
INTEGRAL-EQUATION-BASED FAST
ALGORITHMS AND GRAPH-THEORETIC

METHODS FOR LARGE-SCALE SIMULATIONS

Bo Zhang

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Mathematics.

Chapel Hill
2010

Approved by:

Professor Jingfang Huang

Professor Michael L. Minion

Professor Laura Miller

Professor Nikos P. Pitsianis

Professor Xiaobai Sun

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210599595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2010

Bo Zhang

ALL RIGHTS RESERVED

ii

ABSTRACT

BO ZHANG: Integral-equation-based Fast Algorithms and Graph-theoretic

Methods for Large-scale Simulations

(Under the direction of Professor Jingfang Huang)

In this dissertation, we extend Greengard and Rokhlin’s seminal work on fast mul-

tipole method (FMM) in three aspects. First, we have implemented and released open-

source new-version of FMM solvers for the Laplace, Yukawa, and low-frequency Helmholtz

equations to further broaden and facilitate the applications of FMM in different scien-

tific fields. Secondly, we propose a graph-theoretic parallelization scheme to map FMM

onto modern parallel computer architectures. We have particularly established critical

path analysis, exponential node growth condition for concurrency-breadth, and a spatio-

temporal graph partition strategy. Thirdly, we introduce a new kernel-independent FMM

based on Fourier series expansions and discuss how information can be collected, com-

pressed, and transmitted through the tree structure for a wide class of kernels.

iii

To my parents and my wife.

iv

ACKNOWLEGEMENTS

First and foremost, I would like to express my greatest gratitude and appreciation to

my advisor Jingfang Huang, without whom this dissertation would simply be impossible.

Huang has generously helped me and supported me in various ways. It is my great honor

to have him as my advisor.

I thank Xiaobai Sun and Nikos Pitsianis for broaden my knowledge in the field of

computer science, for providing me with unconditional help, support and guidance on

many topics of this dissertation in the past one and a half years. The benefit of their

suggestions could hardly be exaggerated.

I am very grateful to Michael Minion and Laura Miller, for their intelligent advice

and helps during my study at UNC.

I would like to thank the support from my family. To my parents, for raising me,

educating me, and loving me. To my wife Jianyu, for believing in me, supporting me,

and encouraging me in all these years.

Finally, I would like to thank all my friends (students, faculty, and administrators)

for providing me with such a pleasant environment during my study at UNC.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1 Introduction 1

2 Fast Multipole Method 8

2.1 Spatial Domain Adaptive Tree Structure 12

2.2 Approximations and Translations . 17

2.3 Algorithm Structure of Adaptive FMM 25

2.4 FMM-Yukawa in FMMsuite . 30

2.4.1 FMM-Yukawa Installation Instructions 31

2.4.2 A Sample Driver File . 32

2.4.3 Test Run Description . 33

3 Parallelization of Fast Multipole Method on Multicore Architectures 37

3.1 Precursors of Parallel FMM . 38

3.2 Analytical Parallel FMM . 40

3.2.1 The Absolute Critical Path . 40

3.2.2 Maximum Concurrency under Dependency Constraints 43

3.2.3 Architecture Constraints . 46

vi

3.3 A Graph-Theoretic Parallelization Approach 47

3.3.1 Parallelization Scheme for Upward Pass 48

3.3.2 Parallelization Scheme for Downward Pass 51

3.4 Numerical Experiments . 54

4 A Kernel Independent Fourier-series-based Fast Multipole Method 62

4.1 Precursors of Kernel-Independent FMM 63

4.2 Kernel Approximation . 65

4.3 Translation Operators . 69

4.4 Algorithm Structure and Further Improvements 78

4.5 Numerical Results . 89

5 Conclusion 95

vii

LIST OF TABLES

2.1 Timing results for FMM-Yukawa for 3-digit accuracy with charges uni-
formly distributed inside the cube [−0.5, 0.5]3 34

2.2 Timing results for FMM-Yukawa for 6-digit accuracy with charges uni-
formly distributed inside the cube [−0.5, 0.5]3 35

2.3 Timing results for FMM-Yukawa for 3-digit accuracy with charges dis-
tributed on the surface of a sphere . 35

2.4 Timing results for FMM-Yukawa for 6-digit accuracy with charges dis-
tributed on the surface of a sphere . 35

3.1 Complexity analysis of parallel particle simulation 41

3.2 CPU execution time VS number of threads 57

3.3 Timing results for TME operation at every level in Up direction 58

3.4 CPU execution time VS N for uniform sampling 61

3.5 CPU execution time VS N for nonuniform sampling 61

4.1 Maximum approximation error for
1

x2
: p = 10 and α =

2π

9
. 68

4.2 Half period expansion error . 72

4.5 Timing results of uniform FMM for 6-digit accuracy. Charges are dis-

tributed in the unit square whose interactions are described by kernel
1

r2
.

Control relative error in kernel approximation. 92

4.6 Timing results of uniform FMM for 6-digit accuracy. Charges are dis-

tributed in the unit square whose interactions are described by kernel
1

r2
.

Control absolute error in kernel approximation. 93

4.7 Timing results of uniform FMM for 6-digit accuracy. Charges are dis-

tributed in the unit square whose interactions are described by kernel
x2

r4
.

Control absolute error in kernel approximation. 94

viii

LIST OF FIGURES

1.1 Normal stress distribution (left) and its zoomed view (right) 4

1.2 Parallel speedup vs. number of processors 4

2.1 Box (b) and its associated lists 1 to 5 . 14

2.2 The Uplist for the box (b) . 16

2.3 Screenshot of Fast Multipole Methods website 31

2.4 Linear relationship between CPU time and N 36

3.1 Exponential node growth rate . 42

3.2 Potential concurrency under dependence constraints 44

3.3 Memory hierarchy diagram . 46

3.4 Upward pass parallelization scheme . 50

3.5 Parallelization scheme for TME & TEE operators 53

3.6 CPU execution time VS number of threads 57

3.7 CPU execution time VS N for uniform sampling 59

3.8 CPU execution time VS N for nonuniform sampling 60

4.1 Kernel approximation region . 66

4.2 (b) and two entries c1 and c2 of b’s list 3 84

4.3 Relative approximation error for kernel
1

r2
in the first quadrant 92

4.4 Absolute approximation error for kernel
1

r2
in the first quadrant 93

4.5 Absolute approximation error for kernel
x2

r4
in the first quadrant 94

ix

Chapter 1

Introduction

In the last two decades, the scientific community has witnessed the broad influence and

impact of the seminal work by Greengard and Rokhlin in 1987 [34] on particle simula-

tions using the fast multipole method (FMM). Due to its arithmetic O(N) or O(N logN)

complexity, in linear or super linear proportional to the number N of interacting particles

[34, 35], the FMM has accelerated or enabled many important large-scale calculations or

simulations wherever directly applicable, in scientific and engineering studies. In partic-

ular, the FMM has inspired the study of integral equation method as a new and effective

approach for numerical solutions or simulations of different types of physical, chemical

or biochemical processes that are traditionally modeled as boundary value problems of

partial differential equations (see, for example, [59, 60, 55, 53, 54]).

The fundamental observation in the FMM is that the numerical rank of the far-field

(“well-separated”) interactions is relatively low and hence can be “compressed” into p

terms (depending on the required accuracy) of the so-called “multipole expansion”. For

the Coulomb interactions, assuming
R

ρi
> c0 > 1 for “source” i carrying a charge qi

located at (ρi, αi, βi) in the spherical coordinate, the multipole expansion is given by

Φ(R, θ, φ) =
N∑
i=1

qi ·
1

|R− ρi|
≈

p∑
n=0

m=n∑
m=−n

Mm
n

Y m
n (θ, φ)

Rn+1
(1.1)

where the multipole coefficients are computed by

Mm
n = 8

N∑
i=1

qi · Y −mn (αi, βi). (1.2)

The spherical harmonic function of order n and degree m is defined according to the

formula in [2].

Y m
n (θ, φ) =

√
(2n+ 1)(n− |m|)!

4π(n+ |m|)!
· P |m|n (cosθ)eimφ, (1.3)

and Pm
n is the associated Legendre polynomial.

For arbitrary distributions of particles, a hierarchical oct-tree (in 3D) is generated

so that each particle is associated with boxes at different levels. A divide-and-conquer

strategy is applied to account for the far-field interactions at each level in the tree struc-

ture, by accumulating information from the multipole expansions in the interaction list

to the “local expansions” given by

Φ(R, θ, φ) =
N∑
i=1

qi ·
1

|R− ρi|
≈

p∑
n=0

m=n∑
m=−n

Lmn ·RnY m
n (θ, φ) (1.4)

where {Lmn } are the local expansion coefficients. The local expansion of a parent box

which collects its far-field contributions can be transmitted to its children. As each par-

ticle only interacts with the box and nearby particles at the finest level, and information

at higher levels is transferred using a combination of multipole and local expansions,

the original FMM has asymptotically optimal complexity O(N). However, because the

multipole-to-local translation requires prohibitive 189p4 operations for each box, the huge

prefactor makes the original FMM less competitive compared with the FFT-based meth-

ods. In 1997, a new-version FMM was introduced by Greengard and Rokhlin [35] for

the Laplace equation, in which exponential expansions are introduced to diagonalize the

multipole-to-local translation, and a “merge-and-shift” technique is used to further re-

duce the number of such translations. Compared with the original FMM, the complexity

2

was reduced from 189p4 to 40p2 + 6p3 for each box. Numerical experiments show that

the new-version FMM breaks even with direct calculation when the number of particles

N = 750 for three digit accuracy, and N = 1500 for six digit accuracy for the Coulomb

interactions. The details of the FMM will be discussed in Chpater 2.

The new-version FMM poses multiple challenges on software or hardware implemen-

tations, and presents a fundamental question on computer system support of large-scale

simulation in terms of software and hardware design and development. Despite the chal-

lenges, a lot of efforts have been devoted to developing new-version FMM-based numerical

tools, in order to meet the increasing and practical demand in computational sciences

and engineering. In the following, we discuss three recent research efforts to demonstrate

the power of the new-version FMM as well as the urgent need for further improvements

on modern parallel computer architectures.

In [65], Huang et al. have applied an adaptive new-version FMM to solve the steady

Stokes equations. This algorithm is the basis for the software package FMMStokes.

The solver has been applied to the simulation of Stokes flow inside a micro-fluidic device

with complex geometry. This device consists of two parallel circular plates, with 81

spouts placed on the top. The bottom plate is moving with axial symmetrical normal

velocity. The inlet and spouts are specified by traction boundary conditions; zero-velocity

boundary conditions are specified on other surfaces. In the simulation, the device is

discretized into 279, 046 triangular elements. In the adaptive FMM, 18 trems in the

multipole, local and exponential expansions were used. The CPU time requirement for

the problem with more than 106 unknowns is about 3 hours, substantially more efficient

than other existing solvers. In Figure 1.1, the contour plot of the surface normal traction

is shown, which is good agreement with observed experimental results.

The Stokes solve in its current state, nonetheless, calls for further improvements. In

particular, the parallelization of the algorithm seems non-trivial. Figure 1.2, taken from

[65], shows the degradation in parallel performance, although it compares very favorably

3

Figure 1.1: Normal stress distribution (left) and its zoomed view (right)

Figure 1.2: Parallel speedup vs. number of processors

ScaLapack based methods. In fact, this is a challenge brought forth by the adaptive

FMM.

In [46], an Adaptive Fast Multipole Poisson-Boltzmann (AFMPB) solver was pre-

sented for the linearized Poisson-Boltzmann (LPB) equation which models the electro-

static interactions in many biomolecule systems. A second kind integral equation refor-

mulation approach is successfully applied to single-molecule cases as well as to systems

with more than one macro-molecule in the solver, and the Krylov-space-based iterative

methods such as the generalized minimal residual (GMRES) or bi-conjugate gradients

stabilized (BiCGStab) methods are therefore used effectively. Each iteration utilizes

the new-version FMM. The arithmetic complexity of the solver is asymptotically optimal

O(N) both in CPU time and memory usage. Numerical experiments show that the solver

4

can compute the electrostatic field of a small-scale molecule system (about 100, 000 un-

knowns) in less than 10 seconds on today’s desktop and reduce the time for very large

molecule structure from days by other software tools to 20 minutes with AFMPB. In has

also been tested on different biomolecule systems including the nicotinic acetylcholine

receptor (nAChR), and interactions between protein Sso7d and DNA. The software has

been released under open source license agreements, and there are already interests in in-

corporating this package into other commonly used tools for molecular dynamics simula-

tions. AFMPB has made a significant and critical leap, in terms of arithmetic complexity

and numerical stability, towards the simulations of electrostatics of large-scale systems in

protein-protein interactions and nano particle assembly processes. Its potential is yet to

be fully explored on modern and emerging multicore or multi-processors computing sys-

tems for simulating a very large molecular system such as in protein-protein interacitons

or molecular binding, where millions of such evaluations are required. By estimation,

we expect that the time for calculating the electrostatic field to be within one second

in order to perform the dynamical simulation within a reasonable time frame. In other

words, an order or two of magnitude in speed-up is expected.

In [79], a new-version FMM was applied to calculate the stress field of dislocation

ensembles due to the long-range interaction of dislocations that are the primary carriers

of plastic deformation in crystals. Their numerical results show that the new algorithm

is very efficient and accurate, and can evaluate the stress field of a large number of

dislocations. However, the presented algorithm is currently designed only for dislocation

ensembles in isotropic media, where the interactions can be modeled by the biharmonic

kernels. In order to incorporate the elastic anisotropy, new algorithms are required for

the anisotropic Green’s function commonly used in material science studies.

My research is motivated by the success as well as the urgent need of the new-version

FMM for a wider class of problems on modern computer architectures. In particular,

this thesis will focus on (1) the development and delivery of high quality open source

5

new-version FMM codes for the scientific computing community; (2) their paralleliza-

tion on multicore machines using multi-threading techniques; and (3) generalized kernel

independent FMM for a wider class of kernels.

The thesis is organized as follows. In Chapter 2, we first provide a brief overview of

the FMM, including its advancements in the last two decades. We then use the screened

Coulomb potential as an example to describe the oct-tree data structure in the algo-

rithm and the approximation expansions and corresponding translation operators. Next,

we present a pseudo-code for the adaptive algorithm and introduce the first part of my

thesis work on developing and delivering an open source package FMMSuite of the new-

version FMM for the Laplace, Yukawa, and low-frequency Helmholtz kernels. We also

present some numerical results to demonstrate the performance of the software. In Chap-

ter 3, we present the second part of my thesis work on the mathematical foundation and

numerical implementation of the FMMSuite package on multicore computers by means of

a graph-theoretic approach. We establish the exponential node growth condition for the

concurrency-breadth and critical-path analysis and develop a spatio-temporal graph par-

tition and mapping scheme with respect to the parallel computer architecture configura-

tion and capacity. We have implemented the scheme using multi-threading programming

library Pthreads and some preliminary results are presented. We are currently developing

necessary documentations for the package before releasing it under open source agree-

ments. In Chapter 4, we introduce a new kernel-independent FMM based on the Fourier

expansion approximation of the kernel function. In particular, we have established the

theoretical results for kernels with scaling property, for instance, the anisotropic kernel

in dislocation dynamics. We first present the uniform algorithm, followed by discussions

on strategies for further improvements and the introduction of the adaptive version. We

present an prototype implementation of the algorithm in 2D in its uniform version in

Matlab on which several numerical tests have been carried out. Finally, in Chapter 5, we

summarize our existing results, and conclude this thesis with possible applications and

6

plans for future work.

7

Chapter 2

Fast Multipole Method

In the numerical simulation of many physical processes, the rapid evaluation of the pair-

wise interactions of N particles is required. Examples include the dynamics of charged

particle clusters governed by the Newton’s law of motion in the electrostatic field, and

the solution of equations for the gravitational interactions in the study of astrophysics.

Given N particles each carrying a charge qi (or mass mi) at location xi = (xi, yi, zi), the

electrostatic (or gravitational) potential field is described by

Φ(xj) =
N∑
i=1
i 6=j

qi
‖xi − xj‖

, (2.1)

and the corresponding force field can be computed by means of F = −∇Φ. In this

formula, the Coulomb interaction
1

r
is assumed where r is the distance between two par-

ticles. Other interactions include the screened Coulomb potential
e−kr

r
(k ∈ R+), the

Lennard-Jones potential, and the hydrodynamics interactions described by the Oseen

tensor. Equation (2.1) also arises in the integral equation methods when a convolu-

tion
´
G(x, y)q(y) dy of the Green’s function (kernel) G(x, y) and a given density q(y)

is discretized using quadrature rules. Equation (2.1) can be equivalently represented

as a matrix-vector multiplication, with the matrix having zeros on the diagonal and

{ 1

‖xi − xj‖
} on the off-diagonals and the vector being {qi} for i, j = 1, . . . , N . When a

direct method is applied to the summation (or the corresponding matrix-vector multipli-

cation) in Equation (2.1), O(N2) operations are required, which becomes prohibitive for

large-scale problems even on modern supercomputers. Indeed, the advance in computer

architectures requires innovative numerical algorithms. In particular, the asymptotically

optimal O(N) methods for the special structured matrix vector operations are in urgent

need in science and engineering applications.

There have been numerous research efforts to develop O(N) or O(N logN) algo-

rithms for the summation in Equation (2.1), including the Fast Fourier Transform (FFT)

based algorithms (e.g., Particle Mesh (PM) , Particle-Particle Particle-Mesh (P3M)

[38], Particle Mesh Ewald (PME) [21], pre-corrected FFT [57]), multi-wavelet based

schemes [37], multigrid multi-level methods [15], and the multipole expansion tech-

niques [5, 6, 34, 35]. In this thesis, we focus on the multipole expansion techniques

first studied by Appel [5] and Barnes and Hut [6]. In their “tree-code” algorithm, the

complexity is reduced to O(N logN) by using a low order spherical harmonics expan-

sion to represent the “far-field” of a cluster of particles and a downward (or upward)

pass to transmit this “multipole” expansion to the “interaction” list. In 1987, by in-

troducing the additional local expansion and using both the upward and downward

passes, Greengard and Rokhlin invented the asymptotically optimal O(N) fast multi-

pole method (FMM) and applied it to many-body problems [34]. The FMM was elected

as one of the top ten algorithms for the twentieth century and it has been successfully

applied in many science and engineering fields such as computational electromagnetic

[59, 60, 32, 18, 48, 49, 81, 82], molecular dynamics [14, 31, 45, 47, 40], computational

fluid and solide mechanics [33, 26, 63, 69, 73, 72, 74], etc.

However, numerical comparison of the O(N) FMM with the FFT-based algorithms

and the tree-code shows that the original version of FMM is less efficient for problem

sizes of current interest (e.g., several millions of particles), due to the huge prefactor

in the O(N) resulting from the large number of boxes in the interaction list together

with the expensive “multipole-to-local” translation operator. To further improve its

9

efficiency, Greengard and Rokhlin published a new-version FMM [35] for the Coulomb

potential after ten years of hard work. In the new-version FMM, an intermediate “plane-

wave” representation is introduced to diagonalize the most expensive “multipole-to-local”

translation operator, and a “merge-and-shift” technique is applied to reduce the number

of such translations. As a result, the new-version FMM can be orders of magnitude

faster compared with its original version, especially in 3D. Specifically, the 3D new-

version FMM breaks even with direct interaction (estimation of the prefactor in O(N))

at approximately N = 750 for three digits accuracy and N = 1500 for six digits accuracy,

compared with tens of thousands for the original version. The details of the original and

new version of FMM will be discussed in subsequent sections, and we refer interested

readers to [39] for the new version of FMM for the Laplace equation in 2D, to [71] for an

improved technique in 1D, to [24] for a new-version FMM accelerated Poisson solver in

2D, and to [20] for the adaptive implementation details for the Laplace equation in 3D.

The new-version FMM has also been generalized to other kernels, including the

screened Coulomb potential, the Helmholtz Green’s function, and the biharmonic kernel.

In particular, in [32], a new-version FMM was developed for the low-frequency Helmholtz

equation in 3D by separating the Helmholtz Green’s function into the evanescent and

propagating parts and introducing the exponential expansions. This technique was later

combined with a high-frequency FMM code based on a different diagonal translation

operator as described in [60], resulting in the so-called “wideband” FMM [18]. We want

to mention that the diagonal technique in the low-frequency regime is very different

from that in the high-frequency regime: the complexity of the low-frequency diagonal

scheme is O(N2) when used in the high-frequency regime while the diagonal scheme for

high-frequency regime becomes unstable when applied to low-frequency problems. De-

tailed discussions of these techniques and their coupling are available in [18] and the

references therein. More recent advances on the FMM technique include the kernel-

independent FMMs that will be further discussed in Chapter 4, the time-domain FMM

10

for the Maxwell equations in [52], the elastic wave propagations [76, 77, 78], and the more

recent fast direct solvers using the low separation rank properties in the FMM algorithms

[19, 50].

The new-version FMMs for the commonly used Coulomb, screened Coulomb, and

Helmholtz kernels are considered well-studied subjects. In this chapter, we focus on the

screened Coulomb interaction Φ =
e−λr

r
and discuss two fundamental building blocks for

the new-version FMM: (a) In Section 2.1, we describe the adaptive oct-tree structure of

the new-version FMM for transmitting information; and (b) In Section 2.2, we summarize

the classical approximation theory techniques and translation operators to collect, send,

and receive information in the oct-tree based data structure. In Section 2.3, we present

a pseudo-code to explain the implementation details of the new-version FMM algorithm.

The screened Coulomb potential is also referred to as the Yukawa potential in high

energy physics, or the Debye-Hückel potential in biophysics studies. The corresponding

partial differential equation is the so-called linearized Poisson-Boltzmann equation which

describes the electrostatic interactions in various biologically and physically important

charged systems [23, 13, 64, 44, 43, 42, 27]. However, to the best of our knowledge,

existing open source implementations of the new-version FMM for the Yukawa potential

are scarce, perhaps due to the sophisticated theory and complicated programming. There

is an urgent need for optimized FMM algorithms from many science and engineering

applications. Inspired by this, in Section 2.4, we present our recently developed open

source package FMM-Yukawa [40], and illustrate its performance and complexity by

several numerical experiments. The code can be downloaded from [1], a website which

has been developing by us to host educational and research resources for the scientific

community.

11

2.1 Spatial Domain Adaptive Tree Structure

Unlike the algebraic structure based FFT algorithm, the FMM algorithm uses a data

structure based on the spatial domain adaptive oct-tree for data communication. In this

section, we describe how to construct the adaptive oct-tree and the corresponding data

structure. Interested readers are also referred to [20] where the adaptive tree and data

structure are discussed for the new-version FMM for the Laplace equation (Coulomb

potential).

Given N particles, the new-version FMM starts with constructing an adaptive oct-

tree consisting of a hierarchy of boxes. The root box, which is referred to as refinement

level 0, is the smallest Cartesian box containing all N particles. Starting from level 0, we

recursively obtain level l+ 1 through subdivision of the boxes at level l with more than s

particles into eight boxes of equal size, where s is some pre-specified integer parameter.

At each level of refinement, a table of non-empty boxes is maintained, so that once an

empty box is encountered, its existence is forgotten and it is completely ignored by the

subsequent process.

In this structure, a box is called a parent box if it contains more than s particles.

Otherwise, it is referred to as a childless box or leaf box. A box c is said to be the child

of box b if box c is obtained by a single subdivision of box b. On the other hand, such

a box b is the parent of box c. Boxes resulting from the subdivision of a parent box are

referred to as siblings. The colleagues of a box b consist of the boxes at the same level of

b sharing at least one point with b, including box b itself. Apparently, a given box can

have up to 27 colleagues in three dimensions.

One key observation in the FMM algorithm is the so-called “low separation rank”

property for the well-separated boxes in the oct-tree structure. We say two sets {xi} and

{yi} are well-separated if there exists points x0 and y0 ∈ R3 and a real number r > 0

such that

12

|xi − x0| < r ∀i = 1, . . . ,m

|yj − y0| < r ∀j = 1, . . . , n, and

|x0 − y0| > c · r, (2.2)

where c is bounded below by some constant c0 > 2. Two boxes B1 and B2 of the

same size in the oct-tree structure are said to be well-separated if they are at least one

box of the same size apart, i.e., if any sets of points {xi} ⊂ B1 and {yi} ⊂ B2 are

well-separated (with c0 =
4√
3

). As will be discussed in the next section, “information”

in two well-separated boxes can be compressed either analytically using special basis

functions (e.g., spherical harmonics for Laplace kernels) or numerically using singular

value decomposition (SVD) before being sent out.

Well-separated boxes can also appear at different levels in the oct-tree structure.

Assume that a box b can inherit information from its parent c while traversing down the

tree structure, which contains the information from all well-separated boxes of c. Then

we can define the interaction list of b as the union of boxes at the same level of b that

are well-separated from b, but whose parents are not well-separated from b’s parent c.

Clearly, the information received from b’s parent and the interaction list is equivalent to

the information from all well-separated boxes of b.

For a given box b in the adaptive oct-tree structure, it may also need to “communi-

cate” with boxes of different sizes. In Figure 2.1, we associate b with five lists of other

boxes, determined by their positions with respect to b. We store list and pointers for

parent-child relations for each box in the oct-tree structure.

In the following, we give the detailed definition for each list.

• List 1 of a box b will be denoted by Ub; it is empty if b is a parent box. If b is

childless, Ub consists of b and all childless boxes adjacent to b.

13

b

1

1 1 1

1

1
111

2 2 2 2

2

2 2

2 2

2 2

2 2

3

3 3 3 3

3333

3

4

4

4

5

5 5

5

Figure 2.1: Box (b) and its associated lists 1 to 5

14

• List 2 of a box b will be denoted by Vb and is formed by all the children of the

colleagues of b’s parent that are well separated from b. List 2 is also referred to as

the interaction list.

• List 3 of a box b will be denoted by Wb. Wb is empty if b is a parent box, and

consists of all descendants of b’s colleagues whose parents are adjacent to b, but

who are not adjacent to b themselves, if b is a childless box. Note b is separated

from each box w in Wb by a distance greater than or equal to the length of the side

of w.

• List 4 of a box b will be denoted by Xb and is formed by all boxes c such that

b ∈ Wc. Note that all boxes in List 4 are childless and larger than b.

• List 5 of a box b will be denoted by Yb and consists of all boxes that are well

separated from b’s parent.

In the new-version FMM, plane-wave expansions are introduced to diagonalize the

multipole-to-local translation from box b to its interaction list boxes to reduce the huge

prefactor in O(N). As the plane-wave expansions have directions, each box b is associated

with six such expansions, each emanating from one face of the cube. Consequently, the

interaction list for each box is further subdivided into six lists, associated with the six

coordinate directions (+z, −z, +y, −y, +x, −x) in the three dimensional coordinate sys-

tem. We will refer to the +z-direction as up, the −z-direction as down, the +y-direction

as north, the −y-direction as south, the +x-direction as east, and the −x direction as

west.

The Uplist is demonstrated in Figure 2.2, and the definition for each list is given

below:

1. The Uplist for a box b consists of those elements of the interaction list which lie

above b and are separated by at least one box in the +z direction (Figure 2.2).

15

b

U

D

W E
S

N

Figure 2.2: The Uplist for the box (b)

2. The Downlist for a box b consists of those elements of the interaction list which lie

below b and are separated by at least one box in the −z direction.

3. The Northlist for a box b consists of those elements of the interaction list which

lie north of b, are separated by at least one box in the +y-direction, and are not

contained in the Up or Down lists.

4. The Southlist for a box b consists of those elements of the interaction list which

lie south of b, are separated by at least one box in the −y-direction, and are not

contained in the Up or Down lists.

5. The Eastlist for a box b consists of those elements of the interaction list which

lie east of b, are separated by at least one box in the +x-direction, and are not

contained in the Up, Down, North, or South lists.

6. The Westlist for a box b consists of those elements of the interaction list which

lie west of b, are separated by at least one box in the −x-direction, and are not

contained in the Up, Down, North, or South lists.

Finally in this section, we want to mention that finding the optimal oct-tree and

the corresponding data structure for the new-version FMM is still an open problem. In

16

[54], White et al. described another variant of the oct-tree and data structure used in

FMM. In their scheme, a neighbor of a given cube is defined as any cube which shares a

corner with the given cube (nearest neighbor) or shares a corner with the nearest neighbor

(second-nearest neighbor). The interaction list of a cube is the set of cubes that are either

the second-nearest neighbors of a given cube’s parent or are children of the given cube’s

parent’s nearest neighbors excluding the nearest or second-nearest neighbors of the given

cube. The advantage of this approach is that fewer terms can be used in the multipole

and local expansion since the “ interacting” boxes are further apart. However, this will

significantly change the implementation and performance of the plane-wave expansions in

the new-version FMM. It is unclear which data structure is superior. As will be discussed

in the next chapter, one of my future research projects is to generate a graph with nodes

representing different interactions of the boxes and edges the associated costs, and study

the “optimal” connecting tree on parallel computer architectures.

2.2 Approximations and Translations

Another important concept in the FMM algorithm is the extraction, storage, and trans-

mission of the data (or “information”) based on the oct-tree structure. In this section,

using Yukawa potential as an example, we introduce the analytical spherical harmon-

ics expansions and the plane-wave approximation, and discuss the translation operators

which transmit the “information” from one box to another. Specifically, given N charges

q1, q2, . . . , qN at the location x1,x2, . . . ,xN in R3, we consider the pairwise interactions

Φ(xj) =
N∑
i=1
i 6=j

qi ·
e−λ‖xj−xi‖

‖xj − xi‖
, λ ∈ R+, (2.3)

and discuss analytical formulas and numerical techniques for data management on the

tree structure. As these formulas and theorems are well documented in the literature, we

17

neglect their proofs in this section, and refer interested readers to [31] for further details.

First, we study how to collect and compress the “information” from particles inside

a box c using the multipole expansion as described in the following theorem.

Theorem 2.1 (Multipole Expansion (TSM operator)). Suppose that box c centered at

the origin contains N sources of strengths q1, q2, . . . , qN located at points x1,x2, . . . ,xN

with spherical coordinates (ρ1, α1, β1), (ρ2, α2, β2), . . . , (ρN , αN , βN), respectively. Then

the potential for any point x = (r, θ, φ) outside box c is given by a multipole expansion

Φ(x) =
N∑
i=1

qi ·
e−λ‖x−xi‖

‖x− xi‖
=

2λ

π

N∑
i=1

qi · k0(λ‖x− xi‖)

=
∞∑
n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ), (2.4)

where the multipole coefficients are

Mm
n = 8λ

N∑
i=1

qi · in(λρi) · Y −mn (αi, βi). (2.5)

Furthermore,

∣∣∣∣∣Φ(x)−
p∑

n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ)

∣∣∣∣∣ = O
(a
r

)p
, (2.6)

where a is the radius of the smallest sphere enclosing box c.

In the formulas, Y m
n is the spherical harmonics of degree n and order m defined by

Y m
n (θ, φ) =

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

· P |m|n (cos θ)eimφ, (2.7)

where the associated Legendre functions Pm
n are defined using the usual Legendre poly-

18

nomial Pn(x) by Rodrigues’ formula

Pm
n (x) = (−1)m(1− x2)m/2 d

m

dxm
Pn(x), (2.8)

and the modified spherical Bessel and modified spherical Hankel functions in(r), kn(r)

are defined in terms of the usual Bessel function Jν(z) via

Iν(r) = i−νJν(ir) (i =
√
−1), Kν(r) =

π

2 sin νπ
[I−ν(r)− Iν(r)]

in(r) =

√
π

2r
In+1/2(r), kn(r) =

√
π

2r
Kn+1/2(r).

Notice that we have
a

r
< 1 when two boxes are well-separated, hence the expansion

decays rapidly as p increases.

Next, we describe how to store the collected far-field “source” particle information

in a local expansion, which is valid for all the “target” particles in the box which is

well-separated from the box containing the source particles.

Theorem 2.2 (Local Expansion (TSL operator)). Suppose that N sources of strengths

q1, q2, . . . , qN are located at the points x1,x2, . . . ,xN in R3 with spherical coordinates

(ρ1, α1, β1), (ρ2, α2, β2), . . . , (ρN , αN , βN), respectively. Suppose further that all the points

x1, x2, . . . ,xN are located outside the sphere Sa of radius a centered at the origin. Then,

for any point x ∈ Sa with coordinates (r, θ, φ), the potential Φ(x) generated by the sources

q1, q2, . . . , qM is described by the local expansion

Φ(x) =
∞∑
j=0

j∑
k=−j

Lkj ij(λr) · Y k
j (θ, φ), (2.9)

where

Lkj = 8λ
N∑
l=1

qlkj(λρl) · Y −kj (αl, βl). (2.10)

19

Furthermore,

∣∣∣∣∣Φ(x)−
p∑
j=0

j∑
k=−j

Lkj ij(λr) · Y k
j (θ, φ)

∣∣∣∣∣ = O
(r
a

)p
. (2.11)

In the tree-code algorithm, for each box at a certain level in the tree structure, its

multipole expansion is formed by collecting information from the particles inside the

box. As a result, at least O(N) operations are required for each level to account for

communication with N particles. Notice that the tree has approximately logN levels,

hence the complexity of tree-code algorithm is at least O(N logN). In order to reduce

the cost in forming multipole expansions for all boxes, in the original FMM [34], a divide-

and-conquer strategy is applied. For each parent box, instead of communicating with

the particles directly, its multipole expansion is derived by shifting and merging its chil-

dren’s multipole expansions (which already contain the collected and compressed particle

information) using the following multipole-to-multipole (TMM) translation operator:

Theorem 2.3 (TMM translation). Consider a box b centered at the origin and its child

c centered at x0 = (ρ, α, β), and a point x = (r, θ, φ) in the far-field boxes of b. Assume

the potential due to charges in box c is given by the multipole expansion

Φ(x) =
∞∑
n=0

n∑
m=−n

Om
n kn(λr′) · Y m

n (θ′, φ′), (2.12)

where (r′, θ′, φ′) are the spherical coordinates of the vector x − x0. Then, the field can

also be described by a shifted multipole expansion:

Φ(x) =
∞∑
n=0

n∑
m=−n

Mm
n kn(λr) · Y m

n (θ, φ). (2.13)

The linear operator mapping the old multipole coefficients {Om
n } to the new multipole

coefficients {Mm
n } is denoted by TMM .

After forming all the multipole expansions in an upward sweep, a downward sweep

20

from refinement level 0 to the finest level is performed to form each box’s local expansion

which contains the far-field particle contributions. For a box c at level l, a translation is

first carried out to shift its parent b’s local expansion (which contains particle information

from b’s far-field) to an equivalent local expansion about the center of box c, via the local-

to-local (TLL) operator as follows:

Theorem 2.4 (TLL translation). Consider a point x = (r, θ, φ) in box c and the local

expansion of c’s parent box b

Φ(x) =

p∑
n=0

n∑
m=−n

Lmn in(λr) · Y m
n (θ, φ). (2.14)

Assume box c is centered at x0 = (ρ, α, β), then the local expansion of c is given by

Φ(x) =

p∑
n=0

n∑
m=−n

Nm
n in(λr′) · Y m

n (θ′, φ′), (2.15)

where (r′, θ′, φ′) are the spherical coordinates of the vector x − x0. The linear operator

mapping the old local coefficients {Lmn } to the new local coefficients {Nm
n } is denoted by

TLL.

In the second step of the downward pass, box c receives contributions from particles

which are located inside a region formed by subtracting its parent b’s far-field from its own

far-field. Boxes in this region are members of the aforementioned list 2 or the interaction

list of the given box c. Instead of communicating with the particles in this region directly,

a multipole-to-local translation (TML) is performed to convert the multipole expansions

of each interaction list box into a local expansion which is then merged into c’s local

expansion. The TML translation operator is defined as follows:

Theorem 2.5 (TML translation). Suppose box b centered at x0 = (ρ, α, β) is an inter-

action list box of c, and its multipole expansion is given by the same formula in Equa-

tion (2.12). Then for any point x = (r, θ, φ) in c centered at the origin, the potential due

21

to charges in b can be described by a local expansion

Φ(x) =
∞∑
j=0

j∑
k=−j

Lkj ij(λr) · Y k
j (θ, φ). (2.16)

The linear operator mapping the multipole coefficients {Mm
n } to the local coefficients

{Lmn } is denoted by TML.

At the end of the downward sweep, we evaluate local expansion at every particle

location in each childless box, and then compute the near-field interactions directly.

Recall that in three dimensions, the interaction list of a given box can contain up to

189 boxes. Additionally, the operation complexity of the TML operator is O(p4) assuming

p2 terms are used in each expansion. Consequently, this original multipole-to-local trans-

lation requires prohibitive 189p4 operations for each box, which makes the original FMM

less attractive to large-scale problems. Therefore, we next introduce the plane-wave ex-

pansions analogous to the work of Greengard and Rokhlin in [35] to diagonalize the TML

operator. In three dimensions, six different plane-wave expansions are introduced for

each face of the box. We use the upward (or +z) direction to illustrate the idea and omit

the details of other directions which can be processed in a similar manner. For boxes

in the uplist of a box (see Figure 2.2), its multipole expansion is first translated into an

exponential expansion by the multipole-to-exponential (TME) operator as follows:

Theorem 2.6 (TME translation). For a point x in the up direction with spherical co-

ordinates (r, θ, φ), assume the potential φ(x) is approximated by the truncated multipole

expansion (due to charges in box c centered at the origin) with error bound ε

∣∣∣∣∣Φ(x)−
p∑

n=0

n∑
m=−n

Om
n · Y m

n (θ, φ)kn(λr)

∣∣∣∣∣ < ε, (2.17)

22

then with error bound O(ε), Φ(x) can be approximated by

λ

s(ε)∑
k=1

Mk∑
j=1

W (k, j) · e−(uk+λ)z · ei
√
uk+2ukλ·(x cosαj,k+y sinαj,k), (2.18)

where (x, y, z) are the Cartesian coordinates of x, the coefficients W (k, j) are given by

πwk
2λMk

p∑
m=−p

i|m|eimαj,k
p∑

n=|m|

Om
n

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n

(
λ+ uk
λ

)
, (2.19)

for k = 1, . . . , s(ε), j = 1, . . . ,Mk. The linear mapping from {Om
n } to {W (k, j)} is

referred to as the TME translation operator.

In Equation (2.18), the weights wk and nodes uk are computed according to the

generalized Gaussian quadrature as discussed in [70]. Once the multipole expansion is

converted into the exponential expansion about the center of box c (the origin), shifting

it to a new center x0 = (x0, y0, z0) of an interaction list box of c can be done diagonally,

as described by the exponential-to-exponential (TEE) operator as follows:

Theorem 2.7 (TEE translation). For the exponential expansion in Equation (2.18) of

box c centered at the origin and a box in the interaction list centered at x0 = (x0, y0, z0),

the shifted exponential expansion for any point (x, y, z) is given by

s(ε)∑
k=1

Mk∑
j=1

V (k, j) · e−(uk+λ)(z−z0)ei
√
u2k+2ukλ·((x−x0) cosαj,k+(y−y0) sinαj,k), (2.20)

where

V (k, j) = W (k, j) · e−(uk+λ)z0 · ei
√
u2k+2ukλ·(x0 cosαj,k+y0 sinαj,k), (2.21)

for k = 1, . . . , s(ε), j = 1, . . . ,Mk. The linear operator mapping the coefficients {W (k, j)}

to the coefficients {V (k, j)} is denoted by TEE.

Once a box has collected all the exponential expansions from its interaction list boxes,

23

the exponential expansions can be translated to a local expansion about the box center

using the exponential-to-local (TEL) operator as follows:

Theorem 2.8 (TEL translation). Suppose that the potential for x = (x, y, z) is given by

Equation (2.18), then there exists an integer p, such that

∣∣∣∣∣Φ(x)−
p∑

n=0

n∑
m=−n

Lmn in(λr)Y m
n (θ, φ)

∣∣∣∣∣ = O(ε), (2.22)

where (r, θ, φ) are the spherical coordinates of x with respect to the box center and

Lmn = (−1)ni|m|
√

4π
√

2n+ 1

√
(n− |m|)!
(n+ |m|)!

s(ε)∑
k=1

P |m|n

(
uk + λ

λ

) Mk∑
j=1

W (k, j)eimαj,k (2.23)

for n = 0, . . . , p, m = −n, . . . , n. The linear operator converting the coefficients {W (k, j)}

into the coefficients {Lmn } is denoted by TEL.

From the complexity perspective, by using the decomposition TML = TEL◦TEE ◦TME,

the previous prohibitive 189p4 operation counts are now reduced to approximately 2p4 +

189p2, which potentially can be further reduced to roughly 6p3 + 40p2. To achieve that,

we shall first apply the point-and-shoot technique and rotate the multipole expansion so

that TME operator can be performed along the z-axis (3p3 operations, more details in

[35]). Next, the exponential expansions of box c and its siblings shall be merged before

being sent out to their common interaction list boxes, which reduces the operations from

189p2 to 40p2. Lastly, we shall translate each box’s exponential expansion into a local

expansion and then rotate it back to the original coordinate system using the point-and-

shoot technique (another 3p3 operations).

24

2.3 Algorithm Structure of Adaptive FMM

In this section, we present a pseudo-code to explain the algorithmic structure of the

adaptive new-version FMM. To simplify our discussions, we introduce the following no-

tations. The computational domain is denoted by B0 and the set of all nonempty boxes

at refinement level l is denoted by Bl. For each box b, its associated five lists are denoted

by Ub, Vb,Wb, Xb, Yb, respectively. Vb is further subdivided into Uplist(b), Downlist(b),

Northlist(b), Southlist(b), Eastlist(b), and Westlist(b) to utilize the plane-wave expan-

sions. Also, each box b is associated with the following fourteen expansions:

• A multipole expansion Φb of the form (2.4) representing the potential generated by

charges inside b; it is valid in R3 \ {Ub ∪Wb}.

• A local expansion Ψb of the form (2.9) representing the potential generated by all

charges outside Ub ∪Wb; it is valid inside box b.

• Six outgoing exponential expansions WUp
b , WDown

b , WNorth
b , W South

b , WEast
b , and

WWest
b of the form (2.18), representing the potential generated by all charges

located inside b and valid in Uplist(b), Downlist(b), Northlist(b), Southlist(b),

Eastlist(b), and Westlist(b), respectively.

• Six incoming exponential expansions V Up
b , V Down

b , V North
b , V South

b , V East
b , and V West

b

of the form (2.18), representing the potential inside b generated by all charges in

Downlist(b), Uplist(b), Southlist(b), Northlist(b), Westlist(b), and Eastlist(b),

respectively.

Pseudo-Code: Adaptive FMM Algorithm

Initialization

Choose precision ε and the order of the multipole expansions p. Choose the maximum

number s of charges allowed in a childless box.

25

Generating Oct-Tree Structure

Step 1

for l = 0, 1, 2, . . .

for each box b ∈ Bl

if b contains more than s particles then

Divide b into eight child boxes. Ignore empty children and

add the nonempty child boxes to Bl+1.

endif

end

end

Comment [Denote the maximum refinement level obtained by lmax and the total number

of boxes created by nboxes.]

for each box bi, i = 1, 2, . . . , nboxes

Create Lists Ubi , Vbi , Wbi , Xbi .

Split Vbi into Up, Down, North, South, East, West lists.

end

Upward Pass

Step 2

for l = lmax, . . . ,−1, 0

for each box b in Bl

if b is childless then

Use Theorem 2.1 to form multipole expansion Φb.

else

26

Use operator TMM to merge multipole expansions from its children into Φb.

endif

end

end

Downward Pass

Step 3

Comment [For each box b, add to its local expansion the contribution due to particles

in Xb.]

for each box bi, i = 1, . . . , nboxes

for each box c ∈ Xbi

if the number of particles bi ≤ p2 then

Comment [The number of particles in bi is small. It is faster to use direct

calculation than to generate the contribution to the local expansion Ψbi

due to charges in c; act accordingly.]

Calculate potential field at each particle point in bi directly from

particles in c.

else

Comment [The number of particles in bi is large. It is faster to generate

the contribution to the local expansion Ψbi due to particles in c than to

use direct calculation; act accordingly.]

Generate a local expansion at bi’s center due to particles in c using

Theorem 2.2, and add to Ψbi

endif

end

end

27

Step 4

Comment [For each box b on level l with l = 2, 3, . . . , lmax and each direction Dir =

Up,Down,North, South, East,West, create from box b’s multipole expansion the out-

going exponential WDir
b in direction Dir, using Theorem 2.6. Translate WDir

b to the

center of each box c ∈ Dirlist(b) using Theorem 2.7 and add the translated expansions

to its incoming exponential expansion V Dir
c . Lastly, convert V Dir

c into a local expansion

using Theorem 2.8 and add it to Ψc.]

for l = 2, 3, . . . , lmax

for Dir = Up,Down,North, South, East,West

for each box b ∈ Bl

Convert Φb into WDir
b by Theorem 2.6.

for each box c ∈ Dirlist(b)

Translate WDir
b to the center of box c using Theorem 2.7.

Add the translated expansion to V Dir
c .

end

end

for each box c ∈ Bl

Convert V Dir
c into a local expansion using Theorem 2.8,

and add it to Ψc.

end

end

end

Step 5

Comment [For each parent box b, shift the center of its local expansion to its children.]

for each box bi, i = 1, 2, . . . , nboxes

28

if bi is a parent box then

Shift the local expansion Ψbi to the centers of its children using the operator

TLL, and add the translated expansions to children’s local expansions.

endif

end

Evaluation of Potentials

Step 6

Comment [Evaluate the local expansion at leaf nodes.]

for each box bi = 1, 2, . . . , nboxes

if bi is childless then

Calculate the potential at each charge in bi from the local expansion Ψbi .

endif

end

Step 7

Comment [For each childless box b, evaluate the potential due to particles in Wb.]

for each box bi, i = 1, 2, . . . , nboxes

if bi is childless then

for each box c ∈ Wbi

if the number of charges in c ≤ p2 then

Comment [The number of charges in c is small. It is faster to use

direct calculation than to evaluate the multipole expansion Φc.]

Calculate the potential at each charge bi directly from

particles in c.

29

else

Comment [The number of charges in c is large. It is faster to

evaluate the expansion Φc than to use direct calculation.]

Calculate the potential at each charge in bi

from multipole expansion Φc

endif

end

endif

end

Step 8

Comment [Local direct interactions.]

for each box bi, i = 1, 2, . . . , nboxes

if bi is childless then

Calculate the potential at each charge in bi directly

due to all charges in Ubi

endif

end

2.4 FMM-Yukawa in FMMsuite

Perhaps due to its complexity both in mathematical theory and programming, to the

best of our knowledge, we are unaware of any previous open source implementations of

the new-version FMM. In order to meet the urgent needs from the scientific comput-

ing community, we have developed an open source package called FMMSuite, which

includes the new-version FMM for the Laplace, Yukawa, and low-frequency Helmholtz

equations. The codes are available for download from our website http://fastmultipole.org

30

under GPL 2.0 license agreement. The website also hosts many educational and research

resources on integral equation methods and fast algorithms.

Figure 2.3: Screenshot of Fast Multipole Methods website

In this section, we present the details of the FMM-Yukawa solver in the FMMSuite

package, including the installation instructions, a sample driver file, and several numerical

experiments to demonstrate the performance of the solver. The manual for the FMM-

Yukawa solver can also be found in [40].

2.4.1 FMM-Yukawa Installation Instructions

After the package is downloaded and extracted to local computer, the user will find the

following directories:

• doc: contains license and readme.txt

• src: source files and makefile

The package has been successfully complied using the Intel R© complier for Linux and

GNU c©F95 complier. The complied executable program is called “fmm” by default which

can be changed by modifying the “Makefile”. One function which may be machine depen-

dent is the subroutine for getting the current CPU clock information for timing purposes.

The users should check their computer platform and modify “second.f” accordingly.

31

The main driver for FMM-Yukawa is called “adapyukdriver.f”. The main function

is FMMYUK-A in the file “fmmadapyuk.f”, which calls the subroutine D3MSTRCR to

generate the adaptive tree structure, and YADAPFMM for calculating the force field

and potential. There are three important parameters defined in the header file “parm-

ayuk.h”. NBOX is the maximum number of particles (s) allowed in a childless box;

NTERMS is the number of terms in first summation of the multipole and local ex-

pansions; NLAMBS is the number of terms in the first summation of the exponential

expansion. Currently only three- and six- digits accuracies are allowed, and more options

will be added in future updates. Input variables include the screening factor BETA,

the number of charges NATOMS, charge locations ZAT(3,NATOMS), and the charge

CHARGE(NATOMS) carried by each particle. FMM-YUKAWA will calculate and out-

put the potential POT(NATOMS) and the field FIELD(3,NATOMS).

2.4.2 A Sample Driver File

In this section, we provide a sample driver file to explain how FMM-YUKAWA can

interact with other existing codes.

A driver file for FMM-Yukawa

IMPLICIT NONE

INTEGER *4 NATOMS,IER

PARAMETER (NATOMS=1000000)

REAL *8 BETA

REAL *8 ZAT(3,NATOMS),CHARGE(NATOMS)

REAL *8 POT(NATOMS),FIELD(3,NATOMS)

c

c—set up parameters.

c

32

BETA=0.1D0

c

c—generate charges and their locations.

c

CALL DUMMY(NATOMS,ZAT,CHARGE)

c

c—call fmm to calculate the potential and field.

c

CALL FMMYUK A(BETA,NATOMS,ZAT,CHARGE,POT,FIELD,IER)

c

STOP

END

2.4.3 Test Run Description

In this section, we present two numerical examples to show the efficiency and accuracy of the

FMM-Yukawa package. In the experiment, we use a machine with Intel R© T9400 processor at

2.53 GHz clock rate and 3GB memory. The results are summarized in Tables 2.1 – 2.4. In

the table, N is the number of particles for which calculations have been preformed; s is the

maximum number of particles allowed for a childless box (for each N , we run the program

with multiple choices of s and the one yielding the optimal timing is reported here); lmax is

the maximum number of refinement of the tree structure; nboxes is the total number of boxes

created; Tfmm and Tdir refer to the timing results for FMM algorithm and direct calculation,

respectively. In the table, all timings are given in seconds and the storage is measured in

megabytes.

In the tests, we consider two distributions of the particles, namely, uniformly distributed

inside a unit box [−0.5, 0.5]3 and on a spherical surface centered at the origin of radius 0.5.

For each distribution, we run the program with three- and six- digit accuracy. The screening

factor is set to be 0.1 for all tests. In each table, Tfmm includes both the precomputation time

33

and the actual FMM calculation time. Tdir is estimated by extrapolating the CPU time for

evaluating the potentials at 400 particle locations directly since calculating the entire system

in this fashion would require prohibitive amounts of CPU time without providing much useful

information. Similarly, the accuracy of the algorithm is calculated at those locations according

to the formula

E =

√√√√√√√√√√
400∑
i=1

∣∣∣Φ(xi)− Φ̃(xi)
∣∣∣2

400∑
i=1

|Φ(xi)|2
, (2.24)

where Φ(xi) is the result obtained from direct calculation and Φ̃(xi) is the result obtained from

FMM algorithm.

For each table, the timing results are further plotted as a function of N (see Figure 2.4).

In the figure, we can observe that the actual CPU time required by the FMM-Yukawa package

grows approximately linearly with N . Lastly, we want to mention that the numerical results

suggest that the break-even point of the new version FMM is roughly 750 for three-digit and

1500 for six-digit accuracy, which is an estimate of the constant associated with O(N) in the

complexity analysis.

N s lmax nboxes p Sexp Storage Tfmm Tdir Error

750 40 2 41 9 67 1.20 0.07 0.08 9.7·10−5

1500 30 3 165 9 67 1.90 0.15 0.32 1.7·10−4

5000 30 4 649 9 67 4.60 0.40 3.4 1.9·10−4

10000 40 4 681 9 67 5.08 0.77 14 2.6·10−4

20000 30 5 4729 9 67 26.44 2.25 54 3.6·10−4

50000 30 5 4776 9 67 28.52 4.29 337 3.5·10−4

100000 40 5 4777 9 67 31.57 11.02 1349 4.4·10−4

200000 40 6 33506 9 67 184.97 18.82 5480 4.6·10−4

500000 40 6 37363 9 67 223.05 47.32 33900 4.6·10−4

Table 2.1: Timing results for FMM-Yukawa for 3-digit accuracy with charges uniformly
distributed inside the cube [−0.5, 0.5]3

34

N s lmax nboxes p Sexp Storage Tfmm Tdir Error

750 70 2 41 18 311 3.05 0.16 0.08 5.9·10−8

1500 50 3 81 18 311 3.92 0.32 0.32 6.8·10−8

5000 50 4 197 18 311 6.52 0.91 3.4 1.1·10−7

10000 50 4 681 18 311 16.76 1.71 14 1.5·10−7

20000 80 4 681 18 311 17.37 3.86 54 1.8·10−7

50000 80 5 4776 18 311 103.31 10.65 337 2.3·10−7

100000 80 5 4777 18 311 106.38 18.47 1349 2.8·10−7

200000 80 6 4945 18 311 115.94 46.27 5480 2.5·10−7

500000 60 6 37363 18 311 800.06 101.45 33862 3.9·10−7

Table 2.2: Timing results for FMM-Yukawa for 6-digit accuracy with charges uniformly
distributed inside the cube [−0.5, 0.5]3

N s lmax nboxes p Sexp Storage Tfmm Tdir Error

750 40 3 74 9 67 1.40 0.09 0.08 1.2·10−4

1500 40 4 104 9 67 1.60 0.15 0.32 8.8·10−5

5000 50 5 391 9 67 3.29 0.36 3.4 1.3·10−4

10000 50 6 639 9 67 4.87 0.84 14 1.2·10−4

20000 40 7 1702 9 67 10.92 2.01 54 1.9·10−4

50000 30 9 5899 9 67 34.27 4.18 337 1.9·10−4

100000 30 10 10685 9 67 55.50 8.25 1349 2.3·10−4

200000 30 11 23044 9 67 131.33 16.13 5480 2.2·10−4

500000 30 12 57950 9 67 328.60 38.99 33862 2.5·10−4

Table 2.3: Timing results for FMM-Yukawa for 3-digit accuracy with charges distributed
on the surface of a sphere

N s lmax nboxes p Sexp Storage Tfmm Tdir Error

750 70 2 65 18 311 3.55 0.17 0.08 1.0·10−7

1500 60 3 100 18 311 4.31 0.31 0.32 7.1·10−8

5000 60 5 323 18 311 9.11 0.93 3.4 0.5·10−8

10000 50 6 639 18 311 15.90 1.79 14 8.7·10−8

20000 40 7 1702 18 311 38.34 4.17 54 1.0·10−7

50000 80 7 2079 18 311 47.92 9.39 337 1.6·10−7

100000 60 9 5976 18 311 131.01 18.32 1349 1.8·10−7

200000 60 10 10987 18 311 240.03 37.81 5480 1.7·10−7

500000 50 12 32715 18 311 704.60 89.79 33862 1.8·10−7

Table 2.4: Timing results for FMM-Yukawa for 6-digit accuracy with charges distributed
on the surface of a sphere

35

∗ 3-digit cube
◦ 6-digit cube
/ 3-digit sphere
† 6-digit sphere

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×105

0

20

40

60

80

100

120

T
im

e:
(s

ec
on

d
)

N

∗∗∗∗∗ ∗
∗

∗

∗

◦◦◦◦◦
◦

◦

◦

◦

/////
/

/
/

/

†††† †
†

†

†

†

Figure 2.4: Linear relationship between CPU time and N

36

Chapter 3

Parallelization of Fast Multipole
Method on Multicore Architectures

In this chapter, we focus on the parallelization of FMM to further accelerate the performance

of the algorithm. Particularly, we will discuss available options in architecture platforms and

develop parallelization strategies. It is well known that parallelization is one of the crucial fac-

tors left for further acceleration of the FMM algorithm since the complexity of the sequential

FMM has already been pushed to its own limit with the introduction of plane-wave expansion.

Although the new-version FMM breaks even with direct calculation at N = 750 for 3-digit

accuracy and N = 1500 for 6-digit accuracy, which is a remarkable accomplishment, it still

consumes prohibitively large amount of time in many large-scale simulations (hundreds of mil-

lions unknowns) of biomolecular, physical and chemical systems. There is an urgent need to

further accelerate FMM algorithm by another two or three orders to enable those important

research at affordable costs. Therefore, we propose a parallel new-version adaptive FMM based

on graph-theoretic approach in this chapter.

This chapter is organized as follows. In Section 3.1, we provide a brief overview of the

development of FMM in the last two decades, in terms of the algorithm employed, particle

distribution, architecture topology, and the application contexts. In Section 3.2, we discuss

the absolute critical path, maximum concurrency potential of the algorithm, and the impact

of architecture constraints on the parallelization. In Section 3.3, we develop a parallelization

strategy following a graph-theoretic approach based on the spatio-temporal partition of the

FMM interaction graph. In Section 3.4, we give an implementation of the parallelization scheme

and report several numerical results to demonstrate the efficiency of the scheme.

3.1 Precursors of Parallel FMM

In this section, we give a brief overview of previous studies and efforts in developing paral-

lel FMM. They differ in terms of the algorithm employed, particle distribution, architecture

topology, and the application contexts.

The parallelization on FMM starts with the uniform version first. The first study comes

from Greengard and Gropp in 1990 on 2D FMM [30]. They showed that with O(N) processors,

the overall complexity is O(logN). They also presented numerical results on a shared memory

machine, the Encore Multimax 320. In 1991, Zhao and Johnsson developed a parallel version

of the 3D uniform FMM using high performance Fortran for the Connection Machine system

model CM-2 [80]. In [41], Board et al. implemented a parallel version of 3D FMM on a

network of workstations using the coordination language Linda [17] and incorporated it into

the molecular dynamics program MD of Windemuth and Schulten [68]. On this distributed

memory system, the authors employed a master-worker scheme. A master process running on

one processor separates the computational work into tasks and sends out one task per processor

to the network. The remaining tasks are then assigned to the processors as they finish their

previously assigned tasks.

Historically, the first successful parallel hierarchicalN -body method for non-uniform particle

distribution on distributed memory systems was obtained by Warren and Salmon [66]. The key

ideas in this paper were the orthogonal recursive bisection (ORB) and locally essential tree

(LET). The idea in ORB partitioning is to recursively divide the computational domain space

into two subspaces with equal costs, until there is one subspace per processor. To provide load

balancing, the cost of a subspace is defined as the sum of the profiled costs of all particles in

the subspace. The idea in LET stems from the following observation. Every body sees only a

fraction of the complete tree. The distant parts are seen at a coarser level of detail while the

nearby sections are seen all the way down to the leaves. As nearby bodies see similar trees, a LET

is then defined to be the union of all the trees seen by all the bodies in an ORB domain. It is the

38

data that will be required to carry on the computation in the domain. Once the LET is obtained

in an ORB domain, one can proceed exactly as in the sequential case, allowing employing highly

tuned sequential assembly language without regard to communication, synchronization or other

parallel issues. However, ORB and LET introduce several new data structures, including a

binary ORB tree that is distinct from the FMM tree. Additionally, ORB and LET are nontrivial

to implement and debug, and have significant runtime overhead particularly as the number of

processors increases [61]. As a result, other domain decomposition methods based on hashed

tree and space-filling curves have been introduced to achieve better efficiency on the distributed

memory systems.

The hashed oct-tree structure along with space-filling curves was first introduced by Warren

and Salmon [67]. In this paper, instead of using pointers, the topology of the tree is implicitly

represented by mapping the cell spatial locations and levels into keys, which are then translated

into memory locations via a hash table. This scheme provides a uniform addressing mechanism

to retrieve data across multiple processors. It also produces a good domain decomposition by

cutting the one dimensional list of sorted body key ordinates into Np (number of processors)

equal pieces, weighted by the amount of work corresponding to each body. Two particular

mappings were studied in the paper, namely, Morton ordering and Peano-Hilbert ordering.

Although the latter provides a better decomposition theoretically, it does not lead to improved

performance in practice.

In [61], the costzone decomposition has been shown to be more efficient than ORB on

common address space architecture. In costzones, the tree is conceptually laid out in a two-

dimensional plane, with a cell’s children laid out from left to right in increasing order of child

number. The cost of every particle is stored with the particle. Every internal cell holds the

sum of the costs of all particles that are contained within it. These cell costs are computed

during the upward pass. The total cost in the domain is divided among processors so that

every processor has a contiguous, equal zone of costs. Which cost zone a particle belongs to is

conceptually determined by the total cost up to that particle in an inorder traversal of the tree.

In the costzones algorithm, processors descend the tree in parallel, picking up the particles

that belong to their cost zone. To make sure that contiguity in the planarized tree always

39

corresponds to contiguity in space, an ordering strategy has been developed. In this solution,

the order in which children are numbered is not the same for all cells. The orderings of a cell

C’s children are determined by: (a) the ordering of C’s siblings; and (b) which child of its

parent C is in that ordering.

A single board of GPUs (graphics processing unit) can be viewed as shared memory at

the API level. The model for GPU computing is to use CPU and GPU together in a hetero-

geneous computing model. The sequential part of the application runs on the CPU and the

computationally-intensive part runs on the GPU. In 2007, Nyland et al. provided an CUDA

(computed unified device architecture) implementation on GPUs computing the pairwise inter-

actions of N bodies using direct interaction method [56]. In 2008, Gumerov and Duraiswami

[36] mapped the original FMM for Laplace kernel onto the GPU architectures. In the current

state, due to bandwidth concerns, the problem size to be handled is approximately in the order

of 106 particles. Furthermore, as GPU used to perform single precision floating point arith-

metic, high-accuracy requirement can decrease the parallel speedup by a factor of up to 10

times [29].

Recently, there is an ongoing paradigm shift in parallel computing due to the developments

both in hardware (multicore processor) and software (multi-threading library). Compared with

traditional platform, applying multi-threading technique on multicore machine has several ad-

vantages: (a) it provides large on-chip memory; (b) it provides transparent cache memory access

management; and (c) it provides flexible task distribution and scheduling among threads. In

the remaining of this chapter, we establish a detailed parallelization scheme of FMM on this

platform.

3.2 Analytical Parallel FMM

3.2.1 The Absolute Critical Path

In this section, we analyze the absolute critical path for evaluating the pairwise interactions

of N particles under the parallel random access machine (PRAM) architecture. The critical

40

path analysis is fundamental in implementing parallel algorithms since it identifies the longest

chain of dependent calculations. PRAM architecture is a shared memory abstract machine used

by parallel algorithm designers to estimate the time complexity of the algorithm. It neglects

issues such as synchronization and communication, but provides any (problem size-dependent)

number of processors. In the analysis, we assume that interaction between particles is described

by a function in the form of K(r) and the particle distribution can be either uniform or adaptive.

The result of the analysis is summarized in Table 3.1, and will be elaborated throughout this

section.

Direct Uniform FMM Adaptive FMM

Sequential O(N2) O(N) O(N)
Ideal Parallel O(logN) O(logN) O(logN)∗

Table 3.1: Complexity analysis of parallel particle simulation

In the table, results for the sequential computing are well-known and therefore we focus on

ideal parallel by which we mean parallelization under the PRAM architecture. Although the

results are O(logN) for each case at first glance, the causes are different. For direct algorithm,

it boils down to how fast one can add N numbers together. Using divide-and-conquer, the

complexity will be O(logN). For uniform FMM, the depth of the oct-tree will be O(logN)

and therefore with sufficient resources, the work at each level can be completed within one time

unit, yielding the complexity result O(logN). For non-uniform particle distribution, exponential

node growth condition must be satisfied in order to achieve the O(logN) complexity result.

Theorem 3.1. In order to have O(logN) complexity for parallel adaptive FMM, it is necessary

and sufficient for the data distribution to meet the exponential node growth condition: ∃ α,

1 < α ≤ 2d, such that

nodes(lmax − l + 1) ≥ α ·# nodes(lmax − l), 1 ≤ l ≤ lmax, (3.1)

except for l̄ levels. In (3.1), l̄ is dependent of N , d is the dimensionality of the problem, and

lmax is the maximum refinement level of the oct-tree.

41

Proof. First, it is obvious that at any level, the number of non-empty boxes is at most N .

Second, there exists an l∗ such that the condition in 3.1 holds for all l∗ ≤ l ≤ lmax. We

further assume that there are T non-empty boxes at level l∗. Then, recursively, at level l where

l ≥ l∗, there are at least Tαl−l
∗

non-empty boxes.

The upper and lower bounds make the depth of the tree O(logN).

We consider several concrete examples as shown in Figure 3.1. In the figure, three levels of

refinement have been carried out for each case and the corresponding values of α are computed.

In Figure 3.1 (a), the particle sampling is uniform, and α = 4 reaches the upper bound. As a

result, the depth of the tree is the shortest. In Figure 3.1 (b), α value is in the range of (1, 4)

and therefore the depth of the tree will be O(logN). However, since α does not reach the upper

bound, the depth will be longer than that in case (a). In Figure 3.1 (c), α = 1 reaches the

lower bounds. In this worst case, we can expect the depth of the tree to be O(N). A second

examination suggests that the usual definition for the computational domain is not suitable in

this case. It should be considered as two clusters of particles in order to reduce the length of

the critical path. More precisely, suppose that starting from level l∗, the value of α falls into

(1, 2d] for all the levels l ≥ l∗, then all particles contained in the box to be refined at level l∗

should be considered as one cluster while the rest particles form the other cluster.

•

•

•

•
•

•

•

• ••

•

••

•

•

•

•

•

•

•

•

•

•

•

• ••

•

•

•

•

•

•

•

•

••

•

•

•

(b) α =
11

6

•

•

• ••

•
••

•
•
•• ••

(c) α = 1

• •
• • • • • •

•
• • • • •

• •

•
• •

• • • • •
•
• •• •

• • •

• •
• • • • • •

• • • • • • ••
•
• ••

•
• •

•

•
• •

• ••
••

(a) α = 4

Figure 3.1: Exponential node growth rate

42

3.2.2 Maximum Concurrency under Dependency Constraints

In this section, we analyze the maximum concurrency potential of FMM subject to dependence

constraints under PRAM architecture according to Bernstein’s conditions [7]. In this process,

we assume that data distribution satisfies the exponential node growth condition.

Given two program fragments Pi and Pj , Bernstein’s conditions describe when the two are

independent and can be executed in parallel. For Pi, let Ii be all the input variables and Oi

the output variables, and likewise for Pj . Pi and Pj are independent if they satisfy

Ij ∩Oi = ∅ (3.2)

Ii ∩Oj = ∅ (3.3)

Oi ∩Oj = ∅ (3.4)

Violation of the first condition introduces a flow dependency, corresponding to the first state-

ment producing a result used by the second statement. The second condition represents an

anti-dependency, when the first statement overwrites a variable needed by the second expres-

sion. The third and final condition represents an output dependency: when two statements

write to the same location, the final result must come from the logically last executed state-

ment.

According to Bernstein’s condition, we examine the dependence of the operators involved

in each stage of FMM and produce the maximum concurrency graph as depicted in Figure 3.2.

A detailed explanation is as follows.

First, far-field and near-field operations can start simultaneously from the beginning of the

program since they have independent output sets (write to different memory locations). This

means, generating multipole expansion at level lmax (far-field approximation) and processing

list 1 for all childless boxes at each particle location (near-field direct interaction) are executed

in parallel once the program begins.

Under PRAM architecture, there exists another operation that can start from the beginning

43

lmax

lmax − 1 lmax

lmax − 2 lmax − 1

lmax − 3 lmax − 2 lmax − 2

...

...

...

...

...

...

...

...

...

2 3 3

1 2 2

0

1

2

...

...

...

lmax − 3

lmax − 2

lmax − 1

lmax

All l’s All l’s

All Particles

Upward Pass:
TSM, TMM

List 2: TME
, TEE

, TEL

List 3: TMT
or TST

List 5 & Evaluate Local: TLL
& TLT

List 4: TSL
or TST

List 1: TST

Sum Local & Direct

T
im

e
S
te

p

Operations

Figure 3.2: Potential concurrency under dependence constraints

44

of the program, namely, processing list 4. There exist two options to process list 4, either by

generating local expansion from particle information using TSL operator or by direct interaction

using TST operator. The latter choice can induce potential writing conflicts with the operations

related to list 1. However, under the PRAM assumption, it can be avoided by providing

separate storages for the outputs. Doing so can also improve the accuracy of the numerical

results. Recall when adding a set of numbers that differ by several orders of magnitude, it

is more accurate to add the smaller values prior to the larger ones. Analogously, the results

obtained from processing list 1 are larger in magnitude than those obtain from processing list 4

since the particles are further apart in the latter case. Using separate storages, we can calculate

the contribution from each group accurately, hence yielding a better numerical result.

For boxes at level l, we only need their multipole expansions to process lists 2 and 3, which

means these operations can start once the multipole expansions become available. Similar to

processing list 4, there also exist two options to process list 3, either by direct interaction

using TST operator or by evaluating multipole expansion using TMT operator. Under PRAM

assumption, the direct interaction operation will not induce any writing conflict. More precisely,

with sufficient resources, generating multipole expansion at level lmax, and processing lists 1

and 4 can be completed in one time unit. Since there exists no box with a non-empty list 3

until level lmax− 2 (after two time units), there will be no writing conflict due to applying TST

operator.

As the multipole expansion of a parent box depends on those of its children, the remaining

part of the upward pass is processed sequentially, one level per time unit. Analogously, we

process list 5 (shifting local expansion) and evaluate local expansion for particles in childless

boxes one level per time unit.

In the last step, the results corresponding for near-field (direct interaction) and far-field (

local expansion evaluation) are added together.

45

3.2.3 Architecture Constraints

In this section, we analyze the effects of architecture constraints on the parallelization of FMM

by mainly considering two factors, i.e., limited computing resources and non-uniform memory

access latency.

The limited computing resources have two effects. First, the length of the critical path of

the algorithm will be elongated since certain task has to be split into more than one stages

to complete. Second, separate storage is no longer the solution to resolve potential writing

conflict due to insufficient resources. As a result, programmer must design spatial and temporal

partition to introduce mutual exclusion to obtain correct result.

Figure 3.3: Memory hierarchy diagram

Non-uniform memory access latency is a more subtle issue, and has a huge impact on the

performance of an application. Unlike the uniform memory access assumption for PRAM, a

modern memory system is a hierarchy of storage devices with different capacities, costs, and

access times, as shown in Figure 3.3 1. CPU registers hold the most frequently used data.

Small, fast cache memories nearby the CPU act as staging areas for a subset of the data and

instructions stored in the relatively slow main memory. The main memory stages data stored

on large, slow disks, which in turn often serve as staging areas for data stored on the disks

or tapes of other machines connected by networks. If the data requested by the program are

stored in a CPU register, then they can be accessed in zero cycles during the execution of the

instruction. If stored in a cache, it will take 1 to 30 cycles. If stored in main memory, the time

1http://tjliu.myweb.hinet/

46

becomes 50 to 200 cycles. In the situation the storage is in the disk, the access will require tens

of millions of cycles. Consequently, it is crucial to understand how the system moves data up

and down the memory hierarchy and write the application accordingly so that its data items

are stored higher in the hierarchy where the CPU can access them more quickly.

To make a program efficient in memory access, one needs to consider three distances, i.e.,

geometric distance, graph distance, and architecture distance. We consider two objects in a

physical system. The Euclidean distance between the two objects is said to be the geometric

distance, which measures the distance in the actual physical system. For any problem, one needs

to employ certain algorithm to solve it which introduces certain data structure. The logical

distance in the data structure between the two objects is referred to as graph distance. Finally,

when the algorithm is implemented on a computer, the architecture of the machine also affects

the locations where different objects are stored. Clearly, closeness in geometric distance does

not necessarily mean closeness in graph distance or closeness in architecture distance. Special

case should be taken in the implementation of the algorithm to reduce memory access latency

and improve the overall performance.

3.3 A Graph-Theoretic Parallelization Approach

Formally, the parallelization of FMM on the multicore architecture can be described as the

following constrained minimization problem.

min
parallel scheduling

FMM time({data}, {translation-operators})

subject to

the temporal dependency constraints

the limited degree of parallel processing

the non-uniform latency in memory access (3.5)

Currently, we are unaware of any O(logN) algorithm yielding the optimal solution to this

47

optimization problem. Therefore, in this section, we develop a graph-theoretic parallelization

scheme trying to minimize the gap between the optimal solution and the practical solution.

The key ideas in the parallelization strategy can be summarized as spatio-temporal partition

and split and merge scheduling. They stem from the crucial observations that the workload of

the adaptive FMM is not evenly distributed among all levels, and the majority is in the lower

level of the tree. As a result, at a lower level, we should divide the level-specific work according

to a partition of the tree, and assign one sub-domain to each available thread. At a higher level,

the level-specific work should be merged with other tasks. For instance, the multipole-to-local

translation at a given level l might not start as early as indicated in Figure 3.2. However, it

does not need to follow the traditional approach which processes it in the downward pass. In

other words, once the program reaches a certain upper level of the tree in the upward pass

and have available resources to process it, the task can be executed. However, we emphasize

that tasks on the critical path should always have the highest priority to finish first. Note that

with only limited parallel computing resources, we need to design spatial partition to ensure

mutual exclusion in writing in order to reduce synchronization overhead. As threads within

the same process share system resources, we should also utilize the use of threads and thread

management to reduce the synchronization scope as well.

3.3.1 Parallelization Scheme for Upward Pass

In the upward pass, the FMM sweeps the oct-tree from the finest level lmax to root level

to generate multipole expansion for each box. In this process, the algorithm computes the

multipole for a childless box from sources using TSM operator and shift and merge the multipole

of each child of a parent box using TMM operator. The spatial data dependence further imposes

a temporal constraint, i.e., TMM operator cannot be applied on a parent box until it has been

applied on each of its child boxes.

Due to the limited computing resources, spatial and temporal constraints, the upward pass

is further divided into two stages. More precisely, this means that there exists a level in the

oct-tree above which (including itself) the parallelization falls into the PRAM regime. Such a

48

level is referred to as control level. In other words, the critical path becomes elongated below

the control level. A good parallelization scheme must be capable of mitigating this effect and

hence we require the scheme to satisfy two criteria: (a) it should utilize as many threads as

available to the program; and (b) it should distribute the workload in a way such that the

number of threads being idle due to the aforementioned spatial and temporal constraints is

minimal for a period as long as possible.

The accomplishment of the objectives is built on the following observations. First, in the

adaptive version of FMM, not all childless boxes are on the finest level lmax and therefore the

process need not necessarily start from level lmax. Secondly, there is no prior knowledge of the

distribution of boxes at every level, and the traditional level-wise implementation is very likely

to introduce artificial temporal constraints in parallelization.

In the first stage, a private thread is assigned to each box at the control level, whose task

is to compute multipole expansions for the assigned box as well as all its descendants. We

designed a recursive algorithm such that each thread could complete its work independently

without following the level-wise restriction. As preparation, we set up counters for all parent

boxes with initial value zero, which are used to record the number of times that TMM operator

has been applied on their children, respectively. Next, each thread starts from its assigned box,

descends the tree, and stops until it reaches the first childless box. At this box, the thread

will compute its multipole expansion from source information using TSM operator followed by

applying TMM operator to shift the result to its parent. As all the operations associated with

this box have been completed, the thread traverses up the tree to its parent box, updates the

counter value and further compares it with the number of children of the parent box. If the

results do not match, the thread descends the tree to the next unvisited child box. If this box

is childless, the procedure just described is carried out, otherwise the algorithm is recursively

invoked. If the results match, then the parent box has received all required information from

its children and the thread will use TMM operator to shift the multipole expansion to its own

parent. For each thread, the first stage work is complete once the counter value of its initially

assigned box equal to the number of its children. As an example, we consider the 1D adaptive

tree shown in Figure 3.4. The control level is set to be level two and four threads are dispatched.

49

For thread 1, it will compute the multipole expansion for the boxes in the order of 16, 17, 8,

18, 28, 29, 19, 9, and 4.

1

2 3

4

8 9

16 17 18 19

28 29

5

10 11

20 21

6

12 13

22 23 24 25

7

14 15

26 27

Thread 1 Thread 2 Thread 3 Thread 4

Figure 3.4: Upward pass parallelization scheme

In the second stage, each thread first shifts the multipole expansion of its initially assigned

box to its own parent. After that, it attempts to shift the multipole expansion of its parent to its

grandparent. However, this operation only succeeds if the aforementioned temporal constraint

is satisfied, otherwise, the thread will exit and free system resources. We also notice that in

this process, different threads may simultaneously update the counter value of a parent box.

Therefore, we assign a mutex variable for each box above the control level. Each thread will first

secure the mutex and then perform the operation. As an example, we consider the situation

depicted in Figure 3.4. Both threads 1 and 2 will attempt to shift the multipole expansion of

box 2 to box 1 and the work is executed by the thread that completes its first stage task later.

This recursive algorithm can effectively mitigates the elongation of the critical path below

the control level and ultimately improve the parallelization efficiency, due to the following

reasons. First, compared with the traditional level-wise approach, each box is visited the same

times and the operation counts at each box remain unchanged too. Second, this algorithm is

capable of keeping as many threads as possible working independently on their first stage tasks

which contributes the majority workload of the upward pass.

50

3.3.2 Parallelization Scheme for Downward Pass

There are eight operators involved in the downward pass: TME , TEE , and TEL operators for

processing the interaction list, TLL operator for processing list 5, TSL, TMT , and TST operators

for processing lists 1, 3, and 4, and TLT operator for evaluating local expansions. According

to their spatio-temporal properties (the input and output sets of the operator), these eight

operators are further sorted into three categories and the parallelization scheme has three

separate components accordingly. Operators TME and TEE make up the first category; TLL

operator is in the second category; the rest operators belong to the last category. In the

remaining of this section, we discuss the parallelization scheme for each category in more details.

There exist two options to process the interaction list. In particular, for each box being

processed, it can considered either as a target box or a source box. As a target box, the algorithm

converts the multipole expansion of each member of its interaction list into an exponential

expansion and then into a local expansion about the target box’s center. As the interaction list

can have up to 189 members, the operation counts will be 6p3 + 189p2. As a source box, the

algorithm first converts the multipole expansion of the source box into an exponential expansion

which is then sent to all the boxes that having the source box in their interaction lists. The

operation counts in this manner can be reduced to 6p3 + 40p2 by means of merge-and-shift

technique, thanks to the fact that interaction lists of colleague boxes usually overlap. From the

parallelization perspective, the first option itself inherits mutual exclusion while the other one

has potential writing conflicts. In this thesis, we adopt the sender’s view (consider each box as

a source box) as its complexity is much smaller. Another reason is that the serial code available

to the author is implemented with the merge-and-shift technique.

With the sender’s option and merge-and-shift technique, it is crucial to introduce spatio-

temporal partition to ensure mutual exclusion. We proceed as follows. Refinement level one is

ignored since all boxes at this level have empty interaction lists. At refinement level two, no

exclusion could be introduced since there are too few boxes to do so. However, we can either

switch back to the receiver’s option (consider each box as a target box) or simply executed the

corresponding workload sequentially. Either choice will not affect the overall performance very

51

much. Mutual exclusion is introduced starting from refinement level three. As preparation, we

associate a triplet of indices with each box, representing the order of this box in each direction

assuming it were on a uniform mesh of its refinement level. These triplets are computed during

the generation of the oct-tree structure. Since interaction lists have direction dependency due

to the use of exponential expansions, the related workload is processed in the same manner.

Particularly, in processing each direction, each thread should be assigned to work on a set of

boxes whose corresponding index components in this direction form a set with at least four

consecutive integers that does not overlap with the sets of other threads. The workload for

each thread is complete in three stages.

We use an concrete example as shown in Figure 3.5 to illustrate the three-stage strategy. In

this example, we are at refinement level three and the largest index in any direction is 8. As a

result, two threads could be dispatched. Considering the y-direction, one thread will work on

the boxes of the lower four rows while the other one will work on the rest. In the first stage,

thread one will process boxes at rows two and three while thread two handles boxes at rows

six and seven. In this process, boxes at rows four and five serve as the buffer zone as they are

the upper and lower bound in box indices that will receive information from the boxes being

processed. In the second stage, the first thread works on boxes at row one and the second thread

processes boxes at row five. Lastly, boxes at rows four and eight are processed by each thread.

Since threads may complete their assigned task at each stage at different paces, synchronization

among threads is required at the end of each stage to ensure mutual exclusion. In other words,

the operation of the next stage cannot start until all threads complete the task of current stage.

We would like to comment here that in the process of the interaction list in a given direc-

tion, the three-stage principle could be applied in the rest directions as well to achieve further

acceleration. We consider the situation in Figure 3.5 and assume the algorithm is currently

processing the y-direction using two threads, then the workload in each stage assigned to either

thread could be completed in parallel by invoking two additional threads in the x-direction.

TLL operator applies on parent boxes and it has a simple spatio-temporal constraint. Spa-

tially, TLL operator takes the local expansion of a parent box as input and generate local

expansions of its children as output. There exists no writing conflicts when the operator is

52

Stage 1 Stage 2 Stage 3

Thread 1 Thread 2

Figure 3.5: Parallelization scheme for TME & TEE operators

applied on distinct parent boxes. Temporally, TLL operator cannot be applied on a parent box

unless the operator has already been applied to its own parent. As a result, the parallelization

of TLL operator is performed level-wise with more threads invoked at levels with more boxes.

The remaining operators are applied on childless boxes or boxes with non-empty list 4.

For each operator, it can be applied on distinct boxes simultaneously since the output sets are

independent. To achieve better load balance and therefore better parallelization efficiency, the

workload corresponding to each operator is completed following a multiple-server-single-queue

model. Specifically, we proceed as follows. We first allocate two arrays during the generation

of the oct-tree structure to record the IDs of childless boxes and boxes with non-empty list 4.

In other words, we first generate the “queue”. We simulate multiple servers by the maximum

number of threads available to the program. Initially, we assign one box to each thread and

switch its state from idle to busy. For any thread, it will pick up the first box in the remaining

queue once it finishes working on its previously assigned box. In this way, a thread will keep busy

until it sees an empty queue and it will exit and free system resources. Notice in this process,

multiple threads may check or update the current state of the workload queue simultaneously,

and therefore we define a mutex variable to ensure the correct result.

53

3.4 Numerical Experiments

In this section, we demonstrate the efficiency of the parallelization scheme through some nu-

merical experiments carried out on a Sun SunFireTM X4600 server with 8 AMD OpteronTM

processor 885 at 2.6 GHz clock rate and 64 GB memory. The parallel implementation is based

on and later compared with the serial code FMM-Yukawa, which computes the pairwise screened

Coulomb interactions of N charges. The results are summarized in Tables 3.2, 3.4, and 3.5.

In each table, timings are measured in second; the Binning column corresponds to the time

consumed on the adaptive tree generation which is done sequentially in all tested cases. There

are two points to remember in interpreting these times. One is that they were taken on a

time sharing system; even though no other users were present, various daemons will consume

some resources. The second is the effect of the choice of the maximum number of particles s

allowed in a childless box. For problem size of the tested scale, up to 100 million particles, it

is impractical to run the program with multiple choices of s for each N since it would require

too much exclusive use of the server without producing much useful results. Based on previous

studies (see Tables 2.1 – 2.4), we made an educated guess that s = 80 and used it for all the

tests.

In the first set of tests, we study the relationship between the CPU time requirement and the

number of threads available to the program. The result is given in Table 3.2. This experiment

uses 10 million charges uniformly distributed inside the unit box [−0.5, 0.5]3 and requires six

digits accuracy. The data corresponding to one thread is obtained by running the sequential

code FMM-Yukawa to avoid any thread management overhead. Recall that in different stages

of FMM, our parallelization scheme has corresponding strategies. As a result, we further breaks

down the timing results into five components, as shown in columns three to seven in Table 3.2,

to see the efficiency of individual parts. The results in Table 3.2 is also plotted in Figure 3.6.

Several observations can be made from Table 3.2 as follows.

Firstly, we obtain nearly optimal 16 times speedup on the 16 core system in processing

“Lists 1, 3, 4” and ”Evaluate Local”. This is mainly due to the mutual exclusion property

intrinsic to the involved operators.

54

Secondly, the speedup for processing “Upward” and “List 5” is approximately 20% less than

the optimal speedup, due to the temporal constraints imposed by the traversal of the oct-tree

in those processes.

Thirdly, the speedup for “List 2” is the least. The parallel execution time is only 4 times

faster on the 16 cores computing environment. Therefore, we take the TME operation in the

up and down direction as an example to examine its causes by tracking workload, number of

threads available, number of threads used, and execution time of each level. The results are

given in Table 3.3. From this table, we can observe that we achieve the expected speedup

at levels 3 and 4, a less satisfying result at levels 5 and 6, and no speedup at level 7. At

level 7, there exists great parallelization potential in theory. However, the actual workload

is extremely less than the theoretical estimate. As the program has no prior knowledge of

this, we suffer significantly from the thread management overhead at this level. At levels 5

and 6, the current manually controlled three-stage strategy also seems to introduce too much

synchronization overhead. Notice that with the merge-and-shift technique, the parallelization

of TME operation is analogous to the parallelization of matrix-vector multiplication according

to a column decomposition manner. Without this technique, the parallelization is analogous

to a row decomposition scheme. The latter has intrinsic mutual exclusion while the former has

fewer sequential operation counts. In this case, the operation counts of the former option is

roughly a quarter of the latter. On the current implementation platform, if we did not apply

the merge-and-shift technique and assume the speedup is optimal, then the expected execution

time will roughly be the same as the current version with the merge-and-shift technique. We

believe that a better result in terms of both parallelization efficiency and actual execution time

should come from automatic tuning. This topic is currently under investigation and results will

be reported in the future.

Fourthly, there are two phases of reduction in the program execution time. For instance,

see the column for “Evaluate Local”, from 1 thread to 16 threads, the execution time is ap-

proximately halved when the number of threads is doubled, due to the increase of cores invoked

to execute the program. After this, the reduction is no longer linear. However, we achieve

another roughly 20% improvement by increasing the number of threads from 16 to 128. This

55

is the result of balancing between the cost in swapping memory and switching among different

threads. In practice, the code can hardly be optimal in the sense that all the data demanded

by a piece of instructions is right in the register when the code is being executed. Therefore,

the sequential code is associated with certain cost in swapping the memory hierarchy to get the

desired data into the register. On the other hand, in a threaded code, when the desired data

for one thread is unavailable, the program can invoke another thread to work while loading the

data into the register. This choice is also associated with certain cost penalizing the switch

between threads. Subsequently, when the number of threads increases in a reasonable range, it

can somehow hide the memory reference latency and improve the overall performance.

In the next two sets of tests, we further examine the performance of the parallelization

scheme on larger scale system with two types of particle distribution, namely, charges uniformly

distributed inside the unit box and uniformly distributed on the surface of the sphere centered

at the origin with radius 1. For each particle distribution, the computation is performed for

both three and six digits accuracy. The maximum number of threads allowed is set to be 128.

Although this choice may lead to less satisfying result in processing list 2, we realize that this

operation only takes a small fraction of the sequential operation and using more threads indeed

can increase parallelization efficiency of other time-consuming parts significantly. In the table,

timing results are separated into the binning time and the actual algorithm executed time. TS

corresponds to the sequential execution time of the algorithm obtained by FMM-Yukawa while

TP refers to the parallel execution time of the algorithm with 128 threads. Subscripts are used

to indicate the accuracy of the calculation. Ri is the ratio of TSi to TPi for i = 3, 6. The

results in Tables 3.4 and 3.5 are also plotted as bar graphs in Figures 3.7 and 3.8. In each

figure, parallel timing results are plotted on top of the sequential timing results.

56

of Threads Binning Upward List 2 Lists 1,3,4 List 5 Evaluate Local

1 26.719 72.462 132.089 1415.301 14.423 149.134
2 26.447 71.797 78.902 663.570 10.707 75.078
4 26.480 71.653 48.825 334.450 3.914 37.597
8 28.399 10.413 39.288 169.900 2.797 18.714
16 27.449 10.321 34.001 102.380 1.431 11.577
32 26.517 6.958 33.733 90.448 1.206 9.929
64 28.363 7.082 33.389 87.254 1.236 9.586
128 26.481 5.712 34.140 85.838 1.142 9.413

Speedup –– 12.686 3.869 15.333 12.630 15.843

Table 3.2: CPU execution time VS number of threads

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e:
(s

ec
on

d
)

1 2 4 8 16 32 64 128
of Threads

Binning
Upward Pass

List 2

Lists 1,3,4
List 5

Evaluate Local

Figure 3.6: CPU execution time VS number of threads

57

w
or

k
le

v
(t

im
e,

u
se

d
th

re
ad

)
b

ox
2p

ro
c

0
(1

,0
.0

01
)

(1
,0

.0
01

)
(1

,0
.0

01
)

(1
,0

.0
01

)
(1

,0
.0

01
)

(1
,0

.0
01

)
(1

,0
.0

01
)

8
1

(1
,0

.0
02

)
(1

,0
.0

02
)

(1
,0

.0
02

)
(1

,0
.0

02
)

(1
,0

.0
02

)
(1

,0
.0

03
)

(1
,0

.0
03

)
32

2
(1

,0
.0

11
)

(1
,0

.0
11

)
(1

,0
.0

11
)

(1
,0

.0
11

)
(1

,0
.0

11
)

(1
,0

.0
11

)
(1

,0
.0

12
)

12
8

3
(1

,0
.0

47
)

(2
,0

.0
26

)
(2

,0
.0

26
)

(2
,0

.0
27

)
(2

,0
.0

26
)

(2
,0

.0
26

)
(2

,0
.0

27
)

51
2

4
(1

,0
.3

79
)

(2
,0

.2
13

)
(4

,0
.1

36
)

(4
,0

.1
28

)
(4

,0
.1

33
)

(4
,0

.1
35

)
(4

,0
.1

48
)

40
96

5
(1

,3
.2

57
)

(2
,1

.8
20

)
(4

,1
.1

54
)

(8
,0

.7
59

)
(8

,0
.7

71
)

(8
,0

.7
89

)
(8

,0
.7

51
)

32
76

8
6

(1
,2

2.
20

5)
(2

,1
2.

39
2)

(4
,8

.1
49

)
(8

,5
.6

59
)

(1
6,

4.
98

0)
(1

6,
5.

06
5)

(1
6,

4.
94

9)
20

70
96

7
(1

,0
.0

29
)

(2
,0

.0
34

)
(4

,0
.0

66
)

(8
,0

.1
40

)
(1

6,
0.

29
2)

(3
2,

0.
51

3)
(3

2,
0.

53
3)

8

m
ax

th
re

ad
s

1
2

4
8

16
32

12
8

T
ab

le
3.

3:
T

im
in

g
re

su
lt

s
fo

r
T M

E
op

er
at

io
n

at
ev

er
y

le
ve

l
in

U
p

d
ir

ec
ti

on

58

10 20 30 40 50 60 70 80 90 100 ×106

N

1

2

3

4

5

6

7

8

9

10

0

×2500

T
im

e:
(s

ec
on

d
)

S3

S6

P3

P6

Figure 3.7: CPU execution time VS N for uniform sampling

59

10 20 30 40 50 60 70 80 90 100 ×106

N

1

2

3

4

5

6

7

8

9

10

0

×2500

ti
m

e
(s

ec
on

d
)

N

S3

S6

P3

P6

Figure 3.8: CPU execution time VS N for nonuniform sampling

60

N(×106) Binning TS3 TP3 R3 TS6 TP6 R6

10 27.080 1417.030 99.262 14.276 1683.867 135.646 12.413
20 141.950 1495.680 156.720 9.544 2824.748 341.893 8.262
30 167.791 2192.223 196.940 11.132 3714.574 414.153 8.969
40 226.606 3426.167 252.650 13.561 5008.203 466.325 10.740
50 253.935 4289.247 296.730 14.455 6022.582 543.600 11.079
80 268.883 9869.811 721.550 13.679 12086.537 982.520 12.302
100 308.770 15114.427 1096.305 13.787 18327.415 1407.343 13.022

Table 3.4: CPU execution time VS N for uniform sampling

N(×106) Binning TS3 TP3 R3 TS6 TP6 R6

10 21.610 737.450 67.196 14.276 1146.906 114.373 12.413
20 50.363 1571.514 149.141 9.544 2387.632 226.289 8.262
30 83.772 2220.290 218.043 11.132 3536.901 343.598 8.969
40 113.897 2977.343 284.198 13.561 4630.944 435.962 10.740
50 144.193 3783.726 356.934 14.455 5741.257 550.277 11.079
80 248.487 6305.099 579.618 13.679 9660.471 903.581 12.302
100 332.580 7730.302 743.888 13.787 –– –– ––

Table 3.5: CPU execution time VS N for nonuniform sampling

61

Chapter 4

A Kernel Independent
Fourier-series-based Fast Multipole

Method

In this chapter we introduce a new kernel-independent Fourier-series-based FMM-like algorithm.

Although the algorithm is applicable to a wide class of kernels, for expository purpose, we

illustrate the key idea and establish the theory for kernels with the so-called scaling property.

A kernel K(r, θ, φ) given in the spherical coordinates is said to have scaling property if there

exists a γ ∈ R such that

K(Cr, θ, φ) = CγK(r, θ, φ). (4.1)

Kernels belonging to this category include Green’s functions for Laplace equation in three di-

mensions, modified Laplace equation, Stokes equation, biharmonic equation, dislocation dynam-

ics in material science, to name a few. For such kernels, we seek a truncated Fourier-series-based

expansion in the form of

∑
j,k,l

ωj,k,le
iα(j,k,l)(x,y,z)T , α ∈ R. (4.2)

Seeking the kernel expansion in this particular form has several benefits. First, once we fix

the basis function of the expansion, it only requires the ability of evaluating kernel function to

obtain the expansion coefficient. Therefore, the framework of FMM can be extended to many

kernels whose expansions are either explicitly unavailable or are too expensive to calculate.

Secondly, it is shown in later sections that the multipole-to-local translation becomes diagonal.

Thirdly, compared with the plane-wave expansion introduced in the new-version FMM, this

expansion is valid in all directions, and therefore the multipole-to-local translation can be

completed in only one loop. Fourthly, it allows all the translation operators constructed in a

receiver-driven manner, which means the operators have intrinsic mutual exclusion property

and great parallelization potential on modern multicore computers.

The organization of this chapter is outlined as follows. In Section 4.1, we give a brief review

of previous developments in the kernel-independent FMM. In Section 4.2, we discuss how to

find the truncated Fourier series expansion of the kernel function. In Section 4.3, we construct

all the translation operators used in the new algorithm. In Section 4.4, we provide a pseudo-

code to illustrate the algorithm structure and discuss several strategies to further reduce the

algorithmic complexity. In Section 4.5, we present several numerical results.

4.1 Precursors of Kernel-Independent FMM

In this section, we give a brief overview of the development in the kernel-independent FMM

in the last two decades. There are three building blocks in FMM, consisting of tree structure,

kernel expansion, and translation operators. For all the approaches to be discussed, they don’t

change the tree structure. They are characterized by the basis used for kernel expansion and

the corresponding translation operators.

A straightforward approach is to use Taylor expansions in the Cartesian coordinates, for

instance, see [62, 58]. However, this approach is not suitable for high accuracy computation

since it requires O(pd) expansion for pth-order accuracy which is quite expensive.

In a series of papers from Beylkin et al. [11, 12, 10, 8], the authors approximate the

power function r−α with a linear combination of Gaussians, where α > 0. Doing so allows

operations in d dimensions to use combinations of one-dimensional operations and therefore

achieves computational complexity that formally scales linearly in d.

Gimbutas and Rokhlin derived a modification of FMM in 2D applicable to non-oscillatory

kernels [28]. In their scheme, the Taylor and Laurent expansions are replaced with tensor

63

products of Legendre expansions which are subsequently compressed using singular value de-

composition (SVD). The advantage of this technique is that using SVD guarantees an optimal

compression in the sense of L2 form, hence the number of terms in the multipole expansion is

minimal for a given approximation error.

Another approach is based on using equivalent sources, which was first proposed by An-

derson as he represented the far-field as the solution to an exterior Dirichlet problem on a ball

surrounding the particles by means of the exact Green’s function for the Laplacian [4]. However,

Anderson’s method requires the analytical form of the Green’s function for each kernel, which

may not be explicitly available in general. A successful implementation of the idea to general

kernels comes from Ying et al. [75]. Their scheme only requires the existence of the Green’s

function and relies on kernel evaluation. The potential generated by sources inside a box is rep-

resented by a continuous distribution of an equivalent density on a surface enclosing the box,

which is found by matching its potential to the potential of the original sources at a surface

in the far-field. This scheme is applicable to second-order constant coefficient non-oscillatory

elliptical partial differential equations.

In 2007, Martinsson and Rokhlin proposed a scheme based on the so-called “skeletonization”

for 1D problems [51]. For two sets of particles, one as the source and the other one as target,

this scheme approximates the interaction matrix by a low-rank matrix to within some precision,

say rank k. They then choose a subset of k “proxy” sources to represent the source set and

another subset of k target locations with the property that if the potential is known at these k

points, it can be interpolated to all the remaining points.

A recent formulation of FMM for non-oscillatory kernels which are only known numerically

was proposed by Fong and Darve [25]. This algorithm combines interpolation with SVD. Specif-

ically, the far-field behavior of the kernel K(x, y) is approximated by a Chebyshev interpolation

scheme which results in a low-rank representation of the kernel. Then the multipole-to-local

operator is to evaluate the field due to particles located at Chebyshev nodes, which is done

using an SVD.

We mention that there exists another category of kernel-independent approach used in

solving integral equations of the second kind. It is based on wavelet decomposition, combined

64

with a Galerkin scheme [9, 3]. The idea is to replace the exact Galerkin matrix through a matrix

that is nearly sparse by setting all entries below a certain threshold equal to zero. Once the

sparse form of the matrix is obtained, applying it to an arbitrary vector is an O(N) procedure.

4.2 Kernel Approximation

In this section, we discuss how to find the truncated Fourier series expansion in the form of (4.2)

for the kernel function. For expository purposes, we restrict our attention in 2D throughout

the remaining of the chapter.

We first determine in which region the approximation should be accurate. This problem

arises naturally due to the fact that kernels in general are not periodic themselves. Since the

kernel approximation will be accurate in a finite region, we can only expect the multipole ex-

pansion to be valid in a finite region. Therefore, the region where kernel approximation is

accurate should be determined in a way to guarantee that the multipole expansion of a box is

accurate whenever it is needed. In the language of FMM, this means that the kernel approxi-

mation should guarantee that the multipole expansion of a box is accurate in its interaction list

region since it will be translated into a local expansion in the downward pass. Consequently, in

Figure 4.1 (a), we need the multipole expansion of box b accurate in the shaded green area. By

scaling property, we can further assume without loss of generality that the length of the side of

box b is 1. Then, for any particle contained in b, the distance between the particle and any box

in the shaded green area is at least 1 and at most 4 in each direction. If the approximation of the

kernel is accurate in the shaded region depicted in Figure 4.1 (b), then the contribution of each

particle in b can be approximated accurately in the shaded green region in Figure 4.1 (a), and

we can obtain a set of multipole coefficients of box b that are accurate in the boxes having b in

their interaction lists, respectively. For the simplicity of the discussion, we introduce notation

Ωd
a,b to represent the region [−a, a]d \ [−b, b]d where d is the dimensionality of the region. The

approximation region for the kernel function will then be symbolically denoted by Ω2
1,4.

Given a kernel function K(x, y), there exist two approaches to obtain a truncated Fourier

series approximation accurate in Ω2
1,4. On one hand, we can directly extend K(x, y) into a

65

•
b

d ≤ 4d ≥ 1

(a)

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

0

(b)

Figure 4.1: Kernel approximation region

periodic function with period 8. On the other hand, we can assume that in Ω2
1,4, K(x, y)

coincides with some unknown function K̃(x, y) whose period L is larger than 8 and use the

Fourier series expansion of K̃(x, y). For the former choice, we realize that on the boundary

of Ω2
1,4, the extended function might have discontinuity if K(x, y) is an odd function or might

only be C1 if K(x, y) is an even function. Consequently, the truncated series will converge to

K(x, y) very slowly which yields a large value of p. Such difficulty can be overcome by the latter

choice since we are free to tweak K̃(x, y) outside Ω2
1,4 such that it is sufficiently smooth and

only a few terms will be needed to satisfy certain accuracy requirement. The existence of such

function K̃(x, y) can be established through the consideration of the Taylor series of K(x, y)

and use of appropriate smooth windowing functions around the boundary of Ω2
1,4.

In practice, we only need the existence of K̃(x, y). We don’t first construct K̃(x, y) and then

compute its Fourier coefficients to determine values for {ωj,k}. Instead, those coefficients are

determined by P possibly non-equispaced sampling points in Ω2
1,4, say (xp, yp) with function

value K(xp, yp), p = 1, . . . , P . Function K̃(x, y) is determined from the coefficients {ωj,k}

66

implicitly.

Regarding the value of P , it can be either equal to or greater than the number of unknowns

(2p+1)2 to be determined. However, when P = (2p+1)2, several numerical experiments indicate

that regardless of the locations of the sampling points, the computed coefficients tend to differ by

more than 15 orders of magnitude when high accuracy is required in the kernel approximation.

This means, in double precision computing environment, the accuracy is contaminated the

moment those coefficients are used. Due to this reason, we prefer the latter option, which we

refer to as oversampling configuration.

Selecting the optimal sampling points remains an open question and is currently under in-

vestigation. In this section, we provide several rules of thumbs. The key idea can be summarized

as adaptive sampling. In other words, we iteratively modify the distribution of the sampling

points until the approximation error satisfies the accuracy requirement. In this process, we

use two classes of sampling points, namely, uniform nodes and Chebyshev nodes. We will first

use a simple 1D problem to illustrate the effect of using different nodes and then describe the

algorithm in more details.

Let f(x) =
1

x2
be the kernel function and we seek an approximation in the form of∑

−p≤j≤p ωje
ijαx where x ∈ Ω1

1,4. We define the ratio of the number of sampling points to

the number of unknowns as oversampling ratio. We fix p = 10 and α =
2π

9
and change the

value of oversampling ratio. The numerical results are summarized in Table 4.1. From this

table, we observe that: (a) with the same oversampling ratio, using Chebyshev nodes yields

smaller maximum error and (b) the maximum error for Chebyshev nodes is less sensitive to

the oversampling ratio than that of the uniform nodes. Therefore, we shall first use Chebyshev

nodes to collect the overall behavior of the kernel function and then add uniform nodes in

necessary regions in later iterations to meet the accuracy requirement.

Remark 4.1. In Table 4.1 and throughout this chapter, the maximum errors are computed by

comparison of the approximations and exact functions at sufficiently large numbers of points to

insure complete resolution of all function features and accurate estimates of maximum errors.

Formally, this process is described in the following algorithm:

67

Oversampling ratio Uniform nodes Chebyshev nodes

2 9.5593 · 10−4 4.5897 · 10−4

4 6.5505 · 10−4 4.5897 · 10−4

8 6.5472 · 10−4 4.5897 · 10−4

Table 4.1: Maximum approximation error for
1

x2
: p = 10 and α =

2π

9

Adaptive Sampling Algorithm

Initialization:

Choose precision requirement ε and imax.

for p = p1, p2, . . .

for α = α1, α2, . . . , αmax

Set sampling points to be Chebyshev nodes, obtain approximation {ωj,k}.

for i = 1, 2, . . . , imax

Compute maximum approximation error.

if maximum error < ε

Return p, α, and the corresponding {ωj,k}.

else

Identify region with larger approximation error.

Add uniform nodes to this region to obtain new approximation

endif

end

end

end

Remark 4.2. The termination condition αmax for the α loop in the adaptive sampling algo-

rithm is the following. At every iteration, we construct the function K̃(x, y) from the computed

coefficients {ωj,k} and examine its graph in the region [−L,L] × [−L,L] where L =
2π

α
. As

indicated by numerical experiments, the coefficients tend to differ by large orders when the graph

has concavity change in the examination region. Therefore, we terminate the α loop once such

phenomenon is observed.

68

4.3 Translation Operators

In this section, we construct translation operators for the Fourier-series-based kernel-independent

FMM. The following theorems and lemma constitute the principal analytical tools of this chap-

ter.

We first describe how to generate the multipole expansion from source information.

Theorem 4.1 (Multipole Expansion (TSM operator)). Suppose that M charges of strengths

q1, q2, . . . , qM are located at points (x1, y1), (x2, y2), . . . , (xM , yM), all of which are contained

inside a box A of length one and centered at (xA, yA). (x, y) is an arbitrary point belonging to

the interaction list region of A. For any given ε > 0, there exists a pth order multipole expansion

which approximates the potential φ(x, y) due to all the charges inside A with a relative precision

ε with respect to the potential induced by the total charge.

Proof. As the length of the side of A is one, the distance between any particle contained in A

and any point belonging to the interaction list region of A is at least one and at most four in

each direction. For the given ε > 0, using the method discussed in Section 4.2, there exists an

α ∈ (0,
π

4
) and p ∈ N such that

K(x− xm, y − ym)(1 + θm) =
∑

−p≤j,k≤p
ωAj,ke

iα(j,k)(x−xm,y−ym)T , 1 ≤ m ≤M (4.3)

where (x− xm, y − ym) ∈ Ω2
1,4 and |θm| < ε.

Define the multipole expansion of A as

∑
1≤m≤M

∑
−p≤j,k≤p

ωAj,ke
iα(j,k)(x−xm,y−ym)T .

69

Then,

∣∣∣∣∣∣
∑

1≤m≤M
qmK(x− xm, y − ym)−

∑
1≤m≤M

∑
−p≤j,k≤p

ωAj,ke
iα(j,k)(x−xm,y−ym)T

∣∣∣∣∣∣
≤

∑
1≤m≤M

|qm| ·

∣∣∣∣∣∣K(x− xm, y − ym)−
∑

−p≤j,k≤p
ωAj,ke

iα(j,k)(x−xm,y−ym)T

∣∣∣∣∣∣
=

∑
1≤m≤M

|qm||θm|K(x− xm, y − ym)

≤ε
∑

1≤m≤M
|qm|K(x− xm, y − ym)

The multipole expansion of A obtains a relative precision ε with respect to the potential due

to the total charge in A.

Furthermore,

∑
1≤m≤M

qm
∑

−p≤j,k≤p
ωAj,ke

iα(j,k)(x−xm,y−ym)T

=
∑

−p≤j,k≤p
ωAj,k

 ∑
1≤m≤M

qme
iα(j,k)(xA−xm,yA−ym)T

 eiα(j,k)(x−xA,y−yA)T
def
=

∑
−p≤j,k≤p

ωAj,kM
A
j,ke

iα(j,k)(x−xA,y−yA)T (4.4)

In the remaining discussion, we refer to Equation (4.4) as the multipole expansion about

the center of box A and {ωAj,kMA
j,k} as the coefficients of the multipole expansion.

The construction of multipole to multipole (TMM) and local to local (TLL) operators requires

the following lemma.

Lemma 4.1 (Half Period Expansion). Given α ∈ (0,
π

4
) and x ∈ [−1, 1], for any δ > 0, there

exists an H > 0 such that ∣∣∣∣∣∣eiα2 x −
∑

−H≤h≤H
τhe

iαhx

∣∣∣∣∣∣ < δ (4.5)

70

Proof. To start with, we observe that

cos
α

2
x =

∑
0≤n≤∞

(−1)n

(2n)!

(α
2

)2n
x2n

∑
0≤h≤H

Ch coshαx =
∑

0≤n≤∞

(−1)n

(2n)!

 ∑
0≤h≤H

Chh
2n

α2nx2n

There are totally H + 1 unknowns of Ch and therefore we set

∑
0≤h≤H

Chh
2n =

1

22n
, n = 0, . . . ,H (4.6)

Analogously, we have

sin
α

2
x =

∑
0≤n≤∞

(−1)n

(2n+ 1)!

(α
2

)2n+1
x2n+1

∑
1≤h≤H

Sh sinhαx =
∑

0≤n≤∞

(−1)n

(2n+ 1)!

 ∑
1≤h≤H

Shh
2n+1

α2n+1x2n+1.

We set

∑
1≤h≤H

Shh
2n+1 =

1

22n+1
, n = 0, . . . ,H − 1 (4.7)

Using Euler formula, we have

τ0 = C0, τh =
Ch + Sh

2
, τ−h =

Ch − Sh
2

, 1 ≤ h ≤ H (4.8)

The truncation errors for various values of H in infinity norm corresponding to α =
π

4
are

summarized in Table 4.2.

We now describe how to shift the multipole expansion of a child box to the center of its

parent.

Theorem 4.2 (Translation of a Multipole Expansion (TMM operator)). Suppose that (4.4)

is the multipole expansion of box A of length one and centered at (xA, yA), which contains M

71

H Error

4 3.07405 ×10−4

6 1.00136 ×10−6

8 4.00287 ×10−7

10 1.76879 ×10−8

12 8.35399 ×10−10

14 4.12392 ×10−11

16 2.10243 ×10−12

Table 4.2: Half period expansion error

charges of strengths q1, q2, . . . , qM located at points (x1, y1), (x2, y2), . . . , (xM , yM). Box B of

length two and centered at (xB, yB) is the parent box of A. There exists a linear transformation

TMM : MA
j,k → MB

j,k such that for any point (x, y) belonging to the interaction list region of

B, the potential φ(x, y) due to all charges contained in A is approximated by the multipole

expansion

∑
−p≤j,k≤p

ωBj,kM
B
j,ke

iβ(j,k)(x−xB ,y−yB)T , ωBj,k = 2γωAj,k, β =
α

2
(4.9)

with the same relative precision ε defined in Theorem 4.1 with respect to the potential due to

the total charge contained in A.

Proof. Applying the scaling property of the kernel to (4.3), we can derive

ωBj,k = 2γωAj,k and β =
α

2

Analogously, we can generate a multipole expansion about the center of box B due to the

charges inside A using Theorem 4.1 and then obtain the claimed accuracy result.

Now, we concentrate on constructing the linear transformation operator TMM .

First, by Lemma 4.1, we select an H > 0 such that the difference between ei
α
2
x and∑

−H≤h≤H τhe
iαx is smaller than ε for α ∈ (0,

π

4
) and x ∈ [−1, 1] (assume the machine precision

is ε).

Next, the TMM are constructed in three cases.

72

Case I: j and k are both even. Specifically, j = 2j1 and k = 2k1.

MB
j,k =

∑
1≤m≤M

qme
iβ(j,k)(xB−xm,yB−ym)T

= eiα(j1,k1)(xB−xA,yB−yA)
T
∑

1≤m≤M
qme

iα(j1,k1)(xA−xm,yA−ym)T

= eiα(j1,k1)(xB−xA,yB−yA)
T
MA
j1,k1 (4.10)

Case II: j is odd and k is even. Specifically, j = 2j1 + 1 and k = 2k1.

MB
j,k =

∑
1≤m≤M

qme
iβ(j,k)(xB−xm,yB−ym)T

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T ei
α
2
(xB−xm)

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T
∑

−H≤h≤H
τhe

iαh(xB−xm)

=
∑

−H≤h≤H
τh

 ∑
1≤m≤M

qme
iα(j1+h,k1)(xA−xm,yA−ym)T

 eiα(j1+h,k1)(xB−xA,yB−yA)T
=

∑
−H≤h≤H

τhM
A
j1+h,k1e

iα(j1+h,k1)(xB−xA,yB−yA)T (4.11)

Analogously, when j = 2j1 and k = 2k1 + 1, we have

MB
j,k =

∑
−H≤h≤H

τhM
A
j1,k1+he

iα(j1,k1+h)(xB−xA,yB−yA)T (4.12)

73

Case III: j and k are both odd. Specifically, j = 2j1 + 1 and k = 2k1 + 1.

MB
j,k =

∑
1≤m≤M

qme
iβ(j,k)(xB−xm,yB−ym)T

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T ei
α
2
(xB−xm)ei

α
2
(yB−ym)

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T
∑

−H≤h1≤H
τh1e

iαh1(xB−xm)
∑

−H≤h2≤H
τh2e

iαh2(yB−ym)

=
∑

−H≤h1,h2≤H
τh1τh2

 ∑
1≤m≤M

qme
iα(j1+h1,k1+h2)(xA−xm,yA−ym)T

 eiα(j1+h1,k1+h2)(xB−xA,yB−yA)T
=

∑
−H≤h1,h2≤H

τh1τh2M
A
j1+h1,k1+h2e

iα(j1+h1,k1+h2)(xB−xA,yB−yA)T (4.13)

Lastly, we mention that in Equations (4.11) – (4.13), j1 +h and k1 +h range from −H − p
2

to H + p
2 respectively, assuming p is an even number. When we have p ≥ H

2 , all the multipole

{MA
j,k} used in the formulas have been computed and the formulas are well defined. On the

other hand, when H > p
2 , some values of {MA

j,k} are missing. In this case, we let p̃ = 2H and

associate each box with a p̃2-term multipole expansion. For box A, we compute {MA
j,k}, where

−p̃ ≤ j, k ≤ p̃. For the newly added {ωj,k}, their values are set to be zero. In this way, we

obtain well defined formulas while maintaining the same precision result.

Remark 4.3. In Theorem 4.2, if the given α ∈ (0, π4) satisfies

∣∣∣∣∣∣eiαx −
∑

−H≤h≤H
τhe

i2αhx

∣∣∣∣∣∣ < ε, x ∈ [−1, 1],

74

then case III can be done in a simpler manner as follows:

MB
j,k =

∑
1≤m≤M

qme
iβ(j,k)(xB−xm,yB−ym)T

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T eiα
xB−xm+yB−ym

2

=
∑

1≤m≤M
qme

iα(j1,k1)(xB−xm,yB−ym)T
∑

−H≤h≤H
τhe

i2αh
xB−xm+yB−ym

2

=
∑

−H≤h≤H
τh

 ∑
1≤m≤M

qme
iα(j1+h,k1+h)(xA−xm,yA−ym)T

 eiα(j1+h,k1+h)(xB−xA,yB−yA)T
=

∑
−H≤h≤H

τhM
A
j1+h,k1+he

iα(j1+h,k1+h)(xB−xA,yB−yA)T

We now describe how to translate the multipole expansion of box B into a local expansion

of box C which has B in its interaction list.

Theorem 4.3 (Conversion of a Multipole Expansion into a Local Expansion (TML operator)).

Suppose that the multipole expansion of box B is given by (4.9). Box B belongs to the interaction

list of box C centered at (xC , yC). Without loss of accuracy, the multipole expansion (4.9) can

be converted into a local expansion about the center of box C.

Proof. The local expansion can be obtained by shifting the expansion center as follows.

∑
−p≤j,k≤p

ωBj,kM
B
j,ke

iβ(j,k)(x−xB ,y−yB)T

=
∑

−p≤j,k≤p

[
ωBj,kM

B
j,ke

iβ(j,k)(xC−xB ,yC−yB)T
]
eiβ(j,k)(x−xC ,y−yC)

T

def
=

∑
−p≤j,k≤p

LCj,ke
iβ(j,k)(x−xC ,y−yC)T (4.14)

In the remaining discussion, we refer to Equation (4.14) as the local expansion about the

center of box C and {LCj,k} as the coefficients of the local expansion. The operator mapping

{MB
j,k} to {LCj,k} is referred to as the TML operator.

Lastly, we describe how to shift the local expansion of box C to its child box D.

75

Theorem 4.4 (Translation of a Local Expansion (TLL operator)). Suppose that box C centered

at (xC , yC) with side length two has a local expansion in the form of (4.14). Box D centered

at (xD, yD) is a child box of C. There exists a linear transformation TLL : LCj,k → LDj,k which

converts the local expansion of C into a local expansion about the center of D.

Proof. TLL operator is constructed by processing each term in the local expansion of C. In the

proof, we assume that p is even and p ≥ 2H where H is defined in Theorem 4.2.

The local expansion about the center of D is in the form of

∑
−p≤j,k≤p

LDj,ke
iα(j,k)(x−xD,y−yD)T , α = 2β.

First, we set all {LDj,k} to be zero and then process each term in the local expansion of C,

matching it to those of the local expansion of D.

Case I: j and k are even. Specifically, j = 2j1 and k = 2k1.

LCj,ke
iβ(j,k)(x−xC ,y−yC)T

=LCj,ke
iα(j1,k1)(xD−xC ,yD−yC)T eiα(j1,k1)(x−xD,y−yD)T

Therefore,

LDj1,k1 ←− L
D
j1,k1 + LCj,ke

iα(j1,k1)(xD−xC ,yD−yC)T (4.15)

Case II: j is odd and k is even. Specifically, j = 2j1 + 1 and k = 2k1.

76

LCj,ke
iβ(j,k)(x−xC ,y−yC)T

=LCj,ke
iα(j1,k1)(x−xC ,y−yC)T ei

α
2
(x−xC)

=LCj,ke
iα(j1,k1)(x−xC ,y−yC)T

∑
−H≤h≤H

τhe
iαh(x−xC)

=
∑

−H≤h≤H
τhL

C
j,ke

iα(j1+h,k1)(xD−xC ,yD−yC)T eiα(j1+h,k1)(x−xD,y−yD)T

Therefore, for each h, −H ≤ h ≤ H,

LDj1+h,k1 ←− L
D
j1+h,k1 + τhL

C
j,ke

iα(j1+h,k1)(xD−xC ,yD−yC)T (4.16)

Analogously, when j = 2j1 and k = 2k1 + 1, for each h, −H ≤ h ≤ H,

LDj1,k1+h ←− L
D
j1,k1+h + τhL

C
j,ke

iα(j1,k1+h)(xD−xC ,yD−yC)T (4.17)

Case III: j and k are both odd. Specifically, j = 2j1 + 1 and k = 2k1 + 1.

LCj,ke
iβ(j,k)(x−xC ,y−yC)T

=LCj,ke
iα(j1,k1)(x−xC ,y−yC)T ei

α
2
(x−xC)ei

α
2
(y−yC)

=LCj,ke
iα(j1,k1)(x−xC ,y−yC)T

∑
−H≤h1≤H

τh1e
iαh1(x−xC)

∑
−H≤h2≤H

τh2e
iαh2(y−yC)

=
∑

−H≤h1,h2≤H
τh1τh2L

C
j,ke

iα(j1+h1,k1+h2)(xD−xC ,yD−yC)T eiα(j1+h1,k1+h2)(x−xD,y−yD)T

Therefore, for each (h1, h2), −H ≤ h1, h2 ≤ H,

LDj1+h1,k1+h2 ←− L
D
j1+h1,k1+h2 + τh1τh2L

C
j,ke

iα(j1+h1,k1+h2)(xD−xC ,yD−yC)T (4.18)

77

4.4 Algorithm Structure and Further Improvements

In this section, we present a pseudo-code to describe the algorithm structure. We start with

the uniform version, and then discuss several strategies to reduce the algorithmic complexity,

and conclude the section with the adaptive version of the algorithm.

Uniform FMM Algorithm

Initialization

Choose a level of refinement lmax ≈ log4N , a precision ε. Determine the number of terms p

used in each direction in the kernel approximation.

Upward Pass

Step 1

for each box b at the finest refinement level lmax

Compute the factor {M b
j,k} of the multipole expansion using Theorem 4.1.

end

Step 2

for l = lmax − 1, . . . , 0

for each box b at level l

Compute {M b
j,k} by merging expansions from its children via Theorem 4.2.

end

end

Downward Pass

Step 3

78

Set {Lbj,k} = (0, 0, . . . , 0) for each box b at level 1.

for l = 2, . . . , lmax − 1

for each box b at level l

Shift the local expansion of b’s parent about b’s center using Theorem 4.4.

end

for each box b at level l

Convert the multipole expansion of each box j in the interaction list of b into a

local expansion about the center of b via Theorem 4.3.

end

end

Step 4

for each box b at level lmax

Convert the multipole expansion of each box j in the interaction list of b into a local

expansion about the center of b via Theorem 4.3.

end

Step 5

for each box b at level lmax

Evaluate the local expansion of b for every particle located inside b.

end

Step 6

for each box b at level lmax

For every particle located inside b, compute interactions with all other

particles within b and its nearest neighbors directly.

end

Step 7

79

for each box b at level lmax

For every particle inside b, add direct and far-field results together.

end

A brief analysis of the algorithmic complexity is given below.

Step Operation Count Explanation

1 order Np2 Each particle contributes to one expansion at the finest level.

2 order Np4 At the lth level, 4l shifts involving order p4 work per shift

must be performed.

3 order ≤ Np4 + 27Np2 The first loop requires order Np4 work. There are at most

27 entries in the interaction list for each box at each level.

Order p2 work is required to convert one multipole into local

expansion.

4 order ≤ 27Np2 There are at most 27 entries in the interaction list for each

box, and 4lmax ≈ N boxes.

5 order Np2 p2 -term expansion is evaluated at each particle location.

6 order
9

2
knN Let kn be an bound on the number of particles per box at the

finest level. Interactions must be computed within the box

and its eight nearest neighbors. Newton’s third law allows

computing only half of the pairwise interactions.

7 order N Adding two terms for each particle.

In the above algorithm, there have several places for further improvement. We now discuss

the strategies to reduce the operation counts.

First, we will construct TLL operator from a receiver-initiated manner rather than the

current sender-driven fashion. From the parallelization perspective, the former choice allows

computing all the coefficients of {Lj,k} simultaneously. In other words, we process each term

of the local expansion of a child box D concurrently by collecting information from appropriate

terms of its parent C’s local expansion.

80

Without loss of generality, we assume that p is an even number. The case when p is odd

can be handled analogously. As shown in the proof of Theorem 4.4, we only need to process

terms whose indices (j, k) satisfy the inequality −p
2
−H ≤ j, k ≤ p

2
+H − 1. Given such a pair

(j, k), LDj,k is constructed as follows.

1. If −p
2
≤ j, k ≤ p

2
, then LDj,k receives from LC2j,2k

LC2j,2ke
iα(j,k)(xD−xC ,yD−yC)T (4.19)

2. If −p
2
≤ j ≤ p

2
and −p

2
−H ≤ k ≤ p

2
+H − 1, then LDj,k receives from LC2j,2k−2h+1

τhL
C
2j,2k−2h+1e

iα(j,k)(xD−xC ,yD−yC)T , hmin ≤ h ≤ hmax

hmin = max{−H, k − p

2
+ 1}, hmax = min{H, k +

p

2
} (4.20)

3. If −p
2
−H ≤ j ≤ p

2
+H − 1 and −p

2
≤ k ≤ p

2
, then LDj,k receives from LC2j−2h+1,2k

τhL
C
2j−2h+1,2ke

iα(j,k)(xD−xC ,yD−yC)T , hmin ≤ h ≤ hmax

hmin = max{−H, j − p

2
+ 1}, hmax = min{H, j +

p

2
} (4.21)

4. If −p
2
−H ≤ j, k ≤ p

2
+H − 1, then LDj,k receives from LC2j−2h1+1,2k−2h2+1

τh1τh2L
C
2j−2h1+1,2k−2h2+1e

iα(j,k)(xD−xC ,yD−yC)T

max{−H, j − p

2
+ 1} ≤ h1 ≤ min{H, j +

p

2
}

max{−H, k − p

2
+ 1} ≤ h2 ≤ min{H, k +

p

2
} (4.22)

From (4.19) – (4.22) and (4.10) – (4.13), several improvements are available. First, we

consider shifting the local expansion from one parent box C to its four child boxes. Notice that

only the values of {eiα(j,k)(xD−xC ,yD−yC)T } are changed between different child boxes. Therefore,

we first compute the common factors only once and then do a component-wise multiplication

81

to obtain the result for each child box. Second, we consider two different parent boxes C1 and

C2. Let D1 and D2 be their child boxes, respectively. If the relative position of C1 and D1 is

the same as that of C2 and D2, then

eiα(j,k)(xD1
−xC1

,yD1
−yC1

)T = eiα(j,k)(xD2
−xC2

,yD2
−yC2

)T .

This suggests at any level l, we only need to compute four sets of {eiα(j,k)(xD−xC ,yD−yC)T }

for D being the lower left, lower right, upper left, and upper right child of C and store them as

global variables which are used both in the upward pass and downward pass.

In certain circumstances, we can relax the accuracy requirement for the kernel approxima-

tion to reduce the value of p. For example, we can require

K(x, y)−
∑

−p≤j,k≤p
ωj,ke

iα(j,k)(x,y)T = (1 + θ)Kmax, (4.23)

where Kmax = ‖K(x, y)‖∞, (x, y) ∈ Ω2
1,4, and |θ| < ε. Essentially, this leads to the best uniform

approximation of the kernel within a scaling factor. Then we have

∣∣∣∣∣∣
∑

1≤m≤M
qmK(x− xm, y − ym)−

∑
1≤m≤M

qm
∑

−p≤j,k≤p
ωj,ke

iα(j,k)(x−xm,y−ym)T

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

1≤m≤M
qmK(x− xm, y − ym)−

∑
1≤m≤M

qmK(x− xm, y − ym) +
∑

1≤m≤M
qmθmKmax

∣∣∣∣∣∣
≤ε

∑
1≤m≤M

|qm|Kmax (4.24)

The multipole expansion will achieve a relative precision ε with respect to the maximum

potential induced by the total charge (assuming all particles carry positive charges and reside

at the same location).

We now develop an adaptive version of the algorithm which needs some modification to the

current data structure.

82

We first recall the adaptive algorithm described in Section 2.3. For each box b belonging

to the list 3 of some box c, we can either directly compute the interactions or can evaluate the

multipole expansion of b at every particle location in c. For each box b belonging to the list 4 of

some box c, we can either directly compute the interactions or can generate a local expansion

about c’s center using the particle information contained in b.

Compared with that, we can only process the lists 3 and 4 of certain box in the current

data structure by means of direct calculation. For example, we consider the situation depicted

in Figure 4.2. Both boxes c1 and c2 belong to the list 3 of box b. However, only the multipole

expansion of box c2 is valid in the entire region covered by box b. As a result, we can only

collect potential due to charges inside box c1 by computing the interaction direction. When it

comes to box c2, we can alternatively evaluating its multipole expansion. Since the number of

particles contained in boxes c1 and c2 are approximately both 4s, the direct interaction with cost

of 2s2 operations will become inefficient compared with p2s operations of evaluating multipole

expansion when s >
p2

2
. From this example, we observe that for any pair of boxes b and c where

c belongs to the list 3 of b, the multipole expansion of c is invalid in the entire region covered by

b when b and c are more than one level apart in the tree. Therefore, in the following adaptive

algorithm, we impose a constraint requiring that adjacent boxes (either sharing a vertex or an

edge) cannot be more than one level apart in the tree. Under this condition, we can always

process lists 3 and 4 using the more efficient approach available.

Following is a formal description of the algorithm. Description of the notation can be found

in Section 2.3.

Adaptive FMM Algorithm

Initialization

Choose precision ε and then determine the number of terms used in each direction of the kernel

approximation p. Choose the maximum number s of charges allowed in a childless box.

Build Tree Structure

Step 1

83

b

c1

c2

Figure 4.2: (b) and two entries c1 and c2 of b’s list 3

for l = 0, 1, 2, . . .

for each box b ∈ Bl = {nonempty boxes at level l}

if b contains more than s charges then

Divide b into four child boxes. Ignore empty children and

add the nonempty child boxes to Bl+1.

endif

end

end

Comment [Denote the maximum refinement level obtained by lmax]

for l = lmax, . . . , 0

for each box b at level l

Refine each adjacent box c of b so that c and b are at most one level

apart in the tree. Update the nonempty box sets accordingly.

end

end

Comment [Denote the total number of boxes created by nbox.]

84

for each box bi, i = 1, 2, . . . , nbox

Create Lists L1(bi), L2(bi), L3(bi), L4(bi)

end

Upward Pass

Step 2

for l = lmax, . . . ,−1, 0

for each box b in Bl

if b is childless then

Compute the factor {M b
j,k} by using Theorem 4.1.

else

Compute {M b
j,k} by merging expansions from its children via Theorem 4.2.

endif

end

end

Downward Pass

Step 3

for each box bi, i = 1, . . . , nbox

for each box c ∈ L4(bi)

if the number of charges in bi ≤ p2 then

Comment [The number of charges in bi is small. It is faster to use direct calculation than to

generate the contribution to the local expansion {Lbij,k} due to charges in c; act accordingly.]

Calculate potential field at each particle point in bi directly from charges in c.

else

85

Comment [The number of charges in bi is large. It is faster to generate the contribution to

the local expansion {Lbij,k} due to charges in c than to use direct calculation; act accordingly.]

Generate a local expansion at bi’s center due to charges in c.

endif

end

end

Step 4

for l = 2, 3, . . . , lmax

for each box b ∈ Bl

Convert the multipole expansion of each box j in interaction list of b into a

local expansion about the center of b via Theorem 4.3.

end

end

Step 5

for each box bi, i = 1, 2, . . . , nbox

if bi is a parent box then

Shift the local expansion {Lbij,k} to the centers of its children using Theorem 4.4,

and add the translated expansions to children’s local expansions.

endif

end

Evaluation of Potentials

Step 6

for each box bi = 1, 2, . . . , nbox

if bi is childless then

86

Calculate the potential at each charge in bi from the local expansion {Lbij,k}

endif

end

Step 7

for each box bi, i = 1, 2, . . . , nbox

if bi is childless then

for each box c ∈ L3(bi)

if the number of charges in c ≤ p2 then

Comment [The number of charges in c is small. It is faster to use direct calculation than to

evaluate the multipole expansion {ωcj,kM c
j,k}; act accordingly.]

Calculate the potential at each charge bi directly from charges in c.

else

Comment [The number of charges in c is large. It is faster to evaluate the expansion {ωcj,kM c
j,k}

than to use direct calculation; act accordingly.]

Calculate the potential at each charge in bi from multipole expansion {ωcj,kM c
j,k}

endif

end

endif

end

Step 8

for each box bi, i = 1, 2, . . . , nbox

if bi is childless then

Calculate the potential at each charge in bi directly due to all charges in L1(bi).

endif

end

87

The analysis of the complexity of the adaptive algorithm uses the following results from

[16].

1. There are at most log2 ε levels of refinement where ε is the machine precision.

2. The number of nonempty boxes is at most
5N

s
· log2 ε.

3. The number of boxes in all list 1’s is bounded by
44N

s
· log2 ε .

4. For any box, its list 2 has no more than 27 entries.

5. The total number of boxes in list 3 (or list 4) is bounded by
32N

s
· log2 ε.

Step Operation Count Explanation

1 N log2 ε+N Each particle is assigned to box at every level and there are

at most log2 ε levels of refinement. The extra N is required

to modify the tree if necessary and generate lists.

2 Np2 +
5p4N

s
· log2 ε Each particle contributes to a p2-term expansion. Each mul-

tipole to multipole shift requires order p4 operation and

there are at most
5N

s
· log2 ε boxes.

3
∑

i≤ 32N
s
·log2 ε

ci∈L4(bi)

min{p2s, s|bi|} Each box ci that belongs to the list 4 of some box bi contains

less than s charges. |bi| is the number of charges contained

in box bi. The interactions between all particles in ci and bi

require either p2s work by generating local expansion about

bi’s center or s|bi| work by using direct interaction. The

option yielding the smaller operation count is selected. The

total number of boxes in list 4 is bounded by
32N

s
· log2 ε.

4
5N

s
· log2 ε · 27p2 For each box, its list 2 has at most 27 entries. Each multipole

to local translation costs order p2. There are at most
5N

s
·

log2 ε boxes.

88

5
5N

s
· log2 ε · p4 Shifting the local expansion of a parent box to its four chil-

dren can be done in order p4 operations. There are at most

5N

s
· log2 ε boxes.

6 Np2 A p2-term expansion is evaluated at each particle location.

7
∑

i≤ 32N
s
·log2 ε

ci∈L3(bi)

min{p2s, s|ci|} |ci| is the number of charges contained in box ci. ci belongs

to list 3 of bi which has less than s charges. The interac-

tions between all particles in bi and ci require either p2s by

evaluating ci’s multipole expansion or s|ci| by using direct

interaction. The option yielding the smaller operation count

is selected. The total number of boxes in list 3 is bounded

by
32N

s
· log2 ε.

8
44N

s
· log2 ε ·

s2

2
The number of boxes in all list 1 is bounded by

44N

s
· log2 ε.

The work required to compute all interactions between par-

ticles in two boxes is
s2

2
when Newton’s third law is used.

4.5 Numerical Results

In this section, we present three sets of numerical experiments to examine the correctness of the

translation operators developed in Section 4.3 and explore the applicable scope of the algorithm.

The experiments are based on an implementation of the uniform version of the algorithm in

Matlab. The computing environment is a Dell workstation with two Xeon 5520 processors at

2.26 GHz and 48 GB memory.

The numerical results are summarized in Tables 4.5, 4.6, and 4.7. In each set of experiments,

particles are distributed uniformly inside the unit square [−0.5, 0.5]2. In each table, N denotes

the number of particles used in the simulation. nlev denotes the maximum refinement level.

For each N , we executed the program with several choices of nlev and the one yielding the

smallest running time is reported. We compute the results using direct calculation at the first

200 generated point locations and then calculate the algorithm error according to Equation

(2.24). The timing results in the TFMM column are measured in seconds.

89

In the first set of experiments, the interaction between particles is described by
1

r2
. The

criterion for kernel approximation is to have at least 6 digits accuracy in the sense of relative

error. Using the method described in Section 4.2, we obtained a particular set of p, α, and

{ωjk} that satisfies the requirement. The corresponding relative error plot in the first quadrant

of Ω2
1,4 is depicted in Figure 4.3. In this figure, we have p = 21, α =

2π

9.25
, and the maximum

relative error is 8.4274 · 10−7. From the plot, we conclude that the current result is not optimal

and we should expect to have a smaller p value (fewer terms) in the optimal approximation. The

timing results of this set of experiments are summarized in Table 4.5. First, we can observe that

the CPU time requirements TFMM grow approximately linearly with respect to the number of

particles N . Secondly, we observe that for this particular particle distribution, we achieve 4

more digit accuracy than the expected 6-digit precision.

In the second set of experiments, the interaction between particles is still described by
1

r2
.

However, we impose a different criterion in the kernel approximation, requiring the result have

at least 6 digits accuracy with respect to Kmax, where Kmax = ‖K(x, y)‖∞, (x, y) ∈ Ω2
1,4.

Notice that Kmax = 1 and therefore in this case, we essentially control the absolute error in the

kernel approximation. Again, a particular set of p, α, and {ωj,k} is found to satisfy the accuracy

requirement. The corresponding error plot in the first quadrant of Ω2
1,4 is depicted in Figure 4.4.

In this figure, we have p = 21, α =
2π

9.05
, and the maximum error is 3.6356 · 10−7. We can

conclude from the plot that the result is not optimal and we could use fewer terms to achieve

the accuracy requirement. The timing results for this set of experiments are summarized in

Table 4.6. We observe that the CPU time requirements TFMM still grow approximately linearly

with respect to the number of particles N . The accuracy and timing results are also comparable

to those in Table 4.5. It implies that controlling error with respect to Kmax is an alternative

and competitive criterion to use in the kernel approximation.

In the third set of experiments, the interaction between particles is described by
x2

r4
. Notice

that when x = 0, the exact value of the kernel function is zero and it is impossible to control

relative error here. Alternatively, the criterion is to have at least 6 digits accuracy with respect

to Kmax defined the same as above. Again, we plot the error plot in the first quadrant of Ω2
1,4

corresponding to the set of p, α, and {ωj,k} used in further computation, see Figure 4.5. In this

90

figure, we have p = 24, α =
2π

8.85
, and the maximum error is 5.0338 · 10−7. The timing results

for this set of experiments are summarized in Table 4.7. We can observe the linear relationship

between the CPU time requirements and the number of particles.

From the above experiments, we observe that once we satisfy the criterion on the kernel

approximation, we will achieve the accuracy requirement in the computation of potentials.

Comparing Table 4.5 and Table 4.7, we see that the CPU time requirements increase with p. It

is crucial to develop schemes to find out optimal kernel approximation to reduce the value of p

which further improves the CPU time requirements. This issue is currently under investigation

and results will be reported at a further time.

91

Figure 4.3: Relative approximation error for kernel
1

r2
in the first quadrant

N nlev Error TFMM

500 2 1.8488 · 10−10 0.9770
1000 2 6.2183 · 10−10 1.1254
2000 2 1.6348 · 10−10 1.4210
4000 2 3.8448 · 10−10 2.1359
8000 2 7.3288 · 10−11 3.9688
16000 2 6.3476 · 10−11 9.6384
32000 3 6.1992 · 10−11 18.8773
64000 3 2.4997 · 10−11 43.5001
128000 4 3.5943 · 10−11 79.9500

Table 4.5: Timing results of uniform FMM for 6-digit accuracy. Charges are distributed

in the unit square whose interactions are described by kernel
1

r2
. Control relative error

in kernel approximation.

92

Figure 4.4: Absolute approximation error for kernel
1

r2
in the first quadrant

N nlev Error TFMM

500 2 1.0432·10−9 1.0043
1000 2 2.5532·10−10 1.2059
2000 2 1.3817·10−10 1.4667
4000 2 2.3094·10−10 2.1474
8000 2 4.7091·10−11 3.9991
16000 2 9.5984·10−11 10.1514
32000 3 7.5233·10−11 19.1434
64000 3 1.2618·10−11 46.0349
128000 4 1.5739·10−11 81.5294

Table 4.6: Timing results of uniform FMM for 6-digit accuracy. Charges are distributed

in the unit square whose interactions are described by kernel
1

r2
. Control absolute error

in kernel approximation.

93

Figure 4.5: Absolute approximation error for kernel
x2

r4
in the first quadrant

N nlev Error TFMM

500 2 1.3523·10−9 1.2287
1000 2 2.1911·10−9 1.4230
2000 2 1.7255·10−9 1.9184
4000 2 8.7495·10−10 3.2643
8000 2 5.1591·10−10 7.3304
16000 3 6.2384·10−10 15.8875
32000 3 1.1186·10−9 33.3443
64000 4 1.7560·10−9 71.1998
128000 4 9.1502·10−11 138.6034

Table 4.7: Timing results of uniform FMM for 6-digit accuracy. Charges are distributed

in the unit square whose interactions are described by kernel
x2

r4
. Control absolute error

in kernel approximation.

94

Chapter 5

Conclusion

The work in this thesis can be summarized from three aspects.

First, efforts have been devoted to software integration and dissemination. The complexities

in mathematics, algorithms, architectures, and programming have made it important and nec-

essary to provide FMM software to the community of computational science and engineering.

I have contributed to the open-source new-version FMM packages with a host of solvers for

the Laplace equation, the Yukawa equation, and the low-frequency Helmholtz equation, which

frequently arise in scientific simulations and engineering designs. The packages are released un-

der general public license at the website http://fastmultipole.org, which also hosts educational

materials on various topics on integral equation methods.

Secondly, a graph-theoretic approach has been proposed to map FMM onto the parallel

computer architectures (PCAs). Particularly, I established the critical path analysis, the ex-

ponential node growth condition for concurrency-breadth , a spatio-temporal graph partition

scheme. With the theoretical results underlying the practical multi-threading parallel FMM de-

sign, simulations on the scale of hundred-millions of particles have been enabled on workstations

with multicore processors in minutes.

Thirdly, a new kernel-independent FMM based on Fourier series expansions has been devel-

oped and applied to kernels with scaling property. The scheme only relies on the ability of kernel

evaluation in a finite region, which extends the ideas of FMM to situations that the analytical

kernel expansion is either unavailable or too expensive to compute. The translation operators

are constructed in the receiver-initiated manner which shows great promise in parallelization

on modern multicore computers.

The work in this dissertation has broad range of applications. Particularly, the FMM-

Laplace and FMM-Yukawa packages have been incorporated into the Adaptive-Fast-Multipole-

Poisson-Boltzmann (AFMPB) solver in collaboration with J. A. McCammon’s group at UCSD

in the molecular dynamics simulation. Currently, the corresponding parallel version is under

development to achieve further performance improvement. For the kernel-independent FMM,

it will be applied in the dislocation dynamics simulation in material science.

The work in this dissertation will be continued in several ways in the future. In the par-

allelization area, we will use dynamic thread creation and termination [22] to reach maximal

parallel processing with minimal synchronization scope and overhead. We also would like to

combine the scheme with MPI for inter-processors data exchanges, to accommodate larger data

sets and increase parallel processing capacity. In the area of kernel independent FMM, we will

study better strategies for kernel approximation to reduce the number of multipole expansion

terms used in the algorithm. We also plan to further accelerate the multipole-to-multipole and

local-to-local operators with fast convolution algorithms.

96

BIBLIOGRAPHY

[1] Fast Multipole Methods. http://fastmultipole.org.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. 1965.

[3] B. Alpert, C. Beylkin, R. Coifman, and V. Rokhlin. Wavelet-Like Bases for the Fast Solu-
tion of Second-Kind Integral Equations. SIAM Journal on Scientific Computing, 14:159–
184, 1993.

[4] C. R. Anderson. An Implementation of the Fast Multipole without Multipoles. SIAM
Journal on Scientific and Statistical Computing, 13:923–947, 1992.

[5] A. W. Appel. An Efficient Program for Many-Body Simulation. SIAM Journal on Scientific
and Statistical Computing, 6:85–103, 1985.

[6] J. Barnes and P. Hut. A Hierarchical O(N logN) Force-Calculation Algorithm. Nature,
324:446–449, 1986.

[7] A. J. Bernstein. Analysis of Program for Parallel Processing. IEEE Transactions on
Electronic Computers, 15:757–762, 1966.

[8] G. Beylkin, V. Cheruvu, and F. Pérez. Fast Adaptive Algorithms in the Non-Standard
Form for Multidimensional Problems. Applied and Computational Harmonic Analysis,
24:354–377, 2008.

[9] G. Beylkin, R. Coifman, and V. Rokhlin. Fast Wavelet Transforms and Numerical Algo-
rithms I. Communications on Pure and Applied Mathematics, 44:141–183, 1991.

[10] G. Beylkin, R. Cramer, G. Fann, and R. Harrison. Multiresolution Separated Representa-
tions of Singular and Weakly Singular Operators. Applied and Computational Harmonic
Analysis, 23:235–253, 2007.

[11] G. Beylkin and M. J. Mohlenkamp. Algorithms for Numerical Analysis in High Dimensions.
SIAM Journal on Scientific Computing, 26:2133–2159, 2005.

[12] G. Beylkin and L. Monzón. On Approximation of Functions by Exponential Sums. Applied
and Computational Harmonic Analysis, 19:17–48, 2005.

[13] A. Boschitsch, M. Fenley, and H. Zhou. Fast Boundary Element Method for the linear
Poisson-Boltzmann Equations. The Journal of Physical Chemistry B, 106:2741–2754, 2002.

[14] A. H. Boschtisch, M. O. Fenley, and W. K. Olson. A Fast Adaptive Multipole Algorithm for
Calculating Screened Coulomb (Yukawa) Interactions. Journal of Computational Physics,
151:212–241, 1999.

[15] A. Brandt. Multilevel Computations of Integral Transforms and Particle Interactions with
Oscillatory Kernels. Computer Physics Communications, 65:24–38, 1991.

97

[16] J. Carrier, L. Greengard, and V. Rokhlin. A Fast Adaptive Multipole Algorithm for
Particle Simulations. SIAM Journal on Scientific and Statistical Computing, 9:669–686,
1988.

[17] N. Carriero and D. Gelernter. Linda in Context. Communication of the ACM, 32:444–458,
1989.

[18] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. Greengard, F. Ethridge, J. Huang,
V. Rokhlin, N. Yarvin, and J. Zhao. A Wideband Fast Multipole Method of the Helmholtz
Equation in Three Dimensions. Journal of Computational Physics, 216:300–325, 2006.

[19] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin. On the Compression of Low-
Rank matrices. SIAM Journal on Scientific Computing, 26:1389–1404, 2005.

[20] H. Cheng, L. Greengard, and V. Rokhlin. A Fast Adaptive Multipole Algorithm in Three
Dimensions. Journal of Computational Physics, 155:468–498, 1999.

[21] T. Darden, D. York, and L. Pedersen. Particle Mesh Ewald: An N log(N) Method for
Ewald Sums in Large Systems. Journal of Chemical Physics, 98:10089–10092, 1993.

[22] E. R. Davidson and T. H. Cormen. Asynchronous Buffered Computational Design and
Engineering Framework Generator (ABCDEFG).

[23] P. Debye and E. Hückel. Zur Theorie der Elektrolyte. Physikalische Zeitschrift, 24(9):185–
206, 1923.

[24] F. Ethridge and L. Greengard. A New Fast-Multipole Accerlated Poisson Solver in Two
Dimensions. SIAM Journal on Scientific Computing, 23:741–760, 2001.

[25] W. Fong and E. Darve. The Black-Box Fast Multipole Method. Journal of Computational
Physics, 228:8712–8725, 2009.

[26] Y. Fu and G. J. Rodin. Fast Solution Methods for 3D Stokesian Many-Particle Problems.
Communications in Numerical Methods in Engineering, 16:145–149, 2000.

[27] M. Gilson, A. Rashin, R. Fine, and B. Honig. On the Calculation of Electrostatic Interac-
tions in Proteins. Journal of Molecular Biology, 184:503–516, 1985.

[28] Z. Gimbutas and V. Rokhlin. A Generalized Fast Multipole Method for Nonoscillatory
Kernels. SIAM Journal on Scientific Computing, 24:796–817, 2003.

[29] D. Goeddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM simulations
with GPUs. In Proceedings of ASIM 2005, 2005.

[30] L. Greengard and W. Gropp. A Parallel Version of the Fast Multipole Method. Computers
& Mathematics with Applications, 20:63–71, 1990.

[31] L. Greengard and J. Huang. A New Version of the Fast Multipole Method for Screened
Coulomb Interactions in Three Dimensions. Journal of Computational Physics, 180(2):642–
658, 2002.

[32] L. Greengard, J. Huang, and V. Rokhlin. Accelerating Fast Multipole Methods for the
Helmholtz Equation at Low Frequencies. IEEE Computational Science & Enginerring,
5:32–38, 1998.

98

[33] L. Greengard, M. Kropinski, and A. Mayo. Integral Equation Methods for Stokes Flow and
Isotropic Elasticity in the Plane. Journal of Computational Physics, 125:403–414, 1996.

[34] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal of
Computational Physics, 73:325–348, 1987.

[35] L. Greengard and V. Rokhlin. A New Version of the Fast Multipole Method for the Laplace
Equation in Three Dimensions. Acta Numerica, 6:229–269, 1997.

[36] N. A. Gumerov and R. Duraiswami. Fast Multipole Methods on Graphics Processors.
Journal of Computational Physics, 227:8290–8313, 2008.

[37] R. Harrison, G. Fann, T. Yanai, Z. Gan, and G. Beylkin. Multiresolution Quantum Chem-
istry: Basic Theory and Initial Applications. Journal of Chemical Physics, 121:11587–
11598, 2004.

[38] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Taylor &
Francis, Inc., 1988.

[39] T. Hrycak and V. Rokhlin. An Improved Fast Multipole Algorithm for Potential Fields.
SIAM Journal on Scientific Computing, 19:1804–1826, 1998.

[40] J. Huang, J. Jia, and B. Zhang. FMM-Yukawa: An Adaptive Fast Multipole Method for
Screened Coulomb Interactions. Computer Physics Communications, 180:2331–2338, 2009.

[41] J. A. B. Jr., J. W. Causey, and J. F. L. Jr. Accelerated Molecular Dynamics Simulation
with the Parallel Fast Multipole Algorithm. Chemical Physics Letters, 198:89–94, 1992.

[42] A. J. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, and H. J. C. Berendsen.
The Electric Potential of a Macromolecule in a Solvent: A Fundamental Approach. Journal
of Computational Physics, 97(1):144–171, 1991.

[43] S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor, and J. K. White. Fast Methods
for Simulation of Biomolecule Electrostatics. In ICCAD ’02: Proceedings of the 2002
IEEE/ACM International Conference on Computer-Aided Design, pages 466–473, 2002.

[44] J. Liang and S. Subramaniam. Computation of Molecular Electrostatics with Boundary
Element Methods. Biophysical Journal, 73(4):1830–1841, 1997.

[45] B. Lu, X. Cheng, J. Huang, and J. McCammon. Order N Algorithm for Computation of
Electrostatic Interactions in Biomolecular Systems. In Proceedings of the National Academy
of Sciences, volume 103, pages 19314–19319, 2006.

[46] B. Lu, X. Cheng, J. Huang, and J. A. McCammon. AFMPB: An Adaptive Fast Mul-
tipole Poisson-Boltzmann Solver for Calculating Electrostatics in Biomolecular Systems.
Computer Physics Communications, 181:1150–1160, 2010.

[47] B. Lu, X. Cheng, and J. A. McCammon. “New-Version-Fast-Multipole-Method” Ac-
celerated Electrostatic Calculations in Biomolecular Systems. Journal of Computational
Physics, 226:1348–1366, 2007.

[48] C. C. Lu and W. C. Chew. Fast Algorithm for Solving Hybrid Integral Equations. IEEE
Proceedings H, 140:455–460, 1993.

99

[49] C. C. Lu and W. C. Chew. A Multilevel Algorithm for Solving a Boundary Integral
Equation of Wave Scattering. Microwave and Optical Technology Letters, 7:466–470, 1994.

[50] P. G. Martinsson and V. Rokhlin. A Fast Direct Solver for Boundary Integral Equations
in Two Dimensions. Journal of Computational Physics, 205:1–23, 2005.

[51] P. G. Martinsson and V. Rokhlin. An Accelerated Kernel-Independent Fast Multipole
Method in One Dimensions. SIAM Journal on Scientific Computing, 29:1160–1178, 2007.

[52] E. Michielssen, A. Ergin, B. Shanker, and D. Weile. The Multilevel Plane Wave Time Do-
main Algorithm and Its Applications to the Rapid Solution of Electromagnetic Scattering
Problems: A Review. In Fifth International Conference on Mathematical and Numerical
Aspects of Wave Propagation, pages 24–33, 2000.

[53] K. Nabors, S. Kim, and J. White. Fast Capacitance Extraction of General Three-
Dimensional Structures. IEEE Transactions on Microwave Theory and Technology,
40:1496–1505, 1992.

[54] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White. Preconditioned, Adaptive,
Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equa-
tions of Potential Theory. SIAM Journal on Scientific and Statistical Computing, 15:713–
735, 1994.

[55] N. Nishimura. Fast Multipole Accelerated Boundary Integral Equation Methods. Applied
Mechanics Reviews, 55:299–324, 2002.

[56] L. Nyland, M. Harris, and J. Prins. Fast N-Body Simulation with CUDA. In H. Nguyen,
editor, GPU Gems3, pages 677–696. Addison Wesley, 2007.

[57] J. R. Phillips, J. K. White, and A. Member. A Precorrected-FFT Method for Electrostatic
Analysis of Complicated 3-D Structures. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 16:1059–1072, 1997.

[58] V. Popov and H. Power. An O(N) Talyor Series Multipole Boundary Element Method for
Three-Dimensional Elasticity Problems. Engineering Analysis with Boundary Elements,
25:7–18, 2002.

[59] V. Rokhlin. Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions.
Journal of Computational Physics, 86:414–439, 1990.

[60] V. Rokhlin. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three
Dimensions. Applied and Computational Harmonic Analysis, 1:82–93, 1993.

[61] J. Singh, C. Holt, J. Hennessy, and A. Gupta. A Parallel Adaptive Fast Multipole Method.
In SC 93’: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 1993.

[62] J. Tausch. The Fast Multipole Method for Arbitrary Green’s Functions. Contemporary
Mathematics, 329:307–314, 2003.

[63] A. Tornberg and L. Greengard. A Fast Multipole Method for the Three-Dimensional Stokes
Equations. Journal of Computational Physics, 227:1613–1619, 2008.

100

[64] D. A. S. W. B. Russell and W. R. Schowalter, editors. Colloidal Dispersions. Cambridge
University Press, 1991.

[65] H. Wang, T. Lei, J. Li, J. Huang, and Z. Yao. A Parallel Fast Multipole Accelerated
Integral Equation Scheme for 3D Stokes Equations. International Journal for Numerical
Methods in Engineering, 70:812–839, 2007.

[66] M. Warren and J. Salmon. Astrophysical N-Body Simulation Using Hierarchical Tree Data
Structures. In SC 92’: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing,
1992.

[67] M. Warren and J. Salmon. A Parallel Hashed Oct-Tree N-Body Algorithm. In SC 93’:
Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, 1993.

[68] A. Windemuth and K. Schulten. Molecular Dynamics Simulation on the Connection Ma-
chine . Molecular Simulation, 5:353–361, 1991.

[69] Z. H. Yao, P. B. Wang, T. Lei, and H. T. Wang. Large-Scale Boundary Element Analysis
in Solid Mechanics Using Fast Multipole Method. In Proceedings of “Enhancement and
Promotion of Computational Methods in Engineering and Science X”, 2006.

[70] N. Yarvin and V. Rokhlin. Generalized Gaussian Quadratures and Singular Value De-
composition of Integral Operators. SIAM Journal on Scientific Computing, 20:699–718,
1998.

[71] N. Yarvin and V. Rokhlin. An Improved Fast Multipole Algorithm for Potential Fields on
the Line. SIAM Journal on Numerical Analysis, 36:629–666, 1999.

[72] W. Ye, J. Kanapa, and J. White. A Fast 3-D Solver for Unsteady Stokes Flow with Ap-
plication to Micro-Electro-Mechanical Systems. In International Conference on Modeling
and Simulation of Microsystems, Semiconductors, Sensors and Actuators, 1999.

[73] W. Ye, J. Kanapka, X. Wang, and J. White. Efficiency and Accuracy Improvements for
FastStokes: A Precorrected-FFT Accelerated 3-D Stokes Solver. In International Confer-
ence on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actua-
tors, 1999.

[74] W. Ye, X. Wang, and J. White. A Fast Stokes Solver for Generalized Flow Problems. In
International Conference on Modeling and Simulation of Microsystems, Semiconductors,
Sensors and Actuators, 2000.

[75] L. Ying, G. Biros, and D. Zorin. A Kernel-Independent Adaptive Fast Multipole Algorithm
in Two and Three Dimensions. Journal of Computational Physics, 196:591–626, 2004.

[76] K. Yoshida. Applications of Fast Multipole Method to Boundary Integral Equation Method.
PhD thesis, Department of Global Environment Engineering, Kyoto University, 2001.

[77] K. Yoshida, N. Nishimura, and S. Kobayashi. Application of Fast Multipole Galerkin
Boundary Integral Equation Method to Elastostatic Crack Problems in 3D. International
Journal for Numerical Methods in Engineering, 50:525–547, 2001.

101

[78] K. Yoshida, N. Nishimura, and S. Kobayashi. Application of New Fast Multipole Boundary
Integral Equation Method to Crack Problems in 3D. Engineering Analysis with Boundary
Elements, 25:239–247, 2001.

[79] D. Zhao, J. Huang, and Y. Xiang. A New Version Fast Multipole Method for Evaluating
the Stress Field of Dislocation Ensembles. Modeling and Simulation in Materials Sciences
and Engineering, 18, 2010.

[80] F. Zhao and S. L. Johnsson. The Parallel Multipole Method on the Connection Machine.
SIAM Journal on Scientific and Statistical Computing, 12:1420–1437, 1991.

[81] J. S. Zhao and W. C. Chew. MLFMA for Solving Integral Equations of 2-D Electromag-
netic Problems form Static to Electrodynamic. Microwave and Optical Technology Letters,
20:306–311, 1999.

[82] J. S. Zhao and W. C. Chew. Three-Dimensional Multilevel Fast Multipole Algorithm from
Static to Electrodynamic. Microwave and Optical Technology Letters, 26:43–48, 2000.

102

