to dupACKs

caused by network reordering. When the flight is small, however, a large D does avoid spurious FR/R

retransmissions, but also implies that a genuine segment loss can not be detected by the faster FR/R

mechanism and has to suffer an RTO-based detection. To put this observation in perspective, Figure 4.9

plots separately for small and large Linux connections, the total connection duration reduction as a
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# # D=2 (D=3 for Win) D=4
OS FR/R RTO RTO to Spurious FR/R to Spurious

FR/R Caused RTO Avoided

Win 155770 918327 -35417 -30622 54016 37561
(-3.3%) (-2.9%) (5.0%) (3.5%)

Lin 123735 186680 19115 37673 22280 3709
(6.2%) (12.1%) (7.2%) (1.2%)

Sol 6613 20491 911 1122 2533 992
(3.4%) (4.1%) (9.4%) (3.7%)

BSD 271 2041 42 21 25 85
(1.8%) (0.9%) (1.1%) (3.7%)

Table 4.6: Impact of the dupACK Threshold: First set of columns show the impact of changing
D from 3 to 2 for all OSes except Windows for which it shows the impact of changing D from 2 to
3. The second set of columns show the impact of changing D to 4. Figures in bracket represent
the percentage of total losses represented by that column.
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Figure 4.9: Linux: Impact of D = 2
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Figure 4.11: Smart Config: Actual Response
Time vs. Upper Bound

function of the Best-Case reduction, when D is changed from 3 to 2—we refer to connections that

transmit 1500KB (∼ 10 MSS-sized segments) or less as “small” connections; such connections do not

achieve a flight size larger than 4. We find that:

• Reducing D from 3 to 2 reduces the connection duration of most (including 95-percentile) of the

small connections. Generally speaking, larger is the Best-Case reduction, larger is also the average

reduction in connection durations for connections—however, the average reduction is always more

than an order-of-magnitude smaller than the Best-Case. Thus, D comes only after k in its ability

to help reduce connection durations.

Reducing D to 2 helps reduce the connection duration of only those large connections that have

large values of Best-Case potential reduction—other large connections witness an increase in

connection durations using D = 2.

The impact of using D = 2 is similar for connections emanating from other sender-side OSes.

• Increasing the dupACK threshold to 4 consistently worsens the performance of most connections

(including the 95-percentile performance), irrespective of the connection size, the potential Best-

Case reduction, or the sender-side OS.

4.4.4 Impact of The Smart Configuration

In this section, we adopt the best-performing configurations—referred to as the Smart-Config—for

each of the 5 parameters and quantify the total improvement in connection durations. Specifically, we
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set k = 2, minRTO = 100ms, a = 1/4, and b = 1/8. The dupACK threshold is set according to the

rule: D = max {1, min{3, F − 2}}, where F is the current flight size of a connection.

Fig 4.10 plots the percentage change in per-connection connection duration with this configuration.

We find that with the Smart-Config, the connection durations reduce by more than 10% for nearly

40% of Linux connections. A smaller percentage of connections—7% for Windows, 20% for Solaris, and

10% for BSD—witness a similar improvement in the other OSes. The Smart-Config also results in an

increase in connection durations for some connections. However, less than 3% of connections in each

OS suffer an increase of more than 10%.

Fig 4.11 plots the connection duration change (in units of RTT), as a function of the best-achievable

savings. We find that the average observed reduction in connection duration closely matches the

theoretical upper bound computed in our estimate of the Best-Case reduction in connection duration.

There is a significant variability in the actual reduction in connection duration among connections with

a similar estimate of the Best-Case upper bound. The variability, however, is smaller at larger values

of the Best-Case estimate.

4.5 Concluding Remarks

In this Chapter, we evaluate the impact of configuration of TCP loss detection parameters on the

performance of TCP connections. Our study relies on the passive analysis of traces of more than 2.8

million real world TCP connections. We analyze the impact of parameters on the trade-off between

accuracy and timeliness of loss detection. We also explicitly model and evaluate the impact of this

trade-off on the response times of TCP connections—to the best of our knowledge, this has not been

done before.

We find that current RTO estimators are typically too conservative in incorporating RTT variability—

we find that when the weight given to RTT variability is reduced by a factor of 2, TCP connections can

achieve close to the best-achievable efficiency in loss detection. Also, unlike observations made in past

work, the minRTO and timer granularity are no longer the most influential parameters. Our study

also reveals that the Linux RTO estimator is considerably more efficient than the proposed standard

for an RTO estimator (which is also adopted by FreeBSD, Solaris, and Windows).

Our analysis suggests that by re-tuning the configuration of TCP parameters, up to 40% of Linux
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connections can witness a significant reduction (more than 10%) in their connection durations. For a

majority of connections, this is close to the best-achievable reduction.
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CHAPTER 5

Delay Based Congestion Avoidance

If everything seems under control, you’re not going fast enough

— Mario Andretti (1940–)

Confusion is a word we have invented for an order which is not understood.

— Henry Miller (1891–1980)

In this Chapter, we will investigate the use of delay instead of packet loss as a network congestion

indicator. Most deployed versions of TCP rely on packet loss in order to detect network congestion

and respond to it by drastically reducing their sending rate. Consequently, packet losses significantly

degrade the connection performance. An alternate strategy is delay-based congestion-control (DBCC),

which attempts to avoid packet losses by — (i) detecting congestion early through increase in the packet

round-trip times (RTTs), and (ii) reducing the connection sending rate in order to alleviate congestion

before packet losses can occur.

As discussed in Chapter 1, two key issues determine the effectiveness of DBCC mechanisms: can

RTTs be used to reliably predict impending packet losses; and can the subsequent reduction in sending

rate prevent packet losses from occurring. In this Chapter, we concentrate on answering the first of the

two issues mentioned above. Specifically, we — (i) evaluate well-known delay-based congestion estima-

tors (DBCEs) for their effectiveness in signaling congestion before packet loss occurs, (ii) investigate

which connection characteristics are likely to influence the performance of such estimators, and (iii)

evaluate the potential improvements in connection’s performance with the use of DBCC mechanisms.

We analyze more than 1.8 million real world TCP connection traces, captured at five different

locations around the world. We first extract reliable estimates of per-segment RTTs and packet losses

for each connection. We then run the sequence of extracted RTTs for each connection through each

DBCE in order to evaluate its efficacy in predicting losses, as well as in reducing connection duration.



We then study the characteristics of connections for which the estimators fare well, as well as of those

for which they do not fare well.

In the remaining sections of this chapter, we summarize our objectives for the study, present the

dataset used and then discuss the methodology and evaluation results at length. We also study the

influence of connection characteristics on the performance of the Delay Based Congestion Estimator

(DBCE). We conclude this Chapter with the summary of our key observations and contributions.

5.1 Problem Formulation

In order to avoid packet losses and the associated performance costs of TCP loss-recovery, several

Delay-based Congestion Estimators (DBCEs) have been proposed. These DBCEs rely on the assumption

that during periods of congestion, a connection’s packets will experience higher queuing delays at the

congested link—this should manifest itself in increased packet round-trip times (RTTs). By sampling

per-packet RTTs, and comparing them to a base RTT value (measured in the absence of congestion),

a DBCE infers the onset as well as alleviation of congestion. The hope is that DBCEs can detect the

onset of congestion much earlier than the occurrence of packet loss and the corresponding congestion

avoidance (CA) mechanisms can potentially avoid the loss. Existing DBCEs differ primarily in the RTT-

derived metric and the base metric used for estimating congestion. Table 5.1 lists the choice of these

metrics for some of the prominent DBCEs—these DBCEs are described in more detail in Chapter 2.1

Here we simply note that while Vegas and Tri-S study the relative ratio of the current RTT sample to

the minimum RTT of a connection, most of the other DBCEs study the absolute difference between

recent RTTs and the minimum or mean RTT. Also, of all of the DBCEs listed in Table 5.1, CIM is the

only one that relies on a history of recent RTT samples to assess network congestion—all of the rest

use only the most recent RTT sample.

As formulated in Chapter 1, the performance of the DBCE depends on its ability to predict a

large number of losses and at the same time not unnecessarily predict congestion where there is none.

However, these two goals conflict. An aggressive DBCE is likely to predict more losses, but also have a

high rate of false predictions. On the other hand, a conservative DBCE will seldom give false predictions,

but would miss out on many losses. Consequently, it is natural to ask: how well do existing DBCEs

perform along these two factors? And perhaps more importantly, what DBCEs are the best-performing

1CIM is proposed only as a DBCE, the rest have been proposed with a corresponding CA mechanism.
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Estimator Metric Used Compared to Condition Used To Estimate Congestion

CARD [Jai89] Delay Gradient Previous RTT RTT−prevRTT

RTT+prevRTT
∗

Window+prevWindow

Window−prevWindow
> 0

Tri-S [WC91] Throughput Gradient Initial RTT firstRTT

Window−prevWindow
∗ (Window

RTT
−

prevWindow

prevRTT
) < 0.5

Dual [WC92] Delay Min and Max RTT minRTT+maxRTT
2

< RTT

Vegas [BOP94] Throughput Min RTT window ∗ (1 −
minRTT

RTT
) > 3

BFA [AR98] Delay variability fixed thresholds signed − rtt − variability > 0.01

CIM [MNR03] Delay Previous 20 RTTs avg(RTT2) > avg(RTT20) + RTTstd−dev

FAST [WJLH06] Delay Min RTT 1 −
100

window
<= minRTT

avgRTT

DECA [YQC04] Delay Min and Max RTT (maxRTT+minRTT )
2

− perF lightMaxRTT < 0

DAIMD [LSM+07] Delay Min RTT (pktInF light > x)&(sRTT − minRTT ) > 0.02

Table 5.1: Estimator Descriptions: References in first column provide more details on the estim-
tors considered.

in terms of achieving maximum reduction in connection duration?

While DBCEs have been evaluated in the past [JWL03, PJD04, BV03, MNR03, BV98a, BV98b],

the issue of what DBCEs are likely to improve the overall timeliness performance of TCP connections

has not been adequately addressed. It is our goal to do so. Specifically, we make two key contributions.

First, we conduct a comprehensive evaluation of all DBCEs listed in Table 5.1 using more than 1.8

Million real world TCP connections, captured at a diverse set of locations around the world. Our

evaluation explicitly models the impact of a DBCE on the duration of these connections. We believe

that this is the first DBCE evaluation of such a large scale, diversity, and comprehensiveness. Second,

we study the characteristics of these connections in order to analyze their influence on the efficacy of

delay-based congestion estimation. To the best of our knowledge, this issue has not been addressed

before.

Note that it is not our objective to design an optimal DBCE, but rather to evaluate prominent

estimators and investigate the conditions under which they succeed or fail.

5.2 Data Sources

We analyze TCP connection traces collected from 5 different global locations. Table 5.2 describes the

traces used in our analysis. These traces are collected from links with transmission capacities ranging

from 155 Mbps to OC-48. The abi traces [abi] are collected from a backbone link of the Internet-

2 network (Abilene); the wls trace captures wireless TCP connections from over 600 wireless access

points within the UNC campus; the unc and lei [lei] traces are collected at the campus-to-Internet links

of the University of North Carolina and University of Leipzig, respectively; the ibi trace captures traffic
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Trace Duration Avg TCP Load # Dst. # Conn. # Bytes # Pkts # RTT

Abilene-OC48-2002 (abi) 2h 211.41 Mbps 3452.5 K 7.1 M 190.3 G 160.1 M 81.3 M
Liepzig-1Gbps-2003 (lei) 2h 45m 9.53 Mbps 1430.2 K 2.4 M 11.8 G 17.3 M 11.8 M
UNC-1Gbps-2005 (unc) 4h 74 Mbps 1082.9 K 14.5 M 133.3 G 151.0 M 85.0 M
Ibiblio-1Gbps-2005 (ibi) 4h 90.64 Mbps 88.7 K 0.9 M 163.2 G 158.9 M 75.6 M

Wireless-2006 (wls) 178h 0.61 Mbps 768.6 K 9.7 M 48.5 G 68.9 M 50.6 M

Table 5.2: General Characteristics of Packet Traces: We present the average TCP load, number
of connections, number of bytes and number of packets in the traces. The name is brackets will
be used to represent the traces in the rest of this chapter.

Connections with more than 10 segments
Trace # Connections # Bytes # Packets

abi 388.9 K 180.1 G 148.5 M
lei 75.4 K 10.5 G 12.6 M
unc 774.8 K 121.3 G 129.6 M
ibi 287.5 K 161.8 G 157.2 M
wls 327.7 K 41.3 G 55.0 M

Total 1.85 M 515 G 503 M

Table 5.3: Statistics for Large Connections: We present the number of connections, bytes and
packets for connections with atleast 10 segments in them.

served by a cluster of high-traffic web-servers (ibiblio.org). All traces were collected using Endace DAG

cards. The traces represent a fairly diverse and large population. The traces are also fairly diverse in

the distribution of connection RTTs as well as the number of bytes transmitted per connection.

For our analysis in the rest of this Chapter, we use only those connections that transmit at least 10

segments—most DBCEs need several RTT estimates before they can robustly infer the state of network

congestion. Table 5.3 lists, for each trace, the number of connection that have greater than 10 packets

and the number of bytes and packets that they contain. We find that while very few (less than 6%)

connections carry at least 10 segments, these connections carry most of the bytes (more than 94%).

Figure 5.1 plots the distribution of loss rates observed for each connection used. 60-85% of connec-

tions have no losses. Among others, the loss rate varies from less than 0.1% to more than 80% with

most in the range of 1-10%.

For brevity, we combine all traces for the purpose of presenting our DBCE evaluation results. We

have closely examined the per-trace performance of DBCEs and find the results to be remarkably similar

across traces.
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Figure 5.1: Distribution of Per-connection Loss Rate

5.3 Evaluation Methodology

Our basic approach for evaluating DBCEs is to analyze these against passively-collected traces

containing large numbers of real world TCP connection. Below we describe our basic trace-processing

steps and our DBCE-evaluation methodology in detail.

5.3.1 Trace Pre-processing

Basic Approach For each connection, we first compute reliable estimates of its segment RTTs and

segment losses. The segment loss information is computed as a series of loss episodes, where we group

all losses that occur within the same flight of segments into a single loss-episode. We then run the

connection against prominent DBCEs and use the RTT estimate to infer the predictions made by the

DBCE . Using this we divide each connection into alternating phases of congestion and no-congestion

periods, interspersed with the above-defined loss episodes. In this section, we describe each of the above

steps in some detail.
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Extracting Valid RTT Samples

For reliably extracting all valid RTT samples from a TCP connection trace, we use TCPdebug .

This work extends Karn’s algorithm in several ways to deal with complications arising from lost and

reordered segments, especially those that occur between the sender and tracing monitor. In dealing with

these complications, our guiding principle has been to include only those RTT values for which there is

an unambiguous correspondence between an acknowledgment and the data segment that triggered its

generation.

Extracting Packet Losses

For reliably identifying segment losses within TCP connection traces, we again rely on TCPdebug.

TCPdebug classifies all out-of-sequence segments as either retransmissions or reordering of packets. It

further classifies all retransmission as needed (real losses) or unneeded (spurious retransmission).

Defining Per-DBCE Connection States

We next divide the entire duration of each connection into a sequence of three types of phases. First,

we group losses into loss-episodes, in which we group all losses that occur within the same flight2 of

segments into a single loss-episode; each loss episode starts with the transmission of the first segment

in a flight that is subsequently lost, and ends with the transmission of the last segment from that flight

that gets lost. Thus, the analysis of each connection yields a series of loss-episodes with well-defined

beginning and ending segment transmissions.

Note that reliable RTT estimates cannot be obtained during a loss-episode [AKSJ03]. Conversely, all

of the segments whose transmissions do not lie within a loss-episode do yield an RTT sample. We next

run these extracted RTT samples of each connection through each of the DBCEs we are evaluating—

for each RTT sample, a DBCE either signals congestion (CN) or no-congestion (NCN). Thus, for each

connection-estimator pair, we obtain a corresponding series of CN and NCN indications. We use these

indications to divide each connection into a series of three mutually-exclusive phases (on a per-DBCE

basis): congestion-phase, no-congestion phase, and loss-episode. Loss-episodes are defined as mentioned

above. A congestion (or no-congestion) phase begins with the transmission time of any data segment

2At any given point in time, a flight is defined as the set of segments that have been transmitted, but not yet
acknowledged. A flight roughly corresponds to a congestion-window worth of packets.
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that signals CN (or NCN), but whose preceding segment either belongs to a loss-episode or signals NCN

(or CN). The CN (or NCN) phase ends with the first subsequent segment that signals the beginning of

any other phase.

At the end of the above classification for each connection-estimator pair, the connection is divided

into a sequence of these three phases. Below we describe our metrics for evaluating a DBCE based on

this sequence of phases.

5.3.2 Evaluation Approach

Base Metrics

For each connection, we define a set of two evaluation metrics for each DBCE:

• Loss Prediction Ability (LPA): The first metric captures the ability of the DBCE to predict an

impending loss. It is defined as the fraction of loss-episodes that are immediately preceded by

a congestion-phase. The higher the value of this metric, the better the corresponding DBCE at

predicting a loss.

• False Positive Avoidance (FPA): We define the rate of false positives (FP) to be the fraction of

congestion-phases that are not succeeded by a loss-episode (but by a no-congestion phase, or the

end of connection). Note that FP is a lower-is-better metric—the lower is the value of this metric,

the better is the corresponding DBCE. In order to interpret both metrics consistently, we define

the rate of false positive avoidance as the inverse of this as: FPA = 1 - FP.

Note that both of the above metrics take values between 0 and 1.

Assessing Impact on Connection Durations

Finally, we assess the collective impact of LPA and FPA on overall connection durations. Note that

when a DBCE predicts and helps avoid a loss, TCP saves the time spent in detecting and recovering

from the loss, as well as the lost throughput due to a loss-related decrease in flight-size—the total savings

differ according to whether the loss is detected by TCP’s retransmission-timeout (RTO) mechanism or

the fast-retransmit/recovery (FR/R) mechanism [RKS07a].
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The impact on duration is also governed by what CA policy is used along with a DBCE to respond

to a congestion signal. Two such policies have been defined in the literature:

• Additive Decrease (add): Vegas [BOP94] decreases its flight-size by one segment for every flight

in which its DBCE signals congestion. Tri-S and BFA also employ additive decrease.

• Multiplicative Decrease (mult): The DAIMD [LSM+07] proposal decreases the flight-size by the

multiplicative factor: RTTmin/currRTT on receiving a congestion signal, where RTTmin is the

minimum RTT of the connection and currRTT is the current RTT sample. CARD, DUAL, and

DECA also rely on multiplicative decrease.

We use both of these policies to assess the impact of a DBCE on the duration of a connection as follows.

The use of a DBCE can result in one or more of the following events, in a given flight of events, that

impact connection duration:

• The flight completely3 lies within a congestion phase: The overall impact on connection duration

in this case depends on the CA policy:

– Additive decrease (add): In this case, the congestion window is reduced by one. If the TCP

flight size was x before the congestion event, the new window size becomes x − 1, hence

it takes the connection one RTT to recover from this reduction, However, the sender also

achieves some goodput during this time —in Appendix B, for each such flight, we derive an

estimate of the overall increase in connection duration in units of RTT to be:

A(x) =
1.5

x + 0.5
(5.1)

– Multiplicative decrease (mult): In this case, the congestion window is reduced by the factor

β = minRTT/RTT . If the TCP flight size was x before the congestion event, the new

window size becomes bx, hence it takes the connection x − βx RTTs to recover from this

reduction in flight size. However, the sender also achieves some goodput during this time —in

Appendix B, for each such flight, we derive an estimate of the overall increase in connection

duration in units of RTT to be:

M(x) =
β(2βx + 1)

2 + β
(5.2)

3We assume that the CA policy reacts only to one indication of congestion per-flight. This is certainly true for most
DBCEs that compute only a single estimate of RTT per flight. When a DBCE uses all RTT estimates from a flight, we
assume that the corresponding CA reacts only if all RTTs signal congestion.
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• A loss, that was subsequently detected by the FR/R mechanism, is predicted (and avoided): In

this case, the sender does not spend any time on detecting and recovering the segment.4 More

significantly, the sender would not reduce its sending rate after “recovering” from the loss. If the

TCP flight size was 2x before the segment was retransmitted, it will take the sender x+1 RTTs to

recover the same flight size after exiting FR/R. However, the sender also achieves some goodput

during this time —in Appendix B, for each such avoided spurious FR/R-based loss recovery, we

derive an estimate of the overall reduction in connection duration in units of RTT to be:

F (x) = x + 2 − 3x2 − x

5x + 1
(5.3)

• A loss, that was subsequently detected by the RTO mechanism, is predicted (and avoided): When

a sender avoids an RTO-based loss detection/recovery, it saves time spent in detecting the loss

equal to the retransmission timeout,t, for that connection (quite significant for RTOs) and in

recovering the flight size. To see by how much, assume that the flight size was 2x before the RTO

expired; on RTO-expiry, the flight size is reduced to 1. It takes the sender log(x) + x − 1 RTTs

to recover the flight size. However, the sender also achieves some goodput during this time —in

Appendix B, for each such avoided spurious RTO-based loss recovery, we derive an estimate of

the overall reduction in connection duration in units of RTT to be:

R(x) = t + x + log x − 1 − 3x2 + x − 4

5x + log x − 1
(5.4)

For each DBCE, we augment TCPdebug to process the trace of each connection and (i) classify each

event as one of the above possible types, and (ii) compute the total reduction in connection duration.

Limitations of the Above Approach

While the use of a passive analysis methodology provides us with the opportunity to study a fairly

large and diverse set of real world TCP connections, it suffers from the following key limitations that

may not arise while using an active experimental approach:

• One of the key assumptions behind the formulation of our evaluation metrics (LPA and FPA) is

that the prime purpose of a DBCE is to accurately predict impending loss. In reality, the use of

4Recall that we are assuming that the sender would be able to avoid TCP-based loss detection-recovery—see Sec-
tion 5.3.2.
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delay-based congestion control (DBCC) serves two purposes. The first is mentioned above; from

the perspective of individual TCP connections, DBCC facilitates early detection of congestion

(before network buffers overflow and cause losses) and helps reduce packet losses—this can result

in significant reduction in overall connection duration. However, congestion may not result in

segment losses in each and every connection that encounters it. However, the use of a DBCC is

still useful since all connections react early to congestion and buffer occupancy in routers remains

small. This not only reduces queuing delays for traffic but also facilitates the design of high-speed

routers that use small on-chip memory for buffering packets [AKM04]. Unfortunately, our metrics

do not capture this second purpose of a DBCE—to predict congestion (and not only impending

packet loss). Since we rely on a passive analysis of connection traces, it is not possible for us to

know the ground truth about network congestion. We hope to use active controlled experiments

to evaluate this aspect of DBCEs as part of future work.

• Another key assumption we make in assessing the impact of DBCEs on connection durations is

that, if a TCP connection employs delay-based congestion-control, its CA policy can avoid all

losses that are predicted by its DBCE. This, however, is likely to happen only if most connections

in the network rely on delay-based congestion control (DBCC) and reduce their sending rates on

inferring congestion. If the competing traffic instead uses regular loss-based TCP implementation,

then the loss can not be avoided. However, even in this case, the DBCC connection can rely on

forward-error-correction techniques that transmit redundant data to help recover from losses

without requiring the time-consuming TCP loss detection/recovery.

Despite the above limitations, we do believe that our evaluation is useful in (i) assessing the relative

performance of existing DBCEs; (ii) for studying what connection characteristics impact it; and (iii) for

studying the extent to which real world TCP connections can benefit from DBCC, if it is universally

deployed.

5.4 Evaluation Results

5.4.1 Evaluation of Loss Prediction Ability

Each of the nine algorithms mentioned in Table 5.1 was simulated on each connection that appears in

our traces. For a given DBCE, and for each connection in a given trace, we computed the loss-prediction
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Figure 5.2: Loss Prediction Ability

ability (LPA) metric.

Figure 5.2 plots, on a per-DBCE basis, the cumulative distribution function (CDF) of the LPA

values observed across all connections. We find that:

• CARD has the best LPA-performance among existing DBCEs, followed closely by DECA, CIM,

and DUAL. These DBCEs can quite successfully predict an impending loss in more than 45%

of connections. However, even in CARD, a similar fraction of connections (nearly 45%) have an

LPA smaller than 0.5. Thus, even in the best-case, existing DBCEs predict less than half of the

losses for many connections.

• More striking is the observation that the Vegas, Tri-S, and DAIMD estimators are inefficient in

indicating congestion before a loss—these DBCEs predict none of the losses in nearly 70-90% of

connections.

Another issue to consider in evaluating these algorithms is whether a correct indication of congestion

(one that precedes a loss event) is sufficiently timely to allow a congestion control mechanism to take

action based on the indicator. For many congestion-control designs an indicator of congestion that

precedes a loss by at least one RTT should be timely enough to allow effective adjustment of the

connection sending rate. Figure 5.3 shows the distribution of the durations of all congestion-phases

that precede a loss-episode. The durations are expressed normalized to the current exponentially-
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Figure 5.3: Congestion Phase Durations Before Loss

weighted average of the RTT for the corresponding connection (using a weight of 1/8 for the most

recent observation). The results are quite consistent for all nine algorithms. They show that 50-70% of

congestion-phases that are actually followed by a loss-episode begin at least one RTT before the first

loss. This indicates that a congestion control mechanism reacting to the congestion indicator should

potentially be able to react in time in order to reduce congestion.

Considering that even the best LPA-performing DBCEs did not perform well for half of the con-

nections, we compared the performance of all the estimators with a random congestion indicator, Ran-

dom(0.8), that predict congestion randomly with a probability of 0.8. To do this, we re-processed the

UNC-Campus trace replacing the nine algorithms in our analysis with a simple simulation of a random

estimator. For each valid RTT obtained that could be used by one of the algorithms, we generated a

random number between 0 and 1. If the number was 0.2 or greater, the connection state was set to

indicate congestion and if less than 0.2 it was set to indicate no congestion. This result is also plotted

in Figure 5.2. Interestingly, the random estimator performed better than existing DBCEs in terms

of the LPA metric. Note that this is to be expected—this estimator is fairly aggressive and indicates

congestion 80% of the time. Such an estimator, however, is also likely to yield many false predictions

of loss—we evaluate this property next.
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Figure 5.4: False Positives Avoidance Ability

5.4.2 Evaluation of False Positive Avoidance

Figure 5.4 shows the cumulative distribution of FPA over all connections for each estimator. We

find that:

• Vegas has the best ability to avoid false positives—it yields no false predictions of loss in more

than 90% of connections. This is closely followed by DAIMD that has no false positives in nearly

80% of connections.

Considering, however, that the LPA-performance of both Vegas and DAIMD is quite poor, the

above seems to be an indication that these algorithms are simply too conservative—these are

rarely wrong when they indicate congestion, but they miss many instances of congestion severe

enough to lead to losses.

• Most of the rest of the DBCEs—including CARD, CIM, DUAL, Tri-S, and DECA—have a poor

FPA-performance. Loss predictions are incorrect in 65-75% of connections. In fact, the FPA-

performance of these DBCEs is only marginally better than that of the aggressive Random(0.8)

estimator. Considering that Random(0.8) has a significantly better LPA-performance than any of

these DBCEs, this suggests that a simple random predictor outperforms any of these! We further

investigate this issue below by assessing the net effect of LPA and FPA on the duration of each

connection.
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Figure 5.5: Best-Case Savings in Connection Durations

5.4.3 Impact on Connection Durations

We next evaluate the collective impact of LPA and FPA on connection durations using the analysis

described in Section 5.3.2. We first characterize an upper-bound on improvement and then compare

our estimated performance of DBCEs to this bound. We present each of these analyses below.

Scope for Improving Connection Durations

The LPA- and FPA-related observations made above suggest that existing DBCEs can do much

better in terms of predicting losses accurately. A natural question to ask, though, is: how much better

can they do? Or more relevantly, what is the maximum amount by which one can hope to improve

connection durations by designing a good DBCE?

In order to address these questions, we attempt to characterize the best-case reduction in connection

durations that can be achieved by an ideal DBCE. Our analysis is optimistic and assumes that in an

ideal setting, (i) all losses are preceded by a congestion phase (LPA = 1), and (ii) all congestion phases

end in a loss (FPA = 1). In such a setting, we compute the corresponding change in duration for

each connection according to the formulation of Section 5.3.2.5 Figure 5.5 plots the total reduction in

duration achieved with the ideal estimator, when the additive and multiplicative CA policies are used,

respectively. We find that:

5Note that for connections with no losses, the ideal estimator will yield no change in duration.
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Figure 5.6: Impact of CIM on Connection Du-
rations when an additive congestion avoidance
approach is used
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Figure 5.7: Impact of VEGAS on Connection
Durations when an additive congestion avoid-
ance approach is used

• The best case saving in connection duration is same irrespective of whether the additive or mul-

tiplicative algorithm is used. This is because of the fact that most flows have a very low flight

size when they experience a loss. Consider a flow with 3 packets in flight. On experiencing a

congestion event the additive algorithm will reduce the congestion window to two. For a multi-

plicative algorithm the reduction is minRTT/RTT which when greater than 0.66 will also result

in a congestion window of two. For a larger ratio of minRTT/RTT , the flight size will also have

to be larger for the multiplicative algorithm to be more aggressive than the additive algorithm.

• 60% of the connection can gain less than 10% of a RTT. Most of these flows have zero or very

few losses and hence cannot gain much by avoiding them.

Below, we compare the performance of existing DBCEs to that of this ideal estimator.

Impact of Existing DBCEs on Connection Durations

As observed above, the scope for reduction in duration can differ by several orders of magnitude

across different connections. To put the performance of an existing DBCE in perspective, therefore,

in Figures 5.6–5.11, we plotthe estimated duration reduction for each connection (y-axis) as a function

of the Best-Case reduction for that connection (x-axis), each computed in units of average connection

RTT. For improved readability of these plots, we first divide the x-axis (Best-Case reduction in duration)

into logarithmically-sized bins. We then consider all connections that fall within each bin, and compute

the median, the 25- and 75-percentiles, and the 5th- and 95th-percentile of the y-axis values (actual
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Figure 5.9: Impact of CIM on Connection
Durations when an multiplicative congestion
avoidance approach is used
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Figure 5.10: Impact of VEGAS on Connection
Durations when an multiplicative congestion
avoidance approach is used
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Figure 5.11: Impact of Tri-S on Connection
Durations when an multiplicative congestion
avoidance approach is used
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reduction in duration). We then plot these per-bin median (plotted using the “X” marker), quartiles

(plotted using the “−” marker), and percentile values (plotted as error bars) against the average Best-

Case reduction in duration for that bin. In Figures 5.6–5.11, we include plots for only Vegas, CIM, and

Tri-S—the performance of the other DBCEs are similar to one of these three and are mentioned below.

We find that:

• Based on their performance, the DBCEs can be grouped into three categories:

– The performances of Vegas and DAIMD are similar. Both of these estimators are fairly

conservative and rarely predict congestion; the median change in connection duration for all

connection-bins is nearly zero!

– Tri-S and DUAL fall into the second category. Both of these cause more harm than good,

increasing the durations of most connections.

– The rest of the DBCEs fall in the third category. These show considerable improvement in

more than 50% of the connections. CIM performs the best in this category. Surprisingly,

Random(0.8) performs almost as well as the others—CARD, BFA, DECA.

• The impact of the additive and multiplicative CA policies on most DBCEs are fairly similar.

The exception is the conservative Vegas estimator—the rare congestion predictions can cause an

increase in connection duration with the multiplicative CA policy. Note that the Vegas estimator

signals congestion only if the flight size is large (greater than 4); for large flights, the multiplicative

CA policy adversely impacts connection durations to a greater extent.

• Connections with a low potential for best-case reduction in connection duration(XXXX WHAT

ARE THESE CONNECTIONS?), have very little to gain by predicting losses; on the contrary,

these might suffer an increase in connection duration due to false predictions. A conservative

algorithm like Vegas performs the best for these connections.

On the other hand, for connections with a large potential for reducing connection duration,(XXX

AGAIN EXPLAIN THIS) a conservative algorithm like Vegas fails to improve the performance.

For such connections, CIM-like estimators are able to improve the performance significantly. We

believe that this category consists of large connections that experience a large number of loss-

episodes (and hence, have greater potential for improving connection durations)—it is well-known

that most of the bytes in the Internet is carried by large connections. Thus, a CIM-like estimator

is likely to be a better choice for the Internet than a conservative estimator like that of Vegas.
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The above observations suggest that the most prominent estimator (Vegas) is quite conservative to be

useful. More aggressive estimators such as CIM are likely to benefit large connection significantly, at

the possible expense of small connections—in fact, the most aggressive Random(0.8) estimator, that

does not predict congestion only 20% of the time also performs reasonably well for such connections.

5.4.4 RTT Estimates: All or once-per-flight?

Many original DBCE proposals compute only one RTT estimate per flight, as is the common prac-

tice in several current TCP implementations. Consequently, the DBCE makes predictions with lower

frequency —this is true even for the Vegas estimator. It has been argued that this low frequency of

RTT estimation is also less noise-prone and consequently many DBCEs are likely to perform better

when they use it.

In order to validate this claim, we repeat all experiments described so far using the low frequency

(one per flight) RTT signal. Specifically, we compute a new set of once per flight RTT estimates

in exactly the same manner as most of the current implementations of TCP-NewReno do. We then

run this signal through each of the candidate DBCEs and observe their performance in terms of the

per-connection FPA, LPA, and the total duration savings.

Interestingly, for each DBCE, we find that the distributions of the LPA metric are nearly identical

in the two cases: when only once-per-flight RTTs are used, and when all RTT estimates are used.

The FPA-performance of all DBCEs are marginally better when the once-per-flight RTT signal is used.

However, the overall impact on connection duration is practically identical in the two cases. We conclude

that the use of once-per-flight RTT signals neither benefits nor adversely impacts the performance of

any DBCE.

We next examine more closely the relationship between characteristics of individual TCP connections

(including those of the network path they traverse) and the ability of DBCEs to identify congestion

and no-congestion conditions.

5.5 Influence of Connection Characteristics

Several connection characteristics are likely to influence the ability of prominent DBCEs in predicting

impending loss (as also argued in [PJD04]). For instance, if the min RTT of a connection is much larger
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than the maximum queuing delay experienced at the bottleneck link, a DBCE that uses the minimum

RTT as a base value is unlikely to accurately detect connection. Furthermore, if the sending rate (and

thus, the RTT-sampling rate) of a connection is too small, a DBCE is unlikely to sample enough RTTs

before a segment loss occurs. We study the influence of these and other connection characteristics on

the performance of a DBCE. For this, we rely on a connection-clustering approach—our methodology

is described in detail below.

5.5.1 Connection Characteristics of Interest

Several characteristics of a TCP transfer are likely to influence the efficacy of a DBCE used for the

transfer. We summarize the prominent ones below:

• Queuing Delays vs. RTTs: Many estimators use the relative increase in RTT as a congestion-

predictor. On high-bandwidth paths with long propagation delays, even the maximum queuing

delay may be significantly smaller than the minimum path RTT—this limits the magnitude of the

relative increase in RTT, and limits the ability of a DBCE to predict congestion. We capture this

effect by considering the ratio of the 90th percentile of connection RTT to the minimum RTT.

• Loss Rate and Patterns: The pattern of packet losses in a connection affects a DBCE in several

ways. First, for a connection with a high loss rate (high loss episode frequency), an aggressive

DBCE that often predicts congestion will perform well w.r.t. the LPA and false positives metrics;

while a conservative estimator will perform poorly w.r.t. LPA. At low loss-rates, on the other

hand, the performance of these estimators will reverse. Hence, we include the packet loss rate of

a connection as a characteristic of interest.

Also, if the gap between consecutive loss-episodes is small, a DBCE may not obtain enough

RTT samples to reliably infer congestion. We capture this effect by considering the average loss

distance, measured in units of RTT, between loss-episodes for each connection.

• Degree of Self-induced Congestion / Degree of Aggregation: A key argument used against the use

of delay-based congestion-control is that it is likely to work well only when losses are due to self-

induced congestion. Connections that traverse highly-aggregated paths might encounter random

losses or those caused by congestion due to cross-traffic (as against self-induced congestion). It is

not clear if reducing the sending rate of a connection is likely to result in alleviation of congestion
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on such paths [PJD04].6 Furthermore, most TCP transfers are small [CAI] and are likely to

experience losses of the latter type.

For self-congested connections (that contribute significantly to the total load on the congested

network link), an increase in the number of packets in flight would result in queue-buildup, which

in turn will lead to an increase in observed RTTs. We use the correlation between the number of

packets in flight and the RTT to characterize the degree of self-induced congestion experienced

by a connection.

• RTT Sampling Rate: A DBCE uses RTT samples to predict congestion. If network congestion

evolves slowly and the estimator is able to collect enough RTT samples during this evolution, it

should be able to better predict congestion. On the other hand, an estimator that does not get

enough RTT samples before a packet loss may not be able to predict the loss. In fact, [PJD04]

argues that if the delay sampling frequency is less than the Nyquist frequency, a DBCE may not

be effective in predicting losses. They conclude that the frequency should be much larger than

the frequency with which buffer overflow occurs at a bottleneck router queue. We characterize

the RTT sampling rate of a connection by considering the average throughput of a connection.

• Typical Flight Size: Finally, we consider the median flight-size of a connection. This charac-

teristic is likely to influence the impact of a DBCE on the connection duration—this is because

the larger is the flight size when a loss occurs, the larger is the time spent by TCP in recovering

the congestion-window (see Section 5.3.2). Thus, connections with larger flights can potentially

benefit more from the use of a DBCE.

5.5.2 Clustering of TCP Connections

Our aim is to cluster the TCP connections represented in our traces along the above-mentioned

characteristics. We need to address two challenges in order to do so:

• Range-diversity and skew in the distribution of characteristics: Each of the connection charac-

teristics spans a fairly distinct range of values; for instance, while RTTs can be as large as several

1000s of milliseconds, the loss rate is never larger than 1.0. Further, the distribution of a given

6It is important to note that the above argument is actually against the efficacy of delay-based congestion-control
(and not against the efficacy of delay-based congestion estimation). Even with respect to congestion-control, the above
argument applies only to scenarios in which only a few connections employ delay-based congestion control and compete
with regular TCP connections that rely on losses to detect congestion. If on the other hand, delay-based congestion-
control is widely deployed, responding to any type of congestion (whether self-induced or not) should help reduce the
possibility of buffer overflow (and losses).
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Figure 5.12: Distribution of Loss Rate Across
Clusters
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Figure 5.13: Distribution of RTT Variability
Across Clusters

characteristic across connections can be quite skewed. In order to eliminate any clustering bias

due to this range-diversity and skew, we need to first transform the characteristics into those that

have distributions that are less skewed and are similar in span. We do this by first taking the log

of each characteristic, Ci, and then normalizing the logs to the range [0, 1] as follows:

Xi =
log(Ci) − min{log(Ci)}

max{log(Ci)} − min{log(Ci)}

It is easy to see that all Xis vary from 0 to 1.

• Non-independence of characteristics: Several of the connection characteristics identified above

are not independent. For instance, the average loss distance of a connection is likely to be large if

its loss-rate is small. Further, the median flight size, the average RTT, and the correlation between

RTTs and flight size are also dependent characteristics. In order to eliminate any clustering bias

due to such inter-dependence of characteristics, we first transform the set of characteristics into a

set of independent dimensions using the technique of principle component analysis (PCA) [Fuk90].

This technique yields a set of independent dimensions, which also represent the characteristics

that have the maximum variability across connections. We then cluster TCP connections along

these transformed dimensions.

We use the Matlab [Inc92, mat] programming environment to conduct PCA and clustering. For the

latter, we rely on the K-mean algorithm [McQ67]—we experiment with different values of the number

of clusters, K, and present results only the most insightful setting of K = 5. More details of our

clustering approach can be found in [RKS07b].
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Figure 5.14: Distribution of Median Flight Size
Across Clusters
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Figure 5.15: Distribution of Throughput
Across Clusters
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Figure 5.16: Distribution of Correlation be-
tween Flight Size and RTT Across Clusters
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Figure 5.17: Distribution of Loss Distance
Across Clusters

Cluster # # connections Summary of Key Characteristics

Cluster 1 261898 Low throughput, low loss rate, small flight size
Cluster 2 229718 Very high throughput, high loss rate, large flight size
Cluster 3 184244 Very low throughput, very high loss rate, small flight size, large loss-distance
Cluster 4 281550 High throughput, very low loss rate, small flight size
Cluster 5 88682 Low throughput, low loss rate, small flight size, large RTT variability

Table 5.4: Key Characteristics of Connection Clusters
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Figure 5.18: VEGAS: Impact on Connection
Duration (Add CA) on Cluster 1
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Figure 5.19: VEGAS: Impact on Connection
Duration (Add CA) on Cluster 2
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Figure 5.20: VEGAS: Impact on Connection
Duration (Add CA) on Cluster 3
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Figure 5.21: VEGAS: Impact on Connection
Duration (Add CA) on Cluster 4

Figures 5.12–5.17 plot the distribution of the connection characteristics across the 5 clusters. In-

terestingly, and somewhat surprisingly, we find that the clusters can differ significantly across most

of the characteristics (note the log-scale of the x-axis in most of these plots). We summarize the key

distinguishing characteristics of each cluster in Table 5.4.

5.5.3 Performance of DBCEs Across Clusters

We next study the per-cluster performance of all the candidate DBCEs. Figures 5.18–5.29 plot the

reduction in connection duration estimated using the additive CA policy for the Vegas, CIM and Tri-S

DBCEs (the observations for multiplicative CA are similar). Cluster 5 behaves very similar to Cluster

1 and is omitted. The observations seen with the other DBCEs are similar to one of these three DBCEs
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Figure 5.22: CIM: Impact on Connection Du-
ration (Add CA) on Cluster 1
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Figure 5.23: CIM: Impact on Connection Du-
ration (Add CA) on Cluster 2
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Figure 5.24: CIM: Impact on Connection Du-
ration (Add CA) on Cluster 3

 -100

 -10

 -1

 +/-.1

 1

 10

 100

 1000

 <1  10  100  1000

A
ct

ua
l C

ha
ng

e 
in

 C
on

ne
ct

io
n 

D
ur

at
io

n 
(i

n 
R

T
T

s)
 

 Best-case Change in Connection Duration (in RTTs) 

cim

Figure 5.25: CIM: Impact on Connection Du-
ration (Add CA) on Cluster 4
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Figure 5.26: Tri-S: Impact on Connection Du-
ration (Add CA) on Cluster 1
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Figure 5.27: Tri-S: Impact on Connection Du-
ration (Add CA) on Cluster 2
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Figure 5.28: Tri-S: Impact on Connection Du-
ration (Add CA) on Cluster 3
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Figure 5.29: Tri-S: Impact on Connection Du-
ration (Add CA) on Cluster 4

(in exactly the same way as seen in Section 5.4.3). We find that:

• Across all DBCEs, Cluster 2 has the best performance in terms of the number of connections that

witness a reduction in connection duration; this is especially true for connections with best-case

reduction in connection duration within 100 RTTs.

• For connections with a larger best-case potential, Cluster 4 performs better with CIM—in fact,

in this case the median reduction in connection duration is fairly close to the best-case.

For Vegas and Tri-S, the performance of Cluster 4 is similar to that of Clusters 1, 3, and 5.

• The impact on connection duration with Vegas is zero for almost all connections in Clusters 1, 3,

4, and 5. Only in Cluster 2, do a significant fraction of connections see a significant reduction in

connection durations (by more than 10 RTTs). The only distinguishing characteristic of Cluster

2, not present in any other cluster, is the noticeably large median flight sizes.

From the above observations and Table 5.4, we conclude that (i) connections with high throughput

and large flight-sizes (Cluster 2) are likely to benefit the most from any DBCE; (ii) for DBCEs (such

as CIM) that perform well on an average among existing DBCEs, a high-throughput connection can

perform better with smaller flights if its loss-rate is low (Cluster 4); and (iii) the estimator of the

prominent Vegas protocol is fairly conservative and has an impact only on connections that have large

flight sizes. We find that the other connection-characteristics do not have any significant impact on

DBCE performance.
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5.6 Concluding Remarks

We conduct a large scale study with a diverse set of TCP connection traces where we extract

the RTTs seen by each connection and used them to evaluate eight prominent delay-based congestion

estimators (DBCEs). We tested each estimator’s performance in terms of (i) the loss prediction ability

(LPA), (ii) fraction of erroneous congestion prediction (false positives), and (ii) the overall impact on

connection duration when the DBCE is used in congestion with congestion-avoidance. We also cluster

our connection traces using several connection characteristics that are likely to impact the performance

of DBCEs; we then study the per-cluster performance of DBCEs. Our main findings are:

• CIM is the overall best estimator. It is likely to reduce the durations of large connections signifi-

cantly, though at the possible expense of small connections.

• The estimator used by the prominent Vegas protocol is fairly conservative. It has absolutely no

impact on the durations of TCP connections that do not transmit large flights of segments.

• Connections with a high throughput and large flight-sizes are likely to benefit the most from any

DBCE.

Our high-level conclusion is that the state-of-the-art in delay-based congestion estimation can be im-

proved upon by designing an adaptive DBCE that considers the characteristics of a TCP connection

and those of the path it traverses to select either an aggressive or a conservative estimator. Our passive

analysis approach does not allow us to study the interaction between delay-based congestion-control

and network cross-traffic. We hope to address this using an active experimental framework in the near

future.
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CHAPTER 6

Conclusions and Future Work

The important thing is not to stop questioning.

— Albert Einstein (1879–1955)

A conclusion is the place where you got tired of thinking.

— Harold Fricklestein

Even though TCP has been around for decades and several studies have looked at the performance of

TCP under different conditions, its actual performance in the “real world” is not really well understood.

This is especially true for its loss detection and recovery mechanism. The main reason for this is the

difficulty of studying TCP behavior in a detailed manner on the real Internet. In this dissertation, I

have made a systematic attempt to address this shortcoming to conduct detailed analysis. I believe

this work is a significant step in the right direction and provides several insights to modify current

TCP implementations as well as to design new better protocols. However, this work is by no means

complete. In this Chapter, I will highlight some of the key contributions/results of this dissertation,

discuss the implications of these results and suggest future avenues to explore.

6.1 TCPdebug

One of the key contributions of this dissertation is the TCPdebug tool we developed for the passive

analysis of TCP. This tool can be used to analyze large traces quickly and accurately. TCPdebug not

only integrates several important analysis techniques proposed in the literature but also covers several

corner cases ignored by the previous tools. However, the main innovative feature of this tool is the use

OS specific TCP implementation details for TCP analysis. TCPdebug models the TCP implementation-

specific behavior of four Operating Systems (Windows, Linux, FreeBSD/MAC OS X, Solaris) that are

currently (and likely to be in the foreseeable future) the dominant end-systems for TCP connections.



The tool is designed to provide a very detailed classification of the out-of-sequence segments seen in

real world traces. It also tracks several key characteristics of a trace such as the Round Trip Times

(RTTs), packets in flight and advertised window.

This tool is extensively validated using a controlled setting as well as using large number of real

traces. The tool is found to be accurate in 99+% of the cases. This is almost a 100% improvement

over the current state of the art for TCP analysis tools. TCPdebug is freely available to the networking

research community and we hope they will encourage others to contribute to our understanding of TCP

behavior “in the wild” by analyzing larger and more diverse sets of traces. The tool is also designed

to be easily extensible and new features like tracking congestion windows can be easily implemented.

In fact, we ourselves have extended this tool to include the algorithms used by several delay based

congestion control schemes to predict network congestion. The tool is quite fast and can process

several gigabytes of compressed packet header traces in minutes once they are sorted (sorting itself is

not a hard requirement and the tool can be easily modified to remove this requirement).

6.2 Loss Detection/Recovery

TCP packet losses severely impact the performance of TCP connections. We use TCPdebug to

understand the accuracy and timeliness of TCP’s current TCP loss detection and recovery mechanisms.

We make several interesting observations which are listed below

• 50-80% of TCP loss detections are triggered by the costly RTO rather than FR/R. The main

reason for the prominence of RTO is the lack of enough packets in flight to trigger a FR/R based

detection.

• 7-35% of all retransmission in TCP are spurious (i.e. TCP inaccurately infer that a segment was

lost and retransmits it). Most of the spurious retransmissions are due to RTO based detection as

against due to FR/R based detection. Only 3-5% of all retransmission are due to spurious FR/R

based loss detection. The number of spurious FR/R based detection was observed to be same

for all OSes but the number of spurious RTO based detection was OS dependent. Windows had

nearly 5 times more spurious retransmissions than Linux in our traces.

• Up to 14% of all out-of-sequence segments were due to reordering of packets in the network.

• As expected RTO based detection is more time consuming that FR/R based detection. The
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time required for FR/R based detection is OS agnostic and is approximately equal to 1-2 RTTs

in most of the cases. However, the RTO based detection time depends on the source OS as it

depends on the equation used to measure the retransmission timer which differs from one OS to

another. The median RTO based detection time for Windows and Linux is 4 RTTs while for

Solaris and FreeBSD it is larger than 20 RTTs. RTO based detection for Windows and Linux

differ significantly in its tail. While only 10% of Linux connections takes longer than 10 RTT,

25% of Windows connections take longer than 10 RTTs. On close inspection of our traces, we

find that several of these larger RTOs in Windows correspond to losses at the beginning of the

respective TCP connections, when the RTO is primarily governed by the initial RTO and has

not converged to a value representative of the network path. Linux updates its estimates of RTT

and RTO at a much higher frequency (once per segment) than Windows (once per flight) and

converges faster.

• Overall, the RTO based detection for Linux was observed to converge the fastest and had the

least number of spurious retransmissions.

• The time spend in recovering from lost packets is independent of the detection mechanism used

and only depends on the number of packets lost within a flight. The recovery time was also found

to be independent of the sender side OS. Use of selective acknowledgment (SACK) help reduce

recovery time but only when 3 or more segments are lost from a flight.

The above observations indicate that there is much scope to improve TCP performance by improving

its accuracy and timeliness. While studying the impact of changing the connection’s loss detection

parameters on its accuracy and timeliness is straight forward, especially when we use a powerful tool

like TCPdebug , and has been attempted in the past, understanding impact of changing parameters

on the overall performance (connection duration) of a connection is quite difficult in a passive setting.

One of the key contributions in this dissertation is the concept of using analytical models to predict

the impact of changing parameters on the overall performance of a connection. To the best of our

knowledge this is the first attempt to passively study the impact of changing detection parameters on

the overall performance of a connection. Using these analytical models we first compute the upper

bound on the potential improvement in TCP. We found that while 45-75% of the connections in our

traces had very little scope (less than 1%) for improvement in their connection duration, a significant

fraction (15-40%) of connections can see more than 10% improvement in their connection durations.

However, to achieve this upper bound we have to achieve 100% accuracy in loss detection along with
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high efficiency in the timeliness of detection. We studied the actual impact of various parameters on

the performance and identified the best settings for these in the real world. Our main observations

from this study are as follows

• Current RTO estimators are typically too conservative in incorporating RTT variability. We find

that reducing the weight given to the RTT variability (K) from its current default value of 4 to 2

can significantly improve the overall performance of a connection. In fact the achieved improve-

ment is quite close to the upper bound on the improvement indicating that the performance of

TCP loss detection is influenced a lot by the weight given to the RTT variability.

• Unlike the observations made in the past studies, the minRTO and timer granularity were found

to have almost no influence on the performance of current TCP loss detection mechanism. This

is due to the fact that default minRTO used in most current implementations of TCP is usually

much lower (200-400ms) than the values used in the past (1000ms). The timer granularity in

most current implementations is also much finer (10ms) than that in the past(100-500ms).

• Other parameters used in RTO computations (a, b, m) did not have significant impact on the

overall performance of a connection.

• Reducing the dupack threshold (D) helps connections which have fewer packets in flight but harms

connections which have more packets in flight. The ideal value of the dupack threshold is thus

adaptive depending on the number of packets in flight. The dupack threshold is set according

to the rule: D = max{1, min{3, F − 2}}, where F is the number of packets in flight to achieve

maximum possible improvement in performance.

• Using the best set of values for all parameters of loss detection mechanism allowed us to almost

achieve the upper bound on the performance improvement for a significant number of connections.

6.3 Ability of DBCEs to Predict Losses

We investigate the ability of several prominent Delay Based Congestion Estimators (DBCEs) to

predict TCP packet losses with a view to avoid them. This would help reduce the impact on performance

that results from detecting and recovering from losses. We considered several prominent DBCEs such

as CARD, Tri-S, Dual, Vegas, BFA, CIM, FAST, DECA and DAIMD. We modified TCPdebug to
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incorporate the equations used by these DBCEs to predict congestion and used it to study the efficacy

of each of the DBCE in predicting/mis-predicting losses in a connection. We find that

• CARD has the best performance in predicting TCP packet losses, followed closely by DECA,

CIM, and Dual. These DBCEs predicted an impending loss in 45% of the connections. However,

in a similar fraction of connections (45%), the DBCEs predicted less than half of the losses in a

connection.

• Vegas, DAIMD, and Tri-S did not predict a single loss in nearly 70-90% of the connections.

• Vegas has the best ability to avoid mis-predicting losses. In 90% of cases it does not mis-predict

losses even once. This is closely followed by DAIMD that has no mis-prediction in 80% of the

connections.

• CARD, CIM, Dual, Tri-S, and DECA erroneously predict losses in a large number of cases.

• Another issue to consider is the timeliness of the loss prediction/mis-prediction. We found that

in 50-70% of the cases the prediction/mis-prediction of loss lasted at least for 1 RTT, giving the

connection ample time to react to it.

There is much scope to improve the connection’s performance by correctly predicting and avoiding

packet losses. However, the DBCEs which show a better loss prediction ability also have a large number

of mis-predictions while DBCEs which have good performance in terms of mis-predicting losses do not

fare well in predicting the losses. We need to know which of the DBCEs strike a good balance and

improve the overall performance of a connection. In this dissertation we develop analytical model to

study the overall impact of a correct prediction or mis-prediction on a performance of the connections.

To the best of our knowledge this has not been done in any of the past work and provides a good

metric to compare the performance of these as well as any new DBCEs that may be proposed. Using

these analytical models we first computed the upper bound on improvement that could be achieved by

a connection if all losses are predicted and avoided and there are no mis-predictions. We computed the

upper bound assuming two different reaction policies to the loss prediction - (i) additive decrease in

which the sending rate is reduced by 1 packet and (ii) multiplicative decrease in which the sending rate

is reduced by a factor calculated as the ratio of minimum RTT to the current RTT (minRTT/RTT ).

We find that the best case saving is same for both the additive and multiplicative decrease policy. This

is because, most of the times, a connection has very few packets in flight and a multiplicative decrease

of minRTT/RTT amount to a decrease of just one packet. While 60% of connections has negligible
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scope for improvement in their performance, 25% of connections could see a saving of more than 10

RTT in their duration.

Using the analytical models mentioned above we studied the performance of the various DBCEs

and found that

• Based on their performance, the DBCEs can be grouped into three categories:

– Both Vegas and DAIMD are fairly conservative and rarely predict congestion; the median

change in connection duration is nearly zero!

– Tri-S and DUAL form the second category. Both of these causes more harm than good,

increasing the connection duration for most connections.

– The rest of the DBCEs form the third category. These DBCEs show considerable improve-

ment in more than 50% of the connections. CIM performs the best in this category. Surpris-

ingly, Random(0.8) predictor of congestion, which predicts congestion with 80% probability,

performs almost as well as the others—CARD, BFA, DECA.

• Connections which have low potential to improve their performance still have a lot to lose by mis-

predicting losses. A conservative algorithm like Vegas performs quite well for these connections.

On the other hand, for a connection with large potential for improvement, Vegas do not improve

performance much but a more aggressive DBCE like CIM performs well.

Another interesting observation from our study was the realization that the choice of measuring

RTT (and hence making a congestion prediction) on a per-flight or a per-packet basis does not impact

the performance of the DBCEs much.

Next, we studied the impact of the connection characteristics on the overall performance of a DBCE.

We considered a wide range of connection characteristics such as loss rate, flight sizes, throughput, and

loss distances. We found that a connection with high throughput and large flight size benefit the most

from any DBCE followed by connections with either of these two characteristics. This suggests that

DBCEs hold a lot of promise in high bandwidth networks emerging today.
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6.4 Future Work

TCPdebug is a very detailed tool and this along with some of the other observations and method-

ologies used in this dissertation opens up several new avenues to explore in the future. Below I will

briefly summarize some of the future direction that I find most interesting.

In this dissertation, I have developed TCPdebug as a versatile tool. By tracking several character-

istics of the end host TCPdebug can accurately classify the cause of retransmission. But this tracking

ability can also be used to gain insights into several different aspects of TCP’s performance. Below I

list a few of these studies

• Using TCPdebug we can identify the main performance limiting cause for a connection. If the

connection is experiencing losses than the main performance limiting cause, in most likelihood, are

the losses. However, there are several other potential causes such as (i) lack of data to send, (ii)

advertised window limitation because of a small default advertised window, (iii) advertised window

as a limitation because the receiver is not removing packets fast enough and is shrinking the

window, and (iv) implementation problems. Studying the main cause of performance limitation

will help identify the right set of changes to TCP which will improve its performance.

• TCPdebug provides a detailed look at losses in the network. This can be used to investigate

models for losses seen in the network. As a first step we can compare the loss patterns observed

on the network to those proposed in the literature [MSM97, PFTK98, ARA00, Kum98, LM97,

AAB00, ARA00, AT99, MGT99, Pax97a, YMKT99, ZD01]. Given the diversity in the Internet, I

believe that a single loss model would not suffice to model losses for different connections. In this

case, we should investigate the impact of connection characteristics on the loss pattern seen in

the connection. Using these steps, I envision evolution of a hybrid loss model which can explain

the patterns observed in a large number of real world connections.

In Chapter 4, we studied the efficacy of current TCP loss detection/recovery mechanism in real

world connections and suggested changes which will improves TCP performance in the real world.

Most changes we suggested are static. We can imagine a more reactive analysis where TCPdebug

monitors the network in real-time (we have already noted that this is feasible) and use the information

to keep tuning the detection parameters on the go. For example, if a particular connection has seen

several spurious RTO based retransmission (identified using TCPdebug), we can change the weight of

RTT variation for the connection to a higher value to improve its performance.
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A more specialized application of the methodology of optimizing TCP loss detection and recovery

mechanism proposed in Chapter 4 would be to optimize TCP for a particular environment (such as

wireless) or application (such as multimedia streaming). The basic idea is that we can capture a trace

of the particular environment or application we are interested in studying and repeat our analysis (with

maybe a few specific changes) and derive the set of parameter setting which will work for that trace. A

purely 802.11 [Gas02] network may have different network characteristics such as large RTT variability

which may require an entirely different set of detection parameters than the general TCP connections.

Similarly, a video streaming application may have a larger throughput on an average and may need

slightly different optimization for the loss detection mechanism.

Finally, we have investigated the ability of different DBCEs to predict TCP losses and improve

TCP performance. Again we used an analysis approach where a single DBCE was used throughout a

connections lifetime. We have already noted that a conservative DBCE worked well when the connection

has a low throughput overall while an aggressive DBCE works better for high throughput connections.

Using this information and TCPdebug’s tracking of a connections behavior we can build a modified

version of DBCE which can change its aggressiveness depending on the connections characteristics.
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Appendix A

Analytical Model: Changing Parameters for Detection

Mechanisms

In this appendix, we present the analytical models developed to calculate the change in connection

duration for changing parameters of the detection mechanism. We first present derivation of equations

to calculate the best possible improvement in connection duration. Next we present 4 different analytical

models for (i) an increasing dupack threshold, (ii) a decreasing dupack threshold, (iii) an increasing

RTO timer, and (iv) a decreasing RTO timer.

A.1 Model for Best Possible Improvement in Connection Du-

ration

We attempt to characterize the best-case improvement in connection durations that can be achieved

by an ideal set of loss detection mechanisms to understand the maximum possible benefits from im-

proving the detection mechanisms. Our analysis is optimistic and assumes that in an ideal setting, all

spurious retransmissions are avoided, and all loss detection takes no more than the maximum RTT of

a connection. We also assume that if we get at least one dupack the connection can detect the loss

using FR/R.1 To compute this metric, we augment the tool to re-process the trace of each connection

and compute the savings in connection duration for each of the following four cases:

• A spurious FR/R-based loss detection is avoided.

In this case, the sender would not unnecessarily retransmit a segment. More significantly, the

sender would not reduce its sending rate after “recovering” from the perceived loss. We need

to calculate the change in recovery time on avoiding the spurious retransmission. Figure A.1

shows a time-sequence graph for the congestion window behavior in presence and absence of the

FR/R triggered spurious retransmission. Let the number of packets in flight before the spurious

1Our analysis assumes that an oracle informs the configuration of both FR/R and RTOs. Specifically, the oracle helps
the sender achieve 100% accuracy in FR/R-based loss detection by informing it when dupacks are generated by events
other than segment loss. The oracle also helps achieve ideal accuracy and timeliness of RTO-based loss detection by
informing the sender of the maximum RTT that can be witnessed by the connection—the sender can then use this value
as the RTO and avoid spurious retransmissions.
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Figure A.1: Congestion window before and after a FR/R based spurious retransmission

retransmission be 2x (point A). At time t, the sender experiences a spurious detection and resent

the packet and reduces the congestion window from 2x to x (point B) and enter congestion

avoidance stage [APS99]. Assuming that each packet is acked (i.e. no delayed ack), it will take

x + 1 RTTs (as shown in figure) to get back to its original congestion window size of 2X . This

is point C in the figure A.1. We assume that from this point onwards the connection behaves

exactly as it would have behaved from point A. This is an overly simplistic assumption but is the

best we could do in a passive analysis. However, the Difference between point A and C does not

capture the complete change in recovery time. In this interval, the sender achieved some useful

goodput and we need to subtract this from the increase in connection duration between A and C

to get the actual increase in connection duration. The number of packets send out in this time is

packet count = x2 +

x−1
∑

i=0

i = x2 +
(x − 1) ∗ x

2
= 1.5x2 − 0.5x

The average sending rate between A and C in absence of the spurious retransmission would have

been

sending rate =
2x + 3x + 1

2
= 2.5x + 0.5
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Hence the time to send out packet count packets at the rate of sending rate would be

send time =
1.5x2 − 0.5x

2.5x + 0.5

Thus the overall estimate of the saving in connection duration will be

F (x) = (x + 1) − 1.5x2 − 0.5x

2.5x + 0.5
(A.1)

• A spurious RTO-based loss detection is avoided. When a sender avoids a spurious RTO-based

retransmission, it saves time spent on recovering the flight size. Figure A.2 shows a time-sequence

graph for the congestion window behavior in presence and absence of an RTO triggered spurious

retransmission. Again, let the number of packets in flight before the spurious retransmission be

2x (point A). At time t, the sender experiences a spurious detection and resent the packet and

reduces the congestion window from 2x to 1 and enter slow start [APS99]. Assuming that each

packet is acked (i.e. no delayed ack), it will take log(x) − 1 RTTs (as shown in figure) to get

to a congestion widow of x and then the connection will enter congestion avoidance (point B).

From this point it will take another x RTTs to get back to its original congestion window size of

2x (point C). Again, we assume that from this point onwards the connection behave exactly as
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it would behave from point A. In the interval A to C, the sender achieved some useful goodput

and we need to subtract this from the increase in connection duration. Let n = log(x). Then the

number of packets send out in this time is

packet count = 2n − 2 + x2 +
(x − 1) ∗ x

2
= 2n − 2 + 1.5x2 − 0.5x

The average sending rate between A and C in absence of the spurious retransmission would have

been

sending rate =
2x + 2x + x + n − 1

2
= 2.5x + 0.5n− 0.5

Hence the time to send out packet count packets at the rate of sending rate would be

send time =
2n − 2 + 1.5x2 − 0.5x

2.5x + 0.5n − 0.5

Thus the overall estimate of the saving in connection duration will be

R(x) = (x + n − 1) − 2n − 2 + 1.5x2 − 0.5x

2.5x + 0.5n− 0.5
(A.2)

• A needed RTO-based loss detection takes only max RTT worth of time. For non-spurious RTO-

based retransmissions, we compute the reduction in loss-detection time (difference between the

corresponding value of RTO and the maximum RTT of the connection)—this also gives us the

saving in connection duration for each such event.

• A RTO-based loss detection is converted in FR/R based detection on receiving at least one dupack

Figure A.3 shows the time-sequence graph for the congestion window when a RTO triggered

detection is converted to FR/R. Assume that the flight size was 2x when a loss occurred. If the

loss is detected by FR/R instead of an RTO, there are two types of savings in connection duration.

The first is in the time it takes to detect the loss, and is given by the difference between the time

the retransmission timer expired and the time at which the dupacks are received. The second

savings is due to the fact that the TCP sending rate after exiting from FR/R (flight size is reduced

to x – point A) is usually higher than that after an RTO based detection (flight size is reduced to

1 – point B). From point B, the connection will take log(x) − 1 RTTs to get to the window size

of x –point C. The difference between A and C is one part of the change in connection duration

when RTO gets converted to FR/R. In this interval sender would also achieve some goodput. Let
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n = log(x). Then the number of packets send out in this time is

packet count =
n−1
∑

i=0

2i − 1 = 2n − 2

The average sending rate between A and C would be

sending rate =
x + x + n − 1

2
= x + 0.5n− 0.5

Hence the time to send out packet count packets at the rate of sending rate would be

send time =
2n − 2

x + 0.5n − 0.5

Thus the overall estimate of the saving in connection duration will be

RF (x) = (n − 1) − 2n − 2

x + 0.5n− 0.5
(A.3)
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A.2 Increasing Dupack Threshold

Increasing the dupack threshold will affect the connection in following three ways

• Some FR/R will be detected by RTO: If an FR/R detection is triggered by exactly dupack

threshold, D, worth of dupacks, increasing the dupack threshold will cause this FR/R to be

detected by RTO. We need to find out, by how much would this change from FR/R to RTO

change the connection duration. Figure A.1 captures the difference between a FR/R and the

corresponding RTO. Equation (A.3), could be used to capture the change from FR/R to RTO

as well. The only difference is that in this case the connection duration will increase instead of

decrease by the amount indicated by Equation (A.3).

• Some Spurious FR/R will be avoided: If a spurious FR/R is triggered by exactly D dupacks the

increase in dupack threshold will cause this spurious retransmission to be avoided. Equation (A.1)

formulates the decrease in connection duration when a spurious FR/R is avoided.

• Slight increase in average detection time for FR/R: For FR/R triggered detections which had

enough dupacks to still be detected by FR/R even after the increase in dupack threshold, there

will be a slight increase in the detection duration as the sender has to wait for more dupacks

before it can conclude that a packet is lost. This increase is the difference in the dupack time for

the new threshold and the old threshold.

A.3 Decreasing Dupack Threshold

The effect of decreasing the dupack threshold will be exactly opposite of that for increasing the

dupack threshold. The three ways a decreasing threshold affects a connections is.

• Some RTO will be detected by FR/R: If a loss event is accompanied by some dupacks but not

enough to trigger FR/R, reducing the dupack threshold can now trigger an FR/R. Equation (A.3),

formulated the decrease in connection duration when a RTO based detection gets converted to

FR/R.

• Some Spurious FR/R will be triggered: Decreasing the dupack threshold will trigger more spurious

FR/Rs which were earlier avoided due to higher dupack threshold. Equation (A.1) formulates the

increase in connection duration when a spurious FR/R is caused.
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• Slight decrease in average detection time for FR/R: The sender will have to wait for fewer dupacks

and hence will detect the loss slightly earlier. The decrease in connection duration will be the

difference in the dupack time for the new threshold and the old threshold.

A.4 Increasing RTO

Changing the various parameters for the RTO equation can cause an increase in the RTO timer.

This can affect the connection in three ways

• Some RTO gets converted to FR/R: If some losses were detected by RTO simply because the

corresponding dupacks were delayed in the network, increasing the RTO could allow these losses

to be detect by FR/R. Equation (A.3) Formulates the change in connection duration due to this.

• Some Spurious RTO is avoided: Spurious retransmission can happen during RTO based de-

tection, if the ack is simply delayed and the timer expires before the sender gets the ack. By

increasing the timer the sender may be able to avoid the spurious retransmission. Equation (A.2)

formulates the decrease in connection duration due to this.

• Increase in detection time for RTOs: If the RTO is increase, all RTO based detection will take

longer to detect the loss. This can be easily measured as the difference between the new and old

RTO timer.

A.5 Decreasing RTO

Decrease in RTO can affect the connection in three ways

• Some FR/R gets converted to RTO: Triggering RTO earlier could result in some FR/R to be

converted to an RTO based detection if the RTO timer expires before the dupacks triggering

FR/R arrives at the sender. Equation (A.3) formulates the change in connection duration due to

this.

• Some Spurious RTO is triggered: Reducing the RTO could cause the timer to expire before the

ack for a packet reaches the receiver. This can cause spurious RTOs. Equation (A.2) formulates

the increase in connection duration due to this.

135



• Decrease in detection time for RTOs: Decreasing RTO timer will reduce the detection time for

an RTO based event. The benefit for this can be measured as the difference between the new and

old RTO timer.
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Appendix B

Analytical Model: Efficacy of DBCEs

In this appendix, we present the analytical models developed to calculate the change in connection

duration when a loss is correctly or incorrectly predicted by a DBCE. We develop models for both

the additive and multiplicative response to a congestion estimation as explained in Section 5.3.2 of

Chapter 5.

B.1 Model for Change in Connection Duration when conges-

tion is detected

The overall impact on connection duration depends on the congestion avoidance policy used. We

present a model for both the additive decrease and multiplicative decrease policy. We employ the

corresponding equation for the policy when we encounter congestion. The sending rate is reduced only

once per RTT.

B.1.1 Additive Decrease

Figure B.1 shows the time-sequence graph for the case when an additive decrease policy is used to

decrease the congestion window by 1 on detecting congestion. If the TCP flight size was x before the

congestion event(point A), then the new window will be x − 1(point B). Assuming that every packet

is acked (i.e. no delayed acks are used), the connection will take 1 RTT to get back to its original

sending rate (point C). We assume that from this point onwards the sender behaves exactly as it would

have behaved from point A. This is the best we can do in a passive analysis model. However, the

difference between point A and C does not capture the complete change in connection duration. In this

interval the connection has achieved some goodput. We need to subtract this to get the actual change

in connection duration. The number of packets send out during this time is

packet count = x − 1
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Figure B.1: Congestion window before and after an Additive decrease

The average sending rate between A and C in absence of the congestion event would have been

sending rate =
x + x + 1

2

Hence the time to send out packet count packets at the rate of sending rate would be

sending time =
x − 1

x + 0.5

Thus the overall change in connection duration will be

A(x) = 1 − x − 1

x + 0.5

=
1.5

x + 0.5
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Figure B.2: Congestion window before and after a multiplicative decrease

B.1.2 Multiplicative Decrease

Figure B.2 shows the time-sequence graph for the case when a multiplicative decrease policy is

used to decrease the congestion window on detecting congestion. The congestion window is reduced

by a factor of β = minRTT/RTT . If the TCP flight size was x before the congestion event (Point

A), then the new window will be x − βx (point B). Assuming that every packet is acked, it will take

the connection βx RTTs to recover from this reduction (point C). However, the sender also achieves

some goodput in this duration. We subtract this to get the actual change in connection duration. The

number of packets send out during this time is

packet count = (x − βx)(βx) +

βx−1
∑

i=0

i

= βx2 − (βx)2 +
(βx − 1)(βx)

2

=
2βx2 − (βx)2 − βx

2

The average sending rate between A and C in absence of the congestion event would have been
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sending rate =
x + x + βx

2

Hence the time to send out packet count packets at the rate of sending rate would be

send time =
2βx2 − (βx)2 − βx

2x + βx

Thus the overall change in connection duration will be

M(x) = βx − 2βx2 − (βx)2 − βx

2x + βx

=
β(2βx + 1)

2 + β

B.2 Model for Change in Connection Duration when loss is

predicted correctly

When loss is correctly predicted, we would reduce the congestion window either additively or mul-

tiplicatively (depending on the policy used) instead of by half (for FR/R) or to one (for RTO). Thus

a accurately loss prediction can be modeled as the saving that would occur if the connection had not

spend anytime detecting and recovering from the loss minus the increase in connection duration due to

reducing the congestion window according to the policy used. This can be expressed as

total saving = saving in detection + saving in recovery − new recovery time

In 4.1 and 4.2 we have already developed model for the saving in connection duration when the

FR/R and RTO based loss is avoided. The saving in detection time for FR/R based loss detection can

be measured from a trace as the difference between the data packet and the last duplicate ack triggering

the retransmission. Similarly the saving in detection time for RTO based loss detection is equal to the
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RTO timer value at the time the packet is retransmitted. The final component (new recovery time) for

both additive and multiplicative policy is derived above (equation B.1 and B.1)

B.3 Best Case Change in Connection Duration

The best case change in response time will occur when all the losses are correctly predicted and

there is no mis-prediction of loss. This is simply the equations for change in connection duration for

loss predictions applied for all losses in a flow.
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